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“Pick yourself up, dust yourself off, start all over again.”

-Dorothy Fields (1905-1974)
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A b s t r a c t

The development of resistance to anti-oestrogenic therapies such as tamoxifen is a 

serious clinical problem in the treatment of breast cancer. A specific model of 

Tamoxifen resistance has been developed in the Tenovus laboratories by maintaining 

MCF-7 breast cancer cells in Tamoxifen (10' M) for 4-6 months. The resistant cells 

that arise from these cultures are termed TAM-R cells. We wished to utilize these 

cells to test the hypothesis that resistance to tamoxifen is due to changes in protein 

kinase C (PKC) isoform expression.

Initially we investigated PKC expression in the TAM-R cells and demonstrated that 

they express significantly more basal and activated protein kinase C (PKC) -a  and 8 

than wild type MCF-7 cells.

To test the implications of this observation, we wished to specifically and selectively 

ablate these PKCs in the TAM-R cells and assess the outcomes. The limitations of 

pharmacological inhibitors such as bisindolylmaleimide EX (Ro31-8220) and Rottlerin 

were highlighted by our studies which concurs with a general discontent in the current 

literature over their specificity and efficacy. We therefore utilised RNAi and 

adenovirus mediated molecular technologies to modulate the PKC-a and PKC-8 

isoform expression profile in the MCF-7 and TAM-R cell lines. Using both RNAi and 

adenoviral infection of dominant negative mutants we demonstrated that down 

regulation of PKC-a and PKC-8 blocks both growth factor and oestradiol induced 

growth in MCF-7 and TAM-R cells. Thus PKC-a and 8 must play an important role 

in the mitotic pathways utilised by tamoxifen resistant breast cancer cells.

Moreover overexpressing PKC-a and 8 in MCF-7 cells allowed them to acquire 

resistance to tamoxifen and possibly even led to tamoxifen becoming agonistic for 

these cells, suggesting a role for these isoforms of PKC in inducing the tamoxifen 

resistant phenotype.
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C h a p t e r  O n e  -  G e n e r a l  In t r o d u c t io n

1.1. History of Breast Cancer

Breast cancer results after normal mammary epithelial cells sustain sufficient genetic 

damage to acquire the phenotypes characteristic of malignancy. These include 

unregulated proliferation, protection from cell death, and metastasis (Sachdev and 

Yee, 2001). It has been described in medical treatises discovered in Egypt that date 

back as far as 3000BC (Odling-Smee, 2001) although no treatment was advocated at 

this time other than cautery for the ulcerated tumour (Baum, 1988). The disease was 

later described by the Greek “Father of Medicine” Hippocrites (c.460-370BC) who 

coined the word “carcinoma” from the word Karkinos- the Greek for crab (Werner, 

1990). Hippocrites advised that surgery would be of greater immediate risk to the 

patient than no treatment at all. Considering the inherent dangers and suffering of 

surgery in the days before anaesthesia and antisepsis this was probably sound 

reasoning (Baum, 1998). Despite this considered advice, the Romans were probably 

practising mastectomy for breast cancer as early as the first century BC (Odling- 

Smee, 2001).

The advent of aseptic surgery and anaesthetics made the practice of mastectomy a far 

more viable and acceptable treatment (Odling-Smee, 2001). In 1895 Dr William 

Halsted of the Johns Hopkins Hospital in Baltimore introduced the radical 

mastectomy as the standard operative procedure. The hospital records for mastectomy 

between the period 1889 to 1931 indicate that this procedure was not terribly 

successful. From a population of around 900 patients operated on by Halsted or his 

students 6% died soon after the operation, the local recurrence of disease was seen in 

30% of patients and the ten-year survival rate was just 12%. However, between 1930 

and 1950 there were increases in survival rates which can be attributed to earlier 

diagnosis and advances in clinical classification techniques of the disease (Baum, 

1998).

1.1.1 Breast Cancer Incidence

Breast Cancer is currently the most common cancer in women worldwide, accounting 

for 25% of all female malignancies with the highest proportion of those accounted for
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by women in the developed western countries. The incidence and mortality varies 

about five-fold around the world (Key et al., 2001). For example, incidence rates in 

Japan, India and China are only about a quarter of those in the USA. However, breast 

cancer is increasing in parts of the world that previously had not been associated with 

a high risk of incidence. This is starkly highlighted in Korea which has seen the 

incidence of breast cancer rise by 56% between 1980 and 1998 (Kang et al., 2002).

Studies of migrant populations have suggested that the observed differences between 

countries and ethnic groups are more attributable to social and environmental factors 

than inherent genetic traits. Migrants from low risk countries to high-risk countries 

eventually show rates similar to the rest of the population of their adoptive country. A 

study of migrants from eastern Asia to the USA showed an increase in breast cancer 

incidence after ten years residence, with a maximum increase in risk was observed 

once the migrants had been resident in the country for one or two generations (Key et 

a l , 2001).

In the UK, 38,000 women are diagnosed with breast cancer every year. This accounts 

for 30% of all new female cancers, more than twice as many as the next most 

common, which is colorectal cancer. The lifetime risk of contracting breast cancer if 

you are a woman is now 1 in 9. Most women diagnosed are past the menopause, 

though around 7000 cases each year are in women under 50 years of age. 

Additionally, around 200 men are diagnosed with breast cancer every year 

(http://www.statistics.gov.uk/).

1.2. Oestrogens and Breast Cancer

It is now known that around 70% of breast tumours present the receptor for the steroid 

oestrogen (Harvey et al., 1999). The possibility that oestrogen could be functioning as 

a mitogenic factor in breast cancer was first alluded to in 1896 by the British 

physician George Beatson who published a paper in the Lancet describing the 

regression of breast cancer in premenopausal women who had undergone complete 

oopherectomy (Beatson, 1896). Four years later, a study reported that a third of 

patients could expect regression of their disease following this treatment (MacGregor

3
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and Jordan, 1998). However, it would take another 60 years for the mechanism 

through which the steroid hormone was acting to begin to be elucidated.

In 1962, Jensen and Jacobson first described the oestrogen receptor (ER) in the uterus 

of rats. Jensen and colleagues went on to formulate the first ER assay. This assay was 

used to test which patients’ breast tumours would respond to cessation of endocrine 

stimulation by oopherectomy in premenopausal women or adrenalectomy in 

postmenopausal women. It was thus established that women with ER rich tumours 

responded to endocrine ablation, whilst women with ER negative breast tumours had 

a poor prognosis (MacGregor and Jordan, 1998).

1.2.1. The Oestrogen Signalling Pathway

Oestrogens act in many tissues including the sex accessory tissues, bone, pituitary and 

cardiovascular cells (White and Parker, 1998). They exert a wide variety of effects on 

these tissues including stimulation of growth, differentiation, as well as important 

regulatory functions (Klinge, 2000). Oestrogens are lipophilic steroid hormones that 

are classically thought to diffuse freely across the plasma membrane into cells, where 

they bind to oestrogen receptors (ER) in the nuclei of responsive cells causing a 

change in conformation and concurrent homodimerization (MacGregor and Jordan, 

1998). Novel pathways for the action of oestrogen, which have more recently been 

elucidated, will be discussed in detail later.

The profound and varied effects of estrogens are mediated through two distinct but 

related oestrogen receptor subtypes that regulate the transcription of target genes, 

through binding to specific DNA target sequences, termed the oestrogen response 

elements (EREs). The ERE consists of inverted repeats of the sequence GGTCA 

separated by three variable nucleotides, e.g. 5’- CAGGTCAnnnTGACCTG-3’ where 

n = any nucleotide. However, most oestrogen-regulated genes contain imperfect, non- 

palindromic ERE sequences (Klinge, 2000).

4
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1.2.2. Oestrogen Receptor Structure

The ER belongs to the family of nuclear receptors, a large group of ligand inducible 

transcription factors that total approximately 150 different proteins. This superfamily, 

which includes receptors for steroid hormones, thyroid hormones, retinoids, fatty 

acids and prostaglandins and a number of orphan receptors, are grouped due to their 

highly conserved primary structures and the organisation of their functional domains 

(White and Parker, 1998).

It was discovered in 1996 that two different forms of ER exist and that they were 

encoded by separate genes (Hopp and Fuqua, 2001). The conventional ER was 

designated ERa and the newly discovered ER isoform, ERp. The human ER a  gene 

resides on chromosome 6q sub band 25.1 and is transcribed as a single mRNA of 

6.5kb that encodes a protein of 595 amino acids, with an approximate molecular mass 

66kDa. The ERp gene is located on chromosome 14q22-24 and encodes a protein of 

530 amino acids, with a molecular mass of around 60kDa (Hopp and Fuqua, 2001).

Both ERa and ERp share a high degree of structural homology and display the typical 

structural characteristics of the steroid receptor family. Both ER subtypes consists of 

six functional domains which are designated A -  F (from N- to C terminus) and 

encoded by 8-9 exons (Klinge, 2000). The amino terminal A/B domains show the 

greatest variability between all the steroid receptors (Sommer and Fuqua, 2001) with 

even ER-a and p sharing poor homology (approximately 17%). The A/B domains 

mediate transcription in a cell and promoter context specific manner through their 

ligand independent transcription activating function (AF-1) region (Klinge, 2001; 

MacGregor and Jordan, 1998).

The middle, C domain is highly conserved between ERa and p (97%), within the 

nuclear receptor family and between species (i.e. 100% amino acid identity between 

man and chicken) (Kumar, 1987). This high degree of conservation indicates the 

region’s importance in the functionality of these receptors. The C region contains both 

the DNA binding domain (DBD) and the dimerisation domain (MacGregor and 

Jordan, 1998). Dimerisation appears to be vital for receptor functionality as mutations

5
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that prevent or impede dimerisation result in receptors that are insoluble or 

transcriptionally inactive (Tamrazi et al., 2002). The DBD consists of two zinc motifs 

through which the receptor interacts directly with the DNA helix (Klinge, 2001). 

Differences in these zinc fingers between different steroid hormone receptors account 

for differences in their specificity. When these zinc fingers are not present the ER 

cannot bind DNA either in vitro or in vivo. The C region may also have a role in 

nuclear localisation of the receptor and also may be required for hsp90 binding. The 

role of hsp90 and other chaperones may be to maintain the receptor in the correct 

conformation to allow rapid responses to hormone signals (White and Parker, 1998).

The D domain is a 40-50 amino acid sequence that functions as a hinge region 

between the DBD and the ligand-binding domain (LBD). This region shares moderate 

homology between ERa and ERp (around 30%) and is poorly conserved in length and 

sequence between species and other members of the nuclear receptor family (Kumar, 

1987). The hinge region contains sequences for dimerisation and nuclear localisation 

sequences (NLS). It has also been shown to have important binding sites involved in 

interactions with receptor co-activator and co-repressor proteins (Klinge, 2001).

The C- terminal E and F domains comprise the LBD, a hsp90 binding region, a ligand 

dependent NLS, a dimerisation domain, and a ligand dependent trans-activational 

function (AF-2) (MacGregor and Jordan, 1998). Although region E shows only 

moderate homology between ERa and ERp (59% amino acid identity) they both bind 

oestradiol and other natural and synthetic ligands with the same affinity (Hopp and 

Fuqua, 2001). The LBD can be thought of as a specific and selective ligand dependent 

switch. The LBD has a compact three layer structure comprising of 12 a-helices 

which form a hydrophobic ligand binding pocket (Sommer and Fuqua, 2001) and one 

P turn arranged as an antiparallel helical ‘sandwich’ (Moras and Gronemeyer, 1998). 

Binding of ligand alters the conformation of the LBD with helix 12 forming a lid over 

the pocket that secures the ligand within the pocket (Klinge, 2001). Hydrophobic 

residues on the surface of the helix 12 lid form a surface with which receptor co- 

activating proteins can interact. These conformational changes, induced upon the 

binding of ligand, affect the recruitment of co-factors leading to a modulation of the 

receptor’s transcriptional activity (Sommer and Fuqua, 2001).

6
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The E region has been shown through deletion studies to be essential for efficient 

activation of transcription (Kumar, 1987). The AF-2 is localised to the most C 

terminal end of the E domain and is highly conserved within the nuclear receptor 

superfamily. It is recognised by a variety of transcriptional co-activators. A third 

transactivational function, termed AF-2a, has been characterised towards the N- 

terminal end of the LBD (Klinge, 2001). It has been shown that AF-2a can activate 

gene transcription in a ligand independent manner even in the absence of AF-1 or AF- 

2 (Hopp and Fuqua, 2001). The F domain is thought to play a role in distinguishing 

between oestrogen agonists and antagonists, through interactions with cell specific 

factors (Klinge, 2001).

Transactivation
domains

ER-a

AF-1 AF-2a

n
AF-2

ER-P

17% 59%

Protein Functions
DNA- Binding Ligand- Binding

Figure 1.1. Comparison of the ER-a and ER-B functional domains.

The diagram illustrates the relative locations o f the transactivation domains AF-1, AF-2, and 

AF-2a. Also indicated are the functional domains involved in DNA-binding and ligand-binding 

The degree o f  homology between the two iso forms is shown as a percentage.

1.2.3. Oestrogen Receptor Co-regulators

The ER is known to interact with many nuclear proteins in vivo and in vitro. Early 

experiments showed that the over-expression of one type of nuclear receptor
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displayed a dose-dependent inhibitory effect on the transcriptional activation of other 

nuclear receptors. This observed ‘squelching’ implicated a finite amount of a factor or 

group of factors that are necessary for transcription and that the nuclear receptors 

must compete for binding of these co-activators. There have now been around 20 

transcription enhancing co-activators identified that interact with ERa (Klinge, 2000).

1.2.3.1. Co-Activators

Interactions between the ER and co-activators are mediated through the ligand- 

dependent AF-2 of the LBD and a distinct region on the co-activator called the 

nuclear receptor interaction domain (NID) or the ‘NR box’. The NR box comprises of 

an a  helical LxxLL motif (where L represents leucine and x represents any amino 

acid) that is present in single or multiple copies (McKenna, 2002). One of the 

common functional properties of co-activators is histone acetyltransferase (HAT) 

activity. HATs acetylate lysine residues on the N-terminal tails of histones H3 and 

H4, resulting in a weaker association of the histones with DNA, providing a more 

transcriptionally permissive environment (McKenna, 2002). Thus, nucleosomal 

conformation and stability are altered, enhancing the pre-initiation complex, 

facilitating transcriptional activation by RNA polymerase II (Klinge, 2000).

The first steroid receptor co-activators to be described were the SRC family of related 

proteins, comprising of SRC-1, SRC-2 and SRC-3. These co-activators are able to 

promote oestradiol-mediated transcription and promote interaction between AF-1 and 

AF-2. These co-activators are also believed to form a ternary complex with other 

proteins to promote hormone responsive gene transcription. These co-integrator 

proteins, such as CBP and p300, possess intrinsic HAT activity and have been 

implicated in the co-activation of several transcription factors (TFs) including steroid 

receptors, NF-kB and p53. The SRC family has also been shown to interact with other 

TFs such as fos and jun and basal TFs TBP and TFIIB. Additionally, SRC-1 interacts 

with cyclin D l, a key cell cycle regulator (Hopp and Fuqua, 2001).
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1.2.3.2. Co-Repressors

Along with the activation of target genes in response to hormones, an important part 

of gene regulation involves the silencing of these genes in the absence of stimulation. 

Basal transcription can be suppressed via the recruitment of nuclear receptor co­

repressors such as SMRT (silencing mediator of retinoic acid receptor) and NCoR 

(nuclear receptor coregulator). Both these are found complexed with the co-repressor 

mSin3 and histone deacetylases (HDACs). Histone deacetylation may be involved in 

transcriptional repression by maintaining chromatin in a more condensed state that 

impairs the ready access of TFs to the DNA. Ligand binding triggers the release of 

these repressor proteins and stimulates the recruitment of co-activators via a drastic 

conformational change in the AF-2 domain (Leo and Chen, 2000). There have been 

several co-repressors of ER reported to date. These include REA (repressor of 

oestrogen activity) which competes with co-activators for the ligand binding domain, 

SHP (short heterodimer partner) interferes with DNA binding as well as competing 

with co-activators and the BRCA-1 (breast cancer susceptibility genes) which can 

downregulate the p300 co-integrator protein (Dobrzycka et al., 2003).

1.2.4. Phosphorylation of the ER

All steroid receptors, including the ER, exist as phosphoproteins in the absence of 

ligand binding. Upon the binding of oestrogen, the ER undergoes additional 

phosphorylation at several residues including serines 104, 106, 118, 154, 167, 294 and 

tyrosine 537 (Castano et al., 1998). The hyperphosphorylation of steroid receptors is 

believed to be important in DNA-binding, transcriptional activation and stability 

(Leclercq, 2002). The ER does not undergo phosphorylation solely through activation 

by oestrogen. The ER can also be phosphorylated in the absence of ligand binding by 

a number of growth factors and/or protein kinases. One well-studied example of 

ligand-independent phosphorylation is a serine residue at position 118, which is 

required for full activation of the AF-1 region (Kato et a l , 1995). Growth factor 

receptors for epidermal growth factor (EGF) or insulin-like growth factor (IGF) can 

activate serine 118 through the activation of ERK, a member of the MAPK family. 

ERK activation has been shown to be a contributing factor in both proliferation and
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cell survival of the MCF-7 breast cancer cell line (Levin, 2002). Phosphorylation of 

ER at Seri 18 has also been shown to enhance the interaction of the receptor with the 

p68 RNA helicase that results in an increase in AF-1 activity (Hopp and Fuqua, 

2001). The AF-1 region contains phosphorylation sites for a number of other kinases 

including cyclin A/cdk2 and PI3/AKT, though less is known about their specific ER 

function (Hopp and Fuqua, 2001). Another major ligand-independent phosphorylation 

site within the ERa is a conserved tyrosine 537 residue and the homologous tyrosine 

443 residue present in ERp (Hopp and Fuqua, 2001). Phosphorylation at these sites 

activates the receptor, possibly through the realignment of helix 12, forming the 

interacting surface required for the recruitment of co-activators (White and Parker, 

1998). It may also be important in the ligand inducible changes in ERa conformation 

(Hopp and Fuqua, 2001). Growth factors can also activate pp90rsk' 1 via ERK, resulting 

in Ser 167 phosphorylation of ER. This provides a further route for ER activation in 

the absence of oestrogen (Levin, 2002).

1.2.5. Alternative signalling through the ER

Over the past two decades the classical mechanism of oestrogens action has been 

augmented by an increasing wave of literature that describes alternative pathways 

through which oestrogen can exert it’s influence. The classical model describing 

steroid hormones as transcriptional activators that act through their nuclear receptors 

has been central to their perceived mechanism of action. However this classical model 

can only account for changes in protein expression that occur over a typical time scale 

of hours whilst many effects of steroid hormones stimulation have been shown to 

occur within minutes (Valverde and Parker, 2002). The onset of these actions are too 

expeditious to be attributable to either RNA synthesis or protein translation (Nadal et 

al., 2001). These rapid responses have been attributed to oestrogen exerting it’s effect 

not only on nuclear receptors but also in cytosolic and plasma membrane locations 

(Nadal et al., 2001) (Figure 1.2).
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Oestrogen Ion Channel

Membrane
Receptor Target

Protein
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Figure 1.2. M echanisms of  action of  steroids a t three different cellular levels; m em brane,  

cytosol and nucleus.

Membrane targets include steroid receptors similar to the nuclear receptors, non-classical steroid 

receptors, and ligand- and voltage-activated ion channels. Cytosolic targets are believed to be the 

classical 'translocating' receptors. Nuclear targets effect the direct modulation of gene expression by 

the interaction o f receptor complexes with the hormone response element in the DNA or with other 

transcription factors (Adapted from Valverde and Parker, 2002).
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Membrane proteins involved in rapid oestrogen actions include specific ER, ion 

channels, membrane enzymes, and other ligand receptors (Nadal et al., 2001). There 

is now strong evidence for the presence of a plasma membrane ERa in cells that are 

known targets for steroid action. The membrane ERa is believed to originate from the 

same gene and transcript that produces the nuclear form of the receptor (Levin, 2002). 

It appears to localise in discrete domains of the plasma membrane, known as 

caveolae, but the mechanism by which this small pool of ER translocates is currently 

unknown (Levin, 2002). The membrane form of ER-a appears to be more tightly 

regulated and short lived than it’s nuclear relative which allows for more dynamic 

control of it’s levels (Watson et al., 2002). The membrane ER can be viewed to 

function as a ‘look-out’ for hormone responses. It can initiate rapid responses to 

hormonal signals in advance of the cell committing itself to expensive endeavours 

such as gene and protein expression (Watson et al., 2002). The membrane and nuclear 

ER may play complementary roles where an almost immediate response is triggered 

by membrane ER through kinase signalling which is maintained via transcriptional 

activation by the nuclear ER (Levin, 2002).

Membrane ER functions can be stimulated through the binding of oestrogen which 

initiates signalling through G-protein activation and calcium flux (Kely and Levin, 

2001). They can also be facilitated via cross talk with signalling molecules including 

the epithelial growth factor receptor (EGFR) (Levin, 2002). This leads to cascades 

that can activate cAMP, phospholipase C and IP3 which in turn causes the activation 

of kinases such as protein kinase A (PKA) and protein kinase C (PKC) (Levin, 2002).

Oestrogen can also exert their influence through binding to cytosolic ERa and ERp 

receptors. Upon the binding of oestrogen, the cytosolic ER interact with the Src 

kinase changing it’s conformation to an active state and thereby activating the ERK 

MAPK signalling cascade (Nadal et a l , 2001).

1.3. Anti-Oestrogenic Therapy

Since Beatson’s experiments over 100 years ago, it has been known that manipulation 

of the endogenous levels of oestrogen can be an effective treatment in the
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management of hormone responsive breast tumours. Although oopherectomy can still 

be used as an effective treatment for the cessation of oestrogen stimulated growth, the 

administration of anti-oestrogenic drugs is now the most widely used treatment. The 

proposal for using an antagonist to the action of oestrogen as an anti breast cancer 

agent was suggested by Lacassagne in 1936 (Lacassagne, 1936). Anti-oestrogenic 

drugs are now used in both pre-menopausal and postmenopausal women and in 

metastatic, adjuvant and chemopreventive settings. The drugs available are generally 

well tolerated with a low incidence of dose-limiting toxicities, and responses are seen 

in approximately 70% of patients selected on the basis of the hormone receptor 

expression profile (Clarke et al., 2001).

1.3.1. Tamoxifen

The most successful and widely used anti-oestrogenic treatment is the selective 

oestrogen modulator (SERM) Tamoxifen (TAM) (Figure 1.3). Originally, and 

unsuccessfully, designed as a contraceptive, TAM was first approved for the 

treatment of breast cancer in 1973 in the UK and later by the US Food and Drug 

Administration (FDA) in 1977. Since then the drug has also been approved for use as 

an adjuvant treatment with chemotherapy (1986) as an adjuvant alone in 

postmenopausal patients found to have axillary lymph nodes containing evidence of 

tumour spread (1988) and in pre- and post-menopausal node negative women that are 

ER positive (1990). Tamoxifen is now also used in women thought to have a high risk 

of suffering from the disease (1990) (Park and Jordan, 2002). Clinical experience with 

TAM now exceeds 10 million patient years and is the most widely used anti-cancer 

drug (Clarke et al., 2001).

O

Figure 1.3. Molecular structure of Tamoxifen 

(R=H) and its active metabolite 4- 

hvdroxvTamoxifen (R= OHt.
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1.3.1.1. Selective Oestrogen Receptor Modulation by TAM

The original model describing how TAM inhibited the growth stimulatory effects of 

oestrogen, proposed a mechanism by which TAM acted as an antagonist that 

competed with oestrogen for binding to the ER. It was therefore thought that TAMs 

anti-oestrogenic properties would have undesirable effects in other tissues where 

oestrogen is required for normal growth and regulation. For example, oestrogen is 

vital for the maintenance of bone density in post-menopausal women so a compound 

with anti-oestrogenic properties would be thought to compromise skeletal integrity. 

Paradoxically female patients who were administered TAM actually displayed a 

beneficial increase in bone mineral density (McDonnel, 1999). It was discovered that 

far from acting as an antagonist in bone, it actually acted as an agonist. However, this 

agonist activity is also displayed in the endometrium where it has the undesirable 

effect of increasing the risk of endometrial cancer. In women who are prescribed 

TAM this increase in risk is about 2-3 fold (Jordan, 1999). Much has been made of 

this increased risk but it can be put into some perspective by the fact that TAM has 

been shown to reduce the risk of breast cancer by around 35-50% compared to 1% 

potential increase in risk of endometrium cancer (http://www.breastcancer.org/).

1.3.1.2. Mechanism of TAM Action

This discovery that SERMs such as TAM can function as both agonist and antagonists 

in cell specific contexts has meant that the classical model of ER pharmacology has 

had to be re-evaluated. The classical models of ER action described the ER as an 

inactive receptor that was switched to an active conformation by binding an agonist 

such as oestradiol. This action could be blocked by the introduction of an antagonist 

that would simply compete for binding with oestrogen at the binding site. However, it 

has since been shown that antagonists such as TAM do not solely function by 

blocking activation of the ER but rather by inducing a conformational change in the 

ER itself that interferes with its ability to bind oestradiol at multiple steps in the signal 

transduction pathway (McDonnell, 1999).
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TAM binds a hydrophobic pocket in the LBD of the ER. In vitro assays have 

demonstrated that TAM binding allows the ER to dimerise and bind to DNA with 

high affinity but blocks transcriptional activity mediated through the ligand dependent 

AF-2 (White and Parker, 1998) (Figure 1.4). This inhibition is caused by the bulky 

alkylaminoethoxyphenyl side chain of TAM interacting with the Asp 351 residue of 

the LBD. This interaction prevents the re-orientation of helix 12, the most C terminal 

helix of the LBD. For a functional AF-2 response it is essential that helix 12 seals the 

ligand into the receptor to form an active AF-2 domain with other parts of the LBD 

and bind the necessary co-activators to form a viable transcription complex (Levenson 

and Jordan, 1999). When the receptor has bound TAM, rather than forming a 

functional AF-2 conformation, helix 12 binds to co-activator recognition sites by 

mimicking the interaction between the ‘NR box’ and the LBD (Shiau et al., 1998).

The inhibition of AF-2 activity is contrasted by the ERs AF-1 domain which is active 

even when Tamoxifen is bound to the receptor (White and Parker, 1998). Therefore it 

has been proposed that in contexts where AF-2 is required for ER transcriptional 

activity TAM functions as a pure antagonist. Conversely, in contexts where AF-2 is 

not required and AF-1 is sufficient for ER transcriptional activity TAM can act as an 

agonist (McDonnell, 1999).

The identification of steroid receptor co-activators and repressors that interact with 

the ER has provided further mechanisms by which oestrogen and SERMs exert their 

influence in a cell and context specific manner. It has been shown that the ability of 

co-activators and repressors to bind the ER is influenced by the structure of the 

receptor-ligand complex. Because SERMs induce different conformational changes 

within the ER, it is likely that the resulting receptor-ligand structure would not 

interact with all the co-activator and co-repressor proteins in an equivalent manner. 

Therefore the nature of the SERM activity could be dependent on the interactions of 

these proteins with the ER-SERM complex (McDonnell, 1999).
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Figure 1.4 Oestradiol induced activation and tamoxifen (TAM ) mediated attenuation  of  the 

oestrogen response element

Oestradiol binds the oestrogen receptor (ER) causing receptor homodimerisation. The homodimer 

localises to the cell nucleus where it binds the oestrogen response element (ERE). Transcription is 

initiated through the two activation functions, AF1 and AF2, interacting with transcriptional co­

factors to stimulate the activity of RNA polymerase II (RNA POLII). Upon binding TAM the ER 

still dimerises but the AF2 function is blocked. This allows some partial agonist activity through 

AF1 but attenuates overall transcription.
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1.3.1.3 Tamoxifen Resistance

The absence of oestrogen receptor is the greatest cause of TAM treatment failure in 

breast tumours. In more than 90% of these cases anti-oestrogenic therapies have no 

effect (Clarke et al., 2001). However, even patients with oestrogen receptor positive 

breast tumours that are initially responsive to the anti-proliferative effects of TAM 

will experience a recurrence of their disease within 2-5 years of the treatment 

(McDonnell, 1999). This indicates that breast cancer cells can not only possess 

intrinsic de novo resistance but also acquire a mechanism by which they can 

circumvent the anti-oestrogenic activity of TAM. This presents a major clinical 

problem in the treatment of breast cancer. There are several possible factors that could 

contribute to TAM resistance, including changes in host immunity, host 

endocrinology, or changes in TAM’s pharmacokinetics. For example it has been 

suggested that in the TAM resistant context TAM is sequestered within plasma 

membranes or intracellular compartments reducing it’s availability to the ER (Clarke 

et al., 2001). Another theory is that TAM becomes increasingly metabolised into 

oestrogenic compounds that compete with the anti-oestrogenic metabolites for the ER 

(Lonning et al., 1992). It was originally thought that the acquisition of antioestrogen 

resistance was caused by a loss or mutation of the ER. However, it has since been 

shown that breast cancer cell lines that have lost anti-oestrogen sensitivity retain an 

ER positive phenotype with normal ER functionality (Brunner et al., 1993). Indeed 

Tamoxifen resistant breast tumours are still sensitive to other hormonal therapies that 

target the ER such as the pure anti-oestrogen ICI 182,780 (Fulvestrant) (Robertson, 

2001).

1.3.1.4 Growth Factor Receptors and Tamoxifen Resistance

There is a growing wealth of literature that has established the importance of growth 

factor signalling and its cross talk with the oestrogen receptor as a vital mechanism by 

which breast cancer cells are able to evade the effects of extended treatment with 

Tam. This paradigm has been established due, in part, to the observation that several 

growth factor stimulated cell signalling pathways are elevated in the resistant disease 

state.
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Growth factor mediated responses are only possible in cells that possess highly 

sensitive and selective receptors. There are several different types of transmembrane 

receptor including G-protein coupled receptors, ion channel linked receptors and the 

receptor tyrosine kinase family (RTK). The family of RTK receptors are

transmembrane receptors with an intrinsic intracellular kinase activity. Upon binding 

ligand these receptors undergo dimerisation to produce either a homodimer with 

another same receptor or a heterodimer with a closely related receptor of the same 

family (Heldin, 2003). Dimerisation allows the receptor to undergo

autophosphorylation on intracellular tyrosine residues. These phosphorylated 

tyrosines are recognised by proteins containing Src homology 2 (SH2) domains. 

There are two groups of SH2 containing protein. There are those that contain intrinsic 

enzymatic ability such as the tyrosine kinase Src and phospholipase C y and there are 

proteins without intrinsic activity that serve as adaptors that mediate interactions 

between other molecules. One such adaptor protein is Grb2 which associates with 

guanosine exchange factor Son of Sevenless (Sos) which activates the small G protein 

Ras. This subsequently activates Raf-1, an important component in the MAPK 

pathway which has been shown to play direct roles in many cellular processes

including proliferation and survival (Santen, 2002) (Figure 1.5).

As well as having direct effects on proliferation, MAPK can also phosphorylate key 

sites in the AF-1 domain of the ER such as on the serine 118 and 167 residues leading 

to ligand independent activation of the receptor (Kato et a l , 1995). It has been shown 

in our models of Tamoxifen resistance that basal phosphorylation of serine 118 is 

elevated and can be further enhanced by the activation of tyrosine kinase growth 

factor receptors (Britton et al., 2002).

Another pathway downstream of RTKs that is now achieving greater scrutiny is the 

phosphotidylinositol 3-kinase (PI3K)-AKT pathway. PI3Ks are a family of 

heterodimeric lipid kinases activated by RTKs. They can be grouped into three 

classes, referred to as I, II and III. PI3Ks phosphorylate the 3’-hydroxyl of 

phosphotidylinositol (Ptdlns) to produce four species of phosphorylated inositides: 

PtdIns(3)P, PtdIns(3,4)P2, PtdIns(3,5)P2 and PtdIns(3,4,5)P3 (Neri et a l,2002). These
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lipid products of PI3K function as second messengers by recruiting cytoplasmic 

proteins with phosphoinositide-binding domains to specific sites on the cellular 

membrane (Fruman, 2003). One such protein recruited to the plasma membrane is 

AKT where it becomes fully activated by phosphorylation at threonine 308 and serine 

473. Activation of AKT by PI3K is known to trigger mechanisms of tumour 

progression such as growth, proliferation, survival and motility (Vivanco and 

Sawyers, 2002). Termination of PI3K downstream signalling occurs by 

dephosphorylation. This is carried out by a phosphatase encoded by the tumour 

suppressor gene PTEN (phosphatase and tensin homologue deleted on chromosome 

10). In a significant number of tumours PTEN is mutated or inactive and the PI3K 

pathway is constitutively activated (Neri et al., 2002). Whilst the specific role of PI3K 

in TAM resistance has not been established, it has been shown that there is a strong 

association between the downregulation of PTEN expression in ERa positive tumours 

and failure to TAM treatment (Shoman et al., 2005).

1.4. ErbB Receptors

The first tyrosine kinase receptor to be characterised was the epidermal growth factor 

receptor (EGFR). The EGFR was subsequently found to be one of a member of 

related transmembrane tyrosine kinase receptors called the ErbB receptor family 

(Marmor and Yarden, 2003). There are four members of this family: the EGF receptor 

itself (also termed ErbBl), ErbB2, ErbB3 and ErbB4. The ErbB receptors are single 

chain membrane spanning proteins with significant sequence homology. The 

importance of the tyrosine kinase domains in their function is highlighted by ErbBl, 

ErbB2 and ErbB4 sharing 80% sequence homology in this region. The ErbB3 

receptor is distinct in that it lacks this tyrosine kinase functionality due to 

substitutions at four important amino acid residues (Vereb et al., 2002). The ErbB2 

receptor is also distinct from the other ErbB receptors as it is the only family member 

not to bind a known physiological ligand. As ErbB2 is an orphan receptor and ErbB3 

lacks tyrosine kinase functionality, and therefore represent the deaf and the dumb of 

the ErbB receptors, they can have no downstream effects as homodimers. 

Interestingly however, the heterodimer they form is the most potent signal transducer 

of all the ErbB combinations (Yarden and Sliwkowski, 2001).
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Overexpression of the EGFR and other ErbB family members is frequently seen in 

human breast cancers and is an indicator of poor prognostic outcome (Verbeek, 1998) 

and elevated levels of proliferation (Nicholson et al., 1999). This is especially evident

^^^yLigand
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Figure 1.5. D iagram m atic represen ta tion  of g rowth fac tor  signalling resulting in the 

activation o f  MAPK.

Growth factor ligand binds to its transmembrane receptor and activates tyrosine kinases 

inherent in the receptor molecule. A series o f protein-protein complexes form involving Grb-2, 

and Sos that lead to GDP-Ras being converted to GTP-Ras which activates Raf, MEK and then 

MAPK (Adapted from Santen et al., 2002).

in the failure of 95% of ER negative / EGFR positive breast tumours to show 

endocrine responsiveness and the poor survival characteristics of these patients 

(Nicholson and Gee, 1996). EGFR has also been shown to be over-expressed in both 

ER negative and ER expressing tumours that have developed anti-oestrogen resistance 

(Chrysogelos, 1994). This could be due to the inverse relationship that exists between 

the levels of ER and EGFR in breast cancer cells or could be the result of a direct role 

of the EGFR. For example, in vitro transfection of EGFR or ErbB2 into hormone 

dependent breast cancer cells results in hormone independent proliferation and 

Tamoxifen resistance respectively (Nicholson et al., 1999).

The significance of EGFR signalling in TAM resistant breast cancer cells is 

highlighted by an increased sensitivity to the highly specific EGF-R tyrosine kinase
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inhibitor Gefitinib (ZD 1839) (Figure 1.6). This compares with a minimal growth 

inhibitory effect observed following Gefitinib treatment of oestrogen sensitive cells 

(Gee et al., 2003). Gefitinib is an ATP analogue of the quinazoline family that 

competes with ATP for the ATP binding site at the receptor tyrosine kinase domain 

and thereby blocks EGFR activation (Zwick et al., 2002). Gefitinib possesses good 

oral bioavailability and has been shown to inhibit the growth of a broad range of 

human solid tumour xenografts in a dose-dependent manner (Barker et al., 2001). It is 

currently still in trials for several potential applications and has been approved by the 

Japanese Ministry of Health, Labour and Welfare (MHLW) for use on inoperable or 

recurrent non-small cell lung cancer (http://www.astrazeneca.comV.

Whilst the in vitro data with Gefitinib demonstrates that EGF-R signalling is 

important in Tamoxifen resistance it has also become clear that it’s favoured 

heterodimerisation partner ErbB2 also plays a role. As with EGF-R activation, breast 

cancer patients with ErbB2 receptor gene amplification and overexpression display 

reduced survival and reduced time to relapse highlighting ErbB2 as a potential drug 

target. In 1998 a humanised monoclonal anti-ErbB2 antibody called Trastuzumab was 

approved by the FDA. Trastuzamab binds to ErbB2 causing downregulation by 

causing receptor internalisation, inhibition of cell cycle progression and induction of 

immune response (Fischer et al., 2003). Two simultaneous clinical trials combining 

Trastuzumab and chemotherapy in high-risk ErbB2 positive breast cancer were 

reported early due to a 52% decreased risk of recurrence in patients treated with 

Trastuzumab compared to control groups (Moyer, 2005). To evaluate the importance 

of ErbB2 in cells that have developed TAM resistance, TAM sensitive and TAM 

resistant cell models were treated with Trastuzumab. It was shown that Trastuzumab 

was effective in reducing the growth of the TAM resistant cell line whilst having little

ZD1839 (Gefitinib)

.£1 Figure 1.6 Molecular structure of
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significant effect on the TAM sensitive cells indicating a possible role for ErbB2 in 

acquired TAM resistance (Nicholson et al., 2004).

1.5. IGF Signalling

Another widely studied RTK is the insulin-like growth factor I receptor (IGF-IR). The 

IGF-IR carries out multiple functions in many normal human tissues, including the 

mammary gland. There is now growing evidence that IGFs can affect breast cancer 

growth through mitogenic and anti-apoptotic signals and act in synergism with 

oestrogen to increase proliferation (Sachdev and Yee, 2001). IGFs are generally more 

potent mitogens in oestrogen responsive cells than either TGFa or EGF (Nicholson 

and Gee, 1996) and have been shown to have effects in vitro on several breast cancer 

cell lines at picomolar to nanomolar concentrations (Lee and Yee, 1995). Also 

stimulation of the IGF-IR can enhance the phosphorylation of serine residues 118 and 

167 in the ER of our Tamoxifen resistant model (Nicholson et al., 2002).

The IGF system utilises two ligands that possess a high degree of structural homology 

with insulin, IGF-I and IGF-II. Both IGF-I and IGF-II perform endocrine, paracrine 

and autocrine roles. There are two high affinity receptors for IGF-I and II. The IGF-I 

receptor (IGF-IR) is a transmembrane tyrosine kinase receptor whilst IGF-IIR is not 

and the mechanisms it employs are unclear, however it is thought to be important in 

the interaction between IGF-II and IGF-IR (Sachdev and Yee, 2001). The IGFs and 

IGF-IR have been shown to stimulate transformation, proliferation and inhibit 

apoptosis, thereby promoting survival, in breast cancer cells. Their proliferative 

effects are thought to be heavily dependent on interactions with a family of six 

specific binding proteins (IGFBPs) that are known to sequester IGFs. IGFs are usually 

complexed to circulating IGFBPs which serve as a reservoir for IGFs, extending their 

half-lives and regulating their contact with their receptors. IGFBPs can have 

stimulatory or inhibitory effects depending on their concentration, phosphorylation 

status and proteolytic fragmentation (Lee and Yee, 1995). Tamoxifen has been shown 

to influence the delivery of IGF-I to the breast cancer cell in vivo by decreasing 

plasma levels of IGF-I, possibly through the inhibition of gene expression, and 

elevating plasma IGFBP-I (Lonning et al., 1992).
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Unlike other growth factor RTKs, IGF-IR employs a family of soluble adapter 

proteins, called insulin receptor substrates (IRS), to initiate its downstream signalling 

cascades (Whitehead et a l, 2000). As with signalling through the EGFR, IGFR via 

IRS acts as an activator of downstream Ras-MAPK signalling cascades (Sachdev and 

Yee, 2001) and PI3K (Whitehead et a l, 2000). The major IRS adapter protein used by 

IGF-I in ER expressing cells to transduce signals is IRS-1. It has been reported that 

IRS-1 is over-expressed in some primary breast tumours (Sachdev and Yee, 2001) 

and that its expression can be induced by oestradiol leading to enhanced IGF-IR 

signalling (Dupont and Le Roith, 2001).

1.6. Protein phosphorylation

Activation of receptor tyrosine kinases, such as the EGF-R or IGF-R, by their 

respective ligands can lead to activation of their intrinsic enzymatic activity and the 

modulation of downstream effector proteins. There are several types of modulation 

that can occur including isoprenylation, which is often important in protein 

localisation, and glycosylation which can alter the activity of a protein (Schenk and 

Snaar-Jagalska, 1999). Probably the most important and widely-studied of these 

covalent modifications is protein phosphorylation mediated by protein kinases and 

protein dephosphorylation mediated by protein phosphatases. (Manning et a l, 2002). 

Phosphorylation of a protein can either activate it or inhibit it. For example the AP-1 

transcription factor c-Jun possesses a site at its N-terminus that is phosphorylated by 

MAPK family members. Phosphorylation at this site is involved in c-Jun activation. 

Conversely, c-Jun also contains a site near its DNA binding domain that when 

phosphorylated by glycogen synthase kinase-3 (GSK-3) causes silencing of c-Jun 

activity (Schenk and Snaar-Jagalska, 1999).

Studies of the human genome have identified 518 putative protein kinases genes 

which constitute about 1.7% of all human genes (Manning et a l, 2002). The 

importance of phosphorylation is highlighted by the discovery that even the genome 

of the budding yeast saccharomyces pombe contains around 120 different protein 

kinases (Gomperts et a l, 2002). Kinases function by adding the y-phosphate of ATP
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to the hydroxyl group of specific serine, threonine or tyrosine residues. The residues 

phosphorylated in any given protein are dependent on the specificity of the kinase for 

that protein and the accessibility of the residues to the kinase, though generally the 

residues phosphorylated are exposed on the surface of a protein and often located in 

the interface between the subunits of regulatory proteins (Gomperts et al., 2002).

The amino acid that undergoes phosphorylation defines the two major classes of 

protein kinases: Serine/Threonine (Ser/Thr) kinases and tyrosine (Tyr) kinases. The 

Ser/Thr kinases are present in all eukaryotes whilst the Tyr Kinases evolved later and 

are mostly associated with multicellular organisms (Young and Kuriyan, 2003). The 

activity of protein kinases are themselves regulated by multiple signalling molecules 

that can modulate the kinase by several different mechanisms. These include changes 

in the conformational shape of its catalytic core by phosphorylation or 

dephosphorylation, ligand coupled allosteric activation or inhibition, or the by 

changes in the localisation of the kinase (Young and Kuriyan, 2003).

When active, the multitude of different protein kinases retain significant structural 

similarity in their catalytic domains. In the inactive state however the different classes 

of kinase have developed different structural mechanisms to prevent the unregulated 

induction of a catalytically competent conformation (Huse and Kuriyan, 2003). The 

three dimensional structure of an eukaryotic protein kinase domain was first 

elucidated when the molecule cyclic AMP-dependent protein kinase, also known as 

protein kinase A (PKA), was visualised by X-ray crystallography. The catalytic 

domain was visualised in a complex with magnesium adenosine triphosphate (Mg- 

ATP) and a naturally occurring heat stable protein kinase inhibitor (PKI) to capture 

the PKA in a conformation that was primed and ready to carry out phosphorylation 

but without an available acceptor for the y-phosphate (Knighton et al., 1991). This 

structure has subsequently been used as the model of the catalytic domains of active 

protein kinases.

The catalytic domain of a protein kinase comprises of two lobes of around 275 

residues. The N-terminal lobe which contains an anti-parallel P-sheet and an a-helix 

and the larger C-terminal lobe which is primarily a-helical in composition. The
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manner in which the kinase binds the two substrates of the phosphorylation reaction, 

ATP and the polypeptide phosphate acceptor, is believed to be highly conserved 

between all the protein kinases. Both substrates bind in the cleft between the N- 

terminal and C-terminal lobes. There is not thought to be a set order for substrate 

binding, but due to it’s high concentration within the cell ATP is thought to bind first 

(Taylor et al., 2004). The ATP is bound deep within the cleft between the two lobes in 

a highly conserved region called the phosphate binding loop. This phosphate binding 

loop contains a conserved glycine rich sequence motif (GXGXnG) where n is usually 

a tyrosine or phenylalanine. The glycine residues allow the loop to get into very close 

proximity and interact with the ATP. In the absence of ATP the glycine residues 

render the phosphate binding loop very flexible. This allows the binding of small 

molecule inhibitors that can bring about large structural distortions to the catalytic 

domain (Huse and Kuriyan, 2002). The peptide substrate molecule binds to the front 

end of the binding pocket close to the y-phosphate of the ATP molecule on a centrally 

located “activation loop” that provides a platform for the peptide substrate. When the 

kinase is active the loop is phosphorylated stabilising it in an open and extended 

conformation that aids peptide binding (Huse and Kuriyan, 2002). Catalysis of the 

phosphorylation reaction occurs in two stages. Firstly a bond is formed between the 

phosphate group of the ATP and the amino acid to be phosphorylated. Then the 

phosphodiester bond between the p and y phosphates is broken, resulting in a 

phosphorylated peptide and ADP which are then released from the active site (Lodish 

etal., 2001).

Protein kinases play an integral role in nearly every aspect of regulation in the 

mammalian cell including transcription, cell cycle progression, apoptosis and 

differentiation. Their importance in these cellular processes and ubiquity in the cell 

implicates protein kinases as targets for investigation in oncogenic as well as normal 

cellular processes. In recent years, the deregulation of certain protein kinases have 

become synonymous with certain types of cancers This has lead to a great deal of 

financial and intellectual investment in the development of protein kinase inhibitors as 

possible treatments. However, common catalytic mechanisms, structural similarity 

and the importance of protein kinases to multiple physiological processes represents a
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challenge in identifying selective inhibitors as potential treatments or modes of study 

in disease states (Dancey and Sausville, 2003).

1.7 Protein Kinase C

One of the most prominent protein kinases is the serine/threonine kinase protein 

kinase C (PKC). PKC is almost ubiquitously activated in signal transduction 

mechanisms involving polypeptide hormones, cytokines and growth factors 

(Martinez-Lacaci and Dickson, 1996). PKC has been shown to function in amazingly 

diverse cellular processes ranging from growth, proliferation and apoptosis to learning 

and memory (Mellor and Parker, 1998). There is now a growing body of evidence that 

PKC has a role in the growth and differentiation of breast cancer cells. PKC has been 

shown to be present at elevated levels in human breast tumour biopsies compared 

with relative normal tissue (O’Brian et al., 1989) and in vitro, a positive correlation 

has been found between elevated levels of PKC and a more aggressive phenotype 

(Lee et al., 1992). Additionally, it has been shown that inhibitors of PKC can inhibit 

the growth of MCF-7 breast cancer cells (Seynaeve et al., 1993).

The protein kinase C (PKC) family at present incorporates 12 distinct members 

(Gomperts et al., 2002). These isoforms can be grouped together on the basis of their 

structure and co-factor regulation. The first group to be discovered were the 

conventional PKCs (cPKCs) comprising of isoforms a , pi and pil (two alternatively 

spliced variants), and y. The cPKCs are activated by the phospholipid 

phosphatidylserine (PS) in a Ca2+ dependent manner. The cPKCs also bind the second 

messenger diacylglcerol (DAG) which increases specificity of the enzyme for PS and 

shifts the affinity for it into the physiological range (Mellor and Parker, 1998). DAG 

is produced through the cleavage of phosphotidylinositol bisphosphate (PIP2) by 

phospholipase C (PLC) in response to extracellular stimuli such as growth factor or 

hormone signalling. The cleavage of PIP2 also creates the second messenger inositol 

1,4,5-trispliosphate (IP3) which initiates a rise in intracellular calcium levels 

increasing opportunity for PKC activation (Blobe et al., 1996). PKC is also activated 

by other products of the PI cycle including PIP2 itself. PIP2 is also the primary in vivo
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substrate of PI3K which converts it to phosphotidylinositol trisphosphate (PIP3) which 

can also activate some isoforms of PKC (Vivanco and Sawyers, 2002).

cPKC and nPKC enzymes are targets for the tumour-promoting phorbol ester 12-0- 

tetradecanoylphorbol 13-acetate (TPA) which has been a commonly used tool in PKC 

research. Phorbol esters such as TPA appear to bind the same sites as DAG though 

with a lower requirement for elevated Ca concentrations. However phorbol esters 

also appear to have greater metabolic stability than DAG which leads to a more 

prolonged activation (Blobe et al., 1996). Although phorbol esters initially induce 

activation of PKC they then cause depletion following prolonged treatment. Therefore 

the tumour promoting effect could be a consequence of PKC activation or its 

subsequent deletion (Lu et al., 1997).

The next family of PKCs to be discovered were termed the novel PKCs (nPKC) 

comprising 8 , s, q, 0, and p. As with the cPKCs, the nPKCs are activated by DAG 

and phorbol esters such as TPA in the presence of PS but differ in that they are 

insensitive to Ca2+ concentration (Mellor and Parker, 1998). The least understood 

PKC isoforms are the atypical PKCs (aPKCs) 1, and X (which appears to be the

mouse homologue of 1) (Liu and Heckman, 1998). The aPKCs are unresponsive to
2+Ca , DAG, and phorbol esters but rather appear to be primarily regulated through 

lipid co-factors such as PIP3 (Moscat et al., 2001). aPKCs have been implicated in 

important downstream steps of the PI3K pathway and interestingly their 

overexpression has resulted in the enhancement of activator protein-1 (AP-1) 

promoter activity leading to increased transcriptional activity (Moscat et al., 2001).

1.7.1. PKC Structure

All PKC isoforms consist of a regulatory and a catalytic domain with four conserved 

(C1-C4) and 5 variable (V1-V5) regions. Cl and C2 regions are situated in the N- 

terminal regulatory domain with regions C3 and C4 found within the C-terminal 

catalytic domain. The Cl domain contains one or two cysteine-rich domains which 

act as the DAG or phorbol ester binding site. The C2 region serves as the Ca2+ 

binding domain in the cPKCs but is absent in the Ca2+ independent isoforms (Schenk

27



C ha pte r  O ne -  G en e r a l  In tr o d u c tio n

and Snaar-Jagalska, 1999). This regulatory domain also contains a pseudosubstrate 

site that inhibits the kinase activity of the catalytic domain in the absence of activating 

co-factors. Its inhibitory action is exerted through a sequence motif that resembles a 

consensus phosphorylation site in PKC substrates but presents an alanine residue 

rather than the phosphorylatable serine/threonine residue of the substrate. Therefore, 

interaction of the pseudosubstrate site with the substrate binding pocket in the C4 

region of the catalytic domain results in an inactive conformation and suppression of 

kinase activity (Dekker and Parker, 1994).

VI C l V2 C2 V3 C3 V4 C4 V5

cys-rich repeat Ca2+ Hinge A T P  Substrate
,---------1------------ 1— _  rcgi2!l— | |— |--------------------------------------------  , c p k c

Pseudo-substrate PS

nPKC

aPKC

Regulatory Domain Catalytic Domain

Figure: 1.7 Diagram  illustrating the s tructures  of the d ifferent sub-families o f  PKC .

The isoforms o f PKC can be grouped into sub-families by their structure and co-factor 

regulation. The diagram illustrates of the structural differences between the conventional 

(cPKC); novel (nPKC); and atypical (aPKC) PKC isoforms.

1.7.2 Phosphorylation of PKC

PKC is synthesised within the cell as an inactive precursor which can be located in the 

detergent insoluble fraction. Whilst the catalytic site is accessible the enzyme is 

catalytically incompetent (Gomberts et al., 2002). For the classical and novel PKC 

isoforms to become catalytically viable they undergo the sequential phosphorylation 

of three specific residues. The first phosphorylation is at a threonine residue on the 

activation loop of the kinase. This transphorylation is carried out through 

phosphoinositide-dependent protein kinase 1 (PDK1) which is also known to 

phosphorylate the activation loop of the PKB family of kinases (le Good et al, 1998)
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as well as p70 s6 kinase (Belham et al., 1999). The naming of PDK-1 was somewhat 

unfortunate since it appears to be constitutively active and therefore can act on 

substrates, such as the conventional PKCs, independently of phosphoinositide 

(Newton, 2004). The phosphorylation of the activation loop by PDK-1 leads to two 

further rapid autophosphorylations near the carboxyl terminus in a 65-70 amino acid 

segment of the V5 domain that immediately follows the catalytic domain (Belham et 

al., 1999). The first of these are thought to stabilise the enzyme as it replaces the 

requirement for a negative charge at the activation loop (Newton, 1995). The final 

phosphorylation allows the enzyme to be released into the cytosol. Unless the PKC is 

phosphorylated at this site the enzyme would partition into the insoluble fraction (Liu 

and Heckman, 1998). Whilst the mature PKC is now catalytically competent it is still 

inactive due to the positioning of the pseudosubstrate in relation to the catalytic 

domain. The generation of DAG in response to stimulus brings about a 

conformational change which separates the pseudosubstrate site from the catalytic 

domain and allowing the mature PKC to be fully activated (Gomperts et al., 2002). In 

addition to these conserved maturation phosphorylations PKC isoforms undergo 

phosphorylations on serine/threonine and tyrosine residues that fine tune their 

functionality (Newton, 2003).

1.7.3 PKC Distribution

There has been many studies into the tissue-specific variations in PKC isoform 

content and distribution. This has not been easy though as many tissues are 

heterogenous and comprise many different cell types. Also whilst the variations in 

PKC between different cell types has been widely described as a consequence of gene 

expression, there has been little evidence in most cases to show that the differences 

are caused by variation at the transcriptional level (Liu and Heckman, 1998). Despite 

these limitations certain isoforms have been found to be more plentiful in certain cell 

types. Whilst PKC a, pi/ pH, 8 , 8 and £ appear to be ubiquitously expressed, PKC 0 is 

predominantly present in skeletal muscle, PKC p is strongly expressed in the thymus 

and lung and PKC y expression is almost solely the preserve of central nervous 

system and brain (Liu and Heckman, 1998). The variation in isoform distribution 

between different cell types is further complicated by variations in the distribution of
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these isoforms within the cell itself. These differences in subcellular localisation may 

confer isoform specific functions within specific cell types following activation and 

translocation to specific anchoring proteins (Way et al., 2000).

In the unstimulated resting state the conventional PKCs are present in the cytosol. 

Whilst they do transiently interact with the plasma membrane this is only due to 

diffusion within the cytosol and the inherent affinity the conventional PKC isoforms 

have for the membrane is very low. When the C2 region of conventional PKC binds 

calcium following elevation of levels within the cell, it causes PKC’s affinity for the 

plasma membrane to be greatly enhanced. This causes the PKC to translocate and 

associate strongly with the plasma membrane via interactions that orientate the 

binding face of the conventional PKC toward negatively charged phospholipids in the 

plasma membrane (Schaefer et al., 2001). This robust direct association with the two- 

dimensional plane of the plasma membrane greatly increases the chance of PKC 

colliding with and binding the much less abundant second messenger DAG than 

would occur due to the transient encounters they enjoy whilst PKC traverses the 

three-dimensional region of the cytosol. The binding of DAG by PKC allows the 

release of the pseudosubstrate sequence from the catalytic domain and therefore 

allows the activation of the PKC (Newton, 2003). This association of PKC with the 

plasma membrane can be maintained for a time after calcium levels have subsided. As 

the novel PKCs lack the calcium binding C2 domain they cannot benefit from calcium 

induced translocation to the plasma membrane and therefore translocate 5 to 10 fold 

slower than conventional PKCs (Schaefer et al., 2001). As previously noted, the 

atypical PKC isoforms are insensitive to both calcium and DAG. However they have 

been shown to be activated downstream of the PI3-K pathway and form complexes 

with specific binding partners that target the isoforms to the correct location to elicit 

their responses (Ohno, 2001).

/

1.7.4 PKC Binding Proteins

The ubiquity, broad specificity and promiscuity of the PKC isoforms has lead to the 

opinion that the association with specific binding proteins and subsequent localisation 

must play a role in PKC facilitating the correct specific response to a stimulus or
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convergence of separate stimuli. Genetic, biochemical and cell based methods have 

elucidated a large number of heterogeneous PKC binding proteins each with their own 

specific mechanisms of binding and isoform specificity. Some of these binding 

proteins bind multiple isoforms whilst others are responsible for the distribution of a 

single specific isoform (Jaken and Parker, 2000). These binding proteins can also 

display specificity for isoforms in different phosphorylation states and can facilitate a 

specific isoforms to display activity or inhibitory functions in response to different 

stimuli (Newton, 2003).

Whilst these specific binding proteins are heterogenous in nature and display a broad 

range of functions they share common functions within the cell. Many function as 

targeting proteins that position specific PKCs to appropriate locations in response to a 

stimulus whilst equally importantly preventing inappropriate events occurring. This 

change in localisation could function to bring the PKC closer to a substrate, a 

regulator of activity such as a kinase or phosphatase or into a different intracellular 

compartment (Newton, 2003). The modulation of localisation and the over-lapping 

specificities of some of the binding proteins may also provide a mechanism through 

which multiple signals integrate at PKCs, altering the type and fidelity of response 

elicited (Jaken and Parker, 2003). For example it has been shown that the scaffolding 

protein A-kinase anchoring protein (AKAP79) can co-localise PKC with PKA and the 

calmodulin stimulated protein phosphatase calcineurin (Faux and Scott, 1997).

One class of binding protein that can associate with and direct PKCs are the STICKs 

(substrates that interact with C kinase). STICKs are all phospholipid binding proteins 

that generally bind PKCs in an isoform non-specific manner. Whilst they bind to the 

regulatory domain of PKC with a very high affinity, this interaction appears to be 

transient and/or dependent on specific conditions as the endogenous PKC and 

STICKs are difficult to co-immunoprecipitate in vivo (Jaken and Parker, 2000). The 

STICKs include the PKC substrate STICK72 which can be found in membrane 

protrusions and ruffles and is associated with a role in cell motility. Another is y- 

adducin which dissociates from its binding to the cytoskeleton upon phosphorylation 

by PKCs (Dong et al., 1995). Since the interactions between STICKs and PKCs are 

generally not isoform specific it can be postulated that additional mechanisms must be
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Figure 1.8 A model o f  the interaction between the R IC K  anchoring  proteins with inactive 

PKC and  the R A C K  anchoring  proteins with activated PKC.

In the inactive form, the PKC is folded with the amino terminus pseudo-substrate site associated 

with the substrate binding site in the catalytic domain and an exposed binding site for RICKs. On 

activation the PKC unfolds exposing the RACK binding site and the substrate binding site whilst 

leaving the RICK binding site unavailable (adapted from Mochly-Rosen and Gordon, 1998)
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employed to assure correct associations occur and potentially damaging erroneous 

targeting is avoided.

Unlike STICKs, RACKs (receptors for active C-kinase) are not PKC substrates and 

bind different isoforms selectively promoting substrate phosphorylation by anchoring 

activated PKCs in close proximity to relevant substrates. Their isoform specificity 

implicates them as facilitators of isoform selective location and function within the 

cell (Jaken and Parker, 2003). There are currently 2 characterised RACKs termed 

RACK1 and RACK2 (also called P-COP). RACK1 has been shown to lock PKC in an 

active conformation in a DAG triggered, but DAG independent, sustained activation 

(Parker et al., 2003). RACK2 has been shown to interact specifically with PKC-s 

causing it to link to the Golgi membrane (Gomperts et al., 2002). The binding site for 

RACKs appears to be through the C2 domain of the PKC. The importance of this 

binding region and it’s interaction with RACKs or other binding proteins has been 

demonstrated through the use of short oligopeptides that block the region preventing 

PKC translocation and function (Ron et al., 1995). Whilst RACKs bind PKCs in their 

active state, it has been proposed that another set of binding proteins exist that bind 

PKCs in their inactive forms and anchor them to subcellular sites. These proteins have 

been termed RICKs (receptors for inactive C-kinase) (Mochly-Rosen and Gordon,

1998). Therefore, the balance in PKC binding by RACKs and the RICKs respectively 

determines which isoforms are placed in close proximity with a particular group of 

substrates and which are kept away.

1.7.5. PKC in Breast Cancer

The study of PKC involvement in cancer is now focused on the interplay between 

specific PKC isoforms in specific tumours rather than overall PKC levels. For 

examplp, studies have shown that there is a correlation between isoform expression 

and the ER status of breast cancer cells. It has been shown that abundant levels of 

PKC 8 are present in ER positive breast cancer cells with little detectable PKC-a. 

Conversely, ER negative breast cancer cells expressed abundant levels of PKC-a with 

little or no PKC-8 (Assender et al., 2005). Since there exists an inverse relationship 

between ER status and PKC expression, it is possible that PKC could play a role in
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the shift from a hormone-dependent to hormone-independent phenotype in breast 

cancer cells. Many other studies now support this hypothesis, for example it has been 

shown that stable transfection of PKC-a into hormone-dependent breast cancer cells 

causes the down-regulation of the ER while elevating the basal activity of the AP-1 

complex (Tonetti et al., 2000). Elevated AP-1 signal transduction has been implicated 

in both hormone-independence and Tamoxifen resistance (Smith et al., 1999). 

Interestingly, elevated PKC-a and AP-1 levels have also been described in 

endometrial carcinoma tumour models that display growth stimulation by Tamoxifen 

(Fournier et al., 2001). Furthermore, it has been demonstrated that in the ER positive 

MCF-7 breast cancer cell line, the predominant isoform is PKC-8  (Shanmugam et al.,

1999). PKC-8 participates in signalling pathways that lead to ER phosphorylation in a 

cell type and promoter specific manner (Lahooti et al., 1998). PKC-8 down-regulation 

has been implicated as the mechanism by which phorbol esters such as TPA exert 

their tumour promotion. This has been consolidated by the observation that PKC-8 

down-regulation by either a specific inhibitor or the use of a dominant negative PKC- 

8 mutant stimulated anchorage independent growth (Lu et al., 1997). Interestingly it 

has been proposed that PKC-8 could be part of a priming mechanism for apoptotic 

signalling. It has been shown that cells over-expressing EGF-R, which is common in 

human tumours, can be transformed by the down-regulation of PKC-8  (Zhong et al., 

2002). However, it has also been shown that PKC-8 is a substrate of IGF-IR and is 

required for IGF-IR mediated cell transformation (Li et al., 1998). The importance of 

PKC-8 in IGF-I signalling in the breast cancer cell is highlighted by performing 

studies that show an increase in PKC-8 activity on stimulation with IGF-I and that 

down-regulation of PKC-8 inhibits IGF-I induced growth (Assender et al., 2000). As 

IGF-I is such a potent mitogen, therapies directed towards the association between 

IGF-IR and PKC-8 could prove useful in the treatment of endocrine responsive breast 

cancer^

1.8 Alternative Antioestrogenic Therapies-Tamoxifen Derivatives

The relative success of tamoxifen as an anti-oestrogenic therapy has validated the 

modulation or ablation of the oestrogen receptor as a viable and efficacious strategy in
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the therapy of breast cancer. However, as with any therapy, tamoxifen is not without 

its drawbacks, not least of which is the acquisition of resistance. However the 

discovery of any pharmacologically effective candidate is not a research cul de sac 

but rather a starting point from which a myriad of successive therapies can emanate.

The derivation of tamoxifen has been carried out for over a decade in the hope that an 

agent could be found that improves on the positive outcomes the drug can yield whilst 

reducing the risks associated with its undesirable side effects. This evolution of the 

tamoxifen structure has lead to the investigation of several compounds with either 

modified side chains in the case of the first generation SERMs or altered 

triphenylethylene ring structures producing the second generation ‘fixed ring’ 

SERMs. Toremifene is a first generation SERM that only differs from tamoxifen by 

the addition of a single clorine atom at position 4 (Howell et al., 2004). It was 

developed in the hope of reducing uterotrophic effects whilst maintaining the efficacy 

of tamoxifen. However whilst Toremifene displayed similar beneficial effects in 

postmenopausal women as tamoxifen it was also comparable in the incidence of 

subsequent cancers, including endometrial. Also, patients displaying tamoxifen- 

refractory cancer subsequently treated with Toremifene displayed very little incidence 

of benefit indicating that the two SERMs display cross resistance. Other first 

generation SERMs include Droloxifene and Idoxifene. Both these drugs showed 

reduced uterogenic effects compared to tamoxifen with higher binding efficiencies 

with regard the ER in preclinical studies. However at phase III trials both treatments 

were inferior to Tamoxifen and clinical development was halted (Robertson, 2004).

The second generation ‘fixed ring’ SERMs initially were the cause of much optimism 

as they displayed great affinity for the ER with potent anti-oestrogenic effects and 

agonist action on bone mineral density whilst being devoid of the uterotrophic effects

displayed^ by tamoxifen. One such second generation SERM is Raloxifene. Whilst 

there is limited data on Raloxifene’s effectiveness in advanced breast cancer it has 

been shown to be extremely effective in increasing bone mineral density whilst 

displaying a less oestrogenic effect on endometrial cells. This agonistic effect on bone 

and improved safety profile over tamoxifen has lead to Raloxifene being developed as 

a treatment for osteoporosis. Raloxifene has also shown some promise as a
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chemopreventive agent and is currently the focus of the STAR (Study of tamoxifen 

and Raloxifene) chemoprevention trial (Howell et al., 2004). Currently a second 

generation SERM designated ERA-923 is being developed as a possible second line 

therapy for Tamoxifen-refractory metastatic breast cancer. A further study is planned 

to assess its use in ER/PgR-positive metastatic disease (Robertson, 2004).

1.8.1 Selective Oestrogen Receptor Downregulators (SERDs)

Whilst the new generation of SERMs have currently failed to supersede tamoxifen a 

new class of anti oestrogen has emerged that target the ER but are distinct in terms of 

their pharmocology and molecular mechanism of action. These compounds are call 

selective oestrogen receptor downregulators (SERDs). The most promising SERD 

currently being studied is Fulvestrant which is currently in phase III trials. SERDs are 

steroidal anti-oestrogens that compete with oestrogen for binding to the ER. Unlike 

SERMs however, SERDs are ‘pure anti-oestrogens’ in that they possess no 

oestrogenic properties. This is due to the fact that even though the SERDs bind the ER 

they possess long bulky side chains that sterically prevent dimerisation. This causes 

an increase in ER turnover and a reduction in detectable levels of ER both in vivo and 

in vitro. Consequently SERD treatment inactivates both AF-1 and AF-2 signalling 

pathways of the ER, disrupts nuclear localisation and prevents the expression of 

oestrogen regulated genes (Howell et al., 2004). Since SERDs display no oestrogenic 

effects it removes the risk of partial agonist activity of associated with SERMs in 

tissues such as the endometrium. It also negates a possible mechanism of drug 

resistance utilised by the breast cancer cell since the partial agonist activity of 

Tamoxifen has been implicated in the development of resistance. In fact cells that 

have acquired resistance to tamoxifen still display sensitivity to SERDs (Robertson, 

2001). However the lack of oestrogenic properties in all cell contexts and reduction of 

ER activity may have implications on patients bone density though pre-clinical animal 

data has been conflicting and inconclusive (Howell et al., 2004)
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1.8.2 Aromatase Inhibitors

Whilst the ovaries are the principal source of oestrogen in the premenopausal woman 

there exists additional sites of oestrogen biosynthesis. These include mesenchymal 

cells in adipose tissue and skin, osteoblasts and perhaps chondrocytes in the bone, 

vascular endothelial and aortic smooth muscle cells and several sites in the brain such 

as the hypothalamus (Simpson, 2000). These extragonadal sites of oestrogen 

production gain greater significance in the post-menopausal woman as they become 

the main source of oestrogen, though not as a major systemic hormone but rather at a 

local level in the sites where it is produced. Interestingly postmenopausal women 

retain a level of oestradiol within breast tissue that is 10 to 20  times higher than the 

circulatory oestradiol levels, a level comparable with premenopausal women despite a 

far lower level of systemic hormone (Lonning, 2004). It has also been shown that 

there are significantly higher levels of oestradiol in malignant tissue compared to 

surrounding non-malignant tissues and that this difference is independent of oestrogen 

receptor content (van Landeghem et al., 1985) suggesting potential local regulation of 

oestradiol biosynthesis by hormones, growth factors and interleukins acting upstream 

of tissue specific promoters (Lonning, 2004).

Oestrogen biosynthesis is catalysed by the enzyme complex aromatase (aromatase 

cytochrome P450). Aromatase binds a C19 steroid substrate and catalyses a series of 

reactions that leads to the formation of a phenolic A ring that is characteristic of 

oestrogens (Simpson et al., 1994). In postmenopausal women the principal source of 

the C19 precursors is the adrenal cortex which produces androstenedione, 

dehydropiandrosterone (DHEA) and DHEA sulphate which is converted to 

androstenedione for aromatisation (Simpson, 2000). The primary substrate, 

androstenedione, is aromatised into oestrone which is the major unconjugated 

circulating oestrogen in postmenopausal women. Probably half of the circulating 

oestradiol\i the postmenopausal woman is converted from circulating oestrone. The 

other half is produced by the direct aromatisation of testosterone, although aromatase 

has a lower affinity for testosterone and the level of testosterone is roughly a quarter 

of that of androstenedione (Lonning, 2004). Studies on the regional variations in 

aromatase expression in the breast have identified that the highest expression occurs
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in adipose tissue proximal to a tumour. This correlates with the increased local 

concentration of oestradiol in breast tumours and suggests that cross talk exists 

between the breast tumour and the surrounding adipose tissue (Simpson, 2000).

Whilst the treatment of breast cancers with SERMs and SERDs provide a way of 

subverting or degrading the oestrogen receptor, the discovery of aromatase provides a 

potential therapeutic target to reduce the concentration of oestrogen at local sites such 

as the breast as well as the serum levels in post menopausal women suffering from 

breast cancer. The first generation aromatase inhibitor aminoglutethimide was 

compared with Tamoxifen showed no difference in rate of response or duration of 

response. The second generation of inhibitors formestane and fadrozole were able to 

inhibit aromatase activity by around 90% at clinical doses and showed promise that 

they may be superior to Tamoxifen as a first line therapy. However the results of 

clinical trials showed no statistically significant benefit over Tamoxifen. A third 

generation of more potent aromatase inhibitors have now been developed that inhibit 

aromatase activity by 99%. These include the steroidal aromatase inhibitor 

Exemestane which binds to the p450 site of the aromatase complex. There are also the 

non-steroidal aromatase inhibitors Anastrazole and Letrozole that bind to the enzymes 

substrate binding pocket (Lonning, 2004). These inhibitors are now showing real 

promise as a possible second-line therapy following tamoxifen treatment or even in 

usurping tamoxifen’s status as the first-line therapy of choice for postmenopausal 

women with oestrogen receptor positive breast cancer. This assessment can be made 

based on patient data obtained from four randomised phase III trials. The ATAC 

(anastrazole, tamoxifen and combination) trial indicated that initial treatment with 

anastrazole lead to a reduction in events such as recurrence, contralateral breast 

cancer, or death compared to tamoxifen alone or when both were combined. The 

Italian trial (ITA) and the Intergroup Exemestane Study (IES) randomised women 

treated with tamoxifen for 2-3 years and either continued treatment with tamoxifen for 

a full 5 years' or switched them to Exemestane for the IES study or anastrazole for the 

ITA study. Both trials indicate an increase in the incidence of disease free survival in 

the groups switched to the aromatase inhibitor (Howell and Buzdar, 2005). The use of 

an aromatase inhibitor as a second-line therapy was also tested in the MA-17 trial 

which randomised patients treated with tamoxifen for 5 years to either letrozole or
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placebo. The trial was halted after 2 years as the group treated with letrozole 

displayed a significant reduction in events (Winer et al., 2005).

Whilst apparent reduction in events and increase in disease free survival suggest that 

there are advantages in the use of aromatase inhibitors in the treatment of post 

menopausal women with oestrogen receptor positive breast cancer, it is still not clear 

whether they would be most effectively applied as a first-line therapy or following a 

period of treatment with tamoxifen. There are also questions over the duration of 

treatment possible with the aromatase inhibitors and their long term risks and 

toxicities. As data emerges from the studies mentioned above and others these 

questions should have more definitive answers and whether the disease free advantage 

observed with aromatase inhibitors can be translated into an overall increase in 

survival.

1.9 Aims

Previous observations on PKC isoform expression in breast cancer cells have 

demonstrated that PKC-8 expression is indicative of an ER positive phenotype 

(Shanmugam et al., 2001) and is therefore associated with a good prognostic outcome 

to Tamoxifen treatment (Assender et al., 2005). Conversely, it has been shown that 

expression of PKC-a is associated with a loss of oestrogen responsiveness, lack of 

Tamoxifen efficacy and a more aggressive and invasive neoplastic phenotype (Ways 

et al., 1995; Morse-Gaudio et al., 1998; Tonetti et al., 2000). This project aims to 

expand on these observations by determining:

□ the PKC-a and PKC-8 expression profile of tamoxifen resistant cells

□ whether changes in the expression / activation of the PKC-a and PKC-8 

isc^orms are a consequence of anti-oestrogen resistance or under-lie its 

acquisition.

The Tenovus Centre for Cancer Research within Cardiff University has developed a 

robust and clinically relevant tamoxifen resistant cell model (TAM-R) through the 

long term tamoxifen treatment of the tamoxifen sensitive MCF-7 human breast cancer
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cells (Nicholson and Gee, 2000). To determine the PKC isoform profile of these cells, 

protein will be extracted and assayed by Western analysis using isoform and 

phosphorylation state specific antibodies. We can then compare the isoform profile to 

the MCF-7 cells from which they are derived and elucidate the differences in PKC 

activation and expression brought about by the acquisition of the TAM-R phenotype. 

We will also use this technique to ascertain the importance of the PKC-a and PKC-8 

isoforms on growth factor signalling in the tamoxifen sensitive and resistant cell lines 

and what roles these isoforms play in ER signalling. This will be carried out through 

the use of Western analysis and also through growth studies utilising the technique of 

Coulter counting which provides an accurate and reproducible way of counting cell 

numbers.

One of best ways to analyse the function of a molecule is to ablate its expression or 

inhibit its function. To this end, we will attempt a variety of strategies to selectively 

and efficaciously inhibit the PKC-a and PKC-8 isoforms and try to un-pick their 

function from the other isoforms of the PKC family and the multitude of other protein 

kinases which function within the cells. The most commonly used strategy in this 

endeavour is the use of small molecule chemical inhibitors, and there are several that 

have been widely reported to possess selectivity for PKCs and even for individual 

isoforms. These inhibitors will be tested for their efficacy and selectivity in our model 

cell lines. Alternatively a variety of molecular protocols have been developed to 

selectively and specifically inhibit and target enzyme targets. We will investigate the 

techniques of RNAi through the use of siRNAs, to disrupt mRNA expression of PKC- 

a  and PKC-8, and the use of adenovirally delivered PKC-a and PKC-8 dominant 

negative expressing plasmids to disrupt the isoforms function. The effect of PKC-a 

v  and PKC-8 inhibition will be tested on basal growth of the cell lines but also their 

effect on cell growth when treated with a range of growth factors and oestradiol.

We will also utilise an adenoviral system to introduce wild type overexpressing PKC- 

a  and PKC-8 into the cell lines. We can therefore overexpress these isoforms in the 

MCF-7 cell line to determine if this can confer resistance to tamoxifen or increase 

sensitivity to the growth factor pathways implicated in tamoxifen resistant breast 

cancer.
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CHAPTER 2. 

M a t e r ia l s  and  M e t h o d s
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2.1. General Materials and Equipment

2.1.1. Materials

The chemicals, reagents and disposables required for general use in this study are 

listed alongside their suppliers in Table 2.1.

Table 2.1. Materials/chemical reagents and their suppliers

Materials Supplier

GAPDH siRNA (with scrambled control) Ambion, Huntington,UK

Anti-Rabbit Horseradish Peroxidase 
(HRP) linked IgG (from donkey), Anti- 
Mouse HRP linked IgG (from sheep), 
Rainbow Marker (10-250 Kda), dNTPs 
and random hexamers, PD-10 desalting 
column (containing G-25 Medium)

Amersham, Little Chalfont, England

Virkon Antec International Ltd, Suffolk, UK

Fulvestrant AstraZeneca Pharmaceuticals, Cheshire, 
UK

Bromophenol Blue, Glass cover slips 
(thickness number 2, 22 mm2)

BDH Chemicals Ltd, Poole, UK

Isoton® II azide-free balanced electrolyte 
solution (sodium chloride at 7.9g.l-1, 
disodium hydrogen orthophosphate at 
1.9g.PvEDTA disodium salt at OAg.L1, 
sodium dihydrogen orthophosphate at 
0.2g.r! and sodium fluoride at O.Sg.f1)

Beckman Coulter Ltd, High Wycombe, 
UK

Sterile Syringe Needles (BD 
microbalance™ 3 characteristics: 25 G5/8, 
0.5 X 16)

Becton Dickinson (BD) Biosciences Ltd, 
Oxford, UK
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Bijou tubes (5ml) Bibby Sterilin Ltd., Stone, UK

Supersensitive Concentrated Detection 
Kit (consisting of Biotinylated anti­
mouse immunoglobulin and Streptavidin 
peroxidase), StrAviGen Multilink Kit 
(consisting of multilink concentrated 
Biotinylated anti-mouse, rabbit, rat and 
guinea pig immunoglobulin and 
Streptavidin peroxidase)

Biogenex, San Ramon, USA

Arklone P The Basic Chemical Co Ltd, High 
Wycombe, UK

The liquid DAB+ substrate chromogen 
system (K3468), Mouse/Rabbit Envision 
system HRP DAB+ kits, Goat serum

DAKO, Cambridgeshire, UK

Eppendorf tubes Elkay Laboratory Products Ltd, 
Basingstoke, UK

Methanol, acetone, ethanol, 
formaldehyde, hydrochloric acid (HC1), 
sucrose, dipotassium hydrogen 
orthophosphate anhydrous (HK2O4P), 
potassium dihydrogen orthophosphate 
(H2KO4P), glycerol, chloroform, 
isopropanol

Fisher Scientific, Loughborough, UK

0.2pm Supor membrane VacuCap® 60 
filter unit^

Gellman Laboratory Pall, Ann Arbour, 
USA

MXB Autoradiography Film (Blue 
Sensitive; 18 X 24 cm)

Genetic Research Instrumentation (GRI), 
Rayne, UK

Pipette Tips Greiner Bio-One Ltd, Gloucestershire, 
UK
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RNase Erase ICN Biomedicals Inc., Ohio, USA

RPM I1640 phenol red-free, DCCM, 
Phenol Red RPMI, Opti-MEM reduced 
serum media, Dulbecco’s modified Eagle 
medium (DMEM), phosphate buffered 
saline (PBS), streptomycin/penicillin, 
fungizone, foetal calf serum and L- 
glutamine, MMLV reverse transcriptase, 
Lipofectamine 2000 transfection reagent, 
oligofectamine transfection reagent, 
Lipofectin transfection reagent

Invitrogen, Paisley, UK

Bovine Trypsin Lome Laboratories Ltd, Reading, UK

RiboJuice Transfection Reagent, Novagen, Nottingham, UK
GeneJuiceTransfection Reagent

Tissue culture plasticware (6 , 12 and 14 
well plates, flasks, 35mm, 60mm and 
100mm dishes)

Nunc Int., Roskilde, Denmark

Perbio Chemiluminescent Supersignal® 
West Pico, Dura and Femto

Pierce and Warriner Ltd, Cheshire, UK

RNasin Ribonuclease inhibitor Promega, Southampton, UK

PKC 8 specific siRNA, PKC-a specific 
siRNA

Qiagen, Crawly, UK

/

Xylene Soluble Mountant Raymond A Lamb Ltd, Eastbourne, UK

Western Blocking Reagent Roche Diagnostics, Mannheim, Germany
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Sterile disposable pipettes (5ml, 10ml and 
25ml), Falcon tubes (50ml), Coulter 
Counter lids and cups

Sarstedt AG and Co., Numbrecht, 
Germany

Nitrocellulose membrane BA 85 
(0.45 pM)

Schleicher and Schuell, Dassell, Germany

Syringes (5ml and 10ml) Sherwood Medical Davis and Geek, 
Gosport, UK

4-Hydroxytamoxifen (TAM), Insulin-like 
growth factor I (IGF I) and II (IGF II), 
Epithelial growth factor (EGF), aprotinin, 
Heregulin growth factor p (HRG P), 
Oestradiol (E2), Bisindolylmaleimide IX 
(bis), Dimethyl sulfoxide (DMSO), 
Rottlerin, Pipette tips (polypropylene 
micro-capillary round), bacitracin, 
Acrylamide/bisacrylamide 30% v/v 
solution, ammonium persulphate (APS), 
bovine serum albumin (BSA), glycine, 
dithiothreitol (DTT), pepstatin A,gelatine, 
glycerol, ethylenediaminetetraacetic acid 
(EDTA), HEPES, leupeptin, N,N,N,N 
tetramethylethylenediamine-(TEMED), 
ethylene glycol-bis (2-aminoethylether)- 
N,N,N',N'-tetraacetic acid (EGTA), 
phenylmethylsulphonylfluoride (PMSF),, 
phenylarsine oxide, potassium chloride, 
sodium chloride (NaCl), sodium dodecyl 
sulphate or lauryl sulphate (SDS), sodium 
fluoride (NaF), sodium molybdate 
(Na2Mo04 ), sodium orthovanadate 
(Na3V04 ), Triton X-100, Trizma base, 
Trizma-HCl, Tween 20, Ezview™ Red 
Protein G affinity gel, glutaraldehyde,
3-aminopropyltriethoxysilane (APES), 
TRI reagent, ethidium bromide, 
potassium chloride (KC1), magnesium 
chloride (MgCL2) anhydrous, Tris-base, 
mineral oil, acetic acid, methyl green, 
Potassium ferricyanide, Potassium 
ferrocyanide, 5-bromo-4-chloro-3- 
indolyl-p-D-Galactopyranoside (X-Gal)

Sigma Chemical Co Ltd., Dorset, UK
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Filter Paper (No. 4), Filter Paper (grade 
3; 460 X 370mm)

Whatman, Maidstone, UK

Fixer (X-0-fix), Developer (X-0-dev) X-0-graph Imaging System, Tetbury, UK

2.1.2. Growth Factors andInibitors

Stocks of TAM were prepared by dilution to a concentration of 10'3 M in ethanol and 

added at 1/10,000 (v/v) to obtain the 10'7M final concentration in the media. Insulin­

like growth factor I (IGF I) and II (IGF II), epithelial growth factor (EGF) and 

heregulin growth factor p (HRG p) were all stored at -20°C as stocks of lOOng/pl. 

The final concentration used in experimental media was lOng/ml. Stock solution of 

10'5M Oestradiol (E2) diluted with ethanol, was stored at -20°C and used in the 

experimental media at a final concentration of 10'9M. Bisindolylmaleimide IX (bis) 

was stored as a stock solution of 10‘3M dissolved in Dimethyl sulfoxide (DMSO) and 

used in the experimental media at a final volume of 500nM. Rottlerin was diluted in 

DMSO and stored at -20°C at a stock concentration of 5mM. Fulvestrant was a kind 

gift from AstraZenenca Pharmaceuticals (Cheshire, UK). It was stored at -20°C as a 

10' M stock solution with ethanol as the diluent and utilised in experiments at a final 

concentration of 10'7M.

2.1.3. Antibodies

All antibodies used in this study are listed alongside their supplier in Table 2.2.

Table 2.2. Antibodies and their suppliers

AntHtoiy Supplier
GAPDH Abeam Ltd, Cambridge, UK

Total PKC-a Becton Dickinson (BD) Biosciences Ltd, Oxford,

Total PKC-8 UK

Phosphorylated PKC-8 (Thr505) 

Phosphorylated PKC 8 (Ser643) 

Phosphorylated ERK 42/44

Cell Signalling Technology, New England 

Biolabs Ltd, Hertfordshire, UK

(3-Actin antibody Sigma Chemical Co Ltd, Dorset, UK

Phosphorylated Ser657 PKC-a Upstate Ltd, Milton Keynes, UK.
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2.1.4. Equipment

All tissue culture work was carried out under sterile conditions, in a vertical 

circulating air, class II biological safety cabinet (MDH Intermed Airflow from 

Bioquell, Andover, UK). All disposable materials coming into contact with the cells, 

that didn’t come sterile packed for single use, were sterilised at 119°C prior to use 

using a Denly BA852 autoclave from Thermoquest Ltd, Basingstoke, UK. Cells were 

grown in a humidified atmosphere at 5% CO2 and 37 °C in a BB16 Function Line 

incubator from Haraeus Instruments (Hanau, Germany) and visualised prior to 

commencement of tissue culture work using a phase contrast microscope (Nikon 

Eclipse TE200; Kingston-upon Thames, UK). Cells were counted using the Beckman 

Coulter ® Counter Multisizer II (High Wycombe, UK). Finn Pipiettes (l-10pl, 5-50pl, 

20-200pl, lOO-lOOOpl and 500pl-5ml) were supplied by Thermo Labsystems 

(Helsinki, Finland). Cell lysates were centrifuged using an IEC Micromax RF micro­

centrifuge (Thermo Electron Corporation, Hampshire, UK). Protein sample 

concentrations were analysed at 750nm on a CECIL CE 2041 spectrophotometer 

(Cambridge, UK). Gel electrophoresis was performed on a Mini-Protean ® 3 

electrophoresis apparatus from BioRad Laboratories Ltd (Hertfordshire, UK). Electric 

current was applied to the apparatus by the powerpack 300 also from BioRad. Blots 

were incubated on a platform rocker STR6 from Stuart Scientific, Bibby Sterilin Ltd. 

(Stone, UK).

2.2. Tissue Culture

2.2.1. Routine Cell Seeding from Stock

The human mammary-carcinoma MCF-7 wild type cell line was kindly given to our 

laboratory by AstraZeneca Pharmaceuticals (Cheshire, UK). MCF-7 cells were 

removed from liquid nitrogen storage and routinely grown in phenol red containing 

RPMI medium supplemented with 5% foetal calf serum (FCS), antibiotics 

[streptomycin (lOOmg/ml) and fungizone (5pg/ml)].

2.2.2. Cell passage

All cells were routinely cultured in 75cm2 sterile flasks and were passaged 

approximately once a week upon reaching confluency. First the cell culture medium
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was removed with an aspirating pump and replaced by trypsin solution (10ml). The 

trypsin solution used to passage the cell consisted of 0.2g.l_1 EDTA and O.Sg.l' 1 

Bovine Trypsin in PBS. The flask was placed in an incubator at 37°C for 5 minutes 

until the cells become detached. The trypsinised cells were then mixed with an equal 

volume of medium (lOmls) and centrifuged at 1350g for 5 minutes at room 

temperature (r/t). The supernatant was then removed and discarded and the cells 

resuspended in 10ml of culture medium through repeat pipetting through a 10ml 

pipette until no clumping of cells were visible. Taking 1ml of the cell suspension 

(1/10), cells were then seeded in 15ml of medium in a 75cm2 flask and put in an 

incubator (5% CO2 at 37°C) until required or until confluency, when they were again 

passaged.

2.2.3. Experimental medium 

To avoid the unwanted oestrogenic properties of the phenol red in standard RPMI 

medium, prior to each experiment, cells were set up in a phenol red free equivalent 

medium called white RPMI 1640. It was also necessary to carry out the experiments 

in the absence of steroids, so steroid-depleted charcoal stripped foetal calf serum 

(csFCS) was used. The csFCS was prepared by firstly aliquoting the foetal calf serum 

(FCS) (100ml) and adjusting the pH to 4.2 using 5M HCL. This was then allowed to 

equilibrate for 30 minutes at 4°C. A charcoal/dextran solution was prepared using 

distilled water with Norit A (charcoal, 11.1%) and Dextran C (0.06%). This mixture 

was then stirred vigorously for 1 hour. 5ml of charcoal solution (5% v/v) was added to 

each 100ml aliquot of FCS and incubated with gentle agitation for 16 hours at 4°C. 

The charcoal was then removed by centrifugation (12,000g for 40 minutes) and the 

solution filtered with Whatman N° 4 paper to remove any traces of charcoal. The pH 

of the solution was then readjusted to pH7.2, sterilised and then filtered again with 

0.2jjM membrane filter Supor Vacucap® 60 to remove fine impurities and 

contaminating micro-organisms.

The experimental media utilised for the MCF-7 cells comprised the following: phenol 

red free RPMI containing 5% (v/v) csFCS, antibiotics [streptomycin (lOOmg/ml), 

penicillin (lOOIU/mL) and fungizone (2.5jag/ml)] and glutamine (4mM). This media 

will now be referred to as white and 5% (W +5%).
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In experiments where serum free media is required the experimental media comprised 

the following: DCCM-1, streptomycin (lOOmg/ml), penicillin (lOOIU/mL), fungizone 

(2.5pg/ml) and glutamine (4mM).

2.2.4. Plating o f Cells fo r Tissue Culture Based Experiments

To ensure that equivalent cell numbers were utilised for each experiment the cells 

were counted prior to plating. Firstly the cells were detached from the flask by 

trypsinisation as outlined previously (2.2.2). Once the pellet was obtained by 

centrifugation the supernatant was removed using an aspirator and the cells 

resuspended in 10ml of the experimental media. The cells were resuspended using a 

syringe with a 25 G5/8 0.5 X 16 needle. The cells were pushed through the needle to 

separate the cells and provide a single cells suspension. lOOpl of this solution was 

then added to 10ml of Isoton in a counting cup and then counted using the Beckman 

Coulter counter Multisizer II. A volume of experimental medium was then mixed 

with a known number of cells to seed each experiment appropriately.

2.2.5. Establishment o f  the Tamoxifen Resistant Cell Line (TAM-R)

The Tamoxifen resistant cell derivative of the MCF-7 cell line was established 

through routine maintenance of the MCF-7 cell line in experimental medium (as 

outlined in 2.2.3) containing 4-OH Tamoxifen (10'7M) (TAM). Cells were 

continuously cultured in this TAM-containing medium for a period of 6 months, 

during which time the cells were routinely passaged when necessary. The first two 

months of this treatment regime caused a signifigant growth inhibition of the cells. 

After this time, the cell growth began to gradually increase until it reached growth 

rates comparable to the untreated wild type MCF-7 cell line. This indicated that the 

cells were able to overcome the growth inhibitory effects of TAM and had developed 

a Tamoxifen resistant (TAM-R) phenotype. These TAM-R cells were then routinely 

cultured for a further four months and characterised before being utilised for 

experimental work.

2.2.6. Cell counting for growth experiments

Cells were grown in 24 well plates with each condition being assessed set up in 

triplicate wells. After removal of the medium with an aspirator, 1ml of trypsin was
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added to each of the wells to be counted and the plate returned to the incubator until 

the cells were visibly detached (usually 3-5 minutes). Using a 5ml syringe with a 25
C/Q

G 0.5 X 16 needle, the detached cells were drawn up and down twice to separate the 

cells and provide a single cells suspension which was drawn into the syringe. Then 1 

ml of isoton was added to the well and drawn into the syringe and repeated twice 

more to give a total volume of 4ml. This cell suspension was then added to a Coulter 

counting pot containing 6ml of isoton to give a final volume in the pot of 10ml. The 

number of cells in each pot was then counted twice using the Coulter counter with 

gentle agitation between each count to to resuspend the cells. The average of the two 

counts were then multiplied by the dilution factor of 20 to give the number of cells per 

well.

2.2.7. Statistical analysis o f  cell counts 

In all growth experiments each condition was carried out in triplicate and counted in 

duplicate (i.e. 3 pairs of counts for each condition). To analyse the counts, the mean 

of each pair was taken and the mean of those three values expressed ± SEM. In cases 

where the experiment was further repeated, the average of all the paired means were 

used. Results were subjected to paired t-test analysis using the SPSS (Statistical 

Package for the Social Sciences) version 12.0.2 software to determine significance.

2.3. SDS-PAGE and Western Blotting

Cell lines, cultured as a monolayer in a flask as previously outlined (2.2.4), were 

resuspended by trypsinisation, re-seeded at a density appropriate for the time scale of 

the experiment into 60mm or 100mm dishes and allowed time to attach and 

commence growth. Once the cells commenced log phase growth the media was 

aspirated and replaced with the experimental media containing the required treatments 

at the stated doses and time periods. If the experiment required the cells to be serum 

starved prior to treatment the cells were grown to around 70% confluency, then the 

medium was aspirated and replaced with DCCM for 24 hours prior to treatment. The 

medium was then aspirated and replaced by DCCM containing the experimental 

treatments at the required doses and time periods. All experiments contained a control 

arm in which the media was replaced with the corresponding medium minus any

50



C h a p t e r  T w o  - M a t e r ia l s  a n d  M e t h o d s

treatments. All studies involving TAM-R cells were performed with 4-OH Tamoxifen
n

(10‘ M) present in the experimental media.

2.3.1. Cell Lysis

After the stated treatments, cells were washed three times with PBS (37°C) and excess 

PBS removed by aspiration. 150pl ice cold lysis buffer (50mM Tris-HCL, 5mM 

EDTA, 150mM NaCl, 1% Triton X-100 (v/v) in distilled water, pH7.5) supplemented 

with protease and phosphatase inhibitors (2mM Na3VC>4, 20mM NaF, ImM PMSF, 

10 pg/ml leupeptin, 20pM phenylarsine oxide, lOpg/ml aprotinin and lOmM sodium 

molybdate) was then added to the 60mm dishes. The dishes were scraped using a cell 

scraper to fascilitate the removal of as many cells as possible. Lysate was incubated 

on ice for 10 minutes then the cellular contents transferred to 1.5ml Eppendorf tubes 

and centrifuged at 15,800g for 15 minutes at 4°C. Supernatants were aliquotted and 

stored at -20°C until required.

2.3.2. Sample Preparation

The total protein concentration of the samples was determined using the BioRad assay 

using known concentrations of bovine serum albumin (BSA) to construct a standard 

curve for spectrophotometric quantification. BSA was diluted in sufficient lysis buffer 

(without the protease inhibitors) to obtain 50pl of solution at protein concentrations of 

0, 0.25, 0.5, 0.75, 1 and l^ m g .m r 1. The curve was then constructed after reading 

their absorbances at 750nm. The BSA samples at the above concentrations and 

protein samples (12.5pl of sample and 37.5pl of lysis buffer to give a final volume of 

50pl) were prepared in spectrophotomic cuvettes. To each sample (protein and BSA) 

250pl of reagent A (from BioRad kit) was added, supplemented with substrate S 

(20pl in 1ml of reagent A) (from BioRad kit). Finally 2ml of reagent B (from BioRad 

kit) was added to each cuvette and the colour was allowed to develop for a minimum 

of 15 minutes. The absorbance at 750nm for each BSA sample of known 

concentration was then read and a calibration curve plotted of absorbance versus 

concentration. Then each protein sample was processed, spectrophotometrically 

assayed at 750nm and its concentration determined from the standard curve. 50pg of 

protein from each sample under investigation, were then mixed with lOpl of loading
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buffer (4% (w/v) SDS, 20% (v/v) glycerol, 120mM upper buffer (pH6 .8), 0.1% 

(W/V) bromophenol blue, plus lOOmM DTT).

2.3.3. SDS-Page

SDS-PAGE was performed under reducing conditions following the method of 

Laemmli (1970). Resolving gel and stacking gels, containing 7.5% (w/v) and 5% 

(w/v) acrylamide respectively, were routinely used. The gels were prepared as 

follows: resolving gel comprised 7.5% acrylamide/bisacrylamide, 375mM lower 

buffer (pH8 .8), 0.1% (w/v) SDS, 0.1% (w/v) APS and 70pM of TEMED. The upper 

stacking gel comprised 5% acrylamide/bisacrylamide, 125mM upper buffer (pH6 .8), 

0.1% (w/v) SDS, 0.05% (w/v) APS and 116pM TEMED. These gels were routinely 

prepared as outlined in table 2.3.

Table 2.3. Composition of resolving and stacking gels used for SDS-PAGE

GEL COMPONENT 7.5% (W/V) RESOLVING GEL 5% (W/V) STACKING GEL

ddH20 4.8ml 6. 1ml

0.5M Upper Buffer - 2.5ml

1.5M Lower Buffer 2.5ml -

Acrylamide/Bisacrylamide (30%) 2.5ml 1.25ml

10% (w/v) APS lOOpl lOOpl

10% (w/v) SDS lOOpl 50pl

TEMED 6pl lOpl

Electrophoresis was carried out using the Mini-Protean ® 3 electrophoresis apparatus 

from BioRad Laboratories Ltd with the gel apparatus assembled as outlined by the 

manufacturer. The resolving gel was pipetted to within 1.5cm of the upper edge of the 

inner glass plate and water gently layered on top of the solution to ensure the 

formation of a level gel front and the exclusion of any air bubbles. The gel was 

allowed to polymerise for 30-40 minutes. Once the gel was set the water was removed 

using a strip of Whatman grade 3 filter paper and the stacking gel overlayed with the 

well-forming comb inserted. After the stacking gel had polymerised, the comb was 

gently removed and the upper and lower chamber of the tank filled with running 

buffer (pH8 .8) (250mM Trizma base, 2M Glycine, 40mM SDS). The protein samples 

combined with loading buffer were heated to 100°C for 10 minutes and allowed to
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cool before loading onto the gel. The rainbow protein size markers (10-250 kDa) were 

loaded into the first lane of each gel. Electrophoresis was carried out at a constant 

voltage between 150-200 volts until the dye front had reached the base of the gel.

2.3.4. Western Blotting

Seperated proteins from the gel were transferred onto nitrocellulose membrane for 1 

hour at 100V in transfer buffer (0.2M of glycine, 25mM of Trizma base, 20 %(v/v) of 

methanol in distilled water, pH 8.3) using the BioRad transfer aparatus. Afterwards, 

the blots were blocked in a solution of 5% skimmed milk (w/v) and TBS-Tween 

(lOmM Tris, 0.1M NaCl, 0.05% (v/v) Tween 20, pH 7.5) for at least 1 hr to prevent 

non specific binding of antisera. Blots were then incubated in the appropriate primary 

antibodies.

After exposure to antibodies the membranes were washed three times during a 15 

minutes interval in TBS-Tween and then incubated for 1 hour with the required 

secondary antibody labelled with horseradish peroxidase (donkey anti rabbit or sheep 

anti mouse) diluted 1/10000 in BM Chemiluminescence Blotting Substrate, made up 

in TBS-Tween (l:20mls). Membranes were then washed three times in TBS-Tween 

for a total of 30 minutes. Detection was performed by applying a thin film of 

Supersignal0  WEST DURA or PICO chemiluminescent substrate to the membrane 

for 5 minutes. Hyperfilm ECL film was then exposed to the membrane until a 

satisfactory level of exposure could be obtained. The film was then processed using a 

x-ray developing machine. Results were scanned using a BioRad model GS-700 

densitometer.

2.3.5. Immunoprecipitation

Cells, cultured as a monolayer in a flask, were removed by trypsination and re-plated 

at 1.5 x 106 cells per 100mm dish in W+5% medium and grown to 70%-80% 

confluency (usually after four days). The medium was then aspirated and the cells 

lysed as previously described in section 2.3.1, except that 1ml of lysis buffer was used 

per 100mm dish. Total protein concentrations of samples were again determined using 

the BioRad assay and CECIL spectrophotometer. Cell lysates were adjusted to contain 

lmg protein and immunoprecipitated using either lp l or 2pi of a specific antibody and
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incubated for lhr whilst gently rotating in a cold room (4°C). 40 j l x 1 of Ezview™ Red 

Protein G (Sigma) was added to the mixture and rotated gently in a cold room over 

night. The immune complex was centrifuged at 3500g at 4°C for 5 minutes, the 

supernatant removed and the complex washed with PBS (r/t). This procedure was 

repeated three more times and the resulting pellet re-suspended in 50pl of loading 

buffer. Samples were heated to 100°C for 10 minutes to release and denature the 

bound proteins before gel loading. Proteins were run on a SDS-PAGE gel and 

Western blotted according to the standard protocol (2.3.4).

2.3.6. Statistical Analysis 

Where the data allowed, the densitometry numbers obtained by scanning the bands 

obtained by Western blot were analysed by paired t-test using the SPSS software to 

determine significance.

2.4. Immunocvtochemistrv (ICC)

Slides were analysed under a phase contrast microscope (Olympus BH-2) and 

photographed on a digital camera (DP-12, Olympus) from Olympus (Oxfordshire, 

UK). All other equipment used in this technique have been listed in previous sections.

2.4.1. Experimental tissue culture

Each cell line, cultured as a monolayer in a flask, were removed by trypsination and 

re-suspended in W+5% and seeded onto 22-mm2 3- aminopropyltriethoxysilane 

(APES)-coated glass coverslips contained in 35mm culture dishes at a density of 1 x 

105 cells/dish. Once the cells have reached a confluency of around 70-80% the media 

was removed and the cells were fixed by the method appropriate to the 

immunocytochemical assay to be performed (see below).

2.4.2. ER-ICA Fixation

Coverslips are immersed in 4% (in PBS) Formaldehyde solution at room temperature 

for 15 minutes then immersed in PBS at room temperature for at least 5 minutes. Next 

the coverslips were immersed in Methanol (-10°C to -30°C) for 5 minutes, then 

Acetone (-10°C to -30 °C) for 3 minutes. The coverslips were then washed in PBS at
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room temperature for at least 5 minutes and stored at -20°C in sucrose storage 

medium.

2.4.3. Acetone: Methanol Fixation

Coverslips were immersed in a 1:1 (v/v) mixture of acetone and methanol at a 

temperature of between -10°C and -30°C for 10 minutes. The coverslips were then 

removed and allowed to air dry for 30 minutes. Once dry, the coverslips were stored 

at-80°C.

2.4.4. PKC SAssay

The sucrose storage medium was removed from the coverslips, which had been fixed 

by the ER-ICA method, and then washed twice for 5 minutes in PBS. The coverslips 

were blocked with 10% normal goat serum for 10 min to prevent non-specific 

antibody binding then excess serum removed. PKC-8 mouse monoclonal IgG2b 

antibody (1:100 dilution in PBS) was added to the coverslips and left overnight at 

room temperature. The following day the coverslips were washed in PBS (3 mins) and 

then in detergent buffer wash (DPC) (2x 5 mins). The coverslips were then incubated 

for 45 mins in peroxide conjugated goat anti-mouse secondary antibody at a dilution 

of 1:25 in PBS. Coverslips were then washed as before and a mouse peroxidase-anti- 

peroxidase (PAP) conjugated antibody diluted 1:250 in PBS, was added for 45 mins at 

r/t. Staining was visualised by applying DAB to the coverslips for 6 mins and 

counterstaining with methyl green (0.5%) for 30 seconds.

2.4.5. PKC a  Assay

The coverslips, fixed using the acetone : methanol method, were rehydrated for 5 

minutes in PBS. The coverslips were then blocked with 10% normal goat serum for 

10 min to prevent non-specific antibody binding. Excess serum was then removed and 

PKC-a mouse monoclonal IgG2b antibody (1:100 dilution in PBS) added to the 

coverslips and left overnight at room temperature. The following day the coverslips 

were washed in PBS (3 mins) and then in detergent buffer wash (DPC) (2x 5 mins). 

The coverslips were then incubated for 30 mins in peroxide conjugated goat anti­

mouse secondary antibody at a dilution of 1:25 in PBS. Coverslips were then washed 

as before and a mouse peroxidase-anti-peroxidase (PAP) conjugated antibody diluted

55



C h a p t e r  T w o  - M a t e r ia l s  a n d  M e t h o d s

1:250 in PBS, was added for 30 mins at r/t. Staining was visualised by applying DAB 

to the coverslips for 10 mins and counterstaining with methyl green (0.5%) for 30 

seconds.

2.5. Reverse transcription-Polvmerase Chain Reaction (RT-PCR3

All bench work was carried out in the Labconco purifier PCR enclosure, supplied by 

GRI, Essex, UK. All reverse transcription and PCR procedures were carried out in the 

BioRad iCycler machine. Agarose was melted in a 950 Watt Microwave purchased 

from Curries (UK). Electrophoresis apparatus (Sub-Cell® Agarose Electrophoresis 

systems, Biorad, UK) were run on a BioRad 1000 Powerpac. The trans-illuminator 

and Polaroid Camera used to visualise results were supplied by GRI. Unmentioned 

equipment used in this technique are listed in previous sections.

2.5.1. Cell lysis and RNA extraction 

To ensure that RNA/DNA remain stable throughout the entire reverse transcriptase 

experiment all solutions purchased were graded RNA/DNase free, all disposables 

were autoclaved and gloves worn at all times. Cells were lysed by adding 1ml of TRI 

lysis reagent for 5 minutes at room temperature. To ensure all the cells had detached 

the dish was scraped using a cell scraper. The lysed solution was then transferred to a 

sterile eppendorf to which 200pl chloroform was added. The tube was gently but 

thoroughly mixed for 15 seconds by shaking and left to stand for up to 10 minutes at 

room temperature before centrifugation at 15,800g for 30 minutes at 4°C. 400pl of the 

top aqueous phase (containing RNA) was carefully removed to a fresh sterile tube to 

which an equal volume of isopropanol was added. The tube was then mixed gently 

again, left to stand for 10 minutes at room temperature and centrifuged at 15,800g for 

10 minutes at 4°C. The precipitated RNA (white pellet) was washed with 75% 

ethanol, gently vortexed, re-centrifuged (10 minutes), pellet dried (but not totally as 

this decreases solubility) and re-suspended in sterile water (30pl).

Concentration of the RNA was measured using a spectrophotometer at 260 and 

280nm wavelength, using 1:500 dilution of RNA in water. A preparation was 

considered satisfactory if the ratio of the absorbance values obtained at these
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wavelengths was 1:2 and not lower than 1:1.6. The RNA integrity and concentration 

was checked by running RNA through a 2% agarose gel.

2.5.2. Agarose gel electrophoresis

2% agarose in Tris EDTA acetate (TEA) buffer was prepared by heating in a 

microwave at full power for 1 minute with periodic mixing and left to cool to 

approximately 40°C. Following addition of lpl Ethidium bromide, the gel was poured 

into a gel tray and well comb added. When the gel set, a solution of RNA (equivalent 

to 1 pg) was made up to 6 pl in loading buffer and loaded into the lanes of the gel and 

run for 30 minutes at 70 volts. The gels were then visualised under UV in a dark room 

and photographed using a polaroid camera.

2.5.3. Reverse transcription (RT)

Total RNA (lpg) was diluted to a final volume of 7.5pi using DEPC treated Sterile 

Water. This RNA solution was then added to 11 pi of RT master mix comprising 5 pi 

dNTP (2.5mM), 2pl 10X PCR buffer (containing MgCl2 (25mM)), 2pl DTT (0.1M) 

and 2pl random hexamers (RH) (lOOpM). The tube was placed in a thermal cycler 

(PTC-200, M J Research) and denatured at 95°C for 5 minutes, removed and cooled 

on ice for 5 min. MMLV (reverse transcriptase enzyme, 1 pi) was then added, 

followed by RNase inhibitor (0.5pi) to give a final volume of 20pl. The mixture was 

centrifuged briefly to collect volume and then placed in the thermal cycler and reverse 

transcribed using the following cycle program:

Step 1 22°C 10 min (annealing time)

Step 2 42°C 42 min (RT extension time)

Step 3 95°C 5 min (denaturing time)

The resulting cDNA was stored at -20°C until required.

2.5.4. Polymerase Chain Reaction

To amplify the cDNA produced in the RT step exponentially, lp l of cDNA from each 

sample (equivalent to 50ng mRNA starting material assuming 100% efficiency of RT 

reaction) was added to a PCR master-mix solution (37.25pi of sterile distilled water,
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5(il of PCR buffer (10X), 4pl of dNTPs (2.5mM), 1.25(j.l forward primer (20pM), 

1.25pl of reverse primer (20pM) and 0.2pl of the Taq polymerase) to give a final 

volume of 50pl per sample.

The reaction mix was placed in a heated lid BioRad iCycler PCR machine and 

amplified using the parameters outlined in Figure 2.1. Upon completion of the cycles, 

5pi of sample was added to 6pi of loading buffer, loaded onto a 2% agarose gel and 

the bands separated by electrophoresis as outlined in section 2.5.2.

2.5.5. Oligonucleotide-primer design 

In order to analyse PKC-8 expression at the mRNA level, oligonucleotide primers 

were designed (Assender et al, 1997) and tested using the Oligo™ Primer Design 

software package (Medprobe AS, Oslo, Norway) to minimise primer-primer 

annealing. PKC-8 primer sequence shown in Table 2.3. These primers produced a 

band at 351bp molecular weight and having a 55°C optimal annealing temperature. 

To determine the optimum cycle number for these primers they were run with MCF-7 

cDNA at cycle numbers of 21, 26, 28, 30, 32 and 34. The intensity of the bands 

visualised on agarose gel (as described below in section 2.5.2) increased with cycle 

number (figure 2.2). It can be seen that a cycle number of between 30 and 32 cycles is 

sufficient to visualise a product whilst not passed the saturation point where subtle 

differences in expression could be lost.

To analyse PKC-a expression at the mRNA level, oligonucleotide primers were 

designed using the Primer3 software package (http://www-genome.wi.mit.edu/cgi- 

bin/primer/primer3_www.cgi). Possible sequences were checked using the Blast 

computer program (http://www.ncbi.nlm.nih.gov/BLAST/). Two sets of sequences 

were selected as possible suitable primers using cDNA obtained from MCF-7 cells. 

The two sets of primers were run for a period of 21, 24, 28, 30, 32 or 34 cycles with a 

negative control containing no cDNA. One of the sets of primers produced no bands 

on an agarose gel whilst the other produced the desired bands at 494bp of increasing 

intensity as cycle number increased (Figure 2.3). It can be seen that a cycle number of
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between 30 and 32 cycles is sufficient for subsequent experiments. This efficacious 

set of primers are detailed in Table 2.4.

Primers for P-Actin were used as a control, to confirm levels of mRNA expression 

were uniform in a given experiment (Table 2.3). The primers produced a band at 204 

bp after 24 cycles, annealing at 55°C for 1 minute.

2.5.6. Statistical Analysis 

After photographing the bands produced by PCR, the bands were scanned by 

densitometry and the raw number used for paired t-test using the SPSS software to 

determine signifigance.

Table 2.4. Oligonucleotide primer sequences for the RT-PCR of PKC-a, PKC-5 and 

B-Actin.

PKC-a 5'-AGT GC ACC AT GGT AGA AA AGC-3' 3'-TAGCTCGTCTTCATCTTCACC-5'

PKC-5 5'-CACCATCTTCCAGAAAGAACG-3' 5'-CTTGCCATAGGTCCCGTTGTTG-3'

p-Actin 5-GGA GCA ATG ATC TTG ATC TT-3’ 5’-CCT TCC TGG GCA TGG AGT CCT 3’
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94°C 92°C

72°C

55°C

Cycle 1 Cycle 2 Cycle 3

Cycle 1 (lx) 94°C 5 min

Cycle 2 (30-32 cycles) 92°C 1 min

55°C 2 min

72°C 2 min

Cycle 3 (lx) 72°C 5 min

Cycle 4 End 4°C -

Figure 2.1 PCR Cycle Profile

Illustration of the PCR cycle sequence utilised when using the PKC-a and 8 

specific primers.
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Figure 2.2. PCR optimisation of PKC5 primers

The level of PKC8 expression in cDNA from the WT-MCF-7 cell line was measured using 

PKC8 specific PCR primers. The number of cycles was varied to ascertain which cycle would be 

most suitable in future experiments to observe differential expression of the isoform. No cDNA 

was added to one of the reaction mixes as a negative control.
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Figure 2.3. PCR optimisation of PKC-a primers

The level of PKCa expression in cDNA from the WT-MCF-7 cell line was measured using 

PKCa specific PCR primers. The number of cycles was varied to ascertain which cycle would be 

most suitable in future experiments to observe differential expression of the isoform. No cDNA 

was added to one of the reaction mixes as a negative control.

62



C h a p t e r  Tw o  -M a t e r ia l s  a n d  M e t h o d s

2.6. RNA Interference (RNAi)

2.6.1. Transfection reagents

Several reagents were tested as a suitable transfection reagent for the studied cell 

lines. Supplied by Invitrogen (Paisley, UK) were Lipofectamine 2000, a cationic lipid 

formulation designed for the transfection and subsequent expression of DNA 

sequences in cultured cells, Lipofectin, a 1:1 (w/w) liposome formulation of the 

cationic lipids N-[l-(2,3-dioleyloxy)propyl]-n,n,n-trimethylammonium chloride 

(DOTMA) and dioleoyl phosphotidylethanolamine (DOPE); and Oligofectamine, a 

transfection reagent designed for the transfection of oligonucleotides into cultured 

cells. GeneJuice, a transfection reagent formulated from a non-toxic cellular protein 

and a small amount of a novel polyamine, and RiboJuice, an analagous delivery 

system specifically designed for siRNA delivery, were both purchased from Novagen 

(Nottingham, UK). p-Galactosidase plasmid used for transfection optimisation was a 

kind gift from Gavin Wilkinson at University of Wales College of Medicine.

2.6.2. siRNA Duplexes

GAPDH siRNA with scrambled control and siRNA Cy3 Labelling kit were purchased 

from the Silencer range by Ambion (Huntington,UK). PKC 8 specific siRNA was 

purchased from Qiagen (Crawly, UK). The sequence was obtained from a published 

siRNA duplex (Yoshida et al., 2003). The PKC a  specific siRNA utilsed was 

purchased from the validated HiPerformance range of siRNAs from Qiagen.

2.6.3. Transfection efficiency assessment using fi-galactosidase (f-gal) 

Transfection efficiency was determined for each cell line by transfecting a set of wells 

with a P-gal expression vector (p-gal). The p-gal was transfected into the cells as 

outlined below. The transfected cells were stained for p-gal as follows: Cells were 

washed with r/t PBS and fixed with 0.5% (v/v) glutaraldehyde in PBS (2mls per well) 

for 15 minutes at room temperature. After that time, cells were again washed with 

room temperature PBS. An X-gal staining solution containing potassium ferricyanide 

and potassium ferrocyanide prepared as below:-

Stocks of 300mM potassium ferricyanide/13OmM MgCb in PBS, 300mM potassium 

ferrocyanide/13OmM MgCL in PBS and 40 mg/ml X-gal (dissolved in di-methyl
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formamide) were initially prepared. The staining solution was then made by diluting 

1/100 (v/v) each of the two potassium cyanide solutions in PBS (final concentrations 

of 3mM potassium ferricyanide and 3mM potassium ferrocyanide) with 1/320 (v/v) of 

stock solution of the X-Gal (final concentration 0.125 mg/ml).

Cells are left in this staining solution (2ml per well) overnight at 37°C. A blue colour 

stain could be seen the next day in transfected cells only and the percentage 

transfection could therefore be estimated by counting the relative proportion of 

stained to non-stained cells.

2.6.4. P-Galactosidase Plasmid Transfection 

Initial transfection optimisation was carried out using a P-galactosidase (P-Gal) 

plasmid to visualise cellular uptake. Cells were seeded out in 12 well plates (with a 

surface area 4cm2) at a seeding density of 3 x 106 cells per plate and grown prior to 

transfection for 24 hours in W +5% media as described in section 2.2.4. 24 hours 

prior to transfection the media was replaced with W +5% minus antibiotics and 

fungizone.

2.6.4.1. Lipofectamine2000

Lipofectamine 2000 (3 pi) was added to 50pl of DCCM culture media and incubated 

at room temperature for 45 minutes. Separately, lpg of the p-gal plasmid was added 

to 50pl of DCCM. The two components were then combined and allowed to incubate 

for a further 15 minutes at room temperature. Once the complex had been allowed to 

form, 0.4ml of DCCM containing 1% (w/v) DMSO was added to the transfection 

mixture. The medium was then aspirated from each of the cell culture wells and 

overlayed with 0.5ml of the transfection mixture. Cells were then incubated for 

6hours at 37°C, after which time the transfection reagent was removed and replaced 

with ample growth media. The cells were subsequently incubated for a further 24 

hours prior to staining.

2.6.4.2. GeneJuice

GeneJuice (1.5pl) was diluted in 50pl of DCCM, vortexed briefly, and incubated for 5 

minutes at room temperature. To this mixture, 0.5pg of P-gal plasmid was added and
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incubated at room temperature for 10 minutes. The gene juice/plasmid complex was 

then applied to the cells in one of two ways to test whether the presence of serum 

affected the transfection efficiency. The 50pl of transfection mixture was either 

applied to the cells directly without removing their complete growth media or the 

media was removed and replaced with the transfection mixture made up to a volume 

of 0.5ml in DCCM containing no antibiotics or fungizone.

2.6.4.3. Lipofectin

P-gal plasmid (400ng) was added along with 600ng of PCR-Script to 60pl of DCCM. 

Lipofectin (3 pi) was added to 60pl of DCCM and left to incubate at room 

temperature for 45 minutes after which time the two mixtures were combined and 

allowed to incubate for a further 15 minutes. Once the complex had been allowed to 

form, 0.4ml of DCCM containing 1% (w/v) DMSO was added. The medium was then 

aspirated from the wells and overlayed with 0.5ml of the transfection mixture.

2.6.5. siRNA Transfections

Prior to transfection, the media was changed for 0.5ml of white RPMI/5% csFCS 

containg no antibiotics.

2.6.5.1. Lipofectamine2000 

Lipofectamine 2000 (3.6 pi) was added to 60pl of DCCM and incubated at room 

temperature for 45 minutes. Separately, 0.71 pg of the specific siRNA duplex was 

added to 60pl of DCCM. The two components were then combined and allowed to 

incubate for a further 15 minutes at room temperature. Once the complex had been 

allowed to form, 0.4ml of DCCM containing 1% (w/v) DMSO was added to the 

transfection mixture. The medium was then aspirated from each of the wells and 

overlayed with 0.5ml of the transfection mixture. Cells were then incubated for 

6hours at 37°C, after which time the transfection reagent was removed and replaced 

with ample growth media. The cells were subsequently incubated for a further 48 

hours prior to assessment/ harvesting.
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2.6.5.2. GeneJuice

GeneJuice ( 3 j j , 1 )  was diluted in I O O j l l I  of DCCM, vortexed briefly, and incubated for 5 

minutes at room temperature. To this mixture, 0.71 jug of siRNA duplex was added 

and incubated at room temperature for 10 minutes. The gene juice/plasmid complex 

was then applied to the experimental medium present in the wells.

2.6.5.3. Oligofectamine

Oligofectamine (6 pi) was added to 24pl of Opti-MEM and left to incubate at room 

temperature for 5 minutes. Separately, the specific siRNA duplex (0.71 pg) was added 

to lOOpl of Opti-MEM. After the incubation period the two mixtures were combined 

and allowed to incubate for 20 minutes. 126pl of the transfection mixture was evenly 

distributed over the complete growth media in the wells in a drop-wise manner and 

then rocked gently to ensure even distribution.

2.6.5.4. RiboJuice

RiboJuice (6pl) was diluted in 94pl of Opti-MEM, mixed thoroughly by brief 

vortexing and allowed to incubate at room temperature for 5 minutes. The specific 

siRNA duplex (1.3 pi) was added to this mixture, mixed gently and incubated at room 

temperature for 5-15 minutes. A volume of lOOpl of the transfection mixture was then 

evenly distributed in drops over the medium of each well. The plates were then gently 

rocked to allow even distribution.

2.7. Adenovirus

2.7.1. Passaging HEK-293 cells 

Human embryo 293 kidney cells (HEK-293) were kindly provided by Professor 

David Murphy at Bristol University Research Centre for Neuroendocrinology 

(URCN) and Dr. Gavin Wilkinson at the University of Wales College of Medicine 

(UWCN). HEK-293 cells were routinely cultured in Dulbecco’s modified Eagle 

medium (DMEM) supplimented with 10% (v/v) FCS and 5mM 1-glutamine in 175cm2 

flasks at 37°C and 5%CC>2. Upon reaching confluency the media was aspirated and 

4ml Trypsin/EDTA was added to each flask and allowed to incubate at 37°C for
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around 5 minutes until the cells had visibly detached from the flask. The flask may be 

gently tapped to encourage cells to detach. 10ml of culture media was added to the 

flask. The cell suspension was then transferred to 50ml Vulcan tubes and centrifuged 

at 1500g for 5 minutes until a stable pellet was formed. The supernatant was then 

carefully removed and the pellet was resuspended in 10ml of media by repeated 

pipetting with a 10ml pipette. A volume of 2ml of each cell suspension was then 

added to 5 @ 175cm flasks and 30ml of media added to each. The cells were then 

replaced in the incubator.

2.7.2. Bulking up o f adenovirus 

The recombinant adenoviruses used in all experiments outlined are incapable of 

replication in target cells lacking a complementing El helper function. Therefore the 

preparation of viral stocks requires infection and subsequent scaling up of the HEK- 

293 cells which constituently express the El proteins. The adenovirus was then 

purified from the cells in two different ways outlined below.

2.7.2.7. Arklone P Method 

HEK-293 cells were grown in a 175cm2 flasks till they reached 70% confluency. The 

media was then aspirated from the flasks and replaced with 25ml of media containing 

a multiplicity of infection (MOI) of 0.1. The cells were allowed to incubate for 90 

minutes after which time the media was removed and replaced with fresh media. After 

3 days a clear cytopathic effect (CPE) was visible across the monolayer. The cells 

could now be readily detached from the flask with the assistance of gentle tapping. 

The cells were then collected and centrifuged at 2700g for 5 minutes and the 

supernatant discarded. In case of leakage or tube failure the tubes were removed from 

detachable centrifuge buckets inside the class II safety cabinet. The cells were 

resuspended in 10ml PBS and an equal volume of Arklone P by vigorous mixing. The 

suspension was then centrifuged at lOOOg for 5 minutes to separate the mixture into 

two layers. The top aqueous phase contained the extracted adenovirus. To maximise 

yield the interface was resuspended with PBS, centrifuged and the top layer extracted 

as before. The adenovirus containing supernatant was then aliquoted and stored at 

-80°C.
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2.7.2.2. Freeze Thaw Method
'y

HEK-293 cells were grown in 175cm flasks till they reached 70% confluency. The 

flasks are then inoculated with 20pl of pure virus with a concentration of around 2 X 

10'10pfu (plaque forming units). The media containing the inoculum was removed 

after 16 hours and fresh media added. The cells were then grown till a clear cytopathic 

effect (CPE) was visible. Once the cells exhibit a gross CPE effect the cells were 

harvested from the flask rapidly freeze thawed and centrifuged at 1500g for 5 

minutes. To ten 175cm2 flasks of HEK-293 cells, 1ml of the crude viral supernatant 

suspension was added and incubated at 37°C, 5% CO2 for around 3 days until a clear 

cytopathic effect (CPE) was visible across the monolayer. The cells could now be 

readily detached from the flask with the assistance of gentle tapping. The cells were 

then collected and centrifuged at 2700g for 5 minutes. The supernatant which 

contained low levels of the adenovirus was then stored at -80°C for future use. The 

cell pellet containing the majority of the adenovirus was then resuspended and pooled 

in a total volume of 2.5ml 0.1M HC1, pH8.0 and freeze thawed to break open the 

cells. The resultant viral suspension was then sonicated for 4 minutes in an ice bath. 

Cell debris was then removed by centrifugation at 2700g for 5 minutes. The extracted 

virus was then ready for aliquoting and storage at -80°C or futher purification by 

Caesium Chloride (CsCl) gradient centrifugation.

2.7.2.3. CsCl Purification o f Adenovirus

Adenovirus was extracted as outlined above from a minimum of 10 175cm2 flasks to 

ensure that enough material was available to generate a visible band on the CsCl 

column following centrifugation. CsCl solution (1.6ml of a 1.45g/ml solution in 5mM 

Tris HC1, pH7.8) was pipetted into 14 x 89mm Ultra-Clear Beckman centrifuge tubes. 

Then a less dense CsCl solution (3ml of a 1.33g/ml solution in ImM EDTA, 5mM 

Tris HC1, pH7.8) was gently layered on top. The tubes were then filled to within 

2.5mm of the top with the adenovirus extract obtained in section 2 .122 . The tubes 

were then spun in an ultracentrifuge at 100,000g overnight at 20°C. The visible viral 

bands were then collected by piercing the tube with a syringe and passed through a 

PD-10 column pre-equilabrated with lOmM Tris pH7.5, ImM MgCl2. The adenovirus 

was eluated from the columns with lOmM Tris, pH 7.5, ImM MgCl2. The adenovirus
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containing eluate was then filter sterilised and seperated into 20pl aliquots and stored 

at -80°C.

2.7.3. Titration o f Adenovirus by end point dilution 

Low passage HEK-293 cells were seeded into 80 wells of a 96 well plate and grown 

for 24 hours till they reached 50-60% confluence. Serial dilutions of adenovirus were 

prepared in complete media and lOOpl of each dilution added to the appropriate wells 

and incubated overnight at 37°C, 5% CO2. Following this incubation period the media 

containing the adenovirus was replaced with 200pi of fresh media and replaced in the 

incubator. The media was then changed every 2-3 days as necessary. Once the 

cytopathic effect was visible in a well it was marked and it’s media no longer 

replaced. After 8 days of incubation the number of wells containing plaques were 

counted. The titre of the adenoviral stocks were then calculated as plaque forming 

units (pfu) per ml (pfii/ml) using the Reed & Meiinch endpoint calculation formulae 

(Reed and Meiinch, 1938):

Proportional Distance=

% of wells infected at dilution above 50% - 50%

% of wells infected at dilution above 50% - % of wells infected at dilution below 50%

ID50 (Infectivity Dose, 50%)=

log dilution above 50% + (proportional distance x dilution factor)

TCID50/ ml (Tissue Culture Infectivity Dose)= — -—  x 10
I D 5 0

TCID50/ ml ~ 0.7 pfu/ml 

Final Titre (pfu/ml) = TCID50 x 0.7

Using the endpoint dilution method described above, the viral titers for each of the 

adenoviral vectors was calculated. These titers are listed below in table 2.5.
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Table 2.5. Viral titers of adenoviral vectors calculated using the endpoint 

dilution assay.
ADENOVIRAL VECTOR VIRAL TITRE (pfu/ml)

Empty Vector 5 x  109

P-gal plasmid 3.6 x 109

PKC 6 Dominant Negative 4.8 x 109

PKC 8 Wild Type 2.0 x 109

PKC a  Dominant Negative 3.2 x 109

PKC a  Wild Type 4.8 x 109

To ensure that the relative number of viral particles per cell to be infected is kept 

constant, the cells are counted and infected at a constant multiplicity of infection 

(MOI). The volume of viral suspension required to infect with the assigned MOI is 

calculated using the equation below:

Volume of viral suspension (pi) =

MOI x Number of cells to be infected jqqq

pfu/ml

2.7.4. Adenoviral infection o f the MCF-7 and TAM-R cell lines

The MCF-7 and TAM-R cells were set up in 24 well plates and allowed to grow for 

48 hours prior to infection in media containing 5% csFCS. The cells were then 

infected by addition to the well of the volume of adenoviral suspension calculated to 

provide the desired MOI (section 2.7.3). The media was then changed 16 hours after 

infection and the cells allowed to grow to the desired time point with further media 

changes carried out every three days where necessary.

2.7.5. Establishment o f suitable MOIfor the PKC-8 WT and DN adenoviruses 

MCF-7 cells were set up and infected as outlined in section 2.7.5 with either PKC-8 

DN or WT expressing adenovirus at MOI of 20, 50, 100, 200 and 500 in triplicate. 

Additionally, in each case a triplicate of wells were left uninfected as controls. The 

media was then changed 16 hours post infection and the cells allowed to grow for a
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further 24 hours, after which time the total RNA was extracted and reverse transcribed 

as described in sections 2.5.1 and 2.5.3 respectively. The cDNA generated from each 

of the samples was probed for PKC-8 using PKC-8 specific primers (section 2.5.5). 

The amplification products were size fractionated on a 2% agarose gel containing 

ethidium bromide and visualised under UV light.

2.7.6. Infection efficiency assessment using a fi-gal expressing adenovirus 

The MCF-7 and TAM-R cell lines were seeded in 12 well plates and allowed to grow 

in their home medium containing 5% csFCS for 48 hours prior to infection. The 

number of cells in each of three wells was then Coulter counted in duplicate (as 

described in section 2 .2 .6) and the mean cell number used to calculate the volume of 

adenoviral suspension required to provide the correct multiplicity of infection (MOI) 

in each well. The cells were infected with a P-galactosidase expressing adenovirus at 

MOI of 20, 50, 100 and 200 in triplicate wells with three wells left uninfected as a 

control. The media was changed 16 hours post infection and the cells allowed to grow 

for a further 24 hours. The cells were then stained for the presence of P-galactosidase 

using the chromogenic substrate X-Gal and fixed as outlined in section 2.6.3. The 

infection efficiency was assessed by visually counting the percentage of cells with the 

charateristic blue staining relative to the overall cell population.

2.7.7. In Vitro Kinase Assay o f Adenovirally Infected Cells

Cells were grown in 24 well plates for 48 hours prior to infection of triplicate wells 

with adenovirus. The media was then changed 16 hours post infection and the cells 

allowed to grow for a further 24 hours, after which time the cells were lysed on ice 

using 200pl of cold lysis buffer containing 20mM Tris pH 7.6, 0.25M NaCl, 3mM 

EDTA, 3mM EGTA, lOpg.ml' 1 leupeptin, 2mM sodium vanadate (NaVOs), 25mM 

sodium fluoride (NaF), ImM DTT and 0.5% Nonidet (N)P-40 per well. The contents 

of the triplicate wells were pooled together and cell debris removed by centrifugation 

at 13,000g for 5 minutes at 4°C. The supernatant was then transferred to a sterile 

eppendorf and a further 600jal of lysis buffer minus DTT and NP-40 was added. An 

appropriate volume of anti-PKC isoform specific antibody (a  or 8) was added to the 

samples and gently rotated in a cold room (4°C) for 1 hour. The total volume of
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Ezview™ Red Protein G for all the samples was added to a fresh eppendorf and pulse 

centrifuged for 10 seconds to precipitate the beads and remove the preservative 

supernatant. The beads were then resuspended to their previous volume in lysis buffer 

minus DTT and NP-40, 20pl added to each of the samples and the samples rotated 

gently in a cold room over night. The samples were then centrifuged at 13,000g for 1 

minute to pellet the beads, the supernatant discarded and the pellet resuspended with 

200pl cold lysis buffer minus DTT and NP-40. The resuspended pellet was then 

centrifuged at 13,000g for 1 minute and the supernatant discarded. The pellet was 

then washed in ice cold kinase buffer (137mM NaCl, 5.4mM pottasium 

chloride(KCl), 0.3mM di-sodium hydrogen phosphate (Na2HP04 ) 0.4mM pottasium 

dihydrogen phosphate (KH2PO4), 1 mg/ml L-glucose, 25mM P-glycerophosphate, 

25mM magnesium chloride (MgCb) and 5mM EGTA. ATP was added to kinase 

buffer at lOOpM and radiolabelled to approximately 500,000 counts per minute (cpm) 

per 40pl with y-P32 ATP. Samples were centrifuged for 1 minute and the resultant 

supernatant discarded. Non specific binding control samples for PKC-a and PKC-8 

were resuspended in 40pl of labelled kinase buffer minus the substrate peptide and 

incubated at 37°C for 10 minutes. The reaction was terminated with 5pi of 45% 

Sodium trichloroacetate (TCA) at 4°C and the tubes placed on ice. The selective PKC 

substrate peptide MBP (4-14) (Calbiochem) was then added to the remaining labelled 

kinase buffer to a concentration of 50pM. The kinase reaction was initiated by adding 

40pl of the radiolabelled kinase buffer containing the substrate peptide to each tube 

and the samples mixed by drawing up and down with the pipette. The samples were 

then incubated at 37°C for 10 minutes after which time the reaction was halted by the 

addition of 5pi of 45% sodium trichloroacetate (TCA) at 4°C and the tubes placed on 

ice for 10 minutes. The samples were then centrifuged at 13,000g for 3 minutes and 

the supernatant spotted onto 2cm x 2cm squares of Whatmann P-81 paper and 

allowed to dry. Unincorporated P32 was washed away with 2 x 1 minute washes with 

75mM phosphoric acid (H3PO4), 1 x 1 0  minute wash with 75mM H3PO4, and 2 x 5 

minute and 1 x 1 minute washes with 75mM phosphate buffer pH 7.4. The paper 

squares were then placed in scintillation tubes containing 10ml H2O and P32 

incorporation measured by scintillation counting using the Cerenkov method. The
32pmol P incorporated per sample was defined using the calculation below:-
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39 »pmol P incorporated per sample =

Specific Counts x 5000 

Total Counts

where Specific Counts =

radiolabel incorporation in _ radiolabel incorporation in 
presence of substrate absence of substrate
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CHAPTER 3.

Study  into  the PKC-a and  PKC-S profile of  the MCF-7 

CELL LINE AND ITS TAMOXIFEN RESISTANT (TAM-R)

DERIVATIVE
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3.1. I n t r o d u c t i o n

Protein kinases are a major intermediary and facilitator in a multitude of biological 

functions. Therefore it is not surprising that the deregulation of their expression or 

activity is implicated in many disease states. Aberrant PKC signalling alone has been 

implicated in diseases ranging from the most prevalent diseases in western society 

such as cancer, heart disease and diabetes to a major killer of children in developing 

countries, enteropathogenic Escherichia coli induced diarrhoea (Crane and Vezina, 

2005).

For many years since its discovery PKC was studied and described as a single entity. 

However PKC is actually a blanket term for a series of closely related signalling 

molecules that can act in a synergistic or antagonistic manner depending on their 

intracellular location and activation status in a cell specific context. This complexity 

requires a viable and reproducible assay system to disentangle the various isoforms 

and accurately assess their function. The advent of PKC isoform and phosphorylation 

state specific antibodies has greatly eased this endeavour by allowing the total levels 

of intracellular PKC expression and activation to be visualised and measured by 

robust techniques such as Western analysis and immunocytochemistry without the 

need for more involved procedures such as radioactive in-vitro kinase assays (Figure 

3.1).

Whereas previously it has been reported that overall levels of PKC were elevated in 

breast cancer compared to the surrounding normal tissue (O’Brian et al., 1989) and in 

ER- compared to ER+ cell lines (Fabbro et al., 1998); we now know that there is a 

more complex interplay regarding the individual isoforms. For example elevated 

levels of PKC-8 and relatively low levels of PKC-a are found in oestrogen receptor 

positive cell lines and conversely, relatively low expression of PKC-5 and elevated 

levels of PKC-a are associated with oestrogen receptor negative cell lines (Assender 

et al., 1997; Morse-Gaudio et al., 1998; Shanmugan et al., 2001). Other studies have 

also shown that overexpression of PKC-a decreases ER expression in T47D cells but 

not MCF-7 cells (Tonetti et al., 2000). How closely these cell line models mimic the 

clinical scenario however still remains to be elucidated, as studies to date have been
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conflicting, i.e. Tonetti et al., (2003) showed that PKC-a expression is raised in 

advanced disease, whilst Kerfoot et al. (2004) showed that it is decreased. Although 

the cell models have tried to address PKC isoforms expression patterns in cases of de 

novo resistance to tamoxifen there has been relatively little work to determine how the 

expression and activation of these isoforms relate to the acquired resistance 

phenotype.

To examine the effect of the acquisition of Tamoxifen resistance on PKC expression 

and utilisation, the MCF-7 cell line and a Tamoxifen resistant derivative (TAM-R) 

were studied. The MCF-7 cell line was initially derived from a female breast cancer 

patient with metastatic disease (Brooks et al., 1973). This oestrogen receptor positive 

breast cancer cell line, one of the most commonly used cancer models in the world, is 

initially responsive to the growth inhibitory effects of Tamoxifen treatment. However 

routine maintenance of the MCF-7 cell line in the presence of Tamoxifen produces a 

cell line which can circumvent the growth inhibitory effects of Tamoxifen and 

develop a TAM-R phenotype (section 2.2.5) whilst retaining oestrogen receptor 

functionality, as illustrated by their enduring sensitivity to the pure antioestrogen 

fulvestrant (Nicholson et al., 2004). Therefore this cell line serves as a useful and 

relevant model as it mirrors the acquisition of Tamoxifen resistance that eventuates in 

the clinical setting.

The identification of the physiological substrates and cellular functions of protein 

kinases within model cell lines has benefited from the development of many low 

molecular weight, cell permeable chemical inhibitors. With over 500 distinct protein 

kinases sharing conserved catalytic mechanisms and structural similarities, the 

greatest challenge in the design of these protein kinase inhibitors is that of selective 

inhibition (Dancey and Sausville, 2003). Several inhibitors have been reported to have 

such selective inhibition for the PKC family of protein kinases. These have now 

become widely used tools in the elucidation of PKC function in the signal 

transduction pathways involved in normal and neoplastic cells.

A whole class of PKC inhibitors has been derived from the indolocarbozole, 

staurosporine (Figure 3.2a), a compound discovered during the course of screening
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extracts from the bacterium Streptomyces sp. for constituent alkaloids with PKC 

inhibiting properties (Omura et al., 1977). Staurosporine itself is a powerful inhibitor 

of PKC (IC50 lOnM) (Davis et al., 1989) due to its ability to compete with its ATP 

binding site, however it displays poor selectivity across the various isoforms (Way et 

al., 2000). This selectivity has been increased through the chemical modification of 

the basic staurosporine structure to produce functional derivatives such as the 2,3- 

bisindolylmaleimides, including bisindoloylmaleimide IX (Ro31-8220) (bis) (Figure 

3.2b) (Gescher, 1998). For example, these derivatives have much better specificity for 

PKC over other intracellular kinases such as PKA, and are reported to possess slight 

selectivity for the PKC-a isoform over the other conventional PKCs (Wilkinson et al., 

1993). Since its derivation, Bis has been used in over 600 published studies to 

demonstrate physiological roles for PKC in many cell systems and species 

(McGovern and Shoichet, 2003).

The lack of true isoform specificity with Bis causes complications when attempting to 

elucidate the mechanisms of specific PKC isoforms as different isoforms can have 

contradictory effects across multiple signalling pathways. Rottlerin (mallotoxin) 

(Figure 3.2c), a compound derived from the tree Mallotus philippensis, has been 

shown to inhibit protein kinases with some specificity for PKC. More importantly it 

was originally observed to have the ability to differentiate between the PKC 

isozymes, and was the first inhibitor to show a greater specificity for PKC8 (IC50 

values 3-6pM) than for PKCs a , p ,y (30-42pM) or PKC c,r| and £ (80-1 OOpM) 

(Gschwendt et al., 1994). Rottlerin has been used in, at least, hundreds of studies to 

elucidate the role of PKC8 in a wide spectrum of cellular events including apoptosis, 

cell differentiation and MAPK activation (Soltoff, 2001).
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Figure 3.1 Protein fragments of PKC used as immunogen in the production of 
PKC-a and 5 antibodies.

Monoclonal antibodies for PKC-a and PKC-8 were generated using fragments of the 
human PKC isoforms as immunogens. The PKC-a specific antibody was generated 
using a protein fragment of human PKC-a comprising amino acids 270 and 427 and the 
PKC-8 immunogen comprised a fragment of human PKC-8 between amino acids 114 
to 289. Both antibodies were supplied by BD Transduction Laboratories (Oxford, UK). 
Also illusrated are the phosphorylated amino acid residues targeted by phosphorylation 
specific antibodies for PKC-a and 8. Antibodies directed at phosphorylated PKC- 
8 residues threonine 505 and serine 643 were supplied by Cell Signalling Technology 
(Herts, UK). Antibody specific for PKC-a phosphorylated at serine 657 was supplied 
by Upstate (Milton Keynes, UK).
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Figure 3.2. The structure of some commonly used PKC inhibtors

The diagrams above are structural representations of three reported PKC 
inhibiting compounds; (a) staurosporine, (b) one of its derivatives, 
bisindolylmaleimide IX (RQ31-8220) and (c) Rottlerin.
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3.2 . R e s u l t s

3.2.1. Determination of relative protein levels of PKC-a and PKC-8 in the 

oestrogen receptor positive MCF-7 cell line compared to the oestrogen receptor 

negative MB-MDA-231 cell line

It has previously been shown in various breast cancer cell line models that a 

correlation exists between the relative PKC-a and PKC-8 isoform expression profile 

and a breast cancer cells oestrogen receptor status (Assender et al., 1997; Shanmugan 

et al., 2001; Tonetti et al., 2003). To verify that we could detect this in our model cell 

line models, the PKC-a and 8 isoform expression of the oestrogen receptor positive 

MCF-7 cell line was compared to the oestrogen receptor negative MB-MDA-231 cell 

line by Western analysis using isoform specific antibodies. In both cases the blotted 

membranes were additionally probed for p-actin as a control for overall protein levels 

and loading accuracy. (Figure 3.3). It can be seen that the relative expression of the 

two isoforms between the two cell lines concurs with the previously observed trends, 

with the MB-MDA-231 cell line expressing far greater PKC-a when compared to the 

MCF-7 cells whilst displaying relatively little PKC-8 . This verifies that our antibody 

regime is working effectively and that a cell lines PKC isoform expression profile 

may reflect its oestrogen receptor status.

3.2.2. Determination of relative protein levels of PKC-a and PKC-8 in the MCF- 

7 cell line compared to the TAM-R cell line.

As PKC-a and 8 levels are altered in the MB-MDA-231 cell line which is oestrogen 

receptor negative and therefore displays de novo resistance to tamoxifen, we decided 

to investigate whether the expression of these isoforms was also altered in a breast 

cancer cell line that has acquired resistance to tamoxifen. Therefore we compared the 

protein levels of PKC-a and 8 in the tamoxifen sensitive MCF-7 cell line compared to 

their tamoxifen resistant derivative (TAM-R) by western blotting using isoform 

specific antibodies with P-actin levels measured as a control of overall protein levels 

and loading accuracy. In each case the total levels of the PKC isoforms in the TAM-R 

cells were expressed as fold expression relative to that of the MCF-7 cell line ± SD
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Figure 3.3. Relative PKC-a and PKC-8 protein expression between the ER 
positive MCF-7 breast cancer cell line and ER negative MB-MDA-231 breast 
cancer cell line.

Western analysis was carried out whole cell extracts taken from MCF-7 and 
MB-MDA-231 cells grown to 80% confluency in media containing 5% csFCS. 
The blotted membranes were probed with primary antibodies specific for either 
PKC-a or PKC-8. In addition, the membranes were probed with a p-actin 
specific antibody as a loading and protein concentration control.
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MCF-7 TAM-R
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Figure 3.4. Relative PKC-a protein expression between the MCF-7 
breast cancer cell line and the Tamoxifen resistant (TAM-R') cell line

Western analysis was carried out using whole cell extracts taken from 
MCF-7 and Tamoxifen resistant cells grown to 80 % confluency in media 
containing 5% csFCS. The blotted membranes were probed with primary 
antibodies specific for PKC-a. In addition, the membranes were probed 
with a P-actin specific antibody as a loading and protein concentration 
control. The graph shown illustrates the mean fold difference expressed as 
the fold increase in protein level detected in the TAM-R cells compared to 
the MCF-7 cells ± SD from 5 independent experiments. The data was 
analysed by paired t-test (*p=0.02).
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Figure 3.5. Relative PKC-5 protein expression between the MCF-7 breast 
cancer cell line and the Tamoxifen resistant (TAM-R) cell line

Western analysis was carried out using whole cell extracts taken from MCF-7 
and Tamoxifen resistant cells grown to 80 % confluency in media containing 
5% csFCS. The blotted membranes were probed with primary antibodies 
specific for PKC-a. In addition, the membranes were probed with a p-actin 
specific antibody as a loading and protein concentration control. The graph 
shown illustrates the mean fold difference expressed as the fold increase in 
protein level detected in the TAM-R cells compared to the MCF-7 cells ± SD 
from 6 independent experiments. The data was analysed by paired t-test 
(*p=0.03).
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(Figures 3.4 and 3.5). As with the MB-MDA-231 cells, the TAM-R cell line 

displayed a large increase in total levels of PKC-a with a mean level of expression 

exceeding 15 fold those observed in the MCF-7 cell line. However, unlike the MB- 

MDA-231 cells, the TAM-R cell line didn’t exhibit a reduced relative expression of 

PKC-5 but rather displayed a more that 2 fold increase in mean expression.

To visualise the PKC-a and 5 levels and localisation in the whole cells and verify the 

increases in their expression already measured, the levels of total PKC-a and 5 were 

measured in the MCF-7 and TAM-R cells by immunocytochemistry utilising the same 

isoform specific antibodies used in the Western analysis. It can be seen from Figure 

3.6 that whilst some cytoplasmic staining of the PKC-a and 5 isoforms is detectable 

in the MCF-7 cells there is a marked increase in the cytoplasmic staining of both 

isoforms in the TAM-R cells. Therefore the increase in relative expression of PKC-a 

and 5 has been observed both in cell lysates and in the whole cell, by two separate 

techniques.

3.2.3. Determination of relative levels of PKC-a and PKC-8 mRNA expression in 

the MCF-7 cell line compared to the TAM-R cell line.

As we have established that the protein levels of PKC-a and PKC-5 are elevated in 

the TAM-R cells compared to the MCF-7 cells, we carried out RT-PCR analysis 

(section 2.5) on total RNA extracted from both cell lines to determine if the increase 

in protein is attributable to a concomitant increase in mRNA expression. Primers for 

PKC-5 were obtained from a published sequence (Assender et al., 1994) and 

produced un-saturated bands after 30 cycles (Figure 2.2). Primers for PKC-a were 

designed using the Primer3 software package and also produced un-saturated bands 

after 30 cycles (Figure 2.3). These primers were used to measure the mRNA 

expression of PKC-a and 8 in 3 individual sets of MCF-7 and TAM-R total RNA. 

Additionally primers for p-actin were used as a control (Figure 3.7). In each of the 3 

sets there is an increase in the expression of mRNA for both isoforms in the TAM-R 

cells with the level of PKC-a mRNA nearly 3 fold higher and the level of PKC-5 over
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TAM-RMCF-7

Figure 3.6. Immunocytochemical staining of PKC-a and PKC-5 levels in the 
MCF-7 and TAM-R cell lines.

MCF-7 and TAM-R cells were grown on coverslips in media containing 5% cs 
FCS to a confluency of 60-70%. The cells were then fixed and stained using 
antibodies specific to either PKC-a or PKC-8 as outlined in section 2.x 
(Materials and Methods) and then photographed x 400 magnification.
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Figure 3.7. Comparative levels of PKC-a and PKC-5 mRNA expression 
in the MCF-7 and TAM-R cell line

MCF-7 and TAM-R cells were grown in media contain 5% charcoal 
stripped FCS to a confluency of around 70%. cDNA was prepared from 
the total cellular RNA of three separate sets of cells and subjected to RT- 
PCR using PKC-a, PKC-8 and p-Actin specific primers as outlined in 
section 2.5. The amplification products were then size fractionated on a 
2% (w/v) agarose gel. The graphs represent the mRNA levels of PKC-a 
and -8  in the TAM-R cells expressed as a fold increase of levels expressed 
in the MCF-7 cell line relative to the p-Actin control ± SD from 3 
independent experiments. The data was analysed by paired t-test (TAM-R 
PKC-a expression cf. MCF-7= 2.9 fold increase ± 1.33, p= 0.128; TAM-R 
PKC-8 expression cf. MCF-7= 5.6 fold increase ± 0.54, *p=0.01).
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5 fold higher compared to the MCF-7 cells. Whilst these increases don’t mirror those 

seen at the protein level it does indicate a role for increased expression of both 

isoforms at the gene level in the increases observed at protein level, though there may 

be additional posttranslational factors that ultimately determine the endogenous 

protein levels of these PKC isoforms.

3.2.4. Determination of relative activation of PKC-a and PKC-8 in the MCF-7 

cell line compared to the TAM-R cell line.

Western analysis was performed using phosphorylation site specific antibodies for 

residues that are associated with a catalytically competent and active enzyme to 

determine if the increased levels of PKC-a and 8 within the TAM-R cells confers a 

greater level of isoform activity within the cell. Additionally, in each case the 

membranes were probed with p-actin as a control of protein concentration and loading 

accuracy. To measure activation of the PKC-a isoform, an antibody specific for a 

phosphorylated serine 657 residue on the hydrophobic C-terminal V5 sub domain 

domain was used. Phosphorylation of this residue has been shown to be crucial for the 

accumulation of phosphate at other sites on the enzyme and contributes to the 

maintenance of a phosphatase resistant phenotype (Bomancin and Parker, 1997). 

When compared to the MCF-7 cells, the TAM-R cells displayed a significant mean 

increase of over 4 fold the level of PKC-a phosphorylated at the serine 657 residue 

(Figure 3.8). This is indicative of a greater level of catalytically competent enzyme 

and therefore a greater level PKC-a activity.

To detect activation of PKC-8 two separate antibodies were used that are specific for 

different regions on the isoform. The first antibody was directed at a phosphorylated 

threonine 505 residue that resides in the activation loop of the catalytic domain of 

PKC-8 . Although PKC-8 threonine 505 phosphorylation has been shown not to be a 

prerequisite requirement for catalytic competency (Stempka et al., 1997) 

phosphorylation at the activation loop is known to be crucial for full catalytic activity 

and membrane associated allosterically activated PKC-8 is increased by 

phosphorylation at this site (Steinberg, 2004). The second phosphorylated residue
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Figure 3.8. Relative expression of phosphorylated PKC-a (Serine657) between 
the MCF-7 breast cancer cell line and the Tamoxifen resistant (TAM-R') cell line

Western analysis was carried out using whole cell extracts taken from MCF-7 
and Tamoxifen resistant cells grown to 80 % confluency in media containing 5% 
charcoal stripped sFCS. The blotted membranes were probed with primary 
antibody specific for PKC-a phosphorylated at the serine 657 residue. In 
addition, the membranes were probed with a P-actin specific antibody as a 
loading and protein concentration control. The graph shown illustrates the mean 
fold difference expressed as the fold increase in protein level detected in the 
TAM-R cells compared to the MCF-7 cells ± SD from 6 independent 
experiments. The data was analysed by paired t-test (*p=0.04).
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Figure 3.9. Relative expression of phosphorylated PKC-5 (Ser643i between the 
MCF-7 breast cancer cell line and the Tamoxifen resistant (TAM-R) cell line

Western analysis was carried out using whole cell extracts taken from MCF-7 
and Tamoxifen resistant cells grown to 80 % confluency in media containing 5% 
charcoal stripped sFCS. The blotted membranes were probed with primary 
antibody specific for PKC-5 phosphorylated at the serine 643 residue. In 
addition, the membranes were probed with a P-actin specific antibody as a 
loading and protein concentration control. The graph shown illustrates the mean 
fold difference expressed as the fold increase in protein level detected in the 
TAM-R cells compared to the MCF-7 cells ± SD from 5 independent 
experiments. The data was analysed by paired t-test (*p=0.02).
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Figure 3.10. Relative expression of phosphorylated PKC-5 (Thr505I between the 
MCF-7 breast cancer cell line and the Tamoxifen resistant (TAM-R) cell line

Western analysis was carried out using whole cell extracts taken from MCF-7 
and Tamoxifen resistant cells grown to 80 % confluency in media containing 5% 
charcoal stripped sFCS. The blotted membranes were probed with primary 
antibody specific for PKC-8 phosphorylated at the threonine 505 residue. In 
addition, the membranes were probed with a p-actin specific antibody as a 
loading and protein concentration control. The graph shown illustrates the mean 
fold difference expressed as the fold increase in protein level detected in the 
TAM-R cells compared to the MCF-7 cells ± SD from 5 independent 
experiments. The data was analysed by paired t-test (*p=0.04).
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targeted the serine 643 residue which has been identified as an autophosphorylation 

site in vitro and on serine 643 containing PKC-5 peptides in vivo (Stempka et 

al., 1999). The importance of phosphorylation at this serine residue has been shown by 

the reduction of PKC-5 activity when it is substitutionally mutated (Li et al, 1997). 

The phosphorylated threonine 505 specific antibody showed a significant mean 

increase of nearly 4 fold in the TAM-R cell line cf. MCF-7 cells (Figure 3.9). This 

observed increase was corroborated by the phosphorylation specific serine 643 

antibody. PKC-5 phosphorylation at this site displayed nearly a 7 fold mean increase 

in the TAM-R cell line compared to MCF-7 cells (Figure 3.10). Therefore, the TAM- 

R cell line shows increased levels of PKC-5 phosphorylation at both the threonine 505 

and serine 643 residue indicating that there is an increased level of overall PKC-5 

activation. As both phosphorylation specific PKC-5 antibodies detected comparable 

levels of activation across the cell lines the use of the threonine 643 was discontinued 

and the threonine 505 antibody used where required for all subsequent PKC-5 

activation experiments. As there was little to choose between the two antibodies this 

decision was made on the grounds that it was in more common usage both within my 

group and published articles.

3.2.5. Effect of bisindolylmaleimide IX (RO31-8220) on growth in the MCF-7 

and TAM-R cell line.

As described in section 3.1, bisindolylmaleimide IX (bis) is a PKC specific inhibitor 

with a reported slight selectivity for PKC-a (Wilkinson et al., 1993). To verify that 

bis would be an effective inhibitor of PKC-a and/or PKC-5 in our cell models, MCF- 

7 and TAM-R cells were treated with 500nM bis for 15 minute, 1 hour, 6 hour, 24 

hour and 48 hour time periods with untreated controls at each time point. The cells 

were then harvested and assayed for PKC-a and PKC-5 levels by Western analysis 

(section 2.3) using isoform specific antibodies. The bis concentration of 500nM 

utilised in these experiments was derived from growth studies of MCF-7 cells treated 

with bis at concentrations of lOOnM, 500nM and lpM. At 500nM, MCF-7 cell 

growth was inhibited by 77% after 14 days (control 406,390 ± 48,532 cf. bis 92,280 ± 

7,974, n=3, p=<0.02; Assender et al., unpublished data). This concentration was not 

cytotoxic as when the cells were replated in fresh bis free media they resumed normal
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Figure 3.11. The effect of bisindolylmaleimide (RQ31-8220) on PKC-a and 
PKC-8 levels in the MCF-7 cell line

MCF-7 cells were grown in media containing 5% S-FCS ± 500nM of 
bisindolylmaleimide for 15 minutes, 1 hour, 6 hours, 24 hours or 48 hours. 
Levels of PKC-a and PKC-8 were measured by Western analysis and 
expressed as a percentage of control levels at each of the time points. Results 
above are derived from three independent experiments ± SD.
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Figure 3.12. The effect of bisindolylmaleimide (RQ31-8220) on PKC- 
q and PKC-8 levels in the TAM-R cell line

TAM-R cells were either untreated (control) or exposed to 500nM of 
bisindolylmaleimide for 15 minutes, 1 hour, 6 hours, 24 hours or 48 
hours. Levels of PKC-a and PKC-8 were measured by Western 
analysis and expressed as a percentage of control levels. Results above 
are derived from three independent experiments ± SD.
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growth. The concentrations of 0.1 pM had little effect whilst lpM  completely 

inhibited growth.

The relative levels of PKC-a and PKC-5 in the bis treated MCF-7 and TAM-R cell 

lines are expressed graphically as a percentage of the control values ± SD (Figure 

3.11). In the MCF-7 cell line, bis displayed variable PKC-a inhibition up to 24 hours 

but consistently produced around 80% inhibition after 48 hours. Whilst the inhibition 

of PKC-5 in the MCF-7 cells showed less variation, it too was inhibited around 80% 

after 48 hours. In the TAM-R cell line (Figure 3.12) both isoforms were nearly 90% 

inhibited after 24 hours. Interestingly, there was a slight decrease in the level of 

inhibition of both isoforms after 48 hours, to around 20-30% of control. However this 

was still a marked decrease compared to control and comparable to the inhibition seen 

after 24 hours in the MCF-7 cell line.

As we have shown that Bis can inhibit both PKC-a and 5 it was used to assess the 

importance of these isoforms on cell growth in the MCF-7 and TAM-R cells. Both 

cell lines were grown in parallel over a 6 day period in media containing 5% csFCS 

with 500nM Bis or without Bis as a control. The cell numbers of both the cell lines ± 

500nM Bis were counted by Coulter counting (section 2.2.6) at days 0, 4 and 6. The 

growth of the bis treated cells was then expressed graphically as the percentage cell 

number relative to untreated controls from 3 separate experiments ± SD (Figure 3.13). 

After 4 days growth in the presence of 500nM Bis there was significant growth 

inhibition of both cell lines. However, whilst MCF-7 cell growth was only inhibited 

by around 17% (±8) compared to control, the TAM-R cell line was inhibited by 

around 62% (±14). This divergence of growth inhibition is continued at day 6 where 

the mean cell number of Bis treated MCF-7 cells was 37% (±14) less than control 

whilst the bis treated TAM-R cells were inhibited by 71% (±8). These results indicate 

that although both cell lines are sensitive to the growth inhibitory effects of Bis, the 

TAM-R cells display a much greater sensitivity. However, as Bis is a relatively non­

specific inhibitor we cannot determine for sure that it is the compounds effects on 

PKC-a and 5 that are causative of the growth inhibition.
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Figure 3.13. Effect of the PKC inhibitor Bisindolylmaleimide IX (RQ31-8220) on the 
growth of the MCF-7 and TAM-R cell lines

MCF-7 and TAM-R cells were grown in media containing 5% charcoal stripped FCS 
± 500nM of the PKC inhibitor Bisindolylmaleimide IX (R031-8220) (bis). The cell 
number was then counted using a Coulter Counter at days 0, 4 and 6. The graph 
represents the cell count of the bis treated cells at each of the time points expressed as 
a percentage of the untreated cell number from 3 separate experiments ± SD. The data 
was analysed by paired t-test (*p<0.05; **p<0.005).
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3.2.6. Effect of the isoform specific inhibitor Rottlerin on PKC-a and 8 in the 

MCF-7 and TAM-R cell line.

As the retardation of growth caused by bis treatment of the MCF-7 and TAM-R cell 

lines could be attributed to its inhibitory effects on multiple PKC isoforms and other 

unrelated intracellular kinases, a more specific inhibitor was needed to isolate the 

individual PKC isoforms to study their relative importance in these cell models. The 

compound rottlerin has been reported to selectively inhibit PKC-8 at a concentration 

of 3-6pM, around 10 times lower than the concentration needed to inhibit any of the 

other PKC isoforms (Gschwendt et al, 1994). Therefore to confirm that rottlerin does 

selectively inhibit PKC-8 in this concentration range, the MCF-7 and TAM-R cells 

were grown to 50% confluency in medium containing 5% csFCS and treated with 

rottlerin at a concentration of 5pM for 15minute, 1 hour, 6 hour, 24 hour and 48 hour 

durations. Untreated control cells were grown in parallel with the rottlerin treated 

cells and harvested with them at each of the time points. The total levels of PKC-a 

and PKC-8 in the rottlerin treated samples and controls were measured by Western 

analysis using isoform specific antibodies. Unfortunately the MCF-7 cells treated with 

rottlerin for 48 hours detached from the plate prior to harvesting whilst the control 

plates at 48 hours remained healthy and attached. Therefore the effect of MCF-7 

treatment with rottlerin for 48 hours could not be assessed. Each of the blotted 

membranes were also probed for P-actin as a control of protein concentration and 

loading accuracy. After 24 hours treatment with rottlerin, the MCF-7 cells did display 

some inhibition of PKC-8 (Figure 3.14). However at this time point there was also 

evidence of inhibition of the PKC-a isoform compared to the untreated control cells. 

Therefore, at a concentration stated in the literature to achieve selective inhibition of 

PKC-8 there is also inhibition of PKC-a after 24 hours in the MCF-7 cells.

As with the MCF-7 cells, the rottlerin treated TAM-R samples were run in parallel 

with untreated time point controls and levels of total PKC-a and 8 measured by 

Western analysis along with P-actin as a protein concentration and loading control 

(Figure 3.15). Unlike the MCF-7 cells, the TAM-R cells displayed no appreciable 

reduction of either PKC-a or 8 levels after 24 hours rottlerin treatment, though there
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Figure 3.14. The effect of rottlerin (5uM) on the total levels of PKC-a 
and PKC-8 in the MCF-7 cell line

Western analysis was carried out using whole cell extracts taken from 
MCF-7 cells treated ± 5pM rottlerin for 15 minute, 1 hour, 6 hour 24 hour 
and 48 hour time points. The cells treated with rottlerin for 48 hours 
detached prior to harvesting and therefore could no be assessed. The 
blotted membranes were probed with primary antibodies specific for PKC- 
a  or PKC-8. In addition, the membranes were probed with a p-actin 
specific antibody as a control of protein concentration and loading 
accuracy.
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Figure 3.15. The effect of rottlerin (5uM) on the total levels of PKC-a 
and PKC-5 in the TAM-R cell line

Western analysis was carried out using whole cell extracts taken from 
MCF-7 cells treated ± 5pM rottlerin for 15 minute, 1 hour, 6 hour 24 hour 
and 48 hour time points. The blotted membranes were probed with 
primary antibodies specific for PKC-a or PKC-5. In addition, the 
membranes were probed with a P-actin specific antibody as a control of 
protein concentration and loading accuracy.
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Figure 3.16. Dose response of rottlerin on levels of PKC-a and 5 
activation and expression after 1 hour treatment in the MCF-7 cell line

Western analysis was carried out using whole cell extracts taken from 
MCF-7 cells treated with rottlerin for 1 hour at concentrations ranging 
from 500nM to lpM. The blotted membranes were probed with primary 
antibodies specific for total and phosphorylated levels of PKC-a or PKC- 
8 and phosphorylated levels of ERK 1/2. In addition, the membranes were 
probed with a P-actin specific antibody as a control of protein 
concentration and loading accuracy.
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was evidence of a slight reduction in PKC-a after 48 hours. Therefore in our hands 

rottlerin displayed no effect, at the reportedly efficacious concentration of 5pM, on 

the level of PKC-8 after 48 hours in the TAM-R cells and, although it did reduce both 

PKC-8 and PKC-a levels in the MCF-7 cells after 24 hours very slightly, it also 

caused detachment in the MCF-7 cells after 48 hour treatment indicating that it 

wouldn’t be suitable for long term experiments such as growth curves.

To determine if a lower concentration of rottlerin could confer selective inhibition of 

the PKC-8 isoform in the MCF-7 cells they were treated for 1 hour with rottlerin at 

concentrations ranging from 500nM-lpM (Figure 3.16) and the total and 

phosphorylated levels of PKC-a and 8 measured by Western analysis using isoform 

and phosphorylation state specific antibodies. Additionally, the blotted membranes 

were probed for the phosphorylated form of the prominent kinase ERK 1/2 to assess 

the kinase specificity of the rottlerin inhibitor. Whilst at these concentrations the 

rottlerin had no effect on the PKC-a isoform or the total levels of PKC-a and 8 it did 

have the surprising effect of causing a very large dose dependent increase in the level 

of the phosphorylated PKC-8 isoform. This dose dependent increase in PKC-8 

activation was mirrored by the activation of ERK 1/2. Whilst it’s possible that the 

increase in activated PKC-8 is causing downstream activation of the ERK 1/2 (Ueda 

et al., 1996) the increase in activation of ERK 1/2 is evident at 500nM and markedly 

increased at 600nM, concentrations where there is no indication that there is an 

increase in PKC-8 activation.

As rottlerin failed to selectively inhibit PKC-8 over PKC-a in the MCF-7 cell line and 

failed to reduce the levels of either in the TAM-R cell line over 48 hours when used at 

the reportedly efficacious concentration of 5pM it was rejected as a possible tool in 

further studies. It may also be a cause for concern that when used for 1 hour at 

concentrations ranging from 500nM to lpM  the rottlerin displayed a dose dependent 

of increase in the levels of phosphorylated PKC-8 and ERK 1/2 which is a kinase that 

is almost ubiquitously involved in cell signalling pathways in normal and malignant 

cells.
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3.3. D is c u s s io n

Whilst PKC expression levels have been extensively studied in ER+ and ER- cell 

lines (e.g. Morse-Gaudio et al., 1998; Shanmugan et al., 2001), good models of 

acquired endocrine resistance have been lacking until recently. Having established 

that we can reproduce the results of other groups using ER+ and ER- cell line models, 

we therefore decided to study the acquired Tamoxifen resistance phenotype. It may 

have been expected that the PKC-a and 8 expression profile of the TAM-R cells 

would mirror those of MB-MDA-231 cells as they are both utilising pathways that 

circumvent the antagonistic effects of Tamoxifen. However from Western analysis 

and immunocytochemical staining it can be seen that the expression levels of both the 

PKC-a and PKC-8 isoforms are significantly and consistently higher in the 

Tamoxifen resistant cell line compared to the MCF-7 cell line. This increase in PKC- 

a  and 8 levels has also been recently observed by Nabha et al. (2005) in two further 

anti-oestrogenic resistant cell lines; an ErbB2/ HER2 overexpressing MCF-7 cell line 

and a Faslodex resistant MCF-7 cell line, in addition to their Tamoxifen resistant 

MCF-7 cell line. The observed increase in both PKC-a and PKC-8 expression appears 

to be due in part to the increase in mRNA expression observed though alterations in 

turnover of the endogenous protein or stabilisation could be a factor (Figure 3.7). 

Interestingly our parallel studies on clinical samples demonstrate that the PKC-a+/S+ 

phenotype is associated with poor prognosis both in terms of survival and duration of 

endocrine response (Assender et al. (2005) in prep). Thus our cell line model of 

acquired endocrine resistance does in fact appear to reflect the clinical scenario well.

The increases in PKC-a and 8 expression between the MCF-7 and the TAM-R cell 

lines are paralleled by concomitant increases in the levels of the phosphorylated 

isoforms. The increase in PKC-a phosphorylated at the serine 657 residue and PKC-8 

phosphorylated at both the threonine 505 and serine 643 residues indicate that the 

TAM-R cell line also has a greater level of activated PKC-a and 8 compared to the 

MCF-7 cell line.

As these increased levels of PKC could be an artefact of across the board upregulation 

of growth factor mediated molecules we wished to determine whether the increases in
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the total and activated PKC expression parallels a greater reliance and employment of 

the isoforms in the TAM-R cells. A growth study was therefore performed to observe 

how inhibiting the isoforms would effect the growth of the cells compared to the 

MCF-7 cell line. The inhibitor bisindolylmaleimide IX (bis) was shown to cause a 

comparable reduction in both PKC-a and 5 activity in both cell lines at a 

concentration of 500nM after 24-48 hours and was therefore determined to be an 

appropriate compound for this experiment. Whilst treating both the cells lines with bis 

caused a significant retardation of growth compared to analogous untreated control 

cells, the effect on the TAM-R cells was far greater than in the MCF-7 cell line. This 

implies that the TAM-R cells rely far more on PKC-a and/or PKC-8 for growth than 

in the MCF-7 cell line.

Our experiments demonstrated a lack of specificity of bis towards the PKC-a and 8, 

as have many others, and Bis is known to also lack specificity between PKC-a and 

the pi/II, y, and s isoforms (Way et al., 2000). Additionally it has been shown to be a 

in vitro inhibitor of several unrelated protein kinases including glycogen synthase 

kinase-3 (GSK-3) (Hers et al., 1999), MAPK activating protein kinase-lp (Rsk-1), 

and p70S6 kinase with a similar potency to that of the PKC isoforms (Alessi, 1997). It 

has even been shown to stimulate the expression of c-Jun and the activation of Jun N- 

terminal kinase (JNK) independently of its effects on PKC (Beltman et al., 1996). 

Consequently any effects observed following treatment of the model cell lines with 

bis may not even be wholly attributable to the isolated inhibition of the PKC-a and 8 

isoforms, or even the pan inhibition of PKC, but rather the varying degrees of 

inhibition imposed on several functional kinases.

Therefore to specifically target individual PKC isoforms an alternative inhibitor had 

to be sought. The compound rottlerin has been utilised in many studies as an inhibitor 

with a reported specificity for PKC-8 (IC50 value in the range of 3-6pM )(Gschwendt 

et al., 1994). To verify this efficacy we treated the MCF-7 and the TAM-R cells at 

time points up to 48 hours with 5pM rottlerin and measured the effect on PKC-a and 

8 levels by Western analysis. Growing cells in rottlerin for 48 hours however 

appeared to be cytotoxic suggesting that rottlerin would be an unsuitable compound to 

use in long term time courses and experiments such as growth studies. Although 24
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hour treatment with rottlerin did appear to slightly decrease PKC-8 levels in MCF-7 

cells, it produced a comparable decrease in PKC-a levels. This rottlerin induced 

reduction of PKC-a levels was also observed after 48 hours in the TAM-R cell line 

but there was no concomitant effect on PKC-8. Furthermore whilst lower 

concentrations of rottlerin were without effect on PKC-a they had the surprising 

effect of causing a dose dependent activation of PKC-8 and, even more worryingly, 

ERK 1/2, a kinase implicated in almost all cellular pathways. Although there are 

reports that ERK 1/2 can be activated downstream of PKC-8 (Ueda et al., 1996), the 

ERK 1/2 activation was evident at concentrations below the threshold where PKC-8 

activation was observed. These observations make us doubt the suitability of rottlerin 

as a PKC inhibitor. Interestingly, general concern surrounding the use of rottlerin as a 

PKC-8 specific inhibitor have been echoed in several recent publications. Whilst it 

was known from the first reports of its PKC-8 inhibitory activity that it also a weak 

inhibitor of calmodulin dependent kinase (CAM kinase III), protein kinase A (PKA) 

and casein kinase II (Gschwendt et al., 1994) it has since been discovered to be a 

potent inhibitor o f other protein kinases such as PRAK (IC50=1.9pM) and MAPKAP- 

K2 (IC5o=5.4pM) (Soltoff, 2001). Whereas this cross reactivity could be explained by 

common folding motifs or the conserved structure of the kinase domains across these 

enzymes, it has also been shown that rottlerin can inhibit the activity of enzymes 

unrelated to the kinase family. The enzymes p-lactamase, chymotrypsin and malate 

dehydrogenase share no obvious similarity with kinases or each other yet are all 

inhibited by rottlerin at IC50 values lower than those stated for PKC-8 (IC5o= 1.2pM,

2.5jjM and 0.7pM respectively) (McGovern and Shoichet, 2003). These non-specific 

effects are coupled with the fact that rottlerin was a very poor inhibitor of PKC-8 and 

a  in both the MCF-7 and TAM-R cell lines at 5pM. This lack of efficacy has also 

been reported by Davies and colleagues who were unable to elicit an inhibitory 

response of either isoform with rottlerin at a concentration of 20pM (Davies et al.,

2000). This discrepancy between rottlerins previously reported effects and our 

observations are probably due to the method of assay. The original studies on rottlerin 

were carried out on isolated PKC-8 using an in vitro system. Our studies are however 

done in whole cells grown in the compound. Other studies agree that rottlerin is a 

poor inhibitor of PKC-8 within whole cell extracts, perhaps due to difficulty crossing
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the cell membrane or being metabolised within in the cell. It has even been suggested 

that PKC-8 can actually be activated by rottlerin under some conditions (Soltoff, 

2001). Our studies concur with this, showing a dose dependent activation of PKC-8 in 

MCF-7 cells treated with rottlerin at concentrations between 500nM and I jjM. It has 

now been reported that rottlerin’s inhibition of PKC-8 comes indirectly through the 

reduction of intracellular ATP by the direct uncoupling of mitochondria (Soltoff,

2001). Even with this evidence, the growing wave of literature questioning the 

usefulness of rottlerin, and the fact that some suppliers are discontinuing its sale as a 

PKC inhibitor (www.lclabs.com) has not prevented the continued use of rottlerin to 

supposedly demonstrate the involvement of PKC-8 in signalling pathways (e.g. Zhang 

et al., 2005; De Servi et al., 2005; Nabha et al., 2005). However, our observations 

and the mounting wealth of literature discrediting its use, make us conclude that the 

only sensible way to elucidate the role of the individual PKC isoforms in the 

acquisition and maintenance of the tamoxifen resistant phenotype will be through the 

employment of molecular biology techniques. To this end we decided to investigate 

two possible molecular approaches to ablate PKC isoform function. These are the 

deletion of specific PKC isoform expression by the technique of RNA interference 

and the use of adenovirally delivered, kinase deficient PKC dominant negatives.
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4.1 . In t r o d u c t io n

One of the most effective ways of elucidating the functional properties of a 

component in a biological system is to ablate it or suppress its function. The problems 

inherent with such an endeavor include not only efficacy but also specificity. These 

criteria may yet be answered by a technique that is being hailed by the scientific 

community almost as much as it’s being marketed by the scientific companies, RNA 

interference. The term RNA interference was coined following a serendipitous 

discovery that the injection of both sense and anti-sense strands of RNA into the 

nematode Caernohabditis elegans gave a roughly tenfold greater effect on gene 

expression silencing than the application of either of the strands alone (Fire et al., 

1998). However, this was probably not the first time that the effect had been 

documented. It now appears that RNAi was first discovered under the moniker of 

post-transcriptional gene silencing (PTGS) during experiments to deepen the purple 

colour of petunias by the introduction of transgenes (Hamilton and Baulcombe, 1999). 

It was observed that when the introduced transgene shared sequence homology with 

the endogenous gene in the petunia then it caused the inhibition of that gene’s 

expression. Similar phenomena have since been observed in invertebrates such as C. 

elegans and Drosophila melanogaster, in plants such as Arabidopsis thaliana and the 

fungi like Neurospora Crassa (Hutvagner and Zamore, 2002).

RNAi post-transcriptionally silences gene expression in an ATP dependent manner. 

When a double stranded RNA is introduced into a cell it is processed, independently 

of it’s target mRNA, to dsRNA segments of between 21 and 23 nucleotides in length 

by an RNase-III-like dsRNA-specific ribonuclease called Dicer (Zamore et al., 2000). 

These short lengths of cleaved RNA are then integrated into a multiprotein effector 

complex termed the RNA-induced silencing complex (RISC) (Hammond et al., 

2000). The double stranded RNAs are then unwound by the RISC and the single 

stranded RNA fragments are utilised as guide sequences for the recognition of 

endogenous complementary mRNA within the cell (Nykamen et al., 2001). The target 

mRNA is then cleaved by an endoribonuclease across the centre of the guide 

sequence and the subsequent fragments degraded by exoribonucleases (Hammond et 

al., 2000) (Figure 4.1).
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Initial attempts to recreate RNAi in mammalian cells proved unsuccessful. This is due 

to the activation of the dsRNA dependent protein kinase, PKR. When dsRNA of a 

greater size than 30 nucleotides is introduced into a mammalian cell it causes the 

autophosphorylation and subsequent activation of PKR which ultimately leads to the 

inhibition of translation (Clemens, 1997). This problem was overcome by the 

discovery that the introduction of synthetic strands of dsRNA that were between 21 

and 22 nucleotides long with overhanging 3’ ends, thereby mimicking the structure of 

an RNase III cleavage product, could also cause RNAi whilst circumventing the PKR 

response. These shorter strands of dsRNA were termed small interfering RNAs 

(siRNAs) (Elbashir et al., 2001).

The ubiquity of the RNAi phenomenon in eukaryotes marks it out as an ancient 

cellular process that may even predate the divergence of plants and animals. RNAi 

appears to function as an immune response against disruption of the genome by 

endogenous RNAs, such as transposons, or exogenous RNA such, as that introduced 

by viruses (Elbashir et al., 2001). There is also growing evidence that it may have 

epigenetic effects such as silencing by chromatin remodelling (Stevenson and Jarvis, 

2003). RNAi is now being touted as a solution to problems as diverse as silencing 

oncogenes (Agami, 2002) to creating a more flavoursome, caffeine free coffee (Ogita 

et al., 2003).
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Figure 4.1. Gene Silencing by RNA interference using siRNA

Artificial small interfering (siRNAs) introduced into the cell cytoplasm are 
phosphorylated on their 5’ ends by cellular kinases. The siRNAs assemble with 
cellular proteins to form a RNA-induced silencing complex (RISC) that includes 
a helicase that unwinds the double stranded RNA and a ribonuclease that cleaves 
the target sequences. The RISC is directed by the antisense strand of the 
unwound siRNA to the target mRNA through sequence complementarity and the 
target mRNA is cleaved (Figure adapted from Stevenson, 2003).
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4.2. R e s u l t s

4.2.1. Transfection of a (3-Galactosidase expressing plasmid into the MCF-7 and 

TAM-R cell to assess the transfection efficiency of different reagents.

MCF-7 and TAM-R cells were transfected with a p-Galactosidase expressing vector 

using Lipofectamine 2000, Lipofectin and GeneJuice (section 2.6.4) to determine 

which of these transfection reagents could deliver the plasmid most effectively. The 

GeneJuice transfection was additionally carried out in both serum free media and 

W+5% to determine which of these conditions were more favourable to the cells. The 

cells were fixed and stained using the chromogenic substrate X-Gal (section 2.6.3) 

and the percentage of cells in the overall population displaying the characteristic dark 

blue staining were visually counted by an independent observer. The mean 

percentages of stained MCF-7 and TAM-R cells from triplicate wells are displayed 

below in Table 4.1. and photographs of the MCF-7 and TAM-R cells shown in Figure 

4.2 and 4.3 respectively. In each case the cells were tested for passive uptake by 

adding the P- galactosidase plasmid in DCCM with 1% DMSO, as a control.

Table 4.1. Transfection of MCF-7 and TAM-R cell lines with a B-Galactodidase 
expressing vector using different transfection reagents.

The efficiency of transfection is expressed as the percentage of cells displaying blue 
staining ± SD from triplicate wells.

Transfection Efficiency (% ± SD)
T ra n sfec tio n  R e ag e n t M C F -7 T A M -R
Lipofectam ine 2000 31%  ± 13 37%  ± 16
Lipofectin 30%  ± 16 22%  ± 6
G eneJuice (serum  free) 31%  ± 9 30%  ±  11
G eneJuice (w ith serum ) 34%  ± 7 31%  ± 11

The cells treated with the plasmid and DMSO displayed no negative effects on the 

cells and staining of <1%. The MCF-7 cells uptake with each of the transfection 

reagents was around 30% with the presence of serum having little effect on the 

effectiveness of GeneJuice. The presence or absence of serum also had no effect on 

the GeneJuice’s effectiveness in the TAM-R cells. Lipofectamine 2000 had the best
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transfection efficiency in the TAM-R cells with around 37% uptake and very 

pronounced staining, however it also caused a high degree of cell loss and the 

remaining cells looked unhealthy. This was also true when used in the MCF-7 cell 

line. If the Lipofectamine 2000 does indeed have cytoxic effects on the cell it may 

make the cell membrane more permeable to the uptake of the p-Galactosidase vector 

and therefore account for the increased staining seen in the cells. Lipofectin also 

displayed cytoxic effects on both cell lines and with a transfection efficiency of only 

around 22% in the TAM-R cell lines was ruled out for use in future experiments. The 

GeneJuice displayed no negative effects on the cells attachment or appearance in 

either cell line.

4.2.2. Transfection with varying amount of Lipofectamine 2000 in an attempt to 

reduce its cytotoxic effects.

The ratio of Lipofectamine 2000 relative to the amount of p-Galactosidase vector 

used in the above experiment (section 4.2.1) was 3:1 (v/w). To determine whether 

reducing the amount of the reagent added to the cells could lessen the cytotoxic 

effects, TAM-R cells were transfected with various ratios of Lipofectamine 2000 to 

DNA, e.g. 0.5:1, 1:1, 1:2 and 1:3 (v/w). Also the cells were grown for 48 hours prior 

to transfection to allow the cells to reach a higher confulency (Approx 80-90%) as 

recommended by the manufacturer’s protocol. The cells were then transfected with 

the p-Galactosidase plasmid using the same basic method outlined in section 2.6.4.1, 

and 24 hours after transfection, stained and fixed (section 2.6.3). Photographs of this 

staining are shown in Figure 4.4. The amount of cell staining was proportional to the 

reagent:DNA ratio with the least staining seen in the cells treated with the 

reagent:DNA ratio (0.5:1) and 3:1 producing the highest degree of cell staining of 

around 40%, comparable to the degree of transfection observed previously. 

Importantly in each of these conditions the degree of cell loss was markedly lower 

than before. This is probably attributable to the higher confluency of the cells upon 

transfection.
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Figure 4.2. Photographs of MCF-7 cells transfected with a B-Galactosidase expressing 
plasmid using different transfection reagents.

MCF-7 cells were transfected with a P-Galactosidase expressing plasmid using either (a) 
Lipofectamine2000, (b) Lipofectin, (c) GeneJuice with serum present in the media during 
transfection, or (d) GeneJuice in serum free media during transfection. After 24 hours the 
cells were fixed and stained using the chromogenic substrate X-Gal causing cells 
expressing P-Galactosidase to become dark blue in colour. Images shown at x 400 
magnification.
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Figure 4.3. Transfection of TAM-R cells with a B-Galactosidase expressing plasmid using 
different transfection reagents.

TAM-R cells were transfected with a (3-Galactosidase expressing plasmid using either (a) 
Lipofectamine2000, (b) Lipofectin, (c) GeneJuice with serum present in the media during 
transfection, or (d) GeneJuice in serum free media during transfection. After 24 hours the 
cells were fixed and stained using the chromogenic substrate X-Gal causing cells 
expressing P-Galactosidase to become dark blue in colour. Images shown at x 400 
magnification.
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DNA:Lipofectamine 2000= 1:0.5 DNA:Lipofectamine 2000= 1:1

DNA:Lipofectamine 2000= 1:2 DNA:Lipofectamine 2000= 1:3

Figure 4.4. Transfection of TAM-R cells with a B-Galactosidase expressing plasmid using 
different ratios of plasmid to lipofectamine 2000 transfection reagent.

A p-Galactosidase expressing plasmid was transfected into TAM-R cells using plasmid to 
lipofectamine 2000 ratios of 1:0.5, 1:1, 1:2 and 1:3 (v/w) to determine if reducing the 
amount of Lipofectamine 2000 reduces its toxic effects on the cells. The cells were fixed 
and stained with the chromogenic substrate X-Gal, causing the cells that express p- 
Galactosidase to become dark blue in colour. Images shown at x 400 magnification.
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4.2.3. Transfection of the TAM-R cell line with GAPDH specific siRNA

Although Lipofectamine 2000 provided the highest level of gene delivery the 

necessity for a high confluency of cells to minimise the cytotoxic effects of the 

reagent may preclude it from use in longer term experiments such as growth studies 

and extended treatment regimes. Therefore the use of GeneJuice in the presence of 

serum was not discounted at this time as it provided similar transfection efficiencies 

to Lipofectamine 2000 (Table 4.1) without displaying any cytotoxic effects on the 

cells. With the advent of siRNA technology the manufacturers of Lipofectamine 2000 

(Invitrogen) and GeneJuice (Novagen) have produced analogous reagents specifically 

tailored to the delivery of oligonucleotides such as siRNAs. These are called 

Oligofectamine (Invitrogen) and RiboJuice (Novagen). To assess which of these four 

reagents could most effectively deliver siRNA into the cell and produce the knockout 

of a targeted protein, TAM-R cells were transfected with GAPDH specific siRNA 

duplexes using either Lipofectamine 2000 (section 2.6.5.1), GeneJuice (section 

2.6.5.2), Oligofectamine (section 2.6.5.3) or Ribojuice (section 2.6.5.4).

The TAM-R cells were also transfected with a non-specific scrambled siRNA using 

the same reagents as a specificity control for each condition. The cells were harvested 

48 hours post transfection and assayed for GAPDH levels by Western analysis. Figure

4.5 shows the level of GAPDH in the cells transfected with the GAPDH selective 

siRNA relative to the GAPDH levels in cells transfected with a scrambled siRNA 

control. The cells transfected with the GAPDH specific siRNA using Lipofectamine 

2000 and Oligofectamine displayed reductions in GAPDH protein levels of 12% and 

32% respectively. However the cells transfected with GAPDH using Ribojuice had no 

effect compared to control and the cells transfected with Genejuice actually displayed 

an increase in GAPDH level.

As transfection with Oligofectamine displayed the most effective knockdown, the 

reproducibility of this effect was investigated by repeating the experiment two further 

times. Again, the knockdown of GAPDH protein was measured in cells transfected 

with GAPDH specific siRNA using Oligofectamine and compared to the level in cells 

transfected with a scrambled siRNA control. Figure 4.6 displays the mean level of
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Figure 4.5. Transfection of TAM-R cells with GAPDH specific siRNA using 
different transfection reagents.

TAM-R cells were transfected with either a GAPDH specific siRNA or a 
scrambled control siRNA using the transfection reagents Lipofectamine 2000, 
Oligofectamine, Ribojuice and Genejuce. The cells were harvested 48 hours post 
transfection and assayed for GAPDH levels by Western analysis. The graph 
represents the percentage GAPDH expression in the cells transfected with GAPDH 
specific siRNA relative to the cells transfected with the scrambled control.
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Figure 4.6. Transfection of TAM-R cells with GAPDH specific siRNA using the 
Oligofectamine transfection reagent.

TAM-R cells were transfected with either a GAPDH specific siRNA or a 
scrambled control siRNA using the transfection reagent Oligofectamine. The cells 
were harvested 48 hours post transfection and assayed for GAPDH levels by 
Western analysis. The graph represents the percentage GAPDH expression in the 
cells transfected with GAPDH specific siRNA relative to that in cells transfected 
with the scrambled control ± SD. N=3 separate experiments.
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GAPDH in the TAM-R cells transfected with the GAPDH specific siRNA relative to 

TAM-R cells transfected with the scrambled siRNA control ± SD, as measured by 

Western analysis (section 2.3.3) from all 3 experiments. The results confirm that 

transfection with siRNA using Oligofectamine can elicit approximately a 40% 

knockdown of the GAPDH protein after 48 hours.

4.2.4. Transfection of the MCF-7 cell line with PKC-a and PKC-8 specific siRNA

To determine if PKC-a and 5 expression could be ablated by the technique of RNAi 

effectively in our cells, PKC-a and 8 specific siRNA oligonucleotides were 

transfected into the MCF-7 cell line using either Lipofectamine 2000 (section 2.6.5.2) 

or Oligofectamine (section 2.6.5.3). The PKC-a specific siRNA was designed, 

synthesised and validated by Qiagen. The PKC-8 specific siRNA was obtained from a 

published oligonucleotide sequence by Yoshida et al. (2003) and synthesised by 

Qiagen. The protein levels of PKC-a and PKC-8 after transfecting with their specific 

siRNAs were assayed by Western analysis (section 2.3.3), and expressed in Figure 4.7 

as a percentage of the isoform levels in the control cells transfected with scrambled 

control siRNA. Transfecting the PKC-a specific siRNA into the MCF-7 cell line with 

Lipofectamine 2000 or Oligofectamine induced a 10% and 28% reduction in PKC-a 

protein level respectively. Transfecting the MCF-7 cell line with the PKC-8 specific 

siRNA using the same reagents caused a 56% and 63% reduction in PKC-8 protein 

level respectively.
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Figure 4.7. Reduction of PKC-a and 5 protein levels in the MCF-7 cell line 
by transfection with PKC-a and 8 specific siRNA oligonucleotides

MCF-7 cells were transfected with either PKC-a or PKC-8 specific siRNAs 
or a scrambled control siRNA using the Lipofectamine 2000 or 
Oligofectamine transfection reagents. The cells were harvested 48 hours post 
transfection and assayed for total levels of their targeted PKC isoforms by 
Western analysis. The graph represents the percentage PKC isoform 
expression in the cells transfected with the specific siRNAs relative to the 
cells transfected with the scrambled control.

118



C h a p t e r  F o u r -  S t u d y  in t o  p k c -cc a n d  p k c -8 in h ib itio n  by  R N A  In t e r f e r e n c e

4 .2 . D is c u s s io n

Sequence specific gene silencing through the use of siRNA is now a frontline 

technique in many molecular biology studies and has been used to target and cleave 

the mRNA of a multitude of disease related genes in mammalian cell lines 

(Dykxhoom et al., 2003). However, the efficacy with which siRNAs can execute their 

function is dependent on the ability to fascilitate their introduction into the cell. The 

most common method of siRNA delivery into mammalian model cell lines is through 

the use of lipid/polymer based transfection reagents (Brazas and Hagstrom, 2005).

We utilised several such lipid/polymer transfection reagents to introduce a P- 

galactosidase expressing vector into the MCF-7 and TAM-R cell lines. Whilst this 

plasmid DNA is far larger than siRNA it was used as an easily detectable method of 

assessing how permissive our model cell lines would be to transfection and the 

relative toxicities of the transfection reagents used. All of the transfection reagents 

tested achieved less than 40% transfection efficiency with the p-gal plasmid. The least 

effective was Lipofectin which was discounted from future use as it only transfected 

an average of 22% of the TAM-R cells and displayed cytotoxicity in both cell lines. 

Whilst the Lipofectamine 2000 displayed the highest transfection efficiency in the 

TAM-R cell line, it too caused a high degree of cell detachment and left the remaining 

cells with an unhealthy appearance. Although these cytotoxic effects were not evident 

when the cells were transfected with Lipofectamine 2000 at high confluencies, the 

lack of growing space within the dish precludes its use in extended experiments such 

as long term treatments and growth studies.

Despite these limitations Lipofectamine 2000’s effectiveness at transfecting GAPDH 

specific siRNA into TAM-R cells was tested, along with that of GeneJuice, Ribojuice 

and Oligofectamine by measuring the knockdown of GAPDH protein. Although 

siRNAs bring about their effect through the degradation of the target mRNA, we 

measured changes in protein level rather than mRNA level because it is reduction in 

protein that will lead to physiological effects. Due to the transient nature of the 

transfection and the half-life of the protein, the mRNA degradation may not equate to
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a significant reduction in target protein and therefore no phenotypical effect, giving a 

false impression of the efficacy of the system.

Transfection of GAPDH siRNA using either Oligofectamine or Lipofectamine 2000 

resulted a reduction in GAPDH protein levels, with Oligofectamines status as a 

tailored oligonucleotide delivery reagent seemingly justified by its superior and 

reproducible GAPDH knockdown of around 40%. Although RiboJuice is tailored for 

the delivery of siRNA oligonucleotides, its utilisation to transfect TAM-R cells with 

GAPDH siRNA resulted in no detectable protein knockdown and its analogous, DNA 

transfecting stablemate GeneJuice actually induced an apparent increase in GAPDH 

protein. This aberrant effect with GeneJuice seems unlikely to be directly caused by 

the transfection reagent and requires further investigation.

As Lipofectamine 2000 and Oligofectamine were both able to deliver GAPDH 

siRNA, they were utilised to transfect PKC-a and PKC-5 specific siRNAs into the 

MCF-7 cells. Transfection of the PKC specific siRNAs with Oligofectamine was 

more effective at reducing protein levels than Lipofectamine 2000 in both cases. This 

concurs with the earlier observation that GAPDH transfections were also most 

effectively performed with Oligofectamine. The PKC-5 siRNA was much more 

effective at knocking down its target protein than the PKC-a siRNA, with a reduction 

of over 60% compared to less than 30%. This difference in protein knockdown could 

be due to differences in the effectiveness of the actual siRNA oligonucleotides 

because whilst the PKC-5 siRNA was derived from a published siRNA sequence that 

has been shown to be effective (Yoshida et al., 2003), the PKC-a comes directly from 

Qiagen and has only been validated by them in-house. Alternatively the rate of PKC- 

a  turnover may be slower than that of PKC-5 in the MCF-7 cell line and therefore the 

knockdown of target mRNA would take longer to impart a reduction in protein level. 

Interestingly it is the more abundantly expressed PKC-5 that is readily knocked down 

whilst the PKC-a levels, which were modestly expressed, were less amenable to 

knockdown. In this context it would have been very interesting to repeat this 

experiment with TAM-R cells (which express both high PKC-a and PKC-5) and MB- 

MDA-231 (which express high PKC-a but low PKC-5) to see whether when the a
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isoform is more suseptible to breakdown when more abundantly expressed. 

Unfortunately time constraints did not permit this.

In actively dividing cells the duration of silencing is directly proportional to the rate at 

which the siRNA is diluted below the level necessary to maintain the inhibition of 

gene expression and is therefore dependent on the rate of cell growth (Dykxhoom et 

al., 2003). Therefore whilst reductions in protein levels of the PKC isoforms were 

detectable the effect would be out grown rapidly and therefore rules out siRNA 

induced knockdown for growth studies, especially with the PKC-a siRNA where the 

knockdown is already very poor at 48 hours. To overcome the transient nature of 

transfecting chemically synthesised siRNAs into mammalian cells, our cell lines 

could have been transfected with DNA vectors which express substrates that could be 

converted into specific siRNAs within the cell. For example, one recently developed 

technique utilises RNA polymerase III to produce short hairpin (sh) RNA that can be 

converted into siRNAs within the cell by Dicer. Although silencing via this plasmid 

based strategy is not as immediate as siRNA transfection, due to the requirement for 

transcription and Dicer processing, cell lines can be generated that stably express the 

plasmid and therefore produce siRNA over successive generations of cells. These 

stably expressing clones can then be screened and propagated to derive a homogenous 

population of cells with the target gene effectively silenced (Shi et al., 2003).

In recent years, the halcyon notion that siRNAs function in a completely blinkered 

manner, only targeting their intended gene, has also been thrown into doubt. When 

RNAi was originally attempted in mammalian cells, the 500 base pair RNA 

oligonucleotides that were efficacious in the invertebrate models elicited a non­

specific interferon response that resulted in transcriptional shut down of the cell (Stark 

et al., 1998). It was believed that the use of siRNAs of around 22 nucleotides 

circumvented this. However it has since been shown that the interferon response can 

be activated by siRNAs whether chemically synthesised or transcribed from vectors 

(Sledz et al., 2003; Bridge et al., 2003). As attempts are being made to circumvent 

these problems, as our knowledge of the mechanisms increases so does our 

knowledge of its limitations, bringing into doubt its utility as a therapeutic strategy.
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Although it was interesting to investigate an siRNA approach, within the time 

constraints of this project we were unable to overcome two major hurdles. First, the 

transfection efficiencies achieved were too low to be likely to yield sufficient protein 

knockdown to viably ablate an enzyme from a signalling pathway. Second, in order to 

transfect the cells whilst maintaining their viability we had to plate the cells at 

densities that excluded to possibility o f long term growth studies. For these reasons 

we decided to concentrate our efforts on other techniques which can yield higher 

transfection efficiencies at lower plating densities.

Despite the limitations, this study demonstrated that PKC isoform specific

knockdown could be achieved via an siRNA approach in breast cancer cells. This was

also recently achieved by Nabha et al. (2005) who demonstrated that a PKC-5 specific

siRNA could knock out PKC-5 protein expression after 72 hours. They also showed

that this knockdown was able to inhibit oestrogen induced cell proliferation.
• % • •However, whilst their technique of measuring cell proliferation using [ H] thymidine 

incorporation overcomes the transient nature of the system, it is only a temporary 

measure of the inhibition o f DNA synthesis.

122



C h a p t e r  F iv e -  PKC-a a n d  PKC-8 m o d u l a t i o n  b y  a d e n o v i r a l  g e n e  t r a n s f e r

CHAPTER 5.

PKC-a a n d  PKC-8 M o d u l a t io n  by  A d e n o v ir a l  G en e  

T r a n s f e r
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5 ,1 . I n t r o d u c t io n

The transfer of genetic information into mammalian cells, whether it be plasmid 

DNA, anti-sense oligonucleotides or siRNAs, has traditionally been impeded by the 

inefficiencies of the techniques facilitating their introduction into the target cell. 

Whilst scientists have endeavoured for decades to produce viable transfection and 

gene transfer techniques, there is a population that have quietly spent millions of years 

perfecting the transfer of genetic information into mammalian cells, a process that is 

vital to their propagation and survival, the virus.

Scientists have identified that since viruses exist by virtue of their ability to efficiently 

transfer genetic information into a wide range of cell types, this property could be 

subverted so that rather than executing the introduction their own intrinsic viral 

genome, the virus actually facilitates the transfer of tailor made genetic information 

designed to alter the expression or activation of a desired protein in a target cell.

The best-studied and most extensively used viral vector for gene transfer is the 

adenovirus (Becker et al. 1994) Adenoviruses were first isolated from human 

adenoidal tissue in 1953 (Rowe et al., 1953) during attempts to establish tissue culture 

lines from tonsils and adenoidal tissue removed from children. The concept of using 

them as delivery vectors did not arrive till the 1960s when it was observed during 

studies by the military to produce a vaccine against acute respiratory disease (ARD), 

that foreign DNA could integrate and be expressed in the adenoviral genome (Roy- 

Chowdhury and Horwitz, 2001). Subsequent studies on adenovirus and their infected 

cells have lead to several important discoveries including mRNA splicing, the 

existence of introns and capped polyadenylated mRNAs (Shenk, 2001). The extensive 

knowledge of their biological and genetic characteristics has lead to them being the 

most commonly used viral vectors. There have currently been 51 serotype strains of 

adenovirus identified most of which are associated with benign respiratory tract 

infections, gastrointestinal infections in infants or conjunctivitis. These serotypes are 

classified into 6 subgroups (A-F). The most commonly studied and best understood of 

these are types 2 and 5 which belong to subgroup C (Mizuguchi et al., 2001).
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Adenoviruses are non-enveloped icosahedral DNA viruses with a diameter of 70- 

lOOnm that multiply in the nuclei of infected host cells. Each virion contains a DNA 

core comprising a linear double stranded genome of approximately 36kb that encodes 

over 70 gene products (13% of mass) encapsulated by a protein shell (87% mass) 

consisting of 252 subunits called capsomeres (Shenk, 2001). The viral genome 

contains five early transcription units (ElA, E1B, E2, E3, E4) two early delayed 

(intermediate) transcription units (pIX and IVa2) and 5 late units (L1-L5), which 

mostly encode structural proteins for the capsid and the internal core (Mizuguchi et 

a l,  2001). The E l A gene is the first transcription unit to be expressed shortly after 

infection and is essential to the activation of other promoters and expression of 

subsequent transcription units of the viral genome (Shenk, 2001). In first generation 

adenoviral vectors the E l (ElA  and E1B) gene is deleted to accommodate a further 

3.2kb of inserted DNA. As this deletion creates replication deficient virus, the 

function of the E l region of the gene must be provided in trans to facilitate 

propagation. This is achieved by growing the El-deleted recombinant virus in Ad5 

transformed human embryonic kidney (HEK) 293 cells that retain the El A and E1B 

regions of the adenoviral genome (Graham et al., 1977). The E3 is frequently also 

deleted to provide a further 3.1 kb of packageable space for foreign genes. This is 

viable since the region encodes products that modulate the response of the host to 

infection defence mechanisms, which are not required for viral replication in vitro. In 

total, El/E3-deleted adenoviral vectors allow the packaging of approximately 8.1- 

8.2kb of foreign DNA (Mizuguchi et al., 2001) with the added benefit of creating a 

replication deficient virus which is therefore biologically safer from the perspective of 

laboratory use.

The introduction of foreign genetic information into a cell using adenoviral vectors 

could have several useful applications in the treatment of disease. These include the 

delivery of a functioning gene to a cell in vivo to treat a disease caused by the 

congenital absence or mutation of a gene encoding a vital protein. The introduction of 

genes in vivo could also be used in the treatment of cancer via the delivery of genes 

that control cell growth or apoptosis to kill tumour cells or retard their growth. 

Another possible technique is to deliver epitopes or antigens of other infectious agents 

for the purpose of immunisation (Horwitz, 2002). Whilst these applications are
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potentially very powerful they all have obstacles to overcome before they become 

clinically viable.

The intrinsic problems of in vivo therapy with adenoviral vectors do not however 

exclude them from functioning as very useful tools for in vitro analysis of cellular 

function in model cell lines. Adenoviruses that overexpress dominant negative (DN) 

mutants of PKC-a and PKC-8 were provided as a kind gift from Prof David Knight 

(URCN, Bristol University, UK). These dominant negatives are mutants possessing a 

single point mutation at a residue within the catalytic kinase domain crucial for ATP 

binding. Substitutional mutations were made by replacing the lysine at postion 369 

with an arginine in the PKC-a DN whilst in the PKC-8 mutant the analogous lysine at 

postion 376 is replaced with an alanine (Figure 5.1). When overexpressed within the 

cell, these DNs can disrupt the activity of the endogenously expressed PKCs in an 

isoform specific manner (Ohno et al., 1990; Hirai et al., 1994). Additionally Dr. 

Knight furnished us with adenoviruses that overexpress the wild type (WT) PKC-a 

and PKC-8 isoforms. Therefore we have the potential tools to examine the role of 

PKC-a and 8 expression in vitro in an isoform specific manner through their 

overexpression in the tamoxifen sensitive phenotype and ablation in the Tamoxifen 

resistant derivatives.

126



C h a p t e r  F i v e -  PKC-a a n d  PKC-5 m o d u l a t i o n  b y  a d e n o v i r a l  g e n e  t r a n s f e r

AE3 A E 1A ,E 1B

Kinase negative PKC-8 (376K—* A)

W T-PKC-a

WT- PKC-8

Kinase negative PKC-a (368K—► R)

Ad5 CA promoter
(3-globin
polyA+

Figure 5.1. Dominant negative and wild type overexpressing PKC-a and 8 
vectors

The activity of PKC-a and PKC-8 was modulated using adenoviral vectors 
that overexpressing either wild type (WT) PKC-a or PKC-8, or dominant 
negative (DN) PKC-a or 8. The dominant negative PKC isoforms differ from 
the wild type by single point mutations in the kinase domain that renders the 
isoform kinase deficient. In the case of the (a) DN PKC-a this mutation is at 
residue 368 where a lysine is substituted for an arginine and in the case of the 
(b) PKC-8 DN the lysine at residue 376 is substituted for alanine.
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5.2. R e s u l t s

5.2.1. Visualisation of adenoviral infection efficiency in MCF-7 and TAM-R cell 

lines using a P-galactosidase expressing adenovirus.

To assess the infection efficiency of the adenoviral vector delivery system, and to 

identify a suitable MOI to utilise in further experiments, the MCF-7 and TAM-R cell 

lines were infected with an adenovirus containing a p-galactosidase (P-gal) expressing 

vector at MOI of 20, 50, 100 and 200 (section 2.7.6). Table 5.1 displays the mean 

percentage of cells containing blue staining from the triplicates of each condition. The 

wells that were not infected with the adenovirus possessed a negligible number of 

cells with any blue staining (<1%) in either cell line, as can be seen in Figure 5.2. 

This indicates that any blue staining seen in the adenovirally infected cells is therefore 

fully attributable to its P-gal expressing plasmid. The infected MCF-7 cells displayed 

staining ranging from 37% (± 10) at MOI 20 to 78% (± 2.5) at MOI 200 and the 

infected TAM-R cells displayed staining ranging from 41% (± 5) at MOI 20 to 75% 

(± 6) at MOI 200. Whilst the cells infected with MOI 200 had the greatest overall 

percentage of stained cells, the numbers of both MCF-7 and TAM-R cells were 

visibly lower after fixation than those infected at lower MOI. This could be attributed 

to decreased growth rates or a greater fragility of the cells at this MOI causing cell 

loss during the washing and fixing process. If the cells are indeed damaged in any 

way by infection at MOI 200 then the higher degree of staining could also be 

attributable to lowered cell membrane integrity allowing greater susceptibility to the 

adenoviral infection. The cells infected at MOI below 200 showed no visible decrease 

in cell number or integrity.
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Table 5.1. Percentage of cells (± SD) with blue staining after infection with B- 
Galactosidase (ft-Gal)

MCF-7 and TAM-R cells were infected with a P-Gal expressing adenovirus at 
different MOIs and stained through the addition of the chromogenic substrate X- 
Gal. Percentage staining was scored blind by an independent assessor familiar with 
the technique.

Percentage 0-Gal Staining

Cell Line

MOI MCF-7 TAM-R
0 <1% <1%

20 37%  ± 1 0 % 41%  ± 5 %

50 72%  ± 6% 69% ± 5%

100 63%  ± 6% 69%  ± 1 0 %

200 78% ± 3% 75% ± 6%

MCF-7 TAM-R

MOI= 0 

(Control)

C

Figure 5.2. Photographs of MCF-7 and TAM-R cells stained with the 
chromogenic substrate X-Gal after infection at MOI 100 with a p-Galactosidase 
expressing vector compared with uninfected cells.

MCF-7 and TAM-R cells were grown for 48 hours in 12 well plates and infected 
with a P-Galactosidase expressing vector at a MOI of 100 or left uninfected. After 
16 hours the media was changed and cells allowed to grow for a further 24 hours. 
After this time the cells were treated with the chromogenic substrate X-Gal. The 
cells stained blue are those that contain P-Galactosidase. The cells were fixed and 
photographed at magnification 400x.
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5.2.2. Establishment of suitable multiplicity of infection (MOI) for the PKC- 

8 overexpressing (WT) and dominant negative (DN) expressing adenoviral 

vectors.

To establish a suitable MOI for the PKC-8 WT and DN expressing adenoviruses, the 

MCF-7 cell line was infected at a series of different MOI and the expression of PKC- 

8 measured by semi-quantitative RT-PCR (section 2.7.5). This technology was 

suitable for the measurement of PKC-8 WT and DN expression within the cells due to 

the fact that, apart from a single point mutation present in the dominant negative 

PKC-8, they share sequence homology with the cells endogenous PKC. Therefore our 

PKC-8 specific primers can measure the increases in PKC-8 mRNA as an indication 

of the adenovirally infected vectors exogenous PKC-8 expression. Photographs of the 

bands produced are shown in Figure 5.3. with a graph of their relative levels 

compared to control.

The MCF-7 cells infected with PKC-8 DN displayed little change in PKC-8 mRNA 

levels until they were infected at a MOI of 100 or 200, which caused increases of over 

4 fold and 7 fold respectively. There was also a 4 fold increase in PKC-8 levels 

relative to control in the cells infected with MOI 500 and though at this level of 

infection there was a large degree of cell loss indicating that the magnitude of 

infection was having an adverse effect on the cells. Unlike the PKC-8 DN infected 

cells, the cells infected with the PKC-8 WT displayed increases in PKC-8 expression 

at MOI 20 and 50 but showed the greatest increase of over 4 fold at MOI 100. As with 

the infection with PKC-8 DN at MOI 500, infection at this level with the WT 

adenovirus caused a high level of cell loss with signs of cell damage and detachment. 

As infection with both the p-gal expressing adenovirus at MOI 200 (described in 

section 5.2.1) and the PKC-8 WT and DN viruses at MOI 500 caused a degree of cell 

damage and detachment, subsequent experiments will be carried out at MOI 100. This 

MOI displayed no apparent affect on cell number or viability whilst inducing a four
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Figure 5.3. Determination of a suitable multiplicity of infection (MOI) 
for the PKC-8 overexpressing (WT) and PKC-8 dominant negative (DNf 
adenovirus

MCF-7 cells, seeded into 24 well plates and grown for 48 hours in media 
containing 5% charcoal stripped FCS, were infected with adenovirus 
containing either PKC-8 WT or DN expressing plasmids at MOI of 20, 50, 
100, 200 or 500. Uninfected cells were used as a control. After 16 hours 
the media was changed and the cells allowed to grow for a further 48 
hours. After this time, cDNA was prepared from the total cellular RNA of 
three separate sets of cells and subjected to RT-PCR using PKC- 
8 and p-Actin specific primers as outlined in section 2.5. The 
amplification products were then size fractionated on a 2% (w/v) agarose 
gel. The graphs represent the fold increase of mRNA levels of PKC-8 
relative to control.
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fold increase in PKC-8 mRNA over the endogenous levels when infected with the 

exogenously expressed PKC-8 WT or DN.

5.2.3. Effect of adenoviral infection at MOI 100 on the growth of the MCF-7 and 

TAM-R cell line.

To assess whether infection with the adenoviral system would have any non-specific 

effects on growth in the MCF-7 and TAM-R cell lines, they were infected with an 

empty adenovirus that contained no transferable genetic material at MOI 100 (section 

2.7.4), and the growth compared to uninfected cells after four days by Coulter 

counting (section 2.2.6). Figure 5.4 represents the mean percentage cell number of the 

infected cells (±SEM) after 4 days growth relative that of the uninfected cells. The 

values are derived from the mean of 12 counts from 4 separate experiments in the 

MCF-7 cells and the mean of 6 counts, from 2 separate experiments, in the TAM-R 

cells. It can be seen that infection with the empty adenovirus at MOI 100 has no 

significant effect on growth after four days in either the MCF-7 or the TAM-R cell 

lines. Therefore any growth effects observed after the cell lines are infected with the 

PKC-8/a WT or DN adenoviruses are not attributable to non-specific growth effects 

caused by the infection. This also confirms that MOI 100 would be a non detrimental 

level of infection for subsequent experiments in both cell lines.

5.2.4. Western analysis of immunoprecipitated PKC-a and 8 from TAM-R cells 

adenovirally infected with either PKC-a or -8 expressing (WT) or dominant 

negative (DN) vectors.

Before analysing the adenovirally infected cells by immunoprecipitation (IP) the 

optimum volume of PKC-8 and PKC-a primary antibody necessary for the procedure 

was established and how selectively the IP could isolate the individual isoforms 

investigated (section 2.3.5). It can be seen in Figure 5.5 that samples 

immunoprecipitated with PKC-a contained no detectable PKC-8 when probed by 

Western analysis with the PKC-8 isoform specific antibody. This isoform specificity 

was also seen with the sample immunoprecipitated with the PKC-8 antibody 

displaying no detectable PKC-a. Therefore the antibodies have been shown to be
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control A denovirus
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60%  -

40%  -

20%  -

TAM-R

control Adenovirus

Figure 5.4. Effect of adenoviral infection at MOI 100 on the growth of the 
MCF-7 and TAM-R cell lines 4 days post infection.

MCF7 and TAM-R cells were grown for 48 hours in 24 well plates. The cells 
were then either infected with an empty adenovirus or left uninfected to 
assess the non-specific effects of adenoviral infection on growth. After 16 
hours the media was changed and the cells grown for a further four days after 
which time the cells were counted by Coulter counting as outlined in section 
x. The MCF-7 graph represents the mean cell numbers of 12 counts taken 
from 4 separate experiments ± SEM. The TAM-R graph represents the mean 
cell numbers of 6 counts from 2 separate experiments ± SEM.
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Figure 5.5. Western analysis of immunoprecipitated PKC-a and 5 from 
TAM-R cells probed with the corresponding antibodies.

Total PKC-a or 8 was immunoprecipitated (IP) from TAM-R cells using 
either lp l or 2jal of primary antibody as described in section 2.3.5. The 
IPs were then probed for both PKC-a and 8 using the same primary

Primary Ab used for IP

r C* ^
a 5

c  a  w t  a d n c 5 w t 5 d n

---------------------------------

Adenoviral Infection

P K C - a

P K C - 8

Primary Ab 
used for 
Western  
Analysis

Figure 5.6. Western analysis to confirm adenoviral expression of PKC- 
q  and PKC-8 wild type (WT) and dominant negative (DN) plasmids.

Total PKC-a or 8 expression in Tam-R cells infected with PKC-a WT, 
PKC-a DN, PKC-8 WT or PKC-8 DN at a MOI of 100 for 48 hours prior 
to harvesting (as outlined in section 2.7.4) and immunoprecipitated (as
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specific for their individual isoform. Performing the IP with either lp l or 2pl of 

primary antibody made little difference with regards the amount of PKC obtained so 

subsequent IP will be carried out with 1 pi of antibody.

The isoform specific antibodies can IP the PKC WT and DN proteins along with the 

endogenous PKC as they share amino acid sequence homology apart from a single 

amino acid substitution outside the immunogenic regions in the case of the DN PKCs. 

This homology in the immunogenic region means that we are also able to detect the 

expression of the WT and DN vectors as an increase in the PKC isoforms over the 

control levels of expression. It can be seen from Figure 5.6 that the cells infected with 

the exogenously expressing PKC vectors (section 2.7.4) displayed an isoform specific 

increase in protein expression compared to the controls, indicating that the vectors are 

expressing PKC proteins analogous to the endogenous isoforms. Furthermore the 

levels are around 15-20 fold higher with the PKC-a expressing plasmids and around 2 

fold higher with the PKC-8 expressing plasmids than endogenous control levels. 

Whilst we have shown that the adenoviruses are capable of delivering the PKC 

expressing vectors and that they are expressed within the cell we still do not now if 

they are functionally active in the case of the WT or kinase deficient in the case of the 

DN.

5.2.5. Verification of the kinase deficient phenotype of the PKC-a and 8 

dominant negative expressing adenoviruses.

Tumour promoting phorbol esters such as 12-O-tetradecanoylphorbol-13-acetate 

(TPA) are known to induce translocation to the cell membrane and activation of PKC 

(Lu et al., 1997). However with prolonged treatment, TPA causes depletion of PKC 

due to an increased rate of proteolytic degradation (Young et al., 1987). However this 

turnover is dependent on the PKCs initial activation. This has been shown previously 

in a PKC-a DN which contains a point mutation in the ATP binding site when 

rendered unable to autophosphorylate and therefore insensitive to proteolytic 

degradation by prolonged treatment with TPA (Ohno et al., 1990). As the PKC-8 DN 

shares a homologous mutation in the ATP binding site and is also unable to 

autophosphorylate (Li et al., 1995) it should also possess an insensitivity to
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downregulation by TPA. Therefore to verify that our PKC-a and 8 DN are unable to 

autophosphorylate, we decided to treat them with TPA to see if they were insensitive 

to its downregulatory effects.

To first confirm that the endogenous PKC-a and 8 can be degraded by prolonged 

treatment with TPA in both cell lines, and to establish a suitable time point for 

treatment, we treated the MCF-7 and TAM-R cells either with or without 500nM TPA 

for 15 minutes, 1 hour, 6 hours and 24 hours. The cells were harvested and analysed 

by Western analysis with PKC-a and PKC-8 specific antibodies (section 2.3) and the 

bands produced analysed by densitometry. Figure 5.7 and Figure 5.8 illustrate the 

mean percentages of PKC-a or 8 levels after TPA treatment relative to control for 3 

separate experiments ± SD. It can be seen from these figures that after 24 hours, 

almost all PKC-a and 8 has been degraded in the TPA treated samples relative to 

control in both cell lines. Therefore 24 hour treatment with 500nM TPA are 

appropriate conditions to test the DN PKCs functionality as they should cause the 

degradation of the WT and endogenous PKC but not the DN.

Thus TAM-R cells were either infected with PKC-a WT or DN, or PKC-8 WT or DN 

at MOI 100, or left uninfected as controls. The cells were then allowed to grow for 16 

hours, the media changed for media containing 500nM TPA or left untreated as 

controls. After 24 hours the cells were harvested and assayed by Western analysis 

(section 2.3.3) with PKC-a and 8 specific antibodies. Figure 5.9 shows that the TPA 

treatment was effective in inducing proteolytic degradation of endogenous PKC-a in 

control and PKC-a overexpressing cells. Moreover the level of PKC-a in the DN 

infected cells remained at a level comparable to the non-TPA treated control cells 

indicating that they were indeed insensitive to TPA induced degradation. The cells 

infected with the PKC-8 DN also retained greater levels of PKC-8 after TPA 

treatment than the uninfected control cells and the WT infected cells. As the 

expressed PKC-a and PKC-8 DNs were insensitive to degradation by TPA this 

confirms that they were unable to autophosphorylate and therefore truly kinase 

deficient.
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Figure 5.7. The effect of 12-O-tetradecanovlphorbol-13-acetate 
(TPA) on PKC-a and PKC-8 expression in the MCF-7 cell line

MCF-7 cells were grown in media containing 5% charcoal stripped 
FCS ± 500nM TPA for 15 minutes, 1 hour, 6 hours or 24 hours. 
Proteolytic degradation of PKC-a and PKC-8 was measured by 
Western analysis and expressed as a percentage of control levels at 
each of the time points ± SD (n=3 independent experiments).
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Figure 5.8. The effect of 12-O-tetradecanovlphorbol-13-acetate 
(TPA) on PKC-a and PKC-8 levels in the TAM-R cell line

TAM-R cells were grown in media containing 5% charcoal stripped 
FCS ± 500nM TPA for 15 minutes, 1 hour, 6 hours or 24 hours. 
Proteolytic degradation of PKC-a and PKC-8 was measured by 
Western analysis and expressed as a percentage of control levels at 
each of the time points ± SD (n= three independent experiments).
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Figure 5.9. Prolonged TPA treatment does not lead to proteolytic degradation 
of PKC in DN expressing cells

Tam-R cells infected at MOI 100 with PKC-a DN, PKC-a WT, PKC-5 DN 
or PKC-8 WT expressing adenoviral vectors and grown for 48hour, were 
treated ± 500nM TPA for 24 hours. The cells were lysed as outlined in 
section 2.3.1 and expression of PKC-a and PKC-8 assessed by Western 
analysis using isoform specific antibodies.
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5.2.6 In vitro kinase assay of PKC-8 activity in TAM-R cells infected with either 

PKC-8 DN or WT expressing adenoviral vector

To demonstrate conclusively that the PKC-8 WT and PKC-8 DN constructs are 

functionally active or kinase deficient respectively, an in vitro kinase assay was 

performed (section 2.7.7) to measure changes in PKC-8 activity in TAM-R cells 

infected with the adenoviruses (section 2.7.4). Figure 5.10 shows the mean percentage 

P incorporation relative to control from 3 independent experiments. It can be seen 

that there is an inhibition of PKC-8 activity in the cells infected with the PKC-8 DN 

virus relative to control and conversely an increase in PKC-8 activity in the cells 

infected with the PKC-8 WT expressor. These results however are not statistically 

significant and the effects not of the magnitude one would expect. Unfortunately time 

constraints meant that the in vitro kinase assay was not fully optimised and I would 

expect that further repeats of the experiment would yield more conclusive results.

5.2.7. The effect of dominant negative PKC-a and PKC-8 on MCF-7 and TAM-R 

cell growth.

In Chapter 3 we demonstrated that the PKC inhibitor bisindolylmaleimide IX (bis) 

inhibited growth o f the MCF-7 cell line and, to a much greater extent, the TAM-R cell 

line (Figure 3.12). This implied that TAM-R cells have an enhanced reliance on PKC 

for serum induced growth. However as discussed previously (section 3.3), bis cannot 

discern between the different PKC isoforms and has been reported to have effects on 

non-related kinases (Hers et al., 1999). We therefore wanted to determine the relative 

importance o f PKC-a and 8 in the MCF-7 and TAM-R cell lines. To this end we 

adenovirally infected both cell lines with dominant negative expressing vectors of 

these isoforms (section 2.7.4) with their growth measured by Coulter counting at days 

4 and 8 post infection (section 2.2.6).

From Figure 5.11 it can be seen that infecting the MCF-7 cells with PKC-a or 8 DN 

has very little effect on growth at day 4 and only a slight inhibitory effect at day 8. 

The effect o f PKC-a and 8 DN on MCF-7 growth was repeated in a further 5
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Figure 5.10. In-vitro kinase assay of PKC-8 activity in TAM-R cells 
infected with either a PKC-8 expressing (WT) or PKC-5 dominant 
negative (DN) expressing adenoviral vector

TAM-R cells were grown for 24 hours prior to infection at MOI 100 with 
either a PKC-8 expressing (WT) or PKC-8 dominant negative (DN) 
expressing adenoviral vector. After 24 hours the cells were lysed and the 
activity of PKC-8 assessed by in vitro kinase assay as outline in section
2.7.7. The graph represents the percentage pmol P32 incorporation 
relative to control ± SD (n= 3 independent experiments).
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Figure 5.11 Growth curve of MCF-7 cells adenovirally infected with either PKC-a or 
PKC-5 dominant negative (DN) expressing plasmid at MOI 100

MCF-7 cells were infected with either PKC-a or PKC-5 dominant negative (DN) 
expressing plasmid at an MOI of 100 for 16 hours and the media changed. The cells 
were counted by Coulter counting (section 2.2.6) on the day of infection (day 0), day 4 
and day 8. The graph is representative of 3 pairs of counts ± SEM.
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control alpha (DN) delta (DN) alpha & delta (DN) bis

T reatment

Figure 5.12 Growth study of MCF-7 cells adenovirally infected with PKC-a and/or 
PKC-5 dominant negative (DN) expressing plasmids
MCF-7 cells were infected with PKC-a and/or PKC-5 dominant negative (DN) 
expressing plasmid at an MOI of 100. Control cells were grown with empty virus or 
500nM bis and grown for 4 days post treatment. The cells were counted by Coulter 
counting (section 2.2.6) on the day of treatment (day 0) and on day 4 post treatment. 
The graph shows 15 pairs of counts from 5 independent experiments ± SEM.
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Figure 5.13 Growth curve of TAM-R cells adenovirally infected with either PKC-a or 
PKC-5 dominant negative (DN) expressing plasmid

TAM-R cells were infected with either PKC-a or PKC-5 dominant negative (DN) 
expressing plasmid at an MOI of 100 for 16 hours and the media changed. The cells 
were counted by Coulter counting (section 2.2.6) on the day of infection (day 0), day 4 
and day 8. Each point represents 3 pairs of counts ± SEM.
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Figure 5.14 Growth study of TAM-R cells adenovirally infected with PKC-a and/or 
PKC-5 dominant negative (DN) expressing plasmids

TAM-R cells were infected with PKC-a and/or PKC-5 dominant negative (DN) 
expressing plasmid at an MOI of 100. Control cells were grown with empty virus or 
500nM bis and grown for 4 days post treatment. The cells were counted by Coulter 
counting (section 2.2.6) on the day of treatment (day 0) and on day 4 post treatment. The 
graph shows 12 pairs of counts from 4 independent experiments ± SEM. (*p<0.05, 
**p<0.005 compared to control)
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separate experiments at the day 4 timepoint, along with the effect of infecting with 

both PKC-a and 8 dominant negatives together, and compared to treating with 500nM 

bis. The results of this experiment are shown in Figure 5.12, with cell number after 

four days growth expressed as a percentage relative to control cells (±SEM). It can be 

seen that infection separately with the PKC-a and 8 DN viruses produced no effect on 

growth in the MCF-7 cell line relative to the control cells. Infecting with the viruses in 

combination produced a slight growth inhibitory effect, although this could be due to 

non-specific effects caused by the increased infection level with a total MOI of 200 

(due to two viruses at MOI 100 each). The bis control produced a growth inhibitory 

effect of around 18% after four days treatment, an inhibition comparable with that 

seen in Chapter 3 (Figure 3.12).

When TAM-R cells were examined in a similar way, except that the cells were 

counted at day 6 in addition to day 0, 4 and 8, the PKC-a and 8 adenoviruses were 

seen to have a much more significant effect on growth compared to the control cells, 

particularly at day 4 (Figure 5.13). The growth inhibitory effects were still marked at 

day 6 with both PKC DNs, but by day 8 only the PKC-8 DN displayed continued 

growth inhibition. The short duration of response could be due to the DN effect being 

out grown with time as infection with the replication deficient adenovirus is transient 

and the cells were only infected once at day 0. The effect of PKC-a and 8 DN on the 

TAM-R growth was examined in a further 4 separate experiments at the day 4 time 

point, and again the combined effect of infection with both PKC-a and 8 dominant 

negatives assessed and compared to the growth inhibitory effects of 500nM bis. 

Compared to the situation seen in the MCF-7 cells, the infection of the TAM-R cells 

with PKC-a and PKC-8 DNs produced a significant inhibition of growth of over 20% 

compared to control after 4 days. Interestingly, infecting with both adenoviruses 

together produces a slight additive effect although again this could be attributed to the 

increase in MOI. As would be expected, the bis had a far greater effect on growth in 

the TAM-R cells as observed previously in Chapter 3 (Figure 3.12) causing over 50% 

growth inhibition compared to controls. These results show that PKC-a and 8 are 

more important for growth in the TAM-R cell line than in the MCF-7 cell line. 

Although the growth inhibition seen with the DNs was smaller than with the chemical 

inhibitor bis, this could be accounted for by the non-specific effects of bis, or due to
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the possible scope for further optimisation of the DN conditions. Importantly 

however, we present here clear evidence of a specific role for PKC-a and 8 in TAM- 

R growth which can truly be said to be specific for the isoform concerned.

5.2.8. The effect of dominant negative PKC-8 on ERK 1/2 activation in the TAM- 

R cell line.

It has been previously shown by Ueda et al. (1996) using constitutively active 

mutants, that PKC-8, but not PKC-a or s, can activate the mitogen activating protein 

kinase ERK 1/2. It has also been shown in the MCF-7 cell line that PKC-8 is 

upstream of the ras/raf/MEK pathway which leads to ERK 1/2 activation 

(Keshamouni et al., 2002). As our TAM-R cell model has been shown to possess 

greatly increased levels o f activated ERK 1/2 compared to the MCF-7 cell line 

(Nicholson et al., 2004), we decided to investigate whether PKC-8 was also upstream 

of ERK 1/2 in these cells by infecting them with the PKC-8 DN adenovirus and, 72 

hours post infection, harvesting the cells and assaying them for ERK 1/2 activation by 

Western analysis (section 2.3.3). Figure 5.15 represents the percentage ERK 1/2 

phosphorylation relative to uninfected control cells ±SD from 3 separate experiments. 

Infecting the TAM-R cells with the PKC-8 DN caused an inhibition of ERK 1/2 

phosphorylation of around 60%. Although the inhibition is not statistically significant 

(p=0.31), this inhibitory effect was seen to varying degrees in all 3 of the separate 

experiments. This indicates a role for PKC-8 in serum induced ERK 1/2 

phosphorylation in the TAM-R cell line

5.2.9. The effect of IGF-I, IGF-II, EGF and HRG-01 on PKC-a and 8 activation 

in the MCF-7 and TAM-R cell lines

It has now been widely documented that breast cancers can be initiated and 

propagated through the inappropriate activation and utilisation of a multitude of 

growth factor signalling pathways. This deregulation can be the manifestation of 

enhanced growth factor ligand production and/or the up-regulation of their target 

receptors. Among the receptors and ligands implicated in breast cancer, IGF-I and II 

acting through the IGF-I receptor (IGF-IR) (Jones et al., 2004)), and EGF (Nicholson
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120%

Control PKC-Delta DN

Figure 5.15. Relative levels of phosphorylated ERK 1/2 in TAM-R cells 
infected with a PKC-8 dominant negative (DN) expressing vector.

TAM-R cells were grown for 48 hours in 5% csFCS prior to adenoviral 
infection at MOI 100 with a PKC-5 expressing vector. After 16 hours the 
media was changed and the cells allowed to grow for a further 48 hours. The 
cells were then harvested and analysed by Western analysis as outlined in 
section 2.3 using antibodies specific for phosphorylated ERK 1/2. The graph 
represents the mean level of phosphorylated ERK 1/2 relative to control 
from 3 separate experiments.
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Figure 5.16. PKC-a and PKC-5 phosphorylation after short term treatment of 
MCF-7 and TAM-R cells with IGF-I

MCF-7 and TAM-R cells were treated for between 1 and 60 minutes with IGF- 
I (lOng/ml). At each time point the cells were harvested along with untreated 
control cells. The above graphs represent the level of phosphorylated PKC-a 
and PKC-8 in the treated cells relative to the untreated cells as determined by 
Western analysis (section 2.3).
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Figure 5.17. PKC-a and PKC-5 phosphorylation after short term treatment of 
MCF-7 and TAM-R cells with IGF-II

MCF-7 and TAM-R cells were treated for between 1 and 60 minutes with IGF- 
II (lOng/ml). At each time point the cells were harvested along with untreated 
control cells. The above graphs represent the level of phosphorylated PKC-a 
and PKC-5 in the treated cells relative to the untreated cells as determined by 
Western analysis (section 2.3).
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Figure 5.18. PKC-a and PKC-5 phosphorylation after short term treatment of 
MCF-7 and TAM-R cells with EGF

MCF-7 and TAM-R cells were treated for between 1 and 60 minutes with EGF 
(lOng/ml). At each time point the cells were harvested along with untreated 
control cells. The above graphs represent the level of phosphorylated PKC-a 
and PKC-8 in the treated cells relative to the untreated cells as determined by 
Western analysis (section 2.3).
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Figure 5.19. PKC-a and PKC-8 phosphorylation after short term treatment of 
MCF-7 and TAM-R cells with HRG-P1

MCF-7 and TAM-R cells were treated for between 15 minutes and 3 days with 
HRG-pl (lOng/ml). At each time point the cells were harvested along with 
untreated control cells. The above graphs represent the level of phosphorylated 
PKC-a and PKC-5 in the treated cells relative to the untreated cells as 
determined by Western analysis (section 2.3).
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et al., 2001) and the heregulins (Tang et al., 1996) acting through the Erb/Her family 

of receptors, have been further implicated as signalling strategies through which 

breast cancer cells can circumvent the effects of antihormone therapy. To ascertain 

whether the signalling pathways that originate from these receptor-ligands 

interactions employ the activation of PKC-a or 8 in the MCF-7 and TAM-R cell lines, 

they were treated with IGF-I, IGF-II or EGF for 1,5, 15, 30 and 60 minute durations 

and assayed for levels of phosphorylated PKC-a or 8 by Western analysis (section 

2.3.3). The levels of phosphorylated PKC-a or 8 are expressed as fold change relative 

to the untreated controls at each time point (Figures 5.16, 5.17 and 5.18). The MCF-7 

cells treated with either IGF-I or II displayed no increase in the phosphorylation of 

PKC-a or PKC-8. The TAM-R cells, however, displayed a large transient increase in 

both PKC-a and PKC-8 phosphorylation when treated with IGF-I or II for 30 

minutes. This increase in PKC-a and 8 phosphorylation also occurs in the TAM-R 

cells treated with EGF for 30 minutes. In addition there was an increase in PKC-a 

phosphorylation in the MCF-7 cell line after 30 minutes treatment with EGF, though 

without the concomitant increase in PKC-8 phosphorylation observed in the TAM-R 

cell line. The MCF-7 and TAM-R cell lines were also treated with HRG-pi at 15 

minute, 1 hour, 6 hour, 24 hour and 3 day time periods and the levels of activated 

PKC-a and 8 assayed by Western analysis. The levels of phosphorylated PKC-a or 8 

are expressed in Figure 5.19 as fold change relative to the untreated controls at each 

time point. The MCF-7 cells displayed an increase in PKC-a and 8 phosphorylation 

after 6 hours treatment with an increase in PKC-a phosphorylation also evident after 

3 days continuous HRG-pi treatment. The TAM-R cells displayed a gradual increase 

in PKC-a phosphorylation over the three day treatment whilst PKC-8 

phosphorylation is at its greatest after 24 hours treatment.

5.2.10. The effect of inhibiting PKC-a and 8 on IGF-I, IGF-II, EGF, HRG-pi 

and oestrogen stimulated growth in the TAM-R cell line

As we have shown that each of the growth factors tested in section 5.2.9 can induce 

the phosphorylation of PKC-a and 8 in the TAM-R cell line we decided to investigate 

whether inhibiting these isoforms impinges on each of the ligands growth stimulatory
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Table 5.2. Summary table of the effect of PKC-a DN. PKC-8 DN and 
bisindolvlmaleimide IX (500nM) on the growth of TAM-R cells treated with IGF-I, 
IGF-II. EGF. HRG-B1 (1 Ong/ml) or Oestrogen (E2) (10~9M) for four days.

The growth is expressed as the mean percentage number of cells, relative to control, 
from 12 pairs o f counts from 4 separate experiments ± SEM. The significance was 
analysed by paired t-test on actual cell numbers using SPSS software.

Cond tions

T reatment Inhibitor % growth relative to 
control ± SEM Significance

(P=)

Control

Control 100 - -

PKC-a DN 65 10 0.05
PKC-8 DN 78 6 0.03
Bis 53 9 0.02

IGF-I

Control 142 8 0.02
PKC-a DN 95 9 0.03
PKC-8 DN 109 7 0.06
Bis 65 7 0.02

IGF-II

Control 217 28 0.04
PKC-a DN 93 9 0.05
PKC-8 DN 107 9 0.06
Bis 71 7 1 0.04

EGF

Control 220 33 0.05
PKC-a DN 101 7 0.05
PKC-8 DN 146 18 0.06
Bis 97 8 0.04

HRG-pi

Control 155 20 0.05
PKC-a DN 116 5 0.02
PKC-8 DN 119 4 0.01
Bis 101 5 0.03

E2

Control 207 34 0.04
PKC-a DN 135 4 0.02
PKC-8 DN 135 5 0.00
Bis 97 4 0.03
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Figure 5.20. Graph showing the effect of infecting TAM-R cells with PKC-a DN or 8 DN vectors or bisindolylmaleimide on 
growth factor stimulated growth after four days

TAM-R cells were adenovirally infected at MOI 100 with PKC-a DN or PKC-8 DN vectors or bisondolylmaleimidelX (bis) 
(500nM). After 16 hours the media was changed and the cells treated with either IGF-I, IGF-II, EGF, HRG-pi (all lOng/ml) or 
oestrodiol (E2) (10'9M) for 4 days. After this time the cells were counted and expressed as the mean percentage number of cells 
relative to the uninfected, untreated controls. The above graph is representative of 12 pairs of counts from 4 separate experiments ± 
SEM. Statistical significance was calculated from the cell numbers by paired t-test using the SPSS software package (Significance 
between uninfected growth factor treated cells and uninfected, untreated control: *= 0.05, significance between infected, growth 
factor treated sample and uninfected control samples treated with same growth factor: A= 0.05, ▲ A= 0.005).
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effects. In addition, we investigated whether oestrogen could elicit a growth 

stimulatory effect on the TAM-R cells, and if this effect could also be inhibited by 

PKC-a and 8. TAM-R cells were adenovirally infected with PKC-a or PKC-8 DNs 

(section 2.7.4) or treated with 500nM bis 16 hours prior to treatment with IGF-I, IGF- 

II, EGF, HRG-pi or oestrogen for four days, after which time the cell growth was 

assessed by Coulter counting (section 2.2.6). Table 5.2 summarises the results from 4 

separate experiments as percentage cell number relative to untreated control ± SEM. 

These values are also represented graphically in Figure 5.20. All the growth factors 

tested increased levels of TAM-R cell growth after four days. Treatment with IGF-I 

and HRG-pl induced growth around 150% that of control whilst growth with IGF-II 

and EGF treatment was over 200% that of control. Interestingly oestrogen induced an 

increase in growth of around 200% even though the TAM-R cells home medium 

contains 10'7M tamoxifen. Inhibiting the untreated cells with PKC-a DN, PKC-8 DN 

and bis caused growth inhibition after 4 days at levels comparable with those seen in 

Figure 5.14. Treatment with the PKC-a dominant negative significantly inhibited the 

growth stimulatory effects of each of the growth factor ligands to levels comparable 

with the untreated control. There is also a marked inhibition of growth when the cells 

were infected with the PKC-8 DN. The inhibition of growth factor induced growth 

stimulation is even more marked with the bis compound than with the DNs, though as 

previously discussed (section 3.3) this is most likely due to its inhibition of several 

related and non-related kinases. The treatment of the TAM-R cells with PKC-a DN, 

PKC-8 DN or bis inhibited oestrogen stimulating growth, highlighting a possible role 

for PKC-a and 8 in oestrogen stimulated growth of the TAM-R cell line.

5.2.11. The effect of oestrogen receptor modulation on PKC-a and 8 

phosphorylation in the MCF-7 and TAM-R cell lines

As we have shown that inhibition of PKC-a and 8 inhibits oestrogen induced growth 

of the TAM-R cell line we decided to investigate the effect of modulating the 

oestrogen receptor on the activation of PKC-a and 8. We treated the MCF-7 cell line 

with the tamoxifen, Fulvestrant or oestrogen for 7 days. Treatment with tamoxifen
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Figure 5.21. The effect of oestrogen receptor modulation on the activation of 
PKC-a and PKC-5.

MCF-7 cells were treated for 7 days with either tamoxifen (10'7M), Fulvestrant 
(182) (10*7M), or oestrogen (E2) (10"9M) with control cells left untreated. 
TAM-R cells were treated for 7 days with either 182 (10‘7M) or E2 (10'9M). 
The cells were then harvested and analysed for levels of phosphorylated PKC- 
a  or PKC-8 by Western analysis (section 2.3). The blotted membranes were 
also probed for p-actin as a loading and protein concentration control.
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inhibits ER signalling through the ligand dependent trans-activational function (AF-2) 

(MacGregor and Jordan, 1998), Fulvestrant is a pure anti-oestrogen (Howell et al., 

2004) and prolonged treatment with oestrogen is known to cause the downregulation 

of the ER (Borras et al., 1994). We also treated the TAM-R cell line with fulvestrant 

and oestrogen but not additional tamoxifen as it is already supplemented in their home 

media. After 7 days treatment, the cells were harvested and assayed by Western 

analysis for levels of activated PKC-a and 5 using phosphorylation specific 

antibodies. The blotted membranes were also probed for p-Actin as a protein 

concentration and loading control. The MCF-7 cells treated with tamoxifen, 

fulvestrant and oestrogen all showed reduced activation of PKC-5 with a concomitant 

increase in PKC-a phosphorylation. This indicates that signalling through the 

oestrogen receptor affects pathways leading to the phosphorylation of PKC-5. It also 

appears that the downregulation of the ER leads to signalling pathways that involve 

the phosphorylation of PKC-a. Treatment of the TAM-R cells with fulvestrant and 

prolonged oestrogen treatment also lead to decreased levels of PKC-5, however 

instead of PKC-a being activated it was also downregulated. This implies that even in 

the presence o f tamoxifen, the oestrogen receptor can still signal through pathways 

that involve PKC-a and 5.

5.2.12. The effect of upregulating PKC-a and 5 on IGF-I, IGF-II, EGF, HRG-pi 

and oestrogen stimulated growth in the MCF-7 cell line

We have shown that inhibiting PKC-a and 5 causes a reduction in growth stimulation 

by growth factors and oestradiol in the TAM-R cell line. We decided to determine 

whether overexpressing these isoforms would have the reverse effect in the MCF-7 

cell line and cause an increase in growth upon stimulation with IGF-I, IGF-II, EGF, 

HRG-pi or oestrogen. Therefore, we infected the MCF-7 cell line with the PKC-a 

and 5 WT overexpressing adenoviruses, changed the media after 16 hours and treated 

the cells for four days with each of the aforementioned ligands. The cell growth was 

then assessed by Coulter counting (section 2.2.6). The mean percentage cell count 

from 5 separate experiments are expressed relative to untreated control ± SEM in 

Table 5.3 and displayed graphically in Figure 5.22.
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Table 5.3. Summary table of the effect of PKC-a WT and PKC-5 WT overexpressors 
on the growth of TAM-R cells treated with IGF-I. IGF-II. EGF. HRG-B1 (10ng/ml) or 
Oestrogen (E?) (T0~9M) for four days.

Growth expressed as the mean number of cells expressed as a percentage relative to 
control for 15 pairs of counts from 5 separate experiments ± SEM. The data was 
analysed statistically by paired t-test on actual cell numbers using the SPSS software.

Conditions

T reatment Overexpressor % growth relative to 
control ± SEM Significance

(P=)

Control
Control 100 -
PKC-a WT 116 5 0.021
PKC-5 WT 129 11 0.023

IGF-I
Control 139 7 0.000
PKC-a WT 152 8 0.083
PKC-5 WT 162 14 0.035

IGF-II
Control 149 10 0.000
PKC-a WT 164 13 0.023
PKC-5 WT 146 13 0.632

EGF
Control 140 14 0.008
PKC-a WT 162 22 0.049
PKC-5 WT 169 17 0.011

HRG-p1
Control 191 20 0.000
PKC-a WT 211 28 0.068
PKC-5 WT 191 23 0.687

E2
Control 201 24 0.000
PKC-a WT 238 31 0.266
PKC-5 WT 211 35 0.523
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Figure 5.22. Graph showing the effect of infecting MCF-7 cells with PKC-a and 5 WT overexpressing vectors on growth factor 
stimulated growth after four days

MCF-7 cells were adenovirally infected at MOI 100 with PKC-a or PKC-5 WT overexpressing vectors and, after 16 hours, the 
media changed and the cells treated with either IGF-I, IGF-II, EGF, HRG-pi (all lOng/ml) or oestrodiol (E2) (10'9M) for 4 days. 
After this time the cells were counted and expressed as the mean number of cells as a percentage relative to the uninfected, 
untreated control. The above graph is representative of 15 pairs of counts from 5 separate experiments ± SEM. Statistical 
significance was calculated from the cell numbers by paired t-test using the SPSS software package (Significance between 
uninfected growth factor treated cells and uninfected, untreated control: *= 0.05, **=0.005; significance between infected, growth 
factor treated sample and uninfected control samples treated with same growth factor: A= 0.05).
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Infecting the MCF-7 cells with the PKC-a and 8 overexpressors caused small but 

significant increases in growth. Treatment with each of the growth factors induced 

increases in cell growth, with the greatest increase induced by oestrogen which 

resulted in a cell number around 250% that of control cells at day 4. The treated cells 

infected with the PKC-8 overexpressor saw small increases in growth compared to 

uninfected controls. The cells treated with IGF-I or EGF also had increased growth 

rate when infected with the PKC-a overexpressor, though the cells treated with IGF- 

II, HRG-p 1 or oestrogen displayed little if any increase in growth compared with the 

treated, but uninfected, controls. Though some of the increased growth observed in 

the treated cells infected with the overexpressors is statistically significant when 

compared to their uninfected but growth factor treated controls, the increases are not 

greatly different than those seen when the untreated cells are infected with the 

overexpressors alone. Therefore the increased growth of the treated cells when 

infected with PKC-a and 8 WT may be due to effects other than those signalling 

caused by each of the growth factor ligands.

5.2.13. The effect of upregulating PKC-a and 8 on tamoxifen sensitivity in the 

MCF-7 cell line

We have determined that the TAM-R cell line displays higher levels of PKC-a and 

PKC-8 expression and phosphorylation, and that when they are inhibited it causes a 

reduction in serum induced proliferation. Therefore if the TAM-R cells are utilising 

pathways involving PKC-a and 8 we wanted to see if they were causative or a 

consequence of tamoxifen resistance and whether upregulation of these isoforms 

would confer a reduction in tamoxifen sensitivity to the MCF-7 cell line. We infected 

the MCF-7 cells with the PKC-a and 8 overexpressing viruses and, 16 hours after 

infection, changed the media and treated them with 10'7M tamoxifen for four days. 

After this time the cells were counted by Coulter counter (section 2.2.6). The results 

of 6 counts from an experiment carried out in triplicate are shown graphically in 

figure 5.23. It can be seen that after 4 days growth there was a slight reduction in 

growth of the tamoxifen treated cells. By contrast the cells overexpressing the WT 

PKC-a or WT PKC-8 displayed an increase in cell growth compared to their
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Figure 5.23. The effect of PKC-5 and PKC-a wild type (WT) 
overexpression on MCF-7 cells response to Tamoxifen

MCF-7 cells were infected with adenovirus containing PKC-a or 8 WT 
overexpressing vectors at a MOI of 100 (section 2.7.4) with control cells left 
uninfected. The cells were then either treated with tamoxifen (10‘7M) or left 
untreated, and counted 4 days later by Coulter counting (2.2.6). The graph 
represents the cell number relative to the untreated, uninfected control cells ± 
SD from 6 counts.
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matched control cells. However there was only a modest inhibition caused by 

tamoxifen at this time point. To establish for certain whether PKC-a or 5 

overexpression can confer tamoxifen resistance, the experiment would have to be 

repeated, possibly with longer duration of tamoxifen treatment and with the 

adenoviral infection repeated periodically throughout that time period so that the 

transient nature of the infection is not grown out with time.

5.3. D i s c u s s i o n

To determine the importance of the PKC-a and PKC-8 isoforms in the acquisition of 

tamoxifen resistance we aimed to devise a strategy where their activity or expression 

could be ablated and the outcomes arising from that ablation studied in our TAM-R 

cell model. We attempted this endeavour with chemical inhibitors but met with 

problems relating to specificity and efficacy in our cell line models. This lead us to 

examine the technique of RNAi through the use of chemically synthesised siRNAs to 

induce gene specific silencing o f PKC-a and PKC-8. However we were hindered by 

the cells lack of permissiveness to transfection with the lipid / polymer based reagents 

we had at our disposal and the transient nature of the transfections. This lead us to the 

use of adenoviral technology which provided a far higher rate of gene transfer than 

the lipid / polymer based reagents, as illustrated by the MCF-7 and TAM-R cells 

adenovirally infected with the p-Gal expressing plasmid achieving nearly 70% 

infection rates compared to a transfection efficiency of only around 35% when the P- 

Gal plasmid was introduced using Lipofectamine 2000. Additionally the use of the 

adenovirus at a MOI of 100 displayed no cytotoxicity and had no effect on growth 

rates after four days infection.

The superior level of gene transfer associated with the adenovirus allows the 

introduction of gene vectors into a far greater proportion of cells within a population. 

This not only means that their overall effect on the cell population will be greater but 

also that the effect will take longer to be diluted through cell growth. We have 

established that we can utilise the adenoviral technology to introduce plasmids that 

express PKC-a or PKC-8 DNs into our model cell lines and that they can inhibit the 

activity o f the endogenously expressed isoforms. Additionally we have shown that we
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can use adenoviruses to introduce plasmids that express WT PKC-a and PKC-8 and 

thereby induce overexpression of these isoforms in our model cell lines. Therefore the 

adenoviral technology at our disposal not only confers the advantage of superior 

degrees o f gene transfer but also the ability to study the functions of PKC-a and 8 in 

terms of their overexpression as well as its inhibition.

We have previously shown that inhibition of PKC-a and 8 with the inhibitor 

bisindolylmaleimide IX (bis) retards growth in the TAM-R cells to a much greater 

extent than the MCF-7 cells insinuating that PKC-a and 8 play a more crucial role in 

the growth of the TAM-R cells than the MCF-7 cells. However as bis is a non-specific 

inhibitor that has been shown to impinge on several kinases the importance of these 

isoforms in isolation could not be assessed. When we infected the MCF-7 cells with 

the PKC-a or PKC-8 DN expressing adenoviruses we showed that they had very little 

effect on growth after four days even when used in combination. However the PKC-a 

and PKC-8 DN adenoviruses significantly inhibited TAM-R cell growth after 4 days 

with a slight additive effect when used in combination (Figure 5.14). This therefore 

confirms their importance as implied in the bis growth studies, but is far superior as it 

unpicks the isoforms from each other and from the multitude of other kinases affected 

by bis.

5.3.1. Growth Factor Signalling

The importance of growth factor signalling in the acquisition of tamoxifen resistance 

has been well established, whether mediated through the increase in growth factor 

ligand, the upregulation of the target receptor or the increased recruitment of their 

downstream signalling elements. One of the most markedly over-expressed growth 

factor receptors in our TAM-R model is the epithelial growth factor receptor (EGF-R) 

which displays 40 fold higher levels of membrane EGF-R staining than the parental 

MCF-7 cell line (Nicholson et al., 2004). The importance of this large increase in 

receptor level is dramatically illustrated by the 95% inhibition of growth incurred by 

the TAM-R cell line when treated with the highly selective EGF-R inhibitor Gefitinib. 

This is in marked contrast to the <10% growth inhibition observed in the parental 

MCF-7 cell line (Nicholson et al., 2001). This increased dependence on EGF-R
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ligands in cells deprived of ER signalling is confirmed in MCF-7 derivatives resistant 

to the pure anti-oestrogen fulvestrant which also display sensitivity to Gefitinib 

(McClelland et al., 2001).

The increase in EGF-R is mirrored by an increase in its related receptor family 

member, and preferred heterodimer partner, erbB-2 (Nicholson et al., 2004). It has 

previously been shown that forced overexpression of the erbB-2 receptor in the MCF- 

7 cell line can promote ligand-independent down regulation of the ER (Pietras et al.,

1995) and confers a degree of tamoxifen resistance on the cells (Kurokawa et al., 

2000). The expression of the erbB-3/4 ligand heregulin (HRG), which can also 

transactivate erbB-2 (Keshamouni et al., 2002), has been shown to be positively 

correlated with a more aggressive breast cancer phenotype in vitro and in vivo. 

Oestrogen sensitive breast cancer cells engineered to constitutively express heregulins 

also display oestrogen independent growth and tamoxifen resistance (Lupu et al.,

1996). We have shown that treatment with HRG significantly increases TAM-R cell 

growth (Figure 5.20)

We have shown that both EGF and HRG can induce significant increases in TAM-R 

cell growth (Figure 5.20). This correlates with the evidence stated above for their 

importance in the tamoxifen resistant and oestrogen deprived context. It has recently 

been shown that MCF-7 cells engineered to overexpress erbB-2 express significantly 

enhanced levels of both PKC-a and PKC-5 (Nabha et al., 2005) and that inhibition of 

PKC-8 in these cells inhibits HRG mediated ERK 1/2 activation (Keshamouni et al., 

2002). We have shown that the TAM-R cell line, known to overexpress erbB-2, also 

express significantly increased levels of PKC-a and PKC-8 (Figure 3.4; Figure 3.5). 

Furthermore we have demonstrated that phosphorylation of these isoforms can be 

induced by HRG (Figure 5.19) and confirmed that ERK 1/2 activation is indeed 

downstream of PKC-8 (Figure 5.15) supporting the work of Keshamouni et al, 

(2002). In addition, we have shown, through the use of the adenovirally infected 

dominant negatives, that TAM-R cell growth, induced by the erbB receptor family 

ligands EGF and HRG, can be suppressed through the inhibition of PKC-a and PKC- 

5 (Figure 5.20) providing direct evidence that these isoforms play a functional role in 

erbB receptor signalling mediated growth.
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We have also shown that IGF-I and II are able to phosphorylate PKC-a and PKC-8 

and significantly stimulate growth in the TAM-R cell line (Figure 5.20). The 

importance of IGF-IR signalling in the tamoxifen resistant context has been 

previously shown in in vitro studies by Parisot et al. (1999) that show that whilst IGF- 

I is unable to stimulate MCF-7 cell growth it can stimulate the growth of their 

tamoxifen resistant model and that this growth is inhibited by an IGF-IR monoclonal 

antibody. It has also been shown that treating IGF-IR overexpressing MCF-7 clones 

with IGF-I greatly reduces their requirement for oestrogen for growth (Guvakova and 

Surmacz, 1997) and that increased IGF-IR can confer oestrogen independence on long 

term oestrogen deprived MCF-7 cells (Stephen et al., 2001). However, we have 

shown for the first time that the growth stimulatory effects of IGF-I and IGF-II in 

TAM-R cells can be markedly reduced through the selective inhibition of either PKC- 

a  and PKC-8 (Figure 5.20), providing evidence that in addition to playing a role in 

erbB receptor mediated cell growth, these isoforms also play a critical role in growth 

signalling through the IGF-IR.

Many layers of complexity are added to the mechanisms underlying growth factor 

induced signalling through PKCs in the TAM-R cell line, due to the phenomenon of 

receptor cross-talk between the IGF-IR and the erbB family of receptors. For 

example, it has been shown within our group that treatment with IGF-II induces the 

activation of both the IGF-IR and the EGFR in the TAM-R cell line but only IGF-IR 

in the MCF-7 cell line. It has also been shown that the IGF-IR inhibitor AG 1024 

reduces EGF-R phosphorylation in non-primed TAM-R cells (Knowlden et al., 2005). 

It has been suggested that this cross talk may even be mediated through a direct 

interaction between the IGF-IR and the erbB receptors (Balana et al., 2001) though 

this has yet to be established in the TAM-R cell line. An interesting extension of our 

work would therefore be to test whether IGF-II stimulation of the PKC in the TAM-R 

cells is direct or mediated via EGF-R activation.
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5.3.2. Oestrogen Receptor Signalling

Whilst growth factor signalling has been shown to play a major role in tamoxifen 

resistant growth it has been shown that the TAM-R cells are sensitive to the pure anti­

oestrogen fiilvestrant (Robertson et al., 2001) and therefore must retain ER 

functionality. Certainly, the ER can be phosphorylated at the serine 118 and 167 

residues through EGF-R dependent EGF or TGF-a stimulation (Britton et al., 2002). 

In addition, inhibition of the IGF-IR with the selective inhibitor AG 1024 causes a 

reduction in ER phosphorylation (Nicholson et al., 2004). Interestingly there is also 

evidence that the erbB-2 receptor may even associate directly with membrane ER to 

confer tamoxifen resistance (Chung et al., 2002). Whilst this cross talk between 

growth receptor signalling and the ER appears to play a vital role in tamoxifen 

resistant growth, we have shown that, even in the presence of tamoxifen, oestrogen 

itself can still significantly stimulate growth of the TAM-R cell line and that this 

growth stimulation is suppressed by inhibition of PKC-a and PKC-8 (Figure 5.20). 

This oestrogen induced proliferation of tamoxifen resistant MCF-7 derivatives has 

also been shown by Nabha et al. (2005), who also showed that this effect can be 

suppressed by PKC-8 inhibition. Surprisingly they did not further investigate the role 

played by PKC-a in this pathway, even though they observed a very large increase in 

PKC-a expression in their tamoxifen resistance model over the MCF-7 cells from 

which they were derived, mirroring the PKC profile of our TAM-R cell model 

(Chapter 3).

Oestrogen stimulated growth has also been shown to occur in tamoxifen resistant 

xenographs derived from MCF-7 cells (Berstein et al., 2004). However, in that study 

the oestrogen induced cell growth was observed over 7 weeks after the removal of 

tamoxifen from the micro-environment whereas the growth stimulation observed in 

our TAM-R cell model occurs in the presence of tamoxifen (Figure 5.20). Therefore 

oestrogen stimulated growth of the TAM-R cells appears to be occurring through a 

non-classical ER pathway. Studies from several laboratories have demonstrated rapid 

non-genomic effects of oestradiol through membrane receptors distinct from ERa and 

ERp (Benton et al., 2001; Doolan and Harvey, 2003; Sylvia et al., 2000). For example 

Walsh et a l (2005) have shown that oestradiol is capable of inducing a rapid and
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maintained increase in intracellular calcium ion concentration in MCF-7 cells, which 

express ER a and (3, but also in SKBR-3 cells, which express neither receptor. This 

effect was also unaffected in both cell lines by pre-treatment with the pure anti 

oestrogen fulvestrant.

Another study by Doolan et a l (2000) has shown that oestradiol can also stimulate the 

activation of PKA in rat distal colonic epithelium and that this effect is not inhibited 

by tamoxifen but is inhibited by the PKC inhibitor, bis. Interestingly they also showed 

that PKC-a and PKC-5, but not PKC-e or PKC-£, can be stimulated by oestradiol in a 

cell free environment independent of ER. Therefore there is evidence of an ER 

independent mechanism for oestradiol induced activation of PKC-a and PKC-8 

leading to PKA activation. This ER independent utilisation of PKC-a and PKC-8 

provides a possible mechanism through which oestradiol is able to promote growth in 

the TAM-R cell line even in the presence of tamoxifen and also provides a possible 

explanation for the efficacy of systemic oestrogen ablation through aromatase 

inhibition on breast cancers that have become resistant to tamoxifen.

However, our studies also show that the ER still appears to play a role in the 

activation of PKC-a and PKC-8 in the TAM-R cells, even in the presence of 

tamoxifen, as ER downregulation mediated by prolonged treatment with fulvestrant or 

oestradiol leads to a marked reduction in both PKC-a and PKC-8 activation (Figure 

5.21). In contrast, a smaller downregulation of ER in the MCF-7 cell line leads to a 

reduction of PKC-8 activation but also a concomitant increase in activation of the 

PKC-a isoform (Figure 5.21). This phenotype is reminiscent of the ER-ve MB-MDA- 

231 cells (Figure 3.3) and implies that upon blockade of ER signalling, MCF-7 cells 

convert to a more ER-ve phenotype. Thus there appears to be distinct differences in 

the response of TAM-R and MCF-7 cells to ER downregulation with regard to PKC 

isoform expression and activation. Furthermore, whilst we have shown that both 

PKC-a and PKC-8 activation can be mediated through signalling from the ER in the 

TAM-R cell line, thus appears to be mediated by a different pathway than that 

demonstrated by Doolan et al (2000).
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One possible mechanism could be that the PKCs are activated through the oestradiol 

promoted expression of HRG, inducing autocrine and paracrine signalling to the 

erbB-2 receptor. This mechanism, described by Keshamouni et a l (2002) in erbB-2 

overexpressing MCF-7 cells, leads to the PKC-8 dependent activation of ERK 1/2. 

This concurs with our observation that PKC-8 activation increases with HRG 

treatment (Figure 5.19), that PKC-8 is an important downstream target in HRG 

induced TAM-R cell growth (Figure 5.20) and that PKC-8 is an important upstream 

component of ERK 1/2 signalling (Figure 5.15). Another possibility is that tamoxifen 

itself is acting as the agonist, with the ER effectively functioning as the receptor for 

tamoxifen mediated signalling. This explanation is especially feasible since tamoxifen 

invokes agonistic or antagagonistic properties in a tissue specific manner. For 

example it can function as an antagonist in the breast but an agonist in the bone and 

uterus (Graham et al., 2000). If the breast cancer cells are developing mechanisms 

that allow them to arrogate the agonistic properties of tamoxifen then it may further 

explain the sensitivity of TAM-R to fulvestrant (Robertson et al., 2001). It has 

recently been shown that tamoxifen can indeed induce cell proliferation in a 

tamoxifen resistant MCF-7 derived cell line and that this effect is inhibited by 

transfection with PKC-8 specific siRNA (Nabha et al., 2005). Therefore in our TAM- 

R cell model it would follow that ER down regulation in the presence of tamoxifen 

would lead to the downregulation of downstream effectors such as PKC-a and PKC- 

8.

5.3.3. Effect of PKC-a and PKC-8 Overexpression in the MCF-7 cell line

As growth factor signalling has been shown to be mediated through PKC-a and PKC- 

8 in the TAM-R cell line, we investigated the effects of PKC-a and PKC-8 

overexpression on growth factor signalling in the MCF-7 cell line (Figure 5.22). 

Overexpressing PKC-8 increased cell growth in the MCF-7 cells treated with each of 

the ligands whilst PKC-a overexpression only augmented growth in the cells treated 

with IGF-I and EGF. However this seems quite reasonable given that the MCF-7 cell 

line are known to express relatively little PKC-a (Chapter 3) with greater amounts of 

PKC-8 (Shanmugam et al., 1999) and are therefore more likely to be geared towards
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it’s utilisation. Whilst none of the increases in growth factor induced growth are 

dramatic, this may be due to factors upstream and downstream of the increased PKCs. 

To more accurately assess the effects of overexpression of the PKC isoforms on 

growth factor induced growth in the MCF-7 cell line it may be a better strategy to 

overexpress the PKCs in cells engineered to overexpress each of the receptors. The 

largest increase in growth seen following PKC-8 overexpression was that induced by 

oestradiol treatment. This correlates with our earlier observation that the ER is 

upstream of PKC-8 (Figure 5.21).

Finally, having already shown that PKC-a and PKC-8 are overexpressed in the TAM- 

R cell line compared to the MCF-7 cell line (Chapter 3) and that the inhibition of the 

PKC-a and PKC-8 inhibits basal growth and growth induced by growth factors and 

oestrogen, we wanted to determine if  the overexpression of PKC-a and PKC-8 is 

causative or a consequence of tamoxifen resistance. To this end we overexpressed 

PKC-a and PKC-8 in the tamoxifen sensitive MCF-7 cell line to see if this could 

confer tamoxifen resistance (Figure 5.23). After 4 days treatment, tamoxifen had 

inhibited MCF-7 cell growth as expected. However in the PKC-a and PKC-8 

overexpressing cells, treatment with tamoxifen induced increased growth. In support 

of these observations, another group have shown that PKC-a and PKC-8 

overexpression can confer a reduced sensitivity to tamoxifen (Nabha et al., 2005). 

Moreover, our studies have shown that tamoxifen treatment of MCF-7 cells that 

overexpress PKC-a and PKC-8 can lead to tamoxifen acting as an agonist.
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6 .  G e n e r a l  D i s c u s s i o n

During the course of our study we have established that the expression of PKC-a and 

PKC-8 is significantly increased in TAM-R cells relative to the tamoxifen sensitive 

MCF-7 cells from which they are derived. We have also established that the increased 

expression is mirrored by a concomitant increase in PKC-a and PKC-8 activation 

inferring that these isoforms are playing a more important role in the signalling 

mechanisms of the TAM-R phenotype. Interestingly our parallel studies on clinical 

samples demonstrate that tumours overexpressing PKC-a and PKC-8 are associated 

with poor prognostic outcomes with respect to survival and duration of endocrine 

response (Assender et a l,  2005; in prep.). This profile differs from ER-ve cell models 

that possess de novo tamoxifen resistance. Such cells display high PKC-a levels but 

low PKC-8. Therefore there appears to be distinct mechanisms that underpin acquired 

resistance compared to de novo resistant cells.

To study the importance of this increased PKC-a and PKC-8 activity in the TAM-R 

phenotype, relative to the MCF-7 tamoxifen sensitive phenotype, we investigated 

various techniques to suppress PKC functionality or ablate their expression. The most 

commonly used method of inhibition is through the use of low molecular weight, cell 

permeable chemical inhibitors. There are several inhibitors that have been reported to 

provide selective inhibition of the PKC family of kinases or even single isoform 

specificity. Two of the most commonly cited PKC inhibitors in published articles are 

bisindolylmaleimide IX (bis) and rottlerin. Bis has been used in over 600 published 

studies to demonstrate a role for PKC in many cell systems and species (McGovern 

and Shoichet, 2003). We showed that bis is indeed a competent inhibitor of PKC as it 

greatly reduced the protein expression and phosphorylation of both the a  and 8 

isoforms in both MCF-7 and TAM-R cells. However the inherent lack of selectivity 

between the two isoforms is compounded by its comparable inhibition of the PKC- 

pI/II, y and s isoforms (Way et al., 2000) and several non-related kinases including 

GSK-3 (Hers et a l,  1999), Rsk-1 and p70S6 kinase (Alessi, 1997). Therefore the 

picture is not only clouded by the pan inhibition of several PKC isoforms but also by 

the varying degrees of inhibition on several other kinases.
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In order to try to selectively inhibit one of our target PKC isoforms, we next tried the 

widely reported PKC-8 selective inhibitor rottlerin. However the PKC-8 inhibition 

observed upon treatment with 5pM rottlerin was negligible at best. Of more concern 

was the observation that at low doses (500nM-lpM) rottlerin functioned as a dose 

dependent activator of PKC-8. When we looked deeper into rottlerins credentials we 

discovered that there had already been voices of dissent over its entitlement to be 

called a PKC-8 specific inhibitor. Whilst first reports of its efficacy did flag up its 

inhibition of CAM kinase III, PKA and casein kinase II (Gschwendt et al., 1994) it 

has since been discovered to be a potent inhibitor of PRAK and MAPKAP-K2 

(Soltoff, 2001). Whilst these inhibitory characteristics can be explained by common 

folding motifs or conserved kinase domain structure, rottlerin has been also shown to 

inhibit the unrelated enzymes p-lactamase, chymotrypsin and malate dehydrogenase 

with at lower IC50 concentrations than for PKC (McGovern and Stoichet, 2003). It has 

also been shown that rottlerin can activate PKC-8 under certain conditions in whole 

cells, concurring with our observations in the MCF-7 cell line. However, this peer 

reviewed dissent has not been sufficient to stem the flow of publications that elaborate 

a role for PKC-8 from observed effects seen with rottlerin treatment with several 

papers published this year inferring PKC-8 involvement from rottlerin induced effects 

in MCF-7 cells (Zhang et al., 2005; DeServi et al., 2005; Nabha et al., 2005). 

However, due to its lack of efficacy in our cell model, we decided that taking a 

molecular approach to selectively inhibit specific isoforms was the most appropriate 

option.

The lack of efficacy and selectivity of the chemical PKC inhibitors lead us to 

investigate the use of RNAi, through siRNA, to knock out PKC-a and PKC-8 at the 

mRNA level. The technique of RNAi is now one of the most widely utilised 

techniques in molecular biology and is currently being investigated as a possible 

therapeutic tool. However one of the major limitations of RNAi is the ability to 

introduce the siRNA into the cell model. The most commonly used method to do this 

is via the use of lipid / polymer based transfection reagents. However using these 

reagents to transfect plasmid DNA into the MCF-7 and TAM-R cell lines resulted in
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less than 40% cell transfection. To determine if we could achieve better results with 

actual siRNAs we transfected GAPDH specific siRNA into the cells. The knockdown 

of around 40% total GAPDH protein suggested that the transfection efficiency was 

roughly on a par. Whilst we were able to incur 60% and 30% knockdowns of PKC-8 

and PKC-a protein respectively with their respective specific siRNAs, we felt that the 

level of knockdown, married to its transient nature and requirement for high cell 

densities, would be a hindrance in studying longer term effects such as cell 

proliferation and mitogen induced signalling pathways.

We therefore optimised and validated an adenoviral system of introducing PKC-a and 

PKC-8 dominant negative and wild type overexpressing plasmids into our model cell 

lines. Using this system, we were able to infect effectively and target selectively the 

PKC-a and PKC-8 isoforms individually and achieve gene transfer in twice as many 

cells as by lipid / polymer transfection. Using this technology we have shown that 

PKC-a and PKC-8 inhibition has a significant effect on growth of the TAM-R cell 

line (Figure 5.13) whereas it has very little effect on the growth of the MCF-7 cell line 

(Figure 5.12). This shows that the increased expression and activation of these 

isoforms in the TAM-R cell line is indeed borne from an increased reliance on and 

functionality o f these isoforms in the resistant cells.

The importance of growth factor signalling in the acquisition of breast cancer 

resistance has been well established. We discovered that many of the ligands 

implicated in these pathways are able to induce an increase in activation of PKC-a 

and PKC-8 in the TAM-R or MCF-7 cell lines. We therefore investigated the effect of 

inhibiting these isoforms on growth factor induced growth of the TAM-R cells. The 

growth factors IGF-I, IGF-II, EGF and HRG-pi all induced increased growth in the 

TAM-R cell lines over 4 days. Moreover this growth was suppressed in each case by 

the inhibition of either PKC-a or PKC-8, demonstrating that these isoforms play an 

important role in growth factor ligand stimulated growth in the TAM-R cell line. We 

also showed that oestradiol is able to promote the growth of the TAM-R cells even in 

the presence of tamoxifen. This seems counterintuitive as the target receptor for 

oestradiol would already have tamoxifen bound in its ligand binding pocket. However
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it has recently been shown that oestradiol can induce rapid non-genomic effects 

through membrane receptors distinct from ERa and ERp (Doolan and Harvey, 2003). 

This membrane receptor pathway can rapidly induce increased intracellular calcium 

concentrations in ER negative SKBR-3 cells, can stimulate PKA by a mechanism 

inhibited by bis but not tamoxifen, and can phosphorylate PKC-a and PKC-8, but not 

PKC-s or PKC-^, in a cell free assay; providing a possible mechanism whereby 

oestrogen can activate these isoforms directly and specifically (Doolan et al., 2000).

Whilst these non-classical pathways merit further investigation, our studies indicate 

that PKC-a and PKC-8 still need nuclear ER to have a functional role in signalling. 

We have shown that downregulation of nuclear ER with prolonged oestradiol or 

fulvestrant treatment causes the concurrent downregulation of both PKC-a and PKC- 

8. This is contrasted by the MCF-7 cell line after ER downregulation which appears to 

revert to a PKC profile akin to the ER negative de novo resistant cells by displaying 

decreased PKC-8 activation but an increase in PKC-a activation. The TAM-R cells 

however have more of both isoforms and appears to be utilising them in ER related 

signalling. A possible reason for the downregulation of PKC-a and PKC-8 on ER 

ablation is that tamoxifen is itself acting as an ER agonist in the TAM-R cell line. 

Tamoxifen is already known to function as an ER agonist in tissues such as the uterus 

and the bone and it would provide a further explanation for the efficacy of the pure 

anti-oestrogen fulvestrant on the TAM-R cells (Robertson, 2001). A recent study by 

Nabha et al. (2005) supports this hypothesis as they showed that the proliferation of 

their tamoxifen resistant cell model could be induced by tamoxifen and interestingly 

that this effect was inhibited following inhibition of PKC-8. This study highlights a 

functional role for PKC-8 in tamoxifen resistance. We overexpressed PKC-8 along 

with PKC-a in the tamoxifen sensitive MCF-7 cell line to ascertain if this would be 

sufficient to confer tamoxifen resistance. Whilst the growth of the PKC-a 

overexpressors was inhibited to a slightly lesser degree than the non-infected control 

cells by tamoxifen, the PKC-8 overexpressing cells grown in tamoxifen actually 

demonstrate a growth stimulation compared to control. Whilst it has recently been 

shown that PKC-8 overexpression can confer a degree of lessened sensitivity to
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tamoxifen (Nabha et al., 2005) we have shown that PKC-8 overexpression may 

contribute to tamoxifen acting as an agonist in previously tamoxifen sensitive cells.

However the true nature of the activation and utilisation of PKC-a and PKC-8 in 

tamoxifen resistance is doubtlessly more complicated and involved than could be 

fully characterised over the time scale of this project. For example PKC-a has been 

shown to play a role in invasion and migration in breast cancer (Ways et al., 1995; 

Morse-Gaudio et a l, 1998; Tonetti et al., 2000) and we know that the TAM-R cell 

line exhibit greater invasive properties than the MCF-7 cell line (Hiscox et al., 2003) 

and possess greater levels of PKC-a (chapter 3). Therefore using our adenoviral 

system we would like to look in future at how the inhibition of PKC-a and PKC-8 

would affect the invasion and migration properties of these cells. This endeavour was 

not possible during the course of this project due to the limited Class II level 

containment equipment at our disposal.

It has become clearer over recent years that growth factor receptors are much more 

promiscuous than previously thought with the phenomenon of receptor cross talk 

adding a further layer of complexity to the already formidable entanglement of 

signalling pathways and molecules. For example it has been shown within our group 

that treatment with IGF-II induces the phosphorylation of both IGF-IR and EGF-R in 

the TAM-R cell line (Knowiden et al., 2005). Therefore it would also be interesting to 

test whether the activation of PKC-a and PKC-8 by IGF-II is actually mediated via 

activation of the EGF-R rather than signalling directly downstream of IGF-IR. This 

could be achieved through the use of the EGF-R specific inhibitor Gefitinib to inhibit 

the receptor during IGF-II stimulation.

We have also only touched on the surface of the interplay between the PKC isoforms 

and the oestrogen receptor. Whilst we have shown that PKC-a and PKC-8 play an 

important role in the growth stimulatory effect of oestradiol on the TAM-R cell line 

time constraints have meant that we cannot further investigate the mechanisms that 

underlie that involvement. For example it would be interesting to investigate whether 

PKC-a or PKC-8 play a role in the enhanced serine 118 phosphorylation of the
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oestrogen receptor by the activation o f tyrosine kinase growth factor receptors 

(Britton et al., 2002), the possible involvement of the PKCs interaction in oestrogen 

receptor co-activator/ co-repressor interactions and the effect of PKC-8 on oestrogen 

receptor localisation and translocation in our cell models (De Servi et al., 2005). Also 

it would be interesting to examine the role played by membrane oestrogen receptor 

signalling of the PKCs (Boyan et al., 2003) in the TAM-R cells, possibly through the 

use of E2 conjugated to bovine serum albumin.

Much has been made of late of the obsoleteness of Tamoxifen at the hands of the 

emerging aromatase inhibitors. However reports of this demise have probably been 

somewhat exaggerated as the over 250 clinical trial in which Tamoxifen is involved 

attests to (www.controlled-trials.com). Tamoxifen is not only unrivalled in breast 

cancer therapy in terms of toxicity and therapeutic profile but also confers 

cardioprotective effective, reduces levels of low-density lipoprotein and total 

cholesterol (Love et al., 1992) and has beneficial effects on bone density (Love et al., 

1991). In contrast there are still question marks over side effects of the aromatase 

inhibitors with preliminary evidence suggesting that they could have possible negative 

effects on cognitive function, sexual function and musculoskeletal integrity (Sing 

Ranger, 2005). Unfortunately there are also financial issues to consider with the cost 

of treatment with the aromatase inhibitors far outstripping the inexpensive tamoxifen, 

and sadly the availability to prescribe to the populous often appears to depend on the 

will of politicians not the knowledge of scientists and clinicians or, most importantly, 

the needs of patient.
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