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ABSTRACT

AIMS

To elucidate mechanism of comeal epithelial cell differentiation, proliferation and 

stratification is crucial for maintaining epithelial cell homeostasis, manipulating 

comeal wound healing and developing therapeutic strategy for treatment ocular 

surface diseases. The Notch signalling system regulates cell fate decisions and cell 

function. In human, there are four Notch receptors, Notch 1 to 4, and five ligands, 

including Deltal, 3, 4, Jaggedl, 2. Activation of Notch upon ligand binding is 

accompanied by proteolytic processing regulated by y-secretase. This study aimed to 

determine whether the components of the Notch are expressed in the human comeal 

epithelial cells and the role of Notch signalling in comeal epithelial homeostasis, 

stratification and wound heeding.

METHODS

Immunohistochemistry was employed for the localisation of the Notch receptors and 

their ligands in fresh human cornea and embryonic chicken cornea. Gene expression 

of Notch receptors and their ligands was determined using reverse transcriptase- 

polymerase chain reaction (RT-PCR) in cultured human comeal epithelial cells and 

keratocytes. Western Blotting analysis, immunocytochemistry in the presence or 

absence y-secretase inhibitor and Jaggedl were used to correlate Notch with Ki67 (a 

marker of cell proliferation) and cytokeratin 3 (a marker of cell differentiation) 

expressions for a functional study of proliferation and differentiation in comeal 

epithelial cells. The co-culture model with amniotic membrane and an organ culture
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model of intact rat cornea were used to investigate the function of Notch in comeal 

epithelial cell stratification. Also, an organ culture of wounded cornea was used to 

study the role of Notch in comeal epithelial and stromal wound healing.

RESULTS

Immunohistochemical results showed that Notch 1 and Notch2 expressed throughout 

the comeal epithelium in superficial and suprabasal layers. Deltal and Jaggedl 

appeared to be expressed throughout all cell layers of the comeal epithelium. The 

expression of activated Notch 1, Notch2 and Ki67 was decreased and cytokeratin 3 

was increased after the Notch pathway was blocked by a y-secretase inhibitor. In 

contrast, activation of Notch pathway by Jaggedl induced the increase of the 

expression of activated Notch 1, Notch2 and Ki67 and decreased the expression of 

cytokeratin 3. The comeal stratification was inhibited by activation of Notch. In 

wound healing study, Notch inhibited the wound repair at late stage. In addition, the 

expression pattern of Notch was exhibited in developmental embryonic chicken 

cornea.

CONCLUSIONS

Notch suppresses differentiation and stratification in comeal epithelium. Activation of 

Notch results the retardation of comeal wound repair. Notch signalling system plays a 

pivotal role in maintenance of comeal epithelial cell homeostasis and wound healing.
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1.1. Cornea

1.1.1. Anatomical structures, physiology and function of cornea

The cornea is a clear, transparent avascular tissue and is located at the anterior of the 

eyeball, forming approximately one sixth of the outer tunic of the eye. It is unique 

among the stratified squamous epith^lia of the body in that it provides an absolutely 

smooth, wet, apical surface that refracts and transmits light to the lens and retina 

(Maurice and Singh, 1985). The most important property of the cornea is that of 

transparency, but it is also a tough physical barrier to trauma and infection due to its 

vulnerable position. These functions are maintained due to a number of factors, 

including the regularity and smoothness of the covering epithelium, its avascularity 

and the regular arrangement of the extracellular and cellular components in the stroma, 

which are dependent upon the hydration, metabolism and nutrition of the stromal 

elements (Oyster, 1999a). In addition, assurance of these unique and vital functions is 

provided by a highly developed and extraordinarily dense sensory nerve system that 

can warn of potential danger and induce rapid protective response (Oyster, 1999a).

The tissue of the cornea appears simple in composition because it is composed only of 

an outer stratified squamous nonkeratinized epithelium, an inner dense connective 

tissue stroma with its resident fibroblast-like keratocytes and a monolayer cubical 

endothelium bordering the anterior chamber (see Fig. 1.1). The cornea, however, is 

highly ordered and complexly arranged. Its transparency, avascularity and highly 

ordered structure make it unique among all tissues of the body. Cells of all layers
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interact with and influence each other’s functions. Mediators (e.g. cytokines) 

expressed by one cell type can influence cells of adjacent layers.

Kp it helium

Stroma

Desce mct's
Mem branc

Kudo th el iu m

Fig. 1.1. Transverse section o f a human cornea (copied from Forrester et al. 1999)

The highly specialised substructural organisation of the cornea comprises five 

differentiated layers (Fig. 1.1):

• Comeal epithelium

• Anterior limiting lamina (Bowman’s layer)

• Comeal stroma (Substantia propria )

• Posterior limiting lamina (Descemet’s membrane)

• Comeal endothelium.
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Corneal epithelium

The comeal epithelium is a nonkeratinised, squamous, stratified epithelium of 

approximately 50-60pm thick (10% of the total cornea). The epithelium usually 

contains 5-6 layers, with a superficial cell density of approximately 1200 cells/mm2 

and the basal epithelial cell density increasing to approximately 5700cells/mm2. At 

the corneoscleral junction (limbus), the epithelium becomes thicker and the number of 

cell layers increases to 10 or more layers of cells (Holly and Lemp, 1977).

Compared with other stratified squamous epithelia, the comeal epithelium is 

extraordinarily regular in thickness. This characteristic probably contributes to its 

unique capability of maintaining the smooth apical curvature over the comeal surface. 

The apical to basal thickness of the epithelium in humans is 50 to 52 pm (Maurice and 

Singh, 1985). In humans, there are three to four layers of outer flat squamous cells 

termed squames, one to three layers of midepithelial cells termed wing cells and a 

single layer of columnar basal cell (Oyster, 1999a).

The epithelium of the cornea is self-renewing. The basal cells are the only epithelial 

cells that undergo mitosis. As they divide, daughter cells begin their movement off the 

basement membrane and are pushed anteriorly. They thus change their shape, 

conforming to the contiguous wing cells, which are defined by the way they overlap 

onto the apices of the adjacent basal cells. As the cells continue to move anteriorly, 

they become the superficial cells, after which they disintegrate and are shed into the 

tear film in a process known as desquamation. The superficial cells represent the
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terminal differentiation. The epithelium turns over about 5 to 7 days (Hanna et al., 

1961).

The corneal epithelium has functions unique to it self and also functions that are 

common to other body epithelia. Several of its unique functions include light 

refraction, transmittance and survival over an avascular bed. The ability to refract 

light is brought about by its absolutely smooth, wet apical surface and its 

extraordinarily regular thickness.

In addition to its specialized functions, the corneal epithelium has the routine 

housekeeping functions of all epithelia that border the outside world. The layers of 

cells provide a barrier to fluid loss and pathogen entrance and resist abrasive pressure 

by tightly adhering to one another and to the underlying connective tissue stroma.

Bowman’s Layer

Below the comeal epithelium lies the anterior limiting lamina (Bowman’s membrane), 

which is essentially a modified acellular region of the stroma, discontinues at the 

limbus (Oyster, 1999a). It is approximately 8-12 pm thick and consists of fine, 

randomly arranged collagen fibrils that form an interface between the basal lamina of 

the epithelium and the subjacent lamellar stroma. Constituents of this layer contain 

several collagen types, including types I, V, and VII (Nakayasu, 1988; Gordon et al., 

1994), and proteoglycans such as chondrioitin sulfate proteoglycan (Li et al., 1991).
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Stroma

The comeal stroma is a layer of dense connective tissue that makes up approximately 

90% of the cornea (Oyster, 1999a). It consists of keratocytes, extracellular matrices 

and nerve fibers. The cellular component (keratocytes) is only occupies 2-3% of the 

total stromal volume (Oyster, 1999a), with the remainder consisting of various 

extracellular matrices, mainly collagen and glycosaminoglycans. Type I is the major 

collagen component in human cornea, comprising some 68% of the dry weight 

(Maurice and Singh, 1985). The maintenance of comeal transparency is highly 

dependent on the regular spacing of the collagen fibrils (interfibrillary distance), that 

is regulated by proteoglycans, which form links between the collagen fibrils. Keratan 

sulfate proteoglycan and dermatan sulfate proteoglycan are the predominant 

proteoglycans within the comeal stroma (Oyster, 1999a).

The matrix components of the lamellar stroma are secreted and maintained by stromal 

fibroblasts, also known as keratocytes. These long, attenuated cells are arranged 

parallel to the comeal surface and are located between the collagen lamellae. The 

keratocyte cell body contains an elaborate rough endoplasmic reticulum and Golgi 

apparatus, reflecting its active synthetic function. Keratocytes extend slender 

cytoplasmic processes and can form gap junctions with neighbouring cells, resulting 

in a network of communicating cells (Oyster, 1999a).

In a normal healthy stroma there are no blood or lymphatic vessels, but in the anterior 

layers there are some sensory fibres which pass into the comeal epithelium suggesting 

potential route of between the epithelium and stroma under certain conditions, such as 

comeal wounding.
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Descemet’s membrane

The posterior limiting lamina (Descemet’s membrane) lies between the posterior 

stroma and the corneal endothelium. In adults, this matrix consists of two layers. An 

anterior, banded layer is formed during fetal development and consists of highly 

organised collagen lamellae and proteoglycans. A posterior amorphous layer is 

synthesized after birth and is less organised than the fetal layer. Adult Descemet's 

membrane approximately 8-12 pm in thickness contains fibronectin, laminin, and 

type IV and VIII collagen, heparin sulphate, and dermatan sulphate proteoglycan. It is 

tightly adhered to the posterior surface of the corneal stroma and reflects any change 

in the shape of the stroma (Oyster, 1999a).

Endothelium

The endothelium is the single layer of cells located at the posterior surface of the 

comea; it permits the passage of nutrients from the aqueous humor into the cornea 

(Tuft and Coster, 1990). The endothelium is responsible for maintaining the relatively 

low level of stromal hydration necessary for corneal transparency. Stromal hydration 

is controlled by the activity of ionic pumps in the plasma membrane of endothelium 

cells. The extracellular ion concentration produced by these pumps draws water from 

the stroma, thus maintaining the highly organised collagen lamellar structure required 

for transparency. The endothelium secretes the thick basal lamina, termed Descemet’s 

membrane, which under lies it (Oyster, 1999a).
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1.1.2. Tear film

Although the preocular tear film is not part of the cornea, it is intimately associated 

with the cornea anatomically and functionally. The tear fluid covers the corneal 

surface. Tear fluid protects the cornea from dehydration and maintains the smooth 

epithelial surface, this is essential in order for the epithelial cells to remain function. It 

consists of three layers (Holly and Lemp, 1977): a superficial lipid layer (about 0.1 

pm), an aqueous layer (about 7 pm), and a mucin layer (0.02 to 0.05 pm). More than 

98% of total tear volume is water.

The tear film contains many biologically important factors including electrolytes, 

glucose, immunoglobulins, lactoferrin, lysosome, albumin, oxygen, and a range of 

various biologically active substances such as histamine, prostaglandins, growth 

factors, and interleukins (Ohashi et al., 1989; van Setten et al., 1989). Therefore, the 

tear film serves not only as a lubricant and nutritional source for the corneal 

epithelium but also as the source of the regulatory factors for the maintenance and 

repair of the comeal epithelium (Nishida et al., 1983; Watanabe et al., 1987; Tsutsumi 

et al., 1988).

1.2. Corneal epithelial cell homeostasis

Maintenance of comeal structure is crucial for its physiologic functions in biodefence 

and as a refractive system. Therefore the cornea is equipped with a more active 

maintenance system: the active renewal of the comeal epithelium.
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An understanding of normal comeal homeostasis is required to appreciate how 

changes in epithelial cell number occur during wound healing. This was recognised 

by Thoft and Friend in 1983 who formulated the X, Y, Z hypothesis of comeal 

epithelial maintenance (Fig. 1.2). This hypothesis stated that a constant number of 

comeal epithelial cells were maintained by:

Addition of new cells to the basal layer by proliferation of basal cells (X) plus the 

centripetal migration of new basal cells originating from limbal stem cells (Y) which 

was equal to the loss of cells from comeal surface (Z) (Thoft and Friend, 1983)

Fig. 1.2. X,Y,Z hypothesis o f corneal epithelial maintenance (copied from Thoft et al. 

1983)

Therefore a balance between cell loss and cell replacement is mandatory for 

maintenance of the comeal epithelium. It has now been established that the limbus is 

the germinative region of the comeal epithelium, containing stem cells in its basal 

layer (Bron, 1997).
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1.2.1. Stem cells in tissue renewal

Stem cells are defined as relatively undifferentiated cells that have the capacity to 

self-renew and also generate one or more differentiated daughter cells (Boulton and 

Albon, 2004). Self-renewal is a term that has been used in connection with stem cells. 

Tissue lost can be replaced during normal wear and tear in tissues such as hair and 

epidermis. Wound healing in response to trauma can also be initiated. The ability to 

replace this tissue largely rests with a relatively small population of stem cells that 

have the capacity to self-renew and differentiate along specific molecular pathways 

throughout life. Hence stem cells are key to the maintenance of tissue integrity 

throughout the body, including the eye.

1.2.2. Corneal epithelial stem cells

Epithelial stem cells can undergo asymmetric cell division resulting in one daughter 

cell remaining undifferentiated to replenish the stem cell pool, while the other is 

destined to be a more differentiated transient amplifying cell that can further divide 

into differentiated cells of the corneal epithelium (Figure 1.3). It is also possible that 

local signals may influence similar daughter cells resulting from symmetric stem cell 

division to follow' different cell fates (Morrison et al., 1997).
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Fig. 1. 3. A model o f the limbal location o f corneal stem cells (copied from Kruse et al. 

1994).

Stem cells have unique intrinsic characteristics that enable them to control cell 

replacement during homeostasis and tissue repair. These features distinguish stem 

cells from their more differentiated progeny, the transient amplifying cells. Intrinsic 

differences between the two populations are summarized in Table 1.1.

Table 1.1 Intrinsic differences between stem cells and transient amplifying cells 

Stem cells Transient amplifying cells

• Poor differentiated with primitive • Less primitive than stem cells
cytoplasm • Susceptible to tumor promoters
• Resistant to tumor promoters • Differentiate into post-mitotic and
• High capacity for error-free self terminally differentiated cells 
renewal • Divide more frequently
• Slow cycling during homeostasis • Limited proliferative potential
• Long life span
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Davanger and Evensen (Davanger and Evensen, 1971) first proposed that the corneal 

epithelium was renewed from a source of cells located at the limbus. They observed 

that pigment in the epithelium in heavily pigmented eyes migrated in lines from the 

limbus to the central cornea in healed eccentric comeal epithelial defects. Cotsarelis et 

al (Cotsarelis et al., 1989) were the first to report the existence of slow-cycling limbal 

epithelial basal cells that retained tritiated thymidine label for long time periods. 

Further evidence supporting the location of comeal epithelial stem cells at the limbus 

includes cultured limbal basal cells have the highest proliferative capacity (Ebato et 

al., 1988; Lindberg et al., 1993; Pellegrini et al., 1999), surgical removal of the limbus 

results in delayed healing with noncomeal epithelium (Chen and Tseng, 1991; Huang 

and Tseng, 1991), and limbal transplants can regenerate comeal-like epithelium 

(Kenyon and Tseng, 1989).

1.2.3. The limbo-corneal epithelium

A more rigorous demonstration of the concept of the limbus as the germinal site for 

the comeal epithelium became possible following the recognition of the tissue 

specificity of cytokeratin pairs and their differentiation-dependent expressions (Moll 

et al., 1982). Along the basal cell axis, expression of these proteins started at the 

limbo-corneal margin, in concurrence with the stromal transition from vascular to 

avascular. From this margin to the comeal centre, all basal cells are uniformly 

positive for Keratin3 (K3) and/or Keratin 12 (K12). The limbal stem cell hypothesis 

was cemented by subsequent work demonstrating the presence of slow cycling cells 

within the limbus and peak proliferative activity in the adjacent comeal periphery
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(Cotsarelis et al., 1989; Lavker et al., 1991). From the percentage of radiolabeled 

thymidine retaining cells (i.e. slow cycling) found in the limbal zone, it was 

concluded that stem cells may represent as many as 10% of the total limbal population. 

Taken together, these results suggest that as cells move centripetally across the limbo- 

comeal (LC) demarcation, they concomitantly develop TA cell features and initiate de 

novo expression of K3 and/or K12.

The recognition that a small pool of slowly cycling cells within the limbus is able to 

regenerate the tissue on its own led to the re-evaluation of the belief that the 

conjunctival epithelium can slowly transdifferentiate into corneal epithelium. It has 

become clear that such a phenomenon does not really occur (Morrison et al., 1997). 

Rather, current evidence supports the notion that occasional recovery of corneal 

phenotype, observed following whole replacement of the corneal surface by 

conjunctival epithelium, is likely to represent repopulation from a small surviving 

pool of limbal stem cells (Kruse, 1994; Morrison et al., 1997).

1.3. Corneal epithelial cell stratification

At any point in time, a cell in the basal layer of a stratified epithelium may decrease 

its contact with the basement membrane and start its ascent towards the surface. This 

separation from the substratum inevitably implies loss of all proliferative capacity and 

the initial stage in the acquisition of features that may be unique to the intrastratal 

state and/or those features that ought to be expressed later on at the tissue surface. 

Proliferative pressure is not likely to account for centripetal migration. And migration 

may be in fact driven by enhanced rates of surface cell desquamation at the surface 

and also when coupled to the limbal strata distinct compaction and basal adherence,
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such increased proliferation may be sufficient to force centripetal cell stream (Lavker 

et al., 1991).

It was established that after cell division, daughter cells either remain in the basal 

layer, where they may undergo additional rounds of cell division, or differentiate 

synchronously. When the latter occurs, the time between the previous cell division 

and differentiation is highly variable. These results clearly point to the absence of a 

direct link between division and differentiation. On the other hand, they may be 

indicative of a counting or timing mechanism where stratification for each individual 

basal cells is determined primarily by the number of division that has taken place, or 

the time that have elapsed, from the initial transition to the TA cell phenotype.

1.4. Regulators of epithelial cell homeostasis

1.4.1. Growth factors and cytokines

Human comeal epithelial and stromal cells, as well as the lacrimal gland, synthesise a 

number of growth factors or their receptors. Li and Tseng subdivided the comeal 

expression of 12 cytokines and their receptors into four functionally and anatomically 

different groups (Li and Tseng, 1995).

Type I cytokines included transforming growth factor-a (TGF-a), interleukin ip (IL- 

1P) and platelet-derived growth factor-BB (PDGF-BB), which are expressed by 

epithelial cells to converse with fibroblasts. Type II cytokines include insulin-like 

growth factor type I (IGF-I), transforming growth factor-pi (TGF-pl), TGF-p2, 

leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF), which are 

cytokines crosstalking between the epithelium and fibroblasts. Type III cytokines
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include keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF), which 

are expressed by fibroblasts to stimulate epithelial proliferation and migration. Type 

IV cytokines include macrophage colony stimulating factor (M-CSF) and interleukin- 

8 (IL-8), which are expressed on epithelial cells and fibroblasts but their receptors are 

expressed on immune and inflammatory cells (Kruse and Tseng, 1991; Li and Tseng, 

1995; Joyce and Zieske, 1997).

Among the various growth factors, epidermal growth factor (EGF), KGF and HGF are 

strong mitogens of corneal epithelial cells, and are considered to play an important 

role in epithelial wound healing. EGF has a growth promoting effect on both corneal 

epithelial cells and corneal stromal fibroblasts (Frati et al., 1972). Whereas KGF and 

HGF promote comeal epithelial cell proliferation, but not stromal fibroblast 

proliferation (Sotozono et al., 1994)

1.4.2. Extracellular matrix

The comeal extracellular matrix (ECM) components are major regulating factors in 

comeal epithelium. They could be pre-existing (native or degraded), newly 

synthesised, or deposited after occurrence of the wound to provide a provisional 

matrix. Two of the major matrix components are collagens and proteoglycans. Other 

major extracellular matrix components found in the basement membrane include 

laminins and entactin. These ECM components have been shown to regulate the 

comeal epithelial cell homeostasis and wound repair (Anderson, 1977; Buck, 1979; 

Beyer et al., 1990; Brazzell et al., 1991; Dua et al., 1994; Beales et al., 1999).
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1.5 Stromal-epithelial cell interactions in the cornea

Stromal-epithelial interactions are key determinants of corneal function. Bi

directional communications occur in a highly coordinated manner between these 

corneal tissues during normal development, homeostasis and wound healing (Wilson, 

1999; Wilson et al., 1999)

The epithelium, stroma and nerves participate in homeostasis of the anterior cornea 

and ocular surface. The lacrimal glands and tear film also contribute to the 

maintenance of surface smoothness and integrity important to function of the eye. 

Following injury’, these components participate in an orchestrated response that 

efficiently restores comeal structure and function in most situations.

1.5.1. Stromal to epithelial interactions

The best characterised stromal to epithelial interactions in the cornea are mediated by 

the classical paracrine mediators Hepatocyte Growth Factor (HGF) and Keratinocyte 

Growth Factor (KGF). HGF and KGF are produced by the keratocytes to regular 

proliferation, motility, differentiation and possibly other functions of epithelial cells 

but not fibroblast (Wilson et al., 1993). Both HGF and KGF stimulated comeal 

epithelial cell proliferation, but only HGF stimulates migration (Wilson et al., 1994b; 

Wilson et al., 1994a; Honma et al., 1997). HGF markedly stimulated comeal 

epithelial cell motility and inhibited comeal epithelial cell terminal differentiation. 

Most recently, Carrington et al. (2005) suggest that neutralizing the effects of high 

concentrations of HGF may be a worth therapeutic intervention in comeal repair
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(Camngton and Boulton, 2005). No effect of KGF on motility or terminal 

differentiation of comeal epithelial cells was detected (Wilson et al., 1999).

1.5.2. Epithelial to stromal interactions

Two pathways have been suggested for communication in this direction (Wilson, 

1999). Epithelia to stroma interactions are mediated by cytokines, such as interleukin- 

1 (IL-1) and soluble Fas ligand that is released by comeal epithelial cells in response 

to injury. Other, yet to be identified, cytokine systems may be released from the 

unwounded comeal epithelium to regulate keratocytes viability and function. IL-1 

appear to be a master regulator of comeal wound healing that modulates functions 

such as matrix metalloproteinase production, HGF and KGF production and apoptosis 

of keratocytes following injury (Wilson, 1999).

1.6. Epithelial cell homeostasis in corneal wound healing

1.6.1. General principles of wound healing

wound healing is generally characterised by a number of stages: platelet induced 

haemostasis, inflammation, proliferation, formation of granulation tissue, wound 

contraction, neovascularisation and tissue remodelling (Mast, 1997). Whilst well 

defined (classically in cutaneous healing), this is a dynamic process, in which there is 

considerable overlap between the stages, the modulators of each phase and the 

cellular components.
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1.6.2. Corneal wound healing

The structure, position and function of the cornea, provide challenges in the process 

of wound healing not found in other tissues. The lack of blood supply, sequestration 

from the immune system, distal position (limbus) of the epithelial stem cell 

population and the need to retain transparency result in a specialised wound healing 

process. In some respects this is much simpler than cutaneous wound healing since 

the inflammatory response in the cornea is usually minimal, and there is no need to 

regenerate a vascular network within the tissue. However, comeal wound healing is 

complicated by the presence of tear fluid, which contains factors capable of regulating 

the healing response.

Comeal wounds can occur for a number of reasons, both accidental and elective. The 

type of wound, its extent and any underlying pathology can result in different clinical 

outcomes (Redbrake et al., 1997). Comeal wounds can be broadly divided into simple 

epithelial defects, those that penetrate into the underlying stroma, and those that 

puncture the endothelium, each increasing in severity and poor prognosis. Wounds 

involving the endothelium have added complications; presence of aqueous fluid, loss 

of endothelial pump activity and loss of ocular pressure, and will not be discussed 

further, as they are not the subject of this thesis.

1.6.2.1. Corneal epithelial wound healing

Clinically, the most obvious stage of wound healing occurs in the epithelium. The 

healing process can be divided into three stages: latent, migration and adhesion, and
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proliferation phase (Fagerholm, 2000). These phases in vivo however form a dynamic 

and continuous process.

Latent phase

The latent phase lasts approximately 4-6 hours after insult (Dua et al., 1994). 

Polymorphonuclear (PMN) cells arrive by three hours after injury via the tear fluid 

(Robb and Kuwabara, 1962) and remove necrotic tissue and debris. This, along with 

rounding of epithelial cells at the wound edge (Pfister, 1975; Crosson et al., 1986), 

results in an apparent enlargement of the wound.

Migration and adhesion

The next phase starts with the completion of lamellipodia, filopodia, rearranging actin 

filaments and the migration of epithelial cells and lasts 24-36 hours. Cells increase 

their volume and flatten to cover a lager area (Fagerholm, 2000). Newly concentrated 

in the leading edge of migrating cells are actin filaments composed of proteins 

including fodrin, vinculin and ankyrin (Takahashi et al., 1992).

Focal contacts are formed between the migrating cell and the wound substrate surface 

(fibronectin, fibrin, fibrinogen and tenascin). Fibronectin is initially deposited from 

tears but is followed by deposition of cellular fibronectin secreted from the migrating 

cells (Gipson and Inatomi, 1995). Tenascin promotes the migration of epithelial cells 

(Tervo et al., 1991) and probably also derives from the tear film (Vesaluoma and 

Tervo, 1998). Fibrin and fibrinogen are deposited at the edge of the wounds
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(Fujikawa et al., 1981; Phan et al., 1989), stimulating comeal epithelial cells to secrete 

plasminogen activator and collagenases. This cleaves cell adhesion at focal contacts, 

allowing the leading edge of the cell to move forward and new focal contacts to form 

(Gipson and Inatomi, 1995). The cell repeats this cycle of extending filopodia, 

attaching the actin cytoskeleton via focal adhesions to the wound substrate, moving 

the cell body through traction, and detaching focal adhesions until the epithelial defect 

is closed. However as the desmosomes between epithelial cells remain largely intact 

the epithelium moves laterally as a sheet away from the limbus (Dua et al., 1994; 

Messent et al., 2000).

Proliferation

The cells within the cornea exhibit a wide range of proliferative abilities. The change 

in proliferation profile o f the comeal epithelium during wound healing starts shortly 

after insult. Within 8-12 hours of injury, basal cells distal to the wound area are 

stimulated to synchronously enter the cell cycle, however those undergoing migration 

across the epithelial defect do not proliferate (Chung et al., 1999). As seen in Figure 1. 

4, the proliferative rate in the limbus, containing a mixture of slow cycling stem cells 

and more rapidly cycling transient amplifying cells, is somewhat lower than that seen 

in the rest of the cornea.
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Fig. 1.4. Diagrammatic illustration o f the relative rates o f proliferation o f corneal 

epithelial cells in unwounded corneas and in corneas following a 3-mm central 

epithelial debridement. Black indicates the highest rates o f proliferation, grey 

indicates higher rates o f proliferation, white indicates quiescent corneal epithelial 

cells (Copied from Nishida et al l 998).

These proliferative rates are greatly altered following wounding (Lavker et al., 1991; 

Chung et al., 1995; Messent et al., 2000). After a 3-mm central debridement wound, 

basal cells in the limbus and peripheral cornea increase their proliferative rate by 

several fold. The peak of S-phase cells occurs 28 hours after wounding (Lavker et al., 

1991; Chung et al., 1995; Messent et al., 2000), with the limbus showing a broader 

peak beginning 16 hours after wounding (Chung et al., 1995). Intriguingly, the 

proliferative rate in the sheet of epithelium migrating over the wound area drops 

dramatically. These data indicate that the rate of proliferation is differentially 

regulated in different areas of the corneal epithelium both during normal homeostasis
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and wound repair. Cell proliferation and migration, whilst occurring at the same time, 

are independent processes (Hanna, 1966; Zieske and Gipson, 1986).

1.6.2.2. Stromal wound healing

Healing of comeal stromal wound is slower than in other connective tissues 

presumably because of the avascularity. After an incisional injury, the stromal matrix 

imbibes fluid and becomes oedematous in the area adjacent to the wound. The severed 

acellular Bowman’s layer and Descnmet’s membrane (if the incision penetrates into 

the anterior chamber) do not heal, and the cut ends of the membranes remain retracted 

(Campos et al., 1993; Szerenyi et al., 1994; Wilson et al., 1994b; Wilson et al., 1994a; 

Gao et al., 1997; Kuo, 1997; Wilson and Kim, 1998; Wilson et al., 1999). The loss of 

keratocytes occurs immediately upon wounding and affects a zone extending up to 

200pm from the exposed stroma (dependant on species) (Matsuda and Smelser, 1973; 

Nakayasu, 1988). It is hypothesised that this loss is intimately associated with the 

decreased integrity of the epithelial cell layer immediately overlying the keratocytes. 

Keratocytes under the wound undergo cell shrinkage, blebbing with the formation of 

membrane bound bodies, condensation of the chromatin and DNA fragmentation 

cobsistent with programmed cell death (otherwise termed apoptosis ) (Gao et al., 1997; 

Helena et al., 1998; Wilson and Kim, 1998; Kim et al., 1999).

Stromal wound healing occurs via stromal keratocyte migration, proliferation, and 

deposition of extracellular matrix molecules, including collagen (specifically type III), 

adhesion proteins (e.g. fibronectin, laminin), and glycosaminoglycans. These 

processes are facilitated by a phenotypic change among quiescent keratocytes to
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become active myofibroblasts, a task mediated by transforming growth factor beta (of 

presumptive epithelial origin).

1.7. The role of Notch signalling in epithelial cell homeostasis

The Notch signalling pathway is an essential gene encoding a signalling receptor that 

is required throughout development to regulate the spatial patterning, timing and 

outcomes of many different cell fate decisions in both vertebrate and invertebrate 

species (Artavanis-Tsakonas et al., 1999).

Extracellular d o m ia  Inc

EGF ropaats Un-12/No**

TM NLS RAM NLS ANK PEST

PCN1

TAN-1

Fig. 1.5. Structure o f human Notch 1 receptor. EGF indicates epidermal growth factor: 

TM, transmembrane domain; NLS, nuclear localozation signal; ANK, ankyrin repeats; 

PEST, proline-glutamate-serine-threonine rich domain; ICN1, intracellular Notch I 

(copiedfrom Tamura et al. 1995).

Notch signalling controls an extraordinarily broad spectrum of cell fates and 

developmental processes resulted in a veritable explosion of Notch-related studies. 

These studies make it apparent that signals transmitted through the Notch receptors, in
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combination with other cellular factors, influence differentiation, proliferation and 

apoptotic events at all stages of development (Artavanis-Tsakonas et al., 1999).

1.7.1. The elements of Notch signal

Notch receptors

The Notch gene, a -330 kDa human Notch receptor family consists of four members 

(Notch 1-4), with Notch 1 playing a widespread role in determination of cell fate 

during development (Larsson et al., 1994). A typical Notch receptor is a single-pass 

transmembrane protein, which has a large extracellular (EC) domain contains 36 

tandem epidermal growth factor (EGF)-like repeats and 3 Lin-12/Notch repeats 

(Fig. 1.5). The intracellular domain of Notch receptors has four distinct regions, a 

RAM (random access memory) domain that is the primary binding site for C 

promoter Binding Factor-1 (CBF-1)/RBPJk (Recombination signal Binding protein-J 

kappa), 6 ankyrin (ANK) repeats which mediate interactions with other (cytoplasmic) 

proteins, a proline-glutamate-serine-threonine (PEST) domain which regulates protein 

turnover and 2 nuclear localization seqences (NLS) (Artavanis-Tsakonas et al., 1999). 

Notch 1 and Notch2 have the highest homology with each other, while Notch3 and 

Notch4 are structurally slightly diverged from Notch 1 and Notch2, both in the 

extracellular and intracellular domains (del Amo et al., 1993; Lardelli and Lendahl, 

1993; Lardelli et al., 1996; Uyttendaele et al., 1996). Intracellular domain of Notch is 

known to act as transcriptional activator, is often called as activated Notch and widely 

used to investigate the function of Notch receptors and the mechanism of the Notch- 

mediated signalling.
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Notch ligands

Notch ligands are divided into two subclasses, the Delta and the Serrate (in 

Drosophila) /Jagged (in vertebrates) families. These ligands are transmembrane 

proteins with a small intracellular (IC) domain, a large extracellular (EC) region 

comprising epidermal growth factor-like repeats (Lendahl, 1998). Mammalian ligands 

include two members of the Jagged family, Jagged 1 and 2, and three members of the 

Delta family (Delta 1, Delta3, and Delta4, also known as Dill, D113, and D114) (Gu et 

al., 1995; Gridley, 1997; Greenwald, 1998). Jagged cDNA encodes a protein with an 

apparent molecular mass of around -150 kDa that is localised to the cell surface 

(Lindsell et al., 1995) in tissues during embryonic development in the rat, including 

the eye, ear, kidney, pancreas, limb bud and skin also in other species. The -110 kDa 

normal Delta expression has been found in adrenal gland, placenta and 

neuroendocrine tumors such as neuroblastomas and pheochromocytomas (Laborda et 

al., 1993). In hematopoietic cells, Delta has been expressed broadly on hematopoietic 

cells and stromal cells (Han et al., 2000). Like Notch receptors, the ligands are also 

transmembrane proteins, and physically bind to the external domains of the Notch 

receptors. The extracellular region of Delta contains EGF-like repeats as well.

Y-secretase/Presenilins

Y -secretase is a membrane-bound protease which cleaves within the transmembrane 

domain of a number of substrate proteins, including the Notch family of receptors and 

the amyloid precursor protein (APP). Several new putative y -secretase substrates
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have recently been identified, including the CD44 cell-surface protein, E-cadherin and 

the low-density lipoprotain -  receptor -  related protein (LRP) (Fortini, 2002).

Two different proteins were shown to be essential for y -secretase activity: presenilin 

(PS) and nicastrin. Presenilin, a ~46 kDa protein, is encoded by two highly 

homologous genes, PS1 and PS2, both contributing, independently, to y -secretase 

activity.

Proteolytic cleavage of Notch and nuclear translocation of its intracellular domain 

have long been considered to be the crucial step in transduction of the signal. This 

theory is based on early studies documenting constitutive signalling from engineered 

Notch protein truncations (Fortini and Artavanis-Tsakonas, 1993; Greenwald, 1994), 

the identification of specific, cleaved products of endogenous mammalian Notch 

(Schroeter et al., 1998) and the demonstration that inhibiting Notch cleavage in 

transgenic mice results in reduced Notch signalling (Huppert et al., 2000).

1.7. 2. Notch receptor-ligand interactions

Cell aggregation studies of Drosophila cultured cells have revealed that receptor- 

ligand interactions are mediated by specific EGF repeats of the Notch receptor and the 

conserved extracellular region of the ligand (Muskavitch, 1994; Artavanis-Tsakonas 

et al., 1995). These observations reinforce the simple model in which a 

transmembrane ligand on one cell interacts with the receptor on a neighbouring cell. 

However, several observations that have attracted less attention indicate that Notch- 

ligand interactions are far more complex.
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Fig. 1.6. Elements o f Notch signaling (copied from Artavanis-Tsakonas et al. 1999).

The basic picture (Fig. 1.6) emerging from many different studies has the extracellular 

domain of the ligands, expressed on the surface of one cell, interacting with the 

extracellular domain of the Notch receptor on an adjacent cell. As a result of receptor 

activation, Su(H) binds to regulatory sequences of the E(spl) genes and up-regulates 

expression of their encoded bHLH proteins (Artavanis-Tsakonas et al., 1999). The 

bHLH factors, in turn, affect the regulation of downstream target genes. There is no 

doubt that this linear picture is only a skeleton, as each step is embellished with 

additional elements and features that modulated the activity and efficacy of the signals 

transmitted through the Notch receptor.

1.7.3. The function of Notch signal

Notch signalling regulates cell fate in many different tissues in a wide range of 

organisms including nervous system, vascular system, hematopoietic system, somites, 

muscle, skin and pancreas (Vamum-Finney et al., 1998; Artavanis-Tsakonas et al., 

1999). The Notch signalling pathway plays different roles in different tissues even
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same tissue in different developmental stages (Artavanis-Tsakonas et al., 1999). In 

most cases, Notch signalling blocks a primary differentiation fate in a cell and forces 

the cell to remain in an undifferentiated state (Artavanis-Tsakonas et al., 1999). Notch 

signalling therefore has been referred to as a ‘gatekeeper against differentiation’ 

(Artavanis-Tsakonas et al., 1999). However, recent evidences show that Notch 

signalling appears to promote differentiation in certain circumstance (Lowell et al., 

2000; Lundkvist and Lendahl, 2001).

More recent studies revealed that apart from the well-documented involvement of 

Notch in differentiation, both proliferation and apoptotic events can be affected by 

Notch (Artavanis-Tsakonas et al., 1999). A link between proliferation events and 

Notch has been seen in several instances. In Drosophila, Notch, together with 

Wingless, induces cell cycle arrest within the so-called nonproliferative region 

(Johnston and Edgar, 1998). In contrast to cell cycle arrest, Notch activation can also 

induce proliferation (Cagan and Ready, 1989; Go et al., 1998). The elements 

mediating the nonautonomous effect of Notch on proliferation are unknown. The 

examination of receptor activation in different imaginal discs demonstrates that the 

ability of Notch to influence cell proliferation is the result of synergistic effects 

between Notch and other genes and depends on developmental context. For instance, 

the simultaneous expression of activated Notch and vestigial in the eye disc (Go et al., 

1998), whereas other discs remain relatively unaffected.

It is now appreciated that Notch is widely expressed and functions in many tissues 

throughout vertebrate and invertebrate development. Notch seems to be able to 

participate in several key aspects of development, including patterning and lateral

47



inhibition. Lateral inhibition is a mechanism that explain how two identical adjacent 

cells can be induced in vivo to differentiate to different tissues during development. It 

occurs when one cell expressing Notch is stimulated by an adjacent cell expressing a 

Notch ligand. Activation of Notch in the first cell causes it to adopt expression of 

Notch ligand. The adjacent cell is then exposed to less Notch ligand and adopts a 

different differentiation program. This same mechanism is thought to contribute 

prominently to the development of ‘boundaries’ during development.

1.7.4. The Notch pathway in tissue development

1.7.4.1. Neurogenesis

In mammals, Notch activation is indispensable in vivo for the maintenance (self- 

renewal) of neural stem cells, which is the precursor of all neural and glial cells in the 

mammalian nervous system (Hitoshi et al., 2002). In the neural tube, nascent neurons 

express DSL ligands and inhibit the Notch-expressing progenitor populations (de la 

Pompa et al., 1997; Lewis, 1998). Notch signalling appears to control at least two 

other aspects of neural development: the differentiation of glial cells (Gaiano et al., 

2000; Morrison et al., 2000). And neurite arborization, i.e. the length and organization 

of dendritic extensions from neurons (Redmond et al., 2000). Thus, Notch signalling 

regulates both stem-cell self-renewal and later events during neurogenesis.

In the past, Notch signalling has not been considered instructive because it was 

believed to have a nonspecific inhibitory effect on cellular differentiation. As such the 

Notch pathway was thought to passively influence cell fate by controlling the ability
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of progenitors to respond to instructive developmental cues. However, recent data has 

suggested that Notch can play a more active role in promoting glial and perhaps stem 

cell identities. While intriguing, it is worth noting that this role is context dependent, 

both in vertebrates and in invertebrates, as Notch can either promote or inhibit 

gliogenesis, depending on the cell type being examined. Therefore, although in 

specific contexts the role of Notch might be termed instructive, it is currently not 

possible to define a uniform role for Notch with regard to glial fate.

1.7.4.2. Skin homeostasis and wound healing

In mammalian epidermis, keratinocytes progress through successive phenotypic 

stages as they migrate from the germinative basal layer to the skin surface. These 

continuous proliferative and diffemtiative processes result in tissue homeostasis. 

Studies on embryonic mice and rats have shown the involvement of the Notch 

pathway in epidermal differentiation (Del Amo et al., 1992; Thelu et al., 1998), as 

well as cutaneous appendage patterning (Kopan and Weintraub, 1993; Powell et al., 

1998; Favier et al., 2000).

At the tissue resolution level, Jacques et al. (Thelu et al., 2002) observe continuous 

labelling in the basal layer, including putative stem cells and transit amplifying cells. 

Thus in the epidermis of human adult, Notch receptors and their ligands Delta/Jagged 

genes are transcribed in the proliferating area receiving the first differentiation signals. 

To a lesser extent, they are expressed in the suprabasal layers where differentiation is 

occurring. Lowell et al. (Lowell et al., 2000) found that Delta 1 mRNA and protein
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were restricted to the basal epidermal layer while immuno-restricted against Notch 1 

protein was patchy in the basal layer and fairly strong in the suprabasal layer.

In fact, Notch signalling controls cell choices in both invertebrates and vertebrates 

(Artavanis-Tsakonas et al., 1999) by inhibiting certain differentiation pathways, 

thereby permitting cells to either differentiate to an alternative pathway or to self- 

renew. Feed-back in the Notch pathway amplifies weak stochastic bias between 

adjacent cells so that even a subtle variation in the amount of signal would generate 

drastically distinct cell fate. In the epidermal basal layer, Notch receptors are present 

in transit amplifying cells (Lowell et al., 2000) and the cell-cell signalling system 

promotes both expansion and differentiation of these cells. Low Notch activity or 

even none may be permissive for over-growth of poorly differentiated cells, whereas 

high Notch activity would be expected to control growth and undergo a change of 

cells fate.

In skin wound space, proliferating cells, which are thought to be derived from the 

basal cell layer (Demarchez et al., 1987), migrated from the periphery to the centre of 

the wound, and progressively differentiated to constitute a pluristratified epidermis. 

The discrepancy between co-localisation of Notch-related transcripts in adult skin and 

specific pattern in most other systems may only be apparent, since at a cellular level, 

ligand and receptor gene expression may be cell-exclusive in the basal layer. Some 

cells, or clusters of cells, could express the ligands, and neighbouring cells that 

express only the Notch receptor may behave as responding cells. This was recently 

demonstrated by Lowell et al. (Lowell et al., 2000) for Deltal-Notch 1 in keratinocyte 

cultures and neonatal foreskin. When keratinocytes enter into a pathological
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proliferation status (basal cell carcinoma, psoriasis), they neither transcribe ligands 

nor receptors and the differentiating signal is absent. During healing, a rapid but 

temporary proliferation status of keratinocytes is required to cover the newly 

constituted granulocytic layer, and they no longer express ligands, nor receptor 

transcripts. Transcription is then progressively activated when the epidermis starts to 

become stratified and differentiated.

1.8. Notch in eye development

For vertebrate eye development, the areas that have received the most attention are the 

formation of the various components of the eye through inductive interactions and the 

determination and differentiation of retinal neurons. For example, the anterior neural 

plate has been found to be necessary for induction of the lens placode, whereas the 

optic vesicle and lens are thought to induce overlying surface ectoderm to form the 

cornea (Graw, 1996). The formation of the retina occurs after invagination of the 

optic vesicle, which creates a cup with an inner layer [presumptive neural retina 

(PNR)] and an outer layer [presumptive pigment epithelium (PPE)]. The peripheral 

margin of the optic cup differentiates into the ciliary body and iris (Bard and Ross, 

1982). During these processes, cells become fated to be neural cell types, epithelial 

cell types, muscle cells, or other specialized cells peculiar to the eye. Within the 

neural retina, the cells differentiate into six different types of neurons and one type of 

glial cell from multipotent progenitor cells (Turner and Cepko, 1987; Holt et al., 1988; 

Wetts and Fraser, 1988; Turner et al., 1990). Vertebrate homologs of Notch, Delta and 

Jagged have been identified in several species (Bettenhausen et al., 1995; Chitnis et 

al., 1995; Henrique et al., 1995; Lindsell et al., 1995; Lewis, 1996; Myat et al., 1996).
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The structure and function of Notch have been found to be remarkably conserved. 

However each mammalian species has several homologs of Notch (Lardelli and 

Lendahl, 1993; Lardelli et al., 1994). The multiplicity of these molecules in 

vertebrates makes more complex functions.

The expression patterns of Notch 1, Notch2, Delta and Jagged in the embryonic rat eye 

have been detected by Bao, Z. et al (Bao and Cepko, 1997). At rat E l2.5 (embryonic 

day), Notch 1 expression was barely detectable in the optic vesicle, a low level of 

Notch2 expression was seen in the PPE. Delta RNA was not detectable in the optic 

vesicle. In contrast, Jagged was found to be expressed at a high level in both the PNR 

and the lens placode. Jagged expression was limited to the dorsal half of these areas. 

At E l5.5, the lens vesicle and optic cup are completely formed due to the invagination 

of the lens placode and optic vesicle, respectively. At this stage, Notch 1 and Delta 

were expressed in many cells in the neural retina. The positive cells, however, 

appeared to be excluded from the periphery of the retina, the area corresponding to 

the presumptive ciliary body and iris. Interestingly, Jagged expression was limited to 

the presumptive ciliary body region and was not seen in the neural retina or 

presumptive iris. Jagged was also expressed at higher levels on the ventral side of the 

ciliary body region, in contrast to its dorsal-restricted expression pattern at E l2.5. 

Notch2 was absent from the neural retina but was expressed in the optic stalk. Only 

Jagged was expressed in the lens, mostly in the equatorial region, and to a lesser 

extent in the anterior portion in the area of actively proliferating cells. At this stage, 

the posterior of the lens is filled by differentiating lens fiber cells.
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Notch 1 expression correlates well with neurogenesis in the retina, which occurs from 

E14 to P10 (postnatal day), with the peak around PO (Alexiades and Cepko, 1996). 

With the progression of neurogenesis, the number of Notch 1-positive cells decreased 

and eventually was reduced to zero when all cells were differentiated. Delta showed a 

pattern similar to that of Notch 1 during retinal neurogenesis. Its expression eventually 

diminished when the cells had differentiated. Postnatal Notch2 expression appeared to 

be stronger in the ciliary body region in contrast to the E l5.5 expression pattern. 

Jagged expression was confined to the ciliary body. Extending from the periphery of 

the optic cup, the ciliary body undergoes extensive folding in the neonatal period. At 

PO and P5, a subset of inner nuclear layer cells and ganglion layer cells also appeared 

to express Jagged.

The spatial and temporal expression patterns of Notchl, Notch2, Delta and Jagged 

appear to define different domains in the developing eye. Notch2 expression is only in 

the non-neuronal tissues, including the pigment epithelium, optic stalk, and ciliary 

body, whereas Notchl is expressed only in the neural retina. The domain of Delta 

expression is largely overlapping with that of Notchl. The spatial-temporal pattern of 

expression of Jagged is especially dynamic. Its expression is seen in the neural retina, 

ciliary body, and lens.

The expression patterns of Notch2 and Jagged suggest a role in the patterning of 

ocular tissues. Because very little is known about the mechanisms that define these 

nonretinal tissues as distinct from the contiguous retina, it will be of interest to 

investigate whether Notch2 plays an active role in patterning this region of the optic 

cup. The expression of Jagged in the developing eye also suggests a role in patterning.
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Its expression was seen as early as El 2.5 in the dorsal regions of the optic vesicle and 

lens placode. Patterning along the dorsal/ventral and anterior/posterior axes is evident 

within several laminae of the retina. The expression of Notchl and Delta in the 

developing eye appears to be within undifferentiated progenitor cells of the neural 

retina. This is consistent with their expression in the other regions of developing CNS 

(Coffman et al., 1990; Weinmaster et al., 1991).

1.9. Aims of this study

The aim of this project is to investigate the expression and distribution of Notch 

signalling family in corneal epithelial cell and stromal keratocytes. The results 

obtained will then be related to cell proliferation and differentiation so as to explain 

the mechanism of Notch signalling in comeal homeostasis, stratification, comeal 

wound healing and comeal development.

The following studies will be undertaken:

1. To determine the expression of Notch receptors and their ligands ex vivo

and in epithelial cell and keratocyte from gene and protein level.

2. To investigate the functions of Notch signalling pathway in epithelial cell 

proliferation and differentiation.

3. To investigate the function of Notch signalling in epithelial cell 

stratification.

4. To determine the mechanism of Notch signalling in comeal wound healing.

5. To investigate the distribution of Notch signalling in comeal embryonic

development.
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CHAPTER TWO 

GENERAL MATERIALS AND METHODS
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2.1 Materials and equipment

Chemical reagents -  all chemical reagents, solutions and media used in these methods, 

are listed in Appendices I and II. All chemical reagents were of analytical grade. Cell 

culture solutions were prepared using deionised water. All materials used in cell 

culture procedures were autoclaved prior to use with the exception of disposable items, 

which were purchased as sterile. All growth media were sterilised by filtration 

through a 0.2 pm filter, unless made up under sterile conditions.

Routine maintenance of cell cultures was carried out in a Class II biological safety 

cabinet. Cell cultures were maintained at 37°C in CO2 incubators within a humidified 

atmosphere containing 5% CO2 and 95% air. The growth of cells was observed using 

an inverted microscope (Olympus IX 70) and digital images obtained using the Spot 

Advance image capture system (Image Solns, UK). The spectrophotometer was from 

GeneQuant II (Pharmacia Biotech, England) and the PCR machine was from GRI 

(England).

2.2 General methods

2.2.1. Primary cell isolation and culture techniques

2.2.1.1. Isolation of corneal epithelial cells

A total of 90 human donor corneoscleral rims ( in tissue culture) were obtained from 

the Bristol Eye Bank and used in accordance with the tenets of the Declaration of 

Helsinki regarding the use and permission of human tissue for research. The mean age 

of donors was 62 ± 19 years.
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The surface comeal epithelial cells of human corneoscleral rims were scraped off 

gently with a scalpel blade and the corneoscleral rims were cut into 1 -2 mm segments. 

1 segment was placed epithelial-side downwards in each well of a 24-well cell culture 

plate, containing cover-slips pre-coated with attachment factor (TCS Cellworks, 0.25 

ml for each well). 0.5 ml fetal calf serum (FCS, Gibco) was added to each explant. 

The plates were left for 24 hours in standard incubator conditions at 37°C. The tissue 

was subsequently maintained in a growth medium based on that of Ebato et al. 1988 

(Ebato et al., 1988) consisting of a 1:1 mixture of Dulbecco’s Modified Eagle’s 

Medium (DMEM)/Ham’s F-10 medium (Gibco) supplemented with 5% FCS, 5% 

donor horse serum, 0.5% dimethylsulphoxide (DMSO), 5 jig/ml insulin, 2.5 pg/ml 

fungizone, 0.1 pg/ml choleratoxin, 1% antibiotics (Lab store, see Appendix II) and 

Glutamine (2mM). Explants were maintained at 37°C in a humidified incubator 

containing an atmosphere of 5% CO2 and 95% air and growth medium was changed 

every 2-3 days. When epithelial cell outgrowth was established, the explants were 

carefully detached (to prevent fibroblast contamination), and the cells allowed to 

reach confluence for subculture.

2.2.1.2. Isolation of corneal stromal keratocytes

For the keratocyte cultured, the comeal epithelial cells and endothelium were scraped 

off with a scalpel blade, comeal limbus was cut off. The stromal explants were placed 

onto each pre-scratched well of 6-well culture plates, 0.5 ml FCS was added to each 

explant. The plates were left 20-30 minutes before 2 ml of growth medium (DMEM 

supplemented with 20% FCS, 2.5 pg/ml fungizone, 1% antibiotics and glutamine)
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was added to the each well. The plate was returned to the incubator and left for 2-3 

days until keratocyte outgrowth was observed. Explants were then detached from the 

plate. Fresh medium was added every 2-3 days and the cells were allowed to reach 

confluence for subculture.

2.2.13. Maintenance and subculture of cells

The cells were cultured with appropriate culture medium in a standard incubator and 

the medium was changed every 2-3 days. Confluent cultures were subcultured as 

follows: each culture plate was washed twice with 5 ml sterile PBS (lab store, see 

Appendix II) which had been pre-warmed to 37°C in a water bath. After washing,

0.25 ml 0.25% trypsin - 0.02% EDTA solution was added to each well. The plate was 

incubated at 37°C in a standard incubator and observed at regular intervals using an 

inverted microscope until the cells had detached (this process usually took 2-5 

minutes). Then the appropriate serum-containing growth medium was added to each 

well to inhibit further action of trypsin. The cell suspension was pelleted by 

centrifugation at 250g for 5 minutes. The supernatant was discarded and the cells 

were re-suspended in growth media and plated in 25 cm culture flasks at a split ratio 

of 1:1 or 1:2.

2.2.2 Confirmation of cell purity

Two techniques were used to confirm cell purity: morphology and immunostaining.
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2.2.2.1. Morphology

Morphology was assessed using an inverted microcope and cell appearance was 

recorded digitally. Human comeal epithelial cells can be identified by a 

characteristic ‘cobble-stone’ morphology (Pancholi et al., 1998).

The human comeal keratocytes were characterised on their distinctive fast growth 

characteristics and a typical fibroblast appearance (Pancholi et al., 1998).

2.2.2.2. Immunolabelling for confirmation

Cultures were fixed in 1% paraformaldehyde (PFA) (Appendix I) for 20 minutes 

and washed twice in PBS (5 minutes). Cells were incubated with 0.2% Triton-X- 

100 (v/v PBS) (20 minutes, room temperature) to permeabilise cell membranes and 

washed twice in PBS (10 minutes each). Non-specific binding sites were blocked by 

5% milk/PBS at room temperature for 30 minutes and then the cells were incubated 

with the appropriate primary antibodies against vimentin (an intermediate filament 

protein) and cytokeratin 3 (an epithelial marker) using the reagents detailed in Table

2.1 for 2 hours at room temperature. Substitution of the primary antibodies with 

same species serum at same concentration acted as a negative control. The cells 

were washed with three changes of PBS for 10 minutes each and incubated for 2 

hours in appropriate secondary antibody (see Table 2.1) before washing as above.
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The cells were covered and mounted on microscope slides with Bis-benzimide 

(0.2%, Hoechst 33342, Sigma) in Hydromount, wrapped in foil and left in a 

refrigerator (4°C) overnight to solidify.

Table 2.1 Antibodies for confirming cell culture purity

Antigen Primary
antibody

Dilution Secondary antibody Dilution

Vimentin Monoclonal 
mouse anti- 
Vimentin 
clone V9 
(Sigma,UK)

1/100 AlexaFluor 488 
donkey anti-mouse 
IgG antibody 
(Molecular Probes)

1/1000

Cytokeratin3 Monoclonal 
mouse anti- 
Cytokeratin 
3. AE5 
(ICN-UK)

1/100 AlexaFluor 488 
donkey anti-mouse 
IgG antibody 
(Molecular Probes)

1/1000

Epithelial cells were characterised by positive immunostaining for both markers, 

whereas keratocytes stained positively for vimentin and negatively for cytokeratin 3 

(CK3).

2.2.3. Cell storage in liquid nitrogen

For comeal cell storage, the freezing medium consisted of 10% DMSO and 90% FCS 

(v/v) was prepared. The cells were resuspended at 1 *106 -107 cells/ml in the freezing 

medium. 1 ml aliquots of cells were dispensed to cryovials. The vials were put into 

an ampoule holder and the container was placed into a -80°C freezer. After reaching - 

80°C, vials were stored in liquid nitrogen.
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For recovery of cultures, the frozen cells were thawed by directly plunging cryovials 

into a 37 °C water bath. Once thawing was completed, the cells were washed once 

with culture medium to remove DMSO. After centrifugation at 250g for 10 minutes, 

the cell pellet was resuspended and seeded into a 25cm2 culture flask and cultured at 

37 °C, 5% C 02.

2.2.4. RNA extraction

2.2.4.1 The principle of RNA extraction

The quality and quantity of isolated RNA is of primary importance for the successful 

detection and analysis of RNA molecules with RT-PCR. The principles of successful 

isolation of RNA from cells require the following:

1. Efficient disruption of cellular structures;

2. Dissociation of nuclear-protein from nuclei acids;

3. Inactivation of ribonuclease (RNase) activity;

TRIzol reagent, a mono-phasic solution of phenol and guanidine isothiocyanate, is an 

improvement to the single-step RNA isolation method developed by Chomczynski 

and Sacchi (1987). During sample homogenisation or lysis, TRIzol Reagent maintains 

the integrity of the RNA, while disrupting cells and dissolving cell components. 

Addition of chloroform followed by centrifugation, separates the solution into an 

aqueous phase and an organic phase. RNA remains exclusively in the aqueous phase. 

After transfer of the aqueous phase, the RNA is recovered by precipitation with 

isopropyl alcohol.
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2.2.4.2 RNA extraction

Cells were lysed directly in a 6 well plate by adding 1 ml/well of TRIzol reagent and 

aspirating the cell lysate several times through a pipette. The lysate was transferred to 

an eppendorf tube. The samples were incubated for 5 minutes at room temperature 

and 0.2 ml of chloroform was added into each sample. After shaking vigorously by 

hand for 15 seconds, the mixture was incubated for 3 minutes at room temperature 

and separated by centrifugation at 12000g for 15 minutes at 4°C. Two phases were 

formed, the upper phase which contained RNA was the aqueous phase, the lower was 

organic phase. The aqueous phase was carefully transferred to a fresh Eppendorf tube, 

an equal volume of isopropanol was added and the tube was placed at room 

temperature for 10 minutes. RNA was pelleted by centrifugation at 12000g for 15 

minutes at 4°C and the supernatant was discarded. Then the pellets were washed 

twice with 75% ethanol by vortexing and subsequently centrifuged for 5 minutes at 

7500g. The ethanol was removed, the pellets were air dried for 5-10 minutes and 

dissolved in the appropriate volume of RNase-free water by passing the solution a few 

times through a pipette tip and incubation for 10 minutes at 55-60°C. The RNA 

samples were stored at -80°C.

2.2.43 Determination of RNA concentration and purity

A simple and accurate method was used to quantify the amount of nucleic acid in a 

preparation. This involved the measurement of the amount of ultraviolet light 

irradiation absorbed by the bases in a spectrophotometer. In this study, the 

concentration of extracted RNA was measured using a GeneQuant II
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spectrophotometer. The optical density (OD) of RNA has its maximum absorbance 

wavelength at 260 nm. One OD unit is equivalent to 44 pg/ml of RNA. 

Contamination of RNA preparations by protein is demonstrated by measuring the OD 

at a wavelength of 280nm, since proteins typically have a maximum absorbance at 

this wavelength. A 260/280 absorbance ratio of 1.8-2.0 is appropriate for pure RNA. 

Contaminating protein will result in lower values of the 260/280 ratio. Tris-EDTA 

buffer (TE buffer) only was measured as the blank in the spectrophotometer. Then 1 

pi of the RNA samples was diluted 100 times by TE buffer and pipetted into a cuvette. 

The data of wavelengths of 260nm, 280nm, 260nm/280nm and the concentration of 

RNA were read respectively. Only the samples in the range of 260/280 absorbance 

ratio of 1.8-2.0 were used for the studies reported in this thesis.

2.2.5. Reverse transcription and Polymerase Chain Reaction (RT-PCR)

2.2.5.1 Principle

RT-PCR combines cDNA synthesis from RNA templates with PCR to provide a rapid, 

sensitive method for analyzing gene expression. At first, reverse transcriptase 

catalyses the conversion of RNA to cDNA. Then PCR is carried out in a three-step 

process. First, the template cDNA that contains the target DNA to be amplified, is 

denatured by heating. Second, the solution is cooled in the presence of an excess of 

two single-stranded oligonucleotides that are complementary to the DNA sequences 

flanking the target DNA. Third, two new DNA strands that are identical to the 

template DNA strands can be synthesized with the presence of a heat-stable DNA 

polymerase and the four deoxyribonucleotides (Fig. 2.1).
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Fig. 2.1 Schematic representation o f PCR. A. Double strands o f cDNA B. DNA 

strands split C. Primers bind to the complementary DNA strands D. Taq DNA 

polymerase extends complementary DNA strands from the primers. (Copied from the 

manufacture o f Abgene, UK)

The melting, annealing, and polymerisation cycle is repeated, the fragment of double

stranded DNA located between the primer sequences can be amplified over a 

millionfold. The fragment o f DNA can be confirmed by running on an agarose gel. 

Ethidium bromide can combine with DNA and fluorescence detected under UV light, 

thus allowing the bands o f DNA to be observed.

2.2.5.2 Reverse transcription

All the reverse transcription in this study was performed using the Reverse-iT™ First 

Strand Synthesis Kit (Abgene, UK). Reverse transcription reaction requires a reverse
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transcriptase, a RNA-dependent DNA polymerase which is used to prime the RNA 

and catalyse first strand cDNA synthesis.

The reverse transcription reaction was performed as described below: Equal quantities 

of RNA were employed from different samples to quantify the target gene expression. 

1 pi anchored oligo dT (0.5pg/pl), appropriate volume of RNA sample and sterile 

RNase-free water was added to each thin-walled reaction tube to a total volume of 13 

pi. The samples were heated at 70°C for 5 minutes to remove any secondary structure 

and then placed on ice. The reaction mixture was added to each sample, mixed well 

and vortexed gently. The reaction mixture consisted of the following components:

Component Volume

5X first Strand Synthesis buffer 4pl

dNTP mix- 5 mM each 2pl

RTase lpl

After incubation at 47°C for 30 min, the RTase was inactivated by incubating at 75°C 

for 10 minutes. The cDNA was either used directly in amplification step or stored at 

-20°C for further use.

2.2.53 Polymerase Chain Reaction

The primers used for PCR were either from published papers or self-designed. For 

self-designed primers, mRNA sequences were obtained from the gene bank of the 

National Centre for Biotechnology Information (NCBI) and the design of the primer 

pair was according to the following principles:
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1. Primers were 18-24 nucleotides in length

2. Primers selected had 40% to 60% GC

3. Primers were designed with G or C residues in the 5’ and central regions so as to 

increase the primer’s stability and confer hybridisation stability with the target 

sequence.

4. Complementary sequences at the 3’ end of primer pairs were avoided to prevent 

amplification from the primers themselves to form primer-dimers.

5. A GC-rich 3’ end was avoided

6. Mismatches at the 3’ end was avoided

7. Sequences with the potential to form internal secondary structure were avoided.

Table 2.2 Primer sequences for RT-PCR analysis

Gene Primer sequence (5’-3’) Annealing
temperature

(°C)

Product
amplified

(bp)
Notch 1 Fw. 5 ’-GACATCACGGATCATATGGA-3 ’ 

Rv. 5’-CTCGCATTGACCATTCAAAC-3’
50 666

Notch2 Fw. 5’-CCAGAATGGAGGTTCCTGTA-3’ 
Rv. 5 ’-GTACCCAGGCCATCAACACA-3 ’

52 377

Notch3 Fw. 5’-CACTGAAGGCTCGTTCCA-3’ 
Rv. 5’-GGTTGCTCTCGCATTCA-3’

50 202

Notch4 Fw. 5 ’-AGCCG AT A A AG ATGCCCA-3 ’ 50 687
Rv. 5’-ACCACAGTCAAGTTGAGG-3’

Delta 1 Fw. 5’-AGACGGAGACCATGAACAAC-3’ 52 382
Rv. 5 ’-TCCTCGGATATGACGTACAC-3 ’

Delta3 Fw. 5’-GTGAATGCCGATGCCTAGAG 54 256
Rv. 5’-GGTCCATCTGCACATGTCAC-3’

Delta4 Fw. 5’-TGACCACTTCGGCCACTATG-3’ 50 620
Rv. 5’-AGTTGGAGCCGGTGAAGTTG-3’

Jagged1 Fw. 5’-AGTCACTGGCACGGTTGTAG-3’ 54 227
Rv. 5 ’-TCGCTGTATCTGTCCACCTG-3 ’

Jagged2 Fw. 5 ’ -GATT GGCGGCT ATT ACT GT G-3 ’ 52 600
Rv. 5’-AGGCAGTCGTCAATGTTCTC-3’

p-actin Fw. 5’-CATCACCATTGGCAATGAGC-3’ 58 284
Rv. 5 ’-CGATCCACACGGAGTACTTG-3 ’

PS1 Fw. 5’-GCTCAGGAGAGAAATGAAACGC-3’ 54 80
Rv. 5’-CCTTCTGCCATATTCACCAACC-3’

PS2 Fw. 5 ’-CTTGCTGACTGTCTGGAACTT-3 ’ 52 46
Rv. 5’-CTCATTTCTCTCCTGGGCAGT-3’
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All the primers (see Table 2.2) used in this thesis were synthesised by MWG 

BIOTECH (MWG Germany). 300-600 ng cDNA samples and 0.2-0.6 pM final 

concentration of each primer were added into PCR Master Mix (Abgene, UK).

The reaction mixture was placed in the thermal cycler and cycled as below:

Procedure Incubation Number of cycle

Initial denaturation

Denaturation

Annealing
Extension

Final extension

94°C, 2min

94°C, 20 sec '')

50,52,54 °C, 30 sec> 
72°C, lmin

72°C, 7 min

1 cycle 

35 cycle

1 cycle

2.2.5.4 Agarose gel electrophoresis

2.2.5.4.1 Preparation of agarose gel

For making 1.2% agarose gel, 600 mg agarose was dissolved in 50 ml lx TBE buffer 

(see appendix II) by heating in a microwave until the agarose had dissolved. The gel 

solution was left to cool to 55°C. Then 2.5pl (10 mg/ml) of ethidium bromide was 

added with mixing. The gel solution was carefully poured into a sealed gel holder, 

removing any air bubbles. The gel comb was then inserted into the gel and the gel was 

left to set for 30 minutes. The tapes were then removed from the gel holder and it was 

gently lowered into the electrophoresis chamber. TBE buffer was poured into the
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electrophoresis chamber until it covered the surface of the gel and the comb was then 

removed.

2.2.S.4.2 Loading the samples and running the gel

2 pi of marker (1 Kb Plus DNA Ladder™, Invitrogen) was loaded into the gel. Equal 

volumes (5 pi-10 pi) of each PCR reaction were loaded onto the gel. The gel was run 

at 100 V until the dye front had travelled at least half way down. The gel was then 

viewed on a transilluminator under UV light. Positive bands were visualised and 

recorded electronically.

2.2.6. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

and Western Blotting

2.2.6.1. Principle

Protein electrophoresis is the method by which charged molecules will move in an 

electric field. Proteins will travel down a gel at various speeds, depending on their 

individual size, charge, solubility, and binding affinity. A common gel for separation 

of a protein mixture is the polyacrylamide gel, because these gels are chemically inert 

and readily formed by the polymerisation of acrylamide. Changing the concentration 

of acrylamide can vary the pore size of the gel. In sodium dodecyl sulfate (SDS) 

polyacrylamide gel electrophoresis (PAGE), the protein mixture is denatured by 

heating to 100°C in the presence of excess SDS and a thiol reagent is employed to 

break disulfide bonds. SDS binds to the proteins and gives this complex a net negative
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charge that is proportional to the mass of the protein. Thus the proteins can be 

separated on the basis of their size only.

Western blotting is an immunoassay technique that can detect very small quantities of 

a protein in a cell or body fluid. A mixture of protein is separated electrophoretically 

by SDS-PAGE, and the individual protein bands are transferred to nitrocellulose 

paper. A specific antibody is then used to probe for specific protein bands. The 

antibody to the protein bind (s) and the unbound antibody are washed away. The 

bound antibody is then detected by the addition of a second antibody against the 

immunoglobulin species that the first antibody was raised in. Conjugation of the 

secondary antibody to an enzyme allows the specific protein band to be visualised on 

addition of a substrate.

2.2.6.2 Sample preparation for SDS-PAGE and Western Blotting

The BCA protein assay kit (PIERCE, UK) was used to assay the total protein of each 

sample. The kit was composed of BCA protein assay reagent A, B and albumin 

standard. Samples of human corneal cells derived from different donors were 

prepared as described below:

The following steps should be performed on ice to protect protein activity. Culture 

medium was aspirated from cells in a confluent. 6-well cell culture plate then rinsed 

with PBS at room temperature for 10 minutes. Then PBS was removed and the cells 

were lysed by addition of 1 ml RIPA buffer (see Appendix II) to each well and 

shaking at 4°C for 30 minutes. A scraper was then used to detach any remaining
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cellular material. The cell lysates were transferred to Eppendorf tubes and centrifuged 

at 12000g for 15 minutes at 4°C. The supernatant was transferred to a new microfuge 

tube and mixed with electrophoresis sample buffer (see appendix II, 1:2 v/v), boiled 

for 5 minutes to denature the protein and stored in a -20°C freezer. Samples, with 

equal protein concentrations, were loaded onto an 8% SDS-PAGE (see below).

2.2.63 Preparation of molecular weight markers

A wide range (7 -  395 kDa) molecular weight standard mixture (Sigma) was used in 

these studies. 1.5ml of lx SDS-PAGE sample buffer (see Appendix II) was added into 

the lyophilised wide range marker, mixed by inversion, and vortexed five seconds to 

dissolve completely. The mixture was boiled in a water bath for one minute and 

stored at -20°C.

2.2.6.4 SDS-PAGE

The casting plates were swabbed with tissue paper soaked in 100% ethanol and 

allowed to air dry. The spacers and the two glass plates were assembled in the clamp. 

The clamp was tightened with the glass plates and spacers aligned on the casting stand. 

The sandwich was snapped onto the casting stand to seal the bottom of the assembly. 

Some 100% ethanol was applied to ensure it was water proof. The glass plate was 

marked with a marker pen to indicate the desired upper limit of the resolving gel. The 

8% resolving gel solution (see Appendix II) was poured in the glass plate sandwich 

using a plastic pipette up to the marker line. The gel mixture was overlaid by 100% 

ethanol to exclude oxygen from the surface. After a clear line formed between the
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resolving gel and the ethanol to indicate gel polymerization, ethanol was drained 

using tissue. 5% stacking gel (see Appendix II) mixture was prepared to overlay 

resolving gel. The comb was inserted. It is important that there were no air bubbles 

trapped beneath the comb.

After polymerisation of stack gel, the gel was transferred to the electrophoresis 

apparatus. 5pl molecular weight marker was loaded into left well and 15 pi of 

different samples were loaded into each of other wells. The electrophoresis apparatus 

was connected to the power pack. Gel was run at a constant current of 45 milliAmps 

per gel until the dye bands reached the gel bottom. This usually took 60-90 minutes.

2.2.6.5 Western Blotting

Immunoblotting was carried out essentially as described by Towbin et al. 1979 

(Towbin et al., 1979). After electrophoresis, the proteins were transferred to 

nitrocellulose membrane in transfer buffer (see Appendix II) using a blotting 

apparatus (Biometra, Germany), set at 0.05 V, 0.65mA/cm2 of gel for 1 hour 

45minutes.

The nitrocellulose membranes were then blocked in 10% milk in TBS (Tris-buffered 

saline, see Appendix II) at 4°C, overnight. The next day, the membranes were 

incubated with the appropriate primary antibodies: Notchl, goat anti-human; Notch2, 

goat anti-human; AE5, mouse anti-human and Ki67, rabbit anti-human (See Table 2.3) 

diluted in TBS-T (0.05% Tween-20 in TBS) containing 3% milk for 2 hours at room
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temperature. Then the membranes were washed at least 5 times with 5ml wash 

solution (TBS-T containing 3% milk), 5 minutes for each wash.

Table 2 3  the antibodies used in Western Blotting

Primary antibody Dilution Company

Notch 1 1/100 Santa Cruz
Notch 2 1/100 Santa Cruz
AE5 1/100 ICN-UK

Ki67 1/50 DAKO-Denmark

Second antibody Dilution Company

anti-goat HRP 1/2000 Santa Cruz

anti-rabbit HRP 1/2000 Santa Cruz

anti-mouse HRP 1/2000 Santa Cruz

After washing, the membranes were incubated with horseradish peroxidase (HRP)- 

conjugated secondary antibody (anti-goat, anti-rabbit and anti-mouse, see Table 2.3) 

diluted in the same solution as primary antibodies for 1 hour at room temperature and 

washed 3 times for a minimum of 5 minutes with TBS-T and twice with TBS.

2.2.6.6 Detection of antibody-antigen complexes by enhanced chemiluminescence 

(ECL)

After the membranes were washed, equal volumes of reagent A (5ml) and reagent B 

(5ml) were mixed in a convenient sized container. Then the membranes were 

removed from TBS solutions and immersed in the ECL reagent mixture (Santa Cruz

72



Biotechnology) for 1 minute. After excess ECL solution was drained off from the 

membrane, the membrane was covered in Saran Wrap and place into an 

autoradiographic film cassette. In a darkroom, a piece of autoradiographic film 

(Kodak XOMAT-AR) was placed on top of the membrane. After an appropriate 

exposure time (1-2 minutes), the film was immersed into developer as soon as an 

image appeared, the film was rinsed in water and soaked in fixer for 5 minutes, rinsed 

again and left to air dry.

After scanning densitometry of the band using a scanner (EPSON expression 1680), 

and image capture (EPSON expression 1680), the relative band intensities were 

quantified by measuring same size of positive bands using Scion Image software. The 

data were recorded, the relative concentrations of target protein were analysed by 

PRISM software.

2.2.7. Immunofluorescent labelling of cells

2.2.7.1. Immunofluorescent labelling of cells for Notch receptors and their 

ligands

The standard method is same as in section 2.2.2.2. The coverslips containing cells 

were incubated in appropriate primary antibodies (see Table 2.4) and secondary 

antibodies (see Table 2.5).
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Table 2.4 Primary antibodies used for immunolabelling

Primary antibody Dilution in PBS Company

Notch 1 1/100 Santa Cruz
Notch 2 1/100 Santa Cruz
Delta 1 1/100 Santa Cruz
Jagged1 1/100 Santa Cruz
AE5 1/100 ICN-UK
Ki67 1/50 DAKO-Denmark

Table 2.5 Secondary antibodies used for immunolabelling

Secondary antibody Dilution Abs(nm) Em(nm) Company

Alexa Fluor 488 donkey 
anti-goat IgG antibodies

1/1000 495 519 Molecular
Probes

Alexa Fluor 488 donkey 
anti-rabbit IgG antibodies

1/1000 495 519 Molecular
Probes

Alexa Fluor 488 donkey 
anti-mouse IgG antibodies

1/1000 495 519 Molecular
Probes

Alexa Fluor 594 donkey 
anti-rabbit IgG antibodies

1/1000 578 603 Molecular
Probes

Alexa Fluor 594 donkey 
anti-mouse IgG antibodies

1/1000 578 603 Molecular
Probes

Alexa Fluor 594 donkey 
anti-goat IgG antibodies

1/1000 578 603 Molecular
Probes

Abs. Approximate absorption. Em. Fluorescence emission maxima.

2.2.7.2. Notch receptors and ligands expression in relation to epithelial cell 

proliferation and differentiation

Ki67 is a nuclear protein that is expressed in proliferating cells and which is widely 

used in routine as a ‘proliferation marker’ to measure the growth fraction of cells 

(Schluter et al., 1993). AE5, cytokeratin 3 (CK3), has been regarded as a marker for 

‘comeal-type’ differentiation (Cooper and Sun, 1986).
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For double immunolabelling of Notch family with Ki67 or AE5, the standard method 

is also same as in section 22.2.2. The coverslips were incubated in appropriate 

primary antibodies (see Table 2.4) and secondary antibodies (see Table 2.5).

2.2.8. Quantification of positive immunolabelling in epithelial cells

After immunocytochemical staining, the cells were visualised and photographed by a 

inverted microscope (DMRAZ, Leica) in 5 areas from 3 coverslips (see Fig. 2.2). 

Positively stained cells were quantitated using Image Pro-Plus software. The rule of 

counting items on a picture was that all cells (including those touching the edges) 

should be counted. Total 15 areas ( 5 x 3  for each slide) were counted. The percentage 

of positive staining cells and the percentage of Hoechst-stained nuclei were recorded. 

The data were analysed by PRISM software.

Slide
Coverslip

Image area

Fig. 2. 2. A cartoon showing the photographs from coverslips.
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2.2.9. Histological Techniques

All human corneas were obtained from the Bristol Eye Bank and used in accordance 

with the tenets of the Declaration of Helsinki regarding the use and permission of 

human tissue for research.

cornea
For cryo-sectioning

cut

For cryo-sectioning
sclera

Fig. 2.3. A cartoon showing how the corneoscleral discs were bisected and prepared 
for cryo-sectioning.

The corneoscleral disc was excised from the rest of the globe using a surgical blade 

the lens and other sub-comeal tissue were then removed. Corneoscleral discs were 

bisected and prepared for cryo-sectioning as showed in Fig. 2.3.

2.2.9.1. Preparation of frozen sections

The comeal tissue was embedded cut-surface down in optimal cutting temperature 

(OCT) medium (Tissue Tek) and frozen in liquid nitrogen-cooled isopentane. The 

frozen tissue block was mounted on a chuck using OCT medium. Ice freeze was 

sprayed on to the block and chuck and they were left for 5 minutes. 8pm cryosections 

were cut using a microtome (Leica Microsystems CM3050s). The sections were
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applied directly to Super Frost plus slides (BDH) and allowed to air-dry at room 

temperature for 2 hours, then wrapped in aluminium-foil and stored at -20°C.

2.2.9.2. Haematoxylin and Eosin staining

To examine comeal tissue morphology, sections were immersed in Harris’ 

Haematoxylin (BDH, UK) for 5 minutes to stain all nuclei, washed in cold running 

tap water for 10 minutes, counter stained with Eosin for 2 minutes and then washed 

for 10 minutes in cold running tap water.

2.2.93. Immunolabelling techniques for frozen sections

Frozen sections were fixed in 100% acetone (BDH) for 10 minutes and allowed to dry 

for 10 minutes, then incubated for 20 minutes in 0.2% Triton X-100 (t- 

octylphenoxypolyethoxyethanol) in PBS to permeabilise cell membranes. Following 

this, sections were rinsed in 3 washes in PBS (10 minutes each). The sections were 

labelled and incubated in appropriate primary antibody (see Table 2.4) for 2 hours 

followed by three 10- minute washes with PBS. Substitution of the primary antibodies 

with same species serum (goat, mouse, rabbit) at the same concentration was used as a 

negative control. These sections were then incubated with the appropriate Alexa Fluor 

(Molecular Probes) secondary antibody (see Table 2.5) for 2 hours in the dark, and 

followed by three 10- minute washes with PBS.

The sections were mounted in Hydromount containing Bis-benzimide (lOpl of 

1 mg/ml Bis-benzimide in 5ml Hydromount), and visualised under a DMRAZ 

microscope (Leica) equipped with a 100W mercury vapor lamp for illumination,
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using filter with absorption 359nm and emission 461nm for bis-benzimide, filter with 

absorption 494nm and emission 518nm for Alexa Fluor 488, filter with absorption 

570nm and emission 595nm for Alexa Fluor 594. Images were captured using Leica 

Qfluoro software and overlapped, positively stained cells were quantitated using 

Image Pro-Plus software. The rule of counting items on a picture was that all cells 

(including those touching the edges) should be counted. The percentage of positive 

staining cells and the percentage of Hoechst-stained nuclei were recorded. The data 

were analysed by PRISM software.

2.2.10. Corneal epithelial cell stratification

2.2.10.1. Preparation of Amniotic Membrane (AM)

In accordance with the tenets of the Declaration of Helsinki and with proper informed 

consent, human amniotic membranes were obtained at the time of routine Cesarean 

section (Queen’s Medical Centre, University Hospital, Nottingham, UK). Under 

sterile conditions the membranes were washed with sterile phosphate-buffered saline 

(PBS) containing antibiotics and separated from the chorion into 5x5 cm squares and 

stored at -80°C in Dulbecco’s modified Eagle’s medium (DMEM, Gibco BRL) and 

glycerol (Sigma) at a ratio of 1:1 (vol/vol). Immediately before use, the amniotic 

membranes were thawed, washed three times with sterile PBS, then deprived of their 

amniotic epithelial cells by incubation with 0.5% EDTA (BDH) at 37°C for 3-6 hours 

to loosen the cellular adhesion, followed by gentle scraping with a cell scraper (Nalge 

Nunc International, Naperville, IL). With the scraped side uppermost, a horizontal cut 

was made in the top right comer to aid further orientation. Preliminary evaluation of
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haematoxylin- stained as described in section 2.2.9.2, ethanol-fixed tissues confirmed 

that this protocol effectively removed epithelial cells from the amniotic membrane. 

Denuded AM was refrozen in 1:1 DMEM/Glycerol until required.

2.2.10.2. Mitomycin C treatment of 3T3 fibroblasts

Passage 149 3T3 fibroblasts (3T3 is code of a fibroblast cell line derived from mouse) 

were removed from the -80 °C freezer, thawed rapidly and the cell suspension was 

added to 10ml medium (DMEM + 10% FCS + 1% penicillin and 1% streptomycin). 

The cells were centrifuged, and the pellet was resuspended in fresh media (same as

*7 Aabove) and seeded into 75 cm flasks with a seeding density of 3.0x10 cells/cm . 

When the cells were sub-confluent (ie. 90% confluence of flask), the medium was 

removed and 4ml of 4pg/ml mitomycin C (MMC) in PBS (MMC aliquots stored at 

200 pg/ml) was added. Then the cells were incubated for 2 hours at 37°C until cells 

lost their spindle shape and became round. After washing in PBS twice and addition 

of 0.05% Trypsin- EDTA for 2 minutes, followed by addition of 4 ml media and 

centrifugation at 250g for 5 minutes, the cells were resuspended in 6 ml media. 1ml of

A 2media was placed into each well of a 6-well plate with a density of 3.0 x 10 cells/cm . 

A further 1 ml of media was added to each well, and cells were incubated overnight 

before use.

2.2.103. Primary culture of corneal epithelial cells on AM

Denuded AM were thawed and rinsed in PBS. Orientation was achieved by a 

horizontal cut in the top right comer so that epithelial side was uppermost. The AM
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was picked up by the top comer and placed onto a dry petri dish to remove as much 

liquid as possible. It was then spreaded out and placed onto a polycarbonate 

membrane culture insert (0.4 pm, Coming Incorporated), in a 6-well plate containing 

treated 3T3 fibroblasts and allowed to adhere for 2 minutes. 2 ml DMEM was added 

to the lower chamber and incubated overnight.

explant Epi. cells

k in c c a _______ AM

3T3

Fig. 2.4 Schematic diagram o f corneal epithelial cell stratification model. Explant, 

human corneal explant; Epi. Cells, corneal epithelial cells; AM, amniotic membrane; 

3T3, fibroblast cell line from mouse.

A human donor corneoscleral rim was cut into 6 pieces. The endothelium and 

approximately half the stromal depth was dissected from each segment, taking care 

not to disturb the limbal epithelia. Each piece (dabbed dry on tissue) was placed 

epithelial side down onto a prepared culture insert containing AM, with the limbal 

side pointing towards the centre. Each explant was allowed to adhere for 2 minutes, 

then 1.8 ml media was added to the lower chamber of the well. The plate was placed 

carefully into an incubator at 37°C. After 2 hours, the explant was examined to ensure 

it remained moist, then incubated for 1 or 2 days. The migration of epithelial cells was 

observed and the media was replaced every 2 days with 1.8 ml SHEM media (500ml
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DMEM/F-12, 50ml FCS, 5ml penicillin, 250pl insulin, 50 pi cholera toxin, 5 pi EGF) 

(Fig. 2.4).

2.2.10.4. Setting up a epithelial stratification model

After 3 weeks, when the epithelial cells were confluent, they were air-lifted by 

addition of 1.6-1.8 ml media to lower chamber, thereby leaving epithelial cell surface 

exposed to air. SHEM media was changed every 2 days. After 2-4 days, the epithelial 

cells appeared stratified with a ‘cobblestone’ appearance.

Epithelial stratification in the air-lift model was maintained at different time points: 1 

week, 2 weeks, 3 weeks (in submerged state) and 4 weeks (3 weeks submerged, 

followed by 1 week air-lift) were set up.

2.2.10.5. The effect of inhibition of Notch signalling in corneal epithelial 

stratification

2.2.10.5.1. The preparation of media

lmg y-secretase inhibitor (Sigma) was dissolved in 56pl dimethyl sulfoxide (DMSO) 

to form a 25mM stock solution and stored at -20°C. 2pl of the inhibitor stock were 

added to 1 ml SHEM to form a final concentration of 50pM. Medium containing 0.2 

% DMSO was used as a negative control.
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2.2.10.5.2. Treatment with a y-secretase inhibitor

When epithelial cell growth was observed (after 7 days), the SHEM was removed 

from wells containing the AM + corneal plant and SHEM with 0.2% FCS was added 

for 4 hours. Then the wells were rinsed with PBS twice, and SHEM containing either 

0 or 50 pM y-secretase inhibitor was added for 1 week, 2 weeks and 3 weeks (in 

submerged state) followed by 1 week air-lifted. Frozen blocks were taken at different 

time points as described above.

2.2.10.6. The effect of the activation of Notch signalling in the corneal epithelial 

stratification

2.2.10.6.1. The preparation of media

100 pg Recombinant Jaggedl (rJaddedl, R&D SYSTEMS, 599-JG) was dissolved in 

0.1ml PBS to prepare a working stock solution of 1 mg/ml and stored at -20°C. For the 

experiment, 10 pg/ml of rJaggedl in SHEM was made up. The SHEM containing the 

same amount of PBS (1%) as used as a control.

2.2.10.6.2. The treatment of rJaggedl

When the epithelial cell growth was established (after 7 days), the SHEM was 

removed from wells containing AM + corneal explant and SHEM containing 0.2%
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FCS was added at 37°C for 4 hours. Then the wells were rinsed with PBS twice, the 

SHEM containing either 0 or 10 pg/ml rJaggedl was added at 37 °C for 1 week, 2 

weeks and 3 weeks (in submerged state) followed by 1 week air-lifted.

2.2.10.7. Obtaining frozen sections from AM + corneal explant

The epithelial cells + AM were punched carefully with 6mm Biopsy trephine 

(Medisave, AWBP-60F) at different time points (week 1, week 2, 3 and week 4). The 

biopsies were frozen in isopentane cooled by liquid nitrogen in preparation for 

cryosectioning as described in section 2.2.9.1.

2.2.11. Notch signalling in corneal organ culture and wound healing

2.2.11.1. Choosing a species

All protocols in this study conformed to the ARVO Statement for the Use of Animals 

in Ophthalmic and Vision Research and with permission for research.

Due to difficulties in obtaining sufficient number of human corneas to carry out this 

study, species were chosen based on the following criteria:

• Availability and cost of tissue,

• Ease of performing the organ culture technique,

• Viability in organ culture. Morphological assessment of the corneal structure 

comparing 0 and 24 hours visualised following haematoxylin and eosin staining of 

frozen sections (see sections 2.2.9.2),
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• Cross-reactivity of antibodies with tissue.

To determine which species could be used for subsequent experiments, corneal frozen 

sections were probed with antibodies against Notch 1, Notch 2, Delta 1, Jagged 1, 

Ki67 and cytokeratin 3 as described previously in sections 2.2.9.3. Results confirmed 

that the rat cornea was the most suitable species to use in a study to assess corneal 

organ culture model.

2.2.11.2. Setting up corneal organ culture and wound healing models

Adult rat eyes (Norwegian Brown, 6-8 weeks of age) were provided friendly (within 4 

hours of slaughter and cleaned). The eyes were cleaned with four rinses in sterile 

0.9% (w/v) sodium chloride (NaCl), followed by a 3 minute immersion in 5% 

polyvinylpyrrolidone iodine, with a 5 minute neutralisation in 2% sodium 

thiosulphate and finally rinsed in 0.9% (w/v) NaCl. The corneoscleral disc was 

excised from the rest of the globe using a surgical blade the lens and other sub-comeal 

tissue were then removed. One of two types of wound were created in the centre of 

each cornea: (a) a superficial scrape wound, in which the epithelium was removed 

from Bowman’s membrane using a scalpel blade after light demarcation with a 3 mm 

trephine, and (b) an excisional trephine wound in which the epithelium and superficial 

stroma were excised using a scalpel blade after punching to a depth of approximately 

one-third of the thickness of the rat cornea (approximately 40pm epithelial plus 40pm 

stromal ablation) with a 3 mm trephine. Comeo-scleral rims, with approximately 5 

mm of the limbal conjunctiva present, were then excised and rinsed in PBS.
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All corneas (unwounded, epithelial and stromal wounded) were placed epithelial-side 

down into a sterile holder containing tissue culture medium (DMEM, Gibco) to 

prevent drying of the epithelium (Fig. 2.5a). Holder with suitable diameter was used 

to ensure that scleral rims would rest on the cup edges without damage to the corneal 

epithelium. The endothelial corneal concavity was then filled with serum-free DMEM 

containing 1% agar and 1% gelatin (Appendix I) at 37°C. This mixture was allowed 

to set for 1 minute. This mixture had been previously heated in a microwave oven 

(Sanyo) on a high setting for 10 minutes to melt the gelatin/agar matrix, and allowed 

to cool in a water bath at 45°C before placing in corneal cavity.

Corneas were then inverted and transferred to a 6-well plate and cultured at 37°C in a 

humidified 5% CO2 incubator (Fig. 2.5b). Serum-free Trowell’s T8 medium 

containing antibiotics, fungizone and glutamine (Appendix II) was added to each well. 

To moisten the epithelium, 100 pi of T8 medium was added dropwise onto the surface 

of the comeal epithelium daily. Medium levels were maintained to a level just below 

the limbal region (see Fig. 2.5b).

Sterile conditions were maintained throughout. The wounded corneas in triplicate 

were cultured for varying periods of time (up to 2 weeks). After healing intervals of 2, 

4, 8, 16, 24, 48, 72 hours (epithelial wound), and 4, 8, 16, 24, 72 hours, 7 days, 14 

days (stromal wound) the rat corneas snap were frozen and processed for cryosections 

(see section 2.2.9.1) and immunolocalisation of Notch family members, Ki67 and 

cytokeratin 3 (section 2.2.9.3).
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a.

Cavity to be filled 
with Agar/Gelatin

Endothelium 

Sclera

Epithelium 

Holder

b.

Stroma

Excisional trephine wound

Epithelium

Limbus 

Conjunctiva 

Culture medium

Sclera

Agar/Gelatin support

Fig. 2.5. Diagram representing organ culture model used in this study depicting an 

excisional trephine wound, (a), shows the stage after isolation o f the corneo-scleral 

tissue ; inversion o f the tissue to allow the addition o f medium containing 1% gelatin 

and 1% agar. (b). Once set the tissue is inverted again, placed in a 6-well plate and 

serum-free medium added to the level o f the limbus.

2.2.11.3. The effect of the inhibition of Notch signalling in corneal organ culture 

and wound healing
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Above corneas were treated with T8 media containing either 0 or 50 pM y-secretase 

inhibitor as section 2.2.10.5.2. The cryosections of organ culture and wounded 

corneas were processed for immunofluorescent staining of Notch family members, 

Ki67 and cytokeratin 3.

2.2.11.4. Activation of Notch signalling in corneal organ culture and wound 

healing

Aat corneas (see above) were treated with T8 media containing either 0 or 10 pg/ml 

Jagged 1 as section 2.2.10.6.2. The cryosections of unwounded and wounded corneas 

were processed for immunofluorescent localisation of Notchl, Notch2, Deltal, 

Jagged 1, Ki67 and cytokeratin 3.
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CHAPTER THREE

THE NOTCH SIGNALLING PATHWAY IN CORNEAL 
EPITHELIAL HOMESTASIS
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3.1. Introduction

The comeal epithelium is a non-keratinised stratified squamous epithelium composed 

of 5-6 layers and is subject to a constant process of cell renewal and regeneration. The 

comeal epithelium exists in a state of dynamic equilibrium, with the superficial cells 

being constantly shed into the tear film, with a turnover period of 4-6 days (Hanna et 

al., 1961). To accomplish its self renewal process, the comeal epithelium and the 

epithelia of other self renewing tissues rely on the presence of stem and transient 

amplifying cells, which are the only cells with proliferative potential (Lavker and Sun, 

1983; Morrison et al., 1997). Clinical and experimental evidence points to the comeal 

epithelial stem cells being located at the corneoscleral limbus (Dua and Azuara- 

Blanco, 2000).

As reviewed by Boulton and Albon (2004), not only do stem cells ensure that the 

comeal epithelium undergoes continual self-renewal, they are also responsible for 

epithelial tissue repair and regeneration throughout the life of the adult cornea. These 

stem cells are undifferentiated, slow-cycling cells that self-renew and produce 

transient amplifying cells which migrate to the comeal epithelium (Kinoshita et al., 

1981; Tseng, 1989).

The cornea-specific cytokeratin 3 (CK3) has been used as a marker for differentiating 

epithelial cells and confirmation of epithelial cell purity (Schermer et al., 1986). In 

this study, AE5, a highly specific antibody against the 64 kDa CK3, has been used as 

a marker of differentiating epithelial cells.
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Ki67, a nuclear antigen that is present in proliferating cells (Joyce et al., 1996), is a 

widely used biological marker to assess cell proliferation. Several studies have 

demonstrated that peripheral epithelial cells have a higher proliferative potential than 

those from limbal and central cornea (Ebato et al., 1988; Lavker et al., 1991).

The Notch pathway controls cell-fate specifications in all multicellular animals 

examined to date, ranging from sea urchins and nematodes to humans (Artavanis- 

Tsakonas et al., 1999). In higher vertebrates, multiple Notch homologues have been 

identified, including Notch 1-4 in rodents and humans (del Amo et al., 1993; Lardelli 

and Lendahl, 1993; Lardelli et al., 1996; Uyttendaele et al., 1996). Multiple ligands 

for the Notch receptors are also identified in mammals (Jagged 1/Serrate 1, 

Jagged2/Serrate2, Deltal, Delta3, and Delta4). Deltal, Jaggedl, and Jagged2 have 

been characterized as ligands for Notch 1, Notch2, and Notch3 receptors (Jarriault et 

al., 1995; Lindsell et al., 1995; Luo et al., 1997; Shimizu et al., 1999; Shimizu et al.,

2000). The Notch receptor undergoes a ligand-dependent extracellular cleavage that 

releases the extracellular domain leaving a membrane-tethered intracellular domain 

(Brou et al., 2000). The subsequent intramembrane cleavage by y-secretase results in 

the translocation of the Notch intracellular domain to the nucleus where it influences 

the decision of cell fate (Greenwald, 1998; De Strooper et al., 1999; Struhl and 

Greenwald, 1999; Ye et al., 1999; Mumm et al., 2000). It is generally believed that 

Jagged and Delta act as transmembrane proteins that interact with Notch receptors 

expressed on adjacent cells (Artavanis-Tsakonas et al., 1999).

A large number of both positive and negative modifiers of this pathway have been 

identified, and the eventual Notch pathway activity is dependent on the integration of
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these multiple signals (Artavanis-Tsakonas et al., 1999). More recently, site-directed 

mutagenesis (Wolfe et al., 1999) and biochemical (Esler et al., 2000; Li et al., 2000) 

evidence has suggested that Presenilin (PS) is the catalytic component of y-secretase. 

Presenilin, a ~46 kDa protein, is encoded by two highly homologous genes, PS 1 and 

PS2, both contributing independently to y-secretase activity. y-Secretase inhibitor 

(S2188, Sigma) has been used in this thesis to block Notch signalling pathway by 

inhibition of PS1 activation, thus allowing the function of Notch signalling to be 

investigated.

Maintenance of comeal structure is crucial for its physiologic functions as a 

biodefence system and a refractive tissue (Klyce, 1972). Comeal homeostasis is 

dependent on the constant regulation of the epithelium via slow cycling stem cells at 

the limbus and centripetally directed transient simplifying cells (Kruse and Volcker, 

1997). Cell proliferation, differentiation and stratification are considered to be 

essential in this process. However, the precise mechanisms which regulate these 

processes have not been fully elucidated, although cell-cell interaction is considered 

to be an important component.

Aim of this chapter is to investigate (1) expression of Notch family members in the 

cornea; (2) the role of the Notch signalling pathway in human comeal epithelial 

homeostasis.

3.2. Project design

A total of 6 human donor corneas (within 24 hours of cadaver time) and 40 donor 

corneoscleral rims were obtained from the Bristol Eye Bank and used in this study.
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The mean age of donors was 62 ± 19 years. The use of human tissues was in 

accordance with the tenets of the Declaration of Helsinki and permission had been 

given for research.

3.2.1. Immunofluorescent localisation for Notch family members, Ki67 and CK3 

from human cornea

6 human donor corneas were used for immunofluorescent staining. Images from 

comeal limbus, periphery and centre were captured using Leica Qfluoro software. The 

standard methods were the same as section 2.2.9.3.

3.2.2. Isolation and culture of human corneal epithelial cells and keratocytes

40 donor corneoscleral rims were used for the culture of comeal epithelial cells and 

stromal keratocytes. The standard methods were the same as described in section 

2.2.1.1 and 2.2.1.2. Cells were used between passage 1-3 for all experiments.

3.2.3. RT-PCR and Western Blotting analysis of Notch receptors and their 

ligands in human corneal cells

When comeal cells were confluent, they were harvested and subject to RT-PCR and 

Western blot analysis as described in section 2.2.5 -2.2.6.
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3.2.4. The effect of y-secretase inhibition and Jaggedl activation on the Notch 

pathway and corneal epithelial cell homeostasis

3.2.4.1. Western Blotting analysis

A y-secretase inhibitor (Appendix I) and Jaggedl (Appendix I) were used to evaluate 

the function of Notch signalling in the regulation of epithelial cell differentiation and 

proliferation. After reaching sub-confluence, epithelial cells were incubated in serum- 

free medium for one hour, then subjected to different treatments with y-secretase 

inhibitor or Jaggedl (see section 2.2.10.5 and 2.2.10.6). The expressions of Notchl, 

Notch2, Ki67 and CK3 were semi-quantified following western blotting (see section 

2.2.6). Concentrations of y-secretase inhibitor (25pM and 50pM) and Jaggedl 

(5pg/ml and lOpg/ml) were chosen due to their previously reported respective 

inhibitory and stimulatory effect on the Notch pathway (Lindsell et al., 1995; Wolfe,

2001). Following scanning densitometry (scanner EPSON expression 1680) of 

immunopositive blots, Scion Image software was used to semi - quantitatively analyse 

changes in protein expression of Notchl, Notch2, Ki67 and CK3.

3.2.4.2. Immunofluorescent localisation of Notch receptors, Ki67 and CK3

Human corneal epithelial cells were cultured on coverslips, pre-coated with 

attachment factor, until sub-confluence was reached. Then the cells were treated with 

either y-secretase inhibitor or recombinant Jaggedl, in triplicate wells as described 

above. Immunolabelling and cell counting for Notchl, Notch2, Ki67, CK3 was 

performed as described in sections 2.22.2 and 2.2.8. The cells were visualised under a
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Leica (DMRAZ) microscope and images were captured and analysed using Image 

Pro-Plus software (Image Solutions, UK).

3.2.5. Statistical analysis

All experiments were repeated at least three times and each treatment replicated a 

minimum of three times with each experiment. The results were expressed as mean ± 

SEM. Statistical analysis was performed using one-way ANOVA of Western Blotting 

and cell population. P< 0.05 was considered statistically significant.

33. Results

3.3.1. The expression of Notch family members in human cornea

To identify the spatial localisation of Notch receptors and their ligands in human 

corneas, immunolocalisation was undertaken. The results showed that Notchl and 

Notch2 were localised to the borders of the wing and superficial cells, in central, 

peripheral and limbal regions of the comeal epithelium. There was some positive 

staining in comeal stromal keratocytes. Labelling was not detected in any region of 

the epithelial basal cell layer (Fig. 3.1a, b, c, d, e, f). Deltal and Jaggedl were 

localised to all layers of the central, peripheral, limbal epithelium and stromal 

keratocytes (Fig. 3.1g, h, i, j, k, 1). In negative controls, immunoreactivity was not 

detected (Fig. 3.1m, n).

3.3.2. The localisation of corneal proliferation and differentiation

Ki67, a marker of actively cycling cells, was used to demonstrate the relative 

proliferative activity of limbal and comeal epithelial cells of human corneas.
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Immunostaining of frozen sections of human corneas with anti-Ki67 antibody 

demonstrated staining in the central, peripheral and limbal regions of comeal basal 

epithelium (Fig. 3.2a, b, c).

Using a monoclonal antibody, AE5, that is highly specific for the 64 kDa comeal 

cytokeratin- CK3, the results showed that CK3 was suprabasally located in central, 

peripheral, as well as, the limbal region of the comeal epithelium (Fig. 3.2e, f, g). 

Basal cells of central and peripheral comeal epithelium were found to be CK3 

positive, suggesting that these comeal ‘basal’ cells are in a more advanced state of 

differentiation than those in the basal layer of the limbus where CK3 

immunoreactivity was not detected (Fig. 3.2e, f, g).

In negative controls, immunoreactivity was not detected in control epithelial cells 

processed with the same species of serum (Fig. 3.2d: rabbit; h: mouse) in replace of 

primary antibodies.

3.3.3. The gene and protein expression of Notch receptors and their ligands in 

human corneal epithelial cell and keratocytes

RT-PCR identified expression of the genes for the Notch receptors: Notchl and 

Notch2 and their ligands: Deltal and Jaggedl in human comeal epithelial cell (Fig. 

3.3a-c) and keratocytes (Fig. 3.3e-g). Gene expression of Notch3, Notch4, Delta3, 

Delta4 and Jagged2 were not detected (Fig. 3.3a, b, c, e, f, g). As shown in Figure 

3.3d, h, gene expression of PS1 and PS2 was detected in both epithelial cells and 

keratocytes.
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Protein expression was confirmed by Western Blotting as demonstrated in Figure 3.4. 

Both active and inactive isoforms of Notchl and Notch2 were identified in human 

comeal epithelial cells (Fig. 3.4A) and keratocytes (Fig.3.4B). Molecular weights of 

protein bands were 120kDa: active Notchl (Notchl-120,), 300kDa: full-length 

Notchl (Notchl-300), 85kDa: active Notch2 (Notch2-85), 285kDa: full-length 

Notch2 (Notch2-285), 80kDa: Deltal and 160kDa: Jaggedl.

3.3.4. Inhibition of the Notch signalling pathway decreased epithelial 

proliferation and increased differentiation

Exposure of cultured comeal epithelial cells to a y-secretase inhibitor, which prevents 

cleavage of the intracellular domain of the Notch receptor, resulted in decreased 

expression of active Notch isoforms: Notchl-120 (Fig. 3.5A: black bars) and Notch2- 

85 (Fig. 3.5B: black bars), increased expression of full length Notchl-300 (Fig. 3.5A: 

white bars) and Notch2-285 proteins (Fig. 3.5B: white bars). The alterations in 

protein expression appeared to be dose-dependent manner, such that the changes 

increased with concentration of y-secretase inhibitor from 0 to 25 pM to 50pM. These 

differences were statistically significant for 25 pM (pK0.05) and 50pM (p<0.05) of y- 

secretase inhibitor treatment. The y-secretase inhibitor also resulted in a significantly 

decreased expression of Ki67 (Fig. 3.5C, /?<0.05) and increased expression of the 

epithelial differentiation marker CK3 (Fig. 3.5D, /?<0.05). All effects were greatest 

following 50pM of y-secretase inhibitor treatment.
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3.3.5. Activation of the Notch signalling pathway increased epithelial cell 

proliferation and decreased differentiation

Incubation of cultured comeal epithelial cells with recombinant Jaggedl, one of the 

Notch ligands, resulted in increased expression of the active forms: Notchl-120 (Fig. 

3.6A: black bars) and Notch2-85 (Fig. 3.6B: black bars) with a corresponding 

decrease in the expression of full-length receptors: Notchl-300 (Fig. 3.6A: white bars) 

and Notch2-285 (Fig. 3.6B: white bars). These changes in Notch expression were 

accompanied by a significant increase in Ki67 (Fig. 3.6C) and decrease in CK3 (Fig. 

3.6D). All effects were dose-dependent and all differences in expression were 

statistically significant after addition of both 5pg/ml (/K0.05) and 10pg/ml (p<0.05) 

ofJaggedl.

3.3.6. Immunolabelling of epithelial cells after Notch inhibition and activation

Consistent with Western Blotting results, the epithelial cell immunolocalisation data 

demonstrated that following y-secretase inhibition, the number of cells showing 

positive Notchl and Notch2 immunoreactivity was decreased in cell nuclei with a 

concurrent increase in cell membrane expression (Fig. 3.7g, j). This was accompanied 

by a decreased number of cells expressing Ki67 immunoreactivity (Fig. 3.7h, k) and 

an increased intensity of CK3 expression (Fig. 3.7i, 1).

Further confirmation of the role of the Notch signalling pathway was demonstrated 

since following Jaggedl treatment, the activation of epithelial cells increased the 

expression of Notchl (Fig. 3.7m) and Notch2 (Fig. 3.7p) positive immunoreactivity in
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cell nuclei, with a decreased expression of Notch 1 and Notch2 in cell membrane 

related-immunoreactivity. This corresponded with an increased nuclear Ki67 (Fig. 

3.7n, q) and a reduced CK3 cytoplasmic immunoreactivity (Fig. 3.7o, r).

3.3.7. The percentage of labelled cells after inhibition and activation of the Notch 

signalling pathway

Cell count data quantified and demonstrated the significance of the above changes in 

both Notch 1 and Notch2 nuclear and membrane-bound expression in corneal 

epithelial cells following y-secretase inhibition or Jagged 1-induced activation. These 

data were demonstrated in Table 3.1 and Figures 3.8A, B, 3.9A, B.

Media
Notchl Notch2 Ki67 CK3

Nuclear Membrane Nuclear Membrane

Control 41.3±3.1 29.9±3.1 25.8±3.1 13.0±3.1 46.1±3.5 63.0±6.8

y-SI
(MM)

25 24.4±2.1 45.8±2.1 20.5±2.5 24.5±2.5 31.0±5.6 79.0±5.9

50 12.5±2.4 56.7±2.4 13.3±3.5 33.4±3.5 21.2±4.5 90.1±6.8

Jagged1 
(Hg/ml)

5 64.1±5.6 18.8±4.1 40.5±5.5 8.5±2.5 67.0±5.8 39.0±7.0

10 82.6±5.1 6.7±4.4 63.8±6.5 3.7±3.5 81.5±7.1 18.1±6.5

Table 3.1. The mean percentage o f Notchl, Notch2, Ki67 and CK3 

immunocytochemistry staining after the inhibition or activation o f Notch signalling 

from human corneal epithelial cells. Total cells are 980 ± 60. Data are represented 

means ± SEMfrom three independent experiments.
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centre periphery limbus

Notch 1

Notch2

Delta 1

Jaggedl

control

Fig. 3.1. The immunolocalisation of Notch family members from human cornea. 
Notchl (a-c) and Notch2 (d-f) were immunolocalised on all comeal epithelial 
suprabasal and superficial layers but not detected in the basal cell layer, in the 
all of the regions. Delta 1 (g-i) and Jaggedl (i-l) appeared to express on all cell 
layers of the comeal epithelium. In negative control, immunoreactivity was not 
detected in comeal sections processed with same species and concentrations of 
serum (m: goat, n: rabbit) in replace of primary antibodies. Blue indicates 
Hoechst-labelled nuclei. White arrows indicate epithelial layers, red arrows 
indicate stromal layers. Bar=50pm
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centre  periphery limbus control

Ki67

CK3

Fig. 3.2. The immunolocalisation of Ki67 and cytokeratin3 (CK3) from human 
cornea. K/67 (a-c) was demonstrated staining in the central, peripheral and 
limbal region of comeal basal epithelium. CK3 (e-g) localised in all cell layers 
of human comeal epithelium, However only in the supra-basal layers of the 
limbal epithelium rather than including basal layer of the limbus. d and h are 
negative controls. Red is Ki67 positive staining, green is CK3 positive 
staining, blue indicates Hoechst-labelled nuclei. Bar=50pm



Fig. 3.3. Expression of Notch family members in cultured human comeal 
cells by RT-PCR. mRNA expression of Notchl, Notch2, Deltal, Jaggedl, 
Presenilinl (PS1) and Presenilin2 (PS2) was identified in human comeal 
epithelial cells (a-d) and keratocytes (e-h). In contrast, the mRNA 
expression of Notch3, Notch4, Delta3, Delta4 and Jagged2 was not found 
(a, b, c, e, f, g). p-actin was amplified as a positive control.
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Fig. 3.4. Expression of Notch family members in cultured comeal cells by 
Western Blotting. A. Human comeal epithelial cells. B. Comeal stromal 
keratocytes. N1 (active Notchl-120 and full length Notchl-300), N2 (active 
Notch2-85 and full length Notch2-285), D1 (Deltal- 80), J1 ( Jaggedl-160).
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Fig. 3.5. Western Blotting analysis of Notch receptors, Ki67 and CK3 after the 
treatment of y-secretase inhibitor in cultured epithelial cells. A. Notchl (full 
length N 1-300: white bars, active N1-120: black bars); B. Notch2 (full length 
N2-285: white bars, active N2-85: black bars); C: Ki67; D: CK3. *p<0.05
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A

N1-300 

N1-120

Notchl
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100

Medium o n , 
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Fig. 3.6. Western Blotting analysis of Notch receptors, Ki67 and CK3 after the 
treatment of Jaggedl in cultured epithelial cells. A. Notchl (full length N1- 
300: white bars, active N1-120: black bars); B. Notch2 (full length N2-285: 
white bars, active N2-85: black bars); C: Ki67; D: CK3. * p<0.05
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Normal media

v

N1

N2

m

Notch signalling inhibition

N1+CK3

Notch signalling activation

Fig. 3.7. Immunocytochemical localisation of Notch receptors, Ki67 and CK3 
after the inhibition (y-secretase inhibitor 50pM) or activation (Jaggedl 
10pg/ml) of Notch signalling in cultured epithelial cells, a-f: the expression of 
Notchl and Notch2 with Ki67 or CK3 in normal media; g-l: the expression of 
Notch receptors with Ki67 or CK3 after signalling inhibition; m-r: the 
expression of Notch receptors with Ki67 or CK3 after signalling activation. 
Green is Notchl and Notch2 positive, red is Ki67 and CK3 positive, blue is 
cell nuclear staining. White arrows indicate Notchl or 2 positive staining in cell 
membrane, red arrows indicate Notchl or 2 positive staining in cell nuclei. 
Bar=20pm
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Fig. 3.8. The percentage of labelled cells with Notch receptors, Ki67 and 
CK3 after the inhibition (Y-secretase inhibitor, yS/J of the Notch 
signalling in cultured epithelial cells. A. Notchl (the expression of cell 
membrane: white bars, cell nuclei: black bars); B. Notch2 (cell 
membrane: white bars, cell nuclei: black bars); C: Ki67; D: CK3. *p<0.05
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Fig. 3.9. The percentage of labelled cells with Notch receptors, Ki67 and 
CK3 after the activation of the Notch signalling in cultured epithelial cells. 
A. Notchl (the expression of cell membrane: white bars, cell nuclei: black 
bars); B. Notch2 (cell membrane: white bars, cell nuclei: black bars); C: 
Ki67; D: CK3. *p<0.05
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Corresponding changes in Ki67 and CK3 cell expression were also detailed (Fig. 3.8C, 

D, 3.9C, D). These differences were statistically significant after both y-secretase 

inhibitor (p<0.05) and Jaggedl (p<0.05) treatment.

3.4. Discussion

Defining the cellular mechanisms responsible for the differentiation and self-renewal 

of corneal epithelial cells is a prerequisite to achieving a complete understanding of 

the process of corneal epithelial cell homeostasis. Despite various attempts aimed at 

defining the factors that regulate comeal epithelial cell homeostasis, the mechanisms 

involved in the determination of cell fate decisions during epithelial cell homeostasis 

remain ambiguous.

The cornea contains actively cycling cells (transient amplifying cells), slow-cycling 

stem cells (a subset of the limbal epithelial basal cells), terminally differentiated cells 

(limbal and comeal suprabasal cells), and quiescent cells (comeal keratocytes). These 

varying differential and proliferative states have been confirmed by the localisation of 

CK3 and Ki67 (Gerdes et al., 1984).

Our results showed that CK3 was localised to all cell layers of the human comeal 

epithelium, but only identified in the suprabasal cell layers of the limbal epithelium. 

These results are consistent with previous reports that the basal cell layer of the 

limbus contains a less-differentiated population of cells than that existing in the basal 

cell layer of the cornea , and that from basal layer to surface of the cornea, the 

epithelial cells become terminally differentiated (Schermer et al., 1986).
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Immunostaining of human cornea with anti- Ki67 antibody demonstrated nuclear 

staining in the limbal, peripheral and central region of comeal basal epithelium. The 

number of labelled cells was in the order of peripheral > central > limbus, consistent 

with a previous report (Francesconi et al., 2000). In this study comeal epithelial 

proliferation in vivo and vitro was assessed using a monoclonal antibody to the Ki67 

antigen (Delahunt et al., 1995). Ki67 is detected in all phases of the cell cycle in 

actively cycling cells, and is absent in noncycling cells (Gerdes et al., 1984). The 

cycling status of cells in the human cornea demonstrated Ki67 labelled proliferating 

cells in the limbal, central and peripherial region of the comeal basal epithelium. The 

comeal epithelium consistently had a higher percentage of labeled cells than did the 

limbal epithelium. This result indicated that Ki67 labelling can be used to assess 

proliferation during cell growth. Furthermore, double-labelling of Ki67 with other 

proteins of interest can provide valuable information regarding the conditions that 

stimulate cells to enter the cell cycle.

Notch signalling regulates cell fate in many different tissues in a wide range of 

organisms including the nervous system, vascular system, hematopoietic system, 

somites, muscle, skin and pancreas (Artavanis-Tsakonas et al., 1999; Song et al., 

1999). The Notch signalling pathway plays different roles in different tissues, even 

within the same tissue at different developmental stages (Artavanis-Tsakonas et al., 

1999). In most cases, Notch signalling blocks a primary differentiation fate in a cell 

and forces the cell to remain in an undifferentiated state (Artavanis-Tsakonas et al., 

1999). However, recent evidence showed that Notch signalling also appears to 

promote differentiation in some circumstances (Fortini, 2001; Wolfe, 2001). In 

addition, apart from the well-documented involvement of Notch in differentiation,
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both proliferation and apoptotic events can be affected by Notch signalling 

(Artavanis-Tsakonas et al., 1999).

In this study, the presence of Notch signalling protein components in the human 

corneal epithelium was demonstrated for the first time, suggesting that Notch may 

play an important role in the orchestration of human comeal homeostasis. Two Notch 

receptors (Notchl and Notch2) and two Notch ligands (Delta 1 and Jaggedl) were 

identified in human comeal epithelial cells and keratocytes at both gene and protein 

level. This indicates that Notch signalling is likely to occur in human comeal 

epithelial cells and keratocytes where both ligand and receptor are expressed.

In the Notch downstream pathway, the remaining membrane-tethered Notch fragment 

is cleaved within its transmembrane domain by y-secretase (De Strooper et al., 1999; 

Song et al., 1999; Struhl and Greenwald, 1999), leading to the release of the 

intracellular domain (NICD), which translocates into the nucleus to participate in the 

transcriptional activation of target genes (Jarriault et al., 1995; Fortini, 2001). 

Inhibition of y-secretase will therefore prevent Notch signalling (De Strooper et al., 

1999). Consistent with this, the results demonstrated that inhibition of the activation 

of Notch cleavage by y-secretase, resulted in decreased expression of active Notchl 

and Notch2 forms, accompanied by a significant reduction of cell proliferation and 

increased CK3 expression. These results have two implications: (a) that y-secretase 

exists in human comeal epithelial cells and is involved in the mediation of Notch 

signalling and (b) that y-secretase inhibition represses cell proliferation and promotes 

the differentiation of comeal epithelial cells, in a manner consistent with the 

downregulation of Notch signalling.
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y-secretase plays a role in other pathways, for example, y-secretase mediates the 

intramembrane proteolysis of the amyloid precursor protein (APP) (Selkoe, 1999; De 

Strooper and Annaert, 2000; Steiner and Haass, 2000). Other putative y-secretase 

substrates, recently identified, include the cell surface protein CD44, E-cadherin and 

the low density lipoprotein receptor- related protein (LRP) (Fortini, 2002). But there 

are no reports relative cornea have been found.

The presence of Delta 1 and Jaggedl identified, in combination, with Notchl and 2 in 

the human corneal epithelium (both at gene and protein level) suggests that Notch 

signalling is important in corneal epithelial cell homeostasis. Therefore in order to 

further elucidate the role of Notch in the regulation of comeal epithelial cell 

proliferation and differentiation, recombinant Jaggedl, established as an effective 

activator of the Notch downstream pathway (Lindsell et al., 1995; Artavanis-Tsakonas 

et al., 1999) was used to challenge comeal epithelial cells. The results of this study 

confirmed a) the activation of Notch 1 and Notch2 by Jaggedl in comeal epithelial 

cells and b) that Jaggedl stimulation of Notch increased cell proliferation and 

decreased epithelial differentiation. Therefore a role for Notch signalling in the 

regulation of epithelial cell proliferation and differentiation in the human cornea was 

further supported.

A primary function of the Notch signalling pathway is to prevent differentiation via 

activating a transcriptional repressor (Artavanis-Tsakonas et al., 1999). However, our 

in vitro studies suggest that the proliferative event can also be affected by Notch 

signalling. A link between proliferation events and Notch has been reported
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previously (Cagan and Ready, 1989; de Celis et al., 1998; Go et al., 1998), although 

the elements mediating the nonautonomous effect of Notch on cell proliferation are 

unknown. The proliferative effect of Notch signalling in different tissues may be the 

result of a synergistic effect between Notch and other proteins (e.g. cell growth 

factors) or other cell signalling pathway (Wnt signalling), as well as depending on the 

developmental context (Artavanis-Tsakonas et al., 1999).

Several proposals have also been raised with regard to the functional diversity among 

the Notch receptors, such that Notch2 functions as a negative regulator against 

Notchl and Notch3 signals. Regarding the discrepancy, Shimizu et al. (2002) 

proposed that it may be due to a difference in the expression levels of other genes on 

this pathway, for example RBP-Jk, a transcriptional factor bound with intracellular 

domain of Notch (Beatus et al., 1999; Beatus et al., 2001; Shimizu et al., 2002). In 

this study, the functions of Notchl and Notch2 are clearly similar in corneal epithelial 

cells.

The balance between cell proliferation and differentiation is essential for maintaining 

epithelial homeostasis. Notch receptors and their ligands were shown to exist 

throughout the differentiated areas of the human corneal epithelium, in all regions of 

suprabasal and superficial layers, indicating a role for Notch in comeal epithelium 

differentiation. This is consistent with previous reports that Notch signalling regulates 

terminal differentiation (Frise et al., 1996; Capobianco et al., 1997; Bigas et al., 1998; 

Artavanis-Tsakonas et al., 1999; Gray et al., 1999). However, Notch protein 

expression was not identified in comeal and limbal basal cell layers, where 

proliferation of epithelial transient amplifying cells and stem cells occurs (Gerdes et
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al., 1984). The mechanism for acquiring proliferative function of Notch may be 

reprogrammed or inhibited, and may be related to the specific location of basal cells 

and their contact with basement membrane. These localisation patterns suggested that 

the Notch pathway may involve a transitory stage where Notch is downregulated. The 

different proliferative effects of Notch in vivo and vitro reveal that the functional 

Notch signalling pathway may be affected by its interaction with other signalling 

pathways in the in vivo state (Artavanis-Tsakonas et al., 1999).

Taken together, Notch receptors and their ligands exist in epithelial cells of the human 

cornea. Notch receptors and their ligands appear to play a pivotal role in maintenance 

of comeal epithelial homeostasis via mediation of cell proliferation and differentiation.
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CHAPTER FOUR

THE ROLE OF NOTCH IN HUMAN CORNEAL EPITHELIAL

CELL STRATIFICATION
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4.1. Introduction

The comeal epithelium is a non-keratinised, mucosal multilayer with a rapid self- 

renewing capacity. Renewal is essential to maintain a state of dynamic equilibrium 

with superficial cells constantly shed into the tears and replenished by proliferation, 

migration and differentiation of limbal epithelial cells. The complex multi-layered 

structure of the cornea allows it to fulfill its role, namely, transparency, refraction, 

photoprotection and protection of internal ocular structures from the external 

environment (Boulton and Albon, 2004). It is obviously important to establish a 

stratified epithelium for normal cornea function.

The amniotic membrane (AM), the innermost layer of the placental membrane, has 

been used as surgical material in a variety of fields (Dhall, 1984; Rennekampff et al., 

1994). In ophthalmic applications, Kim and Tseng (1995) reported the transplantation 

of preserved human AM for comeal surface reconstruction in a rabbit model. These 

reports encouraged the use of preserved human AM for ocular surface reconstruction 

in patients with severe ocular surface diseases (Tsubota et al., 1996; Shimazaki et al., 

1997; Tseng et al., 1998).

A variety of characteristics make AM ideally suited for use in ocular surface 

reconstruction. It has an anti-inflammatory effect (Kim et al., 2000; Solomon et al., 

2001), antifibroblastic activity (Tseng et al., 1999), antimicrobial (Talmi et al., 1991), 

and antiangiogenic (Hao et al., 2000) properties, and very limited immunogenicity 

(Akle et al., 1981). In addition, it provides a healthy new substrate suitable for 

reepithelialisation by the comeal epithelium (Tsubota et al., 1999). Recently,
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particular attention has been focused on the ex vivo expansion of corneal epithelial 

cells on various substrates, including preserved human AM (Tsai et al., 2000).

An increasingly popular surgical procedure for ocular surface reconstruction in 

individuals with severe thermal or chemical bums or serious ocular surface disorders, 

such as Stevens-Johnson syndrome, ocular cicatricial pemphigoid, and recurrent 

pterygium (Lee and Tseng, 1997; Prabhasawat et al., 1997; Shimazaki et al., 1997; 

Tseng et al., 1998; Tsubota and Shimazaki, 1999), involves the use of preserved 

human AM as a biological drape to dress the bare stroma after the removal of 

abnormal conjunctival tissue. The results of ocular surface reconstruction with human 

AM are generally good. Moreover, it is reported that in ocular surface disorders with 

stem cell deficiencies, the use of limbal transplantation and keratoepithelioplasty in 

conjunction with AM transplantation is often highly successful (Trelford and 

Trelford-Sauder, 1979; Tseng et al., 1998). Thus, it seems evident that the 

combination of amniotic/comeal epithelial cell transplantation is a potentially 

powerful one.

Thus, AM has unique properties that can be helpful in epithelial stratification study 

(Connon et al., 2006). To monitor the development of a stratified epithelium formed 

in this study, morphologic and biochemical markers were used to demonstrate the 

degree of comeal epithelial stratification and tissue integrity. They are epithelial cell 

layers, cell type and Ki67, CK3, markers for comeal epithelial cell proliferation and 

differentiation.
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For determination of mechanisms such as stratification, proliferation and 

differentiation, a rat comeal organ culture model was also used.

The evolutionarily conserved Notch signalling pathway controls cell fate in 

metazoans through local cell-cell interactions (Egan et al., 1998; Greenwald, 1998; 

Artavanis-Tsakonas et al., 1999). Notch signalling dictates cell fate and critically 

influences cell proliferation, differentiation, and apoptosis (Miele and Osbome, 1999) 

As showed in Chaper 3, Notch signalling system which is known to mediate cell fate 

decisions and has been shown to comprise an essential intercellular signalling system 

in tissue development and homeostasis. Notch family members including Notch 

receptors (Notchl and Notch2) and their ligands (Deltal and Jaggedl) have been 

detected in human comeal epithelium, but the mechanisms that govern epithelial cell 

stratification have yet to be fully characterized. To investigate the Notch signalling 

pathway in comeal epithelial cell stratification, a y-secretase inhibitor and 

recombinant Jaggedl have been used to evaluate the function of Notch signalling in 

the regulation of cell fate according to a previous report (Lindsell et al., 1995; De 

Strooper et al., 1999; Wolfe, 2001).

The aim in this study was to investigate the regulation of the Notch signalling 

pathway on human comeal epithelial cell stratification in a comeal air-lift cell culture 

model and rat comeal organ culture.
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4.2. Project design

4.2.1. Setting up corneal epithelial cell stratification models

To investigate the mechanism of Notch signalling pathway in comeal epithelial cell 

stratification, the comeal epithelial cell stratification culture model was utilised with 

treatment of Notch inhibition (y-secretase inhibitor 50pM) and activation (Jaggedl 

lOpg/ml). In accordance with the tenets of the Declaration of Helsinki and with 

proper informed consent, human amniotic membranes were obtained at the time of 

Cesarean section. The standard method is the same as that described in section 2.2.10.

4.2.2. Setting up corneal organ culture model

To further confirm the regulation of Notch signalling in comeal stratification from 

comeal centre, periphery and limbus in corneal homeostasis, the rat comeal organ 

culture models have been set up with treatment of Notch inhibition (y-secretase 

inhibitor 50pM) and activation (Jaggedl lOpg/ml) as described in section 2.2.11.2-

2.2.11.4.

4.2.3. The effect of Notch inhibition or activation on corneal epithelial cell 

stratification and organ culture models

After the treatment of inhibition and activation, the frozen sections were prepared 

from different time points (stratification: 1 week, 2 weeks, 3 weeks and 4 weeks; 

organ culture: 0 day, 2 days, 7 days and 14 days; n=3 for each).
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4.2.4. Haematoxylin and Eosin staining for detection of corneal stratification and 

epithelial cell morphology

To examine comeal stratification and epithelial cell morphology, sections from AM + 

cornea and rat cornea after the treatment of Notch inhibition or activation were 

stained with haematoxylin and eosin using the same methods as described in 2.2.9.2, 

and viewed using an inverted microscope (DMRAZ, Leica). The images from the 

stratification model and rat cornea were captured and analysed using the Spot 

Advance Image and Image Pro-Plus software (Image Solutions, UK). The data were 

analysed by PRISM software.

4.2.5. Immunohistochemical analysis for Notchl, Notch2, Delta 1, Jaggedl, Ki67 

and cytokeratin 3 (CK3)

Immunohistochemistry was performed to identify specific features of Notch family 

members that are involved in the stratification of comeal epithelial cells. The 

immunolocalisation of Notchl, Notch2, Deltal, Jaggedl, Ki67 and CK3 was 

performed as described in section 2.2.9.3 to determine the role of Notch receptors and 

ligands in cell proliferation and differentiation.

4.2.6. Statistical analysis

All experiments were repeated at least three times and the results are expressed as
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mean ± SEM. Statistical analysis was performed using one-way ANOVA for cell 

population analysis, and Kruskal -  Wallis Test for epithelial cell layer comparison, 

P< 0.05 was considered statistically significant.

4.3. Results

4.3.1. The role of Notch in the human corneal epithelial stratification model

43.1.1.Morphological assessment of corneal epithelial cells

Preliminary experiments on haematoxylin and eosin-stained, ethanol-fixed frozen 

section of AMs confirmed that this protocol effectively removed epithelial cells from 

the AM (Fig. 4.1)

Morphological examination of haematoxylin and eosin-stained sections of all time 

points were carried out to compare the number and type of epithelial cell layers and 

therefore to determine the degree of the stratification of comeal epithelium. After 1 

week in culture, a confluent primary culture of flat epithelial cells had been 

established that covered the entire AM (Fig. 4.2a). At 2 weeks, the cultivated comeal 

epithelial cells showed 2-3 layers of 1 columnar basal layer, 0-1 wing layer and 1 flat 

or cuboid superficial layer (Fig. 4.2b). At 3 weeks, the comeal epithelial cells on AM 

showed the formation of 4 layers of stratified epithelial tissue. These appeared very 

similar to normal comeal epithelium (Fig. 4.2c): 1 columnar basal layer, 2 wing layers 

and 1 flat squamous layer. After 4 weeks, the cultured comeal epithelial cells formed 

5-6 layers of well-stratified epithelium. It appeared healthy, and composed of
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differentiated cells: 1 layer of basal columnar cells, 3-4 suprabasal cuboid wing cell 

layers, and 1 layer of flat squamous superficial cells (Fig. 4.2d).

After the treatment of y-secretase inhibitor (Fig. 4.3b), there was an increase of the 

number of epithelial cell layers. By week 4, the superficial cells became more flatten 

and squamous. This result indicated that the cells became more differentiated due to 

inhibition of the Notch signalling pathway.

As shown in Figure 4.3c, there was a decrease of epithelial cell layers after the 

treatment of Jaggedl. By week 4, the superficial and suprabasal cells appeared to be 

seen round and cuboidal. These results indicated that epithelial cells became less 

differentiated due to activation of the Notch.

4.3.1.2.Quantitation of the number of corneal epithelial cell layers

The statistical results of the number of corneal epithelial cell layers with different 

time points are shown in Figure 4.4. After treatment of y-secretase inhibitor (50pM) 

or Jaggedl (lOpg/ml), there was a significant increase or a significant decrease of cell 

layers, respectively.

4.3.1.3.Immunolocalisation of Notchl, Notch2, Deltal, Jaggedl

The immunolocalisation of Notch receptors in comeal epithelial cell stratification 

culture was similar to that in the human comeal epithelium reported in Chapter 3. 

Notchl and Notch 2 were localised to subrabasal and superficial layers with labelling 

absent in the basal cell layer until 4 weeks (Fig. 4.5a, b). The expression of Deltal and
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Jaggedl was also similar to that in human corneas. Immunolocalisation of Deltal and 

Jaggedl was demonstrated throughout the epithelial cells until 4 weeks (Fig. 4.5c, d). 

In the negative control, immunoreactivity was not detected in epithelium processed 

with same species and concentrations of serum (goat, rabbit) in replace of primary 

antibodies. The green staining on AM indicated autoflurescence.

4.3.1.4.Immunolocalisation of cell proliferation and differentiation

Immunolocalisation of Ki67 in epithelial cell stratification appeared to be localised in 

the basal layer and suprabasal layers (Fig. 4.6a) and was similar to that seen for 

human corneas. There was no significant change of Ki67 expression after treatment of 

Y-secretase inhibitor (Fig. 4.6b) and Jaggedl (Fig. 4.6c). This result indicated that 

comeal epithelial cell proliferation might not have been regulated by the Notch 

signalling pathway in this model.

For immunolocalisation of CK3 in epithelial cell stratification, positive labelling was 

detected in all the cell layers, but there was a weak expression in the basal cell layer 

(Fig. 4.6d). These results were also similar to human corneas as reported in Chapter 3. 

After the inhibition of Notch signalling, there was no obvious change of the CK3 (Fig. 

4.6e). However, the expression of CK3 decreased after addition of Jaggedl. By week 

4, only approximately 25% of the cells were expressing CK3 (Fig. 4.6f). This result 

indicated that Notch signalling pathway repressed comeal epithelial cell 

differentiation.
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4.3.1.5.The percentage of Ki67 and CK3

As shown in Figure 4.7a, there was an increase of Ki67 expression from 1 week to 

peak expression at 3 weeks when approximately 50% of the cells were expressing 

Ki67. The expression of Ki67 then decreased to approximately 40% by 4 weeks. 

There was no statistical difference of Ki67 with Notch inhibition or activation 

compared to control.

The percentage of CK3 positive epithelial cells shown in Figure 4.7b, from 1 week 

onward was 95% to 100% positive epithelial cells with increasing time. After Notch 

inhibition, there was no statistically significant change of CK3 expressing cells over 4 

weeks. However, activation of Notch signalling induced a significant decrease of CK3 

expression to 25%. This result further confirmed that the Notch signalling pathway 

can repress corneal epithelial cell differentiation.

4.3.2. The role of Notch in rat corneal epithelial stratification

Rat corneas were cultured with control medium, treatment media including addition 

of y-secretase inhibitor or Jagged 1, and maintained for varying periods of time up to 2 

weeks (0 to 14 days). Comeal cryosections were stained with haematoxylin and eosin 

for morphological analysis, immunolocalisation for detecting the distribution of Notch 

family members (Notchl, Notch2, Deltal, Jaggedl), and immunostaining of Ki67 and 

CK3 to determine the proliferative and differentiated status of comeal epithelium 

during organ culture.
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4.3.2.1.Morphological assessment of rat corneal epithelial cells

Figure 4.8 depicts the changes that occur during organ culture for central, peripheral 

and limbal regions of rat cornea for 0, 2, 7 and 14 days. At 0 day, the rat corneal 

epithelium had 5 layers in the centre (Fig. 4.8a), and the number of layers increased 

towards the periphery (Fig. 4.8e) until then reached a maximum of 7-8 cell layers at 

the limbus (Fig. 4.8i). The epithelium at the limbus was composed of a layer of 

column-shaped basal cells, 4-5 layers of suprabasal cuboid wing cells, and 1-2 flat 

superficial cells. After 2 days of organ culture the cornea lost its uniformity, and 

numbers of cell layers in central and peripheral regions reduced to 3-4 layers (Fig. 

4.8b, f), and 4-5 layers in limbus (Fig. 4.8j) compared to day 0. There is an obvious 

drop of epithelial cell layers at 7 days with 1-2 layers in the centre (Fig. 4.8c), 2-3 

layers in periphery (Fig. 4.8g) and 3-4 layers in limbus (Fig. 4.8k), with 1-2 flat 

superficial cells 1 layer wing cell and 1 layer cuboid basal cell. The number of cell 

layers continued to decrease, at 14 days it reached 1-2 layers in centre (Fig. 4.8d), 2-3 

layers in periphery (Fig. 4.8h) and limbus (Fig. 4.81) with 1-2 layers more flat 

squamous superficial cells sloughing off from comeal surface.

After the inhibition of Notch (Fig. 4.9), by day 14 the number of cell layers decreased 

at a reduced rate in comeal centre (Fig. 4.9d), periphery (Fig. 4.9e) and limbus (Fig. 

4.9f). Epithelial superficial cells became flatter: 3-4 flattened superficial cells in the 

limbus (Fig. 4.9f). Differences of this kind in epithelial cell layers and type were even 

more obvious at 14 days of organ culture. The range of cell layers is between 4-5 

layers in centre (Fig. 4.9d) and 6-7 layers in limbus (Fig. 4.9f). These results indicated 

there was more epithelial cell stratification after Notch inhibition.
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After activation of Notch, the number of cell layers decreased quicker than in control 

medium (Fig. 4.9a-c) in the corneal centre (Fig. 4.9g), periphery (Fig. 4.9h) and 

limbus (Fig. 4.9i). The epithelial superficial cells were still flat and squamous, but the 

basal cells became round in the comeal centre, periphery (Fig.4.9g, h). The maximum 

difference was observed at 14 days of organ culture, the epithelium even reached 0-1 

layer in the centre, periphery and limbus (Fig. 4.9g, h, i). These results demonstrated 

there was less epithelial cell stratification after activation of Notch.

4.3.2.2.The number of corneal epithelial cell layers

The number of epithelial cell layers in the comeal centre, periphery and limbus has 

been counted at 0 day, 2 days, 7 days and 14 days using Image Pro-Plus software 

(Image solutions, UK). Graphs in Figure 4.10 showed that there were significant 

increases of epithelial cell layers in the comeal centre (Fig. 4.10a), periphery (Fig. 

4.10b) and limbus (Fig. 4.10c) compared to control after Notch inhibition, and 

significant decreases of cell layers in above three regions (Fig. 4.10a, b, c) due to 

induce Notch activation.

4.3.2.3.Immunolocalisation of Notchl, Notch2, Deltal, Jaggedl

The immunolocalisation of Notch receptors in rat cornea was similar to that in the 

human epithelium demonstrated in Chapter 3. Notchl and Notch 2 were localised in 

subrabasal and superficial layers with labelling absent in the basal cell layer (Fig. 

4.11 a-f). The expression of Deltal and Jaggedl in rat cornea was also similar to that 

in human corneas. Immunolocalisation of Deltal and Jaggedl was demonstrated
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throughout the epithelial cell layers in corneal centre, periphery and limbus (Fig. 

4.1 lg-1).

4.3.2.4.Immunolocalisation for cell proliferation and differentiation

Immunolocalisation of Ki67 in rat cornea revealed expression in cell nuclei of basal 

layer that was similar with human corneas and in the order of magnitude 

periphery>centre>limbus (Fig. 4.12a-c).

For immunolocalisation of CK3 in rat cornea, positive labelling was detected in the 

superficial and suprabasal cell layers and a weak expression in the corneal basal cell 

layer, but absent in limbal basal layer (Fig. 4.12d-f). These results were also similar 

with human corneas demonstrated in Chaper 3.

As shown in Figure 4.13, after the treatment of Notch inhibition, there were no 

obvious changes of Ki67 and CK3 in corneal limbus, periphery and centre (Fig. 4.13d, 

e, f). After activation of Notch signalling, in contrast to control medium (Fig. 4.13a, b, 

c) there was also no change of Ki67 in the comeal limbus, periphery and centre (Fig. 

4.13g, h, i). However, there was a dramatic decrease of CK3 expression after Notch 

activation. By 7 days, only approximately 30% of epithelial cells were expressing 

CK3 in the comeal limbus and 50% of epithelial cells in the periphery and centre (Fig. 

4.13g, h, i).

These results indicated that the Notch signalling pathway repressed comeal epithelial 

cell stratification due to inhibition of cell differentiation rather than cell proliferation 

in both comeal epithelial stratification and organ culture models.
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4.3.2.5.The percentage of cells expressed Ki67 and CIO

Figure 4.14 shows that the percentage of Ki67 positive cells decreased in the corneal 

limbus, periphery and centre with organ culture. In the corneal limbal region (Fig. 

4.14a), the percentage of Ki67 positive cells decreased from approximately 18% to 

2% from 0 day to 14 days. For the peripheral region (Fig. 4.14b), the percentage of 

Ki67 positive cells decreased from approximately 38% to 5% during organ culture. In 

the corneal centre (Fig. 4.14c), Ki67 decreased from approximately 28% to 3% by 14 

days. There were no statistically significant changes of Ki67 expression after Notch 

inhibition or activation compared control medium.

In Figure 4.15, there was no significant change in CK3 positive cells after Notch 

inhibition in comeal limbus, periphery and centre, but there was an obvious decrease 

of CK3 expression with Notch activation in the three comeal areas during organ 

culture. In the comeal limbus (Fig. 4.15a), the range of CK3 expression was from 

70% to 75% with control medium since 0 day until 14 days. After Notch inhibition 

there was no obvious change of CK3 in contrast to control medium, but there was a 

significant decrease of CK3 with Notch activation, the percentage from 70% to 

approximately 25% by 14 days. In the comeal periphery (Fig. 4.15b), approximately 

95% - 100% of epithelial cells expressing CK3 with control medium, there was no 

obvious difference in CK3 with Notch inhibition. However, there was a significantly 

decreased CK3 after Notch activation, the percentage was between 95% and 30% 

during culture time. Figure 4.15c shows the percentage of CK3 expressing at comeal 

centre, approximately 95% to 100% epithelial cells expressing CK3 with control 

medium, there was no obvious difference in CK3 staining with Notch inhibition.
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However there was a significant change of CK3 after Notch activation, the percentage 

of CK3 expression decreased from 95% to 20% by 14 days.
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Fig 4.1 Human amniotic membrane after epithelial cell removal. 
The arrow shows smooth surface of membrane without 
epithelial cells. Bar=25 pm
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1 week

2 week

3 week

4 week

Fig. 4.2 Haematoxylin and Eosin staining of human comeal epithelial cell 
stratification culture at different time points. There was a confluent primary 
culture of flat epithelial cells had been established after 1 week (a); At 2 
weeks, the epithelial cells became 2-3 layers (b); At 3 weeks, the comeal 
epithelial cells showed the formation of 4 layers (c); After 4 weeks, the 
cultured comeal epithelial cells formed 5-6 layers (d). Bar=40pm.
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Control media

v» 4

4 weeks

Y -S I treated J1 treated

Fig. 4.3. Haematoxylin and Eosin staining of human comeal 
epithelial cell stratification culture at 4 weeks with different 
treatments. There was a significant increase of cell layers after 
Notch inhibition (b) and a significant decrease of cell layers after 
Notch activation (c). Bar=50pm.
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Fig. 4.4 The number of comeal epithelial cell layers in comeal 
epithelial cell stratification culture after the treatment of y -  SI 
(50pM) and Jaggedl (10pg/ml). There were significant increase 
of cell layers after Notch inhibition and significant decrease of cell 
layers after Notch activation. *P<0.05.
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Notchl Notch2 Deltal Jaggedl

m

Fig. 4.5. The immunolocalisation of Notch family members in comeal epithelial 
cell stratification culture (4 weeks), a, b: the expression of Notchl and Notch2 
has appeared in superficial and suprabasal layers (green); c, d: Deltal and 
Jaggedl appeared to be expressed in all the epithelial cell layers (green); e, f: 
negative control with goat, rabbit serum instead of primary antibodies. Blue 
indicates nuclear staining. Bar=50 pm
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Control media Y-SI treated Jaggedl treated

Ki67

CK3

Fig. 4.6. Immunolocalisation of Ki67 and CK3 in comeal epithelial cell 
stratification culture (4 weeks). Cultures with control media (a,d), y-SI 
treatment (b, e) and Jaggedl treatment (c, f) . There were no obvious 
changes of Ki67 (green) expression in basal cell layer after Notch 
inhibition or activation (b, c). The expression of CK3 (green) appeared to 
be seen in all cell layers (d, e, f). There was no obvious change of CK3 
after Notch inhibition (e) but a significantly decreased CK3 after Notch 
activation (f). Bar=50pm
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Fig. 4.7. Percentage of Ki67 and 
CK3 positives in corneaI epithelial 
cell stratification culture after the 
treatment of y -  SI (50pM) and 
Jaggedl (10pg/ml). (a) There was 
an increase of Ki67 expression since 
1 week to peak expression by 3 
weeks, this then decreased by 4 
weeks, but no significant changes of 
Ki67 expression after Notch 
inhibition or activation compared to 
control, (b) There was no significant 
change of CK3 after Notch inhibition 
( y - S I ) but a significant decrease of 
CK3 after Notch activation 
(Jaggedl) compared to control. *P< 
0.05
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Centre Periphery Limbus

0 day

2 days

7 days

14 days

Fig. 4.8. Haematoxylin and Eosin staining of rat comeal epithelium in 
organ culture. There were significant decreases of cell layers in corneal 
centre (a-d), periphery (e-h) and limbus (i-l). Superficial cells became 
more flat and squamous with increased time. Bar^50pm
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Centre

Control

Y-SI

Jaggedl

Fig. 4.9. Haematoxylin and Eosin staining of rat corneal epithelium in 
comeal organ culture (14 days) after different treatments. The number 
of cell layers decreased at a reduced rate in comeal centre (d), 
periphery (e) and limbus (f) after Notch inhibition (V-secretase inhibitor) 
compared to controls (a-c). However, the number of cell layers 
decreased quicker than in control medium after Notch activation 
(Jaggedl; g, h, i). Bam50pm

Periphery Limbus
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Fig. 4.10. The number of 
epithelial cell layers in cornea 
during organ culture with 
treatment of Notch inhibition 
and activation. In contrast to 
control, there were significant 
increases of cell layers in 
comeal centre (a), periphery
(b) and limbus (c) after Notch 
inhibition and significant 
decreases of cell layers in 
centre (a), periphery (b) and 
limbus (c) after Notch 
activation. *P<0.05.
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Fig.4.11. The immunolocalisation of Notch family members in rat corneas, 
a-f: Notchl and Notch2 appeared to be expressed in comeal epithelial 
superficial and supra basal layers but absent in basal layer; g-l: Deltal and 
Jaggedl have been detected in all epithelial cell layers, m, n: negative 
control with goat, rabbit serum instead of primary antibodies. Bar=50 pm
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Centre Periphery Limbus

Ki67

CK3

Control

Fig. 4.12. The immunolocalisation of Ki67 and CK3 in fresh rat corneas, a-c: 
Ki67 (red) appeared to be expressed in basal cell layer of corneal centre, 
periphery and limbus; d-f: CK3 (green) has been expressed in all epithelial 
cell layers but absent in limbal basal layer; g, h: negative control with 
rabbit, mouse serum instead of primary antibodies. Bar=50 pm



Limbus Periphery Centre

Control

Y-SI

Jaggedl

Fig.4.13. The immunolocalisation of Ki67 and CK3 in rat comeal 
organ culture (7 days) with different treatments. There were no 
obvious changes of Ki67 and CK3 in corneal limbus (d), periphery 
(e) and centre (f) after Notch inhibition. After Notch activation, there 
was also no change of Ki67 but a significant decrease of CK3 in 
comeal limbus (g), periphery (h) and centre (i) compared to control 
(a-c). Red: Ki67 positive. Green: CK3 positive. Blue: the staining of 
cell nuclei. Bar=50 pm
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Fig. 4.14. Percentage of Ki67 
positive cells in rat corneal 
organ culture with treatment 
of Notch inhibition or 
activation. There were no 
significant changes of Ki67 
expression in limbus (a), 
periphery (b) and centre (c) in 
contrast to control.
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Fig. 4.15. Percentage of CK3 
positive cells in rat corneal organ 
culture with treatment of Notch 
inhibition or activation. There was no 
significant change of CK3 
expression with Notch inhibition in 
limbus (a), periphery (b) and centre
(c), but there were significant 
decreases of CK3 with Notch 
activation in comeal limbus (a), 
periphery (b) and centre (c) in 
contrast to control. *P<0.05.
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4.4. Discussion

Human amniotic membrane is a widely used surgical material (Trelford and Trelford- 

Sauder, 1979), and in recent years there has been a renewed interest in its use for 

ocular surface reconstruction (Dua and Azuara-Blanco, 1999). AM acts so as to 

provide a good substrate for normal epithelial migration and stratification (Kim and 

Tseng, 1995). Its basement membrane contains collagens (Modesti et al., 1989) as 

well as several adhesive glycoproteins found in corneal epithelial basement 

membranes (Fukuda et al., 1999). This study was designed to a) utilise AM as a 

substrate for comeal epithelial cells and b) investigate how limbal comeal epithelial 

cells stratify on AM at different time points, as a result of inhibition or activation of 

the Notch signalling pathway.

The stratification of comeal epithelial cells plays an important role in the physical and 

biological properties of comeal homeostasis and development. The data presented 

here used an in vitro model system to show the development of stratified comeal 

epithelium. The term ‘stratified epithelium’ refers to epithelial tissue comprised of a 

basal layer of columnar epithelial cells in contact with the basement membrane and 

layers of suprabasal layers containing flattened wing and squamous cells (Hall and 

Watt, 1989).

When comeal limbal explants were seeded onto AM, morphological and 

immunohistochemical examination of the resultant epithelium showed the formation 

of a stratified comeal epithelium. The Ki67 expression continually increased and 

induced an increase in the number of cell layers. At 3-4 weeks, the expression of Ki67
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in the cultivated comeal epithelial cells appeared to peak at 50%, the cultures showed 

5-6 layers of stratification which were composed of 1 basal columnar cell layer, 3-4 

suprabasal cuboid wing cells, 1-2 flat squamous superficial cells, and demonstrated 

immunoreactivity for the cornea-specific cytokeratin 3, indicating that AM supported 

normal comeal epithelial cell differentiation and stratification.

The expression of Notch family members appeared to be seen in comeal epithelial 

cell stratification culture indicating Notch signalling may regulate epithelial cell 

stratification. As is already known y-secretase inhibitors prevent the activation of the 

Notch signalling pathway. After the inhibition of the Notch pathway, an increased 

number of cell layers were observed compared with controls. Epithelial cells became 

more flat and squamous in the superficial layer and suprabasal layers. The percentage 

of CK3 expressing cells showed there was no significant change, also the expression 

of Ki67 has not shown statistical differences with Notch inhibition.

To further confirm the role of Notch in comeal epithelial cell stratification, addition of 

Jaggedl- one ligand of Notch signalling, resulted in a significant decrease in the cell 

layers on AM and less flat superficial cells. The expression of CK3 appeared to 

become significantly decrease, but Ki67 expression did not show any changes with 

Notch activation. These results further verify that the Notch pathway plays a role in 

regulating human comeal epithelial cell stratification.

However, the important challenge is to identify what cell-fate decisions the Notch 

signalling machinery govern in comeal epithelial cell stratification during the process 

of comeal homeostasis? Are there any different patterns of the stratification in comeal
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epithelial centre, periphery and limbus? How does this explain the decreased 

stratification with corneal organ culture? As shown in the results, rat comeal organ 

culture can be a good model for investigation of epithelial stratification in organ 

culture as Notch family members, cell proliferative and differentiating status in rat 

cornea have a similar distribution to human.

Investigation of morphological changes during comeal organ culture for different 

periods showed that there was reduction in the number of cell layers in comeal centre, 

periphery and limbus from 0 day to 14 days of organ culture. These results are 

comparable to that of Albon et al 2000 (Albon et al., 2000) in their human comeal 

organ culture storage model. In this study, after Notch inhibition the number of 

comeal epithelial cell layers decreased slowly with the superficial cells became more 

flat and squamous, and more sloughing cells from comeal surface; after the activation 

of Notch signalling, the decrease of cell layers became significantly quicker compared 

to control medium. These effects have been observed in every comeal region. There 

were no obvious changes of CK3 expression with Notch inhibition as almost all 

comeal epithelial cells had already expressed CK3, but there were still dramatic 

decreases of CK3 expression in every region by addition of Jaggedl- activation of 

Notch. This is a similar result to the epithelial cell culture on AM. The expression of 

Ki67 showed no obvious changes after Notch inhibition or activation. These results 

further confirmed that Notch signalling can also regulate epithelial cell stratification 

in comeal organ culture by repressing comeal epithelial cell differentiation rather than 

cell proliferation.
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Comeal epithelial renewal is a constant feature of the comeal epithelium in 

homeostasis. The cycling status of cells in rat cornea demonstrated Ki67 labelled 

proliferating cells in the central, peripheral and limbal regions of the comeal basal 

layer. The peripheral comeal epithelium showed more proliferative activity compared 

to the central and limbal regions. This is consistent with previous reports that the 

limbal epithelium contains a mixture of slow-cycling stem cells and more rapidly 

cycling transient amplifying cells (TACs) that enter the basal layer of the epithelium. 

As these TACs move upwards from the basal layer, they become postmiotic and 

differentiate and eventually slough off as flattened superficial cells from the epithelial 

surface (Ebato et al., 1988; Cotsarelis et al., 1989; Pellegrini et al., 1999). Comeal 

epithelial cell proliferation has been regulated by many growth factors e.g. EGF, KGF 

and HGF etc. (Gherardi et al., 1993; Werner et al., 1994). As shown in this study, a 

primary function of the Notch signalling pathway is to prevent epithelial cell 

stratification via inhibition of differentiation. Consequently, a balance between cell 

differentiation and proliferation is maintained by the interaction of Notch signalling 

with other growth factors and other signalling pathway in comeal epithelial cell 

stratification and homeostasis.
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CHAPER FIVE

THE REGULATION OF NOTCH SIGNALLING IN CORNEAL

WOUND HEALING
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5.1. Introduction

Comeal wound healing, as in other parts of the body, is the end result of a sequence of 

events which are controlled by many factors. The human epithelium is arranged in 5-7 

layers of cells and is approximately 50pm thick. It consists of a single layer of 

mitotically active columnar basal cells covered by a layer of wing cells that are 

usually 1-3 cell layers thick. These are overlaid by 2-3 outer flattened cell layers of 

squamous cells. The basal epithelial cells adhere to their basement membrane through 

a series of adhesion complexes.

If any portion of an epithelial cell is disrupted, the entire cell is usually lost, leaving a 

defect in the epithelial cell mantle. The most common type of comeal injury is 

mechanical. With this type of injury, both the cellular components and the 

extracellular components of the cornea are involved. Signals from the disrupted cells 

or signals generated by exposure of epithelial basement membrane to either the 

circulation or the tear film are sent to the nearly intact epithelial cells (Tuft et al., 

1993). After injury, there is a latent phase during which the cell cytoskeleton and 

intercellular junctions are modulated (Crosson et al., 1986; Gipson et al., 1989; 

Takahashi et al., 1992; Gipson and Inatomi, 1995).

The initial migrating mass of epithelial cells in comeal wound healing is generally 

composed of one- to two- layers (Anderson, 1977; Trokel et al., 1983). The cells 

migrate until contact inhibition of migration is established by physical contact with 

adjacent cells. Once the injured surface has again been covered by epithelial cells and 

the comeal stroma is protected from the environment, the epithelial cell mass re-
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establishes normal thickness (Nishida et al., 1983; Ebato et al., 1988; Cotsarelis et al., 

1989). When normal thickness is re-established, the more highly differentiated 

cellular characteristics, such as the glycocalyx, the microvillae, and microplicae, are 

re-formed. Intercellular attachments are re-established, as are the basal surface 

contacts. The epithelium has returned to its steady state.

In contrast to healing skin epithelium, the corneal epithelium requires a much longer 

time to re-establish full-strength pre-injury characteristics, including basal anchoring 

complexes (Fujikawa et al., 1981; Gipson et al., 1989; Gipson, 1992). During this 

interval, the epithelium is vulnerable to injury from much weaker stimuli than the 

mature epithelium, and clinical problems such as recurrent erosion of the epithelium 

may develop.

The healing process is believed to involve many growth factors and cell signalling 

pathways. Of particular interest is that the Notch signalling system which is known to 

mediate cell fate decisions and has been shown to comprise an essential intercellular 

signalling system in tissue development and homeostasis via influencing cell adhesion, 

migration, differentiation and proliferation (Artavanis-Tsakonas et al., 1999).

Aim:

The aim of this chapter was to investigate the potential association between the Notch 

signalling pathway and corneal wound healing. Since limited availability of human 

eyes exists, the rat corneal organ culture model in this study was used to investigate
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the role of Notch signalling in epithelial cell proliferation and differentiation in 

comeal wound healing.

5.2. Project design

5.2.1. Wound healing model and organ culture

5.2.1.1. Setting up corneal wound healing model

All protocols in this study conformed to the ARVO Statement for the Use of Animals 

in Ophthalmic and Vision Research and with permission for research. The rat cornea 

wound healing models (epithelial wound and stromal wound) were set up as described 

in section 2.2.11.

5.2.1.2. The effect of Notch signalling inhibition and activation in corneal wound 

healing

Adult rat corneas (Norwegian Brown, 6-8 weeks of age) were used in this study. 

Corneas were set up in organ culture in triplicate. When the rat corneas were wounded 

(epithelial wound and stromal wound), media containing either y-secretase inhibitor 

(50|iM) or rJaggedl (lOpg/ml) was added during organ culture. Corneas were left for 

periods of time from 0 to 72 hours for epithelial wound, 0 to 14 days for stromal 

wound. The standard methods are same as described in sections 2.2.11.2 - 2.2.11.4.
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5.2.2. Haematoxylin and Eosin staining

To examine comeal morphology after inhibition or activation of Notch, comeal frozen 

sections were stained with Haematoxylin and Eosin as described in section 2.2.9.2. 

The number of epithelial cell layers in the wound area was counted and images 

captured using Image Pro-plus software (Image Solutions, UK).

5.23. Immunolocalisation of Notch family members in corneal wound healing

To investigate the expression of Notch signalling in comeal wound healing, 

immunolocalisation of Notch receptors (Notch 1 and Notch2) and their ligands (Deltal 

and Jaggedl) was performed as described in section 2.2.9.3.

5.2.4. Immunolocalisation of Ki67 and CK3 in corneal wound healing

To investigate of the regulation of Notch signalling in comeal epithelial cell 

proliferation and differentiation during comeal wound healing, the 

immunolocalisation of Ki67 and CK3 was performed as described in section 2.2.9.3. 

The positive immunostaining was quantified using Image Pro-Plus software and the 

percentage of positive epithelial cells was recorded.

5.2.5. Statistical analysis

All experiments were repeated at least three times and the results were expressed as

151



mean ± SEM. Statistical analysis was performed using one-way ANOVA for cell 

population analysis and Kruskal -  Wallis Test for epithelial cell layer comparison, P< 

0.05 was considered statistically significant.

5.3. Results

5.3.1. The role of Notch signalling in corneal epithelial wound healing

53.1.1. Morphological analysis of the corneal epithelium in healing corneas

The examination of the rat cornea by microscopy (DMRAZ, Leica) confirmed that the 

morphology of rat comeal epithelium was similar to that of human. Morphologic 

examination of all haematoxylin and eosin stained sections allowed analysis of 

epithelial cell layers and cell type.

In Figure 5.1, the central comeal epithelium had 5-6 layers (Fig. 5.1a), and the 

number of layers increased towards the periphery until it reached a maximum of 7-8 

cell layers at the limbus (Fig. 5.1b). The epithelium at the limbus was composed of 1 

layer of columnar-shaped basal cells, 4-5 layers of suprabasal cuboidal wing cells, and 

1-2 flat superficial cells (Fig. 5.1b).

Following wounding, in control corneas (Fig. 5.2a-c) the epithelium was seen to start 

its migration 4 hours after wounding. After 24 hours, there were 1-2 cell layers with 

some thinning of the epithelial layers over the original wound edge but no obvious
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stratification (Fig. 5.2b). By 72 hours, the wound had completely re-epithelialised 

with 3-4 cell layers that were composed of well stratified cells (Fig. 5.2c).

Inhibition of Notch signalling (Fig. 5.2d-f) did not appear to affect the initiation of 

migration which began at 4 hours after wounding (Fig. 5.2d). However the epithelium 

appeared to have more cell layers, and stratified flat squamous superficial cells were 

identified at later stages (Fig. 5.2e, f) of healing compared to the control. Also, 

activation of Notch signalling (Fig. 5.2g-i) did not affect the start of migration (Fig. 

5.2g), but in contrast to controls, the epithelial cells showed less cell layers, and less 

flat squamous superficial cells in the later stages of wound repair (Fig. 5.2h, i).

5.3.1.2. The number of epithelial cell layers as a function of Notch inhibition / 

activation in wounded cornea

The number of epithelial cell layers in the wound area following epithelial wounding 

is shown in Figure 5.3. In control corneas, there was an increase in 4-5 layers from 0 

to 72 hours. After Notch inhibition, cell stratification appeared to be accelerated, 

reaching 7-8 layers at 72 hours. However, there was a significant decreased in the 

number of epithelial cell layers (2-3 layers) at 72 hours after the activation of Notch.

5.3.13. Immunolocalisation of Notchl, Notch2, Deltal and Jaggedl

As shown in Figure 5.4, by 72 hours epithelial wounding the immunolocalisation of 

Notch receptors in corneal epithelial wounding was similar to that in the human 

corneal epithelium reported in Chapter 3. Notchl and Notch 2 were localised to
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subrabasal and superficial layers with labelling absent in the basal cell layer (Fig- 5.4a,

b). The expression of Deltal and Jaggedl was also similar to that in hum311 corneas. 

Immunolocalisation of Deltal and Jaggedl was observed throughout the epithelial 

cells (Fig. 5.4c, d).

53.1.4.The effect of Notch inhibition and activation on cell proliferate011 in 

corneal epithelial wounding

As seen in Figure 5.5, immunolocalisation of Ki67 in epithelial wounding appeared to 

be localised to the basal layer and was similar to that seen in human corneas (Chapter 

3), but the level of proliferation cell was altered following epithelial wounding. After 

a central epithelial wound, basal epithelial cell proliferation in the limbus and 

peripheral cornea was increased. The peak of proliferation occurred 24 hours after 

wounding in corneal limbus (Fig. 5.5a-c), periphery (Fig. 5.5d-f) and centre (Fig. 

5.5g-i). Proliferation in the sheet of epithelium that migrated over the wound area 

dropped dramatically and reached normal levels by 72 hours after wounding (Fig. 

5.5c, f, i).

Graphs shown in Figure 5.6 depict an increased percentage of Ki67 in the comeal 

limbus (Fig. 5.6a) from 18% to a peak of 37% between 0 and 24 hours. This then 

decreased to a normal level of proliferation at 18% about 72 hours after wounding. In 

the peripheral region of the cornea (Fig. 5.6b), there was an increased level of Ki67 

positive cells from 38% to a peak of 65% between 0 and 24 hours. This then 

decreased to a normal proliferation level of 38% at 72 hours. In the central (near 

wound) region (Fig. 5.6c), there was an increase in Ki67 positive cells fr°m 28% to a
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peak of 48% between 0 and 24 hours of wound repair. This decreased to 20% by 72 

hours after wounding.

After the inhibition or activation of the Notch signalling pathway, the cellular 

expression of Ki67 in the corneal limbus (Fig. 5.7b, c), periphery (Fig. 5.7e, f), and 

centre (Fig. 5.7h, i) showed no obvious changes at any time points after corneal 

epithelial wounding when compared to control (Fig. 5.7a, d, g). Representative results 

(24 hours after wounding) are shown in Figure 5.7. This result suggests that corneal 

epithelial cell proliferation might not be regulated by the Notch signalling pathway in 

this model.

As shown in Figure 5.8, after Notch inhibition and activation, there was no significant 

changes in cellular expression of Ki67 in corneal limbal (Fig. 5.8a), peripheral (Fig. 

5.8b) and central (Fig. 5.8c) regions during corneal epithelial wound healing.

53.1.5.The effect of Notch inhibition and activation on cell differentiation in 

corneal epithelial wounding

For immunolocalisation of CK3 in rat cornea following epithelial wounding, positive 

labelling was detected in all the cell layers (Fig. 5.9a-i), but absent in the limbal basal 

layer (Fig. 5.9a-c). These results were also similar to human corneas as reported in 

Chapter 3. As shown in Figure 5.10, there was no obvious change of the percentage of 

CK3 positive cells in rat corneal limbus (Fig. 5.10a), periphery (Fig. 5.10b), and 

centre (Fig. 5.10c) after epithelial wounding.
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After the inhibition of Notch signalling pathway, the cellular expression of CK3 in the 

corneal limbus (Fig. 5.1 lb), periphery (Fig. 5.1 le) and centre (Fig. 5.1 lh) showed no 

obvious changes in distribution, but superficial cells became larger, more flattened 

and squamous after epithelial wounding when compared to control (Fig. 5.11a, d, g). 

Representative results (72 hours after wounding) are shown in Figure 5.11. However, 

there was an obvious decrease of CK3 expression in the limbus (Fig. 5.11c), periphery 

(Fig. 5.1 If), and centre (Fig. 5.1 li) after the activation of Notch signalling: the 

expression of CK3 reduced and appeared even only in superficial cell layers. This 

result indicated that comeal epithelial cell differentiation had been repressed by the 

Notch signalling pathway in the process of comeal epithelial wound healing.

Figure 5.12, shows the quantitive assessment of CK3 expression after Notch 

inhibition and activation. There were no significant changes of CK3 expression in 

comeal limbus (Fig. 5.12a), periphery (Fig. 5.12b) and centre (Fig. 5.12c) after Notch 

inhibition. However, activation of Notch signalling induced a significant decrease of 

CK3 expression in comeal limbus (Fig. 5.12a, from 65% to 25%), periphery (Fig. 

5.12b, from 90% to 25%), and centre (Fig. 5.12c, from 90% to 15%) during epithelial 

wound healing. This result further confirmed that the Notch signalling pathway can 

repress comeal epithelial cell differentiation.

5.3.2. The role of Notch in rat corneal stromal wound healing

Rat corneas were wounded and cultured with control medium or treatment media 

which included addition of y-secretase inhibitor (50pM) or Jaggedl (lOpg/ml), and 

maintained for varying periods of time up to 2 weeks (0 to 14 days). Comeal 

cryosections were stained with haematoxylin and eosin for morphological analysis,
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immunolocalisation for detecting the distribution of Notch family members (Notchl, 

Notch2, Deltal, Jaggedl), and immunostaining of Ki67 and CK3 to determine the 

proliferative and differentiation status of corneal epithelium during organ culture.

5.3.2.1. Morphological assessment in rat corneal stromal wounding

During stromal wound healing (deep of 80pm, Fig. 5.13), in control corneas (Fig. 

5.13a-d), the epithelium was seen to start migration at 16 hours after wounding (Fig. 

5.13a). By 72 hours, the wound has reepithelialised with 2-3 layers of epithelium (Fig. 

5.13b). Hypercellularity was observed in the epithelium surrounding the wound by 7 

days until 14 days (Fig. 5.13c, d).

Inhibition of Notch signalling (Fig. 5.13e-h), did not affect the migration start time 

(Fig. 5.13e), but the epithelium appeared more stratified in the late stages of wound 

healing (Fig. 5.13f, g, h). There were more cell layers with a larger number of flat 

squamous superficial cells. Activation of Notch signalling (Fig. 5.13i-l), also did not 

affect migration compared to control, but the epithelial cells showed less stratification 

with a lower number of cell layers and no obvious flat superficial cells were observed 

until 7 days after wounding (Fig. 5.13k).

The data analysis for epithelial cell layers at the wound area following a deep 

penetrating wound is shown in Figure. 5.14. In control corneas there was an increase 

in epithelial cell number up to 8-9 layers from 16 hours to 14 days. After Notch 

inhibition, cell stratification appeared quicker than control corneas reaching 12-13
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layers by 14 days. In contrast to control, there was a significant decrease in 

epithelialisating cell layers after the activation of Notch.

5.3.2.2.Immunolocalisation of Notchl, Notch2, Deltal and Jaggedl

As shown in Figure 5.15, the immunolocalisation of Notch receptors in corneal 

stromal wounding was similar to that in the human corneal epithelium reported in 

Chapter 3. Notchl and Notch 2 were localised to superficial and suprabasal layers 

with labelling absent in the basal cell layer (Fig. 5.15a, b). The expression of Deltal 

and Jaggedl was also similar to that in human corneas. Immunolocalisation of Deltal 

and Jaggedl was demonstrated throughout the epithelial cells (Fig. 5.15c, d).

53.2.3.The effect of Notch inhibition and activation on cell proliferation in 

corneal stromal wounding

In Figure 5.16, the graphs showed there was an increased percentage of Ki67 in the 

corneal limbus (Fig. 5.16a) from 18% to a peak of 38% between 0 and 72 hours. This 

then decreased to a normal level of proliferation at 18% by 14 days after wounding. In 

the peripheral region of the cornea (Fig. 5.16b), there was an increased level of Ki67 

positive cells from 35% to a peak of 55% between 0 and 72 hours. This then 

decreased to a normal proliferation level of 35% at 14 days. In the central region (Fig. 

5.16c), there was an increase in Ki67 positive cells from 25% to a peak of 36% 

between 0 and 72 hours of wound repair. This decreased to 25% by 14 days after 

wounding.
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After Notch inhibition or activation, there was no significant change in cellular 

expression of Ki67 in corneal limbal (Fig. 5.17a), peripheral (Fig. 5.17b) and central 

(Fig. 5.17c) regions during corneal stromal wound healing. This result indicates that 

Notch signalling pathway might not regulate corneal epithelial cell proliferation 

during wound healing in the rat cornea.

5.3.2.4.The effect of Notch inhibition and activation on cell differentiation in 

corneal stromal wounding

After immunolocalisation of CK3 in rat cornea stromal wounding, positive labelling 

was counted. As shown in Figure 5.18, there was no obvious change of the percentage 

of CK3 positive cells in rat corneal limbus (Fig. 5.18a), periphery (Fig. 5.18b), and 

centre (Fig. 5.18c) after stromal wounding with an increased time.

As shown in Figure 5.19, there were no significant changes of CK3 expression in 

corneal limbus (Fig. 5.19a), periphery (Fig. 5.19b) and centre (Fig. 5.19c) after Notch 

inhibition. However, there was a significant decrease of CK3 expression in the 

corneal limbus (Fig. 5.19a, from 65% to 25%), periphery (Fig. 5.19b, from 90% to 

25%), and centre (Fig. 5.19c, from 90% to 15%) after activation of Notch signalling 

during stromal wound healing. This result further confirmed that the Notch signalling 

pathway represses comeal epithelial cell differentiation.
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Centre

Limbus

Fig. 5.1 Epithelial morphology in unwounded rat cornea, (a) central 
corneal epithelium had 5-6 layers, and (b) limbal epithelium had 7-8 
layers. The epithelium was composed of columnar basal cells (black 
arrows), suprabasal or wing cells (green arrows) and superficial 
flattened epithelia (white arrows). Bar=50 pm
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Control Y - S I Jaggedl

4 hours

24 hours

72 hours

Fig. 5.2. Epithelial morphology during epithelial wound healing. In control 
corneas (a-c), the epithelium is seen to start its migration (black arrow) 4 
hours post wounding (a) then some thining of the epithelial layers over 
the original wound edge (b, black arrow). By 72 hours, the wound has 
completely reepithelialised (c, black arrow). Inhibition of Notch signalling 
(d-f), the epithelium exhibited more stratified at wound healing late stage 
(e,f, black arrows). Activation of Notch (g-i), the epithelial cells showed 
less stratification in the late stages of wound healing (h,l, black arrows). 
Bar=50 pm

d
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Jaggedl

0.0- M

time after wouncfng (hours)

Fig. 5. 3. The number of epithelial cell layers in the wound area in 
rat comeal epithelial wounding after treatment of y-SI (y-secretase 
inhibitor) and Jaggedl at different time points. There was a 
significant increase or decrease of cell layers after the Notch 
inhibition or activation, respectively. Each time point represents the 
mean of at least 3 corneas ± SEM. *P<0.05.
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Notchl Notch2 Deltal Jaggedl

24 hours

Fig. 5.4. Immunolocalisation of Notch family members in rat 
corneas following comeal epithelial wounding (72 hours). The 
expression of Notchl and Notch2 was apparent in epithelial 
superficial and suprabasal layers after wounding (a, b); Deltal and 
Jaggedl appeared to be expressed in all the epithelial cell layers 
after epithelial wounding (c, d). Bar=50 pm
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Limbus Periphery Near wound

0 hour

24 hours

72 hours

Fig. 5. 5. The immunolocalisation of Ki67 in rat corneas following 
epithelial wounding at different time points. Proliferation is shown in 
the limbus (a-c), periphery (d-f) and in central cornea (near wound, 
g-i). Basal epithelial cell proliferation in the limbal and peripheral 
corneas (red) was increased after wounding. The peak of 
proliferation occurred 24 hours after wounding (b, e, h), this then 
decreased to a normal proliferation level at 72 hours (c, f, i). 
Bar=50 pm

164



c 
10
1  

f l
30-

10-

0 25 50 75

tinre altar wDuncfing (hre)

75-|

I^SO-
8I£

CO Q .

25 50 750
time after wouncing (hrs)

7 5 -i

5 0 -

2 5 -

50 75250
time after wounding (hrs)

Fig. 5.6. Percentage of Ki67 
positive cells in rat comeal 
epithelial cells during 
epithelial wound healing. 
There was an increased 
percentage of Ki67 in the 
comeal limbus (a), 
periphery (b) and centre (c) 
by 24 hours after wounding, 
these then decreased to 
normal proliferation levels at 
72 hours.

1 6 5



Limbus Periphery Near wound

Control

Y-SI

Jaggedl

Fig. 5. 7. The immunolocalisation of Ki67 24 hours after comeal 
epithelial wounding following Notch inhibition (by y-SI) and 
activation (by Jaggedl). Proliferation is shown in the limbus (a-
c), periphery (d-f) and in the central near wound (g-i). No 
changes in Ki67 expression in three corneal regions were 
identified following Notch inhibition (b, e, h) or activation (c, f, i) 
compared to control corneas (a, d, g). Bar=50 pm
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Fig. 5.8. Percentage of Ki67 
positive cells in rat corneal 
epithelial cells after Notch 
inhibition (y-secretase inhibitor, 
ySI) or activation (Jaggedl) 
during epithelial wound healing. 
There were no significant 
changes of Ki67 expression in 
the comeal limbus (a), periphery 
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Limbus Periphery Near wound

0 hour

24 hours

72 hours

Fig. 5. 9. The immunolocalisation of CK3 in rat corneas following 
epithelial wounding at different time points. Epithelial cell 
differentiation is shown in the limbus (a-c), periphery (d-f) and in 
central cornea (near wound, g-i). CK3 is expressed in all epithelial 
cell layers (green) but absent in the limbal basal layer (a-c). There is 
no obvious change of CK3 expression after epithelial wounding. 
Bar=50 pm
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Limbus Periphery Near wound

Control

Y-SI

Jaggedl

Fig. 5. 11. The immunolocalisation of CK3 in rat corneas 72 hours 
after epithelial wounding with treatment of Notch inhibition (y-SI) and 
activation (Jaggedl). Epithelial cell differentiation is shown in the 
limbus (a-c), periphery (d-f) and in central cornea (near wound, g-i). 
CK3 is expressed in all epithelial cell layers (green) but absent in the 
limbal basal layer (a-c). There was no change of CK3 expression 
after Notch inhibition (b, e, h) but a significant decrease of CK3 after 
Notch activation (c, f, i). Bar=50 pm
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Fig. 5.12. Percentage of CK3 
positive cells in rat comeal
epithelial wounding with 
treatment of Notch inhibition or 
activation. There were no 
significant changes of CK3 
expression with Notch inhibition 
in limbus (a), periphery (b) and 
centre (c), but there were
significant decreases of CK3 with 
Notch activation in comeal
limbus, periphery and centre (a- 
c) in contrast to control. *P<0.05.
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Control Y-SI Jagged1

14 days

Fig. 5.13. Epithelial morphology during stromal wound healing. In control 
corneas (a-d), the epithelium is seen to start its migration (black arrow) 16 hours 
post wounding (a). By 72 hours, the wound has completely reepithelialised (b, 
black arrow). Hypercellularity (black arrows) was observed in the epithelium 
surrounding the wound after 7 days (c, d). Inhibition of Notch signalling (e- h), 
the epithelium exhibited initiation of migration (black arrow) by 16 hours post 
wounding (e), and was more stratified (black arrows) in the late stages of wound 
healing (g, h). Activation of Notch (i-l), the epithelial cells to start their migration 
(black arrow) at same time compared to control (i), but showed less stratification 
(black arrows) in wound healing late stages (k, I). Bar=50 pm

16 hours

72 hours

7 days
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Fig. 5. 14. The number of epithelial cell layers at the wound 
area in rat comeal stromal wounding after treatment of y-SI (y- 
secretase inhibitor) and Jaggedl at different time points. 
There was a significant increase or decrease of cell layers 
after Notch inhibition or activation, respectively. Each time 
point represents the mean of at least 3 corneas ± SEM. 
*P<0.05.

173



Notch 1 Notch2 Delta 1 Jaggedl

7 days

Fig. 5.75. Immunolocalisation of Notch family members in rat corneas 
following corneal stromal wounding (7 days). The expression of Notch 1 
and Notch2 was apparent in epithelial superficial and suprabasal layers 
after wounding (a, b); Deltal and Jaggedl appeared to be expressed in 
all epithelial cell layers (c, d). Bar=50 pm
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Fig. 5.16. Percentage of Ki67 
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epithelial cells during stromal 
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5.4. Discussion

Defining the cellular mechanisms responsible for the differentiation and proliferation 

of corneal epithelial cells is central to achieve a complete understanding of the 

process of comeal wound healing.

The process of comeal wound healing can be divided into several distinct but 

continuous phases: sliding of superficial cells to cover the denuded surface, cell 

proliferation, and stratification for re-establishment of multicellular layers. Several 

studies have described the use of growth factors that are synthesized by cells as 

molecules that promote comeal wound repair (Brazzell et al., 1991; Sotozono et al., 

1995; Lambiase et al., 1998; Wilson et al., 1999). In addition, interactions between 

stroma and epithelium have been recognised as important for proper healing. Notch 

signalling was shown to be involved in epithelial cell homeostasis in the previous 

chapters. Thus in this chapter, the comeal organ culture model (Foreman et al., 1996) 

was used to mimic in vivo wound healing, which allowed investigation of the role of 

Notch signalling in comeal wound healing.

Notch, a transmembrane receptor member of the epidermal growth factor-like family 

of proteins, participates in cell-to-cell signalling to control cell fate in many different 

tissues in a wide range of organisms (Egan et al., 1998). Since Notch signalling is 

known to function as a developmental tool to direct cell fate and consequently organ 

formation and morphogenesis it is likely that Notch and its ligands play a role in 

regulating cell patterning and differentiation of the comeal epithelium. In comeal 

epithelial cells, despite various attempts aimed at identifying the factors that initiate
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comeal wound healing, the mechanisms involved in the determination of cell fate 

decisions remain obscure. In this study, Notch signalling was demonstrated for the 

first time in comeal wound healing.

The major finding of this experiment is that the Notch signalling pathway is critical in 

the cornea in response to environmental stimuli such as injury. After Notch inhibition 

or activation, there was no change of Ki67 expression in comeal epithelial and 

stromal wound healing. However, there was a statistically significant decrease of CK3 

expression in both types of injuries after activation of Notch. The results suggest that 

Notch signalling is involved in mediating epithelial cell differentiation including cell 

stratification and maturity, but does not appear to be involved in the regulation of 

epithelial cell proliferation in comeal wound healing. This is consistent with the 

previous results in Chapter 3 and Chapter 4 which showed that Notch signalling did 

not influence the epithelial cell proliferation in comeal tissue. The regulation of Notch 

signalling to cell proliferation may be reprogrammed or inhibited due to the specific 

location of basal cells and their contact with basement membrane.

Findings of particular note include: in early stages of comeal wound healing 4 hours 

after epithelial wounding, 16 hours after penetrating wounding, the epithelial cell 

shape and number of cell layers at the wound edge indicated that there was no change 

after Notch inhibition or activation. However, in the later stages (24 hours after 

epithelial wounding, 72 hours after stromal wounding), there was a significant 

promotion of epithelial cell stratification after inhibition of Notch signalling: a larger 

number of cell layers and more typical morphology of the mature (differentiated) 

epithelium. In contrast, significant repression of cell stratification via activation of

180



Notch signalling: a less number of cell layers and a typical morphology of epithelium. 

This was not surprising considering that the Notch pathway may reflect the inhibition 

of cell differentiation which starts at the later stage of wound repair, rather than cell 

proliferation which occurs in early stages of wound healing.

The cornea is a target tissue for all of the major families of growth factors. These 

include epidermal growth factors (EGF), fibroblast growth factors (FGF), platelet 

derived growth factors (PDGF), insulin like growth factors (IGF) and transforming 

growth factors beta (TGFp). Also comeal wound healing is affected by many other 

factors including the size of the wound, its depth, causative agent and tear quality. 

Does the regulation of Notch interact with other growth factors? These will need to be 

investigated in the future.

The ability to modulate comeal wound healing to achieve better clinical outcomes 

would be beneficial in several situations. Results from in vitro experiments and 

various animal models of comeal wound healing suggest that it should be possible to 

modulate healing of epithelial or stromal with addition of potent growth factors, 

extracellular matrix components, and protease inhibitors (Coulter et al., 1980; Woost 

et al., 1985; Gallar et al., 1990; Woost et al., 1992). In this thesis, the results suggest 

that the Notch signalling pathway contributes to the molecular regulation of comeal 

wound healing. Characterisation of Notch in comeal wound repair will facilitate the 

development of strategies to manipulate comeal epithelial cell homeostasis in wound 

healing and in ocular surface diseases.
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CHAPER SIX

THE EXPRESSION OF NOTCH FAMILY MEMBERS IN 

EMBRYONIC CORNEAL DEVELOPMENT
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6.1. Introduction

The development of the human eye is a complex series of orderly events that begins 

with the fertilization of the ovum and continues until the early postnatal period. 

Although the tendency is to depict these changes in distinct stages, numerous events 

happen simultaneously. Not only may interrelations between ocular tissues influence 

their development, but one ocular tissue may induce the formation of another. 

Impairment or interruption of these events may result in congenital abnormalities of 

the eye. The earlier the disruption, the more severe the anomaly (Duke-Elder, 1963).

Embryogenesis begins with cell proliferation, cell movement, and changes in cell 

shape. Individual cells contain the entire genome of the organism, and therefore have 

the potential to become any one of the roughly 200 classes of cells in the body. At 

some time and place, however, embryonic cells make a commitment to a particular 

developmental path; this determination means that the cell’s future options have 

become limited (Alberts, 1994). The next step is differentiation, which makes the 

commitment explicit; differentiation means that the cell begins to manufacture the 

proteins and intracellular organelles necessary for the lifestyle to which it has been 

committed. Also, the cell usually acquires a characteristic shape and structure that 

provide observable evidence of differentiation (Maclean, 1987).

Eye development begins 4 weeks after fertilisation. Once the surface ectoderm 

separates from the lens vesicle, it differentiates into a two-layered epithelium. This 

structure, which rests on a basal lamina, is the primitive cornea. By the end of week 6,
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junctional complexes appear between cells. In week 7, mesenchymal cells derived 

from neural crest migrate forward from around the lens vesicle in three waves:

• First wave of cells migrates between the surface ectoderm and lens to form the 

corneal endothelium;

• Second wave migrates between the corneal epithelium and endothelium to 

form the stroma;

• Third wave migrates between the corneal endothelium and lens to form the iris 

stroma.

The corneal endothelium form as a two-cell layer of cuboidal cells. In week 8 these 

cells produce a basement membrane, Descemet’s membrane (Maclean, 1987).

In month 3, fibroblats and collagen fibrils appear. The fibroblasts begin synthesis of 

the glycosaminoglycan ground substance. Keratan sulfate production becomes 

apparent in the cornea. Bowman’s layer is first noted in month 4; it develops as an 

extension of filaments from the basal lamina of the epithelium. It is also around this 

time that tight junctions form between the apices of the endothelial cells. Further 

development results in enlargement of the cornea and dehydration of its stroma to 

form a transparent structure (Maclean, 1987).

Notch receptors and ligands are widely expressed during organogenesis in embryos. 

Although some Notch receptors appear to have genetically functions in some 

developmental contexts, e.g. hematopoiesis, neurogenesis, somitogenesis, and 

vasculogenesis (Artavanis-Tsakonas et al., 1999), we still have not known yet the role 

of Notch in the development of cornea, e.g. does the Notch signalling regulate the 

corneal epithelial cell lineages? To investigate the expression of Notch signalling
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during comeal development and provide a context for our discussion of Notch 

signalling in human comeal homeostasis, a model from embryonic chick was set up at 

vary time points by embryonic day (see below) for this study.

6.2. Project design

6.2.1. The collection of embryonic chick

Embryonic chicken corneas were used as models for investigation of developing 

corneas in this study. At all times the ARVO statement for the use of animals in 

ophthalmic and vision research was adhered to, as were local mles.

Fertile white leghom chicken eggs (Henry Steward and Co, PO Box 7, louth, 

lincolnshire, UK) were transferred to a 38°C incubator (Octagon 100, Brinsea, 

sandford, England) on embryonic day 0 (DO) for incubation. For comeal cryosection 

immunofluorescently staining, eggs were removed from the incubator at the 

appropriate age (D5, D8, DIO, D12 and D20), the chicken corneas were cryostated 

and sectioned at 8 pm on SuperFrost Plus slides, and stored at -20°C (see section 

2.2.9.1).

6.2.2. Haematoxylin and Eosin staining

To examine comeal tissue morphology from embryonic chicken at different stages, 

haematoxylin and eosin staining have been accessed by the same method as section

2.2.9.2.
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6.2.3. Immimoflurescent staining for Notch family members

After these collections, the immunolocalisation of Notch family members (Notch 1, 

Notch2, Delta 1 and Jaggedl) have been processed by immimoflurescent staining as 

same method as section 2.2.9.3.

6.3. Results

6.3.1. Haematoxylin and Eosin staining for embryonic chicken at different stages

Haematoxylin and Eosin staining in embryonic chicken corneal epithelial cells 

showed that as early as 5 days of embryonic development (Fig. 6.1.), corneal limbus 

still attached with epithelium of lens, but the presumptive morphology of cornea was 

already formed in this time embryo. By DIO (Fig. 6.2), the epithelium was 

approximately 4 cells thick in corneal centre. Stromal fibroblasts were present 8 cells 

thick. On D12 (Fig. 6.3), in corneal centre the epithelia had continued to stratify 

becoming 5 cells thick and the stromal fibroblasts were present 10 cells thick. 

Endothelium was 2-3 cells thick. At developmental day 20 (Fig. 6.4), the embryonic 

chicken corneal epithelium was well-stratified (approximately 5 cells thick) with 10- 

12 cell layers of fibroblasts.

6.3.2. The expression of Notch family members in embryonic chicken corneas

To identify the temporal and spatial localisation of Notch receptors and their ligands
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in embryonic chicken, immunolocalisation was undertaken. The results showed that 

as early as 8 days of embryonic development (D8), Notch 1 and Notch2 were localised 

to all the presumptive corneal epithelium in central, peripheral and limbal regions of 

the cornea (Fig. 6.5, 6.6). Meanwhile, Deltal and Jaggedl also were localised to all 

layers of the comeal epithelium (Fig. 6.7, 6.8).

By day 10, immunofluorescent localisation of Notch 1 and Notch2 were demonstrated 

throughout the all comeal epithelium in central, peripheral and limbal regions of the 

cornea (Fig. 6.5, 6.6). Deltal and Jaggedl also were localised to all layers of the 

comeal epithelium (Fig. 6.7, 6.8).

By day 12, immunolocalisation of Notch 1 and Notch2 demonstrated their presence 

throughout the comeal epithelium in all suprabasal and superficial cells, but absent in 

the basal epithelial cell layer (Fig. 6.5, 6.6). Deltal and Jaggedl were localised to all 

epithelial cells in all regions (Fig. 6.7, 6.8).

On D20, immunolocalisation of Notch 1 and Notch2 still has been found throughout 

the comeal epithelium in all suprabasal and superficial cells, but absent in the basal 

epithelial cell layer (Fig. 6.5, 6.6). In contrast, Deltal and Jaggedl were localised to 

all layers throughout all regions of the comeal epithelium (Fig. 6.7, 6.8). Negative 

control showed Hoeschst-positive blue nuclear staining (Fig. 6.5, 6.6, 6.7, 6.8) 

without immunoreactivity.
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Fig. 6.1. Haematoxylin and Eosin staining for embryonic chicken 
at Day 5. Bar=50 gm
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Fig. 6.2. Haematoxylin and Eosin staining for embryonic chicken at Day 10.
Epi: epithelium; Str: stroma; End: endothelium.
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Fig. 6.3. Haematoxylin and Eosin staining for embryonic chicken at Day 12.
Epi: epithelium; Str: stroma; End: endothelium.
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Fig. 6.4. Haematoxylin and Eosin staining for embryonic chicken at Day 20.
Epi: epithelium; Str: stroma; End: endothelium.
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Fig. 6.5. Notch 1 in embryonic chicken comeal development from day 8 to day 20. 
Notch 1 was localised to all layers of the comeal epithelium at day 8 (D8, a-c) and 
day 10 (D10, d-f). After day 12 (g-l), Notch 1 was demonstrated their presence 
throughout the comeal epithelium in all suprabasal and superficial cells, but absent 
in the basal epithelial cell layer in central, peripheral and limbal regions of the 
cornea. Green is positive staining, blue indicates cell nuclei, m is negative control. 
Bar=50pM
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Fig. 6.6. Notch2 in embryonic chicken corneal development from day 8 to day 20. 
Notch2 appeared to be expressed in all layers of the comeal epithelium at day 8 (D8) 
and day 10 (D10). After day 12, Notch2 was demonstrated their presence throughout 
the corneal epithelium in all suprabasal and superficial cells, but absent in the basal 
epithelial cell layer in central, peripheral and limbal regions of the cornea. Green is 
positive staining, blue indicates cell nuclei. Bar=50pm
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Fig. 6.7. Deltal in embryonic chicken comeal development from day 8 to day 20. 
Deltal was localised to all layers throughout all regions (centre, periphery and limbus) 
of the corneal epithelium. Bar=50 pm
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Fig. 6.8. Jaggedl in embryonic chicken corneal development from 
day 8 to day 20. Jaggedl was localised to all layers throughout all 
regions (centre, periphery and limbus) of the corneal epithelium. 
Bar^50 pm



6.4. Discussion

In other developmental systems, Notch-mediated cellular interactions have been 

shown to play a central role in regulating cell-fate decisions of various multipotent 

precursors (Artavanis-Tsakonas et al., 1999). When components of the Notch 

signalling pathway are genetically damaged or perturbed, many things go wrong. The 

challenge is to identify not just where, but how and why the effects occur. For tissue 

development, what part does it play in defining the spatial pattern of cell 

differentiation?

Before discussing specific examples, it is helpful to consider some principles that one 

may expect to apply to Notch signalling generally (Kimble and Simpson, 1997). (1) 

Both Notch receptor and its ligands Delta and Jagged are integral membrane proteins 

and generally transmit signals only between cells in direct contact. In many cases, the 

interacting neighbours are cells with a similar developmental history and similar 

developmental potential- they are members of the same equivalence group. (2) 

Activation of Notch has a direct and immediate effect on gene expression, mediated 

by the detached intracellular domain of Notch itself, acting as a transcriptional 

regulator in the nucleus (Schroeter et al., 1998; Struhl and Adachi, 1998). Thus Notch 

signalling can readily throw genetic switches that determine choices of cell fate. (3) 

Activation of Notch in a given cell frequently regulates production of Notch ligands 

by that cell. Because the level of Notch activation in the cell depends on the level of 

ligand expression in its neighbours, and this gives rise to feedback loops that correlate 

the fates of adjacent cells and control the fine detail of the spatial pattern of 

differentiation (Collier et al., 1996; Lewis, 1996) which had been served to amplify
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the effect of so-called ‘lateral inhibition’. Lateral inhibition is a mechanism that 

explains how two identical adjacent cells can be induced in vivo to differentiate to 

different tissues during development (Lewis, 1998).

However Notch signalling can also be responsible for the contrary phenomenon, 

lateral induction, activation of Notch promotes production of Notch ligands (de Celis 

and Bray, 1997), it will cause cell to make their fate choices cooperatively, preventing 

the occurrence of all-or-none behaviour and the formation of defined boundaries of 

gene expression (Artavanis-Tsakonas et al., 1999).

In vertebrates, the most thoroughly analysed example of Notch signalling is in control 

of neurogenesis. Notch signalling here operates between cells within an equivalence 

group, mediates lateral inhibition, and controls the commitment to differentiate. In the 

neural tube - the rudiment of the vertebrate central nervous system - neurons are 

generated from dividing precursors whose cell bodies lie in a proliferative zone close 

to the lumen of the tube. When a progenitor divides, its progeny have a choice. Each 

daughter can either remain a progenitor or become committed to differentiate as a 

neuron; in the latter case, it withdraws from the cell division cycle and migrates out 

into the mantle zone of the neuroepithelium, where it differentiates (Myat et al., 1996). 

Notch 1 is expressed throughout the proliferative zone; Delta 1 is expressed in the outer 

part of that zone, in a scattered subset of cells (Myat et al., 1996). From their location 

and their non-dividing character, these Delta-expressing cells can be identified as 

nascent neurons (Henrique et al., 1995). The lateral inhibition mediated by Delta- 

Notch signalling is the mechanism that regulates the choice between remaining as a 

progenitor and embarking on differentiation (Artavanis-Tsakonas et al., 1995). The
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inhibition delivered from the differentiating progeny to their dividing progenitors acts 

homeostatically to limit the proportion of cells that differentiate, thereby maintaining 

a balanced mixture of the two classes of cells so that neurogenesis can continue 

(Henrique et al., 1995).

The chicken cornea develops in a series of discrete steps that have been reviewed 

previously (Coulombre, 1958; Hay, 1969). In brief, beginning at 3 days of incubation, 

an initial acellular extracellular matrix (termed the primary stroma) is deposited by the 

corneal epithelium on its basal surface. At 4 days, mesenchymal cells from the 

periphery migrate centrally on the undersurface of the primary stroma and form an 

epithelium that becomes confluent by 4.5 days. After 5 days, the ectodermal cells 

migrate and become comeal epithelial cells. Approximately a day later, day 6, the 

compact primary stroma rapidly swells, and is invaded by periocular mesenchymal 

cells. These cells differentiate into comeal fibroblasts and secrete elements of the 

secondary, or mature, comeal stroma. At 12 days, the secondary stroma begins to 

condense and ultimately becomes transparent and epithelial cells continue growth to 

4-5 cell layers.

In this study immunohistochemical techniques were used. The results indicated that 

embryonic chicken comeal epithelium consistently contained high levels of Notch 

immunoreaction.

These results are consistent with the temporal and spatial expression of Notch 

described before which was hypothesized that Notch signalling may be involved in
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regulating the proliferation and differentiation of corneal cells during development 

and that it may play a role in tissue maintenance in the adult cornea.

The most well characterised role of Notch signalling in embryonic chicken 

development is mediating the process of lateral inhibition, which refines the 

expression of Notch family members from corneal epithelial cells except corneal 

basal layer. In the early stages (before 10 days), the function of Notch signalling also 

regulates to basal epithelial cells where the corneal epithelial stem cells reside at. The 

expression of Deltal and Jagged 1 was also found in all epithelial cell layers, 

indicating the function of Notch signalling in corneal development.

This investigation significantly builds upon these earlier findings by correlating Notch 

family member expression with the actual development of multi-layered tissues and 

highlights the importance of precursor cells during this process. Moreover, a 

continued study of Notch signalling pathway in the developing comeal epithelium 

may ultimately lead to a better understanding of its molecular mechanisms and 

underlying function, potentially resulting in therapeutic treatments for comeal wound 

healing and disease.
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CHAPER SEVEN 

GENERAL DISCUSSION
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Notch, a transmembrane receptor member of the epidermal growth factor-like family 

of proteins, participates in cell-to-cell signalling to control cell fate in many different 

tissues in a wide range of organisms (Egan et al., 1998).

Studies on embryonic mice and rats have shown the involvement of the Notch 

pathway in epidermal differentiation (Del Amo et al., 1992; Thelu et al., 1998). In the 

epidermal basal layer, Notch receptors are present in transit amplifying cells and the 

cell-cell signalling system promotes both expansion and differentiation of these cells 

(Lowell et al., 2000). Notch signalling also appears to control the differentiation of 

glial cells and later events during neurogenesis (Gaiano et al., 2000; Morrison et al., 

2000).

The cornea is populated by a number of different cell types that communicate and 

cooperate in carrying out specific functions essential to multi-cellular organisms. The 

surface of the cornea is composed of a smooth continuous stratified epithelium and 

serves as the frontal barrier to the whole eyeball and maintains key optical features, 

such as refraction and transparency. To preserve these functions the comeal 

epithelium is in a constant state of cell renewal, which is in part dependent upon the 

integrity of basement membrane, cell-cell and cell-matrix interactions (Taliana et al., 

2001; Connon et al., 2006). Defining the cellular mechanisms responsible for the 

differentiation and self-renewal of comeal epithelial cells is central to achieving a 

complete understanding of the process of comeal epithelial cell proliferation, 

differentiation and homeostasis.
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7.1. Corneal epithelial cell proliferation

Epithelial cell proliferation can be regarded as a process involving a sequential pattern 

of (cyclic, repeating) changes in gene expression leading ultimately to the physical 

division of the cells. This is in contrast with cell growth, which involves an increase 

in cell size or mass. In this study corneal epithelial proliferation was assessed in vivo 

and vitro by immunolabelling for the Ki67 antigen (Delahunt et al., 1995). Ki67 is a 

marker for cell proliferation that is detected in all phases of the cell cycle in actively 

cycling cells, but is absent in no cycling cells (Gerdes et al., 1984). The cycling status 

of cells in the human cornea demonstrated Ki67 labelled proliferating cells in the 

limbal, central and peripheral region of the corneal basal epithelium and the corneal 

peripheral epithelium consistently had a higher percentage of labelled cells than did 

the limbal epithelium. No Ki67 staining was detected in either limbal or corneal 

suprabasal cells.

This is consistent with previous reports that the limbal epithelium contains a mixture 

of slow-cycling stem cells and more rapidly cycling transient amplifying cells. 

Transient amplifying cells have a limited regenerative capacity and migrate 

centripetally towards the central cornea. These cells are pushed upwards into the 

suprabasal corneal layers and at this stage they lose the ability to proliferate and 

become terminally differentiated (Cotsarelis et al., 1989; Lavker et al., 1991). The 

amount of staining is more intense in periphery compared to the central region. Ki67 

was also localised in cultured epithelial cells and keratocytes from cornea. This result 

indicates that Ki67 labelling can be used to assess proliferation during cell growth. 

Furthermore, double-labelling of Ki67 with other proteins of interest can provide
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valuable information regarding the conditions that stimulate cells to enter the cell 

cycle.

7.2. Corneal epithelial cell differentiation

Epithelial cell differentiation can be defined as a qualitative change in the cellular 

phenotype that is the consequence of the onset of the synthesis of new gene products, 

i.e. the non-cyclic changes in gene expression that lead ultimately to functional 

competence (Lajtha, 1979). All external surfaces of the body, including the cornea, 

are covered by stratified squamous epithelia. These cells synthesize tissue-restricted 

keratin intermediate filament proteins, and form a specialized submembrane structure. 

Cytokeratins comprise a diverse group of intermediate filament proteins (IFPs) that 

have been found to be useful markers of tissue differentiation (Eckert, 1989; Fuchs, 

1990). The comea-specific CK3 has been used as a marker for differentiating 

epithelial cells and confirmation of epithelial cell purity (Schermer et al., 1986). In 

this study, AE5, a highly specific antibody against 64 kDa CK3, has been used as a 

marker of differentiating epithelial cells.

The results of this thesis showed that CK3 localised in all cell layers of the human 

comeal epithelium, however, it was only identified in the supra-basal layers of the 

limbal epithelium and not observed in the basal layer of the limbus. These results are 

consistent with previous reports that the basal layer of the limbus contains a ‘less- 

differentiated’ population of cells than exists in the basal layer of the cornea, and that 

from basal layer to surface of the cornea the epithelial cells have become terminally 

differentiated (Schermer et al., 1986).
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The fact that epithelial basal cells of the central cornea but not those of the limbus 

possess the 64 kDa keratin therefore indicates that corneal basal cells are in a more 

differentiated state than limbal basal cells. These results, coupled with the known 

centripetal migration of corneal epithelial cells strongly suggest that comeal epithelial 

stem cells are located in the limbus, and that comeal basal cells correspond to 

transient amplifying cells in the scheme that stem cells differentiate into transient 

amplifying cells which then become terminally differentiated cells (Schermer et al., 

1986).

In comeal epithelial cells, despite various attempts aimed at identifying the factors 

that initiate comeal epithelial homeostasis and wound healing, the mechanisms 

involved in the determination of cell fate decisions remain obscure. In this study, for 

the first time Notch signalling protein components were identified in human comeal 

tissue as well as cultured epithelial and stromal keratocytes by immunostaining, RT- 

PCR and Western Blot analysis.

7.3. Notch receptors and ligands in cornea

Immunofluorescent localisation of Notch 1 and Notch2 was demonstrated throughout 

the comeal epithelium in all suprabasal cells i.e. in the wing and superficial epithelial 

cells, in the central, peripheral and limbal regions. However, labelling was not 

detected in the epithelial basal layer where the epithelial cells were in varying 

proliferative states. In contrast, Notch ligands Delta 1 and Jagged 1 appeared to be 

expressed throughout all regions, and all cell layers of the comeal epithelium. These
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results suggest that Notch signalling occurs through cell-cell interactions via 

transmembrane receptors and ligands, and that Notch may be involved in mediating 

epithelial cell differentiation including cell stratification and maturity which occurs at 

corneal epithelial superficial and suprabasal layers. This is consistent with previous 

reports that Notch signalling blocks terminal differentiation (Frise et al., 1996; 

Capobianco et al., 1997; Bigas et al., 1998; Artavanis-Tsakonas et al., 1999).

7.4. Notch signalling in the human corneal epithelial cells

The major finding of the present study is that two Notch receptors (Notchl, Notch2), 

their ligands Deltal, Jagged 1 were identified in human comeal epithelial cells and 

keratocytes at both gene and protein levels. Western Blotting analysis confirmed the 

presence of Notchl, Notch2, Deltal and Jaggedl in cultured epithelial cells. The 

position of the positive bands correspond with the molecular weight of Notchl-120 

kDa and Notch2-85 kDa which are the molecular weight of intracellular domain of 

Notchl and Notch2, Notchl-300 kDa and Notch2-285 kDa are full length of Notchl 

and Notch2 (Fehon et al., 1990; Struhl and Adachi, 1998). These indicate that 

Western Blotting for both active and inactive isoforms of Notchl and Notch2 can be 

used for investigation of Notch signalling function.

7.4a The role of Notch in corneal epithelial cell proliferation and differentiation

In the Notch signalling pathway, the remaining membrane-tethered Notch fragment is 

cleaved by y-secretase within its transmembrane domain (De Strooper et al., 1999; 

Song et al., 1999; Struhl and Greenwald, 1999), which translocates into the nucleus,
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where it participates in transcriptional activation of target genes (Jarriault et al., 1995; 

Fortini, 2002). Inhibition of y-secretase prevents Notch signalling (De Strooper et al., 

1999; Wolfe, 2001). A recombinant Jagged 1 was used to induce of Notch signalling 

to confirm the function of Notch (Lindsell et al., 1995; Artavanis-Tsakonas et al., 

1999). After addition of y-secretase inhibitor, the treated epithelial cells analysed by 

Western Blotting and immunocytochemical staining. The results indicated that there 

was a significant decrease of Notch activation (Notchl-120, Notch2-85) accompanied 

by a significant reduction of Ki67 and an increased CK3 expression. In contrast to 

Notch inhibition, the expression of Notchl-120, Notch2-85 increased with an 

increased Ki67 and a decreased CK3 after addition of Jagged 1. In agreement with 

Western Blotting analysis, the percentage of Notchl and Notch2 expression in 

epithelial cell nuclei decreased with a decreased Ki67 and an increased CK3 after 

Notch inhibition. After Notch activation, the percentage of Notch receptors expression 

in cell nuclei increased with an increased Ki67 and a decreased CK3. These results 

have two implications: (1) Notch signalling is present in comeal epithelial cells 

regardless of whether they are actively differentiating or proliferating; (2) Notch 

pathway inhibits comeal epithelial cell differentiation, but promotes cell proliferation.

A primary function of the Notch signalling pathway is to prevent differentiation via 

activating a transcriptional repressor (Artavanis-Tsakonas et al., 1999). However, our 

in vitro studies suggest that the proliferative event can also be affected by Notch 

signalling. Important questions are: how to interpret the function of Notch signalling 

in proliferative cycling cells? why Notch does not appear to be expressed in 

proliferative area of comeal tissue?
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A link between proliferation events and Notch has been reported previously (Cagan 

and Ready, 1989; de Celis et al., 1998; Go et al., 1998; Johnston and Edgar, 1998), 

although the elements mediating the nonautonomous effect of Notch on cell 

proliferation are unknown. The proliferative effect of Notch signalling in different 

tissues may be the result of a synergistic effect between Notch and other proteins and 

depends on the developmental context (Artavanis-Tsakonas et al., 1999). The 

mechanism for acquiring proliferative function of Notch in comeal tissue may be 

reprogrammed or inhibited and this may be related to the specific location of basal 

cells and their contact with the basement membrane. These localisation patterns 

suggested that the Notch pathway may involve a transitory stage where Notch is 

downregulated.

This suggests that the Notch pathway plays a pivotal role in comeal epithelial cell 

homeostasis and paves the way for understanding the process of comeal epithelium 

stratification and wound healing.

7.4b The role of Notch in corneal epithelial cell stratification

The process of comeal stratification occurs during comeal wound healing and comeal 

development to ensure that the tissue can resume or create its normal function in light 

refraction. Cell-cell junctions are an important feature of stratified epithelia, 

indicating functional communication within the tissue and suggesting the existence of 

a functional barrier. To monitor the development of a stratified epithelium formed in 

this study, morphologic and biochemical markers were used to demonstrate the degree 

of comeal epithelial stratification and tissue integrity. The term stratification in the
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present study is used to describe the process by which comeal epithelial cells 

differentiate and develop distinctive sublayers that can be identified by morphologic 

and biochemical markers. This definition differs from the term differentiation, which 

refers to the process of epithelial cell programming for the expression of a 

characteristic phenotype (Watt, 1987).

The human amniotic membrane (AM) is known to be ideally suited for use in comeal 

epithelial stratification with a number of successful applications (Dhall, 1984; 

Rennekampff et al., 1994; Tsubota et al., 1996; Shimazaki et al., 1997; Tseng et al., 

1998; Connon et al., 2006). The function of Notch signalling was investigated in 

human comeal epithelium stratification by using comeal limbal explants on AM, 

which were subjected to Notch signalling inhibition or activation. The results 

demonstrated there were significant changes of the number of epithelial cell layers 

and the percentage of CK3-a marker for cell differentiation, but there was no change 

in cell proliferation- Ki67 expression. These findings suggest that the Notch signalling 

repressed the ability of primary comeal epithelial cells to form a stratified epithelium 

via inhibiting cell differentiation rather than cell proliferation.

As reported previously, during eye organ culture storage, an obvious loss of epithelial 

cell layers was revealed (Albon et al., 2000). In this thesis, the number of epithelial 

cell layer decreased with a significant decrease of Ki67 expression during storage. It 

was apparent that the demand for tissue regeneration was not met, therefore 

proliferation disrupted homeostasis of comeal epithelium. However, the results also 

detected that the decrease of epithelial cell layers became significantly slower due to
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inhibition of Notch. This provides a potential strategy for the maintenance of cornea 

storage with inhibition of Notch function.

7.4c The role of Notch in corneal wound healing

Notch-mediated cellular communications between cells of the cornea were very 

complex especially in the comeal wound healing process. For the regulation of Notch 

; in comeal epithelial wound healing assays, an organ culture model (Foreman et al.,

1996) was used to investigate Notch signalling in comeal wound healing with and 

I without y-secretase inhibitor or Jagged 1 treatment. The results demonstrate that the

Notch signalling repressed comeal wound healing at late stages via preventing 

j epithelial cell differentiation and stratification.

As an application of Notch signalling in comeal wound repair, y-secretase inhibitor 

therapy may be developed. The aims of the therapy are to promote comeal epithelial 

cell stratification, provide mature epithelium, prevent regression of re-epithelialisation 

of the cornea, and restore epithelial clarity.

7.4d The role of Notch in corneal development

The cornea develops from the ectoderm giving rise to the epithelium and neural crest 

cells which generates keratocytes, endothelial cells, and nerve cells (Oyster, 1999b). 

Cytokine- and growth factor-mediated communications are likely involved in

directing neural crest cells to the appropriate location and regulating their 

proliferation, differentiation, and function in creating the adult cornea. The

development of the Bowman’s layer may involve interactions between the epithelium
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and developing stroma (Oyster, 1999b). Little is known about the specific mediators 

involved. Since Notch signalling is known to function as a developmental tool to 

direct cell fate and consequently organ formation and morphogenesis it is likely that 

Notch and its ligands play a role in regulating cell patterning and differentiation of the 

comeal epithelium.

To reveal the expression of Notch family members in comeal development, 

embryonic chicken corneas at different stages were used for immunolocalisation of 

Notch members. The results demonstrated that the Notch receptors and their ligands 

appeared to be expressed in all epithelial cell layers including basal cell layer in early 

developmental stages (before day 10). This suggests that it is likely there are similar 

characteristics between different cell layers: superficial, suprabasal and basal layer, 

perhaps even in the epithelial stem cell niche in early stages of chicken cornea. After 

day 12 until day 20, Notch receptors were expressed in suprabasal and superficial 

layers of the epithelium, but were absent in the basal layer. This result is similar with 

this study from adult cornea. These suggest that (1) Notch signalling is required for 

the normal development of the cornea and may regulate both proliferation and 

differentiation of comeal epithelial cells at early developmental stage; (2) the 

expression of Notch in comeal epithelial cell may be reprogrammed at late 

developmental stage of chicken cornea, so the function of Notch signalling may be 

changed.

The ability of a cell to respond to Notch activation, as well as the outcome of that 

response, is dependent upon temporal as well as spatial cues. This suggests that the 

differentiated state or competency of a cell contributes greatly to its response.
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Fig. 7.1. Schematic diagram to illustrate the main findings of this thesis

Given this, it is perhaps not surprising that so many different domains of Notch 

receptors and ligands contribute to the overall flexibility of the system. Although 

many of the components are ubiquitously expressed, it is clear that differentially 

specialised cell types express tissue-specific components capable of modulating the 

Notch signal (Lewis, 1996, 1998). It would not be surprising, therefore, given the 

broad spectrum of cell types known to utilize Notch signals, to find many more cell- 

type specific regulators. Elucidating the multiple controlling elements in this complex 

signalling system promises to be one of the more challenging areas of future research 

in this field.
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Figure 7.1 is schematic diagram to illustrate the main findings of this thesis.

7.5. Conclusion

The presence of Notch family members (Notchl, Notch2, Deltal and Jaggedl) in the 

comeal tissue suggests that they play pivotal role in comeal homeostasis, stratification 

and wound healing by inhibition of epithelial differentiation, rather than cell 

proliferation. These will facilitate the development of strategies to manipulate comeal 

epithelial cell homeostasis in comeal storage, wound healing, stem cell transplantation 

and ocular surface diseases.

Since Notch signalling is known to function as a developmental tool to direct cell fate 

and consequently organ formation and morphogenesis it is likely that Notch signalling 

plays a role in regulating cell patterning and differentiation in comeal development.
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APPENDIX I—CHEMICAL REAGENTS AND SUPPLER

Acetone

Acrylamide

Agar

Agarose

Amphotericin B

Attachment factor—ZHS-8949

Anti-human AE5 antibody

Anti-human Ki67 antibody

Anti-human Notchl antibody

Anti-human Notch2 antibody

Anti-human Jaggedl antibody

Anti-human Deltal antibody

Anti-goat IgG-HRP antibody

Anti-rabbit IgG-HRP antibody

Boric acid

Bromophenol Blue

Betadiene

BSA

Chloroform 

Chondrotin Sulfate 

Collagenase 

Developer

Dulbecco’s Modified Eagle Medium 

Dimethylsulphoxide (DMSO)

EDTA

Eagle’s minimal Essential Medium

Embedding molds

Embedding rings

Ethanol

Eosin

Fixer

Fetal calf serum (FSC)

BDH

BIO-RAD

BDH

BRL

Gibco

TCS CellWorks 

ICN 

DAKO 

Santa Cruz 

Santa Cruz 

Santa Cruz 

Santa Cruz 

Santa Cruz 

Santa Cruz 

Sigma 

Sigma

SetonHealthcare

BDH

BDH

Sigma

Sigma

Kodak Ltd., UK

Gibco

Sigma

BDH

Gibco

BDH

BDH

BDH

Gibco

Kodak Ltd, UK 

Gibco
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Filter paper BIO-RAD

Formaldehyde BDH

Formalin BDH

Fungizone Sigma

Gelatin Sigma

Glycerol Sigma

Glutamine Gibco

Haematoxylin (Mayers and Harris) BDH

High Molecular Weight Marker Sigma

Ham’s F-10 Medium Gibco

Hoechst H033258 Sigma

Hydrogen Chloride BDH

Hydromount BDH

Kanamycin Sulphate Sigma

Labeled Donkey anti-Goat IgG antibody Molecular Probes

Labeled Goat anti-Mouse IgG antibody Molecular Probes

Labeled Donkey anti-Rabbit IgG antibody Molecular Probes

Luminol reagent Santa Cruz

MEM (Eagle’s Mimimumal Essential Medium) GibcoBRL

Microtome disposable blade Lamb

Nitrocellulose membrane BIO-RAD

OCT Lamb

Proteinase K Sigma

Pronase BDK

Penicilin-G Sigma

Paraffin wax Lamb

Scalpel blades NO 22/23 Fisher

Sodium Chloride BDH

Streptomycin Sulphate Sigma

Super frost plus slides BDH

Surgical blades Fisher

Tissue-Tek OCT compound Lamb

Trowells T8 Gibco

Tris ( hydroxyemthyl) BDH
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Triton X-100

Trypsin

Tween

TEMED

X-ray film

Xylene

Sigma

Sigma

Sigma

Sigma

Kodak Ltd, UK 

BDH
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APPENDIX II -PREPARATION OF BUFFERS AND SOLUTIONS

Phosphate buffered saline (PBS) 10X (1 liter)

80g sodium chloride

14.24g disodium hydrogen orthophosphate 

2g sodium dihydrogen orthophosphate 

dd H20 adjust pH to 7.4

Antibiotics and Glutamine — for 100ml

Streptomycin Sulphate (Sigma #S-9137) 1 mg

Kanamycin (Sigma #K-4000) lmg

Penicillin-G (Sigma #PEN-NA) 600mg

L- Glutamine (Sigma #G-5763) 1.46gm

ddH2 0  100ml

Fungizone 250 pg/ml

After thawing completely dispense aliquots (2ml) was dispensed into sterile bijoux 

and frozen at -20°C

ReddyMix™ PCR Master Mix

The addition of the template and primers (in a volume of 2.5 pi) resulted in a final 

reaction volume of 25 pi, containing:

0.625 units Taq DNA polymerase
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The component of 20ml 8% acrylamide resolving gel

H20  9.3pl

30% acrylamide mix 5.3 pi

1.5 tris (pH 8.8) 5.0pl

10% SDS (sodium dodecyl sulfate) 0.2pl 

10% ammonium persulfate 0.2pl

TEMED 0.012pl

The component of 5ml 5% acrylamide stack gel

H20  3.4pl

30% acrylamide mix 0.83pi

1.5 tris (pH 8.8) 0.63pl

10% SDS 0.05pi

10% ammonium persulfate 0.05pi

TEMED 0.005pi

Buffer for western blotting

TBS (10X) (9% NaCl, lOOmM Tris HC1, pH 7.4)

NaCl 90.00 g
Tris 12.11 g

Make up to just below 1 litre (900ml if using HC1 1M, 985ml if use HC1 11M ) check 

and adjust pH, make up to 1 litre.
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2X SDS-PAGE sample buffers (8ml)

Stacking buffer (0.5 M Tris-HCl pH 6.8) 2ml

Glycerol 1.6ml

10% SDS 3.2ml

2-mercaptoethanol 0.8ml

0.1 % (w/v) bromophenol blue in water 0.4ml

Store at -24 °C freezer

lOx running buffer: 1 L

Trizma base (= 0.25 M) 30.3g

Glycine (= 1.92 M) 144g

SDS (= l%)~add last lOg

Transfer buffer (IX) 1 litre

3.0 g Trizma base (= 0.25 M) 

14.4 g Glycine (= 1.92 M)

200ml Methanol

pH should be 8.3; do not adjust

RIPA buffer

50mM pH 7.4 

1%

0.25%

150 mM

Tris-HCl

NP-40

Na-deoxycholate

NaCl
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EDTA ImM

PMSF ImM

Aprotinin 1 pl/ml each

Leupeptin 1 pl/ml each

Pepstatin 1 pl/ml each

Na3VC>4 (stock in dark) ImM

NaF (stock in dark) ImM

Agar/Gelatin

2g Agar 

2g Gelatin 

200ml ddWater

Place agar, gelatine and water into a 300ml bottle and atuocalve at 120°C for 20min

Agar/Gelatin Support

200ml Agar/Gelatin

20ml lOx MEM

10ml 7.4% sodium bicarbonate

2ml Antibiotics

lml Fungazone

Heat agar/molten mixture until molten using the microwave on low power. Filter 

(0.2 pm) remaining solutions into cooled solution.
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Trowells T8 Media (500ml)

500ml Trowells T8 

5ml Antibiotics 

5ml Fungazone

Filter (0.2pm) remaining solutions into the media bottle.

7.4% sodium bicarbonate

22.2g sodium bicarbonate 

300ml ddWater

Mix until dissolved and store at room temperature
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