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Abstract

Although considerable effort has been placed on developing techniques and algo­

rithms to create feasible cell plans, much less effort has been placed on understanding 

the relationship between variables and objectives. The purpose of this thesis is to 

improve the body of knowledge aimed at understanding the trade-offs and tensions in 

the selection of transmission sites and in the configuration of macro-cells for GSM and 

related FDMA wireless systems. The work begins by using an abstract 2-dimensional 

(2D) model for area coverage. A multiple objective optimisation framework is de­

veloped to optimise the sequential placement and configuration of downlink wireless 

cells. This is deployed using a range of evolutionary algorithms whose performance is 

compared. The framework is further tuned via a decoding mechanisms using the best 

performing evolutionary algorithm. The relationship between primary variables in the 

2D model is analysed in detail. To improve realism, the thesis additionally addresses 

complexities relating to planning in 3-dimensional (3D) environments. A detailed 

open source static model is developed and the optimisation framework is extended 

to accommodate the additional model complexities and choices in algorithm design 

are compared. Finally, sensitivity analysis is performed to determine the relationship 

between objectives in the 3D model and benchmark solutions are provided.
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Chapter 1

Introduction

Mobile communication systems help meet the growing needs of people who are 

on the move, and who want reliable access to telecommunication services wherever 

they are. In Europe, countries decided, as part of the general ideology behind the 

European Union, to develop a pan-European mobile phone standard in 1982 to allow 

users to roam throughout Europe with mobile voice and data services. This was 

termed the global system for mobile communications (GSM) when finalized in 1991. 

Today, the GSM Association reports that GSM is the fastest growing communications 

technology of all time, with the billionth user connected in the first quarter of 2004, 

which is only 12 years after the commercial launch of the first GSM networks. They 

also report that GSM accounts for 75% of the world’s digital mobile market and 

74% of the world’s wireless market, with operators in more than 210 countries and 

territories. This makes GSM not only the European standard but the global standard 

for second generation mobile telephony. This tremendous growth has made good and 

efficient mobile network design highly desirable.

1
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This thesis is devoted to improving the body of knowledge aimed at understanding 

the relationships, trade-offs, and tensions between variables and objectives during the 

configuration of macro-cells for GSM and related FDMA wireless systems. Together 

with a detailed approach to achieving automatic site placement, operators will be 

empowered to make better choices during network planning, which will aid them in 

meeting the demands of subscribers more efficiently. Section 1.1 sets the background 

to the problem of mobile network design and the motivation for resolving it. Section

1.2 provides the research scope and objectives. Finally, Section 1.3 delineates the 

structure of the thesis.

1.1 Background and M otivation

To allow subscribers the freedom to roam anywhere within a service area adequate 

received signal strength needs to be made widely available. As the roaming provision 

and number of subscribers increases, the density of sites needed to meet demand 

increases. The proliferation of cellular wireless services for mobile communication 

has led to the antenna placement problem (APP).

For cellular wireless systems, mobile communication is facilitated by base stations 

which have an appropriate spatial distribution. The area of service coverage from 

a single antenna at a base station constitutes a cell, which is a region where the 

radiated signal power from the serving antenna is of sufficient strength to be received 

by subscribers. As the power of transmitted signals must be restricted, multiple cells 

are required to provide wide area coverage. The collection of cells across the service 

area constitutes a cellplan or network.
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The APP involves selecting base station site locations from a set of candidates, 

which axe dispersed irregularly and which achieve varying qualities of signal propa­

gation due to the surrounding terrain, buildings, antenna heights, etc. Selected sites 

must be configured to provide adequate service coverage and capacity while adhering 

to constraints involving regions which can be served by more than one antenna. Such 

constraints are imposed to ensure that the potential for interference is controlled while 

providing regions in the network for call handover, which are necessary for seamless 

call transfer between cells. Areas covered by more than one cell, termed overlap or 

m ulti — coverage, must be carefully controlled both to maintain network operation 

and minimize the total commitment to infrastructure.

Control over the area covered by a cell is gained first by controlling the spatial 

density of cells, and secondarily through antenna configuration. Antennas at selected 

sites need to be configured to meet service demands. This is an adjunct to the APP 

and is known as the antenna configuration problem (ACP). The difficulty is there are a 

wide range of potential configurations at each site, starting with the type and number 

of antennas and ending with choosing the best transmission powers, azimuths, and 

tilts. Efficiently configuring antennas is not a simple task. Not only are there many 

potential combinations of settings, but changing the configuration at one site can 

affect other sites. For example, if power is reduced in one cell to reduce its traffic load, 

another cell might pick up the unloaded traffic, and then itself become overloaded. 

This makes it difficult to perform local optimization, as it inevitably affects the global 

picture. This is why the computational complexity of this problem is so high, because 

if one makes even a small local change, measurements throughout the network need
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to be taken if certain hard constraints, for instance, are being followed.

Finally, it is highly desirable that the APP and ACP be achieved as quickly as 

possible, particularly with the growing trends toward dynamic structuring, and using 

the fewest number of sites possible in order to keep costs low, as commissioning sites 

represents an operator’s dominant cost. In short, the overall goal of cell planning is to 

select a sufficient subset of base station sites at the appropriate spatial density from a 

set of candidate sites to meet network design objectives, and to configure settings at 

base stations to meet subscribers’ needs and minimize an operator’s financial outlay. 

Discovering the models, settings, and objectives requires forging links with partners 

in industry who can benefit from the work academics provide.

Due to the fact that local changes affect the global landscape, and the resultant 

interdependencies between multiple and often conflicting objectives, resolving the 

APP and ACP is a circular problem: Ideally, to select the best sites one needs to 

know how sites are configured, but to configure sites one needs to know which sites 

are selected. Therefore, if the relationships, trade-offs, and tensions between variables 

can be clarified, the key to unlocking this circular problem may be found and the 

problem reduced to its most basic components. For example, it is possible that if 

there are five objectives to meet, investigators are trying to actively meet all five 

objectives. However, if there is a strong relationship between one of these objectives 

and the remaining four, it is not infeasible to imagine that instead of attempting to 

design a network based on five objectives, one could be designing based on one or 

two.

The number of factors involved in solving the APP and ACP means that auto­
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matic software for designing cell plans has become increasingly common [85]. We 

classify software as automatic if the associated computer program has autonomy in 

the selection of base station locations and the configuration of antennas. Because 

of the high demand for GSM services, and the pressing need of operators to find 

the lowest cost base station infrastructure to reliably meet the growing needs of sub­

scribers, automatic cell planning which can optimise a cellular network configuration 

and expedite the engineering process by eliminating manual interventions, decision 

making, and judgments, is highly desirable.

The underlying algorithm in the software is required to tackle an NP-hard [54] 

optimization problem with 2n solutions for the APP given n  candidate sites or (ra+ l)n 

for the ACP (with m configurations possible at any site). Consequently, heuristic and 

meta-heuristic techniques have become increasingly popular for solving the APP.

1.2 R esearch Purpose and Scope

The aim of the research is (i) to produce a methodology to effectively quantify 

the relationship between pertinent variables in cell planning and (ii) to deploy the 

methodologies in a variety of cell planning scenarios to clarify their impact.

The approach starts in the 2D model as a greedy sequential decoder and becomes 

a more complex site configuration algorithm in the 3D model. By model we mean 

the information necessary to create and use a data set capable of simulating a static 

environment for GSM cell planning. Although we do not seek to concurrently resolve 

the more well-studied channel assignment problem during this approach, every effort 

is taken to minimize multi-coverage in the 2D model and co-channel interference in
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the 3D model. The reason for optimizing a sequential approach to cell planning 

is to create a flexible model which can be used to quickly configure a network, as 

the current trend is toward dynamic dimensioning, or which could be easily adapted 

to find a very refined solution, as might be the case for an operator using static 

dimensioning.

To use the approach a simulation environment for investigating the APP and ACP 

which can accurately measure important operator objectives is designed. To this end, 

we use an available 2D model for some theoretical investigations, and then engineer 

a more realistic 3D model capable of measuring all pertinent network design criteria. 

This is an important step as there is currently no standardized, realistic GSM model 

used in the literature which is made publicly available. By publicly available we 

mean that the information is available for free in the public domain for personal and 

academic use.

The approach is then used to discover the fundamental tensions, conflicts, and 

relationships between interrelated network design criteria, particulary as 100% service 

coverage is approached. This is important as operators commonly wish to meet 

multiple design criteria (such as high service coverage, high system capacity, high 

roaming provision-call handover, low cost, low interference) simultaneously. As the 

goal is to satisfy multiple objectives simultaneously, this is termed a multi-objective 

optimization problem (MOP).

It has become increasingly common to resolve MOPs using genetic or evolutionary 

algorithms, as they are well-suited to this task. This thesis focuses primarily on 

resolving two fundamental cell planning objectives: providing the required service
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coverage at the lowest possible financial cost These two conflicting objectives always 

exist when setting up cellular network services, as adding base stations to improve 

service coverage inherently increases the cost of the network. Despite the importance 

of finding an optimal trade-off between these two objectives, we are not aware of any 

studies directly addressing this issue. This may occur because the focus tends to be 

on producing one best cell plan, rather than a range of cell plans.

The cell plans we produce are the first step in establishing a cost effective opera­

tional network. In the 2D model, the tension between cost and coverage is resolved 

without detailed dimensioning at individual cells [21]. During the 2D approach, only 

the power of transmission is altered. In the 3D model, individual cells undergo di­

mensioning. This second stage may involve adjusting additional variables at selected 

base stations such as tilt and azimuth, in order to ensure the traffic load does not 

exceed 43 erlangs, which is a setting commonly employed (e.g., [89, 81, 40]). Addi­

tionally, multiple directed co-sited antenna may be invoked at this stage to increase 

the capacity for multiplexing, given knowledge of anticipated traffic patterns. Known 

as sectorization, this is common operational practice in mobile telephony, whereby 

using multiple co-sited antenna is generally far cheaper than commissioning a new 

site.

To optimally resolve the competition between service coverage and financial cost, 

we introduce a multiple objective optimization framework that does not require a 

priori knowledge of the relative importance of service coverage versus cost. This is 

achieved by providing a range of alternative site selections which approximate the 

best possible trade-offs (i.e., Pareto front) between cost and coverage. This means
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that unlike the current convention for cell planning, which generally seeks to generate 

a single cell plan given information on the relative importance of objectives, a radio 

engineer will be able to choose from a range of alternative cell plans, given visual 

and detailed information regarding each. This is particularly beneficial when there 

is a non-linear relationship or unknown dependency between the objective functions 

as for the general APP. This is also useful given the demarcation between the needs 

of operators who wish to entice subscribers with high quality service levels, versus 

low-cost providers who, to keep overheads low, may simply seek the lowest cost per 

unit of coverage.

As far as we are aware, this method has only been considered for cell planning 

in [57], where a genetic algorithm was developed specifically for the APP. However, 

the total network cost was not considered. Unlike [57], the framework we propose 

considers financial cost and is flexible because it is possible to ‘plug-in’ any multi­

objective optimization algorithm (MOA) which seeks to approximate a Pareto front. 

This flexibility is achieved by making the cell plan representation independent from 

the task of the MOA, which, in the case of an integer-coded permutation, is to find 

optimal orderings of candidate site locations to optimise two objectives. Exploring a 

search space in this manner is common practice in many discrete optimization prob­

lems and has also been successfully applied to partitioning problems, the minimum 

span frequency assignment problem, the travelling salesman problem, and set covering 

problems [43].
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1.3 Thesis O utline

The main contributions following the introduction in Chapter 1 are the following:

•  In Chapter 2: A  review of the literature is undertaken. We start be 

reviewing GSM cell planning (including past approaches, simulation environ­

ments, and cell plan quality measurement). We show that the most realistic 

GSM simulations are not made publicly available, that most approaches to 

planning take a long time to resolve and do not tackle the circular problem of 

cell planning, and that the fundamental tensions and conflicts are not investi­

gated. We report that many previous approaches have successfully used genetic 

algorithms.

We proceed to discuss the use of different algorithms for cell planning (includ­

ing sequential and greedy algorithms, genetic algorithms, and multi-objective 

genetic algorithms-MOGAs). After this, the parameters of MOGAs are delin­

eated, including representation, fitness evaluation, selection, recombination and 

mutation, search space, and parameter tuning.

Finally, we cover the metrics used to evaluate non-dominated solutions, includ­

ing domination, pareto-optimality, weak-domination, and the set cover metric. 

This provides the necessary background for evaluating multiple non-dominated 

cell plans found in a number of testing situations presented.

•  In Chapter 3: A 2D sim ulation model and m ulti-objective cell plan­

ning strategy are introduced and tested. The 2D cell planning model is 

a simplified network model appropriate for theoretical investigations. Within
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Chapter 3, it is used to investigate the suitability of four multi-objective algo­

rithms to find an optimal ordering of candidate sites, where the order of sites 

is used by a greedy decoder to determine a cell plan. The problems consider 

area coverage and cost. Results are expected to indicate the most effective 

multi-objective algorithm, which is carried forward and used throughout the 

thesis.

•  In Chapter 4: The 2D framework is tuned. Six decoders, which differ by 

how they control cell overlap and how they select the next candidate site, are 

tested on their ability to optimise coverage and cost by controlling cell density. 

Results indicate the most effective decoder.

•  In Chapter 5: 2D cell planning is analyzed. The rate at which infras­

tructure cost changes is fundamental in determining the amount of coverage, 

and related capital investment, which the operator should employ to maximize 

profit. This clarifies the relationship between coverage and cost and suggests 

why investigators and operators might not wish to simply maximize coverage.

•  In Chapter 6: A 3D sim ulation m odel is engineered, design objectives 

defined and single site coverage tested . This is undertaken to create a re­

alistic wireless simulation environment and define network components capable 

of allowing the measurement of all pertinent design objectives. The goal of the 

3D model is to meet or exceed the quality of all other available models and be 

the first whose method of creation and contents are made publicly available. 

This assures results presented herein can be challenged and extended in future
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scientific works.

•  In Chapter 7: A 3D cell planning strategy is extended from the 2D 

model. Changes in the model (in particular, traffic load and increased site 

complexity) lead to a pre-processing phase which considers each site locally, and 

in the absence of all others. This phase is termed TSCA, and it is introduced to 

the cell planning strategy to configure cells before optimizing on coverage and 

cost. At this time, a binary-representation model is also added to compare and 

contrast to the standard integer-represent at ion used earlier.

•  In Chapter 8: Pertinent 3D variables and parameters are tuned and 

tested . Results indicate a trade-off for many parameter settings (e.g., GA 

population size) between solution quality and speed of execution, with different 

settings being more appropriate depending upon the application. These are 

discussed and algorithms for 3D planning are tuned.

•  In Chapter 9: Tests to  compare 3D cell planning strategies and ob­

jective relations are com pleted. Results distinguish between cell planning 

approaches, and clarify the correlations between design objectives, and gener­

ally indicate if using optimized settings in the cell planning strategy is capable 

of meeting all pertinent network design objectives.

Finally, conclusions are drawn and presented in Chapter 10, along with directions 

for future work.



Chapter 2

Review  of Literature

2.1 G SM  Cell P lanning

GSM cell planning is a complicated task. First, developing a GSM simulation 

environment which is appropriate and practical for solving real world problems is 

difficult. Three main contending models with varying strengths and weaknesses are 

discussed in Section 2.1.1. A common fault in each case that affords a high degree of 

realism is that the topographical and traffic data used is not made publicly available, 

nor is how this data incorporated or used made transparent. This is a severe limita­

tion as it eliminates the possibility for other researches to challenge findings or beat 

benchmarks solutions. We address this when developing our own model in Chapter 

6 .

Secondly, an approach to cell planning needs to be developed to tackle the N P - 

hard cell planning problem (CPP), which may include aspects of both the antenna 

placement (APP) and configuration (ACP) problems. Consequently, heuristic and

12



Chapter 2: Review of Literature 13

meta-heuristic techniques have become increasingly popular for solving the CPP. A 

number of contending algorithms with varying strengths and weaknesses are discussed 

in Section 2.1.2, and the ones selected for use in this thesis are discussed in more detail 

in the Section 2.2. Selecting a well-researched algorithm for use in the optimization 

process allows the primary focus of this thesis to remain on developing new opti­

mization methodologies. This allows attention to be placed on tailoring and applying 

these methodologies for purposes of this application.

Finally, comparing the performance of multiple objective algorithms is problematic 

because a set of solutions rather than a single solution is obtained. Several alternative 

approaches to this are discussed in Section 2.3.

2.1.1 Sim ulation environm ents

Models for simulating wireless coverage range from the abstract (e.g., graph theory 

models) to the detailed (e.g., models based on specific areas with known traffic and 

topology). Models in-between these two extremes either seek means for increasing the 

realism of an abstract model, or reducing the complexity of detailed models in order 

to increase computational speed. Thus, each simulation model represents a trade-off 

involving the level of detail and computational speed. The three main models for 

simulating wireless networks include the demand node concept, disk graph models, 

and discrete test point or cell models.
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Dem and node concept

The demand node concept was first introduced in [44], and has been used in several 

studies since (e.g., [5, 24, 83, 77]). The core concept is that a demand node represents 

the centre of an area where traffic is being generated by users. The main advantage 

of this is that by combining the traffic from a small geographical area into a single 

point (or demand node), the number of computations required during cell planning 

is reduced, but in the process realism is also reduced. For example, in [83] only 288 

demand nodes were required for an area 9 km2, whereas in a discrete model with 

test points uniformly distributed every 200m there would be 2025 ‘nodes’. There are 

much fewer demand nodes in effect because each subsumes a number of test points. 

However, the process of amalgamating a number of test points into one demand node 

has the same effect as any type of compression (e.g., CD music to MP3): the resolution 

or clarity is diminished. In short, fine resolution (e.g., nodes every 50m) affords more 

realism than low resolution (e.g., nodes every 500m).

Investigators using the demand node model to date have allowed freedom in se­

lecting candidate sites. This makes the possibility of finding a suitable site in any 

given situation much more likely than in models using a restricted number of poten­

tial sites. For example, [83] distributed candidate sites uniformly every 100m, which 

results in 8,100 candidate sites. This translates to a candidate site density per km2 

of 100.00 versus, for example, 0.24 in the highest candidate site density test scenario 

used in [63]. The strongest argument against using uniform candidate site distribu­

tion in simulation models is that it is unlikely many network operators are granted 

such freedom.
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An advantage of this approach is that certain constraints can be formulated to 

ensure only cells which meet the constraints are allowed during cell planning. For 

example, one might only consider cells which cover less than a certain number of 

demand nodes, and thereby ensure that cells cannot become overloaded. However, 

as we will see, this advantage is also present in other models, and therefore such 

advantages have more to do with the planning algorithms employed, and less to 

do with the simulation model. Although not a limitation of this simulation per se, 

investigators using this model have not investigated cell planning expansion scenarios.

D isk graph model

The application of disk graphs to cellular system design was first used by [28] 

for use in resolving the related channel assignment problem. The intersection disk 

graph model (with non-uniform traffic distribution) has been used subsequently by 

[37, 38, 39], and the unit disk graph (with uniform traffic distribution) by [53]. The 

strength of the approach used in [37], for example, is that it allows consideration of 

many pertinent network design objectives. This means that one can try to resolve 

CPP and the channel assignment problem simultaneously. The computational time 

using this approach is also low.

However, a major weakness of this approach is that potential transmitters are 

often assigned only one out of a range of configurations, which inevitably restricts 

the total number of possible designs. An additional and significant weakness is that 

the disk approach assumes idealised propagation modeling (i.e., identical cell shape). 

While the size of cells can be altered based on non-uniform traffic distribution ([38]),
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the shape of the cell is always the same, which tends to be circular. Another problem 

is that the hierarchical optimization method often employed with the disk graph 

model (e.g., see [37]) allows each pixel to be a potential base station site (or disk), 

and therefore suffers from the same problems as mentioned for the demand node in 

terms of allowing uniform candidate site distribution. On the other hand, there does 

not seem to be any reason why a limited set of sites could not be used. It appears 

this is a design choice made by the investigators and not necessarily a limitation of 

the model.

Test point and cell models

The test point model is perhaps most clearly delineated in [68] and [67], but had 

appeared in similar form in earlier works (e.g., [31]). In this model, the working 

area or simulation area W  is discretized into test points at Cartesian coordinates 

(i.e., x,y) at a given resolution. For example, test points may be available every 

100m over a 10 km2 area. Test points are used in order to allow signal strength 

measurement (see RTP below) in areas which an operator wishes to service (see STP 

below) because of traffic demand by customers (see TTP below). The three sets of 

test points distributed in W  are reception test points (RTP) where signal reception 

can be tested, service test points (STP) where signal quality must exceed a signal 

quality threshold to be useable by a customer, and traffic test points (TTP) where 

a given amount of traffic (in erlangs) from customers using their mobile devices is 

associated. In this model, the TTP C STP C RTP.

This model has been used by the current author (e.g., [62, 64, 63] ) and the



Chapter 2: Review of Literature 17

A R N O  (Algorithms for Radio Network Optimization, IT  Project 23243) partners 

(e.g., [10, 81, 89]). It has also been arguably adapted by [29] who extended the model 

with a typical urban area map, altitude data, and hypothetical traffic data, although 

it is not made evident how all this data was specifically used to enhance the simu­

lation. This idea appeared also appeared earlier in [31], who instead of test points, 

divided the simulation area into cells and incorporated data regarding topology, traf­

fic distribution, and population, although, again, how and to what extent this data 

was used was not made clear.

The advantage of this approach is that it allows the measurement of all network 

objectives (e.g., coverage and capacity). Also, although candidate site locations (CBS) 

are defined by their Cartesian coordinates, they are not uniformly distributed. CBS 

are also restricted, unlike either of the previous two models, which more realistically 

reflects an operator’s planning environment. Like the disk graph model, investigators 

here have also considered cell planning expansion scenarios (e.g., [40]).

A disadvantage is that investigations using this approach have had the highest 

computational time, as investigators tend to use high resolution (e.g., test points 

every 200m) to increase realism. However, a trade-off could be made to increase speed 

by, for example, using a lower resolution (e.g., test points every 400m). However, this 

would be at the expense of realism.

2.1.2 P ast approaches to  the cell planning problem

The first published paper on optimizing antenna placement dates back to 1994 

[6]. Since then a large number of approaches and scenarios have appeared in the
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literature. Although exact approaches are only feasible for relatively small test prob­

lems, they have been applied in a range of papers [58, 59, 60, 84]. However, in some 

papers, they have been relaxed or selectively applied. Sequential, or greedy, algo­

rithms have been less well used and then predominantly for comparison purposes 

[58, 5]. Deterministic heuristic algorithms have also been proposed by a range of 

authors [14, 42, 76, 25, 77, 58, 59, 24, 55, 89]. Frequently, these approaches exploit 

observations (e.g., density of base station locations) about the CPP and incorporate 

them to enhance the performance of the cell plans obtained. However, meta-heuristic 

algorithms based on simulated annealing [1], tabu search, and genetic algorithms [33] 

are far more popular.

Simulated annealing has been adopted for the CPP in [2, 6, 54, 3, 40], and tabu 

search for the CPP in [29, 52, 81, 4]. Both these techniques operate by ranking 

solutions using a cost function. Given a solution, small changes are made to create a 

neighborhood of solutions from the current solution. The meta-heuristic then guides 

the acceptance of new solutions available in the neighborhood. The advantage of 

this approach is that it has the ability to escape from local minima in the search 

space (regarding the cost function), thereby improving performance. Differences in 

the application of these approaches involve how the cell planning problem is modelled, 

the formulation of rules to create neighborhoods, and the cost function used to rank 

solutions.

Genetic algorithms (GAs) have also become increasingly popular for the CPP 

[52, 50, 29, 38, 13, 58, 57, 69]. With the exception of [57, 36], these approaches pre­

dominantly seek to optimise a single function (or a linear combination of multiple
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objective functions) to create a population of high quality solutions. These algo­

rithms mimic evolution and natural selection through fitness assignment, selection, 

recombination, and mutation on a population of solutions. For a genetic algorithm to 

succeed, a suitable representation of the problem needs to be used. While the most 

popular representation for GAs in the literature is a binary string, several authors in 

cell planning have introduced the notion of real valued representations which provide 

information regarding the number of CBS and their locations (e.g., [29]).

2.2 A lgorithm s

2.2.1 G reedy sequential algorithm s

Greedy algorithms are used to produce a good solution quickly by selecting a 

myopically best addition until a feasible solution is constructed. While this process 

cannot guarantee an optimal solution is found, it does limit the number of steps re­

quired, and in this way, tends to be faster than alternatives (e.g., genetic algorithms). 

A typical means for minimizing the number of steps is to follow a sequential pattern 

(e.g., by next position in a list). An example use of the greedy sequential algorithm 

(GSA) is in bin packing problems, where the goal it to place n items into bins of 

common capacity, C. The problem is to minimize C given the number of bins is m. 

A possible GSA to solve this problem would be to order the items by size (smallest 

first) and then put the next item (in sequential order) into the bin with the smallest 

size. In this way, all items are placed into bins in n iterations, after which the bin 

with the largest size defines C. While the disadvantage of GSA is that alternative
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algorithms could find a better solution, it is unlikely they could do it in fewer steps. 

Thus, the advantage of GSA is that it requires less computational effort.

In cell planning, GSA works by commissioning antennas or sites based on a given 

ordering, not allowing antenna reconfiguration or decommissioning. The quality of 

the solutions found will depend largely upon the criteria used to configure antennas 

initially and the order in which candidate sites are considered. GSA have been used 

to resolve the related graph based problems and channel assignment [9, 8] and during 

cell planning to meet coverage and interference constraints [77].

2.2.2 G enetic algorithm s

Genetic algorithms are stochastic search algorithms inspired by Darwin’s prin­

ciples of natural selection, by which the most adapted members of the population 

survive long enough to reproduce and thereby evolve the general population toward 

higher levels of fitness, which first appeared in 1859 [16]. It was over a century later 

(1962) before the first work on genetic algorithms appeared in a series of papers on 

adaptive systems theory by J.D. Bagley, who in 1967 coined the phrase ‘genetic al­

gorithm’ and wrote its first application [7]. Eight years later (1975), the first seminal 

theoretical book was published by John Holland, often considered the father of ge­

netic algorithms [33]. However, only over the last decade have GAs been successfully 

adapted to solve multiple objective problems. An excellent overview of this area is 

given in [17].

The general principle behind GAs is to breed a new population through a process 

of selection, recombination, and mutation. This occurs over a number of generations
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to try to improve the performance of the population. The expectation is that desir­

able characteristics in solutions from one generation will combine to produce better 

solutions for the next generation. While these algorithms can be relatively simple in 

structure, they can be powerful mechanisms to search for improvements in a given 

population.

There are five procedures involved in setting up a basic genetic algorithm: repre­

sentation, fitness evaluation, selection, genetic modification (crossover and mutation), 

and replacement. The order of these is as appears in Algorithm 1. As with all ma­

chine learning problems it is worth tuning the GA’s parameters, such as mutation 

rate and recombination probability to find appropriate settings for the problem class 

being worked on. Theoretical upper and lower bounds for these parameters can help 

guide the initial selection.

Representation

The problem to be solved must first be represented by chromosomes, in such a way 

that an objective evaluation can take place of the solution the chromosome represents. 

Chromosomes are typically represented as simple bit-strings, integer-strings, data, or 

instructions, although there is no limit to the variety of data structures which could 

be employed. Different representation schemes can lead to differences in terms of 

solution quality and computational time.

Fitness evaluation

After the representational model has been decided, an initial parent population is 

generated. The parent population may be randomly determined or a heuristic could
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Algorithm  1 Basic genetic algorithm
1: Choose appropriate representation

2: Initialize parent population of size n

3: Evaluate each parents’s fitness

4: repeat

5: Create offspring population of size n through reproduction

6: for i =  1, . . . ,  n do

7: Select best-ranking parents to reproduce

8: Mate pairs according to given scheme

9: Apply crossover operator

10: Apply mutation operator

11: end for

12: Evaluate each offspring’s fitness

13: Replace less fit parents with offspring

14: until Terminating condition
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be used to form more suitable possible solutions. During each successive generation, 

each individual is evaluated, and a ‘goodness’ or fitness value is returned by a fitness 

function based on desirable objective measures. The population is then ranked such 

that those having better fitness (representing better solutions to the problem) are at 

the top of the fist for use in generating offspring.

Selection

Generating offspring is done by applying any or all of the potential genetic op­

erators: selection, crossover (or recombination), and mutation. A pair of parents 

(with those near the top more likely to be chosen) are then selected for breeding. In 

other words, the chance for being selected is directly proportional to fitness. This 

is commonly done using roulette wheel selection or tournament selection. The main 

disadvantage of each is that they can result in premature convergence: roulette wheel 

selection because it continually favours the stronger candidate, and tournament se­

lection because it has a strong tendency to select those with better fitness.

Crossover

Following selection, crossover (or recombination) is performed upon the two chosen 

parents. The probability of applying crossover (i.e., that two selected parents will 

breed) commonly varies from between 0.6 and 1.0. To test, a random number between 

0 and 1 is generated; if it falls under the crossover threshold, mating occurs, else the 

parents may be brought into the next generation unchanged. In either case, two ‘new’ 

offspring are added to the next generation’s population.

The way that crossover occurs can vary by the type of representation employed.
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In any case, the chromosomes of the parents are mixed in some way during crossover, 

typically by swapping portions of the chromosome. This process is repeated with 

different parents until there are an appropriate number of candidate solutions in the 

next generation’s population.

In single point crossover, one crossover point is selected. The binary string, for 

example, from the beginning of the chromosome to the crossover point is copied from 

the first parent, and the rest is copied from the other parent. For example,

10101 Oil +  11011 111 = >  10101-111, 11011-011

In two point crossover, two crossover points are selected. The binary string from 

the beginning of the chromosome to the first crossover point is copied from the first 

parent, the part from the first to the second crossover point is copied from the other 

parent and the rest is copied from the first parent again. For example,

10 0010 01 +  11 0001 11 = >  10- 0001- 01 , 11- 0010-11

In multi-point crossover, as many crossover points as desired are selected, within 

reason given the size of the chromosome. For instance, if the chromosome length 

was 5 it would be impossible to have 6 crossover points. For example, a triple point 

crossover scheme might look as follows:

11 0000 100 10 +  01 1010 110 00 = >  11- 1010- 100- 00, 01- 0000- 110-10
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The well-known cycle crossover [75] can be used with integer strings where each 

member can only appear once. This ensures that each index position in the resulting 

child is occupied by a value occupying the same index position in one of his parents. 

As an example, suppose we start with Parents A and B and attempt to form Offspring 

C:

A =

B =

C = 10 2 8 5 6 9

Figure 2.1: Cycle crossover example.

First, an index position from Parent A is randomly selected. For example, position 

4 (at i) might have been selected, which contains the value 2 in Parent A. We fill 

in position 4 with the value 2 in Offspring C, and proceed until we find value 2 in 

Parent B as follows:

Looking at Parent B, we see that the corresponding value at position 4 is the 

value 4 (at d), which in Parent A occupies the 7th position (at e). The 7th position 

contains the value 4, which is then added to our Offspring C. We continue to search 

in the same fashion until we find our starting value 2:

Looking at Parent B again, we see that the corresponding value at position 7 is 

the value 7 (at / ) ,  which in Parent A occupies the 2nd position (at g). The 2nd
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position contains the value 7, which is then added to our Offspring C.

As the corresponding 2nd position in Parent B is the value 2 (at /i), we stop, and 

then fill in the remaining index positions with the values from Parent B.

M utation

The next step is to mutate the newly created offspring. Typically this is done 

with a low probability, commonly 0.01 or less. As before, a random number between 

0 and 1 is generated. If this number is below the mutation probability, the offspring’s 

chromosome is randomly mutated in some way, typically by simply randomly altering 

bits in the chromosome’s structure. For example, the right-most bit might be ‘flipped’

binary: 01001-0 = >  01001-1

or, in the case of an integer permutation, two positions can be ‘swapped’, 

integer: 1-2-34-5 = >  1-5-34-2

Replacem ent

These processes result in the next generation’s genetic pool of chromosomes, which 

now contains both parents and their offspring. These are likely to be different from 

the previous generation’s genetic pool. However, most GAs only allow the same 

number of parents to survive to subsequent generations. As we now have double the 

genetic material, decisions have to be made regarding which individuals survive. This 

can be done in a variety of ways. For example, offspring may replace their parents
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or the least fit individuals in the population, and this could be done either uncon­

ditionally, probabilistically, or only if the offspring are better than the individuals 

they are meant to replace (i.e., elitism). Alternatively, all solutions could be pooled 

together and then compete for inclusion in the parent population. For example, the 

most diverse solutions might be saved, or the ones with the highest fitness, or some 

combination. Generally speaking, if an appropriate replacement strategy is being 

used the average degree of fitness will increase each generation until a maximum or 

optimal level is obtained, at which point the algorithm will terminate. However, any 

other termination criteria could be set. For example, the GA could terminate once a 

solution deemed ‘good enough’ was found.

M ulti-objective algorithms

Multiple objective problems (MOP) are problems that involve attempting to op­

timise several competing objectives simultaneously. This is distinguished from single­

objective problems (SOP) in which only one objective is optimised, as in the simple 

GA mentioned previously (Algorithm 1). When solving a SOP, the search focuses 

on providing one best solution, whereas when solving a MOP the search attempts 

to capture a range of near-optimal solutions, which recognizes the fact that a single 

solution may not exist that optimizes all competing objectives simultaneously. This 

range of near-optimal solutions is called a Pareto set, and often represents trade-offs 

among competing objectives.

Multi-objective GAs are particularly well suited to manipulating many parameters 

simultaneously, as different population members can be searching different areas of
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objective space simultaneously. This parallelism, of searching in several direction 

at the same time, is desirable as the CPP is difficult to formulate in terms of a 

single value to be minimized or maximized. Rather, multiple conflicting objectives 

are involved, where trade-offs must occur. By using parallelism, GAs produce many, 

equally good solutions to the same problem on multiple objectives. An operator can 

then select one of these candidates to use based on which objective(s) are deemed most 

important. This gives the operator a choice which is not possible using a simple GA. 

There are now so many different multi-objective algorithms (MOA) that a complete 

review would be a paper in-and-of-itself; the interested reader is referred to [94, 17] 

for reviews.

2.3 M etrics

Regardless of which optimization technique is adopted to solve the CPP, it is nec­

essary to resolve the conflict between competing multiple objectives, although this is 

often done implicitly rather than explicitly. However, comparing the performance of 

multiple objective algorithms is problematic because a set of solutions rather than a 

single solution is obtained. Although several alternatives have been proposed (e.g., 

[19, 46, 20, 23, 30, 48, 82, 79, 72, 80, 92, 90, 93] ) no approach proves more prevalent. 

We, therefore, adopt a number of metrics to use depending on the specific test em­

ployed. These metrics will be important in establishing a good MOA for purposes of 

this investigation.
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2.3.1 D om ination and Pareto optim ality

In order to compare solutions based on multiple objective measures, it is necessary 

to cover the concepts of non-domination, Pareto optimality, and the Pareto front

D efinition 1 (Non-domination & Pareto optimality) Let 0 1 , 0 2 , . . .  ,on be objective 

functions which are to be maximized. Let S  be the set of obtained solutions, s € S  is 

dominated by t E S  (denoted t >- s ) i f3 j  € {1, . . . ,  n} such that Oj(t) > Oj(s) and Vi, 

1 < i < n, Oi(t) > Oi(s). A non-dominated solution is said to be Pareto optimal.

Pareto optimal cell plans are non-dominated in the sense that it is not possible to 

improve the value of any objective without simultaneously degrading the quality of 

one or more of the other objectives. The set of all possible Pareto optimal solutions 

in the entire search space is called the Pareto front. In Figure 2.2, a hypothetical 

Pareto front is indicated for the objectives of cost and coverage. The most desirable 

cell plan in the Pareto front depends on which objective is most important. However, 

in the absence of such a relative ranking of objectives, solutions from the Pareto front 

must be regarded as equivalent. During subsequent tests, our approach is to generate 

a set of alternative solutions (i.e., cell plans) which approximate the Pareto front.

Cell plans which he on the Pareto front represent the best trade-off between cover­

age and cost. Due to search space size, it is only feasible to approximate subsections 

of the true Pareto front for a non-trivial problem scenario. To clearly establish the 

relationship between the objectives, it is desirable to achieve a close approximation to 

the Pareto front. To help achieve this, sets of approximate solutions can be united to 

form a larger set; non-dominated solutions extracted from this set can then result in a
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Figure 2.2: Progress towards Pareto front of objective 1 (to be minimized) and ob­
jective 2 (to be maximized).

closer approximation of the Pareto front. We term this set S p f a , for Pareto front ap­

proximation. An example of this is provided in Figure 2.3, in which 6 approximation 

sets are combined to form Spfa-

Despite the potential strength of using Pareto optimality within the context of 

cell planning in this way, it has not been addressed adequately in the literature. This 

may be partially due to the fact that there are a number of alternative strategies 

available, which can also handle multiple objective problems. These strategies are:

1. Combine all objectives into a single scalar value, typically as a weighted sum, 

and optimise the scalar value.

2. Solve for the objectives in a hierarchical fashion, optimizing for a first objective 

then, if there is more than one solution, optimise these solution(s) for a second 

objective, and repeat.

3. Obtain a set of alternative, non-dominated solutions, each of which must be



Chapter 2: Review of Literature 31

Set 1 
u  Set 2
O  Set 3 

Set 4 
Set5  
Set 6

30

rs
20

1 PFA

10

200 10 30
Objective 1

Figure 2.3: Extracting non-dominated solutions to form S p f a

considered equivalent in the absence of further information regarding the relative 

importance of each of these objectives.

Each approach involves exploring the search space of all possible cell plans to find 

one or more suitable solutions. Approach one is by far the most popular approach 

in the literature (e.g., [6, 73, 13, 87, 77, 35, 81, 4, 5, 29, 24, 86, 55, 56]). The 

biggest problem with this approach is that setting the relative weights of different 

components in the cost function may lead to inappropriate favoring or penalizing 

of different objectives. Approach two may be combined with approach one, as in 

[40, 52, 89, 69], which may involve changing the objective function at different points 

in the search in a phased or staged manner. This approach effectively prioritizes 

different single optimization objectives a p r io r i  and therefore has similar problems
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to the first approach. Only in [57] has a multi-objective search been implemented 

using approach three, where the Pareto front, in this case, was approximated using 

a problem specific genetic algorithm which did not consider the financial cost of the 

cell plan.

2.3.2 Set coverage m etric

As previously mentioned, comparing sets of solutions generated by different MOA 

is problematic because a set of solutions is obtained. Although several alternatives 

have been proposed (e.g., [23, 82, 93, 92] ) no single approach proves more prevalent. 

We adopt the approach first given in [93], and which tested favorably against other 

metrics in a recent comprehensive study [92], to calculate a set coverage metric. This 

involves the concept of weak domination.

Definition 2 (Weak Domination) Let Oi, o2, . . . ,  on be objective functions which are 

to be maximized. Let S  be the set of obtained solutions, s G S is weakly dominated 

by t (E S  (denoted t > z s ) i f V i ,  1 < i <  n, Oi(t) >  Oi(s), o r t ^ s .

Definition 3 (Set Coverage) Let Sa and Sb be two sets of solutions. The set coverage 

metric of set Sa with respect to Sb is the percentage of solutions in Sb which are 

weakly dominated by at least one solution from Sa -

When comparing solutions set Sa with Sb , the higher the set coverage metric the 

greater the superiority of the solutions in Sa over Sb - These metrics are important 

for assessing relative cell plan quality from different potential decoding approaches. 

In our application, a high set coverage metric of Sa over Sb indicates the superior
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efficiency of the cell plans in Sa over Sb, in the sense that overall, the cell plans in 

Sa are frequently achieving higher coverage for the same cost or the same coverage 

level at lower cost than those in S b -

performance across all objectives or A  dominates B. For two sets of solutions Sa and

in Sb which are weakly dominated by at least one solution from Sa - The higher the 

set coverage metric obtained, the greater the superiority of Sa over Sb -

2.3.3 M easure o f solution  distribution

To measure the distribution, or spread, of solutions along the Pareto front, a 

metric proposed in [72] has been implemented. The spacing measure is based on the 

range of values for di, which is the distance (in terms of solution space) between the 

ith element of the solution set and its nearest neighbour. The average of di values for 

a solution set of size n is denoted d. Then the measure of spread is defined as:

for the n members in the final population. Note that S = 0 indicates all members of 

the Pareto front are spaced equidistantly in the solution space.

In other words, Solution A  weakly dominates solution B  if A  and B  have the same

Sb, the set coverage metric of set Sa with respect to Sb is the percentage of solutions

(2 .1)

2.3.4 Convergence

The ability of an algorithm to rapidly converge to the final solution set is desirable, 

as long as it converges to the global optimum. We use the term convergence to
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refer, not to an unchanging population in terms of chromosomal structure, but to 

the population’s overall fitness not improving for an extended period of time. This 

indicates that the GA has stopped finding better solutions, but does not guarantee 

that no more changes would take place if the GA kept running. It is an advisory 

measure for when it seems appropriate to stop. That is, if there is no change to the 

overall fitness for a number of generations (e.g., 100), the algorithm should terminate.

2.3.5 Speed o f execution

The time it takes for a given approach to find a solution, or set of solutions, 

is important in measuring the trade-off often found between solution quality and 

the speed of execution. For example, a fast algorithm may provide a solution with 

a quality of 85% in 30 minutes, but a complex algorithm a quality of 97% in 300 

minutes. Depending on whether quality or speed is more desirable, either approach 

could be preferable. Of course, if the speed of execution is not measured, trade-off 

comparisons and choices are not possible.



Chapter 3 

2D M odel and Cell Planning 

Strategy

The purpose of this chapter is to introduce a starting point for cell planning, in 

the form of an abstract distance-based 2D model which addresses the fundamental 

issue of area coverage taking into account the primary issue in site configuration 

(i.e., transmission power). A general strategy for multiple objective optimisation of 

primary metrics is developed and explained in Section 3.2. This strategy is deployed 

using four state-of-the-art multiple objective genetic algorithms. The best performing 

algorithm is then determined and carried forward for further tuning (Chapter 4) and 

in the deployment of more granular modeling (Chapter 6).

35
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3.1 2D M odel for Simulating W ireless Coverage

The general model for simulating wireless coverage we adopt (Figure 3.1) focuses 

on simulated down-link received signal strength. This is the standard approach used in 

frequency division communication systems such as the current European GSM mobile 

telephone system [85]. This model was first used in [68] and [67]. In this model, 

the working area or simulation area W  is discretized into test points at Cartesian 

coordinates (i.e., x,y) at a given resolution. For example, test points may be available 

uniformly every 100m. The two sets of test points distributed in W  are reception 

test points (RTP) where signal reception could be tested and service test points 

(STP) where signal quality must exceed a signal quality threshold (denoted Sq) to 

facilitate wireless communication. In this model STP C RTP. Also within W  lies a 

set of randomly placed candidate base station locations transmitting at a given power 

(denoted p). Each commissioned site (i.e., where p > 0) has an associated cost. The 

cell (denoted C) formed at a base station site corresponds to the set of STP covered, 

where the signal received is higher than Sq.

More formally, the following sets form the input to our formulation of the APP:

•  A set of candidate base station site locations CBS =  {C B S \ , . . .  ,C B S Ucbs}, 

where each CBSi has an associated commissioning cost $(CBS{).

• A list of possible transmission powers • • • ,Pk in ascending order of 

magnitude. Zero power is denoted by po-

•  A set of reception test points RTP =  {RTP1, . . . ,  RTPnRTP}, at which signal 

reception quality is measured.
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Figure 3.1: Working area for simulating wireless coverage

•  A set of service test points STP =  {S T P i , , S T PnsTP}, where a signal must be 

received above a minimum specified service threshold, Sq, to ensure a required 

quality of service.

For purposes of candidate sites, we assume that each base station is operating 

a single omni-directional antenna with an isotropic radiation pattern. As traffic, 

terrain, and shadowing are not considered the radiation patterns are idealised and 

circular, similar to those found in disk graph models.

3.1.1 Propagation, estim ating signal quality

A given service test point S T P  is said to be covered by antenna A if the received 

signal strength from A, denoted Pstpi is greater than Sq, which is set to -90 dBm. As 

the signal strength attenuates with distance as a function of the path loss between 

source and receiver, additional losses and gains may also affect the received signal
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strength. We calculate the received signal strength as:

P ATp = P a -  PL -  L + G

where P A is the power at which A  is transmitting, PL  is the path loss experienced 

between A  and S T P , L  is the aggregation of other losses experienced, and G is the 

aggregation of gains experienced. For experimental purposes, we assume G = L. 

For each combination of A  and S T P , PL  may be recorded in the field or estimated 

using a free space path loss or empirical model. In the absence of data from the field, 

we employ a path loss model based on a set of comprehensive measurements done 

for Japanese environments in 1968 by Okumura [88], with the derived curves later 

transformed into parametric formulas by Hata [32]. We adopt Hata’s urban empirical 

model proposed for small-medium cities:

PL = 69.55+26.16 log(/)-13.82 log(h6) - a ( h m)+(44.9-6.55 \og(hb))*\og{R) (3.1) 

where:

a(hm) = (1.1 * log(/) -  0.7) * hm -  (1.56 * log(/)  -  0.8) (3.2)

given particular values for the variables frequency (/), base station height (/i*,), mobile 

receiver height (hm), and the distance (R ) in kilometers from each base station to each 

RTP. The default settings are /=800 MHz, =  31 meters, and hm = 1.5 meters 

unless otherwise noted. While Hata’s model was used, other propagation models 

could have equally been adopted.
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3.1.2 A ssessing cell plan quality

The objectives we axe concerned with relate to financial cost and area coverage 

of service test points. These measures are competing and are the multiple objectives 

that will be considered during optimization. More formally, the cost of a cell plan 

C B S ' , which consists of all sites with a non-zero power setting, denoted costcBS', is 

defined as:

C O StcB S' =  E
C B S i e  C B S'

and the service coverage of a cell plan, denoted covercBS', is the proportion of STP 

covered in C B S ' , where a given covered STP is denoted S T P ^ , to the total number 

of STP in the working area, W :

  S STPcov e  C B S ' 1
covercBS• — ----------------------

u s t p

3.2 Strategy for 2D M ulti-objective Cell Planning

The intent of the strategy for multi-objective cell planning for assessing the ten­

sions and trade-offs in cell planning is to find a range of high quality cell plans in 

terms of service coverage and financial cost. By producing a range of near optimal 

cell plans the trade-offs between objectives can be assessed, and the need for weight­

ing objectives common in many approaches is avoided. Figure 3.2 is a visual aid to 

the multi-objective cell planning strategy, termed a generational two phase strategy 

(G2PS), where the first phase employs a greedy sequential algorithm to create a cell 

plan from a given ordering of sites and the second phase a multi-objective algorithm
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(MOA) to find optimal orderings of candidate sites.

This approach is introduced after considering the way in which the problem may 

be solved manually, by sequentially commissioning sites based on a simple heuristic, 

in our case, represented by the decoder. The candidate base station location CBSi 

is referred to as the ith base station. We use the permutation ir of the potential base 

station locations to represent cell plans. Under the permutation 7r, the ith base station 

location is denoted n (i). We introduce a decoder which translates a permutation 7r 

into a cell plan, which is in effect, the set of rules that may be applied in the manual 

planning process. The decoder is a greedy sequential algorithm for creating a cell 

plan, and the ordering of sites in ir determines which sites are commissioned, and at 

what power level. A 2D cell plan is then defined as the allocation of a power setting 

to each candidate base station site in 7r, where sites allocated a zero power setting 

are not commissioned.

Workiag area
( 4, 1, 5, 3, 4, 2 ) 
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Figure 3.2: Multi-objective cell planning strategy



Chapter 3: 2D Model and Cell Planning Strategy 41

In phase one of G2PS, a greedy sequential decoder (GSD) is used to control cell 

density during the formation of a given cell plan. This is an important issue for mobile 

networks as it can greatly impact service coverage levels, system capacity, interference, 

and channel assignment. The GSD controls areas of cell overlap by setting criteria 

for whether a given power allocation at a candidate site is permissible. A power 

allocation is permissible only if a multi-coverage, or overlap, constraint is met. By 

controlling overlap, the GSD can eliminate poor cell plans from consideration. The 

general approach of decoding optimized permutations is well established in many 

applications of genetic algorithms, such as for the travelling salesman problem (e.g., 

[12]) and bin-packing problems (e.g., [66]). As we wish to compare the performance 

of MOA here, a common decoder is used throughout. However, as there is much 

freedom in the design of decoders, a range of decoders is investigated later (Chapter

4)-

As the decoder only determines a cell plan given an ordering of sites, it cannot 

improve cell plans. For this reason, the MOA is necessary to operate on a population 

of potential site orderings (as defined by 7r) to optimise cell plans with respect to 

the objectives defined in Section 3.1.2. For phase two of the cell planning strategy, 

genetic approaches are particularly well suited because they maintain and optimise a 

population of solutions. Here the population of solutions are represented as integer- 

permutations, or 7r, as already discussed. Within G2PS, the MOA is used to optimise 

the order of sites within permutations, as the order in which sites are considered 

for power allocation determines the cell plan formed. In other words, the MOA is a 

means for performing a meta-heuristic search (Section 3.4) to find optimal candidate
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site orderings. This occurs over a number of generations. In short, the following two 

components define our framework:

1. Decoder:

The sequential configuration of a permutation of candidate base station sites, 

where the ordering determines the configuration made.

2. Optimization of permutations:

The application of a multi-objective optimization approach to produce a collec­

tion of candidate site orderings, which when decoded approximate the optimal 

trade-offs between competing objectives.

The way in which these two components operate together can be seen in Figure 

3.2: The decoder accepts the site permutation from A , which represents the locations 

visible at B. It decodes the permutation, which results in a cell plan visible at C. 

Information regarding each cell plan is then passed to phase 2 at D. At D the multi­

objective algorithm receives information from the decoder regarding the objective 

values obtained by each cell plan. It assigns fitness values to each solution, and saves 

the n most fit permutations, depicted at E. At F  the solutions from E  compete 

in binary tournaments to become parents which undergo cross-over and mutation to 

form the new permutations which are represented at A. The process continues until 

the final generation, when the non-dominated solutions at E  are saved.
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3.3 D ecoder

We introduce a decoder which translates a permutation n into a cell plan. This 

approach mimics the way in which the problem might be solved manually. The 

decoder is effectively a greedy, sequential algorithm for creating a cell plan, which is 

dependent on the order of inspection for commissioning potential sites occurring in 

7r. The decoder acts by limiting the permissible amount of overlap, or multi-coverage, 

that occurs between cells.

More formally, the subset of service test points covered by a particular antenna A  

is the cell served by A, denoted ca- Note that cells served by different antennae are 

not necessarily disjoint since an STP can potentially be covered by more than one 

antenna. Such an STP is referred to as an overlap STP. An overlap STP which is 

contained in more than two distinct cells can also be referred to as a soft handover 

STP. For a cell ca, the subset of overlap STP is denoted oa- For c^, the overlap 

percentage is defined as

x 100.

Controlling the size and distribution of overlap, or handover, regions is crucial for both 

operational and financial reasons. Handover regions are a prerequisite for seamless 

call transfer between cells for mobile users. However, if very large handover regions 

are permitted, there is a greater potential for interference due to strong signals being 

received from multiple sources. In frequency division multiple access systems, large 

handover regions increase the need for large channel separation between adjacent cells 

in the frequency assignment problem. Large handover regions may also adversely 

affect the cost of the network by increasing the total number of base stations required
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to cover a given area.

The decoder adds cells iteratively to create a cell plan C B S' os follows:

• Initially C B S' =  0.

•  Potential sites 7r(l), 7t(2), . . . ,  ir(n) are inspected (in the order induced by it) for 

possible selection.

•  At iteration j  (1 <  j  < n), tt(J) is considered for addition to the set CBS'.

For a given power setting, handover between and C B S' is feasible if 

the hand-over percentage for is less than the maximum permitted.

The largest power setting, denotedP m a x , is identified from the list po, p i,P 2 , . . .  

such that handover is feasible between c ^ )  and CBS'.

If P m ax  7̂  Po, then ir(j) is added to C B S ', and the transmission power of 

n(j)  is recorded as Pmax• Otherwise ir(j) is not added to CBS'.

A number of observations can be made regarding this approach. Firstly, the 

approach is greedy in the sense that once a base station location is added to CBS' 

at power P m a x , the base station cannot be removed from the cell plan C B S' nor can 

its transmission power be adjusted. Secondly, for a particular list of potential site 

locations, characteristics (e.g., cost and coverage) of the resultant cell plan C B S' is 

entirely dependent on the order (i.e., permutation n) in which the base stations are 

considered for selection. It is our aim to find the best permutations, which lead to 

Pareto optimal cell plans, using genetic algorithms.

Despite its simplicity, the decoder is potentially a powerful tool as it has the 

following strengths:
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• Guarantees feasible cell plans (i.e., without an inordinate amount of overlap 

between cells) given a list of candidate site locations.

• Provides freedom in determining the cell density in networks by allowing the 

planner to alter the maximum level of permissible overlap.

•  Creates a range of networks (when guided by a multi-objective algorithm) in 

terms of service coverage and cost to cater for low-cost and high quality service 

providers.

•  Grants the planner freedom to ‘plug-in’ the best available multi-objective algo­

rithm without changing cell representation or decoder specification.

3.4 M OGA: Selection

There are now many potential multiple objective optimization approaches [17]. 

However, fundamentally, the overall performance of any optimization approach adopted 

will be governed by the decoder specification, and its ability to translate an abstract 

ordering of candidate base station sites into a highly efficient cell plan (e.g., high cov­

erage relative to total cost of operational base stations). While a decoder creates a 

cell plan given a permutation 7r, the decoder is not capable of using information from 

the evaluation of the objective functions to improve cell plans. For this purpose, a 

multi-objective genetic algorithm is used to find optimal orderings of candidate sites 

subject to optimizing two or more conflicting objectives.

In this section, we are concerned with determining the best multi-objective algo­

rithm to find optimal orderings. There are now so many different MOA that testing
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each would not be sensible. Thus, the interested reader is referred to [94, 17] for re­

views, and we focus here on comparing the performance of three popular GA: PESA 

[15], NSGA-II [18], and SPEA-2 [91], which have been shown to be superior to older 

multi-objective algorithms, e.g., MOGA [22], VEGA [71], NSGA [74], SPEA [94], 

NPGA [34], PAES [47], and one less known one: SEAMO [78], as it promised to be 

a simpler and faster approach for comparison purposes.

3.4.1 SPEA -II

The Strength Pareto Evolutionary Algorithm version II (SPEA-2) is an enhance­

ment of that originally proposed in [94], and is described in detail in [91]. SPEA-2 has 

been used in numerous studies (e.g., [11, 51]) where good performance, in comparison 

to other MOAs, has been reported. In SPEA-2, the most fit individuals from the 

union of archive and child populations are determined by computing a fitness value 

for each solution which is the sum of two parts. The first part is a raw fitness value 

based on how many solutions it dominates, and the second is a density estimate based 

on the its proximity to other solutions in objective space. At each generation, the 

most fit n solutions are saved to the archive, and genetic operators are applied to 

form a new child population. This process is repeated until termination.

More specifically, SPEA-2 maintains two fixed sized populations each of size n : a 

main population Pt and an archive population A t, which stores the most fit individuals 

in each generation. The algorithm proceeds with the multi-set union, Pt UAt, denoted 

C/t, at iteration t. For each member i from Ut, a strength value, denoted Si, is defined.



Chapter 3: 2D Model and Cell Planning Strategy 47

This represents the number of members from Ut which i dominates.

S i = \ { j : j e U t A i ^ j } \  (3.3)

The raw fitness Ri is then calculated as the sum of the strengths of the solutions j  

which dominate i in Ut.

R i =  £  s i
j€U t jy i

Following this, a density estimate is computed to distinguish individuals with the 

same raw fitness and measure the dispersion of solutions. The density estimation Di 

is a decreasing function of the distance to the nearest neighbour in objective space. 

For a complete explanation, please see [91]. Adding Di to the raw fitness value Ri 

yields the fitness value F*, which is computed for each member i from Ut.

Using these functions, an individual with a fitness less than 1 is non-dominated. 

In all cases, the smaller the raw fitness value, the stronger the individual in relation 

to others, and the smaller the density estimate, the less crowded the individual is in 

objective space.

The algorithm proceeds by copying all the non-dominated individuals in Ut to the 

archive population at the next generation A t+\. If the size of At+1 exceeds n, then 

a truncation operator is applied, which removes members with the largest density 

estimate (i.e., most crowded) iteratively with ties being broken by considering the 

second smallest distance and so on. If the size of A*+1 is less than n, it is filled 

with the best of the dominated solutions (based on fitness values Fi) from Ut. Once 

the archive population At+i is at size n for generation t +  1, binary tournaments 

(using fitness Fi for selection) with replacement are performed on members of A t+1 

to fill the mating pool with n members. Recombination and mutation operators are
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then applied to the mating pool in order to form set p,+i- At this point we have 

obtained all population members at generation t +  1, and the process is repeated 

until termination criteria are met. We summarize the pseudo-code in Figure 3.3.

Generate initial population Po and empty archive Aq of size n 

Set t = 0, T = # of generations 

while t < T  do 

Ut =  Pt U A t

Calculate fitness Fi, Vi G Ut 

Copy all with fitness < 1 to At+i 

if \At+i\ < n then

Fill At-|-i with dominated members of Ut in increasing order of fitness 

else if |Af+i| > n then

Reduce At+1 by means of the truncation operator 

end if

Create mating pool of size n by performing binary tournaments with replacement on 

At+i

Create Pt+i of size n by applying recombination and mutation to the mating pool 

t = t + 1;

 e n d  w h i l e ______________________________________________________________________________

Figure 3.3: The SPEA-2 procedure
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3.4.2 N SG A -II

NSGA-II is a fast elitist non-dominated sorting genetic algorithm ([18] for a full de­

scription), which has been well studied (e.g., [46, 20]). NSGA-II is similar to SPEA-2, 

but uses slightly different mechanisms. For example, in NSGA-II the most fit indi­

viduals from the union of archive and child populations are determined by a ranking 

mechanism (or crowded comparison operator) composed of two parts. The first part 

‘peels’ away layers of non-dominated fronts, and ranks solutions in earlier fronts as 

better. The second part computes a dispersion measure, the crowding distance, to 

determine how close a solution’s nearest neighbors are, with larger distances being 

better. At each generation, the best n solutions with regard to these two measures are 

saved to the archive, and genetic operators applied to form a new child population. 

This process is repeated until termination.

More specifically, NSGA-II maintains two populations, the archive population Atl 

which stores the most fit individuals in each generation, and a child population Ct. 

The child population Ct is formed from At by performing selection, crossover and 

mutation. As in SPEA-2, a simple binary tournament with replacement is used to 

find parents. In the binary tournament, two population members, i and j ,  are chosen 

at random (uniformly) from A t. Member i wins the tournament if i dominates j ,  and 

i becomes a parent. A second parent is selected similarly and both are put forward 

for crossover and mutation to create an offspring for Ct. This is repeated until Ct is 

size n. Note that each population At and Ct remains fixed at size n. The algorithm 

proceeds with the multi-set union At L)Ct, denoted Ut. Then, n members are selected 

from Ut to form the new parent population for the next generation At+i.
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Before this occurs, Ut is partitioned into a number of sets called fronts, which are 

constructed iteratively. Front 1, Fi, consists of the non-dominated members from 

Ut. Front 2, F2, consists of the non-dominated members from the set Ut — F\. In 

general, front z, Fi, consists of the non-dominated members from the set Ut — (Fi U 

F<i U • • • U Fj_i). Fronts are constructed in this manner until Ut is empty. The authors 

of NSGA-II describe an efficient algorithm (fast non-dominated sort) to partition Ut 

into fronts ([18]).

Fronts are then used to form A t+i. If |F\| =  n, then the new parent population, 

At+1, is set to contain the members of F\. Otherwise, F\, F2 , . . .  are added to At+1 in 

order (front one followed by front two and so on). The process stops with front Fj 

being added to A t+i when Fi U F2 U • • • U Fj < n and Fi U F2 U • • • U Fj U FJ+1 > n. 

If |Fi U F2 U • • • U Fj\ < n then solutions have to be chosen from Fj+1 for inclusion in 

A t+1 to ensure that population A t+1 is size n. For each solution z in Fj+u a crowding 

distance cdik is calculated based on each of the multiple objectives, o*. The solutions 

in Fj+1 are ordered with respect to ascending magnitude of their value in Ok- The 

first and last members from the front are assigned infinity as their crowding distance 

with respect to 0*. For all other members of the front, cdik is calculated as the sum 

of the absolute difference between the objective function values of z and its adjacent 

solutions in the front. The overall crowding distance for a solution z, CrwDi, is 

defined as:

CrwDi = ^ 2  <dik
Vofc

The greater the crowding distance the greater the isolation of that particular solution 

in objective space. Solutions with the highest crowding values are added to A t+1 until
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\Pt+i\ =  n. At this point, the procedures described are re-iterated until a termination 

condition has been satisfied. We summarize the pseudo-code in Figure 3.4.

3.4.3 P E SA

The Pareto Envelope-based Selection Algorithm, PESA, is described in [15]. It 

uses different mechanisms than SPEA-2 and NSGA-II. The main differences are that 

its archive population is not of fixed size and only allows non-dominated solutions to 

be members-which is a more limited set than the previous two GA allowed. If the 

archive ever exceeds n solutions, a squeeze factor is calculated for all members of the 

archive. The squeeze factor is the total number of members in the same sub-region 

of a hyper-grid (which partitions the search space into sub-regions [49]). The higher 

the squeeze factor, the more local neighbors a solution has. Random members from 

the grid region with the highest squeeze factor are then removed until the size of the 

archive is reduced to n. Genetic operators are then applied to archive members to 

form a new child population. This process is repeated until termination.

More specifically, at generation £, PESA operates by generating an internal pop­

ulation (IP t) and an empty external population (EP)  archive, each of size n. E P  

is repeatedly updated as the search progresses and used to create new population 

members for the internal population at subsequent generations1. The objective func­

tion values are calculated for each member in IPt, and non-dominated members are 

identified. The non-dominated members are then added to the current, existing EP t ,

based on the following rules. Firstly, if member i of IPt is not dominated by any

1Unlike the other algorithms presented, the size of EP changes dynamically at each generation, 
as only non-dominated solutions are stored.
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Generate initial population Aq of size n 

Rank and sort Aq based on non-domination level

Apply selection, recombination and mutation to create a child population Co of size n 

Set t = 0, T = # of generations 

while t < T  do 

Ut =  At UCt

Partition Ut into fronts Fi, +2, . . .

Set A t+1 = 0, i = 1. 

while |A*+i| < n do

Calculate crowding distance in F{ 

if |Fj| + \At+i\ < n then 

At+i =  A t + i  U F i 

else if |Fj| -I- \At+i\ > n then

Decreasing sort of Fi members by crowding distance 

At+i = At+1+ the first (n — |At+i|)) elements of Fi. 

end if 

2 =  2 + 1  

end while

Calculate crowded comparison operator V ie  At+1

Create C*+1 of size n by applying recombination and mutation to parents selected via 

binary tournaments on At+1. 

t = t + 1;

e n d  w h i l e _____________________________________________________ ________________________

Figure 3.4: The NSGA-II procedure
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member of E P , it is added to EP. Secondly, once i has entered the archive EP, 

solutions in E P  which it dominates are deleted. After all non-dominated members of 

IP t have been considered for inclusion in EPt, it is possible that EPt is over-full (i.e., 

\EP\ > n), in which case a member(s) of E P  needs to be deleted. At this point, a 

hyper-grid is imposed to partition the search space into sub-regions [49]. This takes 

place to assess the density of solutions throughout the search space.

Following this a ‘squeeze factor’ is calculated for all members of EP. For a partic­

ular individual i € E P, this is the total number of members of E P  (inclusive of i) in 

the same sub-region of the hyper-grid. Therefore, the higher the squeeze factor, the 

more local neighbors (in terms of the search space) a solution has. A random member 

from the grid region with the highest squeeze factor (as long as it does not harbor 

a most extreme objective function value) is then removed, with ties being broken 

randomly, until the size of E P  is reduced to n. Once \EP\ = n, IPt+1 is generated 

from E P  through one of two operators as defined in Figure 3.5.

3.4.4 SEAM O

Finally, the Simple Evolutionary Algorithm for Multi-objective Optimization, 

known as SEAMO, has performed particularly well on the benchmark test knap­

sack optimization problem [78]. The main difference between SEAMO and the other 

algorithms is that it is steady-state and has only one population (of constant size n) 

to maintain. The main advantage of SEAMO is the simple approach it uses to dispose 

of all selection mechanisms based on fitness or rank. Instead, the search progresses 

based on three simple rules:
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1. Parents can only be replaced by their own offspring (diversity preservation).

2. Duplicates in the population are deleted (diversity preservation).

3. Offspring can only replace parents if superior (elitism).

Genetic operators are applied to each parent in turn to form a new child, which is 

considered for substitution into the parent population based on the three rules. This 

process is repeated until termination.

More specifically, to begin a parent population of size n is created 2. Then, for 

each objective function, the best-so-far value from the parent population is recorded. 

New solutions called children are formed one-by-one, evaluated, and tested against 

their parents immediately before the next child is generated, evaluated, and tested. 

This involves each solution in the parent population serving as the first parent once, 

and a second parent being chosen at random (uniformly). Crossover and mutation 

is then applied to form an offspring. If the offspring’s objective value improves on 

any best-so-far, then it replaces one of the parents (starting with first, then second), 

as long as the parent itself does not harbor any other best-so-far. If the offspring 

dominates one of the parents, then the offspring replaces a parent (staring with first 

parent, then the second), unless the offspring is a duplicate, in which case the offspring 

is deleted. This process is repeatedly applied to update the parent population, until

a termination condition is satisfied.
2Unlike the other algorithms presented, SEAMO has only one population (of constant size n) to 

maintain.
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3.4.5 R ecom bination and m utation

Each of the algorithms considered has a specific method for selecting parents. 

SPEA-2 bases selection on fitness, NSGA-II on the crowded comparison operator, 

PESA on non-dominated members of its archive set, and SEAMO uniformly. How­

ever, common recombination and mutation operators have been applied throughout 

despite the fact that this may have unintentionally favoured one algorithm over an­

other. However, within the scope of this work it was not possible to test for this 

potentiality. Cycle crossover [75] has been used as the recombination operator and 

the mutation operator involves the simple transposition of candidate base station lo­

cations in a randomly selected pair of positions. This was governed by a mutation 

rate (set to 1%) to restrict the frequency of mutation.

3.5 M OGA: Performance

The performance of the algorithms have been compared using a wide range of 

synthesised test problems, each of which has been randomly generated. Each test 

problem gives the location and cost of candidate sites, with test points uniformly 

distributed in the working area every 300m. The cost of sites were randomly deter­

mined values between 1 to 100 to make the selection of sites more difficult for the 

algorithm than if realistic estimates (which would be closer in value) were used. Test 

problems are classified in two ways: the size of area in which they are positioned and 

the density of candidate sites, as documented in Table 3.1. For example, the working 

area of 45 x 45 with a 0.12 site density carries 244 randomly positioned candidate
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base station locations and 22,500 test points.

Region size km 2 Density of sites per km 2
0.03 0.06 0.12

15 x 15 7 14 28
30 x 30 27 54 108
45 x 45 61 122 244

Table 3.1: Number of candidate sites in nine problem classes defined by region size 
and density

Power Setting dBW Watts
Pi 30 1000
P2 27 501
Ps 24 251
Pa 21 125
Ps 18 63

Table 3.2: Power settings used in tests

Combining the size of regions and the density of sites leads to a total of nine test 

problem classes, as indicated in Table 3.1. For each test problem class, we produce 

five incidences on which each algorithm is tested. This means that average algorithm 

performance is estimated and compared using five problem instances from each of 

nine classes, with four different algorithms, leading to a total of 180 experiments. All 

problem instances are available at: h t t p : / /  www.raisanen.co.uk/ da tase ts .h tm l.

To encourage a fair comparison between algorithms, common parameter settings 

have been adopted for each experiment. Five non-zero power settings (displayed in 

units of dBW and Watts) have been used, as specified in Table 3.2. Unless otherwise 

specified, a population size of 100 is adopted using 500 generations. Additionally, the 

same random starting populations have been used for each problem class.

http://www.raisanen.co.uk/
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We consider the performance of each GA in four ways: (1) the average performance 

(in terms of the objective values of members in the final population) compared to other 

GAs across all test problems using the set coverage metric, with diagrams to show 

obtained Pareto fronts and cell plans, (2) the average measure of population spread, 

(3) the speed of convergence to solutions in the final population, and (4) the average 

speed of execution.

3.5.1 A verage perform ance across test problems

In terms of the average performance of each GA compared to other GAs across all 

test problems using the set coverage metric, it was found that NSGA-II achieves the 

best performance by weakly dominating an average of 91.15% of solutions obtained 

by other algorithms in terms of service coverage and cost, closely followed by SPEA- 

2 (89.67%), then PESA (64.01%) and finally SEAMO (59.53%). See Table 3.3 for 

details. However, the dominance of NSGA-II is hidden by these averages, as it held 

the highest score in 9 out of 10 problem instances. The second closest was SPEA-2 

which held the highest score in only 3 out of 10 problem instances.

In Figure 3.7 we plot the Pareto fronts (i.e., non-dominated solutions from the final 

population) achieved by each algorithm on the large region problem at each density. 

Despite the differences in relative algorithm performance, the Pareto fronts obtained 

are closely clustered in real terms. Generally, the plots show that that as candidate 

site density increases, solutions with a higher level of coverage are achievable. Also, 

in the most dense problem instances, lower cost solutions with higher coverage are 

achievable due to more freedom in site selection and cost.
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In Figure 3.8, we display an example of cell plans with the highest coverage for 

the large region problem at each density, with density increasing left to right.

3.5.2 M easure of solution distribution

To measure the distribution, or spread, of solutions along the Pareto front, a 

spacing measure proposed in [72] has been implemented (Section 2.3.3).

It was found that PESA performed the best on this measure, with an average 

spacing value of 19.75, followed by SPEA-2 at 20.91, NSGA-II at 21.46, and SEAMO 

at 26.84 (Table 3.4 for details). It is little surprise that the algorithm which is 

specifically designed to encourage spacing in objective space, PESA, performed the 

best, and that the algorithm with no direct measure to control dispersion, SEAMO, 

performed the worst.

3.5.3 Convergence

The ability of an algorithm to rapidly converge to the final solution set is desir­

able. This has been investigated for each algorithm using the largest problem class 

with the highest site density. Each algorithm has been applied for 1500 generations, 

and intermediate populations (produced every 250 generations) have been compared 

against each other, using the set coverage metric. The results indicate that PESA and 

SEAMO converge quickly. For example, at generation 750 dominating 88.88% and 

71.43% of solutions in the generation 1000 respectively. SPEA-2 and NSGA-II con­

verge more slowly dominating 22.22% and 33.33% respectively (Table 3.6 for details). 

However, considering that SPEA-2 and NSGA-II outperform PESA and SEAMO in
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terms of final solutions (Section 3.5.1), this may indicate they are better at improving 

solutions over time, despite the evidence from this specific testing instance.

3.5.4 Speed o f execution

The average execution times varied from an average of 7.4 seconds to complete 

the smallest problem, to 3006.7 seconds (roughly 50 minutes) to complete the largest, 

with SEAMO performing the fastest marginally (Table 3.5 for details). All recorded 

times were obtained using a Pentium IV 1.8 GHz processor, 256 megabytes of RAM, 

Java JDK 1.3.1-04, and Windows XP Professional. It is suspected that obtaining 

only marginal differences in execution time was due to a bottleneck incurred by the 

computationally intensive decoder.

3.6 MOGA: Conclusions

In this chapter we have have introduced a general framework for applying multiple 

objective genetic algorithms to the antenna placement problem. The key aspect of 

this framework is a decoder which uses an ordering of candidate site locations to 

construct a cell plan. Subsequently, the performance of four GAs to find an optimal 

ordering of potential site locations were compared and evaluated using a range of test 

problems classified by size and density.

We found that all the algorithms considered find closely comparable solutions, in 

real terms. However, there are differences. NGSA-II and SPEA-2 have very similar 

performance throughout, confirming the findings in [91] concerning the performance 

of these algorithms. Meanwhile, PESA generally obtains slightly lower quality sets
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of solutions, but has the best performance in terms of distribution of solutions and 

speed of convergence. Both the advantage and disadvantage of SEAMO lie in its 

simplicity. This makes the algorithm conceptually elegant, easy to implement, and 

fast to run, but this simplicity appears to impede the overall quality and distribution 

of the solutions obtained, with SEAMO obtaining the lowest performance measures 

in these areas. On balance, we consider NGSA-II to be the strongest performing 

algorithm for purposes of cell planning when using the general framework proposed. 

This is mainly based on the consistent comparative quality of the solutions obtained. 

NSGA-II is carried forward for subsequent implementation in all experiments within 

this thesis.
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Generate initial internal population IPq of size n 

£ P  = 0

Set probability Pc for tournament selection 

Set t = 0, T = jj of generations 

w hile t < T  do

Determine non-dominated solutions in IPt and try to add them to EP  

w hile \EP\ > n do

Calculate the squeeze factor for each member of EP  

Remove random member from EP  with the highest squeeze factor 

end w hile  

Set IPt+i = 0 

w hile \IPt+i\ < n do

Generate a random number x G (0,1] 

if  x < Pc then

Perform binary tournaments to select two parents, and apply recombination 

and mutation to form a child 

Put the child in IPt+1 

else if  x > Pc then

Perform a binary tournament to select one parent and mutate to form a child 

Put the child in IPt+1 

end if  

end w hile  

t=t+l ;

e n d  w h i l e _____________________________________________________ _________________________

Figure 3.5: The PESA procedure
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Generate initial parent population Pq of size n 

Record the best-so-far for each objective function 

Set t = 0, T = # of generations 

while t < T  do 

for Vi G Pt do

i is the first parent

Select a second parent uniformly randomly 

Apply crossover and mutation to produce offspring i 

Evaluate i ’s objective vector

if i ’s objective vector improves on any best-so-far then 

i replaces one of the parents and best-so-far is updated 

else if i dominates one of the parents then

i replaces the parent it dominated (unless i is a duplicate, then it is deleted), 

end if 

end for 

t = t + 1;

end w hile____________________________________________________________ _______

Figure 3.6: The SEAMO procedure



Set coverage metrics
Algorithm Problem Instances {km2-  number of candidate sites)

5a SB 15-7 15-14 15-28 30-27 30-54 30-108 45-61 45-122 45-244 Ave.
SEAMO SPEA-2 100.00 92.00 86.83 91.34 43.23 19.03 39.17 7.85 18.00 55.27

NSGA-II 100.00 92.00 84.33 92.80 39.81 13.71 37.15 9.20 11.41 53.38
PESA 100.00 96.00 97.50 96.80 60.29 47.74 63.32 38.05 29.90 69.96
Ave. 100.00 93.33 85.56 93.64 47.78 26.83 46.55 18.37 19.77 59.53

SPEA-2 SEAMO 100.00 100.00 100.00 100.00 95.38 94.55 93.74 92.11 82.64 95.38
NSGA-II 100.00 100.00 97.50 100.00 74.80 69.67 86.56 52.04 49.97 81.17

PESA 100.00 100.00 100.00 100.00 86.47 86.75 97.65 83.98 77.21 92.45
Ave. 100.00 100.00 99.17 100.00 85.55 83.65 92.65 76.04 69.94 89 .67

NSGA-II SEAMO 100.00 100.00 100.00 100.00 94.83 98.18 93.74 84.33 81.79 94.76
SPEA-2 100.00 100.00 100.00 96.36 75.34 80.96 92.36 65.91 47.14 84.23
PESA 100.00 100.00 100.00 100.00 91.67 88.99 100.00 87.22 82.22 94.46
Ave. 100.00 100.00 100.00 98.79 87.28 89.38 95.37 79.16 70.38 91.15

PESA SEAMO 100.00 90.00 70.89 98.33 45.43 80.93 50.57 53.22 65.21 72.73
SPEA-2 100.00 86.00 67.33 93.01 31.29 75.53 35.80 31.28 22.28 60.28
NSGA-II 100.00 86.00 64.83 94.46 35.35 76.13 35.12 26.91 12.31 59.01

Ave. 100.00 87.33 67.69 95.27 37.36 77.53 40.50 37.14 33.27 64-01

Table 3.3: The ave. set coverage values obtained in each problem class, for all pairwise comparisons of algorithms
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Figure 3.7: Pareto fronts (coverage verses cost) for large problem size instances 
(v4:45x45) with 61, 122, and 244 candidate sites

Figure 3.8: Example cell plans with the highest coverage at each density for the large 
region problem

Algorithm Problem Instances ( k m 2-  number of candidate sites)
15-7 15-14 15-28 30-27 30-54 30-108 45-61 45-122 45-244 Ave

SEAMO 3.94 19.63 13.07 14.32 39.92 53.68 25.24 38.07 33.71 26.84
SPEA-2 3.94 21.31 13.90 14.94 13.83 15.37 29.35 33.36 42.17 20.91
NSGA-II 3.94 21.31 15.02 18.05 25.63 14.84 27.34 30.16 36.83 21.46

PESA 3.94 19.29 8.50 14.09 21.53 29.78 18.57 23.81 38.26 19.75

Table 3.4: Ave. spacing values by algorithm for each test problem class
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Algorithm Problem Instances (km2-  number of candidate sites)
15-7 15-14 15-28 30-27 30-54 30-108 45-61 45-122 45-244

SEAMO 7.2 17.4 37.8 104.0 242.8 542.2 526.6 1272.8 2854.8
SPEA-2 7.8 18.4 40.2 107.0 250.8 553.0 543.8 1305.6 3089.0
NSGA-II 7.2 17.6 39.0 106.0 247.2 548.6 539.6 1300.0 3119.6

PESA 7.4 17.2 38.8 111.0 246.6 555.2 578.4 1293.8 2963.2
Ave. 7.4 17.7 39.0 107.0 246.9 549.8 547.1 1293.1 3006.7

Table 3.5: Ave. speed of execution in seconds

Algorithm Generation 
forming Sa

Generation forming Sb
250 500 750 1000 1250 1500

SEAMO 250 12.50 0.00 0.00 0.00 0.00
500 100.00 28.57 0.00 0.00 0.00
750 100.00 100.00 71.43 16.67 14.29
1000 100.00 100.00 100.00 33.33 28.57
1250 100.00 100.00 100.00 100.00 71.43
1500 100.00 100.00 100.00 100.00 100.00

SPEA-2 250 0.00 0.00 0.00 0.00 0.00
500 100.00 27.27 11.11 9.09 9.09
750 100.00 100.00 22.22 18.18 9.09
1000 100.00 100.00 100.00 54.55 36.36
1250 100.00 100.00 100.00 100.00 45.45
1500 100.00 100.00 100.00 100.00 100.00

NSGA-II 250 0.00 0.00 0.00 0.00 0.00
500 100.00 9.09 8.33 33.33 33.33
750 100.00 100.00 33.33 33.33 33.33
1000 100.00 100.00 100.00 75.00 58.33
1250 100.00 100.00 100.00 100.00 58.33
1500 100.00 100.00 100.00 100.00 100.00

PESA 250 0.00 0.00 0.00 0.00 0.00
500 100.00 55.55 55.55 44.44 44.44
750 100.00 100.00 88.88 77.77 66.67
1000 100.00 100.00 100.00 77.77 66.67
1250 100.00 100.00 100.00 100.00 88.89
1500 100.00 100.00 100.00 100.00 100.00

Table 3.6: Comparison of intermediate populations for each algorithm, using the set 
coverage metric for a total of 1500 generations



Chapter 4

2D Cell Plan Decoders

In Chapter 3, the strategy of multi-objective cell planning was delineated. Phase 

one of the G2PS approach in Chapter 3 used a decoder to determine cell plans given 

a candidate site permutation it . As with the choice of GA, the specification of the 

decoder represents a degree of freedom within the multiple objective optimisation 

framework. The purpose of this chapter is to determine if changes in the specification 

of the decoder (i.e., sequential algorithm) lead to changes in the quality of the cell 

plans produced. Six alternative decoders are tested in this chapter. These are ex­

plained in Section 4.1 and tested in Section 4.2 on their ability to control cell density. 

Throughout, NSGA-II is applied, and primary objectives of coverage and cost are 

considered. Following this, conclusion on the decoders are drawn (Section 4.3).

66
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4.1 Decoders

A decoder produces a cell plan given a permutation of candidate site locations, 

where each candidate site location is identified by an integer. Given n candidate sites, 

there are n! possible orderings. The order in which candidate sites are considered for 

power allocation affects the characteristics of the resultant cell plan. We denote a 

given ordering of candidate sites 7r. There are two issues that a decoder must address: 

(i) the criteria for determining whether a given power setting is permissible (Section

4.1.1) and (ii) a method for selecting the next candidate site for consideration (Section

4.1.2). These factors determine the cell density and therefore the cost and coverage 

characteristics of the cell plans produced.

4.1.1 Criteria for power allocation

In order to produce efficient cell plans, it is crucial to control cell density and 

overlap. If cells are too dense they will overlap and duplicate service to too many 

STP. If excessive this leads to the deployment of more base stations than is necessary 

for the level of service coverage required, which unduly raises cost. Additionally, high 

levels of overlap between cells can lead to difficulties when allocating channels to 

base stations under FDMA protocols such as GSM. STPs receiving service coverage 

from multiple base stations require wider channel separation for receiving equipment 

to make a distinction between signals. This constitutes a separate and well studied 

optimization problem known as the channel assignment problem beyond the current 

investigation.

While high levels of cell overlap is not desirable, some overlap between cells is
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tolerated for two reasons. Firstly, cell overlap permits the possibility of seamless 

call — handover for mobile users, where a call can be transferred from one base 

station to the next without service interruption. Secondly, as base station coverage 

areas are often irregularly shaped, allowing some cell overlap facilitates cell plans with 

higher service coverage.

One way to achieve the correct balance of cell overlap is to impose constraints 

on the degree of overlap allowed between a cell being considered for addition to a 

cell plan and those already commissioned. Below we define three types of constraint 

methods for controlling cell overlap in this way. Note that as cells are defined as a 

set of points (i.e., STPs covered by a given base station), cell size is the cardinality 

of the set rather than a geographical area. This permits the consideration of cells of 

irregular shapes, such as when using propagation data from the field.

Pair-wise cell overlap constraint (PCO)

The first constraint restricts cell overlap on a pair-wise basis. Like all constraints, 

it is checked each time the allocation of a power setting to a site is considered, and 

is imposed with respect to the set of cells already allocated a power (denoted W ). 

As cells can be of different sizes, this constraint is imposed relative to the percentage 

of overlap in the smaller cell to avoid situations where a larger cell could completely 

envelope the smaller without violating the constraint. This can be seen in Figure 4.1, 

where if 5 were commissioned first, 4 could still be commissioned after. We term this 

a pair-wise cell overlap constraint (PCO) and formally define it as follows:

Definition 4 Under the pair-w ise cell overlap constraint (PC O ), the
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allocation of pi to form  cell Ci is permissible if and only if the number of STP  

within Ci exceeds 0 and

I Ci n C} I < ^  x mm{|Cj|, |C ,|} ,'iC j € IV.

This means that pairwise cell overlap is restricted to at most a of the smallest cell 

in the pair, where a  can be set between 0% and 100% inclusive. In other words, if a 

is exceeded between the cell under consideration and any other cell currently 

commissioned, the cell Ci is not added at that power level.

Figure 4.1: Potential cell planning problems

M ulti-w ise cell overlap constraint (MCO)

The second constraint restricts cell overlap on a multi-wise basis. This constraint 

was devised to ensure that the proportion of STP covered more than once, within 

the cell being considered, does not exceed a set level. It helps avoid a situation 

which could occur in PCO, where several cells commissioned in close proximity to one 

another effectively envelope the ‘central’ cell without violating the PCO constraint. 

This can be seen in Figure 4.1, where if 3 were commissioned first under some settings
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1, 2, and 4 could still be commissioned after. MCO stops this more frequently because 

if cells 1, 2, or 4 overlap slightly with another cell (not shown), the MCO constraint 

is likely to be exceeded, whereas the PCO constraint would not. We term this a 

multi-wise cell overlap constraint (MCO) and formally define it as follows, where Mj 

is the subset of STP within Ci which are covered more than once by adjacent cells:

Definition 5 Under the m ulti-w ise cell overlap constrain t (M C O ) the

allocation of Pi to form  cell Ci is permissible if and only if  the number of STP  

within Ci exceeds 0 and

-r— j  X 100 < /?
\Ci\

This means that cell overlap is restricted to the percentage of overlap that occurs 

within the cell being added (denoted (5) as a result of its intersection with cells in 

W, where (3 can be set between 0% and 100% inclusive. It is worth observing that 

while the PCO constraint will hold true at any stage in the creation of the cell plan, 

the MCO constraint is only guaranteed true at the point at which the current cell is 

being added.

The potential weakness of MCO is that if a loose constraint (i.e, high (3 value) is 

used, similar problems to that discussed for PCO can occur, albeit not as frequently. 

Alternatively, if a tight constraint (i.e., low (3 value) is used, favorable opportunities 

for higher cell power allocation can be missed. This can be seen in Figure 4.1, where if 

cells 3 and 6 were commissioned, it is possible that the small amount of extra overlap 

caused by the intersection of 4 and 6 could mean that 4 is not commissioned at the 

higher power level (as depicted).
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Pair-wise and m ulti-wise cell overlap constraint (PMCO)

The final constraint to consider is a combination of PCO and MCO, termed 

PMCO. This constraint was developed to curb the likelihood of incurring the po­

tential weaknesses found in PCO and MCO. For example, it has the same power as 

MCO to more frequently avoid the problem in PCO where cells envelope a ‘central’ 

cell. Additionally, it has an enhanced ability to avoid the problem experienced by 

MCO of not commissioning at a more favourable power setting due to a small amount 

of extra overlap. It achieves this by having a higher tolerance (higher /3 setting) than 

MCO. However, this more loose (3 setting does not have the potentially disastrous 

consequences it would have for MCO as it is protected by the a constraint as well. 

We term this a pair-wise and multi-wise cell overlap constraint (PMCO) and formally 

define it as follows:

Definition 6 Under pair-w ise  and m ulti-w ise cell overlap constraint 

(P M C O )  the allocation of pi to form  cell Ci is permissible if and only if the PCO  

and MCO constraints are not violated.

Thus, under this approach, not only is the pairwise cell overlap restricted to at 

most a  of the smallest cell in each comparison pair, but also to the overlap that occurs 

within the cell being added.

4.1.2 Selecting next candidate site

We also define two methods for ordering the iteration through the list of candidate 

sites, 7r, when applying a method for cell overlap constraint (Section 4.1.1). This
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involves progressing either primarily by-site or by-power.

By-Site (-S)

Under the by-site approach, sites are iterated over (in the order dictated by n) 

only once. However, when considered, if the current power setting violates an overlap 

constraint, a lower power setting is attempted, up to as many times as there are power 

settings. Once a site is allocated a power setting, the next site in the permutation is 

considered. The highest power setting (p*.) is allocated first, followed by progressively 

lower power settings until p o  (off). The procedure is detailed in Algorithm 2.

Algorithm  2 The by-site procedure for selecting the next site in a given ordering __

2: Let L i ,  L 2 , . . . ,  Lnbs  denote an ordering of candidate base station locations, where 

there must be at least one base station 

3: Let P o , P h  ■ ■ ■ , P k  denote the available power settings, where there must be at least 

one power setting 

4: for j  =  1 to nbs do 

5: Set i =  k.

6: while allocation of p i  to L j  is not permissible (by PCO, MCO or PMCO) and

i > 0 do 

7: i =  i — 1

8: end while

9: end for __________________

By-Power (-P)
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Under the by-power approach, sites are iterated over (in the order dictated by 

7r) and considered for allocation at the highest power setting first. If allocated a 

power setting, the site is no longer visited. While at least one site remains without 

an allocated power setting, the power setting is reduced, and the sites which axe not 

yet commissioned are considered again in the order dictated by 7r. The procedure is 

detailed in Algorithm 3.

Algorithm  3 The by-power procedure for selecting the next site in a given ordering __

2: Let Li, Z/2, . . . ,  Lnbs denote an ordering of candidate base station locations, where 

there must be at least one base station 

3: Let poi Pi 5 • • •»Pk denote the available power settings, where there must be at least 

one power setting 

4: Set i = k.

5: while not all candidate sites have been allocated a power setting do

6: for j  = 1 to nbs do

7: if  L j  has no power setting allocated then

8: if allocation of pi to Lj is permissible (by PCO , MCO or PMCO ) and

i >  0 then

9: L j  is allocated power setting Pi

10: end if

11: end if

12: end for

13: i = i — 1;

14: end while
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Both the by-site and by-power approaches were designed to mimic different ap­

proaches a radio engineer might take when attempting to allocate power settings 

manually. Given there are three methods for cell overlap constraint and two meth­

ods for selecting the next candidate site, six decoders are possible: PCO-P, PCO-S, 

MCO-P, MCO-S, PMCO-P, PMCO-S.

4.1.3 Exam ple o f each decoder’s action

To appreciate the different approach each decoder takes, consider the following 

cell planning scenario: There are seven candidate sites, each of which can transmit 

at zero power(i.e., off), one power, or two power. Dotted lines are used to depict 

potential cells, and solid lines are used to depict cells which have been formed at 

power level one or two.

Exam ple o f PCO-S, MCO-S, and PMCO-S

In Figure 4.2 the ordering of 7r is 1, 2, 3, 4, 5, 6, 7, although any ordering of sites 

could have been adopted. In this figure, we consider PCO-S, MCO-S, and PMCO-S. 

Taking a  =  30%, PCO-S (left) begins by adding cell 1 at full power, as no other 

cells are commissioned. Cell 2 is also selected, as the overlap between 2 and 1 is less 

than 30%. Cell 3 is also selected, as the overlap between (3 and 1) and (3 and 2) is 

less than 30%. Similarly, in this scenario, cells 4, 5, 6, and 7 are also selected at full 

power.

To demonstrate MCO-S (middle), we use (3 = 30%. MCO-S begins like PCO-S 

by adding cells 1 and 2. However, at cell 3 the combined overlap with cells 1 and 2 

exceeds 30% at full power. At half power, the overlap with cells 1 and 2 is reduced
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Figure 4.2: Using by-site: PCO-S (left), MCO-S (middle), PMCO-S (right)

considerably, and cell 3 is commissioned. Cells 4 and 5 are added at full power, as 

beta never exceeds 30%. Conversely, cells 6 and 7 can only be commissioned at half 

power, as overlap exceeds /? at full power.

Finally, PMCO-S (right) is considered with a = 30%, (3 = 50%. PMCO-S proceeds 

similarly to MCO-S until cell 6. At cell 6, the pair-wise overlap does not exceed a 

= 30% with cells 4 and 5, nor does the j3 exceed 50%-whereas for MCO-S the (3 did 

exceed the more restrictive 30% constraint; so PMCO commissions 6 at full power. 

For cell 7, it is assumed that the combined overlap with cells 2 and 5 does exceed 

50% in this case, so it can only be commissioned at half power.

Exam ple of PCO-P, MCO-P, and PM CO-P

In Figure 4.3, we demonstrate the by-power method using the ordering of n: 3, 6, 

7, 1, 5, 2, 4. Taking a  =  30%, PCO-P (left) turns on cells 3, 6, 7, 1, 5, 2, and 4 at 

full power as the constraint is never exceeded, and therefore has no cells to consider 

at half power. When compared with PCO-S, the same sites are turned on despite the 

ordering of ir has changed as well as the method for determining the next candidate 

site. A situation which would create a distinction using PCO-P and PCO-S can be 

seen in Figure 4.1, where if the a  setting were 0% and cell 4 were commissioned
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before cell 6, cell 6 could not be commissioned. However, if proceeding by power, cell 

4 would not have been commissioned at the low power before cell 6 was commissioned 

at the higher power.

Figure 4.3: Using by-power: PCO-P (left), MCO-P (middle), PMCO-P (right)

Unlike the comparison between PCO-P and PCO-S, MCO-P selects different cells 

from MCO-S due to the ordering of 7r. To demonstrate MCO-P (middle), we use (3 = 

30%. MCO-P begins by adding cells 3, 6, 7 and 1 at full power, as the (3 constraint is 

never exceeded. Cells 5, 2, and 4 are not selected at full power, as (3 exceeds 30% in 

each case when the combined overlap with cells already commissioned is considered. 

MCO-P then lowers the power level, and reconsiders cells 5, 2, and 4, which are now 

permissible.

Finally, PMCO-P (right) is considered with a = 30%, /? =  50%. It proceeds 

similarly to MCO-P in commissioning cells 3, 6, 7, and 1. Cells 5 and 2 are not 

selected at full power, as the j3 constraint would be exceeded. However, unlike PCO- 

P, cell 4 is commissioned at full power, as (3 does not exceed 50%. PMCO-P then 

lowers the power level, and reconsiders cells 5 and 2, which axe now permissible to be 

selected.
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A number of observations can be made regarding this approach. Firstly, the 

approach is greedy in the sense that once a base station location is added to C BS' 

at power Pmax> the base station cannot be removed from the cell plan C B S' nor can 

its transmission power be adjusted. Secondly, for a particular list of potential site 

locations, characteristics (e.g., cost and coverage) of the resultant cell plan C B S' is 

entirely dependent on the order (i.e., permutation 7r) in which the base stations are 

considered for selection. It is our aim to find the best permutations, which lead to the 

best approximations of cell plans on the Pareto front between the chosen objectives.

4.2 Decoders: Performance

We rigorously investigate each decoder within G2PS for multi-objective cell plan­

ning. The model we adopt considers power allocation at base station sites, which is 

the most important configuration variable. Similarly, the most fundamental objec­

tives are considered when comparing decoder performance. These are the total cost 

of operational base stations and total area coverage provided. Six general decoders 

are introduced and compared, taking into account a range of parameter settings for 

each. Using a sample of randomized test problem scenarios and a general simulated 

model for wireless propagation, comprehensive empirical evidence is provided from 

which detailed conclusions are drawn.

The performance of each decoder (using the G2PS framework) was tested using a 

wide range of synthesised test problems. Test problems axe classified by the density of 

candidate sites in a 30 km 2 working area, as documented in Figure 4.4. Five densities 

are used. For each test problem class, we produced five randomly generated instances,
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denoted version 1 (vl), v2, v3, v4 and v5. This means that the total number of 

problem instances is 25, which was seen as a sufficient number of testing scenarios to 

differentiate between the performance of the decoders. Admittedly, the choice is also 

somewhat arbitrary given the exploratory nature of this work. All problem instances 

are available at: h t t p : / /  www. ra isan en . co . uk/ d a ta s e ts . html. To help maintain 

a fair comparison between each decoder, common parameter settings for NSGA-II 

were adopted for each test-Figure 4.5.

Region size km 2 Density of sites per km2
0.03 0.06 0.12 0.18 0.24

30 x 30 27 54 108 162 216

Figure 4.4: Number of candidate sites in five problem classes defined by region size 
and density

Parameter Description Setting
.. .for Hata formula

f frequency 800 Mhz
hi, base station height 31 metres
hm receiver height 1.5 metres
sq Service threshold -90 dBm

...for decoders
q(PCO) 
p  (MCO)
/3 (PMCO) 
Pi (in dBW) 
Pi (in Watts)

0%, 10%, 20%, 30%, 40%, 50%
0%, 10%, 20%, 30%, 40%, 50% 
a  +10%, a  +20%, a  +30%, a  +40%, a  +50% 
30, 27, 24, 21, 18, 0 (off)
1000, 501, 251 125, 63, 0 (off)

...for NSGA-II
n number of generations 500
N population size 50
— mutation rate 0.01
— cross-over rate 1.00

Figure 4.5: Summary of all parameters used in testing

To determine which decoder performed the best, we tested each decoder on every



Chapter 4' %D Cell Plan Decoders 79

test problem instance using the following constraint settings:

• PCO-P and PCO-S using all alpha settings

• MCO-P and MCO-S using all beta settings

•  PMCO-P and PMCO-S using all pairs of alpha, beta (where beta > alpha)

This leads to 1850 tests (i.e.,(5 problem classes * 5 problem instances * 4(6) for 

PCO-S, PCO-P, MCO-S, and MCO-P) +  (25 * 2(25) for PMCO-S and PMCO-P)). 

For each test problem instance, we pooled solutions from each decoder run at each 

constraint setting and then removed dominated solutions to form set Spfa (Section 

3.1). In this way, Spfa is our best estimate of the true Pareto front, and as such, a 

concrete benchmark against which all decoders settings can be compared on a relative 

basis using the set coverage metric. That is, for each decoder at each constraint 

setting the set coverage metric is calculated with respect to Spfa , which represents 

the frequency with which the decoder produces non-dominated solutions as compared 

to the solutions from Spfa• The average performance was then measured over all 

test problems, with maximum (Max), minimum (Min), and average (Ave.) scores 

provided.

4.2.1 Perform ance o f PC O -P vs. PCO-S

The average performance for PCO-P and PCO-S for each problem class is given 

in Figure 4.6. In Figures 4.7 and 4.8, their respective maximum, minimum, and av­

erage performances (along with standard deviation) are given by constraint setting. 

On average, PCO-S with a = 50% performs the best, on average weakly dominating
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8.52% of Spfa across all test problems, followed by PCO-P with a  =  40% at 8.07%. 

Notably, taken together the two aforementioned decoders achieved the best average 

performance across all problem classes. This provides some evidence that less restric­

tive alpha constraint settings are better for optimization purposes. When comparing 

the difference between PCO-P and PCO-S, Figures 4.7 and 4.8 show that PCO-P 

is superior overall, achieving an average Spfa domination of 5.98% as compared to 

4.57% from PCO-S. The average performance of the PCO based decoders is 5.28%.

Decoder
a

Test problem class Ave.
27 vl-5 54 vl-5 108 vl-5 162 vl-5 216vl-5

PCO-P 00 13.47 5.94 2.72 6.94 5.43 6.90
PCO-S 00 11.98 2.42 0.25 0.49 0.00 3.03
PCO-P 10 3.25 5.67 5.64 5.33 1.09 4.20
PCO-S 10 3.24 1.73 0.00 0.00 1.30 1.25
PCO-P 20 10.68 4.46 3.83 2.68 3.17 4.97
PCO-S 20 10.68 2.82 1.08 0.99 0.00 3.12
PCO-P 30 7.64 3.68 3.21 0.53 6.30 4.27
PCO-S 30 8.43 3.35 5.81 0.25 2.85 4.14
PCO-P 40 4.66 15.38 2.61 9.93 7.80 8.07
PCO-S 40 4.66 15.07 6.27 8.39 2.37 7.35
PCO-P 50 18.01 9.94 4.50 2.60 2.28 7.46
PCO-S 50 19.32 10.70 8.49 2.90 1.21 8.52

Figure 4.6: Ave. PCO weak domination of Spfa by problem class

Stat alpha level Ave.oIIe oi-HII 0 II to o S3 a=30% a=40% a=50%
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Max 25.00 11.43 21.57 22.37 28.28 34.69 23.89
Ave. 6.90 4.20 4.97 4.27 8.07 7.46 5.98

Figure 4.7: Analysis by a  values of the weak-domination of PCO-P over SPFa
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Stat alpha level Ave.oIIQ a=10% a= 20% a=30% a=40% a=50%
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Max 20.83 12.24 21.57 26.32 31.31 34.69 24.49
Ave. 3.03 1.25 3.12 4.14 7.35 8.52 4.57

Figure 4.8: Analysis by a  values of the weak-domination of PCO-S over S p f a

4.2.2 Perform ance o f M CO-P vs. MCO-S

The average performance for MCO-P and MCO-S for each problem class is given 

in Figure 4.9. In Figures 4.10 and 4.11, their respective maximum, minimum, and 

average performances (along with standard deviation) are given by constraint setting. 

On average, MCO-P with /3 = 50% performs the best, on average weakly dominat­

ing 9.52% of Spfa across all test problems, followed by MCO-S with (3 = 50% at 

9.42%. Unlike the best two PCO based decoders, together these decoders did not 

achieve the best average performance across all problem classes. The best two MCO 

based decoders only performed well in the two lowest density situations. In higher 

density situations, decoders with stricter constraint settings performed better. This 

suggests (3 constraint settings need to be tailored based on the candidate site den­

sity to optimise performance. When comparing the difference between MCO-P and 

MCO-S, Figures 4.10 and 4.11 show that MCO-P is superior overall, achieving an 

average Spfa domination of 6.18% as compared to 4.05% from MCO-S. The average 

performance of the MCO based decoders is 5.12%.
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Decoder
P

Test problem class Ave.
27 vl-5 54 vl-5 108 vl-5 162 vl-5 216vl-5

MCO-P 00 13.47 5.94 2.72 6.94 5.43 6.90
MCO-S 00 11.98 2.42 0.25 0.49 0.00 3.03
MCO-P 10 3.25 5.43 5.07 1.91 0.77 3.29
MCO-S 10 3.24 2.74 0.40 0.00 2.85 1.85
MCO-P 20 13.51 6.52 3.30 8.52 1.37 6.64
MCO-S 20 14.76 2.71 0.17 0.00 0.49 3.63
MCO-P 30 13.97 4.28 2.53 3.00 4.26 5.61
MCO-S 30 15.54 1.54 0.00 0.00 0.28 3.47
MCO-P 40 8.85 5.19 1.28 7.22 3.15 5.14
MCO-S 40 10.00 3.43 0.20 0.76 0.00 2.88
MCO-P 50 32.04 7.39 4.44 1.69 2.06 9.52
MCO-S 50 36.94 7.13 1.25 1.01 0.78 9.42

Figure 4.9: Ave. MCO weak domination of Spfa by problem class

Stat beta level Ave.
(3=0% (3= 10% (3=20% {3=30% 13=40% (3=50%

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Max 25.00 12.62 27.45 27.63 18.37 46.94 26.34
Ave. 6.90 3.29 6.64 5.61 5.14 9.52 6.18

Figure 4.10: Analysis by (3 values of the weak-domination of MCO-P over Spfa

Stat beta level Ave.
{3=0% P =  10% P = 20% p = 30% P = 40% {3=50%

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Max 20.83 12.24 27.45 31.58 20.41 46.94 26.58
Ave. 3.03 1.85 3.63 3.47 2.88 9.42 4.05

Figure 4.11: Analysis by (3 values of the weak-domination of MCO-S over Spfa

4.2.3 Perform ance o f PM C O -P vs. PM CO-S

The average performance for PMCO-P and PMCO-S for each problem class is 

given in Figures 4.12 and 4.13. In Figures 4.14 and 4.15, their respective maximum,
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minimum, and average performances (along with standard deviation) are given by 

constraint setting. On average, PMCO-P (a=40%,/?=50%) performs the best, on 

average weakly dominating 11.05% of Spfa across all test problems, followed by 

PMCO-S(a=50%,/3=60%) at 8.52%. Like the best two PCO based decoders, these 

decoders performed well (albeit not the best) across all problem classes, and they 

perform consistently well during optimization with a less strict a  constraint. Unlike 

MCO, the P constraint usually performed best at (a +  10%) or (a +  20%); thus, it 

does not need to be tailored to candidate site density, probably because PMCO uses 

a combination of constraints. When comparing the difference between PMCO-P and 

PMCO-S, Figures 4.10 and 4.11 show that PMCO-P is superior overall, achieving an 

average Spfa domination of 6.67% as compared to 4.59% from PMCO-S. The average 

performance of the PMCO based decoders is 5.63%.

4.2.4 Com parison across all decoders

Looking at all the test results, the best performing constraint method was PMCO, 

with an average weak domination of Spfa  of 5.63% across all constraint settings. 

Also, the by-power method for selecting the next candidate site outperformed by­

site in each paired comparison. The best performing decoder overall was PMCO-P 

(o=40%,/?=50%), which on average weakly dominated 11.05% of S PFa  across all test 

problems. This supports the conjecture given in Section 4.1.3 that this decoder avoids 

inefficient configurations within a cell plan.

Results also suggest that when there is low site density, a less strict constraint is 

preferable when optimizing cover and cost, probably as with few degrees of freedom,
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Decoder
a,P

Test problem class Ave.
27 vl-5 54 vl-5 108 vl-5 162 vl-5 216vl-5

PMCO-P 10,20 3.25 5.67 5.06 2.61 6.01 4.52
PMCO-P 10,30 3.25 5.67 5.64 5.33 1.09 4.20
PMCO-P 10,40 3.25 5.67 5.64 5.33 1.09 4.20
PMCO-P 10,50 3.25 5.67 5.64 5.33 1.09 4.20
PMCO-P 10,60 3.25 5.67 5.64 5.33 1.09 4.20
PMCO-P 20,30 10.68 4.51 12.14 1.97 8.25 7.51
PMCO-P 20,40 10.68 4.46 4.97 5.67 3.68 5.89
PMCO-P 20,50 10.68 4.46 3.83 2.68 3.17 4.97
PMCO-P 20,60 10.68 4.46 3.83 2.68 3.17 4.97
PMCO-P 20,70 10.68 4.46 3.83 2.68 3.17 4.97
PMCO-P 30,40 7.64 2.44 5.02 5.59 2.06 4.55
PMCO-P 30,50 7.64 3.86 9.60 1.49 11.72 6.86
PMCO-P 30,60 7.64 3.68 3.21 0.53 6.30 4.27
PMCO-P 30,70 7.64 3.68 3.21 0.53 6.30 4.27
PMCO-P 30,80 7.64 3.68 3.21 0.53 6.30 4.27
PMCO-P 40,50 5.88 14.62 9.98 17.07 7.67 11.05
PMCO-P 40,60 4.66 15.38 2.61 9.93 7.80 8.07
PMCO-P 40,70 4.66 15.38 2.61 9.93 7.80 8.07
PMCO-P 40,80 4.66 15.38 2.61 9.93 7.80 8.07
PMCO-P 40,90 4.66 15.38 2.61 9.93 7.80 8.07
PMCO-P 50,60 18.01 9.94 4.50 2.60 2.28 7.46
PMCO-P 50,70 18.01 9.94 4.50 2.60 2.28 7.46
PMCO-P 50,80 18.01 9.94 4.50 2.60 2.28 7.46
PMCO-P 50,90 18.01 9.94 4.50 2.60 2.28 7.46

PMCO-P 50,100 18.01 9.94 4.50 2.60 2.28 7.46

Figure 4.12: Ave. PMCO-P weak domination of Spfa by problem class

coverage is maximized by being able to commission cells at full power when given 

the chance. However, as candidate site density increases, and the likelihood of cell 

overlap increases, a stricter setting is helpful. This may be due to the fact that with 

increased degrees of freedom, a better solution with less overlap is more likely to be 

found, with fewer sites ultimately being necessary to maximize coverage.
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Decoder
0-3

Test problem class Ave.
27 vl-5 54 vl-5 108 vl-5 162 vl-5 216vl-5

PMCO-S 10,20 3.24 1.73 0.00 0.00 0.88 1.17
PMCO-S 10,30 3.24 1.73 0.00 0.00 1.30 1.25
PMCO-S 10,40 3.24 1.73 0.00 0.00 1.30 1.25
PMCO-S 10,50 3.24 1.73 0.00 0.00 1.30 1.25
PMCO-S 10,60 3.24 1.73 0.00 0.00 1.30 1.25
PMCO-S 20,30 10.68 3.18 0.61 0.99 0.78 3.25
PMCO-S 20,40 10.68 2.82 1.02 0.99 0.21 3.15
PMCO-S 20,50 10.68 2.82 1.08 0.99 0.00 3.12
PMCO-S 20,60 10.68 2.82 1.08 0.99 0.00 3.12
PMCO-S 20,70 10.68 2.82 1.08 0.99 0.00 3.12
PMCO-S 30,40 8.43 3.11 0.33 0.56 2.08 2.90
PMCO-S 30,50 8.43 2.90 0.39 0.28 0.29 2.46
PMCO-S 30,60 8.43 3.35 5.81 0.25 2.85 4.14
PMCO-S 30,70 8.43 3.35 5.81 0.25 2.85 4.14
PMCO-S 30,80 8.43 3.35 5.81 0.25 2.85 4.14
PMCO-S 40,50 5.88 12.01 4.48 2.66 7.88 6.59
PMCO-S 40,60 4.66 15.07 6.27 8.39 2.37 7.35
PMCO-S 40,70 4.66 15.07 6.27 8.39 2.37 7.35
PMCO-S 40,80 4.66 15.07 6.27 8.39 2.37 7.35
PMCO-S 40,90 4.66 15.07 6.27 8.39 2.37 7.35
PMCO-S 50,60 19.32 10.70 8.49 2.90 1.21 8.52
PMCO-S 50,70 19.32 10.70 8.49 2.90 1.21 8.52
PMCO-S 50,80 19.32 10.70 8.49 2.90 1.21 8.52
PMCO-S 50,90 19.32 10.70 8.49 2.90 1.21 8.52
PMCO-S 50,100 19.32 10.70 8.49 2.90 1.21 8.52

Figure 4.13: Ave. PMCO-S weak domination of Spfa by problem class

Stat alpha, beta level Ave.
0,0 10,20 20,30 30,50 40,50 50,60

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Max 25.00 14.08 21.57 35.21 30.99 34.69 26.92
Ave. 6.90 4.52 3.25 6.86 11.05 7.46 6.67

Figure 4.14: Analysis by selected a  and (3 values of the weak-domination of PMCO-P 
over Spfa
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Stat alpha, beta level Ave.
0,0 10,30 20,30 30,60 40,60 ^50,60

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Max 20.83 12.24 21.57 26.32 31.31 34.69 24.49
Ave. 3.03 1.25 3.25 4.14 7.35 8.52 4.59

Figure 4.15: Analysis by selected a  and j3 values of the weak-domination of PMCO-S 
over Spfa

4.3 Decoders: Conclusions

In this chapter, we have considered the effects of changing the decoding algo­

rithm within the optimisation framework. The framework optimizes the ordering of 

candidate sites, which are transformed into cell plans using a decoder. The decoder 

algorithm is fundamental as it governs the performance of cell plans found, indepen­

dent of the technique used to optimise the ordering of candidate sites.

Six decoders have been introduced and evaluated. These decoders use different 

criteria and approaches to mimic the way in which a radio engineer could approach 

the commissioning of base stations, on a manual basis. The crucial issues considered 

are those of power allocation to create cells, and the overlap between cells, given 

an irregular dispersion of candidate sites. A total of 1850 experiments have been 

performed using a range of randomized test problems with different density charac­

teristics. For each test problem, the solutions from all decoders were aggregated and 

the non-dominated members were used to form a best approximation to the Pareto 

front between coverage and cost. Against this, the performance of each decoder, at 

each setting, was compared using set-wise weak domination. On averaging over all 

test problems, the results indicate that PMCO-P is the highest performance approach 

overall. The results also show that use of the by-power ordering method is consistently
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more effectively than by-site. Identifying the decoder with the highest performance 

means that we can now more accurately assess the trade-off between coverage and 

cost for the cell planning problem.



Chapter 5

2D Cell Infrastructure Efficiency

In this chapter, we look at ways of finding the characteristics of high performance 

cell plans under the abstract 2D model. High performance in this context means 

attaining a high coverage level for relatively low total base station cost. To this 

end, we introduce the concept of base station infrastructure efficiency. This relates 

network cost to the spatial availability of received signal strength. Our interest is in 

finding the cell density at which infrastructure efficiency is maximised. Note that this 

is distinct from finding an optimal level of coverage or optimal level of expenditure. 

Infrastructure efficiency gives an assessment of a cellular network independent of the 

particular level of coverage or particular level of expenditure.

Additionally, to look at the effects of changing the level of expenditure in the 

network we introduce the concept of marginal infrastructure cost of coverage. This is 

the increase in cost for one additional unit of coverage. From an economic viewpoint, 

the rate at which the infrastructure cost of changes is fundamental in determining the 

amount of coverage, and therefore capital investment, which the operator should opti­

88
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mally sustain for profit maximisation. Marginal cost measures the diminishing return 

from increased expenditure, which is valuable information for network operators.

We wish to observe common trends in the behaviour of this function to quantify 

the potential diminishing return (in terms of service coverage) for additional infras­

tructure expenditure. Our aims in this regard are two-fold:

1. Firstly we wish to analyse the effects of cell density on the infrastructure cost 

of the network. High cell density permits higher levels of area coverage but 

at greater financial cost. We seek to establish the most cost efficient levels for 

inter-cell overlap, and determine the level of coverage which can be achieved in 

these circumstances (Section 5.3).

2. Secondly we wish to analyse the effects of increasing infrastructure expendi­

ture on service coverage. We seek to determine the extent to which additional 

investment becomes progressively less effective in facilitating service coverage. 

This analysis can be used to inform operators regarding the best level of service 

coverage (Section 5.4).

We consider the implications of cell density on channel re-use across a network. 

As cell density increases, it becomes progressively more difficult to satisfy signal- 

to-interference requirements for service area coverage. We quantify the increase in 

the required span of channels induced by increased cell density (Section 5.5). After 

this, conclusion on infrastructure efficiency are drawn (Section 5.6). And finally, we 

analyse the basic 2D model to determine its overall strengths and limitations, and 

provide motivation for developing a more realistic 3D model (Section 5.7).
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5.1 Cost and Profit Literature

In contrast to the wide variety of techniques and models for cell planning, only a 

few papers have analysed the cost and profit aspects of cellular networks. A frequent 

underlying premise is that a network is already in existence, and optimal configuration 

is required. For example in [26], system parameters (e.g., cell size, channel allocation) 

are optimised to maximise profit. The emphasis in this chapter is configuration to 

optimise revenue rather than costs, which is appropriate given that site selection is 

assumed to be fixed. A range of five potential base station types, with different costs 

and cell radii are available. A Poisson process is used to model traffic and a range 

of experiments are performed, which determine the optimal cell type and radius for 

revenue maximisation. However, uniform, regular location of base stations is assumed. 

In [27] this approach is extended to include the issue of mobility and overlap between 

cells.

Other papers have mainly considered costs rather than revenue. Sarnecki [70] 

briefly discusses cost implications of micro-cells. In [45] Katz compares the cost 

differences between analogue and digital micro-systems. In [65] an engineering cost 

model has been proposed but the focus was from the regulators perspective rather 

than the operators. Beyond these papers, cost implications are generally limited to 

detailed estimates of different components which are incorporated into the objectives 

to produce a single network design. There is an apparent lack of cost analysis for 

service coverage from 4green-field’ cellular network planning.
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5.2 A ssessing Infrastructure Efficiency

To assess infrastructure efficiency, we introduce a new measure called the unit cost 

of coverage (Definition 7), which determines the cost of providing service coverage on 

a per test-point basis.

Definition 7 (Unit Cost of Coverage) Let costcbs' be the total cost of the cell plan 

and cover cbs1 be the number of STP covered. Then the unit infrastructure cost of 

coverage is:

cost CBS1 
cover cbs'

Note that this metric directly measures the infrastructure efficiency of any given 

cell plan, with minimisation of this objective preferential. Additionally, it can be ap­

plied to directly compare cell plans which have both different total costs and different 

levels of service coverage. This metric is related to the concept of domination, which 

is a well established concept in multiple objective optimisation used to compare dif­

ferent solutions under multiple objectives. If desired, total cost can also be re-stated 

as maximisation (rather than minimisation) objective by maximising — costcss'■

The relationship between unit cost of coverage and Pareto optimality is established 

by the following Theorem, where TC =  c o s t c B S '  and SC =  c o v e r c B S ' •

Theorem 1 If cell plan s weakly dominates cell plan t  then s has lower or equal unit 

cost of coverage to that of t .

Proof Let
TCS TCt 

Us S C ,’ “* SCt
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be the unit cost of coverage for s and t respectively. Since s weakly dominates £, 

TC S < TCt and SCs > SCt. Hence us < ut, as required.

C orollary  1 The highest infrastructure efficient cell plans (i.e., with minimal unit 

cost of coverage) are Pareto optimal.

P ro o f Follows directly from Theorem 1.

Corollary 1 is important important because it reaffirms that we need to search for 

and consider Pareto optimal cell plans. This can be approximated by finding the best 

possible sets of mutually non-dominated cell plans, with different levels of service 

coverage and total cost. To achieve this, the G2PS multiple objective optimisation 

framework is employed.

5.3 Effect o f Cell Overlap on Infrastructure Effi­

ciency

To apply the G2PS strategy, randomly generated test problems are used, classified 

by size of region and density of candidate base station sites-Table 5.1. This has led 

to nine problem classes. The maximum cost of a site is permitted (at random) to 

be twice the minimum cost of a site. This has been applied to mimic the site cost 

variations which are frequently seen in operational planning scenarios. For each of the 

nine problem classes, five randomly generated problems have been created (versions 

vl,v2 , v3,v4, vb) leading to 45 specific problems overall. For all problem instances,
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service test points are located on a regular grid with 100m intervals. Problems are 

available at h t t p : / /www. ra isa n e n . co. u k /d a ta se ts . html.

During all testing in this chapter, we apply the G2PS strategy (Chapter 3.2) using 

the PCO-P decoder (Chapter 4.1) with omni-directional antenna, where received 

signal strength is determined by Hata’s model (as in Chapter 3.1). Although PMCO- 

P was found to be the highest overall performing decoder, PCO-P is used to control 

cell density because pair-wise cell overlap (PCO) constraints are conceptually easier to 

relate to the issue of cell density. Also, in contrast to PCO, the multi-wise cell overlap 

constraint (Definition 6) is local rather than global. Therefore it is only imposed 

when a site is commissioned and may be legally violated later in the algorithm when 

subsequent sites are added. The ‘by-power’ approach to next candidate site selection 

is applied here because this was found to be superior overall to the ‘by-site’ approach 

in Section 4.2.4.

Within PCO-P, the parameter a  continues to be central to controlling infras­

tructure efficiency, because it dictates how closely packed cells (and therefore base 

stations) are. Increasing a  will potentially increase total cost of the network (because 

more base stations can occur) and also increase the potential for coverage. The op­

timal setting for a, with a view to maximising infrastructure efficiency, represents a 

useful ‘best possible’ guide for network planners. The parameters for the model are 

stated in Table 5.2, and power settings applied are defined in Table 5.3.



Chapter 5: 2D Cell Infrastructure Efficiency 94

Region size km 2 Density of sites per km2
0.03 0.06 0.12

15 x 15 7 14 28
30 x 30 27 54 108
45 x 45 61 122 244

Table 5.1: Number of candidate sites in nine problem classes defined by region size 
and density

Parameter Description Setting
f frequency 800 Mhz
hm receiver height 1.5 metres
Tlgen number of generations 500
n population size 50
— mutation rate 0.01
— cross-over rate 1.00
sq service threshold -90 dBm
k number of power settings 5

Table 5.2: Settings for propagation model and NGSA-II

Power Setting dBW Watts
Pb 30 1000
Pa 27 501
Pz 24 251
P2 21 125
P i 18 63

Table 5.3: Power settings used in tests

5.3.1 R esu lts and analysis

We aim to find the effects of varying inter-cell overlap (controlled by a) on infras­

tructure efficiency. Applying the optimisation framework from Chapter 3.2, a set of 

non-dominated solutions have been found to approximate the Pareto front for each 

of the 45 test problems, using 13 alternative values of a  (0 to 60% in 5% steps). This
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leads to a total of 585 test instances, from which conclusions have been drawn. For 

each non-dominated solution found, the unit cost of coverage has been calculated and 

assessed. This has been analysed across problem instances by calculating the mean 

and standard deviation in each problem class, as shown in Tables 5.4 and 5.5.

The results in Table 5.4 show that the highest level of infrastructure efficiency 

is achieved with a modest amount of cellular overlap. An overlap of approximately 

10% dominates as that providing the best infrastructure efficiency values. This is 

particularly the case for the larger and denser test problems. The profile of the 

average unit cost of coverage, as maximum permitted cell overlap (a) increases, is 

shown in Figures 5.1, 5.2 and 5.3. These functions become smoother for the larger, 

increasingly dense test problem instances, and show an interesting general trend. 

As a  increases, the unit cost of coverage initially falls, up until a  reaches a value 

of approximately 10%. Beyond this value, the unit cost of coverage progressively 

increases, in a non-linear fashion. Thus, for the best infrastructure efficiency 10% is 

best, although from a practical standpoint it may not be sufficient for meeting an 

operator’s coverage or handover requirements.

This behaviour can be explained by the freedom for cell site selection. When 

a  is zero (i.e., cell overlap is not permitted) the choices for site selection are most 

restricted. This has two effects. Firstly it may not be possible to take advantage 

of a cheapest subset of sites, particularly if their spatial locations would necessarily 

induce overlap. Secondly, when commissioning cells so they do not overlap, the cells 

are likely to be smaller (i.e., lower power). This results in cells serving a small number 

of STP, which will adversely affect the unit cost of coverage. When a high level of
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inter-cell overlap is permitted, the progressive increase in unit cost of coverage occurs 

for two reasons. Firstly, inefficiency is introduced by a high proportion of STP being 

contained in multiple cells. Secondly, the increased freedom for commissioning cells 

means that high levels of coverage can be achieved using progressively more expensive 

sites. In Figures 5.4, 5.5 and 5.6, the average coverage achieved in each problem class is 

shown. For each geographical region, note that as candidate site density increases, the 

achievable coverage also increases. To achieve high levels of coverage (e.g., 90% and 

above), either candidate site density should ideally be increased, or less favourably, 

maximum permitted inter-cell overlap should be increased. The former alternative 

is more desirable since it means that the required level of coverage can be achieved 

using the most efficient level for a .

—  14
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Figure 5.1: Ave. unit cost of coverage for each 15km x 15km problem class
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Figure 5.2: Ave. unit cost of coverage for each 30km x 30km problem class

—  61 
—  122 

244

5  2.5

Aloha Level

Figure 5.3: Ave. unit cost of coverage for each 45km x 45km problem class
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Figure 5.4: Ave. coverage as a function of maximum permitted inter-cell overlap (a) 
for each 15km x 15km problem class
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Figure 5.5: Ave. coverage as a function of maximum permitted inter-cell overlap (a) 
for each 30km x 30km problem class
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Figure 5.6: Ave. coverage as a function of maximum permitted inter-cell overlap (a) 
for each 45km x 45km problem class

5.4 Effects of Increasing Infrastructure E xpendi­

ture

As well as determining the optimal overlap between cells, it is important to under­

stand the cost implications associated with the am ount of service coverage provided, 

under idealised conditions. In this section, we consider the cost change due to in­

creased spatial service provision. Effectively, we show how the law of diminishing 

returns, in terms of service coverage, applies to cellular communication networks.



Chapter 5: 2D Cell Infrastructure Efficiency 99

Thus, when planning a network, careful consideration needs to be given to the target 

level of service coverage. For example, a target of 99% area coverage may represent a 

plausible objective from a radio engineering perspective, but this may well be a poor 

choice economically. However, there are additional intangible issues to consider. For 

example, to even enter the telecommunications market a certain level of coverage is 

necessary from a practical standpoint. A provider that does not provide excellent 

wide-area coverage is likely to lose customers quickly. In addition, there may be ben­

efits to being the ‘best’ service provider in terms of coverage for marketing purposes 

and the recruitment of customers. When providers are considering cost implications 

they need to consider both the financial costs (in terms of the cell plan efficiency) 

and these intangible costs, which if not taken seriously could limit their viability in a 

competitive market.

5.4.1 Dem and and supply

Economics captures idealised behaviour under particular assumptions. We apply 

economic supply theory to the spatial availability of mobile services, which we con­

sider to be the network operators output. Under perfect economic behaviour, the 

network operator will ideally wish to know the answer to two fundamental questions: 

how much will it cost to produce this output and how much revenue will be earned 

by selling it. By examining how costs and revenues change with output, the operator 

can maximise profits. Crucial concepts in this regard are marginal cost and marginal 

revenue. Marginal cost is the increase in total cost when output is increased by one 

unit. Marginal revenue is the increase in total revenue when output is increased by
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one unit. The important observation is that as long as marginal revenue is greater 

than marginal cost, an additional unit of output will increase total profit. Similarly, 

if marginal revenue is less than marginal cost, an additional unit of output will de­

crease total profit. Consequently we can use marginal cost and marginal revenue to 

determine the output level which maximises total profit (i.e., when marginal revenue 

equals marginal cost). At this point, profit maximisation is achieved. In our scenario, 

output represents spatial availability of the carrier signal (e.,g., 1% coverage of total 

STPs equals 1 unit).

In this chapter, we simplify this economic analysis by focussing on marginal cost. 

This is because marginal revenue data is unavailable, difficult to accurately determine 

and is also commercially sensitive. In contrast, it is possible to more accurately 

assess marginal cost of service provision as it is dependent on the principles of radio 

engineering as described in this thesis. Beyond formal economic analysis, estimated 

marginal cost plays an important role. Prom the operators perspective, it is useful 

when deciding the appropriate level of capital investment, even in the absence of 

information concerning marginal revenue. Analysis of marginal cost determines the 

point at which investment has a reduced effect in providing coverage, and additional 

service coverage becomes undesirable. In practice, the operator will have to make a 

judgement on when this point occurs, in the absence of marginal revenue. Service 

coverage levels with high marginal cost indicate the increased rate of change in the 

trade-off between service coverage and cost. A hypothetical optimal trade-off between 

service coverage and cost is shown in Figure 2.2 (where cost is objective 2, and 

coverage is objective 1), where the progressive increase in gradient represents the
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reduced return, in terms of service coverage, for additional investment. This concept is 

the cornerstone of economic supply theory and motivates our investigation of marginal 

cost for the cellular communication network. This has not been addressed in the 

literature previously.

5.4.2 D eterm ining M C from the Pareto front

We define the marginal cost of service coverage at service coverage level s to be the 

minimal increase in total cost if service coverage is to be increased from s to s+1. Due 

to the density of STPs in a given region, we measure service coverage in percentage 

units of the total number of STPs. We develop a technique to estimate marginal cost 

for specific irregular cell planning scenarios, such as the test problems in Section 5.3. 

This involves two components. Firstly, the Pareto front between service coverage and 

total cost must be approximated, by obtaining a range of non-dominated solutions 

through the application of the G2PS optimisation framework. Secondly, marginal 

cost is derived by obtaining a numerical estimate of the gradient using specific points 

from the approximated Pareto front (Equation 5.1).

Given a range of non-dominated cell plans C B S [, C B S '2, . . . ,  C BSk, we identify 

each by the pair (s*, c*), where Si is the percentage service coverage and c* is the 

total cost of CBS[. We assume that the non-dominated cell plans are indexed by 

increasing service coverage level, that is Si < s2 < • • • < sk. We estimate the 

marginal cost of service coverage using a subset S  of non-dominated of cell plans 

from C B S[ , CBS'2, . . . ,  CBS'k. Graphically, the selected subset of non-dominated cell 

plans represent extreme points on the Pareto front, identified by forming the convex
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hull of points when plotted in the service coverage and cost plane, as shown in Figure

5.7. Members of S  are identified as follows. Cell plan CBS[ is included by definition. 

The lowest index cell plan (i.e. lowest cost) in S  is denoted by index L Each cell 

plan from C B S^^C B S^,. . . ,  CBS'k with an index greater than I (i.e. higher cost) is 

considered for inclusion in S. The cell plan CBS'm from CBS[, C B S '2, . . . ,  CBS'k, 

where m  > Z, is identified such that

Cm Q  /  r  i  \mci = ---------  (5.1)
Sm -  Si

is minimal. C B S fm is added to S  and the process is repeated until CBSk is included 

in S. Visualisation of this process is shown in Figure 5.7. The minimal value for 

mci defines our estimate of marginal cost at coverage level s\. This is a best possible 

estimate of marginal cost at output level s\ in the sense that mci is a lowest estimated 

increase in cost for an additional unit (1 percent) of service coverage, given the non- 

dominated solutions found-Figure 5.7.

5.4.3 R esu lts

Using the parameter settings in Table 5.2 and the optimal setting for a, we derive 

the approximated Pareto front and resultant marginal cost curve for each of the 

medium and large test problems. These are displayed in Figures 5.8 and 5.9. Note 

that the approximated Pareto fronts become increasingly convergent and smooth as 

candidate site density increases. This is because higher density test problems are 

less distinguishable and consequently the characteristics of the resultant cell plans, in 

terms of cost and service coverage, are similar. Additionally, the profile of the Pareto 

fronts is remarkably similar, in exhibiting a progressive and increasing gradient which
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Figure 5.7: Selection of extreme points for estimating the Pareto front

is captured by the corresponding marginal cost curve. In most cases, a significant 

increase in marginal cost occurs, which is frequently characterised by a sharp terminal 

peak. This quantifies the difficultly in covering additional service test points without 

incurring multi-covered STP, which induces significant increase in cost from increased 

cell density. The start of the sharp terminal peak in marginal cost provides a useful 

critical point in terms of service coverage level. Coverage beyond this point needs 

to be carefully considered given the increased marginal cost of coverage, which is 

equivalent to a significantly diminished return in service coverage for every further 

unit of capital expenditure.



Test Problem Class (km2 x number of sites)
a 15 x 7 15 x 14 15 x 28 30 x 27 30x54 30 x 108 45 x 61 45 x 122 45 x 244

0% 0.00228 0.00232 0.00232 0.00189 0.00209 0.00197 0.00186 0.00187 0.00185
5% 0.00212 0.00219 0.00223 0.00182 0.00196 0.00192 0.00177 0.00182 0.00179

10% 0.00211 0.00226 0.00220 0.00180 0.00196 0.00191 0.00176 0.00179 0.00174
15% 0.00205 0.00225 0.00217 0.00179 0.00200 0.00192 0.00176 0.00183 0.00181
20% 0.00205 0.00237 0.00217 0.00181 0.00199 0.00193 0.00178 0.00188 0.00188
25% 0.00206 0.00234 0.00222 0.00181 0.00206 0.00204 0.00182 0.00187 0.00194
30% 0.00215 0.00242 0.00237 0.00186 0.00206 0.00207 0.00183 0.00195 0.00197
35% 0.00215 0.00241 0.00240 0.00186 0.00213 0.00217 0.00190 0.00200 0.00213
40% 0.00215 0.00249 0.00242 0.00189 0.00224 0.00225 0.00197 0.00213 0.00226
45% 0.00213 0.00250 0.00265 0.00194 0.00239 0.00244 0.00201 0.00226 0.00248
50% 0.00220 0.00259 0.00277 0.00200 0.00238 0.00262 0.00210 0.00246 0.00278
55% 0.00226 0.00270 0.00283 0.00203 0.00252 0.00278 0.00221 0.00266 0.00306
60% 0.00234 0.00286 0.00291 0.00214 0.00270 0.00307 0.00225 0.00286 0.00349

Table 5.4: Ave. unit cost of coverage for each test problem class with each overlap constraint setting (a)
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Test Problem Class (km2 x number of sites)
a 15 x 7 15 x 14 15 x 28 30 x 27 30x54 30 x 108 45 x 61 45 x 122 45 x 244

0% 0.00017 0.00026 0.00018 0.00009 0.00015 0.00015 0.00010 0.00005 0.00011
5% 0.00034 0.00021 0.00012 0.00011 0.00008 0.00015 0.00010 0.00007 0.00006
10% 0.00036 0.00026 0.00015 0.00006 0.00009 0.00004 0.00008 0.00004 0.00010
15% 0.00032 0.00024 0.00013 0.00004 0.00012 0.00006 0.00007 0.00004 0.00010
20% 0.00031 0.00031 0.00013 0.00004 0.00006 0.00006 0.00008 0.00004 0.00013
25% 0.00032 0.00027 0.00025 0.00004 0.00006 0.00014 0.00007 0.00009 0.00004
30% 0.00019 0.00032 0.00036 0.00006 0.00008 0.00011 0.00009 0.00006 0.00006
35% 0.00021 0.00037 0.00026 0.00010 0.00008 0.00010 0.00012 0.00011 0.00007
40% 0.00021 0.00032 0.00028 0.00009 0.00009 0.00008 0.00011 0.00010 0.00010
45% 0.00023 0.00034 0.00020 0.00007 0.00004 0.00009 0.00012 0.00004 0.00007
50% 0.00028 0.00022 0.00019 0.00012 0.00010 0.00009 0.00011 0.00007 0.00006
55% 0.00027 0.00033 0.00018 0.00010 0.00014 0.00015 0.00005 0.00012 0.00008
60% 0.00027 0.00032 0.00007 0.00010 0.00008 0.00019 0.00006 0.00005 0.00019

Table 5.5: SD figures associated with the ave. values in Table 5.4
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The sharp increase in marginal cost occurs at progressive higher coverage levels 

when candidate site density increases. For example, in the 30 x 30 km region-Figure

5.8, the sharp increase in marginal cost occurs at 80-85% coverage with low candidate 

site density, at 90-95% coverage with medium candidate site density and beyond 95% 

coverage with high candidate site density. This is a consequence of increased degrees 

of freedom in site selection, which permits increased coverage solutions with minimal 

additional cell overlap. This highlights the benefit from increasing the number of 

candidate base station sites.

5.5 Effect o f Cell Overlap on Spectral Require­

m ents

As well as affecting the infrastructure efficiency, cell density is fundamental in 

determining spectral usage characteristics. Cell density and channel re-use are inti­

mately linked by the issue of cell overlap. In regions of cell overlap, service test points 

receive signal strength above the service threshold from at least two transmitters. 

Without channel separation, the receiving equipment will be unable to reject signals 

from non-serving transmitters, thereby causing interference at service test points. 

Consequently, to maintain adequate signal-to-interference ratios, channel separation 

constraints are required between cells. We consider the additional range or span of 

channels required to satisfy signal-to-interference requirements when different levels 

of cell overlap (controlled by a) are permitted. We assume the application of FDMA 

technology and consider spatial service area coverage in an uncapacitated network.
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In the following Section, we explain the approximation used.

5.5.1 Channel separation constraints

We consider channel separation between pairs of overlapping cells. Constraints 

are generated using a ‘worse-case’ service test point from the overlap region, which is 

selected using one of two assumptions.

• Strongest Server

Under this assumption, service test points in the overlap region are assumed to 

be served by the cell providing the greatest received signal strength. Therefore 

the ‘worse-case’ service test point is selected as that receiving near-equal signal 

strength from both cells.

• Non-Strongest Server

Under this assumption, service test points in the overlap region may be served 

by the cell providing the weakest received signal strength. When all cells are co­

channel, the ‘worse-case’ test point is that with the lowest signal-to-interference 

ratio.

On selection of the ‘worse-case’ service test point, channel separation can then be 

applied between the overlapping cells until signal-to-interference ratio goes beyond 

the required threshold. For experimental purposes, a required signal-to-interference 

ratio of 9dB has been applied. In Table 5.6, we tabulate the factor by which inter­

ference is reduced due to adjacent channel separation. These are taken to emulate 

the GSM system. Repeating this process across all pairs of cells, we obtain a set
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of necessary constraints which must be satisfied if target signal-to-interference ratios 

are to be achieved in regions of cell overlap. For a given a set of constraints, the 

frequency assignment software package FASoft [41] has been used to determine the 

exact minimum span of channels required to satisfy all constraints. Specifically the 

exhaustive backtracking approach has been employed.

Channel Separation 1 2 3
Attenuation (dB) 18 50 58

Table 5.6: The effect of adjacent channel separation 

5 .5 .2  R e s u l t s

We have considered each of the five problem instances from the nine problem 

classes in Table 5.1, using thirteen settings for a  (0 to 60% in 5% steps). For each 

problem instance and a  setting, a non-dominated front of solutions has been obtained. 

The highest coverage solution from this set has then been considered for purposes of 

channel assignment.

The average spans have been analysed and are presented in Figures 5.10 and 5.11. 

The span of channels reported in these figures represents the additional spectral re­

quirements which axe induced when cells are permitted to overlap, as controlled by 

a. A number of observations are notable. As to be expected, increasing cell overlap 

increases the required span. This is most acute when the non-strongest server as­

sumption is applied, as shown in Figure 5.10. However, for low values of a, similar 

requirements axe imposed by the strongest server and non-strongest server assump­

tions, as evident in Figure 5.11. Furthermore, beyond initial a  values, the average
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required span increases in a broadly linear fashion. For the settings used in these 

experiments, the results show that to provide adequate signal-to-interference ratio 

for the most infrastructure efficient level of cell overlap (approximately 10%), a small 

additional increase in number of channels is required.
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Figure 5.10: Ave. span by a  constraint setting given strongest (left) and non-strongest 
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Figure 5.11: Ave. span by a  constraint setting for each problem class: 15 x 15 (left), 
30 x 30 (middle), 45 x 45 (right)
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5.6 Infrastructure Efficiency Conclusions

In this chapter, we have brought together important aspects of radio engineering, 

economics and combinatorial optimisation for wireless network design. Our focus has 

been on the efficiency of infrastructure in providing spatial service coverage. The 

unit cost of coverage has been introduced and it has been shown that with regard to 

this metric, optimal cell plans are necessarily Pareto optimal. A generic model has 

been introduced, which involves selecting and configuring base stations to provide 

wireless cells, given an irregular spatial dispersion of candidate sites. On applying 

this model using 585 synthesised test instances, we have established a consistent 

relationship between cell density and the unit cost of coverage. This has shown 

that there is maximal financial benefit from permitting approximately 10% inter-cell 

overlap when sites are (uniform) randomly dispersed and sites costs vary (uniform) 

randomly between 1 and 2. It is worth noting that as the inter-cell overlap is only 

set to be at most the given percentage (e.g., 10%), the inter-cell overlap providing 

maximal benefit could have varied anywhere between 0% and 10%.

These results also show the positive effects of increasing candidate site density, 

despite the increase in combinatorial complexity. This is a useful guide when planning 

operational networks with characteristics related to our general model. However, we 

note that our modeling assumptions are restricted and cells may well tessellate in an 

irregular fashion.

A new concept, called marginal cost of service coverage has also been introduced 

to assess the effects of additional infrastructure expenditure on coverage. The di­

minishing return in service coverage for additional units of expenditure has been
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quantified and assessed. This highlights a progressively rapid decline in return (in 

terms of service coverage) on investment. This means that for networks where a high 

level of coverage is required (e.g., greater than 90%) a small reduction in coverage 

level would most likely lead to a very significant reduction in infrastructure costs. 

On a practical level, this is useful for judicious operators to keep in mind, as at a 

critical point, trying to achieve more coverage will result in an overall financial loss. 

This approach casts the problem closer to economic supply theory and encourages 

operators to identify a point beyond which additional investment in service coverage 

cannot be justified economically, i.e., additional investment has little additional im­

pact on service coverage. Finally, for spatial area coverage, the impact of cell overlap 

on channel requirements has been assessed. This has determined a progressive in­

crease in required span due to increased overlap, but this remains modest at the level 

required for optimal infrastructure efficiency.

5.7 A nalysis o f 2D M odel

On consideration of Chapters 3, 4, and 5 the main benefit of the 2D model is that 

it is easy to implement and affords fast computational speed. It provides an ideal 

testing environment in which to confirm the efficacy of the generic model, algorithms 

to resolve the CPP, and infrastructure efficiency. Testing with the 2D model and the 

overall strategy for multi-objective cell planning (i.e., G2PS) proved that this model 

and approach can produce high quality cell plans in terms of service coverage and 

cost. However, one has to be conscious of the fact that the evidence in support of the 

approach is only theoretical due to the following limitations:
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• As traffic, terrain, and shadowing are not considered in the 2D model the ra­

diation patterns are idealised and circular, similar to those found in disk graph 

models. While useful in terms of generalized model and algorithm testing, it is 

an oversimplification given the shape of even omni-directional antennas is not 

circular in reality.

•  In addition, using only omni-directional antennas is an oversimplification when 

most operators use large and small directive masts as well. That is, the choice 

is not simply at what power one omni-directional antenna should be, it is a 

matter of deciding how many antennas to place (i.e., one to three) at a site 

location and at what power, tilt, and azimuth.

• In addition, coverage in the 2D model was simply assumed (except during spec­

ified testing on spectral cost within this chapter) if the service threshold was 

met by any antenna at a STP. However, in a realistic scenario, signals ‘compete’ 

with one another, with coverage going, for instance, to the antenna providing 

the strongest signal (i.e., best server model).

• The 2D model allowed measurement of only STP coverage and cost. If traffic 

test points (TTP) and a best server model were added, traffic capacity, inter­

ference, and handover could also be measured. Also, it would be possible to 

resolve channel assignment more realistically.

Due to these limitations, it would not be prudent to say with confidence that the 

2D model can definitely produce high quality cell plans in a real-world environment. 

This limitation equally applies to statements regarding the efficacy of disk-graph mod­
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els and the demand node concept, which axe also over-simplifications of a real-world 

testing environment. Additionally, the computational speed afforded by a simplified 

model might mean that certain aspects of a given cell planning approach are no longer 

feasible in a more realistic model. While complexity analysis can be performed to 

guess at the speed of execution, actual rim times given a more realistic simulation are 

still difficult to foresee with certainty.

In order to allow stronger statements regarding the confidence of the application 

of any cell planning algorithm to real-world wireless network environments, and to 

improve the accuracy of the computational cost, more effort is needed to produce a 

realistic simulation environment. In other words, the efficacy of an approach to the 

CPP, and the confidence to which it could be applied to a real-world environment, 

is directly proportional to the realism of the simulation environment. Therefore, 

if we wish to build efficacious models and have confidence in their applicability to 

the real-world, the models used must surpass those afforded by the 2D model, disk 

graph models, and the demand node concept. This will be addressed in the following 

Chapter.



Chapter 6

3D M odel

In this chapter, we engineer a 3-dimensional (3D) GSM physical layer simulation 

environment which is appropriate and practical for simulating real world problems and 

then extend the 2D cell planning strategy to the 3D environment. Due to commercial 

sensitivity, there is very limited public access to data for network planning. As we 

wish to make this simulation environment freely available to others, no commercially 

protected data sources are used. In addition to the materials provided here, the inter­

ested reader is referred to the Momentum (Models and Simulation for Network Plan­

ning and Control of UMTS) Project at http://momentum.zib.de/index.php, which, 

although designed specifically for UMTS, also provides a number of free data sets for 

network planning.

To establish a realistic 3D model, the 2D test point simulation environment pre­

sented in Chapter 3.1 is extended to meet the following requirements:

• Radiation patterns must not be idealised. They should vary based on the given 

circumstance, e.g., the surrounding terrain, shadowing effects, traffic levels, and

116
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antenna type and parameter settings.

• Antennas commonly used by GSM operators should be available for use within 

the model. These include omni-directional, small directive, and large directive 

antennas. In addition, the model should allow up to one omni-directional or 

up to three directive antenna at a site (i.e, which is a common operational 

parameter), and allow all relevant parameters (i.e., power, tilt, and azimuth) to 

be modifiable.

•  Signals at the same service test point from different antenna should be allowed 

to ‘compete’ with one another, with coverage going, for instance, to the antenna 

providing the strongest signal (i.e., best server model).

•  Traffic test points (TTP) should be distributed throughout the working area to 

simulate demand.

To this end, the 2D simulation environment is converted into a 3D one as delin­

eated in Section 6.1. The available antennas used in the 3D model are then discussed 

in Section 6.2 along with results from a battery of tests in Section 6.2.1. Following 

this, an introduction to 3D cell planning in Section 7.1 is followed by the details of 

the strategy in Section 7.2.

6.1 3D Sim ulation Environment

The technique used here to generate input data for the cell planning strategy is 

similar to that described in Chapter 3.1. and originally found in [68] and [67], where
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network test points and site locations are defined within a working area W  and any 

point within W  is defined by it Cartesian coordinates: (x,y). The model is extended 

here to include height (x,y,z) at every test point, which enables the angle of incidence 

and propagation loss to be estimated between test points and candidate sites. A 

major strength of this approach is that the creation of the simulation environment is 

transparent (i.e., all the details of its creation are known) which makes it useful for 

in-depth scientific investigation. This model uses simulated down-link received signal 

strength. This is the standard approach used in frequency division communication 

systems such as the current GSM mobile telephone system. It is important to realise 

that we are primarily aiming to create scenarios that have the level of detail and 

complexity faced in ‘real’ network planning scenarios, and importantly offer similar 

challenges. However the scenarios do not map on to actual cities or particular propa­

gation environments, but this does not impede their value for network planning and 

design.

6.1.1 C om ponents o f working area

We first describe the model used within the EU project ARNO  (Algorithms for 

Radio Network Optimization, IT  Project 23243) and reported in [89]. The ARNO  

model involves several components: the network size (km2), mesh (m), total traffic 

(Erlangs), Sq (dBm) and number of RTP, STP, and TTP. We closely follow a green­

field town scenario, see Table A.l, as given in [89]. These parameters (and simulation 

environments) have also been used in, e.g., [10, 81]. As the ARNO  simulation en­

vironment and details of its formation are not available to the public, they are not
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ideal for scientific investigations. We create five publicly available scenarios. These 

network are termed SE1, SE2, SE3, SE4, and SE5 for simulation environments 1, 2, 

3, 4 and 5 and are available for download (along with the corresponding angle of in­

cidence and propagation loss matrices) at http://www.raisanen.co.uk/datasets.html. 

These five scenarios were devised to reproduce common cell planning scenarios (e.g., 

to service a town or road network).

The component parts within W  allow us to simulate wireless coverage. These 

components are:

• A set of reception test points RTP =  {P T P i,. . . ,  KTPnRTP}, at which signal 

reception quality is measured.

• A set of service test points STP =  {S T P i , , S T PnsTP}, where a signal must be 

received above a minimum specified service threshold, Sq, to ensure a required 

quality of service.

•  A set of traffic test points TTP =  {T T P i, . . . ,  TTPnTTP}, which each carry a 

traffic load measured in Erlangs.

• A set of candidate base station site locations CBS =  {C B Si, . . . ,  C BSHcbs}, 

which can be selected for configuring up to 3 antenna,and where each CBSi has 

an associated commissioning cost $(CBSi).

In this scenario, which is visible in Figure 6.1, the TTP C STP C RTP. The RTPs 

form a rectangular grid of evenly spaced points at a specified mesh increment (e.g., 

every 200 meters). The STPs and TTPs indicate areas an operator wants to service 

and could theoretically be any subset of RTP locations. The STPs require a minimum

http://www.raisanen.co.uk/datasets.html
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service threshold S q to be met, which is the signal level necessary to facilitate wireless 

communication. In this chapter, S q is assumed to be -90 dBm.
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Figure 6.1: Each test point and CBS has an associated (x ,y ,z ) value. The (x ,y ) values 
start at (0m,0m) and increase to ((mesh*(width-l)), (mesh*(length-1))), which would 
be (1800m, 1800m) in the instance portrayed-assuming a 200m mesh increment

SE #CBS #RTP #STP #TTP Traffic Mesh(m) Working Area(km)
A R N O 568 56,792 17,393 6,656 2,988.12 200 50.0 x 46.0

SE1 568 56,792 17,393 8,590 2,988.27 200 49.4 x 45.6
SE2 568 56,792 17,393 3,985 2,988.75 200 49.4 x 45.6
SE3 568 56,792 17,393 6,602 3,221.84 200 49.4 x 45.6
SE4 568 56,792 56,792 11,953 2,988.25 200 49.4 x 45.6
SE5 568 56,792 56,792 56,792 2,988.12 200 49.4 x 45.6

Table 6.1: Greenfield town network characteristics for ARNO (3_0) and five simulation 
environments

To form a working area 50,000 x 46,000 m2 consistent with the A R N O  data and 

which has 56,792 RTPs, we form a rectangular grid of size 248 RTPs by 229 RTPs. At 

a mesh increment of 200m, this forms an area that is 49,400 x 45,600 m2. This figure
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Figure 6.2: Digital elevation map of area used for height data

differs slightly from A R N O  which must have eliminated some RTP at the edges. To 

eliminate any irregularity, the data set formed here forms a single closed region of 

RTP, with RTP forming the border as well.

We extend the A R N O  model now by explicitly adding a height setting to all 

components. The height information is taken from a portion of a Digital Elevation 

Model, see Figure 6.2, of the UK is associated to each RTP 1. 568 randomly positioned 

CBS have been added as shown in Figure 6.3. Generally, the layout of traffic in a 

region involves proximity to a town centre or a road network-Figure 6.4. This has 

been estimated in five different ways to five different scenarios:

1. SE1 mimics a town centre where traffic distributes as a function of distance- 

Table 6.2, from a hypothetical town centre (left picture in Figure6.4). The 

closer to the centre, the more traffic and consequently the greater the difficulty

of resolving traffic demand. This scenario was allowed the most variation in

1This data is from LANDMAP Project. The Project was funded by The Joint Information Sys­
tems Committee (JISC) to provide orthorectified satellite image mosaics of Landsat, SPOT and 
ERS radar data and a DEM for the whole of the British Isles. Copyright University Of Manch­
ester/University College London Year 2001. Original Landsat 4 & 5 LANDSAT data ©NOAA. 
Distributed by CHEST under license from Infoterra International.
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Figure 6.3: Example of each candidate base station location

traffic, with 21 randomly determined values between 0 and 1: 1.00000, 0.99995, 

0.63990, 0.59987, 0.39984, 0.37988, 0.35993, 0.33983, 0.33555, 0.31539, 0.30971, 

0.26002, 0.23932, 0.21988, 0.18396, 0.15500, 0.13981, 0.12114, 0.11871, 0.07981, 

0.03673.

2. SE2 simulates traffic distributed along a hypothetical road network in a town, 

where every traffic test point (TTP) carries 0.75 Erlangs (middle picture in 

Figure 6.4). This scenario is expected to be difficult to resolve in terms of 

traffic capacity, as it has the highest density of traffic per TTP.

3. SE3 combines the approaches of SE1 and SE2, with roughly half the traffic 

distribution coming from each (right picture in Figure 6.4). This is an important 

network as it combines two strategies and increases the total amount of traffic 

by 8%.

4. SE4 follows the general approach of SE1, but the traffic distribution function is 

modified-Table 6.3, to focus traffic more closely around five hypothetical town 

centres (left picture in Figure 6.5) instead of one. Each TTP for this network
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carries 0.25 Erlangs. This is an important network as it forces resolution of 

traffic throughout a larger geographical area.

5. Finally, SE5 provides a uniform traffic distribution (right picture in Figure 6.5). 

Considering there are 56,792 test point, each TTP carries 0.052615157 Erlangs 

of traffic. This scenario is important as a base guide, and is expected to be the 

easiest to resolve during planning, and the most likely to achieve an ideal cell 

tessellation.

Quotient Probability
0.00 1.00

0.00 to 0.10 0.90
0.10 to 0.20 0.80
0.20 to 0.30 0.70
0.30 to 0.40 0.60
0.40 to 0.50 0.50
0.50 to 0.60 0.40
0.60 to 0.70 0.30
0.70 to 0.80 0.20
0.80 to 0.90 0.10
0.90 to 1.00 0.00

Table 6.2: Probability of TTP placement for SE1 and SE3 where the quotient is 
formed by dividing the distance to an STP from the town centre by the distance of 
the furthest STP from the town centre

Two other network characteristics required in each scenario are the angle of in­

cidence matrix {AIM)  and propagation loss matrix (P L M ). The A I M  defines the 

vertical angles from each CBS to each RTP, and the PLM  defines the signal loss 

from each CBS to each RTP. The A I M  is formed by finding the tangent of angle 

0 between the CBS and the specified RTP as depicted in Figure 6.6. In instances 

where the straight line of between the CBS and the destination RTP falls between two
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Quotient Probability
0.00 1.00

0.00 to 0.05 0.90
0.05 to 0.10 0.60
0.10 to 0.15 0.50
0.15 to 0.20 0.40
0.20 to 0.25 0.30
0.25 to 0.30 0.20

Table 6.3: Probabilities of TTP placement in SE4, taking the distance to an STP 
from the town centre divided by the furthest distance from the town centre

Figure 6.4: SE1 (left) models a town where traffic is distributed as a function of 
distance from the centre. SE2 (middle) models a town with street-style traffic distri­
bution. SE3 (right) combines SE1 and SE2. RTP are light gray, STP gray, and TTP 
dark gray

RTP, the height (used for ‘opposite’ in the tangent formula) is an estimate based on 

linear interpolation-Figure 6.7. This was considered the most accurate method which 

does not rely upon exact height measurements taken at points which fall between two 

points of known height. The P L M  is formed by using the distances from each CBS 

to each RTP in the propagation loss formula-Equation 6.1. In this way, the P L M  

provides the level of signal loss from every CBS to every RTP in W .

Details regarding how to recover the data (once the files are downloaded from 

http://www.raisanen.co.uk/datasets.html) is available in Appendix A.

http://www.raisanen.co.uk/datasets.html
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Figure 6.5: SE4 (left) models a town where traffic is distributed as a function of 
distance from five town centres. SE5 (right) has uniform traffic distribution across 
the working area. RTP are light gray, STP gray, and TTP dark gray

Highest

R T P  a  C B S  
<— PLM—M-

RTPb 
— ►PLM

Dist a Dist. b

Figure 6.6: A I  tangents and P L M  distances in two cases: (a) where R T P a is the 
highest point between CBS and R T P a, and (b) where R T P b is not the highest point. 
In case(a), the adjacent and PLM distances are equal, while in case(b) they are not, 
as the A I  is determined by the highest point which diffracts the signal to R T P b

6.1 .2  S ignal stren gth  losses

There are a number of factors which weaken signal strength. The ones specifically 

considered here are the propagation loss (PL) which occurs as signal strength atten­

uates with distance, random shadowing effects, and signal losses (in dB) at antennas 

as a result of deviation from the signal main axis.
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Figure 6.7: Linear height transformation. Given the coordinates of the CBS and 
RTPa, and the y-axis, computes x  using the formula y  =  m x  +  c. In this instance, x  
=  125.

For determining the propagation loss, the standard urban empirical model pro­

posed by Hata [32] for small-medium cities is adopted. This is defined by the following 

formula:

P L  =  69.55+26.16 log(/)-13.82 log(/ife)-a (/im)+(44.9-6.55 log(hb))* \og (R )  (6.1) 

where:

a (h m) =  (1.1 * log(/)  -  0.7) * hm -  (1.56 * log(/) -  0.8) (6.2)

given the variable for frequency /  is set to 800MHz, the base station height hb is the 

height of the land plus a random number between 30-60m, the mobile receiver 

height hm is 1.5m, and the distance R  in kilometers from each base station to each 

RTP are as calculated in Figure 6.6 for P L M .  While Hata’s model was used, other 

propagation models and settings could have equally been adopted.
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In order to make the propagation model more accurate, random shadowing effects, 

proposed in [36], are used to modify the propagation loss value. These simulate the 

effects of clutter and obstacles and can either increase or decrease the strength of 

reception. The effects are estimated by finding the next pseudo-random Gaussian 

value (//, cr)2, where p  is the propagation loss value and a is 4 dB, a conservative 

value suggested in [36].

In addition to random losses and gains induced by the above circumstances, there 

axe signal losses (in dB) at antennas as a result of deviation from the signal main axis. 

There is one vertical diagram (VDIAG) for omni-directional antenna, and a VDIAG 

and horizontal diagram (HDIAG) for both directive antennas. An example of these 

diagrams can be found in [89]. The vertical radiant loss is calculated from two angles: 

the angle of incidence (AI) measured from base station to RTP (AI° in Figure 6.8, 

and the vertical tilt which varies from 0,-1.. .-15 (tilt° in Figure 6.8, where the real 

incidence angle © is measured from the tilt clockwise to AI and is calculated as seen 

in Figure 6.8: (tilt - AI modulus 360) - (AI - tilt°). The actual signal loss as a result 

of 0  (denoted ©.Loss) is then read from the appropriate antenna loss information3. 

For example, if © =  36, the loss is 5.99 dB.

The horizontal radiant loss is also calculated from two angles: the antenna azimuth 

(Az), i.e., the direction the antenna is pointing, and the horizontal angle from 0° to 

the RTP (RTP°), where the real horizontal loss angle e is calculated by: (RTP0 -

Az), see Figure 6.9. The actual signal loss as a result of e (denoted e.Loss) is then

2This uses the polar method of G. E. P. Box, M. E. Muller, and G. Marsaglia, as described by- 
Donald E. Knuth in The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 
section 3.4.1, subsection C, algorithm P.

3This information must be obtained from a given wireless network operator, as antenna diagrams 
vary.
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Figure 6.8: Tilt

read from the appropriate antenna loss information. For example, if e =  36, the loss 

is 4.44 dB.

270c

“ A z|

Az =

90c

Figure 6.9: Azimuth

The field strength F  of a signal from a given antenna antenna is measured at a 

given RTP. The RTP is said to be covered if F  exceeds the service threshold, given 

here as -90 dBm. F  is formally defined as follows:

F =  ( the final reception strength
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Power power of transmission

+  Ant. Gain gain based on type of antenna

- Ant.Loss loss based on type of antenna

- PL path loss

- ©.Loss antenna vertical radiant diagram loss

- s.Loss antenna horizontal radiant diagram loss

+  Mob. Gain gain based on mobile receiver

- Mob. Loss ) loss based on mobile receiver

where the possible values are power (26-55 dBm); antenna gain of 11.15 dB for omni­

directional antenna (OD), 17.15 for small directive antenna (SD), and 15.65 for large 

directive antenna (LD); antenna loss for all types of 7.00 dB; a propagation loss, 

vertical loss, and horizontal loss value available in three files; and, mobile gain and 

loss set at 0 dB.

6.1.3 Server assum ptions

We consider the server assumption whenever the signal strength at a given STP 

from two or more antennas is above the service threshold, as we need to decide at 

this point which antenna is servicing a given RTP for clarifying, for instance, which 

antenna is carrying the associated traffic load. Generally, there are two approaches 

to resolving this issue. One is the strongest server assumption, and the other the 

lowest SIR (i.e., signal-to-interference ratio) server assumption. These are defined as
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follows:

• Strongest Server

Under this assumption, service test points where the signal strength is above the 

threshold from two or more antennas are assumed to be served by the antenna 

providing the greatest received signal strength.

•  Lowest SIR Server

Under this assumption, service test points where the signal strength is above 

the threshold from two or more antennas may be served by the cell providing 

the lowest signal-to-interference ratio.

We use the strongest server, or best server, assumption, as it provides a more 

expedient means for determining which antenna services a given STP. That is, when 

using the strongest server, one only needs to compute the strength of signals at a point 

and select the strongest one. With the lowest SIR server, on the other hand, one would 

need to compute the ratio of the power of the wanted signal to the total residue power 

of the unwanted signals, which is significantly more intensive, particularly considering 

the magnitude of times this would need to done over a trial.

6.1.4 Netw ork com ponents and objective measures

Given the working area, where the number of test points in W  is denoted n (and 

therefore, the number of STP, for example, is denoted nSTp ), and knowledge of the 

field strength from each CBS to each RTP, the following network components can be 

re-defined:
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• A cell corresponds to the set of test points covered by one antenna, where the 

signal received is > Sq and stronger than signals from other antennas.

• A site may consist of one omni-directional antenna, or up to three directive 

antennas. Thus, a site may provide up to three cells.

•  A network C B S ' is a subset of all sites within W. CBS' contains those sets 

with at least one antenna with a non-zero power setting p, where the C B S ', or 

solution, has five corresponding network objective values.

The five network objective values are service coverage, cost, traffic hold (or ca­

pacity), handover, and interference, and are defined as follows:

•  Coverage is the sum of the service test points (STP) covered in the working 

area divided by the total number of STP expressed as a percentage.

E 2 i P 1 >i f ST p i covered
c o v e r c B S '  =  —   ----------------------------------------------------------------x 100.

u s t p

• Cost is the number of sites commissioned with at least one antenna with a 

non-zero power.

costcBS' — $(C B S i) .
CBSi €  CBS'

• Traffic hold is the sum of the traffic at each site location (CBS) in the network; 

where the traffic at a given site is the sum of the traffic for each cell at the site 

i (i.e., where the traffic for a given cell is the sum of traffic for all TTP covered
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by the cell, up to a maximum of 43 Erlangs) is denoted CBSrii)', divided by 

the total network traffic expressed as a percentage.

Call handover is achieved by a cell if there exists STP in its coverage area such 

that signals > Sq from four other cells are within 7 dB. These values were 

suggested by a radio planner but must ultimately be considered arbitrary. We 

define the objective handover as the number of cells achieving call handover in 

C BS', denoted Cunum, divided by the total number of cells in C B S ', denoted 

Cnum, expressed as a percentage.

CHnum
handovercBS' =   x  100.C num

Interference is the sum of signals above -90 dBm at STPs in the network that 

are not the best server or used in handover, where the sum of the interfering 

signals for a given STP is denoted /*. This figure is divided here by the total 

number of STP for ease of representation.

y^STPi j
interferenceCBS, = ——— - x 100.

n s T P

6.1.5 Sim ulation environment conclusions

We have presented a 3D model that captures detail as faced when planning actual 

cellular networks. Although approximations have been made, the model allows the
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measurement of key network design objectives, including service coverage, traffic hold 

(capacity), interference, handover and cost. Importantly, irregular and conservative 

path loss has been estimated taking into account aspects of terrain. The model 

maintains flexibility in that one can change the granularity or resolution of test points 

in the working area to suit one’s need for either computational speed or increased 

realism.

The limitations or weaknesses of the simulation environment are:

• It would be possible to develop more advanced traffic distribution models to 

more accurately reflect distribution in the real-world. For example, if traffic 

estimates were freely available for test points, these could be used instead of 

generated ones.

•  The placement of base station site locations is random, rather than specific 

to the service area. This means that it would be possible for a site to be in 

an awkward position for planning. However, this is partially beneficial as cell 

planning algorithms need to work harder to find optimal sites.

•  The computational time is longer due to increased realism.

•  Spectral cost and channel assignment are not currently in-built to the simulation 

model. This is due to the fact that these are also NP-hard problems, and the 

combined difficulty of resolving them concurrently given the current speed of 

computers and the chosen cell planning model is untenable.

However, the model has many strengths over the 2D model, demand node con­

cept, and disk graph models. In particular, radiation patterns vary based on the
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given circumstance, e.g., the surrounding terrain, shadowing effects, antenna type, 

and parameter settings. The model allows up to one omni-directional or up to three 

directive antenna at a site and makes all relevant parameters (i.e., power, tilt, and 

azimuth) modifiable. Traffic test points are allocated to cells on a best-server model. 

Finally, traffic test points are not clumped, but are distributed according to charac­

teristics commonly found in small to medium sized towns. In addition, the model is 

adaptable to a number of situations not covered within this thesis:

• The model can be used in wireless network expansion scenarios, as well as 

green-field scenarios.

• Information provided by the model could be interpreted into a disk graph or 

demand node model.

• The channel assignment problem can be considered after a cell plan is developed.

• The model can be adapted to provide either form of base station placement 

(freedom or limited).

6.2 Single Site Coverage

Now that the simulation environment has been formulated, it is possible to inves­

tigate the three antenna types: omnidirectional, small directive, and large directive. 

This investigation is undertaken in order to clarify the effects of changes to the simu­

lation environment (e.g., shadowing or non-shadowing) and the effects of changes to 

antenna settings (e.g., azimuths). A specialized simulation environment was created 

specifically for this purpose (Section 6.2.1).
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As previously noted, each antenna can handle a maximum of 43 Erlangs of traffic 

and each site can have one omnidirectional or up to three directive antennas [61]. 

Each antenna also has a specified gain and loss-Table 6.4, and an associated antenna 

diagram. The antenna diagrams, in conjunction with antenna settings, determine the 

vertical and horizontal radiant losses (Section 6.1.2). This means that the radiation 

patterns from each are different, and the effects of different combinations of antennas 

at a site is yet unknown. For this reason, coverage patterns axe investigated within a 

shadowing (with increased realism) and non-shadowing (idealized) environment.

Table 6.4: Antenna gains and losses in dB
Antenna Type Gain Loss

Omnidirectional (OD) 11.15 7.00
Large Directive (LD) 15.65 7.00
Small Directive (SD) 17.15 7.00

A typical omnidirectional (OD) coverage pattern is depicted in Figure 6.10 with 

[#10] and without [#9] shadowing. The OD has only vertical radiant loss, as its 

horizontal radiation pattern always covers 360°. However, both the large directive 

(LD ) and small directive {SD) antennas have vertical and horizontal radiant loss-as 

they ‘point’ in a given direction. Typical radiation patterns for three SD antennas 

with azimuths set at 0°. 120°, and 240° respectively are given in Figure 6.10 with[#11] 

and without [#1] shadowing. Similarly, three large directives with [#15] and without 

[#5] shadowing. Beneath [#1][#5][#11][#15], the radiation patterns when only a 

single directive antenna is commissioned at 0°, 120°, and 240° degrees respectively. 

These figures show the typical patterns of coverage for each antenna (by azimuth), 

and show that shadowing results in less symmetric radiation patterns.
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Figure 6.10: Diagrams 1-9 show radiation patterns in a non-shadowing environment. 
Diagrams 10-18 show patterns in a shadowing environment. All antenna power set­
tings are 55 dBm

6.2.1 A ntenna testin g

Testing antenna configurations is necessary to determine the best settings to use 

when attempting to configure a network. It allows insight into which antenna con­

figurations provide the most coverage, which is important when trying to seek lowest 

cost networks, and which changes to an antenna most effectively reduce or increase 

coverage, which is important when trying to fine-tune coverage or capacity. For ex­

ample, if a given cell is overloaded, is it better to reduce the power or the tilt? Also 

by recording coverage in one testing environment, other testing environments can be 

compared. For example, all tests here are carried out in both a shadowing and a 

non-shadowing propagation environment. This information is useful for informing 

the decoding algorithm used for the SE.

The antenna simulation environment (ASE) used for these tests was designed 

specifically to test the effects of different antenna configurations. To achieve this, 

there is only one site (as only one is necessary for measurements) positioned in a 

central location (in the same size working area as SE1-5). The antenna is set to
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a height of 30m and is surrounded by a completely flat surface. By eliminating the 

variation in land height, the effects of different antenna configurations should be more 

accurate and generalizable. The overall plan for testing the antenna configurations is 

given in Figure 6.11.

Data Set Flat, 
Uniform Traffic. 

1 Site

Do all below with 
no shadowing

Do all below 
with shadowing

OD, SD. 
LD

All Powers (with tUNT 
at 0. 

az(0,120,240))

All Tilts (with 
power=55, 

az(0,120,240))

SD. LD (with Blt=0, 
power=55) with Azim. 

set as fbBows:
i  1 i

1 Ant | 12 Ant 3 Ant

0
180

30

60

360

13“
195
~S5~
210

180
360

120
240
~ w
135
255

- w
240
360

Figure 6.11: Outline of test plan for antenna attributes

Starting at the top of Figure 6.11, all tests are carried out using ASE with and 

without shadowing. The three main variables to alter at a site (in addition to how 

many antenna and of which type) are power, tilt, and azimuth. Differences caused 

by power and tilt can be measured for OD, SD, and LD antennas. Differences caused 

by azimuth can only be measured for SD and LD antennas.

To simulate this environment, one uses the field strength formula delineated in
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Section 6.1.2 to determine the strength of the signal from each base station to each 

RTP. Then, using the server assumptions in Section 6.1.3, one determines the objec­

tive measures delineated in Section 6.1.4 to quantify each cell plan created.

Effects o f altering tilt

On the left-hand side of Figure 6.11, the STP coverage is measured for OD (with 

power set at 55dBm), SD and LD (with power set at 55dBm and three antennas with 

azimuths of 0°, 120°, 240°) by changing the tilt from 0° to -15° in -1° increments. 

The results are in Figure 6.12.

There are several notable results: First, antennas in the shadowing environment 

provide more coverage. Considering the shadowing effects are normally distributed, 

this means the additive influences are more noticeable than the subtractive ones. 

However, the patterns of antenna coverage in both environments was similar. Sec­

ond, OD antenna coverage peaks at -2° tilt rather than the expected 0° and steadily 

decreases on either side. While this may partially be the effect of ASE, it does mean 

that one cannot assume coverage is necessarily the greatest at 0° tilt. Third, for SD 

and LD antennas coverage peaks at 0° drops dramatically for -1° and -2° and then 

rises from -3° to -6° before falling again. These patterns were found to be true at 

other powers as well, although with slight shifts. For example, while coverage peaks 

for OD antennas at -2° (from 55-48dBm), it shifts to -3° starting at 47dBm.

For example, one can see that when a SD is tilted (top line of Figure 6.13) the 

amount of STP coverage does not simply decrease as tilt is increased, nor do the 

shapes stay the same or necessarily become smaller. Ultimately, this means that tilt-
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Figure 6.12: Cover by tilt for OD, SD, and LD antennas

ing an antenna to decrease coverage is ‘hit-or-miss’, as the effects are not monotonic. 

While, on average, the amount of coverage does go down with tilting, the amount 

given -1° increments cannot be guaranteed. In addition, as the cell shape can change 

quite remarkably as a result of tilting, the often finely balanced configurations in a 

network scenario must be considered at risk during this procedure. Given this sce­

nario uses flat terrain, one could imagine the effects are even more remarkable on 

hilly terrain.

Figure 6.13: These diagrams show radiation patterns (using ASE, non-shadowing) 
when reducing SD tilt from 0° to -15° in -1° steps (top row) and reducing power from 
55 to 26 in -2dBm steps (bottom row)
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Effects of altering power

Continuing down the left-hand side of Figure 6.11, STP coverage is next measured 

for OD (with tilt set at 0°), SD, and LD (with tilt set at 0° and three antennas with 

azimuths of 0°, 120°, 240°) by changing the power from 26dBm to 55dBm in ldBm 

increments. The results are in Figure 6.14. The results here are more predictable than 

those afforded by changing the tilt. Two things are evident: First, the earlier finding 

was confirmed that antennas in the shadowing environment provide more coverage. 

Second, as power rises, coverage increases, and as power falls, so does coverage.
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Figure 6.14: Cover by power for OD, SD, and LD antennas

Unlike the ‘hit-or-miss’ tilting scenario, lowering the power for a SD antenna re­

sults in a reliable decrease in STP coverage, as seen in Figure 6.13, while maintaining 

the original shape of the When considering possible planning implications, it seems 

that the reliability of lowering power should be preferred to tilting. This is a notable 

finding, as researchers in the past have not clarified configuration choices. For exam­

ple, while [89] lowers power to repair overloaded cells, he does not justify why only
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random changes to tilt are made. Other researchers (e.g., [40]) simply avoid using 

tilt during traffic repair. Thus, while lowering power is more straight-forward to use, 

tilting could be used as systematically if the size of cells based on changes to tilt were 

measured.

Effects of altering azim uth

Turning now to the right-hand side of Figure 6.11, one, two, and three antenna 

configurations are tested using both SD and LD antennas. The power is set to 55dBm 

and the tilt to 0° for all these tests. With one antenna, STP coverage is measured 

as a result of changing azimuth from 0° to 360° in 30° increments. The results are 

in Figure 6.15. The notable findings are as follows: First, as would be expected, 

coverage in the non-shadowing environment follows a more predictable pattern (with 

more shallow peaks and troughs), although the pattern in the shadowing environment 

is similar, only more marked. Second, the coverage at azimuths off the main axis (i.e., 

0°, 90°, 180°, 270°, 360°) are higher, although this may be partially dependent on the 

scenario tested. Third, coverage for a LD antenna is considerably larger than that 

afforded by a SD antenna.

With two antennas commissioned at the site, coverage is measured with azimuth 

settings spaced evenly apart by 180° starting at 0°-180° and ending at 180°-360° in 15° 

increments. For example, the second test would be with azimuths at 15°-195°. The 

results are in Figure 6.16. The findings are less clear than those with one antenna. 

However, it appears that again coverage in the non-shadowing environment follows a 

more predictable pattern. Also, coverage for two LD antennas is considerably larger
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Figure 6.15: Cover by azimuth for one (SD and LD) antenna

than that afforded by two SD antennas. Third, if pressed one might suggest that 

for two SD antenna, the best settings are 45°-225° and 135°-315° and for two LD 

30°-210°, 60°-240°, and 90°-270° as the number of STP covered is highest at these 

two points.
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Figure 6.16: Cover by azimuth for two (SD and LD) antennas, where the 2nd an­
tenna’s azimuth is (az + 180°)

Finally, coverage using three antennas at the site is measured with azimuth set-
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tings spaced evenly apart by 120°. Azimuth settings start at 0°-120°-240° and increase 

to 120°-240°-360° in 15° increments. For example, the second test would be 15°-135°- 

255°. The results are in Figure 6.17. As was true earlier, coverage for LD antennas is 

considerably larger than that afforded by SD antennas. Also, one notices that when 

progressing from one, to two, to three antenna there is a smoothing in the cover­

age differences. With three antennas, the lines for the both the non-shadowing and 

shadowing environments are nearly straight, which suggests that any evenly spaced 

azimuth settings here produce roughly the same coverage.
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Figure 6.17: Cover by azimuth for three SD and LD antenna, where the 2nd antenna’s 
azimuth is (az +  120°) and the 3rd’s is (az + 240°)

Inherent coverage loss

During two and three antenna trials, the STP coverage was measured for each 

antenna separately and in total. This is possible as antenna at the same site can 

be trying to cover the same STP. However, in a best-server situation, only one can 

ultimately cover the STP. If more than one antenna can cover an STP, this raises
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the interference in the network and makes resolving the channel assignment problem 

more difficult. This phenomenon is loosely termed ‘overlap’ here, and simply refers 

the percentage of STP that can be covered by more than one antenna. In terms of 

wireless network planning, while some overlap is desirable, as it allows call hand-over, 

it is preferable to limit it rather than encourage it during initial planning. The results 

are in Figure 6.18.
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Figure 6.18: Overlap by azimuth for two and three SD and LD antenna combinations

There are two interesting features in Figure 6.18. First, the amount of overlap 

for LD antenna combinations is twice that of SD combinations. That is, with two 

antenna SD have roughly 6% overlap and LD 12% overlap, and with three antenna 

SD have 15% overlap and LD 30% overlap. For example, in one three LD antenna 

scenario, each antenna individually covered 323, 312, and 326 STP-for a total of 961. 

However, when taken together they actually covered 675 STP, indicating a coverage 

loss of 30%. Second, patterns and amounts of overlap are similar in both shadowing 

and non-shadowing environments.
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Effects of an tenna combinations

To complete the investigation of antenna configurations, particularly with three 

antenna at a site, further tests in a non-shadowing environment were run. In each 

case, the azimuths were set to 0, 120, and 240 and the tilt was set to 0. The purpose 

of these tests was to see if there was any benefit to mixing the combinations of SD 

and LD antennas. The two possible combinations were SD-SD-LD and LD-LD-SD. 

The results were as expected. In the case of SD-SD-LD, the STP coverage increased 

(over three SD) from an average (testing at all powers in ldBm steps) of 126.13 to 

137.33, while the average overlap increased from 15.60% to 21.03%. In the case of 

LD-LD-SD, the STP coverage decreased (over three LD) from an average of 159.70 

to 152.33, while the average overlap decreased from 29.70% to 24.17%. As it is very 

difficult to be certain whether an LD or SD is to be preferred in a given situation, 

combinations of antennas seems appealing.

6.2.2 Antenna conclusions

Results from the antenna trials suggest best practices in terms of what changes to 

make when trying to increase or decrease STP coverage during antenna configuration. 

The main findings were that radiation patterns in a shadowing environment appear 

less symmetric, and therefore more real, than those afforded by a non-shadowing en­

vironment. When antenna coverage is measured, results consistently indicate that 

coverage is higher in a shadowing environment, but that otherwise, they produce 

similar trends in radiation and coverage patterns. Second, it was found that reducing 

power should be preferred over reducing tilt during antenna configuration, as reduc­
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ing power results in a more reliable decrease in coverage while maintaining a similar 

radiation pattern. And finally, although LD antenna combinations produce more cov­

erage than SD combinations-and both substantially more than OD, SD combinations 

result in less overlap, and concomitant interference. Considering site cost tends to 

greatly exceed antenna cost, placing three random combinations of antennas at each 

site appears a sensible course of action to maximize coverage and minimize cost. This 

is due to the fact that commissioning a site is more expensive than adding an an­

tenna to a site. Therefore, as three antennas provides the maximum STP coverage it 

is preferable to using just one or two. Thus, this configuration is used during initial 

site configuration in the next chapter.



Chapter 7

3D Cell Planning Strategy

In this chapter, in order to satisfy multi-objective cell planning objectives in this 

more realistic simulation environment, we describe necessary modifications to the 

2D decoder (as described in Chapter 4.1) and 2D cell planning strategy G2PS (as 

described in Chapter 3.2). Changes to each are necessary to account for the significant 

increase in simulation complexity and new objective measures (e.g., to meet traffic 

hold requirements).

7.1 Introduction to 3D Cell Planning

In the 2D model, we introduced a decoder that was able to translate a permutation 

7r, which represented an ordering of CBS, into a cell plan. This approach mimics the 

way in which the problem might be attempted manually. The decoder was effectively 

a greedy, sequential algorithm which acted by limiting the permissible amount of 

overlap, or multi-coverage, that occurs between cells. While effective in the 2D model,

147
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this decoder was not designed to meet cellular traffic load restrictions, and therefore 

would be ineffective in the 3D simulation. For example, if we used the 2D decoder in 

the 3D model, a cell could quickly acquire over 43 Erlangs of traffic and thus become 

overloaded. However, we ideally want each cell to handle only up to 43 Erlangs of 

traffic and no more. Thus, the new decoder needs to have a traffic constraint.

A second difficulty the 3D decoder faces is additional settings at each site. Whereas 

in the 2D model only one omni-directional antenna existed at a site and only the power 

of transmission could change, the 3D model needs to account for 1-3 antennas at a 

site, with settings for power, tilt, and azimuth. The number of potential combination 

at a site went from 10 in the 2D model: 

x 1 (number of antennas) 

x 10 (possible power settings) 

to 162,000 in the 3D model:

x 3 (number of antennas) 

x 30 (possible power settings) 

x 15 (possible tilt settings) 

x 120 (possible azimuth settings)

Therefore, realism in the 3D simulation means that significantly increased computa­

tional complexity needs to be handled efficiently.

Another problem which emerges in the 3D scenario as compared to the 2D sce­

nario is that complete freedom in configuration of a particular site may lead to many 

cell plan solutions with low performance. This is due to traffic levels within cells. 

Approximate configurations can be addressed prior to site selection, on a heuristic
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basis, to ensure that overloaded cells (i.e., cells covering more than 43 Erlangs of 

traffic) are avoided. It is also beneficial to commission sites with an estimation of 

their maximum area coverage under full load to minimize the number of cells de­

ployed and avoid under-capacitated cells. To this end, we introduce a pre-processing 

stage called TSCA- T m a x  site configuration algorithm (Section 7.2.1). With this new 

pre-processing phase, the original G2PS (Chapter 3.2) is extended to a three phase 

approach G3PS.

7.2 Strategy for 3D Multi-objective Cell Planning

The intent of the strategy for 3D multi-objective cell planning is to find a range of 

high quality cell plans in terms of all network design objectives. By producing a range 

of near optimal cell plans the trade-offs between objectives can be assessed, and the 

need for weighting objectives common in many approaches is avoided. Figure 7.1 is a 

visual aid to the 3D multi-objective cell planning strategy, termed a generational three 

phase strategy (GSPS) which unlike G2PS (Chapter 3.2) starts with a pre-processing 

phase that employs a new TSC A  algorithm for controlling the permissible traffic per 

cell (Section 7.2.1), before continuing on to the second phase which determines cell 

plans, and the third phase which searches for optimal cell plans using a multi-objective 

algorithm (MOA).

In addition to including the pre-processing stage, we consider including an ad­

ditional binary representation. This has been included because of the potential in 

the 3D model for irregular cells, which permit complex and irregular overlap scenar­

ios which may potentially disrupt the overlap-dependent integer representation and



Chapter 1: 3D Cell Planning Strategy 150

IM EGHKDDFD HNAKMDDFD

Phase 1: PFE-PROCESS1NG 
T5GV : Determ ine the pow er, tilt, and azimuth o f all antennas at all sites to satisfy TMAX

Form random or placemen! Form random
probability starting population su iting  population

Worki ng area Working area

•  •

( 6 ,1 ,5 ,3 ,4 ,2 )  
new 0 •  •

1 2 1 2

•  •
A B •  •

*  3 :

/
• ;  3 •

1 F 1
Phase 2 :D ecoder

Turn on sites 
which satisfy' the 

multi-wise 
overiap constraint 

beta.

( 0„1
_  new 0

Cycle-crossovcrand 
m utation

Phase 2:N O D ecoder

Simply turn on 
sites identified 

with a  T

0'
Phase 3: Search

I

Single, double, or 
multi-point crossover 
and mutation

01
Phase 3 :Search

0&
Save best 
perm utations 01&

Save best 
permutations

Figure 7.1: 3D multi-objective cell planning strategy

decoder. The potential benefit and difference between the representations will be 

evaluated in this chapter.

Looking at Figure 7.1, the process starts as either integer or binary-coded. The 

first pre-processing phase is the same for each and determines the power, tilt, and 

azimuth of all antennas at all sites to meet the traffic constraint Tm a x -  A population 

of permutations is then formed. The integer-coded representation uses the same as 

that during G2PS, while the binary-coded uses a new procedure (Algorithm 5). In 

phase two the integer-permutation employs a decoder which limits the permissible
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overlap between cells, and the binary-permutation simply turns on sites set to ‘1’. 

Phase three then involves the multi-objective algorithm’s search for better orderings 

of integers in the case of integer-coding, or better binary strings in the case of binary- 

coding using the appropriate genetic modification procedures.

To help further clarify this strategy, the TSCA is described in Sect 7.2.1, the 

binary-coded strategy in Section 7.2.2, and the integer-coded strategy in Section 7.2.3. 

NSGA-II is used in all cases as the optimization strategy. The procedure generally 

follows that of G2PS as described in Chapter 3.2.

7.2.1 Tm a x  Site Configuration Algorithm—TSCA

The purpose of TSCA is to find the set of STP each site covers by restricting 

the size of each cell at a site to a maximum traffic load Tm a x -  An outline of the 

procedure (Algorithm4) is followed by a description. An important point to make 

is that this is the only time dimensioning is performed. Even more importantly, it 

is only done once per antenna. This differs distinctly from past approaches to this 

problem.

The process starts by selecting three random antenna (large directive, small direc­

tive, or some combination) at a given candidate site. This was chosen as the procedure 

based on antenna combination findings in Chapter 6.2, in the absence of foreknowl­

edge regarding which type of antenna may be most suitable in a given scenario it is 

best to use a random combination of small and large directive antennas. The anten­

nas tilts are then set to 0°, 120°, and 240° respectively, as this is a commonly selected 

starting position and conforms to findings in Chapter 6.2. Each antenna is then indi-
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A lgorithm  4 Tm a x  Site Configuration
1: Set Tm a x  to chosen value

2: for all CBS do

3: Randomly set each of 3 antennas to LD or SD

4: Set azimuths to 0°, 120°, and 240° respectively

5: Set power to maximum (55 dBm)

6: Set tilt to minimum (0°)

7: for all Antenna do

8: Set boolean ‘saved configuration’ = false

9: w hile saved configuration is false do

10: measure traffic load

11: if  traffic load < T m a x  th en

12: save configuration =  true

13: else if power > 26 th en

14: reduce power by ldBm

15: else if power =  26dBm and tilt > -15° then

16: reduce tilt by 1°

17: else

18: save configuration = true

19: end if

20: end w hile

21: end for

22: end for



Chapter 7: 3D Cell Planning Strategy 153

vidually set to the largest possible power (in the range 26-55 dBm) and largest tilt (in 

the range 0° to -15°) that does not exceed an alterable hard traffic constraint Tm a x -  

To do this:

• The maximum power is attempted first, followed by progressively lower powers- 

in 1 dBm steps. If a given power level does not exceed Tm a x ,  then the antenna 

is commissioned at that power with 0° tilt , and proceed to configure the next 

antenna.

• If the traffic load is still exceeded at the lowest power (i.e., 26 dBm), begin 

tilting the antenna starting at -1° and proceeding in -1° steps until the tilt is 

-15°. If a given tilt setting does not exceed Tm a x ,  then commission at 26 dBm 

and that tilt, and proceed to configure the next antenna.

• If traffic load is still exceeded, assign this antenna the lowest power (26 dBm) 

and greatest down-tilt (-15°), and proceed to configure the next antenna.

The set of STP covered by each antenna at each site it then saved-for use in the 

optimization process.

There are several important points to make about the approach:

1. Traffic hold can be guaranteed by setting Tm a x  at 43 Erlangs.

2. Given perfect cell tessellation one would choose Tm a x  = 43, and cost would be 

at a minimum.

3. Given real world tessellation one would choose Tm a x  > 43 to keep cost at a 

minimum.
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4. By guaranteeing traffic hold, other objectives can be used in the optimization 

process.

Traffic hold is used when determining the sets of STP each site handles, as it is 

the most difficult objective to satisfy. By ensuring traffic hold is met in this way, the 

genetic search process can focus on meeting two fundamental objectives: high service 

coverage and low cost. Service coverage is the focus during searches because if all 

STP are covered, all TTP are covered by definition, and, given that we can guarantee 

traffic hold, there are fewer dimensioning problems. We also attempt to keep the cost 

of the network as low as possible. This is achieved by setting Tmax to where the 

traffic in each cell is as close as possible to 43 Erlangs.

7.2.2 Using TSCA with binary representation

As noted above, there are two permutation-coded strategies to use with TSCA. 

The simpler strategy is binary-coded. In this approach, each candidate base location 

is mirrored by the corresponding permutation index location. For example, candidate 

site number 42 is located at index 42. In this way, whether a site is on or off is 

determined by whether a 1 (on) or 0 (off) is at each index location. For example, the 

representation of a 40 candidate site string may appear as follows:

Binary coded: 1011000000110001010101000000100000010001

To form a population of binary-permutations, the strategy outlined in Algorithm 

5 is employed. It works as follows: After setting the size of the population, the
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minimum number of sites to assign as ‘1’, or ‘on’, in a given binary permutation is 

set to the total traffic divided by 129 (which is the maximum allowable traffic at a 

site given three antenna, each carrying 43 Erlangs). This is the minimum number of 

sites which could satisfy 100% traffic hold given perfect tessellation.

Then for each member of the population a chromosome, whose length is equal 

to the number of candidate sites, is initialized with ‘0’s. For the first third of the 

population, the total number of sites turned ‘on’ is between 1 and the minimum 

number of sites. For two-thirds of the population, the total number of sites turned 

on is between the minimum and double the minimum. Then, randomly replace the 

appropriate number of 0’s with l ’s in the chromosome. This process makes a very 

diverse starting population highly probable, and should encourage very low coverage 

and cost networks to those with high coverage and cost.

7.2.3 Using TSCA with integer representation

The integer-permutation strategy is the same as that delineated in Chapter 3.3 and 

uses a decoder to translate permutation 7r into a cell plan by limiting the permissible 

amount of overlap that occurs between cells. The decoder chosen for use during 3D 

cell planning is the MCO-S decoder delineated in Chapter 4. The reason is that this 

is the only feasible decoder out of the six potential decoders analyzed in Chapter 

4.1. This is due to the fact that TSCA determines all settings (e.g., power, tilt, 

azimuth, number of antennas), including those which use to be under the control of 

the decoder. For example, there is no by-power means for selecting the next candidate 

site, as the power has been pre-determined by TSCA. Thus, the decoder must select
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Algorithm  5 Form a population of binary-permutations 
1: Set size of population to chosen value

2: Set minAddSize as (total traffic /  129 )

3: for all population member-z do

4: Initialize this chromosome (of length u c b s ) to Os

5: if i < size of pop /  3 then  Set maxToTurnOn =  Random.nextlnt( minAdd­

Size ) +  1

6: else Set maxToTurnOn =  minAddSize +  Random.nextlnt( minAddSize )

7: end if

8: Set min (maxToTurnOn, u c b s )

9: Set j =  0

10: while j < maxToTurnOn do Choose random index location

11: if index = =  0 then  set index =  1; j =  j +  1

12: end if

13: end while

14: end for
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the next candidate by-site. In addition, it is also significantly more convenient to 

use the multi-wise cell overlap constraint as these can be checked once ‘on-the-fly’ as 

opposed to the pair-wise cell overlap constraints.



Chapter 8

3D Parameter Tuning

In this chapter, the most pertinent parameter settings within the 3D simulation 

environment, decoder, and genetic algorithm are investigated. This is done in order 

to find the most suitable testing configuration to use in the final testing in Chapter 9. 

The two settings tested for in the simulation environment are the number of candidate 

base station locations (Section 8.2.1) and total amount of traffic (Section 8.2.2). The 

two settings tested in relation to the new 3D decoder are the maximum amount of 

permissible traffic per cell (Section8.3.1) and antenna configurations (Section 8.3.2). 

Following this, five settings for the genetic algorithm are tested. The first compares 

a placement probability (when forming the initial parent populations) to a random 

procedure (Section 8.4.1). The second notes differences when altering the population 

size (Section 8.4.2). The third estimates the ideal number of stagnation generations 

to allow before termination (Section 8.4.3). The fourth tests changes in the crossover 

procedure (Section 8.4.4), and the fifth changes to the representation scheme (Section 

8.4.5).

158
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An outline of the testing is provided in Figure 8.1. All tests are carried out using 

SE1, SE2, SE4, and SE5 (Table 6.1) with antenna heights of 30-60 meters. As results 

here can vary from test to test, all tests are carried out for 10 trials and measure 

the average and standard deviations for STP coverage, overlap, cost, traffic coverage, 

number of solutions, number of generations, and time, unless otherwise noted. It 

is expected that the results from these tests will allow a good estimate of the best 

parameters and settings to use when determining SE benchmark solutions in Chapter 

9.
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Figure 8.1: Outline of test plan for 3D simulation environment and multi-objective 
cell planning approach

It is important to note that traffic hold, interference, and handover are not mea­

sured here. The main reason is that they require intensive calculations, which would 

make such extensive parameter testing infeasible. However, the measurement of these 

objectives will be investigated in Chapter 9 during final comparisons. The objectives 

traffic hold and interference are therefore approximated here (when reporting final 

cell plan objective values) as follows:
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• The approximation of traffic hold is termed traffic coverage. Rather than sum­

ming only traffic < = 4 3  Erlangs in each cell, the sum of all traffic covered (i.e., 

if a TTP is covered, it is summed) is simply divided by the total amount of 

traffic, expressed as a percentage.

• The approximation of interference is termed overlap, as the two measures are 

likely to be highly correlated given they involve the same exact STP. The only 

difference is that overlap is the count of these STP and interference is a measure 

of the interfering signals at these STP. Overlap is the sum of the number of STP 

each cell covers, divided by the total number of STP, expressed as a percentage.

Handover, however, cannot be measured without a server assumption and there­

fore no comparative measure is applied, although handover is later shown to improve 

along with coverage (Chapter 9). To clarify, during the optimization process, the 

2D model used service coverage and cost. We continue to use service coverage and 

cost in the 3D model as well. However, for purposes of large-scale parameter testing, 

we approximate values for traffic hold (i.e., traffic coverage) and interference (i.e., 

overlap). This is done for efficiency for reporting final cell plan objective values. In 

Chapter 9, true traffic hold, interference, and handover values are reported during 

less extensive (although more intensive) testing.

By parameter tuning, we are looking for the best trade-off between time and 

solution quality, and whether a given setting is capable of fully testing the capabilities 

of the cell planning algorithm employed.
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8.1 Standard testin g  configuration

The standard test configuration uses a population size of 500, run with a stagna­

tion rate of 50 generations, with a Tm a x  of 60, using multi-point crossover, placement 

probability, 568 CBS, and binary-coding. These test parameters were chosen based 

on provisional testing in order to produce reliable tables in a feasible amount of time. 

These default parameter settings are not optimized and are used, along with binary 

coding, to initially verify that the configuration of the simulation environment (Sec­

tion 8.2.1 and 8.2.2) is reasonable and challenging, particularly in terms of number 

of CBS and traffic.

Perhaps most notable is the choice of binary-coded permutations over integer- 

coded permutations as used in the 2D model. The main motivation for selecting 

binary-coded permutations is that there are fewer parameters for configuration and it 

is considerably faster than the permutation-based approach. When a given variable 

was tested (e.g., changes made to the population size), all other variables adhered to 

the standard test configuration.

In order to accurately assess the effect of parameter changes, results (including 

the average and standard deviation) are measured at two points. The first set of 

results are based on the objective values of the first solution providing > 95% STP 

coverage, which effectively makes STP coverage constant (at 95%) and allows one 

to note variations in the other objectives. The second set of results are based on 

the solution with the highest STP coverage, which allows one to note the ability of 

the chosen parameters to maximize coverage, and how this affects other objectives. 

Objectives used during testing and reported in tables throughout use the following
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abbreviations: cover (cove.), overlap (over.), cost, traffic (traf.), number of generations 

(gens.), time, and number of solutions (sols.).

8.2 Sim ulation Environm ent T uning/T esting

The first test on the simulation environment is used to indicate whether 568 

candidate sites is necessary, or if using fewer sites is equally effective. This test is 

performed because it impacts greatly upon computational time and potential solution 

quality, e.g., in terms of obtainable service coverage. The second test is used to 

determine if the amount of traffic distributed creates a challenging environment for 

cell planning, or if more or less traffic is required. This test is performed because the 

amount of traffic in the service area significantly impacts network configurations. For 

example, low traffic results in larger cells, and high traffic results in smaller cells.

8.2.1 Changes in number of CBS

The first tests compared allowing 568, 284, and 142 candidate sites to afford a 

rough assessment of whether the full 568 sites is necessary or beneficial. Given our 

working area, this equates to 0.25, 0.13, and 0.06 candidate sites per km2 respectively.

First, the average (from 10 trials) of the first solution providing > 95% STP 

coverage across all SE (Tables 8.2, 8.3, 8.4, 8.5) were compared. Interpreting the 

results (Table 8.1) indicates that using 568 CBS results in a 16.31% cost savings when 

compared to using 124 CBS, and an 11.00% cost savings versus 284 CBS. There was 

also a 17.67% savings in terms of overlap versus 124 CBS and 13.22% savings versus 

284 CBS. Although this generally came at the expense of roughly 15% more GA
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generations and consequently 22% more computational time.

Second, the average (from 10 trials) of solutions providing the highest STP cover­

age across all SE (Tables 8.7, 8.8, 8.9, 8.10) were compared. Interpreting the results 

(Table 8.6) indicates that using 568 CBS results in a 7.60% coverage improvement 

versus 124 and 2.36% versus 284, and similarly for traffic. For example, with 142 

candidate sites, the average STP coverage was 85.08%, 87.53%, 92.80%, and 92.67% 

for SE1, 2, 4, and 5 respectively; with 284 candidate sites, the average STP coverage 

was 94.25%, 94.14%, 94.17%, and 95.58%; and, with 568 candidate sites, the average 

STP coverage was 97.05%, 96.59%, 97.48%, and 97.49%. However, this does come at 

an average cost increase of 19% and overlap increase of 29%.

Overall, the results indicate that using 568 candidate sites is preferable. Most 

importantly, using 568 sites results in lower cost solutions, with lower overlap (for 

solutions of equivalent coverage), and a greater number of solutions. Using 568 CBS 

also results in solutions with the highest STP and traffic coverage. The trade-off is 

only in terms of a modest 22% increase in run times. Therefore, 568 candidate sites 

will be preferred in future tests.

#CBS Cover Overlap Cost Traffic Gens. Time Sols.
142 0.08 -17.67 -16.31 -0.19 21.89 30.52 24.04
284 0.04 -13.22 -11.00 0.25 8.20 14.04 12.64

Table 8.1: Ave. % change in objective measures for 568 CBS based solutions vs. 142 
and 284 across SE (for 1st solutions exceeding 95% STP coverage)
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#CBS Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

142 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

187.60
80.99

277.64
96.42

46.20
4.42

284 95.13
0.00

116.11
0.00

52.00
0.00

93.93
0.00

232.00
73.79

354.35
90.35

51.90
3.30

568 95.18
0.07

103.80
9.09

46.20
2.23

94.39
0.30

236.70
110.68

401.15
159.51

61.80
5.49

Table 8.2: Ave. and SD for first solutions in SE1 exceeding 95% STP coverage given 
10 trials with number of CBS changes

#CBS Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

142 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

172.00
109.80

272.64
137.13

46.00
1.90

284 95.02
0.01

155.70
7.48

54.67
1.70

88.88
0.58

211.50
102.27

364.51
144.73

55.50
3.41

568 95.10
0.05

128.23
10.85

47.20
2.27

89.90
0.82

235.60
85.10

412.39
125.31

61.60
7.28

Table 8.3: Ave. and SD for first solutions in SE2 exceeding 95% STP coverage given 
10 trials with number of CBS changes

#CBS Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

142 95.04
0.00

114.10
0.00

60.00
0.00

94.80
0.00

248.70
134.66

791.54
385.28

56.10
5.11

284 95.10
0.07

112.63
10.89

56.50
3.40

94.95
0.41

253.50
114.13

855.15
346.49

62.00
5.50

568 95.13
0.10

98.96
10.64

51.20
3.22

94.39
0.26

332.50
168.85

1200.63
541.09

73.70
6.36

Table 8.4: Ave. and SD for first solutions in SE4 exceeding 95% STP coverage given
10 trials with number of CBS changes
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#CBS Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

142 95.04
0.00

118.95
0.00

59.00
0.00

95.04
0.00

255.50
111.11

813.23
290.77

57.30
3.23

284 95.11
0.10

104.83
11.32

53.80
3.06

95.11
0.10

308.80
215.77

1017.20
648.34

66.80
7.32

568 95.10
0.07

99.09
9.50

51.11
2.64

95.10
0.07

299.30
161.52

1060.96
538.47

73.20
11.39

Table 8.5: Ave. and SD for first solutions in SE5 exceeding 95% STP coverage given 
10 trials with number of CBS changes

#CBS Cover Overlap Cost Traffic
124 7.60 37.99 24.91 9.49
284 2.36 19.29 13.40 3.20

Table 8.6: Ave. % change in objective measures for 568 CBS based solutions vs. 142 
and 284 across SE (for highest coverage solutions)

#CBS Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

142 85.75
1.43

98.94
16.21

45.30
4.65

82.38
1.67

284 93.64
1.14

122.58
12.05

51.00
3.32

92.14
1.56

568 97.10
0.78

165.82
21.53

61.60
5.90

96.41
0.93

Table 8.7: Ave. and SD for highest cover solution in SE1 given 10 trials with number
of CBS changes
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#CBS Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

142 87.16
1.30

108.16
7.91

45.00
1.90

79.15
2.68

284 94.46
0.71

159.50
16.20

54.80
3.97

88.25
1.21

568 96.51
0.95

178.87
22.67

61.10
7.18

92.51
1.87

Table 8.8: Ave. and SD for highest cover solution in SE2 given 10 trials with number 
of CBS changes

#CBS Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

142 92.84
1.51

106.94
14.29

55.90
5.73

92.55
1.72

284 95.19
1.46

128.40
17.69

61.40
5.61

94.82
1.66

568 97.82
1.07

170.68
22.86

73.30
6.54

97.47
1.25

Table 8.9: Ave. and SD for highest cover solution in SE4 given 10 trials with number 
of CBS changes

#CBS Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

142 93.81
0.82

112.06
8.96

56.30
3.23

93.81
0.82

284 96.60
1.07

145.17
22.64

66.00
7.27

96.60
1.07

568 97.63
1.55

171.79
43.14

73.20
12.06

97.63
1.55

Table 8.10: Ave. and SD for highest cover solution in SE5 given 10 trials with number
of CBS changes
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8.2.2 Changes in amount of total traffic

The next variable to consider is the total traffic in the service area. Traffic is an 

important parameter as it can directly affect cell size. In order to test this parameter, 

the total amount of traffic was multiplied by 0.50, 1.00, 1.50, and 2.00 to test whether 

the original amount of traffic was suitable.

First, the average (from 10 trials) of the first solution providing > 95% STP 

coverage across all SE (Tables 8.12, 8.13, 8.14, 8.15) were compared. Interpreting the 

results (Table 8.11) indicates that using lx  traffic is a reasonable choice, as there 

is no stark argument for or against using an alternative. For example, in terms of 

overlap using lx  traffic results in 16.99% more overlap versus 0.5x and 4.62% less 

overlap versus 1.5 x and 9.30% less than 2.0x. This may occur because the number 

of cells needed is higher in higher traffic environments, which tends to result in more 

overlap. In terms of cost, using lx  traffic results in 44.21% higher cost versus 0.5x 

and 37.08% lower cost versus 1.5x and 83.92% less than 2.Ox. Again, as more cells 

are needed in higher traffic areas, the cost rises. Thus, as could be expected, lx  

is a reasonable choice of traffic level. Adding more traffic results in a more difficult 

scenario, and less, an easier one. It is difficult to say, however, that one choice is 

definitely better than another. The choice is to some extent arbitrary.

Second, the average (from 10 trials) of solutions providing the highest STP cov­

erage across all SE (Tables 8.17, 8.18, 8.19, 8.20) were compared. Interpreting the 

results (Table 8.16) indicates that using lx  traffic, similar to earlier conclusions, ap­

pears a reasonable choice, as it provides a ‘middle ground’ in terms of cover, overlap, 

cost, and traffic. Overall, the results indicate that there is no evidence that the
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amount of traffic should be modified, unless one specifically desires a much harder or 

easier scenario.

#CBS Cover Overlap Cost Traffic Gens. Time Sols.
0.5 -0.13 16.99 44.21 -1.05 6.36 -13.30 9.45
1.5 0.01 -4.62 -37.08 0.31 1.78 13.62 -0.56
2.0 0.04 -9.30 -83.92 0.04 -12.17 10.27 -9.45

Table 8.11: Ave. % change in objective measures for lx  traffic based solutions vs. 
0.5 x, 1.5 x, and 2.0x, across SE (for 1st solutions exceeding 95% STP coverage)

Traf.
X

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

0.50 95.30
0.13

82.00
8.07

22.80
0.87

94.78
0.26

169.00
50.64

369.03
87.02

53.50
2.25

1.00 95.18
0.07

103.80
9.09

46.20
2.23

94.39
0.30

236.70
110.68

401.15
159.51

61.80
5.49

1.50 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

238.00
75.56

358.98
92.12

64.80
4.81

2.00 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

286.20
100.20

385.49
119.31

69.30
5.95

Table 8.12: Ave. and SD for first solutions in SE1 exceeding 95% STP coverage given 
10 trials with amount of traffic changes
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Traf.
X

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

0.50 95.27
0.15

88.38
5.46

22.90
0.94

92.91
0.39

170.10
34.12

362.48
57.02

53.40
3.61

1.00 95.10
0.05

128.23
10.85

47.20
2.27

89.90
0.82

235.60
85.10

412.39
125.31

61.60
7.28

1.50 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

259.40
100.63

429.52
147.21

62.60
5.37

2.00 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

233.00
75.81

366.14
100.93

65.00
6.42

Table 8.13: Ave. and SD for first solutions in SE2 exceeding 95% STP coverage given 
10 trials with amount of traffic changes

Traf.
X

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

0.50 95.20
0.12

87.36
7.99

31.80
2.27

94.67
0.31

407.70
230.87

1704.42
875.14

74.10
8.80

1.00 95.13
0.10

98.96
10.64

51.20
3.22

94.39
0.26

332.50
168.85

1200.63
541.09

73.70
6.36

1.50 95.12
0.06

106.09
7.90

71.00
2.16

93.81
0.59

302.00
196.98

914.54
525.39

72.40
8.92

2.00 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

386.20
173.60

1081.62
459.84

80.30
12.51

Table 8.14: Ave. and SD for first solutions in SE4 exceeding 95% STP coverage given 
10 trials with amount of traffic changes
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Traf.
X

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sois.
Ave.
SD

0.50 95.23
0.12

94.97
7.97

32.30
2.00

95.23
0.12

324.30
199.65

1393.60
812.00

64.70
11.56

1.00 95.10
0.07

99.09
9.50

51.11
2.64

95.10
0.07

299.30
161.52

1060.96
538.47

73.20
11.39

1.50 95.10
0.08

101.11
7.69

69.25
2.59

95.10
0.08

273.60
156.85

803.30
405.52

71.40
8.67

2.00 95.06
0.05

108.31
0.00

94.00
0.00

95.06
0.05

337.40
140.58

890.61
348.55

81.40
11.62

Table 8.15: Ave. and SD for first solutions in SE5 exceeding 95% STP coverage given 
10 trials with amount of traffic changes

Traf.
X

Cover Overiap Cost Traffic

0.5 -2.29 -52.96 9.04 -3.61
1.5 5.32 33.85 0.09 8.02
2.0 9.89 46.70 -9.13 15.06

Table 8.16: Ave. % change in objective measures for lx  traffic based solutions vs. 
0.5x, 1.5 x, and 2.0x, across SE (for highest coverage solutions)

Traf.
X

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

0.50 99.83
0.07

283.77
16.25

53.50
2.62

99.79
0.11

1.00 97.10
0.78

165.82
21.53

61.60
5.90

96.41
0.93

1.50 90.63
1.41

103.40
13.28

64.20
4.60

88.49
1.87

2.00 84.35
2.90

73.95
7.67

68.50
5.90

80.17
3.51

Table 8.17: Ave. and SD for highest cover solution in SE1 given 10 trials with amount
of traffic changes
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Traf.
X

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

0.50 99.68
0.15

278.68
22.32

53.30
3.87

99.44
0.35

1.00 96.51
0.95

178.87
22.67

61.10
7.18

92.51
1.87

1.50 90.62
1.65

139.81
15.08

61.80
5.46

79.62
3.83

2.00 85.03
1.80

118.07
14.51

64.90
6.88

68.82
3.46

Table 8.18: Ave. and SD for highest cover solution in SE2 given 10 trials with amount 
of traffic changes

Traf.
X

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

0.50 99.46
0.61

257.10
39.40

74.50
10.05

99.47
0.59

1.00 97.82
1.07

170.68
22.86

73.30
6.54

97.47
1.25

1.50 93.32
2.63

107.09
20.05

71.50
9.06

91.58
3.16

2.00 90.07
3.81

90.98
19.93

79.80
12.43

86.55
5.32

Table 8.19: Ave. and SD for highest cover solution in SE4 given 10 trials with amount 
of traffic changes
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Traf.
X

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

0.50 98.97
0.78

230.67
53.27

64.50
12.34

98.97
0.78

1.00 97.63
1.55

171.79
43.14

73.20
12.06

97.63
1.55

1.50 93.82
2.77

105.34
22.20

70.80
8.73

93.82
2.77

2.00 91.19
3.71

84.65
19.87

80.70
11.48

91.19
3.71

Table 8.20: Ave. and SD for highest cover solution in SE5 given 10 trials with amount 
of traffic changes
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8.3 Decoder Tuning and Testing

The first test on the decoder is used to indicate a good Tm a x  setting. This test 

is performed because Tm a x  impacts on the cell density, and therefore the overall 

network coverage and cost. The second test is used to determine a good antenna 

combination to use. This test is performed to help clarify whether one combination is 

generally to be preferred over another, as this also impacts overall coverage and cost.

8.3.1 Changes in max traffic

A variable to consider during TSCA is the allowable maximum traffic (Tm a x )  per 

cell. Tmax’s of 43, 50, 60, 70, and 80 were tested in order to determine the settings 

which provide the highest coverage solutions at the lowest cost. Tm a x  is important as 

it determines the allowable traffic per sector during TSCA. Given perfect tessellation 

one would choose 43 ipso facto, as we have defined that as the maximum amount 

of traffic permitted in a cell. However, given cells do not perfectly tessellate an 

appropriate setting needs to be found which helps maximize coverage and minimize 

cost, while providing adequate traffic performance.

First, the average (from 10 trials) of the first solution providing > 95% STP 

coverage across all SE (Tables 8.22, 8.23, 8.24, 8.25) were compared. Interpreting the 

results (Table 8.21) indicate that as Tmax rises and STP coverage is held constant 

(varying by no more than 0.12%), (1) overlap decreases linearly by 14.84%, (2) cost 

decreases linearly by 40.34%, and (3) traffic coverage as expected remains relatively 

constant (varying by no more than 0.89%).

Second, the average (from 10 trials) of solutions providing the highest STP cov-
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erage across all SE (Tables 8.27, 8.28, 8.29, 8.30) were compared. Interpreting the 

results (Table 8.26) indicates that as Tm a x  rises (1) coverage increases linearly by 

5.32%, (2) overlap increases linearly by 61.15%, (3) cost decreases linearly by 9.26%, 

and (4) traffic coverage increases linearly by 8.56%.

Overall, the results indicate that using higher Tm a x  settings is preferable in terms 

of STP coverage, traffic coverage, and cost. However, the trade-off for these benefits 

is more overlap (and ultimately interference) if the highest coverage solutions are 

sought. However, given solutions at the same coverage level, raising Tm a x  results 

in lower overlap and cost. While there is no empirical test for preferring one over 

another, one can extrapolate that for every 10% rise in Tm a x  above 43 there is 

roughly an additional 15% overlap for a 1.25% increase in coverage, a 2.3% decrease 

in cost, and 2.14% increase in traffic coverage. However, given solutions at the same 

coverage level, every 10% rise in Tm a x  results in an overlap savings of 3.7% and a 

cost savings of 10%. This is perhaps what would be expected: As Tm a x  increases the 

size of cells should also increase, which will have the effect of lowering cost (as you 

need fewer if covering an equivalent size area) and overlap (as fewer cells is probably 

positively and directly correlated to lower overlap). Different operators may have 

different requirements in terms of these objectives.

T m a x Cover Overlap Cost Traffic Gens. Time Sols.
50 -0.04 0.83 10.12 -0.20 -4.05 -8.83 0.98
60 -0.07 4.05 21.92 -0.32 7.30 -3.73 3.98
70 -0.10 9.66 32.03 -0.61 8.78 -6.24 7.07
80 -0.12 14.84 40.34 -0.89 11.72 -7.20 8.87

Table 8.21: Ave. % change in objective measures for Tm a x  = 43 based solutions vs.
50, 60, 70 and 80 across SE (for 1st solutions exceeding 95% STP coverage)
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T m a x Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

43 95.00
0.00

120.83
0.00

66.00
0.00

93.86
0.00

263.70
134.31

399.87
185.14

63.90
9.86

50 95.05
0.03

121.56
5.88

60.00
2.55

93.79
0.25

248.30
64.99

395.04
93.15

62.20
7.73

60 95.18
0.07

103.8
9.09

46.2
2.23

94.39
0.30

236.70
110.68

401.15
159.51

61.80
5.49

70 95.20
0.14

96.84
3.93

39.30
1.27

94.39
0.33

211.80
82.18

378.86
119.04

58.40
4.45

80 95.23
0.15

88.20
2.73

32.80
0.75

94.54
0.44

303.90
106.80

535.70
175.77

60.00
5.33

Table 8.22: Ave. and SD for first solutions in SE1 exceeding 95% STP coverage given 
10 trials with T m a x  changes

Tmax Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

43 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

253.90
90.39

417.59
126.35

64.30
3.85

50 95.05
0.02

124.08
13.64

54.60
3.07

89.83
0.44

287.90
220.72

497.59
339.53

65.10
8.42

60 95.10
0.05

128.23
10.85

47.20
2.27

89.90
0.82

235.60
85.10

412.39
125.31

61.60
7.28

70 95.16
0.09

112.48
10.99

39.40
1.74

90.72
0.86

203.30
58.91

392.91
89.62

61.00
7.38

80 95.14
0.08

104.34
6.96

34.20
1.33

91.48
0.93

165.10
56.31

346.68
93.29

57.60
4.10

Table 8.23: Ave. and SD for first solutions in SE2 exceeding 95% STP coverage given
10 trials with Tmax changes
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T m a x Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

43 95.10
0.05

104.36
8.03

66.71
2.49

93.83
0.48

334.70
153.49

1061.28
461.74

79.00
12.39

50 95.13
0.09

100.00
9.36

59.14
3.23

94.42
0.29

358.90
146.84

1184.00
468.13

74.80
11.93

60 95.13
0.10

98.96
10.64

51.20
3.22

94.39
0.26

332.5
168.85

1200.63
541.09

73.70
6.36

70 95.14
0.07

96.30
9.65

46.10
2.84

94.61
0.34

370.60
193.15

1335.90
685.57

72.40
12.49

80 95.18
0.12

91.72
6.45

41.30
1.68

94.69
0.35

312.70
87.19

1174.66
297.27

70.70
5.06

Table 8.24: Ave. and SD for first solutions in SE4 exceeding 95% STP coverage given 
10 trials with Tm a x  changes

T m a x Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

43 95.08
0.03

99.36
6.65

64.60
2.42

95.08
0.03

336.60
128.25

1033.00
376.55

74.50
7.75

50 95.12
0.08

100.44
5.35

58.20
1.72

95.12
0.08

341.40
111.56

1093.06
325.74

76.60
4.48

60 95.10
0.07

99.09
9.50

51.11
2.64

95.10
0.07

299.30
161.52

1060.96
538.47

73.20
11.39

70 95.12
0.09

97.66
7.97

45.90
2.26

95.12
0.09

315.60
108.21

1138.91
390.63

69.90
9.09

80 95.15
0.11

95.07
6.68

41.60
1.91

95.15
0.11

267.40
112.66

1044.77
410.56

68.20
9.10

Table 8.25: Ave. and SD for first solutions in SE5 exceeding 95% STP coverage given 
10 trials with Tm a x  changes

T m a x Cover Overlap Cost Traffic
50 -2.25 -15.44 ^7.13 -3.90
60 -3.79 -34.60 4.02 -6.05
70 -4.57 -48.12 7.34 -7.38
80 -5.32 -61.15 9.26 -8.56

Table 8.26: Ave. % change in objective measures for Tmax =  43 based solutions vs.
50, 60, 70 and 80 across SE (for highest coverage solutions)
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T m a x Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

43 91.59
2.38

109.15
26.16

63.70
11.04

89.35
3.03

50 94.45
1.33

125.83
23.88

61.50
8.04

93.09
1.50

60 97.10
0.78

165.82
21.53

61.60
5.90

96.41
0.93

70 97.94
0.74

177.77
20.05

57.70
4.45

97.55
0.91

80 99.21
0.29

215.26
33.37

59.60
6.15

99.03
0.40

Table 8.27: Ave. and SD for highest cover solution in SE1 given 10 trials with T m a x  

changes

T MAX Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

43 92.58
1.01

143.12
10.54

63.80
3.79

83.85
2.80

50 95.36
1.56

167.67
24.21

65.30
10.08

90.31
3.16

60 96.51
0.95

178.87
22.67

61.10
7.18

92.51
1.87

70 97.71
0.79

206.86
28.69

60.60
7.79

94.83
1.91

80 98.45
0.39

212.63
14.69

56.70
4.05

96.81
0.73

Table 8.28: Ave. and SD for highest cover solution in SE2 given 10 trials with Tm a x
changes
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T MA X Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

43 95.30
3.20

137.42
30.10

79.00
12.66

93.97
4.21

50 96.22
2.25

146.60
34.77

74.50
12.21

95.65
2.81

60 97.82
1.07

170.68
22.86

73.30
6.54

97.47
1.25

70 98.14
1.26

187.65
42.63

72.00
13.19

98.11
1.31

80 98.70
0.50

195.43
21.55

70.20
5.36

98.57
0.64

Table 8.29: Ave. and SD for highest cover solution in SE4 given 10 trials with Tm a x  

changes

T m a x Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

43 95.49
2.03

125.12
21.66

74.20
8.16

95.49
2.03

50 97.33
0.60

153.45
14.52

75.90
4.57

97.33
0.60

60 97.63
1.55

171.79
43.14

73.20
12.06

97.63
1.55

70 98.20
0.88

185.84
34.50

69.70
9.45

98.20
0.88

80 98.41
0.86

195.94
32.28

68.00
9.39

98.41
0.86

Table 8.30: Ave. and SD for highest cover solution in SE5 given 10 trials with Tm a x
changes
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8.3.2 Changes in antenna configurations

The default antenna configuration during TSCA is three randomly selected direc­

tive antenna at each CBS. Three alternative combinations were tested. These were: 

one omni-directional antenna, three small directive, and three large directive. Results 

should indicate which antenna configuration to prefer.

First, the average (from 10 trials) of the first solution providing > 95% STP cov­

erage across all SE (Tables 8.32, 8.33, 8.34, 8.35) were compared. Interpreting the 

results (Table 8.31) indicates that that as the antenna configuration is changed and 

coverage is held constant three large directives result in 0.45% increase in overlap and 

a 6.91% increase in cost for a 15.74% time savings versus three random directives. On 

the other hand, three small directives result in 2.90% increase in overlap and a 3.86% 

decrease in cost for a 14.08% time savings versus three random directives. Omnidi­

rectional antenna could not reach 95% cover, and therefore could not be considered 

a viable option on their own.

Second, the average (from 10 trials) of solutions providing the highest STP cov­

erage across all SE (Tables 8.37, 8.38, 8.39, 8.40) were compared. Interpreting the 

results (Table 8.36) indicates that when the highest coverage solutions are sought 

three random, large, and small directives perform similarly. That is, there is little 

to choose between them. Omni-directional antenna did not perform well here either, 

resulting in a significant decrease in STP and traffic coverage. In the absence of 

a strong case for using three large or small directives exclusively, the safest option 

appears to be three random directive antennas.



Chapter 8: 3D Parameter Tuning 180

Antenna Cover Overlap Cost Traffic Gens. Time Sols.
3 Large -0.02 -0.45 -6.91 0.19 2.08 15.74 0.80
3 Small -0.04 -2.90 3.86 -0.26 -0.01 14.08 1.87
1 Omni NA NA NA NA -1.92 24.52 -6.93

Table 8.31: Ave. % change in objective measures for 3 random directive antenna 
based solutions vs. 3 large, 3 small, and 1 omni across SE (for 1st solutions exceeding 
95% STP coverage)

Antenna Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

Random 95.15
0.07

99.12
7.92

44.70
1.62

94.21
0.21

342.60
113.66

746.40
225.17

69.90
5.34

Large 95.17
0.07

103.33
10.59

50.40
2.62

94.03
0.26

262.90
114.09

570.96
223.20

65.60
7.23

Small 95.17
0.09

100.25
7.17

42.40
1.43

94.23
0.27

225.50
65.36

507.92
120.92

61.40
6.00

Omni 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

279.70
76.94

487.76
113.15

70.50
5.04

Table 8.32: Ave. and SD for first solutions in SE1 exceeding 95% STP coverage given 
10 trials with antenna configuration changes

Antenna Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

Random 95.14
0.05

116.46
7.74

45.50
1.80

90.17
0.46

291.40
152.21

683.54
320.81

65.80
5.91

Large 95.14
0.08

118.68
14.44

49.20
2.27

90.00
0.69

322.90
125.11

752.49
265.17

69.40
6.86

Small 95.17
0.07

114.91
5.94

42.70
1.10

90.81
0.58

277.00
93.18

653.17
189.06

67.00
4.07

Omni 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

336.40
126.64

638.01
217.55

71.10
8.51

Table 8.33: Ave. and SD for first solutions in SE2 exceeding 95% STP coverage given
10 trials with antenna configuration changes
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Antenna Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

Random 95.13
0.07

97.40
6.89

51.00
1.79

94.39
0.30

333.60
174.22

1540.92
748.19

74.40
9.41

Large 95.14
0.07

95.84
8.60

52.89
2.38

94.01
0.29

288.60
160.78

1002.41
525.07

73.60
11.82

Small 95.16
0.08

100.67
10.39

49.30
3.32

94.58
0.40

391.50
222.48

1373.25
746.07

76.90
10.64

Omni 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

306.80
200.04

1003.99
612.84

82.80
13.50

Table 8.34: Ave. and SD for first solutions in SE4 exceeding 95% STP coverage given 
10 trials with antenna configuration changes

Antenna Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

Random 95.06
0.05

93.47
5.93

49.40
1.56

95.06
0.05

314.80
144.05

1454.62
606.96

77.10
8.79

Large 95.10
0.07

90.91
8.13

50.90
2.34

95.10
0.07

370.30
194.74

1242.30
662.21

76.00
14.46

Small 95.15
0.08

101.37
6.36

49.00
1.84

95.15
0.08

383.50
143.11

1323.22
476.10

76.70
11.10

Omni 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

373.40
192.56

1135.93
577.61

82.90
13.11

Table 8.35: Ave. and SD for first solutions in SE5 exceeding 95% STP coverage given 
10 trials with antenna configuration changes

Antenna Cover Overlap Cost Traffic
3 Large 0.64 8.10 1.11 0.90
3 Small -0.04 -3.18 2.49 -0.29
1 Omni 12.61 60.65 -6.70 17.31

Table 8.36: Ave. % change in objective measures for 3 random directive antenna
based solutions vs. 3 large, 3 small, and 1 omni across SE (for highest coverage
solutions)
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Antenna Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Random 98.05
0.58

189.40
19.45

69.90
6.07

97.48
0.83

Large 96.66
0.82

151.74
24.10

65.10
7.26

95.83
1.04

Small 97.55
0.82

172.06
21.22

60.50
6.18

96.89
1.05

Omni 82.66
2.16

59.80
8.86

70.10
5.73

78.44
2.89

Table 8.37: Ave. and SD for highest cover solution in SE1 given 10 trials with antenna 
configuration changes

Antenna Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Random 97.50
0.54

197.57
21.19

65.40
6.36

94.52
1.27

Large 97.26
0.75

204.48
25.42

68.90
6.96

93.72
1.71

Small 98.09
0.27

210.16
14.26

66.10
3.99

95.83
0.67

Omni 85.13
2.95

101.84
13.94

70.50
8.59

71.25
5.64

Table 8.38: Ave. and SD for highest cover solution in SE2 given 10 trials with antenna 
configuration changes
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Antenna Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Random 97.77
1.16

171.38
29.70

74.30
10.31

97.34
1.51

Large 97.35
1.46

156.80
34.07

72.70
11.75

96.75
1.84

Small 98.07
1.28

188.97
34.05

76.20
10.39

97.93
1.27

Omni 85.74
5.08

67.36
16.89

82.00
13.70

82.42
6.11

Table 8.39: Ave. and SD for highest cover solution in SE4 given 10 trials with antenna 
configuration changes

Antenna Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Random 98.32
1.05

185.60
31.88

76.60
9.21

98.32
1.05

Large 97.86
1.49

171.68
47.05

76.00
14.93

97.86
1.49

Small 98.09
1.22

195.35
41.07

76.50
12.04

98.09
1.22

Omni 88.73
4.20

64.91
23.51

83.00
15.03

88.73
4.20

Table 8.40: Ave. and SD for highest cover solution in SE5 given 10 trials with antenna
configuration changes
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8.4 Genetic Algorithm Tuning and Testing

Five parameter tests were run for the GA. These investigated changes to the 

starting population, the population size, the stagnation rate, crossover methods, and 

representation scheme. These variables were considered important in terms of trade­

offs between solution quality and run time. For example, while one might prefer to 

use a population size of 1000 to encourage a high quality solution, this might not be 

a feasible setting due to extremely long run times. Thus, the tests performed should 

give an indication of what results in good solution quality in a feasible amount of 

time. The approach uses binary representation in the GA (due to run time) until we 

lastly observe the effects of switching to integer representation.

8.4.1 Changes in starting population formation

An important variable to consider during binary-coding is whether a random 

starting population or one using a placement probability (PP) that uses information 

regarding the site provides the best trade-off of speed versus solution quality. To 

compute the PP several additional measures are taken during TSCA, and then applied 

when forming the starting population for the genetic algorithm. These measures are 

taken to keep costs low by encouraging the placement of sites (a) that cover more STP 

than others, (b) that carry a higher traffic load than others, and (c) which minimize 

overlap.

To calculate the placement probability PPi for a given site, the following formulae 

generates a real number G [0,1]. During the formation of parents, the PPi is compared 

to a randomly generated float value. If the float value is less than the PPi the site is
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added, else not. The formulae for determining the PPi is:

PPi = (estSTPi * TCFi);

where

estSTPi = (numST Pi/highest s t p ) /(SCFi + 1);

To encourage sites which cover more traffic, a traffic correction factor (TCP i) is 

applied to each site i as follows: 0.0 if traffic at the site is < 10 Erlangs, 0.33 if < 

43, 0.66 if < 86, and 0.99 if > 86. Note that in terms of an entire site with three 

directive antenna, 129 Erlangs would be the optimum and maximum permissible. To 

encourage sites which cover more STP, estSTP  is a calculation which first converts 

the number of STP covered to a real number between 0 and 1 by dividing the number 

of STP covered by each site, numST Pi, by the highest number of STP covered by 

any site, highestsrp, and then divides it by the number of sites in its signal reception 

area, SCFi, +1 to avoid division by 0 and to account for itself. The site correction 

factor (SCFi) around a given CBS is found by summing the number of CBS which 

share a common covered STP. In general, sites surrounded by a number of other sites 

do not need to be commissioned with as high a probability.

As the fewest possible sites needed can be computed as total traffic divided by 

129 (which in this instance is 2988.27/129 = 23, attempt to place a ‘1’ a random 

number of times between this 1 and this number for 33% of the population and this 

number and twice this number for 67% of the population in order to obtain a diverse



Chapter 8: 3D Parameter Tuning 186

population which will now naturally vary from very low coverage and cost to high 

coverage and cost.

Trials were then run to compare the PP procedure to a random one which follows 

the same procedure as PP except it simply assigns the appropriate number of Is to 

randomly determined base stations. The findings were as follows:

First, the average (from 10 trials) of the first solution providing > 95% STP 

coverage across all SE (Tables 8.42, 8.43, 8.44, 8.45) were compared. Interpreting 

the results (Table 8.41) indicates that when coverage is kept constant using random 

starting populations raises overlap by 2.85% and cost by 3.86%, with little difference 

in generations, run time, or number of solutions. Taken on its own, this indicates 

using PP should be preferred.

Second, the average (from 10 trials) of solutions providing the highest STP cov­

erage across all SE (Tables 8.47, 8.48, 8.49, 8.50) were compared. Interpreting the 

results (Table 8.46) indicates little difference between the two procedures in terms of 

final solution quality. That is, there is an expected trade-off that while random has 

slightly lower coverage and traffic coverage, it also has slightly lower cost and overlap.

Overall, the results indicate that while either PP or random starting populations 

can be used, there is some justification in choosing PP over random if low overlap 

and cost is sought at a given level of coverage less than the maximum. However, if 

only maximum is cover is sought, there is some justification is selecting random base 

stations. Theoretically, the PP method should encourage use of the best sites, but 

the random method has the advantage of having more diverse starting populations, 

as it does not favour the use of one site over another.
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Formation Cover Overlap Cost Traffic Gens. Time Sols.
random 0.04 -2.85 -3.86 -0.11 1.27 2.16 1.46

Table 8.41: Ave. % change in objective measures for PP based solutions vs. random 
across SE (for 1st solutions exceeding 95% STP coverage)

Method Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

PP 95.18
0.07

103.80
9.09

46.20
2.23

94.39
0.30

236.70
110.68

401.15
159.51

61.80
5.49

Random 95.08
0.05

112.71
14.42

50.38
4.92

94.19
0.17

227.70
103.32

372.64
149.97

59.50
6.41

Table 8.42: Ave. and SD for first solutions in SE1 exceeding 95% STP coverage given 
10 trials with initial population formation changes

Method Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

PP 95.10
0.05

128.23
10.85

47.20
2.27

89.90
0.82

235.60
85.10

412.39
125.31

61.60
7.28

Random 95.09
0.04

118.92
10.61

46.63
2.34

90.55
0.61

331.60
217.05

563.93
349.39

65.40
13.17

Table 8.43: Ave. and SD for first solutions in SE2 exceeding 95% STP coverage given 
10 trials with initial population formation changes

Method Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

PP 95.13
0.10

98.96
10.64

51.20
3.22

94.39
0.26

332.50
168.85

1200.63
541.09

73.70
6.36

Random 95.10
0.05

107.09
10.18

54.60
2.65

94.34
0.31

182.60
54.02

693.81
163.90

67.80
3.71

Table 8.44: Ave. and SD for first solutions in SE4 exceeding 95% STP coverage given
10 trials with initial population formation changes
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Method Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

PP 95.10
0.07

99.09
9.50

51.11
2.64

95.10
0.07

299.30
161.52

1060.96
538.47

73.20
11.39

Random 95.09
0.07

100.95
8.29

51.60
2.50

95.09
0.07

308.40
163.71

1102.82
546.31

73.00
9.17

Table 8.45: Ave. and SD for first solutions in SE5 exceeding 95% STP coverage given 
10 trials with initial population formation changes

Formation Cover Overlap Cost Traffic
random 0.72 4.24 1.08 0.81

Table 8.46: Ave. % change in objective measures for PP based solutions vs. random 
across SE (for highest coverage solutions)

Method Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

PP 97.10
0.78

165.82
21.53

61.60
5.90

96.41
0.93

Random 95.66
1.73

140.85
23.98

58.80
6.68

94.67
2.18

Table 8.47: Ave. and SD for highest cover solution in SE1 given 10 trials with initial 
population formation changes

Method Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

PP 96.51
0.95

178.87
22.67

61.10
7.18

92.51
1.87

Random 96.47
1.80

195.38
55.31

66.00
14.34

92.75
3.52

Table 8.48: Ave. and SD for highest cover solution in SE2 given 10 trials with initial
population formation changes
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Method Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

PP 97.82
1.07

170.68
22.86

73.30
6.54

97.47
1.25

Random 96.59
0.52

150.79
15.84

68.40
4.13

95.92
0.74

Table 8.49: Ave. and SD for highest cover solution in SE4 given 10 trials with initial 
population formation changes

Method Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

PP 97.63
1.55

171.79
43.14

73.20
12.06

97.63
1.55

Random 97.53
1.25

172.68
32.96

72.40
8.92

97.53
1.25

Table 8.50: Ave. and SD for highest cover solution in SE5 given 10 trials with initial 
population formation changes
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8.4.2 Changes in population size

The next variable to consider is the population size. The population size is an 

important parameter for the genetic algorithm, as we do not know a p rio ri the appro­

priate number of individuals to employ for searching the objective space. A variety 

of sizes 100, 200, 400, 800, and 1200 are tested. For each SE 10 trials are run at each 

population size, resulting in 200 tests.

First, the average (from 10 trials) of the first solution providing > 95% STP 

coverage across all SE (Tables 8.52, 8.53, 8.54, 8.55) were compared. Interpreting 

the results (Table 8.51) indicates that as the population size rises and coverage is 

held constant overlap decreases by up to 22.97% and cost decreases by up to 18.36%. 

However, the trade-off in terms of the number of generations and time required is 

steep. For example, the number of generations run increases by up to 177.40% and 

time increases up to a staggering 5041.61%. This suggests that larger population 

sizes lead to better quality solutions (i.e., less cost and overlap), but at the cost of 

longer run times. Considering the benefits of population size appear to start levelling 

off after 800 generations, 800 would be the maximum recommended population size, 

with sizes at and above 200 producing good benefits as well.

Second, the average (from 10 trials) of solutions providing the highest STP cov­

erage across all SE (Tables 8.57, 8.58, 8.59, 8.60) were compared. Interpreting the 

results (Table 8.56) indicates that when searching for the highest coverage solutions, 

the normal pattern follows, i.e., increases in coverage come at higher cost and over­

lap. Similar to above, the benefits do appear to start levelling off around 800, and, 

again, there are good arguments for preferring even lower settings (e.g., 400), as the
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coverage, cost, and overlap trade-offs appear desirable. Overall, the results indicate 

that a population size between 400-800 provides a respectable trade-off in terms of 

coverage and cost.

Pop-Size Cover Overlap Cost Traffic Gens. Time Sols.
200 -0.05 9.54 9.77 -0.10 -50.87 -203.24 -16.94
400 -0.02 12.08 11.46 0.01 -88.32 -750.59 -32.16
800 -0.02 21.49 16.63 -0.24 -137.30 -2454.26 -50.67
1200 -0.07 22.97 18.36 -0.22 -177.40 -5041.61 -63.36

Table 8.51: Ave. % change in objective measures for population 100 based solutions 
vs. 200, 400, 800 and 1200 across SE (for 1st solutions exceeding 95% STP coverage)

Pop.
Size

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

100 95.05
0.03

127.68
6.47

55.50
4.50

93.96
0.01

135.80
65.16

49.82
18.36

49.60
5.48

200 95.16
0.05

112.53
8.30

49.14
2.64

94.36
0.32

218.90
69.99

158.94
42.28

57.40
4.36

400 95.18
0.07

103.80
9.09

46.20
2.23

94.39
0.30

236.70
110.68

401.15
159.51

61.80
5.49

800 95.12
0.07

92.31
7.47

43.70
2.05

94.38
0.25

312.90
116.87

1280.71
429.57

71.20
5.33

1200 95.16
0.11

93.79
4.56

43.60
0.80

94.37
0.17

276.70
104.92

2062.26
701.10

72.00
6.03

Table 8.52: Ave. and SD for first solutions in SE1 exceeding 95% STP coverage given 
10 trials with population size changes
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Pop.
Size

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

100 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

129.60
69.96

51.89
20.21

48.10
3.51

200 95.14
0.02

132.39
5.13

48.50
1.50

90.40
0.06

165.00
82.13

136.14
57.04

50.80
5.36

400 95.10
0.05

128.23
10.85

47.20
2.27

89.90
0.82

235.60
85.10

412.39
125.31

61.60
7.28

800 95.11
0.08

105.38
11.78

43.50
1.80

90.81
0.96

329.10
112.43

1441.79
457.72

69.70
6.99

1200 95.14
0.08

103.43
5.65

42.10
0.83

90.48
0.55

390.40
154.97

2967.29
1113.76

78.30
10.79

Table 8.53: Ave. and SD for first solutions in SE2 exceeding 95% STP coverage given 
10 trials with population size changes

Pop.
Size

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

100 95.07
0.05

119.61
18.09

61.00
6.00

94.27
0.39

173.50
99.59

139.28
64.25

54.40
5.43

200 95.15
0.10

103.99
9.23

54.40
2.06

94.20
0.52

212.20
103.72

358.79
156.27

64.30
11.92

400 95.13
0.10

98.96
10.64

51.20
3.22

94.39
0.26

332.50
168.85

1200.63
541.09

73.70
6.36

800 95.12
0.07

92.83
5.14

49.00
1.79

94.34
0.28

359.10
153.29

3008.92
1275.03

82.70
10.60

1200 95.22
0.08

87.84
7.30

47.60
1.50

94.59
0.31

418.30
166.70

5793.45
2277.04

87.30
11.65

Table 8.54: Ave. and SD for first solutions in SE4 exceeding 95% STP coverage given
10 trials with population size changes
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Pop.
Size

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

100 95.16
0.00

109.13
0.00

57.00
0.00

95.16
0.00

145.60
70.47

112.82
42.35

52.10
4.21

200 95.11
0.06

105.11
8.52

53.00
3.23

95.11
0.06

280.50
139.93

421.93
190.29

66.80
6.72

400 95.10
0.07

99.09
9.50

51.11
2.64

95.10
0.07

299.30
161.52

1060.96
538.47

73.20
11.39

800 95.13
0.08

92.24
4.84

48.30
1.79

95.13
0.08

375.50
167.63

3054.57
1347.19

84.50
9.77

1200 95.17
0.11

90.69
6.50

47.40
2.24

95.17
0.11

529.30
282.53

7388.61
3759.45

96.40
11.89

Table 8.55: Ave. and SD for first solutions in SE5 exceeding 95% STP coverage given 
10 trials with population size changes

Pop-Size Cover Overlap Cost Traffic
200 -3.24 -25.31 -14.72 -3.85
400 -5.26 -51.93 -30.29 -6.89
800 -6.57 -81.12 -48.33 -8.87
1200 -7.05 -103.17 -61.08 -9.62

Table 8.56: Ave. % change in objective measures for population 100 based solutions 
vs. 200, 400, 800 and 1200 across SE (for highest coverage solutions)

Pop.
Size

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

100 92.42
2.33

110.49
18.99

49.80
6.08

90.67
2.78

200 95.84
1.11

135.94
15.46

56.90
4.57

94.96
1.44

400 97.10
0.78

165.82
21.53

61.60
5.90

96.41
0.93

800 98.22
0.78

193.71
15.55

71.20
5.44

97.75
1.05

1200 98.46
0.51

195.41
21.74

71.60
6.36

98.08
0.57

Table 8.57: Ave. and SD for highest cover solution in SE1 given 10 trials with
population size changes
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Pop.
Size

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

100 92.16
1.53

129.46
18.28

48.00 1 
4.49

84.79
2.37

200 94.02
1.28

142.21
24.04

50.00
5.29

87.24
2.57

400 96.51
0.95

178.87
22.67

61.10
7.18

92.51
1.87

800 98.15
0.77

210.92
19.78

68.70
6.99

95.83
1.78

1200 98.73
0.73

251.61
37.85

77.70
10.94

97.09
1.42

Table 8.58: Ave. and SD for highest cover solution in SE2 given 10 trials with 
population size changes

Pop.
Size

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

100 92.46
2.72

110.38
18.43

55.50
7.09

91.37
3.26

200 94.95
2.78

135.41
34.93

63.50
11.99

94.31
3.00

400 97.82
1.07

170.68
22.86

73.30
6.54

97.47
1.25

800 98.68
0.83

196.89
32.45

81.70
10.60

98.59
0.81

1200 99.02
0.96

215.40
36.92

86.80
11.61

99.00
0.99

Table 8.59: Ave. and SD for highest cover solution in SE4 given 10 trials with
population size changes



Chapter 8: 3D Parameter Tuning 195

Pop.
Size

Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

100 92.57
2.04

104.20
18.20

53.00
5.69

92.57
2.04

200 96.79
1.20

151.78
21.66

66.80
5.91

96.79
1.20

400 97.63
1.55

171.79
43.14

73.20
12.06

97.63
1.55

800 98.83
0.76

216.61
36.05

84.80
10.27

98.83
0.76

1200 99.45
0.48

256.68
40.87

96.60
12.79

99.45
0.48

Table 8.60: Ave. and SD for highest cover solution in SE5 given 10 trials with 
population size changes

80
— Ti me s

q u ad ra tic70

60
.8
=3I SO

y = 4.1e-005*x + 0.013*x + 0.071

C3
cr 30

I<  20

10

12002 00 8 00 10000 4 00 600
P opulation S ize

Table 8.61: Ave. run times (for a single trial using SE1) as a result of changing the 
population size along with a quadratic interpolation
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8.4.3 Changes in stagnation rate

The next parameter to consider is the number of allowable generations (when no 

changes are occurring in the best objective values) before termination. Rates of 5, 

25, 50, 100, and 200 generations are tested in order to determine the rate with the 

best trade-off of speed versus solution quality. One would like to select the lowest 

rate possible that does not sacrifice significantly on solution quality.

First, the average (from 10 trials) of the first solution providing > 95% STP 

coverage across all SE (Tables 8.63, 8.64, 8.65, 8.66) were compared. Interpreting 

the results (Table 8.62) indicates that as the stagnation rate rises and coverage is 

held constant overlap decreases linearly starting at 50 by 22.02% and cost decreases 

linearly starting at 50 by 14.60%. This suggests that large stagnation rates lead to 

better quality solutions (i.e., less cost and overlap), but at the cost of longer run times. 

Considering the trade-off in terms of the number of generations run and execution 

time, a stagnation rate of 50 is recommended. However, if execution time were not a 

factor, then a setting of 200 or higher should be employed.

Second, the average (from 10 trials) of solutions providing the highest STP cov­

erage across all SE (Tables 8.68, 8.69, 8.70, 8.71) were compared. Interpreting the 

results (Table 8.67) indicates that as the stagnation rate rises and the highest possi­

ble coverage is sought STP and traffic coverage rises linearly (by 9.10% and 11.38% 

respectively), and overlap and cost increase linearly (by 119.85% and 71.28% respec­

tively).

Overall, when considering all factors, a choice of 50 or 100 seems practical when 

seeking the highest coverage solution, while trying to minimize cost and overlap. The
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general trend is that larger stagnation rates not only find higher maximum STP and 

traffic coverage, but given a certain level of coverage (e.g., 95%) the cost and overlap 

is lower than those found with smaller stagnation rates. The only trade-off is run 

times. However, when seeking the highest coverage solutions, increases in cost and 

overlap mean a lower stagnation rate (i.e., 50 or 100) is a more judicious choice.

Rate Cover Overlap Cost Traffic Gens. Time Sols.
25 NA NA NA NA -641.90 -603.33 -39.16
50 0.02 13.50 9.39 -0.30 -1461.62 -1436.52 -49.94
100 0.04 17.75 11.91 -0.18 -2878.53 -2931.33 -63.06
200 0.02 22.02 14.60 -0.24 -7982.95 -8659.31 -101.30

Table 8.62: Ave. % change in objective measures for stagnation rate of 5 based 
solutions vs. 25, 50, 100 and 200 across SE (for 1st solutions exceeding 95% STP 
coverage)

Rate Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

5 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

18.80
10.81

32.88
14.28

43.30
4.08

25 95.22
0.15

114.91
11.57

48.75
3.27

94.20
0.29

85.40
37.45

150.49
52.00

55.80
3.06

50 95.20
0.07

106.17
9.410

46.89
2.38

94.38
0.16

207.3
88.20

354.66
126.41

60.10
7.20

100 95.14
0.08

99.01
8.42

45.30
1.79

94.33
0.23

488.70
221.43

832.30
327.69

64.20
4.89

200 95.16
0.07

94.91
6.86

43.60
1.62

94.40
0.27

873.60
476.25

1579.33
717.60

72.50
10.00

Table 8.63: Ave. and SD for first solutions in SE1 exceeding 95% STP coverage given 
10 trials with convergence rate changes
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Rate Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

5 95.14
0.00

172.04
0.00

58.00
0.00

89.79
0.00

16.00
8.17

31.32
11.63

43.90
5.34

25 95.12
0.07

129.54
11.67

48.11
2.77

90.19
0.67

133.30
63.80

232.88
95.86

61.30
5.33

50 95.12
0.10

110.69
7.34

44.38
1.41

90.82
0.54

241.60
142.17

431.61
226.69

61.00
9.56

100 95.16
0.09

106.82
4.17

43.90
1.14

90.62
0.66

513.40
235.44

926.97
385.70

68.70
8.79

200 95.10
0.05

102.49
4.25

42.60
0.92

90.57
0.59

1231.80
522.54

2330.60
893.32

81.00
7.35

Table 8.64: Ave. and SD for first solutions in SE2 exceeding 95% STP coverage given 
10 trials with convergence rate changes

Rate Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

5 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

16.50
11.06

58.94
29.07

45.80
5.62

25 95.15
0.05

104.90
6.88

53.78
2.20

94.61
0.36

164.80
69.17

556.12
217.20

65.60
5.57

50 95.13
0.08

99.65
7.09

50.90
1.92

94.51
0.22

390.50
265.08

1386.15
899.58

74.30
13.70

100 95.16
0.09

95.45
9.47

49.78
2.78

94.39
0.33

527.40
420.13

2046.30
1544.00

76.10
15.42

200 95.21
0.10

87.97
6.54

48.00
1.41

94.53
0.30

1727.40
891.91

6989.43
3453.76

99.40
18.18

Table 8.65: Ave. and SD for first solutions in SE4 exceeding 95% STP coverage given
10 trials with convergence rate changes
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Rate Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

5 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

21.00
16.91

70.72
43.94

45.00
4.31

25 95.20
0.11

103.44
6.64

53.20
2.18

95.20
0.11

143.10
63.51

472.80
179.99

65.20
3.92

50 95.18
0.06

97.51
7.92

50.60
2.62

95.18
0.06

266.10
117.86

945.93
368.34

71.90
11.31

100 95.11
0.09

92.84
6.97

48.50
1.91

95.11
0.09

611.00
241.57

2236.50
822.93

81.60
9.94

200 95.15
0.10

88.83
3.67

47.60
1.02

95.15
0.10

1998.60
987.97

7732.60
3708.49

106.30
10.45

Table 8.66: Ave. and SD for first solutions in SE5 exceeding 95% STP coverage given 
10 trials with convergence rate changes

Rate Cover Overlap Cost Traffic
25 -6.15 -36.16 -19.31 -7.26
50 -7.00 -49.58 -27.38 -8.53
100 -7.76 -66.04 -37.86 -9.64
200 -9.10 -119.85 -71.28 -11.38

Table 8.67: Ave. % change in objective measures for stagnation rate of 5 based 
solutions vs. 25, 50, 100 and 200 across SE (for highest coverage solutions)

Rate Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

5 90.98
1.82

114.48
13.80

50.80
3.09

89.22
2.21

25 95.80
1.10

140.55
10.81

57.00
2.61

94.82
1.41

50 96.60
0.98

152.21
27.02

59.60
7.53

95.78
1.11

100 97.48
0.77

166.23
18.67

63.60
4.82

96.86
0.87

200 98.40
0.96

196.75
35.80

72.00
10.62

98.03
1.10

Table 8.68: Ave. and SD for highest cover solution in SE1 given 10 trials with
convergence rate changes
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Rate Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

5 92.17
1.51

134.74
21.69

51.50
5.43

85.41
2.39

25 96.40
0.99

182.57
25.57

61.10
4.78

92.05
2.21

50 96.77
1.30

176.19
34.90

60.60
9.87

93.48
2.43

100 97.87
0.90

200.22
36.09

68.40
9.05

95.49
1.87

200 98.97
0.38

245.62
32.25

81.70
11.46

97.51
1.00

Table 8.69: Ave. and SD for highest cover solution in SE2 given 10 trials with 
convergence rate changes

Rate Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

5 89.40
2.83

100.55
7.16

53.70
3.29

88.81
2.86

25 96.66
1.23

145.00
19.61

65.70
6.13

96.28
1.37

50 97.68
1.34

173.16
41.71

74.80
14.15

97.49
1.48

100 97.58
2.15

177.52
50.04

75.50
16.01

97.35
2.49

200 99.23
1.21

250.22
57.89

98.70
18.48

99.14
1.37

Table 8.70: Ave. and SD for highest cover solution in SE4 given 10 trials with
convergence rate changes
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Rate Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

5 90.82
2.51

102.77
11.72

52.80
4.12

90.82
2.51

25 96.81
0.75

146.12
15.12

65.50
4.52

96.81
0.75

50 97.69
1.29

166.87
36.64

71.40
10.97

97.69
1.29

100 98.60
0.95

199.17
30.94

80.70
9.76

98.60
0.95

200 99.77
0.18

284.04
30.38

106.10
10.33

99.77
0.18

Table 8.71: Ave. and SD for highest cover solution in SE5 given 10 trials with 
convergence rate changes
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8.4.4 Changes in crossover

The type of cross-over used can influence the solution quality and run times, as 

the means by which the genetic algorithm attempts to improve solutions has been 

changed. For this reason, single, double, and multi-point crossover methods were 

investigated.

First, the average (from 10 trials) of the first solution providing > 95% STP 

coverage across all SE (Tables 8.73, 8.74, 8.75, 8.76) were compared. Interpreting 

the results (Table 8.72) indicates that as the crossover method changes from single­

point and coverage is held constant double-point crossover leads to marginally higher 

overlap and cost (i.e., a rise of 3.06% and 2.28% respectively) and longer execution 

times (i.e, 21.30% longer), and multi-point crossover also leads to slightly higher 

overlap and cost (i.e., a rise of 11.79% and 9.28% respectively) and marginally longer 

execution times (i.e, 2.26% longer)

Second, the average (from 10 trials) of solutions providing the highest STP cov­

erage across all SE (Tables 8.78, 8.79, 8.80, 8.81) were compared. Interpreting the 

results (Table 8.77) indicates that as the crossover method changes from single-point 

and maximum coverage is sought double-point crossover results in a very marginal 

increase in coverage for a slight rise in overlap and cost (i.e., 8.63% and 7.90% respec­

tively), and multi-point crossover results in a slight decrease in coverage for a slight 

rise in overlap and cost (i.e., 3.65% and 4.34% respectively).

Overall, the results indicate that single-point crossover should be preferred over 

double or multi-point crossover, as it tends to lead to better solutions in terms of 

coverage, cost, overlap, and execution times.
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X-Over Cover Overlap Cost Traffic Gens. Time Sols.
double-pt. -0.03 -3.06 -2.28 0.00 -20.20 -21.30 -7.05
multi-pt. 0.01 -11.79 -9.18 0.02 3.67 2.26 -3.13

Table 8.72: Ave. % change in objective measures for single-point crossover based 
solutions vs. double and multi-point across SE (for 1st solutions exceeding 95% STP 
coverage)

X-Over Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

Multi-pt 95.18
0.07

103.80
9.09

46.20
2.23

94.39
0.30

236.70
110.68

401.15
159.51

61.80
5.49

Double-pt 95.15
0.10

111.69
10.83

49.20
3.46

94.34
0.19

285.10
124.46

475.72
180.39

65.30
4.69

Single-pt 95.07
0.07

125.87
18.09

52.22
3.55

94.15
0.33

238.70
107.31

399.39
159.71

64.90
8.65

Table 8.73: Ave. and SD for first solutions in SE1 exceeding 95% STP coverage given 
10 trials with crossover method changes

X-Over Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

Multi-pt 95.10
0.05

128.23
10.85

47.20
2.27

89.90
0.82

235.60
85.10

412.39
125.31

61.60
7.28

Double-pt 95.15
0.10

130.38
13.87

49.44
2.41

89.74
0.75

286.40
153.86

523.58
246.86

66.50
7.83

Single-pt 95.10
0.09

144.57
19.21

54.00
3.93

90.15
0.46

226.20
105.81

401.42
161.23

61.70
3.26

Table 8.74: Ave. and SD for first solutions in SE2 exceeding 95% STP coverage given
10 trials with crossover method changes
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X-Over Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

Multi-pt 95.13
0.10

98.96
10.64

51.20
3.22

94.39
0.26

332.50
168.85

1200.63
541.09

73.70
6.36

Double-pt 95.19
0.06

99.74
8.93

51.60
2.42

94.39
0.46

341.10
183.09

1282.39
707.72

77.60
13.79

Single-pt 95.08
0.06

109.54
11.81

54.50
3.91

94.19
0.26

264.00
173.81

1016.14
653.93

77.50
16.56

Table 8.75: Ave. and SD for first solutions in SE4 exceeding 95% STP coverage given 
10 trials with crossover method changes

X-Over Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

Multi-pt 95.10
0.07

99.09
9.50

51.11
2.64

95.10
0.07

299.30
161.52

1060.96
538.47

73.20
11.39

Double-pt 95.16
0.10

99.88
6.61

50.89
2.02

95.16
0.10

407.601 
209.73

1409.43
726.43

80.00
16.67

Single-pt 95.21
0.10

101.53
5.70

52.56
2.83

95.21
0.10

326.40
215.06

1161.08
806.70

74.80
14.16

Table 8.76: Ave. and SD for first solutions in SE5 exceeding 95% STP coverage given 
10 trials with crossover method changes

X-Over Cover Overlap Cost Traffic
double-pt. -0.14 -8.63 -7.90 -0.05
multi-pt. 0.73 -3.65 -4.34 1.01

Table 8.77: Ave. % change in objective measures for single-point crossover based
solutions vs. double and multi-point across SE (for highest coverage solutions)
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X-Over Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Multi-pt 97.10
0.78

165.82
21.53

61.60
5.90

96.41
0.93

Double-pt 97.08
0.63

166.88
17.95

65.60
5.68

96.45
0.73

Single-pt 96.29
1.21

169.99
23.75

65.60
10.39

95.47
1.50

Table 8.78: Ave. and SD for highest cover solution in SE1 given 10 trials with 
crossover method changes

X-Over Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Multi-pt 96.51
0.95

178.87
22.67

61.10
7.18

92.51
1.87

Double-pt 96.68
1.35

199.88
29.61

67.10
9.32

92.35
3.14

Single-pt 95.61
0.87

178.53
12.44

60.90
3.33

90.56
2.02

Table 8.79: Ave. and SD for highest cover solution in SE2 given 10 trials with 
crossover method changes

X-Over Ave. Cove. Ave. Over. Ave. Cost Ave. Traf
SD SD SD SD

Multi-pt 97.82 170.68 73.30 97.47
1.07 22.86 6.54 1.25

Double-pt 97.87 185.04 78.00 97.45
1.25 41.53 14.68 1.63

Single-pt 96.61 183.81 78.70 96.46
2.22 61.30 19.82 2.01

Table 8.80: Ave. and SD for highest cover solution in SE4 given 10 trials with
crossover method changes
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X-Over Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Multi-pt 97.63
1.55

171.79
43.14

73.20
12.06

97.63
1.55

Double-pt 97.97
1.44

195.39
57.62

79.70
17.10

97.97
1.44

Single-pt 97.72
1.34

179.69
47.94

76.00
14.57

97.72
1.34

Table 8.81: Ave. and SD for highest cover solution in SE5 given 10 trials with 
crossover method changes
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8.4.5 Changes in representation

The type of representation used could potentially have a significant influence over 

solution quality and run times, as the means by which the genetic algorithm attempts 

to improve solutions has been changed. For this reason binary and integer-coded 

representations were investigated. Due to extremely long run times for integer-coding, 

the test were only run on SE1 and SE2. The overlap constraint for MCO-S was set 

to 80% based on initial trials to ensure high coverage solutions were found.

First, the first solutions in SE1 and SE2 providing > 95% STP (Table 8.83) were 

compared. Interpreting the results (Table 8.82) indicates that as the choice of genetic 

representation changes from binary-coded and coverage is held constant that integer- 

based solutions result in 27.41% less overlap and incur a cost savings of 13.12% for 

SE1, and 30.90% less overlap and a cost savings of 11.65% for SE2. The trade-off is 

that run times leap 652.30% for SE1 and 565.68% for SE2.

Second, solutions in SE1 and SE2 providing the highest STP coverage (Table 

8.85) were compared. Interpreting the results (Table 8.84) indicates that as the 

choice of genetic representation changes from binary-coded and maximum coverage 

is sought STP coverage increases marginally by 0.17% and traffic coverage by 0.44%, 

while overlap decreases by 28.61%, and cost decreases by 16.55% for SE1; and STP 

coverage increases marginally by 0.49% and traffic coverage by 1.85%, while overlap 

decreases by 31.16%, and cost decreases by 6.12% for SE2.

Therefore, if time were not a factor, one would prefer the integer-coded represen­

tation and strategy over binary-coded. In short, if the highest quality solutions are 

being sought, integer-coding should be used. However, if the fastest solutions are
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being sought, binary-coding should be used.

Represent. Cover Overlap Cost Traffic Gens. Time Sols.
Int.(SEl) 0.07 27.41 13.12 -0.13 -30.18 -652.30 63.28
Int.(SE2) -0.11 30.09 11.65 -1.49 -24.54 -565.68 63.07

Table 8.82: Ave. % change in objective measures for binary-coded solutions vs. 
integer-coded for SE1 and SE2 (for 1st solutions exceeding 95% STP coverage)

Repres. Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Gens.
Ave.
SD

Time
Ave.
SD

Sols.
Ave.
SD

Ran.(SEl) 95.08
0.00

71.95
0.03

38.83
0.37

94.33
0.24

446.00
100.30

5615.14
1328.23

25.67
3.54

Int.(SEl) 95.15
0.07

99.12
7.92

44.70
1.62

94.21
0.21

342.60
113.66

746.40
225.17

69.90
5.34

Ran.(SE2) 95.14
0.05

116.46
7.74

45.50
1.80

90.17
0.46

291.40
152.21

683.54
320.81

65.80
5.91

Int.(SE2) 95.24
0.10

81.42
4.41

40.20
0.60

91.51
0.35

362.90
111.70

4550.18
1217.12

24.30
2.83

Table 8.83: Ave. and SD for highest cover solution in SE1 and SE2 given 10 trials 
with genetic representation changes

Represent. Cover Overlap Cost Traffic
Int.(SEl) -0.17 28.61 16.55 -0.44
Int.(SE2) -0.49 31.16 6.12 -1.85

Table 8.84: Ave. % change in objective measures for binary-coded solutions vs. 
integer-coded for SE1 and SE2 (for highest coverage solutions)

8.5 Conclusions

In this chapter we completed parameter tuning and testing for the simulation 

environment, decoder, and genetic algorithm. The general trend was that many 

settings incur a trade-off between solution quality and execution time. Testing was
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Repres. Cove.
Ave.
SD

Over.
Ave.
SD

Cost
Ave.
SD

Traf.
Ave.
SD

Ran.(SEl) 98.22
0.00

135.22
0.12

58.33
3.54

97.91
0.41

Int.(SEl) 98.05
0.58

189.40
19.45

69.90
6.07

97.48
0.83

Ran.(SE2) 97.50
0.54

197.57
21.19

65.40
6.36

94.52
1.27

Int.(SE2) 97.98
0.16

136.00
10.04

61.40
4.50

96.27
0.33

Table 8.85: Ave. and SD for first solutions in SE1 and SE2 exceeding 95% STP 
coverage given 10 trials with genetic representation changes

completed in a standardized environment which for the SE used 568 candidate sites 

and 1 x traffic; which for TSCA used Tm a x  =  60 and three random directive antenna; 

and which for the GA used placement probability, population size =  500, stagnation 

rate =  50, multi-point crossover, and binary-coding. These settings were based on 

preliminary testing.

Following testing, the following recommendations can be made:

• SE

CBS: Use 568 CBS for default and when seeking best solution quality. Use 

less for faster or more challenging runs.

Traffic multiplier: Use lx  for general testing. Use larger multiplier for 

more challenging runs, and small multiplier for faster runs.

• TSCA

Tm a x '- Use Tm a x  = 60 for general testing. Use higher Tm a x  settings to
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encourage higher coverage solutions at lower cost, but recognize that this 

comes at the expense of more overlap and ultimately interference.

Antennas: Use three randomly determined directive antennas.

•  GA

Starting population: Use placement probability for speed and random pop­

ulations for ultimate solution quality.

Population size: A default size of 500 is suggested, although any table 

between 200-800 has benefits in terms of trade-off between speed and so­

lution quality. 200 should be the minimum size used for faster runs, and 

800 for ultimate solution quality.

Stagnation rate: A default rate of 50 is recommended. A smaller rate 

results in faster runs, while a larger rate results in better solution quality. 

A maximum size of 200 is suggested.

Cross-over: Single-point crossover is recommended for binary-coding.

Representation: Binary-coding is recommended for faster runs and general 

testing, while integer-coding is recommended for real-world testing and 

higher solution quality.

In order to test these parameter settings, a final test using all 3D objective mea­

sures is suggested. This will be performed in Chapter 9. The relationship between 

certain objective can be determined with these tests, and by running tests with both 

GA representations perhaps more detailed advice can be given regarding the prefer­

ence of one over the other.



Chapter 9

Final 3D Cell Plan Testing

In this chapter, we perform the final 3D cell plan testing. In this testing, we 

compare results from single-trial tests using SE1, 2, and 3 (Figure 6.1) with antennas 

at heights of 30-200m using binary-coded default settings, binary-coded optimized 

settings, and integer-coded optimized settings. This is done to provide evidence as 

to the most suitable approach to use during realistic 3D cell planning. Second, we 

investigate the correlational matrix between objective measures, in order to assess the 

degree of relationships between objectives. And finally, we look at example solutions 

to each SE and propose a benchmark solution for each.

During testing the maximum degree of coverage by Tm a x  is as displayed in Table 

9.1. As we use the default Tm a x  of 6 0 , it notable that 100% coverage is not possible 

in all SE. For this reason, we continue to use the approach followed in Chapter 8 

of measuring the average and standard deviation at two points. The first is based 

on the objective values of the first solution providing > 95% STP coverage, which 

effectively makes STP coverage constant (at 95%) and allows one to note variations

211
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in the other objectives. The second is based on the solution with the highest STP 

coverage, which allows one to note the ability of the approach to maximize coverage, 

and how this affects other objectives.

Sim.Env T m a x  value
43 60 80 100

SE1 99.15 99.89 100.00 100.00
SE2 99.48 99.86 99.99 100.00
SE3 99.27 99.98 99.99 99.99

Table 9.1: Maximum degree of coverage in simulated environments by Tm a x  setting

9.1 B eta  Tuning for Integer-coded Approach

An additional concern is the affect that (3 can have on the results. Given cell over­

lap is restricted to the percentage of overlap (3 when using the integer-permutation 

strategy, an appropriate level capable of achieving high levels of coverage was deter­

mined. This can be seen in Figure 9.1. This figure shows that a (3 between 70 to 90 is 

needed to achieve acceptable levels of coverage. Therefore, for experiments conducted 

herein, an average value of 80 was used during integer-coded testing.

9.2 Single-trial Comparisons

To compare the effectiveness of each approach, we compare the Pareto fronts of 

non-dominated solutions each produces. The approaches used are termed binary- 

default, which uses the trial settings as described in Chapter 8.1, binary-optimized, 

and in teger-op tim ized . The only differences are that the optimized approaches use a
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Figure 9.1: General pattern of cost vs. coverage by (3 value with T m a x  = 80

population size of 800 instead of 500, a convergence rate of 100 instead of 50, and the 

binary-optimized uses single-point crossover instead of multi-point.

The results of the comparisons for SE1 appear in Figure 9.2, for SE2 in Figure 

9.3, and for SE3 in Figure 9.4. The trends in each figure are similar: First, the 

integer-optimized approach achieves the best unit cost of coverage, followed by the 

binary-optimized, and finally by the binary-default. This is seen most clearly in SE1 

and SE3, with the binary-optimized set only performing slightly better at very high 

levels of coverage in SE2. Second, the binary-optimized approach produces the longest 

Pareto front, and therefore the widest range of solutions. This is seen most clearly in 

SE1 and SE2. In SE3, the binary-default is equally long, although the solutions are 

not as optimal. Note that the reason the integer-optimized Pareto front is not as long 

is that the (3 setting largely determines the level of coverage, with low settings (e.g., 

10%) resulting in low coverage and high settings (e.g., 70%) resulting in high coverage. 

This is shown to be true later in Figure 9.1. In short, these results show the integer-
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Figure 9.2: STP coverage vs. cost using default binary-coding, optimized binary- 
coding, and optimized integer-coding SE1

optimized approach creates the highest quality solutions, while the binary-optimized 

approach creates the widest variety of solutions. For the integer-based approach to 

create a wide variety of solutions, a wide-ranging number of (3 settings would need to 

be used, although this would increase its execution time considerably. For example, 

given the average run time ends up being 3.5 hours using one (3 setting, using 10 

settings would require roughly 35 hours.

9.3 R ela tion sh ip  B etw een  O bjectives

Next, the relationships between objectives for SE1 can be seen visually in Figure 

9.5, 9.6, 9.7, 9.8, 9.9, 9.10, and in a Pearson correlation matrix (based on results using 

binary-optimized) in Table 9.2. The Pearson correlation was chosen as it is the most 

common measure of the linear relationship between two variables. It ranges from 1 to 

-1, where a correlation of 1 means that there is a perfect positive linear relationship
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Figure 9.3: STP coverage vs. cost using default binary-coding, optimized binary- 
coding, and optimized integer-coding SE2
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Figure 9.4: STP coverage vs. cost using default binary-coding, optimized binary- 
coding, and optimized integer-coding SE3
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Figure 9.5: STP coverage vs. capacity using binary-default, binary-optimized, and 
integer-optimized in SE1

between variables. Figure 9.5 shows that there is nearly a perfect positive correlation 

between traffic hold and coverage. Table 9.2 reveals the correlation is 0.998, which is 

significant at the 0.01 level (2-tailed). Similarly, Figure 9.6 shows that there is nearly 

a perfect positive correlation between traffic coverage and STP coverage. Table 9.2 

reveals the correlation is 0.999, which is significant at the 0.01 level (2-tailed). These 

results are expected given our settings, which specifically sought to improve coverage 

(using NSGA-II) using cells that were not overloaded (via TSCA). If the amount of 

traffic each cell handled had not been controlled, one would expect that the traffic 

hold would not so readily improve along with coverage as that seen here. This shows 

the effectiveness of using TSCA.

Figure 9.7 shows that the number of cell violations (which occurs whenever a cell 

exceeds 43 Erlangs of traffic) climbs linearly until roughly 50% coverage, after which 

point the number of cell violations linearly decreases. Table 9.2 reveals the correlation 

is -.603, which is significant at the 0.01 level (2-tailed). Therefore, generally we should
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Figure 9.6: STP coverage vs. traffic using binary-default, binary-optimized, and 
integer-optimized in SE1

expect that as coverage rises, the number of cell violations falls. This pattern occurs 

because as more cells are added, cells are more tightly packed, which means that the 

traffic gets ‘shared’ between them, reducing the overall number of cell violations as 

traffic is spread amongst more cells.

Figure 9.8 shows that handover and coverage tend to improve along with one 

another. Table 9.2 reveals the correlation is 0.886, which is significant at the 0.01 

level (2-tailed). Therefore, generally we should expect that as coverage rises, handover 

rises as well. This pattern occurs because as more cells are added, cells are more 

tightly packed, which means that handover occurs more frequently and easily. If cells 

were not in contact with one another, coverage would be low and handover could not 

occur. So, the opposite is true as well: the more contact between cells, the more 

handover that occurs.

Figure 9.9 and 9.10 show a similar trend. This is that as coverage rises, so do 

overlap and interference. Indeed, Table 9.2 reveals the correlation between coverage
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Figure 9.7: STP coverage vs. cell violations using binary-default, binary-optimized, 
and integer-optimized in SE1
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Figure 9.8: STP coverage vs. handover using binary-default, binary-optimized, and 
integer-optimized in SE1
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Figure 9.9: STP coverage vs. interference using binary-default, binary-optimized, 
and integer-optimized in SE1

and interference is 0.806 and between coverage and overlap is 0.875, which in both 

cases is significant at the 0.01 level (2-tailed). Therefore, generally we should expect 

that as coverage rises, interference and overlap rise as well. This pattern occurs be­

cause as more cells are added and coverage improves, cells are more tightly packed, 

which results in more cell overlap and concomitant interference. Indeed, it is diffi­

cult to imagine any realistic cell planning scenario where this relationship would not 

hold because as has been shown throughout this work, as 100% service coverage is 

approached cost (and therefore number of cells) increases at an accelerated rate.

The results in these figures shows a number of important trends given our 3D 

cell planning strategy which controls the amount of traffic per cell. These can be 

summarized as follows-although it must be understood that the results and summaries 

are dependent on the algorithms used herein, and that different findings are likely if 

one employs different cell planning algorithms; in particular, the algorithm used herein 

directly controls traffic, whereas alternative approaches do not:



coverl violationsl trafficl capacityl interference 1 overlap 1 costl handoverl
coverl Pearson Correlation 1 -.603" .999" 998" .806" .875" .907" 886"

Sig. (2-tailed) .000 .000 .000 .000 000 .000 .000
N 63 63 63 63 63 63 63 63

violations 1 Pearson Correlation -.603" 1 -.626" -.635" -.749" ■ CD
» -.757" -.369"

Sig. (2-tailed) 000 .000 .000 .000 .000 .000 .003
N 63 63 63 63 63 63 63 63

trafficl Pearson Correlation 999" -.626" 1 1 000" .819" .886" .917"

nr—«oh
-

GO

Sig. (2-tailed) 000 000 .000 .000 000 .000 .000
N 63 63 63 63 63 63 63 63

capacityl Pearson Correlation .998" -.635" 1.000" 1 .821"
00GOGO .919" .868"

Sig. (2-tailed) .000 .000 .000 000 .000 .000 .000
N 63 63 63 63 63 63 63 63

interference 1 Pearson Correlation .806" -.749" .819" .821" 1 .991" .979" .547"
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000
N 63 63 63 63 63 63 63 63

overlap 1 Pearson Correlation .875" -.756" .886" GO GO GO
» .991" 1 .997" .633"

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000
N 63 63 63 63 63 63 63 63

costl Pearson Correlation .907" -.757" .917" .919" .979" .997" 1 .676"
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000
N 63 63 63 63 63 63 63 63

handoverl Pearson Correlation .886" -.369" .870" .868" .547" .633" .676" 1
Sig. (2-tailed) .000 .003 .000 .000 .000 .000 .000
N 63 63 63 63 63 63 63 63

**. Correlation is significant at the 0.01 level (2-tailed).

Table 9.2: Correlations between objectives measures
totoo
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9: Final 3D 

Cell Plan 
Testing



Chapter 9: Final 3D Cell Plan Testing 221

450
—  Binary-optim ized
—  Integer-optim ized
— ■ B inary-default

400

350

300

250

o  200

150

100

0 20 40 10060 80
% Coverage

Figure 9.10: STP coverage vs. overlap using binary-default, binary-optimized, and 
integer-optimized in SE1

• Coverage, traffic coverage, and traffic hold are nearly perfectly positively corre­

lated to one another.

• As coverage rises, interference, overlap, cost, and handover also rise and the 

number of cell violations drops.

These relationships mean that given this 3D cell planning strategy:

• One can safely optimise for cover and cost, given the highly significant correla­

tions between coverage and all other objective measures.

• One would like to minimize the correlation between coverage and overlap and 

interference further.

• The strategy performs remarkably at maintaining such a close relationship be­

tween coverage and traffic hold; one would therefore like to increase Tm a x  as 

much as possible while maintaining this correlation (to help reduce cost, overlap, 

interference, and cell violations).
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9.4 E xam p le S o lu tion s

To help visualize what happens as coverage increases, Figures 9.11, 9.12, and 9.13 

show solutions on SE1 at coverage values of 90%, 95%, and 98% respectively for the 

integer-optimized approach.

Figure 9.11: Example of solutions to SE1 at coverage values of 90% (left), 95% 
(middle), and 98% (right), where white indicates an uncovered STP, black RTP, and 
colored areas covered STP

Figure 9.12: Example of solutions to SE2 at coverage values of 90% (left), 95% 
(middle), and 98% (right), where white indicates an uncovered STP, black RTP, and 
colored areas covered STP

The benchmarks objective measures for solutions to SE1, SE2, and SE3 are given
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Figure 9.13: Example of solutions to SE3 at coverage values of 90% (left), 95% 
(middle), and 98% (right), where white indicates an uncovered STP, black RTP, and 
colored areas covered STP

in Table 9.3. There are two benchmark solutions. The first provides the solution with 

the lowest cost per unit of coverage, and the second the solution with the highest 

overall coverage. The former may be preferred by a low-cost operator and the second 

by a high-quality operator. That is, the first identifies the network with the largest

return for investment, and the second the highest quality solution in terms of coverage.

SE Cover Cost Capa. Viol. Hand. Inte. Over. Traf.
SEl(UCC)
SEl(Cov)

90.283
98.074

36.000
60.000

88.989
97.711

2.000
0.000

95.327
97.753

34.540
88.397

192.750
377.140

89.083
97.711

SE2(UCC)
SE2(Cov)

92.238
97.804

41.000
67.000

88.407
96.194

3.000
1.000

98.347
97.917

41.587
95.042

216.863
391.520

88.833
96.537

SE3(UCC)
SE3(Cov)

91.180
98.057

43.000
75.000

88.109
97.380

4.000
0.000

97.656
96.279

43.779
97.271

222.831
396.441

88.524
97.380

Table 9.3: Benchmark solutions for SE1, SE2, and SE3 for lowest unit cost of coverage 
(UCC) and highest coverage (Cov)
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9.5 C onclusions

Based on the finding in this chapter, we would suggest that the G3PS approach 

holds promise. There is clear evidence that it can meet high quality standards in terms 

of coverage, traffic hold, and handover, which is notable considering each antenna is 

dimensioned only once. Also, considering the average run time for each trial was 

roughly 3.5 hours, there is ample room to either add complexity to this model, (e.g., 

it would be easy to reduce interference by using the field strength formula to reset 

all antennas to the smallest transmission power necessary to service the set of STP 

covered by a given cell), or to use this strategy‘as is’ if fast network configuration 

were necessary, as might be the case in some military or emergency scenarios, or if 

dynamic dimensioning were needed. Some final considerations and future work will 

next be delineated in Chapter 10.



Chapter 10

Conclusions

The goal of this thesis was to scientifically investigate approaches to automatic 

mobile network design to improve the understanding of fundamental conflicts, ten­

sions, and relationships between design objectives and to help operators to meet the 

demands of their subscribers more efficiently. This goal can be subdivided as follows:

• Engineer appropriate 2D and 3D wireless network planning simulation environ­

ments and make these publicly available.

• Apply novel and appropriate multi-objective cell planning strategies and tune 

their performance.

• Investigate the fundamental relationships and tensions between design objec­

tives and suggest how this impacts cell planning.

The various chapters in this thesis have gone towards meeting these goals. The 

contributions are summarized in Section 10.1, and avenues of promising future re­

search in Section 10.2.

225
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10.1 Summary of Contributions

The main contributions following the introduction (i.e., Chapter 1) and review of 

the literature (i.e., Chapter 2) and before the conclusions (i.e., Chapter 10) are the 

following:

• In Chapter 3: A 2D  sim ulation  m odel and m ulti-objective cell planning 

strategy was introduced and tested . The 2D cell planning model is a 

simplified model appropriate for theoretical investigations. Within Chapter 3, it 

was used to investigate the suitability of four multi-objective algorithms to find 

an optimal ordering of candidate sites, where the order of sites was used by a 

greedy decoder to determine a cell plan. It was found that NSGA-II performed 

the best, and therefore it was used as the main MOA throughout this work.

• In Chapter 4: Six decoders used to  determ ine cell plans were designed  

and tested . The decoders, which differed by how they controlled cell overlap 

and how they selected the next candidate site, were tested on their ability to 

optimise coverage and cost by controlling cell density. Results indicated that the 

most complex decoder, PMCO-P, was the most effective, as it used more criteria 

for determining cell density. However, all decoders were capable of finding good 

network designs and PCO and MCO decoders were also considerably faster. 

Thus, each decoder was useful in specific circumstances.

• In Chapter 5: T he cell density  at which infrastructure efficiency is max­

im ized was investigated . The rate at which infrastructure cost changes is 

fundamental in determining the amount of coverage, and related capital invest-
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ment, which the operator should employ to maximize profit. Results indicated 

that as 100% coverage is approached there is progressively rapid decline in re­

turn on investment. This clarifies the relationship between coverage and cost 

and suggests why investigators and cost-conscious operators should not simply 

seek to maximize coverage.

• In Chapter 6: A  3D  sim ulation  m odel was engineered, design objectives 

defined and single s ite  coverage tested . An existing model was extended to 

create a realistic wireless simulation environment. Network components capable 

of allowing the measurement of all pertinent design objectives were also defined. 

This 3D model has been made freely and publicly available. This assures results 

presented herein can be challenged and extended in future scientific works.

• In Chapter 7: A 3D  cell planning strategy  was extended from the 2D

m odel. Due to the increased simulation complexity (in particular, traffic load 

and increased site complexity) a pre-processing phase (termed TSCA) was in­

troduced to the cell planning strategy to configure cells before optimizing on 

coverage and cost. TSCA helps guarantee that the most difficult aspect of cel­

lular network design (i.e., meeting traffic hold or capacity requirements) is met. 

This frees the network designer to concentrate on ascertaining high service cov­

erage at low cost. An additional binary-representation model was also added 

to compare and contrast to the standard integer-representation used during 2D 

planning.

• In Chapter 8: P ertinent 3D  variables and param eters were tuned and
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tested . Results generally indicated a trade-off for many parameter settings 

(e.g., GA population size) between solution quality and speed of execution, 

where different settings are more appropriate depending upon the application. 

Prom this work, an optimized parameter configuration was suggested for both 

the integer and binary based approaches.

• In Chapter 9: T ests to  com pare 3D cell planning strategies and ob­

jective  relations w ere com pleted . Results indicated that the integer-based 

approach should be preferred if the highest quality network solutions are sought, 

and the binary-based approach preferred if execution time is paramount, or if 

the largest Pareto front of non-dominated alternative networks is desired. It was 

found that STP coverage, traffic coverage, and traffic hold were nearly perfectly 

positively correlated when using this 3D cell planning strategy and optimized 

settings, and that using this strategy as coverage rises overlap, interference, cost, 

and handover also rise. This indicates that when using the optimized settings, 

optimizing for coverage and cost sufficiently accounts for meeting all pertinent 

network design objectives while using the G3PS approach.

10.2 Future Work

The research conducted herein has given rise to several promising avenues of future 

research on wireless network modeling, multi-objective cell planning, and the impact 

of design objective relations. These are as follows:

• The 3D wireless network model can be improved once access to more GPS data
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(e.g., traffic load or population density at given Cartesian coordinates) is made 

publicly available. In this way, the theoretical traffic modeling could be elim­

inated in favour of real data. The potential of joining DEM data, GPS data, 

and processing to calculate PLM and AIM via a GRID infrastructure is also 

exciting. This would allow instant access to extremely realistic network simula­

tion environments to participating partners, and hopefully the wider academic 

community via updates to an accessible database.

• The multi-objective cell planning model designed herein could be extended in 

future work. For example, it may be possible to make the model more dynamic 

when processing speeds improve. This would make it possible to increase the 

T m a x  setting to the furthest limit before the significant correlations between 

design objectives deteriorates. This should aid in discovering more low-cost 

networks. Also, it would be interesting to encourage more low-cost operators 

to consider the evidence provided. For example, the research shows that rea­

sonably high network coverage can be obtained more cheaply by optimizing the 

infrastructure efficiency. These cost improvements could translate into more 

value for money to their customers.

• The work on the tensions and relationships between network design objectives 

can also be worked on further. Two important considerations already manifest is 

the diminishing return on investment as coverage rises, and that due to the cor­

relations between objectives, it is possible to optimise based on two objectives. 

Future work could investigate the validity of this by testing more combinations 

of objectives in increasingly complex simulation environments. Also, pairs of
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different objectives could be used in the optimization process to see if the same 

correlations are found.

Thus, although this thesis has gone a long way to improving the development of 

our understanding of simulation environments, multi-objective GSM wireless network 

planning, and the relations and tensions between design objectives, there is further 

work to be done to help meet the growing needs of people who are on the move, and 

who want reliable access to telecommunication services wherever they are.
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Appendix A

Guide to Data Recovery

A .l Simulation Environment

There are five simulation environments, termed SE1, SE2 ... SE5. Each simulation 

environment file is in ASCII format and provides the complete set of reception test 

points (RTP), service test points (STP), traffic test points (TTP), and candidate 

base stations (CBS), as provided in Figure A.I.

Figure A.l: Greenfield town network characteristics for five simulation environments
SE #CBS #RTP #STP #TTP Traffic Mesh(m) Working Area(km)
SE1 568 56,792 17,393 8,590 2,988.27 200 49.4 x 45.6
SE2 568 56,792 17,393 3,985 2,988.75 200 49.4 x 45.6
SE3 568 56,792 17,393 6,602 3,221.84 200 49.4 x 45.6
SE4 568 56,792 56,792 11,953 2,988.25 200 49.4 x 45.6
SE5 568 56,792 56,792 56,792 2,988.12 200 49.4 x 45.6

The general layout of the file is:

Each plan begins with a header. The header gives the size of the working area (in 

number of test points); the distance between each test point (in meters); the

240
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Header

First RTP

Last RTP

First CBS 

Last CBS

Figure A. 2: Simulation environment file layout

number of RTP, STP, TTP, and CBS; and the total amount of traffic in the working 

area (in erlangs). For example:

Long seed: 1419697713325834287 

Size of working area: 248 x 229 

Number of RTP: 56792 

Number of STP: 17393 

Number of TTP: 8590 

Number of CBS: 568 

Total traffic: 2988.2662442999754

Following this, there is one line for each RTP after the guidance header:

******RTP#,X,Y,Z,STP,TTP ******

Each line, therefore, starts by providing the number of the given RTP (in the range
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0 to (NumberOfRTP - 1)); its X, Y, and Z location (in meters); a 1 if this test point 

is also an STP (otherwise a 0); and then an amount of traffic-which also indicates 

this test point is a TTP (otherwise a 0). For example,

0 . . .

14678.9200.11800.239.1.0.335545

14679.9400.11800.218.1.0.0

14680.9600.11800.233.1.0.0 

. . .  (NumberOfRTP - 1)

the second line indicates RTP number 14678 is at an x-axis location of 9200 and a 

y-axis location of 11800 at a height (z-axis) of 239 meters. This test point is an STP 

and TTP carrying 0.335545 erlangs of traffic. After this, there is a gap of one line, 

and then one line for each CBS after the guidance header:

****** X Y Z ******

Each line, therefore, starts by providing the number of the given CBS (in the range 

0 to (NumberOfCBS - 1)), followed by its X, Y, and Z location (in meters). For 

example,

0 . . .

8,3200,8600,256 

9,9600,36000,216 

10,39800,24200,174 

... (NumberOfCBS - 1)
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the second line indicates CBS number 8 is at an x-axis location of 3200 and a y-axis 

location of 8600 at a height (z-axis) of 256 meters.

A.2 Propagation Loss Matrix

The propagation loss information is stored in ASCII format. The general layout of 

the file is:

PL from 1st site to first RTP... PL from 
1st site to last RTP

PL from 2nd site to first RTP... PL from 
2nd site to last RTP

PL from last site to first R tP ... PL from 
last site to last RTP

Figure A.3: Propagation loss file layout

For example, the propagation loss for the first three CBS could look as follows:

14187 14125 13896 14910 ...  14944 14523 13961

16493 16003 16849 15844 .. .  16484 16466 16330

15193 16103 16589 16508 ... 16052 16178 16113

To read an entry, simply retrieve the value and divide it by 100. For example, the

first entry of 14187 would be a propagation loss of 141.87.
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A.3 Angle of Incidence Matrix

The angle of incidence (AI) information is stored in ASCII format. The general 

layout of the file is:

AI from 1st site to first RTP... AI from 
1st site to last RTP

AI from 2nd site to first RTP... AI from 
2nd site to last RTP

AI from last site to first RTP... AI from 
last site to last RTP

Figure A.4: Angle of incidence file layout

For example, the AI for three CBS could look as follows:

1246 1241 1235 1226 ... 1220 1211 1205 

782 785 787 791 793 ... 797 799 803 807 

1180 1181 1152 1152 ... 1153 1154 1154

To read an entry, simply retrieve the value and divide it by 100. For example, the 

first entry of 1246 would be an AI of 12.46.
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A.4 Horizontal and Vertical Loss Diagrams

Horizontal diagrams are available for small and large directive antennas, and 

vertical diagrams are available for small, large, and omni-directional antennas. The 

data is stored in order from 0 to 359 degrees for each situation.

To read an entry, simply retrieve the value and divide it by 100. For example, an 

entry of 448 would be a loss of 4.48.


