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SUMMARY

This thesis uses industry seismic (3D and 2D) and well data to investigate the 
depositional and deformational processes o f the Messinian evaporites in the Levant 
Basin, Eastern Mediterranean. Detailed interpretation of the geometry, structural and 
stratigraphic context o f the evaporites has been undertaken in order to improve our 
understanding of the events occurring during the Messinian Salinity Crisis in the 
region.

The Messinian evaporites form a wedge up to 1.8km thick that pinches out 
towards the continental margin, where they pass laterally to a prominent erosional 
surface. The 3D seismic data have allowed the complete basinal evaporitic series to be 
imaged in three dimensions for the first time. Investigations showed that clastic bodies 
and focused incisional pattern developed at their base. The internal part of the 
evaporites is composed o f parallel and continuous seismic reflections, alternating with 
transparent seismic facies. These internal reflections are truncated at the top o f the 
Messinian evaporites, against a widespread erosional unconformity.

The analysis o f the 2D seismic data permitted the connection o f these 
morphological features with a regional system of canyons, developed on the Levant 
continental margin since the Oligocene. The canyons acted during the Messinian 
Salinity Crisis as clastic fairways, erosional loci and depocentres for the evaporites. 
The morpho-structural observations collected have been compared to the pre- and 
post-evaporitic setting, in order to infer the depositional environment and post- 
depositional behaviour o f the evaporites. Relative sea-level changes in the basin have 
been interpreted in relation with two major erosional events developed at the base and 
at the top o f the evaporites. Finally, the three-dimensional analysis also allowed an 
early (Messinian) stage of deformation of the evaporites to be identified, and the 
discovery o f the occurrence o f evaporite dissolution during the Pliocene.
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tentatively correlated with a deformation zone displacing the Base Senonian horizon. This structure 
is mostly evident at the Syrian Arc anticline located below the Afiq Canyon. For explanation of the 
other acronyms see Figs. 2.2 and 2.11.
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2 13 (a) 3D seismic section along the proximal part of the evaporitic system on the Levant margin, and
(b) interpretation (location in Fig. 2.10). The black dashed line on the right side of the section shows 
the main incision of the El Arish Afiq Canyon, associated with erosional truncation pattern of the 
underlying seismic reflections. Erosional truncation is also observed on the reflections at the top of 
Unit 1 against Horizon N (shaded grey areas).
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2 14 2D seismic cross section (location in Fig. 2.10) showing the geometry of Horizon M in the proximal 
part of the study area. A well-defined slope break (M SI) between a steeply sloping and a low-angle 
surface is associated with erosional truncation at the top of Unit 1 and downlap and onlap 
termination of reflections at the base of Unit 3 against Horizon M (black arrows). MS2 and MS3 
present similar characteristics. The black dashed lines indicate faults within Unit 3. For explanation 
of other acronyms sec Figs. 2.2 and 2.11. The area of concave upward erosional relief comprised 
between MSI and MS2 occurs directly above a tributary of the Ashdod Canyon (see location in Fig. 
2.10) and is interpreted as a valley incision.
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2.15 Schematic cartoon illustrating the possible geometries of the base of the Messinian evaporites 
(Horizon N) and modality of infill in relation with the underlying canyon system, (a) Pre-evaporitic 
submarine canyon completely filled, successively re-excavated at the onset of the MSC; (b) Pre- 
evaporitic submarine canyon incompletely filled, Messinian evaporite filling the relict topography; 
(c) A combination of the two previous scenarios, which is the most likely geometry for the deposits 
in the study area; (d) the distal scenario, with unconfmed pre-evaporitic deep-basin sediments 
excavated by the canyons at Horizon N, at the basinward prosecution of the Oligo-Miocene 
submarine canyons.
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Chapter Three: Clastic systems in the Messinian evaporites

Figure

No.

Figure Caption Page
No.

3 1 Location maps for the study area in the Eastern Mediterranean. The areas where 3D seismic data are 
available are indicated. The grey dashed line marks the locus of pinch-out of the buried Messinian 
evaporites (from Bertoni & Cartwright, in press).
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32 Schematic geo-seismic section showing the seismic-stratigraphic context of the study area in the 
Levant Basin and continental margin (see text for detailed explanation). N= Horizon N; M= Horizon 
M; YSM= Yafo Sand Member (indicated by the dotted fill pattern). The marginal faults in the Plio- 
Pleistoccne unit are marked by subvertical dashed lines. The crossover point of Fig. 3.3 is also 
indicated. On the vertical scale, TWT is the two-way travel time expressed in seconds.

3-5

3.3 Seismic section crossing the study area in a NE-SW direction (location in Fig. 3.1). The stratigraphy 
of the distal part of the Messinian evaporites is displayed. In this area the Messinian evaporites are 
scismically composed of transparent facies alternating with medium to low amplitude seismic 
reflections (Horizon ME20 to ME50).

3-7

3.4 Seismic section crossing the study area in a NW-SE direction (see location in Fig. 3.7) displaying 
the stratigraphy of the Messinian evaporites from their proximal (SE) to their distal (NW) part. Note 
that the Messinian evaporites form in the study area a wedge from 1.8 km thick in the distal part to a 
few tens of meters towards the SE, where Horizon N and M merge into a single seismic horizon.

3-8

3.5 Seismic section crossing the study area in a NW-SE direction, and b) interpretation (see location in 
Fig. 3.7).
a) Close-up of the Messinian evaporites as displayed in the seismic section in Fig. 3.4. In the lower 
pari of this unit, directly above Horizon N, the high-amplitude seismic reflections described in the 
text are indicated by the black arrows.
b) Line-drawing of the seismic section, with interpretation of faults and terminations of seismic 
reflections (indicated by black arrows).

3-9

3.6 Seismic section crossing the study area in a NE-SW direction (see Figs. 3.5 and 3.7 for location).
a) Seismic cross-section with indication of the main seismic horizons and reflection terminations.
b) Line-drawing of the seismic section, with interpretation of faults and terminations of seismic 
reflections (indicated by black arrows) interpretation. In the lower part of this unit, the onlap 
termination of the high-amplitude seismic reflection against Horizon N (indicated by the black 
arrow) should be noted.

3-10

3.7 Maximum seismic amplitudes calculated over a 120 ms TWT (two-way travel time) window above 
Horizon N. The resulting image shows that the high-amplitude reflections shown on seismic 
sections in Figs. 3.4 to 3.6 correlate with a series of km-scale high-amplitude bodies (dark-grey 
coloured areas, marked with a white dotted line) named HAB1, HAB 2 and HAB 3. The bodies 
show an irregular and elongated ellipsoidal morphology. These bodies are located basinward of the 
pinch-out of the Messinian evaporites and thus fully confined within this unit.

3-11

3.8 Seismic sections across the main high-amplitude body HABI.
a) Seismic section oriented in a NE-SW direction (location in Fig. 3.10).
b) Line-drawing of the seismic section displayed in Fig. 3.8a, with interpretation of the main seismic 
horizons and reflection terminations. HAB 1 is bounded at the top by a high-amplitude negative 
seismic reflection (Horizon ME2. white dashed line). The base of HABI is represented by a low- 
amplitudc seismic reflection lying closely over Horizon N (black dashed line). The erosional 
truncation of the Oligo-Miocene reflections against Horizon N is indicated by the black arrows.
c) Seismic section oriented in a NW-SE direction (location in Fig. 3.10).
d) Line-drawing of the seismic section displayed in Fig. 3.8c, with interpretation of the main 

seismic horizons and reflection terminations.

3-12

39 Seismic sections crossing the main high-amplitude body HABI (location in Fig. 3.10).
a) Seismic section crossing the body HAB 1 in a S-N/SW-NE direction In this section, HAB 1 
presents an asymmetric geometry that is produced by the pinch-out of the body on a structurally 
elevated area to the SW and on a structurally depressed area to the NE.
b) Seismic section crossing the body HABI in a NE-SW direction. On the north-eastern side of 
HABI, Horizon ME2 is deformed by remobilization, hindering the interpretation of the nature of its 
original termination.

3-14

3.10 Morpho-structural maps of HAB 1.
a) Close-up of Fig. 3.7, showing details of the morphology of HABI with a different colour display.
b) Isochron map calculated between the base and the top of HABI. A synopsis of the nature and 
distribution of the lateral terminations of HAB 1 is displayed in this map.

3-15

3.11 Seismic sections crossing HABI (location in Fig. 10a)
a) Seismic section crossing in a NW-SE direction the two ribbon-shaped high-amplitude bodies 
attached to the main part of HABI. The bodies are subtle, convex-upward features and appear as 
alternately confined and filling in the underlying lows or totally unconfined and showing a distinct 
constructional geometry.
b) Seismic section crossing the two ribbon-shaped bodies in a NW-SE direction. The bodies appears 
to be laterally shifted with regard to the location of the underlying structural depressions.
c) Seismic section crossing the thicker high amplitude body located landward and to the south of the 
main part of HABI (location in Fig. 10a). In cross-section this body docs not present a clear internal 
geometry because it is highly disrupted by a subsequent deformational phase.

3-17

3.12 Three-dimensional perspective of HABI (as displayed in Fig. 3.10) draped over the time-structure 
map of Horizon N (location in Fig. 3.7). The maximum amplitude values are shown in red colour.
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This visualization illustrates the overall morphology and geometry of HAB I : the thicker body to the 
south of the ribbon-shaped features is located on a structurally elevated area and the main part of 
HABI is confined to a structurally depressed area to the NW, within the floor of the El Arish-Afiq 
Canyon. The ribbon-shaped features are positioned on a sloping part of the time-structure map of 
Horizon N that links the structurally elevated area to the SE to the depressed area to the NW. Fault 
and ndges indicated represent post-evaporitic deformational structures.

3 13 Map of the sector of the Eastern Mediterranean analysed, showing the regional setting of the basal 
discordance to the Messinian salt (and associated evaporite and clastic formations) and its marginal 
continuity with Horizon M (contour lines in seconds TWT; after Ryan, 1978). The landward limit of 
the Messinian salt in the region is also indicated (after Sage & Letouzey, 1990; Loncke, 2002; 
Bertoni & Cartwright in press). In the figure to the right, the distribution of the clastic sediments (in 
grey) is shown within the paleogcographic context of the base of the Messinian evaporites. Canyon 
incisions, erosional scarps and contour lines (in seconds TWT) of the base of the Messinian 
evaporites arc after Bertoni & Cartwright (in press). The grey areas identify the location of the 
clastic deposits described in this study.
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Chapter Four: Unconformity at the top of the Messinian evaporites
Figure
No.

Figure Caption Page

No.

4 1 Location map showing the main structural elements of the Levant-Nile region (after Neev & Ben- 
Avraham, 1977; Tibor et al., 1992; Robertson, 1998; Abdel Aal et al., 2000; Vidal et al., 2000) with 
indication of the study area (2D and 3D seismic surveys).

4-4

4 2 Seismic section crossing the three 3D seismic datasets in a NW-SE direction (location in Fig. 4.6), 
showing the seismic stratigraphic context of the Messinian evaporites. On the vertical scale, TWTT 
is the two-way travel time expressed in milliseconds. In this section, the structures deforming 
Horizon M and the overlying Plio-Pleistocene reflections should be noted. These folds and faults 
and the associated syn-kinematic growth of the seismic packages are caused by thin-skinned 
gravitational gliding of the clastic wedge, detached above or within the Messinian evaporites (see 
text for explanation). In the lower part of the figure, two close-ups of the seismic section highlight 
the updip terminations of Horizon ME20 and ME50, as indicated by the black arrows.

4-7

4 3 3D seismic section crossing the study area in a NE-SW direction (location in Fig. 4.6), showing the 
seismic stratigraphic context of the Messinian evaporites. On the vertical scale, TWTT is the two- 
way travel time expressed in milliseconds. Tl to T4 arc the transparent seismic packages and LI to 
L2 are the layered seismic packages defined in this study within the unit of the Messinian 
evaporites. In the lower part of the figure, three close-ups of the seismic section show the waveform 
response of a single wavelet (highlighted over the seismic volume) across the seabed. Horizon M 
and Honzon N. Note that the seabed and Horizon M produce a positive wavelet (the main peak 
deviates to the right).

4-8

4 4 Seismic sections crossing the study area in a NW-SE direction (location in Fig.4.6). On the vertical 
scale, TWTT is the two-way travel time expressed in milliseconds. Note that Horizon M is overlain 
by the seismic reflections of the Plio-Pleistocene unit, which display a clinoformal geometry. These 
reflections onlap Horizon M in the marginal area to the SE (as indicated by black arrows), and 
downlap (as indicated by black arrows) or tangcntially converge with it in the distal area to the NW. 
The occurrence of a prominent slump deposit within the Plio-Pleistocene Unit is highlighted with 
grey colour.

4-10

4 5 Seismic section crossing the Levant 3D seismic dataset in a NW-SE direction (location in Fig. 4.10) 
showing the geometrical relationship of the intra-evaporitic horizons ME20 to ME40 to the top of 
the Messinian evaporites (Horizon M). The discordance of the intra-evaporitic seismic horizons 
ME35 to ME40 with Honzon M should be noted. These horizons terminate updip against Horizon 
M basinwards (i.e. to the NW) of the pinch-out of the Messinian evaporites. On the vertical scale. 
TWTT is the two-way travel time expressed in milliseconds.

4-12

4 6 Time-structure map of Honzon M obtained in the 2D seismic dataset (colour bar expressed in 
milliseconds TWTT), showing the regional distribution of the updip termination of the intra- 
cvapontic horizons ME20, ME40 and ME60 on the top of the Messinian evaporites. The pinch-out 
of the Messinian evaporitic wedge is indicated by the black dashed line. The updip terminations are 
not clearly defined and therefore not mappablc in areas where the Messinian evaporites are 
extensively deformed (e.g. located nearby structural depressions defined at the top of the Messinian 
evaporites, i.e. white shaded areas in the figure).

4-13

4.7 Schematic cartoon showing the thickness variations of the seismic packages bounded by Horizon M 
and each of the intra-evaporitic horizons ME20, ME35, ME40. The cartoon evidences how the
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thickness variation is strictly dependent on the angle subtended by Horizon M and each of the intra- 
cvaporitic horizons (angle a).

4.8 3D seismic sections crossing the study area in a NW-SE direction (location in Fig. 4.10), showing 
the general context of intra-evaporitic deformation.
a) The top of the Messinian evaporites (Horizon M) is relatively unstructured in comparison with 
the intensely deformed intra-evapontic horizons. Tl to T4 are the transparent seismic packages and 
LI to L2 are the layered seismic packages defined in this study within the unit of the Messinian 
evaporites. The black arrows indicate truncation reflection terminations.
b) Two types of structures deform the intra-evaporitic horizons: low amplitude weakly asymmetric 
folds, and thrust faults. The faults are marked with black dotted lines. The black arrows indicate 
truncated reflection termination.

4-15

4.9 3D seismic sections showing the details of the intra-evaporitic deformation. On the vertical scale, 
TWTT is the two-way travel time expressed in milliseconds.
a) 3D seismic section crossing the study area in a NW-SE direction (location in Fig. 4.10), showing 
the folded structures deforming the intra-evaporitic layered package L 1. In the right part of the 
figure, the hypothetic reconstruction of the eroded folds above Horizon M is indicated by the dotted 
lines
b) 3D seismic section crossing the study area in a SW-NE direction (location in Fig. 4.10), showing 
one of the faulted structures deforming the intra-evaporitic layered package L 1. In the right part of 
the figure, the hypothetic reconstruction of the eroded fault above Horizon M is indicated by the 
dotted lines.
c) 3D seismic section crossing the study area in a NW-SE direction (location in Fig. 4.10), showing 
the general context of the truncated folded structures deforming the intra-evaporitic layered package 
LI.

4-16

4 10 Maps showing the general structural deformation of Horizon ME40.
a) Time-structure map of Horizon ME35 obtained in the 3D seismic dataset (location in Fig. 4.6). 
The colour bar is expressed in milliseconds TWTT. The interpretation of the folds and faults 
deforming Horizon ME40 is shown. The discordant structures appear to be laterally persistent for 
many kilometres. In plan view, the direction of these faults and folds is consistent, and is dominantly 
oriented to the NW-SE and N-S. while the vergence of the thrust sequences is to the E or NE.
b) Honzon-based coherency amplitude extraction of Horizon ME35 (covering the same area of Fig. 
4.10a). showing the detailed structural interpretation. The red dashed line indicates a superimposed 
strike-slip fault system post-dating the deposition of the Messinian evaporites. The area of Fig.
4.10b is marked with the black peripheral box for comparison.

4-17

4 11 Schematic cartoon showing the two possible geometry of updip termination of reflections against 
flat-lying overlying reflections.
a) Geometry defining a nondepositional unconformity (Brown & Fisher, 1980).
b) Geometry defining an erosional unconformity (Brown & Fisher, 1980).

4-23

4 12 Schematic cartoon illustrating the possible original geometry of Horizons ME20- ME60 preceding 
the completion of the unconformity expressed at Horizon M. The dotted lines indicate the eroded 
part of the horizons while the continuous lines indicate the preserved part of the horizons. The 
arrows mark the expected termination patterns.
a) Original geometry of horizons as sigmoidal/oblique clinoforms.
b) Original geometry of horizons as parallel onlap.
c) Original geometry of horizons as divergent onlap.
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Chapter Five: Dissolution structures in the Messinian evaporites
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5 1 a) Schematic map of the Eastern Mediterranean, at the zone of interaction among the Anatolian, 
African and Arabian Plate. The main tectonic lineaments and the location of the Nile delta are 
indicated. The study area is highlighted by the dark grey box (3D and 2D seismic data). The contour 
lines represent the depth in metres of the Mediterranean seafloor. The position of the present day 
shel(break is approximately indicated by the 200 m contour line. Modified from Tibor et al. (1992); 
Robertson (1998); Vidal et al. (2000). b) Schematic regional cross-section through the Eastern 
Mediterranean basin (location shown in Fig. 5.1a; modified from Garfunkel 1998). C = Cretaceous;
J - Jurassic.

5-4

5 2 Map showing the details of the seismic surveys used in this study, together with the location of 
selected exploration wells. The 3D seismic surveys (Levant A. Gal C and Med Ashdod) are outlined 
by the dashed rectangles. The 2D seismic lines are outlined by the black dotted lines. The location of
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the seismic sections presented in Fig. 5.4 is also indicated.
5 3 a) Idealised circular collapse depression showing the parameters measured for quantitative analysis 

of the dissolution structures studied in this paper (modified from Branney, 1995). The E.I. is defined 
by Thorsen (1963) as the ratio between the thickness of deposits down thrown (b, directly above the 
collapse structure) and the thickness upthrown (a, i.e. undisturbed sediments laterally bounding the 
collapse structure) measured on successive discrete stratigraphic intervals. The vertical relief (AZ) is 
measured on a selected stratigraphic horizon, as the difference in elevation between the centre and 
the rim of the collapse structure, b) Schematic representation of the expected geometry resulting 
from pcc-sodimcntary growth versus syn-sedimentary growth of the circular collapse structure. Note 
the difference between concentric parallel onlap in the first case, and concentric onlap coupled with 
divergent strata configuration and thickness variation in the second case.

5-8

5 4 a) C omposite seismic section across the Levant Basin and continental margin (see Fig. 5.2 for 
location). The three seismic-stratigraphic unit defined in this study (Unit 1, Unit 2 and Unit 3) are 
shown, together with the main interpreted horizons. Unit 2. the focus of this study, is represented by 
a thick wedge of evaporites pinching out towards the Levant continental margin. Marginal 
extensional faults within the Unit 3, detaching at Unit 2, are marked by dashed lines. The cross-over 
point of Figure 5.4b is indicated at the top and base of the section. YSM = Yafo Sand Member. B.S. 
-• Base Senonian horizon; L.E. = Late Eocene horizon; M = Horizon M; N = Horizon N; B.P. = Base 
Pleistocene horizon, b) Seismic section along the direction of the Levant margin. Note the presence 
of the Oligo-Miocene Afiq submarine canyon, deeply incising within Unit 1. In Unit 3, 
interpretation of slump deposits is after Frey-Martinez et al. (2005). Localized downwarping of 
seismic reflections is observed within Unit 3 and highlighted by the black arrows. The cross-over 
point of Fig. 5.4a is indicated at the top and base of the section. CS-1 = circular structure CS-1;
YSM = Yafo Sand Member.

5-9

5 5 Stratigraphic chart showing the main formations observed in the study area (after Garfunkel & 
Almagor, 1987; Druckman et al., 1995), their age and the correlation with the seismic-stratigraphic 
units described in this paper. The lithological data are derived from unpublished stratigraphic well 
reports. Fm = Formation; YSM = Yafo Sand Member.

5-10

56 Correlation scheme of the Messinian evaporites in the Levant A seismic survey, a) Seismic section 
nearby the Levant margin, crossing the wells (location of wells in Fig. 5.2), and showing the 
seismic-stratigraphic units and the interpretation of the main seismic horizons, b) Schematic 
representation of the lithology and stratigraphic relationship of the Messinian evaporites as 
described in unpublished well reports. The main seismic horizons have been tied where possible to 
the lithological and stratigraphic units of the Mavqiim Formation.

5-12

5.7 Timc-structure map of Horizon M in the Levant A seismic survey. The zoom shows the distribution 
of the circular structures analyzed, named progressively CS-1 to CS-10. Note the presence of the 
linear depression and the extensional faults nearby the pinch-out of the Messinian evaporites. The 
main deep structures of the study area are represented by the anticlines (axes highlighted on the 
map) related to the Syrian Arc foldbelt system (Neev & Ben-Avraham, 1977, Tibor & Ben- 
Avraham, 1992). The location of the seismic sections displayed in Fig. 5.8, 5.9 and 5.13 is indicated.

5-15

5 8 a) Seismic section perpendicular to the Levant margin, crossing the structure CS-1 through its 
centre (location in Fig. 5.6). The seismic package from the Base Pleistocene to Q60 shows thickness 
variation across the extensional faults, defining their phase of growth, b) Seismic section crossing 
CS-1 through its centre, and c) interpretation. The apparent down sag of Horizon N and the 
underlying seismic reflections below C'S-1 is caused by a seismic 'push-down', due to the seismic 
velocity contrast between the Messinian evaporites (Unit 2) and the marine clastic sediments of Unit 
3. This section shows the thickening of the stratigraphic package PL20-PL50 and onlap of 
reflections within the same interval above CS-I. Note the set of extensional and subvertical faults, 
steeply dipping toward the centre of CS-I and deforming its overburden. YSM = Yafo Sand 
Member, d) 1:1 vertical to horizontal ratio of Fig. 5.8c.
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59 a) Variance time slice (2512 ms) showing the circular appearance of CS-2, CS-9 and CS-10 in plan 
view. The location of the seismic cross section of Fig. 5.9b is indicated, b) Seismic section across 
CS-2 (sec Fig. 5.7 for location). A minor push-down effect is present at the Horizon N beneath CS- 
2. c) Variance time slice (2256 ms) showing the circular appearance of CS-8 in plan view. The 
location of the seismic cross section of Fig. 9d is indicated, d) Seismic section across CS-8 (sec Fig. 
5.7 for location), c) Seismic section across CS-3. CS-6 and CS-7 (sec Fig. 5.7 for location). 0  
Seismic section across CS-4 and CS-5 (see Fig. 5.7 for location). M ~ Horizon M, N = Horizon N. 
g) Salt outlier located in the northern area of the pinch-out of the Messinian evaporites (sec Fig. 5.7 
for location).

5-17

5 10 Three-dimensional visualization of the time-structure map of Horizon PL20, cutting at the top of a 
seismic section parallel to the Levant continental margin (see location in Fig. 5.7), and crossing the 
circular structure CS-I. Half of CS-1 is visualized on this map, showing the relationship with the 
underlying stratigraphy. In Unit 2 (Messinian evaporites) the interval between Horizon ME20 and 
Horizon M appears to thin-out toward the flanks of CS-1

5-20

5.11 a) TWT-dip attribute map of Horizon PL20, and b) interpretation, showing the detailed morphology 
of this surface and the deformation associated with the circular structure CS-1 Note the pattern of
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concentric extensional and subvertical faults around CS-I. The dotted lines highlight the position of 
the seismic sections used for the measurements displayed in Fig. 5.12.

5 12 Diagrams showing the vertical relief (AZ) and expansion index (E.I.) measured and calculated on 
random seismic sections across CS-1 (see location of sections in Fig. 5.10). See Fig. 5.3a for 
explanation of the parameters. The reference horizon for the measurements is taken at the seabed 
that represents a horizontal surface above CS-I. AZ (Fig. 5.1 la toe) and E.I. (Fig. 5.1 Id to 0  are 
plotted (x axis) in the diagrams against the depth of the reference horizon (y axis, in meters), and 
against the stratigraphic chart. The grey areas highlight the maximum observed variation of the 
vertical relief (Figure 5.1 la to c) and the maximum values of the expansion index (Figure 5.1 Id to 
0. which are interpreted as related to the time of maximum syn-sedimentary growth of CS-I.

5-24

5 13 Schematic cartoon depicting the successive phases of formation of the circular dissolution structure 
CS-I The dissolution process started in the early Piacenzian (B), when vertical focused fluid flow 
begun corroding the lower evaporitic unit and dissolving its upper and more soluble part, causing 
collapse of the overburden and successive onlap of sediments (B and C) at the coeval seabed. Note 
in this interval the formation of the concentric faults directly related to the collapse of the sediments 
above the depleted evaporitic unit. The process terminated by the late Piacenzian (D). with the 
deposition of Honzon PL50. N = Horizon N; M = Horizon M.
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5 14 Seismic section crossing the Levant continental margin in a W-E direction, showing the deep 
structural setting of the study area (location of seismic section shown in Fig. 5.7). Note the relative 
position of the structure CS-3 above the Afiq submarine canyon (dashed line) and the axis of the 
Synan Arc anticline, and related fault system (dotted lines). B.S. = Base Senonian horizon; M = 
Honzon M; N = Honzon N. The interpretation of the faults post-dating the deposition of the 
Messinian evaporites, within Unit 3, is indicated with dotted lines.
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Chapter Six: Summary and discussion
Figure

No.

Figure Caption P a g e

No.

6 1 2D seismic sections crossing the Levant region in a NW-SE direction. The seismci sections are 
umc-depth converted applying a simple layer-cake model of seismic velocity distribution to the 
seismic units analysed, as explained in the text. The black dotted line represents the projection of the 
regional top of the Messinian evaporites towards the margin. The coincidence of this projection with 
the marginal step in the erosional surface developed landward of the pinch-out of the evaporites 
should be noted in Fig. 6. la, f and g. On the vertical scale, the numbers refer to seconds two-way 
travel time on the seismic sections, and to kilometres depth on the interpreted time-dcpth converted 
section.
a) 2D seismic line cm83-3l (location in Fig. 6.2).
b) 2D seismic line em83-33 (location in Fig. 6.2).
c) 2D seismic line em83-34 (location in Fig. 6.2).
d) 2D seismic line em83-35 (location in Fig. 6.2).
e) 2D seismic line em83-43 (location in Fig. 6.2).
0  2D seismic line cm83-45 (location in Fig. 6.2). 
g) 2D seismic line em83-44 (location in Fig. 6.2).

6-6/

6-9

6 2 Map of the timc-depth converted Horizon M in the 2D seismic survey area. The continuous white 
lines indicate the location of the marginal scarps MSI, 2 and 3 described in the text. The location of 
the seismic sections displayed in Fig. 6.1 and 6.7 is indicated by the white dotted lines.

6-10

6 3 Synoptic diagram illustrating the distribution of clastic bodies (dark grey areas) throughout the study 
area. The location of the clastic bodies HABI, 2 and 3 analysed in Chapter 3 is indicated. The map 
in the background shows the the main morphological and structural features overlain on the isochron 
lines of the base of the Messinian evaporites (Horizon N). For the explanation of the symbols, see 
Chapter 2. Fig. 2 10. The location of the seismic lines displayed in Fig. 6.4 is also indicated.

6-13

6 4 Seismic sections showing the distribution of clastic bodies at the base of the Messinian evaporites in 
the study area
a) 2D seismic section crossing the Levant region in a NW-SE direction (location in Fig. 6.3). The 
lower part of the figure displays a close-up of the seismic section, with the line-drawing and 
interpretation of the clastic body (dark grey colour) resting above the base of the Messinian 
evaporites (Horizon N). The black arrows mark the truncated termination of the pre-evaporitic 
reflection, directly related to the location of the Afiq-EI Arish canyon flanks.
b) 2D seismic section crossing the Levant region in a NW-SE direction (location in Fig. 6.3). The 
clastic body at the base of the Messinian evaporites is identified by the high-amplitude seismic 
event, by analogy with the procedure applied in Chapter 3.
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6 5 Basinal models proposed for the creation of the accommodation space necessary for the deposition 
of the ca. 1.8 km-thick Messinian evaporitic wedge in the Levant region.
a) The first model implies the deposition of the distal part of the evaporites in a pre-existing very 
shallow sea (max. 200m deep), with accommodation space created only by tectonic subsidence and 
sediment load.
b) The second model implies the deposition of the distal evaporites in a pre-existing shallow ramp- 
setting sea.
c) The third model involves the deposition of the evaporitic wedge in an intermediate (ca. 1000m 
deep) sea characterised by a pre-existing shelf-slope-basin setting.
The most likely basinal setting for the deposition of the Messinian evaporites is the third model (see 
discussion in the text).

6-17

6 6 Seismic sections showing the details of the morphology and truncation of seismic reflections 
associated with the Messinian marginal scarps identified at Horizon M, eastward of the pinch-out of 
the Messinian evaporites.
a) 2D seismic section crossing the Levant margin in a NW-SE direction (location in Fig. 6.2). The 
location of the marginal scarp developed between MS2 and MS3 (cliff 2/3) is indicated.
b) Close-up of the seismic section displayed in Fig. 6.6a (location in Fig. 6.6a and in Fig. 6.2), 
showing the detailed seismic stratigraphic context of the marginal scarp developed between MS2 
and MS3 (cliff 2'3). The interpretation of the main reflections, faults and seismic effects is 
indicated. The seismic package highlighted in blue is of unknown origin and it might correspond to 
marginal Messinian deposits, whose internal architecture is beyond seismic resolution.
c) 3D seismic section crossing the Levant margin in a NW-SE direction (location in Fig. 6.2). The 
onlap of the early Pliocene reflections on the scarp developed between MS2 and MS3 (cliff 2/3 of 
Fig. 6.6a) should be noted. It is significant to note also that the base of the cliff (MS3) is coincident 
with the projected top of the Messinian evaporites (horizontal black dashed line). The downward 
bending of the seismic reflections directly above MS2 is probably the product of post-depositional 
differential compaction of the Pliocene sediments above the morphological step defined at Horizon 
M
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6.7 Cartoon showing a simplified evolutionary reconstruction of the relative sea-level changes and of 
the depositional and erosional processes occurred in the study area during the MSC (see detailed 
discussion in the text).
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6.8 Map showing the location and age of some of the major basinwide evaporite deposits. The basins 
arc drawn for visual clarity, not to exact scale (Warren, 1999).
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Chapter One Introduction

Chapter One: Introduction

1.1 Project rationale
The presence of evaporitic deposits of Messinian age under the Mediterranean Sea was 

discovered at the beginning of the ‘70s by the Deep Sea Drilling Project (DSDP) 

Cruise Leg 13 (Hsii et al., 1973). This first drilling campaign in the Mediterranean, 

complemented with the acquisition of 2D seismic data, revealed the existence of 

extensive late Miocene erosional surfaces developed over most of the continental 

margins, and o f a thick (more than 2 km) sequence of evaporites in the deeper part of 

the present Mediterranean Basin (Ryan et al., 1973). The evaporites were found to be 

clearly linked to the well-known evaporitic succession of Messinian age, cropping out 

in the circum-Mediterranean areas (Selli, 1960; Decima & Wezel, 1973). Regional 

mapping of the evaporites in the marginal and distal domains showed that the 

Messinian basin extended across some 2400 x 600 km (Rouchy, 1982; Kendall & 

Harwood, 1996) determining its status among the largest o f the ancient 'saline giants' 

in the world (Warren, 1999).

The geological event that led to the deposition of the late Miocene evaporites in the 

Mediterranean area is known as the ‘Messinian Salinity Crisis’ (MSC) (Selli, 1960). 

After the discovery of the basinwide extent of the evaporites, this term was used to 

indicate the isolation from the global ocean system and the deep desiccation of the 

Mediterranean Basin (e.g. HsO et al., 1973). Normal marine sedimentation was 

interrupted and a dominant hypersaline environment became widespread across the 

basin. The MSC has been recognized as one of the most dramatic events on Earth 

during the Cenozoic era (Hsii et al., 1977). On a global scale, the event reduced world 

ocean salinity, altered evolutionary trends of marine organisms within and beyond the 

Mediterranean Sea, and temporarily modified global thermohaline circulation (Hsii et 

al., 1977; Kastens, 1992).

Although intense and durable interest from the international research community 

led to continuous advances in knowledge throughout the last 30 years, the MSC is still 

the subject o f considerable scientific disputes. Amongst the main controversial issues, 

the causes and modality of the deposition of this saline giant still remain enigmatic.
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The absence of modem analogues of a scale comparable to ancient ‘evaporite giants' 

represents the main factor hindering the development of a depositional model for the 

Messinian evaporites. Furthermore, the lithology of the greatest part of the evaporites 

in the Mediterranean Basin is still unknown, because only the upper few tens of metres 

(i.e. ca. 10% o f the total section) have been drilled (Hardie & Lowenstein, 2004). So 

far, basinwide depositional models have strongly relied on the 2D seismic record, 

which is, however, subject to limited resolution and spatial aliasing. The lack of 3D 

seismic data has strongly limited the identification and detailed analysis of depositional 

and deformational features within the evaporites, such as erosional and stream patterns, 

clastic bodies, carbonate reefs or internal tectonic structures.

Consequently, important questions remain that have not been answered by the 

methods used so far. These include the temporal and spatial relationship between the 

deposition of the marginal and basinal evaporitic series, the differences observed in the 

series deposited in the Eastern and Western Mediterranean, the events leading to the re­

establishment o f normal marine conditions after the crisis and their timing.

Additionally, some of the implications of the presence of the evaporites on the 

evolution of the continental margins are still relatively unexplored. This is particularly 

the case o f their impact on stability, erosion and fluid flow patterns. Therefore, there is 

clear scope for application of new analytical techniques to provide insights into these 

questions.

1.2 Aims of study
The main purpose of this research is to build an evolutionary model for the deposition 

and deformation of the Messinian evaporitic system in the Levant region (Eastern 

Mediterranean). The ultimate goal o f this project is to improve our current 

understanding of the processes that occurred during the Messinian Salinity Crisis in the 

Mediterranean Basin. These main purposes are pursued by addressing a series of key 

aims, which are listed as follows:

•  Define a detailed 3D stratigraphic analysis of the Messinian evaporitic unit on 

the Levant continental margin and deduce the factors controlling their 

distribution in the region.
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•  Evaluate the position of the sea-level prior, during and after the MSC, assessing 

relative sea-level changes in this time-span.

•  Investigate the impact of local vs. regional factors in governing the events

linked to the MSC in the region.

•  Account for the areal erosional patterns and unconformities during the MSC.

• Determine the distribution of clastic sediments within the evaporites, and 

interpret clastic sediment fairways during the deposition of the Messinian 

evaporites.

•  Develop means for identifying the erosional and depositional activity of a 

system of slope canyons (i.e. El Arish, Afiq and Ashdod Canyons) throughout 

the MSC.

•  Define the basinwide depositional architecture of the evaporites.

•  Assess the deformation o f the evaporitic unit caused by dissolution and syn- and

post-depositional salt tectonics, exploring their mechanism and impact on 

present-day evaporite stratigraphy.

•  Analyse the relationship between evaporite deposition and creation of 

accommodation space.

•  Assess the impact o f evaporite deposition on local subsidence, slope stability, 

erosion and fluid flow at the continental margin.

•  Compare the local evolutionary model o f the evaporites with previous

Messinian models for the region and with worldwide analogues.

To address the issues above, extensive interpretation of regional 2D seismic datasets 

and detailed interpretation of 3D seismic data in the Levant region, provided by the 

industry sponsor (BG-Group), was undertaken. Seismic interpretation was calibrated 

with local well data from the marginal part of the evaporitic system. 2D seismic data 

were used for regional correlation and stratigraphyc analysis. Detailed interpretation of 

the 3D seismic data and well data were used to highlight the controls on smaller-scale 

structures such as depositional, erosional, dissolution and structural features. The 

combination o f all data and results is summarized in the form of an evolutionary model 

o f the Messinian evaporites in Chapter 6 .
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1.3 Geographic, structural and stratigraphic setting
The Levant continental margin is situated in the easternmost part of the Mediterranean 

Sea, at the zone of interaction among the Anatolian, African and Arabian plates (Figs.

I . I and 1.2; Vidal et al., 2000). The Levant passive continental margin was formed due 

to the rifting o f the Tethys Ocean during the Late Triassic to Early Jurassic (Garfunkel 

& Derin, 1984). The Tethys linked the area occupied by the present Mediterranean 

with the Indian Ocean (Buchbinder & Zilberman, 1997). Associated with the opening 

of the Tethys, the Dead Sea system formed as a transform fault. During rifting, the 

Eratosthenes Seamount (Fig. 1.2) detached as a block and drifted away from the Africa- 

Arabian continent (Vidal et al., 2000) which formed at that time a single plate block 

(Badawy & Horvath, 1999).

Throughout most of the Cretaceous, the Levant margin was marked by a distinct 

shelf edge, separating shallow platform carbonates in the east from deep-water 

carbonates on the slope and basin in the west (Bein & Gvirtzman, 1977; Druckman et 

al., 1995). In the Senonian (late Cretaceous), a change in plate motion caused the 

African-Arabian plate to converge with the Eurasian plate, closing the back-arc of the 

Tethys ocean (Badawy & Horvath, 1999). The main structure connected to this 

geodynamic event in the Levant Basin is the Cyprus arc or trench (Figs. 1.1 and 1.2). 

Significantly for the study region, the plate collision resulted in the formation of a 

series o f NE-SW directed compressional structures i.e. the Syrian Arc fold belt 

(Figs. 1.2 and 1.3a, Garfunkel, 1998; Eyal, 1996, Buchbinder & Zilberman, 1997). At 

this time the platform of the Levant continental margin was drowned and pelagic 

chalk-rich sedimentation prevailed while in the slope area non-deposition and erosion 

dominantly occurred (Druckman et al., 1995). Between the Senonian and the 

Paleocene, the deposition of the Mount Scopus and Avedat Groups occurred, 

characterised mainly by sedimentation of carbonates and marls (Fig. 1.3b).

Since the upper Eocene, the most important stratigraphic unit for this research 

study was deposited, i.e. the Saqiye Group (Fig. 1.3b). Its stratigraphic relation to the 

older units and structural highs is displayed in the representative region profile of Fig.

1.3a. Starting in the Oligocene, the Levant continental margin was incised by several 

submarine canyons (Druckman et al., 1995). The most prominent of these erosional 

features is the Afiq Canyon (Druckman et al., 1995; or Gaza - Beer Sheva Canyon, 

Buchbinder & Zilberman, 1997).
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Chapter One Introduction

In the early Miocene, the Syrian Arc began to emerge, with a series of NE-SW 

trending anticlines and synclines on the Levant margin (Figs. 1.2 and 1.3a; Neev & 

Ben-Avraham, 1977; Tibor & Ben-Avraham, 1992). Consequently, the shelf area of the 

Levant continental margin experienced localized tectonic uplift and became 

intermittently emergent, while the slope and basin areas continued to subside 

(Buchbinder & Zilberman, 1997). As a result, the Oligocene submarine canyons 

extended to the shelf through headward erosion (Buchbinder & Zilberman, 1997). The 

renewed tectonic activity of the Syrian Arc caused an increased supply of clastic 

sediments to the basin, a condition which has been continuing until the present day 

(Druckman et al., 1995).

During the Middle Miocene, the Indo-Pacific connections closed (Gvirtzmann & 

Buchbinder, 1978; Hsu et al., 1978; Steininger & Rogl, 1984), causing evaporitic 

episodes in the Red Sea (Rouchy et al., 1995). Seafloor spreading in the Red Sea 

started in the Late Serravallian (12-13 My), caused by an increase of rotation of the 

Arabian plate (Badawy & Horvath, 1999). In this tectonic context, the Dead Sea Fault 

was initiated (Fig. 1.1) due to the shifting of the motion from the Gulf of Suez to the 

Dead Sea system, and the creation of the Sinai subplate (or microplate) (Badawy & 

Horvath, 1999). During this time the motion was associated with a strike-slip stress 

pattern, with NE minimum principle stress axis and NW maximum principle stress 

axis, which produced the lateral motion between the Arabian and Sinai subplates 

(Badawy & Horvath, 1999). The creation of this plate boundary strongly affected the 

vertical tectonic movements o f the Miocene-Pliocene Levant margin and basin 

(Buchbinder & Zilberman, 1997).

At the end of the Miocene, the evolution of the Levant margin was greatly 

influenced by the Messinian Salinity Crisis. During this period, a major erosional phase 

affected the Levant continental margin while a thick evaporitic series (up to 2 km of 

thickness) was deposited in its central part (Tibor & Ben-Avraham, 1992). The 

Messinian evaporitic series is named Mavqi’im Formation in Israel (Cohen, 1988,

1993; Druckman et al., 1995). Simultaneously, the Oligo-Miocene canyons became 

preferential sites o f subaerial incision along the continental margin (Gvirtzmann & 

Buchbinder, 1978; Druckman et al., 1995). The Messinian Salinity Crisis ended in the 

early Pliocene, with the restoration of normal marine conditions in the Mediterranean 

Basin.
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Since the Pliocene, a thick wedge of mainly Nile-derived, siliciclastic sediments, 

deposited on the Levant continental margin and basin (Yafo Formation) (Tibor & Ben- 

Avraham, 1992). The submarine canyons ceased their activity in the Pliocene and 

represent now buried features (Druckman et al., 1995). During the Pleistocene, a major 

episode o f continental shelf construction occurred (Tibor & Ben-Avraham, 1992), due 

to an increase in the sediment supply to the basin. The youngest depositional unit on 

the Levant margin is represented by a wedge of Holocene siliciclastic sediments, 

overlying a subaerial unconformity of probable WUrmian age, i.e. related to the last 

glacial lowstand (Neev & Ben-Avraham, 1977). The Pliocene to Recent sediments in 

large areas o f the Levant margin and basin are affected by thin-skinned tectonics above 

the Messinian evaporites (Tibor & Ben-Avraham, 1992; Garfunkel, 1998). In the 

southern part o f the margin, NE-SW directed shallow normal faulting represents the 

main deformation style. This type of deformation has been related to flow and 

migration o f the Messinian evaporites, probably begun in the late Pliocene (Garfunkel 

and Almagor, 1985, 1987; Tibor & Ben-Avraham, 1992).

1.4 Synthesis of the Messinian Salinity Crisis
During the latest Miocene, the Mediterranean Sea became partially and gradually 

isolated from the global ocean system (Hsti et al., 1973, 1978; Clauzon et al., 1996). 

This condition was reached through a series of rapid and dramatic paleogeographic 

changes involving complex feedback among tectonics, eustasy and climate in the 

Mediterranean area (Roveri et al., 2001). At the Mediterranean continental margins, a 

relative sea level fall of 1 to 2 km is suggested by the incision of river canyons 

(Druckman et al., 1995, Clauzon et al., 1996). As a consequence, a dominantly 

hypersaline environment became widespread on the Mediterranean Basin, leading to 

the deposition of 2-3 km thick evaporite series in its central parts. The distribution of 

the evaporites in Fig. 1.4 shows the basinwide extent o f this event. In the following 

sections, the previous studies regarding the onset and termination of the MSC, and the 

depositional model of the Messinian evaporites are introduced as a base for the main 

topics investigated in this research project.
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Figure 1.4 Distribution o f Messinian evaporitic deposits in the Mediterranean Basin (after Rouchy, 1980; Reading, 1996; Warren, 1999). The 
Rifian Corridor' in Morocco and the ‘Bctic Strait' in Spain mark the approximate locations o f the waterways that connected the 
Mediterranean Sea and the Atlantic Ocean prior to the Messinian Salinity Crisis (after Muller & Hsu. 1987; Benson et al., 1991; Kastcns, 
1992). The light-blue colour highlights the distribution o f Paratethys deposits during the Messinian (from Steininger & Rogl, 1984). The red 
box indicates the location o f the study area. The background is composed by the map o f the seismic hazard in the European-Mediterranean 
area (Giardini et al., 2003), which highlights the main tectonic lineaments active at the present day.
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1.4.1 Onset and termination of the MSC

The Mediterranean Sea is an enclosed basin which retains its only link with the 

Atlantic Ocean through the Gibraltar Strait. Before the Middle Miocene, the 

paleogeography of the Mediterranean area was considerably different to that of the 

present day: the basin was connected to the Atlantic Ocean to the west, and to the 

Indian Ocean and the Paratethys basin to the east (Fig. 1.4).

The final severance of the link between the Mediterranean and the Indian Ocean 

probably occurred ca. 14 My ago, during the Serravallian (Buchbinder and Gvirtzman, 

1976). Almost simultaneously, the complete separation of the Mediterranean from the 

Paratethys lakes took place (HsO et al., 1978). The last links of the Mediterranean with 

the world ocean before the MSC were the Betic Strait in South Spain and Rifian 

Corridor in Morocco (Fig. 1.4; Hsii et al., 1978; Muller & Hsu, 1987; Benson et al., 

1991; Kastens, 1992). It is believed that the closure o f these passages in the late 

Miocene caused the isolation o f the Mediterranean and the onset o f evaporite 

deposition.

Climate change, tectonic uplifi and/or glacioeustatic fall have been traditionally 

considered as the primary controls on the onset of the Messinian Salinity Crisis (Wamy 

et al., 2003). With respect to the influence of climate change, Wamy et al. (2003) 

indicate a stable dry climate on the Atlantic margin of Morocco throughout the late 

Miocene. The most remarkable change to a drier and cooler climate took place before 

the Tortonian or at the transition between Serravallian and Tortonian, when the 

severance o f the basin with the Indian Ocean was complete. Little or no variation 

occurred since the early Tortonian and during most o f the Messinian (Hsii et al., 1978, 

Vidal et al., 2000). Consequently, the onset of evaporite deposition in the deep basin 

cannot be interpreted as a response to a dramatic change in climate (Wamy et al., 

2003).

Global sea-level lowering has also been often quoted as a possible cause of the 

onset o f the MSC (Hodell et al., 1986; Kastens, 1992; Zhang & Scott, 1996). These 

studies emphasize the role o f glacio-eustatic effects as the immediate trigger for the 

beginning of the salinity crisis. Albeit favouring the control by eustasy and glaciations 

preparing the conditions for an enhanced negative water budget in the Mediterranean
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Basin, it is recognised that long-term tectonic movements must have established the 

necessary preconditions for the salinity crisis, creating the shallow-silled straits (Hodell 

et al., 1986; Kastens, 1992; Vidal et al. 2000).

Therefore, tectonic activity is generally envisaged as the major control on the final 

closure of the Betic Strait and Rifian Corridor and, consequently, on the isolation and 

hydrographic deficit o f the Mediterranean Basin (Vidal et al., 2000; Duggen et al., 

2003; Wamy et al., 2003). The deep Betic strait shoaled after the end of the middle 

Miocene, as a result o f the northward movement o f the African Plate. Duggen et al. 

(2003) proposed roll-back of the Tethys oceanic lithosphere as the driving mechanism 

o f the uplift o f the northern African and the southern Iberian margins, and the closure 

o f the Miocene gateways to the Atlantic Ocean.

Restriction of the Rifian Corridor, due to tectonic movements, began at ~7 Ma 

(Vidal et al., 2000; Wamy et al., 2003). From 6.26 to 5.4 Ma shoaling had progressed 

to the degree that marine communication at the Rifian Corridor was controlled by small 

glacioeustatic fluctuations (Wamy et al., 2003). Weak links, similar to the Gibraltar 

Strait o f today, seem to have been competent enough to keep the Mediterranean waters 

as having normal marine salinity (Hsii et al., 1978). This argument is based on the 

consideration that the amount of evaporites deposited from a column of 1000 m of sea 

water does not exceed 14 m in thickness (Kendall & Harwood, 1996). Thus, the great 

(1-2 km) thickness o f the Messinian evaporites implies a continuous supply of marine 

waters, and some residual communication between the Mediterranean and the global 

ocean during much of the salinity crisis (Hodell et al., 1986).

Throughout the Mediterranean, the early Pliocene is usually thought to mark the 

abrupt restoration of open marine conditions that, except for episodic marine 

influences, replaces the dominantly continental setting of the late Messinian basin (Cita 

et al., 1978; Pierre et al., 1998; laccarino & Bossio, 1999; Orszag-Sperber et al., 1989; 

Rouchy et al., 2001; Rouchy et al., 2003). Alternatively, other studies assumed that in 

some western and central parts o f the Mediterranean Basin, the marine reflooding 

occurred during the late Messinian (Butler et al., 1995; Riding et al., 1998; Camevale 

et al., 2006) or indeed, that the Mediterranean never desiccated completely during the 

MSC (e.g. Martinez del Olmo, 1996; Roveri et al., 2001; Manzi et al., 2005).

Nonetheless, it is generally agreed that opening of the Gibraltar Strait eventually 

led to the reflooding of the Mediterranean. The cause and modality of these events are
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still debated. Traditionally, a catastrophic flooding of the basin after the breach of the 

Gibraltar strait has been envisaged by the first DSDP and ODP campaigns (see review 

in McKenzie, 1999). Notwithstanding different theories on the rapid or gradual 

refilling o f the Mediterranean Basin, it is believed that the end of the MSC was linked 

to a tectonic cause, similar to that causing its onset (Duggen et al., 2003; Wamy et al., 

2003). ‘Normal’ marine conditions were fully re-established in the Mediterranean 

Basin 250,000 years after the reflooding (McKenzie & Sprovieri, 1990).

1.4.2 Depositional setting

During the MSC, two styles o f evaporite deposition characterized the Mediterranean 

Basin. The first style comprised high level, marginward circum-Mediterranean deposits 

(Warren, 1999). The second was characterized by much larger, thicker basin-centre 

deposits (Warren, 1999). Basin-centre evaporites, with thickness up to 2 km, have been 

studied on 2D seismic data and well data since the early ‘70s. However, due to safety 

regulations, most o f the DSDP and ODP drillcores recovered only the upper part of the 

evaporitic series, and little sampling is available from the lower part of these deep 

sections (Mflller & Mueller, 1991). Therefore, the internal stratigraphy of the basinal 

evaporites is largely unsampled and uninterpreted (Warren, 1999) and their age is still 

strongly based on the correlation with the marginal Messinian series. Based on 

comparison of world analogues, basinwide evaporites are generally thought to be 

deposited in three main settings (Fig. 1.5; Warren, 1999):

• Deep water-deep basin evaporites have basin centers dominated by ‘deep 

water’ evaporites (5-300 m of water depth) composed mostly of finely laminated 

salts (e.g. basin centre o f north and south Zechstein basins) (Fig. 1.5a; Warren,

1999).

• Shallow water-shallow basin evaporites are dominated by interfingering saltern 

and mudflat succession often crosscut by karstic erosional surfaces (e.g. African 

Rift) (Fig. 1.5b; Warren, 1999).

• Shallow water-deep basin evaporites are dominated by shallow water 

evaporites deposited as stacked saltern and mudflat cycles in a base level hundreds 

to thousands of meters below sea level (Fig. 1.5c; Warren, 1999).

O f these three settings, the shallow water-deep basin model (also known as the 

‘desiccated deep-basin model’) is traditionally applied to the deposition of the
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Messinian evaporites (HsU et al., 1973). Although this model is widely accepted, 

alternative interpretations involving a shallow water-shallow basin setting have been 

put forward by other authors (Nesterhoff, 1973; Fabricius et al., 1978). Nevertheless, 

seismic data have shown that a deep Miocene basin indeed existed prior to evaporite 

deposition (Montadert et al., 1978), so that the shallow water -  shallow basin model 

can be excluded for the deposition of the Messinian evaporites. Other studies have 

recently questioned that the Mediterranean basin had ever desiccated during the MSC 

(Martinez del Olmo, 1996; Manzi et al., 2005), proposing a deep water-deep basin 

model for the deposition of the Messinian evaporites.

A series o f theoretical models for the deposition of the basinwide Messinian 

evaporites and the progression of the MSC have been proposed in previous studies (e.g. 

Butler et al., 1995; Clauzon et al., 1996; Krijgsman et al., 1999). The stratigraphic and 

chronological constraints o f these models have been based mainly on the analysis of 

outcrops in Spain, Italy, Greece and North Africa, covering thus the marginal or 

transitional evaporites (Butler et al., 1995; Clauzon et al., 1996; Krijgsman et al., 1999; 

Rouchy et al., 2001, 2003; Wamy et al., 2003). Evaporitic deposits are generally not 

directly datable (Kastens, 1992) and their age is usually bracketed by dating horizons 

below and above. This is due to the fact that evaporites deposit from waters of 

anomalous isotopic composition and their depositional environment tends to be 

inhabited by specialised organisms that have low biostratigraphic potential (Kastens, 

1992).

In the last years, the use of new stratigraphic methods like magnetostratigraphy and 

astrochronology has attempted to overcome this problem (see e.g. Krijgsman et al., 

1999). Nevertheless, controversies still exist over the development of the MSC. Indeed, 

various models ranging from the deposition of the evaporites as a synchronous event 

(i.e. the coeval onset of the MSC in marginal and basinal areas; Hsu et al., 1973, 

Krijgsman et al., 1999b) to a diachronous event (Butler et al., 1995; Druckman et al., 

1995; Clauzon et al., 1996) have been proposed. The relative chronology of the MSC 

and the synchronous and diachronous hypotheses are summarized as follows (Figs. 1.6 

and 1.7):

Synchronous model (Figs. 1.6 and 1.7a): According to Krijgsman et al. (1999) the 

onset o f the MSC was synchronous over the entire Mediterranean basin. The evaporite 

series have been dated using astrochronology and cyclostratigraphy analysis of the
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Fig. 1.7a
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Fig. 1.7c
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Figure 1.7 Schematic diagrams illustrating the main models for the evolution of the Messinian Salinity Crisis 
in the Mediterranean Basin.
a) Model proposed by Krijgsman et al. (1999).
b) Model proposed by Clauzon et al. (1996)
c) Model proposed by Butler et al. (1995).
d) Model proposed by Druckman et al. (1995) for the Levant continental shelf.
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evaporitic series in Southern Spain (Sorbas Basin), Sicily (Caltanissetta Basin) and 

Greece (Gavdos Basin), and subsequently extrapolated to the entire Mediterranean 

Basin. Following this methodology, the beginning of the Salinity Crisis is dated back to 

5.96 ± 0.02 Myr ago, and its duration is approximately calculated to be 640 ky 

(Krijgsman et al., 1999). At this time, the deposition of the Lower Evaporites took 

place in the marginal basins and in the basin-centre (>1000  m deep).

Complete isolation from the Atlantic Ocean and possible desiccation was 

established between 5.59 and 5.33 million years ago, when the Mediterranean water 

level dropped more than 1000 m, as indicated by incised canyons of the Rhone, Ebro, 

Po and Nile rivers on the Mediterranean margins (Krijgsman et al., 1999). This 

erosional phase lasted from 5.59 to 5.50 My. The deposition of the Upper Evaporite 

unit (5.50 -  5.33 My), overlying the erosional surface, took place in a non-marine 

Mediterranean basin forming a large ‘Lago-Mare’ (i.e. ‘lake-sea’) due to the dilution of 

the previous hyperhaline waters (McCullogh & De Deckker, 1989; Cipollari et al.,

1999; laccarino & Bossio, 1999; Rouchy et al. 2001; Bassetti et al. 2003).

Additionally, it is suggested that canyon incision in the Aegean region may have 

caused the transition to Lago-Mare conditions by capturing the Black Sea drainage.

Diachronous models (Figs. 1.6 and 1.7b,c and d): Clauzon et al. (1995) model 

(Figs. 1.6 and 1.7b) considers the deposition of evaporites in the marginal areas to be 

diachronous with the basin, based on their stratigraphic relationship with a major 

Messinian erosional surface. According to this model, the deposition of marginal 

evaporites took place from 5.75 to 5.60 My in response to a modest sea-level fall, 

during a global cooling period (Clauzon et al., 1996). In the second phase, from 5.60 to 

5.32 My, the Mediterranean basin became isolated, and the deposition of basinal 

evaporites and the cutting of Mediterranean canyons occurred (Clauzon et al., 1996).

In contrast, Butler et al. (1995) (Figs. 1.6 and 1.7c) propose a completely 

diachronous deposition of the evaporites in the various sub-basin o f Sicily. The 

evaporites are divided into two main cycles: the Lower and Upper evaporites, separated 

by a major sequence boundary. This boundary is associated with the drawdown of the 

Mediterranean Basin and the formation of a major regional unconformity. 

Subsequently, the Upper Evaporites deposited in isolated marginal seepage basins once 

the Mediterranean was flooded again by sea-water. On the Levant continental margin, 

a further diachronous model has been developed by Druckman et al. (1995) (Fig. 1.7d)
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for the evaporitic deposits of the Mavqiim Formation. A first sea-level drop (50-800m) 

at the beginning of the MSC led to the deposition of the Lower evaporite (Mavqiim 

anhydrites). Subsequently, the sea-level rose more than 600m and the Upper evaporites 

(Be’eri Gypsum) deposited. Finally, a sea-level drop produced the deposition of 

brackish and continental deposits (the ‘Lago-Mare facies) above the Lower evaporites 

(Fig. 1.7d, Druckman et al., 1995).

It should be stressed, however, that the models previously described are mainly 

derived from observations o f the marginal outcropping evaporitic series. While this 

marginward series has been intensively studied, the basinwide architecture of the 

evaporites is still poorly known. Furthermore, the information available on the basin- 

centre part of the Messinian evaporites is focused on the Western Mediterranean area, 

where three main units are identified: the seismically layered ‘Lower evaporites’, a 

thick salt layer (0.5-1.5 km), and the layered ‘Upper evaporites’(500-600 m thick) 

(Montadert et al., 1978). Such a subdivision is not applicable to the coeval evaporites 

in the Eastern Mediterranean, where the internal stratigraphy of the basinal deposits is 

considerably different (see e.g. seismic profiles published in Ryan, 1978; Garfunkel & 

Almagor, 1987; Polonia et al., 2002). It is therefore clear that further studies in this 

area are needed in order to compare the Eastern Mediterranean with the Western 

Mediterranean record, with the previously described models constituting the 

foundation for the interpretation of the evolution of the MSC in the study area.

1.5 Database
The database used in this research project consists of industry seismic data (3D and 

2D) and a set o f nine exploration wells. The location of the dataset is shown in Fig. 1.8 . 

All data were obtained through BG-Group.

The 3D seismic coverage (Fig. 1.8) is represented by three seismic surveys 

acquired in 2000 by Geko-Prakla. The 3D seismic data cover a total area of 

approximately 6200 km2, extending from the Levant Basin to the continental margin 

(Fig. 1.8 ). The seismic surveys were acquired with an in-line trace interval of 6.25 m, a 

line spacing of 25 m and a sampling interval of 4 ms. The final data for these two 

surveys were defined on a 12.5 by 12.5 m grid with 6400 bin cells per sq km after 

processing (BG-Group Report SA9029, 2000). The dataset was migrated with a single
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pass 3D post-stack time migration. Seismic data are SEG normal polarity, i.e. an 

increase in impedance is a positive amplitude (red colour in the original seismic 

sections). The data is processed to near zero phase. Further details on frequency, 

resolution of seismic data and seismic velocity analysis will be illustrated in detail in 

Section 1.6.

The 2D seismic dataset used in this study (Fig. 1.8) consists of 52 2D multichannel 

seismic profiles, acquired in 1983, and migrated with a post-stack time migration. 

These profiles cover approximately 6000 km and present a grid spacing of ca. 10 x 10 

km. The profiles trend, respectively, parallel and perpendicular to the Levant 

continental margin (Fig. 1.8). The 2D seismic data have been mainly used to obtain a 

semi-regional mapping of the depositional units analysed in this research study. The 

quality and resolution of individual 2D seismic profiles varies considerably across the 

area analysed. Generally, those in the northern parts o f the continental margin are of 

poorer quality than those in the central and southern parts, as they were acquired before 

advances in the fields of data acquisition and processing were made (Frey-Martinez, 

2005). Throughout this PhD thesis seismic sections and maps are displayed in 

milliseconds (ms) two-way travel time (TWTT). Depths and thicknesses are expressed 

in metres (m) where time-depth conversion was applied.

A set o f nine exploration wells (Fig. 1.8) complete the dataset of this study. These 

wells are: Nir-1, Gaza Marine-1 and 2, Yam West-1 and 2, Or-1, Or South-1, Noa-1 

and Noa South-1. Wireline logs and unpublished commercial stratigraphic reports, 

mainly based on cutting analyses were available for all the wells. The information 

pertaining to each well consists o f petrophysical logs (y-ray, sonic, velocity, resistivity 

and checkshots), along with paleontologic and biostratigraphic information. The well 

data were used for stratigraphic and lithological analysis, for correlation of the 

depositional units and for time-to-depth conversion.

A summary of the well location in relation to evaporite thickness in the Levant 

survey is illustrated in Fig. 1.9. In Figure 1.9a, a well-correlation panel summarizing 

the key lithological and stratigraphic data available on the evaporites has been 

reconstructed from well reports and completion logs. The data provided by these 

exploration wells is particularly significant for establishing a Iithostratigraphic and 

chronostratigraphic framework for seismic interpretation.
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Fig. 1.9a
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Chapter One Introduction

1.6 Geophysical interpretation methods
The interpretation of 2D and 3D seismic data represents the core method used in 

this PhD research project. In the past, seismic interpretation has been used for the 

analysis o f the Messinian evaporitic deposits in the Mediterranean Basin. Nonetheless, 

previous work on this field has been limited to the analysis of relatively low-resolution 

2D seismic data (e.g. Montadert et al., 1978; Tay et al., 1999; Polonia et al., 2002; Lofi 

et al., 2005; Gorini et al., 2005). Indeed, the present research project represents the first 

comprehensive work on the Messinian evaporites using a combination of 2D and 3D 

seismic data. This has allowed an excellent coverage of the basinal distribution of the 

evaporites in the region and has enabled their internal stratigraphy to be resolved to a 

high degree of accuracy that could not be attained by any other combination of 

methods. In this section, the methodology used for the interpretation of the Messinian 

evaporitic deposits on seismic data, coupled with an assessment of their seismic 

response and imaging problems, are presented.

1.6.1 Seismic interpretation

The seismic interpretation of the Messinian evaporitic unit is primarily based on the 

definition of its top and base boundaries in the study region. Consequently, in this 

research study, the terminology and criteria for interpretation and the mapping of these 

boundaries are o f particular relevance, and have been established following a series of 

key recognition criteria. These criteria are illustrated in this section.

Due to the Mediterranean-wide distribution of the Messinian evaporites, different 

nomenclature has been applied to define the lower and upper evaporitic boundaries on 

seismic data. All the various nomenclatures used through time are listed in Tab. 1.1. In 

this PhD research, the terminology established by Ryan et al. (1973) has been adopted. 

According to this terminology, the top and the base of the basinal evaporite deposits 

are, respectively, Horizon M and Horizon N. This terminology has been selected on the 

basis that it is the most consistent and widely applied to the Levant region by previous 

authors (Tab. 1.1; Mart & Ben Gai, 1982; Almagor, 1984; Garfunkel & Almagor,

1987; Tibor et al., 1992).
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Author Base distal evaporites Top distal evaporites Proximal surface
Hsu etal., 1973 M-reflector

Ross & Uchupi, 1977 Horizon M

Ryanetal.. 1971 M-Reflectors

Ryan etal., 1973 N-Reflectors M-Reflectors

Finetti & Morelli. 1973 Horizon A Horizon A?

Ryan, 1978 Basal discordance Horizon ‘M’ Horizon *M’

Gvirtzman & Buchbinder, 1978 ‘M‘horizon

Ryan & Cita, 1978 Messinian discordance? Horizon M Messinian discordance-Horizon M

Neev, 1979 ‘M’ Reflector

Barber, 1981 Messinian erosional surface

Mart & Ben Gai, 1982 ‘N’ reflector ‘M’ reflector ‘M’reflector

Almagor, 1984 reflector N reflector M

Garfunkel & Almagor, 1985 Horizon M Reflector M

Garfunkel & Almagor, 1987 N (Ryan et al. 1970,1973) M (Ryan et al. 1970,1973)

Escutia & Maldonado, 1992 Reflector Horizon M Horizon M

Tibor etal., 1992 reflector N reflector M

Lofi et al., 2003 MD (Messinian Discordance)

Lofi et al., 2005 ?Messinian erosional surface ‘M’ reflector Messinian erosional surface

Table 1.1 Different nomenclature applied in the Mediterranean Basin to the lower and upper boundary of the Messinian 
evaporites and to the marginal (proximal) erosional surface on seismic data. In this PhD research, the terminology established 
by Ryan et al. (1973) and Ryan (1978) has been adopted.
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In the area o f study, Horizon M and N represent continuous high-amplitude seismic 

reflections generated by the high acoustic impedance contrast between the evaporites 

and their bounding deep-water clastic sediments. Acoustic impedance is defined as the 

product o f the P-wave velocity and the density o f a material (Keary et al., 2002). As 

listed in Tab. 1.2, evaporitic deposits typically have a higher P-wave velocity and 

density than the enclosing sedimentary series. Consequently, there is a significant 

increase in acoustic impedance at the interface between the evaporites and the 

enclosing medias, resulting in a high-amplitude seismic reflection at these interfaces 

(Badley, 1985). The strength of the reflection generated at the interface can be 

quantified in terms of the reflection coefficient (R), which is directly proportional to 

the contrast in acoustic impedance (Z) across the interface (Fig. 1.10a). This coefficient 

can be positive or negative depending upon whether ‘softer’ rocks overlie ‘harder’ 

rocks, or viceversa (Badley, 1985). These seismic characteristics (i.e. acoustic 

impedance, reflection coefficient) can be used as criteria for the identification of the 

top o f the Messinian evaporites (Horizon M) in the study area.

In the Levant region, ‘soft’ clastic deposits o f Plio-Pleistocene age overlie the 

Messinian evaporitic deposits. Consequently, there is a positive acoustic impedance 

contrast between the Plio-Pleistocene and the Messinian units. Horizon M is 

characterised by a positive (‘hard’) seismic event, displayed as a red colour on seismic 

sections (Fig. 1.10a). The polarity of this reflection is defined by analogy with the 

phase and polarity of the seabed horizon and with flat spots observed at a comparable 

stratigraphic level (see e.g. Chapter 5). Based on this primary criterion, mapping of 

Horizon M in the study area is relatively straightforward in the 2D and 3D datasets. 

Additionally, stratigraphic markers from well tie provides support the seismic 

interpretation, as displayed by the well correlation panel in Fig. 1.9a.

The base o f the Messinian evaporites, i.e. Horizon N, represents the interface 

between the evaporites and underlying Oligo-Miocene siliciclastic sediments. This 

horizon is therefore marked by a distinct decrease in acoustic impedance, and 

characterised by a negative reflection coefficient (Fig. 1.10a). This horizon is displayed 

on seismic data as a negative high-amplitude reflection, i.e. a ‘soft’ seismic event (Fig.

1.10b). The seismic character of this prominent horizon has been used as the main 

criterion for the identification of the base of the Messinian evaporites in the study area. 

It should be stressed that none of the available wells drilled the base of the
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LITHOLOGY vp (km/s) p bulk (Mg/m*) z

shale 1.5 -2.5 2.06 -2.66 4.2 103

sand 1.5 -2.0 (water-saturated)

anhydrite 4 .5 -6 5 2.06 -2.66 (2.96) 9.9 103

gypsum 2.0 - 3.5 (2.32)

halite (3.5) 4 .5-5.0 2.10-2.40 (2.17) 9.9 10J

limestone 3 -4  (biodastic & oolites) 
2 - 2.5 (chalk) 2.60-2.80 (2.71) 9.45-10.8 103

dolomite 2 .5 -6 5 2.28 -2.90 (2.87) 9.9 103

water 1.5 2.25 10s

Table 1.2 Summary of the main physical properties of different sediments and of sea-water 
influencing their seismic response: vp= velocity of compressional waves; p bulk= bulk 
density; Z= acoustic impedance. Data from Rider (1986), Keary et al. (2002) (density and 
velocity), Nurmi (1988) (density in brackets).
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Seabed

PLIO-PLEISTOCENE: deep marine silicidastics Zi=vi pi

Horizon M

MESSINIAN EVAPORITES Z2=V? p2

Horizon N

OLIGO-MIOCENE: deep marine silicidastics Z3=V3 p3

-  +

Fb=-f^-<0Z3+Z2

B TWTT

Dominant frequency

PLIO-PLEISTOCENE: 
50 Hz

Horizon M

3.0

MESSINIAN EVAPORITES: 
20-40 Hz

Horizon N
OLIGO-MIOCENE: 

30 Hz

3.5

F igu re  1.10 Explanation o f  some key seismic characteristics o f the main seismic units and horizons 
analysed in this research study.
a) Schem atic representation o f  the acoustic impedance (Z) and reflection coefficient (R) o f  seismic 
reflections, i.e. the main seismic param eters used for identifying the boundaries o f the Messinian 
evaporitic unit in the study area (Horizons M and N).
b) Dom inant seismic frequencies observed within the three main seismic-stratigraphic units analysed in 
this study, as displayed on a representative seismic section across the 3D seismic dataset.
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Messinian evaporites. Indeed, direct constraint on the base of the basinal Messinian 

evaporites is absent throughout the entire Mediterranean area, and therefore, the 

seismic characteristics o f this horizon represent the only tool for its basinwide 

interpretation.

On the Mediterranean margins, the Messinian unit displays on seismic sections a 

wedge-like geometry (e.g. Montadert et al., 1978), with the base and the top of this unit 

merging into a single horizon (see e.g. Chapter 2, Section 2.5.2). This seismic horizon 

corresponds to a prominent unconformity, defining the Messinian erosional surfaces on 

various Mediterranean continental margins (Ryan & Cita, 1978; Barber, 1981; Lofi et 

al., 2003). The definition and terminology of this horizon is somewhat controversial for 

the implications on process interpretation. Different nomenclature has been applied to 

it in the past 30 years (Tab. 1.1). In this study, the terminology applied by Ryan (1978) 

and Barber (1981) has been adopted. According to this terminology, the erosional 

surface landward o f the evaporite pinch-out is seismically defined as Horizon M. This 

nomenclature has been selected on the basis that it is the most consistent and widely 

applied to the Eastern Mediterranean area in previous studies (Tab. 1.1; Gvirtzmann & 

Buchbinder; 1978; Mart & Ben Gai, 1982; Garfimkel & Almagor, 1985).

1.6.2 Imaging problems

The horizons defining the top and the base o f the Messinian evaporites are identified 

with relatively ease in seismic section throughout the area o f study. In contrast, a series 

o f imaging problems linked to a poor seismic resolution can affect the quality of 

interpretation o f the internal part o f the Messinian evaporites, and of the units 

underlying Horizon M in the region landward o f the pinch-out o f the Messinian 

evaporites. This imaging problems are related to reduced energy transmission, intrinsic 

attenuation, interference effects, refraction and scattering. These effects are directly 

related to the high acoustic impedance contrast at the top of the Messinian evaporites 

(Horizon M), that causes the reduction in amplitude of the reflections underlying the 

top o f the evaporites. Consequently, the quality o f interpretation deteriorates beneath 

this high-amplitude reflection.

Seismic resolution is generally significantly lower in the Messinian evaporitic unit 

than in the bounding siliciclastic deposits. The resolving power o f seismic data is 

generally measured in terms o f the seismic wavelength, which is given by the quotient
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of velocity and frequency (Brown, 1999). Seismic velocity increases with depth 

because the rocks are older and more compacted. The predominant frequency decreases 

with depth because the higher frequencies in the seismic signal are more quickly 

attenuated (Brown, 1999). As a result, the wavelength decreases significantly with 

depth, making resolution poorer (Brown, 1999).

In the case of the 3D seismic surveys analysed in this research study, the frequency 

is approximately 50 Hz in the Pliocene to recent section (Fig. 1.10b). The vertical 

resolution within a particular seismic interval is based on the limit of separability of the 

wavelets from adjacent reflecting interfaces, and equals to one-quarter of the 

wavelenght (Brown, 1999). The vertical resolution for the Pliocene interval is 

estimated to be 10 m, using an average velocity value of 2000 m/s (TWTT), as derived 

from checkshot o f the Gaza Marine-1 exploration well. For this well, a maximum error 

o f 7-12% is estimated for the time-to-depth conversions (Frey-Martinez et al., in press).

Because the evaporites have higher interval velocities than the bounding sediments, 

it can be expected that the vertical resolution within this lithological unit would be 

poorer than an equivalent deep-marine clastic section. Within the Messinian evaporitic 

unit, the vertical resolution can change significantly due to the high variability in the 

frequency content (Fig. 1.10b) and in the seismic velocity. The dominant frequency of 

the evaporitic unit has been estimated on a series of seismic sections using the 1ESX 

interpretation software for well synthetics, and it is on average 30 Hz (Fig. 1.10b).

The estimation of the seismic velocity within the evaporitic unit is more complex, 

and it has been based on the integrated analysis o f checkshots and sonic logs in the 

wells Gaza Marine-1 and 2, Or-l and Or-South-1 and on the comparison with data from 

previous studies (e.g. Garfunkel & Almagor, 1987; Polonia et al., 2002). Seismic 

velocity within the Messinian evaporites is highly variable due to lithological 

differences, and a dominant velocity of 4000 m/s ± 500 m/s is the estimated average 

value. Therefore, the resulting minimum vertical resolution in the evaporitic unit is 

ranging between 22.5 m and 50 m.

The interpretation of the intra or sub-evaporite section can be additionally affected 

by a the presence of multiple reflections of Horizon M, like e.g. simple and peg-leg 

multiples (Badley, 1985). Simple multiples from the seafloor and other sedimentary 

strata are easily identified as they are often parallel to each other at a predictable TWTT 

separation, and they tend to cross-cut stratigraphy. Examples of simple multiples of
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Horizon M are clearly displayed in Figs. 1.11a and b. Peg-leg multiples o f Horizon M 

are recognised by the presence of highly repetitive forms that mimic this horizon, and 

can interfere to create zones of incoherent noise. This type of multiple is observed 

particularly in the 2D seismic dataset (Fig. 1.11a). The comparison of overlapping 2D 

and 3D seismic data can often be used to aid interpretation and distinguish multiple 

from real stratigraphic horizons (Fig. 1.11c).

Over-migration can affect seismic interpretation, due to the inaccurate derivation of 

migration velocities in a particular dataset. Indeed, the seismic data used during this 

research project were processed and migrated to obtain the best imaging for the post­

al essinian interval. This was due to the fact that the main exploration targets are 

located within the Pliocene section. Over-migration produces a ‘smile’ effect where the 

diffraction from the sharp edge of a flat horizon is pulled up (Badley, 1985). In the 3D 

seismic dataset, this ‘smile’ effect is particularly evident near faults displacing the top 

o f the evaporites (Fig. 1.1 Id).

The scale of the geological processes addressed in the present research study is 

mainly dependent on the available resolution of the seismic data. As previously 

discussed, the maximum resolution provided by 3D seismic is in the order of a few tens 

of metres. This, compared to the centimetre-scale resolution achieved by previous 

outcrop and well-based analysis, is obviously limited in detail. However, the 

remarkable areal coverage and 3D spatial resolution of the seismic data permit to define 

both the full extent and the morphology (external and internal) of the evaporitic 

deposits. This allows a better understanding of their basinal distribution, internal 

configuration and evolution through time in those parts of the continental margin and 

basin that were previously excluded by outcrop and well-based analyses. This is 

schematically illustrated in Fig. 1.12. The combination of the results presented in this 

study with those of previous works (e.g. Druckman et al., 1995; Buchbinder et al., 

1997) thus allows an integrated understanding of the geological processes governing 

the deposition of the Messinian evaporites on both a local and a regional scale.

1.7 Thesis layout
The main part of this thesis is subdivided into four submitted papers (Chapters 2, 3 ,4  

and 5) addressing the most important topics analysed during this research project. The
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Figure 1.11 Examples o f  seismic effects affecting data interpretation in the study area.
a) 2D seismic line displaying examples o f  simple and peg-leg multiples o f  Horizon M.
b) 3D seismic line displaying examples o f  simple m ultiples o f  Horizon M.
c) Interpreted seismic sections showing how the com parison o f  overlapping 2D and 3D seismic data 
can often be used to aid interpretation and distinguish multiple from real stratigraphic horizons.
d) 2D and 3D seismic lines displaying examples o f  ‘sm ile’ effect nearby faults displacing the top o f  the 
evaporites.
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Figure 1.12 Schem atic diagram  illustrating the com parison betw een resolution achieved in 
studies based on well and outcrop analysis (e.g. Druckm an et al., 1995; Buchbinder et al., 1997) 
and on seism ic data (this study). The two approaches differ in term s o f  areal and vertical 
coverage o f  the M essinian evaporites, resolving geological processes o f  variable scales (see 
discussion in the text).
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last two chapters (Chapters 6 and 7) discuss and conclude, respectively, the main 

scientific results o f this investigation.

Chapter 2 is a study of the factors controlling the basinal architecture of the 

Messinian evaporitic unit in the Levant region. In this chapter, the combination of 2D 

and 3D seismic data is used to produce a semi-regional analysis of the evaporitic 

wedge. An overview of the geological setting and the description of the stratigraphic 

context of the Messinian evaporites initiate the chapter, and establishes the 

nomenclature for the stratigraphic units studied in this research project. Subsequently, 

the sequential analysis of time-structure maps, isochron maps and seismic cross 

sections is used to evidence the main morphological and structural features that 

characterise the pre, syn and post-evaporitic Levant region. Finally, the role of the 

deep-seated structural highs and a system of Oligo-Miocene canyons in controlling the 

erosion and evaporite deposition during the MSC is investigated.

Chapter 3 focuses on the distribution of clastic sediments within the Messinian 

evaporites, using detailed 3D seismic mapping and attribute analysis. The chapter 

commences with a brief overview of the stratigraphic context of the evaporites in the 

3D seismic surveys. A detailed geomorphological analysis of high-amplitude bodies 

within the basal part o f the Messinian evaporites is presented, and their interpretation 

as clastic deposits is advanced. Subsequently, their correlation with a long-lived system 

o f canyons (i.e. the El Arish and Afiq Canyons) is analysed, addressing the topic of 

drainage patterns and clastic fairways in the study region. The chapter concludes by 

discussing the submarine or subaerial origin of the clastic deposits, and the 

implications for the interpretation of depositional environments and sea-level changes 

during the MSC.

Chapter 4 addresses the origin of the surface defining the top of the Messinian 

evaporites (Horizon M), and discusses its significance for the understanding of the 

processes acting during the last stages of the MSC. A description of the seismic 

stratigraphic context of the top of the Messinian evaporites is produced. Detailed 

mapping of the intra-evaporitic horizons is consequently undertaken, in order to 

analyse their relationship to Horizon M, and to produce a structural analysis of these 

horizons. This permits the description of an early phase of Messinian syn-depositional 

salt tectonics, and the identification of a regional erosional unconformity at the top of 

the Messinian evaporites. This chapter concludes with the discussion of the submarine
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or subaerial context of this erosional surface, and of the possible mechanism of intra- 

evaporite deformation during the last stages of the MSC.

Chapter 5 is a study of evaporite dissolution in the Levant region. Detailed analysis 

of 3D seismic data is here used to describe a series of km-scale circular collapse 

structures rooted at the top of the Messinian evaporites. The focus is on the description 

o f the associated deformation of the evaporites and of the overburden to these 

structures. A structural analysis of the overburden is used to date the dissolution event 

and to estimate its duration. The chapter concludes by analysing the possible 

mechanism of evaporite dissolution and proposing a model for the formation of the 

collapse structures, based on the interaction between the evaporites and deep vertical 

fluid flow at the Levant continental margin.

Chapter 6 draws together the key scientific results o f the research, comparing the 

observations and deductions from Chapters 2 to 5 with previous studies in the Levant 

and Mediterranean region. During this discussion, the evolutionary model for the 

deposition of the Messinian evaporites in the Levant region will be proposed. A review 

of the possible worldwide analogues for the deposits studied in this thesis is also 

undertaken, demonstrating the global implications and applicability of the results 

obtained. A brief synopsis of the limitations and uncertainties associated with this 

study and proposals for future work concludes the chapter.

Finally, Chapter 7 summarizes the main conclusions of this research.
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Chapter Two: Controls on the architecture of the 
Messinian evaporites1

2.1 Abstract
Interpretation of 2D and 3D seismic data from the Levant margin (Eastern 

Mediterranean) has revealed the complex depositional and structural setting of the 

basinwide late Miocene (Messinian) evaporites. The dataset covers a total area of 

20,000  km2, permitting a semi-regional investigation of the thick (up to l .8km) 

evaporitic wedge. The sequential analysis of time-structure maps, isochron maps and 

seismic cross sections highlighted the main morphological and structural features 

characterizing the pre-, syn- and post-evaporitic Levant margin. This approach allowed 

for the recognition of the factors controlling evaporite distribution, and provided 

insights on the impact o f local vs. regional factors in governing the events linked to the 

Messinian Salinity Crisis in the region.

Two regional features have been recognized as the most significant controlling 

factors for the architecture of the Messinian evaporites. Firstly, a series of anticlines of 

the Syrian Arc foldbelt acted as a structural barrier indirectly governing the overall 

landward extension of the evaporites. Secondly, submarine canyons active in the area 

at least since the Oligocene (Afiq, El Arish and Ashdod Canyons) represented 

preferential sites of erosion and deposition of evaporites. Our results document 

therefore the importance of the deep-seated structures and relict drainage for the 

architecture o f the Messinian evaporites on the Levant margin. The new insights 

provided can be additionally used to infer the original depositional geometry of the 

evaporites in the study area and as an analogue in other Mediterranean areas where 3D 

seismic is not available yet and sub-salt imaging is limited.

1 Published as:
C. Bertoni & J . A. Cartwright, Controls on the basinwide architecture o f late Miocene 
(Messinian) evaporites on the Levant margin (Eastern Mediterranean). Sedimentary Geology, 
in press.
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2.2 Introduction
Understanding the controls on the architecture of the late Miocene (Messinian) 

evaporites in the Mediterranean basin is fundamental for developing a depositional 

model for this giant saline system. The Messinian evaporites are analogous in many 

respects to other extensively studied evaporitic systems worldwide, e.g. the Zechstein 

Basin (Upper Permian) o f the North Sea and Gulf Coast Basin (Callovian) of Gulf of 

Mexico (see Warren, 1999 for synthesis). The interest in these salt-bearing basins has 

been traditionally related to their applications to hydrocarbon exploration (Taylor, 

1998). Even though their structural setting is now well understood, the depositional 

context of giant evaporitic systems and in particular, of the Messinian evaporites, 

remains highly controversial (Kendall & Harwood, 1996; Warren, 1999; Hardie & 

Lowenstein, 2004).

The Messinian evaporites represent an unusual case amongst saline giants, as their 

deposition took place in a variety of tectonic settings but during the same, very short 

time interval. Previous regional studies based on outcrop, well and 2D seismic data 

have demonstrated that the Messinian evaporites were deposited in settings ranging 

from passive margins (Montadert et al., 1978) to foredeep systems (Roveri et al.,

2001). Therefore their stratigraphic architecture is particularly complex, as it depends 

upon a number o f different geological factors. The evaporites cropping out in the 

Mediterranean marginal basins have been extensively studied in the field and are well 

documented (see e.g. Schreiber et al., 1976; Rouchy, 1982; Butler et al., 1995; Clauzon 

et al., 1996; Riding et al., 1998; Krijgsman et al., 1999). Conversely, the knowledge of 

the correlative multi-kilometer thick offshore evaporites has so far been hampered by 

the paucity of coverage and resolution of 2D seismic data.

The Messinian evaporites in the Nile Cone and Levant areas (Fig. 2.1) have been 

the subject o f a number o f previous studies focused on the post-evaporitic structural 

deformation (Garfunkel & Almagor, 1987; Abdel Aal et al., 2000; Loncke, 2002). 

Other investigations in the area have dealt with the morphological and structural 

features influencing the depositional context of the evaporites (Mart, 1982; Garfunkel 

& Almagor, 1987; Druckman et al., 1995; Buchbinder and Zilberman, 1997). 

Nevertheless, the precise manner by which these features interacted to control the 

original thickness and facies distribution of the Messinian evaporites has not yet been
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clarified. In the study area, a series of possible interconnected factors controlling the 

distribution of the evaporites are identified. These factors are primarily represented by 

the Oligo-Miocene submarine canyons (Neev, 1979; Druckman et al., 1995; 

Buchbinder & Zilberman, 1997) and the basinal morphology during the Messinian 

Salinity Crisis (Mart & Ben Gai, 1982). These factors are in their turn connected to the 

development o f the Syrian Arc fold belt (Neev & Ben-Avraham, 1977) and to faults 

probably related to the Dead Sea system (Mart et al., 1978; Almagor & Garfunkel, 

1979).

In the present study of the Nile-Levant region, the integration of 2D and 3D seismic 

data has allowed the definition of the distribution and seismic facies of the basinwide 

Messinian evaporites in this region and the examination of how pre-existing morpho- 

structural factors controlled their thickness and facies variations. The location of the 

dataset is ideal for the detailed analysis of a critical area of the evaporitic system, i.e. 

the transition between the proximal and distal domains in a canyon setting. These data 

permitted the production of a more accurate sequential seismic-geomorphological 

analysis o f these deposits then has hitherto been possible to construct using 2D seismic 

data alone.

2.3 Geological setting
The Levant continental margin (Eastern Mediterranean) formed in the Early Mesozoic, 

when widespread rifting occurred in the entire Tethys area (Dewey et al., 1973; 

Garfunkel & Derin, 1984). This margin was characterized by shallow platform 

carbonates in the east and by deep-water carbonates on the slope and basin in the west 

(Bein & Gvirtzman, 1977; Druckman et al., 1995). Since Senonian times, the collision 

of the African- Arabian plate with the Eurasian plate resulted in the development of the 

Syrian Arc fold belt (Fig. 2.1; Neev & Ben Avraham, 1977; Eyal, 1996; Buchbinder & 

Zilberman, 1997; Garfunkel, 1998). The Syrian Arc folding continued at least until the 

end of the early Miocene (Tibor et al., 1992; Druckman et al., 1995; Eyal, 1996). In the 

slope area, the Senonian to Eocene represented a period of non-deposition and erosion, 

and submarine canyons developed after the Oligocene, namely the Afiq (Beer-Sheva), 

El Arish and Ashdod (Palmahim) Canyons (Druckman et al., 1995; Buchbinder & 

Zilberman, 1997). During the early Miocene the Syrian Arc began to emerge on the
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Levant margin (Buchbinder & Zilberman, 1997). The shelf area underwent localized 

tectonic uplift and became intermittently emergent (Buchbinder & Zilberman, 1997). 

As a result, the entire basin experienced an increase in clastic sediment supply 

(Druckman et al., 1995) and the submarine canyons were extended to the shelf area 

through headward erosion (Buchbinder & Zilberman, 1997).

At the end of the Miocene, the reduced connection of the Mediterranean basin from 

the world oceans led to the onset of the Messinian Salinity Crisis (MSC) (Hsu et al.,

1978). At this time, the Levant continental margin underwent extensive erosion and 

evaporite deposition (Gvirtzmann & Buchbinder, 1978; Druckman et al., 1995), a 

pattern common to most of the Mediterranean basin (Hsu et al., 1978). Thick 

evaporites (up to > 2 km) were deposited on the seafloor, while the continental margin 

was affected by erosion producing deeply incised valleys (Cita & Ryan, 1978; 

Garfunkel & Almagor, 1987). The Messinian evaporites do not crop out onland and 

have been studied solely on 2D seismic data on the continental slope and basin (e.g. 

Mart & Ben Gai, 1982; Garfunkel & Almagor, 1987), and in boreholes in the coastal 

plain and continental shelf area (e.g. Cohen, 1988; 1993; Druckman et al., 1995).

Since the beginning of the Pliocene, the end of the MSC led to the re-establishment 

o f normal marine conditions in the Mediterranean basin (Hsti et al., 1978). In the 

Levant region, a thick progradational-aggradational wedge of mainly Nile-derived 

siliciclastic sediments was deposited on the margin and in the basin (Tibor & Ben- 

Avraham, 1992; Druckman et al., 1995). The submarine canyons ceased their activity 

in the Pliocene and are now infilled and buried (Druckman et al., 1995; Buchbinder & 

Zilberman, 1997). The Pliocene to Recent sediments in large areas of the Levant 

margin and adjacent basin are affected by thin-skinned deformation, due to salt 

mobilization and shelf loading that caused the collapse and landward tilt of these 

deposits above the Messinian evaporites (Tibor & Ben-Avraham, 1992).

2.4 Methodology
The 2D seismic dataset used in this study (Fig. 2.1) consists o f 52 2D multichannel 

seismic profiles acquired in 1983, covering ca. 6,200 km. The seismic profiles are 

spaced approximately 10 by 10 km and trend parallel and perpendicular to the Levant 

margin. These data have been used for a semi-regional mapping of the depositional
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units analysed herein. The 3D seismic coverage (Fig. 2.1) is represented by three 

seismic surveys acquired in 2000. The dataset was migrated with a single pass 3D post­

stack time migration generating a seismic grid with grid cells of 12.5 by 12.5 m, with a 

sampling interval of 4 ms. Seismic data are SEG normal polarity, i.e. an increase in 

impedance is a positive amplitude (red colour in the original seismic sections). The 

data is processed to near zero phase.

The stratigraphic interval of study represents the upper 2.5-3.5 s o f the seismic 

data. The dominant frequency content o f the data varies with depth but it is 

approximately 50 Hz in the uppermost 2.5 seconds. The vertical and lateral resolution 

for this interval is estimated to be respectively 10 m and 40 m, using an average 

velocity value o f 2000  m/s, which is derived from velocity checkshot data in the 

available wells. Velocity of seismic waves within the Messinian evaporites is highly 

variable due to lithological differences, therefore an average velocity value o f4000 m/s 

± 500 m/s has been calculated here, based on well checkshot and petrophysical data. 

The dominant frequency in the Messinian evaporites is 30 Hz, giving a minimum 

resolution o f 50 m and maximum resolution o f 22.5 m. Wireline logs along with 

unpublished commercial stratigraphic reports for a set of exploration wells (Fig. 2.1) 

have been used for stratigraphic and lithological analysis, correlation of the 

depositional units and time to depth conversion. Throughout this paper seismic sections 

and maps are displayed in milliseconds (ms) two-way travel time (TWT). Depths and 

thicknesses are expressed in metres (m) where time-depth conversion was possible.

2.5 Seismic stratigraphy
The seismic-stratigraphic context o f the study area on the Levant margin has been 

divided into three informal seismic-stratigraphic units: Unit 1, Unit 2 and Unit 3 which 

have been defined on the basis of their seismic character and well calibration (Bertoni 

& Cartwright, 2005). Three seismic profiles (Figs. 2.2-2.4) oriented perpendicular and 

parallel to the continental margin in its proximal and distal parts illustrate the geometry 

of the seismic-stratigraphic units.
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Figure 2.2 Composite 3D seismic section perpendicular to the Levant margin (location in Fig. 2.5b), showing the general seismic- 
stratigraphic context o f the study area. On the vertical scale, TWT is two-way travel time expressed in seconds. T: localized truncation 
at the top o f  Unit 2 against Horizon N. B.S.: Base Senonian horizon. M: Horizon M. N: Horizon N. The deformation o f the Base 
Senonian horizon and overlying reflections in Unit 1 is linked to the compressional structures o f the Syrian arc foldbelt. Unit 2 is 
internally composed o f an alternation o f discernible seismic reflections (Horizons ME20-ME60) and transparent seismic facies. In the 
southeastern part o f the section, Unit 3 is crossed by extensional faults (black dashed lines) detaching at the top o f Unit 2.
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X  Afiq Canyon
N  -

Figure 2 J  3D seism ic section parallel to the Levant margin (location in Fig. 2.5b), showing 
the seism ic-stratigraphy o f  the proximal part o f  the study area. The stratigraphy is defined by 
correlation w ith nearby wells. The Oligo-M iocene A fiq Canyon exhibits a m ajor incisional 
phase cutting down to the Base Senonian horizon (B .S.), and a series o f  m inor incisional 
phases (black dashed lines) evidenced by truncation o f  seismic reflections. B.M.: Base 
M iocene horizon; L.E.: Late Eocene horizon. O ther acronym s are explained in Fig. 2.2.
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Figure 2.4 3D seismic section parallel to the Levant margin, showing the seismic-stratigraphic 
context o f  the distal part o f  the study area (location in Fig. 2.5b). The localized erosional 
truncation o f  the reflections at the top o f  Unit 1 against Horizon N is highlighted by arrows. The 
other acronym s are explained in Fig. 2.2.
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2.5.1 Unit 1 (Late Cretaceous -  late Miocene)

Unit l includes mainly deep-water clastic sediments deposited from the Late 

Cretaceous to the late Miocene (Figs. 2.2 and 2.3; unpublished well reports). The base 

of this unit, i.e. the Base Senonian horizon, and the overlying seismic reflections 

appear to be deformed by a series of compressional structures (Figs. 2.2 and 2.3), that 

are correlated to the Syrian Arc foldbelt (Fig.I; Neev & Ben Avraham, 1977). The 

upper part o f Unit l is characterised by a series o f prominent incisional features that cut 

down into the Cretaceous deposits (Fig. 2.3). These incisions are related to a system of 

submarine canyons (namely, the El Arish, Afiq and Ashdod Canyons) developed on 

the Levant margin since the Oligocene (Neev, I960; Druckman et al., 1995;

Buchbinder & Zilbermann, 1997). The Oligocene phase of submarine erosion on the 

Levant margin was linked to an increase in sediment supply caused by the emergence 

of the Arabian-Afhcan Craton prior to the rifting of the Red Sea (Druckman et al., 

1995). The Afiq Canyon is thought to have initiated and developed on the continental 

slope through slope instability and mass movement processes, resulting in late Miocene 

times in the capture of the shelf (Druckman et al., 1995). The structures o f the Syrian 

Arc foldbelt and the Oligo-Miocene submarine canyons might have played a 

significant role in controlling the accommodation space of the overlying deposits 

therefore they will be analysed in detail with respect to the distribution of the 

Messinian evaporites.

2.5.2 Unit 2 (Messinian evaporites)

Unit 2 represents the focus of this study. Seismic data calibrated with well data permit 

the correlation of this unit with the Mediterranean-wide Messinian evaporites and with 

the Mavqiim Formation on the Israeli mainland (Cohen, 1988; unpublished well 

reports). The base and top of Unit 2 (Figs. 2.2-2.4) are correlatable respectively to 

Horizons N and M, two regional seismic events traditionally defining the boundaries of 

the Messinian evaporites in the Mediterranean basin (Ryan et al., 1973). In the study 

area, Horizons N and M are continuous and high amplitude seismic reflections 

generated by the high acoustic impedance contrast between the evaporites and their 

bounding deep-water clastic sediments. The time-structure map of Horizon N obtained 

on the 2D seismic dataset is displayed in Fig. 2.5a. The contour lines define a surface

2-10



2-11

Palmahim

Ashdod

Erosional
truncation

K f  /  Tel Aviv

w  /W /  Palmahim

Ashdod

Structural
depression

Figure 2.5 Time-structure maps generated in the 2D seismic dataset. The spectrum bar is indicated in milliseconds TWT. (a) Timc-structure 
map o f Horizon N, with contour line spacing o f 50 ms. The morphology o f Horizon N in the central and distal part o f the area defines a 
surface gently sloping toward the northwest. The white dashed lines indicate the pattern o f erosional truncation o f the seismic reflections at the 
top o f Unit l against Horizon N. (b) Timc-structure map o f Horizon M, with contour lines spacing o f 100 ms. This surface appears irregular 
and nearly flat in its central part. The red dotted lines highlight the subcircular and composite elongated structural depressions described at the 
top o f  Unit 2.
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gently dipping to the northwest (Fig. 2.5a) with a maximum dip of 1-2°, measured 

taking the top o f Unit 2 as the regional reference datum. Horizon N is generally 

concordant with the seismic reflections at the top o f Unit 1 (Fig. 2.2). However, it is 

highly significant that over a sizeable area these reflections are truncated against 

Horizon N (Fig. 2.4). This erosional truncation defines an incisional pattern with 

concave upward geometry, characterized by a flat or curved base (Fig. 2.4). The 

incision is up to 300 m deep and 2 km wide (Fig. 2.4), and is expressed on the time- 

structure map of Horizon N as a localized landward bending of the contour lines in the 

central and southern part o f the study area (Fig. 2.5a). This bending can be clearly 

traced from the proximal (landward) to the distal (basinward) part of the time-structure 

map (Fig. 2.5a).

The time-structure map of the top of Unit 2, i.e. Horizon M, generated on 2D 

seismic data is displayed in Fig. 2.5b. This horizon exhibits an overall low angle and 

irregular geometry (Figs. 2.2 and 2.5b) and is clearly divergent from Horizon N (Fig. 

2.2). A series o f subcircular and composite structural depressions are observed at this 

surface in the proximal part of study area (Fig. 2.5b). Similar structural depressions at 

the top of the evaporitic unit have been previously described in the 3D seismic dataset, 

and interpreted as related to dissolution and/or withdrawal of the evaporites (Bertoni & 

Cartwright, 2005). By analogy with this interpretation, the depressions observed in Fig. 

2.5b are here attributed to post-depositional deformation of evaporites. In the proximal 

part of the study area, Unit 2 pinches out at depth of 2200 to 2500 ms, where Horizons 

M and N merge into a single positive high amplitude reflection (Figs. 2.2 and 2.3). The 

definition of this correlative seismic horizon is somewhat controversial for implications 

on process interpretation. For the purposes of this study, we follow the seismic 

definition of Horizon M as representing the Messinian erosional surface landward of 

the evaporite pinch-out (Ryan, 1978; Barber, 1981).

Unit 2 is internally composed of an alternation of discernible seismic reflections 

(Horizons ME20-ME60) and transparent seismic facies (Figs. 2.2 and 2.4). Horizons 

ME20-ME60 appear to be broadly concordant with Horizon N (Fig. 2.2). An 

alternation of transparent and layered seismic facies is commonly observed in 

evaporitic systems worldwide and has been generally linked to changes in lithology, 

i.e. to the alternation of bitterns, dolomite, anhydrite, halite and/or siliciclastic 

sediments (e.g. Upper Permian basin of the North Sea: Taylor, 1998; Birrel & Courtier,
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1999; Aptian evaporites of the Santos basin: Gamboa, 2004). By analogy with previous 

studies (Garfunkel & Almagor, 1987; Cohen, 1993) it is therefore suggested that the 

observed variation between transparent and layered seismic facies on the Levant 

margin is related to lithological and or diagenetic differences. A definitive 

interpretation of the seismic facies is not possible at this stage, and requires direct well 

calibration to resolve.

2.5.3 Unit 3 (Pliocene-Recent)

Unit 3 is bounded at the base by Horizon M and it is composed of a wedge of 

prograding and aggrading shelf to base-of-slope deposits, of Pliocene to recent age, 

divided in the Yafo (Plio-Pleistocene) and Herfer formations (Holocene) (unpublished 

well report; Frey-Martinez et al., 2005). This unit is composed mainly of sand in its 

basal part, and of hemipelagic turbiditic claystones, alternating with sandstones, 

siltstones and marls of outer neritic/middle bathyal environment in its upper part (Frey- 

Martinez et al., 2005). The reflections at the base of Unit 3 onlap and downlap against 

Horizon M in the proximal part of the study area (Fig. 2.2), whilst they are concordant 

to it in its distal part (Figs. 2.2 and 2.4).

Unit 3 is extensively affected by deformation mainly observed at the continental 

margin and close to the pinch-out of Unit 2 (Fig. 2.6). On this seismic section, the 

proximal part of Unit 3, at the base of the continental slope, is evidently affected by a 

system of folds and extensional faults detaching above or within Unit 2 (Fig. 2.6). 

These tectonic structures positively correlate with the deformation pattern of Horizon 

M, and have been related to thin-skinned gravitational tectonics linked to salt 

withdrawal (Almagor, 1984; Garfunkel & Almagor, 1987). The localized downwarping 

of Unit 3 reflections above the updip withdrawal edge of the salt edge of the evaporites 

could be either generated by downdip salt migration or by preferential dissolution at 

the margin of the salt sheet as commonly observed in evaporitic basins (Warren, 1999).

2.6 Interpretation of tectonic and topographic controls
The mapping undertaken on the 2D and 3D seismic datasets allows the recognition of 

the main morphological and structural features present on Horizons N and M. Due to 

the complex interaction among these features, a synopsis is needed in order to unify
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2.5Artefact

El Arish Canyon floor
LE^ 3.0

Removed evaporites

Messinian evaporites I I Restored top evaporites

Figure 2.6 (a) 3D seismic section across the Levant margin (location in Fig. 2.7b). The 
erosional truncation defining the floor o f  the El Arish Canyon (dotted line) is indicated by 
black arrows underneath the dotted line. The canyon floor is onlapped by the overlying canyon 
fill reflections (upper black arrows). The M essinian evaporites (Unit 2) pinch out toward the 
south-southeast and pass laterally to an erosional surface, truncating the underlying reflections 
at the top o f  Unit 1 (T, black arrows). The black dashed lines in Unit 3 indicate the main 
extcnsional faults and grabens related to thin-skinned gravitational tectonics. The apparent 
dow nwarping o f  seismic reflections underneath the main graben is interpreted as a seismic 
artefact, due to the seismic velocity contrast between the deep-water sediments o f  Unit 3 and 
the evaporites o f  Unit 2. The rectangular box highlights the interpreted geo-seismic section in 
Fig. 6b. O ther acronyms arc explained in Fig. 2.2. (b) Interpreted geo-seismic section corrected 
for the seismic artifacts. The black dashed line represents the projected elevation o f  the overall 
flat Florizon M along the undeformcd top basinal evaporite datum, up to the proximal area east 
o f  the boundary. The point where this projected line meets Horizon M is interpreted as the 
possible locus o f  evaporite pinch-out before deform ation (Fig. 2.6b). This gives an approximate 
indication o f the amount o f  evaporite removal due to post-depositional deformation (dark grey 
area: removed evaporites).
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this record and, ultimately, to understand the controlling factors on the distribution of 

the Messinian evaporites. This has been obtained by computing the present day time- 

thickness map o f the Messinian evaporites in the study area, relating it to the 

geomorphological and structural elements observed on the time-structure maps of 

Horizon N and M, and finally linking it to deep-seated features observed on seismic 

sections. The results are described in the next section and primarily illustrated by an 

isochron map of Unit 2 (Fig. 2.7) and by seismic and interpreted geo-seismic cross 

sections (Figs. 2.8 and 2.9).

2.6.1 Time-thickness of Unit 2

The present day time-thickness of the Messinian evaporites on the Levant margin is 

presented in Fig. 2.7. This isochron map has been generated by computing the time- 

thickness o f the seismic package comprised between Horizon N and M. On this map, 

the isochron contours show a general thickening o f the Messinian evaporites towards 

the northwest, from nearly 0 to 900 ms, corresponding to a maximum thickness of 

approximately 1800 m.

The area with preserved Messinian evaporites is divided into two regions based on 

their distinctive seismic expression, with a boundary shown in Fig. 2.7a as the limit 

between proximal and distal evaporites. The boundary exhibits a general northeast -  

southwest trend (Fig. 2.7a). Westward of this boundary, the Messinian evaporites vary 

regularly in time-thickness, increasing from 100 ms to 800/900 ms in the distal part of 

the study area (Fig. 2.7a). This is taken to indicate a westward depositional thickening 

of the evaporites. Eastward o f the boundary, the evaporites display a constant time- 

thickness comprised between 0 and 100 ms (Fig. 2.7a). This geometric relationship is 

suggestive of a pinch-out o f the thick distal wedge of the Messinian evaporites close to 

the position o f the boundary. The regular variation in thickness and in seismic 

character observed west and east of this boundary suggest differences in the 

depositional and/or erosional processes operating in the two areas.

In most large evaporite basins, the original pinch-out of the evaporites is generally 

difficult to define on seismic data, as it represents a preferential site for the detachment 

of overlying faults (see e.g. Jenyon, 1986; Warren, 1999). Consequently, it is often 

difficult to quantify the amount o f post-depositional deformation in the basin margin
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ASHDOD

Israel

ELARISH

Proximal-distal evaporite boundary

Localised evaporite thickening

Canyon tributariesELARISH

Figure 2.7 (a) Tim e-thickness (isochron) map o f  Unit 2 generated in the 2D seismic 
dataset, between Horizon N and M. show ing the regular thickening o f Unit B toward the 
northwest. Time-thickness is expressed in milliseconds (ms), with isochron contours 
spacing o f 50 ms. The w hite bold lines and arrows traces the localised thickening o f  the 
evaporites observed above or basinward o f the thalwegs o f  the El Arish-Afiq and Ashdod 
Canyons, (b) C lose-up o f  the isochron map o f  Unit 2 generated in the 3D seismic dataset. 
C anyon tributaries, suggested by the shorter w avelength em bayments in the distal-proximal 
evaporite boundary, are marked with white dotted lines.
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Figure 2.8 Seismic sections (location in Fig. 2.7) crossing the Oligo-M iocene submarine 
canyons, and showing the thickening o f  Unit 2 directly above the axis o f  the canyons, (a) 3D 
seism ic section across the El Arish-Afiq Canyon. The black dotted line indicates the main 
incisional phase o f  the canyon, (b) 2D seismic section across the Ashdod Canyon, showing two 
main erosional episodes (black dashed line) and truncation o f canyon fill against Horizon N 
(black arrows). P.F.: Palmahim fault. Other acronyms explained in Fig. 2.2.

2-17



Chapter Two Controls on architecture

TWT

-1.5
Present day seabed

Messinian
evaporites

- 2.0

—  Section 1
  Section 2
p.o.= pinch-out

Outliers of evaporites 
within the canyon

Evaporites 
outside the canyon

Figure 2.9 Idealized geo-seismic section across the Levant margin, obtained 
overlapping two seismic sections located respectively inside and outside the 
embayment above the El Arish Afiq Canyon (section 1 and 2 in Fig. 2.7a). Note that 
the evaporite pinch-out in the section outside the canyon (p.o.l) is located 
significantly basinward of the pinch-out in the section along the canyon axis (p.o.2).
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region. In order to overcome this problem we projected the elevation of Horizon M 

along the undeformed top basinal evaporite datum west of the present day boundary, to 

the proximal area east of the boundary, as shown on the seismic section displayed in 

Figs. 2.6a and 2.6b. The point where this projected line meets Horizon M is taken as 

the possible locus of evaporite pinch-out before deformation (Fig. 2.6b). This gives an 

approximate indication of the amount of evaporite removal due to post-depositional 

deformation (Fig. 2.6b) but it is of course subject to errors of projection, and assumes 

that the basinal evaporites have not lost volume. According to this analysis, the 

deformation observed at this boundary is localized and its impact on the original 

evaporite stratigraphy is clearly recognizable by the intense localization of extensional 

deformation of the post-evaporitic sequence (Fig. 2.6b).

Two major areas of focused landward bending of the boundary between proximal 

and distal evaporites are observed in the southern part o f the time-thickness map (Fig. 

2.7a). This trend is mostly evident on the isochron contours of value 0 to 400 ms (Fig. 

2.7a). This pattern indicates two areas of thickening of the Messinian evaporites along 

a northwest-southeast directed axis (Fig. 2.7a). Importantly, as clearly illustrated in 

Figs. 2.8a and b, the embayments and the relative thickening of the Messinian 

evaporites occur directly above the axis of the Oligo-Miocene submarine canyons. The 

southernmost embayment can be correlated with the occurrence of the El Arish and 

Afiq Canyons (Fig. 2.8a) while the embayment located ca. 30 km to the north is related 

to the Ashdod Canyon (Fig. 2.8b). A close-up of the isochron map of Unit 2 has been 

generated in the 3D seismic dataset (Fig. 2.7b). This map highlights the complexity and 

shorter wavelength embayments in the described boundary above the El Arish - Afiq 

Canyons (Fig. 2.7b) suggesting the existence of a series of canyon tributaries.

The relationship between the localized thickening of the evaporites and the 

underlying canyons is schematically illustrated in Fig. 2.9. The areas of evaporite 

thickening above the El Arish, Afiq and Ashdod Canyons (Fig. 2.8) can be defined as 

landward outliers o f the evaporites. An idealized section across the Levant margin is 

here used to illustrate this geometry (Fig. 2.9). This section is obtained by overlapping 

two seismic sections located respectively inside and outside the embayment above the 

El Arish - Afiq Canyon (location of the sections in Fig. 2.7a). It is significant that the 

pinch-out of the evaporites within the canyon (pinch-out 2 in Fig. 2.9) is located 

landward (>20 km) of the correlative evaporite pinch-out outside the canyon (pinch-out
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1 in Fig. 2.9). The canyon therefore represents a depocentre for the most inland 

extension of the distal evaporites. The same embayments are observed on the time- 

thickness map up to an isochron value of 800 ms, where they exhibit a more confined 

and subdued morphology (Fig. 2.7a). Thickening of the Messinian evaporites is 

observed on the time-thickness map also above the Ashdod Canyon (Fig. 2.7a) 

although it appears less defined than above the El Arish -  Afiq Canyon. In conclusion, 

the observed association between the embayments and the axes o f the El Arish, Afiq 

and Ashdod Canyons points to a direct control o f the canyon location on the erosional 

and depositional loci o f the Messinian evaporites up to the more distal part o f the study 

area.

2.6.2 Morpho-structural analysis

The observations made on the structural and morphological setting of the Messinian 

evaporites in the study area are summarized in a synoptic diagram (Fig. 2.10). This 

diagram facilitates the analysis of how the different features described herein may have 

controlled evaporite distribution. The morphological and structural features can be 

combined into two main groups:

•  Tectonic structures: folds and faults (Fig. 2.10);

•  Geomorphological features: canyons, marginal scarps, distal/proximal evaporite 

boundary (Fig. 2.10).

2 .6 .2 .1 Tectonic structures
Folds. Offshore Israel, two main structures related to the Syrian Arc foldbelt have been 

previously described: Offshore Structure No. 1 and No. 2 (OS1 and OS2 in Fig. 2.1; 

Neev & Ben Avraham, 1977). The location of the Syrian Arc anticlines analysed in our 

study approximately corresponds to these offshore structures. However, an exact 

correlation with them has not been possible because of the lack of precise location of 

the fold axes in previous studies. The Syrian Arc anticlines are best illustrated at the 

Base Senonian level (Figs. 2.1 la and b) although their activity is documented at least 

until the Miocene (Eyal, 1996; Fig. 2.11). The axes of the anticlines have been mapped 

across the seismic dataset and are highlighted on the synoptic diagram of Fig. 2.10, 

where they exhibit a northeast-southwest trend. They are spaced approximately 10-20 

km in the eastern and central part o f the study area.
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El Arish Canyon
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Geomorphological featuresTectonic structures
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F ig u re  2.10 Synoptic diagram  illustrating the m ain m orphological and structural 
features observed in the study area, and their relation to the distribution o f  the 
M essinian evaporites.
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WNW

Syrian Arc 
anticline

F igure  2.11 Seism ic sections across the Levant margin (location in Fig. 2.7). (a) 2D seismic 
section showing the Syrian Arc anticlines (S.A.), mostly evident at the Base Senonian horizon 
(B.S.). The crests o f  the hinge o f  successive anticlines deepen westwards, and Horizon M is 
generally concordant with them. The box highlights an area o f  concave upward erosional 
re lie f on Horizon M, directly above a major anticline o f  the Syrian Arc. This geometry is 
associated with onlap (black arrows) o f  the reflections at the base o f  Unit 3. m: multiple, 
other acronym s explained in Fig. 2.2. (b) 3D seismic section (location in Fig. 2.7) showing 
the detailed stratigraphy and deform ation above one o f  the Syrian arc anticlines. B.S.: Base 
Senonian Horizon; L.E.: Late Eocene Horizon; B.M.; Base Miocene Horizon (stratigraphy 
calibrated with well data). The Base Senonian Base M iocene seismic package clearly thins, 
onlaps and is upwarped against the Syrian Arc anticline, suggesting protracted activity o f the 
structure in this time-span. The m orphology o f Horizon M still reflects the influence o f the 
anticline, and is associated with low-angle truncation (T, black arrows) o f  the reflections at 
the top o f  Unit 1 against Horizon M.
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On seismic cross sections, the crests of the hinge of successive anticlines appear to 

deepen progressively westwards (Figs. 2.1 la). Consequently, these structures are best 

defined in the proximal part of the study area, where a distinct correlation is observed 

between their occurrence and structural highs and lows throughout Unit 1 (Figs. 2.1 la 

and b). Most o f these structural highs and lows are evident on Horizon M landward of 

the pinch-out of the Messinian evaporites (Figs. 2.1 la and b). They are associated with 

onlap and downlap termination of the seismic reflections at the base of Unit 3 and 

truncation of the reflections at the top of Unit 1 (Figs. 2.1 la and b). These observations 

point to the existence of a distinctly rugged surface pre-dating and influencing the 

deposition of the post-Unit 1 sediments.

Faults. Two northwest-southeast trending zones o f deformation are revealed by 

mapping of the southern part o f the study area (marked as P and G in Figs. 2.10 and 

2.12). The location o f the northern deformation zone and its geometry in cross section 

allows its correlation with the Palmahim Fault (Mart et al., 1978, Garfunkel et al.,

1979). This has been interpreted as a strike-slip fault zone associated with both 

compressional and extensional deformation. This fault zone has been active on the 

Levant margin since the late Miocene and is possibly related to the Dead Sea system, 

(Mart et al., 1978).

The southern deformation zone is not as clearly imaged (Fig. 2.12), and its 

interpretation is therefore somewhat ambiguous. Its location suggests a possible 

correlation with the Gaza structure described by Neev & Ben-Avraham (1977). The 

Gaza structure has been previously interpreted as either a trough (Neev & Ben- 

Avraham, 1977) or a strike-slip fault linked to the Dead Sea system (Mart et al., 1978). 

Our observations do not support either of the previous interpretations of this structure. 

Our mapping shows that both the Palmahim Fault and the Gaza structure are closely 

related to the location of the Ashdod and El Arish-Afiq Canyons (Fig. 2.12), and 

consequently, to the embayments and salients of the Messinian evaporites (Fig. 2.10). 

Despite the uncertain timing and definition of these structures, this spatial 

correspondence suggests a causal connection among the Palmahim and Gaza structures 

and the salients in the marginal trend of the evaporites, through the control of long- 

lived faults on the location of the Ashdod and El Arish-Afiq Canyons and 

consequently, on the depositional loci of the Messinian evaporites.
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F ig u re  2.12 2D  seism ic section (location in Fig. 2.10) illustrating the cross-sectional 
geom etry o f  the two zones o f  deform ation in the southern part o f  the study area. The 
Palm ahim  fault zone (P) is im aged as two m ain vertical fractures m arked by black dashed 
lines, nearby the Ashdod Canyon. These faults appear to displace the entire stratigraphic 
section from U nit 1 to Unit 3. The G aza structure (G?) is tentatively correlated with a 
deform ation zone displacing the Base Senonian horizon. This structure is m ostly evident at 
the Syrian Arc anticline located below  the Afiq Canyon. For explanation o f  the other 
acronym s see Figs. 2.2 and 2.11.
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2.6.2.2 Geomorphological features
Canyons. Confined areas of incision and downcutting of Horizon N into the seismic 

reflections at the top of Unit 1 have been observed in cross section (e.g. Fig. 2.4) and 

are evidenced by the landward bending of contour lines on the time-structure map of 

Horizon N (Fig. 2.5a). The incision is expressed in cross section by erosional 

truncation at the base of the Messinian evaporites, both in the distal (Fig. 2.4) or in the 

proximal part (Figs. 2.6 and 2.13) of the study area. The incision defines a concave- 

upward geometry, up to 300 m deep and 2 km wide (Fig. 2.4). In plan view, it defines a 

ribbon-shaped pattern that is strongly aligned in a north-northwest direction and 

crosses almost continuously the southern part o f the study area for more than 100 km 

(Fig. 2.10).

From the mapped geometry and morphology in cross section, we interpret the 

incisional features as canyons developed at the base o f the Messinian evaporites. On 

seismic sections crossing the proximal part of the Levant margin (Figs. 2.8 and 2.13), 

these canyons occur directly above the axes of the Ashdod, El Arish and Afiq Canyons. 

Therefore, we interpret the canyons on the time-structure map of Horizon N as the 

expression of the Oligo-Miocene Ashdod, El Arish and Afiq Canyons at this 

stratigraphic level. The incisional pattern in the distal area represents the basinward 

prosecution of the thalwegs of the El Arish, Afiq, Ashdod Canyons (Fig. 2.10) and is 

traced on the basis of the landward bending of contour lines of the time-structure map 

of Horizon N (Fig. 2.5). Importantly, this indicates that the canyons at the base of the 

Messinian evaporites extend further basinward than the Oligo-Miocene submarine 

canyons, documenting active canyon erosion up to the distal part of study area at the 

stratigraphic level o f Horizon N. No similar incisional features are observed internally 

in the evaporitic unit or at the top of the Messinian evaporites, pointing to a change of 

the erosional patterns in the later stages of the MSC.

Messinian scarps. The upslope part of Horizon M landward of the evaporite pinch-out 

presents an irregular erosional present-day topography (Fig. 2.14). This Messinian 

erosional surface is characterized by a series of well-defined slope breaks (MSI to 

MS3 in Fig. 2.14), between a steeply sloping and a low angle surface. The most 

prominent of these features (MSI) is located in the eastern part of the seismic section 

displayed in Fig. 2.14. In this area, the gentle slope sector is defined by a surface 

dipping at an angle of approximately 2° and is associated with erosional truncation of
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El Arish - Afiq 
Canyon

Figure 2.13 (a) 3D seismic section along the proxim al part o f  the cvaporitic system on the 
Levant margin, and (b) interpretation (location in Fig. 2.10). The black dashed line on the 
right side o f  the section shows the main incision o f  the El Arish Afiq Canyon, associated 
w ith erosional truncation pattern o f  the underlying seism ic reflections. Erosional truncation 
is also observed on the reflections at the top o f  Unit 1 against Horizon N (shaded grey 
areas).
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TWT

Figure 2.14 2D seism ic cross section (location in Fig. 2.10) show ing the geom etry o f Horizon 
M in the proxim al part o f  the study area. A w ell-defined slope break (M S I) between a steeply 
sloping and a low -angle surface is associated with erosional truncation at the top o f  Unit 1 and 
dow nlap and onlap term ination o f  reflections at the base o f  Unit 3 against Horizon M (black 
arrows). MS2 and MS3 present sim ilar characteristics. The black dashed lines indicate faults 
w ithin Unit 3. For explanation o f  other acronym s see Figs. 2.2 and 2.11. The area o f  concave 
upward erosional re lie f com prised betw een M SI and MS2 occurs directly above a tributary’ o f  
the Ashdod C anyon (see location in Fig. 2.10) and is interpreted as a valley incision.
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the underlying reflections within the upper part of Unit 1. This surface is downlapped 

by the overlying basal seismic reflections of Unit 3 (Fig. 2.14). The steep slope sector 

is defined by a surface dipping at an angle of 9-10°.

A post-Messinian phase of folding and basinward tilting of the Levant margin 

might have locally modified the original depositional angles. This is suggested by the 

concordance of Horizon M with the folded high-amplitude reflections at the base of 

Unit 2 (Fig. 2.11). The steeply sloping sector west of MSI matches with the NW flank 

of the underlying Syrian Arc anticline (Fig. 2.14), suggesting a structural control (e.g. 

through relict topography) on the dip of the Horizon M in this area. The area between 

MSI and MS2 is characterized by a small-scale concave-upward feature (V.I. in Fig. 

2.14) superimposed on the relict structurally depressed area. This feature has been 

interpreted as a channel of probable subaerial origin by Ben-Gai et al. (2005). Based on 

its location (Fig. 2.10) we interpret that this feature is generated by localised incision of 

a tributary of the Ashdod Canyon.

Similar slope breaks are observed basinward from MSI, and named MS2 and MS3, 

although to some extent they appear less defined than MS 1. Evidence of erosional 

truncation at Horizon M underneath these features is difficult to define on the 2D 

seismic sections and it is more clearly observed on the 3D seismic sections (e.g. Figs. 

2.6 and 2.11). The lack of obvious truncation in parts of 2D seismic data is probably 

due to poorer vertical resolution of the 2D data compared to the 3D data, and to post- 

Messinian deformation. However, the abrupt changes in topographic gradient 

associated with MSI to MS3 and the observed related erosional truncation are 

evidently restricted to the stratigraphic level of Horizon M (Fig. 2.14); therefore being 

interpreted as formed during the MSC. As observed on different seismic cross sections, 

each of the slope breaks exhibits a considerable lateral continuity and it occurs across 

the study area at an approximately constant depth. The slope breaks have been mapped 

across the seismic dataset and they are oriented in a general northeast - southwest 

direction, following the contour lines of the Messinian erosional surface (Fig. 2.10).

Based on the characteristics of the observed morphological features we interpret the 

steep sloping sectors as erosional scarps. The variable elevation of the slope breaks 

could indicate different erosional stages during the MSC. This could be explained by 

vertical tectonic movement occurring during the MSC. However, the large difference 

in elevation from innermost to outermost scarps (>1000 m) far exceeds the expected
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values of differential subsidence and/or uplift of the Levant margin at that time (Tibor 

et al., 1992). Therefore we interpret that it is more plausible that the location of the 

scarps was controlled by changes in the base level o f erosion, documenting repeated 

erosional phases on the Levant margin during the MSC.

Distal/proximal evaporite boundary. The trend of the boundary between distal and 

proximal evaporites is approximately northwest -  southeast, therefore parallel to the 

regional trend of the structures of the Syrian Arc foldbelt and to the erosional scarps 

(Fig. 2.10). The difference between the present day and original boundary has been 

calculated where possible in the study area using the methodology displayed in Fig. 

2.6b. The result is marked in the synoptic diagram with a black dotted line indicating 

the expected original position of the boundary, before post-depositional deformation 

(Fig. 2.10). The amount o f post-Messinian evaporite deformation can be estimated 

analysing the marginal subcircular and elongated depressions at the top of Unit 2, 

landward of the proximal/distal evaporites boundary (Fig. 2.10). The location of these 

depressions suggests that the difference observed between the original and present day 

evaporite pinch-out is due to the same causal mechanism of the depressions, i.e. 

downdip migration or dissolution of the evaporites.

2.7 Discussion

2.7.1 Summary of the main observations

The key observations presented in the previous sections are summarized below:

•  The Messinian evaporites on the Levant margin are seismically defined as a wedge 

up to l .8 km thick in the basin, thinning eastward and extending landward into a 

major erosional surface.

•  A system of canyons has been recognized at the base of the Messinian evaporites 

(Horizon N). They are up to 300 m deep and 2 km wide, and extend from the 

proximal to the distal part o f the study area (more than 100 km basinward of the 

pinch-out o f the Messinian evaporites). Importantly, these basal Messinian canyons 

developed directly above the mapped Oligo-Miocene El Arish, Afiq and Ashdod 

submarine canyons. Conversely, no evidence of similar canyon incision has been 

observed within or at the top of the Messinian evaporites.
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•  The time-thickness map of the Messinian evaporites reveals that their locus of 

pinch-out is regularly trending to the northeast - southwest, broadly parallel to the 

underlying compressional structures of the Syrian Arc foldbelt. Remarkably, a 

series o f localized embayments in the isochron contours documents the thickening 

o f the evaporites directly above the thalweg o f the El Arish, Afiq and Ashdod 

Canyons.

•  The Messinian erosional surface landward of the evaporite pinch-out (Horizon M) 

is morphologically characterized by a series o f slope breaks, between a steeply 

sloping and a low angle surface, dipping basinward. The steeply sloping parts are 

associated with erosional truncation of the underlying seismic reflections, and are 

interpreted as scarps formed during the MSC.

The observation of these different morpho-structural elements poses two fundamental 

questions regarding the structural and depositional setting of the Messinian evaporites,

i.e.: (1) what controlled the formation of the linear edge of the Messinian evaporites, 

and (2 ) what controlled the formation of the embayments in the distribution of the 

evaporites. The following discussion will attempt to answer these questions, in relation 

to the timing o f canyon development and to the paleogeography of the basin.

2.7.2 Linear edge of evaporites

Three main controlling factors can be invoked to explain the linear morphology of the 

edge of the Messinian evaporitic basin in the study area: relict topography (e.g. pre- 

evaporitic shelf margin), tectonics and/or erosional or depositional processes inherent 

to the MSC. In the study area, the trend of the proximal/distal evaporite boundary is 

parallel to the direction and coincides with the location of the structural highs related to 

the Syrian Arc foldbelt (Fig. 2.10).

Previous studies have suggested that the structures o f the Syrian Arc foldbelt 

played a significant role in controlling the pre-evaporitic structural setting of the 

Levant margin since the Late Cretaceous (Neev & Ben-Avraham, 1977). Our mapping 

confirms that Syrian Arc anticlines in Unit 1 controlled the geometry of the Oligo- 

Miocene clastic wedge, being active during its deposition. According to Druckman et 

al. (1995), the pre-evaporitic physiography of the Levant margin was characterized by 

a drowned Oligo-Miocene shelf edge nearly parallel to the present-day shelf edge and 

located up to 20 km inland from it. In the study area, we have no morphological
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evidence so far o f the position of the shelf edge immediately preceding the MSC. 

However, an approximate indication of the pre-evaporitic shelf location can be 

obtained from well data, which documents that the edge of the evaporites directly 

overlies the Oligo-Miocene slope sediments, therefore it is consistent with the 

paleogeography described by Druckman et al. (1995).

The most recent tectonic deformation observed in the study area suggests that thin- 

skinned gravitational tectonics accounts for the differences observed between original 

and present-day pinch-out of the Messinian evaporites in the proximal part of the 

evaporitic system (Fig. 2.6b). Preferential dissolution of the updip edge of the 

evaporites could also have contributed to the post-depositional deformation of the 

original pinch-out of the evaporites. A gravitational tectonic modification of the 

original depositional edges is ubiquitous amongst the world major evaporitic basins 

and the recognition of a similar structural response in the Levant margin is therefore 

expected. Previous authors have described the effects of this gravitational tectonic 

modification along the entire Israeli margin (Garfunkel & Almagor, 1987; Tibor & 

Ben-Avraham, 1992; Grandmann et al., 2005). Based on our data and on the 

comparison with nearby areas, we consider that gravitational tectonics and possibly 

dissolution-driven withdrawal shifted the position of the original evaporite pinch-out a 

few kilometres basinward of the original location, without modifying significantly the 

regional trend of the original evaporite pinch-out.

In conclusion, we suggest that the location of the Syrian Arc structures exerted 

controlled on the Oligo-Miocene physiography and subsequently on the distribution of 

the Messinian evaporites, providing accommodation for the evaporites and structurally 

controlling the linear edge of the evaporites through the relict topography of the Oligo- 

Miocene slope system basin.

2.7.3 Salients and embayments

The link between the salients and embayments of the Messinian evaporites and the 

location of the El Arish, Afiq and Ashdod Canyons, is clear evidence for the role of the 

canyons in controlling the architecture of the evaporitic system. The long-lived nature 

of these Oligo-Miocene submarine canyons has been recognized in previous studies 

(Druckman et al., 1995). A control by the canyons on evaporite deposition has been 

suggested for the Afiq Canyon (Neev, 1960; Druckman et al., 1995), but has not been
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previously extended to the basinal part of the system, and its wider implications have 

not therefore been entirely appreciated. According to our observations, the embayments 

and salients observed in the marginal part of the study area could be explained with 

three different depositional architectures, as illustrated in the schematic diagram of Fig. 

2.15:

1. Pre-evaporitic submarine canyon completely filled, successively re-excavated at 

the onset of the MSC (Fig. 2.15a).

2. Pre-evaporitic submarine canyon incompletely filled, and Messinian evaporites 

filling (completely or in part) the relict topography (Fig. 2.15b).

3. A combination of the two previous scenarios (Fig. 2.15c).

The canyons described at the base of the Messinian evaporites (Fig. 2.10) provide firm 

evidence that the Ashdod, El Arish and Afiq Canyons were actively eroding during the 

early stages of the MSC. Incision occurs only in the central part of the embayments 

defined in the isopach map of the Messinian evaporites (Figs. 2.7 and 2.13). Therefore 

the more likely explanation for the embayments and salients of the Messinian 

evaporites is that the evaporites fill a relict topographic depression, with incision 

occurring only in a limited and central part of it (Fig. 2.15c). In the more distal part of 

the study area, beyond the distal reaches of the Oligo-Miocene submarine canyons 

(Fig. 2.4), a different depositional architecture is envisaged, where incision at the base 

of the evaporites excavated unconfined Oligo-Miocene deep-water deposits (Fig. 

2.15d). Based on this geometry, we propose that this incisional pattern at the base of 

the Messinian evaporites might represent an increased erosional activity of the canyons 

related to the sea-level lowering at the early stages of the MSC, documented in other 

areas of the Mediterranean basin (Barber, 1981; Riding et al., 1998; Lofi et al., 2005).

2.7.4 Implications for the MSC

The comparison of our study area with other Messinian evaporitic systems in the 

Mediterranean basin points to significant differences in the geometry of the evaporitic 

unit, and therefore possible substantial variations in the erosional and depositional 

processes occurring during the MSC. An important matter of debate in the entire 

Mediterranean basin is the correlation of the marginal erosional surface with the 

seismic reflectors defining the base (Horizon N) or the top (Horizon M) of the 

Messinian evaporites. Erosional processes at the base of the Messinian evaporites,
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CanyonEvaporites

Figure 2.15 Schematic cartoon illustrating the possible geometries of the base of 
the Messinian evaporites (Horizon N) and modality of infill in relation with the 
underlying canyon system, (a) Pre-evaporitic submarine canyon completely 
filled, successively re-excavated at the onset of the MSC; (b) Pre-evaporitic 
submarine canyon incompletely filled, Messinian evaporite filling the relict 
topography; (c) A combination of the two previous scenarios, which is the most 
likely geometry for the deposits in the study area; (d) the distal scenario, with 
unconfined pre-evaporitic deep-basin sediments excavated by the canyons at 
Horizon N, at the basinward prosecution of the Oligo-Miocene submarine 
canyons.
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associated with the development of regional unconformities, have been documented in 

many areas of the Mediterranean margins.

The erosional surface observed in the proximal part of the Messinian evaporitic 

system has been generally correlated to the base of the distal Messinian evaporites (e.g. 

Ryan, 1978; Guennoc et al., 2000) even if different erosional phases have been 

recognized within or at the top of the evaporites (e.g. Cita et al., 1978; Escutia & 

Maldonado, 1992). In the study area, the seismic-morphological analysis of the 

canyons and of the marginal Messinian scarps can be used to highlight and differentiate 

successive erosional phases. Clear indication of erosional activity linked to the canyons 

is observed in the early stages of the MSC. Conversely, the absence of incision in the 

late stages o f the MSC reflects the reduced effect o f the canyons as erosional focus, and 

could indicate the prevalence of an infill or bypass phase of the canyon during their 

deposition, following the basal erosion. The final expression of the canyon system in 

the Early Pliocene basin, after the end of the MSC, is dominated by an infill and bypass 

stage (Frey-Martinez et al., in press), i.e. sedimentation prevailed on the creation of 

accommodation. The canyon setting in the Levant margin bears similarities with the 

Messinian canyons in the Nile area (Rizzini et al., 1978; Barber, 1981). Conversely, it 

is strikingly different from other canyon systems described in the Western 

Mediterranean (e.g. Clauzon, 1982) where no direct evidence of pre-Messinian incision 

is described (Lofi et al., 2005). This interpretation could however be due to the paucity 

o f record from the pre-MSC records, the base of the Messinian evaporites representing 

generally the acoustic basement.

Our mapping of a series o f Messinian marginal scarps at discrete and constant 

elevations across the study area (Fig. 2.10) points significantly to the occurrence of 

distinct (and possibly rapid) base level changes during the MSC. The geometry of the 

Messinian scarps and of the adjacent gently sloping surfaces is similar to sea cliffs and 

shore platforms observed in shallow marine settings resulting from wave abrasion at 

the sea cliff base (Huggett, 2003). If this interpretation is correct, the gently sloping 

part of Horizon M must therefore correspond to a shore platform. In this case, the 

location of the hinge point between the scarp and shore platform could indicate the sea- 

level position during the different stages of the MSC. Analogue features have been 

described in the Nile Delta area as terraces parallel to the strike of the former Tortonian 

Nile delta (Barber, 1981). These features are interpreted as regressive terraces
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indicating still-stand of base level and related to the northwest migration of the 

strandline during the fall o f the Messinian sea level (Barber, 1981). A series of breaks 

of gradient have been also observed in longitudinal profiles o f Messinian canyons in 

the Gulf o f Lions in the Western Mediterranean (Lofi et al., 2005). These features are 

interpreted as related to successive sea-level falls leading to adjustment o f river base 

level during the 'desiccation’ phase of the MSC (Lofi et al., 2005).

Despite the uncertainty of the relative timing of the erosional events in the study 

area, the observation of these scarps and platforms on the Levant margin documents 

repeated phases of base level change during the MSC and provides an important 

paleogeographic boundary at the transition between subaerial and submarine erosional 

processes during the MSC. The direct evidence of protracted and multiple erosional 

events during the MSC suggest that Messinian erosional surface is likely to be of 

compound origin.

In conclusion, our data support the existence o f common large-scale depositional 

processes in the Mediterranean margins during the MSC, but also advocate a variable 

modality and controls on the distribution of the Messinian evaporites. This variability 

could depend on the structural setting of the area analysed and possibly on the 

existence of a series of separate evaporitic sub-basins in the Western and Eastern 

Mediterranean, in which paleogeographic divides played an important role, as initially 

suggested by Montadert et al. (1978).

2.8 Summary and conclusions
The pre-evaporitic setting of the Levant margin is dominated by a series of structural 

highs related to anticlines of the Syrian Arc foldbelt. The development o f these 

anticlines represented the main factor controlling the pre-evaporitic basin physiography 

and consequently, the differential accommodation space and the linear NE-SW directed 

edge of the Messinian evaporitic system. The influence of the anticlines is marked in 

the marginal area of the Levant Basin, while it is more subdued in the distal area, where 

the depocentres are mainly controlled by the regional post- rift subsidence pattern.

Our results document the importance of canyon systems for the understanding of 

the depositional and erosional processes active during the MSC, especially with regards 

to thickness variations of the proximal and distal part o f the evaporitic wedge. In the
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Levant area, the Oligo-Miocene submarine canyon systems (Afiq, El Arish and Ashdod 

Canyons) acted as preferential sites o f erosion in the earliest stages of the MSC up to 

the Levant Basin and mainly as depocentres in the later stages of the MSC. This created 

the locally irregular geometry of the edge of the evaporites, characterized by major 

embayments and landward outliers of evaporites.

Additionally, our research provides evidence for the structural and architectural 

difference between the Levant area and the other Mediterranean margins during the 

development of the MSC. This refers in particular to the influence of inherited canyon 

patterns and to the internal stratigraphy of the evaporitic wedge. However, the main 

analogies observed in the depositional and erosional patterns mean that the study area 

in the Eastern Mediterranean can be used as an example in other Mediterranean areas 

where 3D seismic is not available yet and sub-salt imaging is limited. Further research 

is needed in order to understand the timing and the subaerial or submarine nature of the 

erosional surfaces observed at the top and the base of the Messinian evaporitic system.
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Chapter Three: Clastic systems in the Messinian 
evaporites1

3.1 Abstract
This study aimed at investigating evidence for the presence of clastic sediments at the 

base o f the distal Messinian evaporites in the Levant region (Eastern Mediterranean). 

Seismic geomorphological analysis o f 3D seismic data clearly reveals the occurrence 

of a well-imaged clastic body composed of two closely spaced channel-mouth lobe 

deposits, within the basal part of the Messinian evaporites. Comparable seismic facies 

observed at the same stratigraphic level elsewhere in the study area suggest the 

occurrence of additional clastic deposits and allows their correlation with a long-lived 

system of canyons (i.e. the El Arish and Afiq Canyons). Their seismic characteristics 

and the analogy with other coeval deposits in the Mediterranean Basin suggests a 

submarine (shallow or deep-water) depositional setting for the clastic bodies. 

Knowledge of the occurrence and distribution of these clastic deposits has considerable 

significance for the interpretation of the depositional environment of this basinwide 

evaporitic system.

1 Published as:
C. Bertoni &.J. A. Cartwright, Clastic depositional systems at the base o f the Messinian (late 
Miocene) evaporitic series o f the Eastern Mediterranean: Evidence from 3D seismic data. 
Submitted to the Special Publications, Geological Society o f London, in press.
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3.2 Introduction
The presence of clastic sediments within the Messinian (late Miocene) evaporites in the 

Mediterranean Basin represents an ongoing topic o f debate since the discovery of this 

giant evaporitic system. Clastic evaporites interbedded with in situ gypsum, halite and 

anhydrite series have been recorded in outcrop in parts o f the Mediterranean area 

(Ricci Lucchi, 1973; Schreiber et al., 1976; Vai & Ricci Lucchi, 1977; Roveri et al., 

2001, 2003). Clastic deposits (mainly continental-derived) have also been observed on 

2D seismic and well data on the margins of the Messinian evaporitic basin (Barber, 

1981; Savoye & Piper, 1991; Lofi et al., 2005). Conversely, the occurrence of clastic 

sediments within the thick distal evaporitic series and their location within a subaerial 

or submarine depositional setting are not yet conclusively demonstrated (see e.g. 

Garfunkel & Almagor, 1987; Lofi et al., 2005).

Recently acquired high-quality 3D seismic data from the Levant region (Eastern 

Mediterranean, Fig. 3.1) permit the application of seismic geomorphology techniques 

(Posamentier, 2003) to the solution of this scientific problem. Detailed horizon 

mapping and areal analysis o f seismic attributes (e.g. seismic amplitude) reveal the 

presence o f a high-amplitude body within the lower part o f the Messinian evaporites. 

The morphology and seismic character o f this body allows its interpretation as 

composed o f two channel-fed clastic lobes, similar in all aspects to other examples 

recorded worldwide (e.g. Weimer & Link, 1991; Collison, 1999). Comparable seismic 

facies observed at the same stratigraphic level in the study area suggest the occurrence 

of additional clastic bodies and allow their correlation with a long-lived system of 

canyons on the Levant continental margin (i.e. the El Arish and Afiq Canyons, 

Druckman et al., 1995).

The main aims o f this study are to report the observation of clastic sedimentary 

bodies, to argue their origin as submarine or subaerial systems, and to discuss the 

implications of this discovery for the interpretation of clastic sediment fairways during 

the deposition o f the Messinian evaporites. Ultimately, this study documents the 

predictive importance of 3D seismic analysis for future scientific investigations (e.g. 

ultra-deep drilling of the Messinian evaporites) aiming to understand the depositional 

environment o f this giant evaporitic system.
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3.3 Geological setting
The Levant region is located in the SE part o f the Mediterranean Sea (Fig. 3.1). Since 

the Oligocene, this area has been characterized by the deposition of large volumes of 

siliciclastic sediments on the continental margin and basin. The shelf and slope areas 

were incised by submarine canyons, primarily the Afiq, El Arish and Ashdod Canyons 

(Fig. 3.1, Neev, 1979; Druckman et al., 1995).

Normal deep-marine deposition terminated abruptly at the end of the Miocene, 

during the Messinian Salinity Crisis (MSC), in response to the restriction of seawater 

supply from the Atlantic Ocean (Hsu et al., 1978). Within a time-span of significantly 

less than I My (Clauzon et al., 1996; Krijgsman et al., 1999) a thick wedge of 

evaporites was deposited on the Levant continental margin and basin, where it reaches 

a thickness of 2 km (Garfunkel & Almagor, 1987). Previous studies document the 

activity o f the submarine canyons before, during and after the MSC in the study area 

(Buchbinder& Zilbermann, 1978; Neev, 1979; Druckman et al., 1995). However, the 

specific role o f the canyons as conduits for the delivery of clastic sediments to the 

distal part o f the Messinian evaporitic basin has not yet been addressed.

Since the Pliocene, the restoration of deep-marine conditions led to the rebuilding 

of the marine siliciclastic wedge on the Levant continental margin (Garfunkel & 

Almagor, 1985; Tibor et al., 1992). During the early Pliocene, a turbiditic basin floor 

fan (Yafo Sand Member) was deposited within the Afiq and El Arish submarine 

canyons, that are now infilled and buried under > 1 km of overburden (Druckman et 

al., 1995; Frey-Martinez et al., in press).

3.4 Seismic analysis
The 3D seismic data analysed in this study were acquired in 2000, over an area of 

approximately 6000 km2 offshore Israel and the Gaza Strip (Fig. 3.1). These data were 

migrated after stacking to generate a seismic grid with cells o f 12.5 by 12.5 m. The 

general stratigraphic context of the Levant continental margin is displayed with a 

representative interpreted seismic line in Fig. 3.2, with the focus of this paper being
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Levant Basin Levant continental margin TWT

NW SE
0.5

lio-Pleistocene 1.0

Seabed
1.5

2.0YSI

2.5
M essinian evaporites

3.0

Oligo-Miocerv
C retaceous - E ocerie

3.5
^  Km

F ig u re  3.2 Schem atic geo-scism ic section showing the seism ic-stratigraphic context o f  the 
study area in the Levant Basin and continental m argin (see text for detailed explanation). N = 
Horizon N; M= H orizon M; YSM = Yafo Sand M em ber (indicated by the dotted fill pattern). 
The marginal faults in the Plio-Plcistoccne unit arc m arked by subvertical dashed lines. The 
crossover point o f  Fig. 3.3 is also indicated. On the vertical scale, TW T is the two-way travel 
tim e expressed in seconds.
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on the Messinian evaporites. The base and the top o f this seismic unit are represented 

by respectively, Horizon N and M (Fig. 3.2), i.e. two distinct seismic events that are 

regionally correctable across the Mediterranean Basin (Hsu et al., 1973). In the study 

area, Horizon M represents a high-amplitude positive seismic reflection generated by 

the acoustic impedance contrast between the deep-marine siliciclastic sediments of the 

PIio-Pleistocene unit and the underlying Messinian evaporites (Figs. 3.3 and 3.4). 

Horizon N represents a high-amplitude negative seismic reflection at the transition 

between the Messinian evaporites and the underlying siliciclastic sediments of the 

Oligo-Miocene unit (Figs. 3.3 and 3.4). An average velocity o f 4000 m/s has been 

applied for the time-depth conversion of the evaporitic unit. This is an approximate 

value mainly based on previous studies o f the distal Messinian evaporites in the area 

(e.g. Garfunkel & Almagor, 1987), and on wireline log measurements coupled with 

boreholes cuttings available for the upper part o f the landward evaporites (Bertoni & 

Cartwright, 2005). The thickness o f the Messinian evaporites spans from almost 2 km 

in the Levant Basin to a few tens o f meters towards the continental margin, where 

Horizon N and M merge into a single seismic horizon (Fig. 3.4).

The distal Messinian evaporites are seismically composed of alternating transparent 

facies and continuous seismic reflections (Horizons ME20 to ME50 in Fig. 3.3). In the 

lower part o f this unit, a series o f high-amplitude seismic reflections are observed 

above Horizon N (Fig. 3.4). These reflections are correctable laterally for up to 6 km 

(Figs. 3.5 and 3.6). The areal extent of these high-amplitude events is clearly imaged 

by computing the maximum seismic amplitudes over a 120 ms TWT (two-way travel 

time) window above Horizon N. The resulting image (Fig. 3.7) shows that they 

correlate with a series of km-scale high-amplitude bodies with a rather irregular and 

elongated ellipsoidal morphology. These bodies are located basinward of the pinch-out 

o f the Messinian evaporites and fully confined within this unit (Fig. 3.7).

3.4.1 Detailed 3D seismic description of HAB1

The best-imaged high-amplitude body is HABl. Its geometry in cross-section and in 

plan view is described in detail with reference to a series o f seismic sections, time- 

structure maps and maximum amplitude window extractions (Figs. 3.8 to 3.12). On 

seismic sections, HABl is bounded at the top by Horizon ME2, represented by a high- 

amplitude negative seismic reflection (Fig. 3.8). The zero-phase seismic polarity and
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F igure  3 3  Seism ic section crossing the study area in a NE-SW  direction (location in 
Fig. 3.1). The stratigraphy o f  the distal part o f  the M essinian evaporites is displayed. 
In this area the M essinian evaporites are seism ically com posed o f transparent facies 
alternating with m edium  to low am plitude seism ic reflections (Horizon M E20 to 
M E50).
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K . Pho-Pleistocene

Messinian evaporites

Oliqo-Miocene I
. -k,_____   i f f 7 —

Figure 3.4 Seism ic section crossing the study area in a NW-SE direction (see location in Fig. 
3.7) displaying the stratigraphy o f  the M essinian evaporites from their proximal (SE) to their 
distal (N W ) part. Note that the M essinian evaporites form in the study area a wedge from 1.8 
km thick in the distal part to a few tens o f  m eters towards the SE, where Horizon N and M 
merge into a single seism ic horizon.
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ME35 ME20

ME20

I I Messinian evaporites 

□  Yafo Sand Member

Figure 3.5 Seism ic section crossing the study area in a NW -SE direction, and b) 
interpretation (see location in Fig. 3.7).
a) C lose-up o f  the M essinian evaporites as displayed in the seism ic section in Fig. 3.4. In the 
lower part o f  this unit, directly above Horizon N, the high-am plitude seismic reflections 
described in the text are indicated by the black arrows.
b) Line-draw ing o f  the seism ic section, with interpretation o f  faults and term inations o f  
seism ic reflections (indicated by black arrows).
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TWT
Fig. 5

2.75

ME20

-Top YSM--------------
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Figure 3.6 Seism ic section crossing the study area in a NE-SW  direction (see Figs. 3.5 and 
3.7 for location).
a) Seism ic cross-section with indication o f  the main seism ic horizons and reflection 
term inations.
b) Line-draw ing o f  the seism ic section, with interpretation o f  faults and term inations o f  
seism ic reflections (indicated by black arrow s) interpretation. In the lower part o f  this unit, 
the onlap term ination o f  the high-am plitude seismic reflection against Horizon N (indicated 
by the black arrow ) should be noted.
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HAB1

HAB2

; HAB3* > —t - ■ Afiq 
Canyon

Structural high

Evaporite pinch-outEl Arish Canyon
_______ 10 km Canyon incision

Figure 3.7 M axim um  seism ic am plitudes calculated over a 120 ms TW T (tw o-way travel time) 
w indow above Horizon N. The resulting image shows that the high-am plitude reflections shown 
on seism ic sections in Figs. 3.4 to 3.6 correlate with a series o f  km -scalc high-am plitude bodies 
(dark-grey coloured areas, m arked with a white dotted line) nam ed H A B l, HAB 2 and HAB 3. 
The bodies show  an irregular and elongated ellipsoidal morphology. These bodies are located 
basinw ard o f  the pinch-out o f  the M essinian evaporites and thus fully confined within this unit.
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Figure 3.8 Seismic sections across the main high-amplitude body H A B l.
a) Seismic section oriented in a NE-SW direction (location in Fig. 3.10).
b) Line-drawing o f the seismic section displayed in Fig. 3.8a, w ith interpretation o f the main seismic horizons and reflection terminations. 
HABl is bounded at the top by a high-amplitude negative seismic reflection (Horizon ME2, white dashed line). The base o f HABl is 
represented by a low-amplitude seismic reflection lying closely over Horizon N (black dashed line). The erosional truncation o f the Oligo- 
Miocene reflections against Horizon N is indicated by the black arrows.
c) Seismic section oriented in a NW-SE direction (location in Fig. 3.10).
d) Line-drawing o f the seismic section displayed in Fig. 3.8c, with interpretation o f the main seismic horizons and reflection terminations.
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negative amplitude character of Horizon ME2 has been assessed by comparison with 

flat spots observed at similar stratigraphic levels (Brown, 1999). This allows the 

definition o f Horizon ME2 as a ‘soft’ seismic event generated by a decrease in acoustic 

impedance (Brown, 1999). The amplitude of Horizon ME2 is comparable to that of 

Horizon M though with negative sign (i.e. the opposite polarity).

The base o f HABl is represented by a low-amplitude seismic reflection directly 

overlying Horizon N (Fig. 3.8). This seismic reflection appears poorly defined 

probably because it is obscured by the directly overlying high-amplitude seismic 

reflections, causing its loss in amplitude. The Oligo-Miocene reflections underlying 

Horizon ME2 and N appear to be truncated against Horizon N (Figs. 3.8a). This 

erosional truncation has been interpreted as being related to the incision of the Afiq-El 

Arish Canyon at the base o f the Messinian evaporites (Bertoni & Cartwright, in press). 

HAB 1 is characterized by the maximum thickness at the central parts of the body and 

by lateral bi-directional pinch-out and downlap at its edges, defining an overall 

mounded geometry (Fig. 3.8a and c). On NE-SW directed cross-sections HABl has an 

asymmetric geometry that is produced by the pinch-out of the body on a structurally 

elevated area to the SW and on a structurally depressed area to the NE (Fig. 3.9a). The 

locally observed loss o f resolution and of clear imaging at the edges o f the body could 

be due to overlapping and interference of the two opposite polarity wavelets 

represented by the top and the base o f H A B l. These two reflections will be resolved 

only as long as their distance is greater than half the wavelength of the incident 

waveform, and this critical distance is defined as the tuning thickness (Badley, 1985). 

Some internal reflections are observed within HABl (Fig. 3.8a and c), although their 

internal geometry is not clearly defined because it is at the limits o f vertical seismic 

resolution.

The areal maximum amplitude window extraction displayed in Fig. 10a clearly 

shows that HABl has an irregular-elliptic morphology elongated in a NW-SE 

direction. The maximum radius o f the body is approximately 8.5 km and the minimum 

is 4 km (Fig. 3 .10a), the total area covered being ca. 35 km2. The thickness of HABl is 

best visualized on the isochron map computed between the base and top of this body 

(Fig. 3 .10b). This map shows that the thickness gradually increases from the edges of 

the body towards its central area, where it reaches over 100 ms (Fig. 3.10b). A synopsis 

o f the nature and distribution of the lateral terminations of HAB 1 is also displayed on
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F igure  3.9 Seism ic sections crossing the main high-am plitude body H A Bl (location in

a ls c is m ic  section crossing the body H A B l in a S-N/SW -NE direction In this section. 
H A B l presents an asym m etric geom etry that is produced by the pinch-out o f  the body 
on a structurally elevated area to the SW and on a structurally depressed area to the Nb. 
b) Seism ic section crossing the body HAB I in a NE-SW  direction. On the north-eastern 
side o f  HAB I , Horizon ME2 is deform ed by rcm obilization, hindering the 
interpretation o f  the nature o f  its original termination.
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Figure 3.10 Morpho-structural maps o f H A Bl.
a) Close-up o f Fig. 3.7, showing details o f  the morphology o f HABl with a different colour display.
b) Isochron map calculated between the base and the top o f H ABl. A synopsis o f  the nature and distribution o f the lateral 
terminations o f HABl is displayed in this map.
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this figure (Fig. 3.10b). Horizon ME2 terminates laterally by downlap to the northwest 

(Figs. 3.8b and 3.10b). On the northeastern side o f HABl, Horizon ME2 is involved in 

remobilization caused by tectonic deformation (Fig. 3.9b), therefore we are unable to 

judge the nature of its original stratal termination and its possible correlation with the 

overlying reflections. On the eastern side, HAB 1 appears to thin at its edge. However, 

the decrease in amplitude of Horizon ME2 in this area (e.g. Fig. 3.8a) prevents a 

definitive interpretation of this termination as a low-angle downlap of Horizon ME2 on 

the base of HAB 1, or alternatively as an apparent downlap.

Two ribbon-shaped SE-NW oriented high-amplitude bodies are attached to the 

main part of HABl, as clearly displayed in Fig. 10a. These features are approximately 

0.5 km wide and 6 km long (Fig. 3 .10a) and their thickness ranges from 20 to 50 ms 

(Fig. 3.10b). In cross-section, these bodies are subtle, convex-upward features (Figs. 

3.11a and b). They appear as alternately confined and filling the underlying lows, or 

totally unconftned and showing a distinct constructional geometry (Fig. 3.1 la), being 

laterally shifted as regards the location of the underlying structural depressions (Fig.

3.1 lb). Importantly, the isochron map in Fig. 10b defines the presence of two loci of 

increased thickness (up to > 100 ms) within the main part o f HABl, located 

immediately NE of the two ribbon-shaped bodies. These bodies are connected 

landward to a thicker high-amplitude body (up to 100 ms thick), located to the south of 

HABl (Fig. 3.10b). In cross-section (Fig. 3.1 lc) this body does not present a clear 

internal geometry and it is highly disrupted by a subsequent deformational phase, thus 

precluding a more detailed seismic analysis.

In order to define the complex relationship of HABl to the underlying basin 

physiography, we have overlain the amplitude map o f Horizon ME2 to the 3D 

visualization o f the time-structure map of Horizon N (Fig. 3.12). This visualization 

shows that the thicker body to the south of the ribbon-shaped features is located on a 

structurally elevated area (Fig. 3.12). The main ellipsoidal part o f HABl is confined to 

a structurally depressed area to the NW, within the floor o f the El Arish-Afiq Canyon 

(Fig. 3.12). Significantly for their interpretation, the ribbon-shaped features are 

positioned on a sloping part of the time-structure map o f Horizon N that links the 

structurally elevated area to the SE to the depressed area to the NW (Fig. 3.12).
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F igure 3.11 Seismic sections crossing HABl (location in Fig. 10a)
a) Seism ic section crossing in a NW-SE direction the two ribbon-shaped high- 
am plitude bodies attached to the main part o f  HAB 1. The bodies are subtle, convex- 
upward features and appear as alternately confined and filling in the underlying lows or 
totally unconfined and showing a distinct constructional geometry.
b) Seismic section crossing the two ribbon-shaped bodies in a NW -SF direction. The 
bodies appears to be laterally shifted with regard to the location o f  the underlying 
structural depressions.
c) Seismic section crossing the thicker high am plitude body located landward and to the 
south o f  the main part o f  H A B l (location in Fig. 10a). In cross-section this body does 
not present a clear internal geom etry because it is highly disrupted by a subsequent 
deform ational phase.
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HAB1

Post-evaporitic  
deform ation  (diapiric ridges)

Figure 3.12 Three-dimensional perspective o f HABl (as displayed in Fig. 3.10) draped over the time-structure map o f Horizon N (location in 
Fig. 3.7). The maximum amplitude values arc shown in red colour. This visualization illustrates the overall morphology and geometry o f 
H A B l: the thicker body to the south o f the ribbon-shaped features is located on a structurally elevated area and the main part o f  HABl is 
confined to a structurally depressed area to the NW, within the floor o f the El Arish-Afiq Canyon. The ribbon-shaped features are positioned 
on a sloping part o f the time-structure map o f Horizon N that links the structurally elevated area to the SE to the depressed area to the NW. 
Fault and ridges indicated represent post-evaporitic deformational structures.
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Chapter Three Clastic systems

3.5 Interpretation
The most important features for the diagnosis o f the high-amplitude body HABl are its 

lateral terminations, seismic character and shape. A key observation is that HABl 

presents an overall mounded geometry determined by lateral downlap and bi­

directional pinch-out. Three main depositional bodies can be developed as mounded 

seismic features in evaporitic settings: halite pods (Taylor, 1998; Hodgson et al., 1992; 

Bishop et al., 1995), carbonate build-ups (Taylor, 1998) or clastic lobes (e.g. Mitchum, 

1985). The simplest way to discriminate among these three possible interpretations is 

to assess the amplitude and polarity of the top of HAB 1 in more detail.

The high-amplitude ‘soft* seismic event defining the top of HABl is due the 

acoustic impedance contrast between the upper and lower units, and is a product of the 

different seismic velocities and densities o f the two lithologies as juxtaposed at the 

boundary. The similarity in amplitude of Horizon ME2 to Horizon M and their 

opposite polarity (Fig. 3.8), would be consistent with Horizon ME2 representing a 

similar magnitude of acoustic impedance contrast, but with reverse relationship 

(evaporites overlying siliciclastic deposits).

In addition to the argument based on the acoustic character, perhaps the most 

significant characteristic for the diagnosis o f the body is its morphology in plan view. 

HABl is composed of a main ellipsoidal part and of two attached ribbon-shaped bodies 

(Fig. 3.10a). This morphology is remarkably similar to channels feeding a downslope 

clastic body (Mitchum, 1985; Posamentier & Erskine, 1991; Weimer & Slatt, 2004). 

Conversely, the feeder channels would not be expected to develop in halite pods or 

carbonate build-ups. Based on the previous observations, we interpret HABl as a 

constructional clastic depositional body developed downstream of points where 

laterally confined flows from the feeder channels expand (e.g. Reading, 1999). The 

presence of the two feeder channels suggests a double-point source of the body from 

the SE (Fig. 3.10a). This interpretation is consistent with the presence of two 

depocentres immediately basinward of the two feeder channels (Fig. 3.10b). The two 

depocentres define a geometry analogous to clastic lobes generally observed at the 

termini of the feeder channels (Weimer & Slatt, 2004). The main part of the clastic

3 -1 9



Chapter Three Clastic systems

body can thus be described as composed of two closely spaced channel-mouth lobe 

deposits.

The main part o f HABl overlies the floor o f the El Arish-Afiq Canyon (Fig. 3.7). 

However, the location and direction of the feeder channels suggests that the source of 

sediment supply to the clastic body is lateral to the main canyon path (Fig. 3.7). The 

thicker body located to the south of the feeder channels (Fig. 3 .10b) could represent the 

source, or a locus o f accumulation o f the clastic deposits in an intervening intra-slope 

basin. The clastic body appears as an overall constructional feature with only limited 

erosion observed at the base of the feeder channels and of the main body. The limited 

thickness o f the body hinders the resolution of subtler depositional features such as 

channels within the lobes, and this precludes a detailed sequential seismic 

geomorphology analysis (Posamentier, 2003). The lack of clear lapout terminations 

and the uncertain correlation of Horizon ME2 to the north and east suggest that the 

clastic body could be much more extensive than mapped.

The other high-amplitude bodies observed in the study area (HAB2 and HAB3 in 

Fig. 3.7) occur at a stratigraphic position and show seismic characteristics comparable 

to HABl (Figs. 3.5 and 3.6). Although their morphology in plan view is less clearly 

defined than that o f HABl (Fig. 3.7), we interpret them as clastic bodies by analogy 

with the interpretation of HABl. HAB3 forms an elongated feature located at the 

intersection between the El Arish and Afiq Canyons (Fig. 3.7). Albeit no evidence of 

feeders is observed, the geographic position of this body suggests that the two canyons 

acted as the main conduits for the sediment supply. Clastic input from the El Arish - 

AFiq Canyon is registered in the study area from the Oligocene through the early 

Pliocene (Druckman et al., 1995; Frey-Martinez et al., 2005). No specific record in the 

literature exists for the clastic input during the deposition of the Messinian evaporites. 

We suggest that it is likely that such clastic supply continued even during the MSC, 

because the Levant continental margin was actively being eroded at this time 

(GvirtzmannA Buchbinder, 1978).

The seismic amplitude response o f these clastic deposits is complex to interpret as 

it depends on the rock physics, thickness and fluids in the sediment (Weimer and Slatt, 

2004). Therefore, further constraints on the lithology of the body (i.e. siliciclastic 

and/or evaporite or carbonate dominated) are not available simply considering the 

relative amplitude and polarity o f the seismic reflections. Based on the pre-evaporitic
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dominant siliciclastic setting of the area of interest and on the seismic 

geomorphological analysis here presented, we consider it more likely that the clastic 

deposits are dominantly represented by siliciclastic sediments. An evaporite clastic 

component could be possible if the reworked clastic sediments were derived from 

marginal evaporitic deposits. This could potentially occur considering the substantial 

diachroneity observed within the Messinian evaporites of different Mediterranean 

areas, with some marginal evaporitic deposits pre-dating the basinal evaporitic series 

(e.g. Rouchy, 1982; Butler et al., 1995; Clauzon et al., 1996; Riding et al., 1998).

We can give an estimate o f the time-depth converted thickness of the body HABl, 

based on a dominantly siliciclastic composition, and on the analogy with submarine 

siliciclastic fan deposits observed at similar depths in the study area, i.e. the Yafo Sand 

Member o f early Pliocene age (unpublished well reports; Frey-Martinez et al., in 

press). The average seismic velocity obtained on wells for these deposits is 2000-2500 

m/s which applied to HABl results in a thickness range o f 100-125 m. The seismic 

velocity, and consequently, the thickness of the clastic body HAB 1 would be 

significantly higher if the clastic deposit had instead an evaporitic component. 

Similarly, the data available do not allow us to determine with any certainty whether 

the evaporites enclosing or overlying the clastic bodies have a primary or clastic origin. 

Nonetheless, the analysis o f the Messinian evaporites directly overlying the high 

amplitude bodies shows no evidence of any development of similar clastic bodies at 

higher stratigraphic levels, and the interbedding of clastic units therefore appears to be 

confined within the basal part o f the evaporitic succession.

3.6 Discussion

3.6.1 Distribution of clastic sediments within the Messinian evaporites

Clastic sediments can constitute an important component of basinwide evaporites, as 

previously stressed in many studies (Schlager & Boltz, 1977; Schreiber, 1988; 

Martinez del Olmo, 1996; Kendall & Harwood, 1999; Peryt, 2000; Manzi et al., 2005). 

In the Western Mediterranean, a subject of current intense debate is whether a 

conspicuous part of the Messinian evaporitic unit has a clastic rather than evaporitic 

character (e.g. Lofi et al., 2005).
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The clastic lobes described in this study are clearly located within the basal part of 

the distal Messinian evaporitic unit. Therefore, their occurrence implies that significant 

volumes o f clastic sediments were supplied to the Levant Basin during the early stages 

o f the deposition o f the Messinian evaporitic unit. This is clearly shown by the 

stratigraphic position of the clastic bodies analysed above the erosional surface 

defining the base o f the Messinian evaporites in this basin (i.e. Horizon N). The 

absence of similar clastic bodies within the overlying evaporites could be due to the 

fact that they deposited in different areas of the basin, or conversely, it could be linked 

to the subsequent inactivity o f the fairways supplying the clastic sediments. Both 

hypotheses might be related to a variation in the base-level of erosion and clastic 

supply or to a change in the efficiency of the distributary system, and would be 

consistent with the high variability o f depositional environments in evidence during the 

Messinian Salinity Crisis.

3.6.2 Depositional environment - submarine or subaerial?

The morphology and seismic character o f clastic bodies are generally similar in either 

subaerial or submarine settings (Weimer & Link, 1991; Collison, 1999). In order to 

define the depositional environment of the clastic lobes composing HABl, additional 

information must be taken into account, regarding any evidence for coeval subaerial 

exposure in the basin, and the position and geometry of the clastic bodies within the 

Messinian evaporites.

The physiography of the Levant continental margin during the MSC was 

characterized by structurally elevated areas landward of the pinch-out o f the Messinian 

evaporites (Bertoni & Cartwright, in press). In these areas evidence of subaerial 

exposure is recorded as:

• A prominent erosional surface characterised by a dendritic drainage pattern 

(Gvirtzmann & Buchbinder, 1978, Mart & Ben Gai, 1982) comparable to the 

Messinian erosional surfaces described on the Ebro, Gulf o f Lions and Nile continental 

margins (Ryan, 1978; Stampfli & Hocker, 1989; Guennoc et al., 2000; Frey-Martinez 

et al., 2004). These erosional surfaces closely resemble a badlands topography and are 

interpreted as subaerial (Ryan, 1978; Stampfli & Hocker, 1989; Frey-Martinez et al., 

2004).
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• A series o f marginal scarps (Fig. 3.13, Bertoni & Cartwright, in press), that are 

analogous to the wavecut platforms and rejuvenation terraces observed in the nearby 

Nile delta (Barber, 1981). Importantly, the clastic deposits are located in an area 

basinward of the pinch-out o f the Messinian evaporites, where such morphological 

evidence of subaerial exposure (badlands and/or terraces) is not observed (Figs. 3.7 and 

3.13). Furthermore, the base o f the Messinian evaporites directly beneath the clastic 

bodies shows evidence of erosion by a few confined incisional features related to the El 

Arish -  Afiq Canyons (Figs. 3.7 and 3.13). This downslope change in the stream 

pattern from "badlands* erosion to basinward focused incision would be consistent with 

a transition to a submarine environment.

Based on data compiled from previous studies, the clastic bodies HABl, HAB2 and 

HAB3 appear to be located approximately at the same distance from the pinch-out of 

the Messinian evaporites (Fig. 3.13). However, the location of the channels feeding the 

body HAB 1 appears to suggests that the source of sediment supply to this clastic body 

is lateral to the El Arish-Afiq Canyon (Fig. 3.13). Therefore, the basinward extension 

of the El Arish and Afiq Canyons appears to have acted as a bathymetrically depressed 

area attracting sediments from the south-west o f the study area, externally to the El 

Arish and Afiq Canyons. The source of clastic supply could be either represented by a 

tributary o f the El Arish Canyon, or by the Nile delta area, as suggested by the regional 

drainage pattern observed at the base of the Messinian evaporites (Fig. 3.13; Ryan, 

1978). It is significant to note that during the Messinian lowstand, the Nile delta shifted 

extensively seawards (see e.g. Barber, 1981), thus approaching the area of the body 

H A B l. Consequently, this area would be located in close proximity of the Eonile and 

Eosahabi deltas, i.e. the two major sources of clastic material in the Eastern 

Mediterranean during the Messinian (Griffin, 2002). Based on these observations, the 

pre-Pliocene Nile delta system could be considered as a likely source of sediment 

supply for the clastic body HABl.

A further indication of the depositional setting o f the clastic body HABl arises 

from the analysis o f its depositional geometry. It is noteworthy that the geometry of the 

feeders is mostly unconfined and convex upward i.e. mainly constructional, and this is 

generally regarded as typical o f submarine rather than subaerial settings (Reading, 

1996). The apparent effect o f differential compaction in creating this geometry can be 

ruled out on account o f the absence of incision or o f downwarped reflections directly
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Limit of the Messinian salt in the region

Limit of distal M essinian evaporites in the study area
Contours of basal discordance to the Messinian salt (Ryan. 1978)
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Figure 3.13 Map o f  the sector o f  the Eastern Mediterranean analysed, showing the regional setting o f  the basal discordance to the 
Messinian salt (and associated evaporitc and clastic formations) and its marginal continuity with Horizon M (contour lines in seconds 
TWT; after Ryan, 1978). The landward limit o f  the Messinian salt in the region is also indicated (after Sage & Letouzey, 1990; 
Loncke, 2002; Bertoni & Cartwright in press). In the figure to the right, the distribution o f the clastic sediments (in grey) is shown 
within the palcogeographic context o f  the base o f  the Messinian evaporites. Canyon incisions, erosional scarps and contour lines (in 
seconds TWT) o f  the base o f the Messinian evaporites are after Bertoni & Cartwright (in press). The grey areas identify the location 
o f the clastic deposits described in this study.
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Chapter Three Clastic systems

underneath the feeders. Based on these observations, we conclude that a submarine 

(shallow or deep-water) setting is more plausible than a subaerial setting for the clastic 

bodies analysed.

3.6.3 Sea-level position

Submarine turbiditic systems commonly develop at the base of slopes, within 

depositional systems where clastic sediments are transported via gravity-induced 

processes (Stow, 1986). These systems have been extensively studied mainly due to 

their importance as hydrocarbon reservoirs (Gluyas & Swarbrick, 2004). They can 

deposit from shallow-water (e.g. at the mouth of river deltas) to deep-water settings 

(beyond the base of the continental slope) (Reading & Richards, 1994). Furthermore, 

the location o f basin-floor clastic lobes and feeders can be strongly influenced by 

active fault lineaments (Rattey & Hayward, 1993).

Sequence stratigraphy studies showed that the deposition of clastic lobes can occur 

at any tract o f the relative sea-level curve, under the appropriate physiographic and 

sedimentologic conditions (Posamentier & Erskine, 1991). However, most commonly 

they are deposited due to enhanced erosional processes during intervals of relative sea 

level fall (Posamentier & Vail, 1988). As emphasized by Schreiber (1988) the cut-off 

in marine inflow necessary to generate the hypersaline Messinian evaporitic basin is 

likely to have resulted in widespread sea-level fluctuations during the Messinian 

Salinity Crisis. The consequent subaerial exposure of the continental margins would 

have driven extensive erosional processes and generated large quantities of reworked 

material basinward (Schreiber, 1988). Therefore, the presence of submarine clastic 

deposits above the base of the Messinian evaporites is not a conclusive proof but it is 

nonetheless supportive of a relative sea-level fall before the onset or at the beginning of 

evaporite deposition in the distal basin.

The location of the clastic bodies basinward o f the first onlap of the evaporites (see 

e.g. Fig. 3.4) suggests two possible interpretations for the relative sea-level history of 

the Messinian evaporitic basin: (1) The deposition of the clastic bodies in shallow 

water, followed by a sea-level rise up to the first onlap of the evaporites. However, this 

first hypothesis is not supported on seismic data by any evidence of a subaerial 

exposure recorded between the clastic bodies and the pinch-out of the Messinian 

evaporites; (2) The deposition of the lobes occurring in a relatively deeper water
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setting, with the sea level positioned not beyond the first onlap of the evaporites. The 

validity o f either o f these hypotheses needs to be tested by additional lithological and 

biostratigraphic constraints, and studies of basinal architecture of the evaporitic system. 

Sub-salt boreholes penetrating the clastic system are required in this key area of the 

Mediterranean Basin to confirm our seismic interpretation and consequently, to provide 

a full understanding of the processes acting at the initial stages of the Messinian 

Salinity Crisis.

3.7 Conclusions
•  The analysis of 3D seismic data from the Levant Basin and continental margin 

has provided conclusive evidence of the presence o f significant amounts of clastic 

sediments in the basal part o f the distal Messinian evaporites in this area.

•  Seismic geomorphology techniques revealed the presence of a remarkably well 

imaged clastic body at the base o f the Messinian evaporites. This body is composed of 

two channels feeding two main downslope lobes. Comparable seismic facies observed 

at the same stratigraphic level suggest the occurrence o f additional clastic bodies and 

allows their correlation with a long-lived system o f canyons on the Levant continental 

margin.

•  Based on the seismic geometry and the basin physiography during the deposition 

of the Messinian evaporites, we conclude that a submarine (shallow or deep-water) 

setting is more plausible than a subaerial setting for the clastic bodies analysed. Further 

studies and data are needed in order to define more accurately the water depth at which 

the clastic bodies deposited and consequently, the relative sea-level history in this part 

of the Messinian evaporitic basin.
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Chapter Four: Unconformity at the top of the 
Messinian evaporites1

4.1 Abstract
This study uses the integration of seismic (3D and 2D) and well data to produce a 

detailed seismic-stratigraphic analysis o f the basinal Messinian (late Miocene) 

evaporites in the Levant region (Eastern Mediterranean). Mapping and sequential 

analysis o f a series of intra-evaporitic horizons and of the packages bounded by them 

has been undertaken throughout the study area. The application of this methodology 

permitted the detection of a discordant relationship between the intra-evaporitic 

horizons and the top of the Messinian evaporites (Horizon M) and, subsequently, the 

definition o f Horizon M as an erosional unconformity. Thus, this study provides the 

first clear evidence of the occurrence of widespread areal erosion at the top of the 

basinal Messinian evaporites in the Levant region.

Furthermore, the structural analysis of the deformed intra-evaporitic horizons has 

documented the occurrence of an early phase of evaporite deformation at the end of the 

Messinian, preceding the completion of the erosional truncation expressed at Horizon 

M. The most likely mechanism of deformation is considered to be differential loading 

associated with a prograding shelf wedge on the basinal evaporitic system. The 

direction o f the intra-evaporitic compressional structures indicates that the deformation 

could have been initiated by the aggradation and progradation of the Nile delta and 

submarine fan during the final stages o f the deposition of the Messinian evaporites.

1 Submitted os:
C. Bertoni &  J. A. Cartwright. Origin o f the unconformity at the top o f the basinwide late 
Miocene evaporites in the Eastern Mediterranean. Submitted to Basin Research.
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4.2 Introduction
The late Miocene (Messinian) evaporitic series and erosional surfaces have been 

extensively investigated throughout the Mediterranean Basin, to unravel the events that 

led the so-called ‘Messinian Salinity Crisis’ (Ryan et al., 1973; Hstt et al., 1978). 

Nonetheless, the interpretation o f the original depositional geometry of the basinal part 

o f this evaporitic system is still uncertain in most of the Mediterranean regions, mainly 

due to limited availability o f subsurface data (e.g. Hardie & Lowenstein, 2004). In this 

study, we use integrated seismic (3D and 2D) and well data to analyse the basinal 

Messinian evaporites in the Eastern Mediterranean. Specifically, we aim the origin of 

the surface defining the top of the Messinian evaporites, discussing its significance for 

the understanding of the processes acting during the last stages of the Messinian 

Salinity Crisis.

It is widely accepted that the deposition of the Messinian evaporites terminated at 

the end of the Messinian Salinity Crisis due to a basinwide marine transgression of 

early Pliocene age (Cita, 1975; HsO et al., 1977; McKenzie, 1999). Alternative 

hypotheses suggest a gradual or a late Messinian refilling in some areas of the 

Mediterranean Basin (e.g. Riding et al., 1998; Krijgsman et al., 1999, 2001). Erosion at 

the top of the Messinian evaporites and in the late Messinian has been recorded in 

some marginal areas of the Mediterranean basin (Roveri et al., 2001; Lofl et al., 2005; 

Comee et al., 2006). In the Levant-Nile region, a discordance can be observed between 

the nearly horizontal top of the evaporites and the underlying westward dipping intra- 

evaporitic reflections on the regional 2D seismic profiles published by Ryan (1978). 

The lack of detailed and continuous documentation from the available seismic data and 

one-dimensional well record has hindered the interpretation of the role of tectonic 

movements and/or sea-level changes in forming this discordant upper boundary.

This paper presents a study based on seismic and well data from the Levant Basin 

in the Eastern Mediterranean. This dataset allowed the definition and detailed mapping 

of the top of the Messinian evaporites (Horizon M) and of a series o f intra-evaporitic 

seismic horizons. Horizon M is represented on a semi-regional scale by a broadly 

horizontal surface, deformed by short wavelength faults and folds, and concordant with 

the overlying Pliocene seismic reflections. The intra-evaporitic horizons dip to the NW
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and are discordant to Horizon M. This discordant relation defines, in seismic 

stratigraphic terms, either a toplap or an erosional truncation surface (Mitchum et al., 

1977). We interpret this discordant surface based on three fundamental parameters: (1) 

the distribution and geometry of the terminations o f the intra-evaporitic horizons, (2 ) 

the relationship to their structural deformation and (3) the thickness variations of the 

intra-evaporitic packages. Moreover, the analysis o f the timing and mechanism driving 

the intra-evaporitic deformation gives important clues for the understanding of the top 

evaporitic setting, and of early stages of salt tectonic deformation.

The main aim of this paper is to show that the top surface of the Messinian 

evaporites in the Levant Basin represents an unconformity due to a basinwide erosional 

event. This is in marked contrast to previous interpretations of this important boundary 

in this area. We use our results to discuss whether the observed regional erosional 

truncation surface was caused by a regression or transgression at the end of the 

Messinian Salinity Crisis. We ultimately intend to discuss the wider significance of the 

occurrence o f erosional events during the deposition of the evaporites for the general 

debate on the depositional and structural setting o f the Messinian evaporites in the 

Mediterranean Basin.

4.3 Geological background
The study area is located in the Levant Basin, and is delimited by the Nile cone to the 

southwest, by the Erathosthenes Seamount and Cyprus Trench to the northwest, and by 

the Dead Sea fault system to the east (Fig. 4.1). Since the Oligocene, the Levant area 

was configured as a shelf to basin siliciclastic system (Druckman et al., 1995; 

Buchbinder & Zilbermann, 1997). During the Oligo-Miocene the continental slope was 

incised by prominent submarine canyons (Druckman et al., 1995; Buchbinder & 

Zilbermann, 1997).

At the end o f the Miocene, normal marine sedimentation was abruptly interrupted 

by the onset of the Messinian Salinity Crisis (MSC), an event recorded in the entire 

Mediterranean Basin (Ryan et al., 1973; Hsti et al., 1977, 1978). During this period, the 

progressive restriction of the gateways to the world oceans caused the partial isolation 

of the Mediterranean Basin, the widespread erosion of the continental margins, and the 

deposition of thick sequences o f evaporites in the deep basinal areas (Hstt et al., 1977,
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1978; Cita & Ryan, 1978). The Levant area was characterised by the deposition of 

evaporites extending from beneath the present-day shelf (Neev, 1979; Cohen, 1988; 

Druckman et al., 1995) to the deep basin (Garfunkel & Almagor, 1987, Tibor & Ben 

Avraham, 1992). The evaporites observed on seismic data in this area are correlated to 

the Mavqiim Formation recorded in wells on the shelf and on land (Cohen, 1988). So 

far, the knowledge of the depositional setting of the basinwide evaporites in the 

Mediterranean Basin is poorly constrained, as the wells reach only their upper part of 

the succession (Hardie & Lowenstein, 2004).

in the Pliocene, the restoration of normal marine conditions across the 

Mediterranean Basin resulted in the termination of the MSC (e.g. Hstt et al., 1977; 

McKenzie, 1999). In the Levant area, a turbiditic basin-floor fan (Yafo Sand Member) 

deposited in the early Pliocene in the areas previously occupied by the Oligo-Miocene 

submarine canyons (Frey-Martinez et al., 2005). Subsequently, a prograding system of 

mainly Nile-derived, PIio-Pleistocene siliciclastic sediments deposited above the Yafo 

Sand Member and the Messinian evaporites (Tibor & Ben-Avraham, 1992). The 

present day slope system appears to be deformed by slope instability processes 

(Almagor, 1984; Garfunkel, 1984; Frey-Martinez et al., 2005) and by thin-skinned 

tectonics linked to the gravitational gliding of the Plio-Pleistocene sediments above the 

Messinian evaporites (Garfunkel & Almagor, 1987; Tibor & Ben Avraham, 1992).

4.4 Dataset and methodology
The dataset used in this study consists of seismic data (3D and 2D) and results from 

nine petroleum exploration wells located on the continental margin within and 

surrounding the study area (Fig. 4.1). The 3D seismic data cover an area of 

approximately 6200 km2 and were acquired in 2000 by BG-Group and its joint venture 

partners (Fig. 4.1). The seismic data is near zero phase with SEG normal polarity, i.e. 

an increase in impedance is represented by a positive amplitude. The 3D seismic 

dataset was migrated with a single pass 3D post-stack time migration. The seismic 

surveys were acquired with an in-line trace interval of 6.25 m and a line spacing of 25 

m and a sampling interval of 4 ms. The final data for these two surveys were defined 

on a 12.5 by 12.5 m grid with 6400 bin cells per sq km after processing (unpublished 

survey reports).
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The dominant frequency content of the data varies generally decreasing with depth, 

being approximately 50 Hz in the Pliocene to recent section. The vertical and lateral 

resolution for the Pliocene interval is estimated to be respectively 10 m and 40 m, 

using an average velocity value o f 2000 m s '1, as derived from velocity checkshot data 

(Frey-Martinez et al., in press). Within the Messinian evaporitic unit, the dominant 

frequency and velocity are considered to be 30 Hz and 4000 m s 1, respectively. 

Therefore, the resulting vertical resolution is of approximately 35 m. It should be 

considered, however, that the vertical resolution can change significantly due to the 

high variability in the frequency content and seismic velocity within the evaporitic unit.

The 2D seismic data consist o f a set o f multichannel seismic profiles acquired in 

1983 and migrated with a post-stack time migration. They cover approximately 6000 

km and present a grid spacing of ca. 10 x 10 km. The 2D seismic data were used in this 

study for regional correlation and mapping. A set o f exploration wells complete the 

dataset o f this study from which wireline logs and unpublished commercial 

stratigraphic reports, mainly based on cutting analyses were available. The well data 

were used for stratigraphic and lithological analysis, for correlation of the depositional 

units and for time-to-depth conversion.

4.5 Seismic stratigraphy of the Messinian evaporites
The Messinian evaporites constitute a clearly-defined seismic stratigraphic unit 

bounded below and above by the Oligo-Miocene and Plio-Pleistocene siliciclastic 

units, respectively (Fig. 4.2). The evaporites are bounded by two regionally continuous 

seismic horizons: Horizon N and Horizon M (Fig. 4.2). These horizons represent, 

respectively, the base (N) and the top (M) of the Messinian evaporites in the entire 

Mediterranean Basin (Ryan, 1973).

Horizon N is a high-amplitude seismic reflection generated by the negative acoustic 

impedance contrast between the Messinian evaporites and the underlying Oligo- 

Miocene marine clastic sediments (Fig. 4.3). The distal evaporitic series has not been 

drilled to its base within the study area, or elsewhere in the Mediterranean Basin. 

Therefore, Horizon N is defined only on the basis o f the change in seismic attributes 

between the evaporitic unit and the underlying marine deep-water sediments. Horizon 

N has been mapped across the study area and its morphology has been analysed in
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F igure 4.2 Seismic section crossing the three 3D seismic datasets in a NW-SE direction (location in Fig. 4.6), showing the seismic stratigraphic 
context o f the Messinian evaporites. On the vertical scale, TWTT is the two-way travel time expressed in milliseconds. In this section, the structures 
deforming Horizon M and the overlying Plio-Pleistocene reflections should be noted. These folds and faults and the associated syn-kinematic growth 
o f the seismic packages are caused by thin-skinned gravitational gliding o f the clastic wedge, detached above or within the Messinian evaporites (see 
text for explanation). In the lower part o f the Figure, two close-ups o f the seismic section highlight the updip terminations o f  Horizon ME20 and 
ME50, as indicated by the black arrows.
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Chapter Four Top Messinian unconformity

detail in Bertoni & Cartwright (in press). This horizon is characterised by a regionally 

westward dipping surface, with a variable angle of 0.6  - 1 °, as calculated on seismic 

sections perpendicular to its strike, taking Horizon M as the regional reference datum 

(Fig. 4.2). Horizon N is relatively undeformed, although it appears to be locally 

upwarped or downsagged (Fig. 4.3). These deflections represent an apparent 

deformational geometry caused by seismic pull-up or push-down, and results from the 

seismic velocity contrast at the deformed top of the Messinian evaporites, between the 

evaporites (average seismic velocity 4000 m s '1) and the Plio-Pleistocene marine clastic 

sediments (average seismic velocity 2000 m s '1).

Horizon M, i.e. the top of the Messinian evaporites, is a high-amplitude positive 

seismic reflection generated by the acoustic impedance contrast between the Pliocene 

marine clastic sediments and the top of the Messinian evaporites (Fig. 4.3; unpublished 

well reports). This horizon is regionally continuous and almost horizontal across most 

of the study area (Fig. 4.2), although it appears to be deformed by a series of short 

wavelength structures (Fig. 4.2). Horizon M is overlain by seismic reflections of the 

Plio-Pleistocene unit, displaying a clinoformal geometry (Fig. 4.4). These reflections 

onlap Horizon M in the marginal area (Fig. 4), and downlap or tangentially converge 

with it in the distal area (Figs. 4.2 and 4.4). The basal part o f the Plio-Pleistocene unit 

appears to be deformed concordantly with the short-wavelength structures observed on 

Horizon M (Fig. 4.2).

Horizon N and M converge towards the continental margin such that the Messinian 

evaporites thin in a wedge-like manner (Fig. 4.2). Eastward of this point of 

convergence a single seismic horizon is observed, characterised by a distinct erosional 

relief (Fig. 4.4; Ben Gai et al., 2005; Bertoni & Cartwright, in press). Following the 

established nomenclature, we adopt the designation o f this erosional surface as Horizon 

M (Ryan, 1973). However, this does not necessarily represent a stratigraphic 

correlation with the basinal evaporitic setting, considered that this erosional surface 

could to a large extent be diachronous.

The Messinian evaporites reach their maximum thickness in the northwestern part 

of the study area, where they are up to 850 ms thick (equivalent to ca. 1700 m 

thickXFig. 4.2; Bertoni & Cartwright, in press). The evaporitic series is internally 

composed of an alternation of transparent and bedded/layered seismic facies (Figs. 4.2 

and 4.3). The main intra-evaporitic seismic reflections composing the bedded facies are
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Chapter Four Top Messinian unconformity

Horizons ME20, ME35, ME40, ME50, ME60 (Figs. 4.2 and 4.3). A detailed analysis 

of the geometry o f these intra-evaporitic seismic horizons has been undertaken in order 

to define the tectonic and depositional context o f the top of the Messinian evaporites, 

and this analysis is the focus of the next section.

4.6 Geometry of the evaporitic unit
Three main parameters are essential to recognize the original relationship of the intra- 

evaporitic horizons ME20 to ME60 to the top of the Messinian evaporites (Horizon 

M): their 3D geometry (i.e. dip and strike, updip and downdip terminations), the 

thickness and facies o f the enclosed intra-evaporitic packages defined by them, and 

their overall structural deformation. These parameters have been examined in detail on 

a series o f seismic cross-sections and time-structure maps of the base, top and intra- 

evaporitic horizons (Figs. 4.5 to 4.10).

4.6.1 Geometry of the intra-evaporitic horizons

On seismic sections, Horizons ME20 to ME60 appear as overall continuous seismic 

reflections, that dip to the west-northwest of 0.5 - 1° (Fig. 4.2) and have a variable 

amplitude character. All the intra-evaporitic seismic horizons are discordant to Horizon 

M and terminate updip against it at a variable distance from the pinch-out of the 

Messinian evaporites (Figs. 4.2 and 4.5). The loci o f updip terminations have been 

mapped across the study area as displayed in Fig. 4.6. Regionally, these updip 

terminations form a swathe with a NE-SW trend, broadly parallel to the present-day 

pinch-out of the Messinian evaporitic unit (Fig. 4.6). Locally, this trend shows 

embayments and salients that follow the location o f the Afiq, El Arish and Ashdod 

Canyons, as described in Bertoni & Cartwright (in press) (Fig. 4.6). The updip 

terminations are not clearly defined and therefore not mappable in areas where the 

Messinian evaporites are extensively deformed, or where the continuity of the intra- 

evaporitic horizons is affected by a marked decrease in seismic amplitude of the 

reflection (Fig. 4.6). The updip termination of the stratigraphically lower intra- 

evaporitic horizon, i.e. Horizon ME20, is located 2-5 km from the pinch-out of the 

Messinian evaporites. The overlying intra-evaporitic horizon, i.e. Horizon ME35 to 

Horizon ME60, terminate updip westward, at an increasing distance from the pinch-out
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F ig u re  4.5 Seismic section crossing the Levant 3D seism ic dataset in a NW -SE direction 
(location in Fig. 4.10) showing the geometrical relationship o f  the intra-evaporitic horizons 
M E20 to M E40 to the top o f  the Messinian ev aporites (Horizon M). The discordance o f the 
intra-evaporitic seism ic horizons ME35 to M E40 with Horizon M should be noted. These 
horizons term inate updip against Horizon M basinwards (i.e. to the NW ) o f the pinch-out o f  
the M essinian evaporites. On the vertical scale. TW TT is the two-way travel time expressed 
in m illiseconds.
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Figure 4.6 Tim e-structure map o f  Horizon M obtained in the 2D seismic dataset (colour 
bar expressed in milliseconds TW TT), showing the regional distribution o f  the updip 
term ination o f  the intra-evaporitic horizons M E20, M E40 and M E60 on the top o f  the 
M essinian ev aporites. The pinch-out o f  the M essinian evaporitic w edge is indicated by 
the black dashed line. The updip terminations are not clearly defined and therefore not 
inappable in areas where the M essinian evaporites are extensively deform ed (e.g. located 
nearby structural depressions defined at the top o f  the M essinian evaporites, i.e. white 
shaded areas in the figure).
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F ig u re  4.7 Schem atic cartoon showing the thickness variations o f  the seism ic packages 
bounded by H orizon M and each o f  the intra-evaporitic horizons M E20, ME35, ME40. The 
cartoon evidences how the thickness variation is strictly dependent on the angle subtended by 
Horizon M and each o f  the intra-evaporitic horizons (angle a).

4-14



Chapter Four Top Messinian unconformity

TWTT
(ms) iNW

1 0*0* & «■*. ■ —j

p*!r - :  r -  —  -  ^  r<
. Q - 4 Km

TWTT

TWTT
(ms)

300Cp iv ^

TWTT
(m s)

F igure  4.8 3D seism ic sections crossing the study area in a NW-SE direction (location in Fig. 
4.10), showing the general context o f  intra-evaporitic deformation.
a) The top o f  the M essinian evaporites (Horizon M) is relatively unstructured in comparison 
with the intensely deform ed intra-evaporitic horizons. T1 to T4 are the transparent seismic 
packages and LI to L2 are the layered seismic packages defined in this study within the unit o f  
the M essinian evaporites. The black arrows indicate truncation reflection terminations.
b) Two types o f  structures deform  the intra-evaporitic horizons: low am plitude weakly 
asym m etric folds, and thrust faults. The faults are marked with black dotted lines. The black 
arrows indicate truncated reflection termination.
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Figure 4.9 3D seism ic sections showing the details o f  the intra-evaporitic deformation. On the vertical 
scale, TW TT is the two-way travel time expressed in milliseconds.
a) 3D seismic section crossing the study area in a NW-SE direction (location in Fig. 4.10), showing the 
folded structures deform ing the intra-evaporitic layered package L I. In the right part o f the figure, the 
hypothetic reconstruction o f  the eroded folds above Horizon M is indicated by the dotted lines.
b) 3D seism ic section crossing the study area in a SW-NE direction (location in Fig. 4.10), showing one o f  
the faulted structures deform ing the intra-evaporitic layered package L I. In the right part o f  the figure, the 
hypothetic reconstruction o f the eroded fault above Horizon M is indicated by the dotted lines.
c) 3D seismic section crossing the study area in a NW -SE direction (location in Fig. 4.10), showing the 
general context o f  the truncated folded structures deform ing the intra-evaporitic layered package L I.
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F igure 4.10 Maps showing the general structural deform ation o f  Horizon ME40.
a) Tim e-stm cture map o f  Horizon ME35 obtained in the 3D seismic dataset (location in Fig. 
4.6). The colour bar is expressed in milliseconds TWTT. The interpretation o f the folds and 
faults deform ing Horizon M F40 is shown. The discordant structures appear to be laterally 
persistent for many kilometres. In plan view, the direction o f  these faults and folds is 
consistent, and is dom inantly oriented to the NW -SE and N-S, while the vergence o f the 
thrust sequences is to the E or NE.
b) Horizon-based coherency am plitude extraction o f  Horizon ME35 (covering the same area 
as Fig. 4 .10a), showing the detailed structural interpretation. The red dashed line indicates a 
superim posed strike-slip fault system post-dating the deposition o f  the Messinian evaporites. 
The area o f  Fig. 4 .10a is m arked with the black peripheral box for comparison.
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of the Messinian evaporites. Horizon ME60 displays the most basinward termination in 

the study area (Fig. 4.6). This peculiar geometry defines a wedge-like shape of the 

packages bounded at the base by the intra-evaporitic horizons (ME20 to ME60) and at 

the top by Horizon M. The thickness of the wedge bounded by Horizon M and each of 

the intra-evaporitic horizons varies as follows (Fig. 4.2):

- Horizon ME20 - Horizon M: from 0 to 600 ms (i.e. ca. 0-1200 m);

- Horizon ME35 - Horizon M: from 0 to 400 ms (i.e. ca. 0-800 m);

- Horizon ME50 - Horizon M: from 0 to 250 ms (i.e. ca. 0-500 m).

This thickness variation is strictly dependent on the angle subtended by the intra- 

evaporitic horizons and Horizon M, as shown in the schematic cartoon in Fig. 4.7 

(angle a), that is on average 0.5 -  1°. Conversely, it is important to note that the intra- 

evaporitic horizons do not exhibit any downdip termination against Horizon N, 

maintaining and exhibit a concordant relationship with this horizon (Fig. 4.2). Th 

thickness of the packages bounded by each of these horizons and Horizon N is thus 

nearly constant (Fig. 4.2). These critical observations are addressed in detail in the 

following sections.

4.6.2 Intra-evaporitic seismic packages

As previously observed, the Messinian evaporites are internally composed of packages 

displaying alternatively layered and transparent seismic facies (Fig. 4.2). Two main 

packages of layered seismic facies (LI and L2) and four packages of transparent 

seismic facies (T1 to T4) are distinguished in the most distal part of the study area (Fig. 

3).
The two layered packages LI and L2 are bounded, respectively, by horizons ME35- 

ME40 and horizons ME50-ME60 (Fig. 4.3). The layered package LI is internally 

composed of low to medium amplitude positive reflections, displaying a dominant 

frequency of 30 Hz. The layered package L2 is internally composed of medium to high 

amplitude positive reflections, with a dominant frequency of 50 Hz. Seismic cross- 

sections show that, at a wide scale, these layered packages present an approximately 

constant thickness, varying from 80-100 ms (L2) to 100-120 ms (LI) (i.e. from ca. 160- 

200 m to 200-240 m) (Figs. 4.2 and 4.3). Their thickness decreases abruptly 

approaching the updip termination of the bounding horizons against Horizon M (Fig. 

4.5). This thickness variation defines a marginal wedge-like geometry controlled by the
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location o f the updip termination of the upper and lower boundary of the layered 

packages (Fig. 4.7). The thickness of the packages LI and L2 appears to be locally 

affected by deformation (Figs. 4.3 and 4.5). However, this deformation does not 

generally affect the overall continuity o f the horizons across the study area.

The four transparent seismic packages T1 to T4 are bounded, as displayed in Fig. 

4.3, respectively by Horizon N and M20 (Tl), Horizon ME20 and ME35 (T2); Horizon 

ME40 and ME50 (T3), and Horizon ME50 and M (T4). The thickness of these seismic 

packages ranges between 100 ms (TI) and 250 ms (T3). The thickness is almost 

constant and displays its maximum variation in the region of the updip termination of 

the bounding horizons, similarly to the pattern observed for the layered packages LI 

and L2 (Fig. 4.7). Conversely, at a local scale the transparent packages Tl to T4 show a 

more irregular thickening and thinning, particularly evident in the proximal part of the 

study area (Fig. 4.2). This pattern can be correlated with the occurrence of the 

deformational structures in the bounding layered packages and reflections (e.g. Fig.

4.3).

The composition of the transparent packages Tl to T4 can be inferred based on 

their seismic character and on their general stratigraphic context. Transparent seismic 

facies are typical of homogeneous, contorted, chaotic or steeply dipping geologic units 

(Mitchum et al., 1977). Reflection-free areas on seismic sections are commonly 

observed within large igneous masses, thick seismically homogeneous shales or 

sandstones, or salt bodies (Mitchum et al., 1977). Salt layers are identified within the 

Messinian evaporites in the Mediterranean Basin, based on the halokinetic structures 

and linked seismic artefacts (e.g. pull-up effect), and by the seismic facies characterised 

by a weak (low-amplitude) chaotic reflection zone (Montadert et al., 1978; Garfunkel 

and Almagor, 1987). In the study area, thick halite intervals are recorded in the 

marginal part o f the Messinian evaporites (Bertoni & Cartwright, 2005). Based on these 

observations, we consider that the transparent seismic facies is mostly likely to indicate 

the presence o f halite deposits within the Messinian evaporites.

Conversely, the composition of the layered packages LI and L2 can be inferred 

based on their seismic character (in particular their lateral continuity), sedimentary 

patterns (seismic geomorphology) and on their general stratigraphic context. 

Importantly, the polarity o f these reflections implies a positive acoustic impedance 

contrast for ME35 to ME60 (Fig. 4.3) and negative acoustic impedance contrast for
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ME20 (Fig. 4.3), with respect to the enclosing halite facies. In evaporitic settings (e.g. 

Taylor, 1998), this type of seismic response generally indicates the juxtaposition of 

halite on anhydrite or limestone facies (positive) and on shale/marl facies 

(negativeXNurmi, 1988). 3D mapping and attribute analysis of these horizons did not 

resolve any clear geomorphological pattern such as dendritic systems of channelised 

flow paths, supporting a putative clastic lithological interpretation. In contrast, the high 

lateral continuity of the reflection character is more indicative of chemical 

sedimentation processes (for the acoustically hard layers), or marly of muddy 

depositiona! systems (for the acoustically soft layers).

4.6.3 Structural deformation of the intra-evaporitic horizons

Detailed analysis and mapping of the intra-evaporitic horizons revealed that they 

locally display an intensely deformed geometry and are folded and faulted with a 

structural relief o f the order of 100-200m (e.g. Fig. 4.2). The intra-evaporitic horizons 

are in some areas deformed concordantly with the structural deformation exhibited by 

both Horizon M and the lower part of the Plio-Pleistocene unit (Fig. 4.2). Localised 

thickness variation of the transparent intra-evaporitic packages Tl to T4 is also 

observed (e.g. Fig. 4.2). The strongly coupled deformation of the evaporites and the 

lowermost Plio-Pleistocene unit can be related to the well-documented development of 

thin-skinned gravitational tectonics detaching above or within the Messinian evaporites 

in the Levant area (Garfunkel & Almagor, 1987; Tibor & Ben-Avraham, 1992, 

Gradmann et al., 2005).

Importantly, however, in parts of the study area, the top of the Messinian 

evaporites (Horizon M) is relatively unstructured in comparison with the intensely 

deformed intra-evaporitic horizons. In particular, Horizon ME20 and the layered 

package LI appear to be locally interrupted and deformed by a series of short- 

wavelength folds that are not expressed at Horizon M or within the overlying parallel 

Plio-Pleistocene reflections (Fig. 4.8). This geometry is especially evident in the 

central part o f the study area, on Horizons ME35-ME40 (Fig. 4.9). 3D mapping shows 

that these folds are laterally persistent for many kilometres (Fig. 4.10).

Significantly, the regional dip of Horizon ME35 in this central area ranges between 

4° and 12° degrees (depth converted using nearby well data )(e.g. Fig. 4.9). This angle 

is consistently steeper that the more general regional dip of Horizon ME35 in the less
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deformed areas (i.e. 0.5 -  1°), and this clearly argues for post-depositional deformation 

o f the horizons.

Two types o f structures can be identified in this central area: low amplitude weakly 

asymmetric folds and thrust faults (Fig. 4.8b). The core of the folds is represented by 

the underlying transparent packages (Tl and T2, Fig. 4.9a and c). The fold axes plunge 

in a N-S/NNW-SSE direction, although doubly plunging anticlinal and synclinal 

structures are also observed (Fig. 4.10). The thrusts faults have throws ranging from a 

few metres (e.g. Fig. 4.8b) to ca. 300 m (e.g. Fig. 4.9b). The fault plane dip ranges 

from 10° to 30° as a maximum value. The thrusts are linked to the asymmetric folds 

with the typical geometry of thrust propagation folds (Jamison, 1987, Mitra, 1990). In 

plan view, the direction of the faults and folds is consistent, and is dominantly oriented 

to the NW-SE and N-S (Fig. 4.10). The vergence of the thrust sequences is to the E or 

NE (Fig. 4.10). The structures are thus oblique to the NE-SW strike of the Levant 

continental margin.

The map presented in Fig. 4.10 contains folds that are either concordant or 

discordant to Horizon M. The origin of the discordant fold and thrust structures are 

discussed in more detail below.

4.7 Interpretation

4.7.1 Intra-evaporitic deformation

There are two distinct evolutionary pathways that can be invoked to explain the 

discordant fold and thrust structures developed within the intra-evaporitic horizons:

( 1) the synchronous development of the deformational structures within a structural 

multilayer system with a detachment at Horizon M, or

(2 ) the deformational events occurred in a series of discrete and diachronous phases.

In order for ( l ) to apply, and for the discordant folds and thrusts to have formed 

synchronously with the remainder of the deforming evaporites (the concordant 

structures), it is necessary to invoke a multilayer system in which a series of 

detachment planes for the fold and thrust structures occurred both within the Plio- 

Pleistocene unit and the Messinian evaporites. In a multilayer combination, the 

widespread development o f detachment layers generally reflects the control on the 

structural development that is imposed by the anisotropy and heterogeneity of the
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stratigraphic column (Suppe, 1985). In the study area, the detachment planes would 

probably have localised along weak bedding planes located at the top (i.e. Horizon M) 

and within the evaporitic unit (e.g., intra-evaporitic horizons). In this situation, the 

faults at the L 1 stratigraphic level would represent duplex thrust systems, coeval but 

detached from the overlying deformed Plio-Pleistocene unit. Horizon M would thus 

represent the upper detachment level as a roof thrust structure of the duplex system.

This interpretation is highly complex and takes no account of the previously 

described occurrence of an erosional truncation at Horizon M (Fig. 4.9a and b). This 

erosional truncation can most simply be interpreted to argue that these structures pre­

date the formation of Horizon M. As a consequence, the most likely explanation for the 

difference observed in the structural deformation o f Horizon M and the intra-evaporitic 

horizons is that the deformation of the intra- and post-evaporitic deposits occurred in a 

series o f discrete and diachronous deformational phases commencing with a previously 

undocumented syn-evaporite deformational phase post-dating the deposition of 

Horizon ME40 and preceding the completion of the unconformity expressed at Horizon 

M. This much simpler evolution thus accounts for the development of concordant and 

discordant structures in the same general deformational province because it places their 

evolution in two discrete episodes, separated by the regional unconformity at Horizon 

M.

4.7.2 Origin of the top-evaporitic surface

The specific stratigraphic origin of the surface defining the top of the Messinian 

evaporites can be interpreted on the basis o f stratal discontinuity observed on the 

seismic data. The discordant angular relationship recorded between the NW-dipping 

intra-evaporitic horizons (ME20 to ME60) and the nearly horizontal Horizon M is 

diagnostic o f an unconformity sensu Mitchum et al. (1977). The updip termination of 

reflections against flat-lying overlying reflections can be related to two types of 

unconformity: a nondepositional unconformity or an erosional unconformity (Fig. 4.11, 

Brown & Fisher, 1980). In the case of a nondepositional unconformity, Horizon M 

would represent a toplap surface, formed mainly as a result o f deposition bypass and 

with only limited erosion (Fig. 4.1 la; Mitchum et al., 1977). Conversely, in the case of 

an erosional unconformity, Horizon M would represent a surface created by the
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a) Nondepositional unconformity 

Concordant above

b) Erosional unconformity 

Concordant above

Toplap below Erosional: angpl&r/structural

AsymolotiraHapehna

Figure 4.11 Schematic cartoon showing the two possible geometry of updip termination of reflections 
against flat-lying overlying reflections.
a) Geometry defining a nondepositional unconformity (Brown & Fisher, 1980).
b) Geometry defining an erosional unconformity (Brown & Fisher, 1980).
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erosional truncation of the underlying intra-evaporitic horizons (Fig. 4.1 lb, Mitchum et 

al., 1977).

The distinction between these two cases can be drawn based on the geometry of the 

terminations o f the intra-evaporitic horizons, and on the thickness variations of the 

seismic packages bounded by them. Previous authors have interpreted Horizon M in 

the study area as a toplap surface, based on the lack of evidence of erosional truncation 

(Gradmann et al., 2005). Toplap surfaces imply the development of a prograding 

clinoformal system and are generally characterised by underlying strata tapering and 

approaching asymptotically against the upper boundary (Fig. 4.1 la, Mitchum et al., 

1977). Conversely, in the truncated relation the strata tend to maintain parallelism as 

they terminate abruptly against the upper boundary (Fig. 4.1 lb, Mitchum et al., 1977). 

In the study area, the intra-evaporitic horizons display a rather abrupt termination 

against Horizon M. In addition, the absence of downdip termination or basinward 

convergent relationship of the intra-evaporitic horizons to Horizon N argues against the 

earlier development of a prograding clinoformal evaporitic system that would be the 

corollary to defining an updip toplap surface.

An additional aspect to take into account for the interpretation of the origin of the 

top evaporitic surface regards its extent. The discordant relationship between Horizon 

M and the intra-evaporitic horizons covers an area o f approximately 10,000 km2. 

Previous studies argued that toplap surfaces are rarely widespread on a regional or 

semi-regional scale (Cartwright et al., 1993). The development of a widespread toplap 

surface in the Levant area appears thus particularly unlikely, considering the evidence 

o f repeated and consistent sea-level changes recorded during the deposition of the 

Messinian evaporites (Barber, 1981; Druckman et al., 1995).

Finally, probably the most convincing observation for the interpretation of Horizon 

M is the previously discussed evidence of erosional truncation of the deformed intra- 

Messinian reflections against Horizon M. Based on all the previous observations, we 

interpret Horizon M as an erosional unconformity. The location of the mapped updip 

terminations o f the intra-evaporitic horizons provides an approximate indication of the 

minimum areal development of this erosional unconformity. The interpretation of 

Horizon M as an erosional truncation surface contrasts with its definition in previous 

studies as the correlative conformity of the proximal Messinian erosional surface (Ben 

Gai et al., 2005). In the study area, the onlap and downlap of the undeformed Pliocene
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reflections on this erosional unconformity (Figs. 4.2 and 4.4) indicates clearly that the 

erosion occurred before the early Pliocene, and therefore precludes any origin of the 

erosional unconformity as being due to a tectonic movement during the Plio- 

Pleistocene.

4.8 Discussion

4.8.1 Depositions! geometry of the Messinian evaporites

The interpretation of the original depositional geometry of the Messinian evaporites is 

still a subject o f considerable debate in most areas of the Mediterranean Basin. Recent 

studies have indicated that no consensus exists, for example on the water depth at the 

time of deposition of the evaporites (Hardie & Lowenstein, 2004). Comprehensive 

models for the basinwide distribution and architecture of the Messinian evaporites, 

based on the geometry of seismic reflectors, have so far only been achieved for the 

Gulf o f Lions continental margin, in the Western Mediterranean (Lofi et al., 2005). In 

the Nile-Levant region, the available depositional models focus on the marginal part of 

the evaporitic system, and on the link between the marginal clastic deposits and the 

evaporites (Barber, 1981; Loncke, 2002). The geometry of the Messinian evaporitic 

unit in the Levant area, however, is evidently different from these settings. The 

repetition o f stratified and transparent seismic packages observed in the study area (e.g. 

Garfunkel & Almagor, 1987; Bertoni & Cartwright, 2005) appears to be restricted to 

this part o f the Mediterranean Basin. In this context, the analysis of the top surface of 

the evaporites is a fundamental component for the interpretation of the overall 

geometry o f this depositional system. In this section, we compare the observations 

made in this study with analogous worldwide evaporitic systems to discuss the possible 

original depositional architecture of the Messinian evaporites in the Levant area.

In the Levant region, the reconstruction of the original limits of the depositional 

bodies, is hindered by the erosion at the top of the Messinian evaporites which 

truncated a considerable part of the basin margin sequence. Nonetheless, some 

conjectures can be based on the preserved geometry of the evaporitic unit. Using 

standard seismic stratigraphic principles, the geometry of Horizons ME20 to ME60 

could either have been originally composed by sigmoidal/oblique clinoforms, or 

instead by parallel/divergent onlap (Fig. 12; Mitchum et al., 1977). In order to
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distinguish between these two possible geometries, it would useful to compare them 

with analogous giant evaporitic systems, although nowhere else is there such a 

complete preservation of relatively undeformed basin margin evaporite sequences.

Evaporite systems on the scale of the Messinian have not been widely considered 

as being likely to be progradational. Some authors have suggested a progradational 

system was in place during deposition of the Upper Permian of Northern Europe 

(Schlager and Bolz, 1977; Strohmenger et al., 1996). This evaporitic system is 

composed o f a narrow sulphate-dominated platform, characterised by the thickest 

bodies at the basin margin, thinning both towards the basin centre and the terrestrial 

hinterland (Schlager and Bolz, 1977). In contrast, however, in the Levant Basin, the 

absence of downlap termination of the intra-evaporitic horizons on Horizon N and their 

widespread parallelism rules out an original development of the Messinian evaporites 

as a clinoformal system (Fig. 4.12a).

Consequently, the most likely original architecture of the Messinian evaporites is 

considered to be parallel or divergent onlap (Fig. 4 .12b and c). In the shelf area of the 

Levant margin, Cohen & Parchamovsky (1986) reported an onlapping configuration of 

the depositional bodies o f the marginal Messinian evaporites in Israel (Cohen & 

Parchamovsky, 1986). An onlap geometry of the marginal Messinian evaporites is also 

in accordance with the depositional model developed for the coeval evaporites in the 

Western Mediterranean, where the Messinian evaporites form a series of transgressive 

bodies that onlap the eroded continental margin (Lofi et al., 2005).

The distinction between parallel and divergent onlap pattern (Fig. 4.12b and c) can 

be considered further on the basis of the analysis o f the basinal setting of the study area. 

During the Messinian Salinity Crisis, relatively high density of the evaporitic minerals 

(mainly halite and anhydrite, average density 2.3 g/cc) replaced in the basin the normal 

deep-water sedimentation, and significant sea-level falls led to rapid water unloading 

and erosion on the margin. As a consequence, differential vertical movements between 

the continental margin and basin can be expected to have developed during the 

deposition of the Messinian evaporites. An evaporite load of 1.8 km (i.e. the maximum 

thickness recorded in the study area) is likely to have produced subsidence due to 

isostatic adjustment in excess of 1000 m (Allen & Allen, 1990; Schenk et al., 1994). 

This estimate suggests that a significant differential basinal syn-sedimentary subsidence 

and marginal uplift most probably occurred during the deposition of the Messinian
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sigmoidal/oblique dinoforms

parallel onlap

divergent onlap

Figure 4.12 Schematic cartoon illustrating the possible original geometry of Horizons 
ME20- ME60 preceding the completion of the unconformity expressed at Horizon M. 
The dotted lines indicate the eroded part of the horizons while the continuous lines 
indicate the preserved part of the horizons. The arrows mark the expected termination 
patterns.
a) Original geometry of horizons as sigmoidal/oblique clinoforms.
b) Original geometry of horizons as parallel onlap.
c) Original geometry of horizons as diveigent onlap.
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evaporites. The high depositional rate of the evaporitic deposits (1-100 m/ky, Schreiber 

& Hsii, 1980; Kendall & Harwood, 1996) suggests that the basinal tilt was matched by 

sedimentation. Thus, we consider it probable that a divergent onlap pattern 

configuration represented the original depositional geometry of the basinal evaporitic 

unit, before being removed by erosion (Fig. 4 .12c).

4.8.2 Mechanism of structural deformation

An important issue arising from the structural interpretation of Horizon M and the 

intra-evaporitic horizons regards the mechanism driving for their deformation. In the 

Levant region, it is generally interpreted that salt tectonic deformation post-dates the 

deposition of the Messinian evaporitic unit, i.e. it is Pliocene or younger (Garfunkel & 

Almagor, 1987; Tibor & Ben-Avraham, 1992). However, our interpretation shows that 

in the study area the structural deformation of the intra-evaporitic horizons predates the 

formation of the erosional unconformity at the top of the Messinian evaporites, i.e. it 

occurred during the Messinian. Such an early onset of evaporite deformation rules out 

a genetic mechanism based on density contrast o f the Plio-Pleistocene overburden, as it 

is common in many halokinetic settings (Jackson et al., 1995). In this section, we 

discuss the possible alternative mechanisms based on the analysis of the local stress 

field, on the comparison with nearby areas and with worldwide analogues (e.g. Clark, 

1999; Mascle et al., 1999; Loncke, 2002). These mechanisms are: (1) the influence of 

deep structures and regional plate tectonics stress field; and (2 ) differential loading and 

subsidence due to shelfprogradation into the basin over early evaporitic layers (Koyi, 

1996; Ge et al., 1997).

The Levant region is situated in a technically complex area at the zone of 

interaction among the Anatolian, African and Arabian plates (Fig. 4.1; Badawy & 

Horvath, 1999; Vidal et al., 2000; Polonia et al., 2002). The formation of the NE-SW 

trending anticlines and synclines of the Syrian Arc fold belt in the Late Cretaceous 

(Fig. 4.1, Garfunkel, 1988; Eyal, 1996; Buchbinder & Zilberman, 1997) caused 

differential vertical movements and tilting in the shelf and basin of the Levant region 

(Fig. 4.1; Neev & Ben-Avraham, 1977; Tibor & Ben-Avraham, 1992; Buchbinder & 

Zilberman, 1997). The compressional movements continued until the end of the early 

Miocene or even the Pliocene (Tibor et al., 1992; Druckman et al., 1995; Eyal, 1996). 

During the Messinian local tilting and movement o f the basement structures linked to
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the Syrian Arc could have contributed a stress regime that triggered the downslope 

movement o f the highly unstable evaporitic deposits. Nevertheless, the orientation of 

the intra-evaporitic folds and vergence of the thrust faults indicates a dominant 

compression direction from the WSW or SW (Fig. 4.10). This compressional stress 

field is not consistent with the regional stress field resulting from the Syrian Arc 

folding, that is thus unlikely to have directly driven the intra-evaporitic deformation.

Differential loading and subsidence due to shelf progradation into the basin over 

early evaporitic layers could have triggered basinward instability o f the evaporitic 

deposits (Koyi, 1996; Ge et al., 1997). In the study area, the dominant compression 

direction from the SW is transverse to the Levant continental shelf. This indicates that 

progradation of the Levant shelf is unlikely to have driven the intra-evaporitic 

deformation. An important role in this process could have alternatively been played by 

the Nile continental margin. Previous studies record the development of an early Nile 

delta system coeval and laterally correlative to the Messinian evaporites (Barber, 1981; 

Griffin, 2002). Thus, the progressive aggradation and progradation of the Nile delta and 

submarine fan could have driven differential loading on the basinal evaporitic system. 

The Levant region is sufficiently close to the Nile delta area to be affected by these 

movements (Fig. 4.1; a radius of 100-150 km). The compression direction originated by 

the progradation of the Nile system from the SW is consistent with the stress field 

recorded in the study region. If this hypothesis is confirmed, our results would suggest 

that differential loading driven by progradation of the Nile was active in the Levant 

Basin at least since the final stages of the deposition of the Messinian evaporites.

4.8.3 Implications for the Messinian erosional events in the 

Mediterranean Basin

The interpretation of Horizon M as an erosional unconformity bears important insights 

on the understanding of the Messinian evaporitic system and consequently, on the 

processes acting in the area at the final stages of the Messinian Salinity Crisis. The 

development of widespread erosional surfaces is expected in such a rapidly changing 

environment, where sudden sea-level changes exposed previously submerged areas. 

Numerous erosional phases are documented across the Mediterranean Basin, before, 

during and after the deposition of the Messinian evaporites (Mauffret, 1976; Ryan & 

Cita, 1978; Escutia & Maldonado, 1992; Butler et al., 1995; Guennoc et al., 2000;
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Comee et al., 2006). In the area o f the Gulf o f Lion continental margin (Western 

Mediterranean) seismic data record only one significant basinwide erosional event at 

the base o f the evaporites, onlapped by transgressive Messinian deposits (Guennoc et 

al., 2000; Lofi et al., 2005). Elsewhere in the Western Mediterranean, erosive channels 

developed at the top, within and at the base of the Messinian unit (Field & Gardner, 

1991; Escutia & Maldonado, 1992), and erosional features have been recognised in 

wells (Ryan & Cita, 1978), suggesting the occurrence of multiple and compound 

erosional surfaces.

The erosion observed at the top of the Messinian evaporites could be either the 

product of subaerial exposure or submarine erosion. As pointed out by Schlager 

(1993), it is extremely difficult to unequivocally recognize subaerial exposure on 

seismic profiles; even if erosional truncation is observed, it need not be subaerial 

(Huuse & Clausen, 2001). It is widely accepted that the MSC terminated when normal 

deep-water marine conditions re-established in the Mediterranean Basin (the so-called 

Teflooding’ stage after the Crisis). Consequently, two main hypotheses can be 

advanced regarding the origin of this erosional surface: the first, that it results from a 

late lowstand during the end of the Messinian, or the second, that it represents the 

ravinement stage of the reflooding of the Levant Basin. A final regression at the end of 

evaporite deposition would be consistent with previous models developed in the study 

area (Druckman et al., 1995). However, a detailed examination of the post-Messinian 

deposits in terms of backstripping and subsidence analysis are required in order to 

answer this question, and this goes beyond the scope of this paper.

The prominent erosional truncation surface observed at the top of the Messinian 

evaporites in the study area represents a unique case in this panorama. This result, 

coupled with the observation of an erosional surface at the base of the Messinian 

evaporites (Bertoni & Cartwright, in press) documents the occurrence of at least two 

major erosional events, respectively during the first and last stages o f the Messinian 

Salinity Crisis in the Levant region. The comparison of our study area with other areas 

of the Mediterranean Basin documents significant differences in the geometry of the 

Messinian evaporitic unit and possibly in the frequency of regional erosional events 

during the Messinian Salinity Crisis. This difference can be ascribed to the different 

local tectonic setting, or could instead suggest that the Eastern and Western
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Mediterranean underwent a different evolution during the MSC, due to the structural

configuration of the Mediterranean Basin at that time.

4.9 Conclusions
•  This study records the first clear evidence of the occurrence of erosional 

truncation at the top o f the basinal Messinian evaporites in the Levant region. The 

integration of seismic (3D and 2D) and well data allowed the detailed seismic- 

stratigraphic analysis o f a series of intra-evaporitic horizons and of the packages 

bounded by them. This analysis permitted the detection of a discordant 

relationship between the intra-evaporitic horizons and Horizon M and, 

subsequently, the definition of top of the Messinian evaporites as an erosional 

unconformity.

•  The preserved basinward geometry of the evaporitic unit and the comparison with

worldwide analogues, point to divergent onlap as the expected original 

depositional geometry of the evaporitic system.

•  The analysis of the structural deformation of the intra-evaporitic horizons has

documented the occurrence of an early phase of evaporite deformation at the end 

o f Messinian, and preceding the completion of the unconformity expressed at 

Horizon M.

•  The most likely mechanism of deformation is considered to be differential

loading associated with a prograding shelf wedge on the basinal evaporitic 

system. The direction of the intra-evaporitic compressional structures indicates 

that the deformation could have been initiated by the aggradation and 

progradation of the Nile delta and submarine fan, active in the Levant Basin at 

least since the final stages o f the deposition of the Messinian evaporites.
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Chapter Five: Dissolution structures in the 
Messinian evaporites1

5.1 Abstract
Buried circular collapse structures above a tabular evaporitic body are recorded by 

recently-acquired 3D seismic data on the Levant Basin and continental margin, 

offshore Israel (Eastern Mediterranean). The structures formed during the Pliocene as 

buried Messinian (late Miocene) evaporites underwent extensive dissolution in a 

submarine, deep-water setting. 3D seismic analysis is used to describe the detailed 

morphology of the structures and the associated overburden, allowing the 

reconstruction of their origin and development.

It is proposed that evaporite dissolution led to the collapse of the weakly lithified 

overburden, and this deformed with a series o f concentric extensional faults. From the 

structural analysis o f the overburden, the estimated maximum duration of the 

dissolution event is 0.75 -  l Ma. The mechanism proposed for the creation of the 

circular collapse structures is subjacent dissolution of the more soluble evaporites in 

the Messinian evaporites, due to focused vertical fluid flow at the base of the evaporitic 

series. Rapid release of overpressured fluids, as e.g. during an earthquake, is thought to 

have initiated the focused fluid flow, which impinged on the evaporitic seal to the point 

where dissolution occurred, creating the localized circular collapse structures in the 

overburden.

1 Published as:
C. Bertoni & J. A. Cartwright (2005). 3D seismic analysis o f circular evaporite dissolution 
structures. Eastern Mediterranean. Journal o f the Geological Society o f London. 162, 909-926.
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5.2 Introduction
Evaporite dissolution is considered an important process in many evaporite-bearing 

basins worldwide (see e.g. Warren, 1999). Examples of evaporite dissolution have been 

described in the North Sea (Lohmann, 1972; Jenyon, 1983; Cartwright et al., 2001), 

Western Canada (Anderson & Knapp, 1993), Gulf of Mexico (Rezak et al., 1985; 

Hossack, 1995), US Permian Basin (Anderson & Kirkland, 1980) and West Africa 

(Hudec & Jackson, 2002). Evidence of dissolution is usually represented by discordant 

geometrical relationships of strata, hiatuses or the presence of residue breccias 

(Warren, 1999). In this paper, we provide clear morphological evidence for the 

occurrence o f evaporite dissolution in the Levant Basin of the Eastern Mediterranean. 

3D mapping o f the late Miocene-Pliocene stratigraphic interval has revealed the 

presence of a series of kilometre-scale circular depressions. We interpret these 

structures as having formed during the Pliocene in response to the dissolution of buried 

Messinian evaporites within a fully submarine setting. The circular structures 

developed in a non-halokinetic setting, producing collapse and/or subsidence of the 

overlying deep-water sediments.

Circular depressions linked to evaporite dissolution have been widely documented 

in the previous literature (Sugiura & Kitcho, 1981; Davies, 1983; Kastens & Spiess, 

1984; Clark et al., 1999). However, the lack of resolution in subsurface imaging has 

generally hampered their detailed morpho-structural analysis and therefore the precise 

mechanism by which they form is not clear. The exceptional imaging of the Messinian 

evaporite sequence and overburden on recently acquired 3D seismic data in the Levant 

Basin, however, provides a unique opportunity to investigate the processes that both 

drive evaporite dissolution and the deformational response to dissolution in this area.

The primary aim of this paper is to describe the morphology of evaporite 

dissolution structures in the study area and their associated structural setting. The 

structures are bounded by a series of extensional ring faults that exhibit similarities 

with salt withdrawal basins (Ge & Jackson, 1998; Maione, 2001), caldera collapse 

features (Branney, 1995; Cole et al., 2005) and impact craters (Stewart & Allen, 2002). 

The ring faults observed in the study area are extensional and exhibit a domino 

geometry, dipping towards the centre of the structure. The detailed analysis of the
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deformation of the overburden is used in this paper as a tool to assess the timing of the 

dissolution process, i.e. its initiation, rate and termination.

The second aim of this study is to develop a model for the evolution of the 

localized dissolution structures, explaining how and when they formed, and what 

controls their distribution in the Levant Basin. Based on the detailed 3D seismic 

interpretation, we propose a mechanism for dissolution involving focused fluid 

expulsion from the thick basin fill succession beneath the evaporite sequence. This 

mechanism of subjacent dissolution may have occurred in other evaporite-bearing 

continental margins worldwide.

5.3 Regional framework
The Levant Basin and its continental margin are situated in the easternmost 

Mediterranean Sea, at the zone of interaction among the Anatolian, African and 

Arabian plates (Fig. 5.1, Vidal et al., 2000). This passive continental margin was 

formed due to rifting of the Tethys Ocean during the late Triassic to early Jurassic 

(Garfunkel & Derin, 1984). A carbonate platform setting dominated in the area during 

most o f the Jurassic and Cretaceous (Bein & Gvirtzman, 1977; Druckman et al., 1995).

Commencing in the Late Cretaceous, the formation of the Syrian Arc fold belt 

created a series of NE-SW oriented compressional structures along the Levant 

continental margin (Fig. 5.1, Eyal, 1996, Buchbinder & Zilberman, 1997; Garfunkel,

1998). A system of submarine canyons developed on the slope during the Oligocene 

(Druckman et al., 1995). The most prominent o f these are the Afiq (or Gaza-Beer 

Sheva), the El Arish and the Ashdod Canyons (Druckman et al., 1995; Buchbinder & 

Zilberman, 1997). During the Miocene the shelf was intermittently emergent, and the 

submarine canyons were extended to the shelf area through headward erosion 

(Buchbinder & Zilberman, 1997).

At the end of the Miocene, the connection between the Mediterranean Sea and the 

Atlantic Ocean became restricted, causing the onset o f the Messinian Salinity Crisis 

(Hsti et al., 1978). The resulting sea-level fall led to a major erosional phase on the 

Mediterranean margins and to the deposition of a thick series o f evaporites in the entire 

basin (Hstt et al., 1978). The Levant Basin records the lateral transition from the 

erosional unconformity to the evaporitic series (named the Mavqi’im Formation in
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Figure 5.1 a) Schem atic map o f  the Eastern M editerranean, at the zone o f  interaction 
am ong the Anatolian, African and Arabian Plate. The main tectonic lineam ents and the 
location o f  the Nile delta are indicated. The study area is highlighted by the dark grey 
box (3D and 2D seism ic data). The contour lines represent the depth in metres o f  the 
M editerranean scafloor. The position o f  the present day shelfbreak is approxim ately 
indicated by the 200 m contour line. M odified from Tibor et al. (1992); Robertson 
(1998); Vidal et al. (2000). b) Schem atic regional cross-section through the Eastern 
M editerranean basin (location shown in Fig. 5.1a; m odified from Garfunkel 1998). C 
= C retaceous; J = Jurassic.
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Israel; e.g. Cohen, 1993) which is approximately 2 km thick in the deepest part of the 

basin. During the Pliocene and Pleistocene, the re-establishment of normal marine 

conditions resulted in the deposition of a thick wedge of siliciclastic sediments in the 

Levant Basin and continental margin (Yafo Formation).

5.4 Dataset and methodology
The main dataset used in this study consists of approximately 6000 km2 of 3D seismic 

data acquired in 2000 by BG-Group and its joint venture partners (Fig. 5.2). The whole 

coverage is represented by the Med Ashdod, Levant A and Gal C seismic surveys (Fig.

5.2). The Levant A survey is the focus of this study, while the Med Ashdod and Gal C 

survey are only used for correlation and general analysis of the evaporitic depositional 

system.

The seismic data is near zero phase with SEG normal polarity, i.e. an increase in 

impedance is represented by a positive amplitude. The 3D seismic dataset was 

migrated with a single pass 3D post-stack time migration. The 3D seismic data consist 

of a grid with a line and CDP interval of 12.5 m, and a sampling interval of 4 ms. The 

main focus of this study spans the 2.5-3.5 second TWT interval of the seismic data.

The dominant frequency content of the data varies with depth, but is approximately 50 

Hz in the interval of interest. The vertical and lateral resolution for this interval is 

estimated to be respectively 10 m and 40 m, using an average velocity value of 2000 

m/s, as derived from velocity checkshot data in the Gaza Marine-1 well (GM1 in Fig. 

5.2; Frey-Martinez et al., in press).

A set of 2D seismic lines and wells complete the dataset used in this study. 

Approximately 6000 km of 2D multichannel seismic profiles with a grid spacing of ca. 

10 x 10 km (Fig. 5.2) were interpreted for mapping the regional distribution of the 

depositional units. Wireline logs and unpublished commercial stratigraphic reports, 

mainly based on cutting analyses were available from nearby exploration wells (Fig.

5.2). The well data were used for stratigraphic and lithological analysis, for correlation 

of the depositional units and time to depth conversion.

The analysis of evaporite dissolution was undertaken focusing on the timing of 

deformation of the overburden to the circular structures. A series o f parameters were 

measured in order to analyse the variation of the vertical relief (AZ) and the expansion
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Figure 5.2 Map show ing the details o f  the seism ic surveys used in this study, together 
with the location o f  selected exploration wells. The 3D seismic surveys (Levant A, Gal 
C and M ed Ashdod) are outlined by the dashed rectangles. The 2D seismic lines are 
outlined by the black dotted lines. The location o f  the seismic sections presented in 
Fig. 5.4 is also indicated.
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index (E.I.) o f the structure with depth (Fig. 5.3a). The E.I. is a parameter used to 

visualize the variation in thickness above syn-sedimentary structures, initially 

developed for growth faults (Thorsen, 1963). The same concept is here applied to 

circular structures that collapse or subside incrementally, and display syn-kinematic 

deposition of the overburden (Fig. 5.3b and c).

5.5 Seismic stratigraphic framework
The stratigraphic focus of this study extends from the Upper Cretaceous to Recent. The 

seismic-stratigraphic context o f this study interval is described with reference to two 

representative seismic sections (parallel and perpendicular to the progradation direction 

of the Levant continental margin, Fig. 5.4) and summarized in a stratigraphic chart 

(Fig. 5.5). The 3D and 2D seismic data were calibrated with the well data, allowing the 

definition o f three main units for description of the local seismic-stratigraphic context: 

Unit 1, Unit 2 and Unit 3.

5.5.1 Unit 1

Unit l is bounded at the base by the Base Senonian horizon and at its top by Horizon N 

(Fig. 5.4a and b). This seismic-stratigraphic unit includes sediments deposited on the 

Levant continental margin from the Late Cretaceous to the late Miocene. They are 

composed of limestones in the marginal lower part of the unit (En Zetim, Taqiye and 

Zora Formations, Fig. 5.5), and of dominantly marls and shales in its upper part (Bet 

Guvrin and Ziqim Formations, Fig. 5.5).

The most remarkable feature of Unit l is represented by a system of submarine 

canyons (Afiq, El Arish and Ashdod canyons) incising the shelf and continental margin 

in a SE-NW direction (Fig. 5.4b; Druckman et al., 1995; Buchbinder & Zilberman,

1997). The Afiq submarine canyon is the most prominent of these features (Fig. 5.4b). 

Its base is defined on seismic section by truncation of the underlying horizons (Fig. 

5.4b). The canyon fill lacks detailed stratigraphic control, as none of the wells 

penetrate its maximum thickness in the canyon axis. However, some observations can 

be made based on the stratigraphic relationship with the wells located on the flanks of 

the canyon, integrated with previous work undertaken on the same canyon in the 

onshore region (Druckman et al., 1995). These observations suggest that the canyon fill 

sediments date back to the Oligocene, and unconformably overlie Lower Cretaceous to
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pre-sedimentary growth: syn-sedimentary growth:

Figure 53 a) Idealised circular collapse depression showing the parameters measured 
for quantitative analysis of the dissolution structures studied in this paper (modified 
from Branney, 1995). The E.I. is defined by Thorsen (1963) as the ratio between the 
thickness of deposits down thrown (b, directly above the collapse structure) and the 
thickness upthrown (a, i.e. undisturbed sediments laterally bounding the collapse 
structure) measured on successive discrete stratigraphic intervals. The vertical relief 
(AZ) is measured on a selected stratigraphic horizon, as the difference in elevation 
between the centre and the rim of the collapse structure, b) Schematic representation 
of the expected geometry resulting from pre-sedimentary growth versus syn- 
sedimentary growth of the circular collapse structure. Note the difference between 
concentric parallel onlap in the first case, and concentric onlap coupled with diveigent 
strata configuration and thickness variation in the second case.
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a Fi9 4b

Faults

Afiq Canyon.

S lu m p  d e p o s it:

Figure 5.4 a) Com posite seism ic section across the Levant Basin and continental margin (see Fig. 5.2 
for location). The three seism ic-stratigraphic unit defined in this study (Unit 1, Unit 2 and Unit 3) arc 
shown, together w ith the m ain interpreted horizons. Unit 2, the focus o f  this study, is represented by a 
thick wedge o f  evaporites pinching out towards the Levant continental margin. Marginal extensional 
faults w ithin the Unit 3, detaching at Unit 2, are m arked by dashed lines. The cross-over point o f  Figure 
5.4b is indicated at the top and base o f  the section. YSM  = Yafo Sand Member. B.S. = Base Senonian 
horizon; L.E. = Late Eocene horizon; M = Horizon M; N = Horizon N; B.P. = Base Pleistocene horizon, 
b) Seism ic section along the direction o f  the Levant margin. Note the presence o f  the O ligo-M iocenc 
Afiq subm arine canyon, deeply incising within Unit 1. In Unit 3, interpretation o f  slump deposits is after 
Frey-M artinez et al. (2005). Localized downw arping o f  seismic reflections is observed within Unit 3 
and highlighted by the black arrows. The cross-over point o f  Fig. 5.4a is indicated at the top and base o f  
the section. CS-1 = circular structure CS-1; YSM = Yafo Sand Member.
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Series
(Ma)

JB
&

(1.77)

Fm.

Yafo

Lithology

77^ 77^ 77^ )  “*■ ‘ a “ i . _

(YSM)

Mavqiim

Guvrin

Taqiye

En Zetim

Seismic
unit

Unit 3

Unit 2

Unit 1

Sand and sandstone

Clay, sft and daystone

Limestone

Mad

MavqHm evaporitic Formation (halite, gypsum, 
anhydrite, day. sandstone and conglomerate)

Figure 5.5 Stratigraphic chart showing the main formations observed in the 
study area (after Garfunkel & Almagor, 1987; Druckman et al., 1995), their 
age and the correlation with the seismic-stratigraphic units described in this 
paper. The lithological data are derived from unpublished stratigraphic well 
reports. Fm = Formation; YSM = Yafo Sand Member.
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Upper Eocene deposits (Druckman et al., 1995). The lithology of the infill is 

represented by hemipelagic marls intercalated with debrites and fine- to medium- 

grained sandstone layers (Druckman et al., 1995).

5.5.2 Unit 2

This seismic-stratigraphic unit is bounded at the base by Horizon N and at the top by 

Horizon M. These horizons are regional seismic reflections, which represent the base 

(Horizon N) and the top (Horizon M) of the Messinian evaporites across the entire 

Mediterranean Basin (Hstt et al., 1973; Garfunkel & Almagor, 1987). Horizon N is 

represented in the study area by a strong negative seismic reflection (black event on the 

seismic sections) which exhibits a remarkable continuity (Fig. 5.4). This horizon is 

mainly conformable with the underlying reflections, showing only localized truncation 

in the marginal and basinal part o f the study area.

Horizon M is a strong positive seismic reflection, highly continuous across the 

study area (Figs. 5.4a and b). The internal geometry o f Unit 2 is characterized by the 

alternation of high and low amplitude seismic reflections with a transparent seismic 

facies (Fig. 5.4a). The thickness o f Unit 2 varies from more than 1700 m towards the 

Levant Basin (Fig. 5.4a) to a few metres near the Levant continental margin, where 

eventually the Horizons N and M merge (Fig. 5.4a and b).

5 . 5 . 2 .1 Well calibration of Unit 2
The stratigraphy of the Unit 2 is known only from stratigraphic reports that are mainly 

based on cutting analyses and petrophysical interpretation. However, there are only a 

limited number o f full penetrations of the Messinian evaporites within the offshore 

Levant, with most of the wells either terminating within the upper part of the unit, or 

above it. The upper part o f the Messinian evaporites is better calibrated, as where it has 

been cored (Fig. 5.6) it is found to consist of a layered evaporitic series that can be 

correlated to the Mavqiim Formation (Cohen, 1993; Druckman et al., 1995;

Buchbinder & Zilberman, 1997). This part of Unit 2 in wells Gaza Marine-1, Gaza 

Marine-2, Or-1 and Or South-1 is composed of a thin layer of cryptocrystalline 

anhydrite passing upward to interbedded anhydrite and claystone, weakly calcareous, 

with traces of pyrite and chert (unpublished well reports). The lithologies within the 

near-basal part of the Messinian evaporites are inferred from well log data, and are
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Stratigraphic and seismic horizons: Lithology G!3 Claystone
K 5 3  Limestone q t ) Sand

Horizon M ~ -  Horizon ME20 Horizon N S 3  ConglomerateQ  Anhydrite
fIT3 Marl Halite

OrS-1 Or-1GM-2 GM-1

2000

2100

2200
10 km

iMavqiim Fm

F ig u re  5.6 Correlation scheme o f  the M essinian evaporites in the Levant A seismic survey, a) 
Seism ic section nearby the Levant margin, crossing the wells (location o f  wells in Fig. 5.2), 
and showing the seism ic-stratigraphic units and the interpretation o f the main seismic 
horizons, b) Schem atic representation o f  the lithology and stratigraphic relationship o f  the 
M essinian evaporites as described in unpublished well reports. The main seismic horizons 
have been tied where possible to the lithological and stratigraphic units o f  the M avqiim 
Formation.
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composed of a thick halite interval, interbedded with a claystone/anhydrite layer that is 

a few metres in thickness (Fig. 5.6; unpublished well report).

5.5.3 Unit 3

Unit 3 is bounded at the base by the Horizon M and at the top by the present day seabed 

(Fig. 5.4). The basal part o f Unit 3 is expressed as a 50 m thick package of high 

frequency, continuous high-amplitude seismic reflections that are restricted to the areas 

underlain by the Afiq and El-Arish canyons (Frey-Martinez et al., in press). According 

to the well data, this package consists o f Lower Pliocene sandstone interbedded with 

claystone and marls, deposited in a basin floor turbiditic fan (Yafo Sand Member in 

Fig. 5.4b and 5.5; Frey-Martinez et al., in press). The El Arish and Afiq canyon have no 

seismic expression in the interval post-dating the Yafo Sand member and at present, 

they are buried features (Druckman et al., 1995; Frey-Martinez et al., in press).

Overlying the Yafo Sand Member is a c. 1700 m thick interval of continuous, 

moderate to high amplitude seismic reflections defining a package of Plio-Pleistocene 

progradational-aggradational clinoformal reflections (Fig. 5.4a) which comprises the 

remaining part o f the Yafo Formation (Fig. 5.5; Druckman et al., 1995; Buchbinder & 

Zilberman, 1997; Frey-Martinez et al., in press). These deposits are composed of 

hemipelagic and turbiditic claystones, alternating with sandstones, siltstones and marls. 

Their depositional environment varies from outer neritic to upper/middle bathyal.

Unit 3 is extensively affected by downwarping of reflections and displacement by 

steeply-dipping faults, detached at the level of the Messinian evaporites (Fig. 5.4a and

b). These structures have been previously interpreted as detached normal faults related 

to gravitational gliding of Unit 3 above the Messinian evaporites and dated as late 

Pliocene or Pleistocene (Almagor, 1984; Garfunkel & Almagor, 1987; Tibor & Ben 

Avraham, 1992).

5.6 Description of the circular structures

5.5.1 General features

Initial reconnaissance mapping of the study area using only the widely-spaced grid of 

2D seismic profiles showed the top of the Messinian evaporites to exhibit a fairly 

featureless structure, with gentle dips and subtle topographic relief. However, more 

precise mapping of the top of the Messinian evaporites using the 12.5 m line spacing of
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the 3D seismic data has led to the recognition of a series of localised depressions 

exhibiting a well-defined circular planform geometry. These structures (named 

progressively CS-1 to CS-10) are visible at the top of the Messinian evaporites and are 

evident on the time-structure map of Horizon M in the Levant A seismic survey (Fig. 

5.7). They are situated a few hundred meters to a few kilometres basinward of the 

present day pinch-out o f the Messinian evaporites (Fig. 5.7). The map shows the 

occurrence of the largest of the circular structures (CS-1) and a number of smaller 

structures (CS-2 to CS-10; Fig. 7). Their diameter varies from a few hundreds of metres 

(CS2-9 and CS-10) to 1 -2 km (CS-1 and CS-7). The occurrence of the circular 

structures is limited to the area outlined by the flanks of the Oligo-Miocene El Arish 

and Afiq submarine canyons (Fig. 5.7). One circular structure (CS-8) is located in a 

more basinward position, at c.10 km from the eastern margin of the Messinian 

evaporites (Fig. 5.7). This structure does not have a well-defined morphology on the 

time-structure map o f Horizon M, but it is clearly circular on time-structure maps of the 

overlying horizons.

In cross section, the circular structures (Fig. 5.8 and 5.9) are bowl-shaped 

depressions with a gently concave upwards geometry. The stratal configuration of the 

deformed units is generally parallel stratified. However, some interbedded onlapping 

reflection-bound units are observed above the depressions (Fig. 5.8b and c). The 

depressions are rooted at the upper part o f the Messinian evaporites (Fig. 5.8 and Fig.

5.9). The deformed stratigraphic interval lying above the depressions comprises the 

lower part of the Yafo Formation, from its base to the Upper Pliocene interval (Fig.

5.8b and c). This stratigraphic interval is defined as the overburden to the circular 

depressions. The largest o f the circular depressions exhibits intense localised faulting of 

the overburden. Similar faulting may occur above the smaller circular depressions, but 

if so, is considered to be beneath seismic resolution. The thickness of the Messinian 

evaporites below the circular structures ranges from 150 m (Fig. 5.8) up to 800 m (Fig.

5.9).

Two other types o f structures that relate to the deformation of the Messinian 

evaporites are evident on the map of Horizon M: a linear peripheral depression and 

marginal extensional faults (Fig. 5.7). Both the linear depression and the faults are 

detached at the level of the Messinian evaporites. The linear depression extends almost 

continuously along the locus of pinch-out of the Messinian evaporites and exhibits a
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V  E nlarged  m ap

Afiq Canyon

Fault
Linear depression 
Antidtne

*— Messmtan evaporites 
pinch-out 

O Circular structure 
Canyon axis 
Canyon flank

El Arish Cany*

F igure  5.7 Tim e-structure map o f  Horizon M in the Levant A seismic survey. The zoom shows 
the distribution o f  the circular structures analyzed, nam ed progressively CS-1 to CS-10. Note 
the presence o f  the linear depression and the extensional faults nearby the pinch-out o f  the 
M essinian evaporites. The main deep structures o f  the study area arc represented by the 
anticlines (axes highlighted on the map) related to the Syrian Arc foldbelt system (Neev & Ben- 
Avraham, 1977, Tibor & Ben-Avraham, 1992). The location o f  the seismic sections displayed 
in Fig. 5.8, 5.9 and 5.13 is indicated.
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PL50-

Lirvea r  d e p r e s s io n

Slump

PL20 -U  
PL15 ' L-
Top YSM

ME20

Slump

F ig u re  5.8 a) Seism ic section perpendicular to the Levant m argin, crossing the structure CS-1 
through its centre (location in Fig. 5.6). The seism ic package from the Base Pleistocene to Q60 
show s thickness variation across the extensional faults, defining their phase o f  growth, b) Seismic 
section crossing CS-1 through its centre, and c) interpretation. The apparent dow nsag o f  Horizon N 
and the underlying seism ic reflections below  C S -1 is caused by a seism ic ’push-dow n’, due to the 
seism ic velocity contrast between the M essinian evaporites (U nit 2) and the m arine clastic 
sedim ents o f  Unit 3. This section show s the thickening o f  the stratigraphic package PL20-PL50 and 
onlap o f  reflections within the sam e interval above C S-1 . N ote the set o f  extensional and subvertical 
faults, steeply dipping toward the centre o f  CS-1 and deform ing its overburden. YSM = Yafo Sand 
M ember, d) 1:1 vertical to horizontal ratio o f  Fig. 5.8c.
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4 — Push-down anomaly T3    ^

PL40,

jBgJtei...
 **“• PL20

ME20

*

Salt outlier
• PL40 ....

PL20—

Figure 5.9 a) Variance time slice (2512 ms) show ing the circular appearance o f  CS-2, CS-9 
and CS-10 in plan view. The location o f  the seism ic cross section o f  Fig. 5.9b is indicated, b) 
Seism ic section across CS-2 (see Fig. 5.7 for location). A m inor push-down effect is present at 
the Horizon N beneath CS-2. c) Variance tim e slice (2256 ms) showing the circular 
appearance o f  CS-8 in plan view. The location o f  the seism ic cross section o f  Fig. 9d is 
indicated, d) Seismic section across CS-8 (see Fig. 5.7 for location), e) Seismic section across 
CS-3, C S-6 and CS-7 (see Fig. 5.7 for location). 0  Seism ic section across CS-4 and CS-5 (see 
Fig. 5.7 for location). M = Horizon M, N = Horizon N. g) Salt outlier located in the northern 
area o f  the pinch-out o f  the M essinian evaporites (see Fig. 5.7 for location).
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straight to undulating pattern in plan view (Fig. 5.7). This depression is associated with 

downwarping o f the overlying reflections (Fig. 5.7 and 5.8). This feature resembles 

peripheral sinks and rim synclines observed adjacent to salt diapirs, i.e. the depression 

created in the surface as a result of the flowage o f the mobile layer into the positive 

feature (Trusheim, 1960). The same linear peripheral depression has been described at 

the edge of dissolving thick evaporitic beds, due to edge-inward meteoric dissolution 

(Warren, 1997). The occurrence of a linear depression similar to that observed in the 

study area has been recorded in the Eratosthenes Seamount (Major & Ryan, 1999) and 

in the Bannock Structure, Mediterranean Ridge (Von Huene, 1997), nearer to the study 

area. These linear depressions are filled with brines that are the result of dissolution of 

evaporites by fluids travelling up the flank of the structure (Von Huene, 1997; Major & 

Ryan, 1999).

The second type of evaporite-related features is represented by a system of 

extensional faults deforming Unit 3 at the eastern margin of the Messinian evaporites 

(Fig. 5.7 and 5.8). They are interpreted as growth faults based on sediment thickness 

variation from the hangingwall to the footwall of the fault (Fig. 5.8; Cartwright, 1992). 

These faults have been related to gravitational gliding of the Plio-Pleistocene sediments 

above the evaporite detachment level (Almagor, 1984; Garfunkel & Almagor, 1987; 

Tibor & Ben Avraham, 1992). They are analogous to the peripheral evaporite-related 

structures described in the North Sea (Jenyon, 1986; Coward & Stewart, 1995; Huuse,

1999). In some parts of the study area, the process of marginal deformation of the 

Messinian evaporites created salt outliers that are observed landward of the locus of 

pinch-out of the Messinian evaporites (Fig. 5.9g).

5.6.2 Circular structure CS-1: detailed 3D seismic interpretation

The most dramatic and best imaged of the circular depressions mapped within the 

study area is CS-l, as clearly seen on the time-structure map of Horizon M (Fig. 5.7). 

Because of the quality of the imaging, this structure is described in detail in the present 

section. CS-l is a relatively isolated feature, situated 2 km west of the eastern pinch- 

out of the Messinian evaporites (Fig. 5.7).

5.6.2.1 Morphology
CS-l exhibits a concave upward, U-shaped geometry at Horizon M, with a diameter of 

c. 2 km, as measured on cross section between its opposite external rims (Fig. 5.8). The
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base of this structure is rooted in the upper part o f the Messinian evaporites (Fig. 5.8). 

The overlying Pliocene reflections display a regular layer-cake stratigraphy of 

downwarped reflections defining a U-shaped depression (Fig. 5.8). The morphology of 

CS-1 is mostly evident on the 3D visualization of the time-structure map of Horizon 

PL20 (Fig. 5.10). Half of the circular depression is visible in this display as a sharply 

defined, nearly half-conical structure (Fig. 5.10).

5.6.2.2 Stratigraphic architecture
Seismic sections crossing CS-1 (Fig. 5.8) clearly show that this structure is associated 

with structural deformation of the overburden, which is represented by the horizons 

overlying CS-1 from Horizon M to PL60 (Fig. 5.8b and c). The base of the Messinian 

evaporites (Horizon N) exhibits an apparent sag beneath CS-1 (Fig. 5.8b and 5.10). 

This feature is interpreted as a negative seismic velocity anomaly (push-down, see Fig. 

4 for explanation). Restored to its original depth, Horizon N appears undeformed 

beneath CS-1 (Fig. 5.8d).

Horizon M displays a partly chaotic geometry across CS-1 (Fig. 5.8a and b). The 

flanks o f the depression are oversteepened, and exhibit a maximum dip of 10°-16°. The 

chaotic and oversteepened character o f Horizon M in this area indicates collapse of the 

upper parts o f the Messinian evaporites in the circular area defined by CS-1. This 

collapse is associated with a vertical negative relief of approximately 180 m, defined as 

the maximum downwards deflection below the regional datum.

Importantly, there is evidence of volume loss within the Messinian evaporites, in 

the area defined by CS-1, when compared to the original depositional thickness in 

nearby areas where there are no circular structures or signs of evaporite depletion (Fig. 

5.8a). Due to the clearly defined conical morphology of the circular depression, it is 

possible to calculate the discrete loss o f volume associated with CS-1 in the upper part 

o f Unit 2 as c. 0.188 km3. There is evidence from the reflection configurations within 

the Messinian that volume loss was not uniform over the full vertical extent, but was 

restricted to the upper part o f the Messinian evaporites (Fig. 5.8 and 5.10). As it 

appears in Figure 5.8d, the thickness of the seismic package comprised between 

Horizon N and ME20 is nearly constant while the package from ME20 to Horizon M 

thins considerably across CS-1. This observation argues strongly that this lower 

interval (Horizon N-ME20) was virtually unaffected by the depletion.
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Figure 5.10 Three-dimensional visualization o f  the time-structure map o f Horizon PL20, cutting at the top o f a seismic section 
parallel to the Levant continental margin (see location in Fig. 5.7), and crossing the circular structure CS-1. H alf o f  CS-1 is visualized 
on this map, showing the relationship with the underlying stratigraphy. In Unit 2 (Messinian evaporites) the interval between Horizon 
ME20 and Horizon M appears to thin-out toward the flanks o f CS-1.
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5.6.2.3 Structural analysis

The overburden to CS-1 displays a sequential deformation pattern that constrains the 

timing of the development o f this structure. The overburden can be divided into three 

packages based on the geometry of the seismic reflections (Fig. 5.8b and c):

- The first package is bounded at the base by Horizon M and at the top by Horizon 

PL20. This package is composed of parallel-stratified downsagged reflections, with no 

considerable thickness variation across CS-1 (Fig. 5.8b and c).

- The second seismic package is bounded at the base by Horizon PL20 and at the 

top by Horizon PL50, and it is the key interval for structural analysis of the overburden 

deformation. This seismic package exhibits a convergent reflection configuration, 

coupled with localised but significant thickness variation above CS-1 (Fig. 5.8b and c). 

Importantly, in the interval PL35-PL45 there is evidence of concentric onlap against the 

internal rim of the depression (Fig. 5.8b and c). The geometry of this onlap relationship 

and the convergent reflection configuration suggest a syn-sedimentary growth of the 

structural depression (Cartwright, 1992) during deposition of sediments in the PL20- 

PL50 interval, as opposed to the infill of a pre-existing structure (Fig. 5.3b and c).

- The third seismic package is bounded at the base by Horizon PL50 and the top by 

the Base Pleistocene horizon. This package is composed of parallel reflections, which 

exhibit no downsag and thickness variation across CS-1 (Fig. 5.8b and c).

The transition from a parallel configuration in the overburden immediately overlying 

Horizon M to a convergent reflection configuration above indicatives that the discrete 

and localized volume loss within the evaporites caused the downsag of the overburden 

(Horizon M-PL20) and led to the subsequent infill o f the depression during the 

progressive development of its structural relief (PL20-PL50 interval).

5.6.2A Faults
The structural deformation of the overburden to CS-1 is associated with a series of 

high-angle normal faults exhibiting predominantly domino geometry (Fig. 5.8b and c). 

The faults dip inwards toward the downsagged part of CS-1, with throws ranging from 

10 to 15 m and dips from 60° to nearly subvertical (Fig. 5.8d). The faulted interval 

occurs between Horizon M and PL50 (Fig. 5.8c), with a thickness of c. 500 m (Fig. 

5.8d). The fault system is interpreted to consist of a set of small growth faults, because 

the faults must have affected the seabed at the time of their formation, as indicated by
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the onlap and thickening pattern of the overburden in the PL20-PL50 package (Fig. 

5.8c). The fault pattern in plan view is particularly well seen on the TWT- dip map of 

horizon PL20 (Fig. 5.11) where the faults exhibit a striking concentric pattern. 

Individual faults are approximately 500-1000 m long and traverse about 30 -  160° of 

arc around the collapse structure.

The faults are more numerous within a radius of 1 km from the centre of the 

structure (Fig. 5.1 la and b). The planform geometry of the faults is comparable to ‘ring 

faults' observed above collapse structures (e.g. karst, calderas, withdrawal basins; 

Branney, 1995; Stewart, 1999; Maione, 2001). The observations made on the set of 

faults above CS-1 suggest that they are the result of a horizontally radial extensional 

stress field, induced by the collapse o f the circular depression.

5.6.2.5 Onset and timing
As documented above, the syn-sedimentary growth of the circular depression CS-1 has 

been stratigraphically tied to the seismic interval comprised between Horizons PL20 

and PL50. The timing of formation of CS-1 has been quantitatively assessed by 

measuring two key parameters linked to the structural analysis of the overburden: the 

vertical relief (AZ) and expansion index (E.I.) (Fig. 5.3a). The values measured have 

subsequently been interpolated in diagrams where they are plotted against the depth of 

the point measured, and tied from wells to the chronostratigraphic chart (Fig. 5.12).

The AZ associated with CS-1 decreases progressively from Horizon M to PL65 

(Fig. 5.12a-c). In the first part of the curve the vertical relief drops moderately, 

displaying very limited variation from 180 m to 160 m (Horizon M to PL20). Therefore 

the vertical relief in the Zanclean to the Lower Piacenzian interval is similar to the 

relief created by the collapse of the top of the Messinian evaporites. The value of the 

vertical relief drops rapidly from 160 to 50 m in the interval PL20-PL50, and is 

stratigraphically confined within the Piacenzian. This reduction mainly coincides with 

the convergent reflection configuration and onlap fill interval and hence the main phase 

of growth of the structure. The steepness of the curve then increases again reaching the 

zero value at Horizon PL65 (directly above the Base Pleistocene).

The E.I. diagrams (Fig. 5 .12d-f) exhibit a general trend characterized by the main 

peaks well within the Piacenzian interval (horizons P125 to PL50), where it reaches the 

value 2.1. The expansion index decreases both up and down section from the main
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Fig.l2a/d *

Fig.l2b/e

Fig. 12c/f

i o

(1(0

^M etres 
0 400 8001

    Subvertkal faults

Depression floor 

”"r ' Extensional faults

Figure 5.11 a) TW T-dip attribute map o f  Horizon PL20, and b) interpretation, showing the 
detailed m orphology o f  this surface and the deform ation associated with the circular structure 
CS-1. Note the pattern o f  concentric extensional and subvertical faults around CS-1. The dotted 
lines highlight the position o f  the seism ic sections used for the m easurem ents displayed in Fig. 
5.12.
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peaks. Minor pulses o f the E.I. (e.g. PL40-PL45 in Fig. 5.12d and e) could be explained 

by polyphase structuring of CS-1 within this interval.

The interpretation arising from these diagrams substantially constrains the onset of 

the collapse related to the formation of CS-1 in the time-span of the Piacenzian. 

Assuming an average depositional rate of 20 cm/ka (calculated from the wells) and a 

thickness o f 150-200 m for the deformed deposits (highlighted in grey in Fig. 5.12) the 

time span of maximum syn-sedimentary growth of the structure is calculated to have 

lasted approximately 0.75 to 1 Ma. The accuracy of this estimate could be affected by a 

number of factors, i.e. the chaotic character of Horizon M and the Yafo Sand Member 

above CS-1 and their consequent contribution to errors in horizon correlation, the 

nearby presence of growth faults and slumps, differential compaction, and uncertainties 

in the chronostratigraphic calibration. O f these, the most significant is likely to be due 

to differential compaction, which has probably occurred above the dissolution 

structures. The error in thickness measurements arising from this could have led to a 

slight shift forward in timing of the end of the syn-sedimentary growth. Incorporating a 

realistic error due to differential compaction would place an upper limit of 1 Ma as the 

maximum duration of the dissolution process.

Horizon PL20 represented the coeval seabed at the time of the onset of the 

formation of CS-1, as shown by subsequent onlap of the overlying reflections (Fig. 

5.8b). This indicates that the top of the Messinian evaporites was located at c. 250 m of 

burial depth (not corrected for differential compaction). Well reports record an upper to 

middle bathyal depositional environment of the Yafo Formation overlying the 

Messinian evaporites. Therefore it is concluded that the process responsible for the 

growth of the CS-1 structure was in a fully submarine environmental context.

Comparison of the timing of the development o f CS-1 and other important 

structures on a more regional scale along the margin shows unequivocally that the 

collapse o f CS-1 pre-dated the evolution of major gravity tectonic structures. Seismic 

sections perpendicular to the marginal extensional faults (Fig. 5.8a) show that although 

downwarping or displacement of the overburden above these structures are associated 

with thickness variation and onlap patterns similar to that observed in the overburden 

of CS-1, the timing of the growth interval is much later, within the Pleistocene (Fig. 

5.8a).
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5.6.3 Circular structure CS-2 to CS-10: detailed 3D seismic interpretation

On the time-structure map o f Horizon M, a series of smaller circular depressions are 

identified and named CS-2 to CS-IO (Fig. 5.7). Their diameter ranges between 200 m 

and l km, and they are localized to a small area west of CS-l, close to the northern and 

southern locus o f pinch-out o f the Messinian Unit, or in a more basinward position.

The smaller circular structures are rooted within the upper part of the Messinian 

evaporites, where evidence o f volume loss associated with the structures is observed 

(Fig. 5.9). However, the reduced size of the depressions precludes any accurate 

calculation of loss of volume in each case. The circular depressions exhibit the same 

general geometrical characteristics to those described for CS-l, i.e. the concave upward 

geometry and the disruption o f Horizon M and o f the overburden (Fig. 5.9). The 

negative structural relief above the structures ranges between 50 and 100 m as 

measured on Horizon M (Fig. 5.9a, e, f).

The deformed overburden to the circular structures appears to be more limited 

stratigraphically than the deformed overburden to CS-1. The vertical extent of the 

disrupted zone above CS-3 to CS-6 is confined to the Yafo Sand Member (Fig. 5.9e 

and f), while above CS-2 and CS-8 the disruption reaches the seismic reflections 

comprised between Horizon PL20 and PL40 (Fig. 5.9b and d).

The structural deformation of the overburden above the circular depressions shows 

variable characteristics, that are generally more difficult to analyse than in the case of 

CS-1. Thickness variation is observed above CS-2 and CS-8 in the PL20-PL40 

stratigraphic interval (Fig. 5.9b and d). In this interval, onlap of seismic reflections is 

observed over CS-8 , above Horizon PL20 (Fig. 5.9d). The overburden to CS-3, 4, 5 and 

7 (Fig. 5.9e and 0  exhibits a chaotic pattern and structural disruption within the Yafo 

Sand Member, while Horizon PL20 appears to be locally upwarped. No faulting is 

evident above any of these smaller circular structures. It seems likely, however, that 

owing to their limited size, faults may well be present but they may simply be too small 

to be imaged individually.

Despite the imaging problems associated with their smaller diameters, the timing of 

the onset o f the smaller circular structures can be assessed by comparison with CS-1 

using the same procedure applied in the case of CS-1. In general, the thickness 

variation of the overburden above all the circular depressions is confined to the interval 

between the Yafo Sand Member and Horizon PL40. The onlap observed above CS-8

5 -2 6



Chapter Five Evaporite dissolution

(Fig. 5.9d) appears to constrain the time of formation of this particular circular structure 

well within the stratigraphic interval PL20-PL40. Therefore the smaller circular 

structures appear to have formed between the Zanclean and the Piacenzian (Horizon 

PL40). The growth interval o f the smaller circular structures (Zanclean-Piacenzian) 

appears more extensive than that of CS-1 (Piacenzian). A discrepancy in the style of the 

structural deformation has also been observed between CS-1 and some of the smaller 

circular structures (e.g. the vertical sides of CS-3). These differences could be related to 

variation in degree of lithification of the overburden, causing it to collapse vertically 

(CS-3) rather than with more gentle downsagging (CS-1). However, it is equally likely 

that the discrepancies observed in timing of growth and in structural style could be due 

to imaging problems at the limits of seismic resolution, such that the real extent of 

deformation of the smaller circular structures is not correctly portrayed in the seismic 

data. Whatever the explanation for the minor differences, the overall growth period for 

all the circular structures overlaps to a high degree within the Pliocene, and this 

suggests a common mechanism for their origin.

5.7 Discussion

5.7.1 Observations and identification

A number of contrasting geological processes can produce circular structures ranging, 

from catastrophic gas expulsion to form pockmark craters, to meteorite impacts 

(Stewart, 1999). No general uniformity of process links this diversity of circular 

geological structures other than the action of the process is centred at a point (the centre 

of the circular feature). As discussed by Stewart ( 1999), the best approach to diagnose 

the origin of circular structures is to document their size, cross-sectional geometry and 

distribution with respect to the structural and stratigraphic context. The key 

characteristics of the circular structures observed in the study area are:

•  the circular geometry in plan view, and negative (concave upward) relief, with 

their diameter ranging between 200 m and 2 km;

•  the downwarped or partly chaotic overburden;

•  the depletion of the underlying tabular Messinian evaporites;
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•  the concentric fault pattern and thereby dominantly radial extensional stress 

field centred on the axis of the depression.

Given the location of the collapse structures directly above a depleted evaporite unit, it 

is most plausible interpretation for the genesis of these structures is intrinsically linked 

to the loss of the evaporites from the region directly beneath the collapse structures. It 

is highly significant that on CS-1, the volume of missing evaporites is equivalent to the 

volume of the depression as measured at the Horizon PL20, implying a direct 

volumetric coupling between removal o f evaporites and downwarping of the 

overburden.

Two mechanisms linked to deformation of evaporites can potentially generate 

circular structures, (1) evaporite withdrawal (Jackson & Vendeville, 1995), and (2) 

dissolution (Ge & Jackson, 1998). Withdrawal and flowage of mobile evaporites (most 

likely halite) involves a constant volume assumption, and therefore it should be 

expected that there would be positive salt structures of comparable excess volume 

above regional to match the depletion below regional (see e.g. Jackson and Talbot, 

1986; Davison et al., 2000). The absence of any positive structural elements (as pillows 

or small diapirs) close to the depressions makes it difficult to accept salt withdrawal as 

a viable process for the genesis of the circular structures. Consequently, it is argued 

here that the only feasible mechanism for the formation of the circular depressions is 

the collapse of the overburden due to the in situ dissolution of the underlying Messinian 

evaporites.

The amount of fluid necessary to form the largest dissolution structure (CS-1) can 

be crudely estimated, assuming that dissolution of pure halite (NaCl) took place in 

fresh water solution. Using a solubility o f NaCl in fresh water of 359 g/1 (Davies,

1989), the volume of water required to dissolve 0.188 km3 of NaCl (i.e. the volume of 

CS-1) is calculated as 1.15 km3. Using a time-averaged dissolution rate, and based on 

the timing of 1 Ma for the growth period for CS-1, the minimum rate of evaporite 

dissolution can be estimated as 188 m3/a.

The interpretation of the circular depressions in the study area as dissolution 

structures is strengthened by the analogy with other described examples of circular 

collapse structures created by dissolution of evaporites on the seabed of the Eastern 

Mediterranean basin (Ross & Uchupi, 1973; Kastens & Spiess, 1984) and in the North 

Sea (Lohmann, 1972; Jenyon, 1983). Their circular pattern has generally been related
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to their location at the top of underlying salt diapirs (Ross & Uchupi, 1973; Kastens & 

Spiess, 1984; Ge & Jackson, 1998; Cartwright et al., 2001). Despite the recognition that 

such structures occur in salt provinces, the mechanism of formation o f circular 

dissolution structures above a tabular evaporitic body is poorly understood, and is 

therefore further discussed below.

5.7.2 Genesis

The mechanism invoked for the formation of the dissolution structures needs to 

account for the circular shape of the dissolution structures, their submarine context and 

the burial depth of the evaporites at the time of their formation. The key to 

understanding the mechanism lies in the analysis of the geological and hydrological 

framework of the basin, coupled with the timing of evaporite dissolution.

5 . 7 . 2 .1 Mechanism of dissolution
Three main modes of dissolution of buried evaporites have been described in 

sedimentary basins (Johnson, 1997; Warren, 1997, 1999; Cartwright et al., 2001), 

according to the mechanism of migration of undersaturated fluid:

( 1) lateral dissolution;

(2 ) superjacent dissolution;

(3) subjacent dissolution.

(1) Lateral dissolution results from circulation of undersaturated fluids along the 

edges of the evaporite body. This process could have promoted linear dissolution along 

the evaporite pinch-out. However it cannot be invoked for the creation of the 

dissolution structures described here, due to their localised and circular geometry, and 

to their location at some distance from the edge of the evaporites.

(2) Superjacent dissolution results from circulation of relatively undersaturated fluids 

above the evaporites, from either an overlying aquifer or from fluids penetrating at the 

evaporites through structural pathways e.g. faults (Cartwright et al., 2001). In this area, 

the unit immediately overlying the evaporites is the Lower Pliocene Yafo Sand 

Member, which is a sand-dominated body. However, this permeable unit is strictly 

confined to the thalweg of the Afiq Canyon and sealed laterally, and is thus unlikely to 

have acted as an extensive aquifer. Moreover, at least one of the dissolution structures 

is located basinward of the most distal reaches of the Yafo Sand Member (Fig. 5.7) and 

could not therefore have been formed by fluids flowing along this potential aquifer.
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The rest o f the Yafo formation overlying the evaporites is dominantly composed of 

fine-grained siliciclastic sediments. Therefore this low permeability unit could not have 

acted as an extensive aquifer and it could not have provided the undersaturated fluids 

necessary for the dissolution of the Messinian evaporites. It could be argued that the 

marginal growth faults may have provided the pathways for penetration of 

undersaturated fluid at the top of the evaporites. However, syn-sedimentary growth of 

the faults is recorded only from the Lower-Middle Pleistocene (Fig. 5.8a), and therefore 

the timing o f activity of the faults clearly post-dates the formation of the circular 

dissolution structures. Moreover, this mechanism of fault-related downward penetration 

of undersaturated fluid does not provide a simple explanation for the circular and 

localised geometry of the dissolution structures.

(3) Subjacent dissolution results from undersaturated fluids migrating along the base 

of the evaporites. Examples of this type of dissolution have been recorded in the North 

Sea (Cartwright et al., 2001) and Khorat Plateau in Thailand (Warren, 1997; El Tabakh 

et al., 1998). Evaporite beds are impermeable once buried to depths of few hundred 

metres, where they act as an aquiclude (Warren, 1997). In the study area, the thick 

evaporitic series could have acted as an efficient seal for upward migration of deep 

fluids in the clastic deposits of Unit 1, underlying the evaporites. It is therefore 

acceptable that relatively low salinity fluids within the pre-evaporitic sediments, 

migrating upward, could have promoted subjacent dissolution of the more soluble 

evaporites. Importantly, this mechanism could account for the circular and localized 

geometry of the dissolution structures, as explained further below.

The Levant Basin experienced considerable subsidence and sediment accumulation 

during the Pliocene (Tibor et al., 1992). It is probable that rapid burial of the pre- 

evaporitic units would render them prone to overpressuring, with the evaporitic series 

defining the top of the zone of overpressure even at shallow depths, because of the high 

sealing capacity of the evaporites (Warren, 1997). In support of this suggestion, 

evidence of focused vertical fluid flow processes related to overpressured pre- 

evaporitic sedimentary units such as mud volcanoes, diapirs, and seabed mounds have 

been described in the study area (Frey-Martinez et al., in press) and in the nearby deep 

Nile cone area (Loncke et al., 2004). Most significantly, a series of kilometer-scale 

conical mounds developed within the Yafo Sand Member has been attributed by Frey- 

Martinez et al., (in press) to highly focused vertical fluid flow along the axis of the Afiq

5 -3 0



Chapter Five Evaporite dissolution

Canyon, providing evidence of sediment remobilization of the canyon fill and the Yafo 

Sand Member sediments. The striking similarity in the geometry and timing between 

the dissolution structures and the conical seabed mounds strongly supports the 

hypothesis of a common mechanism for their origin, driven by vertical and localized 

expulsion of fluids in the overpressured pre-evaporitic sediments. The location of the 

dissolution structures (Fig. 5.7) and of the mounds along the Oligo-Miocene 

depositional fairway of the Aflq Canyon (Frey-Martinez et al., in press) points to a 

pivotal role o f the El-Arish and Afiq submarine canyons on the pathways and 

localisation of upward escaping pore fluids.

It is probable that where the Messinian evaporites were too thick to be pierced, the 

focused fluid flow partially dissolved and fractured the base of the evaporites, causing 

the fluids to penetrate into the upper parts of the evaporites. Based on these 

observations, we propose a model for the evolution of the circular dissolution structures 

in the study area, which is illustrated and explained in detail in Fig. 5.13.

Previously it has been argued that the depletion of evaporites to form the 

depressions above was focused mainly within the upper part of the Messinian 

evaporites. At first sight, this might be taken to suggest that suprajacent dissolution was 

a more likely model. However, in our view it is equally plausible that fracture conduits 

for the upwelling of undersaturated fluids ascending from below (Warren, 1999) could 

easily have preferentially dissolved the most soluble lithologies, located at the top of 

the layered evaporitic package. The fracture conduits would have been opened by the 

ascending high-pressure fluids, acting ‘corrosively’ on the lower part of the evaporite 

succession. This ‘corrosive’ action might then also explain the extraordinary circular 

planform of the dissolution structures themselves.

5 . 7 . 2 . 2  Origin of fluid flow
The origin of the fluids responsible for dissolution of the evaporites and creation of the 

circular structures can conceivably be attributed to three potential sources: ( 1) gypsum 

to anhydrite conversion, (2) sediment compaction, and (3) seismic pumping related to 

earthquakes on deep basement faults. The source of fluid supply needs to account for 

the timing, duration, salinity and most importantly, the circularity of the dissolution 

structures.

(1) Burial of gypsum results in its dehydration into anhydrite and this conversion 

releases fluids that are undersaturated in Na and Cl, and thus capable of dissolving
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F ig u re  5.13 Schem atic cartoon depicting the successive phases o f  formation o f  the circular 
d issolution structure CS-1. The dissolution process started in the early Piacenzian (B), when 
vertical focused fluid flow begun corroding the lower evaporitic unit and dissolving its upper and 
m ore soluble part, causing collapse o f  the overburden and successive onlap o f  sedim ents (B and C) 
at the coeval seabed. Note in this interval the formation o f  the concentric faults directly related to 
the collapse o f  the sedim ents above the depleted evaporitic unit. The process term inated by the late 
P iacenzian (D), with the deposition o f  Horizon PL50. N = Horizon N; M = Horizon M.
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halite (Warren, 1991). This conversion could have occurred at the base or within the 

evaporitic unit in the study area. However, the temperature and pressure conditions 

required (Warren, 1991) were only reached within the Pleistocene, therefore much later 

than the formation of the circular structures. Gypsum to anhydrite conversion is 

therefore rejected as a possible mechanism for generation o f the dissolving fluids.

(2) The second possible source of relatively undersaturated fluids is the compaction 

of the thick sedimentary sequences beneath the evaporites. Pore fluids expelled during 

compaction would most probably be undersaturated in composition (Magara, 1978). 

However, compaction o f the pre-evaporitic sediments in the study area represents a 

gradual and areally widespread form of fluid expulsion, and it is therefore difficult to 

reconcile this scale of laterally pervasive dewatering with the formation of circular 

dissolution structures, which by their discrete geometry suggest a more focused supply 

of fluid.

(3) The third process potentially able to produce the requisite flow of 

undersaturated fluid sufficient to dissolve the evaporite sequence from below is seismic 

pumping related to earthquakes on deep basement faults. The tectonic framework of 

the study area shows clear evidence of the existence o f deep-seated structures below the 

Messinian evaporites (Fig. 5.14). The principal structures are anticlines and faults 

linked to the Syrian Arc foldbelt (Fig. 5.14, Neev & Ben-Avraham, 1977; Garfunkel et 

al., 1979). The area is seismologically active at present and this level o f activity could 

be expected to have occurred throughout much of the Neogene (Garfunkel & Almagor, 

1985; Garfunkel, 1998; Vidal et al., 2000). Major earthquakes are well known to lead 

to expulsion of basinal fluids (Sibson et al., 1978), therefore the activity of deep-seated 

structures could have generated focused fluid flow by seismic pumping.

Although it could be argued that the deep-seated tectonic structures would most 

likely represent a linear fluid flow at depth, the flow could have become focused during 

its ascent. For example, previous workers have linked the occurrence of mud diapirs, 

mud volcanoes and slumps to earthquake activity in the southeastern Mediterranean 

region (Loncke et al., 2004; Frey-Martinez et al., in press).

Based on the arguments presented above, the most probable trigger mechanism for 

the initiation of the dissolution process is considered to be seismic activity. The circular 

dissolution structures are strikingly similar in shape, timing and location with mounded 

structures due to mud diapirism at this level of the Yafo Sand Member described just
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50 km away, landward of the pinch-out of the Messinian evaporites (Frey-Martinez et 

al., in press). This similarity argues strongly for a common origin. It therefore seems 

entirely plausible that similar earthquake-triggered and focused vertical fluid flow 

could have impinged on the base of the evaporitic seal within the study area to the point 

where dissolution occurred with the resultant localized circular dissolution structures in 

the overburden. It is interesting to consider that were it not for the presence of the 

highly efficient seal of the Messinian evaporites, this form of vertical fluid expulsion 

might simply have resulted in mud diapirism or extrusion as is the case elsewhere 

within the region updip of the pinch-out of the Messinian evaporites (Frey-Martinez et 

al., in press).

The dissolution mechanism proposed in this paper may be applicable worldwide in 

other evaporite-bearing basins where similar conditions for expulsion of focused fluid 

flow are present (e.g. West Africa and Gulf o f Mexico). Ultimately, as demonstrated 

here, such mechanism can lead to breaching of basinwide seals by depletion of 

considerable thicknesses of evaporites thus creating effective ‘windows’ for vertical 

hydrocarbon migration. An in-depth understanding of the processes presented here is 

therefore critical for a better evaluation of the efficiency of evaporitic seals, the 

presence of stratigraphic traps and pathways for the vertical migration of hydrocarbons.

5.8 Conclusions
This study records the occurrence of buried circular evaporite dissolution structures 

above a tabular evaporitic body in the Levant Basin, Eastern Mediterranean.

Dissolution occurred in buried evaporites and in a deep water setting during the 

Pliocene. The estimated maximum time of duration of the event is 0.75-1 Ma.

Evaporite dissolution led to the collapse of a weakly lithifled overburden, which 

deformed with a series of extensional concentric faults. Other less conclusive 

indications of evaporite dissolution and evaporite-related deformation are observed 

close to the present margin of the Messinian evaporites; namely, salt outliers, faults 

detaching above the evaporite unit, and a linear depression along the evaporite pinch- 

out.
The mechanism of dissolution proposed for the creation of the circular collapse 

structures is subjacent dissolution of the more soluble evaporites in the Messinian
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evaporites, due to focused vertical fluid flow at the base of the evaporitic series. 

Instantaneous release of overpressured fluids, as e.g. during an earthquake, could have 

triggered and focused the fluid flow, which is thought to have impinged on the base of 

the evaporitic seal to the point where dissolution occurred with the resultant localized 

circular collapse structures in the overburden.
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Chapter Six: Summary and discussion

6.1 Introduction
Chapters 2 to 5 have detailed the main results o f this PhD research, being structured 

independently in specific topics on the depositional setting and the deformation of the 

Messinian evaporites in the Levant region. The main purpose of this chapter is to 

combine the information and the key results of the previous chapters in order to build 

an integrated evolutionary model for the Messinian evaporitic system in the region. 

This will be achieved by summarizing the main results of the previous chapters, and by 

discussing in chronological order the seismic characteristics of the different phases of 

evaporite deposition. The ultimate goal of this discussion is the identification of 

diagnostic features of relative sea-level changes. Finally, these results will be analysed 

in relation to their implications for the knowledge of the processes acting during the 

Messinian Salinity Crisis in the Mediterranean area.

6.2 Summary of results

6.2.1 Results on the controls for the architecture of the Messinian 
evaporites in the Levant region (Chapter 2)

•  The pre-evaporitic setting of the Levant continental margin is dominated by a series 

o f structural highs related to the anticlines of the Syrian Arc foldbelt. The 

development of these anticlines controlled the pre-evaporitic basin physiography 

and, consequently, the differential accommodation and the linear NE-SW directed 

edge of the Messinian evaporites. The influence of these anticlines is particularly 

marked in the marginal area of the Levant Basin, while it is more subdued in the 

distal area.

•  A system of submarine canyons (Afiq, El Arish and Ashdod Canyons), developed 

on the Levant continental margin since the Oligo-Miocene, played a pivotal role in 

the depositional and erosional processes active in the study area during the MSC.

•  These canyons acted as preferential sites o f erosion in the earliest stages of the 

MSC up to the distal part of the Levant Basin. The recognition of confined
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erosional truncation patterns in this research study allowed for the first time 

detailed mapping of the canyons at this stratigraphic level in the entire study area.

•  The Afiq, El Arish and Ashdod Canyons acted as local depocentres for the distal 

evaporites in the later stages of the MSC. This is indicated by an evident increase in 

the thickness of the Messinian evaporites above the canyon axes. The thickness 

variation within the proximal and distal part o f the evaporitic wedge is directly 

linked to the erosion of the canyons at the base of the evaporites, coupled with their 

subsequent infill. This originated the locally irregular geometry of the edge of the 

evaporites, characterized by major embayments and landward outliers.

6.2.2 Results from the analysis of clastic deposits at the base of the 
Messinian evaporitic system (Chapter 3)

•  The 3D seismic geomorphological analysis o f the lower part of the Messinian 

evaporites has revealed the presence of significant amounts of clastic deposits in 

their distal region.

•  This research project has shown that the source of clastic supply to the evaporitic 

basin was directly linked to the Afiq and El Arish Canyons and possibly to the 

nearby Nile system.

•  The seismic characteristics of the clastic deposits and the coeval basin 

physiography indicate that they deposited in a submarine (shallow or deep-water) 

setting.

6.2.3 Results on the central and upper part of the Messinian evaporites 

(Chapter 4)

•  The detailed seismic seismic-stratigraphic analysis of a series of intra-evaporitic 

horizons and of the packages bounded by them permitted in this study the detection 

o f a discordant relationship between the intra-evaporitic horizons and the top of the 

Messinian evaporites (Horizon M) in the Levant region.

•  Clear evidence of the occurrence of erosional truncation has been recorded in the 

study area at the top of the basinal Messinian evaporites based on the terminations 

of the intra-evaporitic horizons and Horizon M. This allows for the first time in the 

Levant region the definition of top of the Messinian evaporites as an erosional 

unconformity.
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•  Based on the preserved geometry of the seismic reflections, the expected original 

depositional geometry of the evaporitic system comprised divergent intra- 

evaporitic horizons onlapping the continental margin.

•  The analysis of the structural deformation of the intra-evaporitic horizons has 

documented the occurrence of an early phase of evaporite deformation at the end of 

Messinian, and before the erosional event forming Horizon M.

•  The most likely mechanism for this deformation is considered to be differential 

loading linked to a prograding shelf wedge on the basinal evaporitic system. The 

direction of the intra-evaporitic compressional structures indicates that the 

deformation could have been initiated by the outbuilding of the Nile delta and 

submarine fan, active in the Levant Basin at least since the final stages of the 

deposition of the Messinian evaporites.

6.2.4 Results on post-depositional evaporite deformation (Chapter 5)

•  A series o f buried circular collapse structures have been identified by 3D seismic 

mapping of the top of the Messinian evaporites and the overlying Pliocene 

overburden. The collapse structures formed in buried evaporites and in a deep 

water setting during the Pliocene, within a maximum time-span of 0.75-1 Ma.

•  Evaporite dissolution is proposed as the mechanism of formation for the collapse 

structures. Subjacent dissolution is thought to have acted on the more soluble facies 

in the Messinian evaporites, leading to the collapse of a weakly lithified 

overburden, which deformed with a series of extensional concentric faults.

•  The trigger of dissolution has been possibly linked to focused vertical flow of 

undersaturated fluids at the base o f the evaporites.

•  Other indications of evaporite dissolution and evaporite-related deformation are 

observed close to the present margin of the Messinian evaporites; namely, salt 

outliers, faults detaching above the evaporite unit, and a linear depression along the 

evaporite pinch-out.

•  The linear depression and faults have been linked to the gravitational collapse of 

the Plio-Pleistocene clastic wedge, detaching at the top or within the Messinian 

evaporites. The marginal evaporite withdrawal is balanced in the distal area with 

the development of compressional/transpressional deformation at the toe of the 

continental slope.
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•  The analysis of the syn-sedimentary growth of marginal extensional faults 

document that this gravity-related deformation occurred in the study area since the 

late Pliocene/early Pleistocene, thus it post-dates the timing of formation of the 

dissolution structures.

6.3 Basinal evolution of the Messinian evaporitic system
In this section, a series of topics will be addressed and clarified in order to place the 

previously listed results in an evolutionary basinal context. The section is structured as 

follows:

• Observations on the architecture o f the Levant margin (Section 6.3.1).

• Sea-level at the base of the Messinian evaporites (Section 6.3.2).

• Sea-level during the deposition of the Messinian evaporites (Section 6.3.3).

• Sea-level at the top of the Messinian evaporites (Section 6.3.4).

• Remarks on the formation o f the marginal Messinian erosional surface (Section 

6.3.5).

• Summary of relative sea-level changes during the MSC (Section 6.3.6).

6.3.1 Observations on the architecture of the Levant margin

The aim of this section is to evaluate the difference between the original and present- 

day architecture of the Levant margin, with particular regard to the Messinian 

evaporites. In respect to this, two main factors must be taken into account: l) the effect 

of post-depositional deformation on evaporite architecture, and 2) the impact of 

seismic effects on evaporite stratigraphy, in particular linked to velocity distortion on 

the visualisation of the stratigraphic units analysed.

The effect of post-depositional deformation on the architecture of the Messinian 

evaporitic wedge has been analysed in this thesis, and widely discussed in previous 

studies of the Levant region. Chapter 5 has evidenced the presence of localized post- 

depositional deformation of the evaporitic unit, due to dissolution and withdrawal 

occurred during the Pliocene and Pleistocene. Numerous previous studies of the Levant 

margin have documented the regional extent of thin-skinned gravitational gliding of the 

Plio-Pleistocene clastic wedge. The related deformational structures detach at the top or 

within the Messinian evaporites (Garfunkel & Almagor, 1987; Tibor & Ben-Avraham,
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1992; Gradmann et al., 2005). The deformation linked to dissolution, withdrawal and 

thin-skinned salt tectonics, however, appears to be localised, and its effect on the 

stratigraphy of the evaporites is limited and mainly focused in their marginal area 

(Chapters 2 and 5). Furthermore, the application of backstripping and subsidence 

analysis supported a similarity between the present-day and the original architecture of 

the Messinian evaporites (Tibor et al., 1992; Tibor & Ben-Avraham, 2005; Ben Gai et 

al., 2005). For the purposes of this PhD research, it is particularly significant to note 

that these previous studies confirm that the surface defining the top of the Messinian 

evaporites (Horizon M) presented originally an overall horizontal geometry, similar to 

the present-day setting (Tibor et al., 1992; Tibor & Ben-Avraham, 2005; Ben Gai et 

al., 2005).

A further important factor to take into account for the interpretation of the original 

architecture of the Messinian evaporites is the impact of seismic velocity distortion on 

the visualisation of the stratigraphic units. The variation of thickness and facies of the 

formation crossed by the seismic waves with depth can cause considerable distortion in 

stacked time sections, compared with the actual depth and thickness relationship 

(Badley, 1985). These seismic effects must be appreciated in order to evaluate the 

authentic present-day architecture of the Messinian evaporitic wedge. The best way to 

appreciate these effects is to convert the time seismic sections to depth sections. Time- 

depth conversion is especially needed in order to support previous interpretation of 

regional morpho-structural features, angles and topographic elevations of the surfaces 

analysed. Consequently, in this section the time-depth conversion of a series of selected 

regional 2D seismic lines is undertaken. The procedure followed consists in applying a 

simple layer-cake model o f seismic velocity distribution to the seismic units analysed. 

The time-depth conversion of the Messinian to recent interval has been undertaken on a 

series o f seismic sections crossing the Levant continental margin in a NW-SE direction 

(Fig. 6.1). Additionally, the map of the time-depth converted Horizon M has been 

produced (Fig. 6.2). The following average seismic velocities have been used for the 

time-depth conversion:

Water: 1.5 km/s

Plio-Pleistocene deep-water clastic wedge: 2.0 km/s

Messinian evaporites: 4 km/s
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F igure 6.1 2D seismic sections crossing the Levant region in a NW -SF direction. The seismci 
sections are time-depth converted applying a simple layer-cake model o f  seismic velocity 
distribution to the seismic units analysed, as explained in the text. The black dotted line represents 
the projection o f the regional top o f  the M essinian evaporites towards the margin. The coincidence o f  
this projection with the marginal step in the erosional surface developed landward o f  the pinch-out o f  
the evaporites should be noted in Fig. 6. la , f  and g. On the vertical scale, the numbers refer to 
seconds two-way travel time on the seismic sections, and to kilom etres depth on the interpreted time- 
depth converted section.
a) 2D seism ic line em83-31 (location in Fig. 6.2).
b) 2D seism ic line em83-33 (location in Fig. 6.2).
c) 2D seism ic line cm 83-34 (location in Fig. 6.2).
d ) 2D seism ic line em83-35 (location in Fig. 6.2).
e) 2D seism ic line cm83-43 (location in Fig. 6.2).
0  2D seism ic line em83-45 (location in Fig. 6.2). 
g) 2D seism ic line cm83-44 (location in Fig. 6.2).
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F igure  6.2 Map o f  the time-depth converted Horizon M in the 2D seismic survey area. The 
continuous white lines indicate the location o f  the marginal scarps MSI ,  2 and 3 described in 
the text. The location o f  the seismic sections displayed in Fig. 6.1 and 6.7 is indicated by the 
white dotted lines.
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These seismic velocities represent average values obtained by analysis o f wells in the 

study area (Chapter 2, Section 2.4; see also Frey-Martinez et al. 2005) and based on 

previous studies (e.g. Garfunkel & Almagor, 1987).

The most evident type of distortion of the seismic time sections, compared to the 

depth converted sections, is probably the different dip of the seabed (Fig.6.1a to g). 

This effect is caused by the change in water depth from the eastern to the western part 

of the section, producing a velocity anomaly. In cases where the water depth increases 

rapidly, the effect can be great enough to produce a false impression of dip in time 

(Badley, 1985). As a consequence, on the time-depth converted sections, the dip of the 

seabed appears to be consistently lower than on the original time seismic sections 

(Fig.6.1a to g). This effect is particularly evident in the steeply sloping part of the 

seabed, and it is reflected on the morphological differences that can be noted in the 

underlying Messinian erosional surface (Horizon M).

A further seismic effect evident on the time sections is directly related to the high 

velocity of the evaporites, compared to the bounding seismic units. It is significant to 

note that the thickness of the evaporitic wedge is substantially higher on the depth- 

converted sections, compared to the original time sections (Fig. 6.1a to g). On the 

depth-converted sections it is visually apparent that the evaporites are even thicker than 

the overlying Plio-Pleistocene unit in their northwestern part (Fig. 6.1a to g). The 

general morphology of the top of the Messinian evaporites (Horizon M) on the depth 

converted sections appears to be comparable to the morphology observed on time 

sections (Fig. 6.1). This similarity is particularly evident when comparing the map of 

the depth-converted Horizon M (Fig. 6.2), to the time-structure map of the same 

horizon (Chapter 2, Fig. 2.5b).

As previously discussed, Horizon M appears to be marginally deformed, and this 

deformation is evident on both time and depth-converted sections. This deformation is 

focused at the pinch-out of the Messinian evaporites, where Horizon M is faulted and 

downwarped (Fig. 6 .1). The projection of the regional top of the Messinian evaporites 

towards the margin is mostly coincident with a marginal step in the erosional surface 

developed landward of the pinch-out of the evaporites (Fig. 6 . la, e, f  and g). By 

analogy with the procedure applied on the time sections, the original location of the 

pinch-out of the Messinian evaporites can be interpreted as explained in Chapter 2, 

Section 2.6.1. The original pinch-out of the Messinian evaporites can thus be
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confidently traced largely following this marginal step (Fig. 6.1). The time-depth 

conversion thus provides an important reference value for the analysis of the evolution 

of the evaporite system, i.e. the present-day depth o f the pinch-out of the Messinian 

evaporites. This reference value is nearly constant across the entire study area, being 

located at ca. 2000 -  2300 m below the present-day sea-level.

6.3.2 Sea-level at the base of the Messinian evaporites

In the previous chapters, a series o f indications o f the position of the sea-level at the 

base o f the Messinian evaporites have been analysed. These indications refer in 

particular to erosional patterns and facies variations observed at this stratigraphic level. 

The main aim o f this section is to evaluate the position of the sea-level at the base of 

the Messinian evaporites in relation to sea-level during the pre-evaporitic interval, by a 

synthesis o f the observations from the previous chapters and comparing them with 

previous studies in the Levant region.

Chapter 2, Section 2.7.3 has documented an increase in the erosional activity of the 

Ashdod, El Arish and Afiq Canyons at the base of the Messinian evaporites. This 

erosional phase preceding or at the beginning of evaporite deposition has been 

interpreted as an indication of a sea-level fall occurring at the early stages of the MSC 

(Chapter 2, Section 2.7.3). The presence of erosion at this stratigraphic level confirms 

the results obtained in previous studies in the Levant region. These previous studies 

suggested that the onset of deposition of the evaporites of the Mavqiim Formation is 

associated with a regional drop of the sea-level (Buchbinder, 1993; Druckman et al.,

1995).

A further indication of the occurrence of widespread erosional activity at the 

beginning of the MSC is provided in this PhD research by the detection of clastic 

depositional bodies in the basal part of the Messinian evaporites (Chapter 3). The 

guidelines for the interpretation of the clastic bodies previously obtained on the 3D 

seismic surveys can be applied in this section to identify clastic deposits throughout the 

entire 2D seismic survey area. The application of this methodology permitted the 

identification of the regional distribution of clastic deposits in the area, as displayed in 

Figs. 6.3 and 6.4. Furthermore, the location of these clastic bodies reinforces their 

direct link with the El Arish, Afiq, Ashdod and Cesarea canyons (Fig. 6.3). This finding 

ultimately confirms the regional extent of the erosional event at the base of the
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F ig u re  6.3 Synoptic diagram  illustrating the distribution o f  clastic bodies (dark grey 
areas) throughout the study area. The location o f  the clastic bodies HAB1, 2 and 3 
analysed in Chapter 3 is indicated. The map in the background shows the the main 
m orphological and structural features overlain on the isochron lines o f  the base o f  the 
M essinian evaporitcs (Horizon N). For the explanation o f  the symbols, see Chapter 2, 
Fig. 2.10. The location o f  the seismic lines displayed in Fig. 6.4 is also indicated.
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F igure 6.4 Seismic sections showing the distribution o f  clastic bodies at the base o f  the 
M essinian evaporites in the study area.
a) 2D seismic section crossing the Levant region in a NW-SE direction (location in Fig. 6.3).
The lower part o f  the figure displays a close-up o f  the seismic section, with the line-drawing and 
interpretation o f  the clastic body (dark grey colour) resting above the base o f  the Messinian 
evaporites (Horizon N). The black arrows mark the truncated termination o f  the pre-cvaporitic 
reflection, directly related to the location o f  the Afiq-El Arish canyon flanks.
b) 2D seismic section crossing the Levant region in a NW-SE direction (location in Fig. 6.3). 
The clastic body at the base o f  the M essinian evaporites is identified by the high-amplitude 
seismic event, by analogy with the procedure applied in Chapter 3.
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Messinian evaporites. Although the clastic bodies have been interpreted as submarine, 

no direct indication has been found regarding the exact water depth at which they 

deposited, which could have ranged from shallow to deep marine.

The position of the sea-level at the base of the Messinian evaporites can be 

evaluated also from the analysis of the drainage and erosional patterns of the canyon 

systems. The comparison of the results obtained in this PhD research with previous 

studies has documented a downslope change in the stream pattern from areal 

(‘badlands’-type) erosion in the marginal parts of the study area (e.g. Gvirtzmann & 

Buchbinder, 1978; Ryan, 1978; Barber, 1981) to basinward focused incision (Chapter 

2, Section 2.6.3). This downslope change of the stream pattern is significant for the 

interpretation of the paleo-environments at the base of the Messinian evaporites, as it 

could be generated either by lithological differences in the pre-MSC substrate, or linked 

to a paleographic boundary separating a subaerial to a submarine environment.

Badlands morphology strictly depends on the resistance of the bedrock (e.g. Barber 

1981; Huggett, 2003). The bedrock to the observed incisional patterns is composed by 

the canyon fill, i.e. deep-water fine-grained siliciclastic sediments (see e.g. Chapter 5, 

Section 5.5). This type of bedrock is favourable to the development of badlands. 

Therefore, the absence of areal erosion in the downslope region, and the change to 

focused incision is likely to represent the transition from a subaerial to a submarine 

environment. In this context, the erosional surface at the base of the distal Messinian 

evaporites (Horizon N) can be interpreted as entirely shaped by submarine processes.

These observations provide a significant characterization of the paleoenvironments 

of the basal Messinian evaporitic setting. Nonetheless, the landward extent of the 

submarine erosional surface remains uncertain, due to the absence of stratigraphic 

constraint on its presence/absence in the marginal area of the Levant region. The 

original transition between a subaerially exposed and submarine eroded surface at the 

base of the Messinian evaporites can have been potentially overprinted by subsequent 

erosional phases shaping the marginal Messinian erosional surface. Therefore, this lack 

of constraint hinders a precise estimate of the sea-level position at the base of the 

Messinian evaporites. As a consequence, future work based on additional data is 

needed in order to evaluate this factor and to produce an estimate of the sea-level drop 

that occurred at the onset of the deposition of the Messinian evaporites on the Levant 

margin and basin.
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6.3.3 Sea-level during the deposition of the Messinian evaporites

The main aim of this section is to assess relative sea-level variations and basinal depth 

during the deposition of the Messinian evaporites. This will be attempted using the 

analysis of sea-level indicators and of basinal subsidence, derived from the results in 

the previous chapters and from previous studies in the Levant area.

In basinwide evaporitic settings, the location of the onlap termination of the 

evaporites can be generally taken as an indication of the shoreline facies, i.e. of sea- 

level position (see e.g. Warren, 1999). In the study area, the erosional truncation of the 

intra-evaporitic horizons (Chapter 4, Section 4.7.2) hinders the interpretation of their 

marginal terminations and of possible onlap patterns developed landward of this 

truncation. In Chapter 4, the probable original architecture of the evaporitic unit as been 

interpreted as composed of divergent onlapping packages, based on the geometry of the 

preserved horizons. This confirms previous studies based on drillholes in the Israel 

coastal plain, that indicate an onlap nature of the Mavqiim evaporites (Cohen & 

Parchamovsky, 1986). Moreover, this interpretation is supported by the similarity in the 

depositional geometry of the coeval evaporites of the Western Mediterranean area (e.g. 

Lofi et al., 2005). These results support the hypothesis that the location of the sea-level 

during the deposition of the evaporites was higher than present-day elevation of the 

truncation surface, i.e. Horizon M. Nonetheless, the exact location of the sea-level at 

this stratigraphic level still remains unknown.

A further attempt to estimate the depth of the Levant Basin at the time of evaporite 

deposition can be based on the analysis of the thickness of the Messinian evaporites. 

The deposition of this ca. 1.8 km-thick evaporitic wedge requires the existence of a 

significant space in the basin for their accommodation. Based on the data available, 

three main models can be hypothesized for the basinal setting of the Levant region 

during the deposition of the evaporites (Fig. 6.5). The first model (Fig. 6.5a) is based 

on the deposition of the distal part of the evaporites in a pre-existing very shallow sea 

(max. 200 m deep), with accommodation space created only by tectonic subsidence and 

sediment load. The second model (Fig. 6.5b) is based on the deposition of the distal 

evaporites in a pre-existing shallow ramp-setting sea. The third model (Fig. 6.5c)
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MODEL 1: very shallow sea  (ca. 200 m)

Pre-evaponbc basin reflections 200m

Subsequent accommodation created by 
sediment load and tectonic subsidence ^

MODEL 2: ramp margin

Pre-evaporitk: basin reflections

• Negligible tectonic subsidence -~-
•  Variable water depth for evaporite deposition
• Discordance base evaporrtes/intra-evaporites

MODEL 3: intermediate sea  (ca. 1000 m)

Pre- evaporitic basin___________________

818m

After evaporite deposition

982m of loading subsidence

818m of evaporites

Negligible tectonic subsidence during MSC 
Syn-depositional subsidence due to evaporite load 
Pre-evaporitic slope to basin system

F ig u re  6.5 Basinal models proposed for the creation o f  the accom m odation space necessary for the 
deposition o f  the ca. 1.8 km-thick M essinian evaporitic wedge in the Levant region.
a) The first model implies the deposition o f  the distal part o f  the evaporites in a pre-existing very 
shallow  sea (max. 200 deep), with accom m odation space created only by tectonic subsidence and 
sedim ent load.
b) The second model implies the deposition o f  the distal evaporites in a pre-existing shallow ramp- 
sctting sea.
c) The third model involves the deposition o f  the evaporitic wedge in an intermediate (ca. 1000m 
deep) sea characterised by a pre-existing shelf-slope-basin setting.
The m ost likely basinal setting for the deposition o f  the M essinian evaporites is the third model (see 
discussion in the text).
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involves the deposition of the evaporitic wedge in an intermediate (ca. 1000 m deep) 

sea characterised by a pre-existing shelf-slope-basin setting. In order to evaluate the 

most likely model, the Messinian evaporitic wedge will be analysed in terms of the 

combination of a) tectonic subsidence, b) sediment load and c) eustatic variations in 

creating the basinal conditions for their deposition during the MSC.

a) The tectonic subsidence of the Pliocene-Pleistocene interval in the Levant 

region is approximately 0.02-0.07 mm/year (Tibor et al., 1992; Ben-Gai et al., 2005). 

The average tectonic subsidence on mature continental margin as the Levant has been 

calculated at approximately 0.1 mm/year (Allen & Allen, 2005). Even applying this 

higher rate, in the MSC time span of < 1 My (Clauzon et al., 1996, Krijgsman et al., 

1999) this would results in the creation of less than 100 m of accommodation, thus 

insufficient to accommodate 1.8 km of evaporites. Therefore, additional factors 

contributing to the creation of accommodation space must be considered.

b) The contribution of subsidence due to sediment load can be calculated where 

evaporites are replacing a column of water, using the following formula (Allen & 

Allen, 2005):

Y = S (Pm-Pb/Pm-Pw) 

where Y is the depth of the basement corrected for sediment load, S is the total 

thickness o f the column corrected for compaction, and pm, pb and pw are mantle, mean 

sediment column, and water densities, respectively. It is here assumed that no 

significant compaction occurred in the evaporites. This approximation appears to be 

reasonable considered that evaporites are characterised by an extremely low 

intercristalline porosity that is lost almost completely by 50 -  100 m of burial (Warren 

1999). Therefore, the parameters used in the formula are:

Pm Pb Pw S Y

3.3 t/m5 2.3 t/mJ 1.1 t/mJ 1.8 km 0.818 km

The result shows that a load of 1.8 km of evaporites is accommodated by an initial 

basinal depth of 0.818 km. Adding the previously calculated value of tectonic 

subsidence, a maximum basinal depth of 0.918 km is obtained. This demonstrates that 

the exceptionally high salt load combined with initial basinal depth had the potential to 

create a considerable part of the accommodation space necessary for the deposition of
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the evaporitic wedge notwithstanding the limited duration of the MSC. The effects of 

evaporite load in the Levant Basin had previously been explored by Tibor & Ben- 

Avraham (2005). These authors document a deepening of the Levant shelf area (in the 

region of the Judea Mountains) o f400 m, due to evaporite loading in the basin. At the 

same time, the flexural response of the lithosphere to the removal of water load is 

thought to have an impact on the supply of eroded terrigenous sediments to the basin 

(Tibor & Ben-Avraham, 2005). In this context, the results of this PhD research further 

stress the importance of this factor in the creation of the accommodation for evaporite 

deposits in the marginal and basinal area of the Levant region.

The analysis of the pre-evaporitic geological setting provides important additional 

information about the depth of the basin immediately preceding the onset of evaporite 

deposition. As highlighted by Buchbinder et al. (1993), the marginal evaporites of the 

Mavqiim Formation onlap detrital slope facies of the late Miocene Pattish reef 

complex, or the coeval open marine marlstones in the area of the Ashdod, Ashquelon 

and Bamea Canyons, beneath the present-day Israeli coastal plain. The evaporites rest, 

therefore, on relatively deep-water sediments (Buchbinder et al., 1993). Furthermore, 

the occurrence of Oligo-Miocene slope submarine canyons on the Levant continental 

margin documents the existence of a well-developed shelf-slope-basin siliciclastic 

system predating the deposition of the Messinian evaporites (Druckman et al., 1995). In 

conclusion, these observations and the previous results indicate the existence of a deep 

(>1000 m) basin setting preceding the onset of evaporite deposition (Tibor et al., 1992). 

The same setting is thought to be common to other coeval Mediterranean continental 

margins (e.g. Montadert et al., 1978).

c) Indications on the eustatic level and its variations during the sedimentation of 

the Messinian evaporites can be derived from the analysis of their depositional 

environment. The significant thickness of evaporites observed in the study area requires 

the basin brines to be repeatedly replenished with additional sea-water (Kendall & 

Harwood, 1996). As pointed out by Hodell et al. (1986) the great thickness of the 

Messinian salt in the Mediterranean Basin implies a communication between the 

Mediterranean and the global ocean throughout much of the MSC. Thus, a continuous 

inflow from the Atlantic in combination with blocked return has been proposed for the 

Messinian evaporitic basin in numerous studies (Hsii et al., 1977; Krijgsman et al.,

1999; Meijer & Krijgsman, 2005). In the Messinian Main Salt Unit of the Western
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Mediterranean, sedimentological evidence indicates many cycles of marine flooding 

and evaporite drawdown of water, followed by subaerial erosion (Hsti et al., 1977,

1978; Meijer & Krijgsman, 2005). In the Eastern Mediterranean, Cohen (1987) 

envisages a fully submarine origin for the Messinian evaporites subcropping 

underneath the Israeli coastal plain and shelf. In this PhD research, the results obtained 

in the previous chapters appear to indicate that the intra-evaporitic horizons and seismic 

packages are likely to represent transgressive-regressive cycles linked to allocyclic sea- 

level variations or autocyclic brine-level variations during the MSC. This pattern is 

analogous to cycles of brine and relative sea-level change observed in a number of 

recent and ancient evaporitic depositional provinces (Warren, 1999).

A direct constraint on the lithology characterising these transgressive-regressive 

facies, i.e. on the composition of these intra-evaporitic horizons is mainly based on 

their seismic response. The transparent seismic facies within the Messinian evaporitic 

unit has been interpreted as indicative of the presence of halite deposits (Chapter 4). 

Conversely, the intra-evaporitic horizons could indicate the juxtaposition of halite on 

anhydrite or limestone facies (positive seismic response) and on shale/marl facies 

(negative seismic response) (Nurmi, 1988). The spatial analysis of these horizons did 

not resolve any clear geomorphological pattern supporting a lithological interpretation. 

In contrast, the high lateral continuity of the reflection character is more indicative of 

chemical sedimentation processes (for the acoustically hard layers), or marly/muddy 

depositional systems (for the acoustically soft layers) (Chapter 4, Section 4.6.2).

Some constraint about the nature of the upper part of the Messinian evaporites has 

been provided by the marginal wells (Chapter 1, Fig. 1.9a). This part (few 10s of 

metres) of the evaporites is composed of a thin layer of anhydrite passing upward to 

interbedded anhydrite and weakly calcareous claystone, with traces of pyrite and chert 

(unpublished well reports). Based on cutting analysis, the depositional environment of 

this upper and marginal portion of the evaporites has been interpreted alternatively as 

continental (fluviatile/lacustrine), sabkha and/or shallow marine, (unpublished well 

reports). Conversely, the lithologies within the near-basal part of the Messinian 

evaporites in this marginal area are inferred from well log data, and are composed of a 

thick halite interval, interbedded with a claystone-anhydrite layer that is a few metres 

in thickness (Chapter 5, Fig. 5.6; unpublished well report). These data provide insights 

on the depositional environments of the evaporites. Nonetheless, the data available do
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not allow a detailed interpretation of facies juxtaposition, and of possible transgressive- 

regressive patterns within the basinal evaporitic system.

The variety of evidence for a deep-basinal pre-evaporitic setting collected in this 

section indicate that the first model hypothesised for the depositional setting of the 

evaporites, i.e. a pre-existing very shallow sea (Fig. 6.5a) can be ruled out. The second 

model proposed, i.e. the deposition of the evaporitic wedge in a pre-existing ramp- 

setting shallow sea (Fig. 6.5b) would require a high lateral variability of evaporite 

seismic facies. The lack of this variability, coupled with the nearly parallel geometrical 

relation between the base of the evaporites (Horizon N) and intra-evaporitic horizons, 

are used to reject this second model. Therefore, the most likely basinal setting for the 

deposition of the Messinian evaporites is the third model (Fig. 6.5c) i.e. deposition of 

the distal evaporitic wedge in a pre-existing shelf-slope-basin setting intermediate sea 

(ca. 1000 m deep). This result supports the pre-existence of a deep basin before the 

onset of the MSC, as observed in previous studies in the Levant region (Tibor et al. 

1992; Buchbinder et al., 1993; Ben-Gai et al., 2005) and in most of the Mediterranean 

continental margins (Cita, 1973; Montadert et al., 1978). The result also confirms that 

the deposition of the Messinian evaporites in the Levant region occurred in a deep- 

basin, as it is indeed widely accepted for the evaporitic series throughout the 

Mediterranean Basin (e.g. Hsti et al., 1978; Warren, 1999).

Moreover, this study documents that sediment load rather than tectonic subsidence 

had a gradual and significant effect for the creation of accommodation space during 

evaporite deposition. For the general discussion on sea-level changes during the MSC, 

it is noteworthy that the absence of onlap terminations of the intra-evaporitic horizons 

within the evaporitic wedge confirms that the sea-level never dropped below the top of 

the Messinian evaporites during their deposition. This provides an important constraint 

on the bathymetry of the evaporitic basin during the MSC, and will be used in the 

following sections to build the evolutionary model for evaporite deposition in the 

Levant area.

6.3.4 Sea-level at the top of the Messinian evaporites

Chapter 4 has documented that, in the Levant region, the top of the distal Messinian 

evaporites represents an erosional unconformity. The analysis of the origin of this 

erosional unconformity can provide important insights for the identification of the sea-
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level position at this stratigraphic level, and therefore it will be undertaken in this 

section.

As suggested in Chapter 4, Section 4.8.3, the top Messinian unconformity could 

either have been generated by subaerial or submarine erosion. A number of previous 

studies document the occurrence of a final regression of the sea-level at the end of 

evaporite deposition (e.g. Druckman et al., 1995; Clauzon et al., 1996; Krijgsman et al., 

1999; Com6e et al., 2006). On the other hand, it is widely accepted that the MSC 

terminated when normal deep-water marine conditions were re-established in the 

Mediterranean Basin (Cita, 1975; Hstt et al., 1977; McKenzie, 1999). Consequently, the 

erosional event shaping the top of the Messinian evaporites could either have resulted 

from the late lowstand at the end of the Messinian, or as a ravinement surface linked to 

the refilling of the Mediterranean after the Salinity Crisis. The interpretation of the 

origin o f this erosional surface is fundamental to determine the relative sea-level 

changes at the latest phases of the MSC in the Levant region. This section aims, thus, to 

evaluate if this surface is most likely to be subaerial or submarine in origin, and 

consequently, if the erosion was activated by a sea-level fall or rise.

Three main observation made in the previous chapters and sections are important for 

this interpretation:

• First, that erosional truncation covers a significant area of the Levant region (ca. 

10.000 km2, Chapter 4). The basinal horizontal geometry of this surface at the end of 

the Messinian is particularly remarkable, and has been evaluated in previous studies 

based on stratigraphic simulation programs (Ben-Gai et al., 2005). The occurrence of 

this horizontal base level of erosion documents an areal erosional phase that is typical 

of regression surfaces and conversely, difficult to achieve in a transgression or 

ravinement surface.

• Second, that the top of the Messinian evaporites correlates with the platform at 

the base of the lower marginal cliff observed in the study area (MS3 In Figs. 6.2 and 

6 .6). The platform has been interpreted as likely to represent a shoreline platform, and 

this argument will be further developed in Section 6.3.5;

• Finally, that fluvial, sabkha and brackish facies are recorded in the wells at the 

top of the evaporitic series (Section 6.3.3; unpublished well reports). The occurrence of 

a marine shallow-water and/or continental environment is in agreement with the fluvio-
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F igure 6.6 Seismic sections showing the details o f  the m orphology and truncation o f  seismic 
reflections associated with the M essinian marginal scarps identified at Horizon M, eastward o f  the 
pinch-out o f  the Messinian evaporites.
a) 2D seismic section crossing the Levant margin in a NW -SE direction (location in Fig. 6.2). The 
location o f  the marginal scarp developed between MS2 and MS3 (c liff 2/3) is indicated.
b) Close-up o f  the seismic section displayed in Fig. 6.6a (location in Fig. 6.6a and in Fig. 6.2), 
showing the detailed seismic stratigraphic context o f  the marginal scarp developed between MS2 
and MS3 (clifF 2/3). The interpretation o f  the main reflections, faults and seismic effects is 
indicated. The seismic package highlighted in blue is o f  unknown origin and it might correspond to 
marginal M essinian deposits, whose internal architecture is beyond seismic resolution.
c) 3D seism ic section crossing the Levant margin in a NW-SE direction (location in Fig. 6.2). The 
onlap o f  the early Pliocene reflections on the scarp developed between MS2 and MS3 (c liff 2/3 o f 
Fig. 6.6a) should be noted. It is significant to note also that the base o f the cliff (M S3) is coincident 
w ith the projected top o f  the M essinian evaporites (horizontal black dashed line). The downward 
bending o f  the seismic reflections directly above MS2 is probably the product o f  post-depositional 
differential compaction o f the Pliocene sedim ents above the morphological step defined at Horizon 
M.
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lacustrine facies observed at the top of the Messinian evaporites in the lower slope and 

basin of the Levant region by Druckman et al. (1995). Similar coeval facies have been 

also recorded in the nearby Eratosthenes seamount region by Spezzaferri et al. (1998). 

Druckman et al. (1995) interpreted the deposition of the brackish sediments as linked to 

the transition to a more humid climate with relative increase in runoff input to the 

basin. These deposits correspond to the sediments commonly termed ‘Lago-Mare’ in 

most of the Mediterranean Basin (Cipollari et al., 1999; Iaccarino & Bossio, 1999; 

Rouchy et al., 2001; Bassetti et al., 2003).

Based on these geomorphological and paleonvironmental observations, the most 

likely interpretation of the origin of the erosional unconformity at the top of the distal 

Messinian evaporites is subaerial exposure, developed during a regressive phase. This 

interpretation confirms the hypothesis that Horizon M represents the peak of the sea- 

level fall during the Messinian desiccation event, as proposed by Ben-Gai et al. (2005) 

based on two-dimensional stratigraphic simulation of the Levant continental margin. 

Consequently, the absolute elevation of this surface (i.e. -2000/-2300 s.l., Fig. 6.1) can 

be taken as the indication of the sea-level at the end of the MSC. Consequently, the 

intra-evaporitic horizons (ME20 to ME50) and their onlap terminations would have 

been eroded subaerially during the last stages of evaporite deposition. The 

reconstruction of the prosecution of the intra-evaporitic horizons landward of their 

truncation (Section 6.3.3; see also Chapter 4, Section 4.8.1) suggests that the sea-level 

during deposition of the evaporites, and preceding the final subaerial erosion, was 

located at a higher position. However, the absence of onlap terminations hinders the 

definition of the exact sea-level position at this stratigraphic level.

The identification of the top of the distal Messinian evaporites as the base-level 

preceding the Pliocene reflooding, permits the comparison with the basinal depth of the 

post-evaporitic interval. Consequently, the relative sea-level changes occurred from this 

stratigraphic level to the post-evaporitic setting can be evaluated. This can be estimated 

calculating the difference in elevation between the subaerial erosional surface at the top 

of the evaporites and the earliest Pliocene marine deposits overlying them. The earliest 

Pliocene sediments overlying the Messinian evaporites in the marginal part of the 

evaporitic wedge are represented by the basin-floor fan deposits of the Yafo Sand 

Member (Frey-Martinez et al., in press; unpublished well reports). The 

paleobathymetry of the Yafo Sand Member is considered in the range of 200-1000 m
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(unpublished well reports). This is an important evidence as it gives a range of possible 

water depth for the Pliocene basin immediately after the end of evaporite deposition. 

Thus, the juxtaposition of the upper neritic to bathyal deposits of the Yafo Sand 

Member to the subaerially exposed top of the Messinian evaporites to suggests a 

relative sea-level rise of 200-1000 m in the Levant region during the early Pliocene. 

However, this should be considered as an approximate paleobathymetric indication, as 

further evidence is needed to support this interpretation. In particular, this interpretation 

needs to be supported by the analysis of the first phase of outbuilding of the Pliocene 

continental margin in the Levant region, an important physiographic indication that is 

not visualised in the study area.

6.3.5 Remarks on the formation of the marginal Messinian erosional 
surface

During the MSC, prominent Messinian erosional surfaces formed in most of the 

Mediterranean continental margins (Ryan & Cita, 1978). As pointed out in the previous 

chapters of this research study, the correlation of this marginal erosional surface with 

the distal evaporitic domain is complicated by the lack of a detailed stratigraphic 

constraint on this surface (Chapters 2 and 4). The aim of this section is to attempt a 

correlation between the marginal Messinian erosional surface and the distal evaporitic 

domain in the study area. This is done in order to obtain additional indications about 

relative sea-level variations during the MSC.

The marginal Messinian erosional surface has been interpreted in Eastern 

Mediterranean as generated by subaerial processes and distally correlated with the 

basal, pre-salt discordance (Horizon N) (Ross & Uchupi, 1977; Ryan, 1978; Barber, 

1981; Mart & Ben Gai, 1982; Ben Gai et al., 2005). The identification of at least two 

base-levels of erosion in the study area during the MSC raises the question if the 

marginal erosional surface should be correlated to any of these basinward erosional 

events. The main indications of erosional phases are represented by the submarine 

incision at the base of the distal Messinian evaporites, and by the areal subaerial 

erosion at their top (see Sections 6.3.2 and 6.3.4). Additionally, it was discussed in this 

thesis that a series of marginal scarps developed on the marginal Messinian erosional 

surface possibly indicate different base-levels of erosion (Chapter 2, Section 2.6.4). 

These scarps bear similarities with sea-cliffs developed at the top of shore platforms,
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thus they could indicate the position of the sea-level during the progression of the 

MSC. The details of the morphology and truncation of seismic reflections associated 

with the scarps are highlighted in Fig. 6 .6 . The onlap of early Pliocene reflections on 

the Messinian marginal scarps (Fig. 6 .6) demonstrates that the relict scarps already 

existed at the end of the Messinian and are not related to salt withdrawal.

The formation and evolution of cliffs adjacent to shore abrasion platform is linked 

to basal erosion of the cliff, leading to progressive inland propagation of the cliff 

through retrogressive failure (Huggett, 2003). Consequently, the formation of the cliffs 

requires a period of constant base-level. Similar shore or wavecut platforms have been 

observed in the Nile delta area (Barber, 1981).These platforms are interpreted as 

rejuvenation terraces indicating constant lowering of base-level, with associated rapid 

falls and quiescent periods (Barber, 1981). The same concepts have been applied by 

Lofi et al. (2005) in the Gulf of Lions margin (Western Mediterranean), where the 

morphology of the Messinian erosional surface indicates a two-step sea-level fall 

during the MSC. In the Levant region, the most prominent and continuous cliff is 

developed between MS3 (2000-2250m depth) and MS2 (1750- 1850m depth) (Figs. 6.2 

and 6 .6 ; see also Chapter 2). It is significant to note that this cliff is parallel to the 

pinch-out of the Messinian evaporites (Chapter 2, Fig. 2.10), and its base is coincident 

in most o f the study area with the projected top of the Messinian evaporites (Fig. 6.1 

and 6 .6 ). This coincidence suggests that the cliff formed when the sea-level was located 

at the top of the Messinian evaporites, and consequently developed through 

retrogressive erosion at its base.

The interpretation of the top of the Messinian evaporites as the elevation of the sea- 

level points to a fully subaerial nature of the marginal erosional surface during the 

latest stages of the MSC. This erosion could explain the lack of significant or 

comparable thickness of evaporites landward of their present-day pinch-out. On the 

other hand, it is somewhat more complicated to relate the other scarps observed in the 

study area to a determined stage of the MSC, due to the lack of detailed chronological 

constraint in this marginal setting. By analogy with the nearby Nile delta (Barber,

1981) it could be speculated that these marginal cliffs were formed during occasional 

still-stands of sea-level, associated with the initial regression at the beginning of the 

MSC. Nonetheless, based on the data available, it is not possible to attempt a definitive
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reconstruction of the sequential events leading to the formation of these scarps on the 

Levant margin.

6.3.6 Summary of relative sea-level changes during the MSC

In this section, the results obtained on the relative sea-level changes that occurred in the 

study area during the MSC are summarized, as displayed in a simplified evolutionary 

reconstruction (Fig. 6.7) and compared with estimates made in previous studies (Table 

6.1). The main aspect of this reconstruction are listed as follows:

• Deep-water conditions existed in the Levant Basin before the onset of the MSC. 

This basin was characterized by a well-developed shelf-slope-basin siliciclastic system 

(Fig. 6.7a).

• The onset of the MSC was associated with a sea-level drop in the study region 

(Fig. 6.7b). The incision of the canyons indicate an erosional phase preceding the 

deposition of the distal Messinian evaporites. This initial fall is likely to have triggered 

the deposition of the clastic submarine deposits recorded in the basal part of the 

Messinian evaporites, basinward of their pinch-out. The source of clastic supply is most 

probably represented by the canyons and/or by the eroded subaerially exposed 

continental margin. The basinal extent of the subaerial exposure of the margin did not 

exceed the depth of the pinch-out of the distal evaporites. In previous studies, the 

estimated maximum sea-level fall linked with the MSC ranges between ca. 1000-2500 

m (Table 6.1).

• The deposition of the distal Messinian evaporites took place in a fully 

submarine environment. The evaporites presented a divergent onlap geometry (Fig. 

6.7c). This pattern of evaporite deposition could have been represented by a 

combination of transgressive, regressive and/or offlapping bodies depending on 

relative-sea-level changes in the basin. The final truncation of the onlap termination 

hinders the precise interpretation of the sea-level position, that must have been higher 

than the elevation of the top of the distal evaporitic wedge.

• The truncation surface at the top of the distal Messinian evaporites coincides 

with the final base-level at the end of the MSC (Fig. 6.7d). Brackish-shallow water and 

fluvial facies are recorded at this stratigraphic level (equivalent to the Mediterranean- 

wide Lago-Mare deposits), and the development of the marginal cliff and correlative 

platform MS3.
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F igure  6.7 Cartoon showing a sim plified evolutionary reconstruction o f  the relative sea-level 
changes and o f  the depositional and erosional processes occurred in the study area during the MSC 
(see detailed discussion in the text).
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Estimated sea-level changes linked to the MSC

AUTHOR MAX FALL 
(drawdown)

MAX RISE 
(reflooding)

Hsu et al., 1973; 1978 
Clauzon, 1978 
Clauzon et al., 1996

2-3 km = drawdown

Ryan & Cita, 1978 (E. Med.) min 900m, 
max 3000 km

= drawdown

Field & Gardner, 1990 2500m = drawdown

Savoye et al., 1993 1200m

Druckman et al., 1995 (Levant) 800m = drawdown

Krijgsman et al., 1999 >1000m = drawdown

Ben-Gai et al., 2005 (Levant) 800-1300m

Table 6.1 Summary of maximum amplitude of sea-level fall and rise linked to the MSC 
in the Mediterranean Basin, as estimated in previous studies. The overall equivalence 
between the drawdown and reflooding amplitudes should be noted.
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• The end of the MSC in the study area is marked by the Pliocene sea-level rise, 

indicated by the deposition of a deep-water basin-floor fan (Yafo Sand Member, YSM) 

above the evaporites (Fig. 6.7e). In previous studies, the sea-level rise coinciding with 

the reflooding of the Mediterranean Basin is considered of similar amplitude to the 

drawdown during the Crisis (Table 6.1). In this study, approximate indications from 

wells suggest that this relative sea-level rise ranges from 200 to 1000 m. This value is 

comparable to the amplitudes obtained in previous studies in the Mediterranean area 

(Table 6.1).

6.4 Comparison with previous models and other evaporitic 
basins
The Messinian evaporitic basin represents one of the past ‘saline giants’(Warren,

1999). It extends across some 2400 x 600 km and has evaporite fills up to more than 2 

km (Kendall & Harwood, 1996). The absence of modem depositional analogues of 

similar scale, coupled with the scarcity of cores across the evaporites, has meant that 

determining the depositional conditions of these saline giants is highly contentious 

(Kendall & Harwood, 1996). In general, developing sequence-stratigraphic models for 

the evaporites is not straightforward mainly because they are highly dependent upon 

the hydrology of the basin. This is in its turn controlled by factors other than sea-level 

change (Kendall & Harwood, 1996). These observations reinforce the necessity of a 

comparison between the Messinian evaporites and other ancient saline giants in order 

to fully understand their depositional setting.

Figure 6.8 displays the distribution of the major ancient basinwide evaporitic 

systems in the world (Warren, 1999). The relatively deep-water conditions of the 

Messinian evaporites compared e.g. to modem sabkhas and salinas, means that a 

greater vertical and lateral continuity is expected in these deposits (Kendall & 

Hardwood, 1996). In the study area, a widespread lateral continuity is supported by the 

presence of extensively traceable and correlatable intra-evaporitic seismic horizons. In 

some Mediterranean sub-basins, the continuity of the Messinian evaporitic deposits 

permits their detailed sequence analysis. This continuity, coupled with excellent 

outcrop exposures, explains why the gypsum evaporites of the marginal Messinian 

basins are amongst the most well-understood evaporite deposits in terms of sequence
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F igure  6.8 Map showing the location and age o f  some o f  the m ajor basinwide evaporite deposits. 
The basins are drawn for visual clarity, not to exact scale (W arren, 1999).
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analysis (Ricci Lucchi, 1973; Parea & Ricci Lucchi, 1972; Vai & Ricci Lucchi, 1977; 

Roveri et al., 2001; Manzi et al., 2005). Conversely, to date the only attempt to build a 

comprehensive model for the basinal Messinian evaporitic unit based on seismic data 

has been made in the Western Mediterranean area (Lofi et al., 2005).

Probably the best documented analogue of basinwide evaporites where high- 

resolution sequence analysis has been attempted are the anhydrite/halite evaporites of 

the Upper Permian Zechstein Basin in the North Sea (Fig. 6 .8 ; Warren, 1999). In this 

evaporitic series, the entrained carbonates are onshore gas plays in Germany and the 

Netherlands, thus there is extensive core sampling and seismic analysis of both basin 

centre and basin margin evaporites (Warren, 1999). A few sequence stratigraphic 

studies have dealt specifically with these evaporites (e.g. Tucker 1991; Strohmenger et 

al., 1996). The main results obtained from the Zechstein basin demonstrate that these 

saline giants can vary enormously in space and time, with depositional environments 

ranging from marginal sabkhas and salinas on basin edges to deepwater evaporites in 

the basin centre (Tucker, 1991; Cameron et al., 1992; Kendall & Harwood, 1996; 

Strohmenger et al., 1996).

However, the applicability of the results obtained by Tucker (1991) is limited on 

seismic data, as the sequence boundaries chosen are not prominent reflections on 

seismic sections (see discussion in Taylor, 1998). Furthermore, as observed by Warren 

(1999), the stratigraphic interpretation of the Zechstein deposits is largely focused on 

the prospective carbonate intervals (e.g. Fiichtbauer & Peryt, 1980; Strohmenger et al.,

1996) and does not deal in any detail with the internal stratigraphy of the evaporite 

themselves. Significant differences are observed between the evaporite facies of the 

Zechstein and of the Messinian evaporites, the major probably being the scarce 

development of marginal carbonate platforms within the Messinian series (Schlager & 

Boltz, 1977). This difference could be linked to the dissimilar geodynamic setting and 

basinal topography of the two areas.

In the Messinian evaporites, onshore exposures and cores are available from the 

marginwards basins of Italy, where a number of seminal studies on both shallow and 

deep-water evaporite depositional environment were developed (Parea & Ricci Lucchi, 

1972; Decima & Wezel, 1973; Schreiber et al., 1976; 1977). Conversely, there is little 

sampling and facies interpretation of the evaporites in the deeper parts of the 

Mediterranean Sea, where the sequences are thicker. Sampling is generally limited to
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the upper few meters of the basinal evaporites (e.g. Friedman, 1973; Garrison et al., 

1978; see discussion in Hardie & Lowenstein, 2004). In this context, the Nile-Levant 

region is particularly poorly known, due to the complete absence of scientific drilling in 

this area.

In the Eastern Mediterranean, Druckman et al. (1995) developed a model for the 

deposition of the Messinian evaporites in the Israel onshore and shelf area, based on 

well data coupled with a series of 2D seismic profiles. This model is focused on the 

analysis of the interaction of the Messinian evaporites with the Oligo-Miocene Afiq 

submarine canyon (Druckman et al., 1995). The model does not take into account the 

development of significant thickness of halite-bearing deposits in the more distal areas 

of the Levant basin. An attempt to summarise the depositional environment of the 

evaporites in the Israeli area has also been made by Cohen (1988, 1993) based on well 

data. Nevertheless, this model is strongly focused on the subsurface of the Israeli shelf 

area and does not address the internal depositional geometry and composition of the 

thick distal wedge of evaporites.

The results obtained in this PhD research study confirm some of the aspects 

highlighted in these previous models. Firstly, the occurrence of two main sea-level 

falls, at the beginning and at the end of evaporite deposition, respectively, is recorded, 

in analogy with the model proposed by Druckman et al. (1995). These stages of sea- 

level fall are accompanied by erosion at the continental margin. Secondly, this study 

confirms the onlapping nature of the evaporites on the margin, as suggested by Cohen 

(1993). Finally, the results obtained can be confidently included in a model proposing 

the diachronous origin of the marginal and basinal evaporites, as suggested by 

Druckman et al. (1995). Conversely, some of the results of this research appear to 

contradict the previous studies. This refers, in particular, to the location of the pinch- 

out of the ‘Lower evaporites’ in Druckman et al. (1995) which does not appear to be 

consistent with the basinward location of the pinch-out of the Messinian evaporite in 

the study area. Additionally, the analogy between the two studies are strongly limited 

by the absence of occurrence of halite facies in the data analysed by Druckman et al. 

(1995).

From a more general perspective, a series of theoretical models have been 

developed for the deposition of the basinwide Messinian evaporites in the 

Mediterranean area (Chapter 1, Section 1.4.2). The results of this research suggest that
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the two-step model by Clauzon et al. (1996) would be the most applicable to the 

Messinian evaporitic unit of the Levant area. The analogies observed regard the 

occurrence of a first sea-level fall at the onset of the MSC, and the final Messinian 

drawdown in the last stages of the MSC. It must be noted, however, that this model 

associates the apex of canyon erosional activity and the deposition of clastic fan with 

the last stages of the Salinity Crisis, while in the study region the accumulation of 

clastic deposits and focused canyon incision is mostly developed in the early stages of 

the MSC and of evaporite deposition.

In conclusion, this research provides evidence for the structural and architectural 

differences between the Levant area and the other Mediterranean margins during and 

after the Messinian Salinity Crisis. This refers in particular to the influence of pre- 

evaporitic canyon systems and to the internal stratigraphy of the evaporitic wedge in 

the Levant area. However, the many analogies observed in the depositional and 

erosional patterns mean that the study area can be used as an example for other areas of 

the Mediterranean basin where 3D seismic is not available yet and sub-salt imaging is 

limited.

6.5 Limitations and future research
The work presented in this thesis is a comprehensive study, based on seismic (2D and 

3D) and well data, of the Messinian evaporites in the Levant region, covering their 

depositional setting and post-depositional deformation. By integrating different types of 

data, the evaporitic unit has been examined to a high level of accuracy that could not 

have been attained so far. Furthermore, this is one of the first studies to explore the 

application of 3D seismic data to the study of the Messinian evaporites, and the results 

strongly encourage further work in this direction.

Comparison and discussion of the pre, syn and post-evaporitic setting of the study 

area has allowed numerous aspects of their 3D architecture and evolution to be 

inferred. The conclusions presented here have also enhanced a deeper understanding of 

the causes, and processes acting during the Messinian Salinity Crisis in the 

Mediterranean Basin. Some of the results should be applicable worldwide to other 

saline giant systems. However, despite the advance in knowledge achieved throughout 

this research, some results and interpretations have been partially hindered by a series
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of limitations. In this section, a review of such limitations and a series of research 

proposals to overcome them in the future are presented.

A significant limitation throughout this research has been the incomplete coverage 

of 3D seismic data of the study area. Accurate seismic mapping is necessary for 

determining the exact internal seismic stratigraphy of large-scale, basinwide systems 

such as the Messinian evaporites. Additionally, this is critical in order to implement the 

use of attribute-based interpretation techniques e.g. the seismic amplitude analysis that 

permitted the finding and interpretation of clastic depositional bodies within the 

evaporites. For these purposes, 3D seismic data is required over larger extensions of the 

study area, as 2D seismic datasets have inherent problems with the spatial aliasing of 

the imaged features.

Additionally, the limits of the resolution provided by the 3D seismic data (i.e. tens 

of meters) have precluded a more detailed analysis of the small-scale sedimentary and 

deformational patterns within the evaporites. This affected the interpretation of 

evaporite stratigraphy especially in the marginal parts of the basin, where their 

thickness is close to seismic resolution. Indeed, the seismic data used during this 

research project were processed and migrated to obtain the best imaging for the post- 

Messinian interval. This was due to the fact that the main exploration targets are 

located within the Pliocene section. As a result, imaging of the evaporite and pre- 

evaporite interval is limited. Nevertheless, the pre-evaporitic intervals are at a relatively 

immature stage of exploration. The increasing interest in the hydrocarbon prospectivity 

of these intervals will probably lead in the future to better techniques for the acquisition 

and migration of seismic data. This should allow an improved visualization of such 

intervals and hence, a more complete understanding of their depositional and structural 

context.

Data limitations have also precluded a higher degree of confidence when modelling 

the effects of subsidence and uplift due to evaporite load and water unload on 

continental margin and on the basin during the different stages of the MSC. This 

restricted the interpretation of their possible effects on the destabilization and erosion 

of the continental margin. Another interesting point concerned the interaction between 

evaporite deposition and vertical fluid flow and mud diapirism. This topic is still 

scarcely documented worldwide; in the case of the Messinian evaporites, so far only 

one study documented gas hydrate destabilization in pre-evaporitic marls ignited by the
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MSC, based on outcrop data (Pierre et al., 2002). In order to attain a greater 

comprehension of all these aspects and their basinwide applications, an inclusive 

analysis of the effects of relative sea-level changes on vertical fluid and gas migration 

is needed. The integration of theoretical modelling approaches with further geophysical 

analysis is here considered as the best way of improving knowledge on the mechanisms 

controlling the interaction among evaporite deposition, sea-level changes, fluid and gas 

flow and migration at continental margins.

A final and important area where significant improvements can be made is in a 

more rigorous analysis of the well database. Additional and more detailed 

biostratigraphic and well log data through the evaporites are required to fully 

understand their stratigraphy and facies. The necessity of a more accurate well log 

database is especially patent when analysing the intra-evaporitic horizons. Due to lack 

of accurate borehole logs at these stratigraphic intervals, a more detailed examination 

of their genetic mechanism and therefore, of the paleoenvironmental context of the 

evaporite cycles in the basin has been prevented. This affected in particular the 

prediction of lithology and facies, not definitely resolvable only based on the seismic 

characteristics of the reflections. This, in turn, has limited a further understanding and 

discussion of the conditions (e.g. eustatic and climatic) under which the Messinian 

evaporites deposited.

The study area is a candidate of particular interest for future scientific drilling in the 

area, as advanced in recent international meetings (e.g. Corte Colloquium, 2004). The 

proposals aim not only to a better understanding of the depositional environment of the 

Messinian evaporites, but also to detailed structural analysis of the evaporites and 

climatic reconstructions. This type of inter-disciplinary research would represent a 

unique opportunity to enhance our understanding of many of the still poorly understood 

aspects of the Messinian Salinity Crisis in the Mediterranean Basin.
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Chapter Seven: Conclusions

Seismic (3D and 2D) and well data have been used in this PhD research project to 

investigate the stratigraphic evolution, depositional systems and structural deformation 

of the Messinian evaporitic series in the Levant region. The investigations undertaken 

have produced detailed observations and deductions with regard to diverse aspects of 

the development of the Messinian Salinity Crisis in the study area, and more in general 

in the Eastern Mediterranean basin. Furthermore, insights of the impact of the 

evaporites on deformational processes and fluid flow migration at the Levant 

continental margin have been provided by this research. The results obtained should be 

of applicability to coeval evaporitic sub-basins across the Mediterranean and to other 

sedimentary basins worldwide. The primary conclusions for this PhD research study, 

and the specific conclusion that can be drawn for each of the previous chapters are 

summarised below.

7.1 General conclusions
•  This study documents how 3D and 2D seismic analysis coupled with well analysis 

can help improve our knowledge of the processes acting during the Messinian 

Salinity Crisis (MSC) in the Eastern Mediterranean Basin.

• 3D seismic interpretation has proved to be a powerful tool when analysing the 

internal stratigraphy and deformational processes of the Messinian evaporites. The 

availability of a three-dimensional understanding of the resultant structures and 

their geological context has been critical to evaluate triggering mechanisms of 

deformation of the evaporites, and to infer their depositional environment.

• The Messinian evaporitic series is composed in the Levant region of a wedge up to 

ca. 1.8 km thick in the distal part of the basin, and of a proximal domain, where an 

erosional unconformity and possibly thin (sub-seismic resolution) evaporitic 

sediments deposited. The two areas are seismically separated by the locus of pinch- 

out of the distal evaporitic wedge, which has been mapped throughout the study 

area.
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•  The Messinian erosional surface is probably composite in age and in the 

environment of formation (i.e. submarine/subaerial).

•  The base of the distal Messinian evaporites (Horizon N) is characterised by 

localised canyon incision, and this permitted its identification as an erosional 

surface. The incision of the canyons at this stratigraphic level has been linked to a 

sea-level fall at the beginning of the MSC.

• Clastic deposits have been discovered in the basal part of the Messinian evaporitic 

unit. Their presence supports the hypothesis of a sea-level fall associated with the 

initial stages of the MSC in the region.

• The deposition of Messinian clastic bodies and of the distal evaporites appears to 

have occurred mainly in a submarine environment.

•  The top of the Messinian evaporites (Horizon M) represents an areal erosional 

surface which documents the subaerial exposure of a considerable part of the distal 

evaporites, and therefore a sea-level fall at the final stages of the MSC.

• The end of the MSC and evaporite deposition in the Levant region is marked by a 

sea-level rise, as indicated by the deposition of an early Pliocene basin-floor fan 

(Yafo Sand Member) and by the development clinoforms of Pliocene age.

7.2 Controls on the architecture of the Messinian evaporites
• The pre-evaporitic setting of the Levant continental margin is dominated by a series 

of structural highs related to the development of the Syrian Arc foldbelt. These 

anticlines controlled the pre-evaporitic basin physiography and, consequently, the 

differential accommodation and the linear NE-SW directed edge of the Messinian 

evaporites.

• The Afiq, El Arish and Ashdod submarine canyons acted as preferential sites of 

erosion in the earliest stages of the MSC up to the distal part of the Levant Basin. 

The recognition of confined erosional truncation patterns in this research study 

allowed for the first time detailed mapping of the canyons at this stratigraphic level 

in the entire study area.

• The canyons acted as local depocentres for the distal evaporites in the later stages 

of the MSC. This is indicated by an evident increase in the thickness of the 

Messinian evaporites above the canyon axes. This originated the locally irregular
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geometry of the edge of the evaporites, characterized by major embayments and 

landward outliers.

•  The marginal embayments of the evaporites acted as a focus for post-evaporitic 

thin-skinned gravitational tectonics during the Plio-Pleistocene.

7.3 Clastic deposits at the base of the Messinian evaporites
•  The presence of significant amounts of clastic deposits in the lower part of the 

Messinian evaporitic wedge was revealed by 3D seismic geomorphological 

analysis.

•  The source of clastic supply to the evaporitic basin appears to be directly linked to 

the Afiq and El Arish Canyons on the Levant margin, and to the nearby Nile Delta 

system, to the southwest of the study area.

•  The discovery of these clastic deposits documented the increased erosional and 

depositional activity of these clastic fairways at the initial stages of the MSC.

• The analysis of the seismic characteristics of the clastic deposits and of the coeval 

basin physiography suggested a submarine environment for the deposition of the 

clastic bodies.

7.4 Nature of the top of the Messinian evaporites
• The detailed seismic seismic-stratigraphic analysis of a series of intra-evaporitic 

horizons and of the packages bounded by them permitted the detection of a 

discordant relationship between the intra-evaporitic horizons and the top of the 

Messinian evaporites (Horizon M).

•  The clear evidence of the erosional truncation of the intra-evaporitic horizons 

against Horizon M allowed for the first time in the Levant region the definition of 

top of the Messinian evaporites as an erosional unconformity.

• Based on the preserved geometry of the seismic reflections, the expected original 

depositional geometry of the evaporitic system is divergent onlap of the intra- 

evaporitic horizon on the continental margin.
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7.5 Evaporite deformation: dissolution and salt tectonics
• This PhD research has documented the extensive occurrence of dissolution and salt 

tectonics deformation in the Messinian evaporites within the study area.

•  The detailed structural analysis of the intra-evaporitic horizons has documented the

occurrence of an early phase of evaporite deformation at the end of Messinian, 

before the erosional event forming Horizon M.

• The most likely mechanism of deformation is differential loading linked to a 

prograding shelf wedge on the basinal evaporitic system. The direction of the intra- 

evaporitic compressional structures indicates that the deformation could have been 

initiated by the outbuilding of the Nile delta and submarine fan, active in the Levant 

Basin at least since the final stages of the deposition of the Messinian evaporites.

•  The occurrence of post-depositional evaporite dissolution is documented by the 

finding of a series of circular dissolution structures at the top of the Messinian 

evaporites. Dissolution occurred in the buried evaporites, in a deep-water setting, 

during the Pliocene.

•  Dissolution is thought to have acted on the more soluble facies in the Messinian 

evaporites, leading to the collapse of a weakly lithifled overburden, which 

deformed with a series of extensional concentric faults.

• The trigger of dissolution has been possibly linked to focused vertical flow of 

undersaturated fluids at the base of the evaporites.

•  Other indications of evaporite dissolution and evaporite-related deformation are 

observed close to the present margin of the Messinian evaporites; namely, salt 

outliers, faults detaching above the evaporite unit, and a linear depression along the 

evaporite pinch-out.

• The linear depression and faults have been related to the gravitational collapse of 

the Plio-Pleistocene clastic wedge, detaching at the top or within the Messinian 

evaporites. The analysis of the syn-sedimentary growth of marginal extensional 

faults documented that this gravity-related deformation occurred in the study area 

since the late Pliocene.
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