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Abstract

The preparation of gold catalysts supported on different metal oxides such as ZnO and 

Fe2C>3, using two coprecipitation methods is investigated to determine important 

factors, such as selection of support material and preparation method, and preparation 

parameters, such as preparation temperature, pH, and ageing process. These factors 

control the synthesis o f high activity catalysts for the oxidation of carbon monoxide at 

ambient temperature. The two preparation methods differ in the manner in which the 

pH is controlled during coprecipitation, either constant pH throughout or variable pH 

in which the pH is raised from an initial low value to a defined end point. Non­

calcined Au/ZnO catalysts prepared using both methods are very sensitive to pH and 

ageing time. Catalysts prepared at higher pH give lower activity. However, all 

catalysts require a short indication period during which the oxidation activity 

increases. In contrast, the calcined catalysts are not sensitive to preparation 

conditions. Non-calcined Au/Fe2C>3 catalysts exhibit high activity when prepared at 

pH > 5 . Active calcined Au/Fe2C>3 catalysts can be prepared when the pH is controlled 

at pH 6-7, 8 , whereas calcined catalysts prepared using the variable pH method are 

inactive. The study demonstrates the immense sensitivity of catalyst preparation 

methods on the performance. Catalysts exhibited excellent catalytic activity and 

stability compared with the pure supports, ZnO and Fe2 0 3 , and the best preparation 

temperature was 80 °C. Use of temperatures > 80 °C led to inactive catalysts. The 

deposition-precipitation (DP) method was also employed using four different supports 

in this study (ZnO, Fe2 0 3 , MgO, and Mn0 2 ). A comparison between these catalysts 

was taken rather than an investigation of the effect of the preparation parameters on
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catalysts prepared by DP method because they have been well studied previously. 

Several characterization techniques including AAS, BET surface area, XRD, TPR, 

and XPS, were utilised to investigate the physical and chemical properties of the 

prepared supported gold catalysts. Characterization results were combined with 

catalytic results for the low temperature CO oxidation reaction of catalysts in order to 

study the aforementioned factors that can affect either the properties of catalysts or 

their activities. Subsequently, several experiments at high GHSV were conducted to 

study the catalytic activities of these catalysts in-depth and to correlate data with 

alkane activation reactions. CH4 activation reaction using supported gold catalysts at 

light temperatures and the effect of the preparation parameters, types of supports on 

catalysts activities were investigated. The Au/Fe2 0 3  catalyst prepared by 

coprecipitation method B at pH 8 showed the highest catalytic activity for CO 

oxidation and CH4 activation reactions. The most active catalysts were also evaluated 

for C2H6 and C3H8 activation at low temperature. After this, a comparison between 

CO oxidation and alkane activation over supported gold catalysts was undertaken to 

investigate the relationship between the behaviour o f supported gold catalysts for 

these two types o f reactions. Activation energies and pre-exponential factors of many 

catalysts were calculated based on the Arrhenius equation either for CO oxidation or 

for alkane activation.
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M icro  A b stra ct

The preparation of gold catalysts supported on different metal oxides such as ZnO and 

Fe2 0 3 , using two coprecipitation methods is investigated to determine the important 

factors that control the synthesis of high activity catalysts for the oxidation of carbon 

monoxide at ambient temperature. The effect of preparation methods, type of support, 

preparation parameters, such as temperature, pH, and ageing time on the catalytic 

activity of supported gold catalysts towards CO oxidation and light alkane (C1-C3) 

activation reactions was examined. Several characterization techniques such as; AAS, 

BET surface area, XRD, TPR. and XPS. were employed to investigate the physical 

and chemical properties of the prepared supported gold catalysts, comparative study 

of CO oxidation and alkane activation over supported gold catalysts was conducted to 

investigate the relationship between the behaviour of supported gold catalysts and 

these two types o f reactions using activation energies and pre-exponential factors 

based on the Arrhenius equation, either for CO oxidation or for alkane activation.
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1.1. Background

1.1.1. Definition of catalysis

The world ‘catalysis’ was used for first time by J.J. Berzelius in 1836 when he 

explained some enhanced chemical reactions [1]. G. C. Bond defined the catalyst, as 

‘ ‘ a substance that increases the rate at which a chemical system approaches 

equilibrium, without being consumed in the process [2 ].

1.1.2. Importance o f catalysis

Catalysis is important in both academic and industrial research. It plays an essential 

role in the production of a wide range of products. Between 85-90% of chemical 

industry products are made through catalytic processes. In the presence of a catalyst, 

reactions can be conducted at lower temperatures or lower pressures. Also, some 

reactions such as ammonia synthesis are industrially only possible with the assistance 

of a catalyst. Catalysis is an essential part of the manufacturing process, catalysis has 

other important applications; for example, its successful use in the control of 

pollution, called green chemistry.

1.2. Types of catalysis

In general, there are three types of catalysis. Bio catalysis where reactions are 

catalysed by enzymes. This type of catalysis is very fast, selective, sensitive, and 

usually occurs at mild conditions. Homogeneous catalysis, where the catalyst is of the 

same phase as the reactants and no phase boundary appears. This type of catalysis
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usually occurs in the gas phase or in the liquid phase. However, it is not within the 

scope of this thesis to discuss these two types of catalysis.

13. Heterogeneous catalysis

Hetero implies different. Heterogeneous catalysis occurs when the catalyst is in a 

different state from the reactants. An example of this would be using a metal oxide to 

catalyse gas phase reactions. The essential principles of heterogeneous catalysis for 

gas-phase reactions are indicated involve;

1. The product o f the catalysed reaction can be obtained from uncatalysed 

reaction. However, the uncatalysed reactions can be slow and non-selective to 

the desired products.

2. The presence o f the catalyst changes the rate at which equilibrium is achieved.

3. The useful catalyst must have a high turn over number, which means the 

reaction steps must occur several times on the surface of the catalyst before the 

catalyst loses its activity.

4. Usually, the reaction takes place on the surface of the catalyst. The reaction 

may occur between gas molecules adsorbed on the catalyst’s surface, or the 

topmost atomic layers of the catalysts can be involved in the reaction. 

However, the influence of the catalytic effect is restricted to the range of an 

atomic diameter into the gas phase.

The process of heterogeneous catalysis includes the adsorption of one or more of the 

reactants on to the surface of the catalyst at active sites, where one or more of the 

reactants adsorb to the catalyst’s surface. The active site is a part of the surface which

3
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is particularly good at adsorbing reactants molecules and helping them to react. The 

adsorption process involves some kind of interaction between the surface of the 

catalyst and the reactant molecules which makes them more reactive. This interaction 

might be an actual reaction with the catalyst’s surface, or some weakening of the 

bonds in the attached molecules. After the adsorption, both of the reactant molecules 

might be attached to the surface, or one might be attached and hit by the other one 

producing product and moving freely in the gas or liquid. This process is called 

desorption of the product molecules. Desorption simply means that the product 

molecules leave the catalyst’s surface to the gas or liquid phase. This leaves the active 

site available for a new set of molecules to attach to and react. A good catalyst needs 

to adsorb the reactant molecules strongly enough for them to react. Heterogeneous 

catalysis has many advantages, such as: easy separation of product and catalyst, high 

catalyst life time, production of chemicals, cleaning of waste and exhaust gas streams 

(environmental catalysis), and energy conversion- fuel cell.

1.4. Oxidation catalysis

This introduction is not intended to present a complete survey of all published works 

on oxidation catalysis, but rather to provide background details of this process and 

summarise commercial reactions in the petrochemical industry using this process. 

Challenges facing industrial/academic researchers and recent important developments 

in catalytic oxidation reactions, including oxidation by gold catalysis, will also be 

detailed.

There are many types of catalysed reaction used in the petrochemical industry such as 

dehydrogenation, hydrogenation, isomerization, and oxidation. However, oxidation

4
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catalysis processes include the production of chemicals, intermediate via selective 

oxidation catalysis, and environmental removal of pollutants process via total 

oxidation catalysis. The scientific design of the catalysts used in partial oxidation 

processes is a topic of interest for many industrial and academic researchers due to its 

important role in the industrial petrochemical production. Selective oxidation catalysts 

should activate the oxidant, the reactant, but not catalyse the oxidation of the required 

product [3].

Main challenges for the researchers aiming to optimise catalysts for oxidation 

processes are developing an understanding of the catalyst structure, the active site of 

the catalyst, employing useful preparation techniques and characterization of the 

catalyst as well as understanding the reaction mechanism and catalyst activity by 

studying the reaction kinetic [4]. The main aim of recent development in the 

heterogeneous oxidation catalysis is to look for the alternative, less expensive 

reagents and to reduce the environmental impact of chemical production process. A 

recent goal is also the selective oxidation of alkanes. Some of these reactions exist in 

the commercial process, such as production of acetic acid and maleic anhydride from 

ethane [5] and n-butane [6 ] respectively, using mixed oxide catalysts. Another recent 

interesting development in heterogeneous oxidation catalysis is oxidation by 

supported gold catalysts.

1.5. Oxidation by gold

1.5.1. Physical and chemical properties of gold

Gold’s atomic number is 79; it is located in the third row of transition metals in the 

periodic table, in group IB. Its electronic configuration is [X e]4 /45</l06s', and the
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common oxidation states are +1 and +3 . Gold is the least reactive of the noble metals 

and due to its electronegativity it does not react directly with electronegative elements 

such as oxygen [7].

1.5.2. History of catalysis by gold %

Due to the unreactivity of gold, it was neglected as a catalyst for a long time. The first 

hint of gold catalysis was when Bond and Sermon prepared dispersed Au on Si0 2  as 

small nanoparticles [8 ]. The interest in gold catalysis was revitalised when Hutchings 

predicted in 1985, and then confirmed, that Au would be the most active catalyst for 

the hydrogenation o f acetylene to produce vinyl chloride [9]. After that, Haruta [10] 

demonstrated that gold could catalyse CO oxidation at sub ambient temperature. This 

was a particularly exciting development in gold catalysis. In the last decade, there has 

been a rapid growth o f interest in the catalysis by gold. Fig. 1.1 and 1.2 show the rapid 

increase in patents and publications in this subject.

3 0
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Figure 1.1 Num ber of patents based on catalysis by gold 1111
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Figure 1.2. Number o f  publications based on catalysis by gold 1111

1.5.3. Importance and applications o f gold catalysis

Many senior researchers envisage a good future overview for gold catalysis. 

Hutchings said " Recent research shows that for a number o f  reactions gold can 

provide the highest catalytic activity when compared with other metals " and Bond 

said " We may confidently expect further developments, and early in the new 

millennium gold should take its place alongside its neighbours as a vital member o f  

the armoury o f  transition metal catalysts " [11] and Haruta said " This type o f  element 

is ideal fo r  use in the 21st century! What other element can meet all these objectives as 

well as gold does?" [12], Supported gold catalysts can be used for a wide range of 

reactions that have potential for applications in chemical processing, pollution control, 

and fuel cells. Hydrogenation o f acetylene, oxidation o f CO and hydrocarbons, 

selective oxidation o f hydrocarbons, selective hydrogenations, water gas shift 

reaction, reduction o f NO, hydrogen and oxygen reaction and removal o f CO from

7
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hydrogen streams are catalysed by supported gold catalysts [13]. Oxidation reactions 

of hydrocarbons and CO will be introduced in detail later in this chapter.

1.5.4. Selection of suitable metal oxide support for gold catalysis

Type, state and structure are important factors in selecting the proper support. The 

support should be thermostable with a high surface area and suitable mechanical 

strength to be able to disperse the active component, in this case gold, and to increase 

its thermal stability and therefore increase the catalyst’s life. The excellent catalytic 

performance by gold can be brought about by the proper selection of support 

materials. Gold becomes active as a catalyst when it is highly dispersed and deposited 

on reducible semiconductor metal oxide or hydroxides of alkaline earth metals [14]. 

Many examples of supports will be presented in the introduction to preparation 

methods for supported gold catalysts later in this chapter.

1.6. CO oxidation

CO oxidation is an important reaction for the removal of CO from air to produce high 

purity nitrogen and oxygen [15]. It is also an important reaction for breathing 

equipments. The industrial catalyst used for CO oxidation is called hopcalite, which is 

a mixed oxide of copper and manganese (CuM ^O j) [16]. However, this catalyst is 

deactivated by the presence of water and unstable for long-term use. Haruta was the 

first to show that supported Au catalysts are highly effective for the oxidation of 

carbon monoxide at sub ambient temperature [10]. However, it has been known since 

1925 that gold surfaces are able to catalyse the oxidation of carbon monoxide [17]. In

8
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the last decade, there has been a rapid increase in research on CO oxidation using 

supported gold catalysts, and high activity of CO oxidation reaction has been reported 

for a range o f supported gold catalysts at ambient temperature [18, 16]. While gold as 

a metal is known to be non active as a catalyst, any enhancement in the activity in Au- 

metal oxide catalytic systems may be exclusively attributed to the electronic 

interaction and / or the active sites on the interfacial boundary obtained from the 

deposition of gold on a support. The shape of the small gold particles is hemispherical 

and they are stabilised by contact with an amorphous layer. Supported gold catalysts 

with small gold particle size show high catalytic activities for low temperature CO 

oxidation, possibly because the small gold particles not only provide the sites for the 

reversible adsorption of CO but also significantly increase the amount of oxygen 

adsorbed on the support oxides [14].

Gold in the form of sponge, wire, powder and large supported gold particles is non­

active for CO oxidation reaction. Much higher activity is shown by oxide supported 

small gold particles (<5 nm), choice of support is very important, the method of 

preparation is critical, and the pre-treatment mode is important. All these points are 

agreed by researchers. However, there are still some controversies concerning how 

gold catalyses oxidation of CO, the stability of the catalyst with time, the best 

conditions for calcination, and which is the catalytically active gold species, Au° or in 

oxidised species [19]. The figure below presents a suggested mechanism for CO 

oxidation reaction.
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Au° + CO  -> Au°...CO (1)
Au™ + GHj' -> AuD...OH (2)
Au0...CO + Au'...OH -» AnI..COOH + Au° (3)
O 2 + Ds' O i'—Ds (4)

AuD...COOH + O /. ..□*-» Au11 + C O i + H O / . .H  (5)
Au"...COOH + H O /...□* -> Au" + C Q 2 +

2 O H s" + Cs (6)

Au** + 0 S Au1" + u s" (7 )

Figure 1.3. Proposed mechanism steps for CO oxidation |19|

In the above mechanism, the authors suggested that that both Au° and Au+ present on 

the surface of the support and both are responsible for the activity of the supported 

gold catalyst. However, the authors noted that this mechanism might not be the same 

for all catalysts.

1.7. Hydrocarbon Oxidation catalyzed by supported gold catalysts

1.7.1. Low-temperature catalytic combustion

To-date, only methanol can be catalytically oxidised by gold at room temperature 

[20]. The complete oxidation of methanol, formaldehyde, and formic acid can be 

brought abut by gold supported on TiC>2, a -F e 2C>3, or C 03O 4, which is almost as active 

as Pd or Pt supported on A I2O 3. The oxides of transition metals of group VIII and the 

hydroxides of alkaline earth metals are suitable supports for this reaction [15].

10
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Haruta et al. [21] prepared Au, Pd and Pt catalysts on a-Fe2C>3 and AI2O3 supports. 

They concluded that an Au/a-Fe2 0 3  catalyst is as active as Pt, PCI/AI2O3 catalysts for 

the oxidation of methanol, formaldehyde, and formic acid. They reported also that the 

pH of a starting solution, metal loading, and the calcination atmosphere are very 

important factors for preparing highly active supported gold catalysts.

1.7.2. Catalytic combustion of hydrocarbons

Hutchings at el. [22] prepared several Au/MgO catalysts ranging between 0.04 and 15 

wt % o f Au loading and investigated them for methane oxidation. Mg(OH)2 was 

pelleted and sieved to a particle size of 600-1000 pm and then calcined in air at 450 

°C for 24 h and 24 h at 800 °C to obtain MgO. The calcined support was impregnated 

with an aqueous solution of HAuCU, the catalysts were dried at 1 1 0  °C for 16 h and 

then calcined for 800 °C for 3 h. The prepared catalysts were tested for methane 

oxidation (CH4 46%, O2 8 %, He 46%) at GHSV 750 h*1 and the reaction temperature 

was 750 °C. The addition of gold to MgO using the impregnation procedure had a 

significant effect on the MgO structure; the most significant effect of the addition of 

gold on the structure of MgO was that the crystallite size of MgO increased by 

increasing Au loading. This effect depended on the level of loading of gold on MgO. 

Also, two morphologies were indicated in the Au/MgO catalyst, two dimensional Au 

rafts, observed at low gold loading, and three dimensional Au particles between 5-10 

nm in diameter. Catalyst activity data showed a significant effect with respect to Au 

loading. Three clear types of activity were observed using Au/MgO catalysts. The 

first type was observed at very low Au loadings (0.04 wt %); in this type of activity,

11
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methane coupling activity was observed. However, there was a decrease in CH4 

conversion, although the surface area increased when comparing the results of MgO 

only. This decrease was because of the decrease in the formation of the coupling 

products, due to blocking or poisoning of the surface sites by gold. However, higher 

gold loading showed a decrease in both surface area and methane conversion. The 

second type of activity was observed at intermediate loading of gold (up to 2  wt %); 

in this type of activity, by increasing the loading of gold, CO formation was increased. 

The third type of activity was observed at a high concentration of gold (>5 wt %) and 

led to an increase in the formation of CO2, which appeared to be due to the oxidation 

of CO obtained.

Smith et al. [23] studied the activities of coprecipitated gold on transition metal oxides 

for methane oxidation. The observed trend in activities was A11/C03O4 > Au/NiO > 

Au/MnOx > Au/Fe2 0 3  »  Au/CeOx. XPS analysis showed the presence of reduced 

and oxidised gold and also that all gold supported catalysts had Na with a 

concentration higher than 5wt%, indicating that Na was in the form of carbonate 

(from the precipitant Na2C0 3 ). The authors concluded that methane oxidation 

activities increased by increasing the oxidation state of gold. Haruta confirmed that 

the AU/C03O4 catalyst showed the highest activity for combustion of hydrocarbons 

[15].

Su et al. [24] prepared a new generation of gold-vanadia catalysts supported on 

mesoporous zirconia and titania supports. The mesoporous supports were prepared 

using the surfactant templating method. Gold and vanadia were deposited on these 

supports. The authors reported that the vanadia loading stabilised the structure of both

12
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supports and this effect was stronger for zirconia than titania. They reported also that 

the presence of gold reduced the oxidation state of vanadia from Vs* to V3*. The 

catalytic activity of the prepared catalysts was strongly dependent on the preparation 

procedure. On both supports, when vanadia was loaded on the supports first, the 

catalytic activity for complete benzene oxidation was lower than when gold was 

deposited initially. Also, when the gold-vanadia catalyst was deposited on 

mesoporous titania, a strong synergistic effect between gold and vanadia was 

observed and, therefore, gold-vanadia on mesoporous titania showed higher activity 

than gold-vanadia deposited on mesoporous zirconia.

1.7.3. Selective partial oxidation

Hutchings et al. [25] studied the direct formation of hydrogen peroxide from H2/O2 

using supported gold catalysts. They prepared several gold catalysts supported on 

different oxides. Au/ZnO was prepared by coprecipitation procedure while was 

A11/AI2O3 prepared by the impregnation procedure. The catalysts were tested for 

hydrogen peroxide formation at 2 °C using methanol as a solvent. The results showed 

that the supported gold catalyst produced more H2O2 than the supported Pd catalyst. 

The authors also reported that when gold was alloyed with Pd as Au:Pd (1:1 by wt), 

more H2O2 was produced than with the supported gold catalyst, indicating that Pd 

was a promoter for the gold catalyst. They concluded that the effect of Pd on the 

hydrogen peroxide yield was either due to a decrease in the rate of H2O2 

decomposition or an enhancement in the rate of H2O2 formation.

13
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When Au, Pd, and Pt are supported on Bi2Mo3 0 i2, which is an active phase for the

partial oxidation of propylene to acrolein, only gold increases the yield of acrolein 

maintaining selectivity unchanged while Pd and Pt enhance complete oxidation of 

propylene to CO2 [15].

Hutchings et al. [26] studied the effect of doping lithium and gold on the structure 

morphology of MgO and the catalytic performance of methane oxidative coupling on 

this catalyst. MgO was prepared by thermal decomposition of Mg(OH)2. Li+ was 

doped on MgO by the incipient wetness impregnation method while Au was doped 

using the multiple impregnation method. The authors found that the addition of Li+

decreased the surface area of the support and increased the grain size of the

crystallites, while gold did not increase the crystallite size to the extent observed with 

lithium. They reported that doping lithium increased the activity and selectivity to C2 

hydrocarbons while gold decreased the selectivity of hydrocarbon and led to increased 

selectivity o f CO2. They reported also that Li+ pinning could result in the formation of 

an active site for methane activation such as [Li+0  ] centres at the catalyst’s surface. 

These centres are considered to be responsible for the methane coupling reaction. 

Gold is less selective for methane coupling.

Recently, Grzybowska et al. [27] prepared a range of gold catalysts supported on 

different supports using the deposition-precipitation method. The catalytic behaviour 

of Au/oxide support catalysts in the oxidation of CO, propane and propene was found 

to depend mainly on the nature of the support. They reported that the activity in CO 

oxidation was higher for Au-based catalysts with transition metal oxides as the

14
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supports than for those supported on oxides of main group elements (Mg, Si, Sn). 

Oxidation of propane gives carbon oxides as the only reaction products. Propene 

oxidation (in the presence of H2) gives at temperatures higher than ~150°C 

oxygenated products (mainly propanal and ethanal) on Au supported on oxides of 

main group elements, whereas catalysts with transition metal oxides perform in these 

conditions mainly total combustion. Propene oxide, as the main reaction product, was 

observed only at low temperatures (<150 °C) for catalysts containing Ti in the 

support, with a yield of ~ 1%.

1.8. Supported gold catalysts preparation methods

The common methods for preparing supported gold catalysts require a combination of 

several operational steps which can be described as: (i) introduction of the metal 

source on the support by impregnation, ion-exchange, coprecipitation and deposition- 

precipitation, and (ii) drying and calcination [28]. The impregnation method is not an 

ideal route for the preparation of supported gold catalysts, as it can leave impurities in 

the catalyst, the gold particles formed are very large (10-30 nm), and it does not give a 

high dispersion of gold species on the surface of the support.

The ion exchange method is especially effective with zeolites. In this preparation 

method, cations of the active metal replace the cations on the support surface or 

within its structure. Gold particles should be dispersed on the zeolite first and then 

calcined to form very small particles. This method has a disadvantage, which is the 

limited numbers o f cationic gold complexes that can be formed [28]. Coprecipitation
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and deposition-precipitation methods obtain highly active supported gold catalysts 

because they provide the desired intimacy of contact between the metal and the 

support, and small (<5 nm) Au particles can be obtained by these methods. In order to 

produce active catalysts via coprecipitation and/or deposition-precipitation 

procedures, many variables have to be controlled, these variables will be described 

later. The coprecipitation procedure produces catalysts with uniform distribution of 

the active component on the support. It is the preferred procedure to prepare 

supported catalysts with a metal loading higher than 10-15%. Metallic gold with a 

narrow size distribution can be produced by the deposition-precipitation method. This 

method also prevents the formation of rafts of gold clusters, which are often observed 

in coprecipitated samples. My research study was based on coprecipitation and 

deposition methods; therefore, these two methods will be discussed in more details in 

the next subsections.

1.8.1. Coprecipitation

In the coprecipitation procedure, the solutions of the active metal salt and a salt of the 

compound that will be converted into the support are contacted under stirring with a 

base in order to precipitate as hydroxides and/or carbonate. The precipitation step is 

followed by filtration, washing, and then hydroxides and/or carbonate will be 

converted to oxides by heating. This technique can be applied to salts of metals in the 

first row of the transition series in groups 4-12 and also to Al and Mg, which can be 

precipitated as hydroxides or hydrated oxides [7].
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The choice of salts and/or alkali depends on their solubility in the solvent (water), and 

on avoiding the introduction of compounds that can have negative effects on the final 

catalyst, such as chlorine, which is a well known poisoner of the catalyst. Therefore, 

nitrate salts or organic compounds, such as oxalate, are preferred to be used as sources 

of the precipitated solutions. Alkali carbonates, bicarbonates, and hydroxides can be 

used as precipitant agents.

In order to produce active catalysts via coprecipitation, many variables have to be 

controlled, such as; (1) temperature; (2) pH (for the multicomponents system, the pH 

(value and variations) has to be carefully controlled in order to avoid the precipitation 

of components at a different sequence that may affect the final structure of the 

catalyst. In coprecipitation method, the final pH is an important variable since the 

components present in the reaction mixture precipitate at different pH values [29]; (3) 

mixing rate; (4) ageing time, which often allows the precipitate to become a more 

crystalline structure; and (5) finally, filtering and washing [28].

1.8 .1.1 .Advantages and disadvantages

The coprecipitation procedure tends to produce catalysts with a uniform distribution 

of active components on the support and is the preferred procedure to prepare 

supported catalysts with a metal loading higher than 10-15%. Gold particles, 

hemispherical in shape; are firmly attached to the support by epitaxial contact, 

dislocations, or contact with an amorphous layer. However, in the coprecipitation

1 7
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method, the copresence of rafts of gold clusters, which inhibit the catalytic activity in 

some cases, is observed [14].

1 .8 .1 .2 .Precipitation agent

By the addition of base as precipitant, the metals are precipitated as hydroxides form 

and, can be transformed to oxides by calcination. It is known that in the recent 

literatures Na2CC>3 is still very widely used as precipitant in the coprecipitation 

process, and that sodium ions can be difficult to remove by washing. Bond and 

Thompson suggested ammonium carbonate or bicarbonate as precipitation agents 

because the ion introduced by this reagent ions (NH4 and CO3 *) decompose by 

calcination [7].

In 1989, Haruta et al. [10] prepared supported gold catalysts by coprecipitation from 

an aqueous solution of HAuCL* and the nitrates of various transition metals. 

Calcination of the coprecipitates in air at 400 °C produced ultrafme gold particles 

smaller than 1 0  nm which were uniformly dispersed on the transition metal oxides. 

Among them, Au/a-Fe2C>3, AU/C0 3O4, and Au/NiO were highly active for H2 and CO 

oxidation, showing markedly enhanced catalytic activities due to the combined effect 

of gold and the transition metal oxides. For the oxidation of CO, they were active, 

even at a temperature as low as -70 °C.

Hutchings et al. [18, 30] have used an inverse coprecipitation method to prepare gold 

catalysts supported on iron oxide and tested them for CO oxidation. Several gold

1 8



Introduction Chapter 1

supported on iron oxide rich in ferrihydrite (FesH O g^^O ) catalysts were prepared 

based on the initial concentration of gold source, by the slow addition of an aqueous 

solution of Na2CC>3 to a mixture of HAuCU and Fe2(N0 3 )3.9 H2 0 . The precipitate 

product was cooled, filtered and washed with water several times to remove C f and 

Na+ ions. Afterwards, these gels were kept in the air for 4-6 weeks and then some 

were then dried in the oven at 120 °C for 18h, while other samples were calcined at 

400 °C for 3 h. The inverse coprecipitation method has been previously described by 

Wagner et al. [31]. The difference between Hutchings’s synthesis and that of Wagner 

is that in Hutchings’s synthesis no digestion step was done so that little or none 

goethite or hematite would be present in the dried samples. The authors concluded 

that the highest activity for CO oxidation was observed in a dried sample that 

contained ferrihydrite and a non-crystalline and possibly hydrated gold oxyhydroxide 

phase; AuOOH.xH2O.The calcination step changed the ferrihydrite to hematite and the 

gold transformed to metal particles with particle size of 3-5 nm. However, the 

calcined catalysts showed poor catalytic activities for CO oxidation.

Guczi et al. [32] prepared a 1 wt% Au/Fe2 0 3  catalyst by the coprecipitation method. 

The structure o f the sample in the as prepared, oxidised and reduced states was 

investigated by means of X-ray photoelectron spectroscopy (XPS), transition electron 

microscopy (TEM), electron diffraction (ED), and X-ray diffraction (XRD). The 

structures of the samples after various treatments and their activity in CO oxidation 

were compared. The results showed the stability of gold particle sizes during these 

treatments. However, after oxidation, a slight shift in the Au 4f  binding energy 

towards lower values points to the formation of an electron-rich state of the metallic
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gold particles compared to that revealed in the as-prepared sample. The authors 

suggested that a structural transformation had occurred along the gold/support 

perimeter during the treatments and they proposed a possible mechanism for the effect 

of the oxidation treatment. They concluded that in order to enhance the catalytic 

activities for the prepared catalysts for CO oxidation reaction, an electronic 

interaction between gold particles and the support was required. Also, the most active 

samples contained gold in the metallic state and the support, Fe2 0 3 , in hematite phase. 

Kahlich et al. [33] prepared 3.15 wt% Au/a-Fe2 0 3  by the coprecipitation method and 

studied the selective low temperature oxidation of CO in H2 rich gas conditions. Two 

aqueous solutions, HAUCI4.3H2O, Fe(N0 3 )3.H2 0 , and another containing Na2C0 3  , 

were added together and gradually added into a glass beaker with distilled water 

which was stirred. The reaction mixture was kept at 80 °C and the pH was controlled 

within 8-8.5 while the two solutions were being added (coprecipitation at constant 

pH). After coprecipitation, the mixture was filtered and the precipitate was washed 

with hot water until it was chloride free (indicated by reaction with silver nitrate) and 

dried at 80 °C in air for 12 h, followed by calcination in flowing air at 400 °C for 2 h. 

Finally, the catalyst was ground. The average particle size of the ground catalysts was 

20 pm and the BET surface area decreased from 250 m2/g, for the dried catalyst, to 55 

m2/g for the calcined catalyst. The catalytic activity of this catalyst was compared 

with the catalytic activity of Pt/y-AbCh yhe results showed that Au/a-Fe2 0 3  had the 

same activity and selectivity at a much lower temperature (80 °C compared to 200 

°C).

Gupta et al. [34, 35] reported several studies on the adsorption of Au supported on 

iron oxide obtained by coprecipitation and on the effect of the reduction pre-
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treatment. The effect o f the pre-treatment of gold supported on iron oxide catalysts 

prepared by coprecipitation was also investigated by Horvath et al. [32]; the 

difference between their study and Gupta’s study was Horvath used a different order 

of addition of the reactants. They prepared 1 wt% Au/Fe2 0 3  catalysts by a 

coprecipitation method using an aqueous solution of HAuCU and Fe2(N0 3 )3.9 H2 0  

and added in a 1M aqueous solution of Na2CC>3 at 75 °C under stirring. The 

coprecipitate was kept in the solution at 77 °C for 18 h, and then washed several times 

with hot water and dried at 80 °C for 3 days. The results showed stable gold particle 

size during treatments. In CO oxidation, the oxidised sample displayed the highest 

activity and it was suggested that this could be the result of the cooperative effect of 

goethite, FeO and the electron rich metallic gold nanoparticles. They suggested that a 

structural transformation occurred along the gold/support perimeter during treatments.

Lee et al. [36] prepared Au-Mn- coprecipitates and dried them at several temperatures 

and in different atmospheres; the coprecipitates were tested for low temperature CO 

oxidation without any additional thermal treatment. The authors reported that samples 

dried at 120 °C in air exhibited the highest activity for CO oxidation.

Hutchings et al. [37] prepared a range of ZnO supported gold catalysts by 

coprecipitation and studied the effect of Au loading, reduction temperature and 

thiophene-pretreatment on their catalytic performance for buten-2 -enal hydrogenation. 

A mixed solution o f Zn(N0 3 )2-H2 0  and HAUCI4.H2O (in the appropriate ratio to give 

a gold loading of 0.25,0.5,1,2,5 and 10 wt%) was heated to 80 °C, and 1 M Na2CC>3 

solution added with continuous stirring until the pH reached 9. The precipitate was
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aged for 20 mins, filtered, washed with hot water, dried overnight at 110 °C and 

calcined at 400 °C for 4h. The catalysts were found to be selective for the formation 

of the unsaturated alcohol, but-2 -en-l-ol rather than the saturated aldehyde, butanal, 

and thiophene to enhance the yield of the unsaturated alcohol. Thiophene 

modification did not affect the gold particle size or morphology, but it seemed to give 

a surface in which the Au sites were electronically promoted by sulphur. The highest 

but-2-en-l-ol selectivities were observed for the 5wt% Au/ZnO catalysts reduced at 

400 C prior to reaction. They suggested that the origin of the high selectivity for this 

reaction was related to the presence of large Au particles (10-20nm) in diameter.

Au/ZnO catalysts prepared by the co-precipitation method with different Au:Zn 

atomic ratios were studied for room-temperature CO oxidation in the 

presence/absence of water in the feed stream by Zhang et al. [38]. They reported that 

the catalysts exhibited excellent catalytic activity and stability compared with pure 

ZnO. Further, it was found that the lifetime of Au/ZnO catalysts was improved 

significantly by increasing CO concentration but was decreased by the addition of 

H2O in the feed stream. The deactivation may be related to the sintering of metallic 

gold and the accumulation of carbonate-like species in the catalyst. They have also 

investigated the calcination temperature and precipitant effect [39] on CO oxidation in 

the presence or absence of H2O in the gas stream. They concluded that ZnO is a more 

effective support than the hydrozincate, and the small ZnO particles and wide surface 

areas are beneficial to the catalytic performance for CO oxidation over Au/ZnO 

catalysts. The stability is inversely proportional to the amount of hydrozincate in the 

Au/ZnO catalysts. Also, they concluded that the precipitant affects the particle size of
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gold and ZnO, and Na2 0 3  is the best precipitant to produce small gold and ZnO 

particles. The small particle size of gold is beneficial to the improvement of stability 

for CO oxidation. Sintering of Au and the formation of hydrozincate might decrease 

the activity of Au/ZnO catalysts. They reported that the Na+ ion can suppress the 

accumulation of carbon-like species, and controversially suggested that this ion may 

have a positive effect on the CO oxidation performance for Au-based catalysts.

Galvagno et al. [40] reported an FT-IR study of CO adsorbed on coprecipitated 

Au/Fe2 0 3  samples in order to identify the active species responsible for CO oxidation. 

FT-IR results showed that after preparation and exposure to the CO/O2 mixture gold 

was present on the surface mainly as Au+ and Au° species. The authors reported also 

that Au+ species were more active towards CO oxidation than Au°. However, Au+ was 

not stable and tended to be irreversibly reduced to Au° during the reaction, accounting 

for the irreversible deactivation observed. In order to prepare active and stable gold 

catalysts for CO oxidation, the stabilisation of Au+ species on the support is required.

Demczyk et al. [41] prepared gold particles supported on Fe2 0 3  and treated them in 

air at 200 °C and above. Their study showed that the heat treatment temperature 

effected changes in the structural properties and performance of the catalyst. Two 

characterisations techniques were used, XRD and Mossbauer spectroscopy. They 

observed an increase in crystallinity in the iron oxide support as a result of increasing 

the calcination temperature. The gold particle size also increased and more uniform 

distribution of the gold particles was obtained by increasing the calcination 

temperature as well.
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Manganese oxide-supported gold (Au/MnO*) catalysts were prepared by a 

coprecipitation method and tested for low-temperature (< 100°C) carbon monoxide 

oxidation in stoichiometric mixtures of CO and O2 containing no carbon dioxide in 

the feed gas. A very small decay in Au/MnOr catalysts was observed, possibly due to 

carbon dioxide retention. The optimum gold content was determined to be 10 % of the 

manganese content [42].

Titania-supported gold catalysts were prepared by different preparation methods; 

impregnation, deposition-precipitation, and coprecipitation by Vannice et al. [43]. 

These catalysts were extremely active for room temperature CO oxidation; however, 

deactivation was observed after 2-3 h under their reaction conditions for the 

impregnated Au/TiCh The catalyst prepared by coprecipitation had much smaller Au 

particles size than the impregnated Au/Ti0 2  and was active at 273 K after either low 

temperature reduction or calcination pretreatment.

1.8.2. Deposition-precipitation

In the deposition-precipitation procedure, a metal hydroxide, carbonate or basic 

carbonate precipitates on the particles of a powder support by addition of a 

precipitant. Due to the precipitation of the metal hydroxide, carbonate or basic 

carbonate particles inside the pores of the support, nucleation and growth on the 

support surface will result in the uniform distribution of small particles on the support. 

In contrast, rapid nucleation will lead to large particles and inhomogeneous 

distribution. Therefore, the large particles will be unable to enter into the pores and
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will deposit only on the external surface. To produce superior precipitation 

distributions of the metal on the support surface, an effective mixing and a very slow 

addition of the precipitant solution must be achieved. After the deposition- 

precipitation step, the catalyst is filtered, washed, and dried. The sole disadvantage of 

the deposition-precipitation procedure is the difficulty in obtaining a catalyst with a 

high concentration of the active metal [28].

In the deposition-precipitation method, the active species precipitate from the solution 

and interacts with the support due to the increase in the pH that precipitates the 

hydroxide or basic carbonate of the active component. This method, if well 

performed, leads to a very good interaction between the active component and the 

support.

1.8.2.1.Advantages & disadvantages of DP

The advantage of the deposition-precipitation method is the maintenance of the 

precipitation of the active component only on the surface of the support and avoiding 

its interaction with the bulk of the support. This achieved by avoiding local high 

concentrations of the precipitant [7]. Also, deposition-precipitation leads to narrower 

particle size distribution. It is also recommended that the support should have high 

surface area, larger than 50m2/g [44]. This method also prevents the formation of rafts 

of gold clusters, which were often observed in coprecipitated samples [14].

2 5
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1 .8 .2 .2 .What makes gold catalysts prepared by deposition-precipitation 

active?

The catalytic properties of gold nanoparticles prepared by the deposition-precipitation 

method on metal oxide supports have been reported in several papers [7, 14, 45]. The 

catalytic activity of gold supported catalysts is defined by three important factors: 

contact structure between gold particles and support, selection of a suitable support, 

and the gold particle size. The first factor is the most important because it was 

suggested from both characterisation and catalytic results that CO reaction may occur 

at the perimeter interfaces around gold particles.

1 .8 .2 .3.Contact structure between gold particles and support

In the deposition-precipitation method, gold is deposited on the metal oxide support 

surface in the form of Au(OH)3 or AuOOH. After calcination, the base gold oxide is 

decomposed to metallic gold and this interacts with the support surface. Gold particles 

stay as nanoparticles even after calcination at temperatures above 300 °C due to the 

strong contact of the gold nanoparticles with the metal oxide support if they are 

carefully distributed on the surface of the metal oxide support during preparation. 

Controlling the pH in the range 6-10, and the preparation temperature in the range 50- 

100 °C are important preparation parameters that permit a uniform distribution of gold 

particles on the surface of the support to form and to perform the selective deposition 

of Au(OH)3 on the surface of support with no loss of gold in the solution. Disordered 

structures are usually obtained by the deposition-precipitation method especially in 

the metal-oxide interface. This may result from crystallisation of the surface

2 6
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hydroxide layer formed during deposition-precipitation in aqueous solution. 

Consequently, the crystalline surface is enclosed with an amorphous phase, in which 

small gold particles appear. This boundary structure may play a role in the 

stabilisation of small gold particles against agglomeration [14].

1.9. Selection of a suitable support

For CO oxidation using gold catalysts, many metal oxides have been used as supports. 

The semiconducting metal oxides (Ti0 2 , Fe2 0 3 , C03O4 and NiO) exhibit more 

stability as supports for gold catalysts than insulating metal oxides (AI2O3 and Si0 2 ) 

[14, 44]. Mg(OH)2 was found to be the preferred support for gold catalysts with high 

activity, even at -77 °C. However, the results of CO oxidation using Mg(OH)2 support 

show that this catalyst is strongly structurally dependent. The stability of the catalysts 

is limited to 3 to 4 months [1 0 ]. C03O4 was found to be the optimal support for gold 

supported catalysts for the combustion of hydrocarbon [23, 46]. Only Ti0 2  and Ti0 2 - 

silicate have been found to be effective supports for gold catalysts used for 

hydrocarbon selective oxidation, the anatase form of Ti0 2  making gold selective as an 

oxidation catalyst. However, rutile or amorphous Ti0 2  were not active as supports 

[47-50]. The reason for this is not clear yet. TEM analysis has shown that gold 

particles more contacted on anatase than on the other supports.

Park et al. [51] prepared gold supported on Fe2 0 3 , TiC>2 and AI2O3 using the 

deposition-precipitation method to study the effect of treatment conditions in CO 

oxidation. The precipitant was NaOH; the catalyst was dried at 100 °C, and calcined at
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five temperatures 200, 300, 400, and 500 °C. Catalysts exhibited decreasing activity 

with increasing calcination temperatures. XPS analysis showed the change in Au 

phase from AU2O3 to metallic gold when the calcination temperature was increased. 

Therefore, the oxidation states of gold were important for CO oxidation, the oxidised 

gold species being more active than metallic gold. However, A11/AI2O3 catalysts 

showed lower activity than that of the other two catalysts supported on Fe2 0 3  and 

T i02.

Haruta et al. [14] prepared a number of catalysts (Au/Fe2 0 3 , A11/C03O4, and Au/Ti0 2 ) 

using the deposition-precipitation method. Catalysts were calcined in the range 200- 

400 °C. They concluded that the deposition-precipitation method can lead to a high 

dispersion of gold on the surface of the metal oxide supports. These catalysts were 

active for CO oxidation using fixed bed reactor, 200mg of catalysts, and flow rate of 

67ml/min of 1 % CO in air. The authors also reported that the deposition-precipitation 

method leads to disordered structures in the metal-oxide interface. They reported that 

this disordering in the structure might occur due to the crystallisation of the surface 

hydroxide layer formed during deposition-precipitation in aqueous solution. This 

crystalline surface is covered with an amorphous phase, where small gold particles are 

located. This structure may enhance the small gold particles to be stable against 

coalescence. They reported that the small gold particles that are formed offer sites for 

reversible adsorption of CO and increase the amount of oxygen adsorbed on the 

support surface. In further research [21], they concluded that the catalytic 

performance of supported gold catalysts depends on the pH, the gold loading and the 

calcination temperature. These parameters are described in Fig. 1.4.

2 8
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Figure 1.4. The mean particle diameter o f  Au as a function o f  the pH o f  HAuCI4 solution |2I |

Andreeva et al. [52] prepared a number o f gold catalysts supported on Fe2 C>3 , ZnO, 

ZrC>2 as well as mixtures o f these oxides by the deposition-precipitation method. All 

o f these catalysts were tested for water gas shift reaction.

CO + H20  H2 + C 0 2 

The activity o f the catalysts depended strongly not only on the high dispersion of 

gold particles on the surface o f the support, but also on the nature and textural 

structure o f the supports, with the highest activity reported for Au/Fe2 0 i and 

Au/Zr02- They reported that there are some surface defects present in the amorphous 

support, which increases the interaction between gold particles and the support, which 

prevents gold agglomeration to bigger particles. These catalysts were, however, not 

evaluated for CO oxidation.

Grisel et al. [53-55] prepared a number o f gold catalysts (AU/AI2O3 and 

Au/M 0 x/Al2 0 3  (M= Cr, Mn, Fe, Co, Ni, Cu and Zn) using DP method with urea as 

the precipitant. The multicomponent catalyst showed increased conversion to CO
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oxidation, while Au/MOx catalysts were less active. They concluded that the increase 

in activity of the multicomponent catalyst was related to Au particle size, and there 

was little influence of the nature of MOx used.

Haruta et al. [56] prepared Au/Mg(OH)2 using the modified DP method to produce a 

catalyst with a 5% gold loading in the icosahedral symmetry by extending the 

deposition time to 3 days with slow addition of HAUCI4.3 H2O to a suspension of 

MgO. The catalyst was calcined at 250 °C for 100 min in air. CO oxidation studies 

showed 45% conversion of CO at 180 °C, in the presence of water. However, no 

details were to define the GHSV.

Jia et al. [57] prepared a 10% gold supported on AI2O3 via the deposition-precipitation 

procedure and then tested for hydrogenation of ethyne and ethene. Ethyne and 

hydrogen reacted readily to produce ethene in the temperature range between 40 and 

250 °C, At these reaction temperatures no ethane was produced. The hydrogenation of 

ethene to ethane on this catalyst occurred only at temperatures higher than 300 °C. 

The author proposed that the activity of the selective hydrogenation of ethyne over the 

A11/AI2O3 catalyst depended on the size of the ultrafine gold particles deposited on 

AI2O3, which showed a maximum activity at a diameter around 3 nm.

Kung et al. [58] prepared several A11/Y-AI2O3 catalysts using the deposition- 

precipitation method. They found that in the presence of magnesium citrate, the 

Mg/Au ratio was 1.55 in the preparation solution, which had a considerable effect on 

the properties of the catalyst, especially on reducing Au particle size. Catalysts
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prepared without citrate contained larger Au particles, and were less active for CO 

oxidation. They suggested that there might be an optimal average Au particle size of 

about 5-10 nm for the best catalytic activity. They prepared the catalysts at sub­

ambient temperature in order to minimise the presence of gold clusters in solution. 

Later, Kung et al [59] investigated the effect of Cl* on supported catalysts. They 

concluded that Cl* not only agglomerates gold particles during calcination but also 

deactivates the catalytic performance by poisoning the active site. They further 

concluded that the high attraction of Cl* to the gold active site indicates that the active 

site is cationic in part.

Schuth et al. [60] studied the effect of the deposition-precipitation preparation 

parameters such as pH, ageing time, calcination temperature, the order of addition of 

precipitant or gold precursor to support suspensions, and the effect of the support on 

the catalytic activity for CO oxidation. They used two different deposition- 

precipitation methods. In method (A), a solution containing the gold precursor 

(HAuCL*) was added to an aqueous suspension of the support, and the pH adjusted 

with Na2C0 3  to the desired value (5-10). In method (B), the pH of the precursor 

solution was adjusted with Na2C0 3  before addition of the support material. The 

Preparation temperature ranged from room temperature to 70 °C, and the ageing time 

was in the range 2-12 h. The material was then filtered, washed and dried at 90 °C, 

and calcined at four temperatures (200, 300, 400, and 500 °C). Four catalysts 

(Au/TiC>2, A11/C03O4, A11/AI2O3 and Au/ZxOi) were prepared in this way and 

optimised to achieve the high catalytic activity of these catalysts. SiC>2 was an 

unsuitable support for the deposition-precipitation procedure. Increasing catalytic
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activity was observed for CO oxidation by increasing the pH in the preparation and 

decreasing the temperature during calcination. The optimum pH was in the range 8-9 

and optimum calcination temperature was 200 °C. XRD and TEM analyses showed 

that increasing catalytic activity was observed by decreasing the gold particle size. 

Also, the evaluation of two samples with similar gold particle sizes showed that 

Au/Ti0 2  was more active than A11/AI2O3. This confirms that catalytic activity, in 

addition to the effect of particle size, is related to the support, which plays a very 

important role in the stabilisation of gold particles.

Boccuzzi et al. [61] carried out a FTIR study of CO adsorption at -183 °C on three 

Au/Ti0 2  catalysts prepared using the deposition-precipitation procedure with a low 

gold loading (1%). Three calcination temperatures (180, 300, and 600 °C) produced 

catalysts of different gold particle mean sizes (2.4, 2.5, and 10.6 nm respectively). 

From these adsorption studies they conclude that: (i) carbon monoxide and oxygen are 

adsorbed on gold step sites competitively and in molecular form at -183 °C; (ii) 

reaction between CO and O2 occurs only when CO is pre-adsorbed on the calcined 

gold particles; and (iii) the reaction does not occur on the catalyst with 1 0 .6  nm of 

gold particles, at that temperature. The same study [62] used a pure anatase support 

calcined at 400 °C to assess the effect of temperature and pressure on the FTIR 

spectra of CO adsorbed on Au/Ti0 2  mentioned in the above studies. In collaboration 

with Andreeva [63], they extended these studies to Au, Ag, and Cu catalysts 

supported on Ti0 2  prepared by the deposition-precipitation procedure and tested these 

catalysts for hydrogen production by CO water gas shift reaction. The Ag/Ti0 2
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catalyst was not active, while Au/Ti0 2  exhibited performance higher than that for 

Cu/Ti02.

A 3% Au/CeOx catalyst [64] was prepared by the same group using the deposition- 

precipitation procedure. Combining water gas shift reaction (WGS) catalytic data with 

FTIR studies, it was reported that the WGS reaction occurs at the boundary between 

metallic gold particles and ceria, where CO adsorption on gold and H20  dissociation 

on ceria take place.

The adsorption and kinetics of CO oxidation on Au/Ti02 prepared by deposition- 

precipitation and on unsupported gold powder were studied [65]. This study 

concluded that CO oxidation reaction occurs on the surface of the deposited gold 

and/or the perimeter interface between gold and T i0 2 However, the precipitant they 

utilized was not specified.

The effect of pH on the Au/y-Al20 3  catalyst prepared by the deposition-precipitation 

method, using AuCh as precursor, was studied by Lin et al. [66] using EXAFS, and 

the results correlated with catalytic activity results for CO oxidation reaction. EXAFS 

showed that for the catalysts prepared at pH in the range from 4.1 to 9.4, Au-(0)-Al 

bonding was observed, indicating the deposition of Au species occurs via the 

coordination of surface hydroxyl groups. However, Au-(0)-Au was found in the 

catalyst prepared at high pH of 10.5, suggesting the deposition of polymeric Au(OH)3. 

Uncalcined catalysts were also evaluated for CO oxidation. The catalyst prepared at a 

pH 10.5 was active for CO oxidation reaction at 50 °C, while the catalyst prepared at
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pH 4.1 had no activity. Based on these results, it was suggested that a specific Au-O 

morphology, such as the polymeric Au(OH)3, might be responsible for the high CO 

oxidation activity of supported Au catalysts.

A modified deposition-precipitation procedure was used by Schumacher et a l [67] to 

prepare Au/Ti0 2  catalyst. Catalytic results showed that the catalyst with small 

metallic Au particles (<2 nm) had a very high activity for low temperature CO 

oxidation, and the activity performance decreased with the accumulation of undesired 

products.

1.10. Aim of the study

The aim of this research is to study the preparation of active supported gold catalysts 

and to investigate the parameters that affect the catalytic activity of these catalysts, 

such as; selection of a suitable support, and selection of the preparation procedure. 

Many variables during the preparation processes, such as preparation temperature, pH, 

and ageing times are also investigated. Several characterisation techniques are used to 

investigate the physical and chemical properties of the catalysts prepared in this 

research study, including BET surface area, X-ray diffraction (XRD), atomic 

absorption spectroscopy (AAS), temperature programming reduction (TPR), and X- 

ray photoelectron spectroscopy (XPS). Catalytic activities of catalysts prepared in this 

research are determined by low temperature CO oxidation reaction and light alkane 

(C1-C3) activation reactions. Correlation between the catalytic activities of catalysts 

over both reactions is investigated and discussed.
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2.1. Catalyst preparation

A series of supported gold catalysts were prepared. Two coprecipitation procedures 

were used; at variable and constant pH and via deposition-precipitation procedure.

2.1.1. Coprecipitation

2.1.1.1. Coprecipitation at variable pH

Several Au/ZnO catalysts were prepared by coprecipitation using a variable pH 

method at constant temperature, in which the pH of the precipitating solution was 

gradually raised. An aqueous solution of HAUCI4.3 H2O (5 ml, 0.058 mol/1, Johnson 

Matthey) was added to an aqueous solution of Zn(N0 3 )2.6 H2 0  (100 ml, 0.1 mol/1, 

Aldrich) and was stirred at 80°C. Aqueous sodium carbonate (0.25 mol/1, Aldrich) 

was added dropwise until the desired pH was obtained. The material was recovered by 

filtration and washed several times with cold and then hot water to ensure removal of 

the sodium and chloride ions. After drying initially at room temperature, the material 

was then dried in an oven at 90°C for 16h. Samples were also calcined in static air at 

400°C for 3 h. Several Au/ZnO catalysts were prepared via this procedure based on 

the difference in pH (5 to 8) and ageing times (no ageing, 3 h, 5 h, 8h, and 12h).

Several Au/Fe2 0 3  catalysts were prepared in a similar manner. An aqueous solution of 

HAUCI4.3 H2O (5 ml, 0.058 mol/1, Johnson Matthey) was added to an aqueous solution 

of Fe(N03)3.9H20  (50 ml, 0.1 mol/1, Aldrich) and stirred at 80°C. Aqueous sodium 

carbonate (0.25 mol/1, Aldrich) was added dropwise until a pH of 8.2 was obtained. 

The material was recovered by filtration and washed several times with cold and then
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hot water to ensure removal of the sodium and chloride ions. After drying initially at 

room temperature, the material was then dried in an oven at 90°C for 16h. Samples 

were also calcined in static air at 400°C for 3 h. The procedure is shown schematically 

in Figure 2.1

Support Solution

Au/Support soluble 
mixture

Co-precipitation 
pH = 4-10

HAuCU solution

Precipitant 
( Na2C 0 3 )

Filtration
Washing

Drying
Calcination

Au / Support

Figure 2.1 supported gold catalyst preparation via coprecipitation at variable pH
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2.1.1.2. Coprecipitation at constant pH

Several Au/ZnO catalysts were prepared using the coprecipitation procedure at 

constant pH and constant temperature. An aqueous solution of HAUCI4.3 H2O (5 ml,

0.058 mol/l, Johnson Matthey) was added to an aqueous solution of Zn(N0 3 )2.6 H2 0  

(l 00 ml, O.l mol/l, Aldrich) and stirred at 80°C. Aqueous sodium carbonate (0.25 

mol/l, Aldrich) was similarly preheated. The two solutions were then fed at a 

controlled feedrate to a thermostated precipitation vessel. The flowrates were adjusted 

dropwise so that the desired constant pH was maintained. Following the precipitation 

process the material was recovered by filtration and washed several times with cold 

and then hot water to ensure removal of the sodium and chloride ions. After drying 

initially at room temperature, the material was then dried in an oven at 90°C for 16 h. 

Samples were also calcined in static air at 400°C for 3 h. Several Au/ZnO catalysts 

were prepared via this procedure based on the difference in pH (5 to 8 ) and ageing 

times (no ageing, 3 h, 5h, 8 h, and I2h).

Several Au/Fe2C>3 catalysts were prepared in a similar manner using an aqueous 

solution of HAUCI4.3 H2O (5 ml, 0.058 mol/l, Johnson Matthey) and Fe(NC>3)3.9 H2 0  

(50 ml, 0.1 mol/l, Aldrich) maintained at 80°C. Several Au/Fe2 0 3  catalysts were 

prepared via this procedure based differences in pH (4 to 8.2) and Au loadings (5%, 

2.5%, l%, and 0.5%). The procedure is shown schematically in Fig. 2.2
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S u p p o rt S o lu tio n

Au/Support soluble 
mixture

C o-precipitation vessel 
pH constant at one level

Au / Support

HAuCU solution

Precipitant 
( Na2C 0 3 )

Filtration
Washing

Drying
Calcination

Figure 2.2 Supported gold catalyst preparation via coprecipitation at constant pH

2.1.2. Deposition-precipitation

The same two supports used in the coprecipitation procedure, ZnO and Fe2 0 3 , were 

also used in this preparation method. However, both supports were prepared via two 

different procedures.
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2.1.2.1. Support preparation methods

2.1.2.1.1. Preparation method A

The ZnO support was prepared by precipitation method using a variable pH method at 

constant temperature, in which the pH of the precipitating solution was gradually 

raised. An aqueous solution of Zn(N0 3 )2.6 H2 0  (100 ml, 0.1 mol/l, Aldrich) was 

stirred at 80°C. Aqueous sodium carbonate (0.25 mol/l, Aldrich) was added dropwise 

until a pH of 8.0 was obtained. The material was recovered by filtration and washed 

several times with cold and then hot water to ensure removal of the sodium ion. After 

drying initially at room temperature, the material was then dried in an oven at 90°C 

for 16 h. Samples were also calcined in static air at 400°C for 3 h.

The Fe2C>3 support was prepared in a similar manner. An aqueous solution of 

Fe(N0 3 )3.9 H2 0  (50 ml, 0.1 mol/l, Aldrich) was stirred at 80°C. Aqueous sodium 

carbonate (0.25 mol/l, Aldrich) was added dropwise until a pH of 8.2 was obtained. 

The material was recovered by filtration and washed several times with cold and then 

hot water to ensure removal of the sodium ions. After drying initially at room 

temperature, the material was then dried in an oven at 90°C for 16h. Samples were 

also calcined in static air at 400°C for 3 h.

2.1.2.1.2. Preparation method B

The ZnO support was prepared using a precipitation procedure at constant pH and 

constant temperature. An aqueous solution of Zn(N0 3 )2.6 H2 0  (100 ml, 0.1 mol/l, 

Aldrich) was stirred at 80°C. Aqueous sodium carbonate (0.25 mol/l, Aldrich) was 

similarly preheated. The two solutions were then fed at a controlled feedrate to a 

thermostated precipitation vessel. The flowrates were adjusted dropwise so that the
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desired constant pH was maintained. Following the precipitation process the material 

was recovered by filtration and washed several times with cold and then hot water to 

ensure removal of the sodium ion. After drying initially at room temperature, the 

material was then dried in an oven at 90°C for 16h. Samples were also calcined in 

static air at 400°C for 3 h.

The Fe2C>3 support was prepared in a similar manner using Fe(N0 3 )3.9 H2 0  (50 ml, 0.1 

mol/l, Aldrich) maintained at 80°C.

2.1.2.2. Supported gold catalysts prepared via deposition- 

precipitation

Au/ZnO catalysts were prepared using deposition-precipitation at variable pH and at 

constant temperature, in which the pH of the suspension was gradually raised. The 

prepared ZnO support (2g) was added to 100 ml water and then stirred at 80°C. An 

aqueous solution of HAUCI4.3 H2O (5 ml, 0.058 mol/l, Johnson Matthey) was added to 

the suspension. Aqueous sodium carbonate (0.25 mol/l, Aldrich) was added dropwise 

until a pH of 9.0 was obtained. The material was recovered by filtration and washed 

several times with cold and then hot water to ensure removal of the sodium and 

chloride ions. After drying initially at room temperature, the material was then dried 

in an oven at 90°C for 16h. Samples were also calcined in static air at 400°C for 3 h.

Au/Fe2C>3 catalysts were prepared using deposition-precipitation at variable pH and at 

constant temperature, in which the pH of the suspension was gradually raised. The 

prepared Fe2C>3 support (2g) was added to 100 ml water and then stirred at 80°C. An 

aqueous solution of HAUCI4.3 H2O (5 ml, 0.058 mol/l, Johnson Matthey) was added to

44



Experimental Chapter 2
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the suspension. Aqueous sodium carbonate (0.25 mol/l, Aldrich) was added dropwise 

until a pH of 9.0 was obtained. The material was recovered by filtration and washed 

several times with cold and then hot water to ensure removal of the sodium and 

chloride ions. After drying initially at room temperature, the material was then dried 

in an oven at 90°C for 16h. Samples were also calcined in static air at 400°C for 3 h. 

The procedure is shown schematically in Fig. 1.3

Support / water

A u/Support
suspension

HAuCU solution

^ ------  Precipitant
( Na.CCh )

Deposition-precipitation 
Ageing 2h

Filtration
Washing

Drying
Calcination

Au / Support

Figure 2.3 Supported gold catalyst preparation via deposition-precipitation procedure
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2.2. Catalyst characterization

Several techniques were used to characterize the prepared supported gold catalysts. 

These techniques are BET surface area analysis, X-ray diffraction analysis (XRD), X- 

ray photo electron spectroscopy (XPS), and temperature programmed reduction 

(TPR).

2.2.1. BET surface area analysis

2.2.1.1. Introduction and theory

This method was discovered by Brunauer, Emmet and Teller (BET) [1]. The principle 

of this method is to use the physical adsorption of an inert gas, such as N2, onto the 

catalyst surface to calculate the total surface area of the solid. This method is based on 

a theoretical model, with the adsorption isotherm measured, which is the nitrogen 

adsorbed volume (Va) against its relative pressure, which is the actual pressure (P) 

divided by the vapour pressure (P0) of the adsorbing gas at the experimental 

temperature. From this by a mathematical analysis the calculation of the monolayer 

capacity of the adsorbent can be determined. The BET equation has the form:-

P / Va (Po-P) = [ (C-l) / (VmC). P / P0 ] + 1 / VmC

Where P / P0 = Pressure / Saturated Vapour Pressure at experimental temperature 

Va = Adsorbed Volume 

Vm = monolayer Capacity

C = Constant related to Adsorption and Liquefaction
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Once the monolayer volume has been calculated the surface area can be determined 

by the following equation 

Surface area = Vm a  Na / M V0 

Where a  = Area of adsorbate = 0.162 m2 at 77 K 

Na = Avogadro Number

M = Mass of the sample

V0 = molar volume of gas

2.2.1.2. Experimental

BET surface area measurements were carried out using a computer controlled 

Micromeritics ASAP 200 and Micromeritics Gemini surface area analyser system. 

Prior to adsorption measurements, all samples were degassed at 100 °C. to ensure 

accurate measurements, approximately 0.3-0.5 gm of sample was used and surface 

areas were determined for the catalysts by measuring the extent of adsorption of 

nitrogen at the boiling temperature of nitrogen, 77 K. The duration of the process 

depends on the type of the materials, which is usually around 40 min for the samples.

2.2.2. Atomic Absorption 

Atomic absorption (AA) is a quantitative spectroscopy technique based on the 

absorption of a monochromatic wave by an atomised element present in the sample. It 

provides an elemental analysis and in this work it has been used for the determination 

of the metal loading in the supported metal catalysts [2]. The analyses were carried 

out with a Varian SpectAA 55B atomic absorption spectrometer. The radiation was 

generated by hollow cathode lamps and the following wavelength, 242nm, was used
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for the analysis o f gold. The samples were atomised using an 0.5/3.5 acetylene-air 

flame. The sample solutions were prepared by dissolving the catalyst using equal 

amounts of 5% HC1 and cone HNO3. After dissolution of the sample, the solutions 

were diluted with water prior to analysis. The calibration curves were constructed 

using a standard lOOOppm Au/HCl solution purchased from Aldrich.

2.2.3. X-Ray Diffraction (XRD)

2.2.3.1. Introduction and theory 

X-ray diffraction is an important analytical technique for chemists. The data of X-ray 

diffraction is used to identify unknown materials: over 150,000 unique powder 

diffraction data sets have been collected from organic, organometallic, inorganic and 

mineral samples. It is also used to study and monitor the purity of products and 

structure refinement, and it determines the crystallite size. X-ray tubes generate X- 

rays by bombarding a metal target with high-energy electrons (10-100 keV). When 

the incident electrons have sufficient energy, a core electron from a metal atom is 

removed and the vacancy is subsequently filled by an electron from a higher energy 

level. The relaxation from a higher energy state is accompanied by the emission of an, 

X-ray photon. When a parallel, monochromatic and coherent beam of X-rays of 

wavelength (X) are incident on a crystalline material, having inter-planar distances of 

dhki and an x-ray incidence angle (0), then reflections will occur from each plane. The 

reflections will only be reinforced if the conditions of the Bragg equation are met [3],

i.e.

4 8



Experimental Chapter 2
wrni i m **.*r- ** *■ ■* r  r  -<*, j v r *  -t „ . - x  f  -m . ,w .T jv A * ^ < rx r i« r* a B e E e ti ttw * * e n e e « »

« /  = 2 ^ /s in 0

Where n has an integer value correcponding to the first, second and third order 

reflections, ect.

Figure 2.4 Diffraction from a set of lattice planes

2.2.3.2. Experimental

Diffraction studies on the catalysts were performed using an Enraf Nonius FR 590 

instrument with a monochromatic CuK«i source with a wavelength of 1.54066 A and 

operated at 40 keV and 30 mA. Patterns were obtained in the range 20 = 4.4° to 

124.6°. The powdered samples were compressed into a metal sample holder. The 

diffraction pattern is reregistered by means of a position sensitive detector (PSD 120), 

which is a curved wire counter which covers all 2 0  in the range highlighted earlier, 

and can simultaneously register all Bragg reflections. All samples were tested over 

half hour periods. Data was analysed using Traces 4.0 software, which allowed the 

removal o f the contribution of the background, and peak positions and relative 

intensities determined. Phases were identified by matching experimental patterns to 

the JCPDS powder diffraction file.
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Figure 2.5 Schematic of an X-ray powder diffractometer

2.2.4. X-ray photoelectron spectroscopy (XPS)

2.2.4.1. Introduction and theory

For the development o f new catalytic systems it is extremely important to investigate 

the changes o f the surface electronic, chemical and structural properties during a 

particular process. X-ray photoelectron spectroscopy (XPS) is one o f the most suitable 

methods for the analysis o f surfaces because it probes a limited depth of the sample 

[4, 5]. XPS is one o f a large number of instrumental surface analytical techniques that 

have been developed over the past 40 years since the pioneering work of Kai 

Siegbahn (Nobel prize winner, 1981) and his colleagues at Uppsala, Sweden. [6 ]. Due 

to the limited escape depth of the photoelectrons, and in consideration of the fact that 

the part of catalysts most involved in the catalytic reactions is limited to the topmost 

layers, the XPS technique is particularly suitable for the understanding of the 

electronic and morphological structure of heterogeneous catalysts. Moreover XPS is 

an important tool for studying the dispersion of supported catalysts.
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XPS is based on the photoelectric effect, arising when high energy photons (usually in 

the keV range) hit a material with the consequent emission of electrons 

(photoelectrons). The photoelectron kinetic energy, £k< which is the measured 

quantity in the experiment, is given by Einstein's law

Ek=hv-Eb

where hv is the energy o f the incident radiation and Eb the binding energy of the 

electron in a particular level.

photon
source

A nalvzer

/

V / 2 7 7 7 7 2  27 7 7 2 2 7 7 72  
sample

Figure 2.6. Analysis by XPS

XPS set up should have a source of fixed-energy radiation (an X-ray source), an 

electron energy analyser (which can disperse the emitted electrons according to their 

kinetic energy), and a high vacuum environment (to enable the emitted photoelectrons 

to be analysed without interference from gas phase collisions). Such a system is 

exemplified schematically below:
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Figure 2.7. Schematic of XPS

There are many different designs of electron energy analyser but the preferred option 

for photoemission experiments is a concentric hemispherical analyser (CHA) which 

uses an electric field between two hemispherical surfaces to disperse the electrons 

according to their kinetic energy [7],

2.2A.2. Experimental

X-ray photoelectron spectra were recorded on a VG EscaLab 2201 spectrometer, using 

a standard A lKa X-ray source (300W) and an analyser pass energy of 20eV. Samples 

were mounted using double-sided adhesive tape and binding energies are referenced 

to the C (ls) binding energy of adventitious carbon contamination taken to be 

284.7eV.

52



Experimental
rMMM

Chapter 2

2.2.5. Temperature programmed reduction (TPR)

2.2.5.1. Introduction and theory 

Temperature programmed reduction (TPR) is a technique that can measure the 

reducibility o f a metal oxide species in supported or unsupported catalysts [8,9]. The 

main information that TPR gives is the number of reducible species in the metal oxide 

and ease with which these species can be reduced. This information is obtained by the 

number of defined peaks from the TPR profile and the temperature at which these 

peaks occur. By comparing different catalysts, in this study a range o f loadings, it may 

be possible to compare their TPR profiles and try to explain difference in activity and 

selectivity. TPR experiments are carried out upon the catalyst using a reductive gas 

usually hydrogen while the temperature is uniformly increased over a period of time.

MO + H2 — M + H20

Where MO is the metal oxide

During a TPR changes in the gas stream concentration from where the reduction and 

consuming of hydrogen is taking place by reacting with oxygen present in the sample 

(forming water) are monitored using a thermal conductivity detector (TCD) and 

results are plotted against temperature. A cold trap is required to avoid the water 

reaching the TCD.
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In the case of supported catalysts the shape and the position of the reduction signals 

are very sensitive to the interaction of the reducible species with support and other 

species present in the catalyst.

2.2.5.2. Experimental

The TPR experiments were performed with a Micromeritics Autochem 2910 equipped 

with TCD detector using a flow of 10% H2 in Ar (50ml/min) with a ramp rate of 10 

°C/min from room temperature to a maximum temperature of 1100 °C.

2.3. Catalytic Evaluation

2.3.1. CO Oxidation

2.3.1.1. Reactor design 

A quartz micro reactor operated at atmospheric pressure was used for this reaction. 

The gas flow rate was controlled using mass flow controllers (Brooks Mass Flow 

5850 Series) and flow rate was measured by a bubble flow meter. Reaction 

temperatures were controlled by water bath.

Analysis o f the reaction product was carried out on-line using gas chromatography 

with a Porapak Q column and thermal conductivity detector. The reactor set up 

scheme is shown schematically in Fig. 2.8.
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Inlet
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Figure 2.8 CO oxidation set-up

2.3.1.2. Experimental details

The catalytic activity for CO oxidation was determined in a fixed bed quartz micro 

reactor, operated at atmospheric pressure. The feed consisted of CO/synthetic air (CO2 

free) with a molar ratio of 0.5/99.5. The combined flow rate was maintained at 20 ml 

m in'1 and different catalyst loading was employed. The reaction was maintained at 

different temperatures by immersing the quartz bed in a thermostatically controlled
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water bath. Analysis o f the reaction product was carried out on-line using gas 

chromatography.

2.3.2. Hydrocarbon activation catalytic evaluations

2.3.2.1. Reactor design 

A stainless steel micro reactor operated at atmospheric pressure was used for 

hydrocarbon activation reactions. Methane, ethane, and propane were used with 

oxygen and helium as feed stocks for this study. Hydrocarbon explosion limits with 

O 2 were taken in mind during the reactions. The gas flow rates were controlled using 

mass flow controllers (Brooks Mass Flow 5850 Series) after calibration using a 

bubble flow meter, Fig. 2.9 shows the calibration o f methane, helium and oxygen 

MFC. Reaction temperatures were controlled by carbolite furnace which is capable of 

maintaining temperatures up to 1200 °C. and the reaction temperature was measured 

by movable thermocouple, which is located in the contact with the catalyst bed to 

measure the actual reaction temperatures.

M e t h a n e ,  o x y g e n  a n d  h e l i u m  M F C  c a l i b r a t i o n s

C H 4
0 2
He

100 1 50 2 0 0
S e t  p o i n t

300

Figure 2 .9  C a lib ra tion  o f  M FC  o f  C H 4, He, and 0 2

56



Experimental Chapter 2

Analysis of the reaction products was carried out using on-line gas chromatography 

with Porapak Q and Molsieve columns and thermal conductivity and flame ionisation 

detectors.

Hydrocarbon activation reactor set up is shown schematically below

1/7 Micron filter

C ,, C; & C, 
Hydrocarbons

02

MFC

He

One way valve

MFC — ►— □

Union Cross

3 way valve

Inlet
One way valve

Reactor < ■

Vent

Fumaci

Outlet

On-line gas 
chromatograph 

analysis

Figure 2.10 Hydrocarbon activation set-up
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2.3.2.2. Experimental details

The combined flow rate was maintained at 30 ml min*1 and 0.25 cm3 of catalyst 

loading was employed to produce a Gas Hourly space Velocity (GHSV) of 7200 h*1. 

The composition of gases was adjusted based on the type of the hydrocarbon gas and 

its explosion limit. Once flow rate were set, the reactor temperature was set to 100 °C, 

where no catalytic activity was shown, and allowed to equilibrate for half an hour. 

After that, temperature was increased gradually by 50 °C up to 500 °C which was the 

maximum temperature reached.

Analyses o f the reaction products were carried out using on-line gas chromatography. 

The calculation of the feed gases conversions and products selectivities were based on 

the detected products, in accordance with the following equations:-

Feed gas conversion % = amount of detected products * 100

amount of feed in gas analysis

Product selectivity % = amount of detected product * 100

amount of converted feed gas

5 8



Experimental Chapter 2

2.4. Gas Chromatograph analysis system

The gas chromatograph used for CO oxidation experiments was a Varian 3400, while 

Varian 3800 was used for alkane activation expariments. The columns used were 

Porapak Q (2m * 2mm internal diameter) and Molecular Sieve (2m * 2mm internal 

diameter) which is known as Molsieve. The two columns were connected in series, 

and reactants and products were monitored by a TCD and FID. The two columns were 

respectively chosen to separate reactants and products. The use of two separate 

columns was necessary to prevent CO2 entering the Molsieve, leading to irreversible 

absorption and resulting in column deactivation. A simplified summation is shown 

below:

Sample in —► Valve —► Porapak Q —» Molsieve —► Valve —► TCD —> FID —> PC

For CO oxidation reaction, only CO2 was detected. The column temperature used 200 

°C, thus ensuring full separation of peaks, and each run took approximately 5 minutes. 

In the method used for alkane activation experiments, table 2.1, the sample loop was 

allowed to fill whilst the Porapak column was being cleaned using the back flush. 

Once the loop was filled it was injected into the Porapak via two valves in series. By 

using the valves in both bypass and series configurations, it was possible to fully 

separate all the gases that were detected. In order to obtain quantitative results from 

the GC analysis, it was essential to use correction factors, known as response factors. 

These response factors are independent of carrier gas, temperature, flow rate and 

concentration.
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For alkane activation experiments, the initial column temperature used was 50 °C, 

beginning with switching valve 1 to injection after 0.02 minutes. Untill 1.27 minutes; 

valve 2 was in bypass, after that it was switched to series until 2.5 minutes. After that, 

the run continued in bypass until 4.5 minutes, and then it was switched to series, table

2.1. The temperatures of the oven and ramping rate are shown in table 2.2.

Table 2.1 Valves status

Time
Valve 1 

- bypass, + injection

Valve 2 

- series, + bypass

Initial - -

0.02 + -

1.27 + +

2.5 + -

4.5 + +

Table 2.2 Oven temperature ramping rate

Temperature °C Rate °C/min Hold min Time min (total)

100 - 3 3

140 20 0 5

180 20 0 7

220 20 6 15
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3.1. Introduction

In this chapter, several characterization techniques, explained in detail in chapter 2 of 

this study, were employed to investigate the physical and chemical properties of the 

prepared supported gold catalysts. The catalytic activities of these catalysts resulting 

from preparation procedures explained in chapter 2 were studied for low temperature 

CO oxidation reaction. The results obtained o f the characterization of the catalysts 

were evaluated with catalytic results for the low temperature CO oxidation reaction of 

these catalysts in order to study several parameters, such as: the selection of the 

support material, preparation method, and preparation parameters such as pH and 

ageing process, which can affect either the properties of these catalysts or their 

catalytic activities. After this, several experiments at high GHSV were employed to 

confirm the effect of the above mentioned parameters, and to correlate the low 

temperature CO oxidation reaction and alkane activation reactions over the prepared 

supported gold catalysts. This correlation will be presented and discussed in detail in 

chapter 5 o f this research study.

3.2. Characterization

3.2.1. BET surface area

BET surface area values depend on the preparation procedure and on the support 

material. In the case o f Au/ZnO, there was almost no different in BET surface area 

data of the support before and after calcination.
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The BET surface area of Au/ZnO catalysts decreased when pH is 9 < In the case of 

Au/Fe2C>3, there was a significant difference in BET data before and after calcinations 

when Au/Fe2C>3 was prepared by precipitation with variable pH (method A), but no 

significant difference when A uT^Ch was prepared by precipitation at constant pH 

(method B).

Table 3.1 BET analyses for ZnO, Au/Fe20 3, Au/ZnO and Au/Fe20 3 prepared by Method A.

Au / support Preparation
Procedure

Catalyst description BET m2/g Treatment
status

pH 5 54
pH 6 51
pH 7 45
pH 8 58
pH 9 23

2 pH 10 23
CDr̂ -or No Ageing, pH 6 54 GD«■**'c o
Q- Aged 3 hrs, pH 6 30 o

p
N > Aged 5 hrs, pH 6 37 cT£3o Aged 8 hrs, pH 6 40 D

CD
a -< Aged 12hrs, pH 6 40

1 . No Ageing, pH 8 58
c r Aged 1 hrs, pH 8 54
CD Aged 3 hrs, pH 8 55

X Aged 5 hrs, pH 8 82
Aged 8 hrs, pH 8 58
Aged 12hrs, pH 8 66

Fe2C>3 225 Uncalcined

pH 8.2 94 Calcined
Au/Fe2C>3 208 Uncalcined

69 Calcined
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Table3. 2 BET analyses for ZnO, Fe20 3, Au/ZnO and Au/ Fe20 3 prepared by Method B.

Au / 
support

Preparation
Procedure

Catalyst description BET m2/g Treatment
status

At pH 5 50
At pH 6 23
At pH 7 25.5
At pH 8

> At pH 9 41 3
oc At pH 10 59

Np No Ageing , pH 6 o
3
CDo Aged 1 hr, pH 6 30

Aged 3 hrs, pH 6 33 D-

2 Aged 5 hrs, pH 6 39(T»r fsr Aged 8 hrs, pH 6 32
o
C L Aged 12hrs. pH 6 52

Fe2 0 3 DO pH 9 42 Uncalcined
oo 29 Calcined
3
C/3 At pH 4 230S At pH 5 247 C

3*T3
DC At pH 6 226 o

p

At pH 7 176 o
> At pH 8 193 3

CD
O -At pH 10 364

o At pH 4 33
At pH 5 70 n

£ -
oAt pH 6 59

At pH 7 49 N"* •
3

At pH 8 52 CDo.
At pH 10 129

Similar results were obtained for the above supported gold catalysts when they were 

prepared by the deposition-precipitation method. When Au/MgO was prepared by the 

deposition-precipitation method, the calcined support had a higher surface area 

compared with the uncalcined support, possibly due to the dehydration of MgO during 

the calcination. However, when gold was deposited on MgO, uncalcined and calcined
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catalysts had a lower surface area than the support material. The gold catalyst 

supported on MnOx had a much higher surface area than the support itself.

Table 33  BET analyses for different supported gold catalysts prepared by the deposition- 
precipitation method

Catalyst Support Prep. Method BET m /g Treatment
status

ZnO

Precipitation. A 
(variable pH)

51 Uncalcined
43 Calcined

Fe2C>3 225 Uncalcined
94 Calcined

MgO 21 Uncalcined
310 Calcined

MnOx 2 Uncalcined
11 Calcined

ZnO

Precipitation. B 
(constant pH)

55 Uncalcined
44 Calcined

Fe2 0 3
42 Uncalcined
28 Calcined

MgO 43 Uncalcined
252 Calcined

MnOx 1 Uncalcined
8 Calcined

Au/ZnO Precipitation. A 39 Uncalcined
36 Calcined

Au/ZnO Precipitation. B 44 Uncalcined
38 Calcined

Au/Fe2 0 3
Precipitation. A 201 Uncalcined

107 Calcined
Au/Fe2 0 3 Precipitation. B 41 Uncalcined

37 Calcined

Au/MgO Precipitation. A 37 Uncalcined
39 Calcined

Au/MgO Precipitation. B 35 Uncalcined
39 Calcined

Au/MnOx Precipitation. A 86 Uncalcined
50 Calcined

Au/ MnOx Precipitation. B 28 Uncalcined
25 Calcined
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3.2.2. Atomic Absorption Spectroscopy (AAS)

Atomic absorption spectroscopic analyses were undertaken for all the prepared gold 

supported catalysts to identify the effect o f the preparation methods and parameters on 

the gold content in these catalysts. Fig. 3 .land Fig. 3.2 show the AAS for Au/ZnO 

catalysts prepared by coprecipitation at variable pH (method A) and at constant pH 

(method B) respectively. The gold content is strongly dependent on the pH, by 

increasing the pH the gold content decreases in the catalyst prepared by 

coprecipitation at variable pH (A) or at constant pH (B).

2   -----
i
0 - 1——     -----

pH 5 pH 6 pH 7 pH 8 pH 9 pH 10

Figure 3.1. Effect o f  pH in method A on the Au content o f  A u /Z nO  catalysts

pH 5 pH 6 pH 7
□
p H 8 pH 9 pH 10

Figure 3.2. Effect o f  pH in method B on the Au content o f  A u /Z n O  catalysts
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The ageing process during the preparation led to a decrease in the gold content in the 

prepared catalysts. However, there was no large difference between the obtained gold 

contents in the catalysts aged at different times.

3

2 5 

2*
*  1 53< 1

0 5 

0
No Ageing Aged 1 hr Aged 3 hrs Aged 5 hrs Aged 8 hrs Aged 12 hrs

Figure 3.3. Effect o f  age ing  at pH 8 on Au content o f  A u /Z n O  catalysts prepared by 
coprecipitation at variable  pH (m ethod A)

7

6
5

? * 
< 3

2
1
0

No Ageing Aged 3 hrs Aged 5 hrs Aged 8 hrs Aged 12 hrs

Figure 3.4. Effect o f  ageing  at pH 6 on Au content o f  A u /Z nO  catalysts prepared by (m ethod A)

6
5

4J*
% 33

1
o ta i l- i—I ■ -•«----------------------------------------------------   - I

No Ageing Aged 1 hr Aged 3 hrs Aged 5 hrs Aged 8 hrs Aged 12 hrs

Figure 3.5. Effect o f  age in g  at pH 6 on Au content o f  A u /Z n O  catalysts prepared by (m ethod B)
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Au/Fe2 0 3  catalysts prepared by coprecipitation at constant pH showed some increase 

in gold content by increase the pH. but when pH reach 10. gold content decreased. 

Fig. 3.6. show the effect o f pH on the gold content for Au/Fe2 0 3  catalysts.

_ 1 ____ ____ __ r~— !
pH 4 pH 5 pH 6 pH 7 pH 8 pH 10

Figure 3.6. Effect o f  pH in method B on the Au content o f  A u /F e20 3 catalysts

10
9
8
7

3* 6 |
% 5
< 4

3
2
1
0

3.2.3. Temperature Programmed Reduction (TPR)

The aim o f studying temperature programmed reduction analysis was to ascertain the 

effect o f  gold as promoter, and the effect o f the preparation methods and preparation 

parameters on the reducibility o f the supports. Several catalysts were tested for TPR 

and the results are in the figures below.

0 100 200 300 400 500 600
Tern perature C

Figure 3.7. T P R  analys is  for A u/Z nO  uncalcined catalysts prepared by coprecipitation A
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100 2 0 0 3 0 0 4 0 0 500 6 0 0

-pH S 
pH 6 

-pH 7 
pH 8

Tim p t r i l u r t  C

Figure 3.8. T PR  analysis for A u/Z nO  calcined catalysts prepared by coprecipitation  A

- 0 . 0 8 3

- 0 . 0 8 4

- 0 . 0 8 5

8  - 0 . 0 8 7

- 0 . 0 8 8

- 0 . 0 8 9

0 . 0 9
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Tem perature C

Figure 3.9. T P R  analysis for A u/Z nO  calcined catalysts prepared by coprecipitation B

- 0 . 0 8

- 0 . 1 8

= - 0 . 2 8  
<75
3  - 0 . 3 8

- 0 . 4 8

- 0 . 5 8

c o p r e c i p i t a t i o n  A  

c o p r e c i p i t a t i o n  B

1 0 0  2 0 0  3 0 0  4 0 0  5 0 0  6 0 0  7 0 0

T e m  p e r a t u r e  C

Figure 3.10. T P R  analys is  for A u /F e 2 0 3  calcined catalysts prepared by coprecipitation A & B
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3.2.4. X-ray Diffraction (XRD)

Powder X-ray diffraction is a standard tool widely applied in catalysis. In this study 

we studied the effect o f  the addition o f  gold on the structure o f the supports and the 

effect o f the calcination process on these phases. Fig. 3.11 shows the XRD patterns 

obtained from Au/ZnO dried catalysts prepared at different pH by coprecipitation 

(method A).

j-------------------------
800

700

600  pH 5
pH 6 

pH 7 

pH 8

500

£ 400

300

200

100

0 I 
0 20 40 60 80 100 120

2 Theta

Figure 3.11. X R D  patterns o f  A u/Z nO  dried catalysts prepared by method A at different pH

These catalysts show similar diffraction patterns which mainly correspond to those of 

zinc carbonate hydroxide hydrate (Zm jCO^OH^.HjO) [1]. Fig. 3.12 shows the XRD 

patterns o f  Au/ZnO dried catalysts prepared at different ageing times by precipitation 

(method B). The XRD patterns obtained also show the same phase 

(Zn4 C 0 3 (0 H)6 .H2 0 ).
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Figure 3.12. X R D  patterns o f  A u/Z nO  dried catalysts prepared by method B at different ageing  
times

The above XRD data suggest that the preparation method did not affect the bulk 

structure o f the dried Au/ZnO catalysts and crystallinity o f XRD patterns increased as 

pH increased (decreasing gold content in the catalyst). Fig. 3.13 shows the XRD 

patterns obtained from Fe203 and Au/Fe203 catalysts prepared by the deposition- 

precipitation method.

— Fe203 uncal.
-  Fe203 Calc 

Au/Fe203 uncal 
Au/Fe203 Calc.

2000

1800
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1400
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0.u
() 60

?  T h P ta

Figure 3.13. X R D  patterns o f  F e 2 0 3 ,  A u /F e 2 0 3  catalysts prepared by deposition-precipitation

Deposition o f  gold on Fe2 C>3 led to a decrease in the crystalline diffraction the Fe2 C>3 

pattern while the pretreatment o f the materials increases the crystalline diffraction o f
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the Fe2 C>3 pattern. Fig. 3.14 shows the XRD patterns obtained from Au/ZnO catalysts 

prepared by the deposition-precipitation method. In the calcined samples, ZnO peaks 

were observed and hydrozincate peaks disappeared.

2500

2000

1500

 Au/ZnO Calc.
 ZnO Calc.Au

1000

500

0
0 20 40 60 80 100 120

2 Thet a

Figure 3.14. X R D  patterns o f  Zn, A u/Z nO  catalysts prepared by deposition-precip itation

Fig. 3.15 shows the XRD patterns obtained from Au/MgO catalysts prepared by the 

deposition-precipitation method. XRD patterns become more crystalline by 

calcination.
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Figure 3.15. X R D  patterns o f  A u /M gO  catalysts prepared by deposition-precipitation
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3.2.5. X-ray photoelectron spectroscopy (XPS)

To develop new catalytic systems it is very important to study change in surface 

electronic, chemical and structural properties during a particular process. XPS is one 

o f the most suitable analytical techniques for the analysis o f surfaces, because it 

investigates a limited depth o f the sample, fable 3.1 shows the oxidation state 

obtained by XPS analysis in Au/ZnO catalysts prepared by coprecipitation method A 

at different pH. The binding energy of Au 4 d 5/2 in these catalysts indicates that 

metallic gold,Au°, is presented. However, increasing pH to 8  led to mixture o f Au° 

and Au+X in the catalyst. Fig. 3.16 shows Au Ad^n XPS spectra for in Au/ZnO 

catalysts prepared by coprecipitation method A at different pH. Increasing the pH of 

the prepared samples led to decrease in intensity o f gold species, which disappeared 

when pH > 8 .

Table  3 .4  X PS analys is  o f  A u /Z n O  uncalcined catalysts prepared by method A at different pH

Catalyst Au 4ds/2 
(B. Energy)

C ,s
(B. Energy)

Au 4 ds/2 -
c , s

Au 4 d 5/2  

(Calibrated)
Au oxidation 

state
pH 5 341.4 291.5 49.9 334.9 > c c

pH 6 341.3 291.2 50.1 335.1 Au
pH 7 342.1 291.8 50.3 335.3 Au°
pH 8 342.6 292.1 50.5 335.5 Au"- Au '  '

»  i

Figure 3.16. Au 4d X P S  spectra for A u/Z nO  catalysts prepared by method A: (A ) at pH 5; (B) at 
pH 6; (C ) at pH 7 ( D )  at pH 8
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Table 3.2 shows the oxidation state obtained by XPS analysis in Au/ZnO catalysts 

prepared by coprecipitation method B at different pH. The binding energy of Au 4dsn 

in these catalysts indicates metallic gold,Au°, is present.

Table 3 .5  X PS analys is o f  A u /Z n O  uncalcined catalysts prepared by method B at different pH

Catalyst Au 4 d.v2 C,s Au 4 ds/2 - Au 4d.s/2 Au oxidation
(B. Energy) (B. Energy) C „‘ (Calibrated) state

pH 5 341.9 291.7 50.2 335.2 Auu
pH 6 341.2 291.4 49.8 334.8 Au°
pH 7 340.9 290.8 50.1 335.1 Auu
pH 8 341.4 291.5 49.9 334.9 Au°

Fig. 3.17 shows Au 4 d ? /2 XPS spectra for Au/ZnO catalysts prepared by 

coprecipitation method B at different pH.

3*290J Au 4d
35980.

70
60.
30.

40

30

20J

370 365 355 335 330 325

Figure 3 .17 . Au 4d X PS spectra for A u/Z nO  catalysts prepared by method B: (A) at pH 5; (B) at 
pH 6; (C ) at pH 7 (D) at pH 8 (E) at pH 9

Table 3.3 shows the oxidation state obtained by XPS analysis in Au/ZnO catalysts 

prepared by coprecipitation method A at different ageing times. The binding energy o f 

Au 4 d5 /2 indicates that metallic gold is presenting the non-aged, aged for 1 h, and aged
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for 8 h catalysts, and mixture of metallic and cationic gold is present in catalysts aged 

for 3 h, 5 h, and 12 h.

Table 3.6 XPS analysis of Au/ZnO uncalcined catalysts prepared by method A at different ageing 
times

Catalyst Au 4d5/2 
(B. Energy)

C,s
(B. Energy)

Au 4 ds/2 -
C ,s

Au 4d5/2 
(Calibrated)

Au oxidation 
state

No ageing 341.3 291.2 50.1 335.1 > c c

Aged 1 h 341.6 291.4 50.2 335.2 Au“
Aged 3 h 341.9 291.3 50.6 335.6 Auu- Au+X
Aged 5 h 341.1 290.5 50.6 335.6 Au°- Au*'
Aged 8 h 342.6 292.9 49.7 334.7 Au°

Aged 12 h 342.1 291.6 50.5 335.5 Au°- Au+X

Table 3.4 shows the oxidation state obtained by XPS analysis in Au/Fe2C>3 catalysts 

prepared by coprecipitation method B at different pH. The binding energy of Au 4ds/2 

indicates that at pH higher than 5, oxidized gold was present in these catalysts.

Table 3.7 XPS analysis of Au/Fe20 3 uncalcined catalysts prepared by method B at different pH 
and by method A at pH 8

Catalyst Au 4d.s/2 
(B. Energy)

C,s
(B. Energy)

A u  4 ds/2 - 
C , s

A u  4d.s/2 
(Calibrated)

Au oxidation 
state

pH 4 339.7 289.4 50.3 335.3 Auu
pH 5 340.2 289 50.6 335.6 Au°- Au+X
pH 6 339.6 288.7 50.9 335.9 Au+X
pH 7 340.3 289.3 51 336 Au+X
pH 8 340.6 289.5 51.1 336.1 Au+X

pH 8, method 
A 339.8 289.1 50.7 335.7 Au+X

While Au 4 f XPS spectra for Au/ZnO catalysts lacked clarity, they were clear in the 

case of Au/Fe2 0 3  catalysts. Fig. 3.18 shows Au 4f XPS spectra for Au/Fe2C>3 catalysts 

prepared by coprecipitation method B at different pH. Au+X 4f peaks’ intensity 

decreased as pH increased.
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Figure 3.18. Au 4d X PS spectra for A u /F e 2 0 3  method B: (A) at pH 5; (B) at pH 6; (C) at pH 7 
(D) at pH 8

XPS analysis o f gold catalysts prepared via the deposition-precipitation method using 

four different supports (ZnO, Fe2 0 3 . MgO. and Mn0 2 ) gave some idea o f the 

oxidation state o f  gold particles. Table 3.5 shows the oxidation state obtained by XPS 

analysis in gold catalysts prepared by deposition-precipitation method and supported 

on ZnO, Fe2 0 3 , MgO, and MnOx. The binding energy o f  Au 4 ds/2  indicates that 

metallic gold is present in Au/ZnO catalyst, oxidized gold is presented in Au/ Fe2 0 3  

and Au/ MgO had, and a mixture o f metallic and oxidized gold is present in 

Au/MnOx.

Table 3.8 X P S  analys is o f  uncalcined supported gold catalysts prepared by the DP method

Catalyst Au 4 d_s/2  

(B. Energy)
C ,s

(B. Energy)
Au 4 ds/2  - 

C ,s
Au 4 ds/2  

(Calibrated)
Au oxidation 

state
Au/ZnO 336.2 286.4 49.8 334.8 Au°

Au/Fe2 0 3 340.6 289.4 51.2 336.2 A u 'x
Au/MgO 342.5 291.3 51.2 336.2 Au+X
Au/MnOx 339 288.4 50.6 335.6 Auu- Au**
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3.3. Low temperature CO oxidation reaction over supported gold catalysts

3.3.1. Materials prepared using the coprecipitation method

3.3.1.1 .Materials prepared by method A 

Au/ZnO catalysts were prepared using method A and evaluated as catalysts for the 

oxidation o f  CO at 25 °C. Initial experiments were carried out to determine the 

optimum temperature for the preparation o f  active catalysts. The data presented in 

Fig. 3.19 are for the materials dried at 90 °C with no additional ageing step in the 

preparation, i.e. the material was filtered as soon as pH = 6.0 had been reached. These 

data show that active catalysts can be prepared with temperatures in the range 60 -  80 

°C, but at higher temperature inactive materials are formed. In view o f this, we

o

standardised subsequent preparations at a controlled temperature o f 80 C.

Figure 3.19. Effect o f  tem perature o f  precipitation for dried A u/Z nO  using coprecipitation  
method A at 60, 80, 90  °C

The Au/Fe2C>3 catalyst was prepared in the same manner at 80 °C. Both catalysts were

2 0 4 4 0 4 8 0 4

Time (min)

re-produced and re-evaluated for CO oxidation reaction. Fig. 3.20 shows the results o f

these catalysts.
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Figure 3.20. Reproducib ility  o f  supported gold catalysts prepared by coprecipitation A at 80 °C

The effect o f the final pH was investigated at 80 C. The results clearly indicated that 

pH had a marked effect on uncalcined catalyst activity. Fig. 3.21. Active catalysts 

were prepared with a final pH between of 5-6. At a pH higher than 6 . catalytic activity 

gradually decreased. However, materials prepared at pH higher than 8  are non-active.

1 0 0
9 0
8 0
7 0
6 0
5 0
4 0

3 0
20
10
0

4 8 12  16  2 0  24 28  3 2  3 6  4 0  4 4  48  5 2  58 64

T i m e  ( m i n )

- • — At pH = 5 
-m~ At  pH = 6 

-A—  At pH = 7 

X  At  pH = 8  

-m— At  pH = 9 

- • — At pH = 1 0

Figure 3.21. Effect o f  pH on the activ ity o f  dried A u/Z nO  prepared by coprecipitation A at 80 °C
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The effect o f ageing was then examined at two pH values (pH 8 , Fig. 3.22; pH 6  Fig. 

3.23). For both sets o f data ageing, the material prior to filtering had a marked effect 

on the activity o f the dried material. Materials aged for lh  at pH 8  or 3h at pH 6  

showed enhanced initial performance when compared to unaged materials. In 

contrast, calcination o f aged materials gave 1 0 0 % conversion within 1 0  min time on 

stream. This suggested a complex interplay between the pH variables and ageing 

time.

—♦— No A g e i n g  
m A g e d  f o r  1 h r  

—A— A g e d  f o r  3 h r s  
x  A g e d  f o r  5 h r s  

—m— A g e d  f o r  8 h r s  
— - — A g e d  f o r  12  h r s

Figure 3.22. Effect o f  age ing  on the activity o f  dried A u/Z nO  catalysts prepared using method A 
with a final pH 8.0. no ageing, 1 h. 3h, 5h, 8h, 12h
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Figure 3.23. Effect o f  ageing  on the activity o f  dried A u /Z n O  catalysts prepared using method A 
with a final pH 6.0. no ageing, lh ,  3h, 5h, 8h, 12h
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The effect o f the calcination time was studied on Au/ZnO catalyst prepared by 

coprecipitation A, Fig. 3.24.

Catalyst prepared at 80C Catalyst prepared at 60C

Figure 3.24. Effect o f  calcination time on A u /Z nO  catalysts prepared using method A with a final  
pH 6

Au/Fe2 C>3 material was also prepared using method A at pH 8.2 and dried at 90 °C. It 

gave 100% CO conversion after 30 minutes time on stream, whereas the material 

calcined at 400 °C was relatively inactive Fig. 3.25. Since the calcined sample was 

more active than Fe2 0 3  prepared in the absence o f Au, this suggested that the Au was 

exhibiting some catalytic effect.

100
m

-a — Au/Fe203 Calcmed 

•  Au/Fe203 Uncalcmed 

A Fe20340

30

Figure 3 .25. C atalytic  evaluation for F e 2 0 3  and A u /F e 2 0 3  dried and calcined catalysts prepared  
using method A with a final pH 8.2
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3.3.1.2.Materials prepared using method B

Au/ZnO catalysts were prepared using method B whereby precipitation was carried

out at constant pH and temperature (80°) and evaluated for the oxidation o f CO at 25

°C. The data presented in Fig. 3.26 are for the materials dried at 90 °C with no

additional ageing step in the preparation, i.e. the material was filtered as soon as the

required pH had been reached. The data showed that the pH had a major effect on the

activity o f the dried materials. Active catalysts were prepared when pH was

maintained between 5-7 but at a higher pH inactive materials were prepared.

Calcination o f  materials prepared at pH 5-7 at 400 °C gave catalysts that were active

immediately, whereas the dried materials required a short activation time.
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Figure 3.26. Effect o f  pH on the activity o f  dried A u/Z nO  prepared by coprecipitation  B at 80 °C

The effect o f  ageing was also investigated. Fig. 3.27. In these investigations, the 

precipitated material were left stirring in the reaction mixture at the final pH = 6.0 and 

at 80 °C for specified time. Catalytic activity was found to be particularly sensitive to 

the ageing parameter. Catalysts with higher activity were observed when aged for a 

short time (lh ). And then, ageing over longer times (3h) tended to give catalysts with 

poorer initial activity, although the initial activity o f catalysts aged for (5h) was better
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than the activity o f catalysts aged for (3h). In addition, ageing for (8 h) tended to 

produce catalysts with initial activity almost similar to unaged and (lh r) aged catalyst. 

Finally, ageing for much longer (12h) produced catalysts with lower initial activity.

it

* Agtd fei
  Aged tor

——Aged to#

Figure 3.27. Effect o f  ageing on the activity o f  dried A u/Z nO  catalysts prepared using method B 
with pH 6.0. no ageing, 1 h, 3h, 5h, 8h, 12h

Au/Fe2 C>3 materials were also prepared using the constant pH preparation method 

without ageing o f the precipitate. Dried materials showed that poorer activity catalysts 

were produced at pH 4 compared with higher pH experiments. Fig. 3.28.
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Figure 3.28. Effect o f  pH on the activity o f  dried A u /F e2Oj prepared by coprecipitation B
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Materials calcined at 400 °C showed a similar activity pattern, except that highest 

activity materials were prepared at pH > 6 . Fig. 3.29.
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Figure 3.29. Effect o f  pH on the activity o f  calcined A u /F e2C>3 prepared by coprecipitation B

In order to compare the catalytic activity observed with the Au/ZnO and Au/Fe2 C>3 

catalysts in this study and that o f standard catalysts supplied by the World Gold 

Council were reacted and the results are shown in Fig. 3.30. Evaluation o f standard 

catalyst was performed under the same conditions o f our data.
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Figure 3.30. C om parison  between standard A u/Z nO  and our catalysts
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3.3.2. Materials prepared using the deposition-precipitation method

3.3.2.1 .Au/ZnO catalysts

Several Au/ZnO catalysts were prepared using the deposition-precipitation method. 

ZnO Supports were prepared by both coprecipitation methods (A, B). All Au/ZnO 

catalysts were active for CO oxidation at ambient temperature. Fig. 3.31 and Fig. 

3.32.
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Figure 3.31. Catalytic  activ ities o f  dried and calcined Au catalysts using Z nO  support prepared  
by coprecipitation method A (at variable pH)
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Figure 3.32. C atalytic  activities o f  dried and calcined Au catalysts using Z nO  support prepared  
by coprecipitation method B (at constant pH)
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3 .3 .2 .2 .Au/Fe2 Ch catalysts

Several Au/Fe2 C>3 catalysts were prepared using the deposition-precipitation method. 

Supports (Fe2 C>3 ) were prepared by both coprecipitation methods (A, B). All 

Au/Fe2 C>3 catalysts were active for CO oxidation at ambient temperature, Fig. 3.33 

and Fig. 3.34.
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Figure 3.33. Catalytic  activ ities o f  dried and calcined Au catalysts using Fe20 3 support prepared  
by coprecipitation method A (at variable pH)
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Figure 3.34. Catalytic  activities o f  dried and calcined Au catalysts using Fe20 3 support prepared  
by coprecipitation method B (at constant pH)
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3.3.2.3.Au/MgO catalysts

Au/MgO catalysts were prepared using the deposition-precipitation method. Supports 

(MgO) were prepared by both coprecipitation methods (A. B). the Au/MgO catalyst 

was active only at 25 °C using the support prepared by coprecipitation method A- 

uncalcined catalyst, Fig. 3.35.
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Figure 3.35. C atalytic  activities o f  dried and calcined Au catalysts using M gO  support prepared  
by coprecipitation m ethods A & B

3 .3 .2 .4 .Au/Mn0 2  catalysts 

Au/MnC>2 catalysts were prepared using the deposition-precipitation method. Supports

(MnOx) were prepared by both coprecipitation methods (A, B). The DP method is not

useful method for preparing the active A u /M n (\ catalyst. Fig. 3.36.
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Figure 3 .36. Catalytic  activities o f  dried and calcined Au catalysts using M gO  support prepared  
by coprecipitation methods A & B
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3.4. CO oxidation at high gas hourly space velocity (GHSV)

After we obtained very good results for most o f the prepared supported gold catalysts, 

we studied the difference in the activity o f  these catalysts, particularly catalysts that 

gave high CO conversion. In this subsection, a number o f CO oxidation reaction 

experiments at high GHSV using supported gold catalysts will be presented to 

investigate the effect o f the preparation parameters, type o f support, and preparation 

method on the activity o f  these catalysts. In these experiments, for Au/ZnO catalysts, 

we used a GHSV value o f 126000h-1 and four different reaction temperatures, 0, 15, 

25, 40 °C . Fig. 3.37 show the results o f gold catalysts supported on ZnO and prepared 

via coprecipitation A at different pH.
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Figure 3 .37. C atalytic  activities o f  calcined A u/Z nO  prepared by coprecipitation methods A at 
different pH

From the above chart we can see the huge different in activity between catalyst 

prepared at pH 5 and other catalysts prepared at higher pH, confirming the previous
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catalytic and characterization studies o f these catalysts, namely, that the lower pH the 

higher catalytic activity o f Au/ZnO catalysts. Fig. 3.38 presents the catalytic data for 

Au/ZnO prepared via coprecipitation A at pH 6 . 7. and 8  respectively indicating that 

the lower the pH is the higher the catalytic activity. However, all catalysts obtained 

activity lower than 6 %.
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Figure 3.38. C atalytic  activities o f  calcined A u/Z nO  prepared by coprecipitation A at pH 6,7, 
and 8

Fig. 3.39 shows the results o f gold catalysts supported on ZnO and prepared via 

coprecipitation method B at different pH.
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Figure 3.39. Catalytic  activities o f  calcined A u/Z nO  prepared by coprecipitation m ethods B at
different pH
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As in Fig. 3.38, Fig. 3.40 presents the catalytic data o f  Au/ZnO prepared via 

coprecipitation B at pH 6 , 7, and 8  respectively without the catalyst prepared at pH 5 

for the same reasons.
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Figure 3.40. C atalytic  activ ities o f  calcined A u/Z nO  prepared bv coprecipitation B at pH 6,7, and 
8

Fig. 3.41 show the results o f gold catalysts supported on ZnO and prepared via 

coprecipitation A at different ageing times at pH 6 .
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Figure 3.41. Catalytic  activities o f  calcined A u/Z nO  prepared by coprecipitation A at pH 6,
different ageing time
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Fig. 3.42 show the results o f gold catalysts supported on ZnO and prepared via 

coprecipitation B at different ageing times at pH 6 .
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Figure 3.42. C atalytic  activities o f  calcined A u/Z nO  prepared by coprecipitation B at different  
ageing times at pH 6

Au/Fe2 0 3  catalysts prepared by coprecipitation method B were much higher catalytic 

activities than Au/ZnO catalysts. Therefore, GHSV value used for Au/Fe2 0 3  catalysts 

experiments, 480000 h*1. were higher than those used for Au/ZnO catalysts , 126000 

h '!. The effect o f an increasing GHSV on the catalytic activities o f Au/Fe2 C>3 was 

studied and presented in Fig. 3.43.
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Figure 3 .43. C atalytic  activ ities o f  calcined A u/Fe20 3 prepared by coprecipitation A& (B at
different pH)
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The Au/Fe2C>3 catalyst prepared by coprecipitation method A was non-active whereas 

catalysts prepared via coprecipitation method B were active, as already obtained in the 

results of CO oxidation at the standard reaction conditions, Fig. 3.29. The effect of 

increasing GHSV is clear in the catalysts prepared via coprecipitation at different pH.

3.5. Discussion

The results presented in this study of the preparation of two materials Au/ZnO and 

Au/Fe2 0 3  show that high activity materials for the oxidation of CO at ambient 

temperature can be readily prepared for both calcined and non-calcined materials 

using two different coprecipitation procedures. These results are comparable with the 

results obtained from the standard catalysts supplied by the World Gold Council 

tested under the same reaction conditions. Fig. 3.30. However, the most important 

observation is the potential sensitivity of these preparation methods to slight 

variations in the procedure when the materials are examined as catalysts for ambient 

temperature CO oxidation. For example, use of temperatures > 80 °C led to inactive 

catalysts (Fig. 3.19). Variation in the ageing of the precipitate prior to filtration, even 

for short periods of time, can significantly affect the observed activity. It has been 

noted that supported Au catalysts have given variable performance and that 

preparation methods can be very difficult to reproduce [2]. Our findings provide an 

answer to this putative problem, since in many published preparation methods a 

number of the preparation variables are not defined, especially the aspect of ageing of 

the precipitate. It is clear that small variations can lead to marked differences with the 

dried catalyst. Calcined catalysts are, however, not particularly affected by the
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reaction conditions, since the use of the elevated temperature leads to the formation of 

particulate Au with the same characteristics, and this is relatively insensitive to the 

starting structure.

Precipitation method A has been well studied previously and has been the main 

coprecipitation method used to prepare Au catalysts with ZnO and Fe2 0 3  as supports. 

Indeed, Hutchings at al. [3. 4] previously made a detailed transmission electron 

microscopy study of the materials made using this method, namely Au/ZnO and 

Au/Fe2 0 3 , and correlated the data with the catalytic performance for CO oxidation. 

The non-calcined materials, in both cases, were found to comprise nanocrystalline 

forms of the ZnO and FeOOH supports, respectively, but no nanocrystals of Au could 

be observed, suggesting that the Au particles if present were very small. 197Au 

Mossbauer spectroscopy [5] confirmed that a significant proportion of the Au was 

present in cationic form in the dried materials. For materials calcined at 400 °C, 

orthorhombic nanocrystals of Au were observed and using 197Au Mossbauer 

spectroscopy no cationic gold was found to be present. Similar structural observations 

have been found for the materials prepared in this study. The dried Au/Fe2C>3 

materials were found to be very effective for CO oxidation whereas the Au/ZnO 

materials were relatively inactive. In contrast the calcined Au/ZnO materials were 

found to be very effective for CO oxidation whereas the calcined Au/Fe2 0 3  materials 

were relatively inactive. The present study has widened the earlier study and shown 

that active catalysts can be prepared for both dried and calcined materials as long as 

the precipitation conditions are closely controlled, in particular the pH, the 

temperature and the ageing time.
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With precipitation method A, the final pH is an important variable since the 

components present in the reaction mixture precipitate at different pH values [6]. For 

example, the onset of precipitation of Zn2+ is ca. pH7, whereas the onset of 

precipitation of Fe3+ is ca. 3. Hence using precipitation procedure A the iron 

oxide/hydroxide/carbonates precipitates very early in the preparation procedure, and 

conversely the zinc oxide/hydroxide/carbonates precipitate relatively late in the 

procedure. This implies the preparation of Au/Fe2C>3 materials using procedure A, is 

similar to deposition precipitation since the support is precipitated prior to the active 

component. This is not the case for Au/ZnO materials. However, it is clear that a 

calcination step ensures the formation of an active catalyst and the cationic gold is 

reduced and forms uniform nanocrystals [3, 4].

In addition to the effects of temperature and pH, catalysts prepared using both 

procedures A and B are very sensitive to ageing of the precipitate. This is a topic that 

has received very limited attention in the academic literature. However, it is 

recognised by commercial suppliers of oxide catalyst precursors that many basic 

carbonates and hydroxides that are initially precipitated during the coprecipitation 

process partially redissolve, giving significant changes in morphology, and this is 

crucial for the eventual catalytic performance of the material. However, in the 

synthesis of most Au catalysts reported to-date this potentially crucial preparation step 

has not been investigated or has gone unreported. Previously, Hutchings at al. [7] 

have shown that ageing plays an important part in the activity of Au/CuO/ZnO 

catalysts for ambient temperature CO oxidation. Ageing of copper containing 

precipitates is known to be crucial and they have recently documented two cases in
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detail. First, they have shown the processes occurring in the transformation o f 

CuO/ZnO precursors using detailed transmission electron microscopy, and 

demonstrated the effect on the activity for ambient temperature CO oxidation [8 ]. 

Also, they have shown that ageing can markedly affect the activity o f CuMnOx 

hopcalite catalysts for CO oxidation [9, 10]. With CuMnOx, the effect o f ageing is 

complex as ageing initially decreases the observed catalytic activity, but at longer 

ageing times the catalyst becomes active again, and the morphological and structural 

changes were correlated with this change in activity. In the present case o f Au/ZnO 

catalysts, this behaviour is also observed for both preparation methods. Fig. 3.44.

*
I

8

Figure 3.44. Effect o f  ageing time on the initial catalytic perform ance o f  A u/ZnO. Key: (0) 
method A pH 8.0, (■) method A pH 6.0. (▲ ) method B final pH 6.0. Catalytic  data recorded at 16 
min time on stream.

In some cases, initially ageing the precipitate increases the activity for CO oxidation. 

For materials prepared using method B. the activity then declines with ageing and 

then subsequently increases for the dried catalysts. With calcined catalysts, this 

behaviour is not observed and all give active catalysts. The dried catalyst does not 

exhibit nanocrystals o f  Au and so transmission electron microscopy has not been 

helpful in this case. However, these data serve to emphasise that this step is crucial in 

the preparation o f active Au catalysts that have not been calcined, and hence control
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of this parameter is essential if reproducible catalysts are to be obtained with this 

method of preparation.

One clear difference in catalytic performance is observed for dried and calcined 

catalysts. For the dried materials, in many cases, the catalytic performance is observed 

to increase with time on stream, and sometimes this effect may take several hours. 

Eventually, although, these materials usually gave 100% CO conversion. Variable 

catalytic performance is often observed with supported Au catalysts, since their initial 

activity is often observed as poor and, it is not immediately apparent that the catalytic 

performance will improve with time on stream, since typically the reverse is observed. 

Calcined catalysts do not show this effect and they always give very high activities at 

the beginning of the experiment. Hence, this provides further evidence as to why most 

previous studies utilise calcination as a preparation step.

The origin of the activation of the dried catalysts may be due to two factors. First, the 

exposure of the catalyst to CO, a reducing gas, may lead to the reduction of the 

cationic gold to metallic gold. Although it must be noted that a large excess of oxygen 

is present, but gold is typically inert to oxidation by dioxygen. Second, the effect may 

be due to non-optimal levels of moisture being retained in the catalyst, since they are 

dried at 90 °C, a relatively low temperature. The presence of water is known to be 

crucial in the reaction of CO on Au nanocrystals. Haruta and co-workers [11] showed 

that Au/Ti0 2 , A11/AI2O3 and Au/Si0 2  containing Au nanocrystals all increase in 

activity when low concentrations of water are cofed. It is possible that during the
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initial phase of the catalytic reaction, the optimal level of surface hydroxyl groups 

may be established for the dried materials.

X-ray diffraction patterns of the dried Au/ZnO catalysts as shown in Fig. 3.11 

indicate that the metallic or oxide gold disappears in XRD patterns. This might be 

due to either the gold particles highly dispersed on the surface o f the support or Au 

peaks were overlapped by hydrozincate and/or ZnO, or the amount of gold species 

is smaller than that detected by the XRD technique. However, in these catalysts, 

the presence o f gold decreases the crystallinity of the support peaks. Fig. 3.13 

shows x-ray diffraction patterns of Au/Fe2 0 3 . The peaks showed lower intensity 

suggesting gold interacted with the support decreasing the crystallinity of the 

support. One possible explanation for this observation involves the formation of 

nanophase alloy (gold atoms surronnded by Fe2 0 3  atoms) during coprecipitation. 

The surface defects presented in the amorphous phase might increases the 

interaction between gold particles and support, which prevents gold agglomeration 

to bigger particles.

XPS analysis of dried Au/ZnO catalysts prepared by coprecipitation method A at 

different pH as shown in Table 3.4 indicates that metallic gold was obtained at lower 

pH and by increasing pH, a mixture of Au°- AuN+ was obtained. Combining these 

results with CO oxidation results for Au/ZnO catalysts prepared by coprecipitation 

method A at different pH suggests that metallic gold was responsible for the catalytic 

activity of these catalysts. Further, increasing the pH of the prepared samples led to a 

decrease in the intensity of the gold species on the surface, which disappear at > pH 8 .
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This is in agreement with the results obtained from AA and CO oxidation. The same 

was observed for Au/ZnO catalysts prepared by coprecipitation method B at different 

pH. XPS analysis of dried Au/ZnO catalysts prepared by coprecipitation method A at 

different ageing times as shown in table 3.6 indicates that metallic gold was obtained 

at non-aged, lh , and 8 h aged catalysts while a mixture of Au°- Au+X was obtained for 

catalysts aged for 3h, 5h, 12h. This implies that the ageing process during the 

preparation of the catalyst had an influence; however, the effect of this process on the 

gold oxidation state on the surface is unclear as yet. XPS analysis of the dried 

Au/Fe2(>3 catalysts prepared by coprecipitation method B at different pH as shown in 

Table 3.7 indicates that metallic gold was obtained at lower pH and by increasing pH, 

Aux+ was obtained. Combining these results with CO oxidation results for Au/Fe2 0 3  

catalysts prepared by coprecipitation method B at different pH suggests oxidised gold 

was responsible for the catalytic activity of these catalysts. This is in agreement with 

the ,97MS study by Hutchings [5] concluding that Aux+ was responsible for the 

activity o f gold catalyst supported on Fe2 0 3 . The same XPS analysis results for 

Au/ZnO and Au/ Fe2 0 3  catalysts prepared by deposition-precipitation method 

indicated that the effect of this preparation method on the gold oxidation state was 

negligible.

TPR experiments reported in this study have shown that the reduction o f the 

supports in the supported gold catalysts strongly depends on the preparation 

method and preparation parameters. In the case o f Au/ZnO catalysts, the reduction 

of the uncalcined catalysts is dependent on the pH value, Fig. 3.7. The lower pH, 

the higher gold content, by AA, Fig. 3.1, the greater the decrease in oxidation of
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the surface. Calcined catalysts were reduced at higher temperature than the 

uncalcined, Fig. 3.8 and Fig. 3.9.

In the case of Au/Fe2C>3 catalysts, it is well known that the reduction of bulk iron 

oxide by hydrogen proceeds through the following steps [ 1 2 , 13]:

Fe2C>3 ------------ ► Fe3 0 4   ►FeO -------------► Fe

Our TPR analysis suggested that a correlation exists between the reduction 

temperature and preparation method, Fig. 3.10. Au/Fe2 0 3  prepared by 

coprecipitation at variable pH is reduced at higher temperature than prepared via 

coprecipitation at constant pH. By correlation with BET analysis, Table.3.1, for 

both catalysts, it can be said that the higher the surface area the lower the 

reduction temperature. Our results are in agreement with the results of Galvagno 

et.al. [14]. They studied Au/Fe2 0 i by TPR at higher temperatures and found that 

reduction to FeO occured at 657 °C. However, we did not reach this temperature 

since the maximum temperature in all o f our studies is 500 °C, for alkane 

activation reactions, see chapter 4.

In the case of supported gold catalysts prepared by the deposition-precipitation 

method, four different supports were used for this study (ZnO. Fe2 0 3 , MgO, Mn0 2 ). 

We concentrated on the comparison between these catalysts and we did not go 

through the effect of the preparation parameters because they have been well studied 

previously [15-17]. It is important to note that all supports were prepared by two 

different coprecipitation methods at variable and constant pH to ascertain the effect of
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these methods on the support and then on the prepared supported gold catalysts. All 

supports were calcined and then used for preparation of the supported gold catalyst 

via the deposition-precipitation method.

Two Au/ZnO catalysts were prepared via the deposition-precipitation methods using 

two ZnO materials prepared by coprecipitation at variable and constant pH, 

respectively. The obtained results. Fig. 3.31 and Fig. 3.32 showed that Au/ZnO 

catalyst prepared via this method were highly active under our reaction conditions 

with both supports and in dried or calcined status. However, this was expected 

because BET surface area analysis of the supports showed no significant difference in 

the surface area. Table. 33. and XRD patterns showed the same. Further, XRD of the 

catalysts show that the calcined catalyst more crystalline than the dried catalysts and 

the gold pattern is clearly appear in the calcined catalyst. Fig. 3.14.

Two Au/ Fe2 0 3  catalysts were also prepared via deposition-precipitation methods 

using two Fe2C>3 calcined materials prepared by coprecipitation at variable and 

constant pH respectively. The obtained results also showed Au/ Fe2C>3 catalysts 

prepared via this method are highly active at our reaction conditions with both 

supports and in dried or calcined status.

By the same preparation method, two Au/MgO catalysts were prepared and tested for 

CO oxidation. The catalytic results showed the catalyst active only when in the dried
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status and support prepared by coprecipitation method at variable pH. The Au/MnC>2 

catalyst was not active for CO oxidation under our reaction conditions.

The gold catalysts supported on ZnO and Fe2 0 3  prepared by coprecipitation methods 

A and B were evaluated for low temperature CO oxidation reaction at higher GHSV 

to investigate the parameters that affect their catalytic activities and to identify the 

difference in the catalytic activities of these catalysts. Au/ZnO catalyst prepared by 

coprecipitation procedure A at pH 5 showed higher activity compared with other 

catalysts prepared by the same procedure at pH 6  and higher, Fig. 3.37. The same 

results were obtained for Au/ZnO catalysts prepared by coprecipitation procedure B at 

pH 5, Fig. 3.39. However, Au/ZnO catalysts prepared by coprecipitation procedure A 

at pH 5 showed higher activities than those prepared by coprecipitation procedure B at 

the same pH value. The effect of the ageing process on Au/ZnO catalysts prepared by 

coprecipitation procedure A at pH 6  is very clear. Activities of aged catalysts were 

higher than non-aged one, Fig. 3.41. The ageing process had a very low influence on 

Au/ZnO catalysts prepared by coprecipitation procedure B, Fig. 3.42. Au/Fe2C>3 

catalysts prepared by coprecipitation B showed an increase in activity with an 

increase in pH value. Further, Au/Fe2 0 3  catalysts prepared by coprecipitation B at pH 

8  showed very high activity, even at the highest limit of GHSV of our experiment 

(480000 h*1) and also at 0°C. In contrast, Au/Fe2C>3 catalysts prepared by 

coprecipitation method A were non-active catalysts. To reiterate, this study showed 

that Au/Fe2 0 3  catalysts prepared by coprecipitation B at pH 6  and higher were much 

more active than the most active gold catalyst supported on zinc oxide, namely, 

Au/ZnO catalysts prepared by coprecipitation procedure A and B at pH 5.
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The CO oxidation at high GHSV experiments, confirmed the effect of the selection of 

the support material, preparation method, and preparation parameters such as pH and 

ageing process. Another very important finding for CO oxidation at high GHSV 

experiments is the correlation between CO oxidation reaction and alkane activation 

reaction over the prepared supported gold catalysts, see Chapter 5 of this research 

study.
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Chapter 4

Light alkane activation by supported gold
catalysts
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4.1. Introduction

Over the past twenty years, many researchers in both academic and industrial 

laboratories have studied the conversion of light alkane (C1-C4) to the corresponding 

olefins and/or oxygenates. The products of these reactions are important feedstocks 

widely used in numerous industrial processes. Methane is the principal component of 

natural gas, about 75% of natural gas is CH4. Up until now, the route to utilise 

methane for commercial purposes has been indirect, via syngas (CO, H2) formation by 

steam reforming. This process [eq. 4.1] has many disadvantages such as; high energy 

requirement, high H2/CO ratio (> 4, which is not suitable for methanol and Fischer- 

Tropsch synthesis), and poor selectivity for CO.

CH4 + H2O ----- ► 3H2 + CO 4.1

The catalytic oxidation of methane to syngas [eq. 4.2] has been suggested by both 

academic and industrial researchers as promising an alternative route because it is 

mildly exothermic, more selective, and produces more desirable H2/CO ratio.

CH4 + I / 2 O2 ----- ► 2H2 + CO 4.2

Due to the advantages of the catalytic oxidation of methane, an active search has been 

under way in recent years to find selective catalytic systems for the direct conversion 

of methane to oxygenated compounds (methanol-formaldehyde) or C2+ hydrocarbons
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via m ethane oxidative coupling (M O C ) [eq. 4.3]. So far, the y ields obtained through 

these routs have been insufficient to  ju stify  com m ercial applica tions [1].

2C H 4 + 0 2 ------ ► C 2H4 + 2H 20  4.3

O ne o f  the m ajor challenges facing m ethane catalytic activation in m any cataly tic 

system s is the high tem perature required  to  activate it. The use o f  such high 

tem peratu res often leads to  the production o f  deep oxidation products w hich are m ore 

therm odynam ically  stable than the o ther useful products.

E thane and propane are also  com ponents o f  natural gas, in the range o f  15% and 3%  

respectively . T he curren t com m ercial route for their conversion corresponding  olefins, 

e thy lene and propylene, w hich are basic feedstock  in the petrochem ical industry, is 

steam  crack ing  at high tem perature [2]. H ow ever, th is process has both chem ical and 

industrial lim itations. Partial oxidation o f  light a lkanes represents a  possible route for 

the conversion o f  natural gas into valuable chem icals [3]. In these processes, reactions 

are carried  out in the presence o f  oxygen o r a ir w hich m akes the reaction heat 

exotherm ic. A lso, the consum ption o f  H2 in the reaction zone shifts the equilibrium  

tow ard  the products. Furtherm ore, these routes can be perform ed at low er 

tem peratu res by the selection o f  a proper cataly tic system . Therefore, several ca ta ly tic  

system s have been em ployed in these routes and have exhibited prom ising  ac tiv ities 

and selectivities. W hile som e researchers have previously studied CH4 [4, 5] and C3H8

[6] activation over gold based catalysts supported  on d ifferent supports a t low 

tem perature, no studies so far have been published on C 2H6 ca ta ly tic  activation  via
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supported gold catalysts. In all previous studies on light alkane activation catalysed by 

supported gold catalysts, the main product has been CO2 . The aim of this study is to 

investigate CH4 activation using supported gold catalysts at light temperatures and to 

study the effect of the preparation parameters, types of supports on the activities of 

these catalysts. Further, some of these catalysts were evaluated for C2 H6 and C3 H8 

activation at light temperature.

4.2. R esults

4.2.1. CH4 activation results

The activity of supported gold catalysts for methane catalytic activation is presented 

in this subsection.

4.2.1.1 .Au/ZnO catalysts 

Fig.4.1 shows the results of methane conversion by gold catalysts supported on ZnO 

and prepared via coprecipitation method A at different pH.

09 
08 
07 
06 
05 
04 
03 
02  
0.1 
0 I f o rIL

□ pH 5
■ pH 6
□ pH 7
□ pH 8
■ ZnO only

At 250 

R a a c t i c

At 300 

ura (C)

Figure 4.1. C U 4 conversion by calcined Au/ZnO prepared by coprecipitation methods A at
different pH
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Table 4.1 Initial activity temperature for Au/ZnO, method A, at different pH

Catalyst initial activity temperature °C CH4 conversion %

Au/ZnO, pH 5 2 0 0 0.07

Au/ZnO, pH 6 2 0 0 0.05

Au/ZnO, pH 7 2 0 0 0.03

Au/ZnO, pH 8 250 0.08

ZnO 300 0.07

The initial activity temperatures for Au/ZnO prepared via method A and at different 

pH are listed in Table 4.1. These results indicate that the lower the pH is the lower the 

initial activity temperature. The greatest effect of pH was at pH 5, with higher CH4  

conversion. Activity of ZnO is only observed at 300 °C. The results of oxygen 

conversion by gold catalysts supported on ZnO and prepared via coprecipitation 

method A at different pH are presented in Fig. 4.2.
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Figure 4.2. 0 2 conversion by calcined Au/ZnO prepared by coprecipitation method A at different 
pH
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Gold catalysts supported on ZnO and prepared via coprecipitation method A at pH 6  

and at different ageing times were evaluated for CH4 activation reaction. The results 

of CH4 conversion are shown in Fig. 4.3.

0.7
35 0 6

§ 0.5
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□  unaged
■  aged 3 hrs
□  aged 5 hr
□  aged 8 hr
■  aged 12 hr

At 200 At 250 At 300

Reaction temperature (C)

At 350

Figure 4.3. CH4 conversion by calcined Au/ZnO prepared by coprecipitation A at different 
ageing times

Table 4.2 initial activity temperature for Au/ZnO, method A, at different ageing times.

Catalyst initial activity temperature °C CH4 conversion %

no aging 2 0 0 0 . 0 2

aged 3h 2 0 0 0 . 0 2

aged 5h 250 0.08

Aged 8 h 2 0 0 0.024

aged 1 2 h 2 0 0 0.05

The initial activity temperatures for Au/ZnO prepared via method A and at different 

ageing times are listed in Table 4.2. These results showed that the catalyst aged for 5h 

has the highest initial activity temperature while the one aged for 1 2  h has the highest 

activity for CH4 conversion at the low initial activity temperature. Oxygen conversion
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results by gold catalysts supported on ZnO and prepared via coprecipitation method A 

at different ageing times are presented in Fig. 4.4.
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Figure 4.4. 0 2 conversion by of calcined Au/ZnO prepared by coprecipitation A at different 
ageing times

From the above results it can be said that both CH4 and O2 conversions decrease as 

the pH of the catalysts increase. The ageing process also has an influence on the 

catalytic results. Gold catalysts supported on ZnO and prepared via coprecipitation B 

at different pH values were evaluated for CH4 activation reaction. The results o f CH4 

conversion are shown in Fig. 4.5.

1 -| 
*  0.9
C 0.8
5  0 7 |
8 0 6 ,
|  0.5 -I
<5 0.4
^  0 3? 0 2 ;

□  pH 5
■  pH 6
□  pH 7
□  pH 8
■  ZnO only

At 200 At 250 At 300
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Figure 4.5. C H 4 conversion by calcined Au/ZnO prepared by coprecipitation method B at
different pH
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Table 4.3. initial activity temperature for Au/ZnO, method B, at different pH.

Catalyst initial activity temperature °C CH4 conversion %

Au/ZnO, pH 5 200 0.06

Au/ZnO, pH 6 250 0.1

Au/ZnO, pH 7 250 0.07

Au/ZnO, pH 8 250 0.05

ZnO 300 0.07

The initial activity temperatures for Au/ZnO prepared via method B and at different 

pH are listed in Table 4.3. These results indicate that the lower the pH, the lower 

initial activity temperature. The greatest effect of pH was at pH 5, achieving the 

highest CH4 conversion. ZnO Activity is observed only at 300 °C. Oxygen 

conversion results by gold catalysts supported on ZnO and prepared via 

coprecipitation B at different pH are presented in Fig. 4.6.
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Figure 4.6. 0 2 conversion by calcined Au/ZnO prepared by coprecipitation method B at different 
pH
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From the above results, both CH4 and 0 2 conversions decrease as the pH of the 

catalysts increase. Morever, activity is less than that for catalysts prepared by 

coprecipitation at variable pH (method A). Gold catalysts supported on ZnO and 

prepared via coprecipitation method B at pH 6 and at different ageing times were 

evaluated for this reaction. The results of CH4 conversion are shown in Fig. 4.7.
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Figure 4.7. CH4 conversion by calcined Au/ZnO prepared by coprecipitation method B at 
different ageing times

Table 4.4. initial activity temperature for Au/ZnO, method B, at different ageing times

Catalyst initial activity temperature °C CH4 conversion %

no aging 200 0.06

aged 3hr 200 0.08

aged 5hr 200 0.05

Aged 8hr 250 0.09

aged 12hr 250 0.12
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Low initial activity temperatures for Au/ZnO prepared via method B and at different 

ageing times are listed in Table 4.4. These results show that the catalyst aged for 3 h 

has the highest activity for CH4 conversion at the lower initial activity temperature.

Oxygen conversion results by gold catalysts supported on ZnO and prepared via 

coprecipitation method B at different ageing times are presented in Fig. 4.8.

6 i

□  unaged

■  aged 3 hrs

□  aged 5 hr

□  aged 8 hr

■  aged 12 hr

At 200 At 250 At 300 At 350

reaction temperature (C)

Figure 4.8. 0 2 conversion by calcined Au/ZnO prepared by coprecipitation method B at different 
ageing times

As for catalysts prepared by method A, it can likewise be said that both CH4 and O2 

conversions decrease as the pH of Au/ZnO catalysts prepared by method b increases. 

The ageing process also has an influence in the catalytic activity results.

.2 4

■ ■

4.2.1 .2 .Au/Fe20 3  catalysts
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Gold catalysts supported on Fe2C>3 prepared via coprecipitation methods A and B 

were evaluated for CH4 activation reaction. CH4 conversion results are shown in Fig. 

4.9.
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Figure 4.9. CH4 conversion by calcined Au/Fe20 3 prepared by coprecipitation methods A and B 
at different pH

Table 4.5. Initial activity temperature for Au/Fe20 3, method B, at different pH, method A at pH 8,
Fe20 3

Catalyst initial activity temperature °C CH4 conversion %

Au/Fe20 3 , B, pH 4 250 0.08

Au/Fe203, B, pH 5 2 0 0 0.06

Au/Fe20 3, B, pH 6 2 0 0 0.26

Au/Fe20 3, B, pH 7 2 0 0 0.38

Au/Fe20 3, B, pH 8 2 0 0 0.50

Au/Fe2C>3 , A, pH 8 250 0 . 1 0

Fe20 3, B 250 0.05
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Low initial activity temperature for Au/Fe2C>3 prepared via method B at different pH, 

Au/Fe2C>3 prepared via method A at pH 8, and Fe2C>3 prepared via precipitation

method B are listed in Table 4.5. These results show that the catalyst prepared by

method B at pH 8 has the highest activity for CH4 conversion at the lower initial

activity temperature. The activities of Au/Fe2C>3 prepared by method B at pH 4,

Au/Fe2C>3 prepared by method A at pH 8. and Fe2 (> 3  prepared by precipitation method 

B were observed only at 250 °C. However, the order of activity for these catalysts at 

initial activity temperatures was:

Au/Fe2C>3 , method A(pH 8) > Au/Fe2C>3 , method B (pH4) > Fe2C>3 (pH 8)

Oxygen conversion results by gold catalysts supported on Fe2 0 3  and prepared via 

coprecipitation methods A and B at different pH are presented in Fig. 4.10.
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Figure 4.10. 0 2 conversion by calcined Au/Fe2Oj prepared by coprecipitation A and B at
different pH
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CH4 and 0 2 conversions obtained for Au/Fe2 0 3  catalysts increased as pH value 

increased. However, the activity of Au/Fe2C>3 prepared by method A was much lower 

than that prepared by method B.

4.2.1.3.Au/ZnO and Au/Fe2C>3 prepared by DP method

Gold catalysts supported on ZnO and Fe20 3  prepared via the deposition-precipitation 

method are evaluated for CH4 activation reaction. CH4 conversion results are shown 

in Fig. 4.11.

□  Au/ZnO
■  A u / F e 2 0 3  
□ Z n O  only
□  F e 2 0 3  only

At 200 At 2S0 At 300  At 350
Re a c t i o n  t e m p e r a t u r e

Figure 4.11. CH4 conversion by of calcined Au/ZnO and Au/Fe20 3 prepared by DP, ZnO and
Fe20 3

Table 4.6. Initial activity temperature for Au/Fe20 3, Au/ZnO prepared via DP, Fe20 3, and ZnO

Catalyst initial activity temperature °C CH4 conversion %

Au/Fe20 3 , DP 200 0.38

Au/ZnO. DP 200 0.05

Fe20 3 , preci. B 250 0.08

ZnO. preci. A 300 0.07
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Low initial activity temperatures for Au/Fe2 0 3  and Au/ZnO prepared via deposition- 

precipitation method, and Fe2C>3 and ZnO prepared by precipitation method B and A 

respectively are listed in Table 4.6. These results show that the Au/Fe2C>3 had the 

highest activity for CH4 conversion at lower initial activity temperature. Fe2 0 3  

Activity was observed at 250 °C, while ZnO activity was observed at 300 °C. The 

order of the activity for these catalysts at initial activity temperatures was:

Au/Fe2 0 3 , DP > Au/ZnO, DP > Fe2 0 3 , preci. B > ZnO, preci. A

Oxygen conversion results by gold catalysts supported on ZnO and Fe2 0 3  prepared 

via deposition-precipitation are presented in Fig. 4.12.
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Figure 4.12. 0 2 conversion by calcined Au/ZnO and Au/Fe2Oj prepared by DP, ZnO and Fe20

The above methane and oxygen conversion results on supported gold catalysts 

prepared via the DP method indicate that the gold catalyst supported on iron oxide is 

more active than that supported on zinc oxide. However, both are more active than the 

supports themselves.
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4.2.2. Ethane and propane activation results

Only some catalysts were evaluated for ethane and propane catalytic activation. Some 

of these catalysts were chosen due to their high activities either for CO oxidation or 

CH4 activation, while some were chosen for comparison with the high active catalysts 

for ethane and propane activation. These catalysts were Au/Fe2 0 3  prepared by 

coprecipitation at constant pH, method B. at pH 8. 7, 4 (see Chapter 2) and Au/ZnO 

prepared by coprecipitation at variable pH, method A, at pH 5. Au/Fe2 0 3  prepared at 

pH 8 had the highest activities for supported gold catalysts prepared and investigated 

in this study, while Au/ZnO prepared at pH 5 had the highest activity for gold on zinc 

oxide catalysts prepared and investigated in this study. The results of ethane 

conversion over the above selected supported gold catalysts are shown in Fig.4.13. 

The order of activity for these catalysts through all reaction temperatures was: 

Au/Fe20 3 (pH 8) > Au/Fe20 3 (pH 7) > Au/Fe20 3 (pH 4) > Au/ZnO (pH 5)

30 

*  25

|  20 OAu/Fe203. B. pH 8

£ 15

6  5 A

■  Au/Fe203, B. pH 7
□  Au/Fe203, B. pH 4
□  Au/ZnO. A. pH 5

At 200 At 250 At 300 At 350
Reaction temperature (C)

Figure 4.13. C 2H6 conversion over supported gold catalysts at different tem peratures
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Propane conversion results over the above selected supported gold catalysts were in 

agreement with all previous CH4 and C2 H6 activation results over these catalysts.

30

D A u /F e 2 0 3 .  B. pH 8 
■  A u /F e20 3  B. pH 7
□  A u/Fe203 .  B. pH 4
□  A u/ZnO .  A. pH 5

At ISO At 2 0 0 At 2 5 0 At 3 0 0

Reaction temperature (C)

Figure 4.14. C3Hg conversion over supported gold catalysts at different temperatures

Propane conversion results are shown in Fig. 4.14. The order of activity for these 

catalysts through all reaction temperatures was:

Au/Fe2C>3 (pH 8 ) > Au/Fe2C>3 (pH 7) > Au/Fe2C>3 (pH 4) > Au/ZnO (pH 5)

4.3. Discussion

Light alkane (C1-C3) catalytic activation results over Au/ZnO and Au/Fe2 0 3  catalysts 

using two different coprecipitation procedures and deposition-precipitation method 

have been presented in this study. Comparing these results with the results obtained 

from the conventional noble metals catalysts, such as; Pt and Pd, previously studied

[7], the former indicated some activity for methane activation only above 300 °C, 

while this study's results showed supported gold catalysts can work at temperature
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lower than this. In this study, catalytic activity started at 200 °C for methane and 

ethane activation and even at 150 ° C for propane activation.

The most important observations for the supported gold catalysts prepared in this 

study were their potential sensitivity to the variations in preparation parameters and 

type of support during when the materials were examined for CH4 activation. For 

example, increasing pH in Au/ZnO catalysts prepared by coprecipitation methods A 

and/or B led to decrease activity of catalysts towards CH4 activation, while increasing 

pH in Au/Fe203  catalysts prepared by coprecipitation method B led to increase the 

activity of the catalysts towards CH4 activation. Further, Au/Fe2C>3 calcined catalysts 

prepared by coprecipitation method A were well known as non-active material for 

either CO oxidation [8 ] or CH4 activation [4] while in this study, Au/Fe203  catalysts 

prepared by coprecipitation method B were very active for CO oxidation and showed 

the highest activity for CH4 activation. Further, variation in the ageing times of the 

precipitate prior to filtration, even for a short period of time, can significantly affect 

the observed activity.

The obtained results of CH4 activation over Au/ZnO and Au/Fe203  catalysts indicated 

that the final pH is an important variable since the components present in the mixture 

precipitate during the preparation at different pH values [9]. For example, the onset of 

precipitation of Zn2+ is ca. pH 7, whereas the onset of precipitation of Fe3+ is ca. 3. 

Hence using coprecipitation procedure A, the iron oxide/hydroxide/carbonates 

precipitate(s) very early in the preparation procedure and, conversely, the zinc 

oxide/hydroxide/carbonates precipitates relatively late in the procedure. This suggests
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the preparation of Au/Fe203  materials using procedure A is similar to deposition 

precipitation since the support is precipitated prior to the active component. This is 

not the case for Au/ZnO materials. However, pH in coprecipitation procedure B is 

constant throughout the coprecipitation process. This leads to the precipitation of the 

support and gold at the same time and then changes in the interaction properties 

between the support and gold during the calcination process. This is clear in the case 

of Au/Fe2C>3 prepared by coprecipitation B. This method produces an active calcined 

catalyst while the calcined Au/Fe2C>3 prepared via coprecipitation method A is non­

active for either CO oxidation (Chapter 3) or CH4 activation. This change in catalytic 

properties is clear also ffom the significant difference in the data obtained for the BET 

surface analysis of both Au/Fe203  catalysts prepared by coprecipitation A and B 

procedures (Tables 3.1 and 3.2, Chapter 3).

An interesting result obtained for CH4 activation over Au/Fe203  catalysts prepared by 

coprecipitation procedure B at pH 6 was that some methanol was observed at 300 °C, 

(Table 4.7). A possible explanation for this interesting result is that the gold particles 

are capable of selective reaction to methanol when prepared at this pH value, while at 

lower or higher pH value, gold particles block or poison the surface sites associated 

with the formation of methanol and then the yield of CO2 is enhanced to perform the 

total oxidation process.
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Table 4.7. CH4 activation results over Au/Fe203 at different pH, at 300 °C
pH 4 pH 5 pH 6 pH 7 pH 8

CH4 conversion % 0.5 0.75 0.9 1.5 2.3

C 0 2 selectivity % 100 100 95 100 100

CH3OH Selectivity % 0 0 5 0 0

Further, only the Au/Fe2C>3 catalyst prepared by coprecipitation procedure B at pH 6 

showed lower O2 conversion than other Au/Fe203  catalysts prepared by 

coprecipitation procedure B at 300 °C, (Fig. 4.10), while O2 conversions for other 

Au/Fe2(>3 catalysts prepared by coprecipitation procedure B indicated that only total 

oxidation is observed.

In addition to the effects of the preparation method and pH, CH4 activation results 

suggested that catalysts prepared using both procedures A and B are very sensitive to 

ageing of the precipitate (Fig. 4.3 and 4.7). The origin of the variation in activity and 

effect of the ageing process are not yet clear. However, it might be due to the 

difference in the dispersion of gold during the ageing process.

Au/ZnO and Au/Fe2C>3 catalysts prepared via deposition-precipitation were evaluated 

for CH4 activation due to their high activities in CO oxidation compared with other 

supported gold catalysts prepared by the deposition-precipitation procedure (Chapter 

3) and to compare their results with Au/ZnO and Au/Fe203  catalysts prepared by 

coprecipitation A and B procedures. Fig. 4.15 shows CH4 activation results over the

Chapter 4
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most active catalysts prepared by both coprecipitation and deposition-precipitation 

procedures.
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Figure 4.15. CH4 conversion over supported gold catalysts at different temperatures

Au/Fe2 0 3  catalysts prepared by both coprecipitation B and deposition-precipitation 

procedures were more active than Au/ZnO catalysts prepared by both methods. 

However, Au/Fe2C>3 catalysts prepared by coprecipitation B, a novel procedure for 

supported gold catalysts preparation, had the highest activity towards CH4 activation 

reaction. The catalysts investigated in this study for CH4 activation showed the 

following methane conversion scale:

Au/Fe203  coprecipitation B, pH 8 > Au/Fe2C>3, DP > Au/ZnO coprecipitation A,

pH 5 > Au/ZnO, DP

Au/Fe2C>3 catalysts prepared by coprecipitation B, had the highest activity towards CO 

oxidation (Chapter 3) and CH4 activation reaction was also the best catalyst for the 

activation of C2H6 and C3H8 (Fig. 4.13 and Fig. 4.14). C2H6 activation over supported 

gold catalysts has not been yet reported in literature; therefore, this study is an
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indication of supported gold catalysts contribution to this reaction. However, in this 

study, the main product was CO2 which indicates that the supported gold catalyst is 

non-selective for this type of reaction. A comparison CH4, C2 H6, and C3 H8 

conversions over Au/Fe2C>3 catalyst prepared by coprecipitation B is presented in 

Fig.4.16.

C2H6

C3H8

At 150 At 200 At 250

Reaction temperature (C)

At 300

Figure 4.16. CH4, C2H6, and C3H8 conversions over Au/Fe20 3 catalyst prepared by 
coprecipitation B

To determine the best catalyst, the activation of light alkane (C1-C3) was studied and 

the activity is as follows:

C3 H8 > C2 H6 > c h 4

As shown in Fig.4.16, the activity increases as the number of carbon atom in alkane 

increase, which indicates that the alkane conversion and then the rate of reaction 

depends on rupture of the C-H bond on the surface of the catalyst and not on rupture 

of the C-C bond. The energy of these bonds decreases from methane to propane as 

shown in (Table 4.7) [10]. From this table, it is clear that the C-H bond decreases 

from CH4 to C3 H8 .
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Table 8 C-C and C-H bonding energies for light alkanes

Hydrocarbon C-C bonding energy KJ/mol C-H bonding energy KJ/mol

c h 4 - 413

c 2h6 330 410

c 3h8 334 401

Finally, after obtaining a clear picture of the behaviour of the prepared and 

investigated supported gold catalysts for CO oxidation and light alkanes activation, a 

correlation study between CO oxidation and light alkanes activation over these types 

of catalysts need be undertaken, see Chapter 5.
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Chapter 5 

Correlation between CO oxidation and Alkane 
activation
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5.1. Introduction

CO oxidation over supported gold catalysts was studied in detail in Chapter 3. The 

studies investigated of CO oxidation at different GHSV and at different temperatures. 

Light alkane activation at different temperatures was studied in detail in Chapter 4. 

The work presented in this Chapter is comparing CO oxidation and alkane activation 

over supported gold catalysts. The activation energies of and the pre-exponential 

factors for the supported gold catalysts were calculated based on Arrhenius equation 

in order to determine the behaviour of supported gold catalysts for these two types of 

reactions.

5.2. Results

5.2.1. Ea over Au/ZnO prepared by coprecipitation method A at different pH 

The activation energies and the pre-exponential factors of CO oxidation and CH4 

activation over Au/ZnO prepared via coprecipitation method A at different pH were 

calculated from the temperature dependency of the reaction at low conversion. 

Arrhenius plots for both reactions over Au/ZnO prepared via coprecipitation method 

A at different pH are shown in Figs. 5. Land 5.2 respectively.

-9.5
-10

-10.5
♦  pH  5  ■  p H  6

I  -115
-12 

-12 5
000 2 20 002 0 00210 0015 0 0016 0.0017 00018 0 0019

1/T(K)

Figure 5.1. Arrhenius plots for CH4 activation over Au/ZnO prepared by coprecipitation method
A at different pH
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-2 5 ♦  p H  5 •  p H  6

£. -3 5

S -5 5 A p H  7 p H  8

-6 5
0 003 00031 00032 0 0033 0 0034 0 0035 0 0036 0 0037

1/T(K)

Figure 5.2. Arrhenius plots for CO oxidation over Au/ZnO prepared by coprecipitation method 
A at different pH

The activation energies Ea and the pre-exponential factor (A) for both reactions over 

Au/ZnO prepared via coprecipitation method A at different pH are shown in Table.

5.1.

Table 5.1 Activation energy for CO oxidation and C'H4 activation over Au/ZnO, method A, at 
different pH.

Catalyst Ea co (kJ/mol)
Ln A co

(Arr Eq constant)

Ea cn4 (kJ/mol)
Ln A cn4

(Arr. Eq constant)

pH 5 N/A +3 39 -2

pH 6 12 -2 41 -1

pH 7 18 +1 42 -1

pH 8 42 +13 45 -1

The CO oxidation activity of Au/ZnO prepared via coprecipitation method A at pH 5 

is high. Due to the high activity of this catalyst, no kinetic data could be collected 

under these conditions. However, increasing the pH led to increased activation energy
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for both reactions, while pre-exponential factor A varied for CO oxidation and almost 

the same for CH4 .

5.2.2. Ea over Au/ZnO prepared by coprecipitation method A at different 

ageing times

The activation energies for CO oxidation and CH4 activation over Au/ZnO prepared 

via coprecipitation method A at different ageing times were calculated from the 

temperature dependency of the reaction at low conversion. The Arrhenius plots for 

both reactions over Au/ZnO prepared via coprecipitation method A at different ageing 

times are shown in Figs. 5.3.and 5.4 respectively.

♦  no ageing

■  3 h

▲ 5 h

8 h

-2 5
0 0032 0 0033 0 0034 0 0035 0 0036 0 0037

1/T(K>
0 003 00031

Figure 5.3. Arrhenius plots for CH4 activation over Au/ZnO prepared by copri. method A at 
different ageing times

♦  no ageing

■  3 h

-0.5

-1 5

* 1 2 h-2.9
00036 000370 0033 0 0034 

1/T (K )
0 00350  003 0  0031 0 0032

Figure 5.4. Arrhenius plots for CO oxidation over Au/ZnO prepared by copri. method A at 
different ageing times
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T he activation  energ ies Ea and the p re -exponen tia l fac to r (A ) for both reactions over 

A u/Z nO  prepared via coprecip itation  m ethod  A at d iffe ren t age ing  tim es are show n in

T able . 5.2.

Table S.2 Activation energy for CO oxidation and CH4 activation, Au/ZnO, method A, at 
different ageing times

C atalyst Ea co  (kJ/m ol)
Ln A c o

(An Eq constant)

Ea cm  (kJ/m ol)
Ln A ch4

(A n Eq constant)

N o ageing 12 -2 42 -1

A ged 3h 17 +8 20 +  1

A ged 5h 15 +15 35 +2

A ged 8h 17 +8 17 + 1

A ged 12h 16 +12 29 +0.5

W hile the ageing  process increased the activation  energy for C O  oxidation activ ity  

o v er A u/Z nO  prepared via coprecip itation  m ethod  A at d ifferent ageing  tim es, it led to 

a  decrease  in activation  energy for CH4 activation . T he  ageing  process increased the 

p re-exponential facto r for both reactions.

5.2.3. Ea over A u/Z nO  prepared by coprecip itation  m ethod B at d ifferen t pH

T he ac tiva tion  energ ies for C O  oxidation and  C H 4 activation  over A u/Z nO  prepared  

v ia  coprecip ita tion  m ethod B at d ifferen t ageing  tim es w ere calcu lated  from  the 

tem peratu re  dependency  o f  the reaction at low  conversions. T he A rrhen ius p lo ts for
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both reactions over Au/ZnO prepared via coprecipitation method B at different pH are 

shown in Figs.5.5.and 5.6 respectively.

0 7

♦  p H  5 ■  p H  6-05

-1.7

a  p H  7 p H  8-53

-6.5
00031 0.0032 0.0033 0 0034 0.0035 0 0036 0.0037

1/T(K)
0 003

Figure 5.5. Arrhenius plots for CH4 activation over Au/ZnO prepared by coprecipitation 
methods B at different pH

— 0.7

♦  p H  5  ■  p H  62 -0 5

E -2 9

A p H  7 p H  8-53

-65
0 003 0 0031 0 0032 0 0033 0 0034 0 0035 0 0036 0.0037

trr (K)

Figure 5.6. Arrhenius plots for CO oxidation over Au/ZnO prepared by coprecipitation methods 
B at different pH

The activation energies Ea and the pre-exponential factor (A) for both reactions over 

Au/ZnO prepared via coprecipitation method B at different pH are shown in Table.

5.3.
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Table 5.3 Activation energy for CO oxidation and CH4 activation over Au/ZnO, method B, at 
different pH

Catalyst Ea co (kJ/mol)
Ln Aco

(Arr Eq constant)

Ea ch4 (kJ/mol)
Ln A ch4

(Arr Eq constant)

pH 5 15 +7 42 -0.5

pH 6 16 +4 53 -1

pH 7 22 +6 47 -0.3

pH 8 25 +7 44 -1

An increase the pH led to an increase the activation energy for the CO oxidation 

activity of over Au/ZnO prepared by coprecipitation method A at different ageing 

times. For CH4 activation, activation energy increase as pH increase from 5 to 6, and 

then decreased as pH increased to higher values.

5.2.4. Ea over Au/ Fe203  prepared by coprecipitation method B at different 

pH

The activation energies and the pre-exponential factor (A) for CO oxidation and CH4 

activation over Au/Fe20 3  prepared via coprecipitation method B at different pH were 

calculated from the temperature dependency of the reaction at low conversion. 

Arrhenius plots for both reactions over Au/Fe203  prepared via coprecipitation method 

B at different ageing times are shown in Figs. 5.7.and 5.8 respectively.
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-6 5 ♦ pH 5
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Figure 5.7. Arrhenius plots for CH4 activation over Au/Fe203 prepared by coprecipitation 
methods B at different pH
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1/T(K)

Figure 5.8. Arrhenius plot for CO oxidation over Au/Fe203 prepared by coprecipitation methods 
B at different pH

The activation energies Ea and the pre-exponential factor (A) for both reactions over 

Au/Fe2 C>3 prepared via coprecipitation method B at different pH are shown in table. 

5.4 .

13 6



Correlation between CO oxidation and Alkane activation Chapter 5

Table 5.4 Activation energy for CO oxidation and CH4 activation, Au/Fe20 3, method B, and pH 8 
method A

Catalyst Ea co (kJ/mol)
Ln A co

(A it Eq constant)

Ea ch4 (kJ/mol)
Ln A ch4

(Arr Eq constant)

pH 5 39 + 1 0 61 + 1.2

pH 6 27 + 8 41 +0.1

pH 7 7 +3 42 + 1.1

pH 8 0.6 +4 40 +4

pH 8 ,  Method A 30 +7 67 +4.5

The CO oxidation activity of Au/Fe2 0 3  prepared by coprecipitation method B at pH 7, 

8 is high. The increase the pH led to decrease the activation energy for the CO 

oxidation and CH4 activation reactions activity of over Au/Fe203  prepared by 

coprecipitation method B at different pH. The increase the pH led to decrease the pre­

exponential factor for CO oxidation over Au/Fe203  prepared by coprecipitation 

method B at different pH.

5.2.5. Ea study for C2H6 and C3H8 over selected supported gold catalysts

The activation energies for C2H6 activation over the best selected supported gold 

catalysts, Au/Fe203  prepared via coprecipitation method B at pH 7, and 8 and Au/ZnO 

at pH 5 were calculated from the temperature dependency of the reaction at low 

conversion. The Arrhenius plots for both reactions over these catalysts are shown in 

Fig. 5.9. The results show that Au/Fe2C>3 prepared via coprecipitation method B at pH 

8 was the lower activation energy, consistent with the results presented and discussed 

in Chapter 4.

137



Correlation between CO oxidation and Alkane activation Chapter 5
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Figure 5.9. Arrhenius plots for C2H6 activation over the most active supported gold catalysts

The activation energies for C3 H8 activation over the best selected supported gold 

catalysts, Au/Fe2 0 3  prepared via coprecipitation method B at pH 7and 8 and Au/ZnO 

at pH 5 were calculated from the temperature dependency of the reaction at low 

conversion. Arrhenius plots for both reactions over these catalysts are shown in Fig. 

5.I0.

-5

-6

-7

♦  A u/Z nO .A . pH  5-8

-9
■ A u /F e 2 0 3 .B . pH  7

-10

* A u /F e 2 0 3 ,B , pH  8-11
0 002 0 0021 000220 0017 0 0018 0 00190 00160 0015

1/T (K)

Figure 5.I0. Arrhenius plot for C3H8 activation over the most active supported gold catalysts

The activation energies Ea and the pre-exponential factor (A) for C2 H6 and C3 H8 over 

the most active catalysts of the supported gold catalysts are shown in Table. 5.5.
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Table 5.5. Activation energy for C2H* and C3Hs activation over the most active supported gold 
catalysts

Catalyst Ea C2H6 (kJ/mol)
Ln A C2H6

(Arr Eq constant)

Ea C3H8 (kJ/mol)
Ln A C3H8

(Arr Eq constant)

Au/Fe203, B, pH 8 49 +4 45 +4

Au/Fe203, B, pH 7 59 +6 53 +7

Au/ZnO, pH 5 53 + 11 47 +6

5.3. Discussion

Small gold supported particles are beneficial for both low temperature CO oxidation 

[1-3] and CH4 activation [4, 5]. This is ascribed to either the presence of a large total 

Au/support interface [6], the presence of special sites, such as a special electronic 

structure of very small gold particles [7], or ionic gold species specifically present on 

small gold particles [8, 9]. The effects of both a large gold/support interface and the 

possible presence of special sites of gold are relatively clear when dealing with small 

gold particles, which leave it very difficult to specify the actual active gold species.

The results presented in this chapter explain the activation energies of CO oxidation 

and light alkane (C 1-C3) catalytic activation reactions over Au/ZnO and Au/Fe20 3  

catalysts prepared via both coprecipitation procedures at variable and constant pH. 

When comparing supported gold catalysts, it is very important to consider the 

influence of the preparation parameters, type of support, and preparation procedure.
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Comparing activation energies and pre-exponential factor (Arrhenius eq. constant) 

(A), which indicate active sites on the surface o f the catalyst, for CO oxidation and 

CH4 activation reaction over Au/ZnO catalysts prepared by coprecipitation method A 

at different pH, Table 5.1, shows that increasing pH led to an increase in the 

activation energies of both reactions. The pre-exponential factor (A) was increased by 

increasing pH in the case of CO oxidation reaction, whereas it remained almost stable 

for CH4 activation reaction. Therefore, the effect o f activation energy was higher than 

the pre-exponential factor (A) in the CO oxidation reaction, and activation energy 

only was affected by increasing pH in the case o f CH4 activation reaction because the 

pre-exponential factor had almost the same value over all these catalysts. However, 

the difference in activation energies for CH4 activation over these catalysts was lower 

than that for CO oxidation. Further, the stability o f the pre-exponential factor (A) for 

CH4 activation over these catalysts suggests that the effect of pH in CH4 activation 

was less than its effect in CO oxidation. This may be due to the high reaction 

temperature for CH4 activation, which causes sintering of small supported gold 

particles, and the subsequent loss o f some active sites, especially for catalysts 

prepared at low pH.

Comparing activation energies and the pre-exponential factor (Arrhenius eq. constant) 

(A) for CO oxidation reaction over Au/ZnO catalysts prepared by coprecipitation 

method A at different ageing times, tables 5.2, shows that variation in ageing times 

had no significant influence on the activation energies, while variation in the pre­

exponential factor (A) had some influence. However, both Ea and the pre-exponential 

factor (A) were lower for aged catalysts than non-aged catalyst. In the case of CH4

140



Correlation between CO oxidation and Alkane activation Chapter 5

activation reaction, activation energies over the aged catalysts were lower than that 

over non-aged catalyst, while the pre-exponential factor (A) was almost the same for 

all the catalysts. This may be due to the high reaction temperature for CH4 activation, 

which cause sintering of small supported gold particles and loss some active sites.

Comparing activation energies and the pre-exponential factor (Arrhenius eq. constant) 

(A) for CO oxidation and CH4 activation reaction over Au/ZnO catalysts prepared by 

coprecipitation method B at different pH, Table 5.3, shows that increasing pH led to 

an increase in activation energy in CO oxidation reaction while variations in Ea for 

C H 4 over these catalysts were low. The effect of Ea on rate of CO oxidation reaction 

was higher than the effect of the pre-exponential factor (A) and, hence, increasing pH 

led to a decrease in Ea and then a decrease in the catalytic activity of these catalysts. 

Pre-exponential factor (A) values were much higher for CO oxidation reaction than 

C H 4 activation reaction. This may have been due to the high reaction temperature for 

C H 4 activation, which caused sintering of small supported gold particles, and then the 

loss of some active sites, especially for catalysts prepared at low pH.

Activation energies for CO oxidation over Au/ZnO catalysts prepared by 

coprecipitation method A prepared at different pH is lower than for CO oxidation over 

Au/ZnO catalysts prepared by coprecipitation method B prepared at different pH. 

These results are in agreement with the results presented in chapter 3, indicating that 

catalysts prepared by procedure A at different pH are more active than those prepared 

by method B at different pH. This confirms that the effect of Ea on CO oxidation 

reaction rate is higher than that of the pre-exponential factor (A). However, the effect 

of the factor is negligible in the case of CH4 activation reaction.
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Activation energy and pre-exponential factor (A) were examined for CO oxidation 

and CH4 activation reaction over Au/Fe2 0 3  catalysts prepared by coprecipitation 

method B at different pH. Table 5.4 showed that increasing pH led to a decrease in 

activation energy in CO oxidation and CH4 activation reactions. The effect of Ea on 

rate of CO oxidation reaction was higher than the effect of the pre-exponential factor 

(A) and, hence, increasing pH led to an increase in Ea and then an increase in the 

catalytic activity of these catalysts. Pre-exponential factor (A) values were much 

higher for CO oxidation reaction than C H 4 activation reaction. This may be due to the 

high reaction temperature required for CH4 activation, which causes sintering of small 

supported gold particles, and then the loss of some active sites, especially for catalysts 

prepared at low pH. For Au/Fe20 3 catalysts prepared by coprecipitation method B at 

pH 8  for C H 4 activation reaction, there was agreement between Ea and pre­

exponential factor (A) values, activation energy was low and the pre-exponential 

factor (A) was high, which means more active sites were obtained on this catalyst. 

This might be the reason for the highest activity obtained for this catalyst either for 

CO oxidation or CH4 activation.

Activation energies and pre-exponential factors (A) were examined for C2H6 and 

C3H8 activation reaction over the most active supported gold catalysts, namely, 

Au/Fe20 3  prepared via coprecipitation B at pH 7 and 8 and Au/ZnO prepared via 

coprecipitation A at pH 5. Table 5.5 showed that the affect of activation energy was 

higher than that of the pre-exponential factor. The catalyst had the highest activity for 

both reactions, Au/Fe2C>3 prepared by coprecipitation method B at pH 8 , showed the 

lower activation energy and the lower pre-exponential factor (A) confirmed that the
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rate of both reactions depended on the activation energy. Further, Table 5.5 showed 

that Ea values for C2H6 over all selected catalysts were lower than that for C3H8 over 

these catalysts. This is because C-H bond in C3H8 is lower energy than C-H bond of 

C2H6.
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6.1. C onclusion

In this study, supported gold catalysts were found to activate CO and light alkanes at 

low temperatures. The selection of support materials and control of preparation 

parameters such as; pH, preparation temperature, ageing time are have been shown to 

be very important parameters for designing an active supported gold catalyst for both 

types of reaction. These catalysts exhibited excellent catalytic activity and stability 

compared with pure supports, ZnO and Fe20 3, and the best preparation temperature 

was 80 °C. Use of temperatures > 80 °C led to inactive catalysts

The final pH is an important variable in the preparation of gold catalysts supported on 

ZnO and Fe20 3, since the components present in the reaction mixture precipitate at 

different pH values. The onset of precipitation of Zn2+ is pH 7, whereas the onset of 

precipitation of Fe3+ is pH 3. This might be the reason for the difference in activity 

between gold catalysts supported on both supports when pH increased, ln the case of 

Au/ZnO, the increase in pH led to decrease the catalytic activity for low temperature 

CO oxidation and light alkanes activation as well. This might be because gold is 

precipitated at a lower pH than ZnO and then, as pH increase, gold particles become 

covered by Zinc particles, which leads to decrease the activity of the catalyst. The 

situation is different for Au/Fe20 3 catalysts, because Fe precipitates at pH 3, which is 

a lower pH than that for gold precipitation. Therefore, the increase in pH leads to an 

increase in the catalytic activity toward low temperature CO oxidation and light 

alkane activation.
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Varying the ageing time of the precipitate prior to filtration, even for short periods of 

time, can significantly affect the observed activity. However, the origin of this effect 

is not yet clear.

Several characterisation techniques were used to study the properties of supported 

gold catalysts prepared in this study. Atomic absorption analyses showed that the 

content of gold is strongly dependent on the pH, the increase in the pH leading to a 

decrease gold content in the catalysts prepared by coprecipitation at variable pH (A) 

or at constant pH (B).

X-ray diffraction patterns of dried Au/ZnO catalysts showed that gold does not appear 

in XRD patterns, due to either to highly dispersion of gold particles are on the surface 

of the support or Au peaks overlapped by hydrozincate and/or ZnO or the amount of 

gold species is smaller than that detected by the XRD technique. In these catalysts, the 

presence of gold decreases the crystallinity of the support peaks. Further, the powder 

X-ray diffraction patterns of Au/ZnO as a function of Au content showed that Au 

peaks appeared only at lower pH, when the Au content is the highest in Au/ZnO 

catalysts. The phase detected for Au/ZnO before calcination was zinc carbonate 

hydroxide hydrate, Zn4C0 3 (0 H)6.H20 , while after calcination it was zinc oxide, 

zincate (ZnO). X-ray diffraction patterns of Au/Fe20 3  peaks showed lower intensity 

suggesting that gold interaction with the support decreased the crystallinity of the 

support. The phase detected for calcined Au/Fe20 3 was hematite (Fe20 3), while 

uncalcined support was amorphous.
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The reduction of the supported gold catalysts strongly depends on the preparation 

method and preparation parameters. In the case of Au/ZnO catalysts, the reduction 

of the uncalcined catalysts was dependent on pH. The lower pH, the higher the 

gold content, the more reduced by TPR. TPR analysis of calcined catalysts showed 

they reduced at a higher temperature than the uncalcined ones. In the case of 

Au/Fe2C>3 catalysts, TPR analysis appeared to show a correlation existing between 

the reduction temperature and preparation method. Au/Fe2<I>3 prepared by 

coprecipitation method A was reduced at higher temperature than that one 

prepared via coprecipitation method B. BET surface area analysis showed that the 

active catalysts should have a BET surface area higher than 40 g/m2.

Coprecipitation and deposition-precipitation methods obtained highly active gold 

catalysts supported on ZnO and Fe20 3 for low temperature CO oxidation. The 

Au/MgO catalyst, the only uncalcined catalyst was prepared by DP method. Support 

prepared by coprecipitation method A, was active at low temperature CO oxidation. 

DP method is not useful method to prepare active Au/MnOx catalyst.

Supported gold catalysts showed activity towards light alkane (C1-C3) activation at 

reaction temperatures lower than those for other catalysts. Initial reaction temperature 

for methane and ethane activation was 200°C, and 150°C for propane activation. 

Further, the same behaviour of supported gold catalysts on low temperature CO 

oxidation was observed for light alkane (C1-C3) activation.

148



Conclusion and Future work Chapter 6

The obtained results of CH4 activation over Au/ZnO and Au/Fe2C>3 pointed to pH 

value as an important variable. In the case of Au/ZnO, the increase in pH led to the 

decrease the activity of this catalyst toward CH4 activation, while for Au/Fe2C>3 

prepared by coprecipitation B, the increase in pH value led to the increase in the 

activity of this catalyst toward CH4 activation. Au/Fe203 catalysts prepared by 

coprecipitation method A were non-active material for either CO oxidation or CH4 

activation. In contrast, Au/Fe203  catalysts prepared by coprecipitation method B were 

very active for CO oxidation and showed the highest activity for CH4 activation over 

Au/Fe2 0 3  catalysts in this study. This preparation procedure has not been reported yet 

in the literature for Au/Fe20 3 catalysts. Thus, the novelty of these results obtained via 

this procedure is considerable. However, some methanol was observed at 300 °C over 

Au/Fe2 0 3  catalyst prepared by coprecipitation procedure B at pH 6.

In addition to the effects of preparation method and pH, the results of CH4 activation 

showed that catalysts prepared using both procedures A and B are very sensitive to 

the ageing of the precipitate. The origin of the variation in activity and effect of the 

ageing process is not yet clear. However, it might be due to the difference in the 

dispersion of gold during the ageing process.

C2H6 and C3H8 activation reactions were studied over the supported gold catalysts 

prepared in this study. Au/Fe2C>3 catalyst prepared by coprecipitation B, at pH 8, was 

also the best catalyst for the activation of C2H6 and C3H8. C2H6 activation over 

supported gold catalysts has not been yet reported in literature, so this study provides 

an indication to the likely behaviour of this reaction over this type of catalysts.
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The main product observed for light alkane activation over supported gold catalysts 

was CO2, suggesting that supported gold catalysts are non-selective catalysts for this 

type of reaction. However, comparison between the conversion of CH4, C2H6, and 

C3H8 over the best catalyst, Au/Fe2C>3 prepared by coprecipitation B at pH 8, showed 

that such activity increased as carbon atoms increased in the alkane.

Activation energies Ea and pre-exponential factor (A) for low temperature CO 

oxidation and light alkane activation reactions over supported gold catalysts were 

investigated in this study. A comparison of results showed some correlation between 

the behaviour of both types of reaction over the same catalyst. Both reactions strongly 

depend on preparation method, type of support, and preparation parameters such as; 

pH value, ageing time.

Ea results of CO oxidation and CH4 activation over Au/ZnO catalysts prepared by 

coprecipitation method A and/or B prepared at different pH, showed that increasing 

pH led to an increase in the activation energy. The pre-exponential factor (A) was 

increased by increasing pH in the case of CO oxidation, whereas it remained almost 

stable for CH4 activation. Therefore, the effect of activation energy was higher than 

the pre-exponential factor (A) in the CO oxidation reaction, and activation energy 

only was affected by increasing pH in the case of CH4 activation reaction because the 

pre-exponential factor had almost the same value over all these catalysts. Further, the 

stability of the pre-exponential factor (A) for CH4 activation over these catalysts 

suggests that the effect of pH in CH4 activation was less than its effect in CO 

oxidation. This may be due to the high reaction temperature for CH4 activation, which
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causes sintering of small supported gold particles, and the subsequent loss of some 

active sites, especially for catalysts prepared at low pH.

Variation in ageing times in Au/ZnO catalysts prepared by coprecipitation method A 

had no significant influence on the Ea, while variation in the pre-exponential factor 

(A) had some influence. However, both Ea and the pre-exponential factor (A) were 

lower for aged catalysts than non-aged catalyst. In the case of CH4 activation reaction, 

activation energies over the aged catalysts were lower than that over non-aged 

catalyst, while the pre-exponential factor (A) was almost the same for all the catalysts. 

This may be due to the high reaction temperature for CH4 activation, which cause 

sintering of small supported gold particles and loss some active sites.

Ea for CO oxidation and C H 4 activation over Au/Fe2 0 3  catalysts prepared by 

coprecipitation method B showed the lowest activation energies values of the 

supported gold catalysts prepared and investigated in this study, and this activation 

energy decreased as pH increased. However, the effect of Ea on rate of CO oxidation 

reaction was higher than the effect of the pre-exponential factor (A) and, hence, 

increasing pH led to an increase in Ea and then an increase in the catalytic activity of 

these catalysts. Pre-exponential factor (A) values were much higher for CO oxidation 

reaction than C H 4 activation reaction. This may be due to the high reaction 

temperature required for CH4 activation, which causes sintering of small supported 

gold particles, and then the loss of some active sites, especially for catalysts prepared 

at low pH. For Au/Fe20 3  catalysts prepared by coprecipitation method B at pH 8 for 

CH4 activation reaction, there was agreement between Ea and pre-exponential factor
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(A) values, activation energy was low and the pre-exponential factor (A) was high, 

which means more active sites were obtained on this catalyst. This might be the 

reason for the highest activity obtained for this catalyst either for CO oxidation or 

CH4 activation.

Ea for C2H6 and C3H8 activation reactions over the most active supported gold 

catalysts, Au/Fe203  prepared via coprecipitation B at pH 7, 8 and Au/ZnO prepared 

via coprecipitation A at pH 5, showed that the decreasing in activation energy was in 

order:

Au/Fe2 0 3  (pH 8) method B > Au/ZnO (pH 5) method A > Au/Fe20 3  (pH 7) method B

The effect of Ea was higher than that of the pre-exponential factor. The catalyst had 

the highest activity for both reactions, Au/Fe2C>3 prepared by coprecipitation method 

B at pH 8, showed the lower activation energy and the lower pre-exponential factor 

(A) confirmed that the rate of both reactions depended on the activation energy. 

Further, Ea values for C2H6 over all selected catalysts were lower than that for C3H8 

over these catalysts. This is because C-H bond in C3H8 is lower energy than C-H bond 

of C2H6.

6 .2 .Future w ork

Three supported gold catalysts were concluded as the best catalysts prepared and 

investigated in this study. These catalysts were Au/Fe2C>3 (pH 8) method B, Au/Fe2C>3 

(pH 7) method B, and Au/ZnO (pH 5) method A. Further studies on these catalysts
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need to be undertaken to optimize their catalytic activity towards the desired reaction, 

obtaining useful products over these catalysts by promoting them with other materials 

to be selective catalysts. This optimization can be done as follows:

1. Characterization of the used catalysts needs to be studied. TPR analysis for 

used catalysts is important to show the change in oxidation of the catalyst 

during the reaction. TGA analysis is required to study the moisture in the dried 

catalysts. Further, the XPS technique is needed to study the oxidation state of 

the used catalysts.

2. A study of the addition of transition metal oxides, especially oxides with high 

oxygen storage capacity, to the supported gold catalysts, which may improve 

their catalytic activities towards the desired reactions. These types of oxides 

act as suppliers of oxygen and as structural promoters by stabilizing gold 

particles against sintering.

3. A study of the effect of variation in Au % loading within the range from 0.05 

% to 5%.

4. A study of the deactivation of these catalysts.

5. Further studies of ageing.
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