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Abstract

ABSTRACT

The inhalation of poorly soluble particles such as synthetic resin polymers is 

characterised by a series of biochemical and histopathological responses in 

the lung. These responses can be characterised as acute and chronic 

pathologies that include pulmonary oedema, inflammation and fibrosis. The 

ability correctly to identify patients that manifest early signs of lung injury 

could significantly reduce the morbidity from these types of pathologies. 

Consequently, this study was undertaken to identify protein markers of early 

oedema and inflammation.

Models of pulmonary injury were induced in the rat lung via intratracheal 

instillation of a synthetic resin polymer. Conventional quantitative analysis of 

broncho-alveolar lavage (BAL) fluid was used to indicate the severity of the 

oedematous response, whilst morphological changes were identified by 

histological examination. Two dimensional sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (2D SDS PAGE) was then employed to 

separate the proteins in the BAL fluid collected from the mild and persistent 

models of lung injury.

The complete toxicological and histological characterisation of the polymer- 

induced model of pulmonary injury successfully identified specific endpoints of 

injury. This model was used to study the protein profiles in response to 

polymer-induced lung injury. 2D SDS PAGE was optimised for use with BAL 

fluid and identified two interesting proteins, prosaposin and calgranulin A, 

which have the potential to act as biomarkers for lung injury.

Furthermore, immunohistochemistry can provide an insight into co-localization 

and quantitative analysis of proteins identified by proteomics with cellular 

organisation/structure, which in turn, may be reflective of their function. This 

was demonstrated using two proteins, cocoacrisp and surfactant protein A 

that were found to have elevated levels in tissue sections from the polymer 

treated lungs. Finally, in addition to all these proteins being potential 

biomarkers of lung injury, they are also prospective targets for clinical 

treatment.

XV
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Introductio n

1.1 THE RESPIRATORY SYSTEM

1.1.1 G en eral  A r c h ite c tu r e

The lungs are a complex organ that have to contend with numerous inhaled 

and ingested xenobiotics on a daily basis. The primary function of the lungs is 

gaseous exchange, whereby oxygen (0 2) from the atmosphere is transported 

to the respiratory tissues and carbon dioxide (C02) made by all tissues is 

expelled to the atmosphere. Due to the importance of this process, the lungs 

require a defence system to prevent damage. Lung damage can result in a 

multitude of lung conditions such as pulmonary oedema, fibrosis and tumour 

formation.

1.1.1.1 Anatomic Distinction

The respiratory system (RS) consists of two lungs that are situated in the 

chest. Each lung can be divided into the upper, lower and distal respiratory 

tracts (RT) (Figure 1.1). The upper RT includes the airways that begin at the 

nose and mouth and end with the larynx. The lower RT begins at the trachea 

and includes the bronchi and the lungs. The distal RT comprises of the 

gaseous exchange region of the lungs (respiratory bronchioles and alveoli).

1.1.1.2 Functional Distinction

Alternatively, the RS can be divided into the conducting and respiratory 

portions. The conducting zone allows the movement of air into and out of the 

RS, whereas the respiratory zone allows gaseous exchange of 0 2 and C 02.

1.1.2 C o n d u c tin g  Z o ne

When we inhale, air enters through our nasal cavity or buccal cavity and 

passes over the pharynx and through the trachea. The trachea branches into 

two bronchi each of which supplies air to one of the lungs. Branching of the 

airways produces subsequent generations of smaller airways (Table 1.1). The 

first 15 generations of the airways are the conducting zone. Within the lungs,

2



Introduction

each bronchus divides into smaller bronchioles that eventually divide into the 

terminal bronchioles, the smallest of the conducting airways.

bronchiole

Upper RT 

Lower RT

Nasal Cavity

Pharynx

Larynx

T rachea

Bronchus

Lung Parenchyma

Distal RT
Respiratory 
and alveolar unit

Figure 1.1: Cartoon of the general plan of the respiratory system indicating 

the different respiratory tracts (reproduced with permission of Dr. K 

BeruBe)

1.1 .3 R es p ir a to r y  Z o ne

The respiratory zone begins when the terminal bronchioles become 

respiratory bronchioles. Their primary role is to supply gas to the alveoli but 

alveoli are also present in their walls. Tiny airways, called alveolar ducts 

branch from each respiratory bronchiole. Alveolar ducts end in a cluster of 

alveoli called an alveolar sac. Each alveolar sac opens into approximately 10 

to 16 alveoli (Figure 1.2).

3
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Airways Generation Number Diameter Zone

Trachea 0 25mm Conducting

Bronchus 1-11 1-10mm Conducting

Bronchiole 12-16 1.0mm Conducting

Respiratory Bronchiole 18+ 0.5mm Respiratory

Alveolar Duct 20-23 0.5mm Respiratory

Alveolus 24 0.2-0.5mm Respiratory

Table 1.1: Table of the branching of the airways to produce the different 

generation of airways (adapted from Jeffries and Turley, 1999).

secretion

smooth
muscle

respiratory
bronchiole

alveolus

alveolus

serous
ciliated 

cell

l*V

respiratory
bronchiole

alveolar sac

alveolus

basement
membrane
interstitium
type I
pneumocyte 
type II
pneumocyte
free alveolar 
macrophage

Figure 1.2: Anatomy of the respiratory bronchioles and alveolar subunit in 

the human lung (Jeffries and Turley, 1999).
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1.1 .4 A lveo la r  U nit

Gaseous exchange occurs in the alveoli (Figure 1.3). They require a rich 

supply of blood, which is provided by a network of capillaries. The walls of the 

alveoli are shared with surrounding alveoli. The major cell types present within 

the alveolar units are: type I and II pneumocytes, endothelial cells, fibroblasts 

and alveolar macrophages (AMs).

Alveolar
Septa

Bronchiole

Pores of 
Kohn

Alveolar
Septa

Figure 1.3: Scanning electron micrograph of (a) the distal RT and (b) close 

up of alveoli (rat lung samples donated by Dr K. BeruBe, images taken by 

Dr D. Balharry and M. Hicks, 2004).
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Introductio n

The pulmonary capillaries are contained in the interstitial space within the 

septum. Pores of Kohn are small openings located in the alveolar septa 

(Figure 1.3), which allows the movement of AMs (Section 1.1.5.2) to transfer 

from one alveolus to another.

The alveolar capillary membrane has a total surface area of more than 70 m2 

but is only 1 to 2 pm thick. The outermost layer comprises of a thin film of fluid 

primarily consisting of surfactant. Underneath is a thin layer of type I 

pneumocytes that sits on top of the basement membrane. Below this lies an 

interstitial space, which is very thin in most areas, but with some thicker 

regions that contain connective tissue and other cells. The capillary and its 

endothelial cell wall lie within the interstitial space. The endothelial cell is very 

thin and sits on the opposite side to the basement membrane similar to type I 

pneumocytes. Endothelial cells contain plasma and erythrocytes. O2 and CO2 

diffuse across the alveolar capillary membrane down their 

concentration/pressure gradients.

1.1.4.1 Type I and Type II Pneumocytes

The type I pneumocytes cover 95 percent (%) of the alveolar walls but only 

account for 40% of the number of epithelial cells (Figure 1.4). They are flat 

(squamous) cells that are metabolically and anatomically specialised for 

gaseous exchange between the alveolar space and pulmonary capillaries. 

Type I pneumocytes have a flat central nucleus that is surrounded by broad 

cytoplasmic extensions that are between 0.1 and 0.3 pm thick. As a result, the 

distance for the diffusion of gas between the alveolar airspace and pulmonary 

capillary blood is minimised (Figure 1.4b). Proteins and fluids can be actively 

transported across the epithelium to maintain the normal function of the lungs 

(Kreda et al., 2001; Johnson et al., 2002).

Interspersed with type I pneumocytes are type II pneumocytes (about 5% 

cover). These are more metabolically active than type I pneumocytes and 

carry out 4 important functions:

(1) Pulmonary surfactant synthesis, secretion and recycling (See 

Section 1.1.5.4)
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(2) Xenobiotic metabolism

(3) Transepithelial movement of water

(4) Proliferation and differentiation in response to lung injury to 

restore normal alveolar architecture.

Type II pneumocytes are rich in mitochondria and have microvilli protruding 

from their surface. The microvilli aid in the distribution of surfactant and 

antioxidants (Figure 1.5).

Type II 
Pneumocyte

Red Blood 
Cell

Endothelial
Cell

Type I 
Pneumocyte

Basement
Membrane

Endothelial
Cell

Type I 
Pneumocyte

Capillary

Nucleus

Figure 1.4: (a) Light micrograph (image from Dr. K. BeruBe) and (b) 

transmission electron micrograph of an alveolar unit (image from West, 1992).
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The attenuated cytoplasm of type I pneumocytes and the fact they cover the 

majority of the surface area of the epithelia make them a ubiquitous target for 

damage by xenobiotics, hence making them more susceptible to injury. Upon 

damage, it is commonly hypothesised that type I pneumocytes cannot 

regenerate as they have no mitotic potential. However, type II pneumocytes 

(or precursor cells within this population) are known to replicate and 

differentiate into either normal type II pneumocytes or squamous type I 

pneumocytes in order to restore normal lung architecture and function 

(Reynolds etal., 1999; Bishop, 2004).

Lamellar
Body

Microvilli

Nucleus

Basement
Membrane

Mitochondria

Figure 1.5: Transmission micrograph of type II pneumocytes showing 

characteristic sub-cellular features (image taken by Dr D. Balharry and M. 

Hicks, 2004).

1.1.4.2 Endothelial Cells and Interstitial Cells

The endothelial cells are squamous (flattened) cells that are bound to the 

basement membrane and form the capillary walls surrounding the alveolus. 

The encompassing interstitial cell types between the epithelial and endothelial 

layers include smooth muscle and fibroblast cells, which produce connective 

tissue proteins such as elastin and collagen.
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1.1.4.3 Surfactant

Alveolar type II pneumocytes produce surfactant in the lungs. Surfactant 

provides a fluid film, which lowers surface tension and prevents alveolar 

collapse at the end of expiration. It also has a role in protecting lungs from 

injuries and infection brought on by inhaled xenobiotics (Goerke, 1998). 

Surfactant is comprised of 90% lipid and 10% protein (Lynn et a/., 1974). The 

dominant lipid is phosphatidylcholine of which dipalmitoylphosphatidylcholine 

predominates (Johansson and Curstedt, 1997). There are several surfactant- 

specific proteins, e.g. surfactant protein A (SP-A), surfactant protein B (SP-B), 

surfactant protein C (SP-C) and surfactant protein D (SP-D), that are closely 

associated with surfactant lipid (Goerke, 1998).

Alveolar type II pneumocytes store surfactant lamellar bodies that are 

released into the alveolar fluid. Surfactant is transformed into tubular myelin, 

which then forms a monolayer (Figure 1.6). After surfactant has been used it 

is taken back up by type II pneumocytes and reused (Creuwels et a!., 1997, 

Goerke, 1998).

Lamellar
Bodies

Tubular
Myelin

Figure 1.6: Transmission electron micrograph showing lamellar bodies 

unravelling to form tubular myelin in rat lung (image taken by Dr D. 

Balharry and M. Hicks, 2004).
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Surfactant may alter during lung disease. Its dysfunction can play a major role 

in acute respiratory distress syndrome (ARDS). SP-A has been found to be 

elevated in patients with alveolar lipoproteinosis (AL) (Alberti et ai, 1996; 

Doyle et ai, 1998). Animal models of alveolar proteinosis provided evidence 

that the AL was related to an imbalance between surfactant biosynthesis, 

secretion and clearance possibly explaining the elevated levels of SP-A found 

in broncho-alveolar lavage (BAL) fluid (Hook, 1991). BAL fluid collected from 

cystic fibrosis patients shows a SP-A concentration that is lower than in 

normal subjects (Creuwels et ai, 1997, Goerke, 1998). Fragments of SP-A 

were also identified using proteomics suggesting proteolytic damage of SP-A 

in CF patients as a possible explanation for the reduced levels in BAL fluid 

(von Bredow et ai, 2001).

1.1.4.4 Broncho-alveolar Lavage (BAL) fluid

BAL fluid is used to obtain epithelial lining fluid samples (Pison et ai, 1996). It 

is an important component of a dynamic biological compartment that is 

modulated in a variety of medical conditions (Plymoth et ai, 2003). BAL has 

been performed as a research and clinical procedure for more than 30 years 

(Reynolds and Newball, 1974). Soluble proteins in BAL fluid originate from 

diverse sources. They could originate from serum (e.g. albumin) and diffuse 

across the air-blood barrier or be produced from a variety of cells such as 

alveolar macrophages (e.g. macrophage inflammatory proteins-2), 

polymorphonuclear cells (PMNs) (e.g. proinflammatory cytokines), type II 

pneumocyte (e.g. surfactant proteins) and Clara cells (e.g. Clara cell protein). 

Another source is from surfactant (Noel-Georis, 2002; Figure 1.7).
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Alveolar cell 
Type I pneumocyte proteins
Type II pneumocyte proteins
Damaged type I proteins

Type I cell

Airway Airway cells 
O Clara cell proteins 
O Ciliated cell proteins 
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Figure 1.7: Origins of proteins in BAL fluid. Proteins are represented as 

coloured circles (adapted from Wattiez and Falmagne, 2005).

1.1.5 Lung D e fence

The primary function of the pulmonary defensive response to inhaled 

xenobiotics is to keep the respiratory surface of the alveoli clean and available 

for respiration. The average human lungs are exposed to 10,000 litres of air a 

day, this air can contain:

1. Infectious microorganisms

2. Toxic particles

3. Hazardous chemicals.
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Therefore the lungs have to be equipped with an array of defence systems 

(i.e. mucociliary transport system, macrophage and PMNs recruitment and 

immunologic responses), to prevent and limit injury and infection.

1.1.5.1 Mucociliary Transport

The main role of the upper RT is to protect the lower RT. Mucus is produced 

by mucus-secreting glands present on the epithelial surfaces; the mucus traps 

particles and microorganisms. Ciliated cells of the epithelium (Figure 1.8) 

extend their cilia (extensions of plasma membrane) into the mucus that lines 

the airway. Their continuous beating action propels the mucus layer towards 

the pharynx, where it can be swallowed or expectorated (Wanner etal., 1996).

Ciliated Cell

Clara Cell

Figure 1.8: Scanning electron micrograph of the Ciliated cells and Clara 

cells present in the bronchioles of a rat lung (image taken by Dr D. 

Balharry and M. Hicks, 2004).

1.1.5.2 Alveolar Macrophages

AMs are resident lung phagocytes, found on the surface of the alveolar lining 

cells and in the supporting tissue of the alveolar septa. There is usually one 

AM per alveolus and they can migrate via the pores of Kohn (Gordon and 

Read, 2002). They form part of the mononuclear phagocyte system that 

originates from the bone marrow and are transported in the blood as
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monocytes, differentiating into AMs within the airspace after recruitment to the 

lungs. AMs are large cells with a diameter of 10-12 pm (Telford and 

Bridgman, 1995; Figure 1.9). When viewed under transmission electron 

microscopy (TEM), they are usually recognisable by their numerous 

pseudopodia (Figure 1.10) that are used for movement, as well as 

phagocytosis.

Figure 1.9: Light micrograph depicting free cells from rat BAL Fluid 

highlighting (a) AMs and (b) PMNs (image taken by M. Hicks, 2003).

AMs are the first line of cellular defence in the lower respiratory tract and play 

an important role in the defence against xenobiotic particles (Berg et ai,

1993). AMs engulf and digest any foreign material and bacteria in a process 

known as phagocytosis. Following phagocytosis, macrophages migrate to the 

small airways and are expelled via the mucociliary transport. Alternatively, 

they exit the lungs via the blood or in the lymphatic vessels, often 

accumulating in the lymph nodes (Lehnert et ai, 1986). During phagocytosis, 

macrophages are activated and release mediators including cytokines and 

chemotactic factors. The cytokines recruit PMNs (polymorphonuclear cells)
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(Section 1.1.5.2.2) and the chemokines interact with the T-lymphocytes that 

are involved in a cell-mediated immune response (Lohmann-Matthes et al.,

1994). This response may lead to a complex cascade of events leading to 

inflammation and tissue injury (Moore et al., 1992; van Eeden etal., 2001).

1.1.5.3 Polymorphonuclear Cells

PMNs are inflammatory cells which are normally recruited when more 

persistent inflammation is induced in the lungs. They are a type of granulocyte 

and are recognisable by their multilobar nucleus (Figure 1.9). PMNs normally 

circulate in the blood and a small number are endogenous to the lungs. 

However, PMNs accumulate in the capillaries at the site of inflammation, 

where they then rapidly migrate into the alveoli. Once at the site of 

inflammation, the PMNs quickly eliminate many pathogens by phagocytosis. 

PMNs are normally associated with persistent types of inflammation because 

their influx generally follows AMs influx (Prescott, 1998).

Pseudopodia

Nucleus

Mitochondria

Figure 1.10: Transmission electron micrograph of an alveolar macrophage 

showing its distinguishable pseudopodia (image taken by Dr D. Balharry 

and M. Hicks, 2004).
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1.1.5.4 Immunological response

Protective immune responses to inflammation and its regulation are 

endogenous to the lungs. A pro-inflammatory response is regulated by 

cytokines (accelerate inflammation) including interleukins (IL)-1, -6 , and 

tumour necrosis factor (TNF)-a, which are responsible for acute phase effects, 

while IL-8  and interferon-y are also implicated in phagocyte activation. There 

are also cytokines such as IL-10 that play a role in anti-inflammatory 

responses by inhibiting pro-inflammatory cytokine release. The net effect of an 

inflammatory response is determined by the balance between pro- 

inflammatory and anti-inflammatory cytokines (Fiorentino et al., 1991). 

Prolonged inflammation can result in tissue damage and possibly the onset of 

certain types of lung disease (e.g. bronchitis, emphysema and asthma). It is 

therefore important for lung inflammation to be regulated.

1.1.5.5 Non Cellular

The primary defences of the upper airway are sneezing and coughing 

(Richardson and Peatfield, 1981). Sneezing clears both the oral and nasal 

cavities of xenobiotics via expulsion, while the coughing reflex moves 

xenobiotics in the trachea and pharynx into the oropharynx where they can be 

swallowed. During illness (e.g. cold, flu), these defence mechanisms are 

exacerbated in order to clear the mucus build up brought on by the illness. 

They are also intensified by high concentration of pollution and allergic 

reactions such as hay fever. Sneezing and coughing ensures that the 

particulate retention time in the upper airway is only a matter of minutes 

(Foster, 2002)

1.2 THE PATHWAY OF LUNG INJURY

As previously mentioned, the RS is one of the first lines of defence following 

exposure to inhaled xenobiotics. This exposure can lead to lung injury that 

typically elicits a sequential pattern of responses (Figure 1.11). The alveolar 

surface is the site of the first response. This may be altered by abnormal 

leakage of fluid into the alveoli (oedema) or by a failure of the clearance
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mechanisms designed to remove the debris from the alveoli (Lewis et al.,

1987). Mild inflammatory responses may follow, leading to microscopic 

changes in vascular calibre and blood flow. Chronic inflammation may lead to 

excessive or abnormal tissue remodelling (hyperplasia, metaplasia). If the 

toxicant is persistent and bioreactive in the lungs, a common response is the 

formation of excess collagenous material on the interstitial tissue (pulmonary 

fibrosis) or a loss in the redistribution of tissue elements (emphysema).

1.2.1 In fla m m a tio n  in th e  L ung s

Inflammatory responses are usually protective and beneficial but also have 

the potential to cause injury to the lungs (Larsen and Holt, 2000). The purpose 

of an inflammatory response is to repair, restore and if necessary, remodel the 

injured tissue. Inflammation resulting from an internal/external stimulus is 

associated with local vessel dilation, capillaries becoming leaky and airway 

smooth muscle constriction. While this occurs, fluid, proteins and phagocytic 

cells move into the injured region. The inflammatory response triggers the 

migration and activation of both resident and circulating inflammatory cells, as 

well as the production of cytokines and growth factors. This initial recruitment 

of inflammatory cells into the alveolar spaces is brought about by 

chemoattractant agents derived from the injured lung tissue.

Epithelial Lining Fluid Interaction

Epithelial Cell Damage

PERMEABILITY CHANGES

MILD INFLAMMATION

SEVERE INFLAMMATION

EPITHELIAL HYPERPLASIA 
(LIPOPROTEINOSIS)

Epithelial Metaplasia

Interstitial Fibrogenesis

IMMEDIATE

TRANSIENT

PROGRESSIVE

Figure 1.11: Responses to respiratory tissue injury. Sections highlighted in red 

are the areas investigated in the present study (adapted from Balharry, 2005).
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If the damage is acute, the inflammatory cell infiltrate is predominantly made 

up of PMNs (Grattendick et al., 2002). Initially, the blood flow is high but then 

it almost stops due to increased viscosity following water loss from the 

capillaries and the formation of clots. This response dilutes and minimises the 

spread of toxins, facilitates the clearance of cellular debris and helps to enable 

tissue healing. One consequence of the inflammatory response is localised 

regions of swelling of lung tissue that can reduce the gaseous exchange 

capability (Hicks, 2000). The duration of the acute phase response to injury is 

short, leading to resolution, healing and repair.

In contrast to acute inflammation, chronic inflammation results from repeated 

exposure to toxic agents. Vascular remodelling and sustained leukocyte influx 

are the most prominent features of chronic inflammatory diseases (Ezaki et 

al., 2001). There is a replacement of the PMNs response with a predominantly 

lymphocytic response (Izbicki et al., 2002). There is an increase in epithelial 

and endothelial permeability that results in the movement of plasma proteins. 

Ultimately, a fibrin clot may form in the alveoli. The degradation products of 

this fibrin can act as chemoattractants for leukocytes, augmenting the 

inflammatory response by the recruitment of new inflammatory cells 

(Richardson etal., 1976).

The adherence of the recruited lymphocytes to the endothelium can lead to 

further induction of cytokines that may increase leukocyte traffic and 

recruitment of phagocytic cells during inflammation (Berman et al., 1990). 

PMNs, AMs and lymphocytes are sources of endothelial cell mitogens (Ezaki 

et al., 2001). The increased number of these cells could lead to endothelial 

cell proliferation, resulting in enlargement of the airway vasculature. These 

changes to the cell structure could be a further stimulus leading to the 

sustained influx of leukocytes that initiates tissue remodelling (Murphy et al., 

1999). This may then lead to an abnormal tissue restoration (hyperplasia, 

metaplasia), resulting in altered function or failure to function normally, as in 

fibrosis or emphysema (Jeffery, 2000).
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1.2.2 P u lm o n ar y  O ed em a

Pulmonary oedema is a life threatening condition that frequently leads to 

acute respiratory failure (Sartori and Matthay, 2002). It is the abnormal 

accumulation of excess interstitial fluid in the interstitial spaces (Hicks, 2000; 

West, 2003; Jeffries and Turley, 1999). This develops from either an increase 

in lung vascular permeability or an increase in lung vascular hydrostatic 

pressure.

There are two stages of pulmonary oedema, firstly, interstitial oedema that is 

characterised by the engorgement of interstitial tissue (Hansen-Flaschen, 

1995; West, 2003). The lymphatics widen and there is an increase in lymph 

flow. There is also a widening of interstitium of alveoli wall. Interstitial oedema 

has little effect on pulmonary function. The second stage is alveolar oedema, 

which involves interstitial fluid moving across into alveoli and occluding them. 

The affected alveoli shrink due to surface tension (West, 2003). Alveolar 

oedema affects ventilation and induces hypoxemia (i.e. insufficient 

oxygenation of the blood) (Hansen-Flaschen, 1995; Dehler et al., 2006). 

Oedematous fluid may move into the airways and is then coughed-up as 

frothy sputum: this is sometimes pink due to the presence of red blood cells 

(West, 2003).

The transition between the two stages is not well understood but may be due 

to a lymphatic overload, where the pressure in the interstitial space increases, 

causing it to spill into the alveoli. The epithelium is most likely damaged, 

resulting in an increase in its permeability. This would explain the presence of 

protein and red blood cells in the alveolar fluid (West, 2003).

The mechanisms through which pulmonary oedema occur can be split into 

four categories. The first category involves increased capillary hydrostatic 

pressure, caused by a rise in left atrial pressure (Hansen-Flaschen, 1995; 

Sartori and Matthay, 2002). A gradual increase over several years, as in mitral 

stenosis, shows no clinical evidence of oedema. However, there is often a 

marked interstitial oedema. A sudden rise in pressure, as in myocardial
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infarction, may cause oedema. Another cause of increased capillary pressure 

can follow excessive infusion of saline, plasma or blood (West, 2003).

For many years it was thought that Starling forces (hydrostatic and protein 

osmotic pressures), were responsible for keeping the alveolar space free from 

fluid. There is now strong evidence that active ion transport across the 

epithelium creates an osmotic gradient leading to reabsorption of water 

(Sartori and Matthay, 2002; West, 2003)

The second category is represented by increased capillary permeability, 

caused by inhaled or circulated toxins. Many chemical agents can disrupt the 

endothelial barrier by disrupting tight junctions and making membrane barriers 

extremely permeable (Lum and Malik, 1994). Oedema ensues because of the 

increased movement of fluids and proteins through the damaged membrane 

(Jones and McAteer, 1990; Sartori and Matthay, 2002). The last two 

categories include, reduced lymph drainage and decreased colloid osmotic 

pressure, but are rarely responsible for causing oedema on their own, and 

normally exaggerate oedema if another cause is present (West, 2003).

Clinical features of pulmonary oedema include prominent dyspnea, i.e. 

shallow and rapid breathing. Coughing is dry at the early stages but in more 

severe oedema patients, large quantities of pink foamy sputum can be found 

in the expectorate. In mild oedema, patients exhibit symptoms on exertion 

(Hansen-Flaschen, 1995; West, 2003).

1.2.3 A lv e o la r  L ipo pr o tein o sis  (AL)

Rosen et al. first described the rare lung disease AL in 1958 (Rosen et al., 

1958). AL is also known as pulmonary alveolar proteinosis, pulmonary 

alveolar phospholipoproteinosis and alveolar phospholipidosis. It is 

characterised by the accumulation in the lungs of large amounts of insoluble 

material rich in lipids and proteins (Hook, 1991; Shah et al., 2000). These 

accumulations can occur intracellularly and extracellularly. Intracellular 

accumulations interfere with cellular functions. For example, accumulation of
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lipid in the cytoplasm of AMs impairs their phagocytic function, causing a 

decrease in the lungs’ defence against infection. Accumulation extracellularly 

in the alveoli causes interference in gas exchange (Hook, 1991). The most 

common clinical feature of AL is dyspnoea. Coughing, weight loss and fever 

are also commonly associated with alveolar lipoproteinosis. Raised serum 

levels of SP-A, SP-B and SP-D have been observed in AL patients (Shah et 

al., 2000; Seymour and Presneill, 2002).

AL has an unknown origin, but the characteristic accumulation of insoluble 

material rich in lipids and proteins contains abnormal tubular myelin (Hook, 

1991). BAL fluid of affected lungs is usually a milky fluid, the major constituent 

is phospholipids, but it also contains serum proteins and surfactant proteins 

(Hook, 1991; Shah etal., 2000).

Presently most clinical tests for lung injury are based on changes in 

pulmonary function (Jones and McAteer, 1990). Chest radiographs and blood 

gas monitoring will only describe the situation relatively late after the initial 

cellular disturbance (Jones and McAteer, 1990; Hansen-Flaschen, 1995). 

Hence, there is now considerable interest in detecting early phases of lung 

injury to aid in diagnoses and treatment.

1.3 PARTICLES AND THE LUNGS

1.3.1 T o x ic o lo g ic a l  Profile  of A ir b o r n e  Partic les

The biological activity and toxicity of airborne particles are defined initially by 

their size shape and chemistry. Even the most toxic particles can have low 

biological activity if their aerodynamic properties prevent them from reaching 

the most susceptible part of the lungs. Equally, particles that exhibit the ideal 

morphology to deposit into the alveoli and mesothelium may have very low 

biological activity.

There is growing evidence that inhalation of particles in the ambient air have 

potential health effects for susceptible people (e.g. asthmatics) (Frampton,
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2001). In today’s environment there are numerous natural and man-made 

(anthropogenic) airborne particles. The source of natural particles include 

erosion-derived particles, such as soil particles, mineral particles, volcanic ash 

and sea salt. Anthropogenic particles are derived from emissions from motor 

vehicles and jet planes (e.g. diesel exhaust particles) or industrial operations 

(e.g. carbon black, titanium dioxide (Ti02) and synthetic polymers). The lungs 

have to contend with being bombarded with a number of these particles on a 

daily basis (Figure 1.12). A number of synthetic particles have proved to be 

toxic to the lung (Kim et al., 2001; Kagawa, 2002). Therefore, more 

information is required about the typical damage caused by their inhalation.

Airborne particles fall into 3 main size categories that may be classified into 

the following site ranges: ultrafine, fine and course,

1) Ultrafine -  aerodynamic diameter (the diameter of a spherical 

particle with unit density and its mass is equal to the mass of the 

particle of interest) of less than 0.1 pm

2) Fine-aerodynam ic diameter of 2.5-0.1 pm

3) Coarse -  mean aerodynamic diameter between 10-2.5 pm 

(Cullen et al., 2000; Tran et al., 2000).

Particle deposition does not occur evenly throughout the lungs. Focal areas 

such as nasal vibrissae, mucous, cilia, bifurcation (branch) in bronchi and 

alveolar septa are specialised regions of the RS that trap (impede) inhaled 

material. Some particles also aggregate (e.g. CB, DEP), which reduces their 

translocation and deposition in the RS (Murphy et al., 1998).
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Figure 1.12: Cartoon of the general plan of the respiratory system

indicating particle deposition in the lungs (adapted with permission of Dr. K 

BeruBe).

1.3 .2 Pa r t ic le  C lea r a n c e

Particles instilled into the lungs are translocated by AMs to the thoracic lymph 

nodes (Adamson and Prieditis, 1998; Friedetzky et al., 1998; Seaton and 

Cherrie, 1998; Davies et al., 2001) and once deposited can cause lymph 

nodes to increase in size or form granulomas (Lee and Richards, 2002). 

There are thought to be three mechanisms for particle clearance (Kuempel et 

al., 2001). Firstly, particles can be cleared from the alveolar region by 

phagocytosis by AMs, which can transport the particles via the mucociliary 

clearance to the tracheobronchi. These particles can then either be cleared by 

coughing or swallowed. The second mechanism of particle removal involves
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translocation in the alveolar region, whereby particles enter the interstitium of 

the lung through the epithelium. Finally, particles that enter the interstitium can 

either be drained or translocated to the lymph nodes. Particles that escape 

clearance could be involved in the development of inflammation or fibrosis in 

the lung.

1.3.3 Po o r ly  S o lu b le  Particles

The inhalation of poorly soluble particles (PSPs) such as talc, carbon black, 

Ti0 2 , coal dust, diesel exhaust particles, resins and certain synthetic 

polymers, cause a spectrum of morphological, biochemical and molecular 

changes in the rat lungs. These include inflammation, acute and chronic 

epithelial cell damage, epithelial changes including hyperplasia, metaplasia 

and neoplasia, alveolitis, granuloma formation and alterations in interstitial cell 

populations that may lead to interstitial fibrosis (Mossman, 2000).

If dusts/particles with low solubility are deposited in sufficient amounts within 

the lungs there is evidence that they are capable of causing toxic effects. This 

could be due to lung overloading where the particles overwhelm the lungs’ 

normal particle clearance mechanism (Cullen et al., 2000; Borm et al., 2004). 

Clearance of inhaled respirable dusts from the alveolar surface of the lung is 

executed by AMs that phagocytose and remove particles by migrating to the 

mucociliary escalator (Chilvers and O'Callaghan, 2000). Chronic inhalation 

studies in rats using the PSPs CB or DEP show evidence of particle overload 

in the lung (Oberdorster, 2002; Borm et al., 2004; Elder et al., 2005). Overload 

can be characterised by:

(1) Retardation of alveolar clearance of particles

(2) Increase translocation of particles into the interstitial space

(3) Increase particle burden in the lymph nodes

(4) Persistent inflammation

(5) Increase in epithelial cell proliferation 

(Cullen et al., 2000).
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1.3.3.1 Synthetic Polymers -  Test Particles

S2218600 (herein referred to as polymer A) and S2219200 (polymer B) are 

synthetically made polymers of different sizes for the potential use in 

commercial aerosol preparations. Polymer A has a molecular weight of 

approximately 70kDa (Figure 1.13). Polymer B is a mixture of three different 

subunits (Figure 1.14) and has an average molecular weight of 700kDa 

(ranging from 600,000-1000,000).

o c h 2

CH2— CH— CH — CH

0=C C=0

HO OC2H2

Figure 1.13: Chemical structure of polymer A
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Figure 1.14: Chemical structures of polymer B subunits.

The relatively high molecular weight and poor aqueous solubility of these 

polymers can potentially lead to bio-persistence in the lungs and cause lung 

overload. Similar polymers have been used to induce pulmonary injury in rats 

(Carthew et al., 2002; Carthew et al., 2006). Chronic inflammation, AL, fibrosis 

and granuloma formation are commonly associated with similar polymer 

families (Carthew et al., 2006). Activated and hypertrophic AMs with foamy 

cytoplasms were recorded. Some of the AMs were degenerated or necrotic 

and tended to form aggregates. Focal changes within the interstitium were

2 4



In t r o d u c t io n

observed and hypertrophy and hyperplasia was evident in the type II cells 

(Carthew et al., 2006).

Similar polymers to polymer A and B are available and being used for diverse 

commercial applications. The different polymers, such as poly(methyl vinyl 

ether-co-maleic anhydride) (PVM-MA), are widely employed for 

pharmaceutical applications such as denture adhesives, thickening and 

suspending agents and as drug delivery systems (Gamazo, 2004; Irache et 

al., 2005). Nanoparticles of a PVM-MA polymer have been shown to provide a 

safe and easily manufactured vaccine delivery system to prevent human and 

poultry salmonellosis (Gamazo, 2004). PVM-MA polymers have been used in 

toothpaste production enabling Triclosan, the active ingredient that is used to 

help reduce plaque and gingivitis, to continue working in the mouth for 12 

hours. Without the copolymer, Triclosan would be rapidly lost from teeth and 

gums, reducing its clinical effect (Furuichi and Birkhed, 1999). Due to the 

potential commercial usage of such polymers, the exposure risk must be 

investigated.

1.3.3.2 Bleomycin -  Positive Control for Inducing Lung Injury

Bleomycin is from a family of compounds produced by Streptomyces 

verticillis. Bleomycin shows antibiotic and potent anti-tumour effects that have 

earned it an important place in cancer chemotherapy. Unfortunately, the use 

of bleomycin in the treatment of diseases is limited by its toxic effects; the 

most serious being pulmonary injury (Lazo and Humphreys, 1983). The 

pathological changes in the lungs following intratracheal instillation of 

bleomycin include cellular infiltration, pulmonary oedema, changes to type II 

pneumocytes and interstitial fibrosis (Brown et al., 1988).

The initial morphological damage seen in the first 48 hours after treatment 

with bleomycin appears as damage in the pulmonary endothelial cells, i.e. cell 

swelling and blebbing (Aso et al., 1976). Subsequently, there is loss of the 

type I epithelium resulting in the air-blood barrier being broken down, and 

thus, allowing oedematous fluid access to the interstitium. The permeability of 

the vascular endothelium is then altered (Adamson, 1984). There is also an
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inflammatory cell infiltrate in the alveolar spaces, including the infiltration of 

macrophages, monocytes, lymphocytes and PMNs (Hay etal., 1991).

Bleomycin was chosen as a positive control, as it is a well-documented, in 

vivo model of lung injury in rats (Thrall et al., 1979; Balharry et al., 2005), 

rabbits (Catravas et al., 1983), hamsters (Starcher et al., 1978) and mice (Aso 

et al., 1976). When the instillation dosing regime is correctly chosen in rats 

then the type of inflammatory response and the extent of oedema and 

recovery can be regulated (Balharry, 2005). This opens up the possibility of 

investigating genomic changes associated with oedema (Balharry et al., 2005) 

and importantly for the present study the opportunity to investigate proteomic 

changes at the surface of the lung.

1.4 PROTEOMICS

Proteomics is used to separate and identify proteins in a complex mixture for 

the purpose of quantitative and functional analyses of all the proteins present 

(Abbott, 1999, Hunter et al., 2002). It has proven to be a powerful tool for 

identifying early changes at the protein level in a variety of disease states 

(Kvasnicka, 2003). It can also provide a non-invasive technique for evaluating 

body fluids in the search for pertinent or specific biomarkers of toxicity 

(Kennedy, 2001).

Genomics is the study of genes, their DNA sequence and variations of that 

sequence, their expression patterns in normal and diseased tissues, and their 

function in the organism. Every cell within a given organism contains all the 

genetic information necessary to make an exact copy of itself. That is, each 

cell contains a complete ‘genome’, however, not all the genes are expressed 

at the same time. Genomics offers a snapshot of expression of some or all of 

the genes in a given cell/tissue, but the level of mRNA does not necessarily 

predict the levels of the corresponding proteins in the cell, due to differing:

1. Stability of mRNA

2. Efficiencies in translation
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3. Stability and turnover rates

4. Post-translational modifications 

(Liebler, 2002).

Unlike the genome, that is a constant feature of the organism, the proteome is 

constantly changing depending on the conditions such as health, disease, 

growth rate and drug treatment. The Human Proteome Organisation has a 

goal to catalogue every distinct human protein, all protein-protein interactions 

and levels of proteins in different cells and tissues (www.hupo.org).

1.4.1 Tw o -dimensional Sodium Dodecyl Sulphate Polyacrylamide 

Gel Electrophoresis

Two-dimensional Sodium Dodecyl Sulphate Polyacrylamide Gel 

Electrophoresis (2D SDS PAGE) is the most widely used method for 

analysing proteins in a complex mixture (Berkelman, 1998). Proteomic 

analysis is challenging due to the number of different proteins expressed at 

any given time under defined biological conditions (Gorg et al., 2004). 2D SDS 

PAGE has the capacity to separate thousands of proteins on a single gel. 

O’Farrell and Klose first introduced the method in 1975. 2D SDS PAGE is the 

combination of two separation techniques. The first dimension step is 

isoelectric focusing (IEF), where proteins are separated according to their 

isoelectric point (pi). This is performed in a pH gradient created by 

immobilized ampholytes. Each protein migrates to the pH that is equivalent to 

its pi where their net charge is zero. Focused proteins are then equilibrated 

and labelled with SDS-containing buffer before they are run on the second 

dimension which is the SDS-PAGE, where proteins are separated according 

to their molecular weight. The resulting protein pattern can be revealed by 

Coomassie blue, silver or fluorescent staining. Thousands of different proteins 

can be separated with each spot on the 2D gel corresponding to a single 

protein species in the sample. The gels can be used to gain information such 

as isoelectric point, apparent molecular weight and the amount of protein 

obtained.
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Using this technique O’Farrell (1975), was able to resolve 1100 different 

components from Escherichia coli, and Klose (1975), used mouse tissue to 

resolve 275 spots from fetal liver, with approximately 230 from whole embryos 

and approximately 100 for serum. Since this technique was introduced in 

1975, it has been used to investigate a wide variety of samples such as 

normal versus disease samples, disease versus treated samples and 

molecular markers in body fluids (Westermeier and Naven, 2002).

1.4.2 M ass  S pec tr o m e tr y

2D SDS PAGE combined with mass spectrometry (MS) produces a powerful 

tool for the separation and identification of proteins from a sample. Once 

protein gels have been stained and spots of interest have been located, MS 

analysis is used to identify the proteins. There are three essential components 

of a MS machine: (1) the source which produces ions from sample, (2) the 

mass analyzer that resolves ions based on their mass/charge (m/z) ratio and,

(3) the detector which detects the ions resolved by mass analyzer (Liebler,

2002).

There are two types of mass spectrometers that are used in proteomics, 

matrix assisted laser desorption ionization time of flight (MALDI-ToF) and 

Tandom mass spectrometer (MS/MS). In the present study MS/MS was 

employed as it has been found to be more accurate than MALDI instruments, 

however a limitation of MS/MS is that it is more susceptible to contamination 

(Beranova-Giorgianni, 2003). Once the MS data has been collected, a 

database search can be used to try and identify the protein (Liebler, 2002).

1.4.3 P r o teo m ic s  on Br o n c h o a lveo la r  Lavag e  Fluid

Proteomic analysis of BAL fluid was first performed in 1979 by Bell and Hook. 

They used the 2D SDS PAGE technique to compile a comprehensive map of 

the major proteins that were present in patients suffering from pulmonary 

alveolar proteinosis (Bell and Hook, 1979). Soluble proteins in BAL fluid may 

have originated from a broad range of sources, for example, diffusion from
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blood across the air-blood barrier or as products from different cell types 

present in the lungs (Wattiez and Falmagne, 2005). A comparison between 

serum and BAL fluid 2D protein maps revealed that a certain number of the 

proteins are present at a higher concentration in the BAL fluid than in the 

serum, therefore suggesting that they are specifically produced in the lungs. 

Hence, these proteins are good candidates for lung specific biomarkers. They 

also found that these lung specific proteins could be detected in plasma using 

specific antibodies (Hermans etal., 2003; Wattiez and Falmagne, 2005).

Since 1979 the 2D SDS PAGE technique has been employed by a number of 

research groups to investigate the changes in BAL fluid proteins during 

different disease states. Lenz and co-workers compared healthy volunteers 

with patients suffering from idiopathic pulmonary fibrosis, sarcoidosis, and 

asbestosis. They observed marked changes in protein spots. In particular, 

they found the number and intensity of low molecular weight proteins were 

increased in diseased samples (Lenz etal., 1993).

A number of research groups have been developing master gels of BAL fluid 

proteins. Noel-Georis et al. (2002), have comprised a database of BAL fluid 

proteins in which they observed 1 2 0 0  silver stain spots of which they could 

identify 900 spots as 78 different protein species. A profile of BAL fluid 

proteins of patients suffering from sarcoidosis has been investigated by 

Sabounchi-Schutt et al. (2003), using proteomics. In this study, they found 

alterations of 21 silver stained spots, of which 17 were identified and 12 of 

these were found to be significantly reduced (Sabounchi-Schutt et al., 2003).

Other studies involving BAL fluid include;

BAL fluid and nasal lavage (NL) fluid -  Lindahl et al. (1995), established 

65% spot pattern homology. Immunoglobulin A (IgA) and immunoglobulin G 

(IgG) were found to be significantly higher in NL fluid possibly due to higher 

exposure to foreign antigens in the upper RT compared to the lower RT.
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Smokers and non-smokers -  Lindahl et al. (1998), observed levels of IgA, 

ceruloplasmin and the pro form of apolipoprotein A-1 to be lower in smokers 

BAL fluid than in non-smokers.

Cystic fibrosis -  von Bredow et al. (2001), reported reduced amounts of SP- 

A in the BAL fluid of cystic fibrosis. This could be due to reduced synthesis or 

excessive proteolytic degradation.

Interstitial lung disease -  Wattiez et al. (2000), determined accumulation of 

SP-A in patients suffering from idiopathic pulmonary fibrosis. This may have 

been due to alterations in synthesis or release following type II cell damage. 

They also found an increase in acidic low molecular weight proteins in 

patients suffering from idiopathic pulmonary fibrosis and hypersensitive 

pneumonitis. The proteins identified were involved in cellular processing 

relating to proliferation.

Diesel exhaust particles -  Wang et al. (2005), revealed induction of the 

phosphorylation of several phosphoproteins belonging to a number of signal 

and oxidative stress pathways following exposure to DEP.

2D SDS PAGE was employed in the present study due to its extensive use for 

proteomic separation of BAL fluid proteins on a gel by other researchers, 

enabling possible comparisons to be made between different studies. In terms 

of equipment and personnel, the 2D based technology was well suited to the 

academic setting. The basic experimental design for the investigation into 

protein changes in BAL fluid following administration of polymers is shown in 

Figure 1.15. Proteomic analysis was used to produce a list of proteins that 

could potentially be used for early clinical diagnosis of lung injury replacing the 

current clinical tests such as chest radiographs and blood gas monitoring. 

These tests only describe the situation relatively late after the initial cellular 

disturbance so there is a considerable interest in detecting early phases of 

lung injury.
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Figure 1.15: Flowchart of the proteomic process involve in investigating 

potential biomarkers in BAL fluid
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1.5 AIMS AND OBJECTIVES OF THE STUDY

1.5.1 The hypothesis

1. Polymer induced lung injury follows the same mechanism of damage as 

bleomycin induced lung injury.

2. Polymer and bleomycin induced lung injury causes protein changes in BAL 

fluid which can be identified using proteomic techniques.

1.5.2 P ro ject  A im s  and  O bjectives

The aim of this study was to develop a better understanding of the proteomic 

profile of chemical-induced lung injury, and specifically to identify protein 

biomarkers for inflammation, pulmonary oedema and repair. To accomplish 

this, animal models of polymer-induced (and bleomycin-induced) injury were 

employed.

Conventional toxicology and histology techniques were used to characterise 

the models and identify different endpoints of injury. Once these models had 

been established the proteomic techniques 2D SDS PAGE was utilized to 

evaluate protein profiles of the various stages of pulmonary damage and 

repair.

In detail, the sequential steps of this study were as follows:

1. To identify of pulmonary oedema/inflammation and repair in polymer 

induced models using broncho-alveolar lavage techniques, cellular 

counting methods and assays for alveolar surface protein (Chapter 2).

2. To confirm the morphological changes occurring during pulmonary 

oedema, inflammation and cellular repair following polymer-induced 

damage using histological analysis and to compare the polymer-induce 

model with the well-characterised bleomycin-induced model (Chapter 

3).
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3. To characterise the progressive severity of the polymer-induced model 

of pulmonary injury using the toxicology and histology information 

(Chapter 2 and 3).

4. To optimise the sample preparation and 2D SDS PAGE technique for 

broncho-alveolar lavage fluid samples (Chapter 4).

5. To profile proteins from broncho-alveolar lavage fluid samples collected 

from saline and polymer-instilled models (Chapter 5).

6 . To analyse difference in protein profiles from saline and polymer- 

instilled models (Chapter 5).

7. To identify the potential protein markers using mass spectrometry for 

different severities of lung injury and repair (Chapter 5).

8 . To evaluate the potential of novel lung proteins to act as biomarkers for 

pulmonary oedema using immunohistochemistry (Chapter 6 ).
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Chapter 2: 

Modelling of Lung Injury using

Polymers
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2.1 INTRODUCTION

Synthetic particles, like polymer A and B are known to cause pulmonary 

toxicity (Bracco and Favre, 1998). In a recent study, Carthew et al. (2006) 

used polymer A as a positive control substance. Chronic inflammation and 

granuloma formation were associated with this 13 week polymer instillation 

study carried out in male rats (Carthew et al., 2006). In this present study, the 

models were used to obtain proteomic profiles of peak inflammation/oedema 

and the subsequent repair. To date, no studies have been done using polymer 

B.

There are two experimental routes by which animals lungs can be exposed to 

a synthetic polymer, either inhalation or intratracheal instillation. Inhalation 

gives the most authentic exposure when compared to actual real life 

exposures and is the natural route of entry for xenobiotics into the lung. 

Nevertheless, instillation has certain advantages over inhalation:

• Exact dose can be delivered to the lungs

• Technical procedure is simpler

• Large range of doses can be delivered in a short period of time

• Specific lobe exposure can be carried out

• Auto-controlled studies with a non-dosed lobe from the same lung can 

be used as a control

• Comparatively inexpensive 

(Driscoll et al., 2000).

However, there are also aspects requiring consideration when utilising 

instillation technique;

• Distribution differs from inhaled particles - although non-invasive 

instillation studies over 2 0  years have indicated that both short and 

long term endpoints (inflammation, epithelial repair and fibrosis) are 

identical to those found in inhalation models (Richards and Curtis 

1984). These endpoints tend to be achieved more rapidly with 

instillation models
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• Upper respiratory tract (RT) is by-passed - although in the rat model 

chosen in the present study the upper RT is quite different from that of 

human subjects

• Instillation vehicle could alter the physicochemical properties of the test 

material or can induces its own effects

• Effect of the anaesthesia on the lungs - although with the technique 

employed in the present studies (approximately 2 mins exposure) 

minimal changes are expected and sham-treated control animals 

receive identical anaesthesia

(Driscoll et al., 2000).

Despite the potential variations associated with intratracheal instillation, it was 

chosen as the method of exposure in this study, since the administration of 

exact doses was important, as well as the ability to assess toxicity at acute 

time points.

Conventional toxicological parameters (Richards and Curtis, 1984, Richards 

et al., 1991, Murphy et al., 1998), were used to assess the status of the lung 

(e.g. healthy verses injured) (Table 2.1).

To characterise and compare the polymer models further, a bleomycin model 

was used as a positive control (Balharry, 2005). The intratracheal instillation of 

bleomycin produces a well-characterised model, which initially induces lung 

inflammation that is followed by oedema and the progressive destruction of 

normal lung architecture (Starcher et al., 1978; Thrall et al., 1979; Catravas et 

al., 1983; Balazs etal., 1994; Kaminski etal., 2000).

The objective of the present study was to test the hypothesis that single and 

double instillations of test polymers will induce different pulmonary responses 

and benchmark against a bleomycin control model of oedema and 

inflammation.
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Parameter Injured Lung Status References
Lung to body 
weight ratio

Assesses the health status of 
the lung: an early increase 
above control is indicative of 
increased lung permeability. A 
later increase denotes chronic 
lung remodelling.

(Reynolds and 
Richards, 2001; 
Housley et al., 2002; 
Balharry et al., 
2005).

Surface protein 
concentration

An increase in the amount of 
acellular protein from the lavage 
fluid was taken as a sensitive 
marker for oedema, resulting 
from epithelial or endothelial 
cell damage.

(Richards and 
Curtis, 1984; Murphy 
etal., 1998;
Reynolds and 
Richards, 2001; 
Bermudez et al., 
2 0 0 2 ).

Lavage free 
cell count 

(LFC)

An increase in the number of 
macrophages and PMNs 
represents an inflammatory 
response.

(Reynolds et al., 
1977; Bermudez et 
al., 2 0 0 2 ).

Differential cell 
count (DCC)

Assesses the severity of the 
inflammation: an increase in 
macrophage number alone is 
suggestive of mild inflammation 
whereas, increases in PMNs are 
associated with more severe 
inflammation.

(Reynolds et al., 
1977; Grattendick et 
al., 2002; MacNee 
and Donaldson, 
2003).

Table 2.1 Parameters in conventional toxicology (PMNs -  polymorphonuclear 

cells).
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2.2 MATERIALS AND STOCK SOLUTIONS

2.2.1 M aterials  

Centurion. UK.

Cytospin

Harlan. UK.

Male (200-250 g) Wistar Rats (pathogen free)

Raymond A Lamb Limited. East Sussex. UK.

Lamb Stain-Quick Staining Kit (LAMB/600-K)

Rhone Merieux. Harlow. Essex. UK.

Euthatal

Halothane

Sigma Aldrich. UK.

Bradford reagent (B6916)

Bovine Serum Albumin (P0834)

Unilever. Bedfordshire. UK.

S2218600 (Polymer A)

S2219200 (Polymer B)

2.2 .2  Sto c k  S o lutio ns

Saline NaCI (0.09% 0.15M)
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2.3 METHODS

2.3.1 A d m in istratio n  o f  Po lym er s

Aside from the very recent work by Carthew et al. (2006) there have been no 

previous instillation experiments using Polymer A and B to induce lung injury. 

Therefore, a time point of 3 days post-instillation was initially used to assess 

lung injury during the preliminary experiments reported here. This time point 

has previously been shown to represent the peak of lung injury following 

instillation of bleomycin (Hay et al., 1991; Adamson and Bakowska, 1999; 

Balharry et al., 2005,) and zinc chloride (Richards et al., 1989).

Three preliminary experiments were carried out to optimise the model of lung 

injury and repair using the polymers:

1. Concentration Experiment: Previous inhalation studies have shown 

the maximum bronchial exposure concentration in rats is 45mg/m3. 

This is equivalent to a 4.5 mg/ml instillate concentration, as the 

deposition of the polymer at 1 mg/m3 in the rat is 10% (Dr. P. Carthew, 

Personal Communication). The polymers come as a 4% solution (96% 

carrier vehicle). The polymers were resuspended in saline to give a 

final concentration of 12 mg/ml. At the time these experiments were set 

up there were no previous studies using either polymer, therefore, to 

induce lung injury, a range of doses (6 , 9 or 12 mg/ml) were instilled.

2. Control Experiment: The polymers were not water-soluble and were 

suspended in carrier solutions, thus necessitating a second experiment 

to determine whether any damage observed was due to the polymers 

themselves or their carrier solutions. The carrier solutions were instilled 

at equivalent concentrations to 9 mg/ml of polymers. Polymer A carrier 

solution contained methyl aminopropanol and diisopropanolamine in 

aqueous ethanol and polymer B carrier solution contained methyl 

aminopropanol.

3. 12 week study: A single instillation of 9 mg/ml of polymer A was used 

to determine time points for peak oedema/inflammation and resolution. 

In a previous study using a different polymer, Resin 6965,
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lipoproteinosis material was observed after 13 weeks inhalation 

exposure (Carthew, 2002).

In the present study, models for short and longer term effects were required, 

consequently, single and double doses of polymer A (9 mg/ml) were initially 

used in an attempt to produce those endpoints. Data from the 12 week study 

was utilised to determine the time points required to induce these acute and 

chronic models of lung injury.

For the double instillation, the second instillation took place seven days after 

the first instillation, as this was the time point at which lung injury peaked. 

Thus the polymer would be administered to a lung that was already 

compromised and probably undergoing some epithelial repair (Brown et al.,

1988).

Prior to treatment, rats were lightly anaesthetised with Halothane. The 

administration of the doses was via non-invasive intra-tracheal instillation 

(Reynolds and Richards, 2001), which ensured every animal received the 

same quantity of instillate directly to the target tissue. For each experiment, 

the recovery time of rats was monitored every 2  hours for the first 6 hours and 

twice a day thereafter, using a post-procedure pain and distress scoring sheet 

and weight gain measurements (e.g. shortness of breath, hunched 

appearance, 20% body weight loss) (Wolfensohn and Lloyd, 1998).

2.3 .2  S a c r ific in g  Rats

Saline and polymer treated rats (200-250 g) were anaesthetised with 

Halothane and then administered a lethal intraperitoneal injection (150 mg/kg) 

of Euthatal. The rats were weighed and cardio-respiratory death confirmed by 

checking if pulse/breathing had ceased and by squeezing the foot pad, prior to 

dissection.
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2.3 .3  D issection o f  th e  R a t

The dissection of the rat to obtain the pulmonary tissue involved the following 

procedures. Ethanol (70% v/v) was applied to the rat abdomen and thorax in 

order to reduce airborne particles before the ventral surface skin was 

removed. The peritoneal cavity was opened by midline incision and blood (5 

ml) was removed from the major aorta before they were cut. A tracheotomy 

was performed and a Luer cannula, attached to a 20 ml syringe, was securely 

tied into place in the trachea. The diaphragm was then opened and the 

ventral portion of the rib cage and thymus removed.

A Luer cannula attached to a gravity feed of sterile saline was then fed into 

the pulmonary artery and the right atrium was cut upon expansion to allow 

fluid to exit. The lungs were perfused via artificial ventilation with 8-10 ml of air 

by means of the syringe attached to the Luer cannula of the trachea. 

Ventilations (usually 8-10) were continued until the pulmonary circulation was 

clear of all blood to produce white parenchymal lung tissue.

The heart was removed and the lungs and trachea dissected free from the 

carcass. The oesophagus and any fatty tissue were dissected from the lungs 

and trachea. Any mucoidal material or blood clots on the exterior of the tissue 

were removed by means of absorbent tissue. The lung parenchyma was 

weighed to calculate the lung to body weight ratio.

2 .3 .4  B ro n c h o -A lv e o la r  Lavage (BAL) F lu id

The lungs were lavaged (6  times) with 6 -8  ml of 0.15 M saline (Figure 2.1). 

The BAL fluid was pooled into sterile Falcon plastic tubes, cells were removed 

by centrifugation (at 300 x g) and the supernatant stored for use in later 

experiments. After lavaging, the five lung lobes were separated, cut and 

immediately placed in labelled bags into liquid nitrogen before being stored at 

-80 °C (Lee and Richards, 2004).
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Syringe]

Stand

Figure 2.1: A diagrammatic representation of the instillation procedure.

2 .3 .5  F ree  C e l l  C o u n ts

The cell pellet was resuspended in saline (3 ml 0.15 M) and a standard 

haemocytometer was used to calculate the number of large free cell alveolar 

macrophages (AMs) and PMNs in each lavage pool. Any residual red blood 

cells, damaged cells and debris were not included in the cell count. The 

residual free cells were re-suspended to a concentration of 2 0 0 ,0 0 0  cells per 

ml in saline.

2 .3 .6  C y to sp in s  and D if fe r e n t ia l  C e l l  C o u n ts

Standard light microscopy slides and filters were sealed into cytospin 

chambers and the diluted lavage free cells (LFC) suspension (0.5 ml) was 

transferred into the chamber. Duplicate pools of each cellular suspension 

underwent cytospin centrifugation at 13 000 x for 6  minutes. The resulting 

slides with the LFC adhered to the surface were stored at 0-4 °C until further 

analysis.

The cytospin slides were stained using the Quick Stain system. This system 

consisted of a fixative, an acidic dye and a basic dye. Each slide was placed 

in the fixative for 5 seconds to stop metabolic processes. Then into the first
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dye which had an affinity for basic cell components and finally into the second 

dye which had an affinity for acidic cell components. The slides were rinsed in 

a beaker of sterile double distilled water (dd-hhO) and then allowed to air dry 

at room temperature. Once the slides were dry, the cells were rinsed in xylene 

(5 seconds) to clear the specimens of water. The mounting media DPX was 

used to ensure sealing of the cells following placement of the coverslip.

The stained cells were visualised using a light microscope attached to an 

image analysis (IA) software system. The relative ratio of AMs to PMN was 

calculated and recorded for each of two areas of each slide. The average 

data for each slide was then used for comparison. More acute inflammatory 

responses could be characterised by a greater increase in PMNs 

concentration. Macrophages were identified on the basis of cellular size (i.e. 

large) and by the shape of their nuclei; PMNs have a multi-lobar shaped 

nucleus (Chapter 1; Figure 1.9).

2.3 .7  La vag e  P ro tein  C o ncentratio n - T he B radfo rd  A ssay

An increase in the amount of acellular protein from the lavage fluid is taken as 

a sensitive marker for oedema, resulting from epithelial or endothelial cell 

damage (Richards and Curtis, 1984; Murphy et al., 1998) The concentration of 

proteins in lavage was determined by the Bradford assay (Bradford, 1976). 

Briefly, sets of standards were made up using bovine serum albumin (BSA) (0 

to 20 pg/ml). BAL fluid was diluted 10-fold in 0.15 M saline and 200 pi of 

sample was added to each well in a 96 well plate. Bradford reagent (50 pi) 

was added to each sample and the absorbance was read at 590 nm using a 

plate reader. Assays were performed in triplicate for each animal and the 

mean value recorded.

2.3 .8  Po sitive  C ontro l  M odel

The polymer models were compared with a bleomycin model that is a well 

established model for oedema and inflammation (Aso et al., 1976, Starcher et 

al., 1978, Thrall et al., 1979, Catravas et al., 1983, Balharry, 2005). This
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model used either single or double instillations of bleomycin (0.5 units). 

Toxicological data were collected as described in Sections 2.3.4 -  2.3.6.

2.3.9  Statistic a l  A nalysis

All data handling and graphical representation of results were performed in 

Microsoft Excel ’97. Statistical analyses included Andersson-Darling normality 

test, two-sample t-test and non-parametric Mann-Whitney test. A two-sample 

t-test was chosen as an appropriate test due to the data being derived from 

two independent random samples. This test was used if the data were 

normally distributed and the variances were equal within each group. If this 

was not the case, a non-parametric Mann-Whitney test was used. All analyses 

were performed in Microsoft Minitab 13. Significance was assumed at p<0.05.
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2.4 RESULTS

2.4.1 P relim inary  Exper im en ts

2.4.1.1 Concentration Experiment

Test rats were instilled with 6 , 9 or 12 mg/ml of either polymer A or polymer B 

alongside control animals dosed with saline. The instillation of 12 mg/ml of 

polymer B caused animals in the group to exhibit signs of distress, including 

shortness of breath, hunched appearance and erected hairs. The group also 

failed to increase in body weight over the first 48 hours. Therefore, this dose 

proved too toxic and the rats had to be culled in concordance with Home 

Office guidelines. The lung to body weight ratios in rats instilled with either 

polymer were found to increase (Figure 2.2a). However, only the rats instilled 

with polymer A demonstrated significant increase in lung weight compared to 

the saline treated controls (p<0.05) (n=3).

Instillation with either polymer A or polymer B at 9 mg/ml resulted in a 

significant increase in lavage fluid protein compared to saline instilled rats 

(p=0.003 and p=0.015, respectively). Rats exposed to polymer A or B 

exhibited a 2.6 and 2.7-fold increase, respectively (Figure 2.2b).

In order to assess cellular infiltration into the alveolar space post-instillation, 

the total and differential cell counts were determined. Rats instilled with 

polymer A at all three doses showed a similar increase in free cells counts 

(4.3, 4.4 and 4.4-fold increase, respectively). Polymer B instilled rats, at the 

lowest dose, showed little increase in free cells compared to saline instilled 

rats (1.3-fold), whereas the medium concentration had the largest fold 

increase (9.2-fold) (Figure 2.2c).

The differential cell counts revealed that in the saline-treated lungs, the PMNs 

were approximately 3 % (± 2 %). There were considerable increases in the 

percentage of PMNs after instillation of both polymers (Figure 2.2d). Rats 

instilled with polymer A, at all doses, showed an increase from 3 % (± 2 %) to 

50, 54 and 60% of PMNs when compared with the saline-instilled rats. While
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rats instilled with polymer B exhibited an increase from 3 % (± 2 %) to 27 and 

65% in PMNs, respectively.

(a) Lung to Body Weight Ratio

0.016
0.014

§S 0.012 
£  0.010 
S 0.008 
|> 0.006 
J  0.004 

0.002 
0.000

.  I0ill1  1| | ■Em
Saline 6 9

Polymer (mg/ml)
12

(b) Surface Protein Concentration

Saline 6 9
Polymer (mg/ml)

(c) Lavage Free Cell Counts

”  30 

P 20

Saline 6 9 12

Polymer (mg/ml)

(d) Differential Cell Count

Saline 6 9

Polymer (mg/ml)

■  Saline
□  Polymer A
■  Polymer B

Figure 2.2: The conventional toxicological data collected after 3 days instillation from 

the preliminary concentration experiment; Lung to body weight ratio (a); surface 

protein concentration (b); lavage free cell counts (c) and differential cell counts (d) 

(mean±SEM; * = significantly different from saline instilled rats (Andersson-Darling 

normality test Student two-sample t-test)) (n=3).
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2.4.1.2 Carrier Solution Experiment

The toxicological data were recorded in the same manner as the preliminary 

concentration experiment (Figure 2.3 a-d). The data collected for the carrier 

solution instilled lungs showed no significant difference from that of the saline- 

instilled lungs. Table 2.2 gives the mean toxicological data from the saline, 

carrier solution and polymer treated lungs, while Table 2.3 compares the 

toxicological data collected from rats instilled with the carrier solution, saline 

and the polymer.

2.4.1.3 Twelve Week Study

Test rats were treated with 9 mg/ml of polymer A and monitored over a 

twelve-week period. Figure 2.4 depicts the toxicological effects over the 

twelve weeks.

During the first 14 days there is an increase in the lung to body weight ratio in 

the rats instilled with polymer A (Figure 2.4a). This corresponded to an 

increase in BAL fluid protein concentration, that peaked at day 7 and was 

statistically significant when compared to saline treated lungs (p=0.006). The 

BAL fluid protein concentration returned to saline value by day 28 (Figure 

2.4b). Rats exposed to polymer A exhibited a 2.3-fold increase in lavage fluid 

protein concentration when compared to saline instilled animals on day 7.

The free cell count also showed an increase over the first 10 days (Figure 

2.4c). LFC at day 7 was significantly higher than the saline treated lung 

(p=0.02) but returned to saline values by day 28. The differential cell count 

revealed there were significantly more PMNs in the polymer A treated lung 

when compared to the saline treated lung for the first 14 days (day 3 -  

p=9.22x10'4, day 7 -  p=0.007, day 10 -  p=2.56x10'4 and day 14 -  p=0.005). 

However, values returned to the normal control values by day 28 (p=0.113) 

(Figure 2.4d). There was a significant increase in PMNs at day 42 (p=2.44x10‘ 

4) but by day 56 there was no significant difference between the treatment and 

the saline values (p=0 .1 0 2 ).
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Figure 2.3: The toxicological data collected after 3 days instillation from the carrier 

solution experiment: Lung to body weight ratio (a); surface protein concentration (b); 

lavage free cell counts (c) and; differential cell counts (d). (mean±SEM; * = 

significantly different from saline instilled rats p< 0.05 (Andersson-Darling normality 

test and Student two-sample t-test)) (n=3). Polymer concentration 9mg/ml and carrier 

solution equivalent to 9mg/ml.
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Instillate L:B Ratio Protein
(mg/rats) LFC (10‘6) DCC (%)

PMN AM
Saline 0.00435+4.99x1 O'4 2.1±0.15 4.8±0.62 3±2 98±2

Carrier A 0.00382±9.13x10 s 2.5±0.45 2.8±0.69 4±2 90 ±4
Carrier B 0.00425±1.72x10'4 2.1 ±0.49 4.5±0.68 3±1 92±2

Polymer A 0.01013+6.17x10'4 5.6±0.30 21.3±0.87 54±3 44±1
Polymer B 0.00920+1.82x1 O' 4 5.9±0.34 44±13 66±2 41 ±2

Table 2.2: Mean toxicological data from the saline, carrier solution and polymer treated lungs (n=3). (L:B -  Lung to body weight; 

Protein -  surface protein concentration; LFC -  Lavage free cells DCC -  Differential cell count and PMN -  Polymorphonuclear cells 
and AM -  Alveolar macrophage)).

Fold change t-test (p-value)
L:B Ratio Protein LFC % PMN L:B Ratio Protein LFC % PMN

Saline v Carrier A 0 .88 1.19 0.58 1.33 0.145 0.476 0.380 0.422
Saline v Carrier B 1.00 1.00 1.23 1.00 0.835 0.907 0.376 0 .686
Polymer A v Carrier A 2.65 2.21 7.50 18.00 0.004 0.007 0.0001 0.004
Polymer B v Carrier B 2.17 2.88 7.00 22 .00 0.105 0.005 0.207 0.001

Table 2.3: Comparison of the toxicological data between the saline, carrier solution and polymer treated lungs (n=3). (L:B -  Lung 

to body weight; Protein -  surface protein concentration; LFC -  Lavage free cells and PMN- Polymorphonuclear Cells). The red text 

indicates data which are significantly different (p<0.05). (Andersson-Darling normality test and Student two-sample t-test).
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Figure 2.4: Twelve week time point study was used to find the time points for 

peak oedema and resolution. Animals were instilled with polymer A (9 mg/ml) 

and compared with saline instilled animals. Lung to body weight (a) and surface 

protein concentration (b), lavage free cell count (c) and differential cell count (d) 

(mean±SEM; *= significantly different from saline instilled rats p< 0.05 

(Andersson-Darling normality test and Student two-sample t-test)) (n =3).
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2.4.2  S ingle  and  D o u ble  Instillatio ns  of  Po lym er  a

Rats were instilled with either a single or a double dose of polymer A and the 

toxicological effects were monitored (Figures 2.5a-d and 2.6a-d). From the 

twelve week study, peak lung injury was assessed at day 7 and resolution 

was achieved at day 28. There was a statistically significant increase for all 

toxicological markers at day 7 following the single and double instillations of 

polymer A (Table 2.4). By day 28, after a single instillation, there was a return 

to the saline instilled values for lung to body weight ratio, protein 

concentration, LFC and DCC. However, 28 days after the double instillation, 

the only toxicological parameter to return to the same level as saline instilled 

lungs was the DCC (p=0.102). The lung to body weight ratio, protein 

concentration and LFC all remained significantly higher than the saline values 

(p=2.30x10-4, p=0.009 and p=0.009, respectively). Table 2.4 reviews the 

mean values and Table 2.5 outlines the fold changes and p-values of the 

toxicological data collect from the polymer-instilled rats compared to the saline 

instilled rats.
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(a) Lung to Body Weight Ratio
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Figure 2.5: Animals were instilled with a single dose of polymer A (9 mg/ml) and 

compared with saline instilled animals. Lung to body weight (a), surface protein 

concentration (b), lavage free cell count (c) and differential cell count (d) 

(mean±SEM, * = significantly different from saline instilled rats p< 0.05 (Andersson- 

Darling normality test and Student two-sample t-test)) (n =6 ).
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(a) Lung to Body Weight Ratio
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Figure 2.6: Animals were instilled with a double dose of polymer A (9 mg/ml) 

and compared with saline instilled animals. Lung to body weight (a), surface 

protein concentration (b), lavage free cell count (c) and differential cell count (d) 

(mean±SEM, * = significantly different from saline instilled rate p< 0.05 

(Andersson-Darling normality test and Student two-sample t-test)) (m =6). (Day 
0 data before second instillation).
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S alin e Polymer
Days Post 
Instillation L:B Ratio Protein

(mg/rats)
LFC
(10-6)

PMN
(%)

AM
(%)

L:B Ratio Protein
(mg/rats)

LFC
(10-6)

PMN
(%)

AM
(%)

7 0.00394±6.00x1 O'5 1.6±0.12 1.9±0.48 3±2 95±3 0.01107±3.19x1 O'4 4.9±0.16 18.7±2.26 64±3 42±1
14 (*7) o.oo356±i.27xio-4 2.1±0.13 3.1 ±0.44 4±3 93±1 0.01257±1.38x1 O'3 5.0±0.49 30.2±1.80 54±4 50±3

28 0.00347±6.68x1 O'5 3.4±0.22 2.9±0.03 3±3 97±2 0.00461 ±4.86x10‘4 3.0±0.39 3.5±1.65 7±3 97±3
35 (*28) 0.00343±4.84x1 O'5 2.2±0.21 1.9±0.19 3±1 91 ±2 0.00703±3.93x10’4 3.5±0.32 19.1 ±4.21 5±2 96±2

Table 2.4: Mean toxicological data from the saline and polymer A lungs (n=6 ). * Denotes days post second instillation. (L:B -  Lung 

to body Mean weight; Protein -  surface protein concentration; LFC -  Lavage free cells, PMN -  Polymorphonuclear cells and AM -  

Alveolar macrophage) (mean±SEM).

Fold ch an g e t-te s t (p -va lu e )
Days Post 
Instillation L:B Ratio Protein LFC PMN L:B Ratio Protein LFC PMN

7 2.81 3.06 9.84 21.33 1.87x1 O'6 3 .99x108 5.35x104 0.001
14 (*7) 3.53 2.38 9.74 13.50 0.001 1.11x10'5 0.001 2.95x1 O'4

28 1.33 0.88 1.21 2.33 0.065 0.467 0.670 0.009
35 (*28) 2.05 1.59 10.05 1.67 2.30x1 O'4 0.009 0.009 0.120

Table 2.5: Comparison of the toxicological data between the saline and polymer A lungs (n=6 ). * Denotes days post second 

instillation. (L:B -  Lung to body weight; Protein -  surface protein concentration; LFC -  Lavage free cells and PMN- 

Polymorphonuclear Cells). The red text indicates data which is significantly different (p<0.05). (Andersson-Darling normality test 

and Student two-sample t-test)
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2.4.3  C om pariso n  betw een  th e  Po lym er  A  and  B leo m ycin  M o del

At all time points measured, for all toxicological markers of injury, the polymer 

treated lungs were significantly different (p<0.05) from the bleomycin treated 

lungs (Figure 2.7 a-c and Table 2.6 and 2.7). Lung to body weight and LFC for 

all time points were significantly higher than in the bleomycin model, although 

the surface protein concentration was found to be significantly lower. There 

was a 2.7-fold increase in protein concentration at day 7 following single and 

double instillation of bleomycin and a 2.3-fold change after 22 days following a 

double instillation.
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Figure 2.7: Comparison of animals instilled with polymer A (9 mg/ml) versus bleomycin 

instilled (1 unit) animals. Lung to body weight (a), surface protein concentration (b) and 

lavage free cell count (c) (* = significantly different from positive control p<0.05) (n =6).
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Polymer Bleomycin
Days Post 
Instillation L:B Ratio Protein

(mg/rats)
LFC
(10-6)

Days Post 
Instillation L:B Ratio Protein

(mg/rats)
LFC
(1C6)

7 o .o n o yta .ig x io -4 4.9±0.16 18.7±2.26 7 o.ooezets.ioxio-4 13.3±2.41 11.6±1.74
14 (*7) 0.01257±1.38x10'a 5.0±0.49 30.2±1.80 15 (*8) 0.00845±8.29x1 O'4 13.6±1.38 3.7±0.33

35 (*28) O.OOTOStS.gaxlO-4 3.5±0.32 19.1±4.21 29 (*22) 0.00533±4.01 x1 O’4 8.1±2.96 6.0±1.14

Table 2.6: Mean toxicological data from polymer A and bleomycin treated lungs (n=6). * Denotes days post second 

instillation. (L:B -  Lung to body Mean weight; Protein -  surface protein concentration; LFC -  Lavage free cells, 

(mean±SEM).

t-1test (p-value
Days Post 
Instillation L:B Ratio Protein LFC

7 1 .94x1 0 'b 3 .0 0 x 1 c 4 0.032
14 (*7) 0.031 1.21X 1C 4 1 .9 7 x 1 0 *

35 (*28) 0 .009 0.047 0.026

Table 2.7: Comparison of the toxicological data between the polymer A and bleomycin treated lungs (n=6). *Denotes 

days post second instillation. (L:B -  Lung to body Mean weight; Protein -  surface protein concentration; LFC -  Lavage 

free cells. The red text indicates data which are significantly different from bleomycin control (p<0.05). (Andersson- 

Darling normality test and Student two-sample t-test).
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2.5 DISCUSSION

The primary aspect of this study used conventional toxicological approaches 

to assess lung injury and repair in rats that had been instilled with synthetic 

particles represented by polymer A or polymer B. The investigation focused on 

two early biological endpoints in the lungs; inflammation and pulmonary 

oedema.

There were differences in the toxicological data collected from polymer 

instilled lungs versus saline instilled lungs. The polymer carrier solutions were 

shown to be non-toxic after three days at a concentration equivalent to 9 

mg/ml of polymer and, as such, the observed toxicological responses could be 

attributed to exposure to the synthetic particles/polymers under these 

experimental conditions. However, further polymer carrier solution instillations 

would have been beneficial at all experimental time points, especially double 

instillations, to ensure that there was no longer term damage. In the absence 

of such vehicle control experiments, it is impossible to rule out a contribution 

of the carrier to the toxicological profile of the polymer at concentrations >9 

mg/ml and for experimental periods > 3 days. The carrier solution could have 

some protective effect on the lung, masking the full toxicity of the polymer. 

Alternatively at higher doses or over a longer time period the carrier solution 

itself could become toxic to the lung. Toxicological changes may not have 

been apparent in the lung at the time point (i.e. 3 days) and concentration 

(equivalent to 9 mg/ml of polymer) chosen for the carrier control experiments 

as the peak of injury may have been earlier or this concentration may not 

have an immediate effect in the lungs. There have been no other experiments 

carried out, to date using the carrier solution apart from the ones that were 

undertaken during this study.

Conventional toxicology methods were successfully used to determine the 

extent of lung injury. The concentration experiment using 6 , 9 and 12 mg/ml 

showed a dose-dependent response. In a recent 13 week study, a total of 7 

mg/ml of polymer A was instilled in three doses and used as a positive control 

(Carthew et ai, 2006). There was no evidence of oedema after 13 weeks,
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which correlates with the results seen in the 12 week single instillation study. 

There were, however, inflammatory changes observed by Carthew et al. 

unlike the 12 week single instillation carried out in this study. No further 

comparisons can be made between these two studies since Carthew and co­

workers used a triple instillation and had no data for the earlier time points.

There was a significant increase in the oedema indicators (lung to body 

weight ratio and protein concentration) following the administration of a single 

or double dose of polymer A. These both reflect an increase in lung 

permeability (Bermudez et al., 2002; Housley et al, 2002). Thus, the results 

suggest mild oedema in both models at day 7. Unlike the single dose model, 

which returned to normal by day 28, the oedema markers were still 

significantly elevated 28 days after the double instillation, suggesting oedema 

was still present.

A peak in LFC at day 7 in the lungs of rats that had been treated with both 

single and double doses of polymer A, indicated a peak of inflammation in the 

lungs. The proportion of PMNs in a healthy lung is approximately 3-5%. In 

order to confirm the extent of inflammation DCC were used to distinguish 

between the macrophages and the PMNs. An increase in the macrophage 

population alone indicates mild inflammation while an increase in PMNs is 

associated with more severe inflammatory response (Prescott, 1998). Thus, 

the results suggest severe inflammation in both models at day 7. Being highly 

motile, PMNs quickly congregate at the site of inflammation, attracted by 

cytokines expressed by activated endothelium, mast cells and macrophages. 

Due to their high motility and abundance they are normally the first phagocyte 

a pathogen is likely to encounter. PMNs are active phagocytes, capable of 

ingesting microorganisms or particles. However, they can only execute one 

phagocytic event, expending all of their glucose reserves in an extremely 

vigorous "respiratory burst". (Sendo et al,. 1996).

By day 28 the cell counts return to baseline value, following a single 

instillation, implying the resolution of inflammation in the lungs. However, 

following a double instillation, there were still an elevation in the number of
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macrophages that is indicative of mild inflammation, hence although the PMN- 

driven inflammation had resolved, a degree of inflammation remained. PMNs 

only survive for 1 -2  days at the site of inflammation before undergoing 

spontaneous apoptosis and are eventually engulfment by macrophages. 

Unlike short-lived PMNs, macrophages arrive earlier to sites of infection and 

their life span can ranges from months to years, as opposed to just a few days 

(Savill et al., 1989). The presence of macrophage at day 28 after a double 

instillation may be due to them not only engulfing any remain polymer 

particles but also removing the remaining PMN debris. PMNs antimicrobial 

products can damage host tissues, therefore one reason for their short life 

span is limiting the damage to the host during inflammation (Savill et al., 

1989). All markers of inflammation had returned to baseline values by 98 

days.

BAL fluid collected from lipoproteinosis patients has an opaque and milky 

appearance. The major constituent is phospholipid but it also comprises of 

serum proteins and surfactant proteins. The BAL fluid also contains large and 

foamy AMs and increased numbers of lymphocytes (Hook, 1991; Shah et al., 

2000; Trapnell et al., 2003). Over the twelve week study there was no 

indication of lipoproteinosis (e.g. the BAL fluid was clean) and the toxicological 

parameters appeared to have returned to normal baseline values. Therefore 

the damage caused following the instillation of a single dose of polymer A 

appeared to be reversible.

Polymer B, at 12 mg/ml, proved to be too toxic to the lung resulting in the 

culling of the animals in that group. Polymer B has a higher molecular weight 

than polymer A (700 kDa compared to 70 kDa, respectively). This size 

difference may affect the repair and defence mechanism in the lungs. At lower 

doses polymer A appears to induce more severe toxicological response than 

polymer B, suggesting that it causes more damage. Its size may allow it to 

penetrate the lung faster and more effectively. At the higher dose of polymer B 

the observed toxicity may be explained by lung overload. The hallmark of the 

particle-overloaded lungs are an impairment of AM-mediated lung clearance
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that eventually leads to accumulation of excessive particles and AMs in the 

lungs (Cullen et al., 2000).

Studies on rats by previous workers have also indicated that inert particles 

can induce serious adverse pulmonary effects if inhaled at high 

concentrations (Oberdorster, 1995). At high particle concentrations, the upper 

limit of the clearance systems can be reached, possibly leading to lung 

fibrosis or lung tumours (Ferin, 1994). Particles of -10 pm in diameter can 

overload rat AM resulting in no clearance of these particles (Oberdorster et 

al., 1992). Lymph nodes could also be overloaded, further preventing 

clearance of the polymer from the lung tissue. This could explain the adverse 

affects of polymer B, at the highest concentration, as well as some of the toxic 

effects of polymer A.

Intratracheal instillation is a widely used procedure to deliver materials to the 

lungs. The reasons for employing it in the present study rather then the more 

physiological inhalation procedure include its simplicity, its relative low cost 

and its ability to allow delivery of exact doses. A key difference between 

instillation and inhalation studies is the dose rate, with intractracheal 

instillation the administration of the dose is within a few seconds compared to 

minutes, hours, days or weeks with inhalation studies. The speed of delivery 

with instillation studies poses a risk of overwhelming the lungs defence 

systems resulting in effects not seen in inhalation studies (Driscoll et al., 

2000). Henderson et al. (1995) compared intratracheal instillation with 

inhalation of quartz and titanium oxide, both classed as poorly soluble 

particles. The results from the study indicated that the degree of lung 

inflammation and tissue injury characterised by BAL fluid analysis and 

histopathology was similar after both methods of exposure.

A bleomycin-induced oedema and inflammation model was used as a positive 

control comparison to the polymer model. For the three conventional 

toxicology methods compared (lung to body weight, surface protein 

concentration and LFC), significant differences were observed. Unfortunately, 

there was no DCC data available for the bleomycin model, and no distinction
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could be made with regard to the type of inflammation, i.e. mild or severe. It is 

well documented that bleomycin instillation initially induces lung inflammation 

(Kaminski et al., 2000; Balharry et al., 2005), however, there were significantly 

more free cells collected in lavage from the polymer model, inferring a more 

severe form of inflammation at this stage in the injury. Alternatively, the 

bleomycin peak in inflammation may occur at an earlier time point.

Lung inflammation is followed by oedema and the progressive destruction of 

normal lung architecture in bleomycin instilled models (Kaminski et al., 2000; 

Balharry et al., 2005). The significant difference in surface protein suggests 

the bleomycin model induces a more severe oedema when compared to the 

polymer model at the time points studied. This is probably due to there being 

a different mechanism involved. The bleomycin model may have caused a 

greater degree of alveolar wall damage, therefore, allowing more protein to 

leak on to the surface of the lung and subsequently be collected in the BAL 

fluid. Alternatively, the collection of BAL fluid may have been restricted in the 

polymer model due to the airways collapsing, loss of epithelial elasticity or 

plugging with mucus/debris; all these responses would render it difficult to 

lavage.

2.6 CONCLUSION

The instillation of polymer A caused significant alterations in the toxicological 

data collected from the lungs. It was determined that the polymer was causing 

the effect not the carrier solution it is suspended in. A distinction, at both the 

morphological and biochemical levels, between the single and double models 

was successfully achieved. A single dose of polymer A produced a model for 

mild oedema/inflammation, whereas the double instillation created a model 

that was more persistent.

Lung samples from parallel experiments to those reported in this chapter were 

processed for histological analysis (Chapter 3), before proceeding with 

proteomic analysis of the BAL fluid (Chapter 4).
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Chapter 3: 

H istological Investigation of 

Polymer Induced Lung Injury
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3.1 INTRODUCTION

From the cellular and biochemical investigations (Chapter 2), polymer A was 

found to be bioreactive in the lungs. The investigations described so far have 

centred on the use of broncho-alveolar lavage (BAL) fluid. The collection of 

BAL fluid is a useful technique but drawbacks occur if the airways collapse, 

there is a loss of epithelial elasticity or plugging occurs with mucus/debris, all 

of which may result in difficulties with washing the BAL fluid out of the alveoli. 

Also, BAL fluid provides little morphological information on the cellular or the 

interstitial changes that may accompany lung damage. Therefore, in order to 

compliment the BAL fluid studies and to obtain further information on the 

health status of the lungs following challenge by polymer A, a histopathology 

study was performed.

In a recent study (Carthew et al., 2006), polymer A was used as a positive 

control to produce lung damage. Chronic inflammation and granuloma 

formation were associated with this 13 week polymer instillation study carried 

out in male rats. Activated and hypertrophic alveolar macrophages (AMs) with 

foamy cytoplasms were recorded. Some of the AMs were degenerated or 

necrotic and tended to form aggregates. Focal changes within the interstium 

were observed and hypertrophy and hyperplasia was evident in the type II 

cells. Interstitial fibrosis and focal alveolitis was also seen (Carthew et al., 

2006). In Chapter 2, it was established that polymer A induced a peak in lung 

inflammation and oedema 7 days after instillation, as determined by BAL fluid 

studies. The study conducted by Carthew et al. (2006) only investigated these 

parameters 13 weeks post-instillation, therefore, histological data were 

required for the time points being investigated in the present study.

The classical bleomycin-induced model of lung injury was used as a positive 

control to compare with the observations seen with polymer A. Bleomycin has 

been used to induce pulmonary injury and ultimately fibrosis in rats (Thrall et 

al., 1979). It initially induces pulmonary oedema and inflammation followed by 

progressive destruction of normal lung architecture (Shen et al., 1988). The 

bleomycin model was used as a comparison as it was already an established
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model for pulmonary injury to examine genomic changes during inflammation 

and repair (Balharry et al., 2005).

Damage to the lungs results in a characterised cellular response, regardless 

of the toxic agent. The typical morphological changes that occur in the 

respiratory epithelia due to injury can be classified into six discrete steps:

(1) Membrane blebbing of type I pneumocytes

(2) Blebs full of intercellular fluid

(3) Caveolae in type I pneumocytes and endothelial cell

(4) Accumulation of fibrin

(5) Influx of monocytes, polymorphonuclear cells (PMNs) and

eosinophils

(6 ) Disorganised cellular tissue architecture 

(Richards and Curtis, 1984; Richards et al., 1991).

Steps 1-4 are the typical changes seen due to an increase in lung 

permeability and the rapid transfer of plasma and fluid to the alveolar surface, 

where it accumulates as intra-alveolar oedema or becomes deposited as 

fibrin. Futhermore, there are clear links between these processes and an 

increase in size of tracheobronchial lymph nodes (Lee and Richards, 2004). 

Both particulate matter and cellular debris undergo lymphatic drainage as part 

of lung clearance processes. Steps 5 and 6 are related to the activation of 

dying cells releasing inflammatory mediators that cause the recruitment of 

monocytes, PMNs and eosinophils.

However, if damage is persistent, the lungs may take on a different 

architectural organisation. At focal points, the normally thin epithelium may 

become thick due to the introduction of type II pneumocyte hyperplasia. The 

alveolar spaces may fill up with cellular debris (e.g. cell membrane, plasma 

products and AMs) and this may result in lipoproteinosis. Fibrosis is the last 

stage of repair, where the tissue attempts to isolate the damaged area, 

unfortunately this is irreversible (Richards etal., 1991).

65



H is t o l o g ic a l  In v e s t ig a t io n  o f  P o l y m e r  In d u c e d  Lu n g  In j u r y

The aims of this study were (1) to investigate the changes in the gross and 

ultrastructural morphology of the lungs and the lymph nodes from lungs 

instilled with either a single or double dose of polymer A, thereby validating 

the generation of an accurate model of polymer-induced lung injury compared 

to existing data; (2 ) to compare the pathological profile of polymer-induced 

lung damage to that of a well-characterised bleomycin model; and (3) to 

provide comparative histopathological assessment of possible sources of 

observed toxicology effects reported in Chapter 2.
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3.2 MATERIALS AND STOCK SOLUTIONS

3.2.1 Materials

Agar Scientific. Stansted. UK.

200-mesh 3.05mm Copper Grid (G246)

Araldite CY212(R1040)

Glutaraldehyde (25 %) (R1010)

Osmium Tetroxide (R1015)

Propylene Oxide (R1080)

Reynolds Lead Citrate (R1210)

Sodium Cacodylate (R1102)

Uranyl Acetate (2%) (R1260)

Fisher. UK.

Toluidine Blue (34860-0050)

Harlan. UK.

Male (200-250g) Wistar Rats (pathogen free)

Kvowa Hakko (UK) Ltd.. Slough. UK.

Bleomycin (12196/0005)

Leica Micro System Imaging Solution Ltd.. UK.

Leica Q550IW Image Analysis System 

Leica RM2135 Microtome 

Leica EG1140 Embedding Centre 

Vacuum Tissue Processor

R A Lamb. Sussex. UK.

Aqueous Eosin (1%) (LAMB/100-D)

Siqma-Aldrich. Dorset. UK.

Mayers Hematoxylin (S1275)

Unilever. Bedfordshire. UK.

S2218600 (Polymer A)
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3.3 METHOD

3.3.1 P rocessing  Lung  T issues  for  L ight M icro sco py  

3.3.1.11nstillation

Animals were instilled using the same method as described previously in 

Chapter 2 (Section 2.3.1). Test animals received either a single or double 

dose of 9 mg of S2218600 (polymer A). Animals instilled with a single dose of 

polymer A were sacrificed at day 7 or day 28 post-instillation while animals 

instilled with a double dose were sacrificed at day 7 or day 28 after the 

second instillation. A double instillation of bleomycin (0.5 units) was used as a 

positive control for inducing lung injury. Animals were sacrificed at day 7 and 

day 22 as these were the time points for peak injury and resolution (Balharry, 

2005).

3.3.1.2 Lung Tissue and Lymph Nodes

The gross morphology of the whole of the lungs was compared, changes in 

appearance such as discolouration were noted. Digital images were 

generated to record the gross morphology of the lymph nodes. Comparative 

analysis of the size of the lymph nodes from saline and polymer A-instilled 

animals was performed using the Leica Qwin image analysis (IA) system.

3.3.1.3 Fixing the Lung Tissue

The lungs were excised as detailed in Chapter 2 (Section 2.3.3). The intact 

lungs were filled with 1 0% neutral buffered formalin via a syringe and cannula. 

The inflated lungs were then immersed in 10% neutral buffered formalin at 

4°C for 24 hours in preparation for paraffin embedding and sectioning.

Tissue processing, i.e. paraffin embedding, sectioning and staining, was 

carried out by a histotechnologist, Mr Derek Scarborough, at the School of 

Biosciences, Cardiff University. A brief overview of these procedures has 

been outlined below in Sections 3.3.1.4 to 3.3.1.6 .
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3.3.1.4 Tissue Processing

Once the tissue has been fixed (Section 3.3.1.3), it must be processed into a 

form in which it can be made into thin microscope sections. This is achieved 

by embedding tissues in paraffin, that is similar in density to tissue and can be 

sectioned at anywhere from 3 to 10 microns. The main steps in this process 

when dealing with wet-fixed tissue are “dehydration”, “clearing” and “paraffin 

infiltration”.

Wet-fixed tissues, such as the lung samples from this study, cannot be 

directly infiltrated with paraffin. The water from the tissues must be removed 

by “dehydration” via a series of alcohols (e.g. 70% to 95% to 100%). 

Following dehydration, the next step was “clearing” and consisted of 

replacement of the dehydrant, i.e. alcohol, with a substance that would be 

miscible with the paraffin. The common clearing agent was xylene and the 

tissues were processed through several changes of xylene. The final step in 

processing was to infiltrate the tissue with molten paraffin wax at 60°C; 

several changes of wax were used. Tissues were placed in plastic processing 

cassettes prior to loading on the automatic processing machine. All the above 

processes were automated using a fully enclosed Vacuum Tissue Processor.

3.3.1.5 Paraffin Embedding

It was important for the tissue to be fully supported by paraffin wax to prevent 

the tissue shredding during sectioning. This was achieved by placing the 

“cleared” tissue into a vacuum to remove all air pockets. The lung tissue was 

then placed into a plastic “embedding mould”, and a Leica EG 1140 

Embedding Centre was used to embed the tissue in warm paraffin wax. After 

allowing the wax to set (30 minutes on a cold plate), the tissue was removed 

from the embedding mould and the sample was ready for sectioning.

3.3.1.6 Sectioning

Following tissue processing and paraffin embedding, the lung tissue had to be 

cut into sections that could be placed on a glass slide for the purpose of LM. 

Sectioning was achieved using a Leica RM2135 microtome (i.e. a knife with a 

mechanism for advancing a paraffin block standard distances across it). The
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embedded lung tissue samples were placed on ice to ensure uniform sections 

were obtained. The ice hardens the wax and softens the tissue so the entire 

sample is of the same consistency for sectioning. The tissue was then cut into 

5j^m sections via the microtome.

Once the sections were cut, they were floated on a warm water bath (40- 

50°C) that facilitated the removal of any wrinkles and air bubbles produced 

during sectioning. The paraffin embedded sections of lung tissue were then 

collected on to a pre-coated glass microscope slide. The slides used were 

coated in poly-L-lysine to improve adhesion of sections. The samples were 

then left to bind to the slides on a hot plate for 15-30 minutes, then in an oven 

at 37-45°C for a minimum of 24 hours.

3.3.1.7 Haematoxylin and Eosin Stain

To evaluate the lung architecture by LM the tissue sections were stained with 

Haematoxylin and Eosin (H and E); a routine stain chosen for its ability to 

stain various cellular components of tissue. Haematoxylin is a basic dye that 

stains nuclear heterochromatin and cytoplasm rich in ribonucleoprotein blue. 

Eosin is an acid dye that stains cytoplasm, muscle and connective tissue 

various shades of pink.

The embedding process must be reversed in order to remove the paraffin wax 

from the tissue and allow water soluble dyes to penetrate the sections. 

Therefore, before any staining could be done, the slides were “deparaffinized” 

by running them through xylene followed by series of graded alcohol (1 0 0 % to 

70%). The dewaxed tissue sections were stained with Mayer’s haematoxylin 

for 1.5 minutes. Sections were washed in running tap water for 5 minutes, and 

then stained with 1% aqueous eosin for 10 minutes. Following a 20 second 

wash in running tap water, sections were dehydrated once again (increasing 

strengths of alcohol and subsequently replaced by xylene).

The stained section on a slide must be covered with a glass coverslip to 

protect the tissue from being scratched, to provide better optical quality for 

viewing under the LM and to preserve the tissue section for archival purposes. 

The stained slides were taken through the reverse process that they went
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through from paraffin section to water, i.e. series of graded alcohol to xylene), 

at which the mountant DPX was placed over the section and the coverslip on 

top of the mountant. The stained sections were then ready to view by LM.

3.3.1.8 Image Analysis

IA software was used to capture digitised light microscopy (LM) images of 

saline polymer A and bleomycin-treated (positive control) tissue sections. LM 

images (x100 magnification) were saved as TIFF files and imported into the 

Leica Q550IW IA System, for image processing. IA was also used for the 

quantification of the total area of the nuclei (pm2) that were recorded to give 

an indication of nuclei numbers, i.e. larger area would indicator more nuclei. 

Ten TIFF images were captured of random areas over three lung tissue 

sections at each time point. These images were then used to quantify the 

number of cells (nuclei area) using the Qwin analysis software.

3.3.1.9 Statistical Analysis

Statistical analyses included Andersson-Darling normality test, two-sample t- 

test and non-parametric Mann-Whitney test. A two-sample t-test was chosen 

as an appropriate test due to the data being derived from two independent 

random samples. This test was used if the data were normally distributed and 

the variances were equal within each group. If this was not the case, a non- 

parametric Mann-Whitney test was used. All analyses were performed in 

Microsoft Minitab 13. Significance was assumed at p<0.05.

3.3.2 Pro cessing  Lung T issues  f o r TEM

3.3.2.1 Instillation

Animals were instilled using the same method as described previously in 

Chapter 2 (Section 2.3.1). Test animals received a double dose of 0.5 units of 

bleomycin in 0.5 ml saline. Animals instilled were sacrificed at days 7 and 21 

days after the second instillation.
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3.3.2.2 Fixation of Lung Tissue

The lungs were excised as detailed in Chapter 2 (Section 2.3.3). The upper 

right lobe of the lungs was selected for examination by transmission electron 

microscopy (TEM), as it is the first lobe of the lungs to be challenged by 

inhaled xenobiotics. The lobe was tied off from the rest of the lungs and 

rapidly instilled with cold (4°C) glutaraldehyde (3%) fixative. The lobe was 

then removed and immersed in more fresh fixative for 1 hour at 4°C. This 

method of fixation preserves the cellular structure of the tissue by cross- 

linking proteins via their amine groups. The gluteraldehyde fixative was 

replaced with phosphate buffer and washed overnight ( - 1 2  hours).

Tissue processing, sectioning and staining for TEM was carried out by an 

electron microscopist, Mr Mike Turner, at the School of Biosciences, Cardiff 

University. A brief overview of these procedures has been outlined below in 

Sections 3.3.2.3 to 3.3.2.5.

3.3.2.3 Tissue Processing

Once the tissue has been fixed (Section 3.3.2.2), it must be processed into a 

form in which it can be made suitable for TEM. This was achieved by 

embedding the fixed lung tissue in a resin (Araldite), that acts as a support 

matrix for the lung tissue, permitting ultra thin (e.g. 60 to 90 nm) sections to be 

cut.

Prior to tissue processing, a piece of fixed lung tissue was cut away from the 

lobe and cut into 1 mm cubed pieces. The tissue cubes were placed into a 

squat, glass, sample vial that was used to carry the tissues through the 

various stages of dehydration, post-fixation and resin infiltration. The sample 

vials are kept on a rotating wheel inside a fume cupboard.

Post-fixation was carried out by osmicating (1% osmium tetroxide in 

phosphate buffer) for 60 minutes at 4°C. The tissue was then passed through 

a series of graded alcohols, (30%-90%: 15 minutes in each, then 2 x 100%: 

30 minutes each). Once dehydrated, the lung tissue samples were placed into 

new sample vials and immersed in propylene oxide for 30 minutes. This was
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followed by overnight (-12 hours) rotation in a fume cupboard in a 50/50 mix 

of propylene oxide and Araldite CY212. During this time the propylene oxide 

dissipated leaving only the Araldite. The following day the tissue was 

infiltrated with Araldite for eight hours.

Finally, the tissue samples were embedded in Araldite. This process involved 

placing one cube of tissue into a plastic/disposable, embedding capsule and 

topping up the capsule with fresh Araldite. The capsule was then placed into a 

resin oven and polymerised at 60°C for 48 hours.

3.3.2.4 Sectioning

Following resin polymerisation, the capsule was cut away from the 

resin/tissue block using a razor blade. Excess resin was trimmed from the 

blocks until the tissue was exposed. Semi-thin survey sections (2 pm) were 

taken using a glass knife and mounted onto glass slides, and the tissue 

stained with toluidine blue; the stain helps to reveal cellular architecture. 

Appropriate areas for ultra-thin sectioning were identified from the semi-thin 

sections and the blocks trimmed accordingly. The resin blocks were sectioned 

to 60-90nm on an LKB 3 Ultramicrotome using a diamond knife. Sections 

were expanded on a water trough and collected onto clean 200-mesh, 3.05 

mm copper grids.

3.3.2.5 Counter Staining

Prior to visualisation of the tissue sections via TEM, heavy metal staining or 

“counter staining” was required to help resolve the ultrastructure of the lung 

tissue. Counter staining was achieved by using Reynold’s lead citrate and 2% 

aqueous uranyl acetate. These heavy metal stains are general purpose and 

not very specific. Uranyl acetate stains membranous structures and structures 

containing nucleic acids. The lead in lead citrate binds to RNA-containing 

structures and hydroxyl groups of carbohydrates.

Droplets of each stain were placed in rows on the sterile side of parafilm and 

the grids were floated section side down on a given drop. Sections were 

stained for 10 minutes with uranyl acetate, followed by staining with Reynolds
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lead citrate for five minutes. Finally, the grids were washed by transferring 

over 3 drops of filtered de-ionised water. The grids were allowed to air dry at 

room temperature in filter paper-lined Petri dishes prior to viewing in the TEM.

The sections were imaged using a JEOL 1210 TEM at an acceleration voltage 

of 80 KeV.
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3.4 RESULTS

3.4.1 G ro ss  M o rp h o lo g y  o f  th e  Lungs

Morphological changes such as lung enlargement and discolouration of the 

surface of the lungs can provide a subjective indication of inflammation or 

lipoproteinosis (Lee and Richards, 2004). Saline-instilled lungs showed no 

morphological changes after a single or double instillation. However, in the 

polymer A-instilled lungs 7 days post-single and post-double instillation 

revealed areas of yellow/brown discolouration suggesting possible 

inflammation of the lungs. By day 28 after a single instillation, the polymer- 

treated lungs appeared not to be different to the saline-treated lungs, while 28 

days after the double instilled lungs, there were still areas of discolouration.

3.4.2 G ro ss  M o rp h o lo g y  and Changes in Lymph Nodes

The thoracic lymph nodes that were excised from sacrificed animal were 

collected and photographed digitally (Figure 3.1). The sizes of the lymph 

nodes were measured using an IA system. Lymph nodes collected and sized 

by IA from the saline-treated animals did not appear to be enlarged at any of 

the time points used in the study (Figure 3.2). Instillation of polymer A caused 

the lymph nodes to increase in size, a 2.2-fold increase in lymph node size 7 

days after a single instillation and a 2.3-fold increase 7 days after a double 

instillation was quantified by IA (Figure 3.2). The size of the lymph nodes had 

returned to approximately control levels (1 .2 -fold increase) by day 28 

suggesting recovery of the inflammatory response (Figure 3.2).
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I  Single 1

Saline

Polymer A

Saline

Polymer A

Figure 3.1: Photographs of the lymph nodes after an instillation of either a 

single or double instillation of saline or 9 mg/ml of polymer A. Blue arrows 

indicates examples of enlarged lymph nodes. Quantitative analysis of the 

lymph nodes size was used as an indicator of injury and recovery.

Double 1

Day 7 Day 28
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(a) Size of Lymph Nodes

7 28

Days Post Instillation

(b) Size of Lymph Nodes

7 28

Days Post 2nd Instillation

■  Saline
■  Polymer A

Figure 3.2: The changes in the sizes of lymph nodes collected from a 

single dose (a) or double dose (b) of 9 mg/ml of polymer A and compared 

with saline-instilled animals. A two-tailed T-test was used to statistically 

analyse the data. (mean±SEM, * = significantly different p<0.05) (n=6 ).

3.4.3 L ight M icroscopy

3.4.3.1 Polymer A Lung Sections

Sections of lungs from saline and polymer A-treated animals were stained 

with Hematoxylin and Eosin (H & E). At all time points, for both single and 

double instillations of saline, the lungs exhibited normal architecture with clean 

alveolar spaces (light green arrow), thin alveolar walls (light blue arrow) and
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no evidence of inflammation (Figure 3.3). The septa appeared to be thin with 

no evidence of swelling (orange circle) (Figures 3.3a & b and 3.4a & b). There 

was some focal thickening of the alveolar cell walls.

The histopathological examination of the polymer-instilled lungs revealed an 

accumulation of cell debris, macrophages, possible oedema fluid and polymer 

in the airspace at 7 days after a single instillation of polymer A (Figure 3.3c). 

This was more pronounced at 7 days after the double instillation of polymer A 

(Figure 3.4c). However, some areas showed normal architecture. The 

damage was localized and not prominent throughout the lungs, i.e. the 

damage was focal. The alveolar walls showed notable thickening but this was 

more prominent after the double instillation (dark blue arrow). The septa 

appear to be enlarged compared to the saline (red circle).

Twenty-eight days after a single instillation of polymer A, the airspaces 

appeared cleaner, with few macrophages present. However, by day 28 after 

the second instillation, there were notably more macrophages present in the 

alveolar space (Figure 3.4d). Some appeared to have foamy cytoplasms and 

had aggregated with each other. There was still thickening of the alveolar 

walls (dark blue arrow) and some of the septa appeared to still be enlarged 28 

days after single and double instillations (red circle) (Figure 3.3d & 3.4d). 

There was no histological evidence of PMNs infiltration at any time point.

3.4.3.2 Bleomycin Lung Sections

Bleomycin sections from a double instillation were used to compare with 

polymer A sections. No pathological alterations were found in the lungs from 

saline-instilled rats. The saline-instilled lungs appeared to have normal 

architecture with clean alveolar spaces, thin alveolar walls and normal septa. 

There was sporadic thickening of the alveolar wall (Figure 3.5a & b).

Seven days following the double instillation of bleomycin, there was some 

accumulation of cell debris and AMs in the alveolar airspace but no evidence 

of oedema fluid. There was focalized thickening of the interstitial space (dark 

blue arrow) and slight enlargement of septa (red circle) (Figure 3.5c).
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However, as seen with polymer A instillations, there were areas of the lungs 

that showed normal architecture. By day 22 the alveolar spaces were clear, 

septa appeared normal but there was still evidence of interstitial thickening 

(dark blue arrow) (Figure 3.5d).

3.4.3.3 Quantitative Histopathology

Analysis of the area occupied by nuclei with a given tissue area for polymer A- 

instilled versus saline controls (Figure 3.6) and bleomycin-treated lungs 

(Figure 3.7) revealed significant differences. In the saline-treated lungs the 

area occupied by nuclei was on average 1.1 pm2. The area occupied by 

nuclei in the polymer A sections were characterised by a 3.5-fold increase at 

day 7 and a 2.5-fold increase at day 28 in the single-instillation model and in 

the double instillation model a 2.1-fold increase at day 7 and a 2.6-fold 

increase at day 28 compared to the saline control sections. When the 

bleomycin-treated model was compared with the sections from the polymer A 

model there was a 2.1-fold increase at day 7 and 3.9-fold increase at day 22 

in the area occupied by the nuclei (Figure 3.7).
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Figure 3.3: Representative LM images of the lungs after a single instillation of either 

saline or 9 mg/ml polymer A (n=3). Sections have been stained with H&E. Alveoli air 

spaces indicated with green arrows, interstitial walls indicated with blue arrows and 

septa are highlighted by circles.
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Figure 3.4: Representative LM images of the lungs after a double instillation of 

either saline or 9 mg/ml of polymer A (n=3). Sections have been stained with H&E. 

Alveoli air spaces indicated with green arrows, interstitial walls indicated with blue 

arrows and septa are highlighted by circles.
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Figure 3.5: Representative LM images of the lungs after a double instillation of 

either saline or Bleomycin (n=3). Sections have been stained with H&E. Interstitial 

walls indicated with blue arrows and septa are highlighted by circles.
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Figure 3.6: Quantitative analysis of numbers of cells. The nuclei area was 

calculated using an image analysis system and recorded (n=3). The 

increase in area is related to an increase in nuclei, hence an increase in cell 

numbers. (mean±SEM, * = significantly different p<0.05).
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Figure 3.7: Comparison of the quantitative analysis of numbers of cells 

between polymer and bleomycin models (n=3). The nuclear area was 

calculated using IA. The increase in area is related to an increase in nuclei, 

hence an increase in cell numbers. (mean±SEM, * = significantly different 

p<0.05).

3 .4 .4  T r a n s m is sio n  E lectron  M ic r o sc o p y

At 7 and 22 days after saline instillations, the lungs appeared to have a 

normal ultrastructure. The alveolar spaces were clean and the architecture 

was ordered. Figure 3.8 shows the normal architecture seen in the saline- 

instilled lungs. The type I pneumocytes and endothelial cells appeared thin 

(Figure 3.8 & 3.9a); septa appeared to be undamaged with typical connective 

tissue fibres present at the edge of the septa. Elastin fibres were visible at the 

outer edge and an extensive network of collagen fibres (Figure 3.10a). 

However, occasional blebs and fibres were seen in minor areas at both time 

points. The type II pneumocytes appeared round and mainly located in the 

corners of the alveoli (Figure 3.11a). Occasional AMs were seen in the 

alveolar spaces (Figure 3.12a).

Seven days after the bleomycin-treatment blebbing, and caveolae (Figure 

3.9b) were seen and there were focal areas where fibres were deposited. The
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septa appeared to be enlarged and widespread thickening of the interstitium 

was noted. Areas of fibre deposition (possibly collagen and elastin) and 

caveolae were also present (Figure3.10b). Despite focal changes many areas 

appeared to have normal ultra structure. The presence of macrophages 

(Figure 3.12c) and inflammatory cells were noticed.

Alveolar
wall

Figure 3.8: Representative TEM images of from saline instilled lungs 7 

days after the second instillation, illustrating a normal alveolar unit showing 

thin alveolar wall and clean airspaces (n=3).

The lungs architecture became disorganised and infiltration of inflammatory 

cells were seen (Figure 3.9b and 3.13). Type II pneumocytes appeared to be 

cubodial (Figure 3.11b) and flattened (Figure 3.11c). Some type II cells 

appeared to have an increase number of lamella bodies in their cytoplasm 

some of the lamellar bodies appeared to be empty. An increase number of 

AMs were seen in the airspaces (Figure 3.12b) and foamy macrophages were 

first observed (Figure 3.12c).

By day 22, there was a reduced sign of lung injury, but there were still large 

areas of thickening and fibre deposition. Furthermore, there was still debris in 

the alveolar spaces and foamy macrophages were present.
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Figure 3.9: Representative TEM images from saline-instilled (normal) (a) and 

bleomycin-instilled (damaged) (b & c) lungs (n=3). (a) Alveolar wall showing normal 

lung architecture, thin endothelium and epithelium, (b) alveolar wall 7 days after 

bleomycin-instillation, shows early signs of damage including thickening of interstitium, 

blebbing and formation of caveolae, (c) alveolar wall 22 days after bleomycin- 

instillation, shows signs of severe damage including disorganised architecture, cellular 

infiltration, flattened type II pneumocytes (type II) with empty lamella bodies (LB) and 

deposition of fibres. (BM- basement membrane, RBC- red blood cell, type I- type I 

pneumocytes).
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Collagen Elastin

Interstitium

Collagen

Figure 3.10: Representative TEM images from saline-instilled (normal) (a) and 

bleomycin-instilled (damaged) (b & c) lungs (n=3). (a) Normal alveolar septa 7 

days after saline-instillation, shows normal architecture with connective tissue 

fibres present at edge of alveolar septa, (b) alveolar septa 7 days after bleomycin- 

instillation, shows signs of thickening of interstitium, fibre deposition and caveolae 

and (c) alveolar septa 22 days after bleomycin-instillation, still showing signs of
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Figure 3.11: Representative TEM images of either normal (saline-instilled) (a) or 

damaged (bleomycin-instilled) (b & c) lungs (n=3). Images show (a) normal type II 

cell, (b) cuboidal type II pneumocytes 7 days after bleomycin-instillation and (c) 

flattened type II pneumocytes 7 days after bleomycin-instillation. (LB -  lamellae 

bodies, RBC- red blood cell).
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Pseudopodia

Pseudopodia

Figure 3.12: Representative TEM images from saline-instilled (normal) (a) and 
bleomycin-instilled (damaged) (b & c) lungs (n=3). (a) Normal macrophage, (b) 
activated macrophage 7 days after bleomycin-instillation showing signs of 
phagocytosed material and (c) foamy macrophage 7 days after bleomycin-
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Lym phocyte

PlateletsCapillary

Figure 3.13: Representative TEM images of bleomycin-treated lungs 7 

days after instillation (n=3). The alveolar wall shows signs of severe 

damage including disorganised architecture, cellular infiltration and 

deposition of fibres.
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3.5 DISCUSSION

A histological investigation was performed in order to compliment the 

toxicological investigations described in Chapter 2. This study provided 

information on cellular and ultrastructural changes that accompanied the lung 

damage.

3.5.1 G ro ss  M o rp h o lo g y  o f  Lungs and Lymph Nodes

The gross morphology of the lungs following exposure suggested lung 

damage induced by inflammation as denoted by the lungs discoloration. 

However, these observations were restricted to the surface of the lungs. 

Hence, histological investigations were employed using LM to investigate the 

underlying cellular and interstitial pathology. Particles instilled into the lungs 

are translocated by AMs to the thoracic lymph nodes (Adamson and Prieditis 

1998, Seaton and Cherrie, 1998) and once deposited, bioreactive particles 

cause the lymph nodes to enlarge (Lee and Richards, 2004). This could 

explain some of the enlargement seen in the lymph nodes collected from the 

polymer-instilled rats.

3.5.2 L ight M icroscopy

The light microscopy results complemented those previously observed in the 

toxicology investigations (Chapter 2). Focalised injury and cellular infiltration 

(e.g. cell membrane, plasma products and AMs) was seen 7 days after a 

single instillation of polymer A. The injury progressively deteriorated 7 days 

after a double instillation of the polymer. This subsequent degeneration 

reflects either inflammatory-mediated damage or direct toxic effect of the 

polymer on the epithelium cells. Histopathological observations were 

accompanied and dominated by oedematous fluid in the alveolar space

Twenty eight days after the single instillation there were a few signs of cellular 

infiltration (AMs and PMNs) and normal lung architecture was present. 

However, by day 28 after a double polymer instillation, the presence of 

oedema fluid had diminished but the presence of inflammatory cells 

(predominantly AMs) persisted in the alveoli; indicating an abatement of
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pulmonary inflammation with residual alveolar clearance and repair. The large 

number of AMs may be due to the presence of residual polymer or cell debris 

in the airspace that requires clearance. At 28 days post instillation some areas 

of alveolar cell wall still appeared to be thickened. This is probably due to type 

II pneumocyte differentiation as a means to replace damaged type I 

pneumocytes and restore the integrity of the alveolar epithelium.

When comparing the results of the toxicology studies reported in Chapter 2, 

the histopathological data yield conflicting results. The toxicology data 

revealed no distinct increase in the levels of protein or free cells after a double 

dose of polymer A. However, the observed pathological effects suggested that 

this was not the case. This discrepancy between the toxicology and the 

histology data could be due to the failure of the lungs to lavage properly 

before toxicological analysis.

Carthew et al. (2006), used polymer A as a positive control in a 13 week 

instillation study. Chronic inflammation and granuloma formation was 

associated with the instillation. Focal changes, mainly within the alveolar 

spaces, were characterised by aggregated AMs with foamy cytoplasms. 

Changes within the interstitium were seen along with hypertrophic and 

hyperplasic type II pneumocytes (Carthew et al., 2006). Similarly, aggregated 

and foamy AMs were observed in the present study, along with interstitial 

changes; changes in type II pneumocytes could not be characterised. Unlike 

the present investigation, the Carthew et al. study showed no indication of 

oedema fluid in the alveolar space that was most likely due to the time scale 

of their study, since any oedematous fluid would have abated by 13- weeks, 

as it is an early response to lung injury.

An established bleomycin model of drug induced pulmonary oedema and 

inflammation (Balharry, 2005) was used to compare with the injury caused by 

polymer A. In a manner similar to the polymer model, substantial changes to 

the lung architecture following the instillation of bleomycin were observed. 

There was extensive thickening of the alveolar cell walls and presence of a 

small amount of debris in the alveolar airspace. Unlike the polymer A model
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at day 28, 2 2  days after the second bleomycin instillation the alveolar 

airspaces were clean with little evidence of intra-alveolar oedema but there 

was still extensive thickening of the alveolar wall. Upon comparison between 

the two models, nuclear area was significantly higher at both time points in the 

bleomycin model, indicating an increase in the number of cells. This suggests 

that there could be additional regeneration of the epithelium. At the later time 

point, the bleomycin lungs still appeared to be different to the saline-treated 

lungs, which could suggest that the injury may not be reversible. Longer term 

studies using bleomycin can lead to the development of fibrosis where type II 

pneumocytes proliferation is followed by abnormal differentiation of the 

epithelium (Adamson, 1984).

3.5.3 TEM
TEM was used to assess the damage, at the ultrastructural level, caused by 

instilling bleomycin. There was minimal focal damage observed after the 

instillation of saline that could be attributed to experimental stress caused by 

the instillation procedure; the damage is thought to be transient (Brown and 

White, 1997).

The earliest changes caused by the bleomycin instillations were observed in 

the type I pneumocytes and endothelial cells. Blebs and caveolae were seen 

prominently at 7 days but sporadically at 22 days and act as an indicator for 

damage. Type I pneumocytes are sensitive to toxic agents because of the 

relatively large surface area and attenuated cytoplasm (Miller and Hook, 

1990). Few blebs and caveolae were noted in the saline-instilled lungs, thus 

their presence in the bleomycin-treated lungs may be due to the toxicity of the 

bleomycin.

As with the LM results, there was little evidence of intra-alveolar oedema in 

the bleomycin instilled samples and any occurrence seemed to be sporadic. 

Previous bleomycin studies have noted interstitial oedema fluid (Adamson, 

1984; Aso etal., 1976).
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The lungs are a resilient organ and a variety of mechanisms exist to repair 

any cellular/tissue damage. The TEM investigations revealed various stages 

of repair were taking place in tissue exposed to bleomycin. The process of 

repair starts with the replacement of damaged type I pneumocytes. It is 

commonly believed that type I pneumocytes are incapable of dividing (Weibel, 

1974). It is still widely accepted that type II pneumocytes are stem cells of the 

alveolar epithelium; after normal turnover and lung injury type II pneumocytes 

will divide and differentiate into type I pneumocytes (type II pneumocyte 

hyperplasia) (Bingle et al., 1990; Miller and Hook, 1990). The new type II 

pneumocytes become flattened. The flattened type II cells will then lose 

lamellar bodies and develop into type I pneumocytes to restore normal 

architecture (Miller and Hook, 1990). This was clearly seen 7 days after 

instillation of bleomycin. This suggests that the lungs were attempting to repair 

the damage cause by the instillation of bleomycin. However, without inclusion 

of longer time points it is not known whether type II pneumocytes proliferation 

would have been followed by abnormal differentiation of the epithelium which 

could possibly lead to fibrosis (Adamson, 1984).

Apart from hyperplasia, type II pneumocytes can also become hypertrophic 

after exposure to toxic substances. This is characterised by an increase in 

size and/or number of lamellar bodies located in the cytoplasm of the type II 

pneumocytes (Miller and Hook, 1990). Bleomycin has been shown to be 

directly toxic to type II pneumocytes (Karam et al., 1995). Aso et al. (1976) 

reported that hypertrophic type II pneumocytes in rats, which had been given 

bleomycin, contained an increase in the number of lamellar bodies. In this 

study, type II pneumocytes had an increase number of lamellar bodies 7 and 

22 days after bleomycin-instillation. Several type II pneumocytes appeared to 

have empty lamellar bodies which could contribute to increase protein level 

since lamellar bodies store surfactant. Further studies looking at polymer A 

instilled lungs using TEM would provide additional information relating to the 

type of damage at the LM level and allow further comparisons to be made with 

the bleomycin model.
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3.6 CONCLUSION

The typical pattern of injury, incurred following bleomycin-treatment is well 

characterised and was established in the model used in this study. The 

sequences of events maybe summarised as follows; type I pneumocytes 

damage; interstitial oedema; inflammatory cell influx; type II pneumocyte 

hyperplasia and hypertrophy. The main difference seen in the polymer A 

model was the observation of intra-alveolar oedema instead of interstitial 

oedema. Without a TEM investigation on polymer-treated sections, there is no 

evidence of type II pneumocyte hyperplasia and hypertrophy. From 

comparisons between the two models at LM level bleomycin appears to cause 

more potent effects in the lungs.
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C h ap te r 4 

Optimisation o f 2D SDS PAGE 

F o r BAL Fluid
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4.1 INTRODUCTION

The two-dimensional sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (2D SDS PAGE) technique separates proteins according to 

charge (isoelectric point (pi)) and size (molecular weight (MW)). Isoelectric 

focusing is performed in a pH gradient. Due to the amphoteric nature of 

proteins (i.e. can be either acidic or basic depending on the pH) they become 

protonated or deprotonated depending on the pH environment. The net 

charge of a protein is the sum of all the negative and positive charges of the 

amino acid side chains. Each protein has a pi that is the pH value where the 

net charge is zero.

Isoelectric focusing is performed by placing a protein mixture on a gel strip 

that contains an immobilized pH gradient (buffered acrylamide derivatives 

called ‘immobiline’ that are co-polymerized within the gel matrix) developed by 

Bjellqvist et al. (1982). These strips are commercially available, and thus, aid 

reproducibility. When an electric field is applied the proteins start to migrate 

towards the oppositely charged electrode. When it reaches its pi the protein 

no longer has a net charge so stops migrating. If the proteins drift away they 

will gain a net charge and the electric field will cause them to migrate back to 

their pi and therefore, focusing the proteins.

The second step to this technique involves SDS PAGE, a procedure 

introduced by Shapiro et al. (1959). Before the second dimension the focused 

proteins are equilibrated with a SDS buffer that transforms them into SDS- 

protein complexes to initiate unfolding. SDS forms a complex with the proteins 

in a ratio of approximately 1.4 g SDS/g of protein. The SDS masks the charge 

of the protein and forms an anionic complex that has a net negative charge 

proportional to the mass of the protein. Hence, when an electric field is 

applied, proteins will migrate towards the anode. This separation allows the 

molecular weight of the proteins to be estimated. The proteins disulfide bonds 

are also disrupted and this induces further unfolding of molecules. The bonds 

formed between two adjacent cysteine residues can only be cleaved by a 

reducing thio reagent such as dithiothreitol (DTT); the reduced cysteine
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residues are then protected from reforming the bonds by a subsequent 

alkylation with iodoacetamide.

Sample preparation is a key stage for good quality results using the 2D SDS 

PAGE techniques (Rabilloud, 1999; Macri et al., 2000; Molloy, 2000). It is 

essential that there is no loss or modification of proteins from the sample. In 

order to avoid this, treatment of the sample should be kept to a minimum, 

samples should always be kept on ice during any treatment and the sample 

preparation time should be kept as short as possible (Westermeir and Navan, 

2002).

An effective sample preparation procedure will include five critical steps 

(Fichmann and Westermeier, 1999);

1. Solubilize proteins -  Chaotropic agents, detergents, reducing 

agents, buffers and ampholytes are used to solubilize the proteins.

2. Prevent protein aggregation and loss of solubility during

isoelectric focusing -  Urea and thiourea are the most common 

chaotropic agents. They disrupt hydrogen bonds and prevent 

unwanted aggregations or formations of secondary structures that 

affects protein mobility. The detergent, 3[(3-Cholamidopropyl)

dimethylammonio]-propanesulfonic acid (CHAPS), is added to disrupt 

hydrophobic interactions and increase the solubility of proteins at their 

pi. CHAPS is a zwitterionic detergent and allow proteins to migrate 

according to their own charge. DTT is the common reducing agent 

that is used to disrupt disulfide bonds, that is important for analysis of 

proteins as single subunits (Rabilloud, 1999).

3. Prevent protein modification -  To prevent protein modification

samples have to be kept on ice at all times and repeated thawing

must be avoided (Fichmann and Westermeier, 1999).
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4. Remove or digest nucleic acids and other interfering molecules

-  Protein precipitation followed by resuspension in sample solution 

should be employed to remove contaminates such as salts, 

detergents, nucleic acids and lipids from the sample that would 

interfere with protein separation (Amersham, 2002).

5. Prevent artifactual oxidation -  lodoacetamide is used to prevent 

reoxidation during the electrophoresis; reoxidation can result in spot 

streaking and other artefacts. (Amersham, 2002).

Another consideration for the optimisation of 2D SDS PAGE is to determine 

which system, in this case, Multiphor II or Hoefer Dalt, produce the best 

separation and most reproducible 2D gels. Finally, there was also a choice of 

detection methods: (1) Silver stain and, (2) SYPRO Ruby Stain.

Optimisation is an important process, as there is no single method or standard 

protocol for sample preparation that can be universally applied to all samples 

analysed by 2D SDS PAGE (Gorg et al., 2004). The optimised 2D SDS PAGE 

technique will be utilised to investigate the proteins in BAL fluid samples 

collected from the models described in Chapter 2, with the aim of identifying 

any alterations between saline control and polymer-treated lungs.
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4.2 MATERIALS AND STOCK SOLUTIONS

4.2.1 M a te r ia ls

Amersham Biosciences. Bucks. UK.

2-D Clean-Up Kit (80-6484-51) -  Containing Co-precipitant, Precipitant, 

Washer Additive and Washer Buffer. 

3[(3-Cholamidopropyl)dimethlammonio]-propanesulfonic Acid 

(17-1314-01)

Ammonium Persulfate (APS) (17-1311-01)

Application Piece (80-1129-46)

Bromophenol Blue (17-1329-01)

Dithiothreitol (17-1318-02)

ExcelGel Gradient XL 12-14 (17-1236-01)

ExcelGel SDS Buffer Strips (Cathodic and Anodic) (17-1342-01) 

Glycerol (17-1325-01)

HiTrap Blue Column (17-0412-01)

ImageScanner (18-1170-84)

Immobiline™ DryStrip Cover Fluid (17-1335-01)

Immobiline™ DryStrip Gels pH3-10, 18 cm (17-1234-01) 

lodoacetamide (RPN6302)

IPG Buffer pH 3-10 (17-6000-87)

PlusOne™ Silver Staining Kit, Protein (17-1150-01) -  Contains EDTA- 

Na2, Formaldehyde, Glutaraldehyde, Silver Nitrate, Sodium Acetate, 

Sodium Carbonate, Sodium Thiosulphate 

Protease Inhibitor (80-6501-23)

Sodium Dodecyl Sulfate (SDS) (17-1313-01)

Tetramethylethylene Diamine (TEMED) (17-1312-01)

Thiourea (RPN6301)

Tris Base (Tris(hydroxymethyl)-aminoethane) (17-1321-01)

Urea (17-1319-01)

Bio-Rad. Hertfordshire. UK.

Prestained SDS-PAGE standards (161-0318)
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SYPRO Ruby stain (170-3138)

Tris-glycine buffer (21) (161-0771)

Fisher. Loughborough. UK.

Dialysis Membrane Spectra/Por ® MWCO: 6  000- 8 000 Daltons 

(BIO-200-030A)

Genomic Solutions. Huntington. UK.

Duracryl Solution (0080-0085)

Investigator™ Silver Stain Kit (0080-0183) -  Containing Developer 

(Sodium Thiosulfate, Potassium Carbonate), Fixative Solution 1, 

Fixative solution 2 (Potassium Tetrathionate, Sodium Acetate), 

Formaldehyde, Glutaraldehyde, Silver Nitrate Solution (Silver nitrate), 

Stop Solution (Tris).

Millipore, USA.

Microcon Centrifugal Filter Device YM-50 (42423)

Sigma. UK.

Agarose (A-9539)

Sodium Phosphate (342483)

Sodium Chloride (S-3014)

Tris-Hydrochloride (HCI) (T-3038)

4.2.2  Sto ck  Solutions

Dalt Gels (Amersham Biosciences. Bucks. UK).

Displacing Solution - Tris-HCI (pH8 .8 , 25 % w/v)

Glycerol (50 % w/v)

Bromophenol Blue 

Deionised Water (25 % w/v)

Acrylamide Solution - Duracyl

SDS (10%)

APS (10%)
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TEMED (10 %)

Deionised Water

Sealing Solution Tris-Glycine Buffer 

Agarose

Equilibration (Amersham. UK).

SDS Equilibration Buffer - Tris-HCI (50 mM, pH 8.8)

Urea (6 M)

Glycerol (30 % w/v) 

SDS (2 % w/v) 

Bromophenol Blue

HiTrap Blue Columns (Amersham. UK).

Binding Buffer (pH 7) - Sodium Phosphate Buffer (20 mM)

Elusion Buffer (pH 7) - Sodium Phosphate (20 mM)

NaCI (2 M)

PlusOne™ Silver Staining Kit. Protein (Silver staining for Multiphor Gels) 

(Amersham. UK).

Fixative Solution - Ethanol (40 %)

Acetic Acid (10 %) 

Deionised Water

Sensitising Solution Ethanol (30 %)

Sodium Acetate (6.8 %) 

Sodium Thiosulphate (0.2 %) 

Glutardialdehyde (0.125 %) 

Deionised Water

Silver Nitrate Solution Silver Nitrate (0.25 %) 

Formaldehyde (0.015 %) 

Deionised Water
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Developer Solution - Sodium Carbonate (2.5 %)

Formaldehyde (0.0074 %) 

Deionised Water

Stop Solution - EDTA-Na2 (1.46 %)

Deionised Water

Sample Preparation.

Rehydration Solution Urea (8 M)

CHAPS (2 % w/v)

IPG Buffer (2 %)

Bromophenol Blue

DTT (7 mg/2.5ml) prior to use

Protein Lysis Solution - Urea (8 M)

Thiourea (1 M) 

CHAPS (4 % w/v) 

Tris Base (40 mM) 

DTT (50 mM)

IPG Buffer pH3-10 

Protease Inhibitor

Silver Staining Solutions (Investigator Kit) (Genomic Solutions. UK).

Fixative Solution 1 - Ethanol (40 %)

Acetic Acid (10%)

Deionised Water

Fixative solution 2 - Ethanol (30 %)

Potassium Tetrathionate (8 mM) 

Sodium Acetate (829 mM) 

Glutaraldehyde (0.5 %) 

Deionised Water

Silver Nitrate Solution - Silver nitrate (11.7 mM)
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Formaldehyde (0.009 %) 

Deionised Water

Developer Solution - Sodium Thiosulfate (63 mM)

Potassium Carbonate (0.2 M) 

Formaldehyde (0.005 %) 

Deionised Water

Stop Solution - Tris (0.4 M)

Acetic Acid (2 %)

Deionised Water

SYPRO Ruby Staining Solutions

SYPRO Fixative Solution - Methanol (40 %)

Acetic Acid (1 %)

SYPRO Wash Solution - Methanol (10 %)

Acetic Acid (6 %)
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4.3 METHODS

4.3.1 Sample P rep a ra tio n

4.3.1.1 Dialysis and Freeze Drying

BAL fluid has a high salt content due to the NaCI vehicle solution used to 

lavage the lungs. Salt interferes with the isoelectric focusing step of the 

electrophoretic process by accumulating at both ends of the DryStrip gels. 

This results in streaking on the gel because the proteins in these areas cannot 

focus properly.

BAL fluid samples (10 ml) were placed in pre-soaked dialysis bags that were 

then placed in beakers containing 5 litres of distilled water. The beakers were 

placed on mixers in a cold room for 24 hours. The water was changed every 

hour for the first 8 hours. Following dialysis, samples were frozen before being 

placed in the freeze drier for 24 hours or until dry. Dried samples could then 

be rehydrated to the desired concentration using lysis solution.

4.3.1.2 Albumin Removal- HiTrap Blue Column

HiTrap Blue columns were used for the removal of albumin from BAL 

samples. Albumin was removed from samples, as it is the most abundant 

protein present and could possibly mask minor proteins. HiTrap Blue columns 

were washed out and equilibrated with binding buffer (5-10 column volumes). 

BAL samples were then centrifuged for 5 minutes (7,500 x g) before they were 

applied to the column (0.5-1 ml/min). The column was then washed with 

binding buffer (5-10 column volumes) until no effluent material appeared and 

then eluted with elution buffer (5-10 column volumes).

4.3.1.3 2D Clean Up Kit

Precipitant solution (300 pi) (2D Clean Up Kit, Amersham Biosciences, UK) 

was added to an eppendorf tube with the reconstituted BAL fluid sample (100 

pi) (Section 4.3.1.1), mixed by vortexing before being incubated on ice (15 

minutes). Co-precipitant (300 pi) was then added, mixed by vortexing and the 

mixture centrifuged for 5 minutes (12,000 x g). The supernatant was removed
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with a pipette and the pellet was then incubated on ice (5 minutes) with co- 

precipitant (40 pi), before being centrifuged for 5 minutes (12,000 x g). The 

wash was then removed with a pipette and discarded. The pellet was partially 

dispersed in distilled (25 pi) water by vortexing before the wash buffer (1 ml) 

and the wash additive (5 pi) were added and then the pellet was fully 

dispersed. The sample was incubated (-20°C, 30 minutes, vortexed 20 

seconds every 10 minutes) before being centrifuged for 5 minutes (12,000 x 

g). The supernatant was then discarded and the pellet was allowed to dry 

before being resuspended in rehydration solution.

4.3.1.4 Acetone Precipitation

Ice cold acetone (2 ml) was added into an eppendorf tube with reconstituted 

BAL sample (500 pi) and the proteins were allowed to precipitate (-20°C, 2 

hours). The sample was then centrifuged (13,000 x g, 10 minutes). The 

acetone was decanted off and discarded. The pellet was dried in air (5 

minutes) before it was resuspended in rehydration solution.

4.3.1.5 Pre-fractionation

Due to the complexity of the 2D gel profile pre-fractionation was employed to 

reduce the numbers of proteins on each gel. The Microcon™ sample reservoir 

was inserted into the vial. Reconstituted BAL fluid sample (500 pi) (Section

4.3.1.1) was pipetted on to the sample reservoir. The assembly was 

centrifuged (13,000 x g, 12 minutes). The filtrate in the vial was collected for 

separation and contained proteins below the 50 kDa molecular weight limit. 

The sample reservoir was placed upside down in new vial and centrifuged 

(1000 x g, 3 minutes). The retentate was stored for separation and contained 

protein with molecular weight above 50 kDa.

4.3.1.6 Protein Concentration -  The Bradford Assay

The concentration of protein in the BAL samples was determined using the 

Bradford Assay (Chapter 2; Section 2.3.6).
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4.3.2 F irst D im ension -  Isoelectric  Focusing

4.3.2.1 Sample loading

Prepared BAL fluid samples were either loaded at the rehydration step -  in­

gel rehydration (Section 4.3.2.2) or during isoelectic focusing -  sample cup 

loading (Section 4.3.2.3).

4.3.2.2 Immobiline™ DryStrip Gel Rehydration

The rehydration solution (350 pi), that contained the prepared BAL fluid 

sample (in-gel rehydration), was pipetted into the slots within the reswelling 

cassette (Section 4.2.3). The protective covers were removed from the 

DryStrip Gels (Section 4.2.3). The DryStrip gels were placed gel side down 

into the slots of the reswelling cassettes and were covered with Immobiline™ 

DryStrip Cover Fluid to minimise evaporation of the rehydration solution and 

subsequent urea crystallisation. DryStrip gels were rehydrated overnight at 

room temperature. Following rehydration they could be stored at -80°C for up 

to 4 weeks (See Appendix 1 for diagrammatic depiction of this process).

4.3.2.3 Isoelectric Focusing

The Immobiline™ DryStrip Kit was set up on the Multiphor™ II 

Electrophoresis Unit and was filled with Immobiline™ DryStrip Cover Fluid. 

Isoelectric focusing (IEF) electrode strips (11 cm) were soaked in distilled 

water (0.5 ml) and excess water was removed. DryStrip Gels were rinsed with 

deionised water and drained on filter paper briefly before being transferred to 

the DryStrip aligner in the Immobiline DryStrip tray. The moistened IEF 

electrode strips were placed across the cathodic and anodic ends of the 

DryStrip gels, partially touching the gel. The electrodes were then aligned and 

fitted over the electrode strips. Sample cups were fitted and Immobiline™ 

DryStrip Cover Fluid was poured into the tray to completely cover the strips. 

The appropriate samples were loaded into the cups. The temperature of the 

MultiTemp III Thermostatic circulator was set at 20°C and the DryStrip gels 

were run (Phase 1: 500 V, 2 mA, 5 W, 1 minutes; Phase 2: 3500 V, 2 mA, 5 

W, 1 hours 30 minutes; Phase 3 3500 V, 2 mA, 5 W, 5 hours 20 minutes).
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Following isoelectric focusing, the DryStrip gels could be stored at -80°C for 

up to 4 weeks (See Appendix 2 for diagrammatic depiction of this process).

4.3.3 S econd  D im ensio n -  SDS-PAGE E lectrophoresis

4.3.3.1 Multiphor II System (Flatbed system)

The DryStrip gels were first equilibrated in DTT and SDS equilibration buffers 

(10 ml, 15 minutes) and followed by iodoacetamide and SDS equilibration 

buffers (10 ml, 15 minutes). The MultiTemp III Thermostatic circulator was set 

at 15°C. The Multiphor™ II precast gel was placed onto the Multiphor™ II 

Electrophoresis Unit with Immobiline™ DryStrip Cover Fluid between them, 

thus ensuring there were no air bubbles. The cathodic and anodic buffer strips 

were placed on the gel and partially covering it. The DryStrip gel was placed 

face down on the gel parallel to the cathodic buffer strip and application 

pieces were placed under both ends. A third application strip was used to load 

the molecular weight markers (5 pi). The IEF holder was placed onto the 

electrophoresis unit and run in two steps (Phase 1: 1000 V, 40 mA, 40 W, 45 

minutes; Phase 2: 1000 V, 40 mA, 40 W 2 hours 40 minutes). After Phase 1, 

the IPG gel and application pieces were removed and replaced by the 

cathodic buffer strip (See Appendix 3 for diagrammatic depiction of this 

process).

4.3.3.2 Hoefer Dalt System (Vertical system)

The Dalt casting chamber was cleaned with water and wiped dried and placed 

on a level surface. Glass beads were placed into the feeding channel and 

then the caster was filled with the appropriate number of separators, blocks 

and glass cassettes. Acrylamide gel solution was added slowly (-750 ml) to 

prevent the introduction of bubbles, and then followed by displacing solution 

(50 ml). The gel was immediately overlaid with water (-1 ml/gel) to prevent 

evaporation. The 12 gels were allowed to set for an hour (See Appendix 4 for 

diagrammatic depiction of this process).

The gel tank was filled with Tris-glycine buffer (2 L) and water (5 L) 2 hours 

before the start of the electrophoresis run and the water bath was then set to 

10°C and Dalt pump turned on. The DryStrip gels were equilibrated firstly in
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SDS equilibration buffer with DTT (10 mg/10 ml, 15 minutes) and secondly in 

SDS equilibration buffer with iodoacetamide (25 mg/10 ml, 15 minutes). The 

DryStrip Gels were then placed into the glass cassette to ensure that the gel 

surfaces touched without any air bubbles being introduced. Molecular weight 

markers (8 pi) were applied to an application piece. Agarose sealing solution 

was then applied to the application piece before it was placed on the gel. This 

solution was also used to cover the DryStrip gel and allowed to solidify (5 

minutes). The gel cassettes were loaded into the gel tank and run overnight 

(100 V) (See Appendix 5 for diagrammatic depiction of this process).

The new DALT six systems allow precast gels to be used. This improves the 

reproducibility between gels.

4.3.4  Staining

4.3.4.1 Silver Staining Multiphor II Gels

PlusOne™ Silver Staining Kit was used to stain the precast gels. A typical gel 

was stained as follows. A gel was placed in a staining tray on a shaker with 

fixing solution (30 minutes). The fixing solution was decanted off and replaced 

by sensitizing solution (30 minutes). The sensitizing solution was decanted off 

and the gel was washed three times in distilled water. The silver solution was 

added (20 minutes) and then removed prior to the gel being washed three 

times in distilled water. The developer solution was then added (5 minutes; 

preliminary experiments showed 5 minutes was the optimum staining time), 

removed and replaced with stop solution (10 minutes). The stop solution was 

removed and the gel was washed three times with distilled water. A 

preserving solution was added before the gels were imaged using the 

Amersham ImageScanner.

4.3.4.2 Silver Staining for Dalt Gels

Investigator™ Silver Staining Kit was used to stain the Dalt gels. The gels 

were typical stained as follows. Gels were carefully removed from the glass 

cassettes prior to being exposed to Fixative 1 solution (1 hour) before being 

placed in Fixative 2 solution overnight (~ 12 hours). Gels were then washed in 

deionised water six times before being placed in a silver nitrate solution (45
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minutes). Each gel was washed individually in deionised water before being 

placed separately in the Developer solution (9 minutes). The gels were then 

placed in Stop solution (10 minutes) and then imaged using the Amersham 

ImageScanner.

4.3.4.3 SYPRO Staining of Proteins for Dalt Gels

Gels were carefully removed from the glass cassettes before being placed in 

SYPRO fixative solution (1 hour). They were then placed in the SYPRO Ruby 

stain overnight (-12 hours) and then washed once in SYPRO wash solution (1 

hour). Gels were visualised using a Typhoon 8600.
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4.4 RESULTS

4.4.1 P re lim in a ry  G e ls

The preliminary optimization experiments for BAL fluid revealed two inherent 

problems, (1) salt interference with protein separation and (2) generation of 

adequate protein concentrations to visualise spots on gels. When unprepared 

BAL fluid sample was focused during the first step of the technique, there was 

interference observed by the bromophenol blue band stopping and not 

migrating to the anode. This suggested that there was too much salt in the 

sample. Hence, the first stage of the optimisation process required the 

removal of the salt from the BAL samples, this was achieved by dialysis. A 

molecular weight cut off of 6,000 -  8,000 Da was used to insure minimal loss 

of protein. A Bradford assay on the sample before and after dialysis showed 

minimal loss of protein. Dialysed samples showed improved isoelectric 

focusing. The separation by SDS-PAGE and visualisation using silver stain 

produced a gel that had few spots; this indicated low protein concentration in 

the sample. Therefore the dialysis step was followed by the freeze drying of 

the BAL fluid in order to concentrate the lavage proteins. After freeze drying, 

the proteins needed to be reconstituted in lysis solution. The differences in 

protein concentration before and after freeze drying are shown in Table 4.1.

Sample Before Freeze Drying 
(mg/ml)

After Freeze Drying 
(mg/ml)

Saline Day 7 0.060±2.89x103 0.366±0.058

Polymer Day 7 0.270±0.012 0.433±0.091

Table 4.1: Example of protein concentration of BAL fluid before and after 

freeze drying (n=3).

Following dialysis and reconstitution of BAL fluid samples there were 

substantially more spots visualised on the gels. Figures 4.1 (a - d) and 4.2 (a 

& b) demonstrate 2D gels that have undergone dialysis and freeze drying 

steps. The next stage was to determine the optimal concentrations of BAL
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proteins required for loading. A number of 2D gels were run using different 

concentration of proteins (20, 50, 75 and 100 pg) (Figure 4.1). Two 

dimensional (2D) gels with 20 pg of protein (Figure 4.1a) showed very few 

spots, while gels with 75 and 100 pg showed significantly more spots but 

some proteins were overloaded, as denoted by the black smear (Figure 4.1c 

and d). Gels loaded with 50 pg of protein showed more spots than 20 pg gel, 

but there was still a notable decrease in the number of spots compared to the 

75 and 100 pg. The gels run on both the Multiphor II and the Hoefer Dalt 

system exhibited poor spot separation with horizontal and vertical streaking. 

Therefore, further sample preparation steps were required to improve spot 

clarity and to reduce streaking on the 2D gels.

During the preliminary experiments the two loading techniques, in-gel 

rehydration and sample cup loading were compared. Problems occurred such 

as leaking of sample and cover fluid with sample cup loading. Therefore, in­

gel rehydration was the preferred method for loading.

The preliminary experiment also allowed the reproducibility of the 2D gels to 

be investigated. The BAL fluid sample loaded on the four concentration gels 

were from the same animal (Figure 4.1).

4.4 .2  2D C lean-U p  K it V erses A cetone Prec ip ita tion

In order to improve protein spot clarity and reduce/remove spot streaking, the 

Amersham ‘2D Clean-Up Kit’ and acetone precipitation was employed. These 

two techniques were first tested on BAL fluid from healthy rat lungs (i.e. not 

treated with saline or polymer). The resulting 2D gels are shown in Figure 4.2. 

The samples were run on both the Multiphor II and the Hoefer Dalt systems 

and silver staining was used to visualise any spots. The 2D gels optimised 

using the Amersham 2D Clean-Up kit produced cleaner gels (Figure 4.2e & f), 

with less interference and considerably more spots when compared to 

acetone precipitated samples (Figure 4.2c & d) and the control samples 

(Figure 4.2a & b).
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3 -----------------------  pH  ►lO 3 ------------------------  pH  ►lO

250

MW

*10 3 pH *10

Figure 4.1: Representative 2D gels run on the Multiphor II system (n=4). The gels 

were loaded with (a) 20 pg, (b) 50 pg, (c) 75 pg and, 100 pg (d) of BAL fluid 

protein. All samples were desalted and freeze dried. Spots were detected on the 

2D gels with silver stain. Examples of the same spots detected between the 2D 

gels are highlighted by colour-coordinated arrows.

4.4.3 M ultiphor  System  V erses Hoefer Dalt  System

Initially there were two systems available for producing 2D gels (1) the 

Multiphor II system and (2) the Hoefer Dalt system. The same sample was run 

on each system to compare differences in the gels (Figure 4.2). Considerably 

more spots were visualised on the gels run on the Multiphor II system.
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Multiphor II System
pH ---------------- ►lO

Hoefer Dalt System 
pH +>10

i

’ *■

Figure 4.2: Representative 2D gels run using both the Multiphor II and the Hoefer Dalt systems (n=4). G 

was loaded with 100 pg of BAL fluid protein. All samples were desalted and freeze dried. Spots detecl 

with silver stain. Samples loaded on gels a & b went through no further treatment. The remaining samp 

underwent acetone precipitation (c & d) and clean up kit (e & f). The red box highlight the optimial gels.
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The Dalt six system, which is a new version of the Hoefer Dalt system, was 

compared with the Multiphor II system (Figure 4.3). The 2D gel run on the 

Multiphor II again showed a clear separation with more spots detected. 

However, the Dalts/x produced clearer images that were more reproducible 

than the Hoefer Dalt 2D gels (Figure 4.2f and 4.3b).

3 ------------------  pH  ►lO 3 -------------------  pH  *10

Figure 4.3: Representative 2D gels run on the Multiphor II (a) and Dalts/x 

systems (b). Each gel was loaded with 75 pg of BAL fluid protein from 

saline-treated lungs. Both samples were desalted, freeze dried and 

contaminants removed using the 2D Clean-Up Kit. Spots were detected on 

the 2D gels with silver stain (n=4).

4.4.4 SYPRO Ruby S ta in ing  V e rse s  S i lv e r  S ta in ing

There were two staining techniques that were available for the 2D gels, i.e. 

SYPRO ruby staining and silver staining. However, for the precast gels the 

SYPRO staining procedure required the removal of plastic back which 

involved special equipment (e.g. Film Remover, Amersham Biosciences, UK) 

that was not available. For that reason, only Hoefer Dalt gels were used to 

compare the stains sensitivity for the proteins present in the BAL samples. 

SYPRO ruby stain can only be used on gels run on the Dalt system. The gels 

run on the Dalt system stained with either SYPRO ruby or silver stains are 

illustrated in Figure 4.4. The results suggested that more spots could be
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visualised with the silver staining technique when compared to the SYPRO 

ruby staining technique.

4.4.5 A lbumin  R em oval  (H iT rap)

HiTrap columns were used to remove albumin from the BAL fluid samples. 

The results from the preliminary experiments revealed that the columns 

removed other proteins from the sample, as minimal proteins were visualised 

after staining, compared to control samples (Data not shown).

4.4.6  Pr e -fractio natio n

Pre-fractionation filters were used to try to reduce the number of proteins in 

the samples. When fractionated samples were separated there were few 

proteins visualised after staining (Data not shown).
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SYPRO Ruby Stained Gels Silver Stained Gels
3 ------------------  pH  ►lO 3 -------------------  pH  ►lO

3 ------------------  pH  ►lO 3 -------------------  pH  ►lO

Figure 4.4: Representative 2D gels run using the Hoefer Dalt system (n=4). Each gel was loaded with 

100 pg of BAL fluid protein. All samples were desalted and freeze dried. Spots were detected by either 

SYPRO Ruby stain (a,c & e) or with silver stain (b, d & f). Samples on gels a & b went through no further 
treatment. The remaining samples underwent acetone precipitation (c & d) and clean up kit (e & f). The red 
box highlight the optimial gels.
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4.5 DISCUSSION

The aim of this study was to optimise the sample preparation and proteomic 

technique, 2D SDS PAGE, for the separation of proteins in BAL fluid samples.

4.5.1 T ro u b le s h o o tin g  f o r  optimisation o f  2D g e ls

During the preliminary experiments for the optimisation of the 2D SDS PAGE 

for BAL fluid, two critical problems were encountered: (1) interference from 

salt and other contaminants and (2) low protein concentration in isolated BAL 

fluid. In order to overcome these problems it was important to remember that 

the key criterion to carrying out proteomic analysis is that there must be 

minimal loss or modification to the proteins and as such, it is imperative that 

only the necessary sample preparation steps are performed. In this instance, 

in addition to the necessary sample preparation steps, dialysis and freeze 

drying steps were used.

4.5.1.1 Dialysis

Salt contamination is the most frequent cause of insufficient focusing of 

protein spots interfering with the isoelectric focusing step, resulting in the 

accumulation of proteins at both ends of the DryStrip gels. (Westermeier, 

2001). For this reason, salt was removed from the sample. A common method 

used in proteomics is dialysis, as salts have a much lower molecular weight 

than the proteins (Rabilloud, 1996). Dialysis was found to be an efficient 

method for removing salt producing satisfactory and reproducible 2D gels. 

This was also the case for Lenz et al. for both the separation of dog (Lenz et 

a/., 1990) and human BAL fluid (Lenz et al., 1993). However, the drawback of 

this technique can be a loss of proteins, either by diffusing through or 

adsorption onto the membrane (Rabilloud, 2002). However, a Bradford assay 

of the dialysis water determined that proteins were not being lost from the BAL 

fluid samples.

Other researchers have successfully used different methods to remove salt;

(1) precipitation with trichloroacetic acid (TCA) or organic solvents (e.g. cold
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acetone) (Rabilloud, 1996; Wattiez et al., 1999; Gorg et al., 2004), (2) spin 

dialysis (Gorg et al., 2004), (3) ion-exchange chromatography (Sabounchi- 

Schutt et al., 2001) and (4) gel filtration (Lindahl et al., 1995). Plymoth et al. 

(2003) compared some of these methods for the removal of salt from BAL 

fluid samples. TCA precipitation was found to impair 2D gels with 40 % loss of 

protein, gel filtration decreased streaking but results were difficult to reproduce 

and only small volumes could be processed through the columns. Dialysis 

resulted in sample dilution but since the next stage was to concentrate the 

sample this did not matter. In contrast, Plymoth et al. (2003) observed a 50 % 

improvement in 2D gel resolution after removing salt by dialysis. Hence, in this 

study, dialysis was chosen as it provided an efficient method for removing salt 

from the whole sample in one batch without introducing any contaminates.

4.5.1.2 Freeze Drying

Since the protein concentration in dialysed BAL fluid was outside the limits of 

detection, a method of concentration was required. The method of choice was 

freeze drying or lyophilization, which is a procedure that removes water from a 

sample by sublimation (Carrasquillo et al., 2000). A number of other 

researchers used lyophilization to concentrate BAL fluid (Lindahl et al., 1999; 

Magi et al., 2002; He, 2003; Sabounchi-Schutt et al., 2003).

4.5.1.3 Albumin Removal

Albumin was removed from some samples, as it is the most abundant protein 

present and could possibly be hindering the detection of other protein with 

similar pi and molecular weights. Plymoth et al. (2003) used anti-Human 

Serum Albumin (HSA) columns to remove albumin from BAL fluid. They found 

that the removal of albumin changed the 2D gel profile, allowing them to 

detect protein spots that had been previously been hidden. Albumin caused 

these proteins to be co-precipitated and trapped in the 1st dimension rather 

than hidden by the albumin spots. These workers also found that some other 

proteins were adsorbed non-specifically to the column. The HiTrap method 

used to remove the albumin in this study produced disappointing results, as 

the HiTrap seemed to have removed the majority of the other proteins 

present. This also seemed to be the case for Lenz et al. (1993) who believed
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detection was impaired and identification of scarce proteins in BAL fluid was 

hindered by abundant proteins like albumin, transferrin, a 1-antitrypsin and 

immunoglobulins A and G. They tried removing albumin by binding to Affigel- 

Blue but found unsatisfactory results because other protein spots were lost. 

Consequently, in the present study, the focus turned to cleaning up the whole 

sample.

4.5.1.4 Streaking

Some gels exhibited horizontal and vertical streaking that could have been 

caused by a variety of factors. Horizontal streaks are primarily due to 

insufficient solubility of particular proteins during the isoelectric focusing step, 

possibly caused by excess liquid that was not absorbed by the strip, 

overloading, sample solubility problems, non-protein contamination (e.g. 

nucleic acids adhering to proteins) and incomplete focusing (Garfin, 2000; 

Gorg et al., 2000). The 2D gels that were run for optimisation were loaded 

with 100 pg of protein and therefore some of the horizontal streaking may 

have been due to overloading of the protein.

Non-protein impurities in samples can interfere with protein separation in 2D 

gels and therefore have to be removed prior to their separation. Lipids that 

would be present in high concentration from surfactant in BAL fluid can cause 

a problem, as they reduce the solubility of many proteins, and can also affect 

both the pi and molecular weight. Two methods were employed to remove 

contaminants from the samples, the 2D Clean-Up Kit and acetone 

precipitation. The 2D Clean-Up Kit was found to be the most robust in 

removing the contamination from the sample and producing a clearer image. 

This kit works by quantitatively precipitating proteins while leaving behind the 

interfering substances such as salt, lipids, phenols and nucleic acids. The 

recovered proteins are later resuspended in rehydration solution and ready for 

the rehydration step (Amersham Biosciences, 2002). Less horizontal streaking 

was found in the 2D gels from the samples that had been treated with the 2D 

Clean-Up Kit. Acetone is a component of the precipitant and co-precipitant 

solutions, the improvement in the resolution maybe due to the other 

components in these solutions aiding precipitation compared to acetone
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alone. The method involves multiple steps including a wash that would 

remove components of the precipitant and co-precipitant solutions that may 

also improve the resolution of the 2D gels.

In contrast to horizontal streaking, vertical streaking normally relates to a 

problem with the SDS PAGE separation, including loss of protein solubility at 

their pi, dust contamination and incorrect placement of the DryStrip (Garfin, 

2000). It can also be the result of salt fronts, protein aggregates and 

incomplete focusing (Gorg et al., 2000). Thus, removal of salt and other 

contaminants is crucial for clean separations and hence, the need for the 2D 

Clean-Up Kit step.

4.5.1.5 Pre-fractionation

The 2D gels from the pre-fractionated samples produced disappointing 

results. The results are probably explained by protein retention to the filter and 

resulting in the dramatic loss of proteins. Therefore, pre-fractionation was not 

a viable sample preparation method.

4.5.2 Staining

The 2D gels need to be stained in order to visualise the spots. The important 

properties for a proteomic stain are: (1) sensitivity (low detection limit); (2) 

linear dynamic range (for quantitative accuracy); (3) reproducibility and (4) 

compatibility with mass spectrometry (MS). Unfortunately, to date no staining 

method meets all of these requirements (Gorg et al., 2004). For 2D gels run 

on the Hoefer Dalt system there was two specific stains available, (1) silver 

stain and (2) SYPRO Ruby stain.

4.5.2.1 Silver staining

Silver staining of proteins separated on polyacrylamide gels were first 

introduced in 1979 by Switzer et al. (1979). Silver binds to the amino acid side 

chains, primarily the sulfhydryl and carboxyl groups of proteins. Since then 

numerous methods have been used. The silver staining technique is a multi- 

step procedure that requires stopping the reaction at a given time point in
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order to prevent over-development. This can cause problems in the 

reproducibility of gels (Patton, 2002). Another drawback of silver staining is 

that certain classes of proteins such as calcium-binding proteins and 

glycoproteins stain poorly. Silver staining can detect proteins down to 0.1 ng 

and is 100 times more sensitive than Coomassie Brilliant Blue (Patton, 2001). 

The silver staining techniques have to omit glutaraldehyde, as this interferes 

with the MS step. For MS analysis it is important to obtain a complete trypsin 

digestion of the protein sample. Glutaraldehyde modifies lysine residues and 

prevents complete trypsin digestion (Rabilloud, 1990).

Due to its high sensitivity, silver staining is ideal for the detection of trace 

components in protein samples and the analysis of protein samples available 

in limited quantity. The detection limit is as low as 0.1 ng of protein per spot. 

There are several drawbacks such as poor reproducibility, limited dynamic 

range, certain proteins stain poorly or not at all and, the procedure is labour 

intensive (Gorg et al., 2000).

4.5.2.2 SYPRO Staining

SYPRO ruby dye is an endpoint stain, and thus, staining times are not critical 

and staining can be performed overnight without over-developing the gels. 

The stain does not interfere with subsequent MS. It detects lysine, arginine 

and histidine residues, and as such, relies upon the basic composition for 

protein detection (Lopez et al., 2000). SYPRO ruby is a non-covalent stain 

with a detection limit of 1-2 ng of protein, it shows little protein-to-protein 

variation. In addition, it does not modify the proteins (Gorg, 2000; Lopez et al., 

2000).

In this study, the silver staining technique was found to detect more spots on 

the Dalt gels compared to the SYPRO ruby stained gels. This was not 

expected, as SYPRO ruby dye, on side-by-side comparison, has been 

reported to visualise 20% more protein compared with silver staining (minus 

glutaraldehyde) (Patton, 2002). Gorg et al. (2000) found similar but not 

identical patterns when comparing SYPRO ruby and silver stained gels. The
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difference in protein profiles could be explained by the nature of proteins 

present in BAL fluid.

The differences in the detection levels (Silver stain - 0.1 ng; SYPRO - 1 ng) 

could explain the discrepancy in the profiles, abundant proteins stained well 

with both stains while the smaller, scarce proteins were only detected by silver 

staining. The type of proteins present in BAL fluid may also help explain the 

variations; SYPRO ruby detects lysine, arginine and histidine residues on the 

proteins that are all basic and hydrophilic residues, while silver stain binds 

primarily to the sulfhydryl and carboxyl groups of proteins.

Another consideration is the cost, SYPRO ruby is expensive compared to 

silver stain. It also requires a fluorescent scanner to visualise gels because 

the spots are not visible by eye; spot picking needs to be done by a 

spotcutter.

Noel-Georis et al. (2002) believed silver staining is the best method for 

detecting BAL fluid proteins on 2D gels. Silver stain is also the method of 

choice for a number of other researchers investigating BAL fluid (Lindahl et 

al., 1995; Wattiez et al., 2000; von Bredow et al., 2001; Magi et al., 2002; He, 

2003; Sabounchi-Schutt et al., 2003). Since quantitation of protein spots was 

not desired only their absence/presence, silver staining was the method of 

choice for the visualisation of proteins in this study.

4.5.3 M u ltip h o r  II System verses H o e fe r  D a lt  System

The comparison between the Multiphor II and the Hoefer Dalt systems found 

that more spots were visualised on gels run on the Multiphor II system. This is 

a flatbed system that only allows 1 gel to be run at a time. The advantage 

here is that precious and expensive BAL samples are not rapidly depleted 

during the optimisation of the experimental work. In contrast, an advantage of 

the Hoefer Dalt system is that 10 gels can be run simultaneously under the 

same environmental conditions, thus helping with the productivity and the 

reproducibility of the gels. Since the reproducibility of gels is vital for
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comparisons between samples, any variability that could be introduced by 

casting gels should be minimised. The Multiphor system allows precast gels to 

be used but gels need to be cast for Hoefer Dalt system. The Hoefer Dalt 

system was also not reliable to run at the required voltage overnight; possibly 

due to the age of the electrodes/equipment. The Dalts/x is a new version of 

the Hoefer Dalt system. As its name suggests it has the capability of running 6 

gels simultaneously. Precast gels were also compatible with the new system.

Spot resolution was increased in the Multiphor II gels compared to Dalt gels 

this could be explained because the Multiphor II gels are thinner (0.5 mm) 

than the Dalt gels (1 mm). This allows higher voltages to be applied resulting 

in less protein diffusion because there is a shorter running time. (Gorg et al., 

2000)

Another explanation for differences observed between the flatbed and vertical 

systems was transferring of the proteins from IPG strips to SDS PAGE gels. In 

the Multiphor II systems, the IPG strips are laid with the gel side down, directly 

onto the gel surface. Whilst with both of the Dalt systems the cassettes were 

filled with 2-3 ml of agarose solution before the IPG strips were inserted and 

positioned in contact with the upper edge of the SDS gel. Therefore, less 

surface area is in contact with the SDS PAGE gels and could potentially lead 

to proteins not entering the gel.

Another advantage in using precast gels is that they are attached to a plastic 

support that prevents alterations in gel size (shrinkage due to organic solvents 

or expansion upon rehydration with aqueous solvents) during the staining 

procedure (Gorg et al., 2000).

The reproducibility was found to be greatly improved with silver stain but fewer 

spots were detected with silver stain. Consequently, this made the Multiphor II 

system the preferred equipment to use for the proteomic experiments with the 

valuable BAL fluid samples collected from the polymer models (Chapter 2).
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4.6 CONCLUSION

To summarise, the optimal sample preparation procedure for 2D SDS PAGE 

of BAL fluid involved three steps:

(1) Dialysis -  salt removal.

(2) Freeze drying -  concentrate BAL lavage proteins.

(3) 2D Clean-Up Kit -  removes contaminants by selective precipitation.

Seventy five micrograms of BAL fluid was found to be the optimal 

concentration to be loaded on the 2D gels and run on the Multiphor II system. 

The protein spots were best detected by the silver staining. Following the 

determination of the optimal sample preparation steps, these procedures will 

now be used to perform proteomic analysis on BAL fluid samples from rats 

treated with polymer A (Chapter 5). In order to increase reproducibility, each 

sample preparation step was performed on all samples that were going to be 

compared at the same time to reduce any changes due to environmental 

differences/alterations.
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C hapter  5:

2D SDS PAGE f o r  Polym er A and 

Bleomycin M odels
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5.1 INTRODUCTION

Two-dimensional Sodium Dodecyl Sulphate Polyacrylamide Gel 

Electrophoresis (2D SDS PAGE) was employed in the present study to 

investigate differences in protein translation during the development of 

pulmonary oedema and inflammation. A model for polymer A-induced injury 

in the rat lungs was characterised using conventional toxicology (Chapter 2) 

and histological analysis (Chapter 3). These investigations showed that 

polymer A produced different biological endpoints relating to both dose 

(single or double) and time. In order to examine protein profiles in broncho- 

alveolar lavage (BAL) fluid collected from the lungs of animals exhibiting 

oedema and inflammation, proteomic technology was applied. Optimisation of 

the 2D SDS PAGE technique for BAL fluid was first undertaken (Chapter 4). 

To summarise, the optimal sample preparation procedure for 2D SDS PAGE 

of BAL fluid involved the following steps:

(1) Dialysis -  salt removal

(2) Freeze drying -  concentrate BAL lavage proteins

(3) 2D Clean-Up Kit -  removes contaminants

(4) 75 pg of BAL fluid -  optimal concentration loaded on the 2D gel

(5) Multiphor II system -  employed to separate proteins

(6) Silver stain -  detected protein spots on 2D gels.

A model of mild oedema resulted from a single polymer A instillation into the 

rat lungs. This model was used to identify changes in protein profiles during 

the peak of lung injury (7 days post-single instillation). The changes in protein 

profiles of lung repair mechanisms were also investigated (28 days post­

single instillation). Following a double polymer A instillation, a model of 

persistent oedema developed. The same time point was selected to profile 

any protein changes.

Finally, the protein profiles of BAL fluid collected from a bleomycin-induced 

model of lung injury was used for comparison, since there were no other 

proteomic models that had been established using polymer A or similar 

synthetic resin polymers.

127



2D SDS PAGE FOR POLYMER A AND BLEOMYCIN MODELS

5.2 MATERIALS AND STOCK SOLUTIONS

5.2.1 M a te r ia ls

All materials required to carry out the proteomic procedure are detailed in 

Chapter 4 (Section 4.2.1). In addition, the following materials were required for 

the present research:

Dionex (UK) Ltd. Surrey. UK.

PepMap C18 Column

Matrix Science Ltd. London UK.

MASCOT Software

Micromass UK Ltd. Manchester. UK.

MassLynx 3.5

NanoESI Q-Tof Mass Spectrometer

NonLinear Dynamics Ltd. Newcastle. UK.

Phoretix 2D Expression Software

Promeqa UK Ltd. Southampton. UK.

Trypsin (Sequencing Grade) (V5111)

Waters Ltd. Hertford. UK.

Capillary Liquid Chromatography

5.2.2 S to c k  S o lu tio n s

The stock solutions required to carry out the proteomic procedure are detailed 

in Chapter 4 (Section 4.2.2).
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5.3 METHODS

5.3.1 Samples

BAL fluid samples were collected from polymer A-instilled and bleomycin- 

instilled rat lungs (Chapter 2). Saline-instilled rats were used as control 

samples.

5.3.2 Sample P re p a ra tio n  and 2D SDS PAGE
The optimal sample preparation comprised of dialysis (Chapter 4; Section

4.3.1.1), freeze drying (Chapter 4; Section 4.3.1.1) and 2D Clean Up (Chapter 

4; Section 4.3.1.3). The 2D SDS PAGE was carried out as described in 

Chapter 4 (Sections 4.3.2 and 4.3.3). The gels were then silver stained 

(Chapter 4; Section 4.3.4.2) before being imaged using the Amersham 

ImageScanner.

5.3.3 Image A nalysis

Gel analysis was performed using Phoretix 2D Expression software. In this 

study, we were interested in the absence of spots in a given gel when 

compared with another gel, in order to find protein markers, and simplify the 

analysis procedure. Therefore differences in protein abundance between the 

gel sets were not analysed as part of this work (Dr Ian Brewis (2005) Personal 

Communication). The spots selected for picking had to be clearly defined (i.e. 

not merged with any adjacent spots). Spots had to appear on 75% of the gels 

in the set.

5.3.4 In -g e l P ro te in  Digestion

In-gel protein digestion and tandem mass spectrometry (MS/MS) was carried 

out by Mr Peter Ashton at the School of Chemical Science, The University of 

Birmingham, UK. A brief overview of these procedures has been outlined 

below.
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In-gel trypsin digestion of manually excised protein spots was performed using 

an automated 96-well plate protocol plate modified from Shevchenko et al. 

(1996). The key steps (1-16) are briefly outlined as follows:

(1) Dehydration with acetonitrile (100% 80 pi, 5 minutes)

(2) De-stained with potassium ferricyanide (30 mM) and sodium thiosulfate, 

pentahydrate (100 mM); (50 pi per spot, 15 minutes shaking occasionally)

(3) Washed (2-3 times) in with ammonium bicarbonate (25 mM; 50 pi) and the 

supernatant removed

(4) Acetonitrile was added (100% 50 pi, 15 minutes) and the supernatant 

removed

(5) Rehydration in ammonium bicarbonate (25 mM, 50 pi, 10 minutes) and 

supernatant was removed

(6) Acetonitrile was added (100% 50 pi, 15 minutes) and the samples were 

dried to completeness in an oven (60 °C, 30-45 minutes)

(7) Dithiothreitol (10 mM) in ammonium bicarbonate (25 mM) was added (25 

pi, 56 °C for 1 hour) and the sample was cooled to room temperature before 

the supernatant was removed

(8) lodoacetamide (55 mM) in ammonium bicarbonate (25 mM) was added 

(25 pi, 45 minutes at room temperature in the dark)

(9) Supernatant was removed and the gel plugs washed with ammonium 

bicarbonate (25 mM, 25 pi, 10 minutes)

(10) Supernatant was removed and acetonitrile added (100% 50 pi, 15 

minutes)

(11) Supernatant was removed and the plugs were rehydrated with 

ammonium bicarbonate (25 mM, 50 pi, 10 minutes)

(12) Following further dehydration in acetonitrile (100% 50 pi, 15 minutes) and 

removal of the supernatant, the spots were dried to completion in an oven (60 

°C, 30-45 minutes).

(13) Sequencing grade modified trypsin was prepared (as described by the 

manufacturer) and made to a final concentration of 6.25 ng/pl in ammonium 

bicarbonate (50 mM). This trypsin solution was added to the gel spots (1 Opl 

on ice until the gel had fully rehydrated).

(14) Once fully rehydrated (approximately 20 minutes), the plug was covered 

with ammonium bicarbonate (25 mM, 10 pi) incubated at 37°C overnight.
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(15) The supernatant that surrounded the gel plug was removed and placed in 

a well in a clean plate and dried to completion in an oven (60 °C for 1 hour)

(16) The remaining peptides were then resuspended in 1% (v/v) formic acid (6 

pi) for MS/MS.

5.3.5 Tandem M ass S p e c tro m e try

MS/MS was performed on the samples. The peptides in a given sample (5 pi) 

were separated by capillary liquid chromatography and a PepMap C18 

column (75 pm i.d. x 15 cm) before being analysed using a nanoESI Q-Tof 

mass spectrometer. Following MS/MS the raw data were processed using 

MassLynx 3.5 to produce a single peak-list (pkl-files).

5.3.6 MASCOT S earch

MASCOT is a powerful search engine which uses mass spectrometry data to 

identify proteins from primary sequence databases. The resulting pkl-files 

from the MS/MS were compared with the NCBI non-identical protein 

sequence database (NCBInr) using the MASCOT search software. 

Identifications were made by comparing the experimentally generated data 

with theoretical data calculated for each database entry. The rationale is to 

retrieve proteins that would produce the same set of data if digested and 

analysed in the same manner as the protein in the study. MASCOT provides a 

list of candidate proteins that most closely match the input data and the 

candidate proteins are ranked using a scoring system. Figure 5.1 illustrates a 

typical result report obtained from the software. At the top of the page there 

are a few lines to identify the search: title, date, user name, etc. Following the 

header was an overview list of significant hits and a histogram of the score 

distribution for the top matches. In this particular example, scores greater than 

46 were reported to be significant. This is, the chance of a random match 

getting a score of 46 is p<0.05. The next section of the report contained 

tabular summary of the matching proteins. For each protein, the accession 

number, the protein molecular mass and the overall score were given. This 

was followed by a table summarising the matched peptides (Figure 5.2). By
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following the hyperlinks from the main report page, more detailed reports were 

available.

In MASCOT, the score for an MS/MS match is based on the absolute 

probability (P) that the observed match between the experimental data and 

the database sequence is a random event. The reported score is -10Log(P). 

The expectant value is the number of times you could expect to get this score 

or better by chance. It can be derived directly from the score and the threshold 

(set at p < 0.05). A completely random match has an expectation value of 1 or 

more. The better the match, the smaller the expectation value.

Following matching of a peptide to a protein, the quality of the raw MS/MS 

data were validated (required the presence of good quality y-ion data). Finally, 

each of the peptides was used to BLAST search to confirm the protein 

identified by MASCOT was the only relevant match in the non-redundant 

protein database for a particular peptide sequence (Kinter and Sherman, 

2000).
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{s u e ĉ e}M a s c o t  S e a r c h  R e s u l t s
User
Email
Search title 
MS data file 
Database 
residues) 
Taxonomy
Timestamp : 23 Jan 2006
Significant hits: gi 7331218

9 i 28317
ff1 71051822

13638435

gi 435476
?*■ 136429
91 76617900

ff1 186685
55638143

73965955

Martina Hicks 
hicksm@cardi ff.ac.uk 
Polymer A Spot A6 
D:\Martina\IB1312 05A6.pkl
NCBInr 20060122 (3229171 sequences; 1108386787 

Mammalia (mammals) (445426 sequences)

keratin 1 [Homo sapiens]
unnamed protein product [Homo sapiens]

[Rattus norvegicus]

(p8)factor-related protein 8) (MRP-8)
cytokeratin 9 [Homo sapiens]
Trypsin precursor
PREDICTED: similar to keratin 4 isoform 
2 [Bos taurus] 
keratin type 16
PREDICTED: similar to keratin IB [Pan 
troglodytes]
PREDICTED: similar to keratin 20 [Canis 
familiaris]

Probability Based M ow se Score
Ions score is -10*Log(P), where P is the probability that the observed match is a 
random event.
Individual ions scores > 46 indicate identity or extensive homology (p<0.05). 
Protein scores are derived from ions scores as a non-probabilistic basis for ranking 
protein hits

-ns

2 0 -

§15

o 40 80 120 160 200
P ro b a b ility  Based Mowse Score

Figure 5.1: Example of the main result report from an MS/MS ion search of 

peptides from an in-gel tryptic digest of a protein against the NCBInr 

database.
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Calgranulin A (Migration inhibitory factor-related protein 8)
(MRP-8) (p8)

Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide
791.3849 1580.755 1580.732 0.022 0 94 9.2e-07 1 K.MVTTECPQFVQNK.N
602.9816 1805.923 1805.931 -0.008 0 41 0.17 1 K .ALSNVIEVYHNYSGIK.G

Figure 5.2: Example of the summary section of the MASCOT report contains 

a tabular summary of the matching proteins (In this example: calgranulin A).
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5.4 RESULTS

5.4.1 P o lym er A M o d e l: 2D SDS PAGE
A representative set of saline control and polymer A-treated 2D gels are 

shown for each time point (day 7 (single) - Figure 5.3, day 28 (single) - Figure 

5.4, day 7 (double) - Figure 5.5 and day 28 (double) - Figure 5.6). These sets 

of gels were run on the Multiphor II system. There was considerable spot 

interference on the polymer A gel from the day 7 samples when compared to 

the saline control gel for both the single and double-instillation models. By day 

28 there is less interference present.

The interference was too vast on the day 7 (single) gel set for the 2D 

Expression IA software to analyse (Figure 5.3). IA found no differences in the 

day 28 gels from the single-instillation model (Figure 5.4). However, 

differences and similarities between the gels from the double instillation could 

be detected following normalization of the gels (Figure 5.5 and 5.6).

5.4.2 P o lym er A M o d el: MS/MS
Selected proteins were excised for subsequent identification by MS/MS. Spots 

had to appear on 75% of the gels to be chosen for MS/MS analysis. The 

proteins identified by MS/MS and subsequent MASCOT search are shown in 

Table 5.1.
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Figure 5.3: A representative set of 2D-gels from the day 7 saline control and 

polymer A-treated single-instilled samples. Seventy five micrograms of protein 

was loaded on to each gel and gels were run on the Multiphor II system. Spots 

were detected using silver stain. Due to the level of interference on the polymer 

gels the 2D Expression Software was unable to analysis them.

Day 7 (Single)
3 ------------------------------------  d H ------------------------------- M O

Saline

Polymer A

136



2D SDS P A G E  FOR POLYMER A  AND BLEOMYCIN MODELS

Day 28 (Single)
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Figure 5.4: A representative set of 2D-gels from the day 28 saline control and 

polymer A-treated single-instilled samples. Seventy five micrograms of protein 

was loaded on to each gel and gels were run on the Multiphor II system. Spots 

were detected using silver stain. The red boxes are reference spots found on 

both gels. The 2D Expression Software could not find any differences between 

the gel sets.

0
Saline

m

Polymer A
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Figure 5.5: A representative set of 2D-gels from the day 7 saline control 

and polymer A-treated double-instilled samples. Seventy five micrograms 

of protein was loaded on to each gel and gels were run on the Multiphor II 

system. Spots were detected using silver stain. The red boxes are 

reference spots found on both gels. The peach boxes (P1-P4) are spots 

selected for MS/MS analysis. The selected spots are shown enlarged on 

the right-hand side of the gel images.
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Day 28 (Double) 
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Figure 5.6: A representative set of 2D-gels from the day 28 saline control 

and polymer A-treated double-instilled samples. Seventy five micrograms 

of protein was loaded on to each gel and gels were run on the Multiphor II 

system. Spots were detected using silver stain. The red boxes are 

reference spots found on both gels. The peach boxes (P5-P6) are spots 

selected for MS/MS analysis. The selected spots are shown enlarged on 

the right-hand side of the gel images.
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Spot
No

Accession 
No (NCBInr) Name Expectation

Value

MW 
(Daltons) 

and pi
Peptide

P1 aiM 9705431 Albumin [Rattus 
norvegicus] 1.2e-05 70670

6.09 K.TCVADENAENCDK.S

P1 ai16758014 Hemopexin [Rattus 
norvegicus] 0.0024 52000

7.58 R.CNADPGLSALLSDHR.G

P2 ail71390 Keratin high-sulfur matrix 
protein IIIB2 0.00019 11131

6.28 R.TGPATTICSSDK.F

P3 ail435476 Cytokeratin 9 [Homo 
sapiens] 0.7 62320

5.19 K.STMQELNSR.L

P4 ail6981424 Prosaposin [Rattus 
norvegicus] 0.00047 62908

5.13 K.LVTDIQTAVR.T

P5 ail 13638435 Calgranulin A [Rattus 
norvegicus] 9.2e-07 10289

5.68 K.MVTTECPQFVQNK.N

P6 aid 9705431 Albumin [Rattus 
norvegicus] 0.65 70670

6.09 K.KYEATLEK.C

P7 ail435476 Cytokeratin 9 [Homo 
sapiens] 0.00048 62320

5.19
R.GGSGGSYGGGGSGGG
YGGGSGSR.G

Table 5.1: Identification of proteins by MS/MS from the polymer A model 2D gels. The expectant value is the number of 

times you could expect to get this score or better by chance. It can be derived directly from the score (based on the 

absolute probability (P) that the observed match between the experimental data and the database sequence is a random 

event) and the threshold (set at p < 0.05). A completely random match has an expectation value of 1 or more. The better 

the match, the smaller the expectation value. Proteins in bolds are considered not to be contaminates.
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5.4.3 Bleom ycin M od el: 2D SDS PAGE
A representative set of saline control and bleomycin treated 2D-gels are 

shown in Figure 5.7 (day 7) and 5.8 (day 22). Unlike the polymer gels, there 

was no spot interference. These sets of gels were run on the Dalts/x system to 

increase productivity. Differences and similarities between the gels could be 

detected following normalization of the gels (Figure 5.7 and 5.8).

5.4.4 Bleom ycin M od el: MS/MS
Selected proteins were excised for subsequent identification by MS/MS. The 

raw data collected from the MS/MS was interpreted using the MASOT search 

software. The proteins identified by MS/MS and subsequent MASCOT search 

are shown in Table 5.2.
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Day 7 (Double) 
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Figure 5.7: A representative set of 2D-gels from the day 7 saline control 

and bleomycin-treated double-instilled samples. Seventy five micrograms 

of protein was loaded on to each gel and gels were run on the Dalts/x 

system. Spots were detected using silver stain. The red boxes are 

reference spots found on both gels. The peach boxes (B1-B3) are spots 

selected for MS/MS analysis. The selected spots are shown enlarged on 

the right-hand side of the gel images.
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Day 22 (Double)
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Figure 5.8: A representative set of 2D-gels from the day 22 saline control 

and bleomycin-treated double-instilled samples. Seventy five micrograms 

of protein was loaded on to each gel and gels were run on the Dalts/x 

system. Spots were detected using silver stain. The red boxes are 

reference spots found on both gels. The peach boxes (B4-B6) are spots 

selected for MS/MS analysis. The selected spots are shown enlarged on 

the right-hand side of the gel images.
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Spot
No

Accession 
No (NCBInr) Name Expectation

Value

MW 
(Daltons) 

and pi
Peptide

B1 ail 136406 Cationic trypsin 
precursor 0.014 26837

8.42 K.LSSPATLNSR.V

B2 ail 136429 Trypsin precursor 0.085 25078
7.00 R.VATVSLPR.S

B3 n/a Insufficient
concentration n/a n/a n/a

B4 aih 36406 Cationic trypsin 
precursor 0.025 26837

8.42 K.LSSPATLNSR.V

B5 ail 19705431 Albumin [Rattus 
norvegicus] 0.00024 70670

6.09 K.APQVSTPTLVEAAR. N

B6 ail 17318569 Keratin 1 [Homo 
sapiens] 0.032 66198

8.16 K.YEELQITAGR.H

B7 ail435476 Cytokeratin 9 [Homo 
sapiens] 0.0043 62320

5.19
R.SGGGGGGGLGSGGSIR.
S

B8 ail 19705431 Albumin [Rattus 
norvegicus] 2.4e-08 70670

6.09 K.TCVADENAENCDK.S

Table 5.2 Identification of proteins by MS/MS from the bleomycin gels. The expectant value is the number of times 

you could expect to get this score or better by chance. It can be derived directly from the score (based on the 

absolute probability (P) that the observed match between the experimental data and the database sequence is a 

random event) and the threshold (set at p < 0.05). A completely random match has an expectation value of 1 or more. 

The better the match, the smaller the expectation value.Proteins in bolds are considered not to be contaminates.
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5.5 DISCUSSION

The aim of this study was to profile proteins from BAL fluid samples collected 

from saline and polymer-instilled rat lung injury models and to analyse the 

differences in these profiles. The ultimate objective was to identify potential 

BAL protein markers, using mass spectrometry, for different severities of lung 

injury and repair, that could potentially be used for early clinical diagnosis, 

thus replacing the current clinical tests such as chest radiographs and blood 

gas monitoring. The current tests only describe the situation relatively late 

after the initial cellular disturbance so there is a considerable interest in 

detecting early phases of lung injury.

5.5.1 O verview  o f  Techn ica l Problem s

5.5.1.1 Sample

Proteomics has proven to be a powerful tool for identifying early changes at 

the protein level in a variety of disease states (Kvasnicka, 2002). 2D SDS 

PAGE is the most widely used method for analysing proteins in a complex 

mixture (Berkelman and Stenstedt, 1998). The major problem to overcome in 

the analysis of the polymer gels was the spot interference observed in the day 

7 gels for both the single and double models. This interference was not 

present on any of the bleomycin gels, and as such, was probably caused by 

the presence of the synthetic resin polymers in the BAL samples. A possible 

reason why the polymer is not removed during the sample preparation stages 

could be that the polymer binds to/coats the proteins or form aggregates with 

the proteins in the BAL fluid. Unfortunately, any attempt to remove the 

polymer would also result in the loss of sample proteins, and hence, cause a 

subsequent change in the BAL proteomic profile. Consequently, with the level 

of interference present and the use of silver stain, it was difficult to analyse the 

gels comprehensively. As an attempt to improve these gels, they were run 

using a lower sample protein concentration (50 pg) and using the Dalts/x gel 

system. However, this did not improve the gel clarity. Therefore the original 

sets of gels (run on the Multiphor II System) had to be used for further 

analysis using the 2D Expression software.

145



2D SDS PAGE FOR POLYMER A AND BLEOMYCIN MODELS

An alternative to removing the interference/polymers may be to change the 

stain. A change to a fluorescent stain such as one of the SYPRO stains, may 

improve the spot resolution on the gels. However, during the optimisation 

experiments (Chapter 4), it was determined that SYPRO ruby stain did not 

detect as many spots as the silver stain. Therefore, as a compromise in the 

detection sensitivity under these circumstances, the use of the SYPRO ruby 

stain may be the best answer to this problem. Furthermore, the use of SYPRO 

stains would require the plastic backing to be removed from the gels; a 

complicated procedure involving special equipment (e.g. Film Remover, 

Amersham Biosciences, UK) that was not available during this research 

project. Finally, by removing the backing, the gels could be prone to breaking 

which makes their IA difficult. A further setback in changing the stain is that 

this would not overcome any binding of the proteins by the polymer.

Another possible way to overcome an interfering substance such as poorly 

soluble resin polymers could be the use of different IPG strips (e.g. non-linear 

or smaller pH ranges). In these investigations, the polymer was mainly in the 

lower, acidic pH range, and the use of IPG strips pH 6-9 or 6-11 would focus 

in on that part of the gel away from the interference. This could reduce the 

complexity of the gels, thereby improving the I A. IPG strips with narrow 

intervals with only one or two pH units are also available which allows very 

high protein loads and provokes excellent spot resolution. This could also 

simplify the analysis, as theoretically, there would be fewer spots on each of 

the gels. However, these require adequate amounts of samples to run enough 

gels to cover the pH areas of interest. In the present study, the BAL samples 

were of limited supply.

Adequate sample quantity was found to be another problem with the running 

of the 2D gels. Since all animal experiments had to be completed in the first 

year and a half of the study (due to the Home Office licence expiring), there 

was a limited amount of BAL fluid sample available and it was not possible to 

repeat any animal experiments to acquire more samples. Consequently, only 

a limited number of gels could be run.
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5.5.1.2 Equipment

The greatest challenge to the 2D SDS PAGE, MS and bioinformatics 

approach is the complex nature of cellular proteomes. The general proteins 

that are visualised by conventional staining methods are normally high 

abundance proteins. Low abundance proteins, which are not normally 

detected by conventional staining, include regulatory proteins, receptors and 

other proteins that play a key role in cellular processes. Besides low 

abundance proteins, alkaline and hydrophobic proteins are generally not 

observed on 2D gels under standard conditions.

Despite these challenges, 2D SDS PAGE coupled with MS and bioinformatics 

tools, was employed in this study. Due to the extensive use of proteomic 

research in industry and academia, it was hoped that comparisons could be 

made with other studies using BAL fluid. In terms of equipment and personnel, 

2D based technology is well-suited to an academic setting. Access to MS and 

bioinformatics resources can usually be obtained through fee-for-service 

facilities. Alternative proteomic methodologies rely on cutting-edge, high-cost 

MS instrumentation (e.g. FT-ICR mass spectrometer can cost over $1m). 

Another bonus with the 2D SDS PAGE techniques is that proteins stored 

within dried 2D gels can be identified after several years (Beranova- 

Giorgianni, 2003). Therefore, allowing further research to be done on the data 

from the present study in the future.

The gels that could be analysed in this study produced disappointing results, 

with only a few of the spots returning with possible protein identities. MS/MS 

using a nanoESI Q-Tof mass spectrometer has currently been found to be 

more accurate than MALDI instruments, but MS/MS is more susceptible to 

protein contamination. Contamination is a common problem with the 2D SDS 

PAGE technique, and one that was encountered in the present study. 

Contaminants are derived from skin and hair (e.g. keratin) and from the 

trypsin digestion stage of sample preparation. In this investigation, the source 

of such contamination could have happened at any stage from the collection 

of BAL fluid to the MS/MS analysis of the spots. Therefore, the use of added
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precautions such as reducing the amount of handling of samples and the 2D 

gels may improve the results.

Accurate quantitative analysis with silver stained gels is compromised by the 

narrow dynamic range of the stain and by the fact that different proteins have 

different staining characteristic. Time and financial constraints only allowed a 

limited number of spots to be analysed via MS/MS. MS analysis of silver 

stained gels also has a number of drawbacks for example, silver stain detects 

proteins down to the femtomole level, and consequently, the quantity of 

protein in a silver stain spot is usually low. The amount of sample available for 

analysis is further reduced through losses that occur during the preparation of 

peptide digests (Westermeier and Naven, 2002). Thus, MS data from digests 

of silver stained proteins may contain only a few peptide signals, which may 

not be enough for unambiguous protein identification. Moreover, the reduced 

peptide signal renders the analysis susceptible to interference from 

contaminants; a possible scenario explaining the level of contaminants 

identified in this study. The only other alternative currently available is MALDI- 

ToF, which is also known to have serious problems with contamination, 

especially keratin, and has been deemed to be less accurate than MS/MS 

(Lieber, 2002).

5.5.2 P roteins  Identified  by Proteomics

In total, 13 protein spots were picked and sent for MS/MS analysis (plus 

negative control for each gel). Despite the above mentioned problems, the 

MS/MS analysis did identify some interesting proteins. Albumin was identified 

as spots on gels from both polymer A and bleomycin models of lung injury. 

The most interesting proteins, prosaposin and calgranulin A, were identified 

on the polymer A model (double) at day 28.

5.5.2.1 Albumin

Out of the 13 protein spots picked, 4 spots were identified as a fragment of 

albumin. Each of the spots related to one or more different peptides. Albumin 

is the most abundant protein in the blood, where it acts as a carrier protein
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(Peters, 1996). It is a large-molecular-weight protein that does not cross the 

alveolar capillary membrane rapidly. It is found in the lung and other 

extracellular spaces at a reduced concentration compared to the blood. The 

concentration of albumin in BAL fluid has been found to be higher in patients 

with pulmonary sarcoidosis (Kriegova et al., 2006) and interstitial lung disease 

(Ward et al., 1997). Albumin and immunoglobulin G (IgG) have been found to 

be present in pulmonary oedema fluid in concentrations that are 75-95% of 

plasma levels in lung injury pulmonary oedema (Hastings et al., 2004).

Albumin concentration in BAL fluid has been proposed as a marker of 

increased permeability of the alveolar space in inflammation (Baughman, 

1997). In the bleomycin gels, 2 out of the 6  spots, were identified as albumin; 

the other 4 spots all returned as contaminates. Its presence in the injured 

lungs of rats may be the result of chronic leakage due to increased vascular 

permeability.

5.5.2.2 Hemopexin

For one of the spots (Spot No - P1 day 7 polymer A (double)) the Mascot 

search identified it as either albumin or hemopexin. Hemopexin is also a 

plasma protein and is a haem-binding plasma glycoprotein. After haptoglobin, 

it provides the second line of defence against haemoglobin-mediated 

oxidative damage during intravascular hemolysis. Hemopexin, together with 

haptoglobin and transferrin, form the fourth most abundant group of plasma 

proteins after albumin, immunoglobulins and the plasma proteases (Delanghe 

and Langlois, 2001; Baker et al., 2003). Hemopexin is a 60 kDa plasma 

protein that binds haem non-covalently with the highest known affinity of any 

haem binding proteins. Hemopexin is mainly synthesised by the hepatic 

parenchymal cells. Its receptors are mainly expressed in the liver but have 

also been detected on human T-lymphocytes and PMNs (Delanghe and 

Langlois, 2001).

Haem is used in a wide variety of biological processes, including respiration 

and energy transfer (Baker et al., 2003). The major sources of extracellular 

haem are haemoglobin from ruptured erythocytes, myoglobin and enzymes
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with haem prosthetic groups, including peroxidase and cytochrome from 

damaged tissues or secreted myeloperoxidase from PMNs (Delanghe and 

Langlois, 2001). The release of haem into extracellular fluids has potentially 

severe consequences for health, given that haem is highly toxic because of its 

ability to catalyze free radical formation (Baker et al., 2003). Since there is an 

elevated level of PMNs at both time points (day 7 and 28) there could be an 

elevated level of haem in the alveoli. This could be one reason for the 

presence of hemopexin in the samples. Another source may be from the 

plasma as proteins are known to cross the alveolar capillary membrane into 

the alveoli or due to damage in the alveolar wall causing plasma proteins to 

leak into the alveolar.

These results suggest that the majority of the same proteins are present in 

both the bleomycin and saline samples. Therefore, it would be interesting to 

investigate proteins that are increased or decreased in quantity between the 

two samples. This is, however, difficult when using silver stain as it may give 

false positives due to possible differences in staining intensities. This could be 

overcome by using a different type of stain or by having an internal standard 

to normalise the spot intensities.

5.5.2.3 Calgranulin A

The polymer A gels identified calgranulin A on the day 28 gels. Calgranulin A 

is also known as S100A8 (Srikrishna et al., 2001) and MRP8 (Sopalla et al.,

2002), and is a member of the S100 family, which is the largest group of small 

acidic calcium binding proteins (Roth et al., 2003). This family of proteins has 

13 (Manitz et al., 2003) members and are characterised by two calcium 

binding sites (Vandal et al., 2003). Calgranulin A belongs to a subgroup of 

S100 family called myeloid related proteins (MRPs) because their expression 

is almost completely restricted to cells of myeloid origins, i.e. PMNs and 

monocytes. Calgranulin B (S100A9) and S100A12 are also members of this 

subgroup (Rouleau et al., 2003). The MRPs are expressed abundantly in the 

cytosol of PMNs and at lower levels in monocytes (Rouleau et al., 2003).
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The function of calgranulin A and the other MRPs are poorly understood. 

Calgranulin A is known to exist as a homerdimer but also form heterodimers in 

the presence of calcium with calgranulin B (Vandal et al., 2003) called 

calprotectin in response to inflammation (Merkel et al., 2005). This hetermeric 

complex has been found in sera of patients suffering from cystic fibrosis 

(Renaud et al., 1994), chronic bronchitis, rheumatoid arthritis (Odink et al., 

1987) and crohn’s disease (Tamboli et al., 2003); all disorders denoted by 

chronic inflammation. High serum concentration of MRPs has been found in 

granulomatous conditions, such as tuberculosis and sarcoidosis (Ryckman et 

al., 2003). Previous studies using polymer A as a positive control found 

granulomas present after a 13 week instillation study (Carthew et al., 2006). 

No granulomas were found in this study but this could be due to the difference 

in time scale.

Calgranulin A, calgranulin B and the heterodimer they form have been shown 

to act as potent inducers of PMN chemotaxis and adhesion (Ryckman et al., 

2003). When calgranulin A was injected intraperitonally into mice it stimulated 

an accumulation of PMNs and macrophages within 4 hours (Rouleau et al.,

2003). During inflammatory responses, PMNs migrate in a multistep fashion 

from blood to inflammatory sites where they are involved in immune defence. 

Chronic inflammation was found after a double instillation of polymer A 

(Chapter 2). Calgranulin A and B are constitutively expressed in the cytosol of 

PMNs and constitute 30% of the total cytosolic protein (Ryckman etal., 2003). 

Therefore, the presence of calgranulin A in this investigation could be directly 

related to the elevated number of PMNs found in the polymer model as 

demonstrated by the toxicological data (Chapter 2, Section 2.4.2). Previous 

studies by other investigators showing its role in recruitment of PMNs and 

macrophages, could explain their presence in the lungs of the polymer model, 

as calgranulin A, along with other S100 proteins, are now believed to be a 

new class of chemotactic factors contributing to PMNs migration to 

inflammation sites. Calgranulin A and the other MRPs pro-inflammatory 

properties makes them attractive targets for novel, diagnostic, therapeutic 

approaches to manipulate the innate immune system in inflammatory disease 

(Roth et al., 2003).
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5.5.2.4 Prosaposin

Prosaposin is a member of the saposin-like protein (SAPLIPs) family which 

encompasses 235 different lipid-interacting proteins. The SAPLIPs members 

have diverse functions (Bruhn, 2005) including:

1. Lipid catabolism -  Saposin A, B, C and D

2. Regulation of surfactant tension -  SP-B

3. Antimicrobial activity -  granulysin.

Prosaposin is involved in the regulation of cell proliferation, lipid transfer and 

apoptosis. It is also the precursor protein for the mature saposins A, B, C and 

D (Bruhn, 2005). Prosaposin exists in an intracellular form (6 8  kDa) and an 

extracellular form (73 kDa). Studies (Kishimoto et al., 1992) suggest that 

prosaposin is biosynthesised, glycosylated and secreted extracellularly to 

generate saposins A, B, C and D. Little is known about the function of 

prosaposin that is an integrated membrane component (Kishimoto et al., 

1992). Prosaposin has at least one lipid binding domain and three lysosomal 

hydrolase domains (O’Brien and Kishimoto, 1991).

Saposin A, C and D appear to stimulate enzyme activities such as 

galactosidase and sphingomyelinase (Kishimoto et al., 1992). Saposin B acts 

as a detergent-like protein solubilizing multiple lipid substrates for enzyme 

hydrolysis, acting mainly on glycolipds as well as sphingomeylin (O’Brien and 

Kishimoto, 1991). A study of the distribution of saposins and prosaposin in rat 

tissues revealed a wide distribution. Saposins were the dominant forms in 

lung, spleen, liver and kidney whereas; prosaposin predominated in plasma 

(O’Brien and Kishimoto, 1991).

Extensive similarities in the amino acid sequence of prosaposin and saposins 

with that of the major pulmonary surfactant protein SP-B suggest they may 

have similar functions (Kishimoto et al., 1992). Similar to saposins, SP-B also 

binds lipids; SP-B selectively interacts with phosphatidylglycerol (Baatz et al., 

1990; Patthy, 1991), and is an essential component of mammalian pulmonary
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surfactant. Finally, SP-B, along with SP-C, are important for pulmonary 

surfactant replacement (Weaver and Conkright, 2001)

Prosaposin was also found to be present in the day 28 polymer sample and 

not in the saline control samples. In the lungs, it may be involved in lipid 

binding due to the presence of a lipid binding domain, and may facilitate in 

surfactant synthesis due to its high lipid composition. It may be there just as a 

precursor for one of the mature saposins (A, B, C or D). An increase in cell 

numbers was seen by histology in the polymer A models at day 28 (Chapter 3, 

Section 3.4.3.3) which partly could be accounted for by cell proliferation. One 

of prosaposin roles is in the regulation of cell proliferation. Other than the 

homologies with SP-B, there is no literature on the role of prosaposin or any of 

the saposins with regard to their role in the lungs. Proteomic studies on 

human BAL fluid from patients suffering from interstitial lung diseases have 

shown an elevation of saposin D when compared to healthy control patients 

(Wattiez et al., 1999; Wattiez et al., 2000).

5.5.3 Future  W ork

In order to confirm the proteomic results, an enzyme-linked immunosorbant 

assay (ELISA) for calgranulin A and prosaposin would have been beneficial. 

This could provide further evidence for their presence in BAL fluid collected at 

day 28, following a double instillation of polymer A, and their absence from 

saline-treated controls. An ELISA on the day 7 double instillation samples 

would also provide information about whether they were present at this earlier 

time point. ELISAs on the bleomycin model might help determine whether 

these proteins were specific to the type of damage observed in the polymer A 

model. Western blots could also be used to identify the proteins on the 

different gels from the single polymer A-instillation model and the bleomycin 

model. Unfortunately, specific equipment is required to perform western blots 

on 2D gels (e.g. Film Remover, Amersham Biosciences, UK; miniVE Vertical 

Electrophoresis System, Amersham Biosciences, UK) neither of which were 

available, nor was time permitted.
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5.6 CONCLUSIONS

Despite difficulties with the 2D gels, a number of interesting proteins were 

detected as being present on the test set of gels and not in the controls. The 

two most interesting proteins, prosaposin and calgranulin A, were found in the 

polymer double instillation model at day 28. Prosaposin is a lipid binding 

protein with homologies to SP-B, while calgranulin A is a calcium-binding 

protein found in the cytosol of PMNs, and associated with chronic 

inflammatory diseases. From the results obtained in the present study, 2D 

SDS PAGE may not be an efficient method for the discovery of biomarkers, 

especially in complex mixtures such as BAL fluid, and in conjunction with the 

use of poorly soluble material such as synthetic resin polymers. This is 

disappointing in view of the fact that human samples of BAL and serum are 

readily available for screening purposes and the potential detection of early 

disease onset and/or pulmonary repair following drug treatment.
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C hapter  6:

IMMUNOHISTOCHEMICAL ANALYSIS OF

Lung S ections
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6.1 INTRODUCTION

The discovery of novel proteins provides new opportunities for development of 

drug therapies and act as potential biomarkers to injury and disease. The 

localisation of the proteins can also lead to insights about the function of the 

proteins and mechanisms behind the observed injury/disease.

Secreted and transmembrane proteins have properties that lend themselves 

to being used as therapeutic agents or targets (Clark et al., 2003), for 

example the suggested role of IL-6  mediating injury repair responses of 

airway smooth muscle cells following inflammation in diseases such as 

asthma and chronic bronchitis (Panettieri, 2002). Cocoacrisp (CC) is a 

member of the cysteine rich secretory protein (CRISP) family. These are a 

large group of single chained secretory proteins. The CRISP family of proteins 

are characterised by exhibiting a high content of cysteine residues (Guo et al., 

2005; Osipov et al., 2005; Yamazaki and Morita, 2004). They were first 

discovered in mammals but they have subsequently been found in some 

invertebrates, insects and plants (Shikamoto et al., 2005; Yamazaki and 

Morita, 2004). The function of CC is still being investigated.

From the investigation into the function of CC the presence of the protein was 

found in developing lungs of bovine embryos, using immunohistochemistry 

(Kahn (2005) personal communication). Recently, Balharry (2005) found the 

appearance of elevated levels of CC in lung tissue from a bleomycin induced 

model of pulmonary oedema. Therefore, it may have the potential to act as a 

clinical marker for early bleomycin-induced lung injury (Balharry, 2005).

The main characteristic of the CC protein is the presence of two LCCL 

domains, named because the best characterized proteins that were found to 

contain this module were Limulus factor C, cochlear protein Coch-5b2 and 

late gestation lung protein (Lgl1) (Liepinsh et al., 2001). The key functional 

aspect of this protein is its sensitivity to lipopolysaccharide (LPS) endotoxin. 

Binding initiates a host defence mechanism, protecting the organism from
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infection. It is thought that the LCCL domain may be involved in the binding of 

LPS (Trexler et al., 2000). Lgl1 which is involved in lung maturation, also 

contains two LCCL domains. Increased expression of Lgl1 has been shown to 

coincide with the production of surfactant (Kaplan et al., 1999). Figure 6.1 

compares the modular architecture of CC and Igl1 proteins.

Amino Acid No
1 50 100 150 200 250 300 350 400 450 500

I_ _ _ _ I_ _ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ I- ■ ■  ■ I- - - - - 1_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ _ I

CC---------------------------------~SCP I 1 LCCL Z H Z  LCCL I------

Lgl1 £ SCF I1 -------- ------- r r .  | LCCL [ | LCCL f- ■■■

Figure 6.1: Modular architecture of CC and Igl1 proteins. Both proteins contain a 

secreted cysteine protein (SCP) domain and two LCCL domains. (Adapted from 

NCBI and Oyewumi etal., 2003)

Pulmonary surfactant is synthesised and secreted by type II pneumocytes and 

Clara cells. It prevents alveolar collapse by providing a fluid film that lowers 

surface tension (Khubchandani and Snyder, 2001). In addition, it plays an 

active role in the pulmonary host defence system. As mentioned in Chapter 1, 

there are several surfactant specific proteins, (SP-A - D), which are closely 

associated with surfactant lipid (Goerke, 1998). SP-A is the most abundant 

surfactant protein in the alveoli (Khubchandani and Snyder, 2001).

SP-A is 34-36 KDa protein that has a role in lowering the surface tension, 

regulating synthesis of surfactant phospholipids, secretion and recycling. 

Along with SP-D, SP-A is involved in the innate immune responses in the lung 

by binding to various pathogens and particles (Khubchandani and Snyder, 

2001). The localisation of SP-A using immunohistochemistry has been 

observed in type II cells in healthy lung section (Ochs et al., 2002; Phelps et 

al., 2004). It has been reported that in lung sections from patients suffering 

from lipoproteinosis, intra-alveolar accumulation of SP-A was observed
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(Brasch et al., 2004). SP-A localisation was selected to be studied as it is the 

most abundant of the four surfactant proteins.

The aim of this study was to utilise immunohistochemical techniques to 

analyse CC and SP-A regulation and localisation in lung sections from the 

polymer-instilled rat model compared to saline-instilled control model, in order 

to provide further information about the mechanism of polymer-induced lung 

injury.
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MATERIALS AND STOCK SOLUTIONS

6.2.1 M a te r ia ls  

BDH. Dorset. UK.

DPX mountant (36029)

In-house Antibody Production. Cardiff University. Cardiff. UK.

Cocoacrisp primary antibody (rabbit)

Control serum pre-bleed (rabbit)

Leica Microsystems Imaging Solution Ltd.. Buckinghamshire. UK.

Leica Q550 IW workstation

Leica QWin image analysis software

Siqma-Aldrich. Dorset. UK.

Tris Buffered Saline (T6664)

Tween 20 (P7949)

Santa Cruz. USA.

Surfactant Protein A Antibody (SC-13977)

Vector Laboratories. Peterborough. UK.

Antigen Unmasking Solution (H-3300)

RTU Vectastain Universal Quick Kit (PK-7800)

Vector NovaRed Substrate Kit for Peroxidase (SK-4800)

6.2.2 St o c k  so lu tio n s

Hydrogen Peroxide Solution - Hydrogen Peroxide (0.3%)

Methanol
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TBS/Tween

Primary Antibody

Serum Control

Tween 20 (0.1%)

Tris Buffered Saline (TBS)

Primary Antibody (0.05%) 

Blocking Serum (1.5%)

TBS

Serum Control 

Blocking Serum (1.5%)

TBS
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6.3 METHODS

6.3.1 P r o c essin g  L ung  T issu es  fo r  Im m uno histo chem istry

Animals were treated with a single or double dose of polymer A, or saline and 

then sacrificed at 7 and 28 days after dosing, as described in Chapter 2 

(Sections 2.3.1 -2.3.3). The lungs were inflated and stored in 10% neutral 

buffered formalin at 4°C for a minimum of 24 hours (Chapter 3; Section 

3.3.1.3). After this time, the lungs were processed for paraffin embedding and 

sectioning (Chapter 3; Section 3.3.1.4-3.3.1.6).

6.3.2 A n tig en  U n m a sk in g

Sectioned tissue samples were prepared for the immunoassay by dewaxing 

with xylene (2 minutes) followed by a series of graded alcohols (100% to 70%; 

2 minutes each). After dewaxing, antigen unmasking was carried out on the 

fixed lung tissue sections. The fixation process leads to cross-linking of the 

cellular proteins within the tissue to such an extent that the specific antigen 

binding sites are masked. Unmasking breaks down some of this cross-linking 

to expose the antigen for immunoassay techniques. The unmasking process 

was conducted as follows: the antigen unmasking solution was diluted (1 in 

1 0 0 ) with distilled water, after which the solution was then heated to boiling 

point in a microwave. The lung tissue sections were immersed in the boiling 

solution (2 minutes) prior to washing in tap water (5 minutes).

6.3.3 B lo c k in g  E n d o g e n o u s  P ero xidase  A c tivity

To quench peroxidase activity endogenous to the tissue, all the lung tissue 

sections were immersed in hydrogen peroxide solution (0.3%) for 30 minutes, 

followed by a wash in tap water (2  minutes).

6.3.4  Im m u n o h is to c h e m is tr y

The immunoassay was carried out using a RTU Vectastain Universal Quick kit 

containing prediluted blocking serum (normal horse serum), prediluted 

biotinylated pan-specific secondary antibody and ready-to-use

161



Im m u n o h is t o c h e m i c a l  A n a l y s is  o f  L u n g  S e c t io n s

streptavidin/peroxidase preformed complex. Tissue sections were washed 

with TBS/tween solution prior to incubating the sections with blocking serum 

(10 minutes). The sections were then incubated with the CC primary antibody, 

the SP-A antibody or serum control at 4°C overnight (~12 hours). The 

following morning, the sections were washed in TBS ( 3 x 5  minutes), before 

the secondary antibody was added. The secondary antibody was incubated 

for 10 minutes before being washed twice (5 minutes each) with TBS. The 

streptavidin/peroxidase complex was added to the sections (5 minutes). 

Another two washes with TBS (5 minutes) were carried out prior to addition of 

the peroxidase substrate, NovaRed. NovaRed solution was prepared 

according to the kit instructions and incubated on the sections (15 minutes). 

Sections were washed in tap water then counter-stained with light green stain 

(5 minutes). Following a 30 second wash in tap water, slides were dehydrated 

and fixed using DPX mounting medium.

6.3.5 Image A n a ly s is

Digitised light microscopy (LM) images of saline and polymer A-treated tissue 

sections were captured. LM images (x200 magnification) were saved as TIFF 

files and imported into the Leica Q550IW IA System, for image processing 

(BeruBe etal., 2003).

Image processing involved the adjustment of the background white levels to 

ensure all the lung tissue and staining was detected in the TIFF images 

(Figure 6.2a). Once this parameter was established, IA involved the detection 

of lung tissue that contained the label (shaded blue, Figure 6.2b). The total 

area (mm2) of labelled protein in control versus polymer A treated samples 

was calculated by the computer software. Ten TIFF images were captured of 

random areas over two lung tissue sections at each time point. The labelled 

areas of these images were then quantified using Qwin analysis software.
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6.3.6 S ta t is t ic a l  A n a ly s is

A two-tailed Student’s t-test was then applied to the resulting data to 

determine any statistical differences in the expression of CC across the two 
time points.

s~ . Fw*wm <*•»- HK.
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Figure 6.2: Screen prints of digital images of SP-A labelled tissue, (a) 

Images showing SP-A labelling as a red/brown colour, indicated by arrows; 

(b) Images converted by the Leica Q550IW Image Analysis System for 

colour detection, SP-A label coloured blue by software.
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6.4 RESULTS

6.4.1 L ig h t M ic ro s c o p y  o f  Lung  Tissue S e c tio n s

LM analysis of sections treated with serum control rather than primary 

antibody was carried out at all time points for both saline and polymer A- 

instilled lung tissue to check for non-specific staining. None of the samples 

showed evidence of labelling (Figure 6.3).

Figure 6.3: Representative lung sections from (a) 7 days (b) 28 days after single 

instillation of polymer A. Sections were incubated with serum control rather than 

primary antibody (x200 magnification) (n=3).

SP-A and CC localisation was evaluated by immunohistochemistry. Analysis 

was carried out to determine the expression of both SP-A and CC in polymer 

and saline-treated lungs. SP-A was observed in the lung sections from both 

polymer and saline-instilled lungs. In all the saline-treated samples SP-A 

protein was detected primarily in what appeared to be Clara cells and type II 

pneumocytes (Figure 6.4). An increase in SP-A expression was observed in 

polymer treated lungs. As in the saline treated lungs, staining of type II and 

Clara cells were recorded. However, SP-A was also found in the airspace and 

in the cytoplasm of the AMs (Figure 6.5).
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Single Day 7 Double Day 7

Single Day 28

Figure 6.4: Representative SP-A expression in lung tissue from saline- 

treated animals. SP-A labelling appears red/brown, indicated by arrows; (a) 

7 days after single instillation, (b) 7 days after double instillation, (c) 28 

days after single instillation and (d) 28 days after double instillation. Blue 

boxes show stained Clara cells in the airways. Yellow boxes show 

examples of type II pneumocyte staining. All images in black boxes at x200 

magnification. Colour boxes x1000 magnification (n=3).
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Figure 6.5: Representative SP-A expression in lung tissue after instillation 
of polymer A. SP-A labelling appears red/brown, indicated by arrows; (a) 7 
lays after single instillation, (b) 7 days after double instillation, (c) 28 days 
’fer single instillation and (d) 28 days after double instillation. Blue boxes 
ow examples of type II pneumocyte staining. Yellow boxes show staining 
he airspaces. All images in black boxes at x200 magnification. Colour 

ŝ x1000 magnification (n=3).
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There were very low levels of CC protein detected in saline-instilled lungs. 

After both single and double instillations of polymer A, an increase in CC 

expression was observed. Examples of these observations are shown in 

Figure 6 .6 . CC proteins were mainly detected lining the surface of the tissue. 

This appeared to be in areas which were more severely affected by the 

instillate. There was also expression of CC in regions of the tissue where the 

lung architecture was largely disorganised.

6.4.2 Q u a n tita tiv e  Image A n a lys is  o f  Lung Tissue Sections

Quantification of the images allowed further non-subjective analysis of SP-A 

and CC expression in the tissue. The area (mm2) of protein label detected 

was used as the value for SP-A or CC expression.

Following a single instillation of the polymer, at both 7 and 28 days, the 

amount of SP-A expression had increased by 3 and 4-fold, respectively. 

However, this was not significantly different from that found in the saline 

sections, whereas, 7 days after the double instillation, the SP-A had increased 

by 11-fold in the polymer-treated lung tissue sections. This was statistically 

significantly higher than in the saline control sections (p£0.05). By day 28 the 

amount of SP-A detected had fallen to a 4-fold increase compared with the 

saline-treated sections and was no longer significantly different (Figure 6.7).
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Figure 6 .6 : Representative CC expression in lung tissue after instillation of 

polymer A. CC labelling appears red/brown, indicated by arrows; (a) 7 days after 

single instillation, (b) 7 days after double instillation, (c) 28 days after single 

instillation and (d) 28 days after double instillation. Yellow boxes show examples 

of CC staining in the alveolar epithelium (black boxes x200 and yellow boxes 

x1000 magnification) (n=3).
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■  Saline 

B Polymer A

Figure 6.7: SP-A expression in lung sections after saline or polymer treatment 

(mean±SEM, *=p< 0.05) (n=3).

CC expression increased by 105-fold in lung sections 7 days after a single 

instillation of polymer A compared to saline control sections. This was found 

to be statistically significant compared to the saline control. After 28 days the 

amount of CC detected reduced and there was only a 2-fold increase. 

Following a double instillation of the polymer, at both 7 and 28 days the 

amount of CC detected had increased by 12- and 7-fold respectively. These 

were both found to be statistically significant (Figure 6 .8 ).
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Cocoacrisp Expression in Lung Sections
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Figure 6.8: CC expression in lung sections after saline or polymer treatment 

(mean±SEM, *=p< 0.05) (n=3).
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6.5 DISCUSSION

The aim of this study was to determine the presence of SP-A and CC proteins 

in lung sections from polymer treated rats. Immunohistochemistry provides 

the advantage of the co-localization of protein expression with cellular 

organisation/structure which, in turn, may be reflective of its function.

SP-A was found in both polymer and saline-treated lungs. SP-A was 

predominantly in Clara and type II pneumocytes in saline-treated lung 

sections. This was expected, since SP-A is synthesized and stored in these 

cells. Polymer treated lungs were characterised by an intra-alveolar 

accumulation of SP-A. SP-A is involved in the innate immune responses in 

the lung by binding to various pathogens and particles (Khubchandani and 

Snyder, 2001). Therefore, the current data suggest that the SP-A is binding to 

the polymer particles in the airspaces. Intracellular SP-A content of AMs is 

increased in polymer-treated lung sections. This may be due to SP-A 

activation of AMs or the due to the presence of SP-A in surfactant that is 

ingested by AMs in the normal course of phagocytosis (Hermans and 

Bernard, 1999). Furthermore, the AMs would be ingesting polymer particles 

that may well be coated with the protein. Both toxicological (Chapter 2) and 

histopathological (Chapter 3) data collected from the instillation models 

indicated an increase in AMs. Moreover, there was no SP-A antibody signal 

detected in the serum control samples.

Several investigations by other workers have examined surfactant protein 

alterations in lung disease. Investigations using enzyme-linked 

immunosorbant assay (ELISA) to examine SP-A concentration in BAL fluid 

have shown elevated levels of SP-A in patients suffering from hypersensitive 

pneumonia, lipoproteinosis, acute lung Injury, sarcoidosis and in asbestos- 

exposed workers (Gunther et al., 1994; Hamm et al., 1994; Kuroki et al., 

1998; Lesur et al., 1996; Cheng et al., 2003). A reduction in SP-A was 

observed in cystic fibrosis, cigarette smokers and acute respiratory distress 

syndrome (ARDS) patients (Kuroki et al., 1998; Shijubo et al., 1998; Postle et
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al., 1999). In order to support the immunohistochemistry data collected, an 

ELISA would have been beneficial, as the levels of SP-A in BAL fluid and 

plasma could be determined. However, due to time and money constraints 

this could not be performed. Elevated levels of SP-A in blood or BAL fluid 

could have the potential as a biomarker for injury. However since it should be 

noted that elevated SP-A levels are observed in a number of lung diseases, 

thus it would not be a specific biomarker for polymer-induced injury.

In this study, CC was found to be expressed at all time points after polymer- 

instillation. There was also a low level detection in saline-instilled lung 

sections, i.e. low level expression or non-specific binding. As with the SP-A, 

there was no signal in serum control samples confirming that the CC 

expression in the experimental samples were genuine.

Unlike SP-A, the function of CC is unknown. CC has been found to be located 

on the surface of the lungs, and it has a homology to Lgl1 and other CRISP 

proteins, suggesting that it is a secreted extracellular protein. If the similarity 

of CC and Lgl1 persists, then CC (like Lgl1) could be involved in lung defence 

(Trexler et al., 2000). The response of CC response to lung injury seems to be 

transient, as significantly higher levels are found after 7 days, in sections from 

both single and double polymer treatments. There is a return to baseline 

values 28 days after a single instillation but there is still significant difference 

at this time point after a double-instillation, suggesting the double instillation is 

associated with some pretty severe pulmonary changes at 28 days. The 

levels of CC in bleomycin-treated lungs were also found to be elevated at day 

7 after a single instillation. There were no significance differences seen in the 

double bleomycin instillation samples, suggesting that the type of injury 

caused by the polymer is different to that found in the bleomycin sections.

Another function of the Lgl1 protein is in the regulation of extracellular matrix 

(ECM) degradation (Kaplan et al., 1999). The breakdown of the ECM, 

particularly proteoglycans, leads to increased vascular permeability which is a 

critical step in the onset of pulmonary oedema (Miserocchi et al., 2001). 

Similarly, Lgl1 causes trypsin inhibition which can result in reduced ECM
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degradation, and hence, reduced oedema. Therefore assuming that CC has 

a similar role as Lgl1, this could infer that CC may be involved in the 

regulation of the ECM. CRISPs isolated from snake venom have been 

reported to function by blocking voltage-gated calcium and/or potassium 

channels, therefore providing a possible mechanism for CC to resist the 

development of pulmonary oedema (Yamazaki and Morita, 2004; Guo et al., 

2004). Unlike the results found in the bleomycin-treated lungs sections, the 

location of CC signal was found predominantly on the lung surface and not 

associated with blood vessels (Balharry, 2005). The detection of an increase 

level of the CC in blood or BAL fluid samples would increase the prospect that 

CC could potentially be used as a biomarker for polymer-induce injury or in 

the subsequent repair of damaged tissue.

6.6 CONCLUSION

To summarize, SP-A and CC have been found to be upregulated in the 

polymer A model indicating that they play a role in lung defence following 

exposure to polymer particles. Increased levels of CC and SP-A in the BAL 

and blood could provide a potential clinical marker for induced lung injury.
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7.1 OVERVIEW

The primary aim of this study was to identify biomarkers for pulmonary 

oedema, inflammation and epithelial repair. This was achieved by using an 

animal model (rat) of lung injury to develop a better understanding of the 

protein alterations in the disease state.

The inhalation of poorly soluble particles (PSPs) such as synthetic resin 

polymers causes a spectrum of morphological, biochemical and molecular 

changes in the rat lungs (Mossman, 2000). These include inflammation, acute 

and chronic epithelial cell damage, epithelial changes including hyperplasia, 

metaplasia and neoplasia, alveolitis, granuloma formation and alterations in 

interstitial cell populations that may lead to interstitial fibrosis (Mossman, 

2000). The relatively high molecular weight and poor aqueous solubility of the 

synthetic polymers make them ideal for commercial use in aerosolized 

formulations (e.g. hairspray, deodorant). However, these characteristics may 

render them bio-persistent in the lung environment and cause lung overload. 

In this study, a single and double intratracheal instillation of the polymers was 

employed. This was expected to induce a model of lung inflammation, 

oedema and the progressive destruction of normal lung architecture, as a 

means to characterise any protein alterations that occurred during these 

injurious events.

An important objective was to use conventional toxicological and histological 

approaches to characterise the injury/repair model and to evaluate the 

severity of lung injury. Once this had been accomplished, the principal aim 

was achieved by applying proteomics to evaluate the protein changes in 

broncho-alveolar lavage (BAL) fluid during various stages of lung injury.

Proteomics has proven to be a powerful tool for identifying early changes at 

the protein level in a variety of disease states (Gorg et al., 2004). Using two- 

dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (2D 

SDS PAGE), combined with tandem mass spectrometry (MS/MS) to analyse
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BAL fluid proteins, it was possible to identify markers for pulmonary damage 

and repair.

The first hypothesis for this study was that polymer-induced lung injury 

caused the same damage as bleomycin-induced lung injury. However, this 

was not the case, as both the toxicological and histopathological studies 

indicated significant differences in the manifestation of lung damage. In the 

former, changes were observed for the lung to body weight, surface protein 

concentration and LFC values, and in the latter, intra-alveolar oedema 

prevailed, rather than the expected interstitial oedema, in the polymer model 

(Chapters 2 and 3). These differences may have arisen due to the two 

substances having dissimilar time courses for peak injury or different 

mechanisms of toxicity in the lungs. Bleomycin-induced lung injury is a well 

characterised model of direct fibrotic injury (Aso et al., 1976; Starcher et al., 

1978; Thrall et al., 1979; Catravas et al., 1983; Balharry et al., 2005), and the 

differences seen in the lung generated by the polymer implied that the 

polymer generated a distinct model of lung injury. Comparisons with other 

lung models, in particular other PSPs, could provide further information about 

the type of mechanism involved. Titanium dioxide, carbon black and diesel 

particulate are all classed as PSPs. They have been used by several research 

groups to induce lung injury (Cullen et al., 2000; Donaldson, 2000; Mossman, 

2000; Borm et al., 2004). PSPs have been found to cause pulmonary 

inflammation (as seen in the polymer model) which leads to proliferation and 

tissue remodelling that can progress towards fibrosis and neoplasic lesions. It 

has been hypothesised that the damage is caused by reactive oxygen species 

(ROS) and reactive nitrogen species (RNS) (Borm et al., 2004; Knaapen et 

al., 2004). These oxidants can be derived from the oxidant-generating 

properties of particles themselves, which are mostly determined by the 

physicochemical characteristics of the particle surface, and the ability of 

particles to stimulate cellular oxidant generation. Cellular ROS/RNS can be 

generated by various mechanisms, including mitochondrial activation or 

activation of NAD(P)H-oxidase enzymes (Knaapen et al., 2004). Another 

hypothesis for the lung injury caused is that there is an overload of the lungs’ 

clearance mechanism. Indeed, enlarged, aggregated and possibly foamy
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macrophages were observed in the polymer model, and may be indicative of 

lung overload (Cullen et al., 2000; Oberdorster, 2002; Borm et al., 2004; Elder 

et al., 2005).

The second hypothesis was that polymer and bleomycin-induced lung injury 

caused protein changes in BAL fluid which can be identified using proteomic 

techniques. The toxicological data showed for both the polymer and the 

bleomycin models that there was a significant increase in surface protein 

collected from the lungs compared to the saline controls. Proteomics was 

used to analyse the difference in protein profiles in the models compared to 

saline controls. The proteomic technique 2D SDS PAGE was employed due 

to its extensive use for proteomic separation of BAL fluid proteins on a gel by 

other researchers, enabling possible comparisons to be made between 

different studies (Lindahl et al., 1998; Wattiez et al., 2000; Bredow et al., 

2001; Wang et al., 2005). In light of the second hypothesis, the proteomic 

technique, 2D SDS PAGE did not separate the protein mixtures adequately to 

allow comprehensive image analysis and further identification of protein spots 

of interest with the polymer model. This was an unexpected development 

since other pulmonary research groups have used successfully 2D SDS 

PAGE, coupled with MS, to analyse BAL fluid. For example, Lindahl et al. 

(1998), observed levels of IgA, ceruloplasmin and the pro form of 

apolipoprotein A-1 to be lower in smokers BAL fluid when compared to non- 

smokers. Von Bredow et al. (2001), reported reduced amounts of SP-A in the 

BAL fluid of cystic fibrosis patients when compared to healthy controls, while 

Wattiez et al. (2000), found an accumulation of SP-A in patients suffering from 

idiopathic pulmonary fibrosis. Sabounchi-Schutt et al. (2003), used 2D SDS 

PAGE to find increased levels of Clara cell protein, heat shock 27 kd protein 1 

and li2-nriicroglobulin in BAL fluid collected from patients suffering from 

sarcoidosis.

It should be noted that all the BAL fluid samples used in the aforementioned 

studies were collected from human patients and not animal models. In the few 

animal studies that have been conducted, altered expression patterns in BAL 

protein profiles were distinguished (e.g. Zhao et al., 2006; Signor et al., 2004).
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Zhao et al. (2005), used normal and asthmatic mice models to investigate 

changes in BAL fluid and found a significant increase in lungkine, a family of 

chitinases, gob-5 and surfactant protein-D. Signor et al. (2004), studied the 

protein content of BAL fluid in rats following an allergen and an endotoxin 

challenge. They discovered an increase in T-kininogen I and II, a-1- 

antitrypsin, calgranulin A, fetuin A and B, and haptoglobin, in both models 

when compared to controls, and a decrease in Clara cell 10 kDa secretory 

protein and SP-B. The reason for the disappointing results obtained from the 

polymer model was thought to be due to ‘interference’ caused by the polymer 

particles that remained suspended in the BAL fluid. This line of reasoning was 

made more evident by the lack of ‘interference’ observed in the ‘particle-free’, 

bleomycin model.

In terms of equipment and personnel, the 2D based technology was well 

suited to the academic setting. Advantages of this technique were that it 

provides a hard copy record of separation, there was good resolution of 

proteins, it gave information on MW and pi and post-translational 

modifications could be detected. 2D SDS PAGE was a relatively inexpensive 

technique when compared to some of the other mass spectrometry based 

techniques.

The limitations to the 2D SDS PAGE technique were three-fold. Firstly, only a 

restricted subset of proteins was amenable to 2D SDS PAGE (e.g. membrane 

and very basic proteins were not represented). Therefore, potential proteins of 

interest may have been missed as they were not resolved on the 2D gels. 

Secondly, 2D SDS PAGE was a laborious method where analysis and 

quantification of low abundant proteins (<150kDa) was technically difficult. A 

more high throughput and sensitive technique such as protein chips (Chen et 

al., 2003), could increase the number of proteins identified, and hence, 

produce a large number of potential biomarkers. Thirdly, protein spot/gel 

analysis was limited by elaborate image analysis routines, derived from 

commercial software packages, which have not been standardized at the 

academic research level. A more automated and user friendly software 

package could not only speed up the analysis of 2D gels but could also lead
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to more protein spots of interest being recognized and identified by MS 

analysis.

In the study, 2D SDS PAGE identified a smaller number of changes than 

expected (i.e. absence/presence) between polymer and control profiles. One 

interpretation would be that rather than new proteins being translated, the 

increase in surface protein concentration was more likely due to the up/down 

regulations of proteins. Therefore, it would have been interesting to analyse 

these differences as well. However, due to the use of silver staining to detect 

proteins, this would be difficult due to limited dynamic range (Gorg et al., 

2000). Using 2D SDS PAGE based proteomics, differences between the 

reference and altered states were measured by quantifying the ratios of spot 

intensities between independent 2D gels. Unfortunately, spot recognition and 

quantification was time-consuming and not particularly accurate, even if 

computer-assisted (Mann, 1999). A more accurate technique for quantitative 

proteomics would be isotope-coded affinity tags (ICAT) (Gygi et al., 1999). 

Rather than relying on 2-D PAGE separation and subsequent image analysis 

of proteins immobilized within gels, ICAT utilizes isotopic tags which 

covalently bind to cysteines within a protein. These tags would be nearly 

identical but exist in a light or heavy isotopic form. For example, one can label 

a normal sample with the light reagent and a diseased sample with the heavy 

reagent. When bound to the same peptide, a concrete mass change of 

exactly eight mass units would be evident when analyzed by mass 

spectrometry. Protein tagging would then be followed by separation and 

identification of proteins within these complex mixtures by liquid 

chromatography and mass spectrometry (Gygi et al., 1999; Han etal., 2001).

The strength of this technique lies in its ability to allow quantification and 

identification within a single analysis. It also can be applied to samples from 

any source, as it does not require metabolic labeling. Weaknesses include the 

frequent need for extensive sample fractionation before MS/MS analysis can 

proceed. Also, since the procedure targets cysteine residues, certain proteins 

and peptides will be missed -  in particular those that undergo post- 

translational modifications (Gygi etal., 1999; Han etal., 2001)
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7.2 CONCLUSIONS

In conclusion, the proteomic analysis of the polymer A model has provided 

new potential markers for pulmonary oedema and inflammation. The many 

findings from this study include:

• The use of toxicology and histology was demonstrated as an 

appropriate technique for characterising and quantifying a model of 

pulmonary injury

• The optimisation of 2D SDS PAGE for analysis of BAL fluid

• Implementation of 2D SDS PAGE to separate BAL fluid proteins to aid 

the search for biomarkers

• Prosaposin and calgranulin A identified using proteomics as potential 

protein markers in the polymer A model. The presence of these 

proteins in blood renders them potential clinical tools

• Cocoacrisp protein and surfactant protein A were also identified, using 

immunohistochemistry, as possible biomarkers for polymer A-induced 

pulmonary injury. The presence of these proteins in BAL and blood 

render them potential clinical tools.

7.3 ULTIMATE OBJECTIVE

Presently, most clinical tests for lung injury are based on changes in 

pulmonary function (Jones and McAteer, 1990). Chest radiographs and blood 

gas monitoring will only describe the situation relatively late after the initial 

cellular disturbance (Jones and McAteer, 1990; Hansen-Flaschen, 1995). 

Hence, there is now considerable interest in detecting early phases of lung 

injury to aid in diagnoses and treatment. Identification of biomarkers for lung 

injury in BAL fluid could provide the ground work for a clinical test. Ultimately,
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a specific biomarker in blood could provide a more efficient test, as blood can 

be collected quickly and without the need of anaesthetics. The use of such a 

non invasive clinical evaluation could become routine in hospitals to test for 

severity, time point and type of lung injury, as well as for screening and 

differentiation of benign versus malignant disease, differential histology and 

defining prognosis. A clinical test could also provide information about the 

patient’s response to current drugs or treatment, this information could 

provide an indication to the clinician to whether the patient is on the right 

course of treatment. Another application could be ‘in the field’ to assess 

priority of care for victims following exposure to high risk material. The test 

could ideally provide information relating to type of injury and its severity to 

enable physicians to treat only exposed patients, i.e. triage.

The two different models, i.e. polymer and bleomycin, provided different 

protein profiles to each other and to the control. Toxicological and 

histopathological investigations showed that the two models caused a 

different type of lung injury. Therefore, the protein markers identified can be 

said to be injury-type specific, where bleomycin-induced fibrosis, and the resin 

polymers initiated pulmonary oedema. A library of such biomarkers would now 

be required to further identify and categorize different types of injury; ideally 

incorporated into one simple clinical test for pulmonary damage.

The discovery of cocoacrisp (CC) and surfactant protein A (SP-A) expression 

in oedematous tissue may represent the best biomarkers uncovered by this 

study. Cocoacrisp may be linked to surfactant production, extracellular matrix 

remodelling and the blocking of ion channels. One of the most significant 

elements of this discovery was that CC was detected on the surface of the 

lungs, this finding may prove fruitful in the possible development of a 

diagnostic tool for blood or BAL samples. SP-A is a known marker for 

lipoproteinosis, hypersensitive pneumonia, acute lung injury, sarcoidosis and 

in asbestos-exposed workers (Gunther et al., 1994; Hamm et al., 1994; Lesur 

et al., 1996; Kuroki et al., 1998; Cheng et al., 2003). It has also been detected 

in BAL fluid and blood and is specifically made in the lungs, and thus, may 

represent a good biomarker for lung injury. Finally, these proteins may
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potentially form the basis of a diagnostic assay used to determine expose and 

harm in the respiratory epithelia to aerial xenobiotics and/or provide a target 

for drug therapy.

7.4 FUTURE WORK

2DSDSPAGE

2D SDS PAGE technology, on which most proteome profiling is based 

currently, is limited in various ways, particularly in the difficulty of finding and 

quantitatively estimating low abundance proteins. The major drawback in this 

study was the image analysis software used to detect changes in the profile 

and the subsequent tandem mass spectrometry analysis used to identify 

spots of interest. To overcome image analysis problems, 2-D Fluorescence 

Difference Gel Electrophoresis (2-D DIGE) technology (Amersham 

Biosciences, UK) could be employed. 2-D DIGE is a method that labels 

protein samples with fluorescent dyes before 2-D electrophoresis, enabling 

accurate analysis of differences in protein abundance between samples. It is 

possible to separate up to three different samples within the same 2-D gel. 

This permits the inclusion of up to two samples (i.e. control and test) and an 

internal standard in every gel. The internal standard is prepared by mixing 

together equal amounts of each sample in the experiment and including this 

mixture on every gel within an experimental series. Normalization of the 

internal standard across gels allows the ratio of relative abundance of the 

same protein in different samples to be compared directly (Hoffert et al., 2004; 

Shen et al., 2004).

At the present time, protein arrays are poised to become a central proteomics 

technology (Shen et al., 2006). The use of protein arrays would eliminate the 

need to separate proteins on gels. In the microarray or chip format, detection 

of proteins and monitoring their expression levels can be carried out with 

minimum use of materials, while generating large amounts of data (Shen et 

al., 2006). As with the 2D-DIGE technology, reference and test samples can 

be labelled with fluorescent dyes, and then incubated on a chip of arrayed
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antibodies. Increased or decreased protein expression is then assessed using 

a scanner and up- or down-regulated proteins can be identified from the ratios 

of the two dyes. There are a number of important technical challenges and 

bottlenecks in protein array technologies, including the problems of obtaining 

global, functional protein expression for array construction, coupling proteins 

to the surface of the array, the sensitivity and dynamic range of detection 

systems, standardisation and data storage (Chen et al., 2003; Shen et al., 

2006).

P r o tein  Ma r k er s

Further investigations into the function of CC, whether it is present in BAL, 

and whether it can be detected in blood are important. Cocoacrisp is 

potentially a very good marker for early oedema and research into its role in 

the development or resistance to oedema could prove informative. 

Immunohistochemistry may provide the localization of the prosaposin and 

calgranulin A proteins identified by the proteomic analysis in lung tissue 

sections that may provide further information on their role in lung injury. 

Western blots for SP-A and CC could also be used to investigate their 

presence in BAL fluid samples, whereas ELISA (enzyme-linked 

immunosorbant assay) could be used to determine the presence of all the 

proteins in blood samples. Finally, selective immunohistochemistry and ELISA 

using proteins from candidate genes identified in other investigations have the 

potential to be used in the discovery of protein biomarkers for lung injury and 

disease without the need to separate proteins on a gel.

B r o ncho -a lveo la r  La v a g e

The collection of BAL fluid samples from humans is a difficult procedure that 

requires a qualified clinician. The problems related to the BAL procedure, 

such as hypoxemia and hypotension, are often directly linked to the effects of 

general anaesthesia. Due to the risks involved, it is particularly difficulty to 

obtain normal control samples. For that reason, it would be preferable to 

identify changes in specific proteins present in the blood, an easy component 

to collect from humans, to act as a clinical marker. The proteins identified in
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this study were not specific to the lungs, and their alterations in blood might 

be observed. The final limitation in this study was the amount of BAL fluid 

samples available due to the small number of animal experiments carried out. 

To overcome this, a cell model such as in vitro models of human respiratory 

epithelia (e.g. MatTek Corp., USA), could be used to replace the need for 

more animals. This would also reduce differences seen within species, since 

rats have been found to respond to low-toxicity dusts with more inflammation, 

proliferation and metaplasia than other species (Donaldson, 2000).
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Appendix 1: Photographs of the different steps involved in the rehydration stage of 
the 2D SDS PAGE technique, (a) Loading the rehydration solution, (b) removing 
the protective cover from DryStrip Gel, (c) loading DryStrip gels and (d) covering 
DryStrip gels with Immobiline™ DryStrip Cover Fluid.

213



A p p e n d ix

Appendix 2: 1st dimension steps. The Multiphor II kit was set up; Immobiline™ 
DryStrip Cover Fluid was pipetted on to the Multiphor II cooling plate (a), the 
Immobiline™ DryStrip tray was positioned on to the cooling plate and connected to 
the unit (b), Immobiline™ DryStrip Cover Fluid was pipetted on to the Immobiline™ 
DryStrip tray (c) and the DryStrip aligner was placed into the tray (d). The IEF 
electrode strips soaked in distilled water (e). The IPG strips were washed with 
distilled water (f) and drained on filter paper before being transferred to the 
Immobiline DryStrip tray (g). The moistened IEF electrode strips were placed 
across the ends of the DryStrip Gels, partially touching the gel (h). The electrodes 
were fitted over the electrode strips and Immobiline™ DryStrip Cover Fluid was 
poured into the tray to completely cover the strips (i).
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Appendix 3: 2nd Dimension steps. The IPG strips are first equilibrated in DTT and 
SDS equilibration buffer followed by iodoacetamide and SDS equilibration buffer 
(a). Immobiline™ DryStrip Cover Fluid (b) was placed between the Multiphor™ II 
precast gel and the Multiphor™ II Electrophoresis Unit (c). The cathodic (clear) and 
anodic (orange) buffer strips were placed on the gel partially covering the gel (d) 
and the Drytrip Gels was placed face-down on the gel parallel to the cathodic buffer 
strip (e-f).
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Dalt Casting 
Chamber

Funne

Acrylamide 
gel solution

Balance
Chamber

Feeding
Tube

Feeding
Channel

Acrylamide gel solution was added slowly

Acrylamide gel solution added until 2 cm from top.

Water

Acrylamide 
gel solution Displacing

■^solution

Displacing solution was added to prevent acrylamide gel solution solidifying 
in feeding tube and channel. Water was overlaid to prevent evaporation.

Appendix 4: Diagram of the Dalt casting chamber.

216



A ppen dix

DryStrip Gel
Forceps

Hinge Gel Cassette

Label Acrylamide Gel

The DryStrip Gel was inserted into cassette ensuring a good contact with gel 
surface. Agarose sealing solution was applied and allowed to solidify.

DryStrij
Gel

Barrier
Combs

Buffer circulator 
flutes

ZK

.

y, v. x x  x x x x x x x x x

.CLCX

•Cassette

■Acrylamide 
Gel

Tris-Glycine 
Buffer

Da I tf we/ve 
^ G e l  Tank

■Hinge

The cassettes were loaded into the gel tank

High Voltage 
lead

Closed LidBuffer Level

The gels were run overnight at 100V

A p p e n d ix  5: Flow diagram showing the loading of DryStrip Gels, loading of the gel 
cassettes and running of the Dalt twelve system.
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