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Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterised by joint inflammation. 
The resulting joint destruction is mediated by enhanced secretion of degradative enzymes 
and pro-inflammatory cytokines. Joint inflammation is accompanied by elevated levels of 
glutamate in the synovial fluid. Work in this thesis investigates the hypothesis that the 
increased glutamate concentration in RA synovial fluid can induce pathological changes 
associated with synovial joint destruction.

To determine whether cells of the synovial joint can respond to glutamate RNA was 
purified from various cells and tissues of the rat knee. RT-PCR revealed that 
metabotropic (mGluR4) and ionotropic glutamate receptors (NMDA NR1, KA1, 
AMPAGluR2, AMPAGluR3) and glutamate transporters (EAATsl to 3) are expressed in 
the synovial joint. Differences in expression between RA and normal fibroblast-like 
synoviocytes (FLS) were observed.

The effect of modulating these receptors and transporters in normal and RA FLS was 
investigated. RA and normal FLS were treated with a range of glutamate concentrations 
and inhibitors o f glutamate transporters and receptors. Markers of inflammation and 
matrix degradation were measured. Pro-MMP2, TEMPI, TEMP2 and IL-6 levels were 
modulated with changes in extracellular glutamate. Elevated production of IL-6, pro- 
MMP2, TIMP1 and TIMP2 by RA FLS was observed in the presence of glutamate 
transporter inhibitors. Inhibition of kainate receptors decreased IL-6 production by RA 
FLS and inhibition of NMDA receptors increased pro-MMP2 in these cells. Glutamate 
receptor and transporter inhibition caused different responses in normal FLS. The effect 
of TNFa and IL-6 on expression of the glutamate transporter EAAT1 was also 
determined. RT-PCR, immunohistochemistry (IHC) and Western blotting revealed that 
expression of EAAT1 mRNA and protein was increased in RA FLS in response to IL-6. 
This was not observed in normal FLS. IHC also demonstrated that TNFa increased 
EAAT1 protein expression in RA FLS but not in normal FLS.

To investigate the function of glutamate receptors, RA FLS were pre-loaded with the 
calcium indicator fluo-4 and stimulated with glutamate, NMDA or kainate. Upon 
stimulation, scanning confocal microscopy revealed increases in fluorescence generated 
by intracellular free calcium indicating functional NMDA and AMPA/kainate receptors in 
human RA FLS. Using a 14C-glutamate uptake assay it has also been demonstrated that 
glutamate transporters are functional in RA FLS.

This data demonstrates that glutamate receptors and transporters are expressed in the 
synovial joint in vivo and are functional in human FLS. Furthermore, modulation of 
glutamate receptors and transporters influences release of IL-6, TEMPs and pro-MMP2 by 
FLS. Expression and responses differ between RA and normal FLS but the high levels of 
glutamate found in RA synovial fluid may activate glutamate receptors to induce a pro- 
inflammatory and degradative phenotype in FLS. This may be influenced through IL-6 
and TNFa induced increases in EAAT1 expression, indicating a possible feedback 
mechanism. It is proposed that the kainate receptor pathway that increases IL-6 release in 
response to glutamate warrants further investigation as a therapeutic target for RA.
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Chapter 1

Chapter 1 Introduction and background 

1.1 Introduction

Rheumatoid arthritis (RA) is a painful, debilitating, autoimmune disease resulting in 

reduced life expectancy due to susceptibility to infection (Baum, J. 1971). The disease 

was first recorded several thousand years ago in native American populations, but was
r i inot reported in Europe until the 17 century (Firestein 2003). It affects more than

350,000 people in the UK and women are more affected than men at a ratio of 

approximately 3:1 (www.arc.org.uk). RA is a systemic disease because not only does it 

affect the joints it also causes loss of muscle strength, vasculitis, depression, pulmonary 

nodules and osteoporosis.

This study focuses on RA disease progression in the peripheral synovial joints and aims 

to determine whether the elevated glutamate levels observed in the synovial joints of 

rheumatoid arthritis (RA) patients contributes to disease pathology. Prior to a review of 

the literature linking glutamate signalling to inflammatory and degradative pathways, the 

anatomy of synovial joints, the role of inflammatory cytokines and degradative enzymes 

and an overview of RA treatments will be given.

1.2 The Synovial Joint

A synovial joint is a specialized type of joint whereby juxtaposed bone surfaces are 

separated by a joint cavity lined by a synovial membrane. The bones’ articular surfaces 

are covered in hyaline cartilage allowing low-frictional movement. The peripheral joints 

are most affected by RA, the knee joint being one of these (www.arc.org.uk).

The human knee joint, like other synovial joints, is encapsulated in a fibrous capsule 

which is lined with a synovial membrane or synovium. The joint space contains within 

this capsule synovial fluid which nourishes the cartilage and lubricates the joint. 

Surrounding collateral ligaments stabilise the knee by attaching the femur to the fibula 

and tibia. Within the knee joint the internal anterior and posterior cruciate ligaments also 

provide support by attaching the femur to the tibia. Within the knee, two half moon

1
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Chapter 1

pieces of fibrocartilage, called the menisci, also provide support and help to spread load 

and generally stabilise the knee joint. The knee joint is protected by the patella, 

underneath this is the vascularised fat pad which acts as a cushion to absorb load across 

the joint (Dudhia et al. 2004). Figure 1.1 shows the major components of the human 

knee joint.

1.2.1 Synovium

The lubricating synovial fluid is produced by the synovium which covers the non- 

cartilaginous surfaces of diarthrodial joints. The synovial membrane is composed of a 

synovial cell layer and an adipose layer. The adipose layer is extensively vascularised 

and consists of adipocytes, nerve endings, loose connective tissue and immune cells. 

Movement of fluid and inflammatory cells into the joint is facilitated by the blood vessels 

present in the adipose layer. The innermost synovial cell layer of synovium contains 

mainly macrophages and fibroblasts (Tak et al. 2001). The macrophages are called 

macrophage-like synoviocytes (type A synoviocytes) and the fibroblasts are termed 

fibroblast-like synoviocytes (type B synoviocytes or FLS). 70% of synoviocytes are 

FLS. FLS produce many of the proteins found in synovial fluid.

1.2.2. Synovial fluid

Synovial fluid is in direct contact with the synovium and articular cartilage. Normally 1- 

4ml of synovial fluid is present in the human knee (Dudhia et al. 2004). The pH of 

synovial fluid is rarely less than 7 (Lloyd et al. 1990, Brooks et al. 2000). Synovial fluid 

is in dynamic exchange with blood serum and contains electrolytes, hyaluronate, urate, 

urea, albumin and small globulins. The synovial fluid has many functions. It provides 

nutrients to joint components and provides lubricating factors for the joint cartilage. 

Inflammatory cells move into the synovial fluid of the joint after trauma or infection.

1.23 Cartilage

A hallmark of RA is destruction of the articular cartilage that lines the articulating bone 

surfaces within synovial joints, this is accompanied by inflammation. Articular cartilage 

is a connective tissue consisting of an extracellular matrix (ECM) (80% water,

2
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Anterior
cruciate
ligament

Lateral
collateral
ligament

Articular
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Medial collateral 
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4

Meniscus

Figure 1.1: Diagram of a healthy knee joint (adapted from www.sky- 
injury.com and used with permission of Dr. Mike Langran).
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Chapter 1

Figure 1.2 A schematic diagram showing interactions o f proteins in the extracellular 
matrix of articular cartilage (adapted from a picture kindly donated by Prof. V. Duance, 
Cardiff University).
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Link ♦ 
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Hyaluronate
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Chapter 1

proteoglycans and collagens) that is synthesised and maintained by chondrocytes (Lane et 

al. 1975). Figure 1.2 shows a schematic diagram of the protein interactions in the ECM 

of articular cartilage. There are four zones that articular cartilage is divided into 

depending on the arrangement of the chondrocytes and their matrix components: 

superficial, intermediate, deep and calcified (See figure 1.3). Articular cartilage 

functions to provide smooth surfaces of low resistance that can withstand compressive 

forces (Morris et al. 2000). It can carry out this function because the chondrocytes 

synthesise a resilient extracellular matrix composed mainly of type II collagen (60% of 

the dry weight of cartilage) which is cross-linked to types IX and XI collagens. 

Heterotypic fibrils can be formed from these collagens and cross-linking of these allows 

articular cartilage to withstand shear and tensile forces.

Proteoglycans are also contained within the cartilage ECM. Aggrecan is the major 

multidomain proteoglycan responsible for the ability of cartilage to withstand 

compression. Figure 1.4 shows the structure of aggrecan. The NH2 terminus consists of 

two globular domains, G1 and G2, separated by an interglobular domain followed by an 

extended protein core and a COOH-terminal globular domain, G3. The extended protein 

core is the site of glycosaminoglycan attachment. The glycosaminoglycans, keratan 

sulphate and chondroitin sulphate have a large number of fixed, negative charges which 

causes high osmotic pressure to build up in cartilage. Normally the cartilage is hydrated 

but under compression the water is squeezed out whilst the cartilage framework remains 

unaltered thus absorbing shock (reviewed in Heinegard et a l 2000). Aggrecan is 

attached via its N-terminal domain to hyaluronan, this interaction is stabilized by a link 

protein.

In normal adult cartilage the chondrocytes maintain the rate of synthesis of ECM 

components at a rate equal to that of degradation by proteases (see section 1.5.1). In RA 

this process is disrupted and destruction of the cartilage in RA may be followed by 

destruction of bone.
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Figure 1.3 The cellular architecture of articular cartilage.
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Figure 1.4 The structure of aggrecan
The N-terminus consists o f two globular domains, G1 and G2, separated by an 
interglobular domain (IGD). An extended protein core and a COOH-terminal globular 
domain, G3, follow the G2 domain. The extended protein core is the site o f 
glycosaminoglycan attachment (chondroitin sulphate CS, keratan sulphateKS). In 
aggregates the G1 domain of aggrecan binds to hyaluronan and this bmding is stabilized 
by link protem, also shown in this figure, (www.glycoforum.gr.jp/).

AGGRECAN
C l IGD G2 K S-rich________CSJ_________  OJ2_________ G3

N-linked oligosaccharides

LectinW coon

COOH

LINK PROTEIN Keratan sulfate O-linked oligosaccharides Chondroitin sulfate
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1.2.4 Bone

There are generally two types of bone in the skeleton: long bones and flat bones. It is the 

long bones that articulate through synovial joints. At each end of a long bone are the 

articular cartilage-covered epiphyses separated by the diaphysis. Two bone surfaces are 

in contact with soft tissue: the external periosteum and the internal endosteum surface. 

Osteogenic cells organised in layers line these surfaces. The external part of the bone 

diaphysis is made of cortical bone. Cortical bone is dense and has increased calcification. 

Between the epiphysis and diaphysis is spongy bone or trabecular bone. Trabecular bone 

contains thin trabeculae filled with bone marrow. Cortical bone provides strength to 

withstand mechanical load, whereas trabecular bone with a larger surface area is highly 

responsive to metabolic requirements serving as a reserve for calcium and phosphate 

(Baron 1996). The ECM of bone forms a lamellar structure which is arranged either in 

parallel or concentrically around blood vessels, nerves and lymph vessels, thus forming a 

haversian system or osteon.

Bone is constantly remodelled according to the activities of the three main cell types 

present; osteoblasts, osteoclasts and osteocytes. Osteoblasts are the bone forming cells, 

they deposit osteoid, which is the organic matrix of bone and control its subsequent 

mineralisation (Schenk et al. 2002). The mineral in fully calcified bone is composed 

mainly of hydroxyapatite crystals (Baron 1996). Upon completion of bone formation, 

osteoblasts differentiate into bone lining cells to line the periosteum and endosteum, 

become osteocytes embedded within the mineralized bone matrix, or die (reviewed in 

Baron 1996). Osteocytes form a network of communicative cells throughout bone matrix 

and are the most common cell in bone and are currently thought to regulate bone 

remodelling in response to mechanical loading signals (reviewed in Noble and Reeve 

2000).

Osteoclasts are the bone resorbing cells and adhere to the bone surface and seal off the 

area to be resorbed, in a 'sealing zone'. The bone mineral is dissolved by various 

enzymes within the acidic environment within the resorption lacunae. This then allows
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the bone matrix to be broken down by lysosomal enzymes and metalloproteinases (see 

section 1.5.1.3) (Schenk et al. 2002).

The remodelling or turnover of bone occurs on the surfaces of bone and is regulated by 

many factors including cytokines (see section 1.4.1.1), hormones and mechanical load.

1.3 Rheumatoid arthritis

13.1 The etiology of rheumatoid arthritis

The initial trigger or cause of rheumatoid arthritis is unknown however, RA is considered 

to be an autoimmune disease. It is clear that both genetic and environmental factors play 

a role in the onset of RA. The human leukocyte antigen (HLA) allele is the locus at 

which genetic links have been shown to RA; HLA genes of the major histocompatibility 

complex (MHC) are on chromosome 6. Mutations in the DR4 gene (also termed HLA 

DRB1) found in the HLA region appear to confer a predisposition to RA (Stastny, P. 

1978). The only known function of the HLA DR4 gene is to present peptides to CD4+ T 

cells. However HLA-DR4 susceptibility mutations occur in about 20 - 30% of the 

population and yet only 2% develop RA. Other genes of HLA region have been 

connected to a susceptibility to RA however only 40% of the genetic contribution to RA 

is accounted for by genes in the HLA region (Fife et al. 2000). This together with the 

fact that monozygotic twin studies have shown concordance to be approximately 15% (if 

one twin has RA, there is a 15% chance that the other twin will also suffer from RA), 

demonstrates that non-genetic factors play a significant role in RA (Silman et al. 1993).

A role for bacterial or viral infection as the onset of RA has been the topic of much 

research, however no individual infectious agent has yet been identified. Bacterial or 

viral infection might initially trigger autoimmunity in RA via molecular mimicry or 

bystander activation of IgG antibodies thus accounting for the presence of rheumatoid 

factor in 80% of RA patients (Kingsley 2000). Rheumatoid factor (RF) is the term for 

IgM autoantibodies specific for antigenic epitopes on the Fc portion of IgG antibodies. 

RF is useful in the diagnosis of RA but it is not exclusive to patients with rheumatoid 

arthritis and not all patients with RA express RF. Approximately 20% of RA patients
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are sero-negative for rheumatoid factor. Indeed, RF can be detected in other autoimmune 

disorders and even in healthy individuals; however RF from RA patients has a higher 

affinity and is specific for human IgG (Kyburz and Carson 2000). RFs promote 

inflammatory processes and accelerate tissue destruction (Kyburz and Carson 2000) 

because they are autoantibodies and therefore recruit macrophages and neutrophils to the 

synovial joint.

1.3.2 Pathology of rheumatoid arthritis

RA is an inflammatory disease, primarily causing inflammation of the synovial joints, 

spine and can also affect the internal organs. Early in the disease, following the unknown 

initiating event for RA, oedema occurs and hypertrophy of the synovium. White blood 

cells, mainly CD4+ T cells, infiltrate the joint and cause an inflammatory response by 

releasing cytokines, prostaglandins and other inflammatory mediators. The infiltrated T- 

cells release cytokines causing activation of macrophage-like synoviocytes and FLS. 

This in turn causes proliferation of the synoviocytes, which form an invasive tissue called 

the pannus. The pannus is defined as “a granulomatous mass of proliferating synovial 

tissue, derived from the synovium” (Sweeney and Firestein 2004). The point where the 

invading pannus meets the cartilage is called the cartilage-pannus junction (CPJ). The 

CPJ consists mainly of synoviocytes and macrophages, which are the major source of 

inflammatory cytokines that perpetuate the joint destruction (see section 1.4.1.1). 

Adhesion molecules facilitate the migration of T cells to the joint and the adherence of 

the pannus to cartilage and bone where the process of cartilage and bone degradation 

begins.

The activated macrophages release the pro-inflammatory cytokines IL-1 and TNFa (see 

section 1.4.1.1) which allow the FLS to be permanently activated to release cytokines, 

prostaglandins and proteases (the actions of these proteins in RA are discussed further in 

sections 1.4 and 1.5). The degradation of aggrecan and collagen (see section 1.2.3) by 

these proteases leads to loss of cartilage function and hence arthritic joint disease. The 

FLS produce the pro-inflammatory cytokine IL-6 (see section 1.4.1.1.3) which may travel 

via the circulation to the liver where, in conjunction with IL-1 and TNFa, it can activate
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the acute phase response (see section 1.4.1) (McNiff 1995; Okamoto et al. 1997). It is 

activation of the acute phase response that contributes to the systemic effects of RA.

1.3.2.1 Destruction of cartilage and bone in rheumatoid arthritis

It is the destruction of cartilage and bone that causes the disabling conditions observed in 

RA patients. In the rheumatoid synovium cathepsins (section 1.5.1.1) and MMPs 

(section 1.5.1.3.1) are abundant (Firestein 1996: Keyszer et al. 1995). The release of 

proteases by FLS causes cartilage matrix turnover to become dysregulated, which causes 

the characteristic lesions of RA (Reviewed in Pap et al. 2000). Chondrocytes (see section 

1.2.3) also contribute to synovial joint destruction because in vitro, chondrocytes behave 

similarly to FLS; they both have IL-1 and TNFa receptors and respond to these cytokines 

with an increased production of proteases (Cunnane et al. 1998).

1 3 3  Animal models of rheumatoid arthritis

There are a number o f animal models used to investigate rheumatoid arthritis where local 

or systemic injection of antigens induces an RA-like immune response.

133.1  Bacteria-induced arthritis

The injection of live-bacteria can induce RA-like symptoms in experimental animals. 

Staphylococcus aureus (Abdelnour et al. 1994) and Borrelia burgdorferei (Schaible et al. 

1991), mycobacterium (Pearson 1956), or purified bacterial products (muramyl dipeptide 

or lipopolysaccharide) injection (Terato et al. 1996; Chang et al. 1981) can be used to 

induce arthritis in various animal models, predominantly rats and mice. In addition, 

arthritis can be induced in rats by the intraperitoneal injection of streptococcal cell-wall 

fragments, which causes acute inflammatory arthritis (Cromartie et al. 1977).

13.3.2 Antigen-induced arthritis

Antigen-induced arthritis (AIA) has been induced in rats, mice, rabbits and primates by 

injection of an antigen into the knee joint of a pre-sensitised animal (Courtenay et al 

1980, Trentham et al. 1977, Yoo et al. 1988). This results in an immune-complex- 

mediated arthritis similar to human RA (Linton and Morgan 1999). Various antigens
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have been used. For example methylated bovine serum albumin (mBSA) is frequently 

used. The animals are pre-immunised with the mBSA (injected systemically), then a few 

weeks later, the same antigen is injected locally into a joint and a T-cell dependent 

immune complex-mediated arthritis ensues (Holmdahl 2000).

1.3.3.3 Collagen-induced arthritis

Another common model is the type II collagen induced arthritis where the collagen is 

injected into the knee along with an adjuvant usually 21 days after sensitisation with type 

II collagen. This type of RA causes a systemic response and can be induced in rats, mice 

and primates. It is characterised by erosive joint inflammation, which is mediated by T 

and B cells, pannus formation and synovial hyperplasia (Lindqvist et al. 2002). Anti type 

II collagen antibodies are found in the synovial fluid of this model (Linton and Morgan

1999) showing an autoimmune response has occurred. Other cartilage proteins such as 

cartilage oligomeric matrix protein (COMP) (Carlsen et a l 1998), aggrecan (Giant et al. 

1987), type XI collagen (Morgan et al. 1983) or aggrecan link protein (Zhang et al. 1998) 

have also been used in a similar manner to induce arthritis in animal models.

133 .4  Adjuvant-induced arthritis

The adjuvant-induced arthritis is a destructive, relapsing polyarthropathy causing joint- 

specific inflammation and is commonly carried out in rats. Non-immunogenic 

compounds are used; mineral oil (Holmdahl et al. 1992), pristane (Vingsbo et al. 1996) 

and avridine (Chang et al. 1980) have all been used as adjuvants to induce arthritis. The 

adjuvant spreads throughout the body with (usually symmetrical) arthritic symptoms 

occurring in the peripheral joints after 1-2 weeks. The arthritides each adjuvant induces 

are very similar but differ mainly in the severity and chronicity of the disease (Holmdahl 

et al. 2000).

1.33.5 Genetically susceptible animal models of arthritis

Other models of RA include those mouse strains that are inbred (Corthay et a l 2000) or 

genetically manipulated so that they spontaneously develop arthritis. Mice that over­

express the human TNFa transgene spontaneously develop acute arthritis; treatment with
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TNFa antibodies can prevent the onset of the disease (Keffer et al. 1991) and if 

administered after arthritis has set in, cartilage degradation can be reversed in young mice 

(Shealy et al. 2002). Mice that have the IL-1 receptor antagonist knocked out also 

spontaneously develop arthritis (Horai et al. 2000) and indeed mice that are manipulated 

to over-express IL-1 develop a severe polyarthritic phenotype (Niki et al. 2001). All of 

these models can provide a useful insight to the disease mechanism and treatment of RA.

13.3.6 Knock-out mice

Knock-out mice are also used as a study tool for RA. Cytokines deemed important in RA 

such as interleukin 6 (IL-6), tumour necrosis factor a (TNFa) and IL-1 have been 

knocked-out and arthritis induced to see the effects of specific inflammatory mediators in 

the disease (see sections 1.4.1.1.3,1.4.1.1.1 and 1.4.1.1.2).

13.4 Therapy and treatments for rheumatoid arthritis

There is currently no cure for RA, therapies thus far developed merely attempt to limit 

destruction of the joint, reduce pain and hence prevent loss of function. Many classes of 

drugs are used to treat RA. Because of its ability to kill mycobacteria in vitro, gold was 

once used as a treatment for RA. In fact gold does reduce the production of IL-6 in vitro 

by an unknown mechansim (Cunnane et al. 1998) and also reduces serum levels of IL-6 

(Madhok et al. 1993).

13.4.1 Non-steroidal anti-inflammatory drugs

Non-steroidal anti-inflammatory drugs (NSAIDs) are a common course of treatment for 

RA sufferers. They affect the inflammatory response by acting upon chemical mediators 

of inflammation. They inhibit prostaglandin (see section 1.4.1.2) production by blocking 

COX function. COX-1 is involved in synthesis of prostaglandins involved in normal 

physiological functions whereas the COX isoform, COX-2, is an enzyme that produces 

prostaglandins that mediate inflammation. The potency of different NSAIDs to inhibit 

the two isoforms varies (Luong et al. 1996). Despite their popularity, the beneficial 

effects of NSAIDS on the pain and swelling are however short-lived. Other drugs used 

with anti-inflammatory action are corticosteroids; they are capable of significantly
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alleviating the symptoms of inflammation. They reduce the synthesis of IL-1, IL-2, IL-6 

and TNFa (Grabstein et al. 1986, Buttgereit et al. 1995) and inhibit the expression of 

MMPs in the synovial joint (Werb 1978). However, the long-term effects of 

glucocorticoids such as risk of osteoporosis, infection and diabetes have made them less 

popular.

1.3.4.2 Immunosuppressive drugs

Immunosuppressive drugs such as cyclophosphamide, target cells involved in regulation 

of the immune response. Cyclophosphamide reduces the proliferation of lymphocytes, 

plasma cells and mononuclear cells at bone lesion sites (Williams 1974) reducing effects 

of the inflammatory response. However, the use of cyclophosphamide is restricted due to 

severe side-effects such as hemorrhagic cystitis, nausea, vomiting, thrombocytopenia, 

alopecia and herpes zoster infections (Suarez-Almazor et al. 2000).

13.43  Disease-modifying anti-rheumatic drugs

Methotrexate is a folate antagonist, it belongs to the class of disease-modifying anti- 

rheumatic drugs (DMARDs) and was approved for treating RA in 1988. It is taken orally 

or injected and its mechanism of action is to inhibit DNA synthesis and in RA has been 

shown to inhibit proliferation of activated blood lymphocytes (Genestier et al. 1998). 

Patient treatment is optimized by using methotrexate in combination with other anti­

rheumatic drugs/therapies.

1.3.4.4 Treatment with biological agents

Anti-TNF therapy is one of the more recent and successful approaches to treating RA. 

This was chosen as a therapeutic target for three main reasons: 1. TNFa is required for 

expression of pro-inflammatory cytokines in rheumatoid synovial cultures, 2. in murine 

collagen induced arthritis, anti-TNFa reduces inflammation and joint destruction and 3. 

TNFa and TNF-receptor are upregulated in the synovium and cartilage/pannus junction 

of inflamed joints (Feldmann and Maini 2001). The first anti-TNFa treatment used and 

therefore most studied is Infliximab. This is a chimeric antibody comprised of a mouse 

Fv and human IgG Ik antibody and is administered systemically. It binds to TNFa with
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high affinity and hence neutralises its action by preventing it from binding to TNFRs. 

Clinical trials have shown strong evidence that Infliximab is effective in reducing 

symptoms of rheumatoid arthritis however further research is required into the long-term 

effects of Infliximab treatment (Maini et al. 1999, Feldmann and Maini 2001, Shergy et 

al. 2002). Longterm treatment with anti-TNFa drugs would not be ideal due to the key 

role of TNFa in the immune system and therefore the possibility of it leading to an 

increase in infection.

Another anti-TNFa drug is Etanercept. This is a soluble TNF receptor Fc fusion protein 

which binds to TNFa and blocks its interaction with TNF-R. It is effective in both 

animal models of RA and in clinical trials in RA patients (Breedveld 1999). Having 

shown good efficacy in clinical trials Etanercept is also now used as a treatment for RA 

(Klareskog et al. 2001, Klareskog et al. 2004).

Only two-thirds of patients with methotrexate-resistant RA respond to anti-TNF therapy 

(Mariette 2004) therefore other anti-cytokine therapies have been investigated. Placebo 

controlled human trials using a recombinant IL-1 receptor antagonist (Anakinra) have 

been carried out with a successful outcome due to the observed slowing of cartilage and 

bone destruction compared to placebo controls (Bresnihan et al. 1998; Jiang et al. 2000). 

Anti-IL-6 and anti-IL-6 receptor antibodies have been used successfully as a therapeutic 

strategy in RA animal models (Mihara et al. 1991). More recently a humanized anti-IL-6 

receptor (IL-6r) antibody called MRA (monoclonal receptor antibody) has been 

developed. MRA consists of the complementarity-determining regions from mouse anti- 

IL-6R antibody grafted to human IgGl, it inhibits the binding of IL-6 to its receptor (Sato 

et al. 1993). In placebo-controlled studies it has shown overall promising results 

(Nishimoto et al. 2003, Choy et al. 2002, Nishimoto et al. 2004). After 4 weeks of 

treatment at least a 20% improvement was observed according to the American college of 

rheumatology criteria, this included a 20% improvement in tender and swollen joints 

(Nishimoto et al. 2004).
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1.4 Inflammation

Inflammation of the synovium and degradation of the articular cartilage and bone result 

in synovial joint destruction in RA. In a healthy state the synovial membrane is 

composed of an intimal layer, which is one or two cells thick. Underneath this is a sub­

lining layer consisting of adipocytes, blood vessels and immune cells (Sibbitt 1999). In 

RA this synovial membrane turns into a proliferating tissue (becoming up to 20 cells 

thick) that has many layers of intimal macrophages and FLS (Berg and Bresnihan 1999). 

The pannus invades the underlying cartilage and bone. In RA, FLS show characteristics 

only seen in the RA synovium; a prominent nucleus and dispersed chromatin and the 

cells become surrounded by dense collagen fibres (Cunnane et al. 1998). The inflamed 

synovium becomes infiltrated with lymphocytes and plasma cells that synthesise 

immunoglobulins which activate the complement system. This in turn causes the release 

of cytokines (see section 1.4.1.1), prostaglandins (see section 1.4.1.2), proteolytic 

enzymes (see section 1.5.1) and superoxides including nitric oxide (see section 1.4.1.3) 

(Tak 2001). It is these agents that mediate the inflammatory response. Osteoclasts, 

especially where the synovium is attached to bone, become stimulated by inflammatory 

cytokines causing bone resorption and the characteristic erosions of rheumatoid arthritis 

(See figure 1.5). If the inflammatory process persists the synovium is gradually replaced 

by pannus. Pannus can spread to all parts of the joint and can cause total destruction of 

the joint.

1.4.1 The Inflammatory Response

The inflammatory response functions to restore and maintain homeostasis after injury, 

whereby cells and other factors are recruited from the bloodstream to the injured site to 

remove antigenic factors and dead cells. Infiltrated macrophages release cytokines and 

prostaglandins and other inflammatory mediators, which cause the three major events of 

the inflammatory response: vasodilation, an increase in capillary permeability, which 

causes oedema and, an influx of phagocytes (reviewed in Kinne et al. 2000). 

Macrophages, monocytes and neutrophils carry out phagocytosis. During phagocytosis 

these cells release lytic enzymes which damage nearby healthy cells. If the inflammatory 

response is severe these infiltrated cells release the pro-inflammatory cytokines IL-1,
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Figure 1.5: Schematic diagram of a healthy synovial joint (A) and an arthritic 
synovial joint (B). (wwvv.arc.org.uk, obtained by permission of the Arthritis 
Research Campaign.)
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TNFa and IL-6 (see section 1.4.1.1) which travel via the blood stream to the liver to 

cause the release of acute phase proteins and thus induce the acute phase response 

(reviewed in Arend and Gabay 2000).

The acute phase response is when protein levels in the plasma change reflecting an 

alteration in hepatocyte biosynthesis; albumin levels decrease and amongst others, 

complement system proteins, IL-1R antagonist and protease inhibitor levels increase 

(Kinne et al. 2000). This response is an attempt to survive infection or chronic 

inflammation. Acute phase proteins are synthesized and released by hepatocytes 

primarily in response to IL-6 and cause systemic effects of RA (reviewed in Arend and 

Gabay 2000). Acute phase proteins can activate the complement cascade, promote 

inflammation and stimulate chemotaxis of phagocytes. The cytokines involved in 

induction of the acute phase response and RA will now be discussed.

1.4.1.1 Cytokines

Cytokines are extracellular signalling proteins or peptides that act as local mediators in 

cell-cell communications (Alberts et al. 1994). They are important in the mediation of 

inflammation in RA. Cytokines include interferons, interleukins, growth factors, colony- 

stimulating factors, and chemotactic factors and often work synergistically. They are 

released from various cells in response to a variety of signals and are usually secreted and 

bind to cell surface receptors on target cells. TNFa and IL-1 are the main mediators of 

inflammation in the RA process (Feldmann et al. 1996; Arend and Dayer 1995). 

However, IL-1, IL-1 receptor antagonist (IL-1RA), TNFa, IL-6, transforming growth 

factor P (TGFP), IL-8, IL-10, IL-11, IL-13, IL-15, interferon p (IFNP), IL-17 and IL-18 

are all produced in RA synovial tissue (Reviewed in Vervoordeldonk and Tak 2002). 

Evidence of cytokines acting in RA pathogenesis comes from the efficacy of therapies 

aimed at blocking or modulating cytokine activity (see section 1.3.4). These cytokines 

have either pro- or anti-inflammatory properties or sometimes both. The proposed 

actions of these cytokines in RA are summarised in table 1.1.
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Table 1.1 The actions of cytokines important in RA

Cytokine Main cells producing 
cytokine in synovial 

joint

M ajor action of cytokine in synovial joint

IL-1 Macrophages, FLS (see 
section 1.4.1.1.2).

Induces proteoglycan degradation, production of 
MMPs and enhances bone resorption (see section 
1.4.1.1.2).

IL-1RA Macrophages, FLS and 
lymphocytes.

Anti-inflammatory. Inhibits IL-1. (Horai et al 
2004)

IL-4 T-cells. Anti-inflammatory. Inhibits the production of 
pro-inflammatory cytokines and proteases 
(Miossec et a l 1992).

IL-6 FLS and macrophages 
(see section 1.4.1.1.3).

Stimulates degradation of cartilage and bone, 
induces MMP and pro-inflammatory cytokine 
production (see section 1.4.1.1.3).

IL-8 Macrophages, 
osteoclasts, 
chondrocytes, 
fibroblasts and 
neutrophils.

Pro-inflammatory. Potent chemoattractant and 
activator of neutrophils (Taha et a l  2003).

IL-10 Macrophages, FLS, B 
cells.

Anti-inflammatory. Suppresses macrophage 
production of pro-inflammatory cytokines 
(Driessler et a l  2004).

IL-11 FLS, chondrocytes and 
bone marrow stromal 
cells.

Anti-inflammatory. Induces osteoclastogenesis 
(Girasole et a l  1994), induces TIMP production 
by chondrocytes (Trontzas et a l  1998).

IL-12 Antigen-presenting
cells.

Pro-inflammatory, is a major inducer of T helper 
1 (Thl) responses by stimulating Thl lymphocyte 
proliferation and differentiation and by inducing 
interferon (IFN)-y production from natural killer 
and T cells (Elenkov et a l 2001).

IL-13 Activated T cells. Anti-inflammatory, modulates monocyte and B- 
cell functions (Zurawski and de Vries 1994).

IL-15 Monocytes, osteoclasts, 
FLS.

Pro-inflammatory. Promotes chemokine release 
and activation of T-cells, fibroblasts, neutrophils, 
and macrophages (Mclnnes and Gracie 2004).

IL-17 T cells. Pro-inflammatory. Induces pro-inflammatory 
cytokine release by FLS, chondrocytes, 
neutrophils, macrophages, osteoblasts and 
osteoclasts (Miossec 2004). Also induces MMP1 
production (Bessis and Boissier 2001).

IL-18 Macrophages, 
monocytes, FLS, 
chondrocytes.

Pro-inflammatory. Activates T cells, induces 
cytokine production by macrophages (Liew and 
Mclnnes 2002).
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TNFa Neutrophils, 
macrophages, FLS, 
osteoblasts, fibroblasts, 
T lymphocytes and B 
lymphocytes (see 
section 1.4.1.1.1).

Induces macrophages and FLS to release pro- 
inflammatory cytokines (see section 1.4.1.1.1).

TGFP Macrophages and T 
cells.

Anti-inflammatory, but high concentrations can 
be pro-inflammatory. Inhibits proliferation of 
lymphocytes and cartilage and bone destruction 
(Vervoordeldonk and Tak 2002).

1.4.1.1.1 TNFa

TNFa is an important mediator of changes associated with RA. It is elevated in RA 

synovial fluids at concentrations of 94pg/ml (compared to OA synovial fluid levels of 

39pg/ml) (McNeamey et al. 2004). OA is not an inflammatory arthritis compared to RA. 

TNFa is released by neutrophils, macrophages, FLS, osteoblasts, fibroblasts, T 

lymphocytes and B lymphocytes in response to a wide variety of stimuli (reviewed in 

Maini 2004).

TNFa can exist as a biologically active membrane-bound molecule or as a soluble 

molecule. A membrane metalloproteinase (TNFa converting enzyme [ADAM 17], see 

section 1.5.1.3.2) enzymatically cleaves the membrane-bound TNF to produce the soluble 

form. TNFa functions as a trimer, and can activate two TNFa receptors: TNFa receptor- 

1 (TNFR-1 also known as p55) and TNFR-2 (p75). Both TNFa receptors are expressed 

by most types of nucleated cells (Ledgerwood et al. 1999, Vandenabeele et al. 1995). 

The TNF receptors can also be shed in a soluble form and therefore neutralise the activity 

of TNFa upon binding, thus acting as a negative feedback mechanism (reviewed in 

Piecyk and Anderson 2001).

TNFa activates its receptors which signal via 2 major transcription factors, API and 

NFkB (Baud and Karin 2001). TNFa can also signal via protein kinase R and ceramide 

to increase MMP expression by chondrocytes (Gilbert et al. 2004). Following binding of 

TNFa to its receptor, cytoplasmic signalling proteins called TNF receptor-associated 

factors (TRAFs) are recruited which then activate protein kinases and transcription
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factors. These upregulate genes involved in inflammation (Piecyk and Anderson 2001). 

The TNFa signalling pathways important in RA are shown in figure 1.6. TNFR-2 also 

acts via this pathway but can interact with TRAF2 without interacting with TRADD first 

(Ichijo 1999). Furthermore, TNFa can induce ERK, p38 and MAP kinases in RA FLS 

(Schett et al. 2000).

Expression of TNFa can be regulated at the transcriptional, post-transcriptional and 

translational levels. Proteins that bind to AU-rich elements in the 3’ untranslated region 

increase the stability of TNFa mRNA. Conversely, other studies have shown that 

deletion of these AU-rich elements in mice causes the development of polyarthritis 

(Kontoyiannis et al. 1999). The TNFa promoter also contains binding sites for API and 

NFkB and can therefore regulate its own expression because TNFa can activate both of 

these transcription factors (Baud and Karin 2001).

TNFa is thought to play a very central role in the pathophysiology of RA. Macrophages 

and endothelial cells can be induced by TNFa to produce IL-1, IL-6, IL-8, IL-10 and 

prostaglandin E2 (PGE2) (Piecyk and Anderson 2001). NFkB and API can also 

upregulate MMPs (reviewed in Overall and Lopez-Otin 2002). FLS are also induced by 

TNFa to produce an array of cytokines; IL-1 (Brennan et al. 1989), IL-6, and IL-8 

(Butler et al. 1995). Furthermore, TNFa and its receptors are highly expressed in areas 

of inflammation and tissue destruction in the synovium and pannus (Chu et al. 1991).

TNFa transgenic mice also demonstrate the involvement of this cytokine in an arthritic 

phenotype. Spontaneous arthritis develops in mice that over-express TNFa (Keffer et al. 

1991). Furthermore, TNF-a is crucial for the development of autoimmune arthritis in IL- 

1 receptor antagonist-deficient mice (Horai et al. 2004). In addition, TNFa-knock-out 

mice have reduced joint swelling and cartilage loss upon induction of streptococcal-cell 

wall induced arthritis (reviewed in van den Berg and Bresnihan 1999).
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TNFa/TNFR-1

TRADD-TRAF 2 TRAF2
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IkBvNFkB

Gene transcription activated

f  Pro inflammatory cytokines expressed

Figure 1.6: The TNFa/TNFR-1 complex interacts with TRAF2 via 
TNFR-1 associated death domain protein (TRADD). Nuclear factor kappa 
B (NF-kB)- inducing kinase (NIK) associates with TRAF2 and activates 
inhibitor of inhibitor kappa B (IkB) kinase (IKK). IKK phosphorylates 
IkB causing it to dissociate from NF-kB. NF-kB can then translocate to 
the nucleus and activate gene transcription of proinflammatory cytokines 
involved in RA. TNFR2 can interact with TRAF2 directly which in turn 
can activate API via MAPK or NIK (Reviewed in Piecyk and Anderson 
2001).
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TNFa clearly plays a pro-inflammatory role in RA and the demonstrated efficacy of anti- 

TNFa and anti-TNF receptor therapies in treatment of RA enforces this (see section 

1.3.4.4). Most importantly, TNFa is not the only cytokine involved in RA.

1.4.1.1.2 Interleukin 1

Humans express two isoforms of IL-1, IL-1 a  and IL-lp encoded by 2 genes found in the 

IL-1 cluster on chromosome 2q (March et al. 1985). Less than 30% of the amino acid 

sequence is identical between cytokines IL-1 a  and IL-ip however both work via the 

same receptors (March 1985). IL-1 a  is a major cytokine in the early stages of 

inflammation whereas IL-lp is the more dominant cytokine in advanced inflammation 

(Berg and Bresnihan 1999). The major type of IL-1 that is found in RA synovium is IL- 

lp; generally IL-lp is secreted whereas IL-1 a is either retained within the cell or 

expressed on the cell surface (Kay and Calabrese 2004). Therefore, IL-1 a is active as an 

intracellular precursor, as a membrane-associated cytokine and only to a lesser extent as a 

secreted molecule (Apte and Voronov 2002). In vivo studies have shown that IL-1 a and 

IL-ip have equal potency in causing chondrocyte proteoglycan synthesis inhibition 

(Saklatvala 1986). EL-lp levels are significantly elevated in RA. It is found at 

concentrations of 130pg/ml in RA synovial fluid compared to osteoarthritis levels of 

28pg/ml and has a well established pro-inflammatory role in RA (Westacott et al. 1990). 

IL-1 a  is also elevated in RA synovial fluid (Hopkins et al. 1988).

IL-1 a and IL-lp both signal via three types of receptors, type I, type II and IL-1R 

accessory protein. Activation of these receptors by IL-1 can activate NFkB, c-Jun, AP-1, 

p38 MAPK and ERK1/ERK2 transduction pathways (reviewed in Gabay 2004). 

However, IL-1 signal transduction is dependent on the presence of IL-1R accessory 

protein (Huang et al. 1997).

In addition to TNFa and IL-6, IL-1 a and IL-lp play a significant role in the pathogenesis 

of RA. Among the many effects that IL-1 has on cells of the synovial joint, IL-1 

stimulates FLS and chondrocytes to produce MMPs, aggrecanases, nitric oxide and 

prostaglandin E2 (see section 1.5.1.3, 1.4.1.3 and 1.4.1.2) leading to cartilage degradation
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(Abramson and Amin 2002). In addition, IL-1 can work synergistically with oncostatin 

M (OSM, see section 1.4.1.1.4) to cause destruction of the synovial joint. Treatment of 

human chondrocytes in vitro with EL-la in combination with OSM caused induced 

expression of the degradative enzymes ADAMTS4, MMPs 1, 8 and 13 (Koshy et al. 

2002).

IL-1 receptor antagonist (IL-lra) is the natural soluble inhibitor of EL-1 signalling and is 

structurally similar to IL-1 a and IL-lp. By binding to the IL-1 receptor it prevents IL-1 

from binding. It is present in the RA synovial membrane but is deficient compared to the 

amount of IL-1 present (Firestein et al. 1994). Therefore an imbalance occurs, whereby 

the greater presence of EL-1 compared to IL-lra results in the inflammatory effects of RA 

(Arend et al. 2001). The recombinant IL-1 receptor antagonist, Anakinra, is used in RA 

therapy (see section 1.3.4.4).

In vivo studies have also demonstrated the importance of EL-1 in arthritis. Collagen- 

induced arthritis in mice can be suppressed by a combination of anti-IL-1 a and anti-EL-ip 

antibodies (Joosten et al. 1996). Furthermore, cartilage damage is reduced in 

streptococcal cell wall induced arthritis in EL-lp knock-out mice and addition of anti-IL- 

la  antibodies ameliorates all symptoms (reviewed in van den Berg and Bresnihan 1999).

1.4.1.13 Interleukin 6

EL-6 is a 212 amino acid protein that is cleaved close to the N-terminus by signal 

peptidases to produce a 184 amino acid active protein with a molecular weight of 

approximately 23kD (Wong et al. 2003). Within the synovial joint it is mainly produced 

by FLS and to a lesser extent by macrophages (Vervoordeldonk and Tak 2002) but it is 

also expressed by chondrocytes, fibroblasts, monocytes, T cells and B cells (Shinmei et 

al. 1989, al-Janadi et al. 1993). TNFa, IL-1 and IL-17 all increase IL-6 production by 

FLS in vitro (Gueme et al. 1989, Chabaud et al. 1998). IL-6 levels are elevated in the 

synovial tissue and fluid (24.9ng/ml in RA compared to 0.914ng/ml in OA) during active 

rheumatoid arthritis (Desgeorges et al. 1997). Nowell et al. further confirmed these
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results demonstrating levels of 51.7ng/ml in RA synovial fluid compared to 6.39ng/ml in 

OA synovial fluid (Nowell et a l 2003).

1.4.1.1.3.1 Interleukin 6 signalling pathways

IL-6 interacts with two receptors, one being membrane bound (IL-6R) and the other 

soluble (sIL-6r), but both acting via the gpl30 membrane receptor (Jones et al. 2001). 

The sIL-6r is a 55kD protein and is not expressed by FLS (Nishimoto et al. 2000) but IL- 

6 can still act on these cells because sIL-6r is found in the RA synovial fluid at high 

levels: 24.7ng/ml (Desgeorges et al. 1997). The sIL-6r allows cells that express gpl30 

but not the IL-6R to respond to IL-6 (Jones et a l 2001). The soluble form of the IL-6 

receptor is generated by differential splicing of IL-6R mRNA or by proteolytic shedding 

of the IL-6R from the cell membrane (Horiuchi et a l 1994, Mullberg et a l 1997).

The IL-6 and EL-6 receptor complex, acts via the gpl30 receptor unit. It has been 

proposed that the receptor/IL-6 complex causes dimerisation of the gpl30 receptor so that 

a tetramer is formed (IL-6, IL-6R/sIL-6r and 2x gpl30) (Pflanz et a l  2000). However 

others have proposed that a hexamer is formed (2xIL-6, 2xIL-6 receptor and 2x gpl30) 

(Ward et a l 1994, Boulanger et a l 2003), and this proposal has recently been confirmed 

(Skiniotis et a l 2005). This multimerisation results in phosphorylation of gp-130- 

associated janus kinases (JAKs) that attracts signal transducer and activator of 

transcription -1 (STAT-l)/STAT-3 factors to gp-130, which then become phosphorylated 

(Reviewed in Jones et al. 2001) (Figure 1.7). The phosphorylated STAT proteins then 

form homomers and heteromers and translocate into the nucleus to induce gene 

expression (Reviewed in Jones et a l  2001). Another signalling pathway activated by IL- 

6 is the Src homology-2 domain-containing protein tyrosine phosphatase (SHP2)- 

mediated extracellular signal-regulated kinase (ERK)/ mitogen activator protein kinase 

(MAPK) pathway. SHP2 is tyrosine phosphorylated by the IL-6/IL-6 receptor/gpl30 

multimer which activates the ERK/MAPK pathway via the Ras-Raf signalling cascade 

(Hirano et a l 1997). This can then activate the transcription factors activator protein 1 

(AP-1) and nuclear factor IL-6 (NF-IL-6) (Nakajima et al. 1993, Solis-Herruzo et al

1999).
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sIL-6r

Extracellular
i f f

_ s

IL-6

Intracellular

gpl30 gp!30

Mediation of gene expression and 
other cellular events via JAK/STAT 

and ERK/MAPK signalling pathways.

Membrane 
bound IL-6 
receptor

Figure 1.7: Schematic diagram of how IL-6 interacts with the soluble IL-6 
receptor (A) and the membrane bound receptor (B) to activate gpl30 and hence 
activate an intracellular cascade o f events that mediate inflammation and joint 
destruction in RA.
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ADAM17 (see section 1.5.1.3.2) may be responsible for IL-6R shedding, however other 

metalloproteinases (see section 1.5.1.3) may be involved (Althoff et al. 2000, 

Franchimont et al. 2005). For example cathepsin G, a serine protease (see section 

1.5.1.2) has been identified as a possible protease involved in shedding of the sIL-6r from 

neutrophils (Bank et al. 1999). Furthermore, the acute phase response protein, C-reactive 

protein, can increase shedding of sIL-6r from neutrophils (Jones et al. 1999). In the RA 

synovial joint it has been proposed that the sIL-6r originates from lymphocytes because 

levels of sIL-6r correlate with levels of lymphocytes in synovial fluid and with disease 

progression, however it may also originate from the liver via the blood (Desgeorges et al. 

1997, Kotake et al. 1996).

1.4.1.1.3.2 Effects of Interleukin 6 in RA

The immune response, haematopoiesis, the acute phase response and inflammation are all 

regulated by IL-6 (Hirano 1997). IL-6 has both pro- and anti-inflammatory effects but 

predominantly acts as a pro-inflammatory cytokine in RA. Evidence for this is that EL-6 

knock out mice are resistant to joint inflammation and destruction in both ALA and 

collagen induced arthritis (reviewed in Wong et al. 2003). In addition, Boe et al. 

demonstrated that ALA could be induced by the exogenous administration of human 

recombinant IL-6 to EL-6 knockout mice (Boe et al. 1999). Moreover, EL-6 knockout 

mice display less cartilage destruction during zymosan-induced arthritis when compared 

to wild-type mice (van de Ex>o et al. 1997). The fact that clinical trials using antibodies 

targeted to inhibit the EL-6 signalling system and decrease RA symptoms strengthens this 

argument (see section 1.3.4.4).

IL-6 influences the activities of cytokines and enzymes important in RA. The 

intracellular adhesion molecule 1 is an adhesion molecule involved in leukocyte 

recruitment from blood vessels; its expression is increased when endothelial cells are 

stimulated with EL-6 in vitro (Romano et al. 1997). IL-6 may play a direct role in joint 

destruction by stimulating osteoclasts to increase bone resorption (reviewed in Heymann 

and Rousselle 2000). In addition, IL-6 enhanced EL-1 induced production of degradatory 

MMPs (pro-MMPl and pro-MMP3, see section 1.5.1.3.1) by RA FLS (Ito et al. 1992).
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Since IL-6 and sIL-6r synovial fluid levels correlate with the extent of joint destruction in 

RA patients (Kotake et al. 1996) it is likely that these local effects of IL-6 are important. 

In addition, EL-6 in conjunction with sIL-6r has been demonstrated to potentiate 

aggrecanase-associated catabolism of bovine cartilage explants (Flannery et a l 2000).

IL-6 also possesses anti-inflammatory properties. IL-6 increases release of IL-lra and 

the soluble TNFa receptor (p55) by macrophages to inhibit these pro-inflammatory 

pathways (Tilg et al. 1994). In addition, IL-6 decreases LPS-induced release of IL-1 and 

TNFa by monocytes in vitro and in serum levels in mice (Schindler et al. 1990, Aderka et 

al. 1989). Finally, IL-6 inhibits the proliferation of fibroblastic synovial cells from 

rheumatoid arthritis patients in the presence of soluble IL-6 receptor (Nishimoto et al.

2000). Taken together, this evidence clearly demonstrates that IL-6 plays a pivotal role 

in both local and systemic effects important in the pathogenesis of rheumatoid arthritis.

1.4.1.1.4 Other members of the IL-6 family

Oncostatin M (OSM), EL-11, leukaemia inhibitory factor (LIF), ciliary neurotrophic 

factor (CNTF) and cardiotropin are all members of the IL-6 family and all act via the 

gpl30 receptor unit. Although all molecules possess a similar helical structure, their 

association is due to their functional redundancy and receptor interactions (Hibi et al. 

1996). Functional redundancy is brought about because they all act via the gpl30 

receptor. An example of their redundancy of activity is that IL-6, IL-11, LIF and OSM 

all induce acute phase protein synthesis in hepatocytes (reviewed in Hirano 1997). 

However, even though gpl30 is ubiquitously expressed, signalling via this receptor is 

controlled by the regulation of expression of the associating a-receptors eg. IL-6R, IL-6sr 

and leukaemia inhibitory factor receptor (LIFR) (Heinrich et al. 2003). Of this family, 

OSM, IL-11, IL-6 and LIF have all been associated with RA pathology.

Oncostatin M is produced by T cells and monocytic cells and can regulate proliferation of 

many different cells. Levels of OSM are elevated in the synovial fluid of RA patients 

compared with fluid from healthy and OA patients indicating a role for this cytokine in 

inflammatory arthritis (Cawston et al. 1998). Recombinant human OSM can inhibit
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proteoglycan synthesis in porcine articular cartilage explants (Hui et al. 1996) and OSM, 

in combination with TNFa, can increase collagen breakdown of bovine cartilage in 

explant culture (Hui et a l 2003). In addition OSM can work synergistically with IL-1 a  

to increase release of collagen from cartilage in vitro possibly by increasing MMP 

production and decreasing tissue inhibitor of the matrix metalloproteinases (TIMP) (see 

section 1.5.1.3.1 and 1.5.2 respectively) production (Cawston et al. 1998). Furthermore 

OSM increases production of IL-6 and TIMP1 by mouse FLS in vitro (Langdon et al.

2000). Therefore OSM is considered to act as a pro-inflammatory cytokine in RA.

The role of IL-11 in RA is under debate. Within the synovial joint, IL-11 is produced by 

lymphocytes, FLS, monocytes, osteoblasts and chondrocytes (reviewed by Wong et al. 

2003). IL-11 may cause bone destruction because it induces osteoclastogenesis (Girasole 

et al. 1994). However, EL-11 may also have a protective role in RA by decreasing 

MMP1 and MMP3 synthesis (see section 1.5.1.3.1) and increasing TIMP1 synthesis 

(Taki et al. 2000).

Levels of LIF are also elevated in RA synovial fluid compared to OA synovial fluid (Lotz 

et al. 1992). It can stimulate MMP production by osteoblasts (Varghese et al. 1999) and 

can increase IL-1 and IL-6 mRNA production by chondrocytes and FLS in vitro (Villiger 

et al. 1993). Furthermore murine LIF binding protein (mLBP) inhibited proteoglycan 

release from porcine articular cartilage explants incubated with RA patient synovial fluid 

(Bell and Carroll 2000) thus demonstrating that LIF plays a destructive and inflammatory 

role in RA.

1.4.1.2 Prostaglandins

Prostaglandins are unsaturated carboxylic acids attached to a five-membered carbon ring. 

They are produced by most tissues and are involved in many processes throughout the 

body including reproduction, smooth muscle contraction and the inflammatory response. 

They are similar to hormones in that they act as messengers to stimulate cells but differ 

from hormones because they are produced and act locally and are metabolised very 

quickly.
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The two enzymes involved in prostaglandin synthesis are cyclooxygenase-1 (COX-1) and 

COX-2. Cyclooxygenases convert the substrate, arachidonic acid, to the intermediates 

prostaglandin G2 (PGG2) and prostaglandin H2, which are then converted by specific 

tissue prostaglandin synthases to PGE2 and PGF2. COX-1 is constitutively expressed and 

is stimulated by hormones or growth factors to regulate normal cellular processes (Simon 

and Strand 2004). COX-2 is expressed by most tissues and is induced during 

inflammation by pro-inflammatory cytokines (although it is constitutively expressed in 

bone) (Simon and Strand 2001), e.g. IL-1 and TNFa (Anderson 2001). COX-2 

synthesises the production of prostaglandins that mediate inflammation (Vane 1994) 

hence, COX-2 inhibitors, also known as NSAIDS, are prescribed as a treatment for RA 

(see section 1.3.4.1). Prostaglandins produced by COX-2 mediate inflammation by 

increasing vasodilation and increase pain by inducing the release of bradykinin 

(Tannenbaum et al. 1996). Bradykinin acts on nociceptors to amplify pain impulses. In 

addition, prostaglandins lower the threshold of the nerve endings, making them more 

sensitive to bradykinin, thus enhancing the painful stimulus (Smith et al. 2000). 

Prostaglandins can also regulate bone formation and resorption (Yoshida et al. 2002).

1.4.1.3 Nitric oxide

Nitric oxide is a free radical. Levels of nitric oxide (NO) are increased in the synovial 

joint in RA due to increased activation of the inducible nitric oxide synthase (iNOS) 

pathway (Grabowski et al. 1996). Within the synovial joint, FLS, macrophages, 

osteocytes, osteoblasts, chondrocytes and endothelial cells can be induced to produce NO 

(Grabowski et al. 1996; Ralston et al. 1994): TNFa, IFNP and IL-1 have all been shown 

to induce iNOS expression (Stadler et al. 1991; Palmer et al. 1993). NO reacts with the 

enzyme guanylyl cyclase to produce the second messenger molecule cyclic guanosine 

monophosphate (cGMP) and thus, mainly through protein kinase G, it effects phenotypic 

changes (Matsunobu et al. 2000). Nitric oxide has been shown to be involved in both 

degradative and pro-inflammatory events in RA and this role is demonstrated by the fact 

that inhibition of iNOS suppresses the development of ALA in rats (Stefanovic-Racic et 

al. 1994). The degradative role of nitric oxide has been demonstrated by experiments 

showing collagenolytic and caseinolytic activity are both activated by NO in articular
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cartilage (Murrell et a l 1995). In addition, NO can inhibit osteoblast proliferation 

(Ralston et a l 1994). Furthermore, NO can potentiate TNFa and IL-1 release by 

leukocytes (Lander et al 1993) thus contributing to inflammatory pathways.

1.5 Degradation

Degradation of the synovial joint causes loss of joint function in RA patients. MMPs and 

their inhibitors, the TIMPS, have been investigated as markers of degradation in this 

study therefore this literature review focuses mainly on these. It should be noted 

however that other proteases are involved in the pathogenesis of RA.

1.5.1 Proteases

Proteases are divided into 4 groups depending on their active site residues: metallo, 

serine, cysteine and aspartate proteases (Murphy and Reynolds 2002). The primary cause 

of cartilage and bone destruction in arthritis is by enhanced protease activity degrading 

collagens and proteoglycans. In RA, FLS, osteoclasts, macrophages, chondrocytes and 

neutrophils all produce proteases and therefore contribute to joint destruction. The 

proteases most prominently involved in RA are the cathepsins, serine proteases and 

MMPs (Kyburz and Carson et a l  2000).

1.5.1.1 Cathepsins

Cathepsins are lysosomal, and the cysteine cathepsins generally work intracellularly at 

acidic pH. The pH of synovial fluid ranges from 1.2-1 A  (Trzenschik and Marx 1987). 

However, the local environment at the pannus cartilage/bone junction at sites of 

macrophage and osteoclast attachment is acidic which is ideal for the working conditions 

of cathepsins rather than MMPs, which work at neutral pH.

Cathepsins B, K and L are all cysteine proteases and are involved in the pathophysiology 

of RA joint destruction. Cathepsin K is produced by FLS in areas of high proliferation 

and vascularisation within the RA synovium where it can degrade phagocytosed intra- 

lysosomal collagen fibrils (Hou et a l  2001) however it is predominantly associated with 

a bone degrading role. The fact that cathepsin K antisense oligodeoxynucleotides inhibit
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bone resorption of rabbit osteoclasts cultured on dentine slices (Inui et al. 1997) 

demonstrates that it is essential for osteoclast bone resorption and is involved in bone 

degradation. Cathepsin K expression is upregulated in RA synovium compared to 

normal and it is mainly expressed where the synovium attaches and degrades the 

underlying bone (Hummel et al. 1998).

RA synovial fluid contains significantly higher levels of active Cathepsin B compared 

with osteoarthritic synovial fluid (Hashimoto et al. 2001). Cathepsin B can hydrolyse 

proteoglycans and collagen (Hashimoto et al. 2001). Chondrocytes express cathepsins B 

and L, which can degrade collagen types n, IX and XI (Maciewicz et al. 1990), the major 

cartilage collagens. Cathepsin B is also produced by bone cells and FLS (Aisa et al. 

2003, Lemaire et al. 1997).

This evidence suggests that up-regulation of cathepsin function and cathepsin expression 

regulation may contribute to tissue destruction in RA.

1.5.1.2 Serine proteases

Serine proteases function at neutral pH. The plasminogen activators and plasmin are 

believed to be important regulators of connective tissue turnover (Andreason et al. 1997). 

The important role of serine proteases relevant to this study is the initiation of MMP 

activation (Nagase et al. 1991). Serine proteases involved in MMP activation are 

plasmin, chymase, tryptase, tissue kallikrein, plasma kallikrein, cathepsin G and 

neutrophil elastase (reviewed in Murphy and Reynolds 2002).

1.5.1.3 Metalloproteinases

Metalloproteinases are part of a superfamily and contain a metal ion in their active site. 

They can activate pro-enzymes, activate cytokines, degrade many components of 

cartilage and bone and are involved in the destruction of RA synovial joints (reviewed in 

Pap et al. 2000). The metalloproteinases attack the ECM components such as aggrecan 

and collagen. Aggrecan is the main proteoglycan of the cartilage ECM and therefore its 

degradation leads to the destruction of articular cartilage. Hence, the cartilage structural
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integrity and its ability to withstand mechanical loading is lost. There are many types of 

metalloproteinases but the main three involved in RA are the zinc metalloproteinases: the 

MMPs, the 'a disintegrin and metalloproteinases' (ADAMs) and the ADAM with 

thrombospondin repeats (ADAMTSs). In this section the TIMPs, the specific inhibitors 

of the MMPs, will also be discussed.

1.5.13.1 MMPs

MMPs are zinc endopeptidases, functional at neutral pH, most of which can be grouped 

as the stromelysins (MMPs 3, 7, 10 and 11), the collagenases (MMPs 1, 8 and 13), the 

gelatinases (MMPs 2 and 9) and the membrane-type metalloproteinases (MMPs 14, 15, 

16, 17, 24 and 25) (Shaw, T. 2000). MMPs can degrade most components of the ECM; 

table 1.2 shows all MMPs known to date and their substrates. MMPs require calcium and 

zinc for activity.

The domain structure of the MMPs is visualized in figure 1.8. All MMPs contain a pro­

peptide sequence and an N-terminal catalytic domain. MMPs are secreted as inactive 

pro-enzymes resulting from the formation of a complex between a single cysteine residue 

in the pro-peptide domain and the zinc atom in the catalytic domain. The zinc atom in 

the catalytic domain forms a catalytic complex with three histidine residues also in the 

catalytic domain. The pro-peptide domain blocks the active site. Activation is achieved 

by proteolysis or by other means of activating the cysteine switch mechanism by 

dissociation of the cysteine residue from the complex such as conformational perturbants 

(eg SDS) or heavy metals (Van Wart and Birkedal-Hansen 1990). This reveals the 

catalytic complex. The control of activation of MMPs by proteolysis is complex; MMPs 

can activate other MMPs, for example MMP 3 can activate pro-MMP 1, 8, 9 and 13 

(Stemlicht and Werb 1999).
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Table 1.2 The substrates of all MMPs known to date (adapted from Cawston 1998; 

Pelletier et a l  2001 and Sommerville 2003).

MMP MMP Type Size latent/ 
active 
(kDa)

Substrates

1 Collagenase 52/43 Collagens I, II, III, VII, X, Gelatins, aggrecan, 
tenascin and link protein

8 Collagenase 75/55 Collagens I, II, III, VII, VIII, X, link protein and 
aggrecan

13 Collagenase 52/42 Collagens I, II, III, VII, X, gelatins and aggrecan
2 Gelatinase 72/62 Gelatin, Collagens I, II, III, IV, V, VII, X, XI, 

fibronectin, elastin, tenascin, laminin, aggrecan and 
vitronectin

9 Gelatinase 92/82 Gelatin, Collagens I, IE, IV, V, VII, X, XI, XIV, 
vitronectin, elastin and aggrecan

3 Stromelysin 52/43 Aggrecan, link protein, decorin, elastin, transin, 
gelatins, fibronectin, laminin, proteoglycanase, 
collagens I, IE, IV, V, VIE, IX, XI, activates MMP-1, 
vitronectin and tenascin

10 Stromelysin 52/44 Gelatins, Collagens, I, IE, IV, V, VEI, IX, activates 
procollagenase, fibronectin, laminin, elastin and 
aggrecan

11 Stromelysin 51/46 Cleaves casein, fibronectin, laminin, aggrecan, gelatin, 
a - 1-antitrypsin and serpin

7 Stromelysin 28/19 Gelatins, elastin, aggrecan, entacin, laminin, 
fibronectin, link protein, activates procollagenase, 
vitronectin, tenascin,

12 Elastase 52/20 a  1-proteinase inhibitor, elastin
14 MT-MMP 64/54 Activates MMP-2, collagens I, E, IE, dermatan 

sulphate, fibronectin, gelatin, vitronectin and laminin
15 MT-MMP 71/61 Fibronectin, vitronectin, fibrillar collagens, aggrecan
16 MT-MMP 66/56 Gelatin, Casein and activates MMP-2
17 MT-MMP 62/51 Fibronectin, a2-macroglobulin, gelatin, fibrinogen, 

fibrin, activation of pro-TNFa (English et a l 2000)
19 RASI-1 56/48 * Collagens I and IV, gelatin, aggrecan, casein, 

fibronectin, laminin, tenascin
20 Enamelysin 54/22 Enamel matrix
23 CA-MMP 58/45 Gelatin
24 MT-MMP 63/28 Gelatin, chondroitin sulphate, fibronectin, activation 

of pro-MMP2 and pro-MMP13
25 MT-MMP 34/28 Gelatin, collagen IV, fibronectin, activation of pro- 

MMP2
26 Matrilysin 30/18 Collagen IV, gelatin, casein, fibrinogen, fibronectin
28 Epilysin 62/58 Casein
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Figure 1.8 The domain structure of MMPs.

MMPs consist of: a propeptide (grey), a catalytic domain (blue) with the active site and 
the catalytic zinc (Zn) (red); and a COOH-temunal domain (C) (yellow) with homology 
to the serum protein hemopexin (not present in the matrilysins). The catalytic domain and 
the C-terminal domain are connected by a linker peptide. Gelatinases have an insert of 
three fibronectin type II repeats (turquoise) in the catalytic domain. A transmembrane 
domain (black) and a cytoplasmic tail (green) at the COOH terminus, which anchors 
these enzymes in the cell membrane, is only present in the Membrane-type MMPs 
(obtained by permission of the Arthritis Research C ampaign).
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Cytokines and growth factors regulate the expression of MMPs. MMP 9 is induced by 

cytokines such as IL-1 and TNFa; however MMP 2 another gelatinase is constitutively 

expressed in cartilage and relatively unresponsive to cytokines and growth factors 

(Konttinen et al. 1999). The other constitutively expressed MMPs in the synovial 

membrane are 3, 11 and 19 (Konttinen et al. 1999). The levels of pro and active MMPs 2 

and 9 are elevated in the synovial fluid of RA patients (Yoshihara et al. 2000) and their 

roles in RA have been investigated by knock out studies in mice (Itoh et al. 2002). The 

symptoms of antibody-induced arthritis (AIA) are elevated in MMP2 knock out mice 

compared to wild type and decreased in MMP9 knock out mice compared to wild type 

mice. The double knock out mouse has a similar phenotype to the wild type mice after 

AIA suggesting that MMP2 and 9 have compensatory effects.

Traditionally it has been thought that substrates for MMPs are structural components of 

the ECM however non-structural ECM molecules have now been observed as MMP 

substrates. For example MMPs 1, 2, 3 and 9 secreted from RA FLS stimulated with 

aminophenylmercuric acetate (APMA) can cleave and degrade the pro-inflammatory 

cytokine IL-ip but not IL-1 a  (and can be inhibited by TIMP1) (Ito et al. 1996). Since 

MMP2 is elevated in RA synovial fluid and MMP2 knock out mice have increased 

susceptibility to AIA, it has been proposed that the main role of MMP2 in AIA is to 

degrade inflammatory factors (Itoh et al. 2002). There is also evidence that proteases can 

activate cytokines as well as degrade them, this is possible as many cytokines are 

synthesised as latent forms. IL-ip can be activated by the protease 'proteinase 3' (Kekow 

et al. 2000), MMP2, MMP3 and MMP9 (McCawley and Matrisian 2001). MMP 13, 

MMP 15, (Konttinen et al. 1999; Kekow et al. 2000) MMP 19 (English et al. 2000), 

MMP1, MMP7 and MMP3 (McCawley and Matrisian 2001) can activate TNFa 

indicating perpetuating mechanisms in inflammation and degradation.

1.5.1.3.2 ADAMs

A disintegrin and metalloproteinases (ADAMs) are transmembrane proteinases consisting 

of a prodomain, a metalloprotease domain, a disintegrin domain, a cysteine-rich domain, 

an EGF-like domain, a transmembrane domain, and a cytoplasmic tail. The ADAMs,
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like the MMPs are also zinc metalloproteases. In humans there are 19 ADAMs genes but 

they are not as well characterized as the MMPs (Seals and Courtneidge 2003). Some 

ADAMs are commonly referred to as sheddases and function to proteolytically cleave 

cell-surface proteins. AD AMI 7 also known as TNFa converting enzyme (TACE) 

converts pro-TNFa to its active form and inhibitors of TACE have shown efficacy, 

equivalent to treatments that neutralise TNFa, in a mouse model of collagen-induced 

arthritis (Newton et al. 2001).

1.5.133 ADAMTSs

The ADAMTSs are a family of secreted proteases (Kuno et al. 1997) of which there are 

at least 19 members (Hashimoto et al. 2004). The ADAMTS proteins are characterised 

by the presence of an N-terminal pro-sequence, a metzincin domain, a disintegrin-like 

domain and a variable number of thrombospondin repeats (Sandy et al. 2000). The 

ADAMTSs have many functions including degradation of versican and brevican, roles in 

fertilization and angioinhibitory properties (reviewed in Llamazares et al. 2003). 

However, the functions of many recently discovered ADAMTSs have not yet been 

characterised.

Importantly for RA pathology, a subset of the AD AMTS proteases degrade aggrecan and 

these include ADAMTS1, ADAMTS4, ADAMTS5, ADAMTS8, ADAMTS9 and 

ADAMTS15 (Little et al. 2005). ADAMTS4 and ADAMTS5 (aggrecanase 1 and 

aggrecanase 2 respectively) are both elevated in RA (Murphy and Reynolds et al. 2002). 

Furthermore, IL-1 and TNFa can stimulate ADAMTS4 production in chondrocytes 

(Tortorella et al. 2001). Aggrecan is the main proteoglycan in cartilage (see section 

1.2.3) and is cleaved at two main sites. MMPs are responsible for cleavage at one site and 

aggrecanase is responsible for the other. Aggrecanase cleaves aggrecan within the 

interglobular domain (IGD) at the Glu373 -  Ala374 site (Abbaszade et al. 1999). Recent 

studies show that there are four additional cleavage sites within the C-terminal region, 

which are cut by ADAMTS4 (Tortorella et al. 2000). Cleavage at the NITEGE -  

ARGSVIL (Glu -Ala site) sequence renders the bulk of aggrecan to be free from the 

cartilage matrix and enabling it to diffuse into the synovial joint fluid. In fact, elevated
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levels of aggrecan fragments, which have the ARGSVIL N-terminus, have been 

identified with monospecific antipeptide antibodies in the synovial joint fluid of patients 

with rheumatoid arthritis (Lark et al. 1997). In addition, deletion of ADAMTS5 can 

prevent cartilage degradation in a mouse model of arthritis (Glasson et al. 2005) thus 

indicating that aggrecanases play an important role in arthritis. Furthermore, it may be 

necessary for aggrecanases to deplete cartilage of aggrecan before the MMPs can degrade 

the collagen network (Pratta et al. 2003), therefore aggrecanases are considered important 

in the early stages of cartilage destruction in rheumatoid arthritis (Nagasi and Kashiwagi 

2003).

1.5.2 TIMPs

The natural inhibitors of MMPs are the tissue inhibitors of metalloproteinases (TIMPs) 

(See table 1.6) however they can also inhibit ADAMs and ADAMTSs. They form a 1:1 

complex with MMPs, binding to the active site, to inhibit them. TIMPs are not just 

involved with MMP inhibition; TIMP2 is needed for activation of pro-MMP2 by MMP 14 

(a MT-MMP) (Sommerville 2003). TIMP3 is involved in the regulation of the ADAM 

17 (ADAM17, see section 1.5.1.3.2) (Murphy et al. 2003). Despite this, it is generally 

recognised that if an imbalance of MMPs and TIMPs occurs (i.e. more MMPs) the 

cartilage and bone become degraded as in rheumatoid arthritis. TIMP1 but not TIMP2 

has been demonstrated to be elevated in RA synovial fluid (Yoshihara et al. 2000).
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Table 1.6 The TIMPs known to date (adapted from Cawston 1998, Kashiwagi 2001).

TIMP MMP-
inhibition

Protein
size
(Da)

Localisation Expression

•

M ajor tissue 
sites

Pro-
MMP

binding
1 All 20243 Diffusible Inducible Bone, ovary MMP-9
2 All 21729 Diffusible Constitutive Lung, placenta, 

ovary, testis, 
heart

MMP-2

3 All,
ADAMTS4, 
ADAMTS5, 
ADAM 17

21676 ECM bound Inducible Kidney, brain, 
lung, heart, 
ovary

unknown

4 All 22609 Unknown Unknown Kidney,
placenta, colon, 
brain, skeletal 
muscle, ovary, 
testis, heart

unknown

1.6 Glutamate

1.6.1 Introduction to glutamate and RA

The concentration of glutamate is elevated in the synovial fluid of human joints with 

synovitis compared to normal (McNeamey et al. 2000). Furthermore, RA synovial fluid 

levels of glutamate have been shown to correlate with pro-inflammatory markers 

(McNeamey et al. 2004). Glutamate levels also become elevated following induced 

inflammation. Studies in rats have shown that knee joint inflammation doubles the 

amount of glutamate in the synovial fluid (Lawand et al. 2000). This study explores 

whether this elevated glutamate modifies the phenotype of cells within the synovial joint. 

To date, most research involving glutamate signalling has focused on its role as a 

neurotransmitter; therefore the mechanism of glutamate signalling within the central 

nervous system will be summarised prior to discussing its potential role in RA.

1.6.2 Glutamate signalling within the central nervous system

Glutamate signalling has been well studied in the central nervous system (CNS) where L -  

glutamate is the major neurotransmitter at excitatory synapses. To introduce the 

glutamate signalling mechanism, the functioning of a glutamatergic synapse (see figure 

1.9) will be briefly described.
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Figure 1.9 A glutamatergic synapse in the CNS

GLUTAMATE 
SIGNALLING IN 
THE CNS

Pre-synaptic
Neuron

Glutamine

y-BPvDAG

O o  
Glutamateo

Glutamine

Glutamate 0

•NMDA
•AMPA
•Kainate
(Ca2+/Na*)

Glial cell

Synaptic cleft

Post-synaptic Neuron

Upon excitation of the presynaptic neuron, glutamate is released into the synaptic cleft. 
This activates glutamate receptors on the postsynaptic neuron to continue the excitatory 
signal. Glutamate transporters predominantly via the associated glial cells rapidly take 
up the glutamate and recycle it via glutamine (by the enzymes glutamine synthetase, 
glutaminase and glutamate dehydrogenase) back to the presynaptic neuron (refer to 
abbreviations page for definition o f acronyms).
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Figure 1.10 The synaptic vesicle cycle (Adapted from Bhangu 2003).
1) Synaptic vesicle loading glutamate
2) Generation o f synaptic vesicle pools
3) Transport and targeting o f synaptic vesicles to the presynaptic membrane
4) Tethering of the synaptic vesicle to the presynaptic membrane
5) Docking of the synaptic vesicle to the presynaptic membrane
6) Conversion of docked vesicles, to vesicle ready to undergo exocytosis
7) Fusion o f the synaptic vesicle with the presynaptic membrane
8) Recycling of the synaptic vesicle

•  # 3Na

•  0
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Vesicle: Transporter:
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Glutamate is stored in the presynaptic neuron in vesicles. The vesicles in the presynaptic 

neuron take up glutamate via vesicular glutamate transporters (VGLUT) 1 and 2. As a 

driving force for glutamate uptake, these transporters use the electrochemical proton 

gradient generated by H+-ATPase (reviewed in Danbolt 2001).

Upon excitation of the presynaptic neuron, glutamate is released from intracellular 

vesicles into the synaptic cleft. Excitation occurs when the presynaptic neuron 

depolarizes in response to an action potential. This leads to an influx of Ca2+ through 

voltage gated ion channels. Following excitation, a single vesicle releases low millimolar 

levels of glutamate in the locality of postsynaptic receptors (Rosenmund and Stevens 

1996). The vesicles are targeted to the pre-synaptic membrane by protein-protein 

interactions of the plasma and vesicle membrane; vesicular membrane soluble N-ethyl 

maleimide-sensitive factor (NSF) attachment receptor (vSNARE) proteins interact with 

the target SNARE (tSNARE) proteins on the cell plasma membrane (Jahn and Hanson

1998). This allows complex formation between the vesicle-associated membrane protein 

(VAMP) and tSNARES that can then associate with other regulatory proteins to regulate 

fusion and exocytosis of glutamate (as reveiwed in Skerry and Taylor 2001). It is 

synaptotagmin that is the receptor within the fusion complex that binds calcium and 

through a conformational change allows binding of the synaptic vesicle to the presynaptic 

membrane (Augustine 2001). Glutamate receptors on the postsynaptic neuron 

membrane, bind the released glutamate, become activated and the excitatory signal 

continues to its destination. The synaptic vesicles are recycled. Figure 1.10 shows this 

synaptic vesicle cycle.

1.6.2.1 Glutamate receptors

There are 2 sub-groups of glutamate receptors, the ionotropic glutamate receptors and the 

metabotropic glutamate receptors. The ionotropic receptors are glutamate-gated ion 

channels and are divided into three sub-groups according to their responses to the 

pharmacological ligands: TV-Methyl-D-aspartic acid (NMDA), a-amino-3-hydroxy-5- 

methyl-4-isoxazolepropionic acid (AMPA) and kainate. The binding of glutamate to the 

ionotropic receptors allows the entry of cations into the postsynaptic cell. The
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metabotropic receptors are G-protein coupled receptors. Activation of both types of 

receptor allow perpetuation of the exctitatory signal.

1.6.2.1.1 NMDA receptors

Three families of NMDA receptor subunits exist. The NMDA receptor subunits are NR1 

(1 gene), NR2A to D (4 genes) and NR3A and B (2 genes). NR1 has a much shorter C- 

terminus compared to the NR2 and NR3 subunits (the length depends on splice variation) 

and is an essential subunit for NMDA receptor formation (Ishii et al. 1993). Figure 1.11a 

highlights the topology of the NMDA receptor subunit NR1.

Eight functional isoforms of the NR1 subunit exist, all from differential mRNA splicing 

(Moriyoshi et a l 1991, Sugihara et al. 1992). Two sites undergo splice variation, the C- 

terminal and the N-terminal. The C-terminal region is involved in multiple protein- 

protein interactions, such as PSD-95/Discs-Large/ZO-l (PDZ)-domain containing 

proteins, which allows clustering of the NMDA receptor subunits. The NR2 and NR3 

subunits are modulatory, however only when NR1 is expressed with an NR2 subunit can 

active channels be formed (Ishii et al. 1993). This is because the binding site for glycine 

is on the NR1 subunit and glycine is an essential co-agonist for NMDA receptor function 

(Kleckner and Dingledine 1988). In addition, NR1 and NR2 subunits are essential for 

formation of the ion channel pore. Furthermore the NR2 subunits contain the glutamate 

binding sites (Anson et al. 1998). The role of the NR3 subunits is not fully understood. 

NMDA receptors form tetrameric complexes, and it is likely that they form tetrameric 

heterooligomers (Schorge and Colquhoun 2003).

Due to the multiple combinations of individual subunits (there are also splice variants of 

NR2B, NR2C and NR2D, NR3A [Sun et al. 1998]), many different NMDA receptor 

subtypes can exist with different functional and pharmacological properties (Dingledine 

et al. 1999). For example, splicing at the N-terminal region of NR1 can result in 

variation in potentiation by polyamines, and variation in the C-terminal region of NR1 

can affect binding to PDZ-binding proteins (Putzke et al. 2000).
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Figure 1.14 Representative topology of glutamate receptor or receptor subunits
Pictures obtained by permission of Dr. Andrew Doherty, Bristol University.

A: NMDA
Topology o f an NMDA receptor 
subunit NR1 (of which there are 8 
splice variants). NMDA receptor 
subunits have an extracellular N- 
terminus and an intracellular C- 
terminus. Both undergo extensive 
splice variation. The ligand binding 
domain is also highlighted.
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B: AMPA
Topology of an AMPA receptor 
subunit (AMPA GluR2). AMPA 
receptor subunits have an extracellular 
N-terminus and an intracellular C- 
terminus that undergoes splice 
variation. The NSF and PDZ binding 
domains are shown. The ‘flip-flop’ 
region and RNA editing site are also 
highlighted.
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C: Kainate
Topology of a kainate receptor subunit 
(GluR5 subunit). Kainate receptor
subunits have an extracellular N-
terminus and an intracellular C-
terminus that both undergo splice
variation. The two RNA editing sites 
are also highlighted.

D: Meta bo tropic
Topology o f a representative 
metabotropic receptor. Metabotropic 
receptors are G-coupled proteins with 
7 transmembrane domains. Generally 
the C-terminus undergoes extensive 
splice variation.
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In the CNS the NMDA receptors are expressed differentially across the brain, except the 

NR1 subunit which is ubiquitously expressed (Liu and Zhang 2000). The NMDA 

receptors play a key role in neurotransmission, synaptic plasticity and synaptogenesis. 

The NMDA receptors are permeable to Ca2+, Na+ and K+ and are sensitive to voltage- 

gated Mg block (Liu and Zhang 2000), they can also be inhibited by protons at 

physiological pH (Cull-Candy 2002). Zn can block NMDA currents too in a non­

competitive and voltage-independent manner (Fayyazuddin et al. 2000). NMDA 

receptors have higher permeability to Ca2+ compared to the non-NMDA ionotropic 

glutamate receptors.

In the prolonged presence of an agonist, NMDA receptors (like other membrane 

receptors) become desensitised. Three types of desensitisation have been identified:
94- 94-Ca -dependent, glycine-sensitive and Ca - and glycine-independent desensitisation (Liu 

and Zhang 2000). The role of NMDA desensitisation is not fully understood.

In the CNS, stimulation of NMDA receptors causes signal transduction events involving 

protein kinases, phosphatases and small GTPases which lead to adaptive responses in the 

postsynaptic cell such as changes in the cytoskeleton, membrane excitability, cell 

adhesion, transcription and translation (reviewed in Hering and Sheng 2002). This is 

often through interaction with the post-synaptic density (PSD) proteins, which contain 

PDZ domains. Of interest, because of the role of NO in inflammation (see section 

1.4.1.3), the PSD protein PSD95 can interact with the neuronal nitric oxide synthase 

(Brenman et al. 1996).

1.6.2.1.2 AMPA receptors

The AMPA receptors are non-selective cation channels and, as well as kainate receptors, 

can bind to kainate, but the kainate receptors have a higher affinity. There are four 

different subunits, GluRl to 4. The AMPA subunits form homomeric or heteromeric 

receptors and are encoded by 4 separate genes (Cull-Candy 2002). At present the 

stoichiometry of these receptor complexes is unknown. In vivo AMPA receptors are 

thought to be heteromeric (Strieker and Huganir 2002).
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The variation in glutamate receptor potencies varies widely (Hollmann and Heninemann 

1994). Alternative-splicing renders different AMPA subunits with different properties. 

Figure 1.11b shows the topology of a representative AMPA subunit. The AMPA 

receptor subunits all exist in at least two different alternatively spliced forms: flip and 

flop. The difference between the flip and flop variants being 9-11 amino acids (Strieker 

and Huganir 2002). Flip variants, which desensitise less and slower, are the most 

abundant form before birth, whereas flop variants tend to be more abundant after birth 

(Swanson et al. 1997, Dingledine et al. 1999). The C-terminal tails of AMPA receptor 

subunits also undergo alternative splicing, which may affect the role of the C-terminal tail 

in signal transduction and membrane trafficking (reviewed in Palmer et al. 2005). RNA 

editing also provides subunits with different properties. For example, it is certain RNA 

edited variants of the AMPAGluR2 subunit make some AMPA receptors impermeable to
 ̂I

Ca (Washburn et a l  1997). AMPA subunits are expressed differentially throughout the 

brain. GluR2 and GluR3 are ubiquitously expressed but GluRl is only found in 

approximately 50% of synapses. Only basal dendrites express GluR4 subunits (reviewed 

in Strieker and Huganir 2002).

Like NMDA receptors, AMPA receptors can also activate non-ionotropic signalling 

pathways which are independent from ion-flux through the channel. NMDA and AMPA 

receptors can inhibit each other via these non-ionotropic mechanisms. In rat 

hippocampal neurons activation of AMPA receptors decreases NMDA-induced current, 

moreover glutamate-induced current via NMDA receptors increased when AMPA 

receptors were blocked (Bai et al. 2002). AMPA receptors, via the C-terminal, can 

interact with proteins that contain a PDZ-binding domain, these include PSD95, AMPA 

receptor binding protein (ABP), glutamate receptor interacting protein (GRIP) and 

Protein interacting with C-kinase (PICK1). In addition AMPA receptors can interact 

with non-PDZ domain proteins such as N-ethylmaleimide sensitive fusion protein (NSF), 

Lyn (a tyrosine phosphatase) and soluble NSF attachment proteins (SNAP) (reviewed in 

Braithwaite et al. 2000). These interacting proteins provide potential mechanisms for 

regulation of AMPA receptor activity and activation of intracellular signalling pathways.
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AMPA receptors can also activate G-protein signalling pathways as demonstrated in rat 

cortical neurons in the absence of intracellular Ca2+ and Na+ (Wang et al. 1997). AMPA 

receptors have been shown to activate the MAP kinase signalling in neurons, a pathway 

which could be blocked by the lack of extracellular calcium, thus indicating that calcium 

entry through AMPA receptors activates MAP kinase (Wang and Durkin 1995).

1.6.2.1.3 Kainate receptors

The kainate receptors are also non-selective cation channels, however research has 

focused less on these receptors compared to the other ionotropic receptors. It should be 

noted that in addition to kainate, AMPA can also activate some kainate receptors (Herb et 

al. 1992). The kainate receptor subunits are GluR5 to 7, KA1 and KA2. KA1 and KA2 

however, can only form functional receptors when co-expressed with the GluR5 to 7 

subunits (Egebjerg et al. 1991). Kainate receptors are composed of four subunits 

(Bleakman et al. 2002). The exact stoichiometry of kainate receptors is not fully 

understood.

Unlike the AMPA receptors, kainate receptor subunits do not undergo flip-flop splicing 

but instead are alternatively spliced at the N and C-terminal domains. Figure 1.11c 

shows the topology of a representative kainate receptor subunit, the kainate subunits have 

similar topology to the AMPA receptor subunits. The GluR5 and GluR6  subunits also 

undergo RNA editing (like the GluR2 subunit does, section 1.6.2.1.2), this editing occurs 

in the channel pore (‘RNA editing site 2’ see figure 1.11c) and regulate ion flow 

properties (Sommer et al. 1991) and calcium permeability (Bumashev et al. 1995). 

GluR6  undergoes further RNA editing at an additional site in the first transmembrane 

domain (‘RNA editing site 1’ see figure 1.1 lc), this is also involved in Ca2+ permeability 

(Kohler et al. 1993). Furthermore, the GluR5 subunit undergoes alternative splicing at 

the N-terminus which produces two GluR5 variants.

Like the AMPA receptors, receptors of different subunit composition have different 

pharmacological properties. For example, homomeric GluR5 and heteromeric
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GluR6/KA2 receptors are AMPA-sensitive whereas GluR5 heteromers, GluR6 

homomers and GluR7 homomers are not (Howe et al 1996, Schiffer et a l  1997).

Kainate receptors are expressed on presynaptic neurons and may modulate 

neurotransmitter release (reviewed in Huettner 2003), whereas postsynaptically they can 

mediate excitatory transmission. Research into the function of kainate receptors is 

limited although involvement of kainate receptors in nociception (Ruscheweyh and 

Sankuhler 2002) and seizures (Smolders et al. 2002) has been described. In addition, 

interaction of kainate receptors with PDZ binding domain proteins has been described, 

with the associated activation of JNK (Savinainen 2001).

1.6.2.1.4 Metabotropic receptors

Metabotropic glutamate receptors (mGluR) are monomeric receptors coupled to G- 

proteins and are expressed in both pre-and postsynaptic membranes. They have 7 

transmembrane domains connected by three intracellular and three extracellular loops 

(see figure 1.1 Id) with their glutamate-binding domain at the N-terminal (Egebjerg, J. et 

al. 2002). There are 8  known metabotropic glutamate receptors divided into 3 groups 

according to the intracellular signalling pathways that they activate. Group 1 consists of 

mGluRl and 5, Group 2 consists of mGluR 2 and 3 and Groups 3 consists of mGluR3, 4, 

6 , 7 and 8 . Variation is increased due to splicing.

The group one receptors are positively coupled to phospholipase C and increase the 

intracellular concentration of calcium via the DP3/DAG (inositol 1 , 4, 5 trisphosphate/ 

diacylglycerol) pathway (Aramori and Nakanishi 1992). The Ca2+ is released from 

intracellular stores and can also potentiate voltage-dependent calcium channels and 

inhibit K+ conductances (Gubellini et a l 2004). Phospholipase C can also activate 

protein kinase C, which is responsible for a wide variety of cellular events through the 

phosphorylation of proteins (Egebjerg et al. 2002). In addition group 1 metabotropic 

receptors have also been shown to activate the MAPK pathway (Ferraguti et al. 1999).
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The group 2 and 3 metabotropic receptors are negatively coupled to the cAMP cascade 

(Tanabe et al. 1992) and can also modulate ion channel activity (Conn and Pin 1997). 

For example group 2 and 3 metabotropic receptors can inhibit voltage-gated calcium 

channels in neurons (Anwyl 1999). It should be noted that Ca2+ has been shown to 

activate the metabotropic glutamate receptors mGluR 1, mGluR3 and mGluR5 (Kubo et 

al 1998) however other studies have shown this to enhance only the stimulatory effect of 

glutamate on these receptors (Saunders et al. 1998).

To date, roles of metabotropic receptors in the CNS include direct modulation of 

neurotransmitter release in all brain structures and modulation of postsynaptic ionotropic 

receptor activity (reviewed in Gubellini et al. 2004). The metabotropic glutamate 

receptors can also interact with NMDA receptors; activation of mGluR5 can enhance 

NMDA receptor-mediated responses (Domenici et al. 2003).

1.6.3 Glutamate transport

Glutamate release can occur by vesicular release (section 1.6.2), exocytosis, cystine- 

glutamate antiport and by volume-regulated anion channels (reviewed in Shigeri et al. 

2004). Glutamate transport can be Na+-dependent, Na+-independent and of low or high 

affinity. Low-affinity uptake is usually Na+-independent and may supply brain cells with 

amino acids for metabolic purposes (Erecinska and Silver 1990). When compared to 

high-affinity transport in the CNS this mechanism of transport appears redundant 

(Danbolt 2001).

Cystine (the oxidised form of cysteine)-glutamate exchangers are Na+-independent 

transporters. This transporter has been investigated in human fibroblasts (cell line 

derived from foetal lung fibroblasts) and been shown to act as a cystine transporter that is 

driven by the transmembrane gradient of glutamate (Bannai 1986). In fact TNFa has 

been shown to enhance this glutamate-mediated transport of cystine in mouse peritoneal 

macrophages (Sato et al. 1995).
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In the CNS there are also the vesicular glutamate transporters (see 1.6.2) which take up 

and store glutamate ready for release from the presynaptic neuron upon excitatory 

stimulation.

Finally there are the high-affinity Na+-dependent transporters. These are very important 

in the CNS as they allow rapid uptake of glutamate and subsequent termination of the 

excitatory signal (see section 1.6.2). Due to their ability to rapidly take up glutamate and 

regulate extracellular glutamate concentrations, this thesis has focused more on these 

transporters. They will now be discussed in greater detail.

1.6.3.1 EAATs

The high-affinity Na+-dependent transporters are known as the excitatory amino acid 

transporters (EAATs). Located predominantly in synapse associated glial cells, they 

maintain low extracellular levels of glutamate in the CNS. The EAATs regulate 

extracellular glutamate thus preventing toxic levels from being reached and also 

terminating excitatory signals. Inhibition of EAATs in vitro and in vivo increases 

extracellular glutamate and hence neuronal death via excitotoxicity (reviewed in O'Shea 

2002).

Five genes encoding EAATs are known to exist: GLAST-1 (EAAT1), GLT-1 (EAAT2), 

(Storck et al. 1992) EAAC1 (EAAT3), EAAT4 and EAAT5 all of which carry out Na+ 

and K+ coupled transport of glutamate and aspartate. Table 1.7 shows the nomenclature 

for these transporters. EAATs contain eight potential transmembrane domains, one or 

two re-entrant loops and an N-terminal and C-terminal, both of which are cytoplasmic. 

However, the exact topology at the C-terminal end is in dispute between Amara’s group 

(Seal et al. 1999) and Kanner’s group (Kanner and Borre 2002).

There are splice variants of EAAT1 and EAAT2. Alternative splicing of the EAAT2 

gene yields at least three different splice variants (Rauen et al. 2004). However, the 

functional significance of these variants remains to be decided. A splice variant of 

EAAT1 (termed GLASTla) is expressed in bone and brain in vivo (Huggett et al. 2000)
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and also in retina (Huggett and Mason, personal communication). This splice site occurs 

in three of the other EAATs therefore potential variants of these transporters may also 

exist (Huggett, personal communication).

Table 1.7 Nomenclature of EAATs

Transporter name 

Rodent

Transporter name 

Human

Other names

GLAST EAAT1 Slcla3, GluT-1

GLT1 EAAT2 Slcla2

EAAC1 EAAT3 Slclal

EAAT4 EAAT4 Slcla6

EAAT5 EAAT5 Slcla7

The stoichiometry of glutamate transport by EAATs is complex. Sodium is required for 

glutamate binding and potassium is required for the electrogenic transport process 

(reviewed by Danbolt 2001). The process is driven against the glutamate concentration 

gradient by ionic gradients of Na+, K+ and H* which are maintained by the sodium pump. 

Two or three sodium ions and one proton are co-transported with the glutamate and one 

potassium ion is counter-transported therefore making this process electrogenic 

(reviewed in Amara and Fontana 2002). The transport of substrates by EAATs can occur 

bi-directionally, into or out of the cell (Kanner and Marva 1982). However under normal 

conditions in the CNS glutamate is taken up into the cell due to ion gradients.

Glutamate transporters (most apparent in EAAT4 and EAAT5) also have a constitutive 

ion channel function (Billups et al. 1996). In addition, glutamate can bind to the 

transporters and can trigger anion conductance independently of the glutamate transport 

process (reviewed in Danbolt 2001). Furthermore, glutamate transporters may also 

function as receptors. It has been demonstrated previously that glutamate can activate the 

MEK/ERK pathway in astrocytes via glutamate transporters (Abe and Saito 2001). 

Furthermore in a myogenic cell line exposed to 2-chloro adenosine, glutamate caused an 

increase in intracellular Ca levels, an effect that was inhibited by specific glutamate
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transporter antagonists (Frank et al. 2002). It is suggested that this is caused by 

glutamate transport-associated currents activating voltage-gated calcium channels (Frank 

et al. 2002). A further role for the EAATs is that they provide glial cells in the CNS with 

glutamate for metabolism in the glutamate-glutamine cycle (Rae et al. 2000).

The glutamate transporters are expressed by different cell types and in different regions 

of the brain (Danbolt et al. 2001). Glutamate transporter protein expression is regulated 

by many factors. In primary astrocytes cAMP increased expression of EAAT1 and 

EAAT2 (Gegelashvili et al. 1996, Swanson et al. 1997). Glutamate can up-regulate 

EAAT1 expression in cultured astrocytes, possibly via kainate receptors (Gegelashvili et 

al. 1996). Neuronal factors can alter expression of glutamate transporters in cultured 

astroglia (Gegelashvili 1997). In addition glutamate transporters are down-regulated in 

ischaemia, Huntingdon’s disease, epilepsy and amyotrophic lateral sclerosis (reviewed by 

Su et al. 2003).

Glutamate transporter activity can also be regulated directly by phosphorylation, 

sulphydryl oxidation and indirectly by arachidonic acid. The transit of glutamate 

transporters can also be regulated between intracellular compartments and the cell plasma 

membrane. For example, the actin cytoskeleton and protein kinase C phosphorylation 

have been implicated in control of EAAT trafficking (reviewed in Danbolt, 2001). In 

addition, the increased expression of cell-surface GLAST is inhibited by cytochalasins, 

which inhibit actin polymerisation (Duan et al. 1999). Regulation of glutamate uptake 

can also take place by glutamate; activation of group 1 metabotropic receptors in 

astrocytes leads to the down-regulation of GLAST-1 protein (Gegelashvili et al. 2000).
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Table 1.8 Summarry of glutamate receptor and transporter expression in cells and 
tissues outside of the CNS.

Glutamate
gene

keratinocytes

cardiom
yocytes

intestinal 
epithelial cells

m
egakaryocytes

m
ouse 

testis

lym
pho-cytes

pancreatic 
islet 

cells

m
am

m
ary

gland

EAAT1 R, P
EAAT2 P1 P, RJ R,P'°
EAAT3 P1 P, RJ P4 Rb
EAAT4
NMDANR1 pi^ Pb R9

NMDANR2A P1 R9

NMDA NR2B P 1

NMDANR2C R9

NMDANR2D R9

AMPAGluRl pH
AMPAGluR2 P1 P*1, R9

AMPAGluR3 P1 Ps, R9

GluR6 Ps, R9

GluR7 P ^R 9

KA2 Ps, R9

mGluR 1 P1 P ,R '
mGluR2 P1

mGluR3 P1

mGluR4
mGluR5 P, Rv
KEY: R= mRNA, P= protein
(1) Genever et al. 1999a, (2) Morhenn et al. 1994, (3) Kugler 2004, (4) Fan et al. 2004, 
(5) Genever et al. 1999b, (6 ) Wagenfeld et al. 2002, (7) Pacheco et al. 2004), (8 ) Weaver 
et al. 1996), (9) Inagaki et al. 1995), (10) Marinez-Lopez et al. 1998).

54



Chapter 1

1.6.4 Expression of glutamate signalling outside of the central nervous system

Glutamate signalling is not limited to the CNS as previously thought. All components of 

glutamate signalling (vesicular transporters, vesicle docking proteins, transporters and 

receptors) are expressed in bone and cartilage cells and some transporters and receptors 

have been shown to be functional in these cells. The glutamate signalling components 

expressed outside of the CNS are shown in table 1.8 (bone, cartilage and fibroblasts are 

described in a separate section). Thus it is clear that many cell types have the potential to 

regulate extracellular glutamate concentrations and respond to glutamate via both 

ionotropic and metabotropic receptors.

1.6.4.1 Glutamate signalling in bone

Recent studies have suggested that glutamate plays a role in intercellular communication 

within bone (Mason et al. 1997, Chenu 2002, Hinoi et al. 2004, Kalariti and Koutsilieris 

2004, Mason 2004) and in fact, evidence of glutamate signalling in bone has increased 

greatly over the last eight years.

Expression of glutamate receptors and transporters has been observed in osteoclasts, 

osteoblasts, osteocytes (see sections 1.6.4.1.1, 1.6.4.1.2 and 1.6.4.1.3), cartilage (section 

1.6.4.2), fibroblasts and macrophages (section 1.6.4.3). Functional studies have revealed 

that activation of glutamate receptors can influence both bone formation and bone 

resorption. A GLAST-1 knock out mouse has been used to observe changes in bone at 

different stages of development but no differences in bone length, trabeculation or 

resorption lacunae of bone were detected compared with wild type siblings (Gray et al. 

2001). However this work has been criticised due to the fact that compensatory 

mechanisms from other glutamate transporters were not taken into account (Skerry et al. 

2001). Neither was the fact that the role of the gene may only be observed if functional 

studies are carried out (Chenu et al. 2001), for initially GLAST-1 was discovered in rat 

bone by its regulation under mechanical loading (Mason et al. 1997). GLAST-1 also has 

a splice variant called GLAST-la and this was not taken into account either in the studies 

by Gray et al. (Skerry et al. 2001). GLAST la does not contain exon 3 and is expressed 

in bone, brain (Huggett et al. 2000) and retina (Dr. D. J. Mason, Cardiff university,
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personal communication). In addition, other neurotransmitters are present in bone: 

bradykinin, calcitonin gene related peptide, VIP and NO (reviewed in Skerry 2002).

Because levels of glutamate are elevated in RA and bone is degraded in RA the role of 

glutamate signalling in these cell types will be discussed. Table 1.9 summarises the data 

discussed in the following sections.

1.6.4.1.1 Glutamate signalling in osteocytes

GLAST-1 mRNA and protein is expressed in osteocytes in vivo and its expression is 

regulated by osteogenic mechanical load (Mason et al. 1997). GLAST-1 mRNA is 

expressed in bone in vivo and has the same open reading frame as that expressed in rat 

brain and it encodes a 60kDa protein in both tissues (Huggett et al. 2000). Expression of 

GFP tagged GLAST-1 in transfected MLOY4 cells (an osteocyte-like cell line) showed 

that GLAST-1 was expressed at the cell surface, a requirement for glutamate transport 

into and out of cells (Mason and Huggett 2002). In addition, the cell surface expression 

of GLAST is influenced by extracellular glutamate concentration in these cells (Mason 

and Huggett 2002).

Glutamate receptors are also expressed in osteocytes. NMDA NR1, AMPAGluRl and 

AMPA GluR2 protein are expressed in rat osteocytes in vivo (Chenu et al. 1998).

1.6.4.1.2 Glutamate signalling in osteoblasts

Primary cultured osteoblasts release glutamate at concentrations sufficient to activate 

receptors expressed on bone cell surfaces (2-7 nmoles/mg protein) (Genever and Skerry 

2 0 0 1 ) and many studies have demonstrated the expression of receptors and transporters 

that could interact with this glutamate (see table 1.9). Glutamate release is Ca2+- 

dependent and induced by K+ (Genever and Skerry 2001). The machinery for targeted 

vesicular glutamate exocytosis is also expressed in osteoblasts (Bhangu et al. 2001). 

Namely tSNAREs and vSNAREs necessary for initial interaction of the vesicular and 

cellular plasma membranes as well as the complex forming VAMP synaptobrevin. The 

regulatory proteins SNARE protein-25 (SNAP-25) and syntaxin 4 which regulate the
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fusion and exocytosis of glutamate containing vesicles and the plasma membrane are also 

expressed. Osteoblasts also express the mRNA for proteins involved in vesicular 

glutamate transport; BNPI (brain-specific sodium-dependent inorganic phosphate 

transporter) and DNPI (differentiation-associated sodium-dependent inorganic phosphate 

cotransporter) (Hinoi et al. 2002).

Functional studies have been undertaken on these glutamate signalling components. 

Patch-clamping methods have shown that the NMDA, AMPA and metabotropic types are 

functional in osteoblastic cell lines (Ljubojevic et al. 1999; Gu and Publicover 2000; 

Hinoi et al. 2002). In addition, limiting the release of glutamate with riluzole (a member 

of the benzothiazole class of drugs) by osteoblast-like cell lines induced apoptosis 

(Genever and Skerry 2001). Hence it was concluded that for in vitro survival of 

osteoblasts glutamate signalling appears essential (Genever and Skerry 2001). 

Conversely, Gray et al. have shown that activating or blocking NMDA receptors has no 

effect on bone formation by rat primary osteoblasts (Gray et al. 2001) however, only the 

non-competitive NMDA antagonist AP-5 was used, and at a concentration that did not 

take into account the fact that osteoblasts constitutively release glutamate (Skerry et al. 

2001, Chenu et al. 2001).

1.6.4.1.3 Glutamate signalling in osteoclasts

The bone resorbing cells, osteoclasts also express glutamate receptors (summarised in 

table 1.9) like those expressed at glutamatergic synapses in the central nervous system 

(Chenu et al. 1998; Patton et al. 1998; Hinoi et al. 2002). Osteoclasts express ionotropic 

receptors (Genever et al. 1999, Ljubojevic et al. 1999), specifically subunits NMDA 

NR1, NR2B, NR2D, AMPA GluR 1, 2 and 4 (Chenu et al. 1998; Itzstein et al. 2001). 

The fact that both osteoblasts and osteoclasts express several regulatory NMDA subunits 

in addition to NMDA NR1 suggests a molecular diversity of NMDA receptor channels 

similar to that seen in brain (Itzstein et al. 2001).

The NMDA receptors in osteoclasts have been shown to be functional, because blocking 

these glutamate gated ion channels with pharmacological antagonists (D-AP5 or MK
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801) inhibits bone resorption in vitro (Espinosa 1999). This leads to the conclusion that 

glutamate affects receptor-associated functions in osteoclasts such as bone remodelling, 

differentiation and cell activity (Chenu et al. 1998). MK801 has also been shown to 

inhibit osteoclastogenesis in vitro suggesting that osteoclastogenesis is dependent on 

constitutive glutamate signalling of osteoclasts (Peet et al. 1999). Furthermore MK801 

inhibits actin ring formation in osteoclasts which is a prerequisite for the adhesion of 

osteoclasts to bone (Itzstein et al. 2000).

Other neuropeptides such as substance P and vasoactive-intestinal peptide have been 

implicated in osteoclast formation and bone formation (reviewed in Lemer 2002). This 

all provides evidence that neurosignals and in particular glutamate, can influence bone 

resorption.
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Table 1.9 Summary of glutamate signalling apparatus expressed in bone cells 
(adapted from Mason 2004).

Glutamate release by exocytosis Glutamate rece ptors Glutamate transporters
Vesicle fusion Ionotropic GLAST-1 Osteocytes
VAMP-1 MG63, SaOS-2, NMDAR1 Osteoclasts, (EAAT1) and bone

(1) osteoblasts,osteocytes forming
in vivo (5). MG63 (5,6) osteoblasts in

SNAP-25 MG63,SaOS- SaOS-2 (6). Cultured vivo (12).
2(1),osteoblasts in osteoclasts (5). Bone Primary
vivo (2) marrow (6,9). Primary osteoblasts

osteoblasts (7,10) and MLO-Y4
Syntaxin 4 MG63,SaOS-2(l) Bone marrow (9) and SaOS-2

cells (13,14).
NMDAR2A Bone marrow (6,9) MG63 (16).

Syntaxin 6 SaOS-2,MG63 (1) & B osteoclasts (11)
Primary osteoblasts GLAST- Osteocytes in
(7,10) la vivo (13),

Vesicle MLO-Y4
docking NMDAR2D Osteoclasts (11) cells
Munc-18 MG63,SaOS-2 & (15)

primary NMDAR3A MG63 (16).
osteoblasts(l) Mononuclear

AMPAGluRl Osteocytes,osteoblasts GLT-1 cells of bone
DOC2 MG63,SaOS-2(l) in vivo (5) (EAAT-2) marrow in

vivo (12).
AMPAGluR2 Osteocytes,osteoblasts

RSec8 MG63,SaOS-2(l) in vivo (5)

Synaptophysin MG63(3),SaOS- AMPAGluR3 Primary calvarial
2(1) osteoblasts (10)

Regulatory KA1 and KA2 Primary calvarial
proteins osteoblasts (10)
Rab3A,B,D Primary

osteoblasts(l) Metabotropic
rat calvarial mGluRlb Primary femoral
osteoblasts (2) osteoblasts (8) MG63

(16)
Rab3A,C Osteoclasts (4)

SaOS-2 (2) mGluR2 MG63 (16).

Synapsin 1 MG63,SaOS-2(l), mGluR3 MG63 (16).
rat
calvarial oblasts mGluR4 Primary osteoblasts (7).

MG63 (16).
Synaptogamin Osteoblasts (2)
I mGluR8 Primary osteoblasts (7).

MG63 (16).
Key (1) Bhangu et al. 2001, (2) Bhangu 2003, (3) Barry 2000, (4) Abu-Amer et al. 1999, (5) Chenu et al. 
1998, (6) Patton et al. 1998, (7) Hinoi et al. 2001, (8) Gu and Publicover 2000, (9) Merle et al. 2003, (10) 
Hinoi et al. 2002,(11) Izstein et al. 2001, (12) Mason et al. 1997, (13) Mason and Huggett 2002, (14) 
Huggett et al. 2002, (15) Huggett et al. 2000, (16) Kalariti et al. 2004.
NB. SaOs-2 and MG63 cells are an osteosarcoma cell line (osteoblast-like). MLOY-4 cells are an 
osteocyte-like cell line.
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1.6.4.2 Glutamate signalling in cartilage

EAAT1 mRNA is expressed in human chondrocytes (Mason and Huggett, unpublished 

data). mRNA for EAAT1, EAAT2 and EAAT3 has also been observed in rat primary 

chondrocytes (Hinoi et a l 2005). Protein expression of EAAT1 and EAAT2 was also 

observed in this study (Hinoi et al 2005). Furthermore, Na+-dependent uptake was also 

observed in these cells indicating that the glutamate transporters are functional (Hinoi et 

al 2005).

mRNA and protein of NR1 and NR2A NMD A receptor subunits are expressed in 

chondrocytes (Salter et a l 2004). A difference in receptor responses was observed 

between normal and OA chondrocytes; NMDA receptor antagonists inhibited the 

hyperpolarisation response of normal FLS to mechanical stimulation but no effect was 

observed in OA chondrocytes (Salter et al 2004).

1.6.4.3 Glutamate signalling in fibroblasts and macrophages

The invasive pannus in RA is made up of macrophage-like and fibroblast-like 

synoviocytes. Evidence of glutamate signalling has been observed in both of these cell 

types. Cultured monocyte-derived macrophages express EAAT1 and 2 (Rimaniol et al 

2000). In addition, in the alveolar macrophage cell line, NR8383, NMDA receptor 

subunit (NR1, NR2C and NR2D) mRNA is expressed (Dickman et a l 2004).

Na+-dependent glutamate uptake has been demonstrated in macrophages and fibroblasts. 

TNFa-stimulated monocyte derived macrophages (from spleen and lung) show Na+- 

dependent and Na+-independent glutamate transport but only Na+-independent glutamate 

transport in unstimulated cells (Rimaniol et al 2000). Na+-dependent glutamate transport 

was also observed upon differentiation of the macrophages into fibroblast-like 

macrophages (Rimaniol et a l 2000).

EAAT 1, 2, 3 and 4 proteins are expressed in cultured human skin fibroblasts (Cooper et 

a l  1998). EAAT 1, 2 and 3 proteins are also expressed by skin fibroblasts from 

alzheimer’s disease patients (Zoia et al. 2005). The ability of fibroblasts to take up
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glutamate has been recognised since 1983 when skin-derived human fibroblasts were 

shown to transport glutamate (Dall’Asta et al 1983). Cultured human fibroblasts from 

embryonic muscle, skin and peripheral nerve tissues and a fibroblast cell line (3T3) were 

shown to demonstrate a Na+-dependent glutamate uptake process with Km valued 

between 5-20pM (Balcar 1992, Balcar et a l 1994). Cooper et al. have also demonstrated 

glutamate uptake by skin fibroblasts via EAATs (Cooper et al. 1998).

1.6.5 Glutamate and Rheumatoid arthritis

Glutamate levels become elevated following induced inflammation. Studies in rats have 

shown that using kaolin and carrageenan injected into the knee joint to induce 

inflammation, doubles the glutamate concentration in the synovial fluid from 3pM to 

6 pM within ten minutes (Lawand et al. 2000). Glutamate is also found elevated in human 

joints with synovitis; compared to the average concentration from normal autopsy cases 

(range = 0.82-22pM) glutamate in synovial fluid from patients with synovitis were 54 

times higher at an average of 326pM (range = 4-608pM) (McNeamey et al. 2000, 

McNeamey et al. 2004). If cells within the synovial joint are responsive to glutamate, 

these studies suggest that glutamate may be involved in mediating or prolonging the 

inflammatory response. In addition, recently it has been reported that glutamate levels in 

synovial fluid correlate with Regulated upon Activation, Normal T-cell Expressed and 

Secreted (RANTES), IL-8  and macrophage inhibitory protein alpha (MIPa) in RA 

synovial fluid (McNeamey et al. 2004).

The blood plasma levels of glutamate are also elevated in human RA patients at an 

average of 50pM compared to 41pM in the normal controls (Partsch et al. 1978). This 

suggests that glutamate is actively removed from the synovial joint in normal conditions 

because the normal level of glutamate in synovial fluid is 6 pM, hence some mechanism 

must be present in cells of the synovial joint to remove glutamate. The levels of 

glutamate in the blood of rats are between 100-200pM (De Cristobal et al. 2001), which 

is far higher than the Kd values of the glutamate receptors expressed in the rat brain. 

This suggests that peripheral glutamate receptors outside of the CNS may have protection 

mechanisms against exposure to such high glutamate concentrations (Hinoi et al. 2002).

61



Chapter 1

In the central nervous system it is the high affinity glutamate transporters that take on the 

protective role by quickly removing extracellular glutamate released by synapses.

In addition, ionotropic and group I metabotropic receptors play a role in inflammation in 

the brain; activation of these receptors causes an increase in intracellular calcium. This 

calcium can then activate, amongst others, the generation of free radicals, stimulation of 

inflammatory cascades and eventually neuronal death (O'Shea et al. 2002). The calcium 

also causes activation of NO synthase, which in turn produces nitric oxide (Riedel and 

Neeck 2001). Even though this has been observed in neuronal cells, a potential link can 

still be seen between glutamate and inflammatory processes of the synovial joint because 

NO is a mediator of inflammation (section 1.4.1.3). NO can also damage DNA, which 

causes the p53 tumour supressor gene to be activated. Mutations in p53 have been 

observed in longstanding RA patients that cause impaired apoptosis which contributes to 

pannus formation (Tak et al. 2001). It should be noted that NO, like glutamate, also acts 

as a neurotransmitter within the central nervous system however CNS NO is produced by 

a constitutively produced neuronal NO synthase.

1.6.5.1 Source of glutamate in the synovial joint

The source of glutamate in the RA synovial joint is not yet determined. In bone, it may 

come from nerve endings that are able to secrete glutamate. Glutamate can excite 

peripheral neurons and glutamate signalling components are expressed in the peripheral 

nervous system (Jackson et al. 1995). mGluRl and mGluR5 proteins have been shown to 

be expressed in mouse peripheral unmyelinated sensory afferents (Bhave et al. 2001). In 

addition, in the rat dorsal root ganglion AMPAGluRl-4, the kainate receptor GluR5 and 

NMDA NR1 protein is expressed (Sato et al. 1993). The nerve endings in bone may 

therefore be able to secrete glutamate. In fact the presence of a dense network of nerve 

processes in bone has been observed, some of which contain glutamate (Serre et al.

1999). Alternatively it may come from the constitutive release of glutamate by 

osteoblasts. White blood cell release of glutamate has been investigated but levels of 

white blood cells in the synovial joint do not correlate with glutamate levels suggesting 

that they are not the source (McNeamey et al. 2000). McNeamey et al. therefore suggest
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that the source of glutamate in synovial fluid during inflammation is from blood, mast 

cells, FLS or nerve endings or from degradatory products of inflammatory events.

1.6.5.2 Links between the CNS and RA

Interestingly, a possible link between the neural system and arthritis can be seen in vivo 

in patients who develop a stroke or paralysis. In some patients inflammatory or 

degenerative arthritis only develops on the non-paralysed side of the body suggesting that 

these processes may be affected by neuronal activity (Thomason and Bywater 1962). To 

further support this, in some patients that develop a stroke after the onset of arthritis 

incomplete reversal of the arthritis was observed on the affected side of the body 

(Thomason and Bywater 1962).

Delgado et al have also shown a link between the neural system and inflammation. 

Treatment of arthritis experimentally induced in rats, with the neuropeptide vasoactive 

intestinal peptide (VIP) show decreased joint swelling and inhibition of cartilage and 

bone destruction (Delgado et al. 2001).

1.6.5.3 Glutamate and pain in RA

Studies investigating nociception in animal models of inflammation have shown 

increases in the release of excitatory amino acids (including glutamate) and concluded 

that glutamate in peripheral nociceptive signalling is involved in models of arthritis 

(Lawand et a l 2000, Westlund et al. 1992, Sluka and Westlund 1992, Sorkin et al. 1992). 

Furthermore, glutamate receptors have been associated with the pain experienced in RA. 

Both NMDA and non-NMDA receptors sire involved in inflammatory pain in the CNS 

(Carlton and Coggeshall 1999, Li and Neugebauer et al. 2004). Zhang et al. also 

demonstrated that NMDA and non-NMDA contribute to the induction of adjuvant- 

induced arthritic pain in rats, furthermore pain-related behaviour could be prevented by 

injection of MK801 (a non-competitive NMDA receptor inhibitor) and 2, 3-dihydroxy-6- 

nitro-7-sulfamoylbenzoquinoxaline (NBQX, a competitive antagonist of AMPA/kainate 

receptors) (Zhang et al. 2003).
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1.6.5.4 Glutamate signalling and pro-inflammatory cytokines in the CNS

Pro-inflammatory cytokines have been investigated within the CNS; where there is some 

evidence linking glutamatergic signalling to inflammatory responses. For example there 

is evidence that the pro-inflammatory cytokine IL-6  is linked to CNS diseases associated 

with glutamate signalling irregularities. Various neuropathologies such as ischaemia 

(Szczudlik et al. 2004, Chen et al. 2003), amyotrophic lateral sclerosis (Hensley et al. 

2003, Sekizawa et al. 1998), HIV infection (Laurenzi et al. 1990, Perrella et al. 1992 and 

Tyor et al. 1992), meningitis (Waage et al. 1989) Parkinsons disease (Ciesielska et al. 

2003, Blum-Degen et al. 1995), systemic lupus erythematosus with CNS involvement 

(Hirohata and Miyamoto 1990), Alzheimer’s disease (Blum-Degen et al. 1995), and 

stroke (Dziedzic et al. 2004) are associated with elevated IL- 6  levels. These diseases are 

also associated with excessive glutamate receptor activation; ischaemia (Simon et al. 

1984, Meldrum et al. 1994), amyotrophic lateral sclerosis (Niebroj-Dobosz et al. 1999), 

HIV (Lipton et al. 1991), meningitis (Spranger et al. 1996), Parkinson’s disease 

(Meyerson et al. 1990), systemic lupus erythematosus (McNeamey et al. 2000), 

Alzheimer’s disease (Mattson et al. 1991) and stroke (Choi and Rothman 1990). This 

therefore indicates a potential link between the synchronous elevated levels of IL-6  and 

glutamate in these diseases.

Pro-inflammatory cytokines are known to influence glutamate signalling in the CNS. IL- 

6  (5ng/ml) enhances NMDA receptor activation in rat cortical neuron cultures (Qiu et al. 

2003). However, IL- 6  also appears to prevent over-stimulation of NMDA receptors 

because pre-treatment with IL-6  (50ng/ml) for 15 hours inhibits glutamate-induced death 

in primary cultures of rat hippocampal neurons by an unknown mechanism (Yamada 

1994). In addition, IL- 6  (5 to 50ng/ml) with sIL-6 r (2.5 to 25ng/ml) prevents NMDA 

receptor-induced apoptosis in retinal ganglion cells in vivo possibly by activation of the 

STAT3, MEK/MAPK or PI3K/Akt signalling pathways and the same study also 

demonstrated that NMDA injection (20nmol) in rats caused up-regulation of gpl30 in 

retinal tissue (Inomata et al. 2003). Furthermore, the increased susceptibility to seizures 

upon injecton of kainate (a specific activator of the ionotropic kainate receptors) of IL-6  

knock out mice indicates that IL-6  also inhibits over-stimulation of these receptors
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(Penkowa et al. 2001). IL-6  has also been shown to have a neurotoxic role; Qui et al. 

demonstrate that IL- 6  (5ng/ml) enhances NMDA neurotoxicity in developing CNS 

neurons by enhancing the calcium signal to NMDA (Qui et al. 1998 and 1995).

TNFa and IL-1 and their interaction with glutamate signalling has also been investigated 

in the CNS. After 24 hours TNFa (20ng/ml) and IL-ip (20ng/ml) inhibit transport- 

mediated glutamate uptake (ImM) in rat glial cultures probably via the EAATs because 

the glutamate transporter inhibitor, tPDC (2.5mM), prevented these inhibitory effects 

(Liao and Chen 2001). This is of relevance as these are seen as the two major cytokines 

involved in RA. It was also observed that free radicals and oxygen species which are 

also present in the RA joint, can impair glutamate transport into astrocytes (Liao and 

Chen 2001). The suggested mechanism by which these pro-inflammatory cytokines 

regulate glutamate transport was that they were causing an increased production in free 

radicals and active oxygen species. These were then altering the redox potential of the 

astrocytes which in turn was altering the sodium pump that generates electrochemical 

gradients used by the transporter to drive glutamate uptake (Liao and Chen 2001). In 

addition, glutamate transporters in the CNS have been shown to be oxidant vulnerable 

and their activity is directly affected by oxidation (Trotti 1998).

Treatment for more than 2 hours with TNFa (2ng/ml) or IL-lp (lng/ml) can attenuate 

glutamate uptake in primary rat astrocytes in vitro through a pathway that involves the 

liberation of nitric oxide by the stimulation of nitric oxide synthase (Ye and Sontheimer 

1996). In addition, TNFa (60-1000U/ml [3ng-50ng/ml] for 60 minutes) reduces 

ionotropic glutamate receptor activation in astrocytes in vitro (Koller et al. 2001).

1.6.5.S Glutamate signalling and pro-inflammatory cytokines outside the CNS

Limited research has revealed links between glutamate signalling and pro-inflammatory 

cytokines outside of the CNS. For example, NMDA receptors interacting with IL-6  can 

be linked to osteoclastogenesis. The fact that MK801 has also been shown to inhibit 

osteoclastogenesis in vitro (Peet et al. 1999) and inhibit actin ring formation in 

osteoclasts which is a prerequisite for the adhesion of osteoclasts to bone (Itzstein et al.
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2000) and that IL- 6  and sIL-6 r can trigger osteoclast formation in vitro (Tamura et al. 

1993) indicates that signalling via this cytokine and glutamate may converge to regulate 

osteoclastogenesis. Finally, outside of the CNS IL-6  has been shown to induce NF-kB 

activation in cultured intestinal epithelial cells within 2 hours (Wang et al. 2003) and 

PDTC, an inhibitor of NFkB activation causes a decrease in glutamate uptake (Liao and 

Chen 2001). With regards to the effects of TNFa on glutamate outside of the CNS, 

treatment of osteoblasts with TNFa inhibits glutamate release from osteoblasts (Genever 

and Skerry 2001).

These studies therefore demonstrate that cytokines may directly influence glutamate 

signalling pathways outside of the CNS.

1.6.5.6 Glutamate and degradative enzymes

There is some evidence linking glutamatergic signalling to degradative responses in cells 

of the CNS. Yong et al. indicates a role for MMPs in several CNS diseases such as 

multiple sclerosis and Alzheimer’s disease (Yong et al. 2001), where glutamate 

transporter expression is dysregulated. Kainate receptor activation increases MMP9 

mRNA and protein expression within hours in the rat hippocampus in vivo (Szklarczyk et 

al. 2002). Rats systemically injected with kainate also demonstrate increases in MMP2 

protein expression in the brain (Zhang et al. 2000). Furthermore, kainic acid -induced 

excitotoxic seizures increases expression levels in the rat brain of MMP 9 (Jourquin et al. 

2003). The kainate and AMPA ionotropic glutamate receptors are directly implicated in 

these responses since kainate has been shown to mediate up-regulation of MMP9 in 

mouse retinal astrocyte cells in vivo (Zhang et al. 2004). In addition, inhibition of MMPs 

in the rat prevents kainic acid-induced cell death in the brain (Campbell et al. 2004) 

demonstrating that MMPs may have an affect on glutamate receptors. Moreover, TIMP1 

protects against excitotoxic death in neurons (Tan et al. 2003) thus demonstrating a link 

between TIMPs and glutamate signalling.
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1.6.5.7 Glutamate and RA summary

Taken together these findings clearly demonstrate a role for glutamate signalling in non­

neuronal tissues and in bone. Furthermore, glutamate signalling pathways have been 

shown to interact with cytokines and degradative enzymes in the CNS. Therefore, the 

elevated glutamate in synovial fluid that accompanies RA may induce phenotypic 

changes associated with synovial joint inflammation and destruction. The overall 

purpose of this present study is to investigate the role of glutamate signalling in the 

disease mechanisms in inflammatory arthritis. As yet there is no cure for rheumatoid 

arthritis. Identification of novel signalling pathways involved in RA pathogenesis will 

enable new and maybe more effective therapeutic targets to be identified.
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1.7 Hypothesis and aims of project

Hypothesis:

The increased levels of glutamate in RA synovial fluid mediate the inflammatory 

and catabolic responses associated with joint destruction.

To investigate this hypothesis there were four specific aims:

1. To determine which cells of the synovial joint express glutamate receptors and 

transporters.

2. To determine which cells of the synovial joint are responsive to glutamate and to 

characterize those responses with respect to joint destruction.

3. To determine whether pro-inflammatory cytokines influence glutamate receptor 

and transporter activity in FLS.

4. To determine whether glutamate receptors and transporters are functional in FLS.
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CHAPTER 2: Materials and Methods

All reagents were obtained from Sigma Aldrich, unless otherwise stated.

2.1 Dissection and homogenisation of tissues

Rats were dissected immediately after death and the parts of the knee joint required 

(meniscus, patella and fat pad) were dissected, snap frozen in liquid nitrogen and stored 

at -80°C until required. Tissues were powdered in 1ml Trizol® reagent (Invitrogen) 

using a B. Braun Biotech Dismembrator at 2000rpm for 3 minutes, cooled with liquid 

nitrogen. Both the medial and lateral menisci from the same joint were homogenised 

together and two or three fat pads were combined in order to obtain enough RNA for 

analysis.

2.2 RNA extraction

Total RNA was extracted in Trizol® (Invitrogen) following the manufacturer’s 

instructions. Briefly 0.2 volumes chloroform was added to the Trizol® extract containing 

either lxlO6 cells or homogenised tissue, mixed and separated by centrifugation 

(12000rpm) for 15 minutes at 4°C (Universal 16R centrifuge, Hettich Zentrifugen). The 

aqueous, upper phase was transferred to a clean tube and an equal volume of 0.5% 

isopropanol was added and incubated overnight at -20°C to precipitate the RNA. The 

RNA was collected by centrifugation, washed twice in 1ml ethanol (100% followed by 

75% ethanol), air-dried and resuspended in 86pl dH20. (Fat pad samples, prior to 

addition of chloroform were subjected to an additional isolation step in Trizol®; these 

samples were centrifuged at 12000g for 10 minutes at 4°C and the cleared homogenate 

saved for addition of 0.2 volumes chloroform as before).

2.2.1 DNase treatment of RNA

Contaminating genomic DNA was removed by digestion with 2 units of RQ1 DNase 

(Promega) in the presence of 40U RNasin® ribonuclease inhibitor (Promega) at 37°C for 

15 minutes. RNA was purified by re-extraction in 300pi Trizol®, resuspended in 60pl 

dH2<3 and stored at -80°C.
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2.3 Generation of cDNA by reverse transcription

Approximately lpg RNA dissolved in 11 pi dt^O was mixed with lp l (0.5pg) 

oligo(dT)i5 (Promega) and denatured for 10 minutes at 65°C. The reaction was briefly 

chilled on ice and 4pl 5x first strand buffer (Invitrogen), 2pl 0.1M DTT (Invitrogen) and 

lpl lOmM dNTPs (Promega) added. The reaction was mixed and incubated at 42°C for 2 

minutes and lpl Superscript II (Invitrogen) added. The reaction was incubated for 50 

minutes at 42°C and terminated by heating to 70°C for 15 minutes. All incubations were 

carried out in a thermal cycler (PCR Express, Hybaid). cDNA was stored at -20°C until 

use.

2.4 PCR

All primers were designed using Primer express 1.0 (Applied Biosystems, Perkin 

Elmer) to sequences homologous between rat, human and mouse unless otherwise stated. 

To prevent amplification of genomic DNA that had not been degraded by DNase 

treatment, all primers were designed to amplify products spanning intron/exon 

boundaries. (3-actin was used as a housekeeping gene to confirm successful cDNA 

preparation. Table 2.1 shows all primer sequences used in this study.

PCR reagents were made up as master mixes and positive (rat brain cDNA, GLAST 

plasmid or p-actin plasmid) and negative controls (no template) were used for each group 

of PCR reactions. The PCR conditions consisted of one cycle of 95°C for 5 minutes, 40 

cycles of 95°C for 30 seconds (strand separation), specific primer pair annealing 

temperature (see table 2.1) for 30 seconds, 72°C for 1 minute (amplicon extension) and 

one cycle at 72°C for 10 minutes (final extension) followed by incubation at 4°C in a 

thermal cycler (PCR Express, Hybaid). The appropriate MgCl2 concentration was 

optimised for each primer pair (see table 2.2).

70



Chapter 2

Table 2.1 List of primers used

Primer name and seauence it Sequence

aligns to.

P-actin [Ac.No.NM_031144] 

(Araki et al. 1993)

Forward:5’-TGTATGCCTCTGGTCGTACCAC

(506bp-527bp)

Reverse: 5 ’-ACAGAGTACTTGCGCTCAGGAG 

(1076bp-1097bp)

GLASTcc (EAAT1) 

[Ac.No.NM_019225] (Huggett et 

al 2000) {AF265360}

Forward: S'-TGAAGAGCTACCTGTTTCGGAA 

(325-346bp) {243-264bp of GLASTla}

Reverse: 5 -T AC ATGTTTTCTTTCGTGCCC 

(650bp-670bp) {430-450bp of GLASTla}

GLAST-la specific 

[Ac.No.AF265360] (Hugget et al. 

2000)

Forward: 5'-

CAGCGCTGTCATTGTGGGAATGGC (286- 

309bp)

Reverse: 5'-

AGGAAGGCATCTGCGGCAGTCACC (472- 

495bp)

Human EAAT2 [Ac,No.NM_ 

004171] (Zoiae/ al. 2004)

Forward: 5 ’-ACGAGGAGGCC AACGCAACAAG 

(888-906bp)

Reverse: 5 ’-GATGCCCCCGTGGATGATGAGG 

(1252-1273bp)

Rat EAAT2 [Ac.No.NM_017215] 

(GLT1) (gift from Dr. J. Huggett, 

Cardiff University)

Forward:5 ’-GAGCCAAAGCACCGAAAC (177- 

194bp)

Reverse: 5 ’-GGAAATGATGAGAGGGAGGAT 

(375-395bp)

Human EAAT3 [Ac.No.U03506] 

(Zoia et al. 2004)
Forward:5 ’-CGTCCTGGGCTTGATTGTCTTT 

(651-672bp)

Reversed ’-TGC ACCAACGGGTAACACGA 

(1088-1107bp)
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Rat EAAT3 [Ac.No.NM_013032] 

(EAAC1) (gift from Dr. J. Huggett, 

Cardiff University)

Rat EAAT4 [Ac.no.RNU89608] 

(gift from Dr. J. Huggett, Cardiff 

University)

NMDANR1 [Ac.No.NM_017010]

KA1 [Ac.No.NM_014619) (Sokolv 

etal. 1998)

AMPA GluR2 [Ac.No.M85035]

AMPA GluR3

[Ac.No.NM_032990]

mGluR4 [Ac.No.NM_000841]

Forward:5’-CCCCGATTCCTCACAAAC (90- 

107bp)

Reverse: 5 ’-TGCTGACTTC AGGGGTTTTGC 

(512-532bp)

(69-Forward:5’-CGCGGGTTCTGGCTTTTG 

84bp)

Reverse:5’-CATCCTCCCTGTTGCCTTGTT (505 

525bp)

Forward:5’-CAGGAGCGGGTAAACAACAG

(1724-1743bp)

Reverse:5'-CCTGGTACTTGAAGGGCTTG

(1855-1874bp)

Forward5’-

GACTGCAGAAACCATGTGTCaGATCC (234- 

259bp)

Reverse:5’-

GGTGCAGTTGAAGAAGTTCAGGATCC (457- 

480bp)

Forward:5'-GGTTGTCACCCTAAcTGAGCTC

(1500-1521bp)

Reverse:5'-AGTAGCCCTCGTAACGCTCATT 

(1630-165lbp)

Forward:5’-AATTCCCTGAAGCCAAGAATG

(919-939bp)

Reverse:5'-GGATTTGCTAAGCAGTCTCCA

(1049-1069bp)

Forward:5'-AGACCTTCAACGAGGCCAAG

(2506-2525bp)

Reverse:5'-CGCTCAGACTCACGGAGACC

(2639-2658bp)
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Table 2.2 PCR conditions and product sizes for each primer pair

Primers Annealing 

Temp. (°C)

MgCl2

concentration

(mM)

Primer concentration 

(pM) forward and 

reverse

Product 

size (bp)

p-actin 58 1.5 0.016 592

EAATl(GLAST) 58 1.5 0.016 348

GLAST-la 58 1.5 0.016 210

EAAT2 human 59 3 0.016 385

EAAT2 rat 55 2 0.016 219

EAAT3 human 58 2 0.016 457

EAAT3 rat 56 2 0.016 443

EAAT4 55 1.5 0.016 436

NMDA NR 1 58 2 0.016 151

KA1 56 2 0.016 247

AMPA GluR2 58 1.5 0.016 152

AMPA GluR3 58 2 0.016 151

mGluR4 58 2 0.016 153

2.4.1 Agarose gel electrophoresis

The DNA amplicons generated by the PCR reactions were combined with loading dye 

(Promega) at a 10:1 ratio and resolved on an appropriate percentage agarose (Promega) 

gel (see table 2.3). Gels containing lOpg/ml ethidium bromide in lx Tris Borate EDTA 

(TBE) buffer (89mM Tris-borate, 2mM EDTA, pH8.3) were run at 80v for 1 hour. DNA 

standards (lOObp ladder, Promega) were used to identify the size of products.

73



Chapter 2

Table 2.3: Percentage of agarose used in gels for running different sized PCR 

products

% w/v agarose in gel Size of PCR amplicon

2 100-200bp

1.5 200-35Obp

1 >350bp

2.4.2 Gel electrophoresis image generation

Images of DNA within agarose gels were visualised using a GelDoc system (BioRad). 

The results section of chapters 3 and 5 contain images of gels that have had irrelevant 

lanes cropped out using Adobe photoshop to enable lanes containing amplicons to be 

adjacent to DNA standards. The full pictures of these gels can be found in the appendix.

2.4.3 Cloning and sequencing of PCR amplicons

Amplicons from newly designed primers were sequenced to confirm that the primers 

were functioning correctly. Under uv light, amplicons were cut out of agarose gels and 

purified using a PCR purification kit (Qiagen). Manufacturer’s instructions were 

followed to remove dNTPs, salts, agarose, proteins, ethidium bromide and polymerases.

The PCR products were TA cloned into the pGEM-T vector (50ng) by incubating in 2X 

Rapid ligation buffer (5pi), 3 Weiss units of T4 DNA ligase (lpl) and the reaction 

volume made up to lOpl with distilled water. Ligation reactions were incubated for 1 

hour at room temperature prior to transformation.

The ligated plasmid was transformed into Escherichia coli (JM109 competent cells), by 

heatshocking. Transformed cultures were grown up overnight on LB, ampicillin 

(lOOpg/ml), IPTG (0.5mM), X-GAL (50pg/ml) plates overnight at 37°C. Successfully 

ligated plasmids resulted in white colonies due to interruption of the P-galactosidase 

gene. White colonies were picked and placed in 10ml of LB broth (l.lg  LB tablet in 

50ml dH20  supplemented with lOOpg/ml ampicillin) and incubated overnight at 37°C 

whilst shaking (150rpm).
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In order to obtain the ligated plasmids for sequencing, cultures were prepared using a 

Wizard plus SV midiprep kit (Promega). Briefly, 200pl of the overnight culture was 

amplified further by inoculation of 250ml LB broth and incubated overnight at 37°C with 

shaking (230rpm). Cells were harvested by centrifugation at 3300rpm, resuspended and 

lysed. Neutralisation buffer was added to the lysed cells and incubated for lOminutes 

followed by centrifugation at 3300rpm for 15 minutes. An equal volume of isopropanol 

was added to the retained supernatant and incubated at -20°C overnight to precipitate the 

DNA. Samples were centrifuged (1500g, 1 hour) and the supernatant discarded. The 

precipitated plasmid was washed twice with 75% ethanol and repelleted (centrifugation at 

1500g, 1 hour) to remove isopropanol. The plasmid pellet was air dried prior to 

resuspension in distilled water. 5pi was restricted with 5 units of iscoRI (37°C, 1 hour, 1 

times buffer containing lOpg bovine serum albumin [Promega]), to confirm the presence 

of the insert. Clones were then sequenced using Ml 3 vector primers.

2.5 Tissue culture

2.5.1 Bovine chondrocytes

Primary bovine chondrocytes were isolated from articular cartilage of the 

metacarpalphalangeal joint of 7 day old calves using a sterile scalpel first to remove the 

cartilage. Following dissection, the articular cartilage samples were placed in 25ml 

DMEM (Gibco) supplemented with 2mM glutamine, 1200units/ml penicillin, 1200pg/ml 

streptomycin and 20pg/ml fungizone and left for 10 minutes. The tissue was washed 

twice for 10 minutes in 25ml DMEM supplemented with 2mM glutamine, 300U/ml 

penicillin, 300pg/ml streptomycin and 5pg/ml fungizone.

The articular cartilage slices were cut into small pieces, placed in a T75 flask (Coming 

Ltd.) and incubated for 30 minutes at 37°C with gentle agitation in 25ml (4mg/ml) 

pronase (from Streptomyces griseus) in DMEM (containing 2mM glutamine, lOOU/ml 

penicillin, lOOpg/ml streptomycin, 2.5pg/ml fungizone and 10% dialysed foetal bovine 

serum [SLI Ltd.]) to provide the cells with nutrients. Dialysed foetal bovine serum was 

used to minimise the presence of glutamate. The pronase solution was removed and
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replaced with 25ml DMEM containing 3mg/ml collagenase (from Clostridium 

histolyticum), lOOU/ml penicillin, lOOpg/ml streptomycin, 2.5jiig/ml fungizone and 10% 

FBS and agitated at 37°C for 2 hours to release the chondrocytes from the collagen 

matrix. The medium was taken off every 30 minutes and centrifuged at 1500g (EEC 

Centra CL2 centrifuge) for 10 minutes to collect the chondrocytes and passed through a 

40pm cell strainer to remove cellular debris before being pooled. The chondrocytes were 

seeded at a density of lxl06 cells per T25 flask (Coming Ltd.) in 7ml DMEM containing 

2mM glutamine, lOOU/ml penicillin, lOOpg/ml streptomycin, 2.5pg/ml fungizone and 

10% FBS and incubated at 37°C in a 5% CO2 atmosphere.

Cells were removed from T25 (Coming Ltd.) flasks by adding 1ml Trizol and the extract 

used for glutamate signalling apparatus mRNA expression studies.

2.5.2 Fibroblast-like synoviocytes

Primary human FLS kindly provided by Dr. A. S. Williams in collaboration with Prof. B. 

Williams (Department of Rheumatology, Cardiff University) were established from the 

synovial fluid of RA or non-arthritic patients taken from a synovectomy. Table 2.4 

shows the details of each patient from whom synoviocytes were used.

Table 2.4: Details of patients from whom synoviocytes were used in this study

Patient number Age Sex Condition

1 Unknown Unknown RA

2 56 Female RA

3 62 Female RA

4 64 Female Non-arthritic

5 67 Female RA

6 64 Female RA

7 43 Female RA

8 55 Male RA

9 27 Female RA
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FLS were not used before passage 5 due to the possible presence of macrophages and 

only cultured up to passage 8 due to the loss of phenotype observed beyond this passage 

(Dr A. S. Williams, personal communication). FLS seeded into 6-well plates (Coming 

Ltd.) were grown at 37°C, 5% CO2 in Dulbecco’s modified essential medium (DMEM) 

Nut mix F-12 supplemented with 10% foetal bovine semm (FBS, Serum Laboratories 

Incorporated), penicillin (lOOU/ml), streptomycin (lOOpg/ml) and 4mM L-glutamine. To 

minimise the presence of glutamate, dialysed FBS was used. It should be noted that the 

DMEM used contained 50pM glutamate. Synoviocytes were cultured to confluency in 

48-well plates (Coming Ltd.), 6-well plates, 60mm petri dishes (Coming Ltd.) or 8-well 

chamber slides (Fisher Scientific) seeded at a density of 2.5 X 104, 1 X 105, 1.5 X 105 and

2.5 X 104 respectively. Prior to stimulation with glutamate, cytokines or inhibitors the 

cells were incubated for 24 hours with serum-free medium.

2.5.2.1 Passaging of FLS

FLS were only cultured up to passage 8 due to the loss of phenotype observed beyond 

this passage (Dr A. S. Williams, personal communication). FLS were cultured in T75 

and T225 flasks (Coming Ltd.) until confluent and trypsinised using 1ml lOx trypsin 

EDTA (Gibco) after the media had been removed. Cells were then added to fresh media 

and split 1 in 3 into fresh T75 flasks or into an appropriate experimental vessel.

2.6 Immunohistochemistry

2.6.1 Methanol fixation of slides for immunostaining

FLS on 8-well chamber slides, following stimulation with cytokines (details in 

experimental chapters) were washed three times with 0.5ml phosphate buffered saline 

(PBS) per well. 0.5ml methanol was aliquoted into each well and incubated for 5 

minutes before being removed and the slides allowed to air dry. Chamber slides were 

stored at -20°C until used. Experimentation with paraformaldehyde fixing of cells 

revealed that this process did not show any binding of the polyclonal anti-GLAST 

(EAAT1) antibody therefore all immunohistochemical analysis presented in this study 

has been methanol fixed.
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2.6.2 Immunostaining of FLS

Experimental FLS, stored at -20°C following methanol fixation were defrosted and 

allowed to reach room temperature before incubating in non-immune goat serum for 1 

hour. Slides were incubated for 1 hour in lOOpl of rabbit serum containing a rabbit 

polyclonal GLAST antibody (made by Dr. Eryl Liddell, Cardiff University) used at an 

optimal dilution of 1/100, diluted with PBS. Slides were washed 3 times in PBS before 

incubating for 1 hour with lOOpl of a goat, anti-rabbit FITC conjugate secondary 

antibody diluted to 1/200 with PBS. Cells were washed 3 times in PBS to remove 

unbound secondary antibody. All incubations were carried out at room temperature.

2.6.3 Mounting of immunolabelled FLS

Cells were mounted with Vectashield® mounting medium containing propidium iodide 

(Vector Laboratories, USA). Slides were sealed with nail varnish and stored at 4°C until 

viewed with a fluorescence microscope (Leitz Laborlux 12). Propidium iodide was used 

as a counterstain for cell nuclei. Images were captured using a Coolsnap digital camera 

(R S Photometries). Two images of different areas of each well were taken. The optimal 

exposure time was determined using the automatic function and this value was then set in 

manual mode so that all images being compared were exposed for the same length of 

time.

2.6.4 Optimisation of the polyclonal GLAST antibody

The GLAST antibody had previously been partially characterized for Western blotting by 

Dr J. Huggett and Sian Kneller, Cardiff University. A range of dilutions for both the 

primary (polyclonal rabbit anti-human, GLAST) and secondary (goat anti-rabbit, FITC- 

conjugated) antibodies were tested until the optimal concentration was obtained. 

Immunostaining with different concentrations of the secondary antibody is shown in 

figure 2.1. A 1/200 dilution (figure 2.1, panel D) was deemed optimal for the secondary 

antibody.
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Figure 2.1 Optimisation of the secondary antibody (goat, anti-rabbit FITC conjugate), 
using 1/100 primary anti-GLAST antibody.

A.Primary negative B.l/50 Secondary 

1 ------------------------------------------------- -

Hi
C 1/100 secondary

j ------------------------------------------------- ■

D 1/200 secondary

-i i-------------------------------------------------1
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2.7 Western Blotting

2.7.1 SDS PAGE

Cell extract proteins alongside 5 pi of pre-stained molecular weight marker (Biorad) were 

resolved on 10% SDS-polyacrylamide gels (see table 2.5 for components) at 200v in 

Laemmli buffer. (Laemmli, 1970) Resolved protein was then transferred to 

polyvinyldifluoride membrane (Immobilon-PVDF, Millipore) for 1 hour at lOOv in 

transfer buffer (20% v/v methanol in Laemmli buffer). To prevent overheating, ice packs 

were placed in electrophoresis tanks. Prior to blotting membranes were washed in 

methanol (15 seconds), water (2 minutes) and transfer buffer (5 minutes).

Table 2.5 Components of 10% SDS PAGE gel

Components of gel 10% resolving gel 4% stacking gel

40% bis-acrylamide 3.83ml 575pl

1M Tris/HCl pH8.8 3.63ml -

1M Tris/HCl pH6.8 - 1.3ml

10% (w/v) SDS lOOpl 50pl

10% (w/v) APS 75pl 37pl

TEMED 15pl 7.5 pi

dH20 7.05ml 4.075ml

2.7.2 Blotting

The polyclonal GLAST antibody used was raised to amino acids 24-40 (made by Dr. 

Eryll Liddell, Cardiff University). Non-specific sites on the membrane were blocked by 

incubating in 5% (w/v) skimmed milk power, 0.05% Tween 20 in TBS (0.05M Tris-HCl, 

pH8.0, 0.15M NaCl) for 1 hour. The membrane was sequentially incubated in 5ml 

antiserum to GLAST-1 (1:2000 in TBS containing 1% milk) for one hour and 5ml goat 

anti-rabbit horse radish peroxidase (HRP) conjugate 1:20000 for 1 hour. Membranes 

were washed 3 times in 150ml TBS-Tween 20 for 15 minutes after each antibody 

incubation. Duplicate membranes were prepared in which the primary antibody was 

omitted to control for non-specific binding of the secondary antibody.
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2.7.3 Chemiluminescent detection of bound antibody

Specific binding of the GLAST antibody was detected by enhanced chemiluminescence 

on Hyperfilm-ECL (Amersham, UK) according to manufacturer’s instructions.

2.7.4 Stripping a Western blot for reprobing

Some membrane blots were stripped and reprobed with a different antibody 

concentration. Blots were incubated at 50°C, for 30 minutes in stripping solution 

(62.5mM Tris HC1 [pH6.7], 2% SDS, lOOmM 2-mercaptoethanol). Membranes were 

washed in dlUO and incubated in blocking solution as above prior to reprobing.

2.7.5 BCA assay to determine how much protein was loaded onto SDS PAGE gels

To ensure that equal protein was loaded onto each SDS PAGE gel for Western blotting 

the amount of protein in each sample was determined using a BCA assay (Pierce, Perbio). 

A microplate assay was carried out according to manufacturer’s instructions. Albumin 

standards were prepared to produce a standard curve ranging from 25pg/ml to 

1500pg/ml. 2 5 pi of standard or RA FLS protein extract were aliqouted in triplicate on a 

96-well plate and incubated at 37°C for 30 minutes with 200pi of working reagent (50 

parts reagent A [containing sodium carbonate, sodium bicarbonate, bicinchoninic acid, 

sodium tartrate in 0.1 M NaOH] with one part reagent B [containing cupric sulfate]). The 

protein present in the standards and samples reduces Cu2+ to Cu+ which produces a purple 

coloured reaction product that can be measured by reading the absorbance at 562nm.

2.8 IL-6 ELISA

Analysis of IL-6 levels in FLS media was quantified using a matched pair IL-6 enzyme 

linked immunosorbent assay (ELISA) Duo set kit (R&D Systems). Manufacturer's 

instructions were followed and all incubations were carried out at room temperature. 

Briefly, the 96 multiwell plate (ICN Biomedicals Inc.) was coated with lOOpl (2pg/ml) 

capture antibody (mouse anti-human IL-6 in PBS) overnight. The plate was washed three 

times with 300pl wash buffer (0.05% Tween 20 in PBS pH 7.4) and blocked with 300pl 

blocking solution (1% bovine serum albumin. 5% sucrose and 0.05% Sodium nitrite in 

PBS) for one hour. The wells were washed three times with 300pl wash buffer and
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lOOpl of FLS media or standards was added and incubated for 2 hours. The wells were 

washed three times with 300jnl wash buffer and 100 pi of the biotinylated detection 

antibody (200ng/ml, goat anti-human IL-6) was added for 2 hours. The wells were 

washed three times as before and lOOpl of streptavidin HRP (R&D Systems) was added 

to each well for 20 min. The wells were washed three times with 300pl wash buffer and 

lOOpl substrate solution (a 1:1 mixture of hydrogen peroxide and Tetramethylbenzidine) 

was added to each well for 20 min away from direct light. The reaction was stopped with 

50pl IN sulphuric acid and the absorbance read at 450nm (Multiskan plate reader, 

Anthos 2001 series). A standard dilution curve of logio Absorbance v logio concentration 

was used to determine the concentration of IL-6 in the sample media. The term 

‘production of IL-6’ used throughout this thesis is defined as the IL-6 released and 

measured in FLS media.

2.9 Zymography

2.9.1 Analysis of MMP levels using gelatin zymography

The media collected from the RA FLS was mixed with an equal volume of 2x sample 

buffer (0.06M Tris/HCl pH 6.8, 2% (w/v) SDS, 10% (w/v) glycerol, 2mg/ml 

Bromophenol blue in distilled H2O [dH20]). lOpl of the samples were run on 

polyacrylamide gels: 7.5% resolving gel and 4% stacking gel (see table 2.6 for 

components). The gels were resolved for approximately 90 min at lOOv in lx Laemmli 

buffer (0.1% w/v SDS, 25mM Tris and 195mM glycine) (Laemmli, 1970) and placed 

overnight at 37°C in MMP proteolysis buffer (50mM Tris, pH 7.8, 50mM CaCb and 

0.5M NaCl) to activate MMP proforms. Gels were stained with Coomassie Brilliant Blue 

(2.5g Coomassie Brilliant Blue, 100ml concentrated acetic acid, 450ml methanol in 

450ml water) for 30 minutes and destained (100ml methanol, 75ml concentrated acetic 

acid in 825ml water) until lysis bands could be seen. Relative quantities of MMPs were 

quantified by comparison to a standard (conditioned media) and analysed by scanning 

densitometry (UMAX magic scan) and NIH image software (National Institutes of 

Health, Bethesda, MD). The term ‘production of MMPs’ used throughout this thesis is 

defined as the MMPs released and measured in FLS media.
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Table 2.6 Components of gels for gelatin zymography

Components of gel 7.5% resolving gel 4% stacking gel

40% bis-acrylamide 2.72ml 575pl

1M Tris/HCl pH8.8 3.63ml -

1M Tris/HCl pH6.8 - 1.3ml

10% (w/v) SDS lOOpl 50pl

10% (w/v) APS 75jol 37pl

TEMED 15pl 7.5pl

7.5mg/ml Gelatin 1ml -

dH20 6.16ml 4.075ml

2.9.2 Reverse zymography

Media collected from FLS was mixed with an equal volume of 2X sample buffer and 

resolved on 10% gelatin zymography gels as above (see table 2.7 for components), 

incorporated with conditioned media (1ml per gel) containing active MMP2/9. Reverse 

zymograms were visualised in the same way as gelatin zymograms (section 2.9.1). The 

term ‘production of TIMPs’ used throughout this thesis is defined as the TIMPs released 

and measured in FLS media.

Table 2.7 Components of gels for reverse zymography

Components of gel 12.5% resolving gel 4% stacking gel

40% bis-acrylamide 4.53ml 575pl

1M Tris/HCl pH8.8 3.63ml -

1M Tris/HCl pH6.8 - 1.3ml

10% (w/v) SDS lOOpl 50pl

10% (w/v) APS 75(ol 37pl

TEMED 15pl 7.5fol

Conditioned media 2ml -

7.5mg/ml Gelatin 1ml -

dH20 3.35ml 4.075ml
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2.9.3 Conditioned media used as standards and as source of gelatinase activity in 

reverse zymography.

This media was prepared from a bovine skin fibroblast cell line (BOVS-1) and was tested 

for gelatinase activity prior to incorporation into reverse zymograms. Conditioned media 

was also used as a standard on gelatin and reverse zymograms.

2.10 Fluorescent measurement of intracellular calcium

Confluent RA FLS (approximately 1.5 x 105 cells) in a 60mm petri dish (Coming ltd.) 

were incubated for 60-90 minutes at 37°C with 5pM fluo-4 AM (Molecular Probes, 

Eugene, OR, USA). All experiments were performed in 2ml of buffer (120mM NaCl, 

16mM NaHC03, 2mM KC1, 1.25mM KH2P04, ImM or 0 MgS04 and 2mM CaCl2) 

perfused with 95% 0 2 and 5% C 02, at room temperature. Buffer containing equimolar 

amounts of CaCl2 instead of MgS04 was used for experiments carried out in the absence 

of Mg . Following a recording period, to measure background activity ImM glutamate, 

400pM TBOA, ImM NMD A, lOOpM Thimerosal or ImM kainate was pipetted onto the 

cells in a 2ml volume, therefore the final concentration of these treatments being 500pM, 

200pM, 500pM, 50jiM and 500pM respectively. Background activity was measured by 

observing RA FLS prior to addition of stimulant to see if [Ca ]i fluxes occurred 

randomly. No random [Ca2+]i fluxes occurred during these experimental periods 

therefore all [Ca ]i changes subsequent to stimulation are considered to be effected by 

stimulation.

2.10.1 Confocal fluorescence imaging

The recording chamber and manipulators were mounted on a moveable top plate platform 

(MP MTP-01; Scientifica, Harpenden, UK). Fluorescence was measured using a Noran 

Odyssey confocal unit (Thermo Noran, USA) fitted to a Nikon E600FN (Nikon, 

Kingston, UK) upright microscope. Wholefield images were acquired every 3 or 5 

seconds with a x40 objective lens. Acquisition and image analysis were performed using 

Noran Intervision software and fluorescence intensity data values were imported into 

Excel for change in % fluorescence plot production.

84



Chapter 2

2.11 Glutamate uptake assay

Confluent RA FLS (patient 7, passage 7) in 8-well chamber slides were cultured as 

described in section 2.5.2. RA FLS were serum starved for 24 hours prior to incubation 

with 250pl 14C-labelled glutamate (the specific activities for each glutamate 

concentration are shown in table 2.8) for approximately 30 minutes at room temperature. 

Glutamate uptake was terminated by washing cultures 3 times in ice-cold PBS. Cells 

were dissolved in 500pl 2% SDS and half were used for scintillation counting (section 

2 . 11. 1).

In some experiments (as stated in experimental chapter) net glutamate uptake was 

determined by subtracting the amount of glutamate bound to RA FLS after 0 time from 

uptake after 30 minutes. It was assumed that binding of glutamate to cell surface 

receptors and transporters would occur immediately and contribute to final measurements 

of radioactivity. Therefore duplicate experiments were set up whereby the 14C-labelled 

glutamate was pipetted onto the cell layer and immediately aspirated. Not all 

experiments took bound glutamate into account, therefore in this case only total uptake 

after 30 minutes was measured.

Table 2.8: Specific activity of each labelled glutamate concentration used in the 

radioactive glutamate uptake assay

Glutamate concentration (|iM) Specific activity

0 (only 14C-labelled glutamate added) 45mCi/mmol

5 45mCi/mmol

150 22.5mCi/mmol

300 22.5mCi/mmol

500 9mCi/mmol

2.11.1 Scintillation counting

250pl of FLS extract in 2% SDS were aliquoted into scintillation vials and 10ml 

scintillant (Emulsifier Safe ™, Perkin Elmer) added. Each sample was counted for 15 

minutes on an LS6500 Multi-purpose scintillation counter (Beckman Coulter).
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2.12 Cytotoxicity Assay

To confirm that responses to treatments in FLS were real and not due to cell death a 

cytotoxicity assay was carried out following manufacturers’ instructions (Cytotox 96, 

non-radioactive cytotoxicity assay, Promega). Lactate dehydrogenase (LDH) activity is 

quantified because it is a stable cytosolic enzyme, which upon cell lysis is released. 

Briefly, triplicate wells of 50pl of media on a 96-well plate were measured and the LDH 

produced by the cells was used to convert 50pl substrate mix (NAD+ and lactate) to 

pyruvate and NADH. The NADH produced after incubation in the dark for 30min was 

used to convert INT (a tetrazolium salt) by the enzyme diaphorase to NAD+ and 

formazan. The colour change due to formazan production is measured using a 

spectrophotometer at 492nm. Serum free media was used as a blank control and the 

absorbance reading of this media subtracted from all other readings. Absorbance 

readings were compared to the absorbance reading of 100% lysis of duplicate cultures 

treated the same. 2% SDS was added to cells to initiate 100% cell lysis. The level of cell 

death was considered insignificant if death caused by treatments compared to control (no 

inhibitor) was lower than 5% of total cell death caused by 2% SDS.

2.13 Statistics

Statistical analysis was carried out using Minitab 13.32 (Minitab Inc., RA, USA) 

statistics package. Data was tested for normality and equal variance, before significant 

differences between data points were determined using a student t test. Data that was not 

normally distributed and/or demonstrated equal variance were logarithmically 

transformed. If the number of control samples were equal to the number of experimental 

samples a paired t-test was used, otherwise an unpaired 2-sample t-test was used.
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Chapter 3 Expression of glutamate receptors and transporters in cells and 
tissues of the synovial joint

3.1 Introduction
Glutamate receptors and transporters were initially studied as entities solely found 
within the central nervous system (CNS) however it is now well accepted that 
glutamate plays a role in signalling outside of the CNS. The initial discovery of the 
upregulation of GLAST-1 in bone (Mason et al. 1997) was the first indication of 
glutamate functioning in cells of the synovial joint.

Expression of four excitatory amino acid glutamate transporters and the three types of 
glutamate receptor was determined in cells of the synovial joint. Reports of 
glutamate receptor expression in tissues outside of the nervous system were used to 
decide which receptors and receptor subunits to explore (see section 1.6.4). 
Expression of the metabotropic glutamate receptor mGluR4 mRNA has previously 
been shown to be expressed in osteoblasts in vitro (Hinoi et al. 2001) so this was 

chosen to illustrate expression of metabotropic receptors within the synovial joint. 
Likewise, expression of the AMPA glutamate receptor subunits AMPAGluR2 
[protein in cultured pancreatic islet cells (Weaver et al. 1996)], AMPAGluR3 [mRNA 
in osteoblasts (Hinoi et al. 2002) and protein in cultured pancreatic islet cells (Weaver 

et al. 1996)] and the kainate receptor KA1 [mRNA in osteoblasts (Hinoi et al 2002) 
and protein in spermatids (Hayashi et al. 2003)] were used as an example of 

expression of these receptor types within the synovial joint. Only expression of the 
NR1 subunit of the NMD A receptor subunits was determined because it is required 
for all functional forms of NMDA receptors and all other NMDA receptor subunits 
are regulatory. NMDA NR1 has also been shown to be expressed in non-CNS tissues 
including bone. Section 1.6.4 provides a comprehensive overview of all glutamate 
transporter and receptor expression outside of the CNS. Expression of all of the 

EAATs was explored except EAAT5 because to date, expression of this transporter 
has only been shown in the retina.

The elevation of glutamate levels in the synovial fluid of RA patients (326pM) 

compared to that from normal patients (6pM), and the fact that glutamate levels
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become elevated in rat synovial joints upon injection of an adjuvant, suggest that it 
may play a role in inflammation, degradation or even protection of the synovial joint. 
This study therefore determines which cells of the synovial joint have the ability to 
respond to glutamate by using RT-PCR, immunohistochemistry and Western blotting 
to look for expression of glutamate receptors and transporters.

3.2 Methods
Various tissues of the rat knee joint (see figure 1.1, chapter 1, for diagram of the 
human knee joint), human RA and normal FLS, and bovine chondrocytes (cultured as 
in section 2.5) were subjected to RNA extraction and RT-PCR (sections 2.2, 2.3 and 
2.4). The rat tissues analysed were patella, fat pad, menisci, collateral ligaments and 
cruciate ligaments. However expression of glutamate signalling components could 

not be determined in the collateral and cruciate ligaments due to insufficient amounts 
of RNA being obtained for RT-PCR analysis. Rat tissues were dissected from 3 to 6 
month old rats, snap frozen in liquid nitrogen and RNA extracted after 

homogenisation in 1ml Trizol® reagent (see section 2.1). Bovine chondrocyte and 

FLS RNA (RA: patient 2, passage5; Normal: patient 4, passage 7) were also obtained 

through the Trizol® method of extraction (see section 2.2). Expression of glutamate 

receptors and transporters was also determined in human OA cartilage cDNA (kindly 
donated by Samantha Hurst, Cardiff University) and in a human chondrocyte cDNA 
library (Clontech). The library had been generated from pooled mRNAs extracted 

from unstimulated, E L - l p  stimulated and TGFp stimulated human adult, knee primary 

chondrocytes.

RT-PCR was carried out on all tissue and cell samples collected to determine mRNA 
expression of glutamate receptors/receptor subunits (mGluR4, AMPAGluR2 and 3, 
NMDA NR1 and KA1) and transporters (EAATsl-4). All cDNA samples used tested 
positive for P-actin PCR, thus confirming cDNA integrity (Figure 3.1 shows 
representative P-actin amplicons from rat menisci cDNA separated on an agarose 
gel). Rat brain cDNA was used as a positive control for all primers able to amplify 
rat sequences. For the PCR amplification of EAAT 4, rat retina cDNA (a kind gift 

from Dr. David Carter, Cardiff University) was used as a positive control. It should 
be noted that RT-PCR products less than lOObp are caused by primer dimers.
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1 2  3 4

p-Actin
592bp

Key:
1- lOObp DNA ladder
2- Rat menisci cDNA
3- p-actin plasmid (positive)
4- water (negative)

Figure 3.1 Image of agarose gel 
showing RT-PCR product 
demonstrating mRNA expression of 
p-actin in rat menisci. This 
confirmed cDNA integrity and is 
representative of all cDNA samples. 
See appendix 3 for full gel.
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Products from primers that had been newly designed were sequenced to confirm that 
the correct sequence was being amplified (see section 2.4.3).

Immunohistochemistry (section 2.6) and Western blotting (section 2.7) were also 
utilised to determine protein expression of EAAT1 in FLS.

3.3 Results
Products of primers that had been designed specifically for this project and had 
therefore not been used before were sequenced. Sequence data was entered into a 
blast search (www.ncbi.nlm.nih.gov/BLAST) and homology to published sequence 
determined. NMDA NR1 (95%/98% homology, appendix 28), mGluR4 (100% 
homology, appendix 29), AMPAGluR2 (100% homology, appendix 30) and 
AMPAGluR3 (partial sequence showed 100% homology, appendix 31) primers were 
thus confirmed to amplify the correct sequence.

3.3.1 Expression of glutamate receptors/transporters in the rat patella
RT-PCR confirmed that the rat patella expressed GLAST-1, GLAST-la, GLT1 and 
EAAC1 (EAATs 1, la, 2 and 3) (Figure 3.2 panels A, B, C and D respectively). 
EAAT 4 was not expressed in the rat patella however EAAT 4 has never been shown 
to be expressed outside of the CNS. All receptors/receptor subunits determined 
(NMDA NR1, mGluR4, KA1, AMPAGluR2 and AMPAGluR3) were expressed in 
the rat patella (figures 3.2 panels E to I). All patella cDNA used tested positive for P- 
actin mRNA expression.

3.3.2 Expression of glutamate signalling receptors and transporters in the rat 
menisci
GLAST-1 (EAAT1) and its splice variant GLAST-la are the only glutamate 
transporters expressed in the meniscus (figures 3.3 panels A and B). GLT1, EAAC1 
(EAATs 2 and 3) and EAAT4 were not expressed in the rat menisci. The NMDA 
NR1 subunit was not expressed in the rat menisci therefore no functional NMDA 
NR1 receptors are present in this tissue. The KA1 receptor subunit was not expressed 
in the menisci. AMPAGluR2 and AMPAGluR3 were both expressed (figures 3.3 
panels D and E respectively) in the rat menisci as well as the metabotropic receptor
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mGluR4 (figure 3.3 panel C). p-actin mRNA expression confirmed cDNA integrity 
(see figure 3.1).

3.3.3 Expression of glutamate signalling apparatus in the rat fat pad
EAAT1, la, 2 and 3 (GLAST-1, GLAST-la, GLT-1 and EAAC1 respectively) 
glutamate transporter mRNAs were all expressed in the rat fat pad (figures 3.4 panels 
A to D). The CNS specific transporter EAAT4 was not expressed in the fat pad. No 
expression of the NMDA (NR1 subunit) could be detected; therefore no functional 
NMDA receptors are present in the rat fat pad because NR1 is required for a 
functioning NMDA receptor. mGluR4 mRNA could not be detected either in the rat 
fat pad. Kainate (KA1) and AMPA (GluR2 and GluR3) receptor subunit mRNAs 
were expressed in the rat fat pad (figures 3.4 panels E to G). All fat pad cDNA 
samples tested positive for p-actin mRNA expression.
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A GL AST 1 
348bp 

(appendix 4)

B GL AST 1 a 
210bp 

(appendix 5)

CGLT-1 
219bp 

(appendix 6)

DEAAC1 
443bp 

(appendix 7)

E NMDANR1 
151bp 

(appendix 8)

Key:
1- lOObp ladder
2- rat patella 
cDNA
3- rat brain 
cDNA 
(positive)
4- -ve control

F mGluR4 
153 bp 

(appendix 9)

GKA1 
247bp 

(appendix 10)

HAMPA 
GluR2 152bp 
(appendix 11)

I AMPAGluR3 
151 bp 

(appendix 12)

Figure 3.2 Images of agarose gels showing RT-PCR products demonstrating mRNA 
expression of glutamate signalling components in the rat patella. Products less than 
lOObp are caused by primer dimers. The full picture of each gel can be seen in the 
appendix indicated.
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AGLAST1 
348bp 

(appendix 13)

Kev:
1- lOObp ladder
2- Rat menisci cDNA
3- rat brain cDNA 
(positive)
4- water (negative)

B GL AST 1 a 
210bp 

(appendix 5)

D AMPAGiuR2 
152bp 

(appendix 11)

C mGluR4 153bp
(PCR carried out by 

Viknesh Savanathan) 
(appendix 9)

E AMPAGluR3 
151 bp 

(appendix 14)

Figure 3 J  Images of agarose gels showing RT-PCR products demonstrating mRNA 
expression of glutamate signalling components m rat menisci Products less than lOObp 
are caused by primer dimers. The full gel picture can be seen in the appendix indicated.
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1 2 3 4  1 2 3 4  1 2 3 4  1 2 3 4

A GL AST 1 B GLASTla CGLT-1 DEAAC1
348bp 210bp 219bp 443bp

(appendix 15) (appendix 5) (appendix 6) (appendix 8)

1 2 3 4  1 2 3 4  1 2 3 4

Key:
1- lOObp ladder
2- Rat fat pad 
cDNA
3- rat brain cDNA 
(positive)
4- water (negative)

E KA1 F AMPAGiuR2 G AMPAGluR3
247bp 152bp 151 bp

(appendix 10) (appendix 11) (appendix 14)

Figure 3.4 Images of agarose gels showing RT-PCR products demonstrating mRNA 
expression of glutamate signalling components in the rat fat pad. Products less than 
lOObp are caused by primer dimers. The full gel picture can be seen in the appendix 
indicated.
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3.3.4 Expression of glutamate signalling apparatus in bovine chondrocytes
Glutamate transporters (EAAT1, GLASTla and 2) were the only mRNAs expressed 

in bovine chondrocytes (figures 3.5 A to C) despite EAAT3 and EAAT4 being tested. 
This may be due to the primers not recognising bovine sequence for the other 
glutamate transporters and receptors. Primers could not be designed specifically 
because the bovine sequence for these receptors and transporters are unknown. All 
bovine chondrocyte cDNA used tested positive for P-actin mRNA expression.

3.3.5 Expression of glutamate signalling apparatus in human, knee, OA cartilage
EAAT3 was the only glutamate transporter mRNA found to be expressed in OA 
cartilage (figure 3.6 panel A), EAAT1 and 2 were not expressed. The expression of 
EAAT4 and the human equivalent of GLASTla could not be determined due to the 
primers used being rat species specific. Only AMPA glutamate receptor subunit 
mRNA expression (AMPAGluR2 and 3) was detected in OA cartilage (figures 3.6 
panels B and C). NMDA NR1, KA1 and mGluR4 mRNAs were not expressed. All 
OA cartilage cDNA used tested positive for p-actin mRNA expression.

3.3.6 Expression of glutamate signalling apparatus in a human chondrocyte 
library
The human chondrocyte library was generated from mRNA extracted from 

unstimulated, IL-lp stimulated and TGFp stimulated adult, knee primary 

chondrocytes. Therefore a positive RT-PCR result only indicates the ability of these 
cells to express glutamate signalling components. Clones encoding the glutamate 
transporters, EAAT2 and EAAT3 mRNA were detected in the human chondrocyte 
cDNA library (figure 3.7 panels A and B) indicating that human chondrocytes have 
the ability to express these glutamate signalling components. Clones encoding 
EAAT1 were not detected. Expression of EAAT4 and EAAT la was not determined 
due to the primers being rat species specific. The ability of chondrocytes to express 
mRNAs for the metabotropic glutamate receptor mGluR4 and the AMPA glutamate 
receptor subunit AMPAGluR3 has been shown in the human chondrocyte library 
(figure 3.7 panels C and D). Clones encoding NMDA NR1, KA1 and AMPAGluR2 
were not detected in the human chondrocyte library.
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1 2 3 1 2  3 4

A GL AST 1 
348bp 

(appendix 4)

B GLASTla 
210bp 

(appendix 5)

CEAAT2 
423bp 

(appendix 16)

Key:
1- lOObp ladder
2- bovine chondrocyte cDNA
3- rat brain cDNA (positive) (human chondrocyte library in figure c)
4- water (negative)

Figure 3.5 Images of agarose gels showing RT-PCR products demonstrating mRNA 
expression of glutamate signalling components in bovine chondrocytes. Products less 
than lOObp are caused by primer dimers. The full picture of these gels can be seen in the 
appendix indicated.
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AEAAT3 
457bp 

(appendix 17)

B AMPAGluR2 
152bp 

(appendix 18)

C AMPAGluR3 
15 lbp 

(appendix 19)

Kev:
1- lOObp ladder
2- Human OA cartilage cDNA
3-rat brain cDNA (positive)
4- water (negative)

Figure 3.6 Images of agarose gels showing RT-PCR products demonstrating mRNA 
expression of glutamate signalling components in human OA cartilage. Products less 
than 1 OObp are caused by primer dimers. The full picture of these gels can be seen in the 
indicated appendix.
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K - - *
1 2 4

I
<9*

A EAAT2 B EAAT3 C mGluR4 D AMPAGluR3 
385bp 457bp 153bp 151bp

(appendix 16) (appendix 17) PCR carried out (appendix 21)
Viknesh Savanathan

(appendix 20)

Kev:
1- lOObp ladder
2- Human chondrocyte library cDNA
3- rat brain cDNA (positive)
4- water (negative)

Figure 3.7 Images of agarose gels showing RT-PCR products demonstrating mRNA 
expression of glutamate signalling components by a human chondrocyte library. 
Products less than 1 OObp are caused by primer dimers. The full picture of each gel can be 
seen in the indicated appendix.
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3.3.7 Expression of glutamate signalling apparatus in human FLS
RT-PCR confirmed that human RA FLS expressed the glutamate transporters EAAT1 
and EAAT3 (figures 3.8 panels A and B) but not EAAT 2. Normal, human FLS also 
expressed the glutamate transporters: EAAT1 and EAAT 3 (figures 3.9 panel A and 
C) but unlike RA FLS also expressed EAAT2 (figure 3.9 panel B). Expression of 
EAAT4 and EAAT la was not determined due to the primers used being rat species 

specific.

RA FLS expressed mRNA for the glutamate receptor subunits NMDA NR1 and KA1 
(figures 3.8 panels C and D). The NMDA NR1 subunit mRNA was also shown to be 
expressed in normal FLS (figure 3.9 panel D). In addition normal FLS also expressed 
the metabotropic glutamate receptor, mGluR4 mRNA (figure 3.9 panel E) but did not 
express the KA1 receptor subunit. Neither RA FLS nor normal FLS expressed the 
AMPAGluR2 and 3 subunits. All FLS cDNA used tested positive for p-actin mRNA 

expression (figure 3.10).

3.3.7.1 Protein expression of GLAST in fibroblast-like synoviocytes
Optimisation of the polyclonal anti-GLAST antibody used for these studies is 

discussed in section 2.6.4 in the materials and methods chapter. Untreated RA FLS 
(patient 5, passage 7), cultured (as described in section 2.5.2) on 8-well chamber 

slides were methanol fixed (as described in section 2.6.1) and protein expression of 
GLAST determined using a polyclonal anti-GLAST antibody (described in section 
2.6.2).

3.3.7.1.1 Characterisation of the polyclonal antibody to GLAST for 
immunohistochemistry
Control tests were performed with the polyclonal GLAST antibody to confirm that 
interactions were specific. The controls were:

1. Primary negative. To confirm that interactions were not due to non-specific 
binding of the secondary antibody incubations were performed in the absence of the 
anti-GLAST primary antibody. This control was carried out with every 
immunostaining experiment and revealed no non-specific secondary binding (figure 
3.11, panel A).
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AEAAT1 
(GLAST 1) 

348bp 
(appendix 4)

BEAAT3 
457bp 

(appendix 22)

CNMDANR1 
151 bp 

(appendix 23)

DKA1 
247bp 

(appendix 24)

Key:
1- lOObp ladder
2- RA FLS cDNA
3- rat brain cDNA (positive)
4- water (negative)

Figure 3.8 Images of agarose gels showing RT-PCR products demonstrating mRNA 
expression of glutamate signalling components in RA FLS. Products less than lOObp are 
caused by primer dimers. The full gel pictures can be seen in the appendix indicated.
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A EAAT1 
(GLAST 1) 

348bp 
(appendix 4)

BEAAT2 
385bp 

(appendix 25)

1 2  3 -

Kev:
1 - lOObp ladder
2- Normal FLS cDNA
3- rat brain cDNA 
(positive)
4- water (negative)

D NMDA NR I 
151 bp 

(appendix 26)

CEAAT3 
457bp 

I appendix 22)

1 2  3 4

E m duR4 
153bp 

(appendix 27)

Figure 3.9 Images o f agarose gels showing RT-PCR products demonstrating mRNA 
expression of glutamate signalling components in normal FLS. Products less than lOObp 
are caused by primer dimers. The full gel picture can be seen in the appendix indicated.
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Figure 3.10 Images of agarose gels showing RT-PCR products demonstrating mRNA 
expression of P-actin in normal and RA FLS.

1 2 3 4 5 6 7 8

Kev:
1 - lOObp ladder
2- RA FLS cDNA
3- RA FLS cDNA
4- Normal FLS cDNA
5- Normal FLS cDNA
6- rat brain cDNA (positive)
7- P-actin plasmid (positive)
8- water (negative)

p-Actin
592bp
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2. Blocking anti-GLAST binding with the peptide that the antibody was raised 
against. Different concentrations of the N-term peptide of GLAST-1 were used in 
incubations with the primary antibody to confirm that the GLAST antibody was 
specifically binding to GLAST protein (Figure 3.11 panels B to D). A significant 
reduction in staining was observed in the presence of lOOpg/ml peptide compared to 
cells incubated with anti GLAST in the absence of the GLAST peptide (figure 3.11, 
panel E).

3. Blocking with non-immune rabbit serum. To further confirm that the primary 
antibody was specifically binding to GLAST cells were incubated with non-immune 

rabbit serum rather than polyclonal anti GLAST antibody (Figure 3.12). A significant 
reduction in fluorescence was observed in the presence of non-immune rabbit serum 
confirming that the polyclonal GLAST antibody binds specifically.

3.3.7.1.2 Immunohistochemistry showing protein expression of GLAST in 
synoviocytes
The immunohistochemistry control tests described above (section 3.2.2.1) confirmed 
that GLAST protein is expressed in RA FLS and appears to be localised to the 
cytoplasm or plasma membrane (figure 3.12, panel C).

3.3.7.2 Western blotting showing protein expression of GLAST in FLS
Western blotting (according to section 2.7) confirmed the presence of GLAST protein 
in protein extracts from human RA FLS (patient 7, passage 7). Protein extracted from 
rat brain was used as a positive control. The 69kDa monomer of GLAST-1 was the 
only form present in RA FLS (figure 3.13); higher molecular weight primary specific 
bands in the rat brain extract identified represent multimeric forms of GLAST protein 
described previously (Haugeto et al. 1996, Huggett et al. 2000). The 54.4kDa 
GLAST-la splice variant was not detected in RA FLS. This was not tested in NFLS.
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Figure 3.11 Blocking interaction of the GLAST antibody and GLAST in RA FLS with 
GLAST peptide to confirm specificity of polyclonal anti-GLAST primary antibody 
(measure bar corresponds to 100pm). The red is propidium iodide counter-staining of the 
nuclei. The green is FITC-labelled EAAT1.

A. Primary negative B. 1/100 Primary and lpg/ml peptide

C. 1/100 Primary and lOpg/ml peptide D. 1/100 Primary and lOOpg/ml peptide

E. 1/100 Primary (GLAST peptide not present)
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Figure 3.12 To confirm specific interaction of the primary polyclonal anti-GLAST 
antibody, non-immune rabbit serum was used instead of the anti-GLAST antibody in RA 
FLS (measure bar corresponds to 100pm). The red is propidium iodide counter-staining 
of the nucleii. The green is FITC-labelled EAAT1.

B. non-immune rabbit serumA. Primary negative

C. 1/100 primary antibody
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Figure 3.13 Expression of EAAT1 protein in RA FLS as shown by Western blotting

Western blot of protein extracts from human RA FLS (patient 7, passage 7). The 69kDa 
monomer of EAAT1 expressed in RA FLS is indicated by an arrow, higher molecular 
weight primary specific bands in the rat brain extract represent multimeric forms of 
GLAST proteins. The 54.4kDa GLAST-la variant was not detected in these cells. (For 
full picture of this blot see figure 5.5).

180kDa

75kDa
50kDaGLAST

25kDa

Key:
1-FLS extract
2- FLS extract
3- FLS extract
4- Rat brain extract
5- Biorad prestained 
molecular weight 
marker
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3.4 Discussion
Table 3.1 shows a summary of glutamate signalling apparatus expression in the cells 

and tissues of the synovial joint. Glutamate transporter and receptor mRNA has been 
shown to be expressed in tissues and specific cells of the synovial joint thus 
indicating that the necessary machinery for glutamate signalling is present and hence 
that these cells have the ability to respond to extracellular glutamate within the 

synovial joint.

RT-PCR revealed that the rat patella expressed mRNA for GLAST-1, la, GLT1, 
EAAC1 (EAATs 1-3) and all of the receptors investigated. This tissue is however 
multicellular, primarily consisting of bone but also contains cartilage, blood vessels, 
nerves and lymph vessels, thus the exact cell type producing the glutamate signalling 
components cannot be ascertained. It is likely that the glutamate transporter mRNA 
is being expressed by bone cells or by the chondrocytes because this present study has 
shown mRNA expression of EAATs 1, la (GLASTla), 2, 3 mGluR4, AMPAGluR2 
and AMPAGluR3 in cartilage and chondrocytes and other studies have demonstrated 

expression in bone cells (see section 1.6.4.1).

The glutamate transporters GLAST-1, la, GLT1 and EAAC1 (EAATsl-3) were all 
expressed in the rat fat pad. AMPA and KA receptor subunit types were also 

expressed in the rat fat pad. This tissue consists of vascularised adipocyte tissue so 
does not consist of one cell type. Sensory nerves are also found within adipose tissue, 

therefore the glutamate receptors shown to be expressed in this tissue may originate 
from the peripheral nervous system.

Only GLAST 1 and la (EAAT1) were expressed in the rat menisci. The mRNA from 
this tissue is likely to be from a pure population of cells due to the menisci not being 
an innervated tissue and having only 10-30% peripheral vacularisation. The cells of 
the menisci are fibrochondrocytes because they produce a fibrocartilage matrix and 
yet resemble chondrocytes (Dudhia, J et al. 2004). Thus, it is likely to be these cells 
that are producing the glutamate transporter and receptor mRNA. Both AMPAGluR2 
and AMPAGluR3 mRNA were expressed by the rat menisci; in addition, expression 
of the metabotropic glutamate receptor, mGluR4, was also demonstrated. This is the
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first observation of expression of these glutamate receptors and transporters in 
fibrochondrocytes.

Bovine chondrocytes, a pure population of cells, demonstrated expression of EAAT 1, 
la and 2 mRNA which is also a novel observation. Thus, these cells have the ability 
to regulate extracellular and intracellular glutamate levels. Expression of the other 
glutamate transporters and receptors could not be determined due to the bovine 
sequences being unknown. Despite testing primers designed to both human and rat 
sequences, a negative result was obtained. However, this does not prove that these 
glutamate signalling components are not present in bovine chondrocytes due to the 

possibility that the primers are species specific.

The human knee OA cartilage is likely to be without nerves and therefore an almost 
pure population of chondrocyte cells, however because it is from an OA patient it 
may have vascularisation. The only glutamate transporter expressed in human OA 
cartilage was EAAT3, however EAAT4 was not determined due to the primers not 
cross-reacting with human sequence. However it is unlikely that EAAT4 would be 
expressed in this tissue because to date expression of this transporter has been 
restricted to localised areas of the CNS. OA cartilage has the ability to respond to 
extracellular glutamate because mRNA expression of both AMPAGluR2 and 3 
subunits were detected.

Expression of EAAT2 and EAAT3 clones were detected in the human chondrocyte 
library. In addition expression of clones for the mGluR4 metabotropic receptor and 
the AMPAGluR3 subunit were detected. The human chondrocyte library consisted of 
approximately 3-6 x 105 clones which corresponds to the number of genes expressed 
by a chondrocyte at any one time so it is likely that all genes were represented within 
the library. However because the library was generated from mRNA extracted from 
pooled (unstimulated, IL-lp stimulated and TGF-pl stimulated) primary 
chondrocytes the expression of these glutamate signalling components detected in this 
study does not mean that human chondrocytes express these normally in vivo. It 
merely demonstrates the ability of these cells to express mRNA for these 
components.
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Both normal and RA FLS showed a similar complement of glutamate signalling 
components. Both expressed EAAT1 and EAAT3, however only normal FLS 
expressed EAAT2. This demonstrates a difference in the ability of these cells to 
regulate glutamate levels within the synovial joint because the different EAATs have 
various uptake properties. EAAT2 has a higher probability of transporting bound 
glutamate than releasing it compared to EAAT1 in the CNS (Otis and Kavanaugh 
2000). This could influence the elevated levels of glutamate in RA synovial fluid if 
the normal FLS express a transporter more likely to bind and transport glutamate. In 
addition the stoichiometry of uptake and the affinity for glutamate varies between 
transporter subtypes (Danbolt 2001). The presence of EAAT1 mRNA in RA FLS 
was further confirmed by immunohistochemistry and Western blotting (confirmed in 
one patient) which revealed the presence of EAAT1 protein. The apparent 
localisation of the transporter to the plasma membrane demonstrates that it is in the 
necessary location for glutamate transport. Exact localisation of the transporter could 
not be determined, further investigation using confocal microscopy is required. Both 
RA and normal FLS expressed the essential NMD A NR1 subunit, indicating the 
potential for these cells to form functional NMDA receptors. Only the normal FLS 
expressed mGluR4, whereas only the RA FLS expressed KA1. Again this 
demonstrates a difference in how RA and normal FLS have the ability to respond to 
extracellular glutamate and the signalling pathways that extracellular glutamate may 

activate within the FLS. For example, mGluR4 is a G protein which is negatively 
coupled to the cAMP pathway, whereas kainate receptors are ion channels. It is not 
certain that these differences between RA and normal FLS are true for all RA 
patients, however it is true for the patients in this study because cDNA integrity was 
confirmed by demonstrating p-actin mRNA expression. More patients need to be 
tested in order for full conclusions to be drawn.

Expression of the AMPA receptor subunits 2 and 3 was detected in the patella, fat 
pad, menisci and human OA cartilage. A splice variant of the AMPAGluR2 subunit 
controls AMPA receptors permeability to calcium (Egebjerg 2002), thus these tissues 
may therefore have the ability to control calcium permeability via AMPA receptors, 
however the primers used in this study were unable to detect whether this splice 
variant was present.
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Expression of at least one glutamate transporter, EAATsl-3, was detected in all 
tissues and cells investigated, thus these cells and tissues all have the potential ability 
to regulate extracellular glutamate levels. The primers used for EAAT 4 and 
GLASTla were rat specific. EAAT4 was not expressed in the rat tissues. This was 
expected as these transporters have only been reported to be expressed within the 
CNS.

This is the first study to report glutamate receptor and transporter expression in FLS, 
previously only glutamate transporter expression has been reported in epidermal 
fibroblasts (see section 1.6.4.3). Until recently this was also the first observation of 
mRNA expression of glutamate signalling components in cells and tissues of the 
synovial joint other than bone although NMD A NR1 has been shown to lie expressed 
by chondrocytes (Salter et al. 2004). More recently McNeamey et al. inferred 
expression of NMD A and metabtropic glutamate receptors in FLS butdLdlnot specify 

which subunits/types (McNeamey et al. 2004) and EAAT and NMDA MR2 subunit 
mRNA expression has also been reported (Hinoi et al. 2005, Salter et al. 2004) (see 
section 1.6.4.2).

The most interesting result of this study is the difference in glutamate signalling 
component expression between RA and normal FLS, highlighting tie potential 
difference in how FLS may respond to and control extracellular levels of giutamate in 
the normal and diseased state.
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Table 3.1 Summary of mRNA expression of glutamate signalling apparatus in 
cells and tissues of the synovial joint

Rat
patella

Rat
fat

pad

Rat
menisci

Bovine
chondrocytes

Human
RAFLS

Human
OA
cartilage

Human
normal

FLS

Human
chondrocyte

library

GLAST-1 + + + + + - + -

GLAST-la + + + + ND ND ND ND

EAAT2 + + - + - - + +

EAAT3 + + - ND + + + +

EAAT4 - - - ND ND ND ND ND

NMDANR1 + - - ND + - + -

mGluR4 + - + ND - - + +

KA1 + + - ND + - - -

AMPAGluR2 + + + ND - + - -

AMPAGluR3 + + + ND - + - +

Key: + = mRNA expressed
- = mRNA not detected 
ND= Not determined
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Chapter 4 The effect of glutamate on Interleukin 6 production by fibroblast-like 

synoviocytes

4.1 Introduction

Glutamate levels are increased 54 fold in human RA synovial fluid compared to normal 

synovial fluid (McNeamey et al. 2000) and antigen induced arthritis in rats doubles the 

amount of glutamate present in synovial fluid (Lawand et al. 2000). Whilst the responses 

of bone cells to glutamate stimulation have been well characterised (recently reviewed in 

Mason 2004), little is known about how the cartilage and synovium respond. It is unclear 

what effect this increased glutamate will have on FLS phenotype and whether this is 

relevant to the pathogenesis of RA. Recently, it has been reported that glutamate levels 

correlate with levels of specific pro-inflammatory cytokines in RA synovial fluid 

(McNeamey et al. 2004). Furthermore, glutamate treatment of human synoviocytes 

derived from RA patients increased release of TNFa, demonstrating that changes in 

glutamate may contribute to inflammatory processes in RA.

IL-6 (section 1.4.1.1.3) levels are elevated in the synovial tissue and fluid during active 

rheumatoid arthritis (Desgeorges et al. 1997). Anti-IL-6 therapy has shown good 

efficacy in treating RA in clinical trials, thus demonstrating the importance of IL-6 in this 

disease (see section 1.3.4.4). Anti-IL-6 and anti-IL-6 receptor antibodies have been used 

successfully as a therapeutic strategy in RA animal models (Mihara et al. 1991). In 

addition clinical trials have demonstrated evidence for the efficacy of anti-IL-6 receptor 

antibodies for RA (Nishimoto et al. 2004, Choy et al. 2002).

Within the central nervous system (CNS) glutamate has been well studied as a 

neurotransmitter (section 1.6.2) but the effects of glutamate and expression of 

components of the glutamate signalling pathways have not been well characterized in 

other tissues (see chapter 3 for glutamate signalling components expressed in cells and 

tissues of the synovial joint). The effects of glutamate on pro-inflammatory cytokine 

production within the CNS are not well documented. However there are some studies 

into the effects of glutamate on pro-inflammatory cytokines (section 1.6.5.4 and 1.6.5.5).
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These previously published studies link glutamate signalling to pro-inflammatory 

cytokine release and indicate that the increased glutamate in RA patient synovial fluid 

may mediate or prolong the inflammatory responses associated with RA.

Having demonstrated in chapter 3 that FLS express glutamate receptors and transporters, 

and therefore have the ability to respond to extracellular glutamate, the purpose of this 

study was to investigate the role of glutamate signalling on the pro-inflammatory 

phenotype of FLS. To this end the effects of glutamate and inhibitors of glutamate 

receptors and transporters on synoviocyte expression of the pro-inflammatory cytokine 

IL-6 were determined. Because IL-6 has a major role in the pathogenesis of RA, this was 

chosen as an indicator of induction of an inflammatory response by glutamate.

4.2 Methods

4.2.1 Cell culture treatments

To determine the effect of glutamate on human FLS, cells were cultured in DMEM 

(50pM glutamate) as in section 2.5 and lpM, 10pM, lOOpM, 500pM, lOOOpM or 

2000pM glutamate (Sigma Aldrich) added for 15 hours. 15 hours was chosen because it 

was long enough for changes in protein expression to occur. These concentrations of 

glutamate were chosen because the levels of glutamate in normal synovial fluid and 

synovial fluid from RA patients are on average 6pM and 326pM respectively and 

therefore glutamate concentrations around this range were tested. Due to the 50pM 

glutamate present in the culture media experiments less than this concentration could not 

be carried out. Each culture condition was repeated between 3 and 6 times with cells 

derived from the same patient and the same passage (See table 2.4 for patient details). 

After 15 hours at 37°C the media was aspirated from the cell layer and stored at -20°C for 

analysis of IL-6 and LDH (sections 2.8 and 2.12). Statistical analysis was carried out 

using Minitab (see section 2.13). Measurements outside of two standard deviations from 

the mean were considered outliers and removed.
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4.2.2 Glutamate transporter inhibitors

To demonstrate the effects of extracellular glutamate on FLS it is necessary to prevent 

clearance of glutamate via high-affinity transport. Therefore to block glutamate uptake 

by RA FLS cells were cultured as above (section 4.2.1) in the presence of either lOOpM 

DL-f/*ra?-2s-Benzyloxyaspartic acid (TBOA) (TOCRIS), a competitive, non-transportable 

inhibitor of excitatory amino acid transporters (EAATs) 1-5 or lOOpM /raws-Pyrrolidine- 

2,4-dicarboxylic acid (tPDC) (TOCRIS), a competitive transportable inhibitor of EAATs 

1-4 and non-transportable inhibitor or EAAT5. The studies described in chapter 3 

demonstrated that normal FLS express EAAT1, 2 and 3 and RA FLS express EAAT1 and 

EAAT3, therefore these transporters would be inhibited by TBOA and fPDC. The 

inhibitors were added immediately prior to the addition of glutamate. The number of 

glutamate transporters expressed by FLS and their binding affinity for glutamate in FLS 

is unknown therefore the concentration of inhibitor used was based on previously 

published work using these inhibitors (Cooper et al. 1998, Balcar 1992, Waagepetersen et 

al. 2001). After 15 hours at 37°C the media was aspirated from the cell layer and stored 

at -20°C for analysis of IL-6 and LDH (sections 2.8 and 2.12).

4.2.3 Glutamate receptor inhibitors

To explore whether effects of extracellular glutamate are mediated by ionotropic 

glutamate receptors, FLS were cultured in DMEM with various concentrations of 

glutamate (as in section 4.2.2) for 15 hours with ionotropic glutamate receptor 

antagonists. The NMDA receptor inhibitors used were lOOpM MK801 (TOCRIS), a non­

competitive NMDA receptor antagonist and lOpM D-(-)-2-Amino-5-phosphonopentanoic 

acid (d-AP5) (TOCRIS), a competitive NMDA receptor antagonist. The non-competitive 

inhibitor 1 -(4’-Aminophenyl)-3,5-dihydro-7,8-dimethoxy-47/-2,3-benzodiazepin-4-one

(CFM-2, 10pM) or the competitive inhibitor 2,3-Dioxo-6-nitro-l,2,3,4-

tetrahydrobenzo[f] quinoxaline-7-sulfonamide (NBQX, 150pM) were used to inhibit 

AMPA and kainate receptors. CFM-2 inhibits AMPA receptors and NBQX inhibits both 

AMPA and KA receptors. Previous studies in osteoblasts and non-CNS tumour cells 

were considered to determine concentrations of receptor antagonists (Chenu et al. 1998, 

Hinoi et al. 2002, Laketic-Ljuobojevic et al. 1999, Rzeski et al. 2002, Genever and
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Skerry 2001). After 15 hours at 37°C the media was aspirated from the cell layer and 

stored at -20°C for analysis of IL-6 and LDH (sections 2.8 and 2.12).

4.3 Results
4.3.1 Cytotoxicity of the glutamate receptor and transporter antagonist treatments

The amount of LDH released into the media by FLS during each 15 hour treatment was 

measured using a cytotoxicity assay (section 2.12). Total cell lysis by treatment with 2% 

SDS of one well of a 6-well plate of FLS seeded at the same density as used in this 

experiment gave an absorbance reading of between 0.9 and 1.1 (n=6, data not shown). 

Thus an absorbance reading of approximately 1 reflects 100% cell death. The 

cytotoxicity results of the controls (50pM glutamate, no antagonist) after 15 hours in this 

experiment produced low absorbance readings within the range of 0.073 -  0.084 (see 

figure 4.1); therefore an average of 8% of the cells in total were dying during culture. 

Treatment with tPDC, TBOA, (figure 4.1a) dAP5, MK801 (figure 4.1b) CFM2 and 

NBQX (figure 4.1c) and up to 2000pM glutamate (over and above the 50pM glutamate 

present in the media) produced absorbance readings ranging 0.07 to 0.11 (7-11% of cells 

dying). Treatments therefore changed cell number by a maximum of approximately 4% 

(n=l well, triplicate measurements taken) compared to the control (50pM glutamate, no 

inhibitor added) therefore none of these treatments greatly influence cell number.

4.3.2 Extracellular glutamate increases the release of IL-6 by human RA 

synoviocytes but not normal synoviocytes

The effect of extracellular glutamate on the levels of the pro-inflammatory cytokine IL-6, 

produced by human primary RA FLS was explored. An increase in IL-6 production was 

observed at increased glutamate concentrations in cells cultured from patient 3 (figure 

4.2a). IL-6 production was significantly increased in the presence of 550jiM (IL-6 

103pg/ml, p=0.005) and 2050pM glutamate (IL-6 = 96pg/ml, p=0.011) compared to the 

RA FLS cultured in 50pM glutamate (IL-6 = 60pg/ml). Increasing extracellular 

glutamate concentration to 150pM did not affect IL-6 release (figure 4.2a). However in 

patient 8 extracellular glutamate 150pM (82pg/ml, p=0.024) and 2050pM (70pg/ml, 

p=0.034) glutamate caused a significant reduction in IL-6 production compared to the
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control (115pg/ml) (figure 4.2c). The constitutive levels (in the presence of 50pM 

glutamate) of IL-6 produced by this cell line were 2 times greater than levels of IL-6 

produced by the cell line derived from patient 3. Thus, extracellular glutamate had 

varying effects on IL-6 production in these 2 patients.

Increasing the passage of the cells also varied IL-6 responses to glutamate. Conversely to 

results at passage 5, patient 3 cells increased IL-6 production at passage 7 (figure 4.2b) 

between 50pM glutamate and 60pM glutamate (p=0.048) and between 550pM glutamate 

and 1050|oM glutamate (p=0.014). However, a decrease in IL-6 production was observed 

in these cells between treatment with 60pM and 550|iM (p=0.036) glutamate and 

between 1050pM and 2050pM glutamate (p=0.017).

Extracellular glutamate had no effect on IL-6 production by RA FLS from patient 2 at 

passage 6 (data not shown). However, constitutive levels of IL-6 produced by cells from 

patient 2 were too low to be detected (data not shown).

The effect of glutamate on IL-6 production was very different in normal synoviocytes, 

which were unresponsive to changes in extracellular glutamate concentration (figure 4.3a 

and b). IL-6 released by normal FLS was very low (4-24pg/ml) compared to that 

released by RA FLS (60-120pg/ml) except for the RA patient number 2 whose levels 

were too low to detect using the IL-6 ELISA.

4.3.3 EAAT inhibitors increase IL-6 release by FLS

To determine whether the high affinity glutamate transporters (EAATs 1-5) have an effect 

on IL-6 production by FLS by altering extracellular glutamate concentration, the 

inhibitors TBOA (lOOpM) or fPDC (lOOpM) were added to the cultures. Transporter 

inhibition by TBOA increased IL-6 released by RA FLS from patient 3, passage 5 

exposed to 50pM (122pg/ml compared to 61pg/ml without TBOA, p=0.012) and 150pM 

(119pg/ml compared to 63pg/ml without TBOA, p=0.034) extracellular glutamate 

treatments (figure 4.4a). At higher concentrations of glutamate (550pM and 205OpM) no 

difference could be observed between TBOA treated cultures and the controls.
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Figure 4.1 Measurement of LDH production by FLS using a cytotoxicity assay 
demonstrating the effects of glutamate and the glutamate transporter and receptor 
antagonists on cell number
(All error bars show SEM and demonstrate error in the triplicate readings of the assay).

a: Treatment of FLS with lOOpM 
rPDC or lOOpM TBOA and up to 
1050pM glutamate changed the total 
cell population by a maximum of 
1%. Therefore these treatments are 
not considered to have a significant 
effect on total cell number (n=l 
well).

b: Treatment of FLS with lOpM 
dAP5 or lOOpM MK801 and up to 
205OpM glutamate changed the total 
cell population by a maximum of 
1%. Therefore these treatments are 
not considered to have a significant 
effect on total cell number (n=l 
well).
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Figure 4.2 The effect of glutamate on the release of IL-6 by RA FLS.

Patient 3: RA, female, aged 62, passage 5
a: Treatment of RA FLS from patient 3, 
passage 5 with 550pM (p=0.005) and 
2050pM (p=0.011) glutamate caused an 
increase in IL-6 production compared to 
IL-6 production at 50jiM glutamate. 
Significant differences are compared to 
the 50|iM control unless otherwise 
indicated by brackets (*:p<0.05, SEM 
error bars, 2-sample t-test used except 
comparison of 550pM and 2050pM 
glutamate to the control where a paired t- 
test was used, n=6, n=3 for 60pM samples 
SEM error bars).

b: Treatment of RA FLS from patient 3, 
passage 7 with 60pM to 205OpM 
glutamate had varying effects on IL-6 
production. An increase in IL-6 
production was seen between 5 OpM and 
60pM glutamate (p=0.048) and between 
550pM and 1050pM glutamate (p=0.014). 
A decrease in IL-6 production was 
observed between treatment with 60 pM 
and 550pM (p=0.036) glutamate and 
between 1050pM and 2050pM glutamate 
(p=0.017) (*: p<0.05, data transformed 
(logio) due to unequal variances prior to 
analysis with a paired t-test, n=6, SEM 
error bars).

c: Treatment of RA FLS from patient 8, 
passage 6 with 150pM (p=0.024) and 
2050pM (p=0.034) glutamate caused a 
decrease in IL-6 production (80pg/ml) 
compared to the level of IL-6 (115pg/ml) 
produced with 5 OpM glutamate. 
Significant differences are compared to 
the 5 OpM control unless otherwise 
indicated by brackets, (paired t test, 
*:p<0.05, n=6, SEM error bars).
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Figure 4.3 The effect of glutamate on the

a: Treatment of normal FLS from 
patient 4, passage 6 with 60jiM to 
205OpM glutamate caused no
significant differences in IL-6 
production compared to the control 
cultures grown in 50pM glutamate 
(paired t-test, n=6, SEM error bars).

b: Treatment of normal FLS from 
patient 4, passage 7 with 60jiM to 
2050pM glutamate caused no 
significant differences in IL-6 
production compared to the control 
cultures grown in 50pM glutamate 
(paired t-test, n=6, SEM error bars).

of IL-6 by normal FLS.

Patient 4: Normal, female, passage 6

50 60 150 550 1050 2050

gM glutamate

Patient 4: Normal, female, passage 7

50 60 150 1050 2050

gM glutamate

release

30

25

i  20a
S  15I_i
~  10

5

0

12

10

-  8.Ea> „a  6<oa
si 4

2

0

119



Chapter 4

The glutamate transporter inhibitors fPDC (competitive, transportable inhibitor) and 

TBOA (competitive, non-transportable inhibitor) also appeared to induce IL-6 production 

by RA FLS from patient 2, passage 6 (figure 4.4b). Levels of IL-6 produced by the 

control RA FLS from patient 2 were too low to be detected (subtraction of the absorbance 

value of the media blank reduced control sample absorbance readings to zero).

Whereas in RA FLS, glutamate transporter inhibition caused an increase in IL-6 

production, TBOA caused a reduction in IL-6 production in normal FLS at 60pM 

(1 lpg/ml compared to 20pg/ml without TBOA, p=0.045), 1050pM (6pg/ml compared to 

18pg/ml without TBOA, p=0.018) and 2050pM (13pg/ml compared to 23pg/ml without 

TBOA, p=0.04) glutamate (figure 4.5). The different constitutive levels of IL-6 in 

normal FLS (20pg/ml) and RA FLS (60pg/ml) and the significant increase in IL-6 release 

by RA cells in response to EAAT inhibitors compared to the decrease in normal FLS, 

strongly indicates an increased sensitivity to glutamate and a difference in glutamate 

signalling in the disease state.

4.3.4 NMDA receptor inhibitors influence IL-6 release by RA and normal 

synoviocytes

To determine whether the effect of increased IL-6 production in the presence of high 

extracellular glutamate was being mediated by NMDA receptor activation, FLS were 

treated with a range of glutamate concentrations in the presence of the NMDA receptor 

antagonists MK801 or D-AP5. NMDA receptor inhibition with the competitive inhibitor 

DAP5 had no effect on RA or normal FLS. The non-competitive inhibitor MK801 

increased IL-6 production by RA FLS (figure 4.6a) only in the presence of 550pM 

glutamate (65pg/ml compared to 44pg/ml without MK801, p=0.031). These cells 

produced constitutively low levels of IL-6. MK801 increased IL-6 production in normal 

FLS in the presence of 50pM (1 lpg/ml compared to 4pg/ml without MK801, p=0.016) 

and 60pM (1 lpg/ml compared to 6pg/ml without MK801, p=0.016) glutamate (figure 

4.6b).
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Figure 4.4 The effect of glutamate and inhibition of glutamate transporters on IL-6
levels of RA FLS

a: The effect of extracellular glutamate concentration (white bars) and TBOA treatment 
(grey bars) on the release of IL-6 by RA FLS from patient 3, passage 5. TBOA treatment 
significantly increased IL-6 release at 50pM (p=0.012, paired t-test) and 150pM 
(p=0.034, 2-sample t-test) glutamate. P-values are derived by comparing IL-6 levels in 
treated and control media at each glutamate concentration (data transformed [logio] prior 
to analysis, *: p<0.05, n=6, SEM error bars).
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b: The effect of extracellular glutamate concentration (white bars, not visible because are 
at zero), /PDC (grey bars) and TBOA treatment (black bars) on the release of IL-6 by RA 
FLS from patient 2, passage 6. rPDC significantly increased IL-6 release between 60pM 
and 1050pM glutamate. TBOA treatment significantly increased IL-6 release at all 
concentrations of glutamate. P-values are derived by comparing IL-6 levels in treated 
and control media at each glutamate concentration (*: p<0.05, n=6, n=3 at 60pM, SEM 
error bars).
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Figure 4.5 The effect of glutamate transporter inhibition on IL-6 production by 
normal FLS

Normal FLS (patient 4, passage 6) treated with 60pM (p=0.045, 2-sample t-test), 
1050pM (p=0.018, paired t-test) and 2050pM (p=0.04, 2-sample t-test) glutamate and 
TBOA showed a decrease in IL-6 production (data were transformed [logio] prior to t-test 
analysis, *:p<0.05, n=6, SEM error bars).
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Figure 4.6 The effect of NMDA receptor inhibition on IL-6 production by 
fibroblast-like synoviocytes
a: Treatment of RA FLS with the NMDA receptor inhibitors D-AP5 (grey bars) and 
MK801 (black bars) had no effect on IL-6 production when compared to the control 
(white bars) except at 550pM glutamate, where DAP5 significantly increased IL-6 
production (p=0.031, data transformed [logio] prior analysis with a paired t-test, n=6, 
*:p<0.05, SEM error bars). P-values are derived by comparing IL-6 levels in treated and 
control media at each glutamate concentration.
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b: Treatment of normal FLS from patient 4, passage 7 with the NMDA receptor 
inhibitors D-AP5 (grey bars) had no effect on IL-6 production compared to the control 
culture (white bars). MK801 (black bars) caused an increase in IL-6 production in the 
presence of 50pM (p=0.016) and 60pM (p=0.016) glutamate. P-values are derived by 
comparing IL-6 levels in treated and control media at each glutamate concentration (data 
transformed [logio] prior to paired t-test analysis, n=6, SEM error bars, *:p<0.05).
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4.3.5 AMPA/kainate receptor inhibitors decrease IL-6 release by RA synoviocytes

The issue of whether inhibiting AMPA/kainate ionotropic receptors influenced IL-6 

release by RA synoviocytes was studied. At all glutamate concentrations except 2050pM 

the AMPA/kainate receptor inhibitor NBQX significantly reduced IL-6 release by RA 

FLS from patient 8 (figure 4.7). The competitive, specific AMPA receptor inhibitor 

CFM2 reduced IL-6 release in RA FLS treated with 550pM glutamate (96pg/ml 

compared to 136pg/ml without CFM2). Since NBQX had a far greater effect than CFM2, 

it is likely that glutamate affects IL-6 expression largely via kainate receptors in RA 

synoviocytes from patient 8. These cells produced constitutively higher levels of IL-6. 

The effect of AMPA/kainate inhibitors was not investigated in normal synoviocytes.

4.4 Discussion

The present study demonstrates that previously reported increases in glutamate in RA and 

inflammation may influence pro-inflammatory cytokine release by FLS. Furthermore, 

extracellular glutamate can activate ionotropic glutamate receptors to regulate pro- 

inflammatory responses in FLS. This is constant with the previous studies demonstrating 

that the levels of glutamate that are elevated in the synovial fluid of RA patients correlate 

with the levels of various pro-inflammatory markers (McNeamey et al. 2004).

The data shows that glutamate influences IL-6 production by FLS although this response 

is variable between RA patients. High extracellular glutamate caused an increase in IL-6 

production by RA FLS from patient 3 at passage 5 but a mixed response depending on 

glutamate concentration in IL-6 production in cells from the same patient cultured at 

passage 7. This indicates a change in phenotype in these cells at a later passage. In 

human gingival fibroblasts and RA FLS IL-6 production decreases with passage (Kent et 

al. 1996, Hirth et al. 2002) thus demonstrating that production of, and suggesting that 

regulation of, IL-6 can differ between passages in similar cell types. The increase in IL-6 

production by RA FLS from patient 3 (passage 5) occurred at concentrations at and above 

550pM glutamate. Interestingly, this is the nearest concentration tested in these studies, 

to the pathophysiological levels observed in RA synovial fluid (326pM).
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Figure 4.7 The effect of AMPA and KA glutamate receptor inhibition on IL-6
production by RA FLS

IL-6 release by RA FLS is decreased by the AMPA/KA receptor inhibitor NBQX (black 
bars). The effect of inhibiting AMPA and KA receptors with NBQX significantly 
decreased IL-6 production by RA FLS at all concentrations of glutamate except 205OpM. 
The AMPA inhibitor, CFM2 (grey bars), only significantly reduced IL-6 production in 
the presence of 550pM glutamate. P-values are derived by comparing IL-6 levels in 
treated and control media at each glutamate concentration. (*:p<0.05, **:p<0.005, n=6)
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In RA FLS from patient 8, high extracellular glutamate caused an overall decrease in IL- 

6 production. The differences in these responses may be due to variation in constitutive 

IL-6 production as this was much lower in patient 3 (60pg/ml) than in patient 8 

(115pg/ml). The difference in constitutive IL-6 expression between patients has been 

previously reported (Bucala et al. 1991) and is influenced by factors such as the presence 

of other cytokines, passage and disease state (Hirth et al. 2002). It should be noted that 

patient 8 was male and patient 3 was female, therefore gender may also have an effect on 

RA FLS phenotype. In addition age and treatments the patients were receiving may 

affect experimental results.

Importantly, IL-6 production by normal FLS was unresponsive to changes in extracellular 

glutamate concentration thus suggesting that RA FLS have a heightened sensitivity to the 

elevated glutamate found in the synovial fluid of RA patients. Normal FLS constitutively 

release low levels of IL-6 (20pg/ml) and thus it may be the circulating levels of IL-6 itself 

or expression levels of glutamate receptors that define this sensitivity in IL-6 response to 

glutamate. For example, if RA FLS are constantly subjected to high levels of glutamate 

this may induce expression of the receptors that respond to glutamate. If so, longer 

exposure to glutamate in normal cells may induce a responsive phenotype, i.e. the cells 

are regulating extracellular glutamate concentration.

Some interesting links were observed between constitutive levels of IL-6 produced by 

FLS from different patients and the effect glutamate had on IL-6 production. RA FLS 

from patient 8 had very high constitutive levels of IL-6 which were decreased upon 

incubation with glutamate. Patient 3 RA FLS produced medium to high levels of IL-6 

which were increased further upon incubation with IL-6. Finally the RA FLS from 

patient 2 and normal FLS from patient 4 had constitutively low levels of IL-6 and 

glutamate had no effect on IL-6 production by these cells. The presence of glutamate 

transporter inhibitors increased IL-6 production regardless of constitutive IL-6 levels 

produced by RA FLS.
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Inhibiting glutamate transport had opposing effects in normal and RA FLS. In RA FLS, 

the non transported competitive inhibitor TBOA caused an increase in IL-6 production in 

cells from 2 patients; in normal FLS it decreased IL-6 production. TBOA is active 

against all EAATs but is most potent against EAAT1. Both normal and RA FLS express 

EAAT1 and EAAT3 but only normal FLS express EAAT2 (see chapter 3). Thus the 

effects of these inhibitors are likely to influence EAATs 1 and 3 in RA FLS and EAATs 

1, 2 and 3 in normal FLS. In addition the number of transporters (and receptors) 

expressed would determine how RA and normal FLS respond to glutamate transporter 

inhibitors. The affinity of the inhibitors for the transporters in comparison to glutamate 

would also affect the effectiveness of inhibition. Previous studies in neurons demonstrate 

that TBOA (IQ approximately 19jxM) has a higher affinity for glutamate transporters than 

rPDC (Ki approximately 38 pM) (Waagepetersen 2001) which could explain why TBOA 

had a greater effect on IL-6 production in this study (see appendix for calculation of IQ 

values). It would therefore be of interest to quantify EAAT expression in normal and RA 

FLS because inhibitors may not have uniform effects if types and levels of expression 

differed. In addition, the inhibitory potency ( I C 5 0 )  of these inhibitors should be 

determined in normal and RA FLS prior to future experiments in order to determine 

exactly the inhibitory effect they have on these cells.

In normal FLS the glutamate transporters may be acting directly as receptors (glutamate- 

gated ion channel receptors). It has been demonstrated previously that glutamate can 

activate the MEK/ERK pathway in astrocytes via glutamate transporters (Abe and Saito 

2001). Therefore the effects of TBOA and fPDC may be preventing transporters acting 

as ligand-gated ion channel receptors; in normal FLS transporter inhibitors increased IL-6 

production. However, the most likely effect of inhibition of glutamate transporters is that 

sodium dependent uptake of glutamate is prevented causing a build up of extracellular 

glutamate and enhanced activation of glutamate receptors. To investigate whether this 

was the possible mechanism of glutamate induction of IL-6 in some RA patients, various 

groups of ionotropic glutamate receptors were systematically inhibited.
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The NMDA receptor antagonist d-AP5 (competitive) had no effect on IL-6 production by 

RA FLS and normal FLS possibly because the concentration of d-AP5 was too low to 

compete against glutamate levels. It is difficult to determine the correct concentration of 

competitive inhibitors to use as the number of receptors expressed by FLS is unknown. 

In addition, there are further factors that would affect the potency of receptor antagonists. 

The concentration of glutamate that the cells are exposed to, the Mg2+ concentration in 

the media (Mg2+ inhibits NMDA receptor activation), the subunit composition of the 

receptors and the trafficking of glutamate receptors and transporters in response to 

changes in extracellular glutamate levels. It has been shown however, that d-AP5 has a 

rapid rate of dissociation from NMDA receptors (Monaghan et al. 1984) which could 

explain why it had no effect in these relatively long term cultures. DAP5 has a lower 

binding affinity (K j approximately 81nM) for NMDA receptors than MK801 (Kj 

approximately 54nM, calculated in pig cerebral cortex, see appendix for details of 

calculation) which together with the fact that DAP5 is also a non-competitive inhibitor 

may explain why greater effects were seen with MK801 (Fritz et al 1996). MK801 

(non-competitive) increased IL-6 production by normal and RA FLS. The effect of 

MK801 on IL-6 production differed with levels of extracellular glutamate. In RA FLS 

MK801 increased IL-6 production in the presence of 550pM glutamate whereas in 

normal FLS MK801 increased in IL-6 production in the lower concentrations of 50pM 

and 60|iM glutamate. This demonstrates another difference between RA and normal FLS 

in the way they respond to glutamate. The observation that normal FLS increase IL-6 

production in response to the NMDA receptor inhibitor MK801 may be correlated with 

the fact that the EAAT inhibitor TBOA caused a decrease in IL-6 production in normal 

FLS. Therefore in normal FLS, TBOA may decrease IL-6 by preventing uptake of 

glutamate, thus activating NMDA receptors to down-regulate IL-6 production.

Taken together, these results demonstrate that inhibition of NMDA receptors caused an 

increase in IL-6 production, thus suggesting that glutamate acts upon NMDA receptors to 

down-regulate IL-6 production by FLS. Therefore activation of NMDA receptors by 

glutamate may serve to prevent high IL-6 levels in the synovial fluid. This mechanism
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may be less sensitive in RA patients where FLS are conditioned to high extracellular 

glutamate concentrations.

The AMPA and kainate receptor competitive antagonist, NBQX, significantly reduced 

IL-6 release in RA FLS at all glutamate concentrations whereas the AMPA receptor- 

specific non-competitive antagonist CFM-2 was only effective at 550pM glutamate. 

Thus, it is concluded that control of increases in IL-6 production by glutamate is likely to 

be via kainate receptors. In fact kainic acid injected into rat brain induces IL-6 mRNA 

expression after 2 hours (Minami et a l 1991, Lehtimaki et a l 2003). Furthermore 

systemic kainic acid administration to rats increases the pro-inflammatory cytokine IL-ip 

mRNA levels in the brain which may be via kainate or AMPA receptors (Eriksson et al. 

2000) demonstrating that glutamate receptors have previously been linked to regulation 

of pro-inflammatory cytokine expression. The effect of metabotropic antagonists on IL-6 

production has not been investigated in this study; therefore the control of IL-6 

production in RA may also involve this subtype of glutamate receptor.

These studies using human RA synoviocytes have shown that IL-6 is likely to be 

regulated by changes in extracellular glutamate concentrations. Glutamate-induced 

changes in IL-6 production are likely to be mediated via NMDA and kainate receptors 

with kainate receptors increasing IL-6 levels and NMDA receptors decreasing IL-6 

levels. The effect of inhibiting kainate receptors on IL-6 production by RA FLS was 

greater than the effect of inhibiting NMDA receptors. Therefore the high levels of 

glutamate present in RA synovial fluid may be having a more pro-inflammatory effect on 

synoviocytes, mediated through the cytokine IL-6. Previously, induction of IL-6 

expression in RA synovioyctes has been demonstrated to be via IL-1 (Ogura et a l  2002) 

and TNFa (Piecyk and Anderson 2001). This must be taken into context with the fact 

that glutamate and TNFa are both elevated in RA synovial fluid compared to OA 

synovial fluid. Therefore the regulatory effects of glutamate on IL-6 production need to 

be investigated with respect to these cytokines to determine which is the primary 

modulator or whether these are distinct pathways that induce expression or production.
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The differing responses of RA and normal FLS to glutamate and glutamate receptor and 

transporter antagonists needs to be investigated further. These differences are important 

because they highlight a change in phenotype between normal and RA FLS. Repeating 

the experiments on FLS from more patients would help to characterise the responses 

observed. It would be interesting also to see if patient synovial fluid glutamate levels 

affect the phenotype of the FLS derived from them.

The effect of glutamate on IL-6 production by RA FLS presented here has varied 

between patients. Constitutive glutamate and IL-6 levels, disease stage and treatments 

received may affect how FLS respond. Therefore these experiments need to be repeated 

in FLS from more patients in order to conclude fully the effect that glutamate has. This 

may demonstrate trends in the effect of glutamate on IL-6 production and patient age, sex 

and treatments received. Repetitions should also be carried out inhibiting more than one 

signalling component, for example, using MK801 and TBOA. Furthermore, the 

differences in IL-6 production in response to glutamate with respect to passage number 

needs to be characterised further. This could be done by repeating experiments at each 

passage on cells from the same patient and comparing the effects. IL-6 is an important 

mediator of inflammation in RA, therefore if the increase in IL-6 production caused by 

glutamate treatment in RA FLS from patient 3 is shown to occur in many patients this 

could indicate a novel therapeutic approach in which to treat RA. Anti-IL-6 therapy has 

shown very good efficacy therefore targeting the signalling pathway leading to IL-6 

production may improve upon this treatment. Exploring the point of regulation would 

facilitate this; glutamate may regulate transcription, translation or shedding and secretion 

of IL-6. Hence, a better understanding of the pathways activated by the elevated 

glutamate in RA patients may enable new and more effective therapeutic targets to be 

identified. For example, data presented here demonstrate that kainate receptor inhibitors 

could have the potential to decrease IL-6 levels in RA patients.
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Chapter 5 Regulation of EAAT1 expression by pro-inflammatory cytokines

5.1 Introduction
Important mediators of inflammation in RA include cytokines such as interleukin-6 
(IL-6), interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFa). Section 1.4.1.1 
provides an overview of these cytokines and their role in RA. IL-6 is elevated in 
synovial tissue and fluid (from 24.9 to 49.7ng/ml) during active phases of 

inflammation in RA patients (Desgeorges et al. 1997). TNFa is also elevated in RA 

synovial fluids (94pg/ml compared to OA synovial fluid levels of 39pg/ml) 
(McNeamey et al. 2004). Anti IL-6 and IL-6 receptor therapy is now being 
developed as a treatment for rheumatoid arthritis, and have demonstrated good 
efficacy in clinical trials (Nishimoto et al. 2004 and Choy et al. 2002) (see section 
1.3.4.4). Furthermore, the effectiveness of anti-TNFa and anti-TNFa receptor 
therapy which are currently used as treatments for RA (see section 1.3.4.4) 
demonstrates the important role of pro-inflammatory cytokines such as TNFa in RA. 
IL-1 levels are also elevated in RA synovial fluid (130pg/ml) compared to OA 
synovial fluid levels (28pg/ml) and has a well established pro-inflammatory role in 
RA (Westacott et al. 1990). For example, IL-1 induces synovial fibroblasts and 
chondrocytes to release MMPs, aggrecanases, nitric oxide and prostaglandins (see 
section 1.4.1.1.2).

The effects of these pro-inflammatory cytokines have been investigated within the 
CNS where there is some evidence linking glutamatergic signalling to inflammatory 
and degradative responses (see section 1.6.5.6). This therefore indicates a potential 
link between the synchronous elevated levels of IL-6 and glutamate in these diseases. 
Studies have also investigated the direct effects of these cytokines on cells within the 

CNS (see section 1.6.5.4) and outside the CNS (see section 1.6.5.5), particularly the 
effect of cytokines on glutamate transport and receptors.

Glutamate levels are elevated in the synovial fluid of RA patients and the synovial 
fluid of antigen-induced arthritis in rats (McNeamey et al. 2000, Lawand et al. 2000), 
therefore suggesting a link between inflammation and glutamate regulation (see 
section 1.6.5.7). These elevated levels of glutamate in RA synovial fluid may be
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caused or influenced by direct effects of cytokines on the activity or expression of 
glutamate transporters and receptors. Therefore the effects of pro-inflammatory 

cytokines elevated in RA synovial fluid (IL-6, TNFa and IL-1) on EAAT1 (GLAST) 
mRNA and protein expression was investigated. EAAT1 was chosen because this is 
more highly expressed in fibroblasts than EAAT 3 and EAAT4 (Cooper et al. 1998).

5.2 Methods
5.2.1 Determining the effect of pro-inflammatory cytokines on EAAT1 mRNA 

expression
To determine whether extracellular pro-inflammatory cytokines can influence the 
expression of glutamate signalling components, the effect of treating primary human 
RA FLS with IL-6/sIL-6r on EAAT1 mRNA expression was investigated. Primary 
human RA FLS (patient 1) were treated with IL-6 (50ng/ml) in conjunction with 
20ng/ml sIL-6r or IL-1 (lOng/ml) for 0,1, 6, 15 or 24 hours and reverse transcribed to 

cDNA (kindly donated by Dr. S. Jones and Dr M. Nowell, Department of medical 
biochemistry and immunology, Cardiff University). PCR was carried out to 
determine p-actin and EAAT1 mRNA expression (see section 2.4).

5.2.2 Determining the effect of pro-inflammatory cytokines on EAAT1 protein 
expression using immunohistochemistry
To determine whether pro-inflammatory cytokines alter EAAT1 protein expression, 
primary human RA FLS (patient 5, passage 7) and normal FLS (patient 4, passage 7) 
cultured in 8-well chamber slides (see section 2.5.2) were treated with 500pg/ml 
TNFa (PeproTech Inc.) or 50ng/ml IL-6 (PeproTech Inc.) in combination with 
20ng/ml sIL-6r (R & D systems). These concentrations of IL-6 and sIL-6r were 
chosen because an increase in EAAT1 mRNA expression had already been observed 
with these concentrations (see section 5.3.1) and they are consistent with the level of 
IL-6 observed in RA synovial fluid (24.9ng/ml and 51.7ng/ml, see section 1.4.1.1.3). 
RA synovial fluid levels of sIL-6r are 24.7ng/ml (Desgeorges et al. 1997). 500pg/ml 
of TNFa was chosen because this was between RA synovial fluid levels (94pg/ml) 
and levels used for treatments in other published work on FLS (see section 1.4.1.1.1 
and 1.6.5.5). Treatments were carried out for 0, 30 minutes, 1 hour or 3 hours 
because effects on mRNA had been observed after 1 hour. Duplicate cultures were 
treated with an inhibitor to the IL-6 receptor, Mab227 (2pg/ml, R&D Systems) which
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is a function blocking antibody. EAAT1 protein expression was investigated by 
immunohistochemistry (see section 2.6) using a polyclonal antibody raised against 
the N-terminal of GLAST1 (EAAT1) and GLASTla. Experiments demonstrating 
specificity of this antibody when used for immunohistochemistry are described in 
chapter 3 (section 3.3.7.1.1).

5.2.3 Determining the effect of pro-inflammatory cytokines on EAAT1 protein 
expression using Western blotting
RA FLS (patient 7, passage 7) cultured in 6-well plates (see section 2.5.2) were 
treated with 50ng/ml IL-6 in combination with 20ng/ml sIL-6r, with or without the 
IL-6 function blocking antibody, Mab227 (2pg/ml, R& D Systems). Treatments were 
replicated in three to five wells (3<n<5). Cells were treated for 0, 1 and 3 hours. The 
media was removed and the protein extract subjected to SDS PAGE and Western 
blotting (section 2.7). The total protein in each extract was measured (section 5.2.3.2 
below) to ensure accurate, comparable quantification of EAAT1 levels between 
samples (section 5.2.3.3 below). Normal FLS were not analysed.

5.2.3.1 Cytotoxicity of the treatments used in the Western blotting experiment 
(section 5.2.3.3)
The amount of LDH released into the media over the course of treatments was 

measured using a cytotoxicity assay (section 2.12) and calculated as a percentage of 
the amount of LDH released after total cell lysis. Results showed that between 0.3 

and 2% of cells died during the course of treatments, therefore this would not 
significantly affect the levels of EAAT 1 measured by Western blotting.

5.2.3.2 BCA assay
In order to normalise the amount of protein extract loaded onto each SDS PAGE gel 
the amount of protein in each RA FLS extract was determined using a BCA assay 

(section 2.7.5). Protein content was determined prior to concentrating the samples 
using centricon tubes.

5.2.3.3 Quantifying regulation of EAAT1 protein expression by Western blotting
Western blotting was used to confirm and quantify the immunohistochemical 
observations. Prior to separation by SDS PAGE, cell protein extracts in 2% SDS
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were concentrated in centricon tubes. The concentration factor was taken into 
account when calculating the relative amounts of EAAT1 protein expressed. The 
amount of EAAT1 protein detected by Western blotting was normalised to the 
amount of total protein loaded on the SDS PAGE gel as measured by the BCA assay 
(see section 5.2.3.2). The relative amounts of EAAT1 per sample per total sample 
protein were therefore calculated and compared using a student unpaired 2-sample t 
test (section 2.13).

5.3 Results
5.3.1 The effect of IL-6 on EAAT1 mRNA expression in primary human FLS
RT-PCR (section 2.4) revealed the 345bp EAAT1 PCR product after 1 and 6 hours 
(figure 5.1 A) in IL-6/sIL-6r stimulated cells but only in the unstimulated cells after 24 
hours of culture. IL-1 failed to induce expression of EAAT1 mRNA and was 
therefore not investigated further in this study. Successful amplification of p-actin in 

all but 2 samples (figure 5. IB: unstimulated lane 6, IL-6 lane 3) confirmed cDNA 
integrity indicating induction of EAAT1 expression by IL-6 (figure 5.IB). Although 

p-actin was not detected in these two samples cDNA integrity was adequate for 

amplification of the EAAT1 amplicon in both cases. Positive (plasmid vector 
containing the full open reading frame of GLAST1 and P-actin) and negative controls 
(water) were also amplified to confirm specificity and a successful PCR reaction. 
RNA that had not undergone reverse transcription was also subjected to PCR. The 
lack of a PCR product confirmed that amplicons originated from mRNA as opposed 
to any contaminating genomic DNA.
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Figure 5.1
A: Agarose gel of EAAT1 RT-PCR products from human RA FLS stimulated with IL-1 
(lOng/ml) or IL-6 (50ng/ml)/lL-6sr (20ng/ml) for 0 to 24 hours. EAAT1 expression 
occurred in the unstimulated controls only after 24 hours but did not occur in the IL-1 
treated RA FLS at any time. EAAT1 mRNA expression was induced by IL-6/IL-6sr after 
1 and 6 hours, but was not present after 15 and 24 hours treatment.

B: P-actin RT-PCR products in human FLS stimulated with IL-1 or IL-6 and sIL-6r. p- 
actin expression was detected in all samples except the control after 24 hours and the one 
hour IL-6 stimulated sample both of which were positive for EAAT1.

A

EAAT1

B

P-actin

Key
1 -lOObp ladder
2 - 0  hours 
3 - 1 hour
4 - 6  hours
5 - 15  hours
6 - 2 4  hours
R -  RNA control 
+ - plasmid, GLAST or P-actin 
- - water control

ControlsUnstimulated
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5.3.2 Immunohistochemistry showing the effect of pro-inflammatory cytokines 
on EAAT1 protein expression in FLS
Fluorescence microscopy (figure 5.2) revealed that the low level EAAT1 protein 
expression in RA FLS appeared to increase after 30 minutes and 1 hour treatment 
with IL-6/sIL-6r in 100% of the cells (figure 5.2, panels B and C respectively). The 
IL-6 induced increase in EAAT1 expression was inhibited by Mab227 in 100% of the 
cells (figure 5.2, panel D), indicating that the effect is likely to be mediated via the 
sIL-6r since FLS do not normally express an IL-6 receptor. The IL-6 function 
inhibitor (Mab227) had no affect on RA or normal FLS when administered alone 
(figure 5.2F and 5.3F respectively).

TNFa also increased EAAT1 protein expression after 30 minutes treatment. It should 

be noted that the antibody used for immunolocalisation does not discriminate between 
GLAST (EAAT1) variants, however to date, the splice variant, GLASTla, has not 
been shown to be expressed in FLS. Control experiments to confirm specific binding 
of the antibodies were carried out and are detailed in section 3.2.2.1.

The localisation of EAAT1 protein in untreated RA FLS appeared to be uniformly 
distributed within the cytoplasm and/or plasma membrane. In EL-6 or TNFa 
stimulated RA FLS, EAAT1 appeared to concentrate around the nucleus of some 
cells (highlighted in figure 5.2, panels C and E) and in condensed areas of the 
cytoplasm or plasma membrane.

EAAT1 expression appeared to be much less in all normal FLS where the level of 
expression and localisation of EAAT1 appeared unaffected by treatment with IL-6, 
TNFa or Mab227 (figure 5.3, compare panels B to D to panel A). Therefore EAAT1 
expression in normal FLS is unresponsive to the pro-inflammatory cytokines TNFa 
and IL-6. These data indicate a decreased level of EAAT1 glutamate transporter 
expression in normal FLS and a difference in response of normal and RA FLS 
EAAT1 expression to IL-6 and TNFa treatment.
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Figure 5.2 Fluorescence microscopy images reveal that both IL-6 and TNFa increase 
EAAT1 expression in human RA FLS (patient 5, passage 7) and that the IL-6 effect is 
prevented by Mab227.

A. Control, 30 mins

C. IL-6+sr, 1 hour

EAAT1 expression 
in cytoplasm.

EAAT1 expression 
surrounding nucleus

B. IL-6+sr, 30 mins

■fli
D. IL-6+sri-Mab227,1 hour

E. TNFalpha, 30 mins F. Mab227, 30 mins

RA FLS were treated for up to 1 hour with TNFa or IL-6 and sIL-6r with or without the 
inhibitor of IL-6 signalling, Mab227. EAAT1 was detected by a FITC conjugated 
secondary antibody (green), propidium iodide was used to stain the nuclei (red). EAAT1 
expression detected by fluorescence microscopy showed that both proinflammatory 
cytokines increase EAAT1 expression (panels B, C and E) compared to no treatment 
(panel A). Mab227 inhibited the induction of EAAT1 expression by IL-6 (panel D) but 
had no effect when administered alone (panel F). Representative images are shown. 
(Measure bar = 100pm)
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Figure 5.3 Fluorescence microscopy images reveal that expression of EAAT1 in normal 
FLS (patient 4, passage 7) is not induced subsequent to treatment with IL-6 and TNFa as 
it is in RA FLS. Neither does Mab227 have an effect on EAAT1 expression by normal 
FLS.

A. Control, 30 mins B. IL-6+sr, 30 mins

D. IL-6+sr+Mab227, 1 hour

E. TNFalpha, 30 mins F. Mab227, 30 mins

Normal FLS were treated for up to 1 hour with TNFa or IL-6 and sIL-6r with or without 
the presence of the inhibitor of IL-6 signalling, Mab227. EAAT1 was detected by a 
FITC conjugated secondary antibody (green), propidium iodide was used to stain the 
nuclei (red). EAAT1 expression detected by fluorescence microscopy showed that 
neither pro-inflammatory cytokines alter patterns of EAAT1 expression (panels B, C and 
E) compared to no treatment (panel A). Mab227 had no effect on EAAT1 expression 
when administered with IL-6 (panel D) or alone (panel F). Representative images are 
shown. (Measure bar = 200pm)
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5.3.3 Confirmation of regulation of EAAT1 by IL-6 in RA FLS by Western 
blotting
Western blotting confirmed that EAAT1 expression quantitatively increased upon 
treatment with IL-6/sIL-6r (a representative gel is shown in figure 5.4a). As 
expected, no significant differences in EAAT1 protein expression were observed at 0 
hours. RA FLS significantly increased EAAT1 expression after 1 hour of IL-6/sIL-6r 
treatment compared to the untreated cells (p=0.004, figure 5.4b). In addition, after 1 
hour of EL-6 treatment, RA FLS expressed more EAAT1 compared to the IL-6 treated 
cells at 0 time (p=0.003, figure 5.4b). Treatment with Mab227 significantly reduced 
EAAT1 expression after 1 and 3 hours compared to treatment with IL-6 alone at each 
time point (p=0.000 and p=0.021 respectively) consistent with the 
immunohistochemistry data (figure 5.2). These data show, for the first time, that 
EAAT1 expression is upregulated by IL-6 interacting with its sIL-6r in human RA 
FLS. This indicates a novel control mechanism for the regulation of glutamatergic 
signalling in synovioyctes.

5.4 Discussion
This study has demonstrated that in RA FLS, the pro-inflammatory cytokine IL-6 can 
upregulate EAAT1 mRNA expression and has verified this effect by showing 
upregulation of EAAT1 protein levels by immunohistochemistry and Western 
blotting. Each experiment was carried out on FLS from different RA patients 
therefore, the novel effect of IL-6 inducing EAAT1 mRNA or protein expression in 
RA FLS has been observed in 3 patients (patients 1, 5 and 7).

EAAT1 mRNA expression was induced by 1 hour of treatment with IL-6 but after 15 
and 24 hours EAAT1 mRNA expression was no longer detected. This transient 
expression could be due to the FLS lowering the IL-6 levels through degradation or 
endocytosis of IL-6. I am not aware of any publications where the half life of IL-6, 
when used in FLS culture, is recorded. Hence, after 15 hours IL-6 may no longer be 
present in the culture media. In the control cells from this patient (no treatment) 

EAAT1 mRNA was only detected after 24 hours of culture, which may be due to 
culture conditions. This indicates that constitutive EAAT1 mRNA expression varies 
in RA FLS from different patients because results presented in chapter 3 (section 
3.2.1.7 and Figure 3.6, panel A) demonstrate constitutive expression of EAAT1 in
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Figure 5.4 IL-6 induces EAAT1 protein expression in human RA FLS (patient 7, passage 
7).
a. Western blot of protein extracts from human RA FLS. The 69kDa monomer of 

EAAT1 is indicated by an arrow, higher molecular weight primary specific bands in 
the rat brain extract represent multimeric forms of GLAST proteins. The 54.4kDa 
EAATla (GLAST-la equivalent) variant was not detected in these cells.

b. The relative amount of EAAT1 as a fraction of total protein added to each lane shows 
that EAAT1 protein expression increased significantly after lhr treatment with IL-6/ 
IL-6sr and was significantly reduced by Mab 227 compared to treatment with IL-6 at 
all times. Significant differences are compared to the untreated control at each time 
point unless otherwise stated by brackets (unpaired 2-sample t-test, *p<0.05, 
**:p<0.005, SEM error bars, n=3, n=6 for IL-6 only treated cells).
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Figure 5.5 Mab227 inhibits IL-6 induced EAAT1 protein expression in human RA FLS 
(patient 7, passage 7).
Western blot of protein extracts from human RA FLS. The 69kDa monomer of EAAT1 is 
indicated by an arrow, higher molecular weight primary specific bands in the rat brain 
extract represent multimeric forms of GLAST proteins. The 54.4kDa EAATla (GLAST- 
la equivalent) variant was not detected in these cells.
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RA FLS from patient 2. Further cases would need to be investigated to confirm this. 
Constitutive expression of EAAT1 mRNA may depend on medication taken by the 
patient, disease state or the levels of glutamate in the synovial fluid that the FLS were 
derived from; however this information for these patients is unknown. Previous 
studies have shown that the glutamate concentration in RA synovial fluid ranges from
4-608pM (McNeamey et al. 2000). The effect of IL-6 on EAAT1 mRNA may be 
mediated via levels of extracellular glutamate since GLAST 1 (EAAT1) expression in 
human platelets increases in response to extracellular glutamate (Begni et al. 2005). 
It is possible that inflammatory signals such as IL-6 may increase glutamate release 
and activate glutamate uptake in FLS from some RA patients. If an RA patient has 
high synovial fluid levels of glutamate and hence high cell-surface expression of 
EAAT1, the induction of EAAT1 by IL-6 may be reduced.

Immunohistochemical studies have shown that after 1 hour IL-6 causes an increase in 
EAAT1 protein expression as well as mRNA. The IL-6 induced increase in EAAT1 
protein expression after 1 hour was inhibited by Mab227. The IL-6 receptor function 
blocking antibody (Mab227) had no effect on RA or normal FLS EAAT1 expression 
when administered alone. Thus, abrogation of the increase in EAAT1 expression by 
IL-6 observed upon treatment with IL-6 and Mab227 is due to Mab227 blocking the 
interaction of the cytokine with its receptor and preventing interaction with gpl30. 
These data indicate that binding of IL-6 to sIL-6r and the complex to gpl30 leads to 
an increase in transcription of EAAT1 and thus is likely to increase glutamate 
transport in FLS. The pathway or mechanism through which this regulation occurs 
needs to be determined (see section 9.3). For example, IL-6 can activate 
phosphatidylinositol 3 kinase (Chung et al. 2000) and this in turn has been shown to 
regulate EAAT1 expression (Boehmer et al. 2003, reviewed in Kim et al. 2003). IL-6 
can also activate the JAK/STAT pathway (see section 1.4.1.3.1.1) and the EAAT1 
promoter contains GC-box motifs that have the potential for binding STAT 
transcription factors (Kim et al. 2003). Alternatively, IL-6 may increase EAAT1 
expression indirectly by inducing glutamate release. This may increase EAAT1 
expression and also lead to a positive feedback mechanism to up-regulate IL-6 
production (data in chapter 4 shows that extracellular glutamate up-regulates FLS 
production of IL-6 in some RA patients). If IL-6 alters extracellular glutamate levels, 
this could lead to increased EAAT1 expression via activation of NMD A receptors as
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has been demonstrated in primary co-cultures of astrocytes and neurons (Schlag et al. 
1998). Results of the studies in chapter 3 demonstrate that both RA and normal FLS 
expressed the NMDA-NR1 subunit of NMD A receptors (section 3.2.1.7).

Immunohistochemistry also demonstrated that TNFa increases EAAT1 protein levels 
in RA FLS. TNFa is a pro-inflammatory cytokine also elevated in RA synovial fluid. 
This effect of TNFa conflicts with the study by Liao et al. who demonstrated that 
TNFa causes a decrease in glutamate uptake activity in astrocytes although it is 
unclear which EAAT subtype the effect is caused by (Liao et al.2001). Studies in 
chapter 3 have shown that RA FLS express EAAT1 and EAAT3 (section 3.3.7) 
therefore TNFa may also alter EAAT3 expression in RA FLS.

TNFa is a well known inducer of IL-6 in FLS (Piecyk and Anderson 2001, Harigai et 
al. 1991). Therefore, the effect of TNFa on EAAT1 protein expression could also be 
brought about directly by TNFa increasing IL-6 levels which in turn induce EAAT1 
expression. Alternatively TNFa could be acting on EAAT1 expression directly. 
TNFa increases Na+-dependent glutamate uptake by monocyte derived macrophages 
(Rimaniol et al. 2000). Therefore several mechanisms of EAAT1 regulation by 
inflammatory cytokines have been postulated:
i) IL-6 via intracellular signalling pathways directly increases EAAT1 expression,

ii) IL-6 increases extracellular glutamate which in turn increases EAAT1 expression,
iii) TNFa via intracellular signalling pathways directly increases EAAT1 expression,
iv) TNFa increases IL-6 production which (via i or ii above) increases EAAT1 
expression.

Further work is necessary to determine the exact mechanism. Treating FLS with 
TNFa, with or without Mab227 and measuring EAAT1 protein expression would 
determine whether TNFa is mediating its effects via IL-6. If FLS took longer to 
respond to TNFa with an increase in EAAT1 expression, this would indicate TNFa 
was acting via IL-6. Specifically inhibiting and activating the signalling pathways 
that TNFa and IL-6 activate would determine the exact signalling mechanism that 
increases EAAT1 expression by these cytokines.
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Differences in localisation of EAAT1 protein expression were observed between 
treatments in RA FLS. In untreated RA FLS EAAT1 appeared to be equally 
distributed within the cytoplasm; however stimulation with TNFa or IL-6 caused 
concentrated pools of EAAT1 to be observed in the cytoplasm and around the 
nucleus. Whilst, the exact location of expression may only be fully determined using 
confocal microscopy, it is possible that cytoplasmic pools of EAAT1 are present. 
This is consistent with the storage and trafficking of transporters observed in 
astrocytes (Duan et al. 1999). The method used in this study only observes the cells 
from above and therefore expression in the cytoplasm and plasma membrane cannot 
be differentiated.

Immunohistochemistry also indicated that EAAT1 protein expression by normal FLS 
is unresponsive to both IL-6 and TNFa whereas RA FLS were responsive to IL-6. 
This indicates a potential difference in the way extracellular glutamate levels are 
regulated in FLS in the RA diseased state. The IL-6 induced EAAT1 expression may 
be a response to lower the observed increase in extracellular glutamate in RA 

synovial fluid. In fact it has previously been reported that RA and normal FLS 
express different proteins in response to TNFa (Ando et al. 2003).

Differences in constitutive expression of EAAT1 protein were noted between RA and 
normal FLS. RA FLS appeared to express higher levels of EAAT1 protein than 
normal FLS thus this may in response to the elevated glutamate levels in RA synovial 
fluid (McNeamey et al. 2000). However, the method used for comparison of 
constitutive expression of EAAT1 protein between normal and RA FLS is not 
quantitative because staining of the cells was carried out at different times. In order 
to make a conclusive comparison both normal and RA FLS should have been 
cultured, treated and immunostained concurrently. It should be noted that exposure 
times and microscope settings were standardised in this study.

Western blotting confirmed the immunohistochemical data in that IL-6 quantitatively 

increased EAAT1 protein expression by RA FLS after 1 hour by 33%. This increase 
in EAAT1 protein expression was significantly inhibited by Mab227 thus correlating 
with the immunohistochemical data and indicating that the response is mediated via 
the IL-6 receptor and gpl30. Whilst immunohistochemistry indicated that this
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response apparently did not occur in normal cells, this was not tested by Western 
blotting.

IL-6 may therefore be decreasing the high levels of extracellular glutamate observed 
in the synovial fluid of RA patients through increasing expression of GLAST-1. The 
effect of this reduced glutamate on the phenotype of the cells of the synovial joint 
however is unknown although data presented in chapters 4 and 6 indicate that pro- 
MMP2, TIMPs and IL-6 levels are influenced by changes in extracellular glutamate.

If glutamate is acting on RA FLS through glutamate receptors (NMDA-NR1 or KA1) 
in an anti-inflammatory way then EL-6 would be blocking this interaction by causing 
an increase in EAAT1 expression and thus decreasing extracellular glutamate levels. 
This however, is assuming that the increase in EAAT1 expression is causing more 
glutamate to be taken up into the RA FLS. High levels of extracellular glutamate are 
excitotoxic to neurons, however data presented in chapter 4 shows that up to 2mM 
glutamate is not toxic to FLS (see section 4.3.1). GLAST 1 does not just transport 
glutamate into the cell; the direction of transport depends on many factors such as pH 
and the ion gradients of Na+, K+ and H+ (Danbolt 2001). Therefore the IL-6-induced 
expression of EAAT1 may elevate extracellular glutamate levels further if glutamate 
transport were reversed and thus may increase glutamate receptor activation in RA 
FLS (NMDA and KA receptors, see section 3.2.1.7).

GLAST 1 has also been shown to act as a receptor and activate the MEK/ERK 
pathway (Abe and Saito 2001). This receptor function of EAAT1 may therefore 
affect gene expression within RA FLS. Use of specific inhibition of the glutamate 
transporter/receptor or activation of the MEK/ERK pathway are therefore required to 
predict the effect that increased EAAT1 expression by IL-6 is having on FLS 
phenotype. Needless to say regulation of EAAT1 expression would be affecting the 
way glutamate interacts with the receptors that are expressed by RA FLS (chapter 3, 
NMDA and KA receptors).

Finally it would be interesting to see whether IL-6 affects expression of the other 
glutamate transporters expressed in normal and RA FLS (EAAT2 and EAAT3)
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because each transporter has different properties and up-regulation of one transporter 
may be compensated by down-regulation of another.

To conclude, data presented in this chapter demonstrate that EAAT1 mRNA and 
protein expression increases in response to IL-6 and EAAT1 protein increases in 
response to TNFa. These effects are likely to be of significance because these 
cytokines play a major role in RA pathogenesis.
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Chapter 6 The effect of glutamate on the degradative phenotype of fibroblast-like 

synoviocytes

6.1 Introduction

Having demonstrated that glutamate alters the pro-inflammatory phenotype of fibroblast- 

like synovioyctes (FLS) (see chapter 4) the effect of glutamate on the degradative 

phenotype of FLS was investigated. The primary cause of cartilage and bone destruction 

in arthritis is the enhanced expression and activation of proteases that degrade the 

collagenous and proteoglycan component of the ECM. In RA, FLS produce 

metalloproteinases (see section 1.5.1.3) which degrade the ECM, facilitate invasion of 

pannus and therefore contribute to joint destruction. MMPs are likely to be the most 

important matrix degrading enzymes in RA (Vincenti and Brinckerhoff 2002).

The levels of MMPs 2 and 9 are elevated in the synovial fluid of RA patients and 

contribute to the bone and cartilage destruction that accompanies this disease (Yoshihara 

et al. 2000). In addition to MMPs, TIMP1 and TIMP2 levels are also elevated in RA 

synovial fluid compared to OA synovial fluid (Klimiuk et al. 2002). TIMPs are the 

natural inhibitors of MMPs (see section 1.5.2) and form a 1:1 complex with MMPs to 

inhibit them. If an imbalance of MMPs and TIMPs occurs such that MMP levels exceed 

TIMP levels, the cartilage and bone starts to degrade (Tchetverikov et al 2004).

Links between glutamate and MMP and TIMP production and regulation are discussed in 

section 1.6.5.6. Since MMPs and TIMPs are increased in RA, mediate important 

processes in the disease pathology (degradation, cytokine activation) and are regulated by 

glutamate receptor activation in other cell types this study investigated the effect of 

glutamate on MMPs 2 and 9 and TIMPs and the role of ionotropic glutamate receptors 

and EAATs in regulation of MMPs 2 and 9 and TIMP production in normal and RA FLS.
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6.2 Methods

6.2.1 Cell culture treatments

Media from the treated RA and normal FLS detailed in chapter 4 were used in this MMP 

and TIMP release study (see 4.2.1, 4.2.2 and 4.2.3). Briefly, FLS were treated with a 

range of glutamate concentrations (50pM-2000|iM) to determine the effect of 

extracellular glutamate on MMPs 2 and 9 and TIMP production (release into the media). 

The glutamate transporter inhibitors, /PDC (lOOpM) and TBOA (IOOjiM) were used to 

investigate the effect of blocking glutamate transport on MMP and TIMP production by 

FLS. In addition the effects of the glutamate receptor antagonists, MK801 (lOOpM, non­

competitive NMDA receptor antagonist), D-AP5 (lOpM competitive NMDA receptor 

antagonist), CFM2 (10pM, non-competitive AMP A receptor antagonist) and NBQX 

(150|iM, competitive AMP A and KA receptor antagonist) on MMP and TIMP release 

were investigated. It should be noted that none of these treatments were toxic to the FLS 

(see section 4.3.1) and concentrations used were based on published data (see section

4.2.2 and 4.2.3). Levels of pro and active MMPs 2 and 9 in the media from treated cells 

were determined by gelatin zymography (section 2.9.1, see figure 6.4 for representative 

gel). TIMP levels were measured by reverse zymography (section 2.9.2, see figure 6.5 

for representative gel). Quantification of MMP and TIMP levels was achieved by 

comparison to a standard (conditioned media, section 2.9.3) loaded on each gel. A 

maximum of 10 samples were loaded on each gel. Treatments were repeated on replicate 

cultures between 3 and 6 times, statistical comparisons were carried out as described in 

section 2.13.

Levels of MMPs could be compared between patients by accounting for the relative 

amounts of sample media loaded onto each gel.

6.3 Results

It should be noted that in all treatments pro-MMP9, active MMP9 and active MMP2 were 

expressed at such low levels by FLS that they could not be quantified by gelatin 

zymography. In addition, only TIMP1 and TIMP2 were observed to be expressed.
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Figure 6.1 The effect of glutamate on pro-MMP2 levels produced by RA FLS
Glutamate had different effects on pro-MMP2 levels produced by RA FLS taken from 
different patients. (*:p<0.05, **:p<0.005, n=6, n=3 for 60pM samples, SEM error bars).

Patient 3: RA, Female, aged 62, passage 5

50 60 150 550 1050 2050
|jM glutamate

A: Treatment of RA FLS (patient 3, 
passage 5) with 2050pM glutamate 
caused an increase in pro-MMP2 
production. A significant decrease in 
pro-MMP2 production was observed 
between 60pM and 550pM glutamate 
(2-sample t-test, p=0.016).

Patient 3: RA, Female, aged 62, passage 7

as 0.8

» 0.6

50 60 150 550 1050 2050
pM glutamate

B: Treatment of RA FLS (patient 3, 
passage 7) with 2050pM glutamate 
caused a decrease in pro-MMP2 
production compared to the control 
(50pM, paired t-test, p=0.022). 
However an increase was observed 
between 60pM and 150pM glutamate 
(paired t-test, p=0.042). A significant 
decrease in pro-MMP2 occurred 
between 150pM and 550pM glutamate 
(paired t-test, p=0.043).

Patient 2: RA, Female, aged 56, passage 6

0.2
0.175
0.15

0.125
0.1

0.075
0.05

I  0.025 
■o

51 60 150 1050

pM glutamate

C: Treatment of RA FLS (patient 2, 
passage 6) with up to 1050pM revealed 
that glutamate had no significant 
effects on pro-MMP2 release.
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Patient 8: RA, Male, aged 55, passage 6
2.5 n

50 150 550 1050 2050
pM glutamate

D: Treatment of RA FLS (patient 8, 
passage 6) with up to 2050pM revealed 
that glutamate had no significant 
effects on pro-MMP2 release.
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Figure 6.2 The effect of glutamate on pro-MMP2 levels produced by normal FLS
Pro-MMP2 production by normal FLS from patient 4 demonstrated minimal response to 
extracellular glutamate at passage 6 and 7 (figure A and B respectively). Increasing 
extracellular glutamate caused an increase in pro-MMP2 production at passage 6 
(*:p<0.05).

Patient 4: Normal, Female, aged 64, 
passage 6

50 60 150 550 1050 2050
pM glutamate

A: Treatment of RA FLS
(patient 4, passage 6) with 
550pM glutamate caused an 
increase in pro-MMP2 
production compared to 
treatment with 60pM glutamate 
(paired t-test, p=0.018, n=6). No 
other effects were observed.

Patient 4: Normal, Female, aged 64, 
passage 7

50 150 550 1050 2050
pM glutamate

B: Treatment of RA FLS 
(patient 4, passage 7) with up to 
2050pM glutamate had no 
significant effects on pro-MMP2 
production.
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6.3.1 The effect of glutamate on MMP and TEMP release by fibroblast-like 

synoviocytes

Glutamate concentration had varying effects on pro-MMP2 release in RA synoviocytes 

(figure 6.1). On patients 2 and 8 glutamate had no significant effect on pro-MMP2 

release (figure 6.1 c and d). However glutamate influenced the release of pro-MMP2 by 

cells from patient 3, but had different effects on cells from different passages. At passage 

5, 205OpM glutamate caused a significant increase in pro-MMP2 production by RA FLS 

when compared to all other glutamate concentrations (figure 6.1a). However, at passage 

7 these RA cells significantly decrease pro-MMP2 production at 2050pM glutamate 

(figure 6.1b).

Higher glutamate concentrations (550pM) in normal FLS caused an increase in pro- 

MMP2 production at passage 6 (figure 6.2a) but had no effect at passage 7 (figure 6.2b).

Since MMP levels were normalised to the same standard on all zymograms, variations in 

the constitutive levels (at 50pM glutamate) of pro-MMP2 could be compared across 

patients. The pro-MMP2 produced by RA FLS from patient 3 was more than 20 times 

lower than the levels produced by RA FLS from patient 8. Furthermore, levels of pro- 

MMP2 were higher in normal FLS (2.5-7 relative densitometric units) compared to RA 

FLS (0.08-2 relative densitometric units).

TIMP1 and TIMP2 were detected by reverse zymography in both RA and normal 

synoviocytes. However, no effect of extracellular glutamate concentration was observed 

on TIMP levels (data not shown).
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Figure 6.3 The effect of glutamate transporter inhibitors on pro-MMP2 production
by RA FLS.

15 hours treatment with glutamate transporter inhibitors (/PDC or TBOA) significantly 
increased pro-MMP2 production by RA FLS from patient 2 and 3 (figures A and B 
respectively) (*p<0.05, **:p<0.005, n=6, n=3 for 60pM samples, SEM error bars).

Patient 2: RA, Female, aged 56, passage 6

O 0.5 □  Control

□  tPDC 

TBOA

® 0.4
2  0.3

50 51 60 150 1050

pM glutamate

A: Treatment of RA FLS (patient 
2, passage 6) with TBOA caused 
an increase in pro-MMP2 
production at all glutamate 
concentrations compared to the 
control (no TBOA). /PDC 
increased pro-MMP2 production 
only in the presence of 60pM 
(p=0.002) and 1050pM glutamate 
(p=0.001). This data set was 
transformed (logio) prior to 
statistical analysis with a 2-sample 
t-test.

Patient 3: RA, Female, aged 62, passage 5

2  0.4

□control 
■ TBOA

50 60 150 550 1050 2050
pM glutamate

B: Treatment of RA FLS (patient 
3, passage 5) with TBOA caused 
an increase in pro-MMP2 
production at all glutamate 
concentrations except 60pM and 
2050pM compared to the control 
(no TBOA). (paired t-test)
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Figure 6.4 Representative zymograms showing that glutamate transporter 
antagonists increase production of pro-MMP2 by RA FLS from patient 2.

Pro
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Active-
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Key:
1 -50pM glutamate
2-5 lpM glutamate
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4-150pM glutamate
5-1050pM glutamate
6-50pM glutamate, /PDC
7-5 lpM glutamate, fPDC
8-60pM glutamate, tPDC
9-150pM glutamate, /PDC

10-1050pM glutamate, /PDC 
11 -50pM glutamate, TBOA
12-51pM glutamate, TBOA
13-60pM glutamte, TBOA
14-150pM glutamte, TBOA
15-1050jiM glutamate, TBOA
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6.3.2 The effect of inhibiting glutamate transporters on the release of pro-MMP2 

and TIMPs by FLS

The effect of blocking EAATs 1 to 5 glutamate transporters on MMP release was also 

determined. EAAT inhibitors did not induce pro-MMP9 nor active MMP2 and MMP9. 

Significantly elevated pro-MMP2 levels were observed in the presence of the glutamate 

transporter inhibitors fPDC and TBOA in RA synoviocytes at all glutamate 

concentrations in patient 2 RA FLS (figure 6.3 a, representative zymogram is shown in 

figure 6.4) and at 50, 150, 550 and 1050pM by RA FLS from patient 3 (figure 6.3b). At 

all glutamate concentrations the non-transportable inhibitor of EAATs 1-5, TBOA, had a 

greater effect than the transportable inhibitor of EAATs 1-4 t?DC. fPDC increased pro- 

MMP2 production only in the presence of 60pM (p=0.002) and 1050pM glutamate 

(p=0.001). These trends were observed in RAFLS from 2 patients. Glutamate 

transporter inhibition had no effect on normal FLS (data not shown) which constitutively 

expressed much higher levels of pro-MMP2.

The effect of EAATs 1 to 5 glutamate transporter inhibitors on TIMP release by human 

FLS was explored (representative reverse zymogram is shown in figure 6.5). TIMP1 and 

TIMP2 release was significantly increased in the presence of TBOA at all glutamate 

concentrations (figure 6.6a and b respectively). tPDC caused an increase in TIMP1 and 

TIMP2 only in RA FLS cultured in 60pM -  1050pM glutamate. Normal synoviocytes 

released both TIMP1 and 2 but glutamate transporter inhibitors had no effect on levels of 

expression (data not shown).

6.3.3 The effect of ionotropic glutamate receptor antagonists on the release of pro- 

MMP2 and TIMPs by FLS

To determine whether the effect of glutamate transporter inhibitors on pro-MMP2 release 

reflected increased activation of ionotropic NMDA receptors due to a decrease in 

glutamate uptake, FLS cultures were treated with dAP-5 (competitive NMDA receptor 

inhibitor) and MK801 (non-competitive NMDA receptor inhibitor) at various glutamate 

concentrations for 15 hours. At all glutamate concentrations, except 150pM, MK801 

significantly increased pro-MMP2 production (figure 6.7a). The competitive inhibitor,
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dAP-5 had no significant effect on pro-MMP2 release by RA synoviocytes at any 

glutamate concentration.

MK801 and dAP-5 had no effect on pro-MMP2 release by normal synoviocytes (figure 

6.7b). Furthermore, the AMPA/KA receptor inhibitors, CFM2 and NBQX had no effect 

on pro-MMP2 release by RA FLS (data not shown, this was not tested in normal FLS). 

TIMP1 and TIMP2 release by RA synoviocytes did not change at any glutamate 

concentration when treated with inhibitors of the ionotropic receptors (MK801, d-AP-5, 

NBQX or CFM2, see figures 6.8 and 6.9 for representative zymograms). This was not 

tested in normal FLS.

6.4 Discussion

Cytokines and growth factors regulate the expression of MMPs in many cell types and it 

has previously been shown that cytokine induced increases in expression of MMPs may 

lead to cartilage degradation (Imai et al. 1997, Gilbert et al. 2002, 2004). The levels of 

MMPs 2 and 9 are elevated in the synovial fluid of RA patients (Yoshihara 2000) and 

contribute to cartilage degradation that accompanies RA. However, the active MMP2 

and pro and active MMP9 levels produced by the FLS in this study were too low to 

quantify. This concurs with previous studies showing that RA FLS secrete more MMP2 

than MMP9, and very little active gelatinases (Smolian et al. 2001). Furthermore, only 

pro-MMP2 and not active MMP2 has been detected in RA synovial fluid (Giannelli et al. 

2004). In order to determine whether the FLS used in this study were expressing these 

latent and active MMPs and TIMPs, a more sensitive method of detection such as ELISA 

could be used, or samples should be concentrated.

156



Chapter 6

Figure 6 i  Representative reverse zymograms showing that glutamate transporter 
antagonists increase production of TIMP1 and T1MP2 by RA FLS from patient 2.
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Figure 6.6: The effect of glutamate transporter inhibitors on TIMP 1 and 2 
production by RA FLS
Glutamate transporters increase TIMP1 (panel a) and TIMP2 (panel b) production by RA 
FLS from patient 2 at all glutamate concentrations (*:p<0.05, SEM error bars).
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Figure 6.7 The effect of NMDA glutamate receptor inhibitors on pro-MMP2 
production by RA and normal FLS

a. The non-competitive NMDA receptor antagonist MK801 (black bars) caused a 
significant increase in proMMP2 production at all glutamate concentrations except 
150pM. d-AP5 (grey bars) had no effect on pro-MMP2 release by RA FLS from patient 3 
(*:p<0.05, **p<0.005 n=6, SEM error bars).

P a t ie n t  3 :  R A , F e m a le ,  a g e d  6 2 ,  p a s s a g e  7
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■e 
S
f  0.6 
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□ DAP5 

■ MK801

150 550
pM  g l u t a m a t e

b. Inhibition of NMDA receptors with MK801 and DAP5 does not influence pro MMP2 
release by normal FLS from patient 4 (n=6, SEM error bars).

P a t ie n t  4 :  N o r m a l ,  F e m a le ,  a g e d  6 4 ,  p a s s a g e  7

□  control

MK801
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Figure 6.8 Representative reverse zymograms showing that glutamate receptor 
antagonists (D-AP5 and MK801) have no effect on the production of TIMP1 and 
TIMP2 by RA FLS from patient 3.
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Figure 6.9 Representative reverse zymograms showing that glutamate receptor 
antagonists (CFM2 and NBQX) have no effect on the production of TIMP1 and TIMP2 
by RA FLS from patient 8.
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Constitutive levels of pro-MMP2 were higher in normal FLS (2.5-7 relative densitometric 

units) compared to RA FLS levels (0.075-2 relative densitometric units). This was 

surprising because levels of pro-MMP2 have been shown to be elevated in RA synovial 

fluid compared to OA synovial fluid (Yoshihara 2000) however no comparisons to 

normal synovial fluid could be found in the literature. TIMP1 and TIMP2 were 

expressed by RA FLS. TIMP3 expression was not observed in any FLS, however 

previous studies have shown TIMP3 to be expressed by RA FLS (Jeong et al. 2004).

The responses of normal and RA FLS to extracellular glutamate with regard to pro- 

MMP2 production varied between patients and passage. The normal FLS were much less 

responsive to glutamate than RA FLS; only 550pM (when compared to 60pM glutamate) 

glutamate increased pro-MMP2 production by normal FLS at passage 6 and no effects 

were observed at passage 7. Other studies have demonstrated that MMP levels produced 

by normal FLS are less responsive to cytokines compared to MMP production by RA 

FLS (Cheon et al. 2002) demonstrating that the two cell types respond differently. The 

difference in pro-MMP2 production between RA and normal FLS suggests that RA FLS 

have a heightened sensitivity to the elevated glutamate found in the synovial fluid of RA 

patients.

The effect of glutamate on pro-MMP2 release by RA synoviocytes was variable between 

patients and cells at different passages from the same patient. FLS from 2 RA patients 

did not respond to extracellular glutamate at all. The variability observed between RA 

patients was also observed with regard to IL-6 production (see chapter 4) and may be due 

to a number of reasons. For example age, sex and treatments that the patients were 

receiving may all affect how the FLS respond to glutamate. Alternatively, because RA 

FLS are exposed to higher levels of glutamate in vivo, constitutive expression of 

glutamate receptors and transporters may be increased, therefore increasing these cells 

responsiveness to glutamate. These experiments therefore need to be repeated on FLS 

from more patients in order for any firm conclusions to be drawn.
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At passage 5 increased extracellular glutamate caused an increase in pro-MMP2 

production by FLS from patient 3, however at passage 7, higher concentrations of 

extracellular glutamate caused a significant decrease in pro-MMP2 release. This is an 

unusual anomaly and could be because at passage 7 the FLS were starting to lose their 

phenotype, however previous studies have shown that this does not normally occur until 

passage 8 (Williams, A. S., personal communication). Alternatively, RA FLS may be 

regulating extracellular glutamate levels themselves by release or uptake mechanisms, in 

which case as extracellular glutamate is regulated, in turn; levels of pro-MMP2 are being 

regulated. It should be noted that a literature search yielded no evidence of previous 

studies looking at the effect of human FLS passage number on MMP production.

This study demonstrated that inhibiting the activity of glutamate transporters affects pro- 

MMP2 and TIMP release by RA and normal FLS. The presence of glutamate transporter 

inhibitors significantly increased pro-MMP2 (patient 2), TIMP1 and TIMP2 expression at 

all glutamate concentrations. The non-transportable EAAT inhibitor, TBOA had a more 

significant effect on pro-MMP2 and TIMP production than the transportable inhibitor, 

tPDC (patient 2). tPDC is a transportable inhibitor of EAATs 1-4 and has previously 

been shown to be a less potent glutamate transport inhibitor than the non-transportable 

inhibitor, TBOA, in astrocytes and neurons (Waagepetersen et al. 2001). Alternatively, 

these differences in effects may be due to the inhibition of EAAT ion channel activity by 

TBOA (Arriza et al. 1997). The effect of glutamate transporter antagonists on pro- 

MMP2 was also observed in RA FLS from patient 3; TBOA caused an increase in pro- 

MMP2 release at 4 out of the 6 glutamate concentrations tested. Since more pro-MMP2 

is being produced in the presence of glutamate transporter inhibitors, it may be concluded 

that high levels of extracellular glutamate induce the production of pro-MMP2 in RAFLS 

by increased activation of glutamate receptors. However this was not consistent with the 

experiments discussed above (section 6.3.1) indicating that increased glutamate does not 

consistently increase pro-MMP2 release. Alternatively, this could be explained by the 

fact that TBOA inhibits the receptor function of glutamate transporters; the transporters 

may be acting as glutamate-gated ion channels or as receptors; it has been demonstrated 

previously that glutamate can activate the MEK/ERK pathway in astrocytes via glutamate
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transporters (Abe and Saito 2001). Therefore TBOA could be inhibiting the receptor 

function of the transporters to increase proMMP2 levels as is the action of MK801 on 

NMDA receptors.

Normal FLS were less responsive than RA FLS to glutamate transporter antagonists. 

EAAT inhibition caused an increase in RA FLS production of pro-MMP2 but had no 

effect on normal FLS pro-MMP2 production. This therefore highlights a difference 

between the response of RA and normal FLS to the inhibition of glutamate transporter 

function. Differences between RA and normal FLS to transporter antagonists are 

discussed in chapter 4 because similar differences were also seen in IL-6 production (see 

section 4.3.3). The most likely conclusion is that since normal and RA FLS express 

different glutamate transporters and receptors (see section 3.3.7) they are likely to 

respond differently to glutamate and glutamate receptor and transporter inhibitors. In 

addition, since the levels of expression of receptors and transporters may also differ 

between RA and normal FLS and with treatment, a further level of complexity is 

introduced.

Glutamate transporter inhibition also affected TIMP production. TIMP1 and TIMP2 

levels were increased significantly by inhibition of glutamate transporters in RA FLS 

indicating a compensatory effect; compensating for the increase in pro-MMP2. The 

presence of EAAT inhibitors induced production of TIMP 1 and TIMP2 in the same way 

they had with pro-MMP2. TBOA had a greater effect than tPDC on TIMP1 and 2 

release, which was also observed with regard to pro-MMP2 release by FLS and reasons 

for this difference have already been discussed above. The increase in TIMPs observed 

in response to glutamate transporter antagonists may be seen as a compensatory response 

to the increase in pro-MMP2 or they may have another role. For example, the activation 

of pro-MMP2 by MMP 14 requires the presence of TIMP2 (Sommerville 2003) in which 

case increases in TIMP2 would be associated with increased degradation. However, 

expression of active MMP2 was not observed in this study. The relative binding 

affinities of the glutamate transporter antagonists used are discussed in chapter 4 (section

4.2.2).
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Extracellular TIMP-1 has been shown to protect neurons against cell death from high 

concentrations of glutamate (600pM) by blocking glutamate mediated calcium entry, 

which suggests an interaction of TIMP-1 with glutamate receptor function (Tan et al. 

2003). Tan et al. suggest that the neuroprotective effect of TIMP-1 only occurs when it is 

bound to MMPs because when neurons are incubated with TIMP-1 and a synthetic MMP 

inhibitor (MMPI) the neuroprotective effect is lost. How the effect of TIMP-1 on 

glutamate receptor calcium influx is mediated is unknown. So the induction of TIMP-1 

by high levels of extracellular glutamate observed in this study may serve to block 

glutamate receptors (thus preventing increases observed in pro-MMP2) or to inhibit 

MMPs directly.

The effects of ionotropic receptor antagonists had variable effects on pro-MMP2 

production by FLS. Treatment of RA FLS with NMDA receptor antagonists (MK801) 

caused an increase in pro-MMP2 production at all glutamate concentrations except 

150pM. This suggests that the elevated glutamate in RA synovial fluid may activate 

NMDA receptors to down-regulate matrix metalloproteinase production. No effect of 

NMDA receptor antagonists on pro-MMP2 production by normal FLS was observed thus 

further highlighting differences between RA and normal FLS in how they can respond to 

glutamate. DAP5 had no effect on pro-MMP2 production by RA and normal FLS. DAP5 

is a competitive inhibitor and therefore may not have been used at a high enough 

concentration. As discussed in chapter 4, it is difficult to determine the correct 

concentration of competitive inhibitors. Variable factors affecting inhibitors include 

number of receptors and transporters expressed, receptor subunit expression, Mg2+ 

concentration, receptor and transporter trafficking, the number of receptors needed to be 

activated to evoke a response in a cell and the binding affinity of the antagonist.

AMPA/KA receptor inhibition had no effect on pro-MMP2 production by RA and normal 

FLS indicating that these receptors are not important in the regulation of pro-MMP2 

production. This concurs with published studies showing that KA induced seizures has

165



Chapter 6

no effect on MMP2 expression in rat brain sections (Szklarczyk et al. 2002) and that KA 

does not increase expression of MMP2 by rat neurons (Jourquin et al. 2003).

No effect was observed on TIMP expression by RA FLS. Evidence of neurotransmitter 

control of TIMPs has been observed in the CNS. TIMP-1 is upregulated in rat neurons 

after kainate-induced seizures indicating that kainate receptors may regulate TIMP-1 

expression (Tan et al. 2003). This is not consistent with the data presented here, 

therefore, in FLS a different pathway is likely to regulate the TIMP expression observed 

upon inhibition of glutamate transporters. Either the glutamate transporters are directly 

influencing TIMP production or the metabotropic receptors may be mediating this 

response. To determine which pathway is involved requires further experiments. For 

example using TBOA (to prevent glutamate uptake) in conjunction with receptor 

antagonists to determine which receptors may affect TIMP production.

This study has used MMPs 2 and 9 as markers of a catabolic response to glutamate. 

However, as discussed in section 1.5.1.3.1, many other MMPs are involved in the 

pathology of RA. It would be interesting to see if glutamate and glutamate signalling has 

effects on other MMPs. These could be measured using ELIS As. Alternatively, MMP 1, 

8 and 13 (the collagenases), levels of which are elevated in RA (Shaw 2000), can be 

measured using a collagen degradation assay (Cawston and Barrett 1979).

The data presented here clearly indicate that glutamate and antagonists of glutamate 

transporters and receptors influence pro-MMP2, TIMP1 and TIMP2 release by RA and 

normal synoviocytes. Evidence presented here indicates that elevated glutamate may 

induce a catabolic response in FLS. Furthermore, it has been demonstrated that RA and 

normal FLS respond differently to glutamate and glutamate receptor and transporter 

antagonists thus demonstrating different glutamate signalling mechanisms occur in the 

diseased state. MMPs and TIMPs play a large role in RA (as discussed in sections

1.5.1.3.1 and 1.5.2). The effect of glutamate on MMP and TIMP activity in FLS clearly 

warrants further investigation given the potential importance of these enzymes in pannus 

formation and synovial joint degradation in RA.
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Chapter 7 The effect of glutamate and glutamate receptor activation on

intracellular calcium responses in FLS

7.1 Introduction

The studies presented thus far have shown that FLS express glutamate transporters and 

receptors (chapter 3) and that stimulation of FLS with glutamate or glutamate receptor 

and transporter inhibitors can alter FLS phenotype (chapters 4 and 6). The RT-PCR 

studies in chapter 3 demonstrate that RA FLS express both NMDA and kainate receptor 

subunit mRNA. Moreover, the data in chapters 4 and 6 demonstrate that production of 

IL-6, pro-MMP2 and TIMPs by FLS were responsive to inhibition of ionotropic 

glutamate receptors with the non-competitive NMDA receptor inhibitor MK801 and the 

AMPA/kainate receptor inhibitor NBQX. Therefore the mechanisms by which glutamate 

may effect these phenotypic changes were explored.

Section 1.6.2.1 in chapter 1 gives an overview of the different types of glutamate 

receptors and the signalling pathways they activate. The work described in this chapter 

focuses on the NMDA and kainate ionotropic receptors since inhibitors of these receptors 

altered FLS phenotype (chapters 4 and 6). The binding of glutamate to NMDA receptors 

causes the receptor pore to become permeable to Ca2+ as well as Na+ and K+. Magnesium 

ions can block NMDA receptor ion channel pores and inhibit calcium ion flow. Kainate 

receptors are also ionotropic receptors and stimulate calcium influx into cells either 

directly through the kainate receptor channel, or indirectly via voltage-gated calcium 

channels.

There is some evidence from CNS studies linking glutamatergic signalling to pathways 

that may be important in RA pathology (section 1.6.5). For example, in neurons NMDA 

receptor activation induces nitric oxide production (Okada et al. 2004) and inhibition of 

nitric oxide synthase can prevent glutamate-induced neurotoxicity (Montoliu et al. 2001). 

Since nitric oxide plays a pivotal role in the inflammatory process of RA (see section 

1.4.1.3) activation of glutamate receptors in FLS may lead to similar responses. 

Furthermore, the transcription factor NFkB is known to induce pro-inflammatory
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cytokine expression in RA FLS (Barnes et al. 1997, Libermann et al. 1990) and is 

activated by kainate in rat striatum (Cruise et al. 2000), and NMDA receptor activation in 

osteoblasts (Merle et al. 2003). To determine whether NMDA and kainate receptors 

expressed by RA FLS are functional, the effect of kainate and NMDA on intracellular 

Ca2+ ([Ca2+]i) levels was explored. Since IL-6 levels are also increased in RA synovial 

fluid (Desgeorges et al. 1997) and this cytokine is known to influence glutamate 

signalling in the CNS (Peng et al. 2005), the effect of IL-6 on glutamate-mediated [Ca2+]i 

increases was also investigated.

7.2 Methods

Confluent RA FLS (from patient 6 and patient 9) in petri dishes (cultured as in section

2.5.2) were incubated for 60-90 minutes at 37°C with the fluorescent indicator of Ca2+, 

fluo-4 AM (5pM). Background activity (the number of fluorescent cells displaying 

calcium signals) was measured before stimulation with approximately 50pM thimerosal, 

500pM glutamate, 200pM TBOA, 500pM NMDA or 500pM kainate (see section 2.10). 

These concentrations of glutamate, NMDA and kainate were chosen because the largest 

changes in IL-6 and pro-MMP2 were observed at 500jaM glutamate and the average 

concentration of glutamate in RA synovial fluid is 326pM. The fluorescence intensity 

was analysed using laser scanning confocal fluorescence imaging (section 2.10.1). 

Fluorescence values over time for all responsive cells were exported into Excel 

(Microsoft) for further analysis and AF% plot production. AF% is the change in 

fluorescence and was calculated by dividing the fluorescence change by the basal 

fluorescence and multiplying by 100 for each cell (Parri and Crunelli 2003). Basal 

fluorescence was taken as fluorescence intensity immediately prior to the addition of 

stimulant. These data were plotted as AF% against time. The mean time RA FLS took to 

respond to stimulants and the mean time to recover to basal [Ca2+]j levels is presented 

(+/-SEM), however the time taken to return to basal levels could not be presented for all 

data because measurements were not taken for long enough. To ensure that Ca2+ 

responses were not due to mechanical stimulation through pipetting of the test stimulants, 

buffer alone was added to the RA FLS. No changes in fluorescence were observed upon
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addition of buffer alone therefore all responses are due to specific stimulation of the 

applied agonist and not the result of mechanical stimulation.

RA FLS cultured from patient 6 (see section 2.5.2) were also pre-treated with IL-6 

(50ng/ml) and sIL-6r (20ng/ml) prior to glutamate or NMDA stimulation to see if this 

affected calcium responses via these receptors. IL-6 (50ng/ml) and IL-6sr (20 ng/ml) 

were added to the culture media and incubated at 37°C for approximately 6 hours prior to 

stimulation with 500pM glutamate or 500pM NMDA using the method described above.

The number of cells observed in each experiment varied from 14 to 33 allowing statistical 

comparisons on numbers of responding cells using the chi square test (see figure 7.7). 

Due to the constraints of the chi square test only data sets with all frequencies (number of 

cells) greater than 5 could be analysed. In some cases enough cells responded (n>2) to 

allow variation in AF%, time to peak [Ca2+]i and recovery to basal [Ca2+]i to be assessed 

(presented as mean +/- SEM).

7.3 Results: The effect of glutamate and glutamate receptor and transporter

agonists and antagonists on [Ca2+]i responses in RA FLS

7.3.1 The effect of Thimerosal, an activator of IP3 on [Ca2+]t release by RA FLS

Thimerosal is an [Ca2+]i mobiliser (Elferink 1999) and was used to confirm that the Fluo- 

4 dye was successfully loaded in the RA FLS cells (patient 6, passage 5) and could 

respond to increases in [Ca2+]i. 28% of these RA FLS responded to Thimerosal (figure 

7.1). The biggest increase in fluorescence induced by Thimerosal in an FLS was 332% 

(FLS 8, figure 7.IB). Figure 7.1C shows in detail the AF% in FLS1 to 7 after removal of 

the FLS8 plot to allow an increase in the scale of the y axis. All increases in [Ca2+]i 

occurred after addition of Thimerosal therefore responses were unlikely to be due to 

spontaneous [Ca2+]i release. This data therefore confirms that RA FLS were successfully 

loaded with fluo-4 and that the [Ca2+]i changes could be measured using the described 

methods.
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Figure 7.1 The intracellular calcium response of RA FLS (patient 6, passage 5) upon 
treatment with Thimerosal.
Eight of the 29 cells (28%) in the field of vision (figure A) responded upon stimulation 
with Thimerosal (approximately lOfiM). Changes in fluorescence versus time from RA 
FLS demonstrating that Thimerosal causes [Ca2+]j release are shown in figure B (cells 1 
to 8) and figure C (cells 1 to 7). Thimerosal addition occurred at time 0.
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7.3.2 The effect of glutamate on [Ca2+]j release by RA FLS

Glutamate caused an increase in [Ca2+]i in RA FLS from patient 6 and 9 in 24% and 22% 

of cells respectively (Figures 7.2 and 7.3). Graphs showing changes in fluorescence over 

time of cells from patients 6 and 9 show that increases in [Ca ]i occur (average of 32 

and 108 seconds respectively) after stimulation with 500pM glutamate. The coordination 

in responses indicates that they were not due to spontaneous Ca release (figures 7.2C 

and 7.3B). It took an average of 77 seconds after stimulation with glutamate for [Ca2+]j 

in RA FLS from patient 6 to return to basal levels. Pre-treatment of RA FLS (patient 6, 

passage 5) with IL-6 (50ng/ml) and sIL-6r (20ng/ml) caused less cells to respond (13%) 

to 500pM glutamate (figure 7.4). Only 2 of the 15 cells visualised that had been pre­

treated with IL-6 responded to glutamate. Furthermore, one of these responses (FLS 2, 

figure 7.4B) occurred over 2.5 minutes after stimulation with 500pM glutamate after 

recordings had been terminated and therefore full analysis could not be carried out on this 

cell. The AF% of FLS 1 (figure 7.4A) pre-treated with IL-6 reached a maximum point of 

95% upon stimulation with glutamate (within the time measurements were taken), 

whereas the largest AF% of IL-6-untreated RA FLS was 235% (FLS 1, figure 7.3).

7.3.3 The effect of TBOA on [Ca2+]i release by RA FLS

The effect of TBOA on release of [Ca2+]i was investigated to see if RA FLS 

constitutively released enough glutamate to activate glutamate receptors on the cells 

surface and thus increase [Ca2+]j. The presence of TBOA would be expected to block 

glutamate uptake and may activate glutamate receptors if glutamate was being released 

by RA FLS over the time of recording. Over the course of approx. 300 seconds 200pM 

TBOA did not induce release of [Ca2+]i of RA FLS; 0% of cells responded (data not 

shown, approximately 20 cells visualised in field of view).
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Figure 7.2 The intracellular calcium response of RA FLS (patient 6, passage 5) upon 
treatment with 500pM glutamate.
Figure A shows still images of FLS1 at different time points after stimulation with 
500pM glutamate. Five out of the 21 cells (24%) in the field of vision (figure B) 
responded to treatment with 500pM glutamate. Changes in fluorescence over time from 
the active FLS show that 500pM glutamate causes [Ca2+]i release (figure C). Glutamate 
addition occurred at time zero in figure C.
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Figure 7.3 The intracellular calcium response of RA FLS (patient 9, passage 7) upon 
treatment with 500pM glutamate.
Five out of the 23 cells (22%) in the field o f vision (figure A) responded to treatment 
with 500pM glutamate. Changes in fluorescence over time from the active FLS show 
that 500pM glutamate causes [Ca2+]i release (figure B). Glutamate addition occurred at 
time zero in figure B.
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Figure 7.4 The intracellular calcium response of RA FLS (patient 6, passage 5) 
pretreated with IL-6 (50ng/ml) and IL-6sr (20ng/ml) upon treatment with 500pM 
glutamate.
Two out of the 15 cells (13%) in the field of vision (figure A) responded to treatment 
with 500pM glutamate. The change in fluorescence over time in figure C demonstrates 
that FLS 1 responded within seconds after stimulation, however FLS 2 responded 
approximately two minutes after recordings had been terminated. Glutamate addition 
occurred at time zero in figure C. Figure B shows a still image of FLS2 approximately 
three minutes after stimulation with 500pM glutamate.
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7.3.4 The effect of NMDA on [Ca2+]i release by RA FLS

To determine which receptors were mediating [Ca2+]i changes in response to glutamate, 

the effect of the specific agonist of NMDA receptors, NMDA was tested. NMDA caused 

an increase in [Ca2+]i in RA FLS from patient 6 (15% of cells responded an average of 57 

seconds after stimulation) (figure 7.5). Changes in fluorescence over time of cells from 

patients 6 show that increases in [Ca2+]i occur after stimulation with 500jjM  NMDA and 

therefore were not due to spontaneous Ca2+ release (figures 7.5B). Figure 7.5C 

demonstrates the visible change in fluorescence over time following stimulation with 

NMDA. An increase in the number of RA FLS responding to NMDA occurred in the 

absence of Mg2+ (a mean of 57% of cells responded with a mean of 25 seconds after 

stimulation) (figure 7.6) consistent with the inhibitory effect of Mg2+ on NMDA receptor 

ion channels. This increase was found to be significant using the chi square test (figure

1.1 A). A  larger AF% occurred in cells stimulated with NMDA in the absence of Mg2+ 

(mean of 50% compared to 38% in the presence of Mg2+). The number of cells 

responding to NMDA and glutamate was also compared using the chi square test (figure 

7.7B). This revealed that no significant difference was observed in the number of cells 

increasing [Ca2+]i between treatment with glutamate and NMDA in RA FLS from patient 

6 (passage 5).

Fewer RA FLS pre-treated with IL-6 (50ng/ml) and IL-6sr (20ng/ml) (figure 7.8) 

responded to NMDA (9%) compared to RA FLS that had not been pre-treated with IL-6 

(15%). Cells pre-treated with IL-6 took longer to respond (156 seconds compared to 57 

seconds in un-treated cells). IL-6 pre-treated and NMDA-stimulated RA FLS 

demonstrated a greater AF% (mean of 171%) compared to RA FLS not pre-treated (mean 

of 38%).
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Figure 7.5 The calcium response of RA FLS (patient 6, passage 5) upon treatm ent 
with 500pM NMDA.
Five out of the 33 cells (15%) in the field of vision (figure A) responded to treatment 
with 500pM NMDA. Changes in fluorescenc over time from the active FLS show that 
500jjM  NMDA causes [Ca2+]i release (figure B). NMDA addition occurred at zero time 
in figure B. Figure C shows still images of FLS 1 at different time points after stimulation 
with 500pM NMDA.
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Figure 7.7 Chi square analyses

A. x2 analysis to show whether absence of Mg2+ significantly increases NMDA 
receptor activation.

Stimulant: NMDA NMDA - Mg2+ Total
No. cells responding 
observed

5 8 13

No. cells responding 
observed

28 6 34

Total 33 14 47
No. cells responding 
expected

9.13 3.87

No. cells not 
responding expected

23.87 10.13

Chi square total: 8.67
Degrees of freedom: 1
Critical chi square value (p<0.05): 3.841

Therefore significantly more RA FLS respond to NMDA without Mg2+ present by 
increasing [Ca2+]i than to when Mg2+ is present

B. x2 analysis to show whether glutamate and NMDA significantly activate different 
numbers of cells.

Stimulant: NMDA Glutamate Total
No. cells responding 
observed

5 5 10

No. cells responding 
observed

28 16 44

Total 33 21 54
No. cells responding 
expected

6.1 3.9

No. cells not 
responding expected

26.9 17.1

Chi square total: 0.62
Degrees of freedom: 1
Critical chi square value (p<0.05): 3.841

Therefore there is no significant difference between the number of RA FLS responding to 
glutamate by increasing [Ca2+]i than to NMDA.
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Figure 7.8 The intracellular calcium response of IL-6-treated RA FLS upon 
treatment with 500pM NMDA.
Two out of the 22 RA FLS (patient 6, passage 5) cells (9%) in the field of vision (figure 
A) responded to treatment with 500pM NMDA. Changes in fluorescence over time from 
the two active RA FLS show that 500pM NMDA causes [Ca2+]j release (figure B). 
NMDA addition occurred at time zero in figure B.
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7.3.5 The effect of kainate on [Ca2+]i release by RA FLS

Kainate caused an increase in [Ca2+]i in RA FLS (patient 9, passage 7) in 15% of the cells 

observed (figures 7.9). Changes in fluorescence over time of the cells show that 

increases in [Ca2+]i occur after stimulation with 500pM kainate and therefore were not 

due to spontaneous Ca2+ release (figures 7.9B). The average time to peak [Ca2+]i was 

114s, with a maximum average AF% of 92 (figure 7.9).

7.4 Discussion

The data presented here demonstrates that RA FLS can be stimulated by glutamate to 

increase [Ca2+]j. This confirms that RA FLS are responsive to glutamate and highlights 

possible pathways, by which RA FLS change their phenotype in response to the increases 

in extracellular glutamate levels observed in RA synovial fluid. Increases in [Ca2+]i in 

RA FLS were observed in response to 500jiM glutamate (in RA FLS from 2 patients), 

500pM NMDA and 500pM kainate thus demonstrating that NMDA, AMPA and kainate 

ionotropic glutamate receptors are active in RA FLS.

IL-6 pre-treatment decreased the number of cells responding to glutamate and NMDA, 

however it did not appear to affect the intensity of the [Ca2+]i increase because the largest 

AF% occurred in IL-6 pre-treated RA FLS stimulated with NMDA. This was only shown 

in one cell therefore numbers would need to be increased in order to see variability in this 

response. The effect of IL-6 in decreasing the number of responsive cells may be due to 

IL-6 causing increased expression of EAAT 1, as observed in RA FLS (chapter 4). This 

would increase glutamate uptake by the cells, reducing glutamate available for activation 

of glutamate receptors. To deduce how IL-6 is effecting its action by increasing EAAT1 

expression experiments should be repeated in the presence of EAAT inhibitors or with 

inhibitors of IL-6 signalling pathways (see section 9.3). Alternatively, IL-6 may be 

decreasing glutamate receptor expression or translocation to the cell surface. In fact, the 

effect of IL-6 on glutamate induced increases in [Ca2+]i in neurons has recently been 

published by Peng et al 2005. They used an anti-gpl30 blocking monoclonal antibody 

to inhibit IL-6 activity and measured the changes of [Ca2+]i overload evoked by glutamate 

in cerebellar granule neurons (Peng et al. 2005). 5-10ng/ml of IL-6 had a neuroprotective
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effect (decreased apoptosis) upon stimulation with lOpM glutamate. In addition, 

glutamate caused an increase in [Ca2+]i levels in the IL-6-pre-treated neurons but they 

returned to basal levels faster than neurons not pre-treated with IL-6 (Peng et al. 2005). 

The anti-gpl30 monoclonal antibody blocked this effect. They therefore suggest that IL- 

6 inhibits the glutamate induced [Ca2+]i overload via the gp-130 pathway, however a 

mechanism is not described. Results from RA FLS are consistent with this study.

NMDA and kainate both stimulated increases in [Ca2+]i in RA FLS thus concurring with 

the expression studies in chapter 3 demonstrating expression of NMDA NR1 and KA1 

subunits. Kainate can activate both AMPA and kainate receptors therefore the [Ca2+]i 

response may be brought about by activation of either receptor type. Studies in chapter 3 

demonstrated that AMPAGluR2 and AMPAGluR3 were not present in normal or RA 

FLS, therefore the increase in [Ca2+]i is more likely to have been brought about by 

kainate receptor activation. Further experiments need to be carried out, either stimulating 

FLS with AMPA or inhibiting AMPA receptors whilst stimulating with kainate and 

observing any evoked changes in [Ca2"*’]i.

NMDA is a specific agonist for NMDA receptors therefore the increase in [Ca2+]i it 

evoked clearly indicates the presence of functional NMDA receptors in RA FLS. The 

buffer in which the [Ca ]i measurements were made did not contain glycine and NMDA 

receptors require glycine as a co-agonist (Kleckner and Dingledine 1988), however the 

DMEM used for culturing the FLS contained 250pM glycine. Mg2+ ions are known to 

block the NMDA ion channel (Egebjerg et al. 2002). The fact that the absence of Mg2+ 

ions significantly increased the number of FLS responding to NMDA supports the 

assumption that activation of NMDA receptors increases [Ca2+]i. No significant 

difference was observed between cells stimulated with glutamate and NMDA, this 

indicates that in patient 6, it is the NMDA receptors that predominantly respond to 

glutamate with an increase in [Ca2+];. The effect of kainate on [Ca2+]j was only tested in 

patient 9, therefore it is unclear whether kainate would also activate increases in [Ca2+]i in 

RA FLS from patient 6.
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Figure 7.9 The intracellular calcium response of RA FLS (patient 9, passage 7) upon 
treatment with 500pM Kainate
Three out of the 20 cells (15%) in the field o f vision (figure A) responded to treatment 
with 500pM kainate. Changes in fluorescence over time from three active FLS show that 
500pM kainate causes [Ca2+]i release (figure B). Kainate addition occurred at time zero 
in figure B. The three peaks highlighted in figure B (*) were caused by floating 
fluorescent debris moving across the optical field of the microscope.
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It should be noted that unless stated, the experiments measuring [Ca2+]i were only carried 

out once therefore to conclude fully from these results repetitions are necessary. 

However the fact that spontaneous increases in [Ca2+]i did not occur in RA FLS and that 

more than one cell responded upon stimulation strongly indicates that the stimulant 

effects are real. The experiments described in this chapter should also be repeated in the 

presence of the appropriate glutamate receptor antagonists to confirm that the observed 

[Ca2+]i increases were brought about by specific activation of NMDA and kainate 

receptors. For example FLS should be stimulated with NMDA alone and the evoked 

[Ca2+]i changes compared in the presence of a non-competitive NMDA receptor inhibitor 

such as MK801.

The evoked [Ca ]i increases observed are a possible mechanism for RA FLS to regulate 

IL-6, pro-MMP2 and TIMP levels in response to extracellular glutamate. The increase in 

[Ca2+]i may also be involved in intercellular signalling. D’Andrea et al. demonstrated 

that intercellular calcium signalling occurs between chondrocytes and FLS in co-culture 

following mechanical stimulation via gap junctions. They hypothesise that this 

intercellular communication may be involved in pannus formation (D’Andrea et al. 

1998). Some evidence of intercellular transmission of [Ca2+]i waves was observed 

between FLS1 and FLS5 (figure 7.2) since the increase in [Ca2+]i occurs in FLS1 prior to 

the adjacent FLS5 following stimulation with 500pM glutamate. This can be seen 

graphically in figure 7.2C. The increases in [Ca2+]i brought about by glutamate receptor 

activation may therefore allow communication between FLS and chondrocytes.

Increased [Ca2+]i in FLS has been shown to induce expression of VC AMI and Cox2 

(Chen et al. 2002). VCAM1 is involved in adhesion of the invasive pannus cells to 

cartilage in RA. Cox2 is involved in prostaglandin synthesis (see section 1.4.1.2). 

Protease production has also previously been associated with increases in [Ca ];; 

stimulation of bovine FLS with a calcium ionophore increased production of a 144kDa 

gelatinase (Howarth et al. 1993). Hence NMDA or kainate receptor-mediated increases
9+in [Ca ]i could potentially be involved in many important pathological effects of RA 

FLS.
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To conclude, this preliminary study into the effects of glutamate receptor agonists on 

changes in [Ca2+]i in RA FLS has demonstrated that NMDA and kainate receptors are 

functional and the activity of these receptors may be modulated by the presence of IL-6. 

This therefore represents a possible mechanism for RA FLS to alter their phenotype in 

response to the elevated glutamate concentrations observed in RA synovial fluid.
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Chapter 8 Glutamate transport in RA FLS

8.1 Introduction

Human RA FLS have been shown to express the glutamate transporters EAAT1 and 

EAAT3 (chapter 3). Furthermore, stimulation of FLS with glutamate or glutamate 

transporter antagonists can alter FLS phenotype (chapters 4 and 6). The ability of 

fibroblasts to take up glutamate has been recognised since 1983 when skin-derived 

human fibroblasts were shown to transport glutamate (Dall’Asta et al. 1983). More 

recently Cooper et al. demonstrated expression of EAAT1 and 2 in cultured human 

embryonic skin fibroblasts (Cooper et al. 1998), however glutamate transport has not 

been investigated in synovial fibroblasts.

This chapter explores whether these transporters are functional in RA FLS by measuring 

their ability to take up glutamate. To date, glutamate uptake in RA FLS has not been 

investigated however it has been explored in fibroblasts derived from human adult skin, 

peripheral nerve tissue, embryonic muscle and embryonic skin (Dall’Asta et al. 1982, 

Cooper et al. 1998, Balcar et al. 1994, Zoia et al. 2005). Human skin fibroblasts also 

express glutamate transporters: EAAT1, 2, 3 and 4 (Cooper et al. 1998). Glutamate 

uptake in fibroblast cell types (see section 1.6.4.3) was shown to occur via a Na+- 

dependent mechanism (Balcar et al. 1994) although Dall’Asta demonstrated that uptake 

by RA FLS occurred by more than one mechanism (high affinity Na+-dependent, low 

affinity Na+-dependent and Na+-independent, see section 1.6.3). Therefore uptake by RA 

FLS may not be by the Na+-dependent transporters already demonstrated to be expressed 

(EAAT1 and EAAT3). However it is clear that specific inhibitors of these transporters 

(tPDC and TBOA) modify FLS phenotype.

Glutamate uptake in RA FLS has been investigated because the ability to uptake 

glutamate would demonstrate a mechanism for regulation of extracellular glutamate 

levels that may be of significance to the elevated glutamate levels observed in RA 

synovial fluid. The effect of IL-6 on glutamate uptake has been studied because IL-6 has 

been shown to affect EAAT1 mRNA and protein expression (chapter 3). In addition IL-6
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has been shown to affect glutamate signalling mechanisms in other cell types (see section 

1.6.4). The effect of the EAAT transporter inhibitor fPDC (previously used in chapters 4 

and 6) was also investigated to explore whether glutamate uptake was occurring via the 

EAATs.

8.2 Methods

8.2.114C-labelled glutamate uptake assay

To assess glutamate transporter function in RA FLS, a 14C-labelled glutamate uptake 

assay was designed based on previously published methods in human fibroblasts 

(Dall’Asta et al. 1982, Balcar et a l 1994). To optimize glutamate uptake assays for FLS, 

a preliminary experiment was set up where uptake of 50pM 14C-labelled glutamate was 

measured in confluent FLS after 0, 5, 10, 20 and 30 minutes (1 well per time point). 

Uptake of 14C-labelled glutamate was detected by scintillation counting of washed and 

lysed cells (section 2.11) after 10 minutes incubation. Optimal detection levels were 

obtained after 30 minutes (see figure 8.1). Therefore initially 14C-labelled glutamate 

uptake experiments were measured over 30 minutes (detailed methods are in section 

2.11.1).

As well as measuring glutamate uptake, the amount of glutamate binding to RA FLS was 

also investigated. This was done by measuring glutamate bound at zero time (adding 

14C-labelled glutamate and immediately aspirating = bound glutamate) and comparing 

this to total glutamate uptake (= bound glutamate and glutamate taken up). Glutamate 

uptake was calculated in two ways: i) subtracting the amount of glutamate bound to RA 

FLS after 0 time from uptake after 30 minutes, or ii) where bound glutamate was not 

subtracted (section 2.11.4). Data is presented with and without the bound glutamate 

being taken into account as subtraction of initially bound glutamate is not standard 

procedure in previously published methods. Bound glutamate measurement data (figure 

8.2) was logarithmically transformed prior to statistical analysis (see section 2.13).
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Figure 8.1 Data from the preliminary experiment carried out to determine how long 

uptake of radioactive glutamate should be measured for.

RA FLS were incubated with 50pM C14-labelled glutamate for a range of time durations 

(1 well per time point). Increases in glutamate uptake were observed after 10 minutes.
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Time (minutes)

20 30
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Figure 8.2 The amount of 14C-labelled glutamate bound to RA FLS after 0 time 

Glutamate bound to RA FLS was determined by adding 14C-labelled glutamate to RA 

FLS and immediately removing it and washing the cells with ice cold PBS. The amount 

of glutamate bound to the RA FLS increased with glutamate concentration. Data was 

logarithmically transformed prior to paired t-test analysis (SEM error bars, n=3).
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The amount of glutamate taken up was determined by scintillation counting (section 

2.11.1). Statistical comparisons were made using a paired student t test after testing for 

normality and equal variance (Minitab).

8.2.1.1 The effect of pre-incubation of RA FLS with IL-6 on glutamate uptake

To investigate whether the cytokine, IL-6, affects glutamate uptake, confluent RA FLS 

(patient 7, passage 7) in 8-well chamber slides (see section 2.5.2 for cell culture methods) 

were pretreated with IL-6 (50ng/ml) and sIL-6r (20ng/ml) for 3 hours at 37°C prior to 

14C-labelled glutamate uptake assays at 5jiM and 300pM glutamate to represent levels in 

normal and RA synovial fluid (3 wells per concentration). Wells where media was 

replaced in absence if IL-6/sIL-6r, served as controls

RA FLS were incubated with 14C-labelled glutamate for 30 minutes at room temperature 

(section 2.11).

8.2.1.2 14C-labelled glutamate uptake by RA FLS and the effect of fPDC

As /PDC is a transportable competitive inhibitor of EAATs 1 to 4 (non-transportable to 

EAAT5) it was used to investigate whether uptake of glutamate by RA FLS is mediated 

via these transporters. A range of 14C-labelled glutamate concentrations were added to 

confluent RA FLS (patient 7, passage 7) in 8-well chamber slides (see section 2.5.2 for 

cell culture methods). Duplicate cultures were treated with IOOjiM *PDC when the Re­

labelled glutamate was added (3 wells per treatment). Glutamate uptake by RA FLS was 

measured as before (section 8.3.1.1).

8.3 Results

8.3.1 Initial bound glutamate

The amount of glutamate bound, measured by adding 14C-labelled glutamate and 

aspirating immediately, increased as the concentration of glutamate added to the RA FLS 

culture media increased (Figure 8.2). However glutamate binding was not significantly 

increased between 300pM and 500pM glutamate indicating that saturation of glutamate 

binding sites may be occurring.
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8.3.2 Glutamate uptake by RA FLS

Glutamate uptake by RA FLS (patient 7, passage 7) after 30 minutes (figure 8.3A) was 

greater than the amount of glutamate ‘bound’ to the RA FLS at 0 time (figure 8.2). The 

amount of glutamate taken up increased as the concentration of extracellular glutamate 

increased (figure 8.3 A and B). This demonstrates that RA FLS have the ability to take 

up glutamate. However as the initial concentration of glutamate increased, the 

percentage of total glutamate uptake significantly decreased (figure 8.3C) indicating that 

RA FLS have a limited number of transporters or a limit to the amount of glutamate that 

these cells can take up over 30 minutes or different transport systems operating at 

different concentrations.

When bound glutamate was accounted for (figure 8.3A) a significant increase in 

glutamate uptake by RA FLS (patient 7, passage 7) was only observed between 5pM and 

50pM glutamate (p=0.004). When bound glutamate was not accounted for (figure 8.3B) 

a significant increase in glutamate uptake was observed at each increasing concentration 

increment.

8.3.3 The effect of IL-6 on 14C-labelled glutamate uptake by RA FLS

Pre-treatment of RA FLS (patient 7, passage 7) with IL-6 (50ng/ml) and sIL-6r (20ng/ml) 

for 3 hours significantly decreased uptake of 5pM glutamate compared to the control 

(p=0.03, figure 8.4).

8.3.4 The effect of the EAAT inhibitor fPDC on glutamate uptake

The non-transportable inhibitor of EAATs 1 to 4, fPDC, significantly increased glutamate 

uptake of 300pM glutamate (p=0.038) but decreased uptake of 500pM glutamate 

(p=0.047) (figure 8.5). Prior to paired t-test analysis, this data set had to be transformed 

(logio) in order for compared data sets to have equal variances.
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Figure 8.3 Glutamate uptake by RA FLS
All error bars show SEM.

A: The amount of glutamate taken up 
by RA FLS (patient 7, passage 7) after 
30 minutes as measured by a 14C- 
labelled glutamate uptake assay 
(glutamate initially bound at zero time 
has been subtracted). The amount of 
glutamate taken up increased as the 
concentration of extracellular glutamate 
increased. This demonstrates that RA 
FLS have the ability to uptake 
glutamate. (Paired t-test, n=3 wells, 
**:p<0.005).
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*:p<0.05, **:p<0.005).

C: The amount of glutamate taken up 
over 30 minutes as a percentage of the 
total amount of glutamate initially 
present as measured by a 14C-labelled 
glutamate uptake assay. The percentage 
of glutamate taken up by RA FLS 
significantly decreased as the initial 
glutamate concentration increased but 
reached saturation at 500pM glutmate 
(n=3 wells).
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Figure 8.4 The effect of IL-6 on 14C-labelled glutamate uptake by RA FLS
Pre-treatment o f RA FLS (patient 7, passage 7) with IL-6 significantly decreased uptake 

of 5pM glutamate (p=0.03) by RA FLS (patient 7, passage 7) compared to the control. 

IL-6 had no effect on the uptake of 300pM glutamate by RA FLS (SEM error bars, n=3 

wells, *:p<0.05).
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Figure 8.5 The effect of the non-transportable EAAT inhibitor, tPDC on R e­

labelled glutamate uptake

The effect of tVDC on glutamate uptake by RA FLS (patient 7, passage 7) after 30 

minutes as measured by a 14C-labelled glutamate uptake assay. The non-transportable 

inhibitor significantly increased uptake of 300pM glutamate (p=0.038) however ?PDC 

caused a decrease in uptake o f 500pM glutamate (p=0.047). (Data was transformed 

(logio) prior to analysis using a paired t-test, SEM error bars, n=3 wells, *:p<0.05).

(Ac
£  400 o

CO
=  350 a>
v_
2L

300

_  2500|  200

«  150 
Q.
3  100 
£
|  50
CO

1  0 o>

I

JL
□  control

□  tP D C

5 50 300 500

pM glutamate

194



Chapter 8

8.4 Discussion

The amount of glutamate binding to RA FLS and affecting measurement of glutamate 

uptake was investigated. It was assumed that binding of glutamate to cell surface 

receptors and transporters would occur immediately however it is not certain that more 

glutamate would bind to the cell surface throughout the 30 minutes allowed for glutamate 

uptake. This may occur if the presence of extracellular glutamate induced translocation 

of glutamate receptors and transporters to the cell surface. Binding increased as initial 

extracellular glutamate increased, however no significant increase was observed between 

binding of 300pM and 500pM glutamate. This therefore suggests that binding was 

approaching saturation point at 300pM glutamate, or no more binding could occur in the 

time the RA FLS were exposed to the glutamate (approximately 2 seconds). This 

therefore needs to be taken into consideration in light of the data presented in this 

chapter. Data presented in figure 8.3 demonstrated that initial bound glutamate had an 

effect on glutamate uptake, glutamate uptake increased at each glutamate concentration 

increment when bound glutamate was not accounted for (figure 8.3B). Therefore a 

percentage of the glutamate observed to be taken up by RA FLS in the experiments in 

this chapter may be due to glutamate binding instead. Alternatively the glutamate bound 

value also represents rapid glutamate uptake occurring in 2 seconds of exposure to Re­

labelled glutamate. All future experiments should therefore be repeated with duplicate 

cultures set up in which initial binding can be measured and subtracted from overall 

glutamate uptake.

Glutamate transport has been shown to be functional in RA FLS. Glutamate uptake by 

RA FLS increased as the initial amount of extracellular glutamate increased. The 

percentage of glutamate uptake significantly decreased as the initial amount of 

extracellular glutamate increased suggesting that the RA FLS were limited in the amount 

of glutamate they could uptake in 30 minutes. This could be due to limited expression or 

trafficking of glutamate transporters to the cell surface or removal of transporters from 

the cell surface membrane once a maximal intracellular glutamate concentration is 

reached. Cytotoxicity data revealed that 2mM extracellular glutamate is not toxic to RA 

FLS (chapter 4) and therefore there may not be an immediate requirement for these cells
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to take up glutamate. The fact that glutamate uptake is occurring though suggests that 

extracellular glutamate levels are regulated by RA FLS.

The type of glutamate uptake was investigated. Data in chapter 4 and 6 indicated that the 

EAATs were involved in regulation of IL-6 and pro-MMP2 therefore the effect of the 

EAAT specific inhibitor fPDC on glutamate transport was investigated. The effects of 

fPDC on glutamate uptake have not previously been explored in RA FLS. In skin- 

derived fibroblasts however, tPDC inhibits glutamate uptake (Cooper et al 1998). This 

study revealed interesting effects of tPDC on glutamate uptake by RA FLS. tPDC is an 

inhibitor of EAATs 1 to 5 and therefore would be expected to decrease glutamate uptake 

if it is mediated by these transporters. However, because tPDC is transportable, 

glutamate uptake still occurs. fPDC caused a decrease in the uptake of 500pM glutamate 

compared to the control (?PDC absent). This is consistent with EAAT1 and 3 

(demonstrated to be expressed by RA FLS in chapter 3) contributing to glutamate uptake. 

However, fPDC caused an increase in the uptake of 300pM glutamate. The presence of 

/PDC may cause a prolonged increase in local extracellular levels of glutamate by 

occupying transporters and increasing local extracellular glutamate concentrations. If 

this effect is large enough an increase in glutamate uptake may be observed through an 

increased expression of cell surface transporters. Increased levels of extracellular 

glutamate have been demonstrated to cause trafficking of GLAST to astrocyte cell 

surface (Duan et al. 1999). In addition, glutamate has been shown to induce up-regulation 

of glutamate transport by neurons via EAAT1 and EAAT2 (Munir et al 2000). The 

glutamate uptake assay experiments described in this chapter were run over 30 minutes. 

This is enough time for receptors and transporters to be trafficked to the cell membrane 

from internal stores (Davis et al 1998, Bernstein and Quick 1999, Lissin et a l  1999). An 

increase in uptake of glutamate by fPDC was only seen at 300pM glutamate which is 

close to the pathophysiological levels of glutamate found in RA synovial fluid (326jiM). 

It may be this specific concentration and not 500pM glutamate that increases receptor 

expression or translocation to the cell surface. Therefore /PDC only caused an increase 

in uptake of pathophysiological levels of glutamate. Other glutamate uptake mechanisms 

may be important in the presence of 300pM glutamate but transport via the EAATs may
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be important at 500pM glutamate. Alternatively, /PDC may be blocking uptake of 

glutamate and the presence of 300|iM glutamate (close to RA synovial fluid levels of 

326pM) may be optimal to cause an increase in receptor expression or translocation to 

the cell membrane. This in turn would cause an increase in the amount of glutamate 

binding to receptors which would be measured as uptake in this assay. Thus the observed 

increase in glutamate uptake is instead an increase in receptor or transporters available at 

the cell surface for glutamate binding.

Therefore to summarise, tPDC caused a decrease in the uptake of 500pM glutamate 

whereas an increase in uptake of glutamate by tPDC was seen at 300pM glutamate. This 

may be due to:

i) translocation of glutamate transporters to the cell surface at certain concentrations of 

glutamate,

ii) certain concentrations of glutamate activating other glutamate uptake mechanisms,

iii) an increase in glutamate binding caused by an increase in cell surface expression of 

receptors and transporters.

Glutamate bound was not accounted for in the assay exploring the effect of tPDC on 

glutamate uptake. This experiment should therefore be repeated and the amount of bound 

glutamate bound at zero time measured. Pre-incubation times with tPDC should also be 

increased to ensure transporters are blocked prior to addition of l4C-labelled glutamate.

All high affinity glutamate transporters, the EAATs, are Na+-dependent (reviewed in 

Danbolt 2001), therefore the role of Na+-dependent glutamate transporters could be 

investigated. This was done by carrying out the 14C-labelled glutamate uptake in Na+- 

ffee conditions; Na+-ffee conditions would prevent glutamate uptake via this type of 

glutamate transporter. However, no uptake was observed in this experiment (data not 

shown), therefore it should be repeated.

Pre-treatment with IL-6 altered the uptake of glutamate by RA FLS from patient 7; it 

decreased the uptake of 5jiM glutamate compared to the control but had no effect on 

uptake of 300jiM glutamate. This was unexpected due to the fact that IL-6 increases
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EAAT1 expression in RA FLS (patients 1, 5 and 7, chapter 5) and therefore would be 

expected to increase uptake. This may be due to the RA FLS being cultured in different 

vessels (8-well chamber slides as opposed to flasks). Alternatively, IL-6 may down- 

regulate the expression of other glutamate transporters; data in chapter 3 demonstrates 

that EAAT3 is also expressed by RA FLS or inhibit other glutamate transport 

mechanisms. In fact inhibition of glutamate uptake by cytokines has previously been 

reported. IL-lp and TNFa decrease glutamate uptake by astrocytes, an effect proposed 

not to be through alteration of transporter expression levels (Hu et a l 2000, Liao and 

Chen 2001). Therefore, IL-6 may increase expression of EAAT1 but still decrease the 

overall rate of glutamate uptake.

Further work is needed to determine precisely the type of glutamate uptake that has been 

observed in this study. The EAAT inhibitor tPDC altered glutamate uptake therefore 

indicating that glutamate uptake via EAATs does occur in RA FLS, the presence of Na+- 

independent uptake mechanisms in RA FLS should also be determined. In addition the 

effect of IL-6 on glutamate uptake should be explored in more patients, and the effect of 

inhibition of IL-6 signalling with Mab227 could also be investigated.

To conclude, RA FLS demonstrate glutamate uptake, which is altered by the 

inflammatory cytokine IL-6 and the EAAT inhibitor tPDC. Regulation of glutamate 

uptake in vitro appears to be very complicated and is likely to be affected by many other 

factors in vivo such as the type of glutamate transporters and receptors expressed on the 

RA FLS cell surface, concentration of extracellular glutamate, cytokines present in the 

synovial fluid and more broadly, the stage of RA development.
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Chapter 9 Discussion

9.1 Summary of experimental outcomes seen in FLS

This study has revealed fascinating and novel associations between glutamate and the 

pro-inflammatory and degradative proteins associated with RA. A summary of all the 

effects observed in all the FLS used in this study is reviewed in table 9.1. Although some 

experiments were only performed on one cell line, all were repeated between three and 

six times. Some correlations in experimental outcomes can be observed between patients 

and these will now be discussed. As is always the case when using human RA 

synoviocytes, the effects are not consistent across all patients (Bucala et al. 1991).

The most obvious trend is that FLS from the normal patient appeared much less 

responsive to glutamate than RA FLS. Glutamate had no effect on normal FLS 

production of IL-6, pro-MMP2 and TIMPs whereas, although variable, effects were seen 

in all RA FLS patients except patient 2. Furthermore, normal FLS responded differently 

to RA FLS when incubated with TBOA and MK801. TBOA increased IL-6 production 

in RA FLS but decreased it in normal FLS (chapter 4). MK801 increased pro-MMP2 

production by normal FLS but had no effect on pro-MMP2 production by RA FLS 

(chapter 6). These differences in response to glutamate and IL-6 could be due to the 

variable in vivo levels of glutamate and IL-6 (McNeamey et al. 2000, DesGeorges et al. 

1997) and different expression profiles of glutamate transporters and receptors observed 

between RA and normal FLS e.g. EAAT2, mGluR4 and KA1 (chapter 3). Since IL-6 and 

TNFa increased EAAT1 protein expression in RA but not in normal FLS (chapter 5), it is 

likely that the responsiveness of RA and normal FLS to pro-inflammatory cytokines also 

varied.

When comparing across RA patients, some RA FLS showed less of a typical RA 

phenotype (high levels of cytokines and degradative enzymes being expressed) than 

others. For example, RA FLS from patient 2 demonstrated constitutively low levels of 

pro-MMP2 and undetectable IL-6, compared to the high levels produced by RA FLS 

from patient 8. Other studies have shown high production of IL-6 by RA FLS in culture
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Table 9.1 A summary of experimental outcomes observed in FLS from the patients used
in this stuciy.

Patient
(number)

►VO
Cfl 65cn

WVOO

Effects observed in FLS from each patient n=

Normal
(4)

64 F 6 -No effect of glutamate on IL-6 production.
-Glutamate increased pro-MMP2 production.
-TBOA decreased IL-6 production.
- No effect of glutamate and TBOA on TIMP production.

6
6
6
4

7 -No effect of glutamate on IL-6 production.
-No effect of glutamate on pro-MMP2 production.
-MK801 increased IL-6 production.
-No effect of IL-6 and TNFa on EAAT1 protein expression 
(IHC).

6
6
6
1

RA (2) 56 F 5 -Used for mRNA expression studies in chapter 3. 1
6 -Constitutive levels of IL-6 too low to be detected.

-No effect of glutamate on pro-MMP2 production.
-fPDC and TBOA increased IL-6 production.
-/PDC and TBOA increased pro-MMP2 production.
-tPDC and TBOA increased TIMP1 and TIMP2 production.

6
6
6
6
4

RA (3) 62 F 5 -Glutamate increased IL-6 production. 
-Glutamate increased pro-MMP2 production. 
-TBOA increased IL-6 production.
-TBOA increased pro-MMP2 production.

6
6
6
6

7 -Variable effects of glutamate on IL-6 and pro-MMP2 
production.
-No effect of DAP5 and MK801 on IL-6 production. 
-MK801 increased pro-MMP2 production.
-No effects observed on TIMP production by glutamate, 
DAP5 or MK801.

6

6
6
4

RA (8) 55 M 6 -Glutamate caused a decrease in IL-6 production.
-No effect of glutamate on pro-MMP2 production. 
-NBQX decreased IL-6 production.
- No effect of glutamate, CFM2 and NBQX on TIMP 
production.

6
6
6
4

RA (1) ? ? ? - IL-6 increased expression of EAAT 1 mRNA 1
RA (5) 67 F 7 -IL-6 and TNFa increased expression of EAAT 1 protein 

(IHC).
2

RA (7) 43 F 7 -DL-6 increased expression of EAAT 1 protein (WB). 
-FLS able to take up glutamate (radioactive assay). 
-IL-6 caused decrease in glutamate uptake.
-Varying effects of fPDC on glutamate uptake.

4
6
3
3

RA (6) 64 F 5 -glutamate and NMDA caused increase in [Ca2+]i and pre­
treatment with IL-6 caused less cells to respond to 
glutamate and NMDA.

2

RA (9) 27 F 7 -Glutamate and KA caused increase in [Ca2+]i. 2

IHC: immunohistochemistry, WB: Western blotting
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(8-15ng/ml) (Hirth et a l 2001, Okamoto et al. 1997) and in RA synovial fluid IL-6 and 

MMP2 are both elevated (Desgeorges et a l 1997, Yoshihara et a l 2000). This suggests 

that patient 2 FLS were not demonstrating a typical RA phenotype. However, cells from 

this patient did reveal differences in glutamate receptor and transporter mRNA 

expression from normal FLS and showed some consistency with other RA patient FLS 

with respect to TBOA and tPDC effects on IL-6 and pro-MMP2. It may be the 

progression of RA disease or the treatments received by patient 2 which make these RA 

FLS different.

9.2 The role of glutamate in rheumatoid arthritis

9.2.1 IL-6

The effects of glutamate on pro-inflammatory cytokine production within the CNS are 

not well documented; however stimulation with glutamate is known to increase IL-6 

production in cultured astrocytes after 16 hours (Wu et a l 1997). In ischemic brain 

injury, which occurs during stroke, levels of glutamate and IL-6 correlate in patient’s 

plasma and cerebrospinal fluid (Vila et a l 2000), and in fact rat brains injected with 

NMDA (to simulate excitotoxic injury) have increased levels of TNFa and IL-ip mRNA 

(Szaflarski et a l 1995).

This study indicates that glutamate has the potential to play a major role in RA. 

Increased extracellular glutamate, either by addition of glutamate to the media (patient 3) 

or inhibiting glutamate transporters (patients 2 and 3), increased IL-6 production. This 

indicates that the elevated levels of glutamate in the synovial fluid of RA patients could 

be affecting one of the main mediators of RA pathogenesis. The role of IL-6 in the 

pathogenesis of RA is clear from current therapeutic strategies in clinical trials that 

reduce IL-6 activity (section 1.5.4). If glutamate is involved in the regulation or control 

of IL-6 levels in vivo then glutamate transporters and receptors may also serve as 

therapeutic targets (see section 9.4), especially if glutamate concentrations in synovial 

fluid increase during RA inflammatory episodes. Furthermore, it is clear that IL-6 and 

another pro-inflammatory cytokine, TNFa can modulate RA FLS responses to glutamate 

by increasing EAAT1 mRNA and protein expression (patients 1, 5 and 7). Therefore,
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this demonstrates a mechanism for IL-6 to modulate glutamate levels just as glutamate 

regulates IL-6 levels.

Like the proverbial question of the chicken and the egg it is not clear which may come 

first in RA, a dysregulation of glutamate or changes in levels of IL-6. However, it is 

accepted that an autoimmune response triggers the start of RA, therefore IL-6 may pre­

empt dysregulation of glutamate and expression of glutamate receptors and transporters. 

However, in animal models of inflammation glutamate levels have been observed to 

increase within 10 minutes after induction of inflammation (Lawand et al. 2000) whereas 

increases in IL-6 have been observed after 3 days (Mentzel and Braeuer 1998). In 

Mentzel’s study however, 3 days was the earliest time point measured after induction of 

arthritis. In another antigen-induced arthritis model, IL-6 levels increased 15 days after 

inflammation (Magari et al. 2003). Taking this evidence into consideration it is likely 

that in antigen-induced models of RA, an increase in synovial fluid glutamate levels 

would precede and thus influence increases in IL-6 expression. It is unclear whether this 

is an accurate indicator of what occurs in the actual onset of the rheumatoid arthritis 

disease.

A suggested pathway for how glutamate signalling pathways may interact with IL-6 

signalling pathways in RA FLS is shown in figure 9.1. Results of chapter 4 indicated that 

glutamate-induced increases in IL-6 are most likely to be mediated via kainate receptors 

since treatment with NBQX inhibited IL-6 release whereas CFM-2 did not (patient 8). 

Although NBQX decreased IL-6 production at all glutamate concentrations, this control 

is not straightforward because increasing extracellular glutamate caused a decrease in IL- 

6 production in this patient. Direct application of kainate to RA FLS caused an increase 

in [Ca2+]i, (chapter 7) demonstrating that KA receptors are functional and thus may
9+mediate this signalling pathway. In microglial cells increases in [Ca ]i have been 

implicated in increasing IL-6 mRNA expression (Sattayaprasert et al. 2005). Increases in 

[Ca2+]i have also been implicated in IL-6 release by mast cells (Tanaka et al. 2005), 

gingivial fibroblasts (Noguchi et al. 2001) and cardiac-derived fibroblasts (Colston et al. 

2002). It is a standard signalling mechanism that increases in [Ca2+]j can activate NFkB
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via protein kinase C (Alberts et al. 1994). Ca2+ oscillations have been shown to increase 

expression of the transcription factor NFkB in T-cells (Dolmetsch et al. 1998) and NFkB, 

in turn, can control expression of IL-6 (Libermann and Baltimore 1990). Furthermore, 

kainate receptors can activate NFkB via the MAP kinase pathway in neurons (Cruise et 

al. 2000). Therefore increases in [Ca2+]i induced by glutamate activation of kainate 

receptors may activate NFkB via protein kinase C and increase IL-6 mRNA expression. 

This is an example mechanism, glutamate may be activating other signalling pathways 

such as through the interaction of kainate receptors with PDZ binding domain proteins 

which can activate JNK (Savinainen 2001). In addition, there are other cis-elements in 

the complex EL-6 promoter such as API, NF-IL-6 binding sites which can affect 

expression (reviewed in Vanden et al. 1999).

It is proposed that EL-6 may operate a feedback mechanism in order to regulate levels of 

extracellular glutamate (figure 9.1). Treatment of RA FLS with IL-6 caused an increase 

in EAAT1 mRNA and protein expression (chapter 5). The possible signalling pathways 

involved in this regulation are discussed in chapter 5. This increase in EAAT1, if 

trafficked to the plasma membrane, may function to down-regulate extracellular 

glutamate levels. This in turn may down-regulate IL-6 production. The efficiency of this 

feedback mechanism may define how FLS from different patients respond to glutamate.

Results presented in chapter 4 indicate that glutamate affects EL-6 production by normal 

FLS differently to RA FLS. A proposed signalling pathway for regulation of IL-6 by 

glutamate in normal FLS is shown in figure 9.2. Inhibition of NMDA receptors (patient 

4) caused an increase in IL-6 production which suggests that activation of NMDA 

receptors in normal FLS would decrease IL-6 production. Data presented in chapter 7 

demonstrate that NMDA can increase [Ca2+]j in RA FLS, although normal FLS were not 

tested. It is unclear how activation of NMDA receptors may increase IL-6 production in 

the presence of some glutamate concentrations by RA FLS but decrease IL-6 production
^ i

by normal FLS. One possibility may be alterations in the frequency of Ca oscillations, 

which have previously been shown in T-cells to activate different transcription factors 

(Dolmetsch et al. 1998). Alternatively it may be due to the responsiveness of RA and
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Figure 9.1 Proposed mechanisms of IL-6 and glutamate interactions in RA FLS
Activation of kainate receptors leads to an increase in [Ca2+]i which may increase release 
of IL-6 by RA FLS. IL-6 may be involved in a feedback mechanism to regulate levels o f 
EAAT1 expression which in turn can modulate the concentration o f extracellular 
glutamate.
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Figure 9.2 Proposed mechanisms of IL-6 and glutamate interactions in normal FLS
Activation of NMDA receptors leads to an increase in [Ca2+]j which may decrease release 
of EL-6 by normal FLS. This therefore correlates with the decrease in IL-6 observed in 
the presence of glutamate transporter inhibitors because glutamate transporter inhibitors 
are likely to elevate extracellular glutamate levels.

|  IL-6
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normal FLS to glutamate caused by differences in types and possibly numbers of 

glutamate receptors expressed.

The fact that activation of NMDA receptors may decrease IL-6 production may explain 

why increasing extracellular glutamate decreased IL-6 production in patient 8, i.e. 

glutamate was having a greater effect on NMDA receptors than kainate receptors. This 

may be due to different levels of expression of glutamate receptors.

9.2.2 MMPs and TIMPs

The production of MMPs, used as a marker of degradative potential (by RA FLS), was 

also modulated by glutamate signalling and levels of extracellular glutamate. Increased 

extracellular glutamate, by adding to media or inhibiting uptake, increased pro-MMP2 

production by RA FLS (patient 2 and 3). No effects were seen in patient 8 and normal 

FLS. As discussed in section 1.4.2.1.1, the role of the elevated levels of MMP2 in RA is 

unclear. MMP2 knock-out mice demonstrate a phenotype more susceptible to antigen- 

induced arthritis compared to the wild-type indicating a protective role possibly due to 

MMP2 degradation of inflammatory mediators such as IL-1 (Ito et al. 1996). However, 

active MMP-2 in the synovium is associated with radiographic erosions in patients with 

aggressive synovial lesions (Goldbach-Mansky et al. 2000). Work in this thesis suggests 

that the reported observations in alterations of synovial fluid glutamate concentration in 

RA may influence the expression of pro-MMP2 by human FLS. Studies presented in 

chapter 6 revealed that inhibition of NMDA receptors with MK801 caused an increase in 

pro-MMP2 production by RA FLS. The demonstration that NMDA receptors can be 

activated in RA FLS to increase [Ca ]i levels (chapter 8) has led to the proposed 

interaction of glutamate and pro-MMP2 depicted in figure 9.3. Glutamate may activate 

NMDA receptors which increases [Ca2+]j levels which in turn may down-regulate pro- 

MMP2 production. In fact, a Ca2+ channel blocker (nifedipine, an inhibitor of voltage- 

dependent L-type calcium channels) has been shown to increase MMP2 expression by 

cardiac fibroblasts (Yue et al. 2004). Conversely, inhibiting non-voltage gated and 

voltage gated Ca channels (carboxy amido triazole, inhibits receptor-operated calcium 

influx) in a fibrosarcoma cell line decreased MMP2 levels (Kohn et al. 1994). Currently
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no literature is published which links NMDA receptor activation to the control of MMP2 

expression. Within the synovial joint, FLS are not the only cells producing MMP2. 

Stromal cells in the sublining synovial layer, macrophages (Hembry et al. 1995) and 

chondrocytes (Stephenson et a l 1987) also produce MMP2 although the main source of 

MMP2 in the RA synovial joint is not currently documented. Therefore unless glutamate 

affects production by these cells the impact of glutamate on MMP2 levels in the synovial 

joint remains unclear.

Ultimately it is the balance of MMPs and TIMPs that causes degradation in RA. Results 

of chapter 6 demonstrated that TBOA and tPDC increased TIMP1 and TIMP2 production 

by RA FLS (patient 2). However, glutamate and glutamate receptor antagonists had no 

effect on TIMP production by RA and normal FLS. It is unclear how glutamate may 

interact with TIMP production because no effects were observed when FLS were 

incubated with ionotropic receptor inhibitors. It is therefore possible that the 

metabotropic receptors are involved in the increase in TIMP production observed in the 

presence of high extracellular glutamate (caused by glutamate transporter inhibition).

9.3 Future Research

It is clear from the data that even though statistically significant responses were observed 

with treatments, further work is necessary to characterise the data fully. It would be of 

interest if all experiments were carried out on cells from the same patient in order to 

compare results accurately and see interacting effects. Furthermore, in order for accurate 

trends to be observed, cells from many RA and normal patients need to be tested and data 

correlated with age, sex, disease progression, treatments received and synovial fluid and 

serum concentrations of glutamate and IL-6. The results have however provided clear 

pathways for future research.

mRNA expression of a wide range of glutamate receptors and transporters has been 

observed in cells and tissues of the synovial joint however only EAAT1 protein 

expression was tested in FLS. It would be fascinating to see which other glutamate 

receptor, receptor subunit and transporter protein is expressed by FLS and other cells
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Figure 9.3 Proposed mechanisms of pro-MMP2 and glutamate interactions in RA 
FLS
Activation of NMDA receptors leads to an increase in [C a2+]i which may decrease release 
of pro-MMP2 by RA FLS. Therefore the increase in pro-MMP2 observed in the 
presence of glutamate transporter inhibitors is likely to be mediated by by mGluR.

pro-MMP2
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present in the synovial joint. In addition, a more complete picture of which glutamate 

receptors, receptor subunits and transporters are functional or whether expression levels 

alter at different stages of disease is required to understand fully the responses seen in 

this study. Immunohistochemistry could be utilised to determine co-localisation of 

recetor subunits, and the exact location of transporters and receptors expressed in the 

synovial joint. Furthermore, it would be intriguing to see if expression levels of 

glutamate receptors and transporters and their splice variants changed upon stimulation 

with glutamate or IL-6. This could be done using RT-PCR to measure mRNA or by 

FACS analysis to measure cell surface protein.

The signalling pathways involved that link glutamate to IL-6, pro-MMP2 and TIMP 

production need to be explored further. Inhibiting glutamate transport had the same 

effect on pro-inflammatory and degradatory markers in RA FLS. TBOA increased IL-6 

and pro-MMP2 levels in RA FLS from patient 2 and 3 (chapters 4 and 6). The 

experiments need to be repeated to see if this occurs in all RA patients. Having shown 

that glutamate and altering glutamate signalling affects release of pro-MMP2 and IL-6 

into the media, it would be of interest to confirm whether mRNA and protein expression 

levels are also elevated, in order to see which part of the pathway glutamate acts upon. 

To determine further the exact pathways that are activated when glutamate transporters 

are inhibited, glutamate transporter inhibitors and glutamate receptor inhibitors could be 

used simultaneously. By doing this, levels of extracellular glutamate would be 

maintained at a higher level which would perhaps enhance the effects of glutamate 

receptor inhibitors. In addition, the glutamate receptor and transporter inhibitor 

experiments could be repeated in the presence of intracellular Ca2+ chelators, such as 1,2- 

bis(o-aminophenoxy)ethane-N,N,N',N,-tetraacetic acid (BAPTA; Grant et al. 2001), in
 ̂I

order to see whether effects are being mediated by alterations in [Ca ]i. The 

phosphorylation pathways involved in the hypothesised induction of IL-6 by activation of 

kainate receptors (figure 9.1) need to be investigated. It should be tested whether kainate 

(instead of glutamate) can increase IL-6 production by RA FLS and subsequently, the 

effect of tyrosine kinase inhibitors (e.g. Chelerythrine chloride or Hexadecyl 

Phosphoholine) and NFkB activation inhibitors (e.g. PDTC) on kainate-mediated
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increases in IL-6 could be measured. This would determine whether protein kinase C and 

NFkB are mediators of this proposed signalling pathway. Antisense techniques could 

also be used to prevent synthesis of specific signalling proteins. Finally, having shown 

that glutamate interacts with IL-6 the effects on sIL-6r, IL-6R and gpl30 expression also 

need to be evaluated to determine the overall effects of glutamate on IL-6 signalling.

Further investigation is needed to determine the signalling pathway mediating the effect 

of IL-6 on EAAT1 expression (chapter 5). As discussed in chapter 5 phosphatidylinositol 

3 kinase or ST AT proteins could mediate the signalling between IL-6 and EAAT1. 

Measuring EAAT1 expression after stimulating FLS with IL-6 and inhibiting these 

pathways with specific inhibitors would determine whether these pathways are involved. 

The effect of TNFa on EAAT1 expression was also briefly explored (chapter 5). TNFa 

is a dominant mediator in RA inflammation. Therefore this cytokine also has the 

potential to affect extracellular glutamate levels in the synovial joint. Synovial fluid 

levels of TNFa and glutamate are both elevated in RA although these levels were not 

shown to correlate (McNeamey et al. 2004). It would be interesting to see if glutamate is 

involved in the elevation of TNFa by treating cells with a range of glutamate 

concentrations and measuring TNFa levels as has been done in this study with IL-6.

As mentioned in chapter 6 TIMP1 can protect neurons against cell death induced by high 

concentrations of glutamate possibly by blocking glutamate mediated calcium entry (Tan 

et al. 2003). Tan et al. suggest that the neuroprotective effect of TIMP1 only occurs 

when it is bound to MMPs because when neurons are incubated with TIMP1 and a 

synthetic MMP inhibitor (MMPI) the neuroprotective effect is lost. Furthermore, TIMP1 

is up-regulated in rat neurons after kainate-induced seizures indicating that action of 

kainate receptors regulates TIMP1 expression (Tan et al. 2003). Studies described in 

chapter 7 demonstrated that RA FLS respond to kainate with increases in [Ca2+]i. It 

would be logical therefore, to see if pre-treatment of FLS with TIMP1 can influence 

levels of [Ca2+]i following stimulation with kainate. This would demonstrate whether the 

same signalling pathway between glutamate, TIMP1 and calcium occurs in FLS as it 

appears to in neurons. How the effect of TIMP1 on glutamate receptor calcium influx is
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mediated is currently unknown. The potential for kainate receptor inhibitors in RA 

therapy is discussed in section 9.4.

Previous studies also indicate that other cells in the synovial joint may be responsive to 

glutamate (see section 1.6.4). Therefore the scope for future work is great. As discussed 

in section 1.6.4 macrophages and chondrocytes express glutamate receptors and 

transporters but no research has investigated how these cells may be influenced by 

increased glutamate concentrations in RA. If glutamate signalling is important at the 

onset of RA disease then macrophage-like synoviocytes should be prioritised for 

investigation for responsiveness to glutamate because along with FLS, they constitute the 

major cell type of the invasive pannus.

The next step after in vitro experiments is to explore effects of glutamate and IL-6 in 

vivo. It would be interesting to see whether levels of glutamate in the synovial joint 

correlate with the degree of onset of inflammation by measuring synovial fluid levels of 

IL-6 and glutamate receptor and transporter expression. Glutamate levels can be 

measured by HPLC in the synovial perfusate of in vivo models of inflammatory arthritis; 

this would confirm studies carried out by Lawand et al. (Lawand et al. 2000). 

Furthermore, the effects of injection of glutamate transporter or receptor antagonists into 

the synovial joint on glutamate, IL-6, TNFa, MMP and TIMP levels and disease 

progression could be determined to see if changes in these proteins are also mediated by 

glutamate signalling in vivo.

The interaction of IL-6 and glutamate signalling could be investigated in IL-6 knock-out 

mice. Studies in chapter 5 demonstrated that IL-6 can induce EAAT1 mRNA and protein 

expression. It would be fascinating to see if glutamate transporter expression and 

function is altered in IL-6 knock-out mice compared to the wild type phenotype. This 

could be done by comparing in vivo expression of glutamate receptors and transporters 

using RT-PCR, Western blotting, in situ hybridisation and immunohistochemistry on 

sections of the synovial joints between wild type and knock-out mice. In addition, 

glutamate regulation could be monitored in IL-6 transgenic mice (over-expressing IL-6)
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through measuring synovial fluid levels of glutamate by HPLC and comparing this to 

wild-type mice. Inducing arthritis in the transgenic mice, injecting inhibitors of 

glutamate receptors, in particular kainate receptor inhibitors, and glutamate transporters 

and comparing joint damage to wild type mice would indicate the importance of IL-6 in 

glutamate regulation.

The interaction of IL-6 and glutamate signalling could also be investigated in glutamate 

transporter knock-out mice. EAAT1, EAAT2, EAAT3 and EAAT4 and many glutamate 

receptor and receptor subunit knock-out mice or partial knock-out mice already exist. 

Having already observed changes in EAAT1 expression in response to pro-inflammatory 

cytokines, this knock-out mouse should be targeted first. A protection against antigen- 

induced arthritis, with correlating changes in cytokine production, MMP and TIMP 

production and synovial fluid levels of glutamate upon induction of ALA would validate 

an importance for glutamate signalling in the onset of inflammatory arthritis.

It would be intriguing to see whether oestrogen affects glutamate regulation in RA 

patients. During pregnancy RA symptoms are alleviated and this has been associated 

with an increase in oestrogen levels (Ostensen et al. 1983). Furthermore, onset of RA or 

worsening of RA symptoms is associated with low oestrogen levels such as after giving 

birth or the menopause (McHugh 1990). Oestrogen increases glutamate transporter 

(EAAT1 and EAAT2) mRNA and protein expression in astrocytes and can prevent 

glutamate-induced cell death of astrocytes (Pawlak et al. 2005). Therefore it may be 

relevant to investigate the effect of oestrogen on glutamate uptake in cells of the synovial 

joint. Alternatively, the effect of ovariectomy in ALA could also be investigated. It may 

be that the low levels of oestrogen decrease EAAT1 and EAAT2 expression which in 

turn may increase glutamate levels in RA patients that make these patients more 

susceptible to this disease.

To prioritise future work, the main hypotheses that can be drawn from work in this thesis 

are those represented in figures 9.1 and 9.3. Investigation into the actual mechanisms of 

these pathways may determine potential therapeutic targets.
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9.4 Potential therapies for RA

The most likely therapeutic target identified in this study is the kainate receptor. 

However, any therapy that targets glutamate signalling machinery needs to be localised to 

the RA-affected joint or unable to cross the blood brain barrier. Furthermore, due to the 

role of glutamate identified in other peripheral systems (see section 1.6.4) therapeutics 

targeting glutamate signalling should be localised to the affected joint. Further work has 

been suggested to investigate the role of TIMP1 in the mediation of kainate induced 

increases in [Ca2+]i (section 9.3). If TIMP1 did decrease the increase in [Ca2+]i in 

response to kainate then recombinant TIMP1 or TIMP1 analogues could be considered as 

therapies for RA.

It is proposed that activation of NMD A receptors decreases pro-MMP2 production by RA 

FLS. Pro-MMP2 is thought to play an overall degradative role in RA (see section 

1.5.1.3) therefore activating this pathway may have beneficial effects in RA patients. 

However, the impact of enhancing this pathway is not likely to be great because many 

other degradative enzymes, besides MMP2, are involved in RA joint degradation.

If elevated levels of glutamate are involved in the pathogenesis of RA then a way of 

lowering synovial fluid levels of glutamate should be devised. Elevating expression of 

levels of EAATs would enable this. One possibility is through gene therapy, using a 

vector to deliver DNA encoding the EAAT1 gene to the inflamed synovial joints. In fact, 

the transfection of glucose transporters has been investigated as a potential way to treat 

diabetes (Simpson et al. 1997).
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9.5 Closing comments

The interaction of glutamate with inflammatory and degradatory responses involved in 

the pathogenesis of RA has been described. Signalling pathways that may mediate these 

interactions have also been proposed. Furthermore, it has been demonstrated for the first 

time that human FLS have the ability to take up glutamate and are responsive to 

glutamate via activation of specific glutamate receptors. Therefore, with further work, 

new therapeutics targeted to glutamate receptors may be identified that could treat or 

alleviate symptoms of the debilitating disease that is Rheumatoid arthritis.
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APPENDIX 1
2x Sample buffer
to make 50ml:
33.75ml dH20
6.25ml 1M Tris-Cl (pH6 .8)
10ml Glycerol
5g SDS
25mg Bromophenol

5x Sample buffer
to make 50ml:
9.37ml dH20
15.63ml 1M Tris-Cl (pH6 .8)
25ml Glycerol
5g SDS
25mg Bromophenol

APPENDIX 2
Calculation of IQ values from published IC50 values:
The Ki value can be obtained from an IC50 value using the Cheng-Prusoff equation:

Ĵ i
1 +L/IQ

where L is the concentration of radioactive ligand and Kd is the affinity of the ligand 
(i.e. glutamate) for the receptor (Cheng and Prusoff 1973).

To calculate approximately the binding affinity of DAP5 and MK801 for NMD A 
receptors, the binding affinity of glutamate (Kd) was taken to be 99nM (Fritz et al. 
1996). This value does not take into account the different affinities for different 
receptor subunit compositions.
The I C 5 0  values were taken from work published on lymphocytes (Lombardi et al. 
2001).
IC50 for DAP5 = 0.9pM, IC50 for MK801 = 0.6pM.
L=1 pM

To calculate approximately the binding affinity of fPDC and TBOA the binding 
affinity of glutamate (Kd) to all glutamate transporters was estimated. The affinity of 
glutamate for the EAATs varies between l-100pM (Danbolt 2001), therefore a value 
of 50pM was used.
The I C 5 0  values were taken from work published on astrocytes (Waagepetersen et al. 
2001).
I C 5 0  for fPDC = 39pM, IC50 for TBOA = 19pM.
L=1 pM
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Appendix 3

Kev:
p-actin PCR
1:1OObp ladder 
2: Rat menisci 
3: Female rat menisci 
4: Female rat menisci 
5: Female rat menisci 
6: Female rat menisci 
7: lOObp ladder 
8: Rat menisci 
9: Rat menisci 
10: Female rat menisci 
11: Rat menisci 
12: Rat menisci 
13: p-actin plasmid (positive)
14: Water (negative)

Appendix 4

Kev:
GLAST-1/EAAT1 PCR
1: lOObp DNA ladder 
2: Rat patella 
3: Rat patella 
4: Rat menisci 
5: Rat menisci 
6: RA FLS 
7: RAFLS 
8: water (negative) 
9:NFLS 
10NFLS
11: bovine chondrocyte 
12: bovine chondrocyte 
13: Rat brain (positive) 
14: Rat brain (positive)
15 water (negative)

216



Appendix

APPENDIX 5 

Kev:
GLASTla
1:1 OObp ladder 
2: Rat patella 
3: Rat menisci 
4: Rat fat pad 
5: Bovine chondrocyte 
6: Rat brain (positive) 
7: water (negative)

APPENDIX 6

Kev:
EAAT2
1:1 OObp ladder 
2: Rat patella 
3: Rat fat pad 
4: Rat menisci 
5: Rat brain (positive) 
6: water (negative)

1 2 3 4 5 6
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APPENDIX 7 

Kev:
EAAT2 and EAAT3
1:1OObp ladder
2: EAAT2 rat patella
3: EAAT2 rat fat pad
4: EAAT2 bovine chondrocytes
5: EAAT2 rat brain
6: EAAT2 water
7: EAAT3 rat patella
8: EAAT3 rat fat pad
9: EAAT3 bovine chondrocytes
10: EAAT3 rat brain (positive)
11: EAAT3 water (negative)

APPENDIX 8

AMPAGluR3, mGluR4 and NMDA NR1
1: 1OObp ladder
2: AMPAGluR3, rat patella
3: AMP A GluR3, rat brain (positive)
4: AMP A GluR3, water (negative)
5: mGluR4, rat patella 
6: mGluR4, rat brain (positive)
7: mGluR4, water (negative)
8: NMDA NR1, rat patella 
9: NMDA NR1, rat brain (positive)
10: NMDA NR1, water (negative)
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APPENDIX 9 

Kev:
mGluR4, AMPAGluR3, AMPAGluR2
PCR performed by V. Savanathan 
1: mGluR4, water (negative)
2: mGluR4, rat brain (positive)
3: mGluR4, rat patella 
4: mGluR4, rat fat pad 
5: mGluR4, rat menisci 
6: AMPAGluR3, water (negative)
7: AMPAGluR3, rat brain (positive)
8: AMPAGluR3, rat patella 
9: AMPAGluR3, rat fat pad 
10: AMPAGluR3, rat menisci 
11: AMPAGluR2, water (negative)
12: AMPAGluR2, rat brain (positive)
13: AMPAGluR2, rat patella 
14: AMPAGluR2, rat fat pad 
15: AMPAGluR2, rat menisci

APPENDIX 10

Kev:
KA1
1: 1 OObp ladder 
2: Rat patella 
3: Rat fat pad 
4: Rat menisci 
5: Bovine chondrocyte 
6: Rat brain (positive) 
7: water (negative)
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APPENDIX 11 

Kev:
AMPAGluR2
1: lOObp ladder 
2: Rat patella 
3: Rat fat pad 
4: Rat brain (positive) 
5: water (negative)
6: Rat menisci 
7: Human OA cartilage 
8: Rat brain (positive) 
9: water (negative)

I 2 3 4 5 6 7 8 9

APPENDIX 12

AMPAGluR3
1: lOObp ladder 
2: Rat fat pad 
3: Rat menisci 
4: Rat patella 
5: NFLS
6: Rat brain (positive) 
7: water (negative)

2 2 0
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APPENDIX 13

GLAST-1
1: lOObp ladder 
2: Rat menisci 
3: Rat menisci 
4: Rat menisci 
5: Rat menisci 
6: Rat menisci 
7: Rat menisci
8: GLAST-1 plasmid (positive) 
9: water (negative)

APPENDIX 14 

Kev:
AMPAGluR3
1: lOObp ladder 
2: Rat fat pad 
3: Rat menisci 
4: NFLS
5: bovine chondrocytes 
6: Rat brain (positive) 
7: water (negative)

1 2 3 4 5 6 7
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APPENDIX 15

GLAST-1
1: lOObp ladder 
2: one rat fat pad 
3: 3 rat fat pads 
4: 2 rat fat pads 
5: 3 rat fat pads 
6: 3 rat fat pads
7: GLAST-1 plasmid (positive) 
8: water (negative)

■■■■■■■■■■■■■■■■■■■■■■■
1 2- Z  S  (, t  $

APPENDIX 16 

Kev:
Human EAAT2 primers
1: 1 OObp ladder 
2: Bovine chondrocytes 
3: OA cartilage 
4: RA FLS 
5: NFLS
6: Chondrocyte library 
7: water (negative)

2 2 2
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APPENDIX 17

Key:
EAAT3
1: lOObp ladder 
2: Bovine chondroyte 
3: OA cartilage 
4: Chondrocyte library 
5: NFLS
6: water (negative)

APPENDIX 18

Kev:
AMPAGluR2
1: lOObp ladder 
2: OA cartilage 
3: water (negative)
4: Rat brain (positive) 
5: water (negative)

1 2 3 4 5
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APPENDIX 19 

Kev:
NMDA NR1 and AMPAGluR3
1: lOObp ladder 
2: NMDA NR1, OA cartilage 
3: NMDA NR1, rat brain (positive) 
4: NMDA NR1, water (negative)
5: AMPAGluR3, OA cartilage 
6: AMPAGluR3, rat brain (positive) 
7: AMPAGluR3, water (negative)

APPENDIX 20

Kev:
AMPAGluR2, AMPAGluR3, mGluR4
1: lOObp ladder
2: AMPAGluR2, rat brain (positive)
3: AMPAGluR2, chondrocyte library 
4: AMPAGluR2, water (negative)
5: AMPAGluR3, rat brain (positive)
6: AMPAGluR3, chondrocyte library 
7: AMPAGluR3. water (negative)
8: mGluR4, rat brain (positive)
9: mGluR4, chondrocyte library 
10: mGluR4, water (negative)
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APPENDIX 21 

Kev:
AMPAGluR2, AMPAGluR3, mGluR4
PCR carried out by V. Savanathan 
1: lOObp ladder
2: AMPAGluR2, rat brain (positive)
3: AMPAGluR2, chondrocyte library 
4: AMPAGluR2, water (negative)
5: AMPAGluR3, rat brain (positive)
6: AMPAGluR3, chondrocyte library 
7: AMPAGluR3, water (negative)
8: mGluR4, rat brain (positive)
9: mGluR4, chondrocyte library 
10: mGluR4, water (negative)

APPENDIX 22

Kev:
EAAT3
1: lOObp ladder 
2: RA FLS 
3: RA FLS 
4: RA FLS 
5: RA FLS 
6: NFLS 
7: NFLS
8: water (negative)
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APPENDIX 23

NMDA NR1
1: lOObp ladder 
2: RA FLS 
3: RA FLS
4: Bovine chondrocytes 
5: Rat brain (positive)
6: water (negative)

APPENDIX 24

Kev:
KA1
1: lOObp ladder 
2: Rat fat pad 
3: NFLS 
4: RA FLS 
5: OA Cartilage 
6: Chondrocyte library 
7: Bovine chondrocytes 
8: Rat menisci 
9: Rat brain (positive) 
10: water (negative)

1 2 3 4 5 6
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APPENDIX 25

EAAT2
1: lOObp ladder
2: NFLS, 1.5mM MgCl2
3: NFLS, 2mM MgCl2
4: NFLS, 2.5mM MgCl2
5: NFLS, 3mM MgCl2
6: NFLS, 3.5mM MgCl2
7: water, 2.5mM MgCl2 (negative)

APPENDIX 26 

Kev:
NMDA NR1
1: lOObp ladder 
2: NFLS, 1.5mM MgCl2 
3: Chondrocyte library, 1.5mM MgCl2 
4: Rat brain (positive), 1.5mM MgCl2 
5: water (negative), 1.5mM MgCl2 
6: NFLS, 2mM MgCl2 
7: Chondrocyte library, 2mM MgCl2 
8: Rat brain (positive), 2mM MgCl2 
9: water (negative), 2mM MgCl2 
10: NFLS, 2.5mM MgCl2 
11: Chondrocyte library, 2.5mM MgCl2 
12: Rat brain (positive), 2.5mM MgCl2 
13: water (negative), 2.5mM MgCl2 
14: NFLS, 3mM MgCl2 
15: Chondrocyte library, 3mM MgCl2 
16: Rat brain (positive), 3mM MgCl2 
17: water (negative), 3mM MgCl2

1 2  3 4 5 6 7 9 10 11 12

1 13 14 15 16 17
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APPENDIX 27

Key:
mGluR4
1: lOObp ladder 
2: NFLS 
3: NFLS 
4: NFLS 
5: RA FLS
6: Rat brain (positive) 
7: water (negative)
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Appendix

APPENDIX 28
Sequence data o f  NMDA NR1 amplicon. Forward reaction confirmed 95% homology, reverse
primer reaction confirmed 98% homology to rat sequence
The primer is shown in blue
The NMDA NR1 sequence is shown in red.

FORWARD
NAATGCTCCCGGNNGCCATGGCCGCGNGATTCAGGAGCGGGTAAACCCCAGCAACAA
AAAGGAGTGGAANGGAATGATGNGGGAGCTACTCAGTGGCCAAGCGGACATGATTGT
GGCACCACTGACCATGTACAATGAGCGTGCGCAGTACATAGAGTTCTCCAAGCCCTTC
AAGTACCAGGAATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGGAGAGCTCCC
AACGNGTTGGATGCATAGCTTGAGTATTCTATAGTGTCACCTNAATAGCTTGGCTTAA
TCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCNACACAACAT
ACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCAC
ATTAATTGCGTTGCGCTCACTGCCNGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTG
CATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCG
CTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGC
TCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGGATAACGCAGGAAAGA
ACATGTGAGCAAAAGGNCAGCAAAAGGNCAGGAACCGTAAAAGGCCGCGNTGCTGG
CGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCCAAAAATCNACGCTCAGTTANA
GGNGCGAAACCGANNGNAATATAAGANACAGGCGTTCCCCTGGANCTCCTCGGNGCC
NCTGTTCGACCTGCCCTTACCGAAACTGTCGCCTTTTCCTCGGANGGGNGCTTNNAAC
TNACTGAAGNTTCAATNGGNAAGCCNTCNTCANTGGTGGGGCAACCCCGTNACCGAC
CTGCCTNTCGNAANCCTNGANCACGAAANAATTCCCTGCNNCNTNANGANAAANGGN
TGGGCTAAATTAT

giI 8393483|ref|NM 017010.11 ISBSlEI Rattus norvegicus glutamate receptor, 
ionotropic, N-methyl D-aspartate 
1 (Grinl), mRNA 
Length=4213

Score = 248 bits (125), Expect = 4e-63
Identities = 144/151 (95%),  Gaps = 0/151 (0%) 
Strand=Plus/Plus

Query 1

Sbjct 1724
Query 61

Sbjct 1784

Query 121

Sbjct 1844

CAGGAGCGGGTAAACCCCAGCAACAAAAAGGAGT GGAANGGAATGAT GN GGGAGCTACTC 6 0
I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
CAGGAGCGGGTAAACAACAGCAACAAAAAGGAGTGGAACGGAATGATGGGCGAGCTACTC 1783 

AGTGGCCAAGCGGACATGATTGTGGCACCACTGACCATGTACAATGAGCGTGCGCAGTAC 120
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

AGTGGCCAAGCGGACATGATTGTGGCACCACTGACCATCAACAATGAGCGTGCGCAGTAC 1843
ATAGAGTTCTCCAAGCCCTTCAAGTACCAGG 151 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
ATAGAGT T C T C CAAGC CCT T CAAGTACCAGG 1874
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REVERSE:
GGCT AT GC ATCC AACGCGNT GGGAGCT GT CCC AT AT GGT CG ACCT GC AGGCN G ACGC 
ACTAGTGATTCCTGGTACTTGAAGGGNTTGGAGAACTCTATGTAATGCGCACGCTCAT 
TGTTGATGGTCAGTGGTGCCACAATCATGTCCGCTTGGCCACTGAGTAGCTCGCCCAT 
C ATT C C GTT C C ACTC CTTTTT GTT GCT GTT GTTT ACCCGCTCCTGAATCCGGCGGCC AT 
GGC GGC C GGG AGC AT GC GAC GT CGGGCCC AATT CGCCCT AT AGT GAGT CGT ATT AC A 
ATT C ACT GGCCGT CGTTTT AC AACGTCGT G ACTGGG AAAACCCT GGCGTT ACCC AACT 
T AATCGCCTT GC AGC AC AT CCCCCTTT CGCC AGCT GGCGT AAT AGCG AAG AGGCCCGC 
ACCG AT CGCCCTT CCC AAC AGTT GCGC AGC CT G AAT GGCG AAT GG ACGCGCCCT GT AG 
CGGCGC ATT AAGCGCGGCGGGT GT GGT GGTT ACGCGC AGCGT G ACCGCT AC ACTT GCC 
AGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGG 
CTTT CCCCGT CAAGCT CT AAAT CGGGGGCTCCCTTT AGGGNTCCG ATTT AGTGCTTT AC 
GGC ACCT CG ACCCC AAAAACTT GATT AGGGT GAT GGTT C ACGT AGT GGGCC AT CGCCC 
T GAT AG ACGGTTTTT CGCCTTT G ACGTT GG ANT C ACGNT CTTT AAT AGT GG ACT CTT GT 
T CN AACT GG AAN AC ACT C AACCT AT CT CGGCT ANT CTTTN G ATTTT AAGG AATTN GCC 
AATT CGN CT AT GGGTT AAAAT G ACT GATT ACC AAATTN ACGNGAATTT AC AAAAT ACN 
CTTAAATTCTGAGNGGAATTTCTTACCACTNGNGGAATCNCNCACAGGGCATTNGGAA 
GGCCG ACCC ATT GT ATTTN AAATT C AAT GNCCCT GN AANCCG AAAGTN AAA

giI 8393483|ref|NM 017010.11 l!l Q  Rattus norvegicus glutamate receptor, 
ionotropic, N-methyl D-aspartate 
1 (Grinl), mRNA 
Length=4213

Score = 285 bits (144), Expect = 2e-74
Identities = 149/151 (98%),  Gaps = 0/151 (0%)
Strand=Plus/Minus

Query 1 CCTGGTACTTGAAGGGNTTGGAGAACTCTATGTAATGCGCACGCTCATTGTTGATGGTCA 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1

60

Sbjct 1874 CCTGGTACTTGAAGGGCTTGGAGAACTCTATGTACTGCGCACGCTCATTGTTGATGGTCA 1815

Query 61 GTGGTGCCACAATCATGTCCGCTTGGCCACTGAGTAGCTCGCCCATCATTCCGTTCCACT
l l l l l l l I l l l l l l l l I l l I l l  l I I l l I l I l l l l l l l l l l l l l I 1 l l I I I I I I I I I l l l l

120

Sbjct 1814
I I  l i  1 I I  I I  I I  I I  I I  1 1 I I  I I  1 1 I I  1 1 I I  I I  1 I I  I I  I I  I I  I I  I I  I I  I I  I I  1 I I  I I  1 I I  I I
GTGGTGCCACAATCATGTCCGCTTGGCCACTGAGTAGCTCGCCCATCATTCCGTTCCACT 1755

Sbjct 17241754
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APPENDIX 29
Sequence data o f mGluR4 amplicon. Forward and reverse reaction confirmed 100% homology 
The primers are shown in blue.
The mGluR4 sequence is shown in red.

FORWARD:
GCTCCCGGCCGCCATGGCCGCGGGATTAGACCTTCAACGAGGCCAAGCCCATCGGCTT
CACCATGTACACCACCTGCATTGTCTGGCTGGCCTTCATCCCCATCTTTTTTGGCACCT
CACAGTCAGCCGACAAGCTGTACATCCAGACAACCACACTGACGGTCTCCGTGAGTCT
GAGCGAATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGGAGAGCTCCCAACGC
GTTGGATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATG
GTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGA
GCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTA
ATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATT
AATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTC
CTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCAC
TCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATG
TGAGCAAAAGGCCAGCAAAAGGCCAGGAAACCGTAAAAAGGCCGCGTTGCTGGCGTT
TTTCCATANGCTCCCCCCCCTGACGAGCATCACAAAAATCGACGCTCAGTCANAGTGG
CGAAACCGACAGANTATAAGANACNAGGCGTTTCCCTGGANCTCCTCGNGGCTCTCT
GTTCGACTGCGNTACGAAACTGTCGCTTTTCCTCGGAANNGGGCTTTCNACTCANNNT
AGANCCANTCGGGAGCGTCNCAGTGGTGNGCAACCCGTACCACGTGCTTACGAATTTT
TGTCACGTAANATNCCTGAACTGAAGNAAANGNAGGNAANTAGGCACNCAAAATGTN
CCANCNNAAGTCTCCACNGGTTTNNACAANANTNGCCGAAATTANTTAA

qi|12083594 I refINM 022666.11 
metabotropic 4 (Grm4),
mRNA
Length=4488

U E G Rattus norvegicus glutamate receptor,

Score = 303 bits (153), Expect = 8e-80
Identities = 153/153 ( 1 0 0 % ) ,  Gaps = 0/153 (0%) 
Strand=Plus/Plus

Query 1

Sbjct 3190

Query 61

Sbjct 3250
Query 121

Sbjct 3310

AGACCTTCAACGAGGCCAAGCCCATCGGCTTCACCATGTACACCACCTGCATTGTCTGGC 60
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

AGACCTTCAACGAGGCCAAGCCCATCGGCTTCACCATGTACACCACCTGCATTGTCTGGC 324 9
TGGCCTTCATCCCCATCTTTTTTGGCACCTCACAGTCAGCCGACAAGCTGTACATCCAGA
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I 
TGGCCTTCATCCCCATCTTTTTTGGCACCTCACAGTCAGCCGACAAGCTGTACATCCAGA

CAACCACACTGACGGTCTCCGTGAGTCTGAGCG 153
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
CAACCACACTGACGGTCTCCGTGAGTCTGAGCG 3342

120

3309
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Appendix

REVERSE:
GGNTTCTCTCCCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATTCGCTCAGACTC 
ACGGAGACCGTCAGTGTGGTTGTCTGGATGTACAGCTTGTCGGCTGACTGTGAGGTGC 
C AA A AAAGAT GGGGAT G AAGGCC AGC C AGAC A AT GC AGGT GGT GT AC AT GGT GA AG 
CCGATGGGCTTGGCCTCGTTGAAGGTCTAATCCCGCGGCCATGGCGGCCGGGAGCATG 
CG ACGT CGGGCCC AATT CGCCCT AT AGT G AGTCGT ATT AC AATTC ACT GGCCGT CGTT 
TT AC AACGT CGT G ACT GGG AAAACCCT GGCGTT ACCC AACTT AAT CGCCTT GC AGC AC 
AT CCCCCTTT CGCC AGCT GGCGT AAT AGCG AAG AGGCCCGC ACCG AT CGCCCTTCCC A 
ACAGTTGCGCAGCCTGAATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCG 
GCGGGT GT GGT GGTT ACGCGC AGCGT G ACCGCT AC ACTT GCC AGCGCCCT AGCGCCCG 
CTCCTTT CGCTTT CTT CCCTT CCTTT CT CGCC ACGTT CGCCGGCTTTCCCCGT C AAGCT C 
T AAAT CGGGGGCT CCCTTT AGGGTT CCG ATTT AGT GCTTT ACGGC AC CT CG ACCCC AA 
AAAACTT GATT AGGGT GAT GGTT C ACGT AGT GGGCC AT CGCCCT GAT AG ACGGTTTTT 
CGCCCTTT G AGTT GG AGT C ACGTT CTTT AAT ANT GG ACT CTT GTT C AAACT GG AAC AC 
NT C AACCT AT CT CGGCT AT CTTT GATT AAAGG ATTT GCG ATT CGCT AT GNT AAAAN AC 
TGATTACAAATNACNGATTTACAAATAANCTAATTCNAGGGATNCCTACANGGNGAT 
TCACNAAGGNNTTNGGAANGCGAACCNTNTNTTAAATCATGTCNCGAAACGAAGTAA 
TNANAAAAAT ATCGCTTCTTGNTTTTTCCACGAATAAGGAGGNAGT AAT ATCAATAAT 
TTGGTTTNACCCNTTNANGAAGAAN
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Appendix

APPENDIX 30
Sequence data o f AMPAGluR2 amplicon. Forward and reverse reaction confirmed 100%
homology.
The primers are shown in blue.
The AMPAGluR2 sequence is shown in red.

FORWARD:
CCGCCAATGGCCGCGGGATTGGTTGTCACCCTAACTGAGCTCCCATCAGGAAATGACA 
CGTCTGGGCTTGAAAACAAAACTGTGGTGGTCACCACAATATTGGAATCTCCATATGT 
T AT GAT GA AG AA AAAT C AT GA AATGCTT GAAGGGAAT GAGC GTT ACGAGGGCT ACTA 
ATC ACT AGTGCGGCCGCCTGC AGGTCGACCAT ATGGGAGAGCTCCC AACGCGTTGGAT 
GC AT AGCTT GAGT ATT CT AT AGT GT C ACCT AAAT AGCTT GGCGT AAT CAT GGTC AT AG 
CT GTTT CCT GT GT G AAATT GTT AT CCGCT C AC AATT CC AC AC AAC AT ACG AGCCGG AA 
GC AT AAAGT GT AAAGCCT GGGGT GCCT AAT GAGT G AGCT AACTC AC ATT AATT GCGTT 
GCGCT C ACT GCCCGCTTT CC AGT CGGG AAACCT GTCGT GCC AGCTGC ATT AATG AATC 
GGCC AACGCGCGGGG AG AGGCGGTTT GCGT ATT GGGCGCT CTT CCGCTT CCT CGCT C A 
CT GACT CGCT GCGCT CGGT CGTT CGGCT GCGGCG AGCGGT AT C AGCT C ACT C AAAGGC 
GGTAAT ACGGTTATCC AC AGAATCAGGGGGATANCGC AGGAAAGAAC ATGTGAGC AA 
AAGGCC AGC AAAAGGCC AGGAACCGT AAAAAGGCCGCGTT GCT GGCGTTTTTNCCAT 
AGGCT CGGCCCCCT G ACG AGC AT CCC AAAAT CG ACGCT C AGT C AAAGGT GGCG AAN C 
NGNCAGGNTNTAAGAACCAGCGTTCCCTGNANCTCCTCGGNGNCTCTGTCNACCTGCG 
CT ACG AAACT GT CGCNTTT CCT CGG AGGGGGCTT CCT AAT C ACT G AG ATN C ATN GGG A 
GCGT CCCC AGT GGGN GGGNN ACCNNT AC ANNT GCCT CG AANTNT GT CN CG AAC AATN 
CCGGCACNTAAAACAAAANGNGCNANNAGGCNCCCAAATTTNCCGACCTAANCTCCA 
CCGGNTNAACAAAANTTCGCGNAGNAANCTAAAANAACCCCCCACNCNCCCANN

gi |2043811gbIM85035.11RATGLUR2A
non-NMDA mRNA, complete
cds
Length=3488

Rat glutamate receptor subunit 2 (GLUR2

Score = 301 bits (152), Expect = 3e-79
Identities - 152/152 ( 1 0 0 % ) ,  Gaps = 0/152 (0%) 
Strand=Plus/Plus

Query 1

Sbjct 1500

Query 61

Sbjct 1560

Query 121

Sbjct 1620

GGTTGTCACCCTAACTGAGCTCCCATCAGGAAATGACACGTCTGGGCTTGAAAACAAAAC 60 
I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I 
GGTT GT C AC C CT AACT GAGCT C CC AT C AGGAAAT G AC AC GTCTGGGCTT GAAAAC AAAAC 1559

TGTGGTGGT CAC C ACAAT AT T GG AAT CT C CAT AT GT TAT GAT GAAGAAAAAT CAT GAAAT 120
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
T GT GGT GGT CAC CAC AAT AT T GG AAT CT CC AT AT GT TAT GAT GAAGAAAAAT CAT GAAAT 1619

GCTTGAAGGGAATGAGCGTTACGAGGGCTACT 152
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
GCTTGAAGGGAATGAGCGTTACGAGGGCTACT 1651
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Appendix

REVERSE:
NNTTCAAGCTATGCATCCAACGCGTTGGGAGCTCTCCCATATGGTCGACCTGCAGGCG 
GCCGCACTAGTGATTAGTAGCCCTCGTAACGCTCATTCCCTTCAAGCATTTCATGATTT 
TTC TTC AT C AT AAC AT AT GG AG ATTC C AAT ATT GT GGT G ACC ACC AC AGTTTT GTTTT C 
A AGC C C AG AC GT GT C ATTT CCTGAT GGG AGCTC AGTT AGGGT G AC A ACC AAT CC CGCG 
GCC AT GGCGGCCGGGAGC AT GCGACGTCGGGCCC AATTCGCCCT AT AGT GAGTCGT AT 
T AC AATT C ACT GGCC GT CGTTTT AC AACGT CGT G ACT GGG AAAACCCT GGCGTT ACCC 
AACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGC 
CCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGACGCGCCCT 
GT AGCGGCGC ATT AAGCGC GGCGGGT GT GGT GGTT ACGCGC AGCGT G ACCGCT AC AC 
TT GCC AGCGCCCT AGCGCCCGCTCCTTT CGCTTTCTTCCCTTCCTTTCT CGCC ACGTT CG 
CCGGCTTT CCCCGT C AAGCTCT AAATCGGGGGCT CCCTTT AGGGTT CCG ATTT AGT GCT 
TT ACGGC ACCT CG ACCCC AAAAAACTT GATT AGGGT GAT GGTT C ACGT AGT GGGCC AT 
CGCCCT GAT AG AC GGTTTT CGCCCTTT G ACGTT GG AGT C ACGTT CTTT AT AGT GG ACT C 
TT GTT CC AACT GG AC AACCT C ACCCT AT CT CGN CT AT CTTT GATT AN AN G AATTT GCG A 
TT CGCCT AT GGT AAAAN G ACT GATT AC AA ATT ACGCG AATT AAAAAAT ACNTT AANT C 
T GAGGG ATTT CCT AC AT GGN GAT C ACN AN AGGGNTTN GG AGGGN G ACC AT GTTTTN A 
AT C AAGTCCN G AAACG AAGT AAT G AAAAA ANN ATCGCCT CTT GNTTTNTT CN AGG AA 
AGAATGNNNNAGNNGATATCCATTATTTGGTTNNGCCCTATCCANGANCAATN AATTT 
NAN AAT AACTNGGA
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APPENDIX 31
Sequence data o f AMPAGluR3 amplicon. Due to sequencing reaction not working correctly, only 
partial sequence was obtained. However this was 100% homologous to published rat sequence.
The primers are shown in blue.
The AMPAGluR3 sequence is shown in red.

REVERSE:
AATCNCTCTCTGTCTCCTCAGGTATCGGAAGGCTTCTGCTATGACCAATATTGCGTCAT 
GT GT C AGC GC AG AT GT AT ACTT C AGT GGT GC ATT C TTGGCTTC AGGG AATT AATCCCG 
CGGCC AT GGCGGCCGGG AGC AT GCG ACGT CGGGCCC AATT CGCCCT AT AGT G AGT CG 
T ATT AC AATT C ACT GGCCGT CGTTTT AC AACGT CGT GACT GGG AAAACCCTGGCGTT A 
CCC AACTT AAT CGCCTT GC AGC AC AT CCCCCTTT CGCC AGCT GGCGT AAT AGCG AAG A 
GGCCCGC ACCG AT CGCCCTT CCC AAC AGTT GCGC AGCCT G AAT GGCG AAT GG ACGCG 
CCCT GT AGCGGCGC ATT AAGCGCGGCGGGT GT GGT GGTT ACGCGC AGCGT G ACCGCT 
ACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCAC 
GTT CGCCGGCTTT CCCCGT C AAGCT CT AAAT CGGGGGCT CCCTTT AGGGTT CCG ATTT A 
GT GCTTT ACGGC ACCTCG ACCCC AAAAAACTT GATT AAGGT GAT GGTT C ACGT AGT GG 
GCC AT CGCCCT GAT AG AN GGTTTT CGCCNTT GACGTT G ANTC ACGTT CTTN AT AGNG A 
NT CTT GT CC AANT GG AN AC ACTC AACCT AT CT CGGCT AT CTTT GATT AAAGG ATTT GCC 
AATT CGCT AT GGT AAAN GANT GATT AAAATT ACG ATTT AN AAAAT ACCTN ATT CG AGN 
GATTT CT AC AT GGGGAT C ACGAC AGGGNTTNGGAGGNGACN AT GTTTNAAATANGNC 
NNGAAACGAGT AAT AAGAAN AT ATCGCCTCTTGTTNTTNCANGNAAGANGGGGNANN 
NAT ATCATATTTGGTTGANCAANNAAAAAAT AA

gi j 5263284|gb|M85036.21RATGLUR3A IBIsI Rattus norvegicus glutamate receptor 
subunit 3 (GLUR3) non-NMDA 
mRNA, complete cds 
Length=3083

Score = 208 bits (105), Expect = 2e-51
Identities = 105/105 ( 1 0 0 % ) ,  Gaps = 0/105 (0%)
Strand=Plus/Minus

Query 6 CTCTCTGTCTCCTCAGGTATCGGAAGGCTTCTGCTATGACCAATATTGCGTCATGTGTCA 65
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Sbjct 1133 CTCTCTGTCTCCTCAGGTATCGGAAGGCTTCTGCTATGACCAATATTGCGTCATGTGTCA 1074

Query 66 GCGCAGATGTATACTTCAGTGGTGCATTCTTGGCTTCAGGGAATT 110 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Sbjct 1073 GCGCAGATGTATACTTCAGTGGTGCATTCTTGGCTTCAGGGAATT 1029
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