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Summary

Quaternary diatom-rich laminated sediments, found in Antarctic inner shelf 
depressions, contain high-resolution records of climate change. Diatom assemblages 
and sediment fabric of four laminated intervals were examined with a scanning 
electron microscope (using backscattered and secondary electron imagery) and light 
microscope in this study.
Deglacial Palmer Deep laminated sediments (western Antarctic Peninsula) are 
composed of alternating biogenic diatom ooze and diatom-bearing terrigenous 
laminae. These laminae are interpreted as spring and summer signals respectively, 
with negligible winter deposition. Sub-seasonal species specific sub-laminae are 
observed repeatedly through the summer laminae. Tidal cycles, high storm intensities 
and / or intrusion of Circumpolar Deep Water onto the continental shelf create 
variation in shelf waters, enhancing species specific productivity through the summer. 
Post-glacial Mertz Ninnis Trough laminated sediments (East Antarctic Margin) are 
composed of five lamina and one sub-lamina types. During deposition the Mertz 
Glacier Polynya was active and Adelie Land Bottom Water formation was strong. 
Mid-Holocene Mertz Ninnis Trough laminated sediments are composed of five 
lamina types. Sea ice cover and sea ice formation was reduced relative to post-glacial 
times. The Mertz Glacier Polynya was not as active as in the post-glacial and Adelie 
Land Bottom Water formation was lower.
Late-Holocene Durmont d ’Urville Trough laminated sediments (East Antarctic 
Margin) are composed of eight lamina and one sub-lamina types. Sea ice cover was 
extensive and persistent in the late-Holocene. Warmer periods occurred during the 
transition from mid-Holocene Climatic Optimum to cooler late-Holocene climatic 
conditions.
The types of lamina and sub-lamina formed in all four laminated intervals are 
controlled by seasonal sea ice cover, nutrient levels and light levels, which are in turn 
influenced by climate and oceanography. The Western Antarctic Peninsula and East 
Antarctic Margin laminated sediments give an insight into oceanographic responses to 
climatic change and variation through the Quaternary around the Antarctic margin.



Acknowledgements

Firstly, I would like to express my gratitude to my main supervisor Dr Jennifer Pike, 

for her enthusiastic guidance, continuous support and scientific discussion throughout 

this study. I could not have imagined a better supervisor for my PhD. I am also 

grateful to Dr Amy Leventer for her supervision on this project and diatom taxonomy 

coaching.

Thanks to Dr Catherine Stickley for our diatom discussions and proof reading of 

thesis chapters. I thank Dr Xavier Crosta for making me very welcome on the R/V  

Marion DuFresne and for interesting dialogue on ecological preferences of diatom 

species (plus French lessons!). I would like to thank Rob Dunbar for the AMS- 

radiocarbon dates. I am grateful to Dr Leanne Armand for the diatom taxonomy 

lessons on board the R/V Marion DuFresne. Thanks to Dr Ian MacMillan for his 

assistance in identifying foraminifera from BSEI photographs. The opportunity to 

participate on the French CADO cruise to Antarctica is appreciated.

I would like to thank Pete Fisher for his instruction on the use of SEM 360 and ESEM 

facilities, showing me which buttons to press (and not to press!). I would also like to 

thank Laurence Badham for preparing polished thin sections, Lindsay Axe for light 

microscope assistance, Alun Rogers for his invaluable advice on Corel Draw and 

Andrew Wiltshire for IT support.

I acknowledge receipt of Natural Environment Research Council postgraduate 

research studentship NER/S/A/2002/10350. Thanks also go to The 

Micropalaeontological Society and the Quaternary Research Association for 

additional financial support.

I thank my office mates for making me laugh all the way through this PhD. Thanks to 

my parents, brother, Jess and Sarah for their encouragement and support. Lastly, I 

must thank Neil for keeping me sane over the last three years, and being a gentleman 

by allowing me to finish first!



List of Abbreviations

AABW Antarctic Bottom Water
AAIW Antarctic Intermediate Water
AASW Antarctic Surface Waters
ACC Antarctic Circumpolar Current
ACoastC Antarctic Coastal Current
ACR Antarctic Cold Reversal
AG Astrolabe Glacier
ALBW Adelie Land Bottom Water
AZ Antarctic Zone
BSEI Backscattered Electron Imagery
CDW Circumpolar Deep Water
CRS Hyalochaete Chaetoceros spp. resting spores
CPT Circumpolar Trough
DER Diglycidol Ether of Polypropyleneglycol
DMAE Dimethylaminoethanol
DUT Durmont d ’Urville Trough
EAIS East Antarctic Ice Sheet
ESEM Environmental Scanning Electron Microscope
HSSW High Salinity Shelf Water
ISW Ice-Shelf Water
LCDW Lower Circumpolar Deepwater
LGM Last Glacial Maximum
mbsf Metres below sea floor
mcd Metres composite depth
MCDW Modified Circumpolar Deepwater
MGT Mertz Glacier Tongue
MGP Mertz Glacier Polynya
MNT Mertz Ninnis Trough
NADW North Atlantic Deepwater
NSA Nonenyl Succinic Anhydride
PD Palmer Deep
PF Polar Front
PFZ Polar Frontal Zone
RS Resting Spore
SAF Subantarctic Front
SEI Secondary Electron Imagery
SEM Scanning Electron Microscope
SIZ Seasonal Ice Zone
STF Subtropical Front
UCDW Upper Circumpolar Deepwater
VCD Vinocyclohexene Dioxide
WAIS West Antarctic Ice Sheet
WDW Warm Deep Water
WW Winter Water
YD Youger Dryas
ZG Zelee Glacier



List of Contents

Declaration ..................................................................................................................... i
Summary ..................................................................................................................... ii
Acknowledgements .......................................................................................................Hi
List of Abbreviations ........................................................................................................ iv
List of Contents ............................................................................................................... v
List of Tables ....................................................................................................................xii
List of Figures ....................................................................................................................xv

CHAPTER 1
1. Introduction.............................................................................................................. 1
1.1 Background.................................................................................................................1
1.2 Thesis objectives........................................................................................................1
1.3 Thesis format..............................................................................................................3

CHAPTER 2
2. Location background..............................................................................................4
2.1 Geology of the Southern Ocean and Antarctic..................................................... 4
2.2 Antarctic Ice Sheet History...................................................................................... 6
2.3 Southern Ocean Oceanography............................................................................... 7

2.3.1 Zones of the Southern Ocean............................................................................7
2.3.2 Southern Ocean Water Masses and Currents................................................. 9

2.3.2.1 Antarctic Zone and Continental Margin.......................................................9
2.3.2.2 Subantarctic Zone.......................................................................................... 10

2.4 Palaeoclimate and Present Climate......................................................................... 10
2.4.1 Last G lacial.........................................................................................................10
2.4.2 The Last Deglaciation........................................................................................ 11
2.4.3 Holocene........................................................................................................... 13
2.4.4 Modem Antarctic Climate.................................................................................15

2.5 Study Regions.............................................................................................................16
2.5.1 Palmer Deep, Western Antarctic Peninsula.............................................. 16
2.5.1.1 Geology.........................................................................................................  16
2.5.1.2 Glaciology.......................................................................................................16
2.5.1.3 Regional Oceanography.................................................................................19
2.5.1.4 Climate............................................................................................................20

2.5.2 Mertz Ninnis Trough, East Antarctic Margin................................................ 21
2.5.2.1 Geology...........................................................................................................21
2.5.2.2 Glaciology...................................................................................................... 21
2.5.2.3 Mertz Glacier Polynya and Regional Oceanography................................ 23
2.5.2.4 Climate............................................................................................................28

2.5.3 Durmont d ’Urville Trough, East Antarctic Margin.......................................28
2.5.3.1 Geology...........................................................................................................28
2.5.3.2 Glaciology...................................................................................................... 28
2.5.3.3 Regional Oceanography................................................................................ 29
2.5.3.4 Climate............................................................................................................29

2.6 Summary.....................................................................................................................29

V



CHAPTER 3
3. Diatoms in the Southern Ocean.............................................................................30
3.1 Introduction...............................................................................................................  30
3.2 Environmental Controls on Diatom Assemblage Distribution............................  31

3.2.1 Sea Ice Zone.........................................................................................................32
3.2.2 Marginal Ice Zone............................................................................................... 33
3.2.3 Open Ocean Zone................................................................................................34
3.2.4 Polar Front Zone.................................................................................................. 35

3.3 Preservation Controls on Diatom Assemblage Distribution...................................35
3.3.1 Dissolution............................................................................................................35
3.3.2 Aggregation..........................................................................................................36
3.3.3 Advection...........................................................................................................  37

3.4 Antarctic Laminated Sediments................................................................................ 37
3.5 Species Ecology...........................................................................................................39

3.5.1 Actinocyclus actinochilus (Ehrenberg) Simonsen.......................................... 39
3.5.2 Genus Astermophalus Ehrenberg......................................................................39
3.5.3 Genus Chaetoceros Ehrenberg..........................................................................41
3.5.3.1 Sub-genus Hyalochaete Chaetoceros Gran.................................................41
3.5.3.2 Sub-genus Phaeoceros Chaetoceros Gran.................................................. 41

3.5.4 Genus Cocconeis Ehrenberg..............................................................................42
3.5.5 Corethronpennatum  (Grunow) Ostenfeld.......................................................42
3.5.6 Coscinodiscus bouvet Karsten...........................................................................42
3.5.7 Eucampia antarctica (Castracane) Mangin.....................................................43
3.5.8 Fragilariopsis curta (Van Heurck) Hustedt....................................................43
3.5.9 Fragilriopsis cylindrus (Grunow) Krieger...................................................... 44

3.5.10 Fragilariopsis kerguelensis (O’Meara) Hustedt.............................................44
3.5.11 Fragilariopsis obliquecostata (Van Heurck) Heiden.................................... 45
3.5.12 Fragilariopsis rhombica (O’Meara) Hustedt..................................................46
3.5.13 Fragilariopsis ritscheri (Hustedt) Hasle......................................................... 46
3.5.14 Fragilariopsis separanda Hustedt....................................................................46
3.5.15 Fragilariopsis sublinearis (Van Heurck) Heiden...........................................47
3.5.16 Fragilariopsis vanheuckii (M.Pergallo) Hustedt............................................47
3.5.17 Genus Navicula Bory de st-Vincent................................................................. 47
3.5.18 Odontella weissflogii (Janisch) Grunow..........................................................47
3.5.19 Genus Porosira Jorgensen................................................................................. 48
3.5.20 Genus Proboscia Sunstrom............................................................................... 48
3.5.21 Genus Rhizosolenia Brightwell.........................................................................49
3.5.22 Stellarima microtrias (Ehrenberg) Hasle & Sims...........................................50
3.5.23 Thalassiosira antarctica Comber......................................................................50
3.5.24 Thalassiosira gracilis (Karsten) Hustedt......................................................... 51
3.5.25 Thalassiosira gravida Cleve.............................................................................. 51
3.5.26 Thalassiosira lentiginosa (Janisch) Fryxell..................................................... 52
3.5.27 Thalassiosira oliverana (O’Meara) Makarova & Nikolaev........................ 52
3.5.28 Thalassiosira oestrupii (Ostenfeld) Hasle....................................................... 52
3.5.29 Thalassiosira tumida (Janisch) Hasle............................................................... 53
3.5.30 Thalassiothrix antarctica Schimper ex Karsten..............................................53
3.5.31 Trichotoxon reinboldii (Van Heurck) Reid & Round.................................... 53
3.5.32 Trigonium arcticum (Brightwell) Cleve...........................................................54

3.6 Summary...................................................................................................................... 54

vi



CHAPTER 4
4. Core site data............................................................................................................. 55
4.1 Palmer Deep, Western Antarctic Peninsula..........................................................  55

4.1.1 Bathymetry.........................................................................................................55
4.1.2 Core Type and Sediment Description............................................................  57
4.1.3 Age...................................................................................................................... 57

4.2 Mertz Ninnis Trough, East Antarctic Margin......................................................  61
4.2.1 Bathymetry.........................................................................................................61
4.2.2 Core Type and Sediment Description............................................................  63
4.2.3 Age...................................................................................................................... 66

4.3 Durmont d’Urville Trough, East Antarctic Margin.............................................  70
4.3.1 Bathymetry........................................................................................................  70
4.3.2 Core Type and Sediment Description............................................................  71
4.3.3 Age...................................................................................................................... 71

4.4 Summary....................................................................................................................  75

CHAPTER 5
5. Methods....................................................................................................................  76
5.1 Sampling Strategy....................................................................................................... 76
5.2 Sample Preparation...................................................................................................  76

5.2.1 Polished Thin Sections....................................................................................... 76
5.2.2 Sediment Stubs.................................................................................................... 78
5.2.3 Quantitative Diatom Analysis........................................................................... 79

5.3 Data Collection............................................................................................................81
5.3.1 Backscattered Electron Imagery (BSEI)........................................................ 81
5.3.2 Secondary Electron Imagery (SEI)................................................................  82
5.3.3 Quantitative Diatom Counts.............................................................................. 82

5.4 Summary..................................................................................................................... 86

CHAPTER 6
6. Palmer Deep.............................................................................................................  87
6.1 Results...........................................................................................................................87

6.1.1 Orange-brown Biogenic Laminae.....................................................................88
6.1.2 Blue-grey Terrigenous Laminae....................................................................... 92
6.1.3 Lamina Relationships......................................................................................... 94
6.1.4 Sub-laminae within Blue-grey Laminae (Terrigenous)................................. 96
6.1.5 Sub-lamina Relationships...................................................................................103
6.1.6 Lamina and Sub-lamina Relationships.............................................................104
6.1.7 Other Observations..............................................................................................105

6.2 Interpretation..............................................................................................................  108
6.2.1 Spring: Orange-brown Biogenic Laminae....................................................... 108
6.2.2 Summer: Blue-grey Terrigenous Laminae.......................................................109
6.2.3 Winter.................................................................................................................. I l l
6.2.4 Annual Signal.......................................................................................................111
6.2.5 Sub-seasonal Signal.............................................................................................111
6.2.6 Sub-seasonal and Seasonal Relationship..........................................................113
6.2.7 Discussion of Other Observations................................................................... 115

6.3 Conclusions................................................................................................................. 116

v i i



CHAPTER 7
7. Mertz Ninnis Trough.............................................................................................. 118
7.1 Results NBPO101 JPC10...........................................................................................118

7.1.1 Biogenic Laminae............................................................................................ 119
7.1.1.1 Near-monogeneric Hyalochaete Chaetoceros spp. Resting Spore 

Laminae............................................................................................................119
7.1.1.2 Laminae Characterised by Corethron pennatum ...................................... 120
7.1.1.3 Laminae Characterised by Rhizosolenia spp...............................................126
7.1.1.4 Mixed Diatom Assemblage Laminae..........................................................126

7.1.2 Terrigenous Laminae.........................................................................................127
7.1.2.1 Mixed Diatom Assemblage Terrigenous Laminae.....................................127
7.1.2.2 Terrigenous Sub-laminae Characterised by Porosira glacialis Resting 

Spores............................................................................................................... 128
7.1.3 Lamina Relationships..................................................................................... 129

7.2 Interpretation and Discussion NBPO 101 JPC 10...................................................131
7.2.1 Seasonal Signal..................................................................................................131

7.2.1.1 Spring: Near-monogeneric Hyalochaete Chaetoceros spp. Resting 
Spore Laminae................................................................................................ 132

7.2.1.2 Summer: Laminae Characterised by Corethron pennatum or
Rhizosolenia spp............................................................................................. 132

7.2.1.3 Summer: Mixed Diatom Assemblage Biogenic Laminae.........................133
7.2.1.4 Summer/Autumn: Mixed Diatom Assemblage Terrigenous Laminae... 133
7.2.1.5 Autumn: Terrigenous Sub-laminae Characterised by Porosira

glacialis Resting Spores.................................................................................134
7.2.2 Lamina Relationships........................................................................................ 135
7.2.3 Polynya Model for Mertz Ninnis Trough Laminated Sediments................ 136

7.2.3.1 Spring................................................................................................................136
1.23.2 Summer............................................................................................................. 138
1 .2 3 3  Summer/Autumn........................................................................................... 138
7.2.3.4 Autumn.............................................................................................................139
7.2.3.5 Winter...............................................................................................................139

7.3 Conclusions NBP0101 JPC 10..................................................................................140
7.4 Results NBP0101 KC10A........................................................................................ 141
7.4.1 Biogenic Laminae...........................................................................................  141
7.4.1.1 Biogenic Laminae Characterised by Fragilariopsis spp........................... 141

7.4.2 Terrigenous Laminae.........................................................................................143
7.4.2.1 Terrigenous Laminae Characterised by Fragilariopsis spp......................143

7.4.3 Lamina Relationships........................................................................................144
7.5 Interpretation and Discussion NBP0101 KC10A.................................................148

7.5.1 Seasonal Signal..................................................................................................148
7.5.1.1 Spring/Summer: Biogenic Laminae............................................................. 148
7.5.1.2 Summer/Autumn: Terrigenous Laminae..................................................... 148

7.5.2 Lamina Relationships........................................................................................149
7.6 Conclusions NBPO 101 K C10A............................................................................  150
7.7 Summary..................................................................................................................... 151



CHAPTER 8
8. Durmont d’Urville Trough....................................................................................152
8.1 Results.......................................................................................................................  152

8.1.1 Laminae Characterised by Hyalochaete Chaetoceros spp. Resting
Spores................................................................................................................. 153

8.1.2 Laminae Characterised by Hyalochaete Chaetoceros spp. Resting
Spores and Fragilriopsis spp...........................................................................160

8.1.3 Laminae Characterised by Fragilariopsis spp............................................  160
8.1.4 Laminae Characterised by Corethron pennatum and Rhizosolenia spp... 161
8.1.5 Laminae Characterised by Corethron pennatum ......................................... 165
8.1.6 Laminae Characterised by Rhizosolenia spp................................................167
8.1.7 Mixed Diatom Assemblage Laminae............................................................  169
8.1.8 Sub-laminae Characterised by Porosira glacialis Resting Spores 171
8.1.9 Laminae Characterised by Stellarima microtrias Resting Spores,

Porosira glacialis Resting Spores and / or Coscinodiscus bouvet.............. 174
8.1.10 Lamina Relationships...................................................................................... 176

8.2 Interpretation and Discussion...................................................................................178
8.2.1 Seasonal Signal...................................................................................................178

8.2.1.1 Spring: Laminae Characterised by Hyalochaete Chaetoceros spp.
Resting Spores and / or Fragilariopsis spp................................................ 178

8.2.1.2 Summer: Laminae Characterised by Corethron pennatum and / or
Rhizosolenia spp........................................................................................... 179

8.2.1.3 Summer: Mixed Diatom Assemblage.......................................................... 180
8.2.1.4 Autumn/Spring Transition: Sub-lamina Characterised by Porosira

glacialis Resting Spores................................................................................ 181
8.2.1.5 Autumn/Spring Transition: Laminae Characterised by Stellarima

microtrias Resting Spores, Porosira glacialis Resting Spores and / or 
Coscinodiscus bouvet.....................................................................................181

8.2.2 Lamina Relationships........................................................................................ 182
8.3 Conclusions.............................................................................................................. 186

CHAPTER 9
9. Core site comparison...........................................................................................  187
9.1 Deglacial and Post-glacial Laminated Sediment Comparison........................... 187

9.1.1 Comparison........................................................................................................187
9.1.1.1 Position of Core Sites..................................................................................... 187
9.1.1.2 Annual Cycle of Lamina and Sub-lamina Deposition.............................  188
9.1.1.3 Lamina Types.................................................................................................. 191
9.1.1.4 Sub-lamina Types............................................................................................192

9.1.2 Implications........................................................................................................193
9.2 Post-glacial and Mid-Holocene Laminated Sediment Comparison..................  195

9.2.1 Comparison........................................................................................................ 195
9.2.1.1 Position of Core Sites..................................................................................195
9.2.1.2 Annual Cycle of Lamina and Sub-lamina Deposition.............................  196
9.2.1.3 Lamina Types...................................................................................................196
9.2.1.4 Sub-lamina Types............................................................................................197

9.2.2 Implications........................................................................................................197
9.3 Post-glacial and Late-Holocene Laminated Sediment Comparison....................198

9.3.1 Comparison....................................................................................................... 198
9.3.1.1 Position of Core Sites................................................................................... 198



9.3.1.2 Annual Cycle of Lamina and Sub-lamina Deposition.................. 199
9.3.1.3 LaminaTypes.................................................................................................199
9.3.1.4 Sub-lamina Types...........................................................................................201

9.3.2 Implications........................................................................................................ 201
9.4 Mid-Holocene and Late-Holocene Laminated Sediment Comparison..............205

9.4.1 Comparison........................................................................................................205
9.4.1.1 Annual Cycle of Lamina and Sub-lamina Deposition....................205
9.4.1.2 LaminaTypes.................................................................................................206
9.4.1.3 Sub-lamina Types...........................................................................................206

9.4.2 Implications....................................................................................................... 207
9.5 Comparison of all Four Laminated Sediments..................................................... 207

9.5.1 Temporal Change in Absolute Abundance of Diatoms................................ 207
9.5.2 Species Distribution Circum-Antarctica......................................................... 208
9.5.3 Temporal Oceanographic Changes..................................................................210
9.5.4 Temporal Sedimentary Record Change..........................................................210
9.5.5 Temporal Climate Change................................................................................ 211

9.6 Summary.....................................................................................................................212

CHAPTER 10
10. Conclusions and future research.........................................................................213
10.1 Main Conclusions......................................................................................................213

10.1.1 Deglacial Laminated Sediment, Palmer Deep, Western Antarctic
Peninsula............................................................................................................ 213

10.1.2 Post-glacial Laminated Sediment, Mertz Ninnis Trough, East Antarctic
Margin................................................................................................................ 213

10.1.3 Mid-Holocene Laminated Sediment, Mertz Ninnis Trough, East
Antarctic Margin............................................................................................... 214

10.1.4 Late-Holocene Laminated Sediment, Durmont d’Urville Trough, East
Antarctic Margin...............................................................................................215

10.1.5 Wider Implications.............................................................................................216
10.1.6 Summary..............................................................................................................216

10.2 Future Research......................................................................................................... 217



APPENDICES

A .l Diatom Taxonomy...........................................................................................219

A.2 Diatom Images..................................................................................................224

A.3 Lamina type and thickness data.................................................................... 234
A.3.1 Palmer Deep, Western Antarctic Peninsula.....................................................235
A.3.1.1 ODP Core 178-1098A-6H................................................................................236
A.3.1.2 ODP Core 178-1098A-6H and -1098C-5H................................................... 240
A.3.2 Mertz Ninnis Trough, East Antarctic Margin................................................244
A.3.2.1 NBPO 101 JPC10................................................................................................ 245
A.3.2.2 NBP0101 KC10A.............................................................................................. 251
A.3.3 Durmont D ’Urville Trough, East Antarctic Margin...................................... 252
A.3.3.1 MD03 2597.......................................................................................................  253

A.4 Quantitative diatom abundance data........................................................... 260
A.4.1 Palmer Deep, Western Antarctic Peninsula..................................................... 260
A.4.1.1 ODP Core 178-1098A-6H................................................................................260
A.4.2 Mertz Ninnis Trough, East Antarctic Margin............................................... 266
A.4.2.1 NBP0101 JPC 10................................................................................................ 266
A.4.2.2 NBP0101 KC10A.............................................................................................. 271
A.4.3 Durmont D ’Urville Trough, East Antarctic Margin...................................... 273
A.4.3.1 MD03 2597........................................................................................................ 273

A.5 Markov chain analysis....................................................................................282

REFERENCES................................................................................................................... 288

xi



List of Tables

Chapter 2: Location background

2.1 Water mass properties in the vicinity of Palmer Deep.................................................20
2.2 Water mass properties (area-averaged) for Mertz Ninnis Trough region................. 28

Chapter 4: Core site data

4.1 Summary of core data....................................................................................................... 55
4.2 Palmer Deep core sample depths.....................................................................................57
4.3 Radiocarbon dates for Palmer Deep, ODP Leg 178..................................................... 60
4.4 Mertz Ninnis Trough sample depths...............................................................................63
4.5 Uncorrected radiocarbon dates for NBP0101 JPC 10 and JPC 11, Mertz Ninnis 

Trough, corrected age was derived by subtracting the average core top age 
(2516±60 14C yrs) from adjacent cores sites. Ages calibrated with CALIB
5. 0........................................................................................................................................67

4.6 Uncorrected radiocarbon dates for NBP0101 KC10A, Mertz Ninnis Trough, 
corrected age was derived by subtracting the average core top age (2516 ± 60 
14C yrs) from adjacent cores sites. Ages calibrated with CALIB
5. 0........................................................................................................................................68

4.7 Durmont d ’Urville Trough core sample depths............................................................ 71
4.8 Uncorrected radiocarbon dates for MD03 2597, Durmont d’Urville Trough,

calibrated with CALIB 5.0...............................................................................................74

Chapter 5: Methods

5.1 Amounts of Spurr resin constituents and acetone used in preparation of sediment 
samples. Order and number of additions....................................................................... 78

Chapter 6: Palmer Deep

6.1 Relative abundance of all diatom species in eight orange-brown biogenic 
laminae, Palmer Deep, ODP core 178-1098A........................................................ 90

6.2 Relative abundance of Hyalochaete Chaetcoeros spp. free diatom 
assemblages in eight orange-brown biogenic laminae, Palmer Deep, ODP core 
178-1098A..........................................................................................................................90

6.3 Absolute abundance of diatom species (valves per gramme xlO6 of dry sediment) 
in eight orange-brown biogenic laminae, Palmer Deep, ODP core 178- 
1098A..................................................................................................................................92

6.4 Relative abundance of all diatom species in seven blue-grey terrigenous laminae, 
Palmer Deep, ODP core 178-1098A.............................................................................. 93

6.5 Relative abundance of Hyalochaete Chaetoceros spp. free diatom assemblages
in seven blue-grey, terrigenous laminae, Palmer Deep, ODP core 178-1098A  93



6.6 Absolute abundance of diatom species (valves per gramme xlO6 of dry sediment) 
in seven blue-grey terrigenous laminae, Palmer Deep, ODP core 178- 
1098A.................................................................................................................................. 94

6.7 Relative abundance of all diatom species from terrigenous sub-laminae, Palmer 
Deep, ODP core 178-1098A............................................................................................ 98

6.8 Relative abundance of Hyalochaete Chaetcoeros spp. free diatom assemblages 
from terrigenous sub-laminae, Palmer Deep, ODP core 178-1098A........................  99

6.9 Absolute abundance of diatom species (valves per gramme xlO6 of dry sediment) 
from terrigenous sub-laminae, Palmer Deep, ODP core 178-1098A........................  99

Chapter 7: Mertz Ninnis Trough

7.1 Relative abundance of all diatom species by lamina type, Mertz Ninnis Trough, 
NBP0101 JPC10..............................................................................................................  119

7.2 Relative abundance of Chaetoceros spp. free diatom assemblage by lamina type, 
Mertz Ninnis Trough, NBP0101 JPC10.......................................................................  120

7.3 Absolute abundance of diatom species (valves per gramme of dry sediment xlO6)
by lamina type, Mertz Ninnis Trough, NBP0101 JPC 10............................................. 127

7.4 Relative abundance of all diatom species by lamina type, Mertz Ninnis Trough, 
NBP0101 KC10A............................................................................................................  142

7.5 Relative abundance of Chaetoceros spp. free diatom assemblage by lamina type, 
Mertz Ninnis Trough, NBP0101 KC10A..................................................................... 142

7.6 Absolute abundance of diatom species (valves per gramme of dry sediment xlO6)
by lamina type, Mertz Ninnis Trough, NBP0101 KC10A........................................... 143

Chapter 8: Durmont d’Urville Trough

8.1 Relative abundance of all diatom species by lamina type, Duromont d ’Urville 
Trough, MD03 2597........................................................................................................ 155

8.2 Relative abundance of Hyalochaete Chaetcoeros spp. free counts by lamina type, 
Duromnt d ’Urville Trough, MD03 2597........................................................................ 156

8.3 Absolute abundance of all diatom species (xlO6 valves per gramme of dry 
sediment) by lamina type, Duromnt d ’Urville Trough, MD03 2597........................  157

Appendix 3: Lamina type and thickness data

A3.1.1 ODP Core 178-1098A-6H......................................................................................... 236
A3.1.2 ODP Core 178-1098A-6H & -1098C-5H (combined).......................................... 240
A3.2.1 NBP0101 JPC10......................................................................................................... 245
A3.2.1 NBP0101 KC10A....................................................................................................... 251
A3.3.1 MD03 2597..................................................................................................................253



Appendix 4: Quantitative diatom abundance data

A4.1.1.1 Palmer Deep, ODP Core 178-1098A-6H, biogenic laminae quantitative
diatom abundance counts, all species.................................................................. 260

A4.1.1.2 Palmer Deep, ODP Core 178-1098A-6H, biogenic laminae quantitative
diatom abundance counts, Hyalochaete Chaetoceros spp. free.......................261

A4.1.1.3 Palmer Deep, ODP Core 178-1098A-6H, terrigenous laminae quantitative
diatom abundance counts, all species.................................................................. 262

A4.1.1.4 Palmer Deep, ODP Core 178-1098A-6H, terrigenous laminae quantitative
diatom abundance counts, Hyalochaete Chaetoceros spp. free.......................263

A4.1.1.5 Palmer Deep, ODP Core 178-1098A-6H, terrigenous sub-laminae
quantitative diatom abundance counts, all species............................................ 264

A4.1.1.6 Palmer Deep, ODP Core 178-1098A-6H, terrigenous sub-laminae
quantitative diatom abundance counts, Hyalochaete Chaetoceros spp.
free............................................................................................................................265

A4.2.1.1 Mertz Ninnis Trough, NBP0101 JPC 10, biogenic laminae quantitative
counts, all species...................................................................................................267

A4.2.1.2 Mertz Ninnis Trough, NBP0101 JPC 10, biogenic laminae quantitative
counts, Chaetoceros spp. free...............................................................................268

A4.2.1.3 Mertz Ninnis Trough, NBP0101 JPC10, terrigenous lamina and sub
lamina quantitative counts, all species................................................................ 269

A4.2.1.4 Mertz Ninnis Trough, NBP0101 JPC 10, terrigenous lamina and sub
lamina quantitative counts, Chaetoceros spp. free............................................ 270

A4.2.2.1 Mertz Ninnis Trough, NBP0101 KC10A, quantitative diatom abundance
counts, all species...................................................................................................271

A4.2.2.2 Mertz Ninnis Trough, NBP0101 KC10A, quantitative diatom abundance
counts, Chaetoceros spp. free...............................................................................272

A4.3.1.1 Durmont d ’Urville Trough, MD03 2597, quantitative diatom abundance
counts of all species............................................................................................... 274

A4.3.1.2 Durmont d ’Urville Trough, MD03 2597, quantitative diatom abundance
Hyalochaete Chaetoceros spp. free counts.........................................................278

XIV



List of Figures

Chapter 1: Introduction

1.1 Locations of Antarctic laminated sediments................................................................2

Chapter 2: Location background

2.1 Gondwana reconstruction from Early Jurassic (200 Ma) to present day................. 5
2.2 Last Glacial Maximum ice sheet reconstruction for Antarctica............................... 8
2.3 Schematic block diagram showing the surface currents and vertical motion of

water masses in the Southern Ocean pole-ward of 40°S............................................8
2.4 Changes in the annual average sea surface temperatures (Last Glacial Maximum

(LGM) -  modem), with geographic distribution of LGM seasonal and perennial 
sea ice, and LGM land ice, based on seasonal estimates of CLIMAP......................12

2.5 Stable isotope profdes from GISP2, Byrd and Vostok................................................12
2.6 Stratigraphic succession of Palmer Deep, Antarctic Peninsula, indicating

Holocene palaeointervals................................................................................................ 14
2.7 Geographic locations of the three core sites: Palmer Deep, Mertz Ninnis Trough

and Durmont d ’Urville Trough...................................................................................... 14
2.8 Schematic geological cross-section across Palmer Deep and the Gerlache

Strait................................................................................................................................... 17
2.9 Cartoon illustrating various stages of glaciation of the Palmer Deep Basin 1..........17
2.10 Last Glacial Maximum reconstruction and palaeodrainage map for the Antarctic

Peninsula region showing geomorphic features.........................................................18
2.11 Oceanographic regime of the Antarctic Peninsula.......................................................18
2.12 Geological map of George V Land and Terre Adelie................................................. 22
2.13 Late Pleistocene ice sheet reconstructions for the Wilkes Land continental

shelf................................................................................................................................... 22
2.14 Map showing facies on the George V shelf..................................................................24
2.15 Cartoons showing the extent and retreat of the Mertz Glacier Tongue during the

Last Glacial Maximum (LGM) and after the LGM....................................................24
2.16 The position of the Mertz and Ninnis Glacier Tongues in 1913, 1962 and 1993...25
2.17 Oceanographic regime off the George V Coast........................................................... 25
2.18 Schematic representation o f physical processes taking place in deep water and

shelf water polynyas........................................................................................................26
2.19 Oceanographic regime off the Terre Adelie Coast......................................................26

Chapter 3: Diatoms in the Southern Ocean

3.1 Map of sediment type distribution around Antarctica.................................................31
3.2 Schematic representation of the extent of the four Southern Ocean zones; Sea

Ice Zone, Marginal Ice Zone, Open Ocean Zone and Polar Front Zone..................32
3.3 Highly idealised schematic illustrations of (a) fast ice and (b) pack ice

ecosystems in Antarctica showing the location of the major ice algal
communities...................................................................................................................... 33

XV



3.4 (a) Schematic map showing Southern Ocean circulation, (b) Diagrammatic
circulation transect through 135°E in the southeast Indian Ocean............................40

3.5 Mean monthly sea ice concentrations for February (austral summer) and 
October (austral winter) averaged over 8.8 years between 1978-1987.................... 45

Chapter 4: Core site data

4.1 Geographic locations of the three core sites: Palmer Deep, Mertz Ninnis Trough 
and Durmont d’Urville Trough...................................................................................... 56

4.2 (a) Location map of ODP Site 1098, Palmer Deep on the Antarctic Peninsula
continental margin, (b) Map of the three fault bound basins that make up Palmer 
Deep and the site of Leg 178 Site 1098....................................................................... 56

4.3 Core photograph of ODP Core 178-1098A -6H ..........................................................58
4.4 Lithographic logs of ODP 178 1098A, MD03 2597, NBPO 101 JPC 10 and 

NBP0101 KC10A.............................................................................................................59
4.5 Age model for the lower 25 m of ODP Core 178 1098, Palmer Deep..................... 61
4.6 Location maps of NBPO 101 JPC 10, KC10A and JPC11. (a) JPC 10, KC10A and 

JPC 11 core locations within the Mertz Ninnis Trough, George V Coast, (b) 
Seabeam Swath map of highlighted area in (a) of the JPC 10, KC10A and JPC11 
core sites............................................................................................................................62

4.7 Core photographs of NBPO 101 JPC 10 from the Mertz Ninnis Trough....................64
4.8 Core photograph of NBPO 101 KC10A from the Mertz Ninnis Trough...................65
4.9 Comparison of NBP0101 JPC 10 and JPC11 bulk density plots. Dates plotted are 

raw uncorrected radiocarbon ages................................................................................. 65
4.10 Age model for NBP0101 JPC 10 and JPC 11, Mertz Ninnis Trough......................... 69
4.11 Age model for NBP0101 KC10A, Mertz Ninnis Trough...........................................70
4.12 (a) Bathymetry of the Adelie continental margin. Position of core MD03 2597 

indicated, (b) Seabeam Swath map of highlighted are in (a)..................................... 72
4.13 Core photographs o f MD03 2597 from the Durmont d ’Urville Trough.................. 73
4.14 Age model for MD03 2597, Durmont d ’Urville Trough............................................74

Chapter 5: Methods

5.1 Summary of core preparation and analysis techniques................................................77
5.2 (a) Schematic of apparatus used in the preparation of quantitative light

microscope slides, (b) Photograph of apparatus in (a)................................................80
5.3 A low magnification backscattered electron imagery (BSEI) photomosaic base

map showing alternating laminae of biogenic diatom ooze (dark) and diatom- 
bearing terrigenous laminae (bright)............................................................................. 82

5.4 (a) Secondary electron imagery (SEI) photograph of a sediment block mounted
on a standard scanning electron microscope (SEM) stub, (b) SEI photograph of 
Hyalochaete Chaetoceros spp. resting spores, taken on surface parallel to 
sedimentary laminated fabric..........................................................................................83

XVI



5.5 Light microscope photograph of Fragilariopsis curta and Hyalochaete
Chaetoceros spp. resting spores...................................................................................  83

5.6 Counting methodology for fragmented valves............................................................. 85
5.7 Counting methodology for Chaetoceros spp. valves................................................... 85

Chapter 6: Palmer Deep

6.1 Location map of ODP Site 1098, Palmer Deep on the Antarctic Peninsula 
continental margin............................................................................................................87

6.2 (a) Photograph of Core 178 1098A 6H, depth ~ 42.55 to 42.75 metres composite
depth (mcd), showing alternating orange-brown laminae (biogenic) and blue- 
grey laminae (terrigenous). Red box indicates location of (b). (b) Backscattered 
secondary electron imagery (BSEI) photomosaic of alternating diatom ooze 
biogenic laminae (dark: spring) and diatom-bearing terrigenous laminae 
(light: summer) from 42.66 to 42.63 mcd. (c)/(d) and (e)/(f) refer to annotation 
on (b). (c) BSEI photograph of diatom ooze biogenic laminae composed of 
Hyalochaete Chaetoceros spp. resting spores, (d) Secondary electron imagery 
(SEI) photograph of Hyalochaete Chaetoceros spp. resting spores from biogenic 
laminae, (e) BSEI photograph of terrigenous laminae, (f) SEI photograph of 
terrigenous laminae with mixed diatom assemblage.................................................. 89

6.3 Graph showing the thicknesses of different types of lamina from Palmer Deep, 
ODP 178-1098A and -1098C. Individual thicknesses are displayed as coloured 
bars within the total thickness of each lamina type.....................................................91

6.4 (a) Graph showing biogenic lamina thicknesses through part of the deglacial
interval, 44.967 - 40.664 metres composite depth (mcd). (b) Graph to show 
terrigenous laminae thickness through part of the deglacial interval, 45.03 - 
40.634 mcd........................................................................................................................91

6.5 Types of lamina boundaries observed in ODP 178-1098A Palmer Deep 
deglacial laminated interval, (a) Backscattered secondary electron imagery 
(BSEI) photograph of sharp boundary between summer (terrigenous) and spring 
(biogenic) laminae, (b) BSEI photograph of bioturbated boundary between 
summer (terrigenous) and spring (biogenic) laminae, (c) BSEI photograph of 
gradational boundary between spring (biogenic) and summer (terrigenous) 
laminae............................................................................................................................. 95

6.6 Graph illustrating the distribution of the different terrigenous sub-lamina types, 
Palmer Deep ODP 178-1098A, between 45.03 and 42.51 metres composite 
depth (mcd)...................................................................................................................... 96

6.7 Backscattered secondary electron imagery (BSEI) photomosaic of multiple sub
laminae within the terrigenous laminae, ODP 178-1098A Palmer Deep (-43 .12
to 43.09 mcd). Scale bar = 3 mm.................................................................................. 100

6.8 Sub-laminae species associated with Figure 6.7. (a) Backscattered electron 
imagery (BSEI) photograph of Odontella weissflogii resting spore (RS) sub
lamina. (b) Secondary electron imagery (SEI) photograph of O. weissflogii RS 
sub-lamina, (c) BSEI photograph of Thalassiosira antarctica RS sub-lamina, (d)
SEI photograph of T. antarctica RS sub-lamina, (e) BSEI photograph of 
Corethron pennatum sub-lamina, (f) SEI photograph of C. pennatum  sub
lamina. (g) BSEI photograph of Coscinodiscus bouvet sub-lamina, (h) SEI 
photograph of C. bouvet sub-lamina............................................................................101



6.9 Location of sub-laminae within the blue-grey terrigenous laminae in the 
deglacial laminated interval, 45.03-42.51 metres composite depth (mcd), ODP 
1098A Palmer Deep......................................................................................................... 103

6.10 Secondary electron imagery (SEI) and backscattered electron imagery (BSEI) 
photographs of pyrite in deglacial laminated sediments, Palmer Deep, ODP site 
1098A. (a) SEI photograph o f Corethron pennatum filled with balls of pyrite.
(b) SEI photograph of close up of balls of pyrite in (a), (c) BSEI photograph of 
C. pennatum surrounded with Hyalochaete Chaetoceros spp. resting spores. 
Balls of pyrite within the C. pennatum  frustule........................................................... 106

6.11 Backscattered electron imagery (BSEI) photograph of an agglutinated 
foraminifera in an orange-brown biogenic laminae...................................................... 107

6.12 Schematic representation of the sub-seasonal sub-laminae within the terrigenous 
laminae, Palmer Deep. Compiled from backscattered electron imagery (BSEI) 
data......................................................................................................................................107

Chapter 7: Mertz Ninnis Trough

7.1 Location map of NBPO 101 JPC 10 and KC10A, Mertz Ninnis Trough, George V
Coast...................................................................................................................................118

7.2 Backscattered electron imagery (BSEI) and secondary electron imagery (SEI) 
photographs of five lamina types and one sub-lamina type, Mertz Ninnis 
Trough, NBP0101 JPC 10. (a) BSEI photograph of near-monogeneric 
Hyalochaete Chaetoceros spp. resting spore (CRS) laminae, (b) SEI photograph 
of near-monogeneric CRS laminae, (c) BSEI photograph of laminae 
characterised by Corethron pennatum. (d) SEI photograph of laminae 
characterised by C. pennatum. (e) BSEI photograph of laminae characterised by 
Rhizosolenia spp.. (f) SEI photograph of laminae characterised by Rhizosolenia 
spp.. (g) BSEI photograph o f mixed diatom assemblage laminae, (h) SEI 
photograph of mixed diatom assemblage laminae, (i) BSEI photograph of mixed 
diatom assemblage terrigenous laminae, (j) SEI photograph of mixed diatom
assemblage terrigenous laminae, (k) BSEI photograph of terrigenous sub
laminae characterised by P. glacialis RS. (1) SEI photograph of terrigenous sub
laminae characterised by P. glacialis RS......................................................................121

7.3 Graph showing the thicknesses of different types of lamina and sub-lamina from
Mertz Ninnis Trough (NBP0101 JPC 10). Individual thicknesses are displayed as 
coloured bars within the total thickness of each lamina type.....................................124

7.4 Graph illustrating the distribution of the different lamina and sub-lamina types,
Mertz Ninnis Trough NBPO 101 JPC 10, between 17.36 and 20.60 metres below 
sea floor (mbsf)................................................................................................................. 125

7.5 Backscattered electron imagery (BSEI) photomosaic of diatom ooze laminae
(biogenic) and diatom-bearing terrigenous laminae (terrigenous), NBP0101 
JPC 10, Mertz Ninnis Trough.......................................................................................... 130

7.6 Schematic representation of the biogenic and terrigenous laminae and
terrigenous sub-laminae succession in laminated interval, Mertz Ninnis Trough, 
NBP0101 JPC10............................................................................................................... 131

7.7 Summary table displaying polynya model and seasonal information responsible
for the formation of multiple types of laminae through the deglaciation...................137



7.8 Graph illustrating the distribuition of the different lamina types, Mertz Ninnis 
Trougth NBP0101 KC10A, Between 2.05 and 2.38 metres below sea floor 
(mbsf)...............................................................................................................................  145

7.9 Graph showing the thicknesses of different types of lamina from Mertz Ninnis
Trough (NBPO 101 KC10A). Individual thicknesses are displayed as coloured 
bars within the total thicknesses of each lamina type................................................  145

7.10 Backscattered electron imagery (BSEI) and secondary electron imagery (SEI)
photographs of laminae characterised by Fragilariopsis spp., Mertz Ninnis 
Trough, NBP0101 KC10A.............................................................................................. 146

7.11 Backscattered electron imagery (BSEI) photomosaics of biogenic laminae and 
terrigenous laminae, NBP0101 KC10A......................................................................147

Chapter 8: Durmont d’Urville Trough

8.1 Location map of MD03-2597, Duromnt d’Urville Trough on the Terre Adelie 
continental margin............................................................................................................ 152

8.2 Backscattered electron imagery (BSEI) and secondary electron imagery (SEI) 
photographs of biogenic and terrigenous laminae characterise by Hyalochaete 
Chaetoceros spp. resting spore (CRS), Durmont d’Urville Trough........................  154

8.3 Graph illustrating the distribution of different lamina types, Durmont d’Urville
Trough MD03-2597, in discrete intervals between 18.75 and 56.80 metres below 
sea floor (mbsf) (see table 3.7)....................................................................................... 158

8.4 Graph showing the thicknesses of different types of lamina from Durmont
d ’Urville Trough, MD03 2597. Individual thicknesses are displayed as coloured 
bars within the total thickness of each lamina type......................................................159

8.5 Backscattered electron imagery (BSEI) and secondary electron imagery (SEI)
photographs of biogenic and terrigenous laminae characterised by Hyalochaete 
Chaetoceros spp. resting spores (CRS) and Fragilariopsis spp., Durmont 
d ’Urville Trough.............................................................................................................  162

8.6 Backscattered electron imagery (BSEI) and secondary electron imagery (SEI)
photographs of biogenic laminae characterised by Fragilariopsis spp., Durmont 
d ’Urville Trough.............................................................................................................  163

8.7 Backscattered electron imagery (BSEI) and secondary electron imagery (SEI)
photographs of biogenic laminae characterised by Corethron pennatum and 
Rhizosolenia spp., Durmont d’Urville Trough............................................................. 164

8.8 Backscattered electron imagery (BSEI) and secondary electron imagery (SEI)
photographs of biogenic and terrigenous laminae characterised by Corethron
pennatum , Durmont d’Urville Trough.........................................................................  166

8.9 Backscattered electron imagery (BSEI) and secondary electron imagery (SEI)
photographs of biogenic and terrigenous laminae characterised by Rhizosolenia 
spp., Durmont d ’Urville Trough................................................................................... 168

8.10 Backscattered electron imagery (BSEI) and secondary electron imagery (SEI)
photographs of mixed diatom assemblage biogenic and terrigenous laminae, 
Durmont d’Urville Trough.............................................................................................. 170

8.11 Backscattered electron imagery (BSEI) and secondary electron imagery (SEI)
photographs of biogenic and terrigenous sub-laminae characterised by Porosira 
glacialis resting spores (RS), Durmont d’Urville Trough........................................  172

8.12 Backscattered electron imagery (BSEI) photomosaics of laminated sediments,
Durmont d’Urville Trough.............................................................................................. 173

XIX



8.13 Backscattered electron imagery (BSEI) and secondary electron imagery (SEI) 
photographs of biogenic and terrigenous laminae characterised by Stellarima 
microtrias resting spores (RS), Porosira glacialis RS and / or Coscinodiscus
bouvet, Duromnt d’Urville Trough............................................................................... 175

8.14 Schematic diagram showing the sequence o f lamina type deposition, Durmont
d’Urville Trough.............................................................................................................  177

8.15 Schematic representation o f an annual succession o f lamina types, Durmont
d’Urville Trough. Compiled from backscattered electron imagery (BSEI) 
data......................................................................................................................................184

8.16 Polar stereographic satellite MODIS (Moderate Resolution Imaging
Spectroradiometer) images o f Adelie and George V coast, East Antarctica, from 
spring to autumn................................................................................................................185

Chapter 9: Core site comparison

9.1 Continental shelf bathymetric profiles crossing through Palmer Deep, West
Antarctica, Mertz Ninnis Trough and Durmont d’Urville Trough, East 
Antarctica. Core sites indicated on continental shelf profiles.................................... 188

9.2 Schematic representation of different types o f lamina in the four Antarctic core
sites......................................................................................................................................189

9.3 Schematic representation o f annual diatom-rich laminated sediment deposited in
(a) ODP 178 1098A Palmer Deep, (b) NBP0101 JPC 10 Mertz Ninnis Trough,
(c)........ NBP0101 KC10A Mertz Ninnis Trough and (d) MD03 2597 Durmont 
d’Urville Trough. Compiled from Backscattered electron imagery (BSEI) 
data......................................................................................................................................190

9.4 Comparison of absolute abundances o f lamina types from post-glacial 
(NBP0101 JPC 10 Mertz Ninnis Trough) and late-Holocene (MD03 2597 
Durmont d’Urville Trough) laminated interval. Absolute abundance data from 
tables 7.3 and 8.3 and original count data in appendix 4 ...........................................202

9.5 Schematic displaying absolute abundance changes in Fragilariopsis spp. and 
Hyalochaete Chaetoceros spp. resting spores from the deglacial to the late- 
Holocene. Temperature, sea ice cover and Adelie Bottom Water formation is 
also displayed.................................................................................................................... 208

XX



CHAPTER 1

1. Introduction

This chapter presents the background and objectives for this study, and a summary of 

the thesis structure.

1.1. Background

Ultra-high resolution records from high southern latitudes are required to understand 

the complexities of Holocene and late Pleistocene climate in Antarctica. Marine 

sediment cores from the Antarctic continental shelf contain a useful high-resolution 

record of climatic fluctuations along the margin of the continent (Domack et al., 

1991). Highly diatom-rich laminated sediments are found in inner shelf basins such as 

Palmer Deep (Antarctic Peninsula; Leventer et al., 1996; Domack and Mayewski, 

1999; Barker et al., 1999a; Leventer et al., 2002), Granite Harbor (Ross Sea; Leventer 

et al., 1993), Mertz Ninnis Trough (Wilkes Land Margin; Domack and Anderson, 

1983; Domack, 1988; Brancolini and Harris, 2000) and Iceberg Alley (Mac.Robertson 

shelf; Harris et al., 1997; Taylor, 1999a; Sedwick et al., 2001; Stickley et al., 2005) 

(Figure 1.1), protected from glacial scour. The value of diatoms as indicators of 

climate change is widely known in palaeoecological studies (e.g. Burckle, 1972; 

Truesdale and Kellogg, 1979; DeFelice and Wise, 1981; Leventer et al., 1993; 1996) 

as many diatom species have specific requirements for temperature, pH, salinity and 

nutrient levels. Despite aggregation, dissolution and advection, the diatom record in 

laminated sediments preserve diatom flux events, reflecting surface water productivity 

(Leventer and Dunbar, 1996; Zielinski and Gersonde, 1997). Therefore, questions 

about Holocene and Late Pleistocene climate change can be addressed by examining 

and using palaeoecological information stored in laminated sediments.

1.2. Thesis objectives

The main objective of this study was to evaluate whether diatom assemblages and 

sedimentary fabrics can be used to determine whether a seasonal and/or annual signal 

is present in Antarctic deglacial and Holocene diatom-rich laminated sediments. A 

second objective of this investigation was to evaluate whether diatom assemblages in 

the laminated sediments can reveal climatic, environmental and oceanographic 

changes. Laminated sediments from three inner shelf basins, Palmer Deep (western

1



CHAPTER 1

Antarctic Peninsula, West Antarctic Margin), Mertz-Ninnis Trough (George V Coast, 

East Antarctic Margin) and Durmont d’Urville Trough (Terre Adelie Coast, East 

Antarctic Margin) (Figure 1.1) were examined, assessed and compared. The 

sediments were analysed primarily using scanning electron microscopy (SEM) 

backscattered electron imagery (BSEI) and secondary electron imagery (SEI). 

Detailed BSEI analysis o f laminated sequences was used to provide information on 

intra- and inter-annual variability in the water column. SEI analysis of selected lamina 

was used to assist in diatom species identification. The diatom species assemblage 

and terrigenous content of laminae was used to give an insight into spatial and 

temporal environmental, oceanographic and depositional variation on the continental 

shelf. Quantitative diatom assemblage analysis was conducted on key laminae to 

determine absolute diatom concentration and relative abundances o f species within 

the total diatom assemblage.
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Figure 1.1
Locations o f Antarctic laminated sediments. Those in red are the three core sites 
studied in thesis: Palmer Deep, Mertz Ninnis Trough and Durmont d’Urville Trough. 
AP=Antarctic Peninsula.
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1.3. Thesis format

The structure of this thesis is outlined in this section, and the content of each chapter 

and appendix summarised.

Chapters 2, 3 and 4 present the necessary background information for the later results 

chapters. Chapter 2 describes the geological history, oceanography and palaeoclimate 

of the Southern Ocean, followed by that of the core sites Palmer Deep, Mertz Ninnis 

Trough and Durmont d’Urville Trough. Chapter 3 contains an introduction to 

diatoms, areas of diatom deposition in the Southern Ocean, environmental controls 

and preservation of diatoms, and includes a brief summary of previous research 

conducted on diatom-rich Antarctic laminated sediments. Ecological details of 

Southern Ocean diatom genera and species encountered in this study are also provided 

in this chapter. Chapter 4 describes the bathymetric setting of the core sites, core 

lithologies and age models. Chapter 5 contains details of sample preparation, scanning 

electron microscope and light microscope methods used in this thesis. Chapters 6, 7 

and 8 presents the BSEI, SEI and light microscope results and interpretations of 

Palmer Deep, Mertz Ninnis Trough, and Durmont d ’Urville Trough laminated 

sediments, respectively. Chapter 9 provides a comparison of the four laminated 

sediment cores. Chapter 10 presents a summary of the main conclusions of this study 

and provides some ideas of future work into Antarctic laminated sediments.

Appendix 1 is a list of diatom species and genera that are identified in this study 

(chapters 6, 7 and 8). Appendix 2 provides light microscope and secondary electron 

imagery photographs of diatom species and genera documented in this study (chapters 

3, 6, 7 and 8). Appendix 3 presents lamina classifications and thickness data used in 

the interpretation of the laminated sediment intervals (chapters 6, 7 and 8). Appendix 

4 contains quantitative diatom count data from Palmer Deep, Mertz Ninnis Trough, 

and Durmont d’Urville Trough used in the interpretation of the laminated sediments 

(chapters 6, 7 and 8). Appendix 5 presents a worked example of Markov Chain 

analysis for the Palmer Deep laminated sediment interval (chapter 6).
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CHAPTER 2

2. Location background

This chapter outlines the general geological, oceanographic and climatic settings of 

the Southern Ocean and the core sites in Palmer Deep, Mertz Ninnis Trough and 

Durmont d ’Urville Trough.

2.1. Geology of the Southern Ocean and Antarctic

Antarctica consists of two distinct continental blocks. East Antarctica (Figure 2.1) is a 

large stable continental craton composed mainly of Precambrian metamorphic 

basement rocks with granitic intrusions that are unconformably overlain by generally 

flat-lying sedimentary rocks (Anderson, 1999). West Antarctica (Figure 2.1) is an 

archipelago composed of several micro-plates with volcanic and metamorphic 

terranes (Anderson, 1999). East and West Antarctica are separated by the 

Transantarctic Mountain range which spans nearly 3500 km.

Along with South America, Africa, Madagascar, India and Australia, Antarctica was a 

major component of the supercontinent Gondwana (Figure 2.1). A rift system 

developed in the early to mid Jurassic, separating East Antarctica from Madagascar 

and Africa. This rift system marked the initial separation of East Gondwana from 

West Gondwana. By the late Cretaceous, rifting of the New Zealand blocks and 

eastern Australia had begun, allowing circulation between Indian and Pacific oceans. 

The final separation of West Antarctica and New Zealand occurred ~ 72 Ma (Stock 

and Molnar, 1987). Timing of the deepening of Tasman Gateway, south of Australia, 

is well constrained across the Eocene-Oligocene boundary; it began around 35.5 Ma 

and by -30.2 Ma the separation of Australia from Antarctica was sufficient for 

pelagic deposition (Stickley et a l, 2004). Two time frames for the opening of the 

Drake Passage (between the Antarctic Peninsula and South America) have been 

suggested; Early Oligocene -31-28.5 Ma (Lawver and Gahagan, 2003) and Early 

Miocene -22-17 Ma (Barker, 2001). Pfuhl and McCave (2005) have recently 

suggested that the establishment of the Antarctic Circumpolar Current (ACC) circuit 

around Antarctica occurred in the latest Oligocene after about 23.95 Ma.
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Adapted from Anderson (1999).
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2.2. Antarctic Ice Sheet History

Significant permanent ice sheets first appeared on Antarctica at the Eocene/Oligocene 

boundary at about 34 Ma (Kennett and Shackleton, 1976; Miller et a l, 1991; Zachos 

et al., 1996; Lear et a l, 2000). The stepwise onset of Antarctic glaciation has been 

linked to jumps in the deepening of the calcite compensation depth (Coxall et al., 

2005). There is debate on what caused the initiation of major permanent Cenozoic 

ice-sheets on Antarctica. One hypothesis is that it was triggered by the opening of 

Southern Ocean gateways (Kennett and Shackleton, 1976); another is that it was 

caused by a threshold response to long-term Cenozoic decline in atmospheric carbon 

dioxide levels (DeConto and Pollard, 2003). A permanent East Antarctic Ice Sheet 

(EAIS) persisted until 26-27 Ma, when a warming trend reduced Antarctic ice extent 

(Zachos et al., 1996). Global ice volume remained low between 26-27 Ma and the 

middle Miocene (-15 Ma), with the exception of several brief periods of glaciation 

(Wright and Miller, 1993). At about 14 Ma there was major growth of the EAIS and 

since this time the EAIS has been a permanent feature of the continent (Kennett, 

1978; Flower and Kennett, 1994). Between the Oligocene and early Miocene, the 

West Antarctic Ice Sheet (WAIS) consisted of a number of isolated ice caps centred 

over islands and continental blocks (Anderson and Shipp, 2001). These ice caps 

coalesced to form the WAIS, advancing onto the continental shelf on several 

occasions from late Miocene through the Pleistocene (Anderson and Shipp, 2001).

The last glacial maximum (LGM) (between 23 and 19 cal kyr) is the most recent 

interval when global ice sheets reached their maximum integrated volume during the 

last glacial (Mix et al., 2001). The overall extent of ice cover in Antarctica during the 

last glacial maximum is not well known. Some reconstructions suggest that the 

peripheral domes of the Antarctic Ice Sheet were 500-1000 m thicker than at present 

and that ice extended out to the continental shelf break around most of Antarctica 

(Clark and Lingle, 1979; Hughes et a l, 1981; Denton et a l, 1991). Other 

reconstructions indicate a smaller extent; Mayewski (1975) proposed that the WAIS 

was only slightly, if at all, larger than today and interpretation of East Antarctic data 

indicates that ice did not extend to the shelf edge (Goodwin, 1993, Anderson et al, 

2002).

The retreat of the EAIS during deglaciation appears to have been diachronous around 

the East Antarctic Margin (Berkman et a l, 1998; Anderson, 1999) and in some areas,
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retreat occurred prior to the LGM (Anderson et al., 2002) (Figure 2.2). Retreat from 

the West Antarctic shelf appears to have occurred at about the same time all around 

West Antarctica, between 15 and 12, ka. In the Ross Sea and the Antarctic Peninsula 

regions, retreat continued well into the Holocene.

2.3. Southern Ocean Oceanography

The Southern Ocean plays a central role in the global thermohaline circulation, 

mixing and exchanging heat and salts between the major oceanic basins; it maintains 

thermal isolation of the Antarctic continent and Antarctic ice sheets from subtropical 

waters to the north. The unique geography of the Southern Ocean makes it the only 

place where ocean currents can flow uninterrupted around the globe.

2.3.1. Zones o f the Southern Ocean

The Southern Ocean has no continental limits to the north; Australia, New Zealand 

and South America encroach on the Southern Ocean without limiting it, and 

Antarctica bounds the Southern Ocean to the south. The Southern Ocean has well 

defined characteristics that run approximately parallel to latitude. The Southern Ocean 

can be divided into two key zones, the Antarctic Zone (adjacent to Antarctica) and the 

Subantarctic Zone (further north) (Figure 2.3). The division between these two zones 

is not a sharp boundary, but rather a transition named the Polar Frontal Zone (PFZ) 

(Figure 2.3) and is located at approximately at 50°S in the Atlantic and Indian Oceans 

and at approximately 60°S in the Pacific. The PFZ is bound to the south by the Polar 

Front (PF) (also called the Antarctic Convergence) and to the north by the 

Subantarctic Front (SAF) and varies in width around Antarctica (narrower in the 

Drake Passage, wider in the South Atlantic) (Figure 2.3). The Antarctic Zone is 

characterised by colder and fresher surface temperatures than the Subantarctic Zone 

(Anderson, 1999). The southern boundary of the Antarctic Zone is marked by the 

Antarctic Divergence (Figure 2.3). The northern boundary of the Subantarctic zone, at 

40°S, is the Subtropical Convergence and is the boundary between the Southern 

Ocean and the rest of the world ocean (Figure 2.3).
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Figure 2.2
Last glacial maximum (LGM) ice sheet reconstruction for Antarctica. Blue line indicates 
minimum grounding line based on the presence of subglacial geomorphic features and/or 
till. Dates indicate the approximate times when the ice sheet retreated from the shelf, based 
on radiocarbon ages of glacial-marine sediment resting above till. Deeper grey indicate 
the continental slope and abyssal plain. From Anderson etal. (2002).
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2.3.2. Southern Ocean W ater Masses and Currents

2.3.2.1. Antarctic Zone and Continental M argin

Antarctic Coastal Current (ACoastC) flows westward in a narrow zone close to the 

Antarctic coast (Figure 2.3). This current follows the line of the coast and deviates 

due to changes in the coastline such as bays, capes or glacial protrusions. Further 

north, the Southern Ocean is dominated by the Antarctic Cireumpolar Current (ACC), 

a deep, strong, eastward flowing current (Figure 2.3). The surface flow of the ACC is 

primarily driven by the frictional stress of westerly winds on the ocean surface. Wind 

stress combined with the Coriolis force contributes to a northward component of the 

surface current, resulting in the formation of fronts and a complex set of narrow jets 

within the PFZ (Pickard and Emery, 1990). Antarctic Surface Water (AASW) south 

of the PF originates near the continent and flows northward until it encounters 

Subantarctic surface waters, where it begins to sink (Figure 2.3). AASW properties 

are determined by ice melting in the summer and by cooling and ice formation in the 

winter.

Cireumpolar Deep water (CDW) at water depths between 1000 and 4000 m (Figure 

2.3) is the most voluminous water mass in the ACC (Sievers and Nowlin, 1984). 

CDW is a mixture of waters formed in the Antarctic region and Warm Deep Water 

(WDW) flowing in from the North Atlantic (North Atlantic Deep Water), Pacific and 

Indian Oceans. Antarctic Bottom Water (AABW) is created by the mixing and down 

slope movement o f dense shelf water (formed by winter cooling and brine rejection 

during sea ice formation) with WDW and CDW. AABW is defined as all volumes of 

water formed to the south of the ACC with neutral densities greater than 27.28 kg / m3 

(Orsi et al., 1995). Most AABW production occurs in the Weddell Sea (Brennecke, 

1921; Deacon, 1937; Carmack and Foster, 1975), but some AABW is produced in the 

Ross Sea (Jacobs et a l, 1970; Jacobs et al., 1985) and off Wilkes Land (Gordon and 

Tchemia, 1972; Rintoul, 1998). AABW is one of the major water masses of the world 

ocean and is found in all three ocean basins, covering the bottom of the Pacific and 

Indian Oceans and most of the bottom of the Atlantic Ocean. This water mass 

ventilates most of the deep waters in the rest of the world ocean, therefore, the 

strength of the southern source of cold bottom waters and subsequent equatorward 

flow are key elements of the global thermohaline circulation (Orsi et a l, 1995).
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2.3.2.2. Subantarctic Zone

Water masses in this zone originate from inside and outside the Southern Ocean. 

Subantarctic Upper Water occupies the upper 500 m and has a southward motion 

(Figure 2.3). Below this water mass is the Antarctic Intermediate Water which 

includes surface water from the Antarctic Zone and is formed by mixing below the 

surface in the PFZ.

2.4. Palaeoclimate and Present Climate

2.4.1. Last Glacial

Oxygen isotope records from deep-ocean sediments and ice cores indicate that major 

land ice masses developed during the last glacial (e.g. Martinson et al., 1987; Jouzel 

et al., 1987). The ocean circulation was notably different to today; deep water 

formation in the Atlantic was probably reduced and the global thermohaline 

circulation, therefore, was much slower (Duplessy et al., 1984; Boyle, 1986; Lynch- 

Steiglitz et al., 1999). The CLIMAP (Climate Long-range Investigation, Mapping 

And Prediction) project (1981) determined that temperature change during the LGM 

was different between regions and not globally uniform (Figure 2.4). The tropical 

oceans were 3 ± 1°C colder than at present (Pierrehumbert, 1999) and air 

temperatures averaged about 15°C colder than now (Cuffey and Clow, 1997). The 

Southern Hemisphere was drier (Damuth and Fairbridge, 1970; Bowler, 1976; 

Samthein, 1978), which led to the shrinking of forests and expansion of deserts 

(deserts between 30°N and 30°S were five times larger than today) (Samthein, 1978), 

increasing albedo effects (Peterson et al., 1979). A drop in sea level of approximately 

120 m during the last glacial (Shackleton, 1987) exposed continental shelves creating 

another source of atmospheric dust, in addition to the increase in desert size (Petit et 

al., 1981). The last glacial maximum (LGM) may have occurred earlier in the 

Southern Hemisphere than the Northern Hemisphere, the early onset in the Southern 

Hemisphere was driven by the minimum in regional insolation reached 35 -  30 kyrs 

BP (Vandergoes et al., 2005). During the glacial, atmospheric circulation was much 

more vigorous from the tropical zone towards Antarctica than today (Petit et al., 

1981). Ice and deep-sea core studies have shown that the latitudinal thermal gradient
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was greater during the LGM than at present (Wilson and Hendy, 1971; Luz, 1977). 

Diatom and radiolarian transfer functions have been used in the Southern Ocean to 

improve knowledge of past open ocean temperatures (e.g. Pichon et al., 1992a; 

Brathauer and Abelmann, 1999). During the glacial, the surface of the ocean in the 

Subantarctic and Polar Frontal Zone was approximately 3° - 5°C cooler than today, 

which indicates there was a northward displacement of isotherms about 2° - 4° of 

latitudes with respect to modem positions (Brathauer and Abelmann, 1999). Diatom 

floral evidence indicates that sea ice was not perennial during the LGM (Burckle et 

al., 1982; Burckle, 1984a; Crosta et al., 1998).

2.4.2. The Last Deglaciation

The last deglaciation (-20-10 cal kyr BP) is generally assumed to have been forced by 

the increase in Northern Hemisphere summer insolation between 24 and 10 kyr 

(Imbrie et al., 1992). The insolation changes alone cannot explain the amplitude and 

global character of this climatic transition. The increase in atmospheric concentrations 

of the greenhouse gas CO2 could have accounted for up to half of the glacial- 

interglacial warming (Manabe and Broccoli, 1985). Ice core data reveals that warming 

in the Southern Hemisphere after the LGM probably preceded Northern Hemisphere 

warming (Petit et al., 1999). The gradual increase in temperature recorded in 

Antarctic ice cores is interrupted by a short cooling period, the Antarctic Cold 

Reversal (ACR; Jouzel et al., 2001), -13  to 15 kyrs BP. A return to near glacial 

conditions in the Northern Hemisphere -  11 to 10 kyrs BP, the Younger Dryas (YD) 

(Lowe and Walker, 1997) is considered to be an equivalent of the ACR (Johnsen et 

al., 1992; Grootes et al., 1993) (Figure 2.5). The cause of the ACR is uncertain, but a 

suggested cause for this cooling is the intense meltwater event, mwp 1A, occurring 

during the first step of deglaciation (Fairbanks, 1989). Weaver et al. (2003) propose 

that mwp 1A was created by the partial collapse of the Antarctic Ice Sheet, a result of 

prolonged warming in the Southern Hemisphere that began -19,000 yr BP (Blunier 

and Brook, 2001). This could have triggered a seesaw mechanism (Broecker, 1998); 

Antarctic Bottom Water formation suppression would have turned on the Northern 

Hemisphere thermohaline circulation, warming the Northern Hemisphere (Bolling- 

Allerod warm period) and cooling the southern hemisphere (Weaver et al., 2003).
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2.4.3. Holocene

The Holocene can be divided into two climatic periods the mid-Holocene Climatic 

Optimum (Hypsithermal) and subsequent cooling. Global temperatures were possibly 

1°C warmer during the Climatic Optimum than today (Bigg, 2001) with significant 

regional variation (Mitchell et al., 1988). The Climatic Optimum is detected in ice 

cores from the Antarctic polar plateau (e.g. Masson et al., 2000; Vimeux et al., 2001) 

and has been associated with the collapse of at least one Antarctic Peninsula ice shelf 

(Bentley et al., 2005) which suggests warming was an Antarctic wide phenomenon. 

The mid-Holocene warming of the Southern Hemisphere was caused primarily by a 

reduction of the Atlantic thermohaline circulation (Ganopolski et al., 1998). The 

weakening of the thermohaline circulation is caused by warming and intensification 

of the hydrologic cycle in the Northern Hemisphere, which enhances fresh water 

fluxes to the North Atlantic. As a result, heat transport from South to North Atlantic is 

reduced, which produces a negative feedback for Northern Hemisphere warming but 

raises mean annual temperature in the Southern Hemisphere by 0.7°C (Ganopolski et 

al., 1998). Sea ice cover is reduced in the Southern Ocean, which amplifies the 

warming near Antarctica (Hodell et al., 2001). In East Antarctica, this climatic 

optimum occurred between 3500 -  2500 yr BP at Bunger Oasis (Kulbe et al., 2001) 

and -4000 -  1000 cal. yr BP in the southern Windmill Islands (Goodwin, 1996; 

Cremer et al., 2003). On the Antarctic Peninsula the mid-Holocene Climatic Optimum 

has been dated -7500 to 5800 yrs BP in Lallemand Fjord (Shevenell et al., 1996; 

Domack et al., 1995; Taylor et al., 2001) and -9,070 to 3,360 cal. yr BP in Palmer 

Deep (Figure 2.6) (Domack et al., 2001). Orbital forcing cannot solely explain the 

change from the climatic optimum to cooler conditions; the climate transition has 

been attributed to strong positive feedbacks that link subtropical vegetation, albedo, 

and precipitation (Claussen et al., 1999). Also, Hodell et al. (2001) suggest that sea 

ice extension in the South Atlantic sector of the Southern Ocean about 5000 cal. yr BP 

may have also served as oceanic feedback that hastened climate change. Post mid- 

Holocene Climatic Optimum cooling, characterised by increased sea ice coverage, 

readvances of grounded ice masses and lower precipitation, did not commence 

contemporaneously circum-Antarctic. In East Antarctica this cool stage commenced 

at -2500 cal. yr BP in Bunger Oasis, Wilkes Land (Kulbe et al., 2001), at 2600 I4C yr
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BP in Prydz Bay, Vestfold Hills (Taylor and McMinn, 2002), at 3000 14C yr BP in the 

Terra Nova Bay region (Cunningham et a l, 1999) and relatively later in the southern 

Windmill Islands at -1000 cal. yrs BP (Cremer et a l, 2003). At the western edge of 

the Ross Sea, the timing of this cooler period at -5000 cal. yrs BP was determined by 

the 5180  record of the Taylor Dome ice core (Hoddell et al., 2001). On the Antarctic 

Peninsula the start of cooling occurred -3800 cal. yrs BP determined by an increase in 

ice-related diatoms in Lallemand Fjord (Taylor et al., 2001) and at 3360 cal. yr BP in 

Palmer Deep (Domack et al., 2001). In Palmer Deep the transition from high diatom 

abundance to low diatom abundance (250-500 xlO6 valves per gramme of dry 

sediment) marked the end of the Climatic Optimum and start of the cooling 

(Sjunneskog and Taylor, 2002). This transition on the Antarctic Peninsula may have 

been as long as 1340 years (Taylor et a l, 2001). The Little Ice Age was a period of 

cold, dry conditions, -1400 to 1900 AD (Grove, 1988). In marine sediments from 

Palmer Deep a “Little Ice Age” was detected between -700 too -100 cal yrs BP 

(Figure 2.6; Domack et a l, 2001), which approximately correlates with the GISP2 

(Domack and Mayewski, 1999) and Siple Dome (Kreutz et a l, 1997) records.

2.4.4. M odem  Antarctic Climate

Antarctica is the coldest, driest and windiest continent on the Earth (Schwerdtfeger, 

1984). Temperatures along the coast range from an average austral summer 

temperature of 0°C to -  -20° to -30°C during the austral winter, with a mean 

temperature of -  -15°C (Anderson, 1999). The lowest temperature registered (-88°C) 

on the surface of the Earth was made at Vostok station in the central region of East 

Antarctica. Jones (1990) concluded that Antarctica is now at least 1°C warmer than it 

was at the beginning of the twentieth century. A zone of low pressure exists between 

65° and 70°S, called the Cireumpolar Trough (CPT). Near the trough, winds are 

highly variable and cyclonic (Anderson, 1999). The edge of the CPT moves 

throughout the year advancing further northward in the austral summer (Mullan and 

Hickman, 1990). Cooling of air adjacent to the Antarctic Ice Sheet creates a 

temperature inversion on the high polar plateau. The cooled air flows from the 

continental interior towards the coast due to gravity, an inversion wind. Topographic 

funnelling of this air intensifies flow speed, resulting in katabatic winds (Anderson, 

1999). The areal extent of sea ice around Antarctica is roughly twice the size of the
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Antarctic Ice Sheet and experiences a five-fold increase annually (Mullan and
ft 9Hickmann, 1990), changing in area from roughly 3 x 1 0  km in the austral spring to 

20 x 106 km2 in the austral autumn (Mullan and Hickman, 1990). This seasonal 

variability in the sea ice coverage is one of the most significant factors regulating the 

energy balance of the Southern Hemisphere atmosphere and ocean (Mullan and 

Hickman, 1990; Martinson and Iannuzzi, 1998). This influence is due to the large 

albedo difference between sea ice and the sea surface, which allows the sea ice to 

serve as a barrier to energy exchange between the atmosphere and ocean (Anderson, 

1999). Over the last eleven years observations have shown that the East Antarctic Ice 

Sheet is thickening north of 81.6°S (Davis et a l, 2005). If the ice sheet continues to 

grow, then this thickening may counteract a proportion of future sea level rise.

2.5. Study Regions

In this section the three core sites, Palmer Deep, Mertz Ninnis Trough and Durmont 

d’Urville Trough (Figure 2.7), are discussed in a geological, glaciological, 

oceanographic and climatic framework.

2.5.1. Palmer Deep, W estern Antarctic Peninsula

2.5.1.1. Geology

The Antarctic Peninsula consists largely of igneous plutons and related metavolcanics 

(Domack et al., 2003) (Figure 2.8) of a Mesozoic-Cenozoic magmatic arc. Fore-arc 

basin sedimentary rocks are found to the west of the peninsula.

2.5.1.2. Glaciology

The Antarctic Peninsula ice sheet is part of the marine-based West Antarctic Ice Sheet 

(WAIS), where sea level is a major control on ice volume. During the last glacial 

maximum (LGM) the WAIS extended onto the continental shelf (Bart and Anderson, 

1996; Pudsey et a l, 1994; Larter and Vanneste, 1995; Anderson et a l, 2002; 

Ingolfsson et a l, 2003) (Figure 2.9). The head of a major ice drainage system lay 

within Palmer Deep (Pudsey et a l, 1994; Rebesco et a l, 1998a). Coastal glaciers
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draining off the peninsula plateau and Anvers Island ice cap converged in the past in 

Palmer Deep (Rebesco et al., 1998a) (Figure 2.10). Iceberg furrows between 350 and 

500 m water depth are evidence of iceberg calving as the ice sheet front retreated 

(Pudsey et al., 1994). Radiocarbon dating of Palmer Deep sediments by Domack et al. 

(2001) provided constraints on the retreat of the ice sheet to Palmer Deep at around 

13,000 cal. yr BP, which is roughly in agreement with the uncalibrated radiocarbon 

age of approximately 11, 000 yr BP given by Pudsey et al. (1994) for the retreat of the 

ice sheet across the western Antarctic Peninsula shelf. Radiocarbon ages from a core 

collected in the central part of Gerlache Strait indicate that glacial-marine 

sedimentation began sometime after 8000 14C yr BP (uncorrected date; Harden et al.,

1992). Along the Antarctic Peninsula, ice shelves exist up to a climatic limit which 

corresponds to the mean annual temperature isotherm of -8°C (Vaughan and Doake, 

1996). Currently there are no floating ice shelves north of 69°S on the western side of 

the Antarctic Peninsula, and glaciers terminate well within fjords (Pudsey et al., 1994) 

(Figure 2.10).

2.5.I.3. Regional Oceanography

General oceanographic conditions for the modem western continental shelf of the 

Antarctic Peninsula are dominated by Cireumpolar Deep Water (CDW) (Figure 2.11). 

Within the ACC, the CDW is composed of two types of oceanic water mass, Upper 

CDW (UCDW) and Lower CDW (LCDW). The core of the LCDW mass is found 

between 800 and 1000 m at the edge of the continental shelf west of the Antarctic 

Peninsula (Smith et al., 1999a). The UCDW is derived from off-slope upwelling in 

association with the impingement of the Antarctic Cireumpolar Current (ACC), 

appearing at 200 -  400 m depth, above the western Antarctic Peninsula shelf break 

(Smith et al., 1999a). Since the Antarctic Peninsula continental shelf is relatively deep 

(300 - 500 m) and the UCDW is relatively shallow, this oceanic water mass is found 

on the shelf. UCDW is modified, mixing with Antarctic Surface Waters (AASW) on 

the shelf. This modified water (Table 2.1) supplies heat, salt and low oxygen water to 

the west Antarctic Peninsula continental shelf region below 200 m (Smith et al., 

1999a). The amounts of CDW in this region may have fluctuated through time 

(Ishman, 1990).
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Table 2.1 Water mass properties in the vicinity of Palmer Deep. From Hofmann and 
Klinck (1998a).

W ater mass Tem perature (°C) Salinity (psu)

Antarctic Surface W ater (AASW ) 0.0 t o -1.5 34.0-34.4
W inter W ater (WW ) < -1 .5 34.0-34.4
Cireumpolar Deep W ater (CDW ) >0 34.6-34.73
Upper Cireumpolar Deep W ater (UCDW ) 1.5-2.0 34.6-34.7
Lower Cireumpolar Deep W ater (LCDW ) 1.3-1.6 34.7-34.73
Modified Cireumpolar Deep W ater (M CDW ) 1.0-1.4 34.6-34.7
Shelf Water <-1.8 34.2-34.9

2.5.I.4. Climate

Climate observations in the last century have revealed that the Antarctic Peninsula has 

responded quickly to climate change over the last half century (Smith et al., 1999b). 

The elevated Antarctic Peninsula acts as a major barrier to tropospheric circulation, 

experiencing a relatively mild maritime climate to the west and north of the peninsula 

and a harsher more continental climate to the east and south (King et al., 2003). The 

peninsula currently receives a relatively high snowfall (500 to 1000 mm/yr), almost 

four times the continental average (Reynolds, 1981; Drewry and Morris, 1992). The 

peninsula is the only Antarctic region where the mean position of the Antarctic 

Cireumpolar Trough (CPT) crosses land (Smith et al., 1999b). The variability of the 

mean position of cyclones, as the CPT seasonally and inter-annually moves along the 

Antarctic Peninsula, strongly influences winds, temperature and sea ice distribution. 

Temperatures in the peninsula have increased markedly over the last 50 years, a 1.0- 

2.5°C increase in summer surface air temperatures (Jones et al., 1993; King et al., 

2003), while temperature increases from around the rest of the continent have been 

generally small (Vaughan et al., 2003). Several mechanisms have been suggested for 

this warming; changes in atmospheric circulation and temperature advection patterns 

across the Antarctic Peninsula; changing oceanographic processes which enhance 

CDW upwelling; and changes in surface energy balance (King, 1994; Vaughan et al., 

2001; Smith et al., 2003). This warming trend coincided with a significant reduction 

in the size of the Larsen and George VI ice shelves (Potter and Paren, 1985; Rott et 

al., 1996) and the disappearance of the smaller Wordie Ice Shelf (Doake and 

Vaughan, 1991) and Muller Ice Shelf (Domack et al., 1995) in the Antarctic Peninsula 

region. Since 1980 ice shelves from the Antarctic Peninsula, on average, have 

retreated by ~ 300 km2 (Vaughan and Doake, 1996). This gradual retreat has been
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punctuated by two catastrophic collapses on the eastern Antarctic Peninsula. Larsen A 

and B ice shelves collapsed in January 1995 and March 2002 respectively (Doake et 

al., 1998; Skvarca and De Angelis, 2003). The recent break-up of the Larsen B Ice 

Shelf is unprecedented in the Holocene history of this glacial system (Domack et al., 

2005). Speculation on the cause of the Larsen Ice Shelf collapse has concentrated on 

the destabilising effects of increased surface melt-water (Mercer, 1978; Rott et al., 

1998; Scambos et al., 2000) which may have enhanced the process of crevasse 

fracture (Weertman, 1973). Shepherd et al. (2003) have shown that the Larsen Ice 

Shelf may have become susceptible to crevasse fracture through a sustained ice 

thinning by basal melting.

2.5.2. M ertz Ninnis Trough, East Antarctic Margin

2.5.2.1. Geology

The only exposed bedrocks on the George V Coast are coastal cliffs and nunataks. A 

geologic boundary occurs at about 147°E, west of the Mertz Glacier, which separates 

Precambrian metamorphic and igneous rocks from Mesozoic sedimentary and igneous 

rocks (Figure 2.12) (Craddock, 1972; Kleinschmidt and Talarico, 2000). The Mertz 

Ninnis Trough was excavated along the contact between crystalline basement rocks 

and sedimentary strata by ice streams that advanced from an expanded EAIS during 

the past glacial maxima (Domack, 1982; Domack and Anderson, 1983; Anderson, 

1999).

2.5.2.2. Glaciology

The George V Coast, East Antarctic Margin, is characterised by ice cliffs with the 

exception of the Mertz and Ninnis Glacier Tongues (Figure 2.12). These two glacier 

tongues drain a combined area of over 4 x 105 km2 (Anderson, 1999). The Mertz 

Ninnis Trough is a deep linear basin of glacial origin which parallels the coast on the 

narrow, deep inner continental shelf. The Mertz Ninnis Trough reaches depths greater 

than 1300 m just west of the Ninnis Glacier Tongue. Fluted surfaces in the Mertz 

Ninnis Trough (Barnes, 1987), lateral moraines (Barnes, 1987) and terminal moraines 

(Domack et al., 1991) indicate that the Mertz Glacier Tongue flowed ESE-WNW
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Figure 2.12
Geological map of George V Land and Terre Adelie. Adapted from Craddock (1972). Mertz 
Ninnis Trough core site (NBP0101 JPC10 & KC10A) and Durmont d’Urville Trough core 
site (MD03-2597) are marked.
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Figure 2.13
Late Pleistocene ice sheet reconstruction for the Wilkes Land continental shelf adapted 
from Anderson (1999). Arrows indicate palaeo ice stream flow (modified from Eittreim et 
al., 1995). Based on till petrography (Domack, 1982), side-scan sonar (Barnes, 1987) and 
seismic stratigraphy (Eittreim et al., 1995). Bathymetry from Chase et al. (1987). Core 
sites, NBPO101 JPC10 & KC10A and MD03-2597 are indicated.
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during the late Pleistocene (Domack et al., 1989) and expanded across the Mertz 

Ninnis Trough during the last glacial maximum (Figure 2.13, 2.14 & 2.15). The 

glacial retreat is marked by a distinct transition from sub-ice shelf to open marine 

conditions, interpreted from cores collected from the Mertz Drift in the west of the 

George V Basin (Domack et al., 1989; Harris et al., 2001). Records from the last 

century indicate that both glacier tongues have actively expanded and contracted; the 

Mertz Glacier Tongue doubled its size from about 3830 km in 1913, to about 8100 

km in 1993 and the Ninnis Glacier Tongue decreased in size by approximately one- 

third from about 6060 km2 in 1913 to about 2150 km2 in 1993 (Figure 2.16) (Wendler 

et al., 1996a; 1996b). In 2000 the Ninnis Glacier Tongue underwent a massive calving 

event which removed half of the floating tongue (Rignot, 2002).

2.5.2.3. Mertz Glacier Polynya and Regional Oceanography

The Mertz Glacier Tongue (MGT) is associated with a coastal polynya, the Mertz 

Glacier Polynya (centred on 67°S, 145°E), an open area of water enclosed in sea ice 

approximately 20,000 km in size (Figure 2.17). Two mechanisms maintain the 

coastal polynya. Firstly, near coastal westward advection of sea ice within the 

Antarctic Coastal Current is blocked by the MGT and associated grounded icebergs to 

the north (Massom et al., 2001). Secondly, the George V Coast is subject to katabatic 

winds, the strength and duration of which are unequalled anywhere on the surface of 

the Earth, including other parts of Antarctica (Loewe, 1972). These directionally 

constant katabatic winds (Adolphs and Wendler, 1995; Wendler et al., 1997) and 

synoptic winds provide mechanical forcing to remove ice away from the shore, the 

western edge of the glacier tongue and grounded icebergs (Figure 2.18) (Massom et 

al., 2001). Coastal polynyas are “ice factories” and have large sea ice formation rates, 

which can be up to ten times greater than in the surrounding sea ice zone (Zwally et 

al., 1985). The ice formation rates depend on local wind speed, air and water 

temperature and the area of open water (function of wind speed and persistence) 

(Cavalieri and Martin, 1985; Zwally et al., 1985). Massom et al. (1998) have shown 

that the Mertz Glacier Polynya is a persistent, recurrent feature throughout the year 

and is believed to have the greatest ice production and therefore, highest rate of salt 

production in East Antarctica (Cavalieri and Martin, 1985). The fastest rate of areal 

growth of the polynya occurs during August/September (Bindoff et al., 2001).

23



CHAPTER 2

146-0-E

«7*0S

Mertz Glacier 
Tongue

142*0t 144‘0'E

■ -  a Ice-keel lurbate found on the mid- to
—I outer- shelf where the seabed is less than 

500 m deep.

I —.Smooth diamicton and subglacially
I 1 formed megaflutes, or ridges and swales.

Siliceous mud and diatom ooze drift, 
~  | drape and fill deposits within the Mertz 

Ninnis Trough predominately below 750 
m depth.

Higjh relief ridges and canyons on the
I--------, inner-shelf, from the coastline to below
I------- 11000 m deep in the Mertz Ninnis Trough,

comprised mostly o f  eroded crystalline 
basement outcrop.

Ridge / lateral morraine. In depths o f  
-200  m along the southern side o f Mertz 

■  Bank records the northern limit o f the 
expanded Mertz Glacier during the last 
glacial maximum (LGM).

Direction o f glacial advance along the 
axis o f  the Mertz Ninnis Trough

Figure 2.14
Map showing facies on the George V shelf. Core site NBP0101 JPC10 and KC10A 
indicated. (George V Basin = Mertz Ninnis Trough). Adapted from Beaman annd Harris 
(2003).

Mertz Ninnis Trough Mertz
Glacier

ice sheet

CDW

Ridges and cans on\ 
created h y  numerous 
outlet garte r*  along 

Ice sheet margindiamicton and

After-12 kyr BP
■Mertz
Glacier

ice cliff
M il— p A A n  p A A e  J

l  MCDW

Ridges and cansonx 
S  created b j 

numerous outlet 
glaciers along Ice 

sheet m argin

Figure 2.15
Cartoons showing the extent and 
retreat of the Mertz Glacier 
Tongue during the last glacial 
maximum (LGM) and after the 
LGM (~12 kyr BP), msl = mean 
sea level. SMO = siliceous mud 
and diatom ooze. Adapted from 
Beamen and Harris (2003).



CHAPTER 2

1993

67°S 1913 /
« 1913

96:
George V Land

. 1913
- 1962
- 1993

146°E

Figure 2.16
The position of the Mertz and Ninnis Glacier Tongues in 1913, 1962 and 1993. From 
Wendler etal. (1996a).
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Figure 2.17
Oceanographic regime off the George 
V Coast (modified from Harris et al., 
2001). ACoastC = Antarctic Coastal 
C u rren t. M CDW  = M o d ified  
Cireumpolar Deepwater. HSSW = 
High Salinity Shelf Water. The 
position of the core NBP0101 JPC10 
is indicated. Inset is the location of the 
Mertz Ninnis Trough (MNT) on the 
East Antarctic Margin.
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Figure 2.18
Schematic representation of physical processes taking place in deep water and shelf 
water polynyas. Adapted from Open University Oceanography Course Team (2001) and 
Maqueda etal. (2004).
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Multi-year special sensor microwave/imager records have shown that the polynya 

typically attains its largest size fairly consistently in October (20,000 to 60,000 km ), 

at the approximate time of the maximum pack ice extent. The average winter size of 

the Mertz Glacier Polynya is 23,000 km2, extending about 200 km offshore (Massom 

etal., 1998).

Formation mechanisms are used to classify the two different types of polynya as 

“latent heat” and “sensible heat” (Figure 2.18). Latent heat polynyas are created by 

strong winds or oceanic currents, causing divergent ice motion in the region, whereas 

sensible heat polynyas are created by a continuous flux of ice-melting warm water 

into the region. Coastal polynyas are often assumed to be strictly latent heat polynyas, 

but latent and sensible heat fluxes may play a role in maintaining coastal polynyas in 

areas where significant intrusions of Modified Circumpolar Deep Water (MCDW) 

occur (Jacobs, 1989). Part of the reason for MCDW upwelling off the George V Coast 

is the northerly extent of the coastline and the proximity of the warm, saline waters to 

the shelf break (Orsi et al., 1995). The MCDW appears to enter the Mertz Ninnis 

Trough through the channel near 143°E (Figure 2.17), connecting the depression to 

deep water offshore (Rintoul, 1998). The upwelling of warm MCDW (Table 2.2), a 

source of sensible heat over the continental shelf, may help to maintain a polynya 

such as the Mertz Glacier Polynya and explain the temporal development of the 

polynya through the winter (Rintoul, 1998).

In the spring / summer, the reservoir of sensible heat in the MCDW intrusion lies 

beneath a freshwater cap formed by melting sea ice (increase in solar radiation), and 

precipitation (Oshima et al., 1998; Rintoul, 1998; Hunke and Ackley, 2001;). At 

145°E the combination of enhanced melting and narrow sea ice zone allows an ice 

edge embayment to merge with the Mertz Glacier Polynya, forming a large region 

with reduced ice concentrations reaching the coast in austral summer (December) 

(Massom et al., 1998).

The MCDW cannot reach the surface of the polynya until sufficient cooling and brine 

formation has occurred to increase the density of the surface layer to equal that of the 

MCDW (Rintoul, 1998). Winter Water (WW) and High Salinity Shelf Water (HSSW) 

are formed by brine rejection during sea ice formation (Table 2.2), which contributes 

to Adelie Land Bottom Water (ALBW). ALBW is a significant source of bottom 

water and is the second largest source of AABW, contributing 25% of the total 

AABW volume in the world’s ocean (Rintoul, 1998). A fourth water mass on the
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shelf is Ice-Shelf Water (ISW) (Table 2.2). This water mass is much colder than 

MCDW, WW and HSSW; it is thought to have originated from beneath the Mertz 

Glacier (Bindoff et al., 2001) (Figure 2.17).

Table 2.2 Water mass properties (area-averaged) for Mertz Ninnis Trough region. 
From Williams and Bindoff (2003).

W ater mass Tem perature (°C) Salinity (psu)

M odified Circumpolar Deep W ater (M CDW ) -1.83 34.51
W inter water (WW) -1.90 34.63
Ice shelf water (ISW) -1.94 34.64
High salinity shelf water (HSSW ) -1.91 34.69

2.5.2.4. Climate

The closest metrological station to the Mertz Ninnis Trough is Durmont d’Urville. 

Over thirty two years (1957 -  1989) a mean warming temperature of 0.78°C was 

recorded (Wendler and Prichard, 1991; Periard and Pettre, 1993). Katabatic winds are 

a major climatic phenomenon in the region; a maximum wind speed of 324 km/h has 

been recorded at Durmont d ’Urville.

2.5.3. Durmont d ’Urville Trough, East Antarctic Margin

2.5.3.1. Geology

Rocks which outcrop on the coast adjacent to the Durmont d’Urville Trough are 

Precambrian garnet-rich gneisses and schists of granulite metamorphic facies and 

chamockites (Stillwell, 1918), a continuation of those found west of the Mertz Ninnis 

Trough (Figure 2.12).

2.5.3.2. Glaciology

During the LGM Goodwin and Zweck (2000) suggest that a thickness of 1000 m of 

ice occurred along the EAIS margin between Wilkes Land and Oates Land. 

Identification of till on the continental shelf has led to the interpretation that the ice 

sheet grounded on the outer shelf during the LGM (Anderson et al., 1980). Eittreim et 

al. (1995) established the palaeodrainage of this area (Figure 2.13). The drainage 

distribution in this area is not convergent and the resulting glaciers are smaller than
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the Mertz and Ninnis Glaciers, and are more regularly spaced (Eittreim et al., 1995). 

The Dibble Glacier is an exception as it flows from an isolated basinal area of its own 

(Eittreim et al., 1995). The Durmont d ’Urville Trough was occupied by Zelee and 

Astrolabe Glacier ice streams during the LGM, which bypassed the outer shelf banks 

(Eittreim et al., 1995). The transition from subglacial to glacial-marine sedimentation 

occurred prior to ~ 9,000 yr BP (corrected date using a reservoir correction of 5,500 

yr) (Domack et al., 1989; 1991).

2.5.3.3. Regional oceanography

Limited research has been conducted on water mass locations and movements in the 

Durmont d ’Urville Trough region. However it is likely a similar oceanographic 

setting to Mertz Ninnis Trough exists due to its proximity and similar trough 

orientation on the shelf (see section 2.5.2.3) (Figure 2.19), influenced by Antarctic 

Coastal Current, MCDW and HSSW (Rintoul, 1998; Bindoff et al., 2001). MCDW 

upwells onto the continental shelf and a dense water mass sinks off the shelf region, 

contributing to AABW (Chiba et al., 2000). The Mertz Glacier Polynya does not 

extend over Durmont d ’Urville Trough (Massom et al., 1998), therefore little HSSW 

will be produced in this region.

2.5.3.4. Climate

As previously discussed in section 2.5.2.4, the area has experienced a warming of 

0.78°C between 1957 and 1989 (Wendler and Prichard, 1991; Periard and Pettre,

1993). This region experiences strong katabatic winds, and was described as The 

Home o f  the Blizzard during Mawson’s 1912-1913 expedition (Mawson, 1915).

2.6. Summary

This chapter presents background information on Antarctica and the three core sites, 

Palmer Deep, Mertz Ninnis Trough and Durmont d ’Urville Trough. Regional 

geology, oceanography, glaciology and climate have been discussed and this 

information will be utilised in context in chapters 6, 7, 8 and 9.
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3. Diatoms in the Southern Ocean

This chapter presents an introduction to diatoms in Antarctica; environmental and 

preservation controls on diatom assemblage distribution are described. An account of 

Antarctic diatom-rich laminated sediment research is also given. In the final section of 

this chapter the ecology of Antarctic diatoms is presented.

3.1 Introduction
Diatoms are siliceous walled microscopic (1 -  2000 microns) unicellular algae that 

dominate primary productivity around Antarctica. Diatoms contribute up to 75% of 

Southern Ocean primary production and, therefore, play an important role in global 

cycling of silicic acid and carbon (Treguer et al., 1995). Since the early Neogene, 

biosiliceous deposition has dominated the sedimentary record of the Southern Ocean 

(Baldauf and Barron, 1991).

Modem diatom distributions are controlled by interrelated primary processes; light, 

salinity, sea-surface temperature (Neori and Holm-Hansen, 1982), nutrient availability 

and proportion (El-Sayad, 1970; Burckle et al., 1987), water-column stability 

(Leventer, 1991) and sea ice presence (Abelmann and Gersonde, 1991). On the 

Antarctic continental shelf, sea ice exerts considerable control on environmental 

variables (Cunningham and Leventer, 1998).

In Antarctica, diatoms are mainly deposited in sediments between the winter sea ice 

edge and the Polar Front (Lisitzin, 1960; Lozano and Hays, 1976) in a largely 

continuous belt around Antarctica called the “diatom ooze belt” (Burckle and Cirilli, 

1987). This belt is bounded to the north by sediments rich in carbonate and to the 

south by silty diatomaceous clays (Figure 3.1) (Burckle and Cirilli, 1987). Cooke 

(1978) and Cooke and Hays (1982) attributed the existence of the siliceous ooze belt 

to high surface water diatom productivity. Nelson et al. (1995) proposed the diatom 

ooze belt was a result of high preservation efficiency of the diatom frustules, 

however, this theory has recently been challenged by Pondaven et al. (2000). 

Pondhaven et al. (2000) believe Southern Ocean diatom rich-sediments are the result 

of high opal flux rather than high preservation efficiency. A second zone of high 

biogenic silica deposition (patchier than the diatom ooze belt) occurs on the Antarctic 

continental shelf (Crosta et al., 2005). Diatom oozes have been encountered on the 

continental shelf in the Antarctic Peninsula region (e.g. Leventer et al., 2002), in the
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Ross Sea (e.g. Truesdale and Kellogg, 1979; Leventer et al., 1993), in Prydz Bay (e.g. 

Taylor et a l, 1997), off Terre Adelie (Leventer et al., 2001), Mertz Ninnis Trough 

(e.g. Harris et al., 2001; 2003) and MacRobertson shelf (Harris and O ’Brien, 1996; 

Stickley et al., 2005) (Figure 1.1).

90°W

Diatom ooze

Glacial marine

L D Red clay

□ Calcareous ooze

— Antarctic Polar Front

90°E

180

Figure 3.1
Map of sediment type distribution around Antarctica. Diatoms are mainly deposited in 
the circumpolar belt of diatomaceous ooze which extends to the Antarctic Polar Front. 
Adapted from Hays (1967).

3.2 Environmental Controls on Diatom Assemblage Distribution

On the Antarctic continental shelf sea ice exerts considerable control over primary 

productivity (Domack et al., 1993). Distinct diatom assemblages are produced as a 

result o f variation in sea ice formation, sea ice type, sea ice extent and sea ice melt 

(Grossi and Sullivan, 1985; Smith and Nelson, 1985; Garrison et al., 1986; 1987; 

Krebs et al., 1987; Garrison and Buck, 1985; 1989; Fryxell, 1989; 1991; Kang and 

Fryxell, 1991; 1992; 1993; Leventer et al., 1993; Moisan and Fryxell, 1993; McMinn, 

1994; Leventer and Dunbar, 1987; 1988; 1996; Bidigare et al., 1996; Gleitz et al., 

1996; 1998). Environmental controls on diatom assemblage distribution will be
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discussed within the context of four defined zones; Sea Ice Zone, Marginal Ice Zone, 

Open Ocean Zone and Polar Front Zone (Figure 3.2).

N

SEA ICE 
ZONE

MARGINAL 
ICE ZONE OPEN OCEAN 

ZONE

POLAR FRONT 
1 ZONE

Figure 3.2
Schematic representation of the extent of the four Southern Ocean zones; Sea Ice 
Zone, Marginal Ice Zone, Open Ocean Zone and Polar Front Zone as discussed in 
section 3.2.

3.2.1 Sea Ice Zone

Diatoms which are associated with the sea ice environment are called cryophilic, 

(Round, 1971) and are incorporated into sea ice (Homer, 1976; 1985a) in three ways; 

introduced into sea ice during ice formation, growth in the sea ice as the season 

progresses, and colonisation of the ice matrix after ice has formed (Gleitz et al., 

1998). Fifty to 100 diatom species are commonly found in sea ice habitats (Garrison 

and Buck, 1989; Garrison, 1991; Palmisano and Garrison, 1993). Different forms of 

sea ice determine the position of diatom growth and the diatom assemblage in sea ice. 

The position of diatom growth is determined by salinity in sea ice (Arrigo and 

Sullivan, 1992) and overlaying snow cover thickness (Arrigo et al, 1991). In land- 

fast ice diatoms occur towards the base of the sea ice (Figure 3.3a; Arrigo, 2003). 

With the exception of Fragilariopsis curta and F. cylindrus fast ice diatoms are rare 

in sediments (Truesdale and Kellogg, 1979; Leventer and Dunbar, 1987; McMinn,

1994). Platelet sea ice forms in situ under fast ice (Figure 3.3a) or as a layer of loosely 

consolidated crystals and is the most porous of all sea ice types (composed of -20%  

ice and 80% sea water). In situ platelet ice supports a diatom assemblage dominated 

by pennate diatoms (Smetacek et a l, 1992). Loosely consolidated platelet sea ice 

supports an assemblage dominated by planktonic centric diatoms (Thalassiosira
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antarctica, T. tumida, Porosira pseudodenticulata, P. glacialis and Stellarima 

microtrias) (El-Sayed, 1971; Smetacek et a l,  1992; Gleitz et a l, 1996). Pack ice 

diatoms frequently grow at or near the sea ice surface (Figure 3.3a) where light levels 

are generally high (Arrigo, 2003). Pack ice supports an assemblage of planktonic 

diatoms that have been non-selectively concentrated throughout the sea ice body by 

physical processes during ice formation (Garrison et a l, 1989; McMinn, 1994). The 

genus Fragilariopsis (especially F. curta and F, cylindrus) and sub-genus 

Hyalochaete Chaetoceros (Garrison et a l,  1987; Garrison and Buck, 1985; 1989; 

Gleitz et a l, 1998) are common in pack ice. Sea ice plays a significant role in 

suppressing diatom productivity in surface waters and therefore deposition of diatoms 

on the sea floor in the Southern Ocean (Hart, 1942; Hendey, 1937; Whitaker, 1982). 

Diatom numbers under the sea ice are much lower than at the sea ice edge (Burckle et 

a l, 1987), and the open ocean (Whitaker, 1982).

Brine channel

lolumnar

Skeletal
layer

Platelet
ice

Bottom  
community

Platelet 
community

Skeletal
layer

Snow Surface
community
Internal 
community

Bottom
community

Figure 3.3
Highly idealised schematic illustrations of (a) fast ice and (b) pack ice ecosystems in 
Antarctica showing the location of the major ice algal communities. Adapted from 
Arrigo (2003).

3.2.2 Marginal Ice Zone

The Marginal Ice Zone is the region where sea ice grades into open ocean. This zone 

migrates northwards and southwards annually with the seasons. Phytoplankton 

blooms are commonly associated with this area where the water column is stable and 

less saline due to sea ice melt-induced stratification (El-Sayed, 1971; Alexander and 

Niebauer, 1981; Sakshaug and Holm-Hansen, 1984; Smith and Nelson, 1985;
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Niebauer and Alexander, 1985; Smith and Nelson, 1986; Nelson et a l, 1987; Sullivan 

et a l, 1988; Sakshaug and Skjoldal, 1989; Comiso et a l, 1990; Lancelot et a l, 1991a; 

1991b; Bianchi et a l, 1992; Comiso et a l, 1993; Schloss and Estrada, 1994) and 

higher nutrients. These phytoplankton blooms are considered to be responsible for 

high polar productivity (Smith and Nelson, 1985; Nelson et a l , 1987; Leventer, 

2003). Marginal ice zone blooms are estimated to produce 50 -  60% of annual 

primary production in the Southern Ocean (Smith and Nelson, 1986; Legendre et a l,

1992), 4-5 times greater than productivity under sea ice (Burckle et a l, 1987). The 

way in which sea ice breaks up in spring, albeit by melting or physical breakout by 

wind stress, can affect the species living in the water column and deposited in the 

sediments (Cunningham and Leventer, 1998). Melting of pack and fast ice produces a 

low salinity lens that stratifies the upper water column and supports a rich algal 

bloom. The bloom is seeded by diatom species, such as Fragilariopsis curta and F. 

cylindrus, which have been released by melting and are common in both the sea ice 

and ice edge communities (Garrison and Buck, 1985; Smith and Nelson, 1985; 

Garrison et a l,  1987; Leventer and Dunbar, 1987; Garrison and Buck, 1989; Kang 

and Fryxell 1991; 1992; Bianchi et a l,  1992) due to their high growth rates and low 

sinking rates (Leventer, 1998). The break up of the ice margin by wind stress leads to 

a more diverse diatom assemblage with high contributions of Fragilariopsis spp. (F. 

cylindrus, F. kerguelensis, F. obliquecostata and F. ritscheri) and Thalassiosira 

gracilis (Cunningham and Leventer, 1998), which are associated with open water, ice 

marginal environments (Hasle, 1965; Buck et a l, 1985; Leventer and Dunbar, 1987; 

Leventer et a l,  1993) and a decrease in F. curta (Cunningham and Leventer, 1998).

3.2.3 Open Ocean Zone

The Open Ocean Zone is a broad region which lies between the Marginal Ice Zone 

and the Polar Front Zone. The surface waters in this region have relatively low 

phytoplankton growth compared to the Polar Front Zone and Marginal Ice Zone 

(Selph, et a l, 2001). This is due to growth inhibiting low levels of iron (Martin, 1990) 

and high grazing pressure (Smetacek et a l, 1997). Large centric diatoms dominate the 

surface mixed layer in the open ocean, but the pennate diatoms Thalassiothrix spp. 

and Pseudo-nitzschia spp. are also present (Selph et a l, 2001).
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3.2.4 Polar Front Zone

This zone lies between nutrient-rich Antarctic waters and nutrient-poor Subantarctic 

waters. Phytoplankton in this region sometimes reach higher concentrations than in 

the Open Ocean Zone (Moore and Abbott, 2000); de Baar et al. (1995) propose that 

this is due to eddy mixing within the Polar Front (see section 2.3.2.1) increasing the 

supply of nutrients to surface waters. Centric diatoms dominate this zone, with mixed 

layer communities tending towards single genera such as Hyalochaete Chaetoceros 

spp. and Corethron spp. (Selph et al., 2001). Blooms occur in late spring in the Polar 

Front Zone initiated by increased light levels and possibly increased water column 

stratification and decline due to increased nutrient stress (Abbott et al., 2001). In a six 

week period, in 1992, three species mono-specific blooms of Fragilariopsis 

kerguelensis, Corethron pennatum and Corethron inerme were observed (Smetacek et 

al., 1997).

3.3 Preservation Controls on Diatom Assemblage Distribution

Aside from the environmental variables that affect diatom assemblage composition in 

sediments and distribution in surface waters (as discussed in section 3.2), preservation 

controls such as dissolution, aggregation, grazing and advection alter the diatom 

assemblage on its journey through the water-column to the sediment. Burckle and 

Cirilli (1987) propose good preservation is characterised by little frustule breakage, 

abundant whole valves, high diversity and the presence (although never in high 

abundance) of delicate weakly silicifled forms. Poor preservation is characterised by 

an abundance of valve fragments, few whole valves, absence of delicate forms and 

apparent dissolution around broken valve margins (Burckle and Cirilli, 1987).

3.3.1 Dissolution

Diatom assemblage composition can be significantly altered by dissolution of 

frustules in the water-column and at the sediment-water interface (Nelson and 

Gordon, 1982; Dunbar et al., 1989; Leventer and Dunbar, 1987; Van Bennekom et 

al., 1988; Leventer and Dunbar, 1996); this accounts for the temporal and spatial 

variations in sedimentary diatom assemblages observed in Southern Ocean sediments 

(Shemesh et a l, 1989). Seawater and sediment porewaters are usually undersaturated
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with respect to biogenic silica (Treguer et a l, 1995), which dissolves diatom frustules 

rapidly (especially when pH is high, as in calcareous sediments) (Sancetta, 1999). 

Nelson and Gordon (1982) estimate 18-58% of the biogenic opal produced in the 

euphotic zone is already dissolved in the upper 100 m of the Southern Ocean. In areas 

of relatively low silica accumulation (e.g. Weddell Sea), the dissolution of 

biosiliceous opal can lead to the destruction of accumulated diatoms (Zielinski and 

Gersonde, 1997). In the Southern Ocean sedimentary diatom assemblages are 

enriched in the heavily silicified species Fragilariopsis kerguelensis, relative to the 

water column assemblage, due to selective dissolution (DeFelice and Wise, 1981; 

Abelmann and Gersonde, 1991). This makes F. kerguelensis a main opal contributor 

of the Southern Ocean diatom ooze belt (Figure 3.1) (Kozlova, 1966; DeFelice and 

Wise, 1981; Zielinski and Gersonde, 1997) and complicates the interpretation of 

diatom assemblages in sediments (Shemesh et al., 1989). Fragile, lightly silicified 

diatom species with high surface area to volume ratios, such as Corethron pennatum, 

are more susceptible to mechanical damage and dissolution, (Gersonde and Wefer, 

1987; Leventer and Dunbar, 1987; Shemesh et a l , 1989; Leventer et a l, 1996). 

Several workers have argued that dissolution contributes less to diatom assemblage 

alteration than factors such as advection and cell aggregation (Nelson and Gordon, 

1982; Dunbar et a l, 1985; Ledford-Hoffman et a l, 1986; Nelson and Smith, 1986; 

Leventer and Dunbar, 1987; 1996).

3.3.2 Aggregation

Diatoms are effectively exported from surface waters to the sea floor by incorporation 

into pelagic grazer faecal pellets, millimetre-sized aggregates (marine snow) and setae 

entanglement during super-blooms (Smayda, 1970; Smetacek, 1985; Alldredge and 

Gottschalk, 1989; Jaeger et a l, 1996). Repackaging diatoms in these three ways 

greatly increases settling rates (Alldredge and Silver, 1988); this increases the 

likelihood that the diatoms will reach the sea floor and reduces the chance of seeding 

a new diatom population. Abelmann and Gersonde (1991) calculated that flux pulses, 

due to faecal pellets and aggregates, in austral summer, accounted for 70-95% of 

annual flux. Grazing plays a part in controlling the quantity, timing and pattern of 

vertical transfer of diatoms to the sea floor (Zielinski and Gersonde, 1997). Von 

Bodungen (1986) observed the production of large faecal pellets in the Bransfeld
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Strait (Antarctic Peninsula), and calculated that 45% of the primary productivity in 

late November to early December was lost via grazing. Many near-monospecific 

sedimentary laminae, composed of fast growth diatoms in upwelling or spring bloom 

conditions (e.g. Brodie and Kemp, 1994; Bull and Kemp, 1995), have been formed 

due to rapid post-bloom flocculation and mass sinking (Smetacek, 1985; Alldredge 

and Goltschalk, 1989). Diatom coagulation was enhanced by the production of mucus 

transparent exopolymer particles (Alldredge et al., 1993). Blooms of the buoyant 

diatom Rhizosolenia spp. have been observed to form aggregations (patches) in 

surface waters at oceanic fronts in the Pacific Ocean (Yoder et al., 1994). The 

abundance of this species produced a density current, causing the diatoms to rapidly 

sink through the water column.

3.3.3 Advection

Since diatoms are silt-sized, they can be laterally advected by currents; they can be 

transported large distances during their descent through the water column (Burckle 

and Stanton, 1975; Leventer, 1991) or can be resuspended from surface sediments and 

then transported by bottom currents (Leventer and Dunbar, 1987). This redistribution 

of diatoms can alter the diatom assemblage both in the source region and the 

deposition site. Bianchi et al. (1992) speculated that ice edge blooms of Thalassiosira 

gravida and Chaetoceros neglectum in the Weddell Sea were advected into the region 

from the Bransfleld Strait. Displaced diatoms, endemic to the Southern Ocean (e.g. 

Fragilariopsis kerguelensis, Thalassiosira lentiginosa and T. antarctica) have been 

used to track transport pathways of Antarctic Bottom Water into mid- and low- 

latitude areas (Burckle and Stanton, 1975; Burckle, 1981; Schrader and Schiitte, 1981; 

Jones and Johnson, 1984; Pokras and Molfino, 1986; Romero and Hensen, 2002).

3.4 Antarctic Laminated Sediments

Laminated sediment research gives an insight into high resolution records of intra- 

and inter-annual variability in sediment deposition. There are two basic requirements 

for the formation of laminated sediments; firstly a variation in sedimentary 

composition via changes in input (chemical or biological) conditions and secondly, 

environmental conditions that will preserve the laminated sediment fabric from 

bioturbation (Kemp, 1996; Kemp et al., 2000). Marine laminated diatom ooze from
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the Antarctic continental shelf contains a high-resolution record of climatic 

fluctuations (Domack et al., 1991; Leventer et al., 1996; 2002) and oceanographic 

variations circum-Antarctica. The resolution of diatom analysis using tooth pick 

samples is insufficient to resolve seasonal to annual scale records in laminated diatom 

ooze (Leventer et al., 1996; 2002). To determine inter- and intra-lamina cyclical 

changes in laminated sequences, high-resolution imaging of resin impregnated thin 

sections is required. Such analysis has revealed annual cyclical changes of diatom 

assemblages in deglacial laminated sediments from MacRobertson Shelf, East 

Antarctic Margin (Stickley et al., 2005) and late Quaternary laminated sediments 

from western, Antarctic Peninsula (Pike et al., 2001; Bahk et al., 2003).
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3.5 Species Ecology

This section describes the characteristics of diatom species that occur in the laminated 

sediments from Palmer Deep, Mertz Ninnis Trough and Durmont d’Urville Trough. 

Full taxonomic information and photographs of the following species can be found in 

Appendices 1 and 2, respectively. The ecological information presented here will be 

used to support interpretations and discussions in chapters 6, 7, 8 and 9.

3.5.1 Actinocyclus actinochilus (Ehrenberg) Simonsen

Actinocyclus actinochilus is endemic to the Southern Ocean and is a cool water 

planktonic species associated with water -1°C to 0.5°C (Zielinski and Gersonde, 

1997). A. actinochilus has been reported to occur in both open and ice-covered water 

during the winter (Moisan and Fryxell, 1993), in newly formed spring sea ice 

(Gersonde, 1984; Garrison et al., 1987; Tanimura et al., 1990; Garrison and Close,

1993) and in both fast and pack-ice (Homer, 1985b; Krebs et al., 1987; Garrison and 

Buck, 1989; Garrison, 1991). A. actinochilus appears to have a higher presence in sea 

ice than in the adjacent water column (Garrison et al., 1983a; 1987) and is most 

commonly linked with other sea ice taxa both in the sediments and the sea ice 

(Armand, 1997). A. actinochilus distribution in the sediments has been reported south 

of the Polar Front (Figure 3.4) (Donahue, 1973; DeFelice and Wise, 1981; Zielinski 

and Gersonde, 1997; Armand, 1997; Semina, 2003) and has been observed in low to 

medium abundances along the Antarctic coast (Armand et al., 2005).

3.5.2 Genus Asteromphalus Ehrenberg

Astermophalus hookeri Ehrenberg is a planktonic species that has been identified as a 

minor constituent in both sea ice (Homer, 1985b; Krebs et al., 1987) and in the 

adjacent water column (Garrison et al., 1983a; 1987) with higher abundances in the 

adjacent water column (Garrison et a l, 1983a; 1987). A. hookeri appears to be limited 

to the north by the Polar Front (Figure 3.4) (Armand, 1997).

High abundances of the planktonic species Asteromphalus parvulus Karsten are 

recorded within the Open Ocean Zone, between the marginal ice zone and the Polar 

Frontal Zone (Figure 3.2). Abundances of A. parvulus decrease north and south of this
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region, with the exception of some regionalised abundance increases near the 

Antarctic coast (Armand, 1997).

3.5.3 Genus Chaetoceros Ehrenberg

This planktonic genus is cosmopolitan and is a widespread, abundant member of the 

Antarctic phytoplankton, observed in a temperature range -2 to 12°C (Zielinski and 

Gersonde, 1997). The genus is divided into two sub-genera Hyalochaete and 

Phaeoceros, which are distinguished by the ability to form resting spores or not, 

respectively (Priddle and Fryxell, 1985).

3.5.3.1 Sub-genus Hyalochaete Chaetoceros Gran

Hyalochaete Chaetoceros spp. have been noted to favour near coastal environments 

(Zielinski and Gersonde, 1997) and sea ice proximity (Leventer, 1991; Crosta et al, 

1997) and are even found in sea ice during winter (Ligowski et a l, 1992). 

Hyalochaete Chaetoceros spp. have two forms, vegetative cells and robust resting 

spores. The Hyalochaete Chaetoceros spp. resting spores are more heavily silicified 

than the vegetative cells and can remain viable for up to two years, which allows 

population re-seeding (Hargraves and French, 1983). Hyalochaete Chaetoceros spp. 

resting spores are common in sediments due to the robust nature of the heavily 

silicified frustule. Modem sediment trap data from the Antarctic Peninsula suggests 

that Hyalochaete Chaetoceros spp. blooms are associated with the melting of sea ice 

(reduced surface salinity, stratification and high nutrients) in the austral spring 

(Leventer, 1991). Hyalochaete Chatoceros spp. distribution in Antarctic sediments is 

circumpolar with greatest abundances occurring in the Antarctic Peninsula region and 

the Ross Sea (Armand et a l, 2005).

3.5.3.2 Sub-genus Phaeoceros Chaetoceros Gran

Phaeoceros Chaetoceros spp. do not form resting spores (Priddle and Fryxell, 1985) 

and presumably survive the winter as vegetative cells. The Phaeoceros Chaetoceros 

spp. frustules are larger than Hyalochaete Chaetoceros spp. and have much more 

varied, thicker setae which are very long (up to 1 mm, Smetacek et a l, 2004), striated 

and possess conspicuous spines. This sub-genus is mostly oceanic in distribution 

whereas Hyalochaete Chaetoceros spp. are more coastal (Hasle and Syvertsen, 1997).
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3.5.4 Genus Cocconeis Ehrenberg

Cocconeis is a benthic genus that occurs in water depths >9.8 m (Whitehead and 

McMinn, 1997). Cocconeis spp. have been reported to be related to fast-ice consisting 

of -90%  congelation ice (Scott et al., 1994). In Arthur Harbor (Anvers Island), 

Cocconeis spp. commonly forms spring/summer blooms and benthic diatom mats in 

the coastal subtidal zone (Krebs, 1983). The mats disintegrate by late spring as wind 

strength increases and sea ice breaks up (Krebs, 1983). In sediment traps from the 

northern Antarctic Peninsula, Leventer (1991) recorded an autumn diatom assemblage 

with increasing amounts of benthos and ice related species, including Cocconeis, in 

near-coastal stations. The assemblages are interpreted to be coastal flora resuspended 

by autumn storms (Leventer, 1991).

3.5.5 Corethron pennatum  (Grunow) Ostenfeld

Corethron pennatum is a planktonic species that occurs in open water with little sea 

ice (Fryxell and Hasle, 1971; Makarov, 1984; Leventer and Dunbar, 1987), although 

it has been found in pack ice assemblages (Garrison and Buck, 1989) and reported to 

be a component of the ice edge phytoplankton (Marra and Boardman, 1984). C. 

pennatum usually reaches its highest concentrations along the Antarctic coast 

(Sommer, 1991; Ligowski et a l, 1992). Sex is considered a causative factor in mass 

sedimentation of the species and the formation of monospecific sediment layers of C. 

pennatum (Crawford, 1995). The episodic nature of these mass sinking events is 

thought to explain the generally sporadic record of C. pennatum in Antarctic 

sediments (Crawford et al., 1997).

3.5.6 Coscinodiscus bouvet Karsten

Coscinodiscus bouvet is a large distinctive planktonic Antarctic endemic species. The 

habitat of C. bouvet is primarily coastal and has a circumpolar distribution. Priddle 

and Thomas (1989) have observed C. bouvet in oceanic waters (Scotia Sea) and have 

attributed this to advection from coastal seed populations in Bransfield Strait.
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3.5.7 Eucampia antarctica (Castracane) Mangin

The occurrence of Eucampia antarctica in modem sediments suggests that the 

distribution of this planktonic species is in surface waters of the Antarctic Zone and 

the Polar Front Zone (Figure 3.4) (Zielinski and Gersonde, 1997) and that it is not a 

sea ice-related taxon as proposed by Burckle (1984b) and Burckle et al. (1990). E. 

antarctica has been noted to occur in much higher abundances in the adjacent water 

column than in the sea ice itself (Garrison et al., 1983a; 1987). Two morphologically 

different varieties of E. antarctica with different distribution patterns have been 

identified (Fryxell and Prasad, 1990; Kaczmarska et al. 1993); E. antarctica var. 

antarctica and E. antarctica var. recta. Eucampia antarctica var. antarctica is a 

subpolar form associated with open water and E. antarctica var. recta is a polar form 

associated with sea ice. In the Prydz Bay region Fryxell (1989) noted that E. 

antarctica var. antarctica was abundant far from the sea ice in the open ocean in 

spring, and that E. antarctica var. recta was abundant near sea ice during autumn. 

Both forms produce resting stages which are more heavily silicified than the 

vegetative valves and are therefore preferentially preserved in the sediments.

3.5.8 Fragilariopsis curta (Van Heurck) Hustedt

Fragilariopsis curta is an endemic planktonic Southern Ocean species and occupies 

near-shore and open ocean environments. F. curta is strongly associated with pack, 

fast and melting sea ice and surface water stratification (Leventer and Dunbar, 1987; 

Cunningham and Leventer, 1998; Leventer, 1998). The species is also noted in very 

high abundances in the water column near the sea ice edge (Fryxell, 1989; Tanimura 

et a l, 1990; Kang and Fryxell, 1992; 1993; Andreoli et al., 1995; Leventer and 

Dunbar, 1996). F. curta is restricted to areas south of the Polar Front Zone (Figure

3.4) with summer surface water temperatures below ~2°C (Zielinski and Gersonde, 

1997), with maximum geographical distribution linked to the limit of winter sea ice 

extent (Armand, 1997). Highest abundances of F. curta in sediment samples occur 

near to the Antarctic coast (Kozlova, 1966; Truesdale and Kellogg, 1979; DeFelice 

and Wise, 1981; Gersonde, 1984; Gersonde and Wefer, 1987; Kellogg and Kellogg, 

1987; Stockwell et al., 1991; Leventer, 1992; Taylor et al, 1997; Zielinski and 

Gersonde, 1997) e.g. near Prydz Bay, in the Ross Sea region and along the George V

43



CHAPTER 3

Coast (Armand et al., 2005). It is suggested that the distribution of F. curta is 

bounded by the northern most extent of sea ice (Semina, 2003). The thick 

silicification of the F. curta valves may prevent rapid dissolution of this species 

compared to other taxa in the same conditions, explaining its concentration in 

sediments (Tanimura et al., 1990).

3.5.9 Fragilariopsis cylindrus (Grunow) Krieger

Fragilariopsis cylindrus is a bipolar species and occupies both sea ice habitats (land- 

fast and pack ice; Garrison, 1991) and well-stratified, stable open water in front of the 

sea ice edge (Garrison et a l, 1987; Garrison and Buck, 1989; Stockwell et al., 1991; 

Kang and Fryxell, 1992; Leventer et al., 1993; Scott et al., 1994) near the Antarctic 

coast. F. cylindrus has been linked with the process of sea ice formation (Clarke and 

Ackley, 1983; Garrison and Buck, 1989; Garrison et al., 1989; Garrison, 1991). This 

planktonic species has been shown to be the most dominant marginal sea ice edge 

species; with increased seasonal abundance during the summer (Kang and Fryxell, 

1992; Kang et al., 1993; Kang and Fryxell, 1993). F. cylindrus has been reported to 

form resting spores (McQuoid and Hobson, 1996) that are likely more dissolution 

resistant and well preserved in sediments (Jouse et a l, 1962; Gersonde, 1984; 

Tanimura et al., 1990; Leventer, 1992; Zielinski, 1993; Zielinski and Gersonde, 

1997). Like F. curta, F. cylindrus is restricted to areas south of the Antarctic Polar 

Front (Figure 3.4) with summer surface water temperatures below ~2°C (Zielinski and 

Gersonde, 1997). Zielinski and Gersonde (1997) propose that F. curta and F.cylindrus 

are useful tools for the reconstruction of sea ice distribution in the Southern Ocean.

3.5.10 Fragilariopsis kerguelensis (O ’Meara) Hustedt

Fragilariopsis kerguelensis is a heavily silicified planktonic diatom, endemic to the 

Southern Ocean, which preferentially lives in water with surface water temperatures 

between 0 and 10°C (Zielinski and Gersonde, 1997). It is considered an indicator of 

open-water productivity and the abundance of F. kerguelensis has been negatively 

correlated with sea ice concentration (Burckle et al., 1987). Towards nertitic, shallow 

water, near-shore environments the abundance of F. kerguelensis in the plankton and 

the sediment decreases (Kozlova, 1966; Truesdale and Kellogg, 1979; Leventer,
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1992; Zielinski and Gersonde, 1997). F. kerguelensis dominates the diatom 

assemblages in pelagic areas o f the Antarctic Circumpolar Current (ACC) between 

the winter sea ice edge (Figure 3.5) and the Subtropical front (Figure 3.4) (Zielinski 

and Gersonde, 1997). Zielinski and Gersonde (1997) note that close to and north of 

the Subtropical Front F. kerguelensis decreases to less than 20% of the total diatom 

assemblage.

Figure 3.5
Mean monthly sea ice concentrations for February (austral summer) and October 
(austral winter) averaged over 8.8 years between 1978-1987. From Gloerson et al. 
(1992).

3.5.11 Fragilariopsis obliquecostata (Van Heurck) Heiden

Fragilariopsis obliquecostata has been observed in land-fast and pack ice 

(McConville and Wetherbee, 1983; Gersonde, 1984; Homer, 1985b; Garrison and 

Buck, 1989; Tanimura et a l, 1990; Garrison, 1991). This planktonic species has been 

linked to ice surface melt pools and associated with increased abundance in the water 

column under sea ice (McConville and Wetherbee, 1983; Gersonde, 1984; Garrison et 

al., 1983a; 1987; Garrison, 1991). F. obliquecostata has been found in waters with 

summer sea surface temperatures (SST) below 2°C. Most studies indicate an 

increasing abundance of F. obliquecostata south of the Antarctic Divergence (Figure

3.4) (Kozlova, 1966; Gersonde, 1984; Gersonde and Wefer, 1987; Kellogg and 

Kellogg, 1987; Zielinski and Gersonde, 1997). F. obliquecostata is confined to the sea 

ice environment, where winter sea ice concentration may play a greater role in its 

distribution than summer sea ice concentration (Armand et al. 2005).

100®/o
OctoberFebruary

45



CHAPTER 3

3.5.12 Fragilariopsis rhombica (O ’Meara) Hustedt

Fragilariopsis rhombica has been reported near the Antarctic coast or ice shelves 

(Kozlova, 1966; Truesdale and Kellogg, 1979; Gersonde and Wefer, 1987; Leventer, 

1992; Zielinski and Gersonde 1997; Cunningham and Leventer, 1998) in both fast and 

pack ice samples (Garrison et al., 1983a; Gersonde, 1984; Homer, 1985b; Krebs et 

al., 1987; Garrison and Buck, 1989; Garrison, 1991). It is closely related with the 

Polar Frontal Zone and the Antarctic Zone (Figure 3.4) at water temperatures between 

-2 and 5°C (Zielinski and Gersonde, 1997). Armand et al. (2005) recorded highest 

abundances of this planktonic species along the Adelie Land coastline (138°- 140°E).

3.5.13 Fragilariopsis ritscheri (Hustedt) Hasle

Fragilariopsis ritscheri is an endemic Antarctic species and has been observed in both 

land-fast and pack ice (Homer, 1985b, Garrison and Buck, 1989, Tanimura et a l,

1990, Garrison, 1991). Higher abundances of F. ritscheri have been found in the 

water column adjacent to sea ice than in sea ice samples (Gersonde, 1984, Garrison et 

al, 1987) and in ice surface melt pools (McConville and Wetherbee, 1983). This 

planktonic species has been found in waters with summer SST between -2 and 5°C 

and at maximum abundances between -2 and 1°C (Zielinski and Gersonde, 1997). 

Most studies of the species indicate increasing abundances north of the Antarctic 

divergence (Figure 3.4) (Kozlova, 1966, DeFelice and Wise, 1981, Stockwell et al.,

1991, Zielinski and Gersonde, 1997).

3.5.14 Fragilariopsis separanda  Hustedt

Distribution patterns suggest that Fragilariopsis separanda prefers open water 

conditions (Zielinski and Gersonde, 1997). Both Zielinski and Gersonde (1997) and 

DeFelice and Wise (1981), indicate that in the South Atlantic F. separanda is 

confined to the south by the Polar Front (Figure 3.4) (Kozlova, 1966; Armand, 1997). 

Observations indicate that the highest maximum abundances of F. separanda are 

slightly increased at offshore locations rather than in-shore coastal environments 

(Kozlova, 1966; DeFelice and Wise, 1981; Gersonde and Wefer, 1987; Stockwell et 

al., 1991; Leventer, 1992; Taylor et al., 1997; Cunningham and Leventer, 1998). The 

SST affinity of this planktonic taxon covers a February range of -1 to 14°C with
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maximum abundances at -0.5°C (Armand, 1997), which is comparable to the 

temperature range o f -1 to 12°C identified by Zielinski and Gersonde (1997).

3.5.15 Fragilariopsis sublinearis (Van Heurck) Heiden

The distribution of Fragilariopsis sublinearis in the Antarctic Zone is reported to be 

similar to F. ritscheri and F. obliquecostata (Hasle, 1965; Kozlova, 1966; Hasle, 

1976; Zielinski and Gersonde, 1997). F. sublinearis, like F. obliquecostata is a 

planktonic species and has an increased abundance in sediments south of the Antarctic 

Divergence (Kozlova, 1966; Gersonde, 1984; Gersonde and Wefer, 1987; Kellogg 

and Kellogg, 1987; Taylor et al., 1997; Zielinski and Gersonde, 1997). Leventer 

(1992) has noted an exception to this; along the George V Coast equal maximum 

proportions of F. ritscheri and F. sublinearis have been observed.

3.5.16 Fragilariopsis vanheurckii (M. Pergallo) Hustedt

The planktonic species Fragilariopsis vanheurckii has been recorded near the spring 

sea ice margin (Garrison et al., 1987) and has been suggested to indicate sea ice, but 

is not thought to live in sea ice (Taylor and Sjunneskog, 2002).

3.5.17 Genus Navicula Bory de st-Vincent

Navicula glaciei dominates shore ice protected from wave turbulence (Krebs et al.,

1987). N. glaciei has been observed to constitute a significant component o f the 

spring bloom when shore ice, dominated by this species, is released into the water 

column upon melting (Krebs, 1983). When the sea ice has disappeared, later in the 

season, this epipelic species is not a significant part of the diatom assemblage (Krebs 

et al., 1987).

3.5.18 Odontella weissflogii (Janisch) Grunow

Odontella weissflogii is characterised as a pack ice species (Garrison and Buck, 1989; 

Garrison, 1991) and is also located in the adjacent water column sometimes with 

increasing abundance (Garrison et al., 1983a; Gersonde, 1984). This planktonic
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species is found with near year round ice cover (10-11 months), with low September 

maximum sea ice concentration (30%) and no ice cover in summer (Armand, 1997). 

The summer SST range of O. weissflogii is between -2 and 5°C (Zielinski and 

Gersonde, 1997) and is closely related with the Polar Front Zone and the Antarctic 

Zone (Figure 3.1 and 3.4). The highest abundances of O. weissflogii have been noted 

in cool waters of 1°C (Feb SST) and -2.5°C (August SST) (Armand, 1997). These 

reports indicate that the species is not necessarily confined to the Antarctic coastal 

regions, but linked with the environmental dynamics of the sea ice zone.

3.5.19 Genus Porosira  J0rgensen

The two Antarctic planktonic species of Porosira are P. glacialis (Grunow) Jorgensen 

and P. pseudodenticulata (Hustedt) Jouse. P. glacialis is a bipolar species associated 

with waters adjacent to the coast or sea ice (Hasle, 1973). Krebs et al. (1987) suggests 

that P. glacialis is associated with slush and wave exposed shore ice, but does not live 

within the ice (Watanabe, 1988; Scott et al., 1994). P. pseudodenticulata is observed 

in both fast and pack ice samples (e.g. Garrison et al., 1983a; Gersonde, 1984; Krebs 

et al., 1987) and in the adjacent water column (Garrison et al., 1987; Tanimura et al., 

1990). Zielinski and Gersonde (1997) note the summer SST range for P. glacialis as 

-1 to 1.5°C and -2 to 0°C for P. pseudodenticulata. The difference in distribution of P. 

glacialis (open water) and P. pseudodenticulata (sea ice) is a possible indicator for the 

proximity of the sea ice margin.

3.5.20 Genus Proboscia  Sunstrom

Proboscia spp. possess elongate frustules, have positive buoyancy (Villareal, 1988) 

and an ability to form mats (Hart, 1937; Carpenter et al., 1977; Alldredge and Silver,

1982) which allows them to grow relatively abundantly in surface waters (Jordan et 

al., 1991). Large cells of Proboscia spp. frequently dominate summer-autumn 

communities in warm-temperate to sub-polar regions (Brichta and Nothig, 2003). 

Two species observed in Antarctica are Proboscia truncata (Karsten) Nothig & 

Ligowski and Proboscia inermis (Castracane) Jordan & Ligowski. P. truncata is only 

recorded in Antarctic waters (Jordan et al., 1991). P. inermis is considered a key 

planktonic diatom species in Antarctic autumn; during an autumn bloom in the
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Bellinghausen Sea this species accounted for 21% of phytoplankton carbon (Brichta 

and Nothig, 2003).

3.5.21 Genus Rhizosolenia Brightwell

Rhizosolenia spp. are a common component of the Antarctic phytoplankton and are 

important as contributors to sea floor sediments (Armand and Zielinski, 2001). 

Rhizosolenia spp. can form large blooms or mats in open water (Harbison et a l, 1977; 

Alldredge and Silver, 1982; Kemp et al., 1999) and have been reported in high 

abundances from Antarctic waters (Hart, 1934; Holm-Hansen, et al., 1989; Leventer 

et a l, 1996). This planktonic genus is generally absent from sea ice samples 

(Watanabe, 1982), therefore in the Atlantic sector this genus has been interpreted as 

an indicator of ice-free Weddell Sea outflow waters (Jordan and Pudsey, 1992). From 

the Antarctic Peninsula, late Holocene laminae rich in Rhizosolenia spp. are thought 

to have formed by rapid settling following a bloom (Leventer et al., 1996). R. 

antennata f. semispina Sundstrom is the most common Rhizosolenia species in the 

Southern Ocean (Armand, 1997). Ligowski (1993) observed R. antennata f. semispina 

in open ocean stations to sublittoral habitats in sea ice. R. antennata f. semispina has 

been found to be a dominant species in the open ocean waters of late summer 

(Froneman et al., 1995). The distribution pattern for this species ranges from the 

Subantarctic to the Antarctic Zone (Figure 3.4) at temperatures between -1 and 12°C, 

with highest abundances occurring in the northern Antarctic zone, in waters close to 

freezing point (-1 and 2°C) (Zielinski and Gersonde 1997). R. antennata f. antennata 

is primarily linked to the open ocean water column and not observed in ice conditions 

(Hendey, 1937; Hart, 1934; Ligowski, 1993). R. antennata f. antennata is considered 

to be the resting spore of R. antennata f. semispina (Sundstrom, 1986; Priddle et al., 

1990; Hasle and Syvertsen, 1997). R. polydactyla var. polydactyla has been found in 

melted ice and near coastal environments (Hustedt, 1930; Manguin, 1960), and also 

observed between Antarctic and Subantarctic waters with a maximum occurrence in 

the Polar Frontal Zone (Figure 3.4) (Fenner et al., 1976). R. sima var. sima is reported 

to thrive in the seasonal sea ice zone (Armand and Zielinski, 2001).
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3.5.22 Stellarima microtrias (Ehrenberg) Hasle & Sims

Stellarima microtrias is an Antarctic cool water planktonic species that forms resting 

spores and is associated with shelf ice and the surrounding shelf waters (Hasle et al.,

1988). The highest abundances of S. microtrias have been associated with SST <1°C 

(Zielinski and Gersonde, 1997). S. microtrias are observed in sediments along the 

Antarctic coast and various ice shelves (Jouse et al., 1962; Kozlova, 1966; Truesdale 

and Kellogg, 1979; Gersonde, 1984; Prasad and Nienow, 1986; Gersonde and Wefer, 

1987; Kellogg and Kellogg, 1987; Stockwell et al., 1991; Leventer, 1992; Zielinski 

and Gersonde, 1997). This species has been reported in both land-fast and pack ice 

samples (Homer, 1985b; Garrison and Buck, 1989; Garrison, 1991). S. microtrias has 

been observed in many sea ice associated locations. During spring vegetative cells 

have been found in abundance at depth away from the sea ice edge (Fryxell 1989). In 

summer, S. microtrias has been noted in very high abundance in fast sea ice samples 

(Watanabe, 1982; Krebs et al., 1987; Tanimura et al., 1990). During autumn, the 

resting spore is found in high abundance under sea ice and is not present in the open 

ocean (Fryxell, 1989), and is commonly found in newly forming sea ice (Gersonde, 

1984; Garrison and Close, 1993). Zielinski and Gersonde (1997) reported that S. 

microtrias was restricted to the Antarctic Zone south of the Polar Front (Figure 3.4).

3.5.23 Thalassiosira antarctica Com ber

The planktonic genus Thalassiosira is widespread in Antarctic waters. Thalassiosira 

antarctica occurs commonly in waters with SST -2°C to 1°C (Zielinski and Gersonde, 

1997). In the Weddell Sea spring blooms of this species are observed in newly formed 

platelet ice in polynyas (Smetacek et al., 1992) and in “crack” pools formed by 

disintegrating sea ice during summer (Gleitz et al., 1996). T. antarctica also occurs in 

the Bransfield Strait (Gersonde and Wefer, 1987; Leventer, 1991), where its unusually 

high abundance is thought to be the result o f surface water intrusion from the Weddell 

Sea (Gersonde and Wefer, 1987; Zielinski and Gersonde, 1997). In Ross Sea surface 

sediment, T. antarctica occurs in highest abundances close to the ice shelf front and is 

associated with the formation of platelet ice from super-cooled water masses that 

emerge from beneath the ice shelf (Cunningham and Leventer, 1998). It is rare to find 

T. antarctica in sea ice (Leventer and Dunbar, 1987; Fryxell and Kendrick, 1988;
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Zielinski and Gersonde, 1997) which is attributed to its inability to survive the low 

light intensities beneath and within sea ice (Fryxell et a l, 1987). However, T. 

antarctica have been observed in some spring sea ice samples (Villareal and Fryxell,

1983) suggesting they over-wintered in the sea ice or were re-suspended from the 

sediments.

3.5.24 Thalassiosira gracilis (Karsten) Hustedt

Thalassiosira gracilis occurs in a temperature range between -2 and 13°C, with 

maximum numbers between -0.5 to 2°C (Zielinski and Gersonde, 1997). This 

planktonic species has been reported in sea ice samples (Gersonde, 1984; Krebs et a l, 

1987; Garrison et al., 1983a) and an increase in sea ice cover and cooler SST has been 

observed to lead to an increase in T. gracilis (Armand, 1997). This species has a wide 

distribution and does not appear to have a northern boundary (Armand, 1997). Fenner 

et al. (1976) reports T. gracilis in greater abundance in Antarctic waters than in 

Subantarcic waters. Zielinski and Gersonde (1997) report the species as uniformly 

distributed through the South Atlantic with highest abundances found in the sea ice 

zone and permanently open ocean. There are two morphologically different varieties 

of T. gracilis: Thalassiosira gracilis var. expecta (Van Landingham) Fryxell & Hasle 

and Thalassiosira gracilis var. gracilis (Karsten) Hustedt. Distribution of the two 

varieties of T. gracilis in Prydz Bay and along the George V Coast was noted with 

higher abundances of T. gracilis var. gracilis further from the coast, in contrast to a 

ubiquitous low distribution of T. gracilis var. expecta (Stockwell et al., 1991; 

Leventer, 1992). The low distribution of T. gracilis var. expecta suggests the variety 

has a lack of relation to sea ice cover and is related to open primary productivity. The 

heavily silicified T. gracilis var. gracilis is considered the winter form of the species 

(Fryxell, 1990).

3.5.25 Thalassiosira gravida  Cleve

Fryxell and Kendrick (1988) note that Thalassiosira gravida Cleve is a common 

component of the open water assemblage in regions recently uncovered by retreating 

sea ice. This planktonic species is not common in sea ice (Garrison et al., 1987).
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3.5.26 Thalassiosira lentiginosa (Janisch) Fryxell

Thalassiosira lentiginosa has a temperature range of 0 to 7°C (Zielinski and 

Gersonde, 1997) and is not influenced greatly by sea ice (Armand, 1997). T. 

lentiginosa displays a widespread distribution in the Atlantic sector of the Southern 

Ocean. The planktonic species is most often reported in highest abundances from 

sediments under the Open Ocean Zone to the Polar Front Zone (Figure 3.2 and 3.4) 

(Jouse et al., 1962; Kozlova, 1966; DeFelice and Wise, 1981; Zielinski and Gersonde, 

1997). Low abundances or absences of T. lentiginosa in coastal abundance records 

have been noted (Kozlova, 1966; Gersonde and Wefer, 1987; Kellogg and Kellogg, 

1987, Stockwell et al., 1991, Zielinski and Gersonde, 1997). This species resistance to 

dissolution (Kozlova, 1966; Shemesh et al., 1989; Pichon et al., 1992b) increases its 

presence in sediments, obscuring the true primary signal of distribution (Crosta et al., 

2005).

3.5.27 Thalassiosira oliverana (O ’M eara) Makarova & Nikolaev

Thalassiosira oliverana is endemic to the Southern Ocean and occurs in a temperature 

range between -2 and 5°C, the maximum abundances between -1.5 and 1°C (Zielinski 

and Gersonde, 1997). The concentrations o f highest abundances of T. oliverana are 

between the Polar Front and just within the maximum winter sea ice edge (Figure 3.4 

and 3.5). The planktonic species has a ubiquitous distribution in sediments o f the 

Southern Ocean with exception to the Antarctic coast where abundances are reduced 

and are occasionally rare (Armand, 1997).

3.5.28 Thalassiosira oestrupii (Ostenfeld) Hasle

Thalassiosira oestrupii, a planktonic species, has been found in the water column 

adjacent to the sea ice edge in the Weddell Sea (Garrison et al. 1987) but not within 

the sea ice (Armand, 1997). Within open ocean sediments T. oestrupii constitutes 1 to 

10% of the diatom assemblage, increasing in abundance northwards (DeFelice and 

Wise 1981, Zielinski and Gersonde 1997). Leventer (1992) reports trace T. oestrupii 

(up to 0.6%) from Antarctic coastal surface sediments.
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3.5.29 Thalassiosira tumida (Janisch) Hasle

Thalassiosira tumida has been classified as a pack ice species (Garrison and Buck,

1989) even though it has been found in fast and pack ice samples from the Weddell 

Sea and Antarctic Peninsula (Garrison et al., 1983a; Gersonde, 1984; Krebs et al., 

1987). T. tumida is found in abundance in the water column adjacent to the sea ice 

edge (Garrison et al., 1987). Past investigations have shown that T. tumida is in low to 

rare abundance (<3%) in sediments around the Antarctic coast (Truesdale and 

Kellogg, 1979; Gersonde, 1984; Prasad and Nienow, 1986; Stockwell et al., 1991; 

Leventer, 1992; Cunningham and Leventer, 1998). The planktonic species is very rare 

in open ocean sediments (Abbott, 1973; DeFelice and Wise, 1981).

3.5.30 Thalassiothrix antarctica  Schimper ex Karsten

Thalassiothrix antarctica generally occurs in the warmer waters of the Subantarctic, 

but in the southern Indian Ocean the Antarctic convergence zone forms the northern 

distribution limit o f this species in the uppermost sediment layer (Kozlova, 1966). T. 

antarctica has been recorded in sediments of the South Atlantic (DeFelice and Wise, 

1981; van Iperen et a l, 1987; Zielinski, 1993) with maximum abundance within the 

Polar Front Zone (Figure 3.2 and 3.4) at summer SST between 2.5-6°C (Zielinski and 

Gersonde, 1997). Low relative abundances of T. antarctica are observed in surface 

sediments from the George V Coast, but this planktonic species is much more 

abundant in laminated core sections (Leventer, 1992).

3.5.31 Trichotoxon reinboldii (Van Heurck) Reid & Round

Trichotoxon reinboldii is endemic to the Southern Ocean. Maximum occurrences of 

this planktonic species are in Antarctic waters (Hendey, 1937; Kozlova, 1966) with 

low abundances in northern Subantarctic waters (Hustedt, 1958). Round et al. (1990) 

describe the species as abundant around Antarctica, yet Stockwell et al. (1991) noted 

low relative abundances of T. reinboldii in sediments from Prydz Bay.
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3.5.32 Trigonium arcticum  (Brightwell) Cleve

Trigonium arcticum has been observed at a water depth of 200-300 m off Cape 

Crozier, Ross Sea and even in bottom surface samples together with fragments of 

decaying algae (Thomas, 1966). Both Hendey (1937) and Thomas (1966) believe 

many specimens of this epiphytic species spend the majority of time as bottom forms 

and seldom get into the plankton. This species is considered to grow epiphytically on 

algae (Hendey, 1937; Thomas, 1966) and is saprophytic when not photosynthesising 

(Thomas, 1966).

3.6 Summary

This chapter has presented a brief introduction to diatoms and how diatom 

assemblages in sediments are influenced by environmental and preservation controls 

in the Southern Ocean. An account of previous diatom-rich laminated sediment 

research is given. Environmental preferences of Antarctic diatom species were 

presented in detail which will be referred to and used in chapters 6, 7, 8 and 9.
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4. Core site data

This chapter presents a summary of core site locations, bathymetry, lithology and age 

models for the three core sites: Palmer Deep, Mertz Ninnis Trough and Durmont 

d’Urville Trough (Table 4.1, Figure 4.1). This information will support chapters 6, 7 

and 8 which contain results and interpretations from Palmer Deep, Mertz Ninnis 

Trough and Durmont d’Urville Trough core analysis, respectively.

Table 4.1
Summary of core data.

Core
number

Water Core
Core site Core type Latitude Longitude Depth

(metres)
Length

(metres)

Palmer Deep
ODP 178 

1098A
Advanced

piston
64°51.7235’S 64°12.4712’W 1012 45.9

Palmer Deep
ODP 178 

1098C
Advanced

piston
64°51.7105’S 64°12.4690’W 1012 46.7

M ertz Ninnis 
Trough

NBP0101
JPC10

Jumbo
piston

66°34.334’S 143°05.168’E 850 21.35

M ertz Ninnis 
Trough

NBP0101
KC10A

Kasten 66°34.328’S 143°05.249’E 850 2.5

Durmont
d ’Urville
Trough

MD03
2597

Calypso 66°24.74’S 140°25.26’E 1025 57.34

4.1. Palmer Deep, Western Antarctic Peninsula

4.1.1 Bathymetry

Palmer Deep is an inner shelf bathymetric depression on the western side of the 

Antarctic Peninsula, approximately 30 km southwest of Anvers Island and 

approximately 125 km from the shelf break (Figure 4.2a). The shelf on which Palmer 

Deep is located is broader (-140 km wide) and deeper (average depth 450 m) than 

low latitude continental shelves (Pudsey et a l, 1994) and slopes towards the continent 

due to previous glacial overburden and its tectonic setting. Palmer Deep is an 

erosional trough which formed during the most recent period of glaciation; it consists 

of three steep-sided basins orientated SW-NE, bisected by a fault (Kirby et a l, 1998; 

Rebesco et a l, 1998b). The shallowest of the three sub-basins, Basin I, has a 4 km 

long and 1 km wide basin floor and is surrounded by steep slopes (16-26°).
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Figure 4.1
Geographic locations of the three core sites: Palmer Deep, Mertz Ninnis Trough and 
Durmont d’Urville Trough. AP=Antarctic Peninsula

PALMER defT

Figure 4.2
(a) Location map of ODP Site 1098, Palmer Deep on the Antarctic Peninsula continental 
margin. Contours in metres. Adapted from Barker et al. (1999a).
(b) Map of the three fault bound basins that make up Palmer Deep and the site of Leg 178 
Site 1098. Contours in metres. Adapted from Sjunneskog and Taylor (2002).
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4.1.2 Core Type and Sediment Description

Three advanced piston cores were recovered from the small, narrow Basin I, Palmer 

Deep (ODP Site 1098) during ODP Leg 178 (Figure 4.2b). The cores (ODP Holes 

1098A, 1098B and 1098C) are each approximately 45 m long. The cores consist of 

olive green homogeneous bioturbated to laminated diatom mud and ooze, 

rhythmically interbedded diatom ooze, pebbly mud and muddy diamicton (Figure 4.3) 

(Barker et al., 1999b; Domack et al., 2001). An interval of well-laminated sediments 

above glaciomarine diamict from ODP Holes 1098A and 1098C were chosen for 

sampling (Table 4.2). The laminated interval sampled for this study is approximately 

4.5 metres thick (45.03-40.63 metres composite depth (mcd)) and comprises thinly 

bedded to thickly laminated orange-brown diatom ooze and blue-grey diatom-bearing 

terrigenous sediments (Figure 4.4).

Table 4.2.
Palmer Deep core sample depths (to convert metres below sea floor (mbsf) to metres 
composite depth (mcd), 1.52 m is added to 1098A 6H and 1.82 m to 1098C 5H).

Palmer Deep Core Depth (mbsf) Depth (mcd)
ODP Core 178-1098C-5H 2 38.85-39.94 40.67-41.76

ODP Core 178-1098A-6H 1,2 & 3 40.00-43.66 41.52-45.18

4.1.3 Age

The marine reservoir effect and reworking of old carbon complicates radiocarbon 

dating in Antarctica. The marine reservoir effect is the depletion of 14C in the ocean, 

and is particularly elevated in the Southern Ocean due to the dilution of circum- 

Antarctic water with glacial meltwater and by the upwelling of deep and old oceanic 

water (Harkness, 1979; Omoto, 1983; Stuiver et al., 1986). The ages yielded by 

Antarctic samples are anomalously old as a consequence of this effect. Reworking of 

old carbon into the sediment creates an offset to the true 14C age, resulting in an 

artificially old date for seabed sediments. Surface sediment organic matter is dated to 

calculate a local correction to account for this Antarctic marine reservoir effect and 

reworking at the site of deposition. Radiocarbon dating of marine sediments is 

difficult in Antarctica because marine carbonates are scarce (and dates must be 

obtained from the acid insoluble organic fraction) and marine reservoir effects and 

local corrections have to be calculated (Domack et al., 1999).
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Figure 4.3
Core photograph of ODP Core 178-1098A-6H 
(41.42 to 46.57 mcd). Sampled interval, 41.52- 
45.03 mcd (40-43.51 mbsf), indicated by red 
arrows.
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The surface organic matter at Palmer Deep yields ages of 1265 ± 40 yrs BP and 1200 

± 40 yrs BP (Domack et al., 2001) which are equivalent, or younger than ages derived 

from biogenic calcite in living marine invertebrates (1260 ± 60 yrs BP and 1240 ± 80 

yrs BP) from the same region (Domack, 1992). Surface organic matter ages are 

accepted as representing the reservoir age of the shelf waters in the Antarctic (Gordon 

and Harkness, 1992; Berkman and Forman, 1996), therefore the marine reservoir 

correction for Palmer Deep has been estimated at a value of 1230 yrs (Domack et al., 

2001). The deglacial laminated sedimentary sequence from the Palmer Deep is dated 

at 12264 to 11207 cal. yr BP (raw data from Domack et a l (2001) recalibrated with 

CALIB 5.0., Stuiver et al., 2005) (Table 4.3 & Figure 4.5). These calibrated ages are 

used with caution for this lower core interval due to the assumed near modem 

reservoir correction. The sedimentation rate for the deglacial laminated sedimentary 

sequence is calculated at 0.4 cm/yr.

Table 4.3
Radiocarbon dates for Palmer Deep, ODP Leg 178. Raw data from Domack et al. 
(2001) recalibrated with CALIB 5.0 (Stuiver et al., 2005). Reservoir age used, 1230 
yrs ± 40 (Domack et al., 2001). poc = acid insoluble organic carbon, f  = benthic 
foraminifera.

Laboratory
number

Site
Number

Carbon
source

Depth
(mcd)

Uncorrected age 
(yrs BP)

± Calibrated age 
(cal. yrs BP)

±2 a

OS-24750 1098C poc 31.12 9280 50 9087 183
AA29141 1098C poc 31.19 9265 65 9054 221
AA29142 1098C poc 31.84 9475 65 9286 186
OS-24751 1098C poc 32.38 9860 95 9799 292
OS-24752 1098C poc 35.02 10350 55 10372 149
OS-24753 1098C poc 35.32 10850 55 10956 212
AA29143 1098C poc 35.58 10365 70 10383 163
LL -57121 1098B f 35.69 9890 50 9786 240
OS-24711 1098C poc 36.2 10500 65 10516 194
AA29144 1098C poc 37.46 10585 70 10680 244
OS-24754 1098C poc 38.25 10700 65 10820 241
L L-57122 1098B f 38.8 10410 80 10407 180
U a-14999 1098C f 41.53 11295 90 11594 356
AA29145 1098C poc 43.89 11410 70 11748 364
OS-24755 1098C poc 44.43 11850 55 12684 132
AA29146 1098C poc 44.81 11350 75 11676 356
OS-24756 1098C poc 44.85 11550 60 12111 268
OS-24757 1098C poc 45.64 11300 55 11607 302
OS-24758 1098C poc 46.32 12250 60 12969 113
AA29147 1098C poc 46.34 12015 80 12781 142
U a-14998 1098A f 47.46 10565 105 10696 341
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Figure 4.5
Age model for the lower 25 m of ODP Core 178-1098, Palmer Deep (Table 4.3.). 
Dotted lines indicate the sampled interval. Solid line = regression line (r2 = 0.7682 ). 
Domack et al. (2001) data calibrated with CALIB 5.0 (Stuiver et al., 2005). Reservoir 
age = 1230 +/- 40 yrs (Domack et al., 2001). Error bars = two sigma.

4.2. Mertz Ninnis Trough, East Antarctic Margin

4.2.1 Bathymetry

George V Land lies between 142°E and 146°E of the East Antarctic shelf (Figure 

4.6.). Broad linear banks, < 200 to 400 m deep are prominent features of the middle 

and outer portions of the shelf (Domack, 1982). The two largest banks lie directly 

seaward of the Mertz Glacier Tongue and the Ninnis Glacier Tongues bounding the 

Mertz Ninnis Trough to the north (Mertz Bank) and east (Ninnis Bank). The George 

V Coast has a depth of 500 m and a width of approximately 140 km. The inner shelf is 

dissected by a deep, linear basin called the Mertz Ninnis Trough [also known as the 

George V Basin (Domack, 1982; Domack and Anderson, 1983; Leventer, 1992; 

Harris et al., 2001; Harris and Beaman, 2003; Presti et al., 2003) and the Adelie 

Depression (Gordon and Tchemia, 1972; Rintoul, 1998)] of glacial origin. The core 

site in the Mertz Ninnis Trough is approximately 85 km from the shelf break. The
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Figure 4.6
Location maps of NBPO101 JPC10, KC1OA and JPC11.
(a) JPC 10, KC 1 OA and JPC 11 core locations within the Mertz N innis Trough, George V  
Coast. Contours in metres. Adapted from Leventer (1992).
(b) Seabeam Swath map of highlighted area in (a) of the JPC 10, KC 1 OA and JPC 11 core 
sites (Leventer etal., 2001).
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trough is parallel to the coastline, U-shaped in cross section and reaches depths 

greater than 1300 m just to the west of the Ninnis Glacier Tongue and shoals to a 

depth of approximately 800 m before deepening again northeast of Commonwealth 

Bay. The basin then veers north and gradually shoals towards the shelf break, 

reaching a sill separating the basin from the continental slope at a depth of 400 to 500 

m. The Mertz Drift is a large shelf sediment drift deposit covering about 400 km2 in 

an 850 m deep section of the Mertz Ninnis Trough, about 80 km west of the Mertz 

Glacier (Harris et al., 2001).

4.2.2 Core Type and Sediment Description

The sediments analysed in this study were recovered from the Mertz Ninnis Trough 

by the research vessel RVIB Nathaniel B. Palmer during the cruise NBP0101 in 2001. 

A 21.35 m jumbo piston core NBP0101 JPC 10 was recovered from the Mertz Ninnis 

Trough (Figures 4.4 & 4.7). Sediment samples selected for analysis were taken from 

discrete intervals between 17.36 to 20.60 metres below sea floor (mbsf) (Table 4.4). 

In the sampled interval the core is biosiliceous ooze with thinly to thickly laminated 

sediments, colours varying from dark olive grey to dark olive brown. Kasten Core 

NBP0101 KC10A was also recovered from the Mertz Ninnis Trough (Figures 4.4 & 

4.8). The core was a total length of 250 cm, and continuous samples were taken for 

analysis between 204.5 and 237.7 cm. This interval is composed of laminated diatom 

ooze, coloured olive grey (dominant) to moderate olive brown with greyish olive 

green.

Table 4.4 Mertz Ninnis Trough sample depths, cmbsf = cm below sea floor.

M ertz  N innis T ro u g h  C ore  D epth  (cm bsf)
NBP01 01 KC10A 
NBP01 01 JPC10 
NBP01 01 JPC10 
NBP01 01 JPC10 
NBP01 01 JPC10 
NBP01 01 JPC10

204.5-237.7
1736-1765
1771-1820
1872-1891
1909-1997
2009-2060
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Figure 4.7
Core photographs of NBP0101 JPC 10 from the Mertz Ninnis Trough. Sampled intervals 
between 17.36 - 20.60 metres below sea floor (mbsf), indicated by red arrows.
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Figure 4.8
Core photograph of NBP0101 KC10A from the Mertz 
Ninnis Trough. 2.0-2.5 metres below sea floor (mbsf). 
Sample interval, 2.04-2.38 mbsf, indicated by red arrow.
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Figure 4.9
Comparison of NBP0101 JPC 10 and JPC11 bulk density plots. Pink bands are tie points 
between the bulk density plots (A.Leventer personal communication). Dates plotted are 
raw uncorrected radiocarbon ages. Simplified lithographic log displayed alongside bulk 
density plots.
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4.2.3 Age

Eight radiocarbon ages were obtained from NBP0101 JPC 10 to provide a core 

chronology (Table 4.5). In addition to this, two radiocarbon ages obtained from 

adjacent core NBP0101 JPC 11 (66°33.777 S, 143°03.082 E) (Table 4.5), 1.8 km from 

JPC 10, were used to help construct an age model. The cores were correlated using 

wet bulk density measurements (Figure 4.9). Reworking of old carbon is an additional 

concern when interpreting 14C ages in the Antarctic. To accommodate the reservoir 

and reworking effects, when developing a chronology for a core, it is common to 

adjust radiocarbon ages by subtracting local surface ages from sub-surface 

radiocarbon ages (Andrews et a l, 1999; Cunningham et a l, 1999; Harris, 2000; 

Domack et a l, 2001). Surface ages measured along the East Antarctic Margin range 

from 1895 to 7084 yr BP (Domack et a l, 1989; Harris et a l, 1996; Harris and 

Beaman, 2003). This age range is older than the accepted reservoir correction for 

Antarctica (1300 yr BP; Berkman and Forman, 1996), which suggests a combination 

of reservoir and reworking effects affect this region. A decrease in sedimentation rate 

at the post-glacial sampled interval was not anticipated for JPC 10 since a higher 

sedimentation rate is inferred from the laminated sediments in chapter 7. This 

suggests that there may be a change in reservoir and reworking affects downcore. A 

surface age obtained from NBP0101 KC10A (Table 4.6), 2340 14C yrs, has been used 

as a local reservoir correction. At present, there is no way to correct for changing 

reservoir and reworking effects downcore. The sampled interval, 20.60-17.36 mbsf, 

has been dated 11,384 -  6,756 cal. yr BP (Figure 4.10). The base of JPC 10 has been 

dated approximately 12,456 cal. yr BP (Figure 4.10).

Eight radiocarbon ages were obtained from NBP0101 KC10A to provide a core 

chronology (Table 4.6). A surface age of 2340 14C yrs has been used as a local 

reservoir correction. The sampled interval, 204.5 -  237.7 cmbsf has been dated 3,820 

-  3,892 cal. yr BP (Figure 4.11). The base of KC10A has been dated 3918 cal. yr BP 

(Figure 4.11). The top of the laminated interval in NBP0101 KC10A (0.49 mbsf) has 

been dated at approximately 3200 14C yrs, which is comparable to an average date 

obtained from several cores from the Mertz Ninnis Trough (3170 14C yrs; Harris et 

al, 2001).
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Table 4.5.
Uncorrected radiocarbon dates (R.Dunbar, personal communication, 2002) for NBP0101 JPC 10 and JPC11, 
Mertz Ninnis Trough, corrected age was derived by subtracting NBP0101 KC10A core top age (2340 ± 35  14C 
yrs; Table 4.6). Ages calibrated with CALIB 5.0. (Stuiver et al., 2005), errors 2a. Decal. Corg = decalcified 
organic carbon.

Laboratory 
number (CAMS #) Core source Depth

(cm)
Carbon
source ,4C yr ±

Corrected age 
( ,4C yr BP)

Calibrated age 
(cal. yrs BP) ±2a

79274 NBP0101 JPC10 132.5 Decal. Corg 5860 50 3520 3898 181

79276 NBP0101 JPC10 332.5 Decal. Corg 6200 40 3860 4364 156

79277 NBP0101 JPC10 632.5 Decal. Corg 6290 40 3950 4511 169

79278 NBP0101 JPC10 934.5 Decal. Corg 6920 40 4580 5333 142

79279 NBP0101 JPC10 1242.5 Decal. Corg 7270 40 4930 5712 129

79280 NBP0101 JPC10 1552.5 Decal. Corg 7700 40 5360 6151 133

79282 NBP0101 JPC10 1852.5 Decal. Corg 11490 40 9150 10394 136

79283 NBP0101 JPC10 2112.5 Decal. Corg 13550 50 11210 13091 131

79281 NBP0101 JPC 11 1842.5 Decal. Corg 7760 50 5420 6241 142

79284 NBP0101 JPC 11 2218 Decal. Corg 13400 50 11060 12987 106
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Table 4.6.
Uncorrected radiocarbon dates (R.Dunbar, personal communication, 2002) for NBP0101 KC10A, Mertz 
Ninnis Trough, corrected age was derived by subtracting the core top age (2340 ± 35 14C yrs). Ages calibrated 
with CALIB 5.0. (Stuiver et al., 2005), errors 2o\ Decal. Corg = decalcified organic carbon.

Laboratory 
number (CAMS #) Core source

Depth
(cm)

Carbon
source

14C yr ± Corrected age 
( l4C yr BP)

Calibrated age 
(cal. yrs BP)

±2 a

85806 NBP0101 KC10A 1 Decal. Corg 2340 35 0 0 -

85807 NBP0101 KC10A 21 Decal. Corg 3675 35 1335 1280 102

85808 NBP0101 KC10A 41 Decal. Corg 5690 35 3350 3688 140

85809 NBP0101 KC10A 61 Decal. Corg 5660 40 3320 3651 158

85810 NBP0101 KC10A 101 Decal. Corg 5585 40 3245 3546 141

85811 NBP0101 KC10A 146 Decal. Corg 5655 35 3315 3646 153

85812 NBP0101 KC10A 161 Decal. Corg 5730 35 3390 3731 139

85813 NBP0101 KC10A 206 Decal. Corg 5770 35 3430 3777 142
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Age (cal. yr BP)
0 2000 4000 6000 8000 10000 12000 14000

a

■

20  -

Figure 4.10
Age model for NBP0101 JPC10 and JPC11, Mertz Ninnis Trough (Table 4.5). Ages 
supplied by R.Dunbar (2002) and calibrated with CALIB 5.0 (Stuiver et a l 2005) 
Sampled interval (17.36-20.60 mbsf) indicated by dashed lines. Base o f core marked 
with dotted line. Solid lines = regression lines (upper line r2 = 0.968; lower line r2 = 
0.773) Errors = two sigma. Squares = JPC 10. Triangles = JPC11.
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Age (cal. yr BP)
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Figure 4.11
Age model for NBP0101 KC10A, Mertz Ninnis Trough (Table 4.6). Ages supplied by 
R. Dunbar and calibrated with CALIB 5.0 (Stuiver et al., 2005). Sampled interval 
(204.5 -  237.7 cmbsf) indicated by dashed lines. Solid lines = regression lines (upper 
line r2 = 0.9648; lower line r2 = 0.9349). Errors = two sigma.

4.3. Durmont d’Urville Trough, East Antarctic Margin

4.3.1 Bathymetry

Adelie Land (136°E to 142°E) lies within the Wilkes Land sector of the East Antarctic 

shelf. The shelf is approximately 130 km wide with broad, linear flat topped banks 

occurring at 200 to 400m depth on the middle and outer portions of the continental 

shelf (Domack, 1982). A broad shallow bank (Adelie Bank) lies to the northeast o f the 

Durmont d’Urville Trough (Eittreim et al., 1995). The Dumont d’Urville Trough 

dissects the inner shelf of the Adelie Land coast and trends obliquely across the shelf 

(Figure 4.12). The trough reaches depths greater than 1300 m, just offshore of the
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Astrolabe and Zelee glaciers. These glaciers are the two largest of several outlets that 

drain into the trough (Domack et al., 1991). The core site in the Durmont d ’Urville 

Trough is approximately 90 km from the shelf break.

4.3.2 Core Type and Sediment Description

The sediments analysed for this study from Adelie Land were collected on the R/V  

Marion Dufresne during the MD130 CADO Images X cruise in February 2003. 

Sediment samples selected for analysis were taken from discrete intervals between 18 

to 57 mbsf (Table 4.7). The core consists mainly of black to dark olive grey 

laminations (Figure 4.13).

Table 4.7.
Durmont d’Urville Trough core sample depths, mbsf = metres below sea floor.

C ore source D epth  (m bsf)

MD03 2597 18.75-19.00
MD03 2597 23.40-23.55
MD03 2597 33.80-34.05
MD03 2597 37.80-37.95
MD03 2597 38.55-38.70
MD03 2597 40.60-40.75
MD03 2597 41.05-41.20
MD03 2597 44.40-46.77
MD03 2597 47.75-47.90
MD03 2597 49.70-49.90
MD03 2597 52.53-52.68
MD03 2597 53.00-53.15
MD03 2597 56.55-56.83

4.3.3 Age

Four radiocarbon ages obtained from MD 130 CADO Images X (Table 4.8) have been 

calibrated with CALIB 5.0 (Stuiver et al., 2005) using a reservoir correction of 1300 

years ± 200 years (Berkman and Forman, 1996) to create an age model for MD03 

2597. The sampled interval, 56.83 to 18.75 mbsf has been dated at 2814 to 925 cal. 

yrs BP (Figure 4.14).
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Figure 4.12.
(a) Bathymetry of the Adelie continental margin. Position of core MD03 2597 indicated. Adapted from Domack etal. (1989).
(b) Seabeam Swath map of highlighted area in (a) (Leventer, 2001).
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Figure 4.13
Core photographs of MD03 2597 from the Durmont d’Urville Trough. Sampled intervals indicated by red arrows. All depths are in metres 
below sea floor (mbsf).
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Table 4.8
Uncorrected radiocabon dates (R.Dunbar, personal communication, 2004) for MD03 
2597, Durmont d’Urville Trough, calibrated with CALIB 5.0 (Stuiver et al., 2005). 
Reservoir age used, 1300 years +/- 200 years (Berkman and Forman, 1996). 
Uncorrected, calibrated ages and errors rounded to the nearest year.

Laboratory number Core source Depth
(cm)

Uncorrected age 
(yrs BP) ± Calibrated age 

(cal. yrs BP) ±2 a

107178 MD03 2597 1153 2010 35 691 383

107179 MD03 2597 3803 3195 35 1953 912

107180 MD03 2597 4248 3485 35 2267 482

107181 MD03 2597 4872 3855 35 2708 977

Age (cal. yrs BP)

0 1000 2000 3000 4000
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2000  ■

j s  3000 •

4000 ■

5000 ■

6000

Figure 4.14
Age model for MD03 2597, Durmont d’Urville Trough (Table 4.8). Raw data 
(R.Dunbar, personnal communication, 2004) calibrated with CALIB 5.0 (Stuiver et 
al., 2005). Reservoir age = 1300 years +/- 200 years (Berkman and Forman, 1996). 
Dotted lines indicate the sampled interval. Solid line = regression lines (r2 = 0.9911). 
Errors = two sigma.
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4.4. Summary

This chapter has presented core site information, bathymetry, core descriptions and 

age models for the Palmer Deep, Mertz Ninnis Trough and Durmont d’Urville core 

sites. This information will be used to support interpretations and discussions in 

chapters 6, 7 and 8.
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5. Methods

This chapter presents the methods used to collect diatom assemblage data and 

determine the sedimentary fabric of laminated sediments from Palmer Deep, Mertz 

Ninnis Trough and Durmont d ’Urville Trough.

5.1. Sampling Strategy

Unconsolidated sediment cores were sampled perpendicular to laminae with a 

sediment slab cutter, a “cookie cutter” (Schimmelmann et al., 1990) (Figure 5.1), to 

prevent sedimentary fabric disturbance. To achieve sediment continuity, cookie-cutter 

sampling was overlapped. The sediment slabs were wrapped in cling film, labelled 

with core information and upcore direction, placed in air tight plastic containers with 

moist paper towels and put in to a refrigerator. This procedure kept the samples cold 

and moist, preventing desiccation and inhibiting the growth of moulds.

5.2. Sample Preparation

5.2.1 Polished Thin Sections

Unconsolidated wet sediment samples were prepared for scanning electron 

microscope (SEM) study. Several methods such as critical point drying (Bouma, 

1969), freeze drying (Bouma, 1969) and vacuum drying (Kemp, 1990, Patience et al., 

1990) could have been used to produce polished thin sections, however, these three 

methods remove water prior to resin embedding under vacuum causing partial 

collapse of the sedimentary fabric. Fluid displacive drying (Jim, 1985; Polysciences 

Inc., 1986; Lamoureux, 1994; Pike and Kemp, 1996) was selected for sample 

preparation to ensure the sediment was not left in an unsupported condition. The 

method used is adapted from the fluid displacive resin embedding techniques detailed 

in Pike and Kemp (1996), Pearce et al., (1998) and Dean et al. (1999).

A 0.5 cm wide block was cut from the longest side of the 15 cm long sedimentary slab 

and was sub-divided with diagonal cuts (Figure 5.1). These samples were placed in a 

tight fitting perforated aluminium foil boat and immersed in general laboratory grade 

acetone (Figure 5.1). Acetone was replaced three times daily for five days,
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High 
magnification 

diatom and 
fabric analysis



CHAPTER 5

the last three replacements with analytical grade acetone. This process chemically 

dried the sediment by replacing the aqueous pore fluids with the solvent. The samples 

were not allowed to desiccate at any stage during the process. After the final acetone 

soaking, the acetone was removed and an acetone/resin mixture was added every 

twelve hours to prevent an increase in viscosity and to embed the samples. Spurr resin 

(Spun*, 1969) was prepared from the following chemicals: vinocyclohexene dioxide 

(VCD); diglycidol ether of polypropyleneglycol (DER 736); nonenyl succinic 

anhydride (NSA) and dimethylaminoethanol (DMAE). The resin content was 

increased in stages (Table 5.1): the first three additions of the acetone/resin mixture 

were in the proportion 40:60, the second two in the proportion 25:75, the third two in 

the proportion 13:87, and the remaining three contained pure resin. The samples were 

left in the resin for four weeks to ensure all pore spaces were filled and all remaining 

acetone had evaporated.

Table 5.1
Amounts of Spurr resin constituents and acetone used in preparation of sediment 
samples. Order and number of additions.

Sequence o f resin 
changes (number o f 

times repeated)

Acetone: Resin 
ratio

Reagent quantity (g)

Acetone VCD
DER
736

NSA DMAE

1(3) 40:60 288.00 102.37 61.42 266.16 2.05
2(2) 25:75 192.00 125.12 75.07 325.31 2.50
3(2) 13:87 96.00 147.87 88.72 384.45 2.96
4(3) 0:100 0.00 170.62 102.37 443.60 3.41

Samples were then cured in an oven for 24 hours at 35°C, 45°C and 65°C, with the 

resin allowed to cool for 24 hours between the increasing temperatures. After the 

samples were cured highly polished thin sections were made from the resin blocks. 

Oil-based lubricants were used for cutting. The thin sections were coated in carbon 

before backscattered electron imagery (BSEI) scanning electron microscope (SEM) 

analysis.

5.2.2 Sediment Stubs

Sub-samples of sediment were prepared for topographic secondary electron imagery 

(SEI) to provide analysis of microfossil components. Blocks of sediments with
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dimensions of less than 0.5 cm were cut from the sediment slabs and fractured to 

reveal surfaces parallel to the laminated sediment fabric (Pike and Kemp, 1996; Dean 

et al., 1999). The blocks of sediment were mounted on standard SEM stubs (Figure 

5.1), left to dry for 24 hours and then coated in Au-Pd (90:10). The stubs are related to 

the concomitant lamina in the BSEI thin section to aid diatom species identification.

5.2.3 Quantitative Diatom Analysis

Preparation of the sediment for quantitative diatom assemblage analysis followed the 

settling technique of Scherer (1994), as adapted by C.S. Allen (personal 

communication, 2003). This method was used to determine absolute diatom 

concentration (diatoms valves per gramme of dry sediment) and relative abundances 

of species within the total diatom assemblage. This settling procedure results in slides 

with an even distribution of valves with minimal clumping.

Samples were taken from selected (following BSEI analysis) lamina or sub laminae. 

Approximately 0.005-0.0 lg  of oven dried sample was weighed using a Mettler 

AE240 balance, placed in a glass vial (20 ml) and half filled with distilled water. 

Approximately 3 ml of hydrogen peroxide (30%) was added to oxidize organics and 

disaggregate particles and 1 ml of hydrochloric acid (50%) was added to remove any 

carbonate in the vial. The vials were left on a hotplate on a low setting for 6 hours. 

After oxidation 10 ml of dispersing agent (e.g. sodium hexametasulphate, prepared 

from 2 grammes of powder per 500 ml distilled water) was added and left for 1 hour. 

The vial containing the sample was then placed in an ultrasonic bath for 1 -3 seconds 

to fully disaggregate the sample. The contents of the vial were then emptied into a 

clean 1 litre flat bottomed beaker filled with distilled water (Figure 5.2). At the 

bottom of each beaker was a petri dish to which a slide was attached, and two cover 

slips were attached to this slide with a glue stick. The beaker was covered and after a 

period of four hours o f settling the beaker was slowly drained (over a 12 hour period) 

from underneath the petri dish by a pipette held in place through a small hole in the 

petri dish. After allowing the cover slips to air dry, permanent slides were made using 

Norland Optical Adhesive (Refractive Index 1.56) and were cured with UV light.
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5.3. Data Collection

5.3.1 Backscattered Electron Imagery (BSEI)

The polished thin sections were analysed by backscattered electron imagery (BSEI) 

using a Cambridge Instruments (LEO) S360 Scanning Electron Microscope (SEM). 

Backscattered electrons are the result o f elastic collisions between energetic beam 

electrons and atoms within the specimen (Goldstein, et al., 1981). The number of 

backscattered electrons divided by the number of electrons to strike the sample gives 

a backscattering coefficient, which varies with the atomic number of the target (Pye 

and Krinsley, 1984). Terrigenous grains have relatively high average atomic numbers, 

therefore high backscatter coefficients, producing bright images. Diatom ooze 

laminae contain diatom frustules that are filled with low atomic number carbon-based 

resin, therefore have a low backscatter coefficient, producing dark images. A mosaic 

of low-resolution images (x 20 magnification) was made of each thin section to 

provide a photomosaic base map (Figure 5.3) for more detailed higher magnification 

imagery of lamina composition. The BSEI photomosaics provide compositional data, 

but may also be regarded as porosity maps which give sedimentary fabric 

information. Three measurements of lamina thickness were made of each lamina on 

the photomosaics and an average calculated. The mosaics and higher magnification 

images were used together to determine qualitative lamina diatom assemblage 

composition and sedimentary fabric.

Markov chain analysis can be used to test for lamina cyclicity (Swan and Sandilands, 

1995); the analysis is based on the simple question of whether a given lamina is 

independent of the lamina below. Laminae are classified, according to lamina diatom 

assemblage and sedimentary fabric, and designated a letter. The longer the chain of 

laminae, the more reliable the results of the Markov chain analysis are, therefore, the 

number of transitions between different lamina types should be greater than 5 x 

(number of laminae categories)2. The succession of lamina types are displayed in a 

transition frequency matrix and are converted to a transition probability matrix. To 

test for randomness, the observed transition frequency matrix is compared with the 

matrix expected if there were no pattern (See appendix 5).
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Figure 5.3
A low magnification backscattered electron 
imagery (BSEI) photomosaic base map 
showing alternating laminae of biogenic 
diatom ooze (dark) and diatom-bearing 
terrigenous laminae (bright). Scale bar = 3 
mm.

i ' E

5.3.2 Secondary Electron Im agery (SEI)

The sediment stubs were analysed by secondary electron imagery (SEI) using a Veeco 

FEI (Philips) XL30 Environmental Scanning Electron Microscope (ESEM) with FEG 

(Field Emission Gun). Inelastic collisions of high energy beam electrons and atoms 

within the sample produce secondary electrons (Pye and Krinsley, 1984). The number 

of secondary electrons emitted is affected by the topography of the specimen; 

therefore the images produced are topographic (Pike and Kemp, 1996). This permits 

the identification of diatoms from three-dimensional images (Figure 5.4).

5.3.3 Quantitative Diatom Counts

A minimum of 400 diatom valves were counted per sample using an Olympus BX40 

microscope with phase contrast, at x 1000 (Figure 5.5). Four hundred valves per slide 

were counted to ensure a good representation of diatom species in the sample is 

presented (Allen, 2003). In coastal Antarctic sediments Hyalochaete Chaetoceros spp. 

resting spores dominate the diatom assemblage therefore two separate counts per slide 

are made, a total species count and a Chaetoceros spp. free count. The Chaetoceros 

spp. free counts allow trends of less common species to be revealed (Leventer et al.,
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Figure 5.4
(a) Secondary  e lec tro n  
imagery (SEI) photograph of 
a sediment block mounted on 
a standard scanning electron 
microscope (SEM) stub. 
Scale bar = 2 mm.
(b) SEI pho tograph  o f  
Hyalochaete Chaetoceros 
spp. resting spores, taken on 
s u r f a c e  p a r a l l e l  t o  
sedimentary laminated fabric. 
Gold arrow indicates part of a 
Corethron pennatum frustule. 
Scale bar = 100 microns.

Ir
Figure 5.5
Light microscope photograph 
of Fragilariopsis curta (red 
arrow) and Hyalochaete 
Chaetoceros spp. resting 
spores (gold arrows). Scale 
bar = 20 microns.
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1996; Allen et a l ,2005). Preservation of diatoms in the Palmer Deep, Mertz Ninnis 

Trough and Durmont d ’Urville Trough sediment cores is generally good, but 

inevitably diatom valves become broken and fragmented. Rules for counting 

fragmented valves were implemented to ensure valve counts were not overestimated 

(Figure 5.6). Since both vegetative cells and resting spores of Hyalochaete 

Chaetoceros spp. are included in the count a standard way of counting this genera is 

employed (Figure 5.7) (Cunningham and Leventer, 1998; Armand, 1997). All valves 

were identified to species or genera level. Where the valves were unidentified to 

species level they were grouped in a generic group. If still unidentified they were 

placed in unidentified centric or pennate groups.

All whole frustules lying within each field of view are counted. Counting was 

performed along transects from left to right with the edge of the cover slip being 

avoided. The data collected (number of valves within a number of fields of view) 

allows the number of diatoms within a known area to be calculated. Using an 

established calculation (Scherer, 1994), the number of diatom valves in the original 

sample can be calculated and, therefore, the absolute abundance of diatom valves 

(number of diatom valves per gramme of dry sediment) can be determined. The 

absolute abundance of diatom valves per gramme was determined by the expression:

T _ ( N B / A F )
M

where

T = number o f diatom valves per gramme

N  = total number o f diatom valves counted

B = area o f bottom of beaker (mm )

A = area per field of view (mm )

F  = number o f fields o f view counted

M  = mass o f sample (g)

Relative abundances o f diatom valves were calculated as a percentage of the total 

diatom assemblage.
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(a)

=0

(b)

=0

= 1

1 = 1/2

1 =0

(d)
zc

(e)
= 1

=0

Figure 5.6
Counting methodology for fragmented valves adapted from Zielinski (1993). The shaded 
area represents the portion o f valve present and the adjacent values indicate the number 
of valves counted, (a) Centrics e.g. Thalassiosira spp., Actinocyclus spp.. (b) Bidduphids 
e.g. Eucampia spp.. (c) Araphid pennates e.g. Thalassiothrix spp., Thalassionema spp.. 
(d) Raphid pennates e.g. Fragilariopsis spp.. (e) Cylindrical e.g. Rhizosolenia spp..

(a) ——-—V**/ o c D
=1

1
=1

air bubble ^ — •—
= 2

air bubble = 2

Figure 5.7
Counting methodology for 
Chaetoceros spp. valves. 
Values adjacent to valves 
i n d i c a t e  the numb e r  
counted, (a) Hyalochaete 
Chaetoceros vegetative 
cells, (b) Hyalochaete 
C h a e t o c e r o s  r e s t i n g  
spores, (c) Phaeoceros 
Chaetoceros vegetative 
cells.
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5.4 Summary

This chapter has presented the methods used to collect diatom assemblage data and 

determine the sedimentary fabric of laminated sediments from Palmer Deep, Mertz 

Ninnis Trough and Durmont d’Urville Trough.
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6. Palmer Deep

This chapter presents the results and interpretations of backscattered electron imagery 

(BSEI) analysis, secondary electron imagery (SEI) analysis and quantitative diatom 

assemblage counts from ODP Core 178-1098A [45.03 to 42.51 metres composite 

depth (mcd)] Palmer Deep, West Antarctica (Figure 6.1). Additional sections from 

Palmer Deep, ODP Cores 178-1098A (42.55-41.52 mcd) and 1098C (41.76-40.63 

mcd), were used to extend the lamina thickness data range (see appendix 3). Detailed 

ODP Core 178-1098A and -1098C Ethology, sample depths and chronological 

information are presented in chapter 4 and analytical methods used can be found in 

chapter 5. Part of this chapter has been published (Maddison et al., 2005).

Figure 6.1
Location map of ODP Site 1098, 
Palmer Deep on the Antarctic 
Peninsula continental margin. 
Contours in metres. GS = Gerlache 
Strait. Adapted from Barker et a l 
(1999a).

6.1. Results

In this section lamina types and sub-laminae found in deglacial Palmer Deep 

sediments are presented and their relationships described. Laminae are classified 

according to the dominance of terrigenous or biogenic components. All laminae are 

overwhelmingly composed of Hyalochaete Chaetoceros spp. resting spores (95.4- 

99.8%) therefore minor species o f the assemblage, which are visually dominant in 

BSEI, are used to categorize the laminae. Relative and absolute diatom abundances of 

each lamina type are averages o f several counts conducted on each lamina and sub

lamina type, with the exception of three sub-lamina types (see Tables 6.1 -  6.9). The 

deglacial laminated sediments, from Palmer Deep, consist of orange-brown diatom

A L M E R  DEE!
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ooze lamina alternating with blue-grey diatom-bearing terrigenous lamina (Figure 6.2 

and sections 6.1.1 and 6.1.2). See appendix 4, Tables A4.1.1.1 -  A .4.1.1.6 for original 

counts. One hundred and seventy-two pairs of these laminations make up the 

deglacial unit.

6.1.1. Orange-brown Biogenic Laminae

Laminae of this type are orange-brown in colour and consist of almost pure diatom 

ooze with very little terrigenous material. BSEI photographs of these laminae are dark 

owing to the high porosity of the diatom ooze (Figure 6.2b, c and d). BSEI analysis 

revealed that this biogenic lamina type is overwhelmingly composed of Hyalochaete 

Chaetoceros spp. resting spores (CRS) and, to lesser extent, Hyalochaete Chaetoceros 

spp. vegetative cells. Minor constituents of the diatom assemblage observed in BSEI 

are Thalassiosira antarctica resting spores (RS), Coscinodiscus bouvet, Odontella 

weissflogii RS, Fragilariopsis spp. and Corethron pennatum. Eight laminae were 

sampled for quantitative diatom counts between 45.03 and 42.51 mcd (see Tables 6.1-

6.3). CRS constitute 96.5 -  99.8 % and vegetative cells 0 -  2.8% relative abundance 

of the total diatom assemblage (Table 6.1). The most dominant species in 

Hyalochaete Chaetoceros free counts (Table 6.2) are Fragilariopsis spp. (60.3%; 

dominated by F. curta (22.6%), F. cylindrus (18.9%) and F. vanheurckii (6.4%)), 

Thalassiosira spp. (17.4%; the dominant species is T. antarctica warm RS form 

(11.6%)), vegetative Eucampia antarctica (5.0 %), Navicula spp. (4.2 %), Proboscia 

inermis (3.5%), Corethron pennatum  (2.0%) and Porosira glacialis (1.6%). Absolute 

abundances of biogenic laminae range from 4650 - 9349 x 106 valves per gramme of 

dry sediment (Table 6.3). The highest absolute abundance occurred in the lowest 

orange-brown biogenic lamina sampled, at 44.97 mcd (log number 4, see appendix 3, 

table A3.1.1), 12,250 cal. yrs BP (Figure 4.5).

One hundred and seventy-two orange-brown biogenic laminae are present in cores 

1098A and 1098C (see appendix 3, table A3.1.1). These laminae are present 

throughout the interval and constitute 42.5% of the total sediment thickness (Figure

6.3). The laminae range in thickness from 0.9 to 34.0 mm (n = 172, a = 7.5 mm, mean 

= 10.0 mm). A linear regression line plotted on Figure 6.4a highlights a decrease in 

biogenic laminae thickness up-core (r = 0.135).
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Figure 6.2 (see previous page)
(a) Photograph of Core 178 1098A 6H, depth ~ 42.55 to 42.75 metres composite 
depth (mcd), showing alternating orange-brown laminae (biogenic) and blue-grey 
laminae (terrigenous). Red box indicates location of (b). (b) Backscattered secondary 
electron imagery (BSEI) photomosaic of alternating diatom ooze biogenic laminae 
(dark: spring) and diatom-bearing terrigenous laminae (light: summer) from 42.66 to 
42.63 mcd; scale bar 3 mm. (c)/(d) and (e)/(f) refer to annotation on (b). (c) BSEI 
photograph of diatom ooze biogenic laminae composed of Hyalochaete Chaetoceros 
spp. resting spores (gold arrows). Scale bar = 50 microns, (d) Secondary electron 
imagery (SEI) photograph of Hyalochaete Chaetoceros spp. resting spores (gold 
arrows) from the biogenic laminae. Scale bar = 50 microns, (e) BSEI photograph of 
terrigenous laminae. Hyalochaete Chaetoceros spp. (gold arrow) and Thalassiosira 
antarctica resting spores (red arrows) present. The white fragments are terrigenous 
grains. Scale bar = 50 microns, (f) SEI photograph of terrigenous laminae with mixed 
diatom assemblage. Scale bar = 50 microns. Gold arrows: (i) Coscinodiscus bouvet 
girdle bands; (ii) Hyalochaete Chaetoceros spp. resting spores; (iii) Thalassiosira 
antarctica resting spore; (iv) Fragilariopsis spp..

Table 6.1
Relative abundance of all diatom species in eight orange-brown biogenic laminae, 
Palmer Deep, ODP core 178-1098A.

Log number 
Species / Depth (mcd)

4
44.970

58
43.996

60
43.978

72
43.841

74
43.825

130
43.191

134
43.117

172
42.651

H yalochaete C haetoceros spp. 
(vegetative) Gran

2.8 1.2 1.2 0 0 0 2.2 1.0

H yalaochaete C haetoceros spp. 
(resting spore) Gran 96.5 98.1 98.4 97.5 99.8 99.8 97.3 98.2

F ragilariopsis spp. Hustedt 0.2 0.4 0.2 2.2 0 0 0.2 0.6

Thalassiosira spp. Cleve 0 0 0.2 0 0.2 0.2 0.2 0.2

Others 0.5 0.3 0 0.3 0 0 0.1 0

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.00

Table 6.2
Relative abundance of Hyalochaete Chaetcoeros spp. free diatom assemblages in 
eight orange-brown biogenic laminae, Palmer Deep, ODP core 178-1098A.

Log number 4 58 60 72 74 130 134 172
Species / Depth (mcd) 44.970 43.996 43.978 43.841 43.825 43.191 43.117 42.651

Corethron pennatum  (Grunow) 
Ostenfeld

0 0.7 2.2 2.7 0 7.9 0 1.5

Eucampia antarctica  (vegetative) 
(Castracane) Mangin

10.2 16.8 3.7 2 1.7 0.5 4.2 1.0

F ragilariopsis spp. Hustedt 47.2 38.7 58.5 73.7 73.0 46.8 75.5 68.6

Thalassiosira spp. Cleve 20.7 28.4 23.6 13.4 15.8 19.3 4.8 13.0

Navicula spp. Bory de st-Vincent 1.0 1.5 5.6 4.0 4.2 7.9 3.7 5.7

Porosira g lacia lis (Grunow) Jorgensen 1.5 6.7 0.5 0.5 0.2 0.2 1.5 2.0

Proboscia  spp. Sunstrom 12.4 1.7 1.7 0.9 0.7 11.5 1.5 0.0

Others 7.0 5.5 4.2 2.8 4.4 5.9 8.8 8.2

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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0 500 1000 1500 2000 2500
Lamina thickness (mm)

Figure 6.3
Graph showing the thicknesses of different types of lamina from Palmer Deep, ODP 
178-1098Aand -1098C. Individual thicknesses are displayed as coloured bars within 
the total thickness of each lamina type.

Lamina thickness (mm) (b )  Lamina thickness (mm)

4030

42
~3

Figure 6.4
(a) Graph showing biogenic lamina thicknesses through part of the deglacial interval, 
44.967 - 40.664 metres composite depth (mcd). Decrease in thickness indicated by 
regression line (r =0.135).
(b) Graph to show terrigenous laminae thickness through part of the deglacial interval, 
45.03 - 40.634 mcd. Decrease in thickness indicated by regression line (r2 = 0.02).
The laminae were plotted according to the depth at the base of the laminae.
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Table 6.3
Absolute abundance of diatom species (valves per gramme xlO6 of dry sediment) in 
eight orange-brown biogenic laminae, Palmer Deep, ODP core 178-1098A.

Log number 

Species / Depth (mcd)

4

44.970

58

43.996

60

43.978

72

43.841

74

43.825

130

43.191

134

43.117

172

42.651
Hyalochaete C haetoceros spp. 
(vegetative) Gran

257.2 57.4 65.6 0 0 0 171.0 53.0

H yalaochaete C haetoceros spp. 
(resting spore) Gran

9018.6 4787.1 5602.2 4534.0 6090.0 5427.0 7639.0 5065.3

F ragilariopsis spp. Hustedt 18.4 23.0 13.1 106.3 0 0 19.0 31.8

Thalassiosira spp. Cleve 0 0 13.1 0 14.1 13.0 19.0 10.6

Others 55.1 11.5 0 9.7 0 0 0 0

Total: 9349.3 4879.0 5694.0 4650.0 6104.1 5440.0 7848.0 5160.7

6.1.2. Blue-grey Terrigenous Lam inae

The blue-grey terrigenous laminae have a greater proportion of terrigenous grains 

such as ice-rafted silt and clay than the biogenic laminae. The diatom assemblage is 

near-monogeneric Hyalochaete Chaetoceros spp. resting spores (CRS) but BSEI 

analysis indicates that there is a more diverse minor diatom assemblage than seen in 

the biogenic laminae (Figure 6.2e and f). This minor assemblage includes the species 

Corethron pennatum , Coscinodiscus bouvet, Odontella weissflogii, Thalassiosira 

antarctica and Fragilariopsis spp. BSEI photographs of these laminae are light owing 

to the high average atomic numbers o f the terrigenous grains. The terrigenous grains 

range from clay- to sand-size and there is variation in size and amount between 

laminae. Terrigenous laminae contain more fragmented diatoms than in biogenic 

laminae.

Seven blue-grey laminae were sampled for quantitative analysis between 45.03 and 

42.51 mcd (see Tables 6.4-6.6). CRS constitute 95.4 -  99.3 % relative abundance of 

the total diatom assemblage (Table 6.4). The most dominant species in Hyalochaete 

Chaetoceros free counts (Table 6.5) are Fragilariopsis spp. (52.8%; dominated by F. 

curta (27.0%), F. cylindrus (8.5%), F. vanheurckii (6.0%) and F. kerguelensis 

(4.0%)), Thalassiosira spp. (29.8%; dominated by T. antarctica resting spores (RS), 

warm form (21.3%), T. lentiginosa (1.7%) and T. tumida (1.0%)), Navicula spp. 

(3.3%), Porosira glacialis (2.1%), Corethron pennatum (1.1%) and Odontella 

weissflogii RS (0.9%). Absolute abundances of terrigenous laminae range from 1135 - 

3550 x 106 valves per gramme (Table 6.6).

One hundred and seventy-three blue-grey terrigenous laminae are present in ODP 

core 1098A and 1098C (see appendix 3). Blue-grey terrigenous laminae are present
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throughout the interval and constitute 57.5% of the total sediment thickness (Figure

6.3). Lamina thicknesses range from 0.95 to 150.1 mm (n = 173, o = 17.5 mm, mean 

= 13.5 mm). A linear regression line plotted on Figure 6.4b shows a slight decrease in 

terrigenous laminae thickness up-core (r2 = 0.02). The thickest terrigenous laminae 

(>50 mm) are at the base of the sequence between 45.03 and 44.28 mcd. From 44.61 

to 40.71 mcd, 12,164 to 11,235 cal. yrs BP (Figure 4.5), there appears to be cyclicity 

in the occurrence of laminae with thicknesses of 40 -  60 mm (Figure 6.4b).

Table 6.4
Relative abundance of all diatom species in seven blue-grey terrigenous laminae, 
Palmer Deep, ODP core 178-1098A.

Log number 5 59 59 61 73 75 135 135 135 173
Species / Depth (mcd) 44.790 43.989 43.987 43.962 43.833 43.819 43.112 43.105 43.100 42.646

H yalochaete Chaetoceros 
spp. (vegetative) Gran 
H yalaochaete C haetoceros 
spp. (resting spore) Gran

0

96.3

0

99.3

2.7

95.4

0

97.5

0.2

98.4

0.7

98.7

0.0

99.0

0.0

96.6

0.0

97.4

1.3

97.8

F ragilariopsis spp. Hustedt 1.6 0.2 0.8 0.7 0.7 0.4 1.0 1.5 1.9 0.7

Thalassiosira  spp. Cleve 1.4 0.5 0.6 1.8 0.7 0.2 0.0 0.8 0.2 0.2

Others 0.8 0.0 0.5 0.0 0.0 0.0 0.0 1.1 0.5 0.0

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 6.5
Relative abundance of Hyalochaete Chaetcoeros spp. free diatom assemblages in
seven blue-grey, terrigenous laminae, Palmer Deep, ODP core 178-1098A. RS =
resting spores.

Log number 5 59 59 61 73 75 135 135 135 173
Species / Depth (mcd) 44.790 43.989 43.987 43.962 43.833 43.819 43.112 43.105 43.100 42.646

Corethron pennatum  (Grunow) 
Ostenfeld

0.7 0.7 0.0 2.0 0.2 2.2 1.0 0.2 0.2 3.9

Eucampia antarctica  
(vegetative) (Castracane) 
Mangin
F ragilariopsis spp. Hustedt

1.4

48.6

2.2

57.3

2.2

47.0

0.2

28.7

0.7

63.5

0.2

54.8

3.2

61.9

0.2

54.6

0.5

56.5

2.4

55.0

Thalassiosira spp. Cleve 32.3 28.9 37.0 62.1 21.8 27.7 17.2 28.8 23.5 17.6
Navicula spp. Bory de st- 
Vincent

2.1 1.7 3.2 1.2 5.9 2 3.7
3.0 5.7 4.6

Porosira g lacia lis  RS 
(Grunow) Jorgensen 
Proboscia  spp. Sunstrom

1.0

1.7

2.0

0.2

2.5

0.2

2.5

0.2

1.7

0.5

4.2

0.2

4.1

0.4

1.7

0.4

0.7

6.5

0.7

0.0

Others 12.2 7.0 7.9 3.1 5.7 8.7 8.5 11.1 6.4 15.8

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Figure 6.5
Types of lamina boundaries observed in ODP 178-1098A Palmer Deep deglacial 
laminated interval (all scale bars 600 microns).
(a) Backscattered secondary electron imagery (BSEI) photograph of sharp boundary 
between summer (terrigenous) and spring (biogenic) laminae.
(b) BSEI photograph of bioturbated boundary between summer (terrigenous) and spring 
(biogenic) laminae.
(c) BSEI photograph of gradational boundary between spring (biogenic) and summer 
(terrigenous) laminae.
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6.1.4. Sub-laminae w ithin Blue-grey Laminae (terrigenous)

Terrigenous laminae in the deglacial laminated interval do not consistently have a 

homogeneous mixed diatom assemblage. Sub-laminae within the blue-grey 

terrigenous laminae have an increased abundance of a specific species relative to the 

rest of the assemblage. These sub-laminae characterised by Thalassiosira antarctica 

resting spores (RS), Hyalochaete Chaetoceros spp. resting spores (CRS), Odontella 

weissflogii RS, Corethron pennatum  and Coscinodiscus bouvet occur intermittently 

between 45.03 and 42.51 mcd (Figure 6.6; see appendix 3, Table A3.1.1), 12,264 -  

11,664 cal. yrs BP (Figure 4.5).

4 2 .5

4 3 -

4 3 . 5 -

§ez$o
4 4 -
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Figure 6.6
Graph illustrating the distribution of the different terrigenous sub-lamina types, 
Palmer Deep ODP 178-1098A, between 45.03 and 42.51 metres composite depth 
(mcd). The sub-laminae are positioned according to the depth o f the base o f the 
lamina they are within.
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The most commonly observed species forming sub-laminae is T. antarctica RS, with 

53 appearances between 45.03 and 42.51 mcd (Figure 6.6). These sub-laminae are 

typically found at the top or just below the top of terrigenous laminae (Figures 6.7 and 

6.8c and d). Sometimes more than one sub-laminae of T. antarctica RS occurs within 

a single blue-grey lamina (e.g. T. antarctica RS sub-laminae occur three times in 

lamina log number 33, see appendix 3, Table A3.1.1). Sub-laminae of T. antarctica 

RS within terrigenous laminae start to occur at 44.98 mcd (Figure 6.6). CRS 

constitute 91.8% relative abundance o f the total diatom assemblage (Table 6.7). T. 

antarctica (53.9%; 35.7% of which are the warm RS form) is the most dominant 

species in the Hyalochaete Chaetoceros spp. free count (Table 6.8). Fragilariopsis 

spp. makes up 33.5% (F. curta (16.3%) and F. cylindrus (10.5%) the most dominant 

species) and Navicula spp., 5.6%, o f the Hyalochaete Chaetoceros spp. free count.

The first occurrence of CRS sub-laminae within the terrigenous laminae is at 44.97 

mcd and they continue to occur irregularly up-core (Figure 6.6). Twenty-five CRS 

sub-laminae occur between 45.03 and 42.51 mcd. CRS constitute 96.9% relative 

abundance of the total diatom assemblage (Table 6.7). The most dominant species in 

the Hyalochaete Chaetoceros spp. free count are Fragilariopsis spp. (56.6%; the most 

dominant are F. curta (34.4%), F. vanheurckii (7.5%) and F. cylindrus (7.3%)), 

Thalassiosira spp. (24.1%; the most dominant are T. antarctica RS warm form 

(16.5%), T. lentiginosa (1.7%) and T. tumida (1.6%)), Navicula spp. (5.2%), Porosira 

glacialis RS (1.6%) and O. weissflogii RS (1.5%) (Table 6.8).

Five terrigenous sub-laminae characterised by C. bouvet (C. bouvet visually dominant 

in BSEI, Figure 6.8g) occur between 45.03 and 42.51 mcd, first appearing at 44.50 

mcd with a sub-lamina of T. antarctica RS and O. weissflogii RS (Figure 6.6). This 

type of sub-laminae appears with several other sub-laminae between 43.19 and 42.74 

mcd (Figure 6.6). CRS constitutes 97.2% relative abundance of the total diatom 

assemblage (Table 6.7). In the Hyalochaete Chaetoceros spp. free counts the most 

abundant species are Fragilariopsis spp. (50.2%; the most dominant species are F. 

curta (35.5%), F. vanheurckii (5.4%) and F. cylindrus (3.4%)) and Thalassiosira spp. 

(23.8%; T. antarctica RS warm form (17.6%) and T. tumida (2.0%)), Actinocyclus 

actinochilus (8.6%), Navicula spp. (3.4%), Rhizosolenia spp. (2.9%; R. antennata f. 

semispina (2.2%)), O. weissflogii RS (1.2%) and C. bouvet (0.7%) (Table 6.8).

There are fifteen occurrences of C. pennatum  terrigenous sub-laminae (Figure 6.8e 

and f), the first occurs at 44.80 mcd (Figure 6.6). Sub-laminae of C. pennatum occur
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with sub-laminae of T. antarctica RS, and at 43.11 mcd with C. bouvet, O. weissflogii 

RS and T. antarctica RS sub-laminae (Figure 6.6). CRS constitute 95.6% relative 

abundance of the total diatom assemblage (Table 6.7). In the Hyalochaete 

Chaetoceros spp. free counts the most abundant species are Fragilariopsis spp. 

(50.5%; the most dominant species are F. curta (24.6%), F. vanheurckii (8.5%), F. 

cylindrus (6.2%) and F. ritscheri (3.2%)), Thalassiosira spp. (31.3%; T. antarctica 

RS warm form (22.4%)), C. pennatum  (5.0%), Navicula spp. (3.7%) and O. 

weissflogii RS (1.2%) (Table 6.8).

O. weissflogii RS terrigenous sub-laminae (Figure 6.8a and b) are the least common 

of the five sub-lamina types, with only four occurrences between 45.03 and 42.51 

mcd (Figure 6.6). An O. weissflogii RS sub-lamina occurs at 44.50 mcd with sub

lamina of C.bouvet and T. antarctica RS, at 44.08 mcd with no other sub-laminae, at 

43.37 mcd with a sub-lamina of T. antarctica RS and at 43.11 mcd with sub-laminae 

of CRS, C. bouvet, C. pennatum  and T. antarctica RS (Figure 6.6). CRS constitute 

90.1% relative abundance of the total diatom assemblage (Table 6.7). The most 

dominant species in the Hyalochaete Chaetoceros spp. free count are Fragilariopsis 

spp. (34.7%; the most dominant species are F. curta (18.7%), F. ritscheri (6.0%) and 

F. cylindrus (3.0%)), O. weissflogii RS (11.0%), Proboscia spp. (32.2%; P. inermis 

(21.0%) and P. truncata (11.2%)) and Thalassiosira spp. (12.5%; T. antarctica warm 

form RS (6.2%)) (Table 6.8).

Table 6.7
Relative abundance of all diatom species from terrigenous sub-laminae, Palmer Deep, 
ODP core 178-1098A. CRS = Hyalochaete Chaetoceros spp. resting spores. RS = 
resting spores._______________________________________________________________

Log number 131 135 135 131 59 131 135 135
Depth ( mcd) 43.177 43.109 43.107 43.171 43.987 43.174 43.098 43.096

Species / Sub-lamina 
type CRS

Coscinodiscus
bouvet

Corethron
pennatum Thalassiosira antarctica RS Odontella 

weissflogii RS
H yalochaete
C haetoceros spp. 0.0 2.2 0.0 0.2 0.0 0.0 0.0 0.4
(vegetative) Gran
H yalaochaete
C haetoceros spp. (RS) 97.1 96.6 97.2 95.6 82.3 96.6 96.4 90.1
Gran
Corethron pennatum  
(Grunow) Ostenfeld 0.2 0.0 0.2 0.2 0.0 0.0 0.0 0.0

Coscinodiscus bouvet 
Karsten 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0

Fragilariopsis  spp. 
Hustedt 1.4 0.7 0.7 2.6 3.1 1.4 1.8 3.1

Thalassiosira antarctica  
RS Comber 0.0 0.0 1.0 0.2 12.3 1.8 1.4 1.0

Odontella weissflogii 
RS (Janisch) Grunow 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8

Others 1.3 0.5 0.7 1.2 2.3 0.2 0.4 5.0

Total: 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Table 6.8
Relative abundance of Hyalochaete Chaetcoeros spp. free diatom assemblages from 
terrigenous sub-laminae, Palmer Deep, ODP core 178-1098A. CRS = Hyalochaete 
Chaetoceros spp. resting spores. RS = resting spores.

Log number 131 135 135 131 59 131 135 135
Depth ( mcd) 43.177 43.109 43.107 43.171 43.987 43.174 43.098 43.096

Species / Sub-lamina 
type CRS Coscinodiscus

bouvet
Corethron
pennatum Thalassiosira antarctica RS Odontella 

weissflogii RS
Corethron pennatum  
(Grunow) Ostenfeld 4.2 1.2 1.7 5.0 0.7 0.5 0.0 0.2

Coscinodiscus bouvet 
Karsten

0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0

F ragilariopsis spp. 
Hustedt

59.0 54.2 50.2 50.5 22.6 43.3 34.5 34.7

Thalassiosira antarctica  
RS Comber

16.6 20.0 19.3 24.6 67.1 38.9 55.8 8.2

Odontella weissflogii RS 
(Janisch) Grunow

1.0 2.0 1.2 1.2 0.0 0.5 0.7 11.0

Others 19.2 22.6 26.9 18.7 9.6 16.8 9.0 45.9

Total: 100.0 100.0________ 100.0 100.0 100.0 100.0 100.0 100.0

Table 6.9
Absolute abundance of diatom species (valves per gramme xlO6 of dry sediment) 
from terrigenous sub-laminae, Palmer Deep, ODP core 178-1098A. CRS = 
Hyalochaete Chaetoceros spp. resting spores. RS = resting spores.

Log number 131 135 135 131 59 131 135 135
Depth ( mcd) 43.177 43.109 43.107 43.171 43.987 43.174 43.098 43.096

Species / Sub-lamina CRS Coscinodiscus Corethron Thalassiosira antarctica RS Odontella
type bouvet pennatum weissflogii RS

H yalochaete Chaetoceros 
spp. (vegetative) Gran

0.0 32.6 0.0 1.7 0.0 0.0 0.0 3.2

H yalaochaete
Chaetoceros spp. (resting 1587.1 1426.0 581.1 681.1 827.7 1034.3 2941.2 696.3
spore) Gran
Corethron pennatum 3.9 0.0 1.4 1.7 0.0 0.0 0.0 0.0
(Grunow) Ostenfeld
Coscinodiscus bouvet

0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0Karsten
F ragilariopsis spp. 
Hustedt 23.3 10.9 4.3 18.2 31.5 14.5 55.1 24.0

Thalassiosira antarctica
0.0 0.0 5.7 1.7 123.7 19.4 41.3 8.0RS Comber

Odontella weissflogii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.4RS(Janisch) Grunow

Others 19.4 7.2 3.7 8.2 22.5 2.4 13.8 35.2

Total: 1633.7 1476.7 597.6 712.6 1005.4 1070.6 3051.4 773.1
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(See figure 6.8g and h).

Thalassiosira

Mixed open water 
diatom assemblage.

Diatom assemblage 
dominated by

O dontella  w eissflogii 
RS

(See figure 6.8a and b).

Diatom assemblage 
dominated by

antarctica  
RS

(See figure 6.8c and d).

Mixed open water 
diatom assemblage.

Diatom assemblage 
dominated by

C oscinodiscus bouvet

Mixed open water 
diatom assemblage 

with increased 
CRS

Diatom assemblage 
dominated by 

Corethron pennatum  
and CRS 

(See figure 6.8e and f).

Mixed open water 
diatom assemblage.

Figure 6.7
Backscattered secondary electron 
imagery (BSEI) photomosaic of 
multiple sub-laminae within the 
terrigenous laminae, ODP 178- 
1098A Palmer Deep (~ 43.12 to 
43.09 mcd). Scale bar = 3 mm. 
CRS = Hyalochaete Chaetoceros 
spp. resting spores. RS = resting 
spores.



Figure 6.8
Sub-lam inae species 
associated with Figure 
6.7.
(a )  B a c k s c a t t e r e d  
electron imagery (BSEI) 
photograph of Odontella 
weissflogii resting spore 
(RS) (gold arrows) sub
lamina. Scale bar = 300 
microns, (b) Secondary 
electron imagery (SEI) 
p h o t o g r a p h  o f  O. 
w eissflogii RS sub
lamina. Scale bar = 10 
mic rons ,  (c) BSEI  
p h o t o g r a p h  o f  
Thalassiosira antarctica 
RS (gold arrows) sub
lamina. Scale bar = 300 
m i c r o n s ,  ( d )  SEI  
p h o t o g r a p h  o f  T. 
an tarctica  RS sub
lamina. Scale bar = 20 
microns.
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Figure 6.8 continued
(e) BSEI photograph of 
Corethron pennatum  
(gold arrow s) sub
lamina. Scale bar = 200 
microns.
(f) SEI photograph of 
C. p en n a tu m  s ub 
lamina. Scale bar = 20 
microns.
(g) BSEI photograph of 
Coscinodiscus bouvet 
(gold arrow s) sub
lamina. Scale bar = 300 
microns.
(h) SEI photograph of 
C. b o u v e t  ( w h i t e  
arrows) sub-lamina. 
Scale bar=50 microns.
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6.1.5. Sub-lamina Relationships

One hundred and two sub-laminae occur between 45.03 and 42.51 mcd (see appendix 

3, Table A3.1.1). Out o f all the sub-lamina types sub-lamina characterised by 

Thalassiosira antarctica resting spores (RS) have the highest absolute abundance, 

1708 x 106 valves per gramme of dry sediment (Table 6.9). The lowest absolute 

abundances occur in the Coscinodiscus bouvet, Odontella weissflogii RS and 

Corethron pennatum terrigenous sub-laminae (Table 6.9). The first sub-laminae occur 

at 44.98 mcd (Figure 6.6). Up through the laminated interval multiple sub-laminae 

occur within a single terrigenous lamina (Figure 6.9), often the sub-laminae 

assemblages are dominated by the same species. Between 43.19 and 42.72 mcd there 

are several terrigenous laminae with four or five sublaminae (Figure 6.6, 6.7 and 6.9).

Number of sub-laminae within blue-grey 
terrigenous laminae

0 1 2 3 4 5 6 7
42    h .in -  ■■ i    i ■ ■■  ii . i

42.5  

43

43.5

45

45.5

Figure 6.9
Location of sub-laminae (increased abundance of specific species) within the blue- 
grey terrigenous laminae in the deglacial laminated interval, 45.03-42.51 metres 
composite depth (mcd), ODP 1098A Palmer Deep.
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6.1.6. Lamina and Sub-lamina Relationships

Fifty-three percent o f blue-grey terrigenous laminae between 45.03 and 42.51 mcd 

contain at least one sub-lamina (Figure 6.9). Sub-lamina characterised by 

Thalassiosira antarctica resting spores (RS) are found in 45%, Hyalochaete 

Chaetoceros spp. resting spores (CRS) in 21%, Corethron pennatum in 13%, 

Coscinodiscus bouvet in 5% and Odontella weissflogii RS in 4% of blue-grey 

terrigenous laminae.

Two sets of Markov chain analysis were conducted to ascertain if there was a pattern 

in the record of transitions between a lithology (lamina or sub-lamina) and others (see 

appendix 5 for calculations). The coding o f states in the first set of Markov chain 

analysis was biogenic laminae, terrigenous laminae and terrigenous laminae with sub

laminae within. Markov chain analysis determined that the cycles: biogenic laminae -  

terrigenous laminae -  biogenic laminae and biogenic laminae -  terrigenous lamina 

with sub-laminae -  biogenic laminae were likely to occur and that the occurrence of 

lithologies was, to an extent, dependent on preceding lithology. Lithologies were 

redefined in the second Markov chain analysis as; biogenic laminae, terrigenous 

laminae, terrigenous laminae containing sub-laminae including Thalassiosira 

antarctica resting spores (RS) and terrigenous laminae with sub-laminae not including 

T. antarctica RS. Markov chain analysis determined that the more likely cycles were: 

biogenic laminae -  terrigenous laminae -  biogenic laminae and biogenic laminae -  

terrigenous laminae with sub-laminae including T. antarctica RS -  biogenic laminae, 

and the occurrence was to an extent dependent on the preceding lithology.
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6.1.7. Other Observations

Framboidal pyrite (FeS2; spheroidal aggregates of discrete pyrite microcrystallites) 5 

-  15 microns in diameter, occurred throughout the laminated interval. BSEI analysis 

showed that framboids were present outside diatom frustules and, more commonly, 

inside larger diatoms such as Coscinodiscus bouvet and Corethron pennatum. In SEI 

analysis many framboids (framboidal aggregates) were observed in C. pennatum 

frustules (Figure 6.10a and b). BSEI analysis of these mineral deposits disclosed two 

structure types of framboids; a more common homogeneous structure and a less 

common framboid with a two layered structure (Figure 6.10c). Agglutinated 

foraminifera were present throughout the laminated interval (Figure 6.11). The 

foraminifera were not affiliated with any particular laminae or sub-laminae. Very few 

calcareous foraminifera were present in the laminated interval.
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Figure 6.10
Secondary electron imagery 
(SEI)  and backscatte red  
electron im agery (BSEI) 
photographs o f pyrite in 
d e g l a c i a l  l a m i n a t e d  
sediments, Palmer Deep, ODP 
site 1098A.
(a) SEI p h o t o g r a p h  o f  
Corethron pennatum  (red 
arrow) filled with balls of 
pyrite (gold arrow). Scale bar 
= 50 microns.
(b) SEI photograph of close up 
of balls of pyrite in (a). Scale 
bar = 6 microns
(c) BSEI photograph of C. 
p e n n a t u m  ( r e d  a r r o w )  
surrounded with Hyalochaete 
Chaetoceros spp. resting 
spores. Balls of pyrite within 
the C. pennatum frustule (gold 
arrow). Note the two layered 
structure o f the pyrite balls. 
Scale bar=30 microns
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Figure 6.11
Backscattered electron imagery (BSEI) photograph of an agglutinated foraminifera (gold 
arrow) in an orange-brown biogenic laminae. Surrounded by Hyalochaete Chaetoceros 
spp. resting spores. A chain of Fragilariopsis spp. is present above the foraminifera. Scale 
bar=60 microns.

c Hyalochaete Chaetoceros spp. resting spores

T Thalassiosira antarctica resting spores.

M Mixed open water diatom assemblage

CO Coscinodiscus bouvet and/or Odontella 
weissflogii resting spores.

cc Corethron pennatum

Figure 6.12
Schematic representation o f the sub-seasonal sub-laminae within the terrigenous 
laminae, Palmer Deep. Compiled from backscattered electron imagery (BSEI) data.
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6.2. Interpretation

The ecology of the diatom species that are discussed in this section is described in 

greater detail in chapter 3, section 3.5.

6.2.1. Spring: Orange-brown Biogenic Laminae

The dominant diatom genus in the biogenic orange-brown laminae is Hyalochaete 

Chaetoceros. In coastal Antarctica, the Hyalochaete Chaetoceros sub-genera favours 

proximity to sea ice (Leventer, 1991; Crosta et al., 1997) and modem sediment trap 

data from the Antarctic Peninsula suggests that Hyalochaete Chaetoceros spp. blooms 

are associated with the melting o f sea ice in the austral spring (Leventer, 1991). 

Fragilariopsis curta and F. cylindrus are also linked with melting sea ice, and 

resultant surface water column stratification (Leventer and Dunbar, 1987; Garrison, 

1991; Cunningham and Leventer, 1998; Leventer, 1998), F. vanheurckii associated 

with the spring sea ice margin (Garrison et al., 1987) and Navicula spp. have been 

noted to be a significant component of the spring bloom when sea ice melts (Krebs,

1983). Thalassiosira antarctica has been documented in coastal zones of loose 

platelet ice crystals floating beneath pack and fast ice (Homer, 1985b; Smetacek et 

al., 1992; Gleitz et al., 1998). Corethron pennatum  is a very common lightly silicified 

Antarctic species which occurs in open water with little sea ice (Fryxell and Hasle, 

1971; Makarov, 1984; Leventer and Dunbar, 1987) although it has been reported as a 

component of the ice-edge phytoplankton (Marra and Boardman, 1984). C. pennatum 

usually reaches its highest concentrations along the Antarctic coast and can dominate 

the phytoplankton (Sommer, 1991; Ligowski et a l,  1992). Porosira glacialis is 

associated with sea ice and has been reported to occur in slush and wave exposed 

shore ice (Hasle; 1973; Krebs et al., 1987). Hence, the biogenic Hyalochaete 

Chaetoceros spp. resting spores (CRS) orange-brown laminae are interpreted as 

spring deposition.

During the deglaciation the water column in the vicinity of the Palmer Deep would 

have been influenced by the adjacent ice sheet. Melting of the sea ice and ice sheet in 

spring released freshwater, creating a stratified water column. The Gerlache Strait 

(Figure 6.1) remained largely blocked by ice, preventing the northward flow of 

surface water, as exists here today (Sjunneskog and Taylor, 2002). This restricted
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flow would have further enhanced surface water stratification. These conditions of 

reduced surface salinity and high nutrients associated with melting ice create ideal 

conditions for high productivity o f Hyalochaete Chaetoceros spp.. Environmental 

stress is likely to occur at the end o f spring when nutrients have been used up or when 

a storm mixes up the water column (breaking down stratification) increasing the 

salinity and decreasing the temperature of the shelf waters.

I suggest that the thickness of the biogenic laminae (Figure 6.4a) was controlled by 

the proximity of the West Antarctic Ice Sheet (WAIS) front during the deglacial 

retreat. As the ice sheet became increasingly distal from Palmer Deep, i.e. nearer to 

the continent, a decrease in the ice sheet meltwater flux would have led to a less 

stratified water column and reduced nutrients, which reduced productivity, causing 

absolute abundance of the orange-brown biogenic laminae to decrease upcore (Table

6.3). Therefore, this reduction in productivity created thinner laminae through time. 

At the base of the deglacial laminated interval, between 44.973 and 44.967 mcd (see 

appendix 3, log number 2), there is one biogenic laminae 6 mm thick within 207 mm 

of terrigenous sediment. This implies that deposition was still dominated by a glacial 

environment. The biogenic lamina would have been deposited when the sea ice 

melted in spring; however, the sea ice may not have melted every year during the 

early part of the deglaciation.

6.2.2. Summer: Blue-grey Terrigenous Laminae

As a grounded ice sheet moves, sand, silt and clay are entrained. The sand, silt and 

clay are transported to the grounded margin by ice streams, the finer fraction 

becoming suspended in the water column following ice melt and deposited in the 

sediment (Leventer et al., 2002; Domack et a l , 2006). The high proportion of ice- 

rafted material in the mixed diatom assemblage terrigenous lamina is therefore 

interpreted as summer/autumn melt and deposition.

The species within the summer laminae such as Thalassiosira antarctica resting 

spores (RS), Odontella weissflogii RS, Corethron pennatum and Coscinodiscus 

bouvet are considered to be open-water diatoms and are related to ice-free, lower 

nutrient conditions which would have occurred following total melt of seasonal sea 

ice (Fryxell and Hasle, 1971; Makarov, 1984; Leventer and Dunbar, 1987; Priddle 

and Thomas, 1989; Zielinski and Gersonde, 1997). The genus Thalassiosira is
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widespread in Antarctic waters and commonly occurs in sea temperatures of 2° to 1°C 

(Zielinski and Gersonde, 1997). It has been considered rare to find T. antarctica in sea 

ice (Fryxell and Kendrick, 1988; Leventer and Dunbar, 1987; Zielinski and Gersonde, 

1997), which has been attributed to its inability to survive the low light intensities 

beneath and within sea ice (Fryxell et al., 1987). There is little documented on the 

ecology of the Odontella genus; however O. weissflogii is considered endemic to the 

Southern Ocean and occurs in Antarctic nearshore regions where water temperatures 

are between 2° and 5°C (Zielinski and Gersonde, 1997). As previously discussed C. 

pennatum is an open water species (Fryxell and Hasle, 1971; Makarov, 1984; 

Leventer and Dunbar, 1987). C. bouvet is a large distinctive Antarctic endemic 

species and has a circumpolar distribution. It is found in the neritic environment 

(coastal habitat) but has been seen in the Scotia Sea (oceanic waters) (Priddle and 

Thomas, 1989); however, little more is known about the ecology of C. bouvet. 

Fragilariopsis kerguelensis is an indicator of open-water productivity and is 

negatively correlated with sea ice concentration (Burckle et al., 1987). Navicula spp. 

indicate the presence of sea ice in the region (Krebs et al., 1987).

In Figure 6.4b, a general decrease in the thickness of the terrigenous laminae could be 

explained by the shoreward retreat o f the melting glacial ice, the source of the 

terrigenous component. Up-core there are several repeated peaks of relatively thick 

terrigenous laminae (40 - 60 mm) (Figure 6.4b) which could indicate summers with 

much higher melting or longer seasons. These peaks are not regular, they have a 

periodicity ranging from 6 to 35 couplets (a minimum of 6 to 35 summers) which 

does not appear to correlate with modem climate cycles known to affect Antarctic 

Peninsula sea ice distribution such as Antarctic Circumpolar Wave (ACW) or El-Nino 

(Harangozo, 2000). The terrigenous lamina thicknesses (Figure 6.4b) do not decline 

smoothly up-core which implies that the ice sheet did not melt at a continuous rate 

through the deglaciation. Post-deglaciation, the terrigenous laminae become rarer up- 

core into the Holocene as the glacial margin became land-based (Leventer et al., 

2002). Fragmented frustules observed in the terrigenous laminae are produced as a 

result of grazing zooplankton, which excrete the diatom remains as faecal pellets, and 

minor frustule dissolution in the surface waters before sedimentation.
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6.2.3. W inter

An abrupt transition from summer terrigenous laminae to the spring biogenic laminae 

suggests an abrupt change in sediment regime. The decrease in temperatures in winter 

would increase sea ice cover causing the input to the sediment to dramatically 

decrease (Gilbert et a l, 2003) - the hiatus between summer and spring could even 

represent several years, particularly in the early deglacial, owing to sea ice cover not 

melting during the year.

6.2.4. Annual Signal

From the onset of deglaciation the orange-brown diatom ooze laminae are seen to 

alternate with the blue-grey diatom bearing terrigenous sediment. These discrete 

laminae are interpreted as spring and summer/autumn respectively. The higher 

absolute abundance of diatoms in the spring orange-brown biogenic laminae relative 

to the summer blue-grey diatom bearing terrigenous laminae is a result of different 

water column conditions and nutrient levels. In the spring higher nutrient levels and 

water column stability (stratification) are induced by ice melt which allows high 

productivity to occur. In the summer, nutrient levels will have become depleted and 

water column stability reduced by mixing, leading to lower productivity. Sea ice 

cover in winter prevents sediment flux and deposition (Leventer et al., 2002). The 

rhythmic alternation of two lamina types indicates that the analysed laminated interval 

is varved. The couplets observed in the deglacial sediment sequence represent an 

annual cycle with the base of spring laminae marking the start o f a year.

6.2.5. Sub-seasonal signal

The sub-seasonal diatom blooms (Figures 6.7 and 6.8) seen within some terrigenous 

laminae suggest an evolution o f the environment and/or shelf waters in deglacial 

summers. The intact nature of the diatoms within the sub-laminae suggests rapid 

flocculation and consequent mass sinking at bloom termination events. Sub-laminae 

of Hyalochaete Chaetoceros spp. resting spores (CRS) tend to be observed near the 

base of the terrigenous laminae (Figure 6.7). The sub-laminae are unexpected, since 

this genus is considered to be associated with spring productivity. The occurrence as
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sub-laminae could indicate a brief return to water column stratification caused by the 

last fragments of sea ice melting or an influx of meltwater from the land allowing this 

genus to bloom and produce the increase in CRS.

Coscinodiscus bouvet sub-laminae (Figures 6.7 and 6.8g and h) are observed in the 

lower to middle part of the terrigenous laminae. Rhizosolenia antennata f. semispina, 

also present in these sub-laminae, indicates open waters in summer (Froneman et al., 

1995). The sub-laminae were probably caused by water column mixing (e.g. storms) 

in the summer. The sub-laminae o f Corethron pennatum  (Figure 6.7 and 6.8e and f) 

are observed in the middle o f terrigenous laminae. The sub-laminae are unusual since 

high abundances of this species are rarely found in sediments (Taylor and 

Sjunneskog, 2002). C. pennatum  has positive buoyancy (Crawford, 1995) which 

suggests that it may be able to exploit a well-stratified water column, migrating down 

to take advantage of higher nutrient content at depth and up for higher light levels for 

photosynthesis (Leventer et al., 2002) to maximise bloom conditions. Deterioration in 

the water column stability during the summer to autumn transition could potentially 

trigger a mass sinking of the bloom (Kemp et al., 2000).

The Odontella weissflogii resting spore (RS) sub-laminae (Figure 6.7 and 6.8a and b) 

seen near the top of the terrigenous laminae were most likely to have been deposited 

owing to a change in water column conditions. Froneman et al. (1997) reported O. 

weissflogii to be a temperate neritic species that is transported into Antarctic waters 

by unusual, southern intrusions o f sub-Antarctic surface waters. The end of summer 

bloom of this species could therefore have been advected into the Palmer Deep region 

during a period of maximum cyclone activity (King et al., 2003). Proboscia spp., 

which are also present in this sub-laminae, dominate summer-autumn diatom 

communities (Brichta and Nothig, 2003).

Thalassiosira antarctica RS sub-laminae (Figures 6.7 and 6.8c and d) are seen as one 

or two bloom events near the top of the terrigenous laminae, acting as a marker for the 

end of the summer season. Since T. antarctica RS sub-laminae are not observed in the 

biogenic laminae, I believe that T. antarctica blooms in the summer/autumn rather 

than at the beginning of spring. An increase in salinity as sea ice forms retards the 

species growth (Aletsee and Janhnke, 1992) and this intolerance becomes greater as 

the temperature decreases (Grant and Homer, 1976; Aletsee and Janhnke, 1992). The 

annual sea ice advance, decreased light intensities (Taylor, 1999b) and the brine 

rejection would have caused convective overturning and mixing, decreasing the
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nutrients in the water. Therefore, the T. antarctica RS probably formed at the end of 

the summer as a result o f environmental stress caused by sea ice formation. 

Alternatively, high abundances o f T. antarctica could have been advected into the 

region, as recorded in the Bransfield Strait, where sporadic ingressions of cold 

Weddell Sea surface water bring T. antarctica into the area (Gersonde and Wefer, 

1987; Zielinski and Gersonde, 1997).

The sequence of CRS sub-lamina followed by C. bouvet, C. pennatum, O. weissflogii 

RS and T. antarctica RS sub-laminae within one terrrignous lamina has been 

observed once in the deglacial laminated interval (lamina log number 135, appendix 

3, Table A3.1.1), but several times with four of the five types of sub-laminae present. 

This suggests that there was a repeated evolution of shelf water conditions during the 

summers which contain the sub-laminae.

6.2.6. Sub-seasonal and Seasonal Relationship

The sub-seasonal laminae which are present in some terrigenous laminae start to 

occur near the base (44.98 mcd, Figure 6.9) of the deglacial laminated interval. There 

does not seem to be a periodicity to the occurrence of sub-seasonal blooms in the 

deglacial interval. Several mechanisms for the multiple sub-seasonal laminae are 

suggested below, including (1) high tides (2) high cyclone intensity and (3) intrusion 

of Circumpolar Deep Water (CDW) onto the continental shelf.

(1) A similarity between the alternating laminations and tidal signals and a strong bi

annual control on biogenic and terrigenous laminae deposition has been suggested by 

Domack et al. (2003). A brief period of higher tides in the summer or the increase in 

autumnal tide amplitude could create conditions which would induce the repeated 

sub-lamina monospecific blooms seen within some of the terrigenous laminae (Figure 

6.7). The high tides could bring coastal diatom blooms up against a frontal zone 

produced by estuarine (meltwater) flow (Leventer et al., 2002). This oceanographic 

salinity barrier would cause environmental stress inducing the diatoms to rapidly form 

resting spores. The high density o f the frustules would cause them to sink and be 

deposited on the sea floor. Repeated high tide pulses throughout the summer/autumn 

would bring different species blooms against the ‘barrier’, causing the repeated 

diatom blooms found within the sediment.

(2) The Antarctic Peninsula is the most northerly part of the continent and is most 

subject to mid-latitude oceanographic and atmospheric influences. The peninsula
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forms the southern boundary to the Drake Passage and is therefore subject to many 

consequences of this constriction o f the Southern Ocean. The Antarctic Peninsula is in 

close proximity to the Antarctic Circumpolar Current (ACC). The Circumpolar 

Trough (CPT), a low-pressure system, encircles Antarctica and in the austral summer 

is found to be extreme off West Antarctica, cutting the Antarctic Peninsula at its 

halfway point near Marguerite Bay (Simmonds, 2003). High cyclone frequencies have 

a tendency to be found in the regions of the deeper parts of the CPT. In both summer 

and winter the number and intensity of cyclones are at a maximum west of the 

Antarctic Peninsula (King et al., 2003). The presence of large numbers of cyclones to 

the west of the peninsula means that the region is subject to very high temporal 

variability on a wide range of timescales from synoptic to interdecadal (Simmonds 

and Murray, 1999). Consequently a variety of air trajectories reach the Antarctic 

Peninsula and manipulate surface water masses, pushing diatoms against the 

meltwater created salinity barrier, causing diatoms to sink and begin resting spore 

formation. Therefore another possible cause for the multiple sub-laminae could be 

storms. More storms or a storm of certain intensity or certain direction may cause 

several blooms to be advected into the Palmer Deep region during the summer, such 

as Coscinodiscus bouvet (Priddle and Thomas, 1989) and Odontella weissflogii 

(Froneman et al., 1997).

(3) A change in oceanographic conditions such as in nutrients, water temperature and 

salinity could influence the occurrence o f different diatom species blooms and/or the 

form of deposition. Domack et al. (1992) observed the intrusion of CDW onto the 

west Antarctic Peninsula continental shelf to be associated with a major coastward 

bend in the 3000-m depth contour. This intrusion would introduce a new set of shelf 

water conditions. Ice melting has been suggested as the driving force behind CDW 

across-shelf transport (Potter and Paren, 1985). As ice melts, more buoyant, less 

saline water is released at the surface, this flows outwards drawing the CDW up onto 

the shelf. This system would have a self-perpetuating circulation because the 

relatively warm waters of the CDW would melt the ice. A seasonal and interannual 

variability in the frontal boundary between the ACC and Weddell Sea Transitional 

Water (more saline water mass from northwestern Weddell Sea) has been observed in 

the Antarctic Peninsula region (Hofmann and Klinck, 1998b). The boundary ranges 

from the southern Bransfield Strait into the southern Gerlache Strait. Any 

impingement of the boundary position onto the continental shelf controls the
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upwelling of Upper CDW and resultant changes to shelf waters which could enhance 

multiple species blooms throughout the summer. It is possible that a threshold in tidal 

amplitudes, cyclone intensity or intrusion of CDW was reached to produce higher 

productivity and more multiple sub-seasonal laminae per year. A schematic model of 

the resulting deposition is presented in Figure 6.12. I believe the Hyalochaete 

Chaetoceros spp. resting spore (CRS), C. bouvet and Corethron pennatum  sub

laminae were caused by a breakdown in the stratification of the water column. The O. 

weissflogii resting spore (RS) sub-lamina was caused by advection of waters into the 

Palmer Deep region which was followed by a seasonal-change-induced Thalassiosira 

antarctica RS sub-lamina.

6.2.7. Discussion o f  O ther Observations

Pyrite is typically found in anoxic, sulphidic, marine sediments (e.g. Berner, 1970;

1984) and is especially common in sapropels (Love and Amstutz, 1966). The 

formation of pyrite framboids in sediments or during sedimentation requires an 

anaerobic environment. This environment could be formed within the sediment as a 

whole, or it might exist as a microenvironment inside microfossils, such as diatoms 

(Schallreuter, 1984). Framboidal pyrite is the result of the breakdown of organic 

matter by decay and sulphate-reducing bacteria. The iron is usually brought into the 

environment as detritus (Rolfe and Brett, 1969). The organic matter within diatoms 

does not provide sufficient sulphur or iron to produce a frustule filled with framboidal 

pyrite. These elements must, therefore, diffuse into the diatom from outside 

(Schallreuter, 1984). Therefore, the presence of framboidal pyrite throughout the 

laminated interval, inside and outside diatom frustules, indicates that the depositional 

environment was anoxic.

Agglutinated foraminifera are common in bathyal environments and are important 

indicators of palaeoceanographic conditions because they are sensitive to differences 

in water masses. Temperature, salinity and oxygen content as well as bathymetry and 

substrate conditions affect the distribution of benthonic foraminifera (Phleger, 1960; 

Boltovsky, 1965; Murray, 1973). Unfortunately insufficient detail in the BSEI 

photographs of the agglutinated foraminifera means that species identification is not 

possible (I.MacMillan personal communication, 2005) and therefore no 

environmental inferences can be made.

115



CHAPTER 6

6.3. Conclusions

The Palmer Deep deglacial laminated interval has given an insight into seasonal and 

sub-seasonal variability within a period of rapid climate change, which has 

implications for understanding the effect of current warming experienced on the 

Antarctic Peninsula. The deglacial sedimentary interval consists of laminae or thin 

beds of orange-brown diatom ooze alternating with blue-grey terrigenous sediments. 

These result from seasonal depositional events. Hyalochaete Chaetoceros spp. resting 

spores (CRS) overwhelmingly dominate the orange-brown laminae and result from 

early spring sedimentation associated with stratified surface waters and a freshwater 

cap, trapping nutrients and promoting exceptionally high primary productivity. 

Productivity decreased during deglaciation as the West Antarctic Ice Sheet (WAIS) 

retreated. A more open-water Antarctic diatom assemblage (e.g. Corethron pennatum, 

Coscinodiscus bouvet and Thalassiosira antarctica) characterises the blue-grey 

terrigenous-rich laminae, which result from summer/autumn sedimentation associated 

with increased terrigenous input, and relate to ice-free, more open water, lower 

nutrient conditions following total melt of seasonal sea ice. The terrigenous laminae 

thickness decreases unevenly up-core, suggesting the melting ice sheet retreated 

shoreward in pulses during the deglaciation. Sea ice cover in the winter prevents any 

sedimentation. During the deglaciation, sub-seasonal summer diatom blooms are 

observed. High abundances of CRS, C. bouvet, C. pennatum, Odontella weissflogii 

resting spores (RS) and T. antarctica RS relative to the remaining assemblage are 

observed repeatedly through the summer laminae, suggesting changes in shelf waters 

throughout the summer. Starting from the base of the summer laminae, a sequence of 

sub-laminae species has been ascertained: CRS, C. bouvet, C. pennatum, O. 

weissflogii RS and finally T. antarctica RS. High tides in austral summer and autumn 

and high cyclone intensity are proposed as possible causes that could have introduced 

conditions which enhanced specific species productivity. However, I believe the most 

likely cause of the multiple sub-seasonal bloom laminae is the upwelling of 

Circumpolar Deep Water induced by the sub-seasonal variation in the impingement of 

Antarctic Circumpolar Current onto the continental shelf. After the collapse of the 

glacial ice sheet, oceanographic and biological systems responded rapidly, early on in 

the reinstatement of Upper Circumpolar Deep Water upwelling onto the continental 

shelf. By understanding the responses o f diatoms to the retreat of the West Antarctic
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Ice Sheet and changing oceanographic conditions during the last deglaciation, a better 

understanding has been gained o f how they may respond to future periods of rapid 

climate change.
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7. Mertz Ninnis Trough

This chapter presents the results and interpretations of backscattered electron imagery 

(BSEI) analysis, secondary electron imagery (SEI) analysis and quantitative diatom 

assemblage counts from NBP0101 JPC 10 and KC10A, Mertz Ninnis Trough, East 

Antarctica (Figure 7.1). The diatom count data used to construct Tables 7.1 -  7.6 can 

be found in appendix 4. Part o f this chapter has been submitted for publication 

(Maddison et a l, “Post-glacial seasonal diatom record: an early record of the Mertz 

Glacier Polynya, East Antarctic Margin”).

7.1. Results NBP0101 JP C 1 0

The post-glacial laminae from NBP0101 JPC 10 are classified according to the 

dominance of terrigenous or biogenic components and diatom assemblages. 

Hyalochaete Chaetoceros spp. (resting spores and vegetative cells) overwhelmingly 

dominate the laminated sediment (78.8 - 93.8 % of all assemblages, Table 7.1), 

therefore minor constituents of the assemblage, which are highly visible in the BSEI 

photographs, are used to categorise the lamina types. The relative and absolute diatom 

abundances of each lamina type represent an average of five counts conducted on 

each type of lamina (see appendix 4, Tables A4.2.1.1 -  A4.2.1.4 for original counts). 

Detailed NBP0101 JPC 10 core lithology, sample depths and chronological 

information are presented in chapter 4 and analytical methods used can be found in 

chapter 5.

JPC10, KC10A& JPC11

Location map of NBP0101 
JPC 10 and KC10A, Mertz 
Ninnis Trough, George V 
coast. Contours in metres. 
Adapted from Leventer 
(1992).

Figure 7.1
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Table 7.1
Relative abundance of all diatom species by lamina type, Mertz Ninnis Trough, 
NBP0101 JPC 10. CRS = Hyalochaete Chaetoceros spp. resting spores. RS = resting 
spores.

Biogenic T errigenous

Sub-lam inae 
characterised  

by Porosira 
glacialis RS

93.8

0.1 

4.4

0.2

0

0.3 

1.2

Total: 100 100 100 100 100 100

7.1.1. Biogenic Laminae

Biogenic laminae are composed o f almost pure diatom ooze with very little 

terrigenous material and are present throughout the sampled interval. BSEI 

photographs of these laminae are dark due to the high porosity of the diatom ooze 

(Figure 7.2a, c, e and g). Four types o f biogenic laminae are identified and described 

below.

7.1.1.1. Near-m onogeneric H yalochaete Chaetoceros spp. Resting Spore 

Laminae

Laminae of this type are overwhelmingly composed of Hyalochaete Chaetoceros spp. 

resting spores (CRS) (Figure 7.2a and b). The minor constituents of the assemblage 

observed are Fragilariopsis spp., Corethron pennatum  and Rhizosolenia spp.. CRS 

constitute on average 90.5% relative abundance of the total diatom assemblage (Table 

7.1). Chaetoceros free counts are dominated by Fragilariopsis spp. (78.4%: the most 

dominant are F. curta, F. rhombica, F. kerguelensis, and F. separanda) and 

Thalassiosira spp. (10.9%) (Table 7.2). Sixty-two near-monogeneric CRS laminae are

Species / Lam ina 
type

N ear
m onogeneric 
CRS lam inae

L am inae 
ch arac te rised  
by Corethron 

pennatum

L am inae
characterised

by
Rhizosolenia 

SPP-

Mixed
diatom

assem blage
lam inae

Mixed
diatom

assem blage
lam inae

Hyalochaete
Chaetoceros spp. 90.5 78.8 80.4 84.8 85.3
resting spores Gran
Corethron pennatum 0 6.9 0.3 0.4 0.2
(Grunow) Ostenfeld
Fragilariopsis spp. 5.8 10.1 12.7 10.8 10.2
Hustedt
Porosira g lacialis
RS (Grunow) 0.2 0.1 0.2 0.3 0.4
Jorgensen
Rhizosolenia spp. 
Brightwell

0.2 0.2 2 0.2 0.1

Thalassiosira spp. 
Cleve

0.7 0.6 1.1 1 1.2

Minor species 2.6 3.3 3.3 2.5 2.6
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present in the sampled interval (Figure 7.3). These laminae are present throughout the 

interval (Figure 7.4), ranging from 0.4 to 46.9 mm thick (n = 62, or = 6.6 mm, mean = 

5.1 mm), making up 15% of the total sediment thickness. There is no correlation 

between lamina thickness and core depth.

7.1.1.2. Laminae Characterised by Corethron pennatum

These laminae are characterised by Corethron pennatum  (Figure 7.2c and d). The 

other constituents of the assemblage are CRS, Fragilariopsis spp. and Rhizosolenia 

spp.. CRS constitute on average 78.8 % relative abundance of the total diatom 

assemblage (Table 7.1). In the Chaetoceros free counts the most abundant species are 

C. pennatum (35.1 %), Fragilariopsis curta (23.5 %) and F. cylindrus (13.3 %) 

(Table 7.2). Twenty-eight laminae characterised by C. pennatum  are distributed 

throughout the sampled interval (Figure 7.4) making up 25 % of the total sediment 

thickness (Figure 7.3). These laminae range in thicknesses from 2.1 to 81.0 mm (n = 

29, a = 21.8 mm, mean = 17.4 mm); half o f these laminae have thicknesses over 10.0 

mm, three of which are greater than 50.0 mm thick. There is no correlation between 

lamina thickness and core depth.

Table 7.2
Relative abundance of Chaetoceros spp. free diatom assemblage by lamina type, 
Mertz Ninnis Trough, NBP0101 JPC 10. CRS = Hyalochaete Chaetoceros spp. 
resting spores. RS = resting spores.

Biogenic Terrigenous

Species / Lamina 
type

Near
monogeneric 
CRS laminae

Biogenic laminae 
characterised by 

C orethron  
p en n a tu m

Biogenic laminae 
characterised by 
R h izoso len ia  spp.

Mixed
diatom

assemblage
laminae

Mixed
diatom

assemblage
laminae

Sub-laminae 
characterised 

by Porosira  
glac ia lis  RS

Corethron pennatum  
(Grunow) Ostenfeld

0.4 35.1 1.2 3.9 1.5 3.9

Fragilariopsis spp. 
Hustedt

78.4 54.7 69.1 77.4 80.8 67

Porosira glacia lis 3.2 1.7 1.8 3.8 2.3 11.4
RS (Grunow) 
Jorgensen 
Rhizosolenia spp. 1.6 0.6 10.5 1.7 1.5 1.4
Brightwell 
Thalassiosira  spp. 10.9 4 7.5 7 8.8 9.7
Cleve
Minor species 5.5 3.9 9.9 6.2 5.1 6.6
Total: 100 100 100 100 100 100
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Figure 7.2
Backsca t t e red  e lec t ron 
i m a g e r y  ( B S E I )  an d  
secondary electron imagery 
(SEI) photographs of five 
lamina types and one sub
lamina type, Mertz Ninnis 
Trough, NBP0101 JPC10.

(a) BSEI photograph of near
monogeneric Hyalochaete 
Chaetoceros spp. resting 
spore (CRS) (gold arrows) 
laminae. Red arrow indicates 
a chain of Fragilariopsis 
spp.. Scale bar = 200 
microns.
(b) SEI photograph of near
monogeneric CRS (gold 
arrows) laminae. Scale bar = 
20 microns.
(c) BSEI photograph of 
laminae characterised by 
Corethron pennatum (gold 
arrows). Scale bar = 200 
microns.
(d) SEI photograph of 
laminae characterised by C. 
pennatum (gold arrows). 
Scale bar = 200 microns.



Figure 7.2 continued

(e) BSEI photograph of 
laminae characterised by 
Rhizosolenia  spp. (gold 
arrows). Scale bar = 60 
microns.
(f) SEI photograph o f 
laminae characterised by 
Rhizosolenia spp.. Scale bar 
= 200 microns.
(g) BSEI photograph of 
mixed diatom assemblage 
laminae. Gold arrows (i) 
Eucampia antarctica, (ii) 
CRS, (iii) C. pennatum, (iv) 
Porosira glacialis resting 
s p o r e s  ( R S ) ,  ( v )  
Actinocyclus actinochilus. 
Scale bar=200 microns.
(h) SEI photograph of mixed 
diatom assemblage laminae. 
Gold arrows (i) P. glacialis 
RS, (ii) C. pennatum, (iii) 
Fragilariopsis spp. colony, 
(iv) CRS, (v) F. rhombica, 
(vi) Dactyliosolen girdle 
band and (vii) Stellarima 
microtrias RS. Scale bar = 
100 microns.
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Figure 7.2 continued

(i) BSEI photograph of 
mixed diatom assemblage 
terrigenous laminae. Gold 
arrows (i) CRS, (ii) P. 
g la c ia lis  RS and ( iii)  
Fragilariopsis spp.. Scale 
bar = 200 microns.
(j) SEI photograph of mixed 
d i a t o m  a s s e m b l a g e  
terrigenous laminae. Gold 
arrows (i) Silicoflagellate,
(ii) F. curta and (iii) CRS. 
Scale bar=50 microns.
(k) BSEI photograph of 
terrigenous sub-lam inae 
characterised by P. glacialis 
RS (gold arrows). Scale bar 
= 300 microns.
(1) SEI photograph  o f 
terrigenous sub-lam inae 
characterised by P. glacialis 
RS (gold arrows). Scale bar 
= 100 microns.
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Figure 7.3
Graph showing the thicknesses of different types of lamina and sub-lamina from Mertz Ninnis Trough (NBP0101 JPC10). Individual 
thicknesses are displayed as coloured bars within the total thickness of each lamina type.
A = Near-monogeneric Hyalochaete Chaetoceros spp. resting spore biogenic laminae; B = Biogenic laminae characterised by Corethron 
pennatum; C = Biogenic laminae characterised by Rhizosolenia spp.; D = Mixed diatom assemblage biogenic laminae; E =Mixed diatom 
assemblage terrigenous laminae; F = Terrigenous sub-laminae characterised by Porosira glacialis resting spores.
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Figure 7.4
Graph illustrating the distribution of the different lamina and sub-lamina types, Mertz 
Ninnis Trough NBP0101 JPC 10, between 17.36 and 20.60 metres below sea floor 
(mbsf) The hashed lines indicates core not sampled. The lamina are positioned 
according to the depth of the base of the lamina. RS = resting spores. CRS = 
Hyalochaete Chaetoceros spp. resting spores.
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7.1.1.3. Laminae Characterised by Rhizosolenia spp.

This lamina type is characterised by high abundance of Rhizosolenia spp. (Figure 7.2e 

and f). The other constituents of the assemblage are CRS, Fragilariopsis spp. and 

Corethron pennatum. CRS constitute on average 80.4 % relative abundance of the 

total diatom assemblage (Table 7.1). In the Chaetoceros free counts the most 

abundant species are Fragilariopsis rhombica (19.9 %), F. curta (18.9 %), F. 

cylindrus (15.7 %) and Rhizosolenia spp. (10.5 %: R. antennata v. semispina and R. 

species A) (Table 7.2). Proboscia spp. are also present (2.7 %). The eight laminae 

characterised by Rhizosolenia spp. make up 2 % of the total sediment thickness 

(Figure 7.3). These laminae range in thicknesses from 0.4 to 23.0 mm (n = 8, o = 2.6 

mm, mean = 4.2 mm) and are only found between 8927 and 11356 cal. yrs BP (18.88 

and 20.58 metres below sea floor) (Figure 7.4). There is no correlation between 

lamina thickness and core depth for this lamina type.

7.1.1.4. Mixed Diatom Assem blage Laminae

These laminae are mainly composed of CRS (Figure 7.2g and h). Minor species 

observed in these laminae are Corethron pennatum , Fragilariopsis spp., Rhizosolenia 

spp.. These laminae are not always homogeneous; in particular patches of C. 

pennatum and to a lesser degree, Rhizosolenia spp. occur. CRS constitute on average 

84.8 % relative abundance of the total diatom assemblage (Table 7.1). Chaetoceros 

free counts are dominated by Fragilariopsis spp. (77.4 %; the most dominant are F. 

curta, F. cylindrus and F. rhombica), Corethron pennatum (3.9 %) and Porosira 

glacialis resting spores (RS) (3.8 %) (Table 7.2). Overall, diatoms are much less 

abundant in the mixed diatom assemblage lamina type than in the near-monogeneric 

CRS laminae. When compared to the near-monogeneric CRS laminae, the mixed 

diatom assemblage lamina type has a lower absolute abundance of Hyalochaete 

Chaetoceros spp. and Rhizosolenia spp., similar abundance of Fragilariopsis spp. and 

P. glacialis RS, but more abundant C. pennatum and Thalassiosira spp. (Table 7.3). 

The forty-five mixed diatom assemblage laminae present in the interval make up 18 

% of the total sediment thickness (Figure 7.3). These laminae range in thicknesses 

from 0.5 to 38.0 mm (n = 45, a = 8.7 mm, mean = 8.5 mm) and are present
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throughout the sampled interval (Figure 7.4). There is no correlation between lamina 

thickness and core depth for this lamina type.

Table 7.3
Absolute abundance of diatom species (valves per gramme of dry sediment xlO6) by 
lamina type, Mertz Ninnis Trough, NBP0101 JPC10. CRS = Hyalochaete 
Chaetoceros spp. resting spores. RS = resting spores.

Biogenic Terrigenous

Species / Lamina type
Near

monogeneric 
CRS laminae

Biogenic laminae 
characterised by 

C orethron  
pen n a tu m

Biogenic laminae 
characterised by 
R hizoso len ia  spp.

Mixed
diatom

assemblage
laminae

Mixed
diatom

assemblage
laminae

Sub-laminae 
characterised by 
Porosira  g lacia lis  

RS

Hyalochaete
Chaetoceros spp. 4198.5 1238 1642.7 2639.7 1659.1 3629.8
resting spore Gran
Corethron pennatum  
(Grunow) Ostenfeld

2.5 98.4 3.3 11.3 3.3 3.4

Fragilariopsis spp. 
Hustedt

192.7 146.2 179 231.9 201.6 103.8

Porosira g lacialis  RS 
(Grunow) Jorgensen

10.4 1.3 2.5 9.9 6.9 5.7

Rhizosolenia spp. 
Brightwell 8.7 3.1 23.1 3.1 1.4 0

Thalassiosira spp. 
Cleve

17.1 6.3 15.2 27 21 8.3

Minor species 75.3 44.2 49.5 69.3 39.8 41.3
Total: 4505.2 1537.5 1915.3 2992.2 1933.1 3792.3

7.1.2. Terrigenous Laminae

Diatom-bearing terrigenous laminae have a greater number of terrigenous grains such 

as ice-rafted silt and clay relative to the biogenic laminae. There is variation in size 

(clay to sand) and amount of terrigenous grains between laminae. The BSEI 

photographs of these laminae are light due to the high average atomic number of the 

grains (Figure 7.2i and k).

7.1.2.1. Mixed Diatom Assem blage Terrigenous Laminae

Laminae of this type are characterised by a diatom assemblage that is near

monogeneric CRS (Figure 7.2i and j), however a more diverse minor diatom 

assemblage (includes the species: Corethron pennatum, Coscinodiscus bouvet, 

Fragilariopsis spp., Porosira glacialis resting spores (RS), Stellarima microtrias RS, 

and to an even more minor extent Eucampia antarctica, Rhizosolenia spp., Trigonium 

arcticum) is present than is seen in the biogenic mixed diatom assemblage laminae.
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CRS constitute on average 85.3% relative abundance of the total diatom assemblage 

(Table 7.1). Chaetoceros free counts show the minor assemblage is dominated by 

Fragilariopsis spp. (80.8 %: the most dominant are F. curta, F. kerguelensis and F. 

rhombica) and Thalassiosira spp. (8.8 %). Both C. pennatum and Rhizosolenia spp. 

have relative abundances of 1.5 % (Table 7.2). The one hundred and twelve mixed 

diatom assemblage terrigenous laminae present in the interval make up 39 % of the 

total sediment thickness (Figure 7.3). These laminae are present throughout the 

sampled interval (Figure 7.4) and range in thicknesses from 0.4 to 64.3 mm (n = 112, 

a = 8.3 mm, mean = 7.3 mm). There is no correlation between lamina type and core 

depth.

7.1.2.2. Terrigenous Sub-laminae Characterised by Porosira glacialis 

Resting Spores

BSEI and SEI reveal this sub-lamina type is characterised by Porosira glacialis 

resting spores (RS) (often observed within vegetative remains) (Figure 7.2k and 1). 

These sub-laminae are found within, and mostly at the top of, the mixed diatom 

assemblage terrigenous laminae. Occasionally P. glacialis RS dominate the 

assemblage of thin terrigenous laminae (1.0 - 2.0 mm thick). CRS constitute on 

average 93.8 % relative abundance of the total diatom assemblage (Table 7.1). In the 

Chaetoceros free counts the most abundant species are Fragilariopsis curta (32.8 %), 

F. rhombica (18.3 %) and P. glacialis RS (11.4 %) (Table 7.2). The twenty-three 

terrigenous sub-laminae characterised by P. glacialis RS present in the interval make 

up 2 % of the total sediment thickness sampled (Figure 7.3). These sub-laminae range 

in thickness from 0.5 to 5.5 mm (n= 23, a  =1.1 mm, mean = 1.4 mm) and become less 

common after 7370 cal. yrs BP (above 17.79 mbsf) (Figure 7.4). There is no 

correlation between sub-lamina type and core depth.
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7.1.3. Lamina Relationships

Two hundred and fifty-six laminae and twenty-three sub-laminae are present in the 

laminated intervals analysed (Appendix 3, Table A3.2.1). Out o f all the lamina and 

sub-lamina types, the near-monogeneric CRS laminae show the greatest absolute 

abundance, 4505 x 106 valves per gramme (Table 7.3). Laminae characterised by 

Corethron pennatum  and Rhizosolenia spp. and the mixed diatom assemblage 

terrigenous laminae show the lowest abundance, ranging from 1538 -  1933 x 106 

valves per gramme dry sediment (Table 7.3). The terrigenous sub-laminae 

characterised by Porosira glacialis resting spores (RS) has the second highest 

abundance, 3792 x 106 valves per gramme. There is no correlation between the 

thickness o f any o f the lamina and sub-lamina types with core depth. Lamina 

boundaries in this post-glacial interval are gradational, with occasionally minor 

bioturbation.

Variable combinations o f the different types o f lamina have been observed (Figure

7.5), however, a typical succession o f the lamina types upcore can be defined as: (i) 

near-monogeneric Hyalochaete Chaetoceros spp. resting spore (CRS) laminae, (ii) 

laminae characterised by Corethron pennatum , (iii) laminae characterised by 

Rhizosolenia spp., (iv) mixed diatom assemblage laminae, (v) mixed diatom 

assemblage terrigenous laminae, and finally (vi) terrigenous sub-laminae 

characterised by Porosira glacialis RS (Figure 7.6).
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0)

Figure 7.5
Backscattered electron imagery (BSEI) photomosaic of 
diatom ooze laminae (biogenic) and diatom-bearing 
terrigenous laminae (terrigenous), NBP0101 JPC10, Mertz 
Ninnis Trough. A = Near-monogeneric Hyalochaete 
Chaetoceros spp. resting spores (CRS) biogenic laminae; B = 
Biogenic laminae characterised by Corethron pennatum; C = 
Biogenic laminae characterised by Rhizosolenia sp p .; D = 
Mixed diatom assemblage biogenic laminae; E = Mixed 

s diatom assemblage terrigenous laminae; F = Terrigenous 
o sub-laminae characterised by Porosira glacialis resting 

spores (RS).
i) 19.255 -19.314 metres below sea floor (mbsf); ii) 20.193 - 
20.218 mbsf; iii) 19.355 - 19.388 mbsf; iv) 19.535 - 19.546 
mbsf; v) 20.225 - 20.250 mbsf; vi) 20.463 to 20.475 mbsf.
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Figure 7.6
Schematic representation of the biogenic and terrigenous laminae and terrigenous sub
laminae succession in laminated interval, Mertz Ninnis Trough, NBP0101 JPC10. RS 
= resting spores.

7.2. Interpretation and Discussion NBP0101 JPC10

7.2.1. Seasonal Signal

The high values of absolute abundances in all of the lamina types indicate that 

primary productivity was high throughout the growing season. The overwhelming 

dominance of Hyalochaete Chaetoceros spp., in all of the lamina types, shows that 

conditions for this sub-genus were favourable during the entire growing season. The 

ecology of diatom species discussed in the following sections are described in greater 

detail in chapter 3, section 3.5.
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7.2.1.1. Spring: Near-m onogeneric Hyalochaete Chaetoceros spp.

Resting Spore Laminae

In Antarctica, the Hyalaochaete Chaetoceros sub-genus favours proximity to sea ice 

(Leventer, 1991; Crosta et al., 1997) and modem sediment trap data from the 

Antarctic Peninsula suggests that Hyalochaete Chaetoceros spp. blooms are 

associated with the melting of sea ice in the austral spring and water column 

stratification (Leventer, 1991; Crosta et a l, 1997) (see section 3.5.3.1). Resting spores 

are a survival strategy response to environmental stress and high concentrations of 

CRS in the sediments are interpreted as being indicative of very high primary 

productivity in surface waters (Donegan and Schrader, 1982). The relatively high 

numbers of Fragilariopsis curta and F. cylindrus in the Chaetoceros spp. free diatom 

assemblage also indicate the existence of sea ice, therefore, the near-monogeneric 

Hyalochaete CRS laminae are interpreted as reflecting high primary productivity 

associated with water column stratification in spring.

7.2.1.2. Summer: Laminae Characterised by Corethron pennatum  or 

Rhizosolenia spp.

The diatom assemblages of these two biogenic laminae are characterised by different 

genera. However, they are associated with similar water column conditions (see 

sections 3.5.5 and 3.5.21) and, therefore, will be discussed together for the rest of the 

chapter.

Corethron pennatum occurs in open water (Fryxell and Hasle, 1971) and has positive 

buoyancy (Crawford, 1995) which suggests that it may be able to exploit a well- 

stratified water column, migrating down to take advantage of higher nutrient content 

at depth and up for higher light levels for photosynthesis (Leventer et al., 2002) to 

maximise bloom conditions. Deterioration in the water column stability during the 

summer to autumn transition could potentially trigger a mass sinking of the bloom 

(Kemp et ah, 2000). Relatively high numbers of Fragilariopsis curta and F. 

cylindrus in the Chaetoceros spp. free diatom assemblage implies that sea ice was still 

present in the area. Therefore, laminae characterised by C. pennatum are interpreted 

as being deposited in summer when more stable open water conditions prevail in front 

of the sea ice edge.
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Rhizosolenia spp. bloom and form mats in open water conditions (Harbison et al., 

1977; Alldredge and Silver, 1982; Kemp et al., 1999). Leventer et a l (2002) have 

suggested the presence of Rhizosolenia spp. and Proboscia spp. below the 

thermocline is associated with strong summer surface water stratification and the 

mass sedimentation of the blooms as a result of strong mixing of the water column in 

autumn. Villareal et al. (1993; 1996) have shown that Rhizosolenia spp. migrate up 

and down in the water column, to increased depths to acquire nutrients and return to 

the nutrient poor surface waters to photosynthesise. Sea ice is present as suggested by 

Fragilariopsis curta and F. cylindrus in the Chaetoceros spp. free diatom assemblage. 

Therefore, laminae characterised by Rhizosolenia spp. are interpreted as summer 

blooms when stable open oligotrophic water conditions prevail in front of the sea ice 

edge.

7.2.1.3. Summer: M ixed D iatom  Assem blage Biogenic Laminae

The more mixed assemblage of these laminae (less Hyalochaete Chaetoceros spp. and 

more Corethron pennatum, Thalassiosira spp. and Porosira glacialis) suggests a less 

stratified, more mixed water column. The presence of Corethron pennatum and, to a 

lesser degree, Rhizosolenia spp. patches within the laminae suggest that stable open 

water conditions lasted for relatively short periods o f time during this season. Mixing 

and the resultant destabilisation o f the water column would cause mass sedimentation 

of the colonial diatoms and allow a more mixed assemblage to return.

7.2.1.4. Summer / Autumn: M ixed Diatom Assemblage Terrigenous 

Laminae

The terrigenous component of these mixed diatom assemblage laminae represents the 

input of ice rafted material from the Mertz Glacier Tongue, sediments from “dirty” 

sea ice and / or Modified Circumpolar Deep Water (MCDW) entrained fine grained 

sediments (Dunbar et al., 1985; Domack, 1988; Rintoul, 1998; Bindoff et al, 2001). 

The species within this summer / autumn laminae such as Corethron pennatum  and 

Rhizosolenia spp. are considered to be indicative of open water conditions with little 

influence of sea ice (Fryxell and Hasle, 1971; Harbison et al., 1977; Alldredge and 

Silver, 1982; Watanabe, 1982; Makarov, 1984; Leventer and Dunbar, 1987). However
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Marra and Boardman (1984) found C. pennatum  to be part of ice edge phytoplankton 

and R. antennata f. semispina, the most dominant Rhizosolenia spp. present in this 

laminae diatom assemblage (see appendix 4, table A4.2.1.4), has been reported in 

open ocean to sublittoral sea ice habitats (Ligowski, 1993). Porosira glacialis is 

associated with waters adjacent to the coast or sea ice, in particular, slush and wave 

exposed shore ice (Krebs et al., 1987), but does not live within the ice (Watanabe, 

1988; Scott et al, 1994). Coscinodiscus bouvet is a neritic species and Stellarima 

microtrias is associated with shelf ice and the surrounding shelf waters (Hasle et al., 

1988). High abundances of S. microtrias have been observed in summer fast sea ice 

(Watanabe, 1982; Krebs et al., 1987; Tanimura et al., 1990) and during autumn, the 

resting spore is found in high abundances under sea ice and is not present in the open 

ocean (Fryxell, 1989). Trigonium arcticum lives epiphytically on algae (possibly 

saprophytic) at a depth of 200-300 m in the water column (Hendey, 1937; Thomas, 

1966). Therefore, it is likely that this species is swept into the Mertz Ninnis Trough 

from the broad, relatively shallow Adelie and Mertz Banks by High Salinity Shelf 

Water (HSSW) (Figure 2.13 and 2.17). The terrigenous component and the diatom 

assemblage suggests that this lamina type was deposited in summer / autumn when 

open water conditions were impinged upon by the growth of sea ice and there was an 

increase in bottom water currents.

7.2.1.5. Autumn: Terrigenous Sub-lam inae Characterised by Porosira  

glacialis Resting Spores

This sub-seasonal Porosira glacialis bloom and consequent resting spore formation 

implies that a specific environmental condition repeatedly occurred during the 

autumn. The relationship of this species with sea ice (Krebs et al., 1987; Watanabe, 

1988; Scott et al., 1994) suggests that sea ice formation overwhelmed aspects of 

circulation and associated biogenic productivity in the area resulting in resting spore 

formation.
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7.2.2. Lamina Relationships

The difference in absolute abundance of diatoms between the different types of 

lamina results from changes in the water column stability and surface water nutrient 

levels. As the sea ice melts in the spring, stratification of the water column traps 

nutrients derived from the sea ice itself, MCDW (water mass reaches surface waters 

in winter) and atmospheric particles (particle concentrations reach a maximum in late 

spring and early summer (Tuncel et al., 1989; Wagenbach, 1996)). These elevated 

nutrient levels and stratified waters in spring would have been conducive to high 

primary productivity and the formation o f near-monogeneric CRS laminae. The rapid 

growth of Hyalochaete Chaetoceros spp. blooms (Grimm et a l, 1996; 1997; 

Alldredge and Gotschalk, 1989) would have depleted the nutrients in the water 

column; this along with more stable open water conditions would have allowed the 

laminae characterised by Corethron pennatum  and Rhizosolenia spp. to be produced 

in summer. Water column mixing due to storms elevates surface water nutrient levels 

increasing productivity to levels recorded in the mixed diatom assemblage laminae. A 

further bio-depletion of these nutrients and an introduction of terrigenous material 

would induce a decrease in productivity to levels observed in the mixed diatom 

assemblage terrigenous laminae. In autumn the cooling of surface waters enables 

upwelling of nutrient rich-MCDW to re-supply surface waters, replenishing the 

waters depleted by phytoplankton growth. The proximity of sea ice and increased 

nutrients promote high productivity, resulting in the formation of the terrigenous sub

laminae characterised by Porosira glacialis resting spores (RS) at the end of the 

growing season, before light levels are too low to prevent growth.

A transition from summer/autumn terrigenous laminae to spring /summer biogenic 

laminae suggests that there was little or no deposition in the winter. Although the 

different types of laminae always occur in same sequence relative to each other in the 

laminated interval (Figure 7.6), not every annual sedimentary increment contains each 

of the six types of laminae (Figure 7.5). I suggest that this is the result o f annual 

variability in the dynamics of the Mertz Glacier Polynya. The analysed laminated 

interval is not varved because annual deposition consists of sequences o f laminae 

which are not rhythmically repeated. The average accumulation rate calculated from 

annual laminae deposition is 1.7 cm/yr. Markov chain analysis was not conducted on
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this laminated interval since there were insufficient lamina transitions between 

laminae and sub-lamina to ensure reliable results.

7.2.3. Polynya M odel for M ertz N innis Trough Lam inated Sediments

The East Antarctic Ice Sheet (EAIS) grounding line reached the edge of the 

continental shelf at the last glacial maximum (Figure 2.13) (Domack, 1982; Barnes, 

1987; Eittreim et a l, 1995) and the transition from subglacial to glacial-marine 

sedimentation occurred prior to -9000 yrs BP (Domack et a l, 1991). Open water 

conditions and sea ice would therefore have prevailed in the region following ice 

sheet retreat, when the laminated sediments were deposited. Today the Mertz Glacier 

Polynya is active above the NBP0101 JPC10 core site and is considered likely to play 

a part in the intensity and distribution o f plankton growth (Sambrotto et a l , 2003). I 

believe post-glacial polynya dynamics increased diatom productivity and the length of 

growing season uniquely enhancing seasonal diatom deposition relative to other 

continental shelf conditions.

7.2.3.1. Spring

In the spring solar radiation levels start to rise, melting the polynya sea ice margins 

and increasing open water area. A change in heat regime from latent heat to a sensible 

heat polynya occurs. Nutrient-rich MCDW is prevented from reaching surface waters 

by sea ice melt-induced water column stratification. However, a finite amount of 

nutrients, already supplied to surface waters during winter upwelling of MCDW, is 

trapped by the stratification. The reduced sea ice cover would allow elevated 

phytoplankton production to occur early in the growing season, just after the spring 

equinox (Sambrotto et a l, 2003). These stratified, nutrient-rich waters promote 

Hyalochaete Chaetoceros spp. blooms. Katabatic winds in Adelie Land have been 

shown to be intense and frequent through the growing season (Periard and Pettre, 

1993) which can cause intermittent mixing of the stratified surface waters. 

Environmental stress created by this disruption would cause resting spore formation 

and the resultant deposition o f near-monogeneric CRS laminae (Figure 7.2a and b & 

Figure 7.7a).
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7.2.3.2. Summer

The continued high solar radiation in the region provides a continuous flux of heat 

further melting the sensible heat polynya margins. The sea ice edge at the shelf break 

also melts. Two scenarios can occur, which control the type of laminae deposited:

1. Occasionally an embayment in the sea ice edge encroaches far enough to join the 

polynya by October. This has been observed to occur in 16% of winter months 

between 1987 and 1994 (Massom et al. 1998).

2. The sea ice edge embayment retreats later in the season, reaching the polynya by 

November and the coast by December. This has been observed to be an annual 

occurrence (Massom et al. 2003).

Both of these scenarios produce open water conditions with little sea ice influence. 

Weak katabatic winds permit a stable water column to be created throughout the 

summer (Periard and Pettre, 1993). The open water conditions, created by October in 

scenario one, would allow open water adapted species such as Corethron pennatum 

and Rhizosolenia spp. to become established early in the season. The ability of these 

particular species to take advantage o f nutrients trapped lower in the water column 

would allow large prolonged blooms to occur. This would result in thick biogenic 

laminae characterised by C. pennatum  or Rhizosolenia spp. (Figure 7.2c, d, e and f  & 

Figure 7.7b and c).

A greater number of mixed diatom assemblage laminae than laminae characterised by 

C. pennatum or Rhizosolenia spp. indicates that open water conditions created later in 

the season is the more common scenario. The reduced growing season time with open 

water conditions means that C. pennatum  and Rhizosolenia spp. are unable to 

establish a dominant bloom; therefore other diatom species are able to flourish. This 

results in a mixed diatom biogenic laminae being deposited, occasionally with patches 

characterised by C. pennatum  and Rhizosolenia spp. (Figure 7.2g & Figure 7.6d).

1 2 3 3 .  S um m er/A utum n

A reduction in sea ice melting around the polynya margin creates denser surface 

waters, allowing upwelling MCDW to reach surface waters. Water column 

stratification is discontinued, creating conditions suitable for a mixed diatom 

assemblage. The upwelling of MCDW onto the continental shelf entrains fine grained
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terrigenous sediments, which are transported landwards and deposited in the Mertz 

Ninnis Trough. The terrigenous input into the laminae dilutes the biogenic component 

(Figure 7.2i and j & Figure 7.7e) forming the mixed diatom assemblage terrigenous 

laminae.

7.2.3A Autumn

Solar radiation levels decrease which results in a return to latent heat conditions, 

where heat loss to the atmosphere is balanced by the latent heat o f fusion of ice that 

continuously forms (Mysak and Huang, 1992). The reduction o f polynya areal extent 

results in increased proximity o f sea ice and marginally elevated seawater salinities, 

coincidental with the strongest annual average winds (Periard and Pettre, 1993) which 

in combination, would create conditions ideal for the growth and subsequent 

deposition of the terrigenous sub-laminae characterised by Porosira glacialis resting 

spores (Figure 7.2k and 1 & Figure 7.6f).

7.2.3.5. W inter

The latent heat polynya has reduced in size as an increase in ice production is 

associated with colder temperatures, along with a relatively constant rate of ice 

advection (Pease, 1987; Darby et al., 1995). Light levels are too low for productivity 

(from May to August); therefore biogenic input to the sediment dramatically 

decreases, resulting in a hiatus between autumn and spring. MCDW is unrestricted by 

stratification and is able to reach surface waters, replenishing them with nutrients for 

the following growing season.
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7.3. Conclusions NBP0101 JPC10

The presence of laminae at the base of NBP0101 JPC10 suggests that seasonal sea ice 

formation was active when the laminated sediments at the base of the core were 

deposited. The different types of lamina observed throughout NBP0101 JPC10, as set 

within the context of the polynya model, indicate that the Mertz Glacier Polynya was 

active during early post-glacial times and, therefore, the Mertz Glacier Tongue also 

must have existed at this time to act as an obstacle for sea ice drift. It has been 

proposed that if the Mertz Glacier Tongue were to break off, then the Mertz Glacier 

Polynya would be much reduced in size, which would lead to a decrease or a 

cessation of Adelie Land Bottom Water (ALBW) formation (Williams and Bindoff, 

2003) which presently contributes to annual Antarctic Bottom Water (AABW) 

production.

Pinning down the timing of the onset of polynya and deepwater formation is critical. 

Neodynium (Nd) isotope ratios are used as a proxy to determine the balance between 

North Atlantic Deep Water (NADW) and southern-sourced waters in the South 

Atlantic (Piotrowski et a l, 2004; 2005). Piotrowski et al. (2004) examined Nd isotope 

ratios in the authigenic ferromanganese oxide component of a southeastern Atlantic 

core, to determine the history of global overturning circulation intensity through the 

last deglaciation. A prominent peak in Nd isotopes at ~ 15,300 cal. yrs BP was 

interpreted as a weakening of the NADW mass component (Trough II; Piotrowski et 

al, 2004; 2005). However, the peak could, in fact, be caused by an increase in 

southern sourced waters, Antarctic Bottom Water (AABW), a result of ice sheet melt 

and the resultant polynya controlled bottom water formation in the George V Land 

region. At this stage, however, the core chronology is not robust enough to explore 

this hypothesis.
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7.4. Results NBP0101 KCIOA

The mid-Holocene laminae from NBP0101 KCIOA are classified according to the 

dominance of terrigenous or biogenic components and diatom assemblages. Lamina 

types are categorised using the same approach for NBP0101 JPC10 laminated 

sediments (sections 7.1 - 7.3). Detailed NBP0101 KCIOA core lithology, sample 

depths and chronological information are presented in chapter 4 and analytical 

methods used can be found in chapter 5.

7.4.1. Biogenic Laminae

Two of the biogenic laminae types present in the post-glacial laminated sediments of 

NBP0101 JPC10 (20.60 to 17.36 mbsf; 11384 -  6756 cal. yr BP), near-monogeneric 

Hyalochaete Chaetoceros spp. resting spore (CRS) and mixed diatom assemblage 

laminae, are also present in the mid-Holocene laminated sediments of NBP0101 

KCIOA (2.38 to 2.05 mbsf; 3892-3820 cal. yr BP). Two near-monogeneric CRS 

laminae are present in the sampled interval (Figure 7.8). These lamina range in 

thickness from 6.0 to 14.0 mm (n = 2, o = 5.7 mm, mean = 10.0 mm), making up 7 % 

of the total sediment thickness (Figure 7.9). Eleven mixed diatom assemblage laminae 

are present throughout the sampled interval (Figure 7.8). Mixed diatom assemblage 

laminae consist of CRS, Fragilariopsis spp., Eucampia antarctica and Corethron 

pennatum. These lamina range from 0.7 to 15.1 mm thick (n = 11, o = 5.4 mm, mean 

= 7.3 mm) and makes up 28 % of the total sediment thickness (Figure 7.9). Laminae 

characterised by Corethron pennatum and Rhizosolenia spp. did not occur in the 

NBP0101 KC10A laminated interval. A third biogenic lamina type characterised by 

Fragilariopsis spp. occurs in the NBP0101 KC10A, but is not present in NBP0101 

JPC10 post-glacial interval.

7.4.1.1. Biogenic Laminae Characterised by Fragilariopsis spp.

Laminae of this type are characterised by Fragilariopsis spp. (Figure 7.10a and b). 

The other constituents of the assemblage are CRS, Phaeoceros Chaetoceros spp., 

Corethron pennatum and Thalassiosira spp.. CRS constitute 62.9 % relative 

abundance of the total diatom assemblage (Table 7.4). Fragilariopsis spp. dominate 

the Chaetoceros free counts (88.3%; F. rhombica (30.5 %), F. curta (25.9 %) and F.
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kerguelensis (17.4 %)). Thalassiosira gracilis v. gracilis (4.1%) is the most dominant 

Thalassiosira spp. (Table 7.5). These biogenic laminae have an absolute abundance of 

886 x 106 valves per gramme (Table 7.6). Five laminae characterised by 

Fragilariopsis spp. are present in the sampled interval (Figure 7.8). These laminae 

range from 1.0 to 24.5 mm thick (n = 5, a = 9.8 mm, mean = 8.1 mm), making up 14 

% of the total sediment thickness (Figure 7.9).

Table 7.4
Relative abundance of all diatom species by lamina type, Mertz Ninnis Trough, 
NBP0101 KCIOA. One lamina sampled per lamina type due to low numbers of 
occurrences in laminated interval. RS = resting spore.

Species / Lam ina type
Biogenic lam inae 
characterised  by 

Fragilariopsis.spp

T errigenous lam inae 
characterised  by 

Fragilariopsis spp.

H yalochaete Chaetoceros spp. (resting spore) Gran 62.9 78.8

Corethron pennatum  (Grunow) Ostenfeld 0.0 0.0

F ragilariopsis spp. Hustedt 32.6 15.0
P orosira glacia lis RS (Grunow) Jorgensen 0.0 0.0
Rhizosolenia spp. Brightwell 0.0 0.0
Thalassiosira spp. Cleve 2.2 1.7
Minor species 2.3 4.5
Total: 100 100

Table 7.5
Relative abundance of Chaetoceros spp. free diatom assemblage by lamina type, 
Mertz Ninnis Trough, NBP0101 KCIOA. One lamina sampled per lamina type due to 
low numbers of occurrences in laminated interval. RS = resting spore

Biogenic lam inae Terrigenous lam inae
Species characterised  by 

Fragilariopsis. spp
characterised by 

Fragilariopsis spp.

Corethron pennatum  (Grunow) Ostenfeld 0.2 2.8

F ragilariopsis spp. Hustedt 88.3 81.6
Porosira glacia lisR S  (Grunow) Jorgensen 0.7 7.4
Rhizosolenia spp. Brightwell 0.0 0.9
Thalassiosira spp. Cleve 8.2 7.4
Minor species 2.6 6.6

Total: 100 100
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Table 7.6
Absolute abundance of diatom species (valves per gramme of dry sediment xlO6) by 
lamina type, Mertz Ninnis Trough, NBP0101 KCIOA. One lamina sampled per 
lamina type due to low numbers of occurrences in laminated interval. RS = resting 
spore.

Species
Biogenic laminae 
characterised by 

F ragilariopsis. spp

Terrigenous laminae 
characterised by 

F ragilariopsis spp.

H yalochaete Chaetoceros spp. (resting spore) Gran 558 1599

Corethron pennatum  (Grunow) Ostenfeld 0 0

F ragilariopsis spp. Hustedt 288 305
Porosira g lacia lis  RS (Grunow) Jorgensen 0 0
Rhizosolenia spp. Brightwell 0 0
Thalassiosira spp. Cleve 20 34
Minor species 20 92
Total: 886 2030

7.4.2. Terrigenous Laminae

The terrigenous laminae present in the post-glacial laminated sediments of NBP0101 

JPC10, mixed diatom assemblage laminae, are also present in the mid-Holocene 

laminated sediments of NBP0101 KCIOA (2.38 to 2.05 mbsf; 3892-3820 cal. yr BP). 

Thirteen of these laminae were present throughout the sampled interval (Figure 7.8). 

These lamina range in thickness from 1.2 to 29.0 mm (n = 13, o = 6.9 mm, mean = 

7.0 mm) and constitutes 37% of the total sediment thickness (Figure 7.9). Terrigenous 

sub-laminae characterised by Porosira glacialis resting spores (RS) were not present 

in NBP0101 KCIOA, but a second type o f terrigenous laminae occurs, characterised 

by Fragilariopsis spp., that is not present in the NBP0101 JPC10 post-glacial interval.

7.4.2.1. Terrigenous Laminae Characterised by Fragilariopsis spp.

Laminae of this type are characterised by Fragilariopsis spp. (Figure 7.10c and d). 

The other constituents of the assemblage are CRS, Corethron pennatum, Odontella 

weissflogii RS, Porosira glacialis RS, Eucampia antarctica (vegetative), Stellarima 

microtrias RS and Thalassiosira spp.. CRS constitute 78.8 % relative abundance of 

the total diatom assemblage (Table 7.4). Fragilariopsis spp. (81.6 %) dominate the 

Chaetoceros free counts; the most dominant Fragilariopsis species are F. rhombica 

(26.6 %), F. curta (24.0 %), F. ritscheri (10.2%) and F. kerguelensis (8.3 %) (Table

7.5). These terrigenous laminae have an absolute abundance of 2030 x 106 valves per 

gramme (Table 7.6). Four laminae characterised by Fragilariopsis spp. are present in
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the sampled interval (Figure 7.9). These laminae range from 4.7 to 24.0 mm thick (n = 

4, o = 9.3 mm, mean = 12.4 mm), making up 11% of the total sediment thickness 

(Figure 7.8).

7.4.3. Lamina Relationships

Thirty-five laminae are present in the laminated interval. The most common 

succession of lamina types is mixed diatom assemblage biogenic followed by mixed 

diatom assemblage terrigenous laminae and less commonly, biogenic laminae 

characterised by Fragilariopsis spp. followed by mixed diatom assemblage 

terrigenous laminae. Laminae are not very well defined in NBP0101 KCIOA and are 

occasionally disturbed (Figure 7.11). Lamina boundaries in the interval are all 

gradational, some with a small degree of bioturbated.
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Figure 7.8
Graph illustrating the distribution 
of the different lamina types, Mertz 
Ninnis Trougth NBP0101 KCIOA, 
between 2.05 and 2.38 metres below 
sea floor (mbsf) The hashed lines 
indicates core not sampled. The 
lamina are positioned according to 
the depth of the base of the lamina. 
CRS = Hyalochaete Chaetoceros 
spp. resting spores.
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Figure 7.9
Graph showing the thicknesses of different types of lamina from Mertz Ninnis Trough 
(NBP0101 KC10A). Individual thicknesses are displayed as coloured bars within the 
total thicknesses of each lamina type. A = Near-monogeneric Hyalochaete Chaetoceros 
spp. resting spore (CRS) biogenic laminae; D = Mixed diatom assemblage biogenic 
laminae; E = Mixed diatom assemblage terrigenous laminae; G = Biogenic laminae 
dominated by Fragilariopsis spp.; H = Terrigenous laminae dominated by 
Fragilariopsis spp..



Figure 7.10
Backscattered electron imagery 
(BSEI) and secondary electron 
imagery (SEI) photographs o f  
l a m i n a e  c h a r a c t e r i s e d  by 
Fragilariopsis spp., Mertz Ninnis 
Trough, NBP0101 KCIOA.
(a) BSEI photograph of biogenic 
l a m i n a e  c h a r a c t e r i s e d  by 
Fragilariopsis spp. (gold arrows). 
Corethron pennatum (red arrow). 
Scale bar = 100 microns.
(b) SEI photograph of biogenic 
l a m i n a e  c h a r a c t e r i s e d  by 
Fragilariopsis spp.. Gold arrows 
(i) F. rhombica, (ii) F. curta, (iii) F. 
kerguelensis, (iv) Thalassiosira 
gracilis  v. gracilis  and (v) 
Hyalochaete Chaetoceros spp. 
resting spores (CRS). Scale bar = 
70 microns.
(c )  B S E I  p h o t o g r a p h  o f  
terrigenous laminae characterised 
by Fragilariopsis spp. (gold 
arrows). Porosira glacialis resting 
spore (RS) (red arrow). Scale bar= 
100 microns
(d) SEI photograph of terrigenous 
l a m i n a e  c h a r a c t e r i s e d  by 
Fragilariopsis spp.. Gold arrows 
(i) F. rhombica, (ii) F. kerguelensis 
and (iii) CRS. Scale bar = 50 
microns.
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Figure 7.11
Backscattered electron imagery (BSEI) photomosaics of biogenic laminae and 
terrigenous laminae, NBP0101 KCIOA. A = Near-monogeneric Hyalochaete 
Chaetoceros spp. resting spore (CRS) biogenic laminae; D = Mixed diatom assemblage 
biogenic laminae; E = Mixed diatom assemblage terrigenous laminae; G = Biogenic 
laminae characterised by Fragilariopsis spp.; H = Terrigenous laminae characterised by 
Fragilariopsis spp..
(i) 2.2161 - 2.2673 metres below sea floor (mbsf); (ii) 2.2903 - 2.3279 mbsf.
(iii) Cartoon of NBP0101 KCIOA thin sections indicating the position of (i) and (ii) 
photomosaics. Note the lamina disturbance.
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7.5. Interpretation and Discussion NBP0101 KCIOA

The ecology of diatom species discussed in the following sections is described in 

greater detail in chapter 3, section 3.5.

7.5.1. Seasonal Signal

7.5.1.1. Spring / Summer: Biogenic Laminae

As discussed in section 7.2.1.1, near-monogeneric CRS laminae are interpreted as 

high productivity associated with water column stratification in spring. Mixed diatom 

assemblage laminae, as discussed in section 7.2.1.3., suggest a less stratified more 

mixed water column in summer. The lack of laminae characterised by Rhizosolenia 

spp. and Corethron pennatum indicate that water column conditions were not stable 

enough for large blooms of these species to occur.

In the laminae characterised by Fragilariopsis spp., F. rhombica and F. kerguelensis, 

suggests relatively warm open waters (Burckle et al., 1987; Zielinski and Gersonde, 

1997). Thalassiosira gracilis v. gracilis is an open water species which has been used 

to indicate early seasonal sea ice reduction from wind stress and deep mixing 

(Cunningham and Leventer, 1998) and T. gravida indicates open water with no sea 

ice (Garrison et al., 1987; Fryxell and Kendrick, 1988). Therefore, laminae 

characterised by Fragilariopsis spp. are interpreted as spring/summer productivity 

associated with warm open waters free from sea ice.

7.5.1.2. Summer / Autumn: Terrigenous Laminae

As discussed in section 7.2.1.4, the mixed diatom assemblage lamina type indicates 

open water conditions increasing, melt of ice and increase in bottom water dynamics 

in summer. Sub-laminae characterised by Porosira glacialis resting spores are not 

present probably due to later sea ice formation in autumn.

In the laminae characterised by Fragilariopsis spp, Fragilariopsis rhombica and F. 

ritscheri suggest warm open waters (Gersonde, 1984, Garrison et al., 1987; Zielinski 

and Gersonde, 1997). Thalassiosira gracilis v. gracilis and T. lentiginosa are 

associated with warm open waters (Zielinski and Gersonde, 1997). T. tumida and 

Eucampia antarcctica are associated with the water column adjacent to sea ice
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(Garrison et al., 1983b; 1987). The terrigenous component, as in NBP0101 JPC10, 

originates from the Mertz Glacier Tongue, sea ice melting and / or MCDW entrained 

sediments, as discussed previously in section 7.2.1.4.

7.5.2. Lamina Relationships

The presence of biogenic and terrigenous laminae characterised by Fragilariopsis 

spp., near-monogeneric Hyalochaete Chaetoceros spp. resting spore laminae, mixed 

diatom assemblage biogenic laminae and mixed diatom assemblage terrigenous 

laminae and the absence of laminae and sub-laminae characterised by Corethron 

pennatum, Rhizosolenia spp. and Porosira glacialis resting spores, indicates that 

relatively warm mixed open water conditions prevailed whilst the mid-Holocene 

laminated sediments were deposited. This analysed laminated interval has been dated 

3,892 -  3,820 cal. yr BP, which has been interpreted as deposition during an Antarctic 

warm interval, the mid-Holocene Climatic Optimum (Harris et al., 2001). This 

warmer period is characterised by increased primary productivity, less sea ice than at 

present (Cunningham et al., 1999; Leventer et al., 1996; Shevenell et al., 1996) and a 

more energetic coastal wave regime (Ingolfsson et al., 1998). The Mertz Glacier 

Polynya would most likely still be present due to katabatic winds, but sea ice 

formation and periods of stable surface waters would be reduced relative to those 

encountered during post-glacial sediment deposition (NBP0101 JPC10). The reduced 

sea ice regime would lead to a decrease in HSSW production and, therefore, a 

decrease in bottom water circulation on the shelf (Harris et al., 2001). Using the 

sequence of diatom assemblages seventeen annual cycles are identified in the 

laminated interval and the accumulation rate determined as 1.6 cm/yr. Even though 

annual deposit is made up of two laminae, the analysed interval is not varved because 

there is no rhythmic repetition of the same two lamina types.
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7.6. Conclusions NBP0101 KCIOA

The five lamina types identified in NBP0101 KCIOA were deposited during a period 

of relatively warm climate, the mid-Holocene Climatic Optimum, when sea ice 

conditions were less persistent than today. It has previously been suggested that the 

mid-Holocene climatic optimum can be used as an analogy to determine responses to 

possible future climatic warming (Harris and Beaman, 2003). Bi et al. (2001) present 

an ocean-atmospheric model which predicts changes in rates of AABW production 

during global warming (when atmospheric CO2 is triple current levels). They predict 

that increased precipitation along Antarctic coast and increased meltwater outflow 

freshens surface waters reducing AABW formation. In addition Bi et al. (2001) 

predict that sea ice formation would reduce over the continental shelf. The results and 

interpretations presented in sections 7.4 and 7.5 support these predictions.
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7.7. Summary

Diatom species blooms and the resultant deposition of diatom-rich post-glacial 

laminae and sub-laminae in the Mertz Ninnis Trough, East Antarctica are seasonally 

controlled (light levels, sea ice extent and nutrient levels). The fluctuations in the size 

and heat regime of the Mertz Glacier Polynya (caused by variations in upwelling; 

katabatic wind strength and direction; areal extent and orientation of the Mertz 

Glacier Tongue) also play a role in controlling the type of laminae deposited. Four 

biogenic diatom ooze laminae types, one diatom-bearing terrigenous laminae type and 

one diatom-bearing terrigenous sub-laminae type have been identified in the early 

Holocene laminated sequence. The biogenic laminae are deposited in spring and 

summer, and terrigenous laminae and sub-laminae in summer and autumn. The 

different laminae types consistently occur in the same order throughout the early 

Holocene laminated interval. This high-resolution record demonstrates that the Mertz 

Glacier Polynya was active in early post-glacial times.

The diatom blooms and subsequent lamina deposition of diatom-rich mid-Holocene 

laminae in the Mertz Ninnis Trough, East Antarctica are also controlled by seasons. 

The Mertz Glacier Polynya is still active during the mid-Holocene Climatic Optimum, 

but warmer conditions led to reduced sea ice. Three biogenic diatom ooze lamina 

types and two diatom-bearing terrigenous laminae types have been identified in the 

mid-Holocene laminated sequence, two of which did not occur in the postglacial 

laminated sequence. Spring/summer deposition is characterised by biogenic laminae 

deposition and summer/autumn by terrigenous laminae. The polynya was less active 

in the mid-Holocene, producing less HSSW (Harris et al., 2001) and ultimately less 

AABW.

The behaviour of the Mertz Glacier Polynya controls the rate of bottom water 

formation on the Adelie Coast. Future climate change would probably have an impact 

on the extent and rate of sea ice formation in the polynya and therefore, global 

thermohaline circulation.
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8. Durmont d’Urville Trough

This chapter presents the results and interpretations of backscattered electron imagery 

(BSEI) analysis, secondary electron imagery (SEI) analysis and quantitative diatom 

assemblage counts from core MD03 2597, Durmont d’Urville Trough, East Antarctica 

(Figure 8.1). The diatom count data used to construct tables 8.1 -  8.3 can be found in 

appendix 4. Detailed MD03 2597 core lithology, sample depths and chronological 

information are presented in chapter 4 and analytical methods used can be found in 

chapter 5.

140°E

r -'MD03-2597

20km

Figure 8.1
Location map of MD03-2597, 
Duromnt d’Urville Trough on 
the Adelie Coast continental 
margin. Contours in metres. 
Adapted from Domack et al. 
(1989).

8.1. Results

The late-Holocene laminae and sub-laminae found in Durmont d’Urville Trough 

sediments are presented and their relationships described. Laminae and sub-laminae 

are classified principally according to diatom assemblages; the dominance of 

terrigenous or biogenic components is also utilised. Biogenic laminae are composed 

of diatom ooze with very little terrigenous material and are present throughout the 

sampled intervals. Terrigenous laminae have a greater proportion of terrigenous 

grains (silt and clay) relative to the biogenic laminae. Terrigenous grain sizes vary 

between laminae. Hyalochaete Chaetoceros spp. (resting spores and vegetative cells) 

and Fragilariopsis spp. overwhelmingly dominate the laminated sediment, together 

representing 78.9 -  90.0 % of the diatom assemblage (Table 8.1), therefore more 

minor constituents of the assemblage, which are highly visible in the BSEI
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photographs, are used to categorise the laminae types. Eight types of lamina and one 

sub-lamina type have been identified in the analysed intervals. Biogenic and 

terrigenous forms of the lamina/sub-lamina types occur in this late-Holocene 

laminated interval and are discussed together in this chapter. The discussion of 

biogenic and terrigenous laminae therefore differs from the laminae descriptions in 

the previous two chapters (deglacial laminated sediments, Palmer Deep; and post

glacial and mid-Holocene laminated sediments from Mertz Ninnis Trough, 

respectively). An average of at least three diatom species counts per lamina and sub

lamina type is used to calculate relative and absolute diatom abundances in this 

chapter (see appendix 4, Table A.4.3.1.1 and A.4.3.1.2 for original diatom counts). 

“Elongate pennates” is a grouping of the species Thalassiothrix antarctica, 

Trichotoxon reinboldii and Pseudonitzschia turgidula used in this chapter.

8.1.1. Laminae Characterised by Hyalochaete Chaetoceros spp. 

Resting Spores

Laminae of this type are overwhelmingly composed of Hyalochaete Chaetceros spp. 

resting spores (CRS) (Figure 8.2). Out of twenty-three occurences within the analysed 

interval, twenty are biogenic laminae (Figure 8.2a and b) and three are terrigenous 

laminae (Figure 8.2c and d). The minor constituents of the assemblage are 

Fragilariopsis spp., Corethron pennatum  and Porosira glacialis resting spores (RS). 

CRS constitute 50.6% and Fragilariopsis spp. constitute 38.4% of the total diatom 

assemblage (Table 8.1). Hyalochaete Chaetoceros free counts (Table 8.2) are 

dominated by Fragilariospsis spp. (75.7%; most dominant species F. curta (35.1%), 

F. rhombica (11.7%), F. kerguelensis (8.8%), F. cylindrus (7.8%) and F. ritscheri 

(3.7%)) and Phaeoceros Chaetoceros spp. (9.6%), Thalassiosira spp. (6.2%; most 

dominant species are T. poroseriata (1.7%), T. lentiginosa (1.6%) and T. gracilis v. 

gracilis (1.5%)) and P. glacialis RS (3.3%). This lamina type has an absolute 

abundance of 874 xlO6 valves per gramme of dry sediment (Table 8.3). The biogenic 

laminae are present in the analysed intervals in two depth ranges, 1 8 -2 4  and 40-57 

mbsf (~ 990-1310 cal. yrs BP and 2160 -  2814 cal. yrs BP) (Figure 8.3). The 

terrigenous laminae occur between 47 and 50 metres below sea floor (mbsf) in the
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Figure 8.2
Backscattered electron imagery 
(BSEI) and secondary electron 
imagery (SEI) photographs of 
b iogen ic  and te rrig en o u s  
lam inae ch arac te rised  by 
Hyalochaete Chaetoceros spp. 
resting spores (CRS), Durmont 
d’Urville Trough.
(a ) BSEI p h o to g rap h  o f  
biogenic laminae. CRS (gold 
arrows). Scale bar = 100 
microns.
(b) SEI photograph of biogenic 
laminae. CRS (gold arrows). 
Phaeoceros Chaetoceros spp. 
(red arrows) and Corethron

setae (purple arrow). 
Scale bar=70 microns.
(c) BSEI p h o to g rap h  o f  
terrigenous laminae. CRS (gold 
arrows) and Fragilariopsis spp. 
(red arrows). Scale bar = 100 
microns.

* (d ) SE I p h o t o g r a p h  o f
terrigenous laminae. CRS (gold 
arrows), (i) Astermophalus spp.;
(ii) Phaeoceros Chaetoceros;
(iii) Fragilariopsis rhombica;
(iv) F. curta. (red arrows). Scale 
bar = 50 microns.
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Table 8.1
Relative abundance of all diatom species (percentage) by lamina type, Durmont d’Urville Trough, MD03 2597. RS = resting spores.

Species /  Lamina type

characterised 
by 

H
yalochaete 

C
haetoceros 

spp. 
R

S

L
am

inae

F
ragilariopsis 

spp.

characterised 
by 

H
yalochaete 

C
haetoceros 

spp. 
RS 

and

L
am

inae

L
am

inae 
characterised 

by 
F

ragilariopsis 
spp.

characterised 
by 

C
orethron 

pennatum
 

and 
R

hizosolenia 
spp.

L
am

inae

pennatum

L
am

inae 
characterised 

by 
C

orethron

L
am

inae 
characterised 

by 
R

hizosolenia 
spp.

M
ixed 

diatom
 

assem
blage 

biogenic 
lam

inae

M
ixed 

diatom
 

assem
blage 

terrigenous 
lam

inae

Sub-lam
inae 

characterised 
by 

Porosira 
glacialis 

R
S

L
am

inae 
characterised 

by 
Stellarim

a 
m

icrotrias 
R

S, 
Porosira 

glacialis 
RS 

and 
/ or 

C
oscinodiscus 

bouvet

H yalochaete C haetoceros spp. RS Gran 50.6 43.2 22.5 40.5 29.9 21.1 43.0 36.7 59.6 40.1

H yalochaete C haetoceros spp. (vegetative) Gran 0.3 0.2 0.0 2.0 0.2 1.7 0.6 1.5 1.0 0.5

Phaeoceros C haetoceros spp. Gran 3.2 7.1 6.2 6.5 2.4 1.3 2.1 2.4 1.5 3.5

Corethron pennatum  (Grunow) Ostenfeld 0.2 0.6 0.3 0.7 0.9 0.1 0.3 0.5 0.2 0.7

E ucam pia antarctica  (Castracane) Mangin 0.6 0.5 1.4 2.5 0.6 0.6 0.7 0.7 0.7 0.7

F ragilariopsis spp. Hustedt 38.4 42.3 63.4 37.3 56.2 56.1 46.4 48.6 20.3 39.8

P orosira  g lacia lis  RS (Grunow) Jorgensen 1.5 1.2 1.0 0.9 1.0 0.7 0.6 2.4 7.1 2.9

Proboscia  spp. Jorgensen 0.2 0.1 0.3 0.6 0.7 10.1 0.3 0.5 0.1 0.9

Rhizosolenia  spp. Brightwell 0.0 0.4 0.2 3.3 1.3 2.3 0.6 0.8 0.5 0.3

Stellarim a m icrotrias RS (Ehrenberg) Hasle & Sims 0.2 0.1 0.0 0.0 0.1 0.2 0.4 0.1 0.2 1.1

Thalassiosira spp. Cleve 3.0 2.8 2.9 3.2 4.1 2.4 2.9 4.2 8.0 7.6

Elongate pennates 0.6 0.8 0.6 1.5 1.5 2.2 1.1 0.8 0.2 0.7

Others 1.2 0.7 1.2 1.0 1.1 1.2 1.0 0.8 0.6 1.2

Total: 100 100 100 100 100 100 100 100 100 100



Table 8.2
Relative abundance of Hyalochaete Chaetcoeros spp. free counts (percentage) by lamina type, Durmont d’Urville Trough, MD03 2597. RS 
= resting spores.

Species / Lamina type

L
am

inae 
characterised 

by 
H

yalochaete 
C

haetoceros 
spp. 

R
S

L
am

inae 
characterised 

by 
H

yalochaete 
C

haetoceros 
spp. 

RS 
and

F
ragilariopsis 

spp.

L
am

inae 
characterised 

by 
F

ragilariopsis 
spp.

L
am

inae 
characterised 

by 
C

orethron 
pennatum

 
and 

R
hizosolenia 

spp.

pennatum

L
am

inae 
characterised 

by 
C

orethron

L
am

inae 
characterised 

by 
R

hizosolenia 
spp.

M
ixed 

diatom
 

assem
blage 

biogenic 
lam

inae

M
ixed 

diatom
 

assem
blage 

terrigenous 
lam

inae

Sub-lam
inae 

characterised 
by 

Porosira 
glacialis 

R
S

m
icrotrias 

resting 
spores, P

orosira 
glacialis 

resting 
spores 

and 
/ or 

C
oscinodiscus 

bouvet

L
am

inae 
characterised 

by 
Stellarim

a

Phaeoceros C haetoceros spp. Gran 9.6 10.8 8.6 9.8 3.2 1.7 4.8 4.6 3.4 6.5

Corethron pennatum  (Grunow) Ostenfeld 0.3 1.1 0.6 1.2 1.4 0.3 0.6 0.9 0.3 1.1

Eucam pia antarctica  (Castracane) Mangin 1.2 0.9 1.9 5.3 0.7 0.7 1.2 1.7 1.9 1.4

F ragilariopsis  spp. Hustedt 75.7 75.7 80.3 66.4 81.8 73.7 82.4 75.9 54.2 67.3

P orosira  g lac ia lis  RS (Grunow) Jorgensen 3.3 2.5 1.3 1.6 1.5 0.8 0.9 4.5 15.5 5.1

P roboscia  spp. Jorgensen 0.3 0.1 1.3 0.6 1.1 12.4 0.4 1.0 0.1 1.4

Rhizosolenia  spp. Brightwell 0.4 0.7 0.3 5.3 1.2 3.2 0.8 1.3 2.0 0.9

Stellarim a m icrotrias  RS (Ehrenberg) Hasle & Sims 0.2 0.1 0.1 0.0 0.1 0.2 0.4 0.1 0.9 1.6

Thalassiosira  spp. Cleve 6.2 5.4 4.3 5.9 5.1 2.7 5.2 7.1 18.7 12.3

Elongate pennates 0.9 1.4 0.7 2.3 1.6 2.3 1.6 1.1 1.2 1.0

Others 1.9 1.3 0.6 1.6 2.3 2.0 1.7 1.8 1.8 1.4

Total: 100 100 100 100 100 100 100 100 100 100
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Table 8.3
Absolute abundance of all diatom species (xlO6 valves per gramme of dry sediment) by lamina type, Durmont d ’Urville Trough, 
MD03 2597. RS = resting spores.

Species /  Lamina type

L
am

inae 
characterised 

by 
H

yalochaete 
C

haetoceros 
spp. 

R
S

characterised 
by 

H
yalochaete 

C
haetoceros 

spp. 
RS 

and
F

ragilariopsis 
spp.

L
am

inae

L
am

inae 
characterised 

by 
F

ragilariopsis 
spp.

L
am

inae 
characterised 

by 
C

orethron 
pennatum

 
and 

R
hizosolenia 

spp.

L
am

inae 
characterised 

by 
C

orethron 
pennatum

L
am

inae 
characterised 

by 
R

hizosolenia 
spp.

M
ixed 

diatom
 

assem
blage 

biogenic 
lam

inae

M
ixed 

diatom
 

assem
blage 

terrigenous 
lam

inae

Sub-lam
inae 

characterised 
by 

Porosira 
glacialis 

R
S

bouvet

Stellarim
a 

m
icrotrias 

R
S, 

Porosira 
glacialis 

RS 
and 

/ or 
C

oscinodiscus

characterised 
by

L
am

inae

H yalochaete C haetoceros spp. RS Gran 499.5 330.4 194.2 309.5 187.1 155.1 331.3 227.9 831.9 276.3

Phaeoceros Chaetoceros spp. Gran 37.4 54.3 55.8 33.9 14.1 9.6 18.9 14.7 12.6 26.4

Corethron pennatum  (Grunow) Ostenfeld 1.5 4.2 3.3 3.3 4.5 1.1 3.2 3.0 1.5 5.5

Eucam pia antarctica  (Castracane) 
Mangin 4.1 3.7 11.7 22.1 2.7 4.3 6.5 4.8 6.9 5.1

F ragilariopsis  spp. Hustedt 286.3 304.0 614.1 226.3 300.2 417.2 325.3 241.8 164.0 261.4
P orosira  g lac ia lis  RS (Grunow) 
Jorgensen 8.7 9.5 7.5 5.6 5.1 4.9 3.2 14.3 53.9 20.3

P roboscia  spp. Jorgensen 2.3 0.9 2.7 4.2 3.7 74.9 2.0 2.9 1.6 6.0

Rhizosolenia  spp. Brightwell 0.0 3.2 1.7 15.7 7.6 16.9 4.3 3.6 4.2 3.0

Stellarim a m icrotrias RS (Ehrenberg) 
Hasle & Sims 0.6 0.4 0.0 0.0 0.4 1.7 2.4 0.5 2.2 6.7

Thalassiosira  spp. Cleve 18.7 18.8 27.8 19.7 23.9 17.9 19.3 21.2 65.4 45.3

Elongate pennates 4.9 6.1 6.2 6.9 9.1 16.3 6.7 4.2 4.0 4.5

Others 10.3 7.5 11.2 19.6 9.2 22.5 10.9 17.2 16.7 9.8

Total: 874.3 743.0 936.2 666.8 567.6 742.4 734.0 556.1 1164.9 670.3
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Figure 8.3
Graph illustrating the distribution of different lamina types, Durmont d’Urville Trough 
MD03 2597, in discrete intervals between 18.75 and 56.80 metres below sea floor (mbsf) 
(see table 4.7). The lamina are positioned according to the depth of the base of the lamina. 
Squares indicate the position of biogenic laminae and sub-laminae. Triangles indicate the 
position of terrigenous laminae and sub-laminae. RS = resting spores.
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Figure 8.4
Graph showing the thicknesses of different types of lamina from Durmont d’Urville Trough, MD03 2597. Individual thicknesses are 
displayed as coloured bars within the total thickness of each lamina type. RS = resting spores.
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CHAPTER 8

sampled intervals (Figure 8.3). The laminae range in thickness from 1.0 to 24.0 mm (n 

= 23, o = 6.1 mm, mean = 6.3 mm) (Figure 8.4), constituting 6.1% of the total 

sediment thickness. There is no correlation between lamina thickness and core depth.

8.1.2. Laminae Characterised by Hyalochaete Chaetoceros spp. 

Resting Spores and Fragilariopsis spp.

Lamina of this type are characterised by Hyalochaete Chaetoceros spp. resting spores 

(CRS) and Fragilariopsis spp. (Figure 8.5). Other constituents of the assemblage are 

Corethron pennatum and Porosira glacialis resting spores (RS). Out of seventy-one 

laminae that occur within the analysed interval, sixty-three are biogenic laminae 

(Figure 8.5a and b) and eight are terrigenous laminae (Figure 8.5c and d). CRS 

constitute 43.2% and Fragilariopsis spp. constitute 42.3% relative abundance of the 

total diatom assemblage (Table 8.1). Hyalochaete Chaetoceros free counts (Table 8.2) 

are dominated by Fragilariopsis spp. (75.7%; most dominant species are F. curta 

(34.8%), F. cylindrus (12.3%), F. rhombica (9.5%) and F. kerguelensis (7.4%)), 

Phaeoceros Chaetoceros spp. (10.8%), Thalassiosira spp. (5.4%; most dominant 

species is T. gracilis v. gracilis (1.6%)), P. glacialis RS (2.5%) and C. pennatum 

(1.1%). This lamina type has an absolute abundance of 743 xlO6 valves per gramme 

of dry sediment (Table 8.3). These laminae are present throughout the analysed 

intervals (Figure 8.3) and range in thickness from 0.8 to 26.6 mm (n = 71, a = 6.1 

mm, mean = 8.1 mm) (Figure 8.4), making up 24.3% of total sediment thickness. 

There is no correlation between lamina thickness and core depth.

8.1.3. Laminae Characterised by Fragilariopsis spp.

This type of lamina is composed of diatom ooze (biogenic) and is characterised by 

Fragilariopsis spp. (Figure 8.6a and b). Other species present in the assemblage are 

Hyalochaete Chaetoceros spp. resting spores (CRS), Eucampia antarctica, Corethron 

pennatum, Porosira glacialis resting spores (RS) and elongate pennates. CRS 

constitutes 22.5% and Fragilariopsis spp. constitute 63.4% relative abundance of the 

total diatom assemblage (Table 8.1) Hyalochaete Chaetoceros free counts (Table 8.2) 

are dominated by Fragilariopsis spp. (80.3%; dominated by F. curta (29.4%), F.
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cylindrus (26.2%), F. rhombica (12.8%) and F. kerguelensis (3.9%)), Phaeoceros 

Chaetoceros spp. (8.6%), Thalassiosira spp. (4.3%; dominated by T. gracilis v. 

gracilis (1.0%)), E. antarctica (1.9%), elongate pennates (0.7%) and C. pennatum 

(0.6%). This lamina type has an absolute abundance of 936 xlO6 valves per gramme 

of dry sediment (Table 8.3). Twelve laminae characterised by Fragilariopsis spp. are 

present throughout the core but not in every analysed interval (Figure 8.3). These 

lamina range in thickness from 2.4 to 16.1 mm (n = 12, a = 4.7 mm, mean = 9.0 mm) 

(Figure 8.4) and make up 4.6% of the total sediment thickness. There is no correlation 

between lamina thickness and core depth.

8.1.4. Laminae Characterised by Corethron pennatum and 

Rhizosolenia spp.

Laminae of this type are composed o f diatom ooze (biogenic) and are characterised by 

Corethron pennatum and Rhizosolenia spp. (Figure 8.7a and b). The other constitutes 

of the assemblage are Hyalochaete Chaetoceros spp. resting spores (CRS), 

Fragilariopsis spp., Phaeoceros Chaetoceros spp., Eucampia antarctica, elongate 

pennates and Porosira glacialis resting spores (RS). CRS constitutes 40.5% and 

Fragilariopsis spp. constitute 37.3% relative abundance of the total diatom 

assemblage (Table 8.1). Hyalochaete Chaetoceros free counts (Table 8.2) are 

dominated by Fragilariopsis spp. (66.4%; dominated by F. curta (19.1%), F. 

cylindrus (13.5%), F. rhombica (12.9%), F. ritscheri (7.7%), F. kerguelensis (5.5%) 

and F. sublinearis (2.8%)), Phaeoceros Chaetoceros spp. (9.8%), Thalassiosira spp. 

(5.9%; dominated by T. lentiginosa (1.9%)), E. antarctica (5.3%), Rhizosolenia spp. 

(5.3%), C. pennatum (1.2%), P. glacialis RS (1.6%) and elongate pennates (2.3%). 

This lamina type has an absolute abundance of 667 xlO6 valves per gramme of dry 

sediment (Table 8.3). Eight laminae characterised by C. pennatum and Rhizosolenia 

spp. are present in the sampled intervals below 33.9 mbsf (before -1840 cal. yr BP) 

(Figure 8.3). These laminae range from 1.4 to 21.0 mm thick (n = 8, o = 7.4 mm, 

mean = 9.9 mm) (Figure 8.4) and make up 3.3% of the total sediment thickness. There 

is no correlation between lamina thickness and core depth.
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Figure 8.5
B a c k s c a t t e r e d  e l e c t r o n  
i m a g e r y  ( B S E I )  a n d  
secondary electron imagery 
(SEI) photographs of laminae 
characterised by Hyalochaete 
Chaetoceros spp. resting 
s p o r e s  ( C R S )  a n d  
Fragilariopsis spp. biogenic 
and terrigenous lam inae, 
Durmont d’Urville Trough.
(a) BSEI photograph o f 
biogenic laminae. CRS (gold 
arrows) and Fragilariopsis 
spp. (red arrows).
(b )  SEI pho t o g r a ph  o f  
biogenic laminae. CRS (gold 
arrows) and Fragilariopsis 
spp. (red arrow). Scale bar = 
100 microns.
(c) BSEI photograph o f 
terrigenous laminae. CRS 
( g o l d  a r r o w s )  a n d  
F rag ila riopsis  spp. (red 
arrow). Scale bar = 100 
microns.
( d ) . SEI p h o t og ra ph  o f  
terrigenous laminae. CRS 
( g o l d  a r r o w s )  a n d  
F rag ila riopsis  spp. (red 
arrows). Scale bar = 50 
microns.



Figure 8.6
B a c k s c a t t e r e d  e l e c t r o n  
i m a g e r y  ( B S E I )  a n d  
secondary electron imagery 
(SEI) photographs of biogenic 
and terrigenous laminae 
c h a r a c t e r i s e d  b y  
Fragilariopsis spp., Durmont 
d’Urville Trough.
(a) BSEI photograph o f 
b i o g e n i c  l a m i n a e .  
Fragilariopsis spp. (gold 
arrows). Scale bar = 60 
microns.
(b ) SEI p ho to gr a ph  o f  
biogenic laminae. Gold arrows 
(i) F. kerguelensis; (ii) F. 
obliquecostata. Scale bar = 40 
microns.
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Figure 8.7
B a c k s c a t t e r e d  e l e c t r o n  
i m a g e r y  ( B S E I )  a n d  
secondary electron imagery 
(SEI) photographs of biogenic 
laminae characterised by 
Corethron pennatum  and 
Rhizosolenia spp., Durmont 
d’Urville Trough.
(a) BSEI photograph o f 
b i o g e n i c  l a m i n a e .  C. 
pennatum (gold arrow) and 
Rhizosolenia spp.(red arrow). 
Scale bar = 100 microns.
(b) SEI photograph of laminae 
characterised by C. pennatum 
( g o l d  a r r o w s )  a n d  
Rhizosolenia spp. (red arrow). 
Scale bar = 90 microns.
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8.1.5. Laminae Characterised by Corethron pennatum

This lamina type is characterised by high abundance of Corethron pennatum (Figure

8.8). Thirteen laminae are present within the analysed intervals, twelve of which are 

biogenic laminae (Figure 8.8a and b) and one a terrigenous lamina (Figure 8.8c and 

d). The other constituents of the assemblage are Hyalochaete Chaetoceros spp. resting 

spores (CRS), Fragilariopsis spp., Porosira glacialis resting spores (RS), Phaeoceros 

Chaetoceros spp., Rhizosolenia spp. and elongate pennates. CRS constitute 29.9% 

and Fragilariopsis spp. constitute 56.2% of the total diatom assemblage (Table 8.1). 

Hyalochaete Chaetoceros free counts (Table 8.2) are dominated by Fragilariopsis 

spp. (81.8%; dominated by F. curta (28.3%), F. cylindrus (28.1%), F. rhombica 

(10.9%), F. kerguelensis (5.0%) and F. ritscheri (3.6%)), Thalassiosira spp. (5.1%; 

dominated by T. lentiginosa (2.3%) and T. gracilis v. gracilis (1.2%)), Rhizosolenia 

spp. (1.2%), Phaeoceros Chaetoceros spp. (3.2%), P. glacialis RS (1.5%), C. 

pennatum (1.4%) and elongate pennates (1.6%). This lamina type has an absolute 

abundance of 568 xlO6 valves per gramme of dry sediment (Table 8.3). Most of the 

biogenic laminae occur in the analysed intervals below 44 mbsf (~ 2370 to 2814 cal. 

yrs BP) (Figure 8.3). One lamina with increased terrigenous content occurs at approx

34.0 mbsf. The laminae range in thickness from 0.8 to 25.7 mm (n = 13, o = 7.0 mm, 

mean 7.1 mm) (Figure 8.4), making up 3.9% of the total sediment thickness. There is 

no correlation between lamina thickness and core depth.

165



Figure 8.8
B a c k s c a t t e r e d  e l e c t r o n  
i m a g e r y  ( B S E I )  a n d  
secondary electron imagery 
(SEI) photographs of biogenic 
and terrigenous lam inae 
characterised by Corethron 

Durmont d’Urville 
Trough.
(a) BSEI photograph o f 
b i o g e n i c  l a m i n a e .  C.

(gold arrows). Scale 
bar = 100 microns.
(b ) SEI p ho t og r a ph  o f  
b i o g e n i c  l a m i n a e .  C. 
pennatum (gold arrows) and 
C. pennatum setae (red arrow). 
Scale bar = 70 microns.
(c) BSEI photograph o f 
te r r igenous  l aminae.  C.

(gold arrows). Scale 
bar= 100 microns.
(d )  SEI p ho t og r aph  o f  
te r r igenous  laminae.  C.

(gold arrows). Scale 
bar = 70 microns.
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8.1.6. Laminae characterised by Rhizosolenia spp.

Laminae of this type are characterised by high abundance of Rhizosolenia spp. 

(Figure 8.9). Nine laminae are present in the analysed interval; seven are biogenic 

laminae (Figure 8.9a and b) and two terrigenous laminae (Figure 8.9c and d). Other 

constituents of the assemblage are Hyalochaete Chaetoceros spp. resting spores 

(CRS), Fragilariopsis spp., Corethron pennatum  and elongate pennates. CRS 

constitute 21.1% and Fragilariopsis spp. constitute 56.1% of the total diatom 

assemblage (Table 8.1). Hyalochaete Chaetoceros free counts (Table 8.2) are 

dominated by Fragilariopsis spp. (73.7%; dominated by F. cylindrus (33.8%), F. 

curta (20.7%), F. rhombica (9.9%) and F. kerguelensis (3.2%)), Proboscia spp. 

(12.4%), Rhizosolenia spp. (3.2%; dominated by R. antennata f. semispina), 

Thalassiosira spp. (2.7%; dominated by T. gracilis v. gracilis (1.0%)), elongate 

pennates (2.3%), Phaeoceros Chaetoceros spp. (1.7%) and C. pennatum (0.3%). This 

lamina type has an absolute abundance of 742 xlO6 valves per gramme of dry 

sediment (Table 8.3). The laminae occur between 33 and 50 mbsf (~ 1790 -  2680 cal. 

yrs BP) (Figure 8.3) and range in thickness from 1.8 to 14.4 mm (n = 9, a = 4.3 mm, 

mean = 8.2 mm) (Figure 8.4), making up 3.1% of total sediment thickness. There is 

no correlation between lamina thickness and core depth.
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Figure 8.9
Backscattered electron imagery 
(BSEI) and secondary electron 
imagery (SEI) photographs of 
biogenic  and t e r r igenous  
l aminae charac te r i sed  by 
Rhizosolenia spp., Durmont 
d ’Urville Trough.
(a) BSEI  p ho t og r aph  o f  
biogenic laminae. Rhizosolenia 
spp. (gold arrows). Scale bar = 
100 microns.
(b) SEI photograph of biogenic 
laminae.  R. an tenna ta  f. 
se m isp in a  (go ld  a r r ow) ,  
Rhizosolenia spp. girdle bands 
(red arrows) and Phaeoceros 
C haetoceros  spp. (purple 
arrow). Scale bar = 100 
microns.
(c) BSEI  p h o t og r ap h  o f  
t e r r i g e n o u s  l a m i n a e .  
R h izo s o le n ia  spp.  ( go l d  
arrows). Scale bar = 100 
microns.
( d )  SE I p h o t o g r a p h  o f  
terrigenous laminae, (i) R. 
antennata f. semispina, (ii) R. 
antennata f. antennata, (iii) 
Fragilariopsis cylindrus and 
(iv) F. rhombica (gold arrows). 
Scale bar=40 microns.
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Figure 8.5
B a c k s c a t t e r e d  e l e c t r o n  
i m a g e r y  ( B S E I )  a n d  
secondary electron imagery 
(SEI) photographs of laminae 
characterised by Hyalochaete 
Chaetoceros spp. resting 
s p o r e s  ( C R S )  a n d  
Fragilariopsis spp. biogenic 
and terrigenous lam inae, 
Durmont d’Urville Trough.
(a) BSEI photograph o f 
biogenic laminae. CRS (gold 
arrows) and Fragilariopsis 
spp. (red arrows).
(b )  SEI ph o t og r a ph  o f  
biogenic laminae. CRS (gold 
arrows) and Fragilariopsis 
spp. (red arrow). Scale bar = 
100 microns.
(c) BSEI photograph o f 
terrigenous laminae. CRS 
( g o l d  a r r o w s )  a n d  
F rag ila riopsis  spp. (red 
arrow). Scale bar = 100 
microns.

( d ) . SEI p ho tog r a ph  o f  
terrigenous laminae. CRS 
( g o l d  a r r o w s )  a n d  
F rag ila riopsis  spp. (red 
arrows). Scale bar = 50 
microns.
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Figure 8.7
B a c k s c a t t e r e d  e l e c t r o n  
i m a g e r y  ( B S E I )  a n d  
secondary electron imagery 
(SEI) photographs of biogenic 
lam inae characterised by 
Corethron pennatum  and 
Rhizosolenia spp., Durmont 
d’Urville Trough.
(a) BSEI photograph o f 
b i o g e n i c  l a m i n a e .  C. 
pennatum  (gold arrow) and 
Rhizosolenia spp.(red arrow). 
Scale bar = 100 microns.
(b) SEI photograph of laminae 
characterised by C. pennatum 
( g o l d  a r r o w s )  a n d  
Rhizosolenia spp. (red arrow). 
Scale bar = 90 microns.
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8.1.5. Laminae Characterised by Corethron pennatum

This lamina type is characterised by high abundance of Corethron pennatum (Figure

8.8). Thirteen laminae are present within the analysed intervals, twelve of which are 

biogenic laminae (Figure 8.8a and b) and one a terrigenous lamina (Figure 8.8c and 

d). The other constituents o f the assemblage are Hyalochaete Chaetoceros spp. resting 

spores (CRS), Fragilariopsis spp., Porosira glacialis resting spores (RS), Phaeoceros 

Chaetoceros spp., Rhizosolenia spp. and elongate pennates. CRS constitute 29.9% 

and Fragilariopsis spp. constitute 56.2% of the total diatom assemblage (Table 8.1). 

Hyalochaete Chaetoceros free counts (Table 8.2) are dominated by Fragilariopsis 

spp. (81.8%; dominated by F. curta (28.3%), F. cylindrus (28.1%), F. rhombica 

(10.9%), F. kerguelensis (5.0%) and F. ritscheri (3.6%)), Thalassiosira spp. (5.1%; 

dominated by T. lentiginosa (2.3%) and T. gracilis v. gracilis (1.2%)), Rhizosolenia 

spp. (1.2%), Phaeoceros Chaetoceros spp. (3.2%), P. glacialis RS (1.5%), C. 

pennatum (1.4%) and elongate pennates (1.6%). This lamina type has an absolute 

abundance of 568 xlO6 valves per gramme o f dry sediment (Table 8.3). Most of the 

biogenic laminae occur in the analysed intervals below 44 mbsf (~ 2370 to 2814 cal. 

yrs BP) (Figure 8.3). One lamina with increased terrigenous content occurs at approx

34.0 mbsf. The laminae range in thickness from 0.8 to 25.7 mm (n = 13, o = 7.0 mm, 

mean 7.1 mm) (Figure 8.4), making up 3.9% of the total sediment thickness. There is 

no correlation between lamina thickness and core depth.
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pennatum,

Figure 8.8
B a c k s c a t t e r e d  e l e c t r o n  
i m a g e r y  ( B S E I )  a n d  
secondary electron imagery 
(SEI) photographs of biogenic 
and terr igenous laminae 
characterised by Corethron 

Durmont d’Urville 
Trough.
(a) BSEI photograph o f 
b i o g e n i c  l a m i n a e .  C.

(gold arrows). Scale 
bar= 100 microns.
(b ) SEI pho t og r aph  o f  
b i o g e n i c  l a m i n a e .  C. 
pennatum (gold arrows) and 
C. pennatum setae (red arrow). 
Scale bar=70 microns.
(c) BSEI photograph o f 
t e r r igenous  laminae.  C.

(gold arrows). Scale 
bar= 100 microns.
(d ) SEI pho t ograph  o f  
te r r igenous  laminae.  C.

(gold arrows). Scale 
bar=70 microns.
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8.1.6. Laminae characterised by Rhizosolenia spp.

Laminae of this type are characterised by high abundance of Rhizosolenia spp. 

(Figure 8.9). Nine laminae are present in the analysed interval; seven are biogenic 

laminae (Figure 8.9a and b) and two terrigenous laminae (Figure 8.9c and d). Other 

constituents of the assemblage are Hyalochaete Chaetoceros spp. resting spores 

(CRS), Fragilariopsis spp., Corethron pennatum  and elongate pennates. CRS 

constitute 21.1% and Fragilariopsis spp. constitute 56.1% of the total diatom 

assemblage (Table 8.1). Hyalochaete Chaetoceros free counts (Table 8.2) are 

dominated by Fragilariopsis spp. (73.7%; dominated by F. cylindrus (33.8%), F. 

curta (20.7%), F. rhombica (9.9%) and F. kerguelensis (3.2%)), Proboscia spp. 

(12.4%), Rhizosolenia spp. (3.2%; dominated by R. antennata f. semispina), 

Thalassiosira spp. (2.7%; dominated by T. gracilis v. gracilis (1.0%)), elongate 

pennates (2.3%), Phaeoceros Chaetoceros spp. (1.7%) and C. pennatum  (0.3%). This 

lamina type has an absolute abundance o f 742 xlO6 valves per gramme of dry 

sediment (Table 8.3). The laminae occur between 33 and 50 mbsf (~ 1790 -  2680 cal. 

yrs BP) (Figure 8.3) and range in thickness from 1.8 to 14.4 mm (n = 9, o = 4.3 mm, 

mean = 8.2 mm) (Figure 8.4), making up 3.1% of total sediment thickness. There is 

no correlation between lamina thickness and core depth.
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T

Figure 8.9
Backscattered electron imagery 
(BSEI) and secondary electron 
imagery (SEI) photographs of 
b iogenic  and t er r igenous  
laminae charac ter i sed by 
Rhizosolenia spp., Durmont 
d’Urville Trough.
(a ) BSEI  p ho t og r aph  o f  
biogenic laminae. Rhizosolenia 
spp. (gold arrows). Scale bar = 
100 microns.
(b) SEI photograph of biogenic 
laminae.  R. an tennata  f. 
se m isp in a  ( go ld  a r row) ,  
Rhizosolenia spp. girdle bands 
(red arrows) and Phaeoceros 
C haetoceros  spp. (purple 
arrow). Scale bar = 100 
microns.
(c) BSEI  pho t og r aph  o f  
t e r r i g e n o u s  l a m i n a e .  
R h izo s o le n ia  spp.  (gold  
arrows). Scale bar = 100 
microns.
( d )  SE I p h o t o g r a p h  o f  
terrigenous laminae, (i) R. 
antennata f. semispina, (ii) R. 
antennata f. antennata, (iii) 
Fragilariopsis cylindrus and 
(iv) F. rhombica (gold arrows). 
Scale bar=40 microns.
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8.1.7. Mixed Diatom Assemblage Laminae

Laminae with this mixed diatom assemblage have been sub-divided into those with a 

higher biogenic content and a higher terrigenous content. The laminae with the higher 

biogenic content will be presented first.

The mixed diatom assemblage biogenic laminae are mainly composed of 

Fragilariopsis spp. and Hyalochaete Chaetoceros spp. resting spores (CRS) (Figure 

8.10a and b). More minor species observed in this lamina type are Corethron 

pennatum, Porosira glacialis resting spores (RS) and Stellarima microtrias RS. CRS 

constitute 43.0% and Fragilariopsis spp. constitute 46.4% of the total diatom 

assemblage (Table 8.1). Hyalochaete Chaetoceros free counts (Table 8.2) are 

dominated by Fragilariopsis spp. (82.4%; dominated by F. curta (41.6%), F. 

cylindrus (14.3%), F. rhombica (11.7%) and F. kerguelensis (6.0%)), Thalassiosira 

spp. (5.2%; dominated by T. lentiginosa (1.4%) and T. gracilis v. gracilis (1.3%)), 

Phaeoceros Chaetoceros spp. (4.8%), P. glacialis RS (0.9%), Rhizosolenia spp. 

(0.8%), C. pennatum (0.6%) and elongate pennates (1.6%). This lamina type has an 

absolute abundance o f 734 xlO6 valves per gramme of dry sediment (Table 8.3). The 

biogenic laminae are present throughout the analysed intervals (Figure 8.3) and range 

in thickness from 1.6 to 19.1 mm (n = 20, o = 4.9 mm, mean = 8.1 mm) (Figure 8.4). 

This lamina type makes up 6.8% of total sediment thickness and there is no 

correlation between lamina thickness and core depth.

The mixed diatom assemblage terrigenous laminae are also mainly composed of 

Fragilariopsis spp. and CRS (Figure 8.10c and d). More minor species that make up 

the assemblage are P. glacialis RS, S. microtrias RS, C. pennatum, Thalassiosira 

spp., Coscinodiscus bouvet and Trigonium arcticum. CRS constitute 36.7% and 

Fragilariopsis spp. constitute 48.6% of the total diatom assemblage (Table 8.1). 

Hyalochaete Chaetoceros free counts (Table 8.2) are dominated by Fragilariopsis 

spp. (75.9%; dominated by F. curta (30.1%), F. cylindrus (15.8%), F. rhombica 

(13.0%), F. kerguelensis {12% ) and F. ritscheri (3.6%)), Thalassiosira spp. (7.1%; 

dominated by T. poroseriata and T. lentiginosa), Phaeoceros Chaetoceros spp. 

(4.6%), P. glacialis RS (4.5%), Rhizosolenia spp. (1.3%) and C. pennatum  (0.9%). 

This lamina type has an absolute abundance o f 556 xlO6 valves per gramme of dry 

sediment (Table 8.3). The mixed diatom assemblage terrigenous laminae occur
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Figure 8.10
Backscattered electron imagery 
(BSEI) and secondary electron 
imagery (SEI) photographs of 
mi xed  d i a tom a s s embl age  
biogenic and terrigenous laminae, 
Durmont d’Urville Trough.
(a) BSEI photograph of biogenic 
l aminae .  Gold  a r rows  (i) 
C o r e t h r o n  p e n n a t u m  ( i i )  
Hyalochaete Chaetoceros spp. 
resting spore (CRS) (iii) Porosira 
glacialis resting spores (RS) (iv) 
Fragilariopsis spp.. Scale bar = 
100 microns.
(b) SEI photograph of biogenic 
laminae. Gold arrows Eucampia 
antarctica (i) resting spore and (ii) 
vegetative cell; (iii) CRS; (iv) 
Phaeoceros Chaetoceros spp.; (v) 
Fragilariopsis curta. Scale bar = 
100 microns.
(c )  B S E I  p h o t o g r a p h  o f  
terrigenous laminae. Gold arrows 
(i) Stellarima microtrias RS; (ii) 
Porosira glacialis RS; (iii) CRS; 
(iv) Fragilariopsis spp.. Scale bar 
= 100 microns.
(d) SEI photograph of terrigenous 
laminae. Gold arrows (i) CRS; (ii) 
Coscinodiscus bouvet; (iii) girdle 
bands; (iv) Corethron pennatum 
airdle hands. Scale bar =  100
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Figure 8.12
Backscattered electron imagery (BSEI) photomosaics of laminate< 
sediments, Durmont d ’Urville Trough, (a) 44.52 - 44.45 metre: 
below sea floor (mbsf). (b) 40.66 - 40.60 mbsf. (c) 47.76 - 47.7] 
mbsf. (d) 56.73 - 56.71 mbsf.
R = Laminae characterised by Corethron pennatum  anc 

b Rhizosolenia spp.; T = Laminae characterised by Rhizosolenia spp. 
2 U = Laminae characterised by Hyalochaete Chaetoceros spp. resting 

spore; X = Mixed diatom assemblage laminae; Y = Sub-laminae 
characterised by Porosira glacialis resting spores (RS); and Z = 
Laminae characterised by Stellarima microtrias RS, P. glacialis RS 
and / or Coscinodiscus bouvet.
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8.1.10. Lamina Relationships

Three hundred and three laminae and thirty-six sub-laminae are present in the 

analysed intervals (Appendix 3, Table A3.3.1). Absolute abundances of the biogenic 

and terrigenous laminae and sub-lamina types range from 556 -  1165 xlO6 valves per 

gramme of dry sediment (Table 8.3). Sub-laminae characterised by Porosira glacialis 

resting spores (RS) have the greatest absolute abundance of diatoms and mixed 

diatom assemblage terrigenous laminae have the smallest absolute abundance of 

diatoms (Table 8.3). There is no correlation between lamina thickness and core depth 

for any of the lamina and sub-lamina types. The majority of boundaries throughout 

the analysed intervals are gradational (Figure 8.12); very occasionally boundaries are 

slightly disturbed by bioturbation. Typical sequences of lamina types have been 

identified in the laminated intervals and are schematically represented in Figure 8.14, 

however, not every lamina type occurs in every sequence. Lamina in the lower part of 

the lamina sequence have a high biogenic content and are characterised by 

Hyalochaete Chaetoceros spp. resting spores (CRS) and / or Fragilariopsis spp.. 

These are mostly succeeded by mixed diatom assemblage; however, intermittently 

through the analysed intervals, laminae characterised by Corethron pennatum  and / or 

Rhizosolenia spp. may occur between CRS and / or Fragilariopsis spp. and mixed 

diatom assemblage laminae. In the upper part o f the sequence, laminae have a higher 

terrigenous content with a mixed diatom assemblage. The sequence can end with 

terrigenous laminae characterised by Stellarima microtrias RS, P. glacialis RS and / 

or Coscinodiscus bouvet or sub-lamina (terrigenous or biogenic) characterised by P. 

glacialis RS. Biogenic sub-laminae characterised by P. glacialis RS also occur at the 

beginning of the following sequence. Pulses o f terrigenous material occasionally 

occur in the lower part o f the sequence creating laminae characterised by CRS, 

Fragilariopsis spp., C. pennatum  or Rhizosolenia spp. with increased terrigenous 

content.
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w ater column 
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Figure 8.14
Schematic diagram showing the sequence of lamina type deposition, Durmont d’Urville Trough. CRS = Hyalochaete 
Chaetoceros spp. resting spore. RS = resting spore. MDA=Mixed diatom assemblage. A u= Autumn.
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8.2. Interpretation and Discussion

8.2.1. Seasonal Signal

Hyalochaete Chaetoceros spp. resting spores (CRS) and Fragilariopsis spp. dominate 

all of the lamina types identified in the analysed late-Holocene laminated intervals, 

which suggests deposition o f the laminae occurred in an environment dominated by 

sea ice. The ecology of diatom species discussed in the following sections are 

described in greater detail in chapter 3, section 3.5.

8.2.1.1. Spring: Lam inae C haracterised by H yalochaete Chaetoceros spp. 

Resting Spore and / or F ragilariopsis  spp.

Laminae characterised by Hyalochaete Chaetoceros spp. resting spore (CRS), 

laminae characterised by Fragilariopsis spp., and laminae characterised by CRS and 

Fragilariopsis spp. have similar diatom assemblages, but with varying amounts of 

CRS and Fragilariopsis spp.. Hyalochaete Chaetoceros spp. are associated with well- 

stratified waters induced by sea ice melt (Leventer, 1991; Crosta et al., 1997), and are 

indicative of high primary productivity (Donegan and Schrader, 1982). CRS 

formation is triggered by reduced salinity or depleted nitrogen near the 

edge (Leventer, 1991; 1992). The Fragilariopsis spp. present in these lamina types 

bloom in an environment dominated by sea ice (e.g. Garrison et al., 1983a; Garrison, 

1991; Cunningham and Leventer, 1998; Leventer, 1998). In particular, a high 

abundance of F. curta indicates increased sea ice extent and duration (Taylor and 

Sjunneskog, 2002). The presence o f Phaeoceros Chaetoceros spp. suggests an 

oceanic influence on the region. Porosira glacialis resting spores (RS) are associated 

with the formation of sea ice (Hasle, 1973; Krebs et al. 1987; Watanabe, 1988; Scott 

et al, 1994). This, along with the presence o f gradational boundaries between all 

lamina types, suggests that the occurrence o f P. glacialis RS in laminae characterised 

by CRS and / or Fragilariopsis spp. is either due to sediment bioturbation o f laminae / 

sub-laminae deposited in the previous autumn and / or the release o f P . glacialis RS 

from melting sea ice, that was trapped by ice formation in the previous growing 

season. The dominance o f CRS or Fragilariopsis spp. over one another in these 

lamina types is probably controlled by varied sea ice cover and sea ice persistence in
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the growing season. Blooms o f Hyalochaete Chaetoceros spp. and Fragilariopsis spp. 

recorded in these three lamina types (terrigenous and biogenic laminae forms) 

indicate stratified, low salinity and nutrient-rich waters associated with sea ice melt in 

spring. The less common terrigenous lamina forms are a result of terrigenous material 

released by sporadic, accelerated sea ice and / or iceberg melt in spring.

8.2.1.2. Summer: Lam inae C haracterised by Corethron pennatum  and / or 

Rhizosolenia spp.

Laminae characterised by Corethron pennatum, laminae characterised by 

Rhizosolenia spp., and laminae characterised by C. pennatum  and Rhizosolenia spp. 

have similar diatom assemblages, but with varying abundances o f Corethron 

pennatum and / or Rhizosolenia spp. These species and genera are associated with 

comparable water column conditions. The lamina type characterised by C. pennatum 

occurs most often, out o f these three types, in the analysed intervals and has the 

highest sediment thickness percentage out o f these three types.

C. pennatum is a cosmopolitan and widespread species (e.g. Fryxell and Hasle, 1971; 

Fenner et al, 1976; Leventer et al., 1993) that has a preference for open water, ice 

free conditions (Fryxell and Hasle, 1971; Makarov, 1984). Stickley et al. (2005) 

suggested that C. pennatum  bloom when an influx o f warmer open water (under 

stratified conditions) occurs after, or at the end o f spring sea ice melt. C. pennatum  

can take advantage o f higher light levels in surface waters for photosynthesis and 

nutrients at depth by migrating up and down in the water column (Leventer et al., 

2002). Mass sedimentation o f C. pennatum  blooms is thought to occur when the water 

column is destabilised (Crawford et al., 1997; Kemp et al., 2000) by mixing events 

such as storms. C. pennatum  blooms have been associated with periods of unusual 

warmth during the unstable transition between the mid-Holocene Climatic Optimum 

and subsequent cooling in Palmer Deep, Antarctic Peninsula (Taylor and Sjunneskog, 

2002). Rhizosolenia spp. also have the ability to migrate up and down the water 

column in search of higher nutrients and light levels. This genus blooms in open water 

conditions which has little sea ice influence (Harbison et al., 1977; Alldredge and 

Silver, 1982; Kemp et a l, 1999). Rhizosolenia spp. are dominated by R.. antennata f. 

semispina', this species has been observed in a range of environments, between open
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water and sublittoral sea ice environments (Ligowski, 1993) and dominates open 

waters in late summer (Froneman et a l, 1995). The closely related genus Proboscia 

occurs with Rhizosolenia spp. and is a buoyant mat former which can play a major 

part in summer -  autumn diatom assemblages (Brichta and Nothig, 2003). Stickley et 

al (2005) suggest that Rhizosolenia spp. and Proboscia spp. blooms indicate 

increasingly oligotrophic warmer waters. Fragilariopsis curta and F. cylindrus are co

dominant species of the Fragilariopsis genus present in these lamina types. Both of 

these species have a wide distribution from offshore to nearshore environments 

(Zielinski and Gersonde, 1997), with highest abundances occurring in coastal regions 

influenced by sea ice (Truesdale and Kellogg, 1979; Leventer and Dunbar, 1988; 

Leventer, 1992; 1998; Zielinski and Gersonde, 1997; McMinn et al., 2001). Both 

Fragilariopsis species can live within or beneath sea ice (e.g. Armand, 2000; Fryxell 

et al, 1987). Blooms of C. pennatum  and / or Rhizosolenia spp. recorded in these 

three lamina types (biogenic and terrigenous laminae forms) indicate stable relatively 

warm open waters which occur in late spring/early summer, which have minimal sea 

ice influence. The less common terrigenous lamina forms are a result o f terrigenous 

material released from sea ice and/or iceberg melt.

8.2.1.3. Summer: M ixed D iatom  A ssem blage

The species within the mixed diatom assemblage laminae such as Thalassiosira 

lentiginosa, T. gracilis v. gracilis, T. poroseriata, Porosira glacialis resting spores 

(RS) and Phaeoceros Chaetoceros spp. suggest less stratified, more mixed open water 

conditions (Jouse et al., 1962; Kozlova, 1966; DeFelice and Wise, 1981; Hasle and 

Syvertsen, 1997; Zielinski and Gersonde, 1997). The high abundance of 

Fragilariopsis spp. within these laminae also suggests that sea ice is still present in 

the vicinity. Mixed diatom assemblage biogenic laminae are associated with summer 

deposition when sea ice has reduced a little and the water column becomes mixed by 

storms. Mixed diatom assemblage terrigenous laminae are associated with later 

summer deposition; the input o f ice rafted debris from local glaciers, sediment from 

sea ice and entrained fine grained sediments (as occurs in Mertz Ninnis Trough; 

Dunbar et al, 1985; Domack, 1988; Rintoul, 1998; Bindoff et a l, 2001) increases the 

terrigenous component o f the laminae. Trigonium arcticum occurs in the mixed 

diatom assemblage terrigenous laminae. This species epiphytically lives on algae
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between 200 and 300 metres depth in the water column (Thomas, 1966; Hendey, 

1937); therefore it is possible that it is swept into the trough by bottom currents.

8.2.1.4. Autum n/Spring Transition: Sub-lam ina Characterised by

Porosira glacialis R esting Spores

Porosira glacialis blooms in the area adjacent to sea ice (Hasle, 1973) but not within 

sea ice (Watanabe, 1988; Scott et al., 1994). Resting spores are produced when sea ice 

formation overwhelms the environment in autumn. The relatively thin sub-laminae of 

P. glacialis resting spores (RS) suggest a single, relatively short episode o f resting 

spore formation. These sub-laminae are not always present in the sediment after late 

summer laminae; this indicates that the resting spores were either not preserved in the 

sediments or environmental conditions were not favourable for blooms and / or 

resting spore formation of P. glacialis. This sub-lamina type therefore, is associated 

with autumn sea ice formation. The majority of the sub-laminae are terrigenous, 

which is due to the influx o f  terrigenous material from local glaciers (ice rafted 

debris), melting sea ice and advection o f fine-grained material into the region (see 

section 8.2.1.3). The biogenic sub-laminae result from biogenic flux overwhelming 

terrigenous material flux to the trough floor.

8.2.1.5. Autum n/Spring Transition: Lam inae Characterised by Stellarima 

microtrias Resting Spores, P orosira  glacialis  Resting Spores and / or 

Coscinodiscus bouvet

Stellarima microtrias is associated with shelf ice and surrounding waters (Hasle et al., 

1988). In summer high abundances o f the species have been observed in fast ice 

(Watanabe, 1982; Krebs et al., 1987; Tanimura et a l, 1990) and in autumn the resting 

spore is found in high abundances under sea ice (Fryxell, 1989). Porosira glacialis 

RS are produced during sea ice formation in autumn (as discussed in section 8.2.1.4). 

Coscinodiscus bouvet is a neritic species which may have been advected into the 

region (Priddle and Thomas, 1989). Both the terrigenous and biogenic forms of this 

lamina type are associated with autumn sea ice formation; the biogenic form (as with 

biogenic P. glacialis RS sub-laminae) is likely to be a result of biogenic material 

overwhelming terrigenous flux to the sediment.
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8.2.2. Lamina Relationships

The difference in absolute abundance o f diatoms between the laminae characterised 

by Hyalochaete Chaetoceros spp. resting spore (CRS) and the remaining lamina types 

is due to differences in water column stratification and nutrient levels. The dominance 

of sea ice taxa (Fragilariopsis spp.; F. curta and F. cylindrus) in all the lamina types 

suggests that persistent sea ice was present in the late-Holocene, between 2814 and 

925 cal. yrs BP; the time period encompassed by the laminated sediment analysed 

here. In several East Antarctic and Antarctic Peninsula sites (e.g. Bunger Oasis, Prydz 

Bay, Terra Nova Bay, Lallemand Fjord, Palmer Deep) this time period has been 

defined as post mid-Holocene Climatic Optimum cooling (see section 2.4.3), which 

corroborates the predicted presence o f persistent sea ice.

An annual cyclicity in lamina types is ascertained from diatom assemblages (Figure 

8.15). In spring, sea ice melt induces water column stratification which traps nutrients 

released from the sea ice and atmospheric particles (Tuncel et al., 1989; Wagenbach, 

1996). Highly stratified surface waters with high nutrient levels are conducive for 

Hyalochaete Chaetoceros spp. blooms and, therefore, the deposition o f laminae 

characterised by CRS. If, in spring, the sea ice does not melt rapidly and there is a 

substantial quantity of sea ice remaining in the environment as the growing season 

commences, Fragilariopsis spp. (sea ice taxa) will bloom and be deposited as laminae 

characterised by Fragilariopsis spp.. Currently, the earliest sea ice retreat from over 

the core site is December; therefore this site has a shorter growing season than over 

the Mertz Ninnis Trough (see chapter 7) where the Mertz Glacier Polynya is in 

operation (Figure 8.16). When the environment in spring is an average o f  these two 

environmental conditions (highly stratified surface waters, trapped nutrients and a 

moderate amount of sea ice) Hyalochaete Chaetoceros spp. and Fragilriopsis spp. 

will bloom, co-dominating the diatom assemblage; resulting in the deposition of 

laminae characterised by CRS and Fragilariopsis spp..

In late spring / early summer two possible scenarios may occur which result in the 

deposition of different lamina types. Firstly, uncharacteristically early seasonal 

warmth and stable stratified waters would allow Corethron pennatum  and / or 

Rhizosolenia spp. to bloom (Rhizosolenia spp. more dominant in more oligotrophic 

conditions). Deposition o f laminae characterised by C. pennatum  and / or 

Rhizosolenia spp. would result. The laminae characterised by C. pennatum  and / or
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Rhizosolenia spp. are present before 1840 cal. yrs BP which may indicate that the 

environment fluctuated between relatively warmer and cooler conditions during the 

transition from the mid-Holocene Climatic Optimum before stabilising, as is observed 

in Lallemand Fjord (Taylor et a l., 2001). Secondly, more commonly in summer, 

surface waters bio-depleted in nutrients become mixed by storm activity redistributing 

nutrients throughout the water column, allowing a more mixed diatom assemblage to 

thrive; resulting in the deposition o f mixed diatom assemblage laminae. As summer 

progresses terrigenous material derived from local glaciers, sea ice and bottom water 

currents increases, which augments the terrigenous content o f lamina. In autumn, sea 

ice formation commences and blooms o f Stellarima microtrias, Porosira glacialis and 

I or Coscinodiscus bouvet occur. Environmental stress, such as increased salinity and 

reduced light levels, causes resting spore formation, producing sub-lamina 

characterised by P. glacialis RS and lamina characterised by S. microtrias RS, P. 

glacialis RS and / or C. bouvet. The terrigenous content o f the sub-lamina and 

laminae will be controlled by the biogenic flux to the trough floor. A transition from 

late summer / autumn laminae to spring/summer laminae suggests that there was little 

or no deposition during the winter.

The laminations in the analysed intervals can not be described as varves. The annual 

cycle consists of two or more laminae per annual deposit but there is no rhythmic 

repetition of the same two lamina types. Using the sequence o f diatom assemblages, 

one hundred and twenty-one complete years have been identified in the analysed 

intervals (see Appendix 3, Table A3.3.1). Not every lamina or sub-lamina type is 

present in every annual deposit as similar environmental conditions are not repeated 

every year. Markov chain analysis was not conducted on the sequence o f lamina types 

since there was an insufficient number o f lamina in each analysed interval.

I
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Figure 8.15
Schematic representation o f an annual 
succession o f lamina types, Durmont 
d ’U rv ille  T rough. C om piled  from  
backscattered electron imagery (BSEI) 
data.
A = Laminae characterised by Hyalochaete 
Chaetoceros spp. resting spores and/or 
Fragilariopsis spp.
B = Laminae characterised by Corethron 
pennatum  and/or Rhizosolenia spp.
C = Mixed diatom assemblage biogenic 
laminae
D = Mixed diatom assemblage terrigenous 
laminae
E = Sub-laminae characterised by Porosira 
glacialis resting spores and/or laminae 
characterised by Stellarima microtrias 
resting spores, P. glacialis resting spores 
and/or Coscinodiscus bouvet
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8.3. Conclusions

Three hundred and three laminae and thirty-six sub-laminae are preserved in the 

analysed laminated intervals which have been interpreted as one hundred and twenty 

complete years of deposition. These laminae provide a high resolution archive of 

climate and palaeoceanography between 2814 and 925 cal. yrs BP during the post 

mid-Holocene Climatic Optimum cooling. Several lamina and sub-lamina types were 

identified and interpreted as resulting from a particular season o f deposition. Lamina 

types were influenced by extensive sea ice, associated with the cooling which 

followed the mid-Holocene Climatic Optimum. Before 1840 cal. yr BP, laminae 

characterised by open, ice-free-water loving species indicate a possible unstable 

climatic transition between the mid-Holocene Climatic Optimum and subsequent 

cooling.

186



CHAPTER 9

9. Core Site Comparison

This chapter compares the western Antarctic Peninsula laminated intervals from ODP 

178 1098A (Palmer Deep) and the East Antarctic Margin laminated intervals from 

NBP0101 JPC10 and NBP0101 KC10A (Mertz Ninnis Trough) and MD03 2597 

(Durmont d’Urville Trough). The laminated intervals are composed of several lamina 

and sub-lamina types. Each type o f lamina and sub-lamina is classified according to 

diatom species identified in backscattered electron imagery (BSEI) analysis. Lamina 

and sub-lamina types from all o f the laminated intervals analysed during this study are 

associated with seasonal productivity. The number o f lamina types, diatom 

assemblages within lamina types and style o f laminations from the four laminated 

intervals are compared and implications discussed in this chapter. The individual 

results and interpretations o f the four laminated intervals can be found in chapters 6, 7 

and 8.

9.1. Deglacial and Post-glacial Laminated Sediment Comparison

In this section the deglacial, 12264 -  11207 cal. yr BP, laminated interval from 

Palmer Deep, Western Antarctic Peninsula is compared with the post-glacial, 11384 — 

6756 cal. yr BP, laminated interval from the Mertz Ninnis Trough on the East 

Antarctic Margin (Figure 9.1). Implications o f the comparisons are then discussed.

9.1.1. Comparison

9.1.1.1. Position o f  Core Sites

The deglacial Palmer Deep (PD) and post-glacial Mertz Ninnis Trough (MNT) 

laminated intervals were deposited in depressions on the Antarctic continental shelf at 

1012 m and 850 m water depths, respectively. The geomorphology o f the PD basin 

and the MNT are different (Figure 9.1). PD is an approximately circular enclosed 

depression (Figure 4.2), whereas, MNT is an elongate depression that extends from 

the coast to the shelf break in a north-westerly direction (Figure 4.6). PD and MNT 

are both influenced by the upwelling o f Circumpolar Deepwater onto the continental 

shelf. The MNT has a more complex oceanographic regime than PD; Adelie Land
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Bottom Water is formed from High Salinity Shelf Waters and Winter Water in the 

Mertz Glacier Polynya (see section 2.5.2.3). PD has lower latitude than the MNT, 

being 190 km further north.

Palmer Deep (PD)

S 1000
•s
c-

2000

Distance along profile 
toward offshore (km )

PD

ODP 178 1098A

Mertz Ninnis Trough (M N T)
Distance along profile 
toward offshore (km)

Wedell

M N T  DDT 

D urm ont d ’Urville Trough (DDT)

Distance along profile 
toward offshore (km)

120 120 160

2000J 2000

NBP0101 JP C 10 & K C10A
MD03 2597

Figure 9.1
Continental shelf bathymetric profiles crossing through Palmer Deep (PD), West 
Antarctica (north-west profile), M ertz Ninnis Trough (MNT) (north profile) and 
Durmont d’Urville Trough (DUT) (following line o f  trough to shelf break), East 
Antarctica. Lines o f bathymetric profiles are shown as red lines on the map of 
Antarctica. AP = Antarctic Peninsula. Core sites indicated on continental shelf 
profiles. Profiles constructed from bathymetric maps in Domack et al. (1989), Barker 
et al (1999a) and Harris et al. (2001).

9.1.1.2. Annual Cycle o f  L am ina and Sub-lam ina Deposition

The Palmer Deep (PD) deglacial laminated interval is varved. Rhythmic alternation of 

near-monogeneric Hyalochaete Chaetoceros spp. resting spore (CRS) biogenic 

laminae and mixed diatom assemblage terrigenous laminae make up an annual cycle 

of deposition (Figure 9.2 and 9.3a). One hundred and seventy two annual cycles are 

present in the PD deglacial laminated interval. The comparison of this number of
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Figure 9.2
Schematic representation of different types of lamina in the four 
Antarctic core sites. CRS = Hyalochaete Chaetoceros spp. 
resting spores. RS = Resting spores.
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annual cycles with 1057 radiocarbon years suggests that only 16.3 % of the PD 

sedimentary record is present. Some o f the mixed diatom assemblage terrigenous 

laminae contain multiple species-specific sub-laminae. Five sub-laminae characterised 

by CRS, Coscinodiscus bouvet, Corethron pennatum, Odontella weissflogii resting 

spores (RS) and Thalassiosira antarctica RS (Figure 9.2) are present in the PD 

deglacial laminated interval. The Mertz Ninnis Trough (MNT) post-glacial laminated 

interval is composed of five lamina types (near-monogeneric CRS biogenic laminae; 

biogenic laminae characterised by Corethron pennatum’, biogenic laminae 

characterised by Rhizosolenia spp.; mixed diatom assemblage biogenic laminae; and 

mixed diatom assemblage terrigenous laminae) and one sub-lamina (terrigenous sub

lamina characterised by Porosira glacialis RS). An annual cycle of deposition in the 

MNT post-glacial laminated interval is composed o f two or more laminae (Figure 9.2 

and 9.3b) but is not varved because laminae are not rhythmically repeated. One 

hundred and sixteen annual cycles occur in the studied post-glacial MNT laminated 

intervals. Comparison of 2801 radiocarbon years with 116 annual cycles indicates that 

only 4.2 % of the MNT sedimentary record is present. Close to or at the top of the 

annual cycle a sub-lamina characterised by Porosira glacialis RS sometimes occurs. 

The terrigenous content o f laminae in the PD deglacial laminated interval (Figure 

6.2b) is more well-confined in the terrigenous laminae than in the MNT post-glacial 

laminated interval (Figure 7.5).

9.1.1.3. Lamina Types

The deglacial Palmer Deep (PD) and post-glacial Mertz Ninnis Trough (MNT) 

laminated intervals both contain near-monogeneric CRS biogenic laminae and mixed 

diatom assemblage terrigenous laminae (Figure 9.2 and 9.3a and b); these will be 

compared first. Lamina types which only occur in the post-glacial MNT laminated 

interval will then be considered.

The deglacial PD and post-glacial MNT near-monogeneric CRS biogenic lamina 

types (Figure 9.2 and 9.3a and b) have high diatom absolute abundances, 6141 xlO6 

and 4505 xlO6 valves per gramme o f dry sediment, respectively (Table 6.3 and 7.3). 

The deglacial PD and post-glacial MNT laminae o f this type are interpreted as blooms 

of Hyalochaete Chaetoceros spp. taking advantage o f well-stratified waters in spring 

(see sections 6.2.1 and 7.2.1.1). The PD deglacial near-monogeneric CRS biogenic
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laminae diatom assemblage is dominated by CRS (Table 6.3), whereas the MNT post

glacial diatom assemblage is dominated primarily by CRS and secondarily by 

Fragilariopsis spp. (Table 7.3).

The deglacial PD and post-glacial MNT mixed diatom assemblage terrigenous 

laminae types (Figure 9.2 and 9.3a and b) have approximately the same diatom 

absolute abundances, 1846 xlO6 and 1933 xlO6 valves per gramme o f dry sediment, 

respectively (Table 6.6 and 7.3). This lamina type is interpreted as diverse diatom 

assemblages taking advantage o f well-mixed open waters in summer / autumn (see 

sections 6.2.2 and 7.2.1.4). The deglacial PD mixed diatom assemblage terrigenous 

laminae are dominated by CRS, whereas the post-glacial MNT mixed diatom 

assemblage terrigenous laminae are dominated primarily by CRS and secondarily by 

Fragilariopsis spp..

The post-glacial MNT laminated interval contains three lamina types that do not occur 

in the deglacial PD laminated interval: biogenic laminae characterised by Corethron 

pennatum’, biogenic laminae characterised by Rhizosolenia spp.; and mixed diatom 

assemblage biogenic laminae. The post-glacial MNT biogenic laminae characterised 

by C. pennatum and Rhizosolenia spp. are a result o f stable open waters forming early 

in the growing season in the Mertz Glacier Polynya, which allow C. pennatum  and 

Rhizosolenia spp. to bloom (see section 1.23.2). The post-glacial MNT mixed diatom 

assemblage biogenic laminae are interpreted as mixed water column conditions 

occurring in summer.

9.1.1.4. Sub-lamina Types

Five terrigenous sub-laminae occur in the PD deglacial laminated interval and one 

sub-lamina occurs in the MNT post-glacial laminated interval (Figure 9.2). The 

species which characterise these sub-laminae are exclusive to each site.

The PD deglacial sub-laminae occur within the mixed diatom assemblage terrigenous 

laminae intermittently through the laminated interval. An upcore sequence of sub

laminae was observed: sub-laminae characterised by CRS, Coscinodiscus bouvet, 

Corethron pennatum, Odontella weissflogii RS and Thalassiosira antarctica RS 

(Figure 9.3a). The sub-lamina order o f occurrence is discussed in section 6.2.6 and is 

interpreted as a result o f changing continental shelf waters caused either by high tides,
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high cyclone intensity or intermittent Circumpolar Deepwater upwelling onto the 

continental shelf.

The post-glacial MNT sub-lamina is characterised Porosira glacialis RS and is a 

result of environmental stress induced by sea ice formation in autumn (see section 

7.2.1.5).

Deglacial PD sub-laminae characterised by T. antarctica RS and post-glacial MNT 

sub-laminae characterised by P. glacialis RS both occur at or near the top of the 

annual deposition cycle and are both interpreted as autumn deposition.

9.1.2. Implications

The differences in annual laminae and sub-laminae deposition in the western 

Antarctic Peninsula deglacial Palmer Deep (PD) and the East Antarctic Margin post

glacial Mertz Ninnis Trough (MNT) laminated intervals are due to different times of 

deposition, geomorphology, latitudes, glaciological and oceanographic conditions on 

the continental shelf. All o f these factors are interlinked.

The differences in the geomorphology o f PD and MNT have meant that these 

continental shelf depressions have experienced differing degrees o f sediment 

focusing. A higher degree o f sediment focusing occurs in PD due to its funnel like 

shape whereas the elongate MNT is connected to the shelf edge and is influenced by 

MCDW upwelling which redistributes sediment. Sediment focusing therefore has 

affected how confined the terrigenous material is to the terrigenous laminae, i.e. more 

so in PD.

In spring, surface waters were well-stratified and nutrient-rich in the vicinity of both 

core sites. This allowed Hyalochaete Chaetoceros spp. to bloom, resulting in the 

deposition of near-monogeneric Hyalochaete Chaetoceros spp. resting spore biogenic 

laminae. The lower latitude o f the western Antarctic Peninsula PD site ensures that it 

experiences a warmer climate than MNT on the East Antarctic Margin. Therefore, 

sea ice and ice sheet melt occurs earlier in the year on the western Antarctic Peninsula 

than on the East Antarctic Margin. The prolonged well-stratified waters around PD 

allowed higher diatom productivity to occur.

The different glaciological conditions played a part in producing different laminae and 

sub-laminae. During deglacial times, deposition in PD was influenced by a retreating 

ice sheet and seasonal sea ice, which resulted in varved laminations. During post-
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glacial times, deposition in the MNT was not only influenced by seasonal sea ice and 

the Mertz Glacier Tongue, but the Mertz Glacier Polynya as well. The Mertz Glacier 

Polynya influences sea ice melting and formation, and, therefore primary productivity 

and subsequent lamina deposition. The more complex, dominant nature of sea ice in 

the vicinity of the MNT led to a higher absolute abundance of Fragilariopsis spp. in 

all lamina types compared to the deglacial PD laminae.

Porosira glacialis is more abundant in the MNT post-glacial laminated interval and 

Thalassiosira antarctica is more abundant in the PD deglacial laminated interval. I 

propose the occurrence o f these species are related to temperature, with P. glacialis 

prefering cooler conditions than T. antarctica. This interpretation has recently been 

supported by unpublished data from Durmont d ’Urville Trough (X. Crosta, personal 

communication, 2005).

The presence of deglacial sub-laminae characterised by Corethron pennatum  in the 

PD laminated interval and post-glacial laminae characterised by C. pennatum  in the 

MNT laminated interval suggests that both core sites experienced stable open waters, 

but at different times in the year and for varying lengths o f time, i.e. in mid summer in 

PD and late spring/early summer in MNT.

The comparison of radiocarbon years with the number o f annual cycles that occur in 

the laminated intervals gives an insight into how complete the sedimentary record is. 

According to this calculation, deglacial PD and post-glacial MNT laminated intervals 

have 83.7 % and 95.7 % of the sedimentary record missing, respectively. There are 

four possible reasons for the disparity between the number o f annual cycles present in 

the laminated intervals and radiocarbon years. Firstly, difficulties involved in 

radiocarbon dating of Antarctic marine sediments, such as spatial variation in 

reservoir ages and unknown changes in reworking o f old carbon down core (discussed 

in more detail in sections 4.1.3 and 4.2.3) may affect the accuracy of radiocarbon 

dating of these laminated intervals. Secondly, errors may have been made in the 

seasonal interpretation of laminae, altering the number of annual cycles. Thirdly, sea 

ice may have been persistent over the core sites throughout a year or for multiple 

years. The low light levels would have prevented diatom productivity in the region, 

resulting in a hiatus in sedimentation. Fourthly, laminae and sub-laminae may have 

been eroded / re-suspended by bottom water currents, removing sediment from the sea 

floor. I do not consider the incomplete sedimentary records to be a result o f errors in 

seasonal interpretation o f laminae, as ecological preferences of many species were
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utilised to determine seasonal lamina deposition. I believe that the incomplete 

sedimentary records are a result o f errors associated with radiocarbon dating and / or 

environmental conditions during deposition.

The MNT post-glacial laminated interval has a less complete sedimentary record than 

the PD deglacial laminated interval, this is probably because of stronger bottom 

currents (associated with bottom water formation in the Mertz Glacier Polynya) 

eroding annual cycles of sedimentation from the sea floor. Radiocarbon dating is also 

more problematic on the East Antarctic Margin (see section 4.2.3) than on the 

Antarctic Peninsula, which may have affected the accuracy of radiocarbon dating of 

MNT sediments. Even though PD has a more complete sedimentary record than the 

MNT post-glacial sediments, there is less than 20 % of the PD sedimentary record 

present in the studied interval. This is probably due to multiple year sea ice and / or 

greater ice sheet influence at the beginning o f deglaciation.

In summary, the western Antarctic Peninsula and East Antarctic Margin laminated 

intervals contain different annual cycles o f deposition and absolute abundances of 

diatoms due to different times o f deposition and different depositional environments.

9.2. Post-glacial and Mid-Holocene Laminated Sediment 

Comparison

Post-glacial, 11384 -  6755 cal. yr BP, laminated sediments and mid-Holocene, 3892 -  

3820 cal. yr BP, laminated sediments from Mertz Ninnis Trough, East Antarctic 

Margin, are compared in this section (Figure 9.1). The mid-Holocene laminated 

interval analysed is stratigraphically restricted and places limits on the comparison of 

these two laminated intervals.

9.2.1. Comparison

9.2.1.1. Position o f  core sites

The post-glacial and mid-Holocene sediments were both taken from the same 

continental shelf depression, the Mertz Ninnis Trough (MNT). The core sites are 0.06 

km apart and are at the same water depth (850 m; Figure 9.1). This allows a direct 

comparison of the two laminated intervals.
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9.2.1.2. Annual Cycle o f  L am ina and Sub-lam ina Deposition

Five types of lamina and one sub-lamina type occur in the post-glacial laminated 

interval (near-monogeneric CRS biogenic laminae; biogenic laminae characterised by 

Corethron pennatum ; biogenic laminae characterised by Rhizosolenia spp.; mixed 

diatom assemblage biogenic laminae; and mixed diatom assemblage terrigenous 

laminae; terrigenous sub-lamina characterised by Porosira glacialis RS). The post

glacial annual cycle is composed o f two or more laminae (Figure 9.2 and 9.3b). One 

hundred and sixteen annual cycles are present in the post-glacial laminated intervals. 

The number of annual cycles compared to 2801 radiocarbon years indicates that only 

4.2 % the post-glacial sedimentary record is present. Five lamina types also occur in 

the mid-Holocene laminated interval (near-monogeneric CRS biogenic laminae; 

mixed diatom assemblage biogenic laminae; biogenic laminae characterised by 

Fragilariopsis spp.; terrigenous laminae characterised by Fragilariopsis spp.; and 

mixed diatom assemblage terrigenous laminae). The mid-Holocene annual cycle is 

composed of two laminae. Seventeen annual cycles occur in the mid-Holocene 

laminated interval. The comparison o f 72 radiocarbon years with 17 annual cycles 

indicates that 23.6 % of the mid-Holocene sedimentary record is present in the studied 

interval. Neither the post-glacial nor the mid-Holocene laminated intervals are varved 

because neither have annual rhythmic repetition o f laminae.

Terrigenous content in the laminated intervals is more well-confined in the post

glacial terrigenous laminae (Figure 7.5) than in the mid-Holocene terrigenous laminae 

(Figure 7.11). Even though the boundaries o f laminae in both intervals are 

gradational, the terrigenous content o f the sediment appears to be more dispersed in 

the mid-Holocene.

9.2.1.3. Lamina Types

The MNT post-glacial and mid-Holocene laminated intervals both contain near- 

monogeneric CRS biogenic laminae, mixed diatom assemblage biogenic laminae and 

mixed diatom assemblage terrigenous laminae (Figure 9.2). Both the post-glacial and 

mid-Holocene near-monogeneric CRS biogenic laminae are a result o f spring blooms 

of Hyalochaete Chaetoceros spp. in well-stratified, nutrient-rich surface waters. The 

post-glacial and mid-Holocene mixed diatom assemblage biogenic laminae are a
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result of well-mixed surface waters allowing a mixed diatom assemblage to bloom in 

the summer. The post-glacial and mid-Holocene mixed diatom assemblage 

terrigenous laminae are a result o f well-mixed surface waters allowing a mixed 

diatom assemblage to bloom in the late summer with increased terrigenous flux to the 

sea floor, from ice rafted material from the Mertz Glacier Tongue, sea ice and / or 

Modified Circumpolar Deepwater entrained fine grained sediments, as the growing 

season progressed.

Two biogenic laminae characterised by Corethron pennatum  and Rhizosolenia spp. 

are present in the post-glacial laminated interval but not in the mid-Holocene 

laminated interval (Figure 9.2). These post-glacial laminae are formed as a result of C. 

pennatum and Rhizosolenia spp. blooms taking advantage of early stable open water 

conditions (with nutrients at depth in the water column) created within the Mertz 

Glacier Polynya (see section 1 2 3 .2 ) .

A biogenic laminae characterised by Fragilariopsis spp. and a terrigenous laminae 

characterised by Fragilariopsis spp. are present in the mid-Holocene laminated 

interval but not in the post-glacial laminated interval (Figure 9.2). Fragilariopsis 

rhombica and F. kerguelensis are the dominant Fragilariopsis spp. in the biogenic 

laminae and are a result o f open water conditions with little sea ice (see section 

7.5.1.1). Fragilariopsis rhombica, F. ritscheri and F. kerguelensis are dominant in the 

terrigenous laminae characterised by Fragilariopsis spp. and are also a result o f open 

water conditions with little sea ice, but accompanied by an increase in terrigenous flux 

to the sea bed (see section 7.5.1.2).

9.2.1.4. Sub-lamina Types

Sub-laminae only occur in the post-glacial laminated interval (Figure 9.2 and 9.3b). 

The post-glacial sub-lamina is characterised by P. glacialis RS and is a result of sea 

ice formation-induced environmental stress in autumn.

9.2.2. Implications

The three lamina types that occur in both the post-glacial and mid-Holocene MNT 

laminated intervals suggests that there were similar conditions occurring in both time 

periods. The post-glacial lamina types and sequence o f these laminae are interpreted
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as being formed in an environment influenced by the Mertz Glacier Polynya (see 

section 7.2.3). The presence o f biogenic and terrigenous laminae characterised by 

open water Fragilariopsis spp. and the absence o f sub-laminae characterised by P. 

glacialis RS in the mid-Holocene laminated interval suggests that sea ice formation in 

the Mertz Glacier Polynya was reduced relative to the post-glacial. Reduced sea ice 

formation in the polynya suggests that Adelie Land Bottom Water (ALBW) 

production was lower in the mid-Holocene than in the post-glacial.

The mid-Holocene MNT laminated interval has a more complete sedimentary record 

than the post-glacial MNT laminated interval. Since these two laminated intervals are 

from the same site the differences in sedimentary record completeness is probably not 

related to errors in radiocarbon dating. The reduced sea ice cover and decrease in 

bottom water formation (and therefore bottom currents) in the mid-Holocene would 

have allowed a more complete sedimentary record to occur in the mid-Holocene 

laminated interval.

9.3. Post-glacial and Late-Holocene Laminated Sediment 

Comparison

The post-glacial, 11384 -  6756 cal. yr BP, laminated sediments from Mertz Ninnis 

Trough and late Holocene, 2814 -  925 cal. yr BP, laminated sediments from Durmont 

d’Urville Trough, East Antarctic Margin are compared in this section due to 

similarities in lamina types (Figure 9.1).

9.3.1. Comparison

9.3.1.1. Position o f  Core Sites

The post-glacial Mertz Ninnis Trough (MNT) and late-Holocene Durmont d Urville 

Trough (DUT) sediments were taken from core sites positioned in the bottom of deep 

continental shelf troughs on the East Antarctic Margin. The MNT and the DUT are of 

a similar size, depth and orientation (Figures 2.17, 2.19 and 9.1). The two troughs are 

influenced by upwelling Modified Circumpolar Deepwater (MCDW). Oceanography 

in the MNT region is more complex due to sea ice formation associated with the 

Mertz Glacier Polynya and resultant ALBW  formation. The polynya does not extend
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over the DUT (Figure 8.16). MNT is adjacent to the large Mertz Glacier Tongue and 

DUT is adjacent to two smaller glaciers, Astrolabe and Zelee.

9.3.1.2. Annual Cycle o f  L am ina and Sub-lam ina Deposition

The post-glacial Mertz Ninnis Trough (MNT) laminated interval can not be described 

as varves. The annual cycle deposit consists o f two or more laminae but no rhythmic 

repetition of the same two laminae occurs. One hundred and sixteen annual cycles 

occur in the post-glacial laminated intervals. The number of annual cycles compared 

to 2801 radiocarbon years indicates that only 4.2 % of the post-glacial sedimentary 

record is present. The laminated interval consists o f five types of lamina and one sub

lamina. Annual deposition in the late-Holocene Durmont d ’Urville Trough (DUT) 

laminated interval is composed o f two or more laminae and can not be described as 

varves since there is no rhythmic repetition o f the same two laminae. One hundred 

and twenty one annual cycles occur in the DUT late-Holocene laminated intervals. 

Comparison of 116 radiocarbon years with 121 annual cycles suggests that 104 % of 

the sedimentary record is present. Eight lamina types and one sub-lamina type occur 

in the late-Holocene laminated interval.

Terrigenous material is better confined to the post-glacial MNT terrigenous laminae 

(Figure 7.5) than it is to the late-Holocene DUT terrigenous laminae (Figure 8.12). 

Even though the boundaries o f laminae in both East Antarctic Margin laminated 

intervals are gradational, the terrigenous content of lamina appears to be more 

dispersed in the late-Holocene DUT laminated interval. Increased terrigenous content 

in laminae is not always confined to the upper part of the late-Holocene DUT annual 

cycle, as it is in the post-glacial MNT annual cycle.

9.3.1.3. Lamina Types

The post-glacial Mertz Ninnis Trough (MNT) and late-Holocene Durmont d ’Urville 

Trough (DUT) annual sequence o f laminae are similar (Figure 9.3b and c), but when 

diatom assemblages o f the individual laminae are compared differences are observed. 

The laminae which occur in both the post-glacial MNT and late-Holocene DUT 

laminated intervals are: laminae characterised by Corethron pennatum', laminae
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characterised by Rhizosolenia spp.; mixed diatom assemblage biogenic laminae and 

mixed diatom assemblage terrigenous laminae.

The post-glacial MNT and late-Holocene DUT laminated intervals both contain 

laminae characterised by Corethron pennatum  and laminae characterised by 

Rhizosolenia spp. (Figure 9.2). The post-glacial MNT laminae characterised by C. 

pennatum contributes to a greater percentage o f sediment thickness, a higher absolute 

diatom abundance (Figure 9.4a) and higher absolute abundance of C. pennatum  

(Figure 9.4b) than in the late-Holocene DUT laminated interval. The late-Holocene 

DUT laminae characterised by C. pennatum  has a higher absolute abundance of 

Fragilariopsis spp. and Thalassiosira spp. than in the post-glacial laminae (Figure 

9.4b). The laminae characterised by Rhizosolenia spp. have approximately the same 

percentage thickness in both the post-glacial MNT and late-Holocene DUT laminated 

intervals. The late-Holocene DUT lamina type has a greater absolute abundance of 

Fragilariopsis spp. and a slightly smaller absolute abundance o f Rhizosolenia spp. 

than in the post-glacial MNT laminae (Figure 9.4c).

The post-glacial MNT and late-Holocene DUT laminated intervals both contain 

mixed diatom assemblage biogenic and terrigenous laminae (Figure 9.2) which are a 

result of mixed open surface waters occurring in summer and late summer 

respectively. The post-glacial MNT mixed diatom assemblage biogenic and 

terrigenous laminae have greater total absolute diatom abundances than the late- 

Holocene DUT laminae (Figure 9.4a). The late-Holocene DUT mixed diatom 

assemblage lamina types have higher Fragilariopsis spp. and lower CRS absolute 

abundances than in the post-glacial MNT laminae (Figure 9.4d and e).

Both laminated intervals contain laminae dominated by Hyalochaete Chaetoceros 

spp. resting spores (CRS). However, the relative abundance of CRS of the post-glacial 

MNT laminae is much greater than the late-Holocene DUT laminae, 90.5% and 

50.6% respectively (See section 7.1.1.1. and 8.1.1).

Laminae characterised by Fragilariopsis spp., laminae characterised by CRS and 

Fragilariopsis spp., laminae characterised by C. pennatum  and Rhizosolenia spp. and 

laminae characterised by Stellarima microtrias RS, Porosira glacialis RS and / or 

Coscinodiscus bouvet all occur in the late-Holocene DUT laminated interval but not 

in the post-glacial MNT laminated interval (Figure 9.2).
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9.3.1.4. Sub-lamina Types

Post-glacial Mertz Ninnis Trough (MNT) and late-Holocene Durmont d’Urville 

Trough (DUT) laminated intervals both contain sub-laminae characterised by 

Porosira glacialis RS (Figure 9.2) and are interpreted as autumn deposition, a result 

of environmental stress induced by sea ice formation. The post-glacial MNT sub

laminae total diatom assemblage absolute abundance is greater than the late-Holocene 

DUT total diatom assemblage absolute abundance (Figure 9.4a). The late-Holocene 

DUT absolute abundance o f P. glacialis RS in the sub-laminae is ten times greater 

than the post-glacial MNT absolute abundance o f P. glacialis RS in the sub-laminae 

(Figure 9.4f). The absolute abundance o f Fragilariopsis spp. and Thalassiosira spp. is 

also higher in the late-Holocene sub-lamina.

9.3.2. Implications

The similar geomorphologic features o f the East Antarctic Margin Mertz Ninnis 

Trough (MNT) and Durmont d ’Urville Trough (DUT) suggest that sediment focusing 

will be comparable between these two sites. The size of glaciers close to the two 

troughs (Mertz Glacier Tongue east o f the MNT is much larger and drains a larger 

area of the East Antarctic Ice Sheet than the Astrolabe and Zelee Glaciers which are 

near the DUT) means that there is possibly a greater amount o f terrigenous material 

brought into the MNT region. However, I do not believe that this is the reason for 

differences in terrigenous content distribution in the annual cycles of laminae. The 

higher absolute abundance o f diatoms in the MNT laminae indicates that productivity 

was higher in the post-glacial than in the late-Holocene. Therefore, biogenic flux to 

the sea bed was more diluted by terrigenous flux in the late-Holocene due to lower 

productivity levels.

The higher abundance of Fragilariopsis spp., lower CRS and lower productivity in 

late-Holocene DUT laminae indicates that spring conditions were characterised by 

less well-stratified waters with low nutrient levels. The presence o f laminae 

characterised by Fragilariopsis spp., laminae characterised by Stellarima microtrias 

RS, Porosira glacialis RS and / or Coscinodiscus bouvet and the higher absolute 

abundance of P. glacialis RS in the sub-laminae in the late-Holocene DUT laminated 

interval indicates that sea ice was present for longer in the growing season in the late- 

Holocene than in the post-glacial. This is also confirmed by the lower absolute
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Figure 9.4
Comparison of absolute abundances of lamina types from post-glacial (NBP0101 
P C  10 Mertz Ninnis Trough) and late-Holocene (MD03 2597 Durmont d’Urville 
Trough) laminated interval. Absolute abundance data from tables 7.3 and 8.3 and 
original count data in appendix 4.
(a) Comparison of post-glacial and late-Holocene lamina types absolute abundance 
totals.
(b) Comparison of post-glacial and late-Holocene absolute abundances (all species) of 
laminae characterised by Corethronpennatum  diatom assemblage.
(c) Comparison of post-glacial and late-Holocene absolute abundances (all species) of 
laminae characterised by Rhizosolenia spp. diatom assemblage.
(d) Comparison of post-glacial and late-Holocene absolute abundances (all species) of 
mixed diatom assemblage (MD A) biogenic laminae diatom assemblage.
(e) Comparison of post-glacial and late-Holocene absolute abundances (all species) of 
MD A terrigenous laminae diatom assemblage.
(f) Comparison of post-glacial and late-Holocene absolute abundances (all species) of 
sub-laminae characterised by Porosira glacialis resting spores (RS) diatom 
assemblage.
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Figure 9.4 continued
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Figure 9.4 continued

(e)
£  1800tl
a i6oo

8  1400

S'
I 1200
i  "»0 
i
8  800|
X 6 00

I  400  
<0
s
1  200

(0
4 00 0€*2

^  3500

1
» JOOO
f"o
|  2 5 0 0

a

J ” » 
8

|  1500

| 1000

|  500

1

250

200

150

100

50

J o-*
CRS

180

160

140

120

100

80

60

— ^  40

M DA terrigen ou s lam inae

□  Post-glacial 

■  Late-Holocene

Corethron Fragilariopsis Porosira Rhizosolenia Thalassiosira Stellarima
m

pennatum spp. glacialis RS spp. spp. m icrvtrias RS
Other species

L i
CRS

Sub-laminae characterised by Porosira glacialis RS

□  Post-glacial 

■  Late-Holocene

J . - L bCorethron Fragilariopsis Porosira Rhizosolenia Thalassiosira Stellarima Other species
pennatum  spp. glacialis RS spp. spp. m icrotriasRS



CHAPTER 9

bundance of C. pennatum  in the late-Holocene DUT laminae characterised by C. 

ennatum, since in Antarctica this species likes open waters with little sea ice. 

he sedimentary record appears to be complete in the DUT late-Holocene laminated 

itervals. The sedimentary record in the MNT post-glacial laminated intervals is 

onsiderably less complete. This difference is probably due to stronger bottom waters 

i the MNT eroding sediment from the sea floor and more complex radiocarbon 

ating in MNT (see sections 4.2.3 and 4.3.3).

i summary, differences between the laminated intervals from these two East 

uitarctic Margin sites are due to different times o f deposition within the Holocene 

nd the Mertz Glacier Polynya only influencing the MNT.

K4. Mid-Holocene and Late-Holocene Laminated Sediment 

Comparison

4id-Holocene, 3892 -  3820 cal. yr BP, laminated sediments from Mertz Ninnis 

.Tough and late Holocene, 2814 -  925 cal. yr BP, laminated sediments from Durmont 

I’Urville Trough, East Antarctic Margin are compared in this section.

1.4.1. Comparison

1.4.1.1. Annual Cycle o f  L am ina and Sub-lam ina Deposition

Tive lamina types occur in the mid-Holocene Mertz Ninnis Trough (MNT) laminated 

nterval. A mid-Holocene MNT annual cycle is composed o f two laminae but since 

here is no rhythmic repetition o f the lamina types the sediments are not varved. 

Seventeen annual cycles occur in the mid-Holocene laminated interval. Comparison 

)f 72 radiocarbon years with 17 annual cycles suggests that 23.6 % of the mid- 

dolocene sedimentary record is present. Annual deposition in the late-Holocene 

Durmont d’Urville Trough (DUT) laminated interval consists of two or more laminae 

Dut also can not be described as being varved since there is no rhythmic repetition of 

the same two laminae. One hundred and twenty one annual cycles occur in the DUT 

late-Holocene laminated intervals. Comparison o f 116 radiocarbon years with 121 

annual cycles indicates that 104 % of the sedimentary record is present. Eight laminae 

and one sub-lamina occur in the late-Holocene DUT laminated interval.
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The terrigenous content o f both laminated intervals is not well confined to the 

terrigenous laminae (Figure 7.11 and 8.12). Lamina boundaries are gradational and 

the biogenic laminae have a little terrigenous material, postulate

9.4.1.2. Lamina Types

Four laminae occur in both the mid-Holocene Mertz Ninnis Trough (MNT) and late- 

Holocene Durmont d ’Urville Trough (DUT) laminated intervals: laminae

characterised by Fragilariopsis spp.; biogenic laminae characterised by Hyalochaete 

Chaetoceros spp. resting spores / near-monogeneric Hyalochaete Chaetoceros spp. 

resting spores biogenic laminae, mixed diatom assemblage biogenic laminae and 

mixed diatom assemblage terrigenous laminae

Mid-Holocene MNT and late-Holocene DUT laminated intervals both contain 

biogenic laminae characterised by Fragilariopsis spp., both of which have 

approximately the same absolute abundances o f diatom species (Tables 7.6 and 8.3). 

Mid-Holocene MNT and late-Holocene DUT laminated intervals both contain 

biogenic laminae characterised by Hyalochaete Chaetoceros spp. resting spores / 

near-monogeneric Hyalochaete Chaetoceros spp. resting spores biogenic laminae. 

Mixed diatom assemblage biogenic and terrigenous laminae also occur in both mid- 

Holocene MNT and late-Holocene DUT laminated intervals.

The mid-Holocene MNT laminated interval contains terrigenous laminae 

characterised by Fragilariopsis spp.. This lamina type is not present in the late- 

Holocene DUT laminated interval. The lamina types which only occur in the late- 

Holocene DUT laminated intervals are laminae characterised by Corethron pennatum  

and / or Rhizosolenia spp. and laminae characterised by Stellarima microtrias resting 

spores, Porosira glacialis resting spores and / or Coscinodiscus bouvet.

9.4.1.3. Sub-lamina Types

Sub-laminae characterised by Porosira glacialis RS occur in the late-Holocene 

laminated interval, but not in the mid-Holocene MNT laminated interval.
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9.4.2. Implications

The similar distribution o f terrigenous material in the laminated intervals suggests that 

biogenic deposition in the mid- and late-Holocene were both, to an extent, diluted by 

terrigenous flux to the sea floor. The laminae characterised by Stellarima microtrias 

RS, Porosira glacialis RS and / or Coscinodiscus bouvet and sub-lamiane 

characterised by P. glacialis RS suggests that there was more extensive sea ice cover 

in the late-Holocene in the vicinity o f the DUT than in the mid-Holocene MNT region 

influenced by the polynya. The DUT late-Holocene laminated intervals have a 

complete sedimentary record whereas the mid-Holocene MNT laminated interval has 

approximately a quarter o f the sedimentary record present. The M NT experienced less 

persistent sea ice in the mid-Holocene than the DUT did in the late-Holocene, 

therefore the less complete sedimentary record is not due to multiple year sea ice. This 

implies that stronger bottom currents must have been the cause o f  a less complete 

sedimentary record in the mid-Holocene MNT laminated interval.

9.5. Comparison of the Four Laminated Sediments

9.5.1. Temporal Change in A bsolute A bundance o f  D iatom s

Biogenic laminae in the deglacial Palmer Deep (PD) laminated interval have the 

highest absolute diatom abundances out o f all four laminated intervals, therefore, the 

highest primary productivity. There is a decrease in absolute abundance o f diatoms 

with time, from the deglacial PD laminated interval to the late-Holocene Durmont 

d’Urville Trough (DUT) laminated interval. The small amount o f diatom abundance 

data for the mid-Holocene laminated interval means that further work is required to 

identify whether this laminated interval truly fits into the trend. Absolute abundance 

of Hyalochaete Chaetoceros spp. resting spores in laminae also decreases with time 

(Figure 9.5). In the Western Antarctic Peninsula deglacial laminated interval, the 

absolute abundance o f Fragilariopsis spp. in the laminae and sub-laminae was very 

low. All three East Antarctic Margin laminated intervals have much higher absolute 

abundances of Fragilariopsis spp. which increases from the post-glacial to the late- 

Holocene (Figure 9.5). These patterns suggest that Western Antarctic Peninsula
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surface waters were more well-stratified in the deglacial than during and after the 

post-glacial on the East Antarctic Margin, and sea ice played a larger role in 

determining diatom assemblages on the East Antarctic Margin through the Holocene 

than in the deglacial on the western Antarctic Peninsula (Figure 9.5).

WEST ANTARCTIC  
PENINSULA

EA ST ANTARCTIC MARGIN

N/A

Deglacial Late-HolocenePost-glacial Mid-Holocene

Figure 9.5
Schematic displaying absolute abundance changes in Fragilariopsis spp. and 
Hyalochaete Chaetoceros spp. resting spores from the deglacial to the late-Holocene. 
Temperature, sea ice cover and inferred Adelie Bottom Water formation are also 
displayed.

9.5.2. Species D istribution C ircum -A ntarctica

The full range of diatom species in the laminae are found in all four laminated 

intervals, however the abundance o f some species varies between these laminated 

intervals. Thalassiosira antarctica RS and Porosira glacialis RS are found in all the 

laminated intervals, but in varying degrees o f abundance. Thalassiosira antarctica 

resting spores are only found in abundance in the deglacial Palmer Deep (PD)
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laminated interval whereas P. glacialis RS are only found in abundance in the post

glacial Mertz Ninnis Trough (MNT) and late-Holocene Durmont d ’Urville Trough 

(DUT) laminated intervals o f the East Antarctic Margin. Neither species occur in 

abundance in the mid-Holocene MNT laminated interval. The high abundance of T. 

antarctica RS in the deglacial PD laminated interval and high abundance of P. 

glacialis RS in the MNT post-glacial laminated interval has already been discussed in 

section 9.1.2 and has been attributed to warmer and cooler climatic preferences 

respectively. This agrees with P. glacialis RS being found in the late-Holocene DUT 

laminated interval. The mid-Holocene was relatively warmer than the post-glacial and 

late-Holocene (Figure 9.5) so T. antarctica RS would be expected to occur in 

abundance in MNT, however, this does not occur. Either it was not warm enough for 

T. antarctica to dominate at this time, or not enough laminated sediment was 

examined from the mid-Holocene.

Corethron pennatum and Rhizosolenia spp. are observed in all the laminated intervals 

but high abundances only occur in the post-glacial MNT and late-Holocene DUT 

laminated intervals. This species and genus occur in abundance in the post-glacial 

MNT laminated interval due to stable water column conditions, with nutrients trapped 

at depth, created by the Mertz Glacier Polynya. C. pennatum  and Rhizosolenia spp. 

also occur in abundance in the late-Holocene DUT laminated interval (not as high as 

in the post-glacial MNT) due to sporadic warmer years in the transition from mid- 

Holocene Climatic Optimum to cooler conditions, which induced stable water column 

conditions (with nutrients trapped at depth) (Figure 9.5). In the PD deglacial 

laminated interval sub-laminae o f C. penntaum  occurred occasionally in the 

terrigenous laminae, a result o f Circumpolar Deepwater upwelling, which suggests 

that stable water column conditions were only temporary and short lived. High 

abundances of C. pennatum  and Rhizosolenia spp. did not occur in the mid-Holocene 

MNT laminated interval because an energetic wave regime prevailed (Ingolfsson et 

al, 1998) disrupting any water column stability.

Trigonium arcticum only occurs in the post-glacial MNT and late-Holocene DUT East 

Antarctic Margin laminated intervals. T. arcticum  lives at 200-300 m water depth 

(Thomas, 1966), most likely on the East Antarctic Margin shallow banks (e.g. Mertz 

Bank, Ninnis Bank and Adelie Bank, Figure 4.6a) on the continental shelf, and is 

swept into the Mertz Ninnis Trough and Durmont d ’Urville Trough by MDCW. I 

suggest T. arcticum is not present in the mid-Holocene laminated interval due to
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weaker bottom water currents (a result o f reduced sea ice cover). This species is not 

present in the western Antarctic Peninsula deglacial laminated interval from PD 

because the shelf is too deep (average depth 450 m, section 4.1.1) for T. arcticum.

9.5.3. Temporal O ceanographic Changes

The species specific sub-laminae in the Palmer Deep laminated interval from the 

Western Antarctic Peninsula indicates that Circumpolar Deepwater intermittently 

upwelled onto the continental shelf during the deglacial.

The Mertz Ninnis Trough (MNT) and the Durmont d ’Urville Trough (DUT) 

laminated intervals from the East Antarctic Margin have given an insight into how 

ALBW formation may have varied through the Holocene. The sequence o f post

glacial lamina types from the MNT indicates that the polynya was active and bottom 

water was formed during the post-glacial. The mid-Holocene MNT laminated interval 

indicates that seasonal sea ice cover was reduced, hence bottom water production was 

lower than in the post-glacial (Figure 9.5). The late-Holocene laminated interval from 

DUT (-120 km west of MNT), has an increase in sea ice cover relative to the mid- 

Holocene. Extrapolating this finding to the Mertz Glacier Polynya site, it suggests that 

bottom water formation may have re-strengthened following the mid-Holocene 

Climatic Optimum (Figure 9.5).

9.5.4. Temporal Sedim entary R ecord  Changes

Comparison of the number o f annual cycles that occur in the laminated intervals with 

radiocarbon years reveals some marked differences in how complete the laminated 

sedimentary records are both spatially and temporally in Antarctica.

The laminated sedimentary records from the East Antarctic Margin sites become more 

complete with decreasing age. The Mertz Ninnis Trough (MNT) post-glacial 

laminated intervals have the most incomplete sedimentary record o f the East Antarctic 

Margin sites with only 4.2 % present. The MNT mid-Holocene laminated interval has 

23.6 % and the Durmont d ’Urville Trough (DUT) late-Holocene laminated intervals 

has 104 % of the sedimentary record present. This temporal trend may be a 

consequence of changing climate, variation in oceanography regimes and variation in 

radiocarbon affects. The incomplete sedimentary record in the MNT post-glacial
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laminated intervals is a result o f this site at this time having the strongest bottom 

currents due to active bottom water formation in the Mertz Glacier Polynya (Figure 

9.5). In the mid-Holocene there were weaker bottom currents than in the post-glacial 

in the MNT due to a warmer mid-Holocene climate (reduced bottom water 

formation). However, bottom currents were stronger in the mid-Holocene in the MNT 

than in the late-Holocene in the DUT because bottom waters do not form in the DUT. 

Since there is a full sedimentary record present in the late-Holocene DUT sediments, 

multiple year sea ice must not have occurred even though the late-Holocene was 

cooler than the mid-Holocene. Palmer Deep (PD) has 16.3 % of the sedimentary 

record present, which is greater than the MNT post-glacial laminated interval and less 

than the MNT mid-Holocene laminated interval. Since PD is not a site of bottom 

water formation, it is unlikely that bottom currents are the cause of missing annual 

cycles. PD laminated sediments were deposited during deglaciation, and as discussed 

in section 9.1.2, multiple year sea ice may have been more prevalent at this time on 

the Antarctic Peninsula than on the East Antarctic Margin later in the Holocene.

9.5.5. Temporal C lim ate Changes

The four laminated intervals examined in this study have given an insight into how 

climate changed from the Late Pleistocene through the Holocene in Antarctica. 

Deglacial diatom-rich laminated sediments in Palmer Deep (PD) indicates that 

seasonal sea ice formation occurred between 12,264 and 11,207 cal. yrs BP. Below 

the laminated interval in PD the sediment is composed of glaciomarine diamict 

(Figure 4.3). This suggests prior to 12,264 cal. yrs BP the area above PD was covered 

by an ice sheet. The transition from glaciomarine diamict to laminated sediments 

implies that the ice sheet retreated away from PD. The laminated interval in PD 

therefore, was deposited during a period o f climate warming. Post-glacial diatom-rich 

laminated sediments from Mertz Ninnis Trough (MNT) also indicates that seasonal 

sea ice formation was active between 11,384 and 6,756 cal. yrs BP. Diatom 

assemblages in the mid-Holocene MNT laminated sediments indicates that sea ice 

cover was not as extensive and persistent as in post-glacial times and therefore a 

warmer climate prevailed between 3,892 and 3,820 cal. yrs BP (Figure 9.5). Diatom 

assemblages in the Durmont d ’Urville Trough late-Holocene laminated sediments 

suggests that sea ice was extensive between 2,814 and 925 cal. yrs BP, which implies
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that the climate had cooled since the mid-Holocene (with an unstable transition from 

warm to cooler conditions; Figure 9.5).

9.6. Summary

This chapter has compared the lamina types, number of lamina types, absolute 

abundances and diatom assemblages o f the four laminated intervals analysed. All the 

laminated intervals were recovered from similar depositional settings, deep 

depressions on the continental shelf. Examination of laminated intervals from the 

western Antarctic Peninsula and the East Antarctic Margin has given an insight into 

oceanographic and climatic changes both through the Holocene and between west and 

east Antarctic sites. Diatom assemblages and biogenic/terrigenous content of laminae 

has allowed all the laminae to be interpreted as deposition from seasonally controlled 

primary productivity.
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10. Conclusions and Future Research

This chapter summarises the main conclusions from investigations of the four 

laminated intervals (discussed in chapters 6, 7, 8 and 9) and presents ideas for future 

research into Antarctic diatom-rich laminated sediments.

10.1. Main Conclusions

High resolution analyses o f four diatom-rich laminated intervals have given an insight 

into climatic and oceanographic changes on the Antarctic continental shelf.

10.1.1. Deglacial L am inated Sedim ents, Palm er Deep, W estern Antarctic 

Peninsula

A total of one hundred and seventy-two annual cycles of lamina deposition (couplets) 

have been identified in the Palmer Deep deglacial laminated interval. Annual 

deposition is varved and consists o f near-monogeneric Hyalochaete Chaetoceros spp. 

resting spore biogenic laminae and mixed diatom assemblage terrigenous laminae 

which are interpreted as spring and summer deposition, respectively. Negligible 

winter deposition occurred. Species specific sub-laminae are found repeatedly in the 

summer laminae and are interpreted as a result o f changes in shelf waters induced by 

tidal cycles, high storm intensities and / or Circumpolar Deep Water intrusion onto the 

continental shelf. Absolute abundance o f diatoms was high during deposition which 

suggests high productivity. Hyalochaete Chaetoceros spp. resting spores dominated 

all lamina and sub-lamina types.

10.1.2. Post-glacial L am inated Sedim ents, M ertz N innis Trough, East 

Antarctic Margin

One hundred and sixteen annual cycles o f lamina deposition have been identified in 

the Mertz Ninnis Trough laminated interval investigated here. Annual deposition 

consists of two or more laminae, however, the laminated interval is not varved 

because there is no rhythmic repetition of the same two lamina types. Near

monogeneric Hyalochaete Chaetoceros spp. resting spore biogenic laminae are a
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result of spring water column stratification; biogenic laminae characterised by 

Corethron pennatum  or Rhizosolenia spp. are a result o f stable open water in front of 

the sea ice edge in summer; mixed diatom assemblage biogenic laminae are a result of 

mixed surface waters in summer; mixed diatom assemblage terrigenous laminae are a 

result of mixed surface waters impinged upon by sea ice growth in summer/autumn 

with increases in terrigenous flux to the sea floor; and terrigenous sub-laminae 

characterised by Porosira glacialis resting spores are a result o f sea ice formation- 

induced environmental stress in autumn. Negligible deposition occurred in the winter. 

Sea ice formation was active during deposition o f the post-glacial laminated interval. 

The sequence of annual lamina deposition and the types of laminae in the interval 

indicate that the Mertz Glacier Polynya was active, Adelie Land Bottom Water 

formation was strong and the Mertz Glacier Tongue was present during lamina 

formation. Lamina and sub-lamina diatom assemblages were dominated primarily by 

Hyalochaete Chaetoceros spp. resting spores and secondarily by Fragilariopsis spp..

10.1.3. M id-Holocene L am inated Sedim ents, M ertz N innis Trough, East 

Antarctic Margin

Seventeen annual cycles o f lamina deposition have been identified in the mid- 

Holocene laminated interval. The laminated interval is not varved because annual 

deposition consists of sequences o f laminae which are not rhythmically repeated. 

Near-monogeneric Hyalochaete Chaetoceros spp. resting spore biogenic laminae are 

a result of highly stratified nutrient rich surface waters in spring; biogenic and 

terrigenous laminae characterised by Fragilariopsis spp. (specifically Fragilariopsis 

rhombica, F. ritscheri and F. kerguelensis) are a result o f mixed surface waters free 

from sea ice in spring/summer and mixed surface waters with an increase in 

terrigenous input to the sediment from sea ice and Modified Circumpolar Deepwater 

(MCDW) entrained fine-grained sediment in summer, respectively; mixed diatom 

assemblage biogenic and terrigenous laminae are a result o f mixed open water 

conditions in summer and mixed open water conditions with an increase in 

terrigenous input to the sediment from sea ice and MCDW entrained fine-grained 

sediment in late summer. During the deposition o f this laminated interval, sea ice 

cover and sea ice formation were reduced relative to post-glacial times. The Mertz
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Glacier Polynya was therefore, not as active as in the post-glacial and therefore High 

Salinity Shelf Water, Winter W ater and ultimately Adelie Land Bottom Water 

production would have been lower.

10.1.4. Late-Holocene L am inated Sedim ents, D urm ont d ’U rville Trough, 

East Antarctic M argin

One hundred and twenty cycles o f lamina deposition have been identified in the late- 

Holocene laminated interval. The laminated interval is not varved as an annual cycle 

does not consist of rhythmically repeated sequences o f laminae. Near-monogeneric 

Hyalochaete Chaetoceros spp. resting spore laminae, laminae characterised by 

Hyalochaete Chaetoceros spp. resting spores and Fragilariopsis spp. and laminae 

characterised by Fragilariopsis spp. (specifically F. curta and F. cylindrus) are a 

result of stratified, low salinity surface waters, high in nutrients with wide-ranging sea 

ice cover in spring; laminae characterised by Corethron pennatum  and Rhizosolenia 

spp., laminae characterised by C. pennatum  and laminae characterised by 

Rhizosolenia spp. are a result o f stable, relatively warm open waters with minimal sea 

ice cover in spring / summer; mixed diatom assemblage biogenic and terrigenous 

laminae are a result o f mixed surface waters in summer with increased terrigenous 

input to the sediment from sea ice and MCDW entrained fine grained sediments in 

late summer; laminae characterised by Stellarima microtrias resting spores (RS), 

Porosira glacialis RS and / or Coscinodiscus bouvet, and sub-laminae characterised 

by P. glacialis RS are a result o f sea ice formation-induced environmental stress in 

autumn. Negligible deposition occurred in winter. Persistent and dense sea ice cover 

was present during the deposition o f the late-Holocene laminated interval. The 

presence of laminae characterised by Corethron pennatum  and Rhizosolenia spp. in 

the lower portion of the interval indicated that warmer years / periods occurred during 

the transition from mid-Holocene Climatic Optimum to cooler climatic conditions.
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10.1.5. W ider Im plications

The Antarctic Peninsula is one o f the most sensitive sites in Antarctica where 

ecological and cryospheric systems respond rapidly to climate fluctuations. High- 

resolution examination of deglacial diatom-rich laminated sediments from Palmer 

Deep on the western Antarctic Peninsula continental shelf has allowed intra- and 

inter-annual changes in diatom productivity to be ascertained during a period of rapid 

climate change. This study o f deglacial sediments has given an invaluable insight into 

environmental responses to climate warming and can therefore be used to help 

understand future responses to climate warming on the Antarctic Peninsula.

To date, the East Antarctic Margin has received much less attention than the West 

Antarctic Margin (e.g. Antarctic Peninsula) therefore, the study of diatom-rich 

laminated sediments from the Mertz Ninnis Trough and Durmont d ’Urville Trough 

has provided important information on environmental, climatic and oceanographic 

changes in the George V Coast and Adelie Land region through the Holocnee.

The examination o f laminated sediments from the MNT has provided a high- 

resolution study of variation in the Mertz Glacier Polynya and Adelie Land Bottom 

Water formation from post-glacial times to the mid-Holocene. Since Adelie Land 

Bottom Water is a major source o f Antarctic Bottom Water (a key water mass in the 

thermohaline circulation), it is imperative to understand the environment in this 

region, especially environmental responses to climate change. Postulated future 

climate warming may decrease the salinity o f waters above the Mertz Ninnis Trough 

and therefore, reduce bottom water input into the Southern Ocean. This potential 

change in Antarctic Bottom Water volume could affect the equilibrium of the 

thermohaline circulation and cause further global climate change.

10.1.6. Summary

Annual cycles of lamina deposition have been identified in all four laminated intervals 

from the west Antarctic Peninsula and the East Antarctic Margin. Lamina deposition 

is seasonally controlled by light levels, nutrients and degree o f sea ice cover. These 

factors are influenced by climate and oceanography. The lamina types and diatom 

assemblages of laminae vary temporally and spatially circum-Antarctica. These 

laminated Antarctic sediments have revealed information about the extent of sea ice
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cover and the presence, strength and formation of water masses on the continental 

shelf In particular, the East Antarctic Margin laminated sediments have given an 

insight into formation rates o f Adelie Bottom Water and its potential contribution to 

Antarctic Bottom Water through the Holocene. These water masses are key players in 

the global thermohaline circulation. The laminated sediments therefore, give an 

insight into oceanographic responses to climatic change and variation through the 

Holocene around the Antarctic margin.

10.2. Future Research

This study of Antarctic laminated sediments has raised further questions to be 

answered in future work.

• Analysis of the mid-Holocene laminated interval from Mertz Ninnis Trough, 

East Antarctic Margin has given an insight into oceanographic and environmental 

responses to a warmer climate. It has been suggested that this period is analogous to 

possible future climate warming. By analysing a greater length o f core, a fuller, more 

complete picture of sea ice cover and oceanographic conditions in the mid-Holocene 

and determine responses to possible future climatic warming. The observation made 

in this study that Porosira glacialis prefers relatively cooler climatic conditions and 

Thalassiosira antarctica prefers relatively warmer conditions could also be tested, by 

seeing if there are any sub-laminae characterised by Thalassiosira antarctica RS in 

the warmer mid-Holocene.

• In this study a decrease in absolute abundance o f diatoms and an increase in 

the absolute abundance of Fragilariopsis spp. has been observed with time from the 

four different core sites. By conducting further diatom assemblage counts o f specific 

laminae through the Holocene from one core taken from a continental shelf 

depression, changes in absolute abundances o f diatoms could be determined for one 

site, so any variation caused by geomorphology (sediment focusing) and local 

oceanography will be eradicated.

• The analysis o f laminated intervals from beneath the Mertz Glacier Polynya, 

in the Mertz Ninnis Trough has given an insight into how sea ice and bottom water 

formation has varied through the Holocene off the George Vth Coast. By 

investigating diatom assemblages and sedimentary fabrics of laminated sediments
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from under other polynyas (e.g. Ross Sea Polynya, Terra Nova Bay Polynya), the 

interpretations of the laminated intervals from the Mertz Ninnis Trough could be 

compared and tested.

• In this study diatom assemblages and terrigenous content of laminae have 

been used to determine seasonal deposition in the laminated intervals. By collecting 

surface water samples throughout the growing season in the vicinity o f the core sites 

and conducting diatom counts, seasonal changes in surface water diatom assemblages 

can be recorded and compared to the appropriate seasonal laminae. All but one of the 

studied sites are inaccessible until late spring/early summer. The Mertz Glacier 

Polynya has open waters early in the growing season and would therefore be ideal for 

this kind of study. The surface water diatom assemblages associated with each season 

can therefore, be compared to the annual cycle o f laminae deduced from this study.

• In this study the four different aged laminated intervals have been compared in 

chapter nine. To make a more meaningful comparison o f these diatom-rich laminated 

sediments, better age control is required than is obtained with radiocarbon dating. 

Two new techniques could be used in the future to establish a more accurate core 

chronology of Antarctic marine sediments. Geomagnetic field palaeointensity dating 

provides a chronological control on sediment sequences that do not contain sufficient 

material for radiocarbon dating (Brachfeld et al., 2003). This method eliminates the 

complications associated with radiocarbon dating (discussed in chapter four). 

Compound-specific radiocarbon dating o f organic compounds in diatom frustules may 

be useful for improving the reliability o f radiocarbon dating within Antarctic margin 

sediments. This technique is currently under development (E.Domack, personal 

communication, 2005).
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A.l Diatom Taxonomy

This appendix lists the taxonomic classification o f diatoms identified in laminated 

sediments from Palmer Deep, Mertz Ninnis Trough and Durmont d ’Urville Trough 

and supports chapter 3, section 3.5 and chapters 6, 7 and 8. Images (light microscope 

and secondary electron imagery) o f these species are presented in appendix 2.

Genus: Actinocyclus
Ref: Ehrenberg, C.G. (1837) Ber. Bekanntm. Verh. Konigl. Preuss. Akad. 

Wiss. Berlin. 2: 61.
Species: A. actinochilus (Ehrenberg) Simonsen 

Ref: Simonsen, R. (1982) Bacillaria. 2: 9-71.
Species: A. curvatulus Janisch in Schmidt

Ref: Schmidt, A. (1878) “Atlas der Diatomaceenkunde” Reisland, Leipzig.

Genus: Asteromphalus
Ref: Ehrenberg, C.G. (1844) Ber. Bekanntm. Verh. Konigl. Preuss. Akad. 

Wiss. Berlin. 1844: 198.
Species: A. hookeri Ehrenberg

Ref: Ehrenberg, C.G. (1844) Deutsche Akadamie der Wissenschaften zu 
Berlin, Berichte: Mai 1844: 182-207 & Juni 1844: 252-275.

Species: A. parvalus Karsten
Ref: Karsten, G. (1905) Deutsche Tiefsee-Expedition 1889-99. 2(2): 221- 

538.

Genus:
Ref:

Sub-genera:
Ref:

Sub-genera:
Ref:

Chaetoceros
Ehrenberg, C.G. (1844) Ber. Bekanntm. Verh. Konigl. Preuss. Akad. 
Wiss. Berlin. 1844: 198.
Hyalochaete Chaetoceros Gran
Gran, H.H. (1897) Botanik. Protophyta: Diatomaceae, Silicoflagellata 
og Cilioflagellata. Den Norske Nordhavs-Expedition 1876. 1878 
7(4): 1-36.
Phaeoceros Chaetoceros Gran
Gran, H.H. (1897) Botanik. Protophyta: Diatomaceae, Silicoflagellata 
og Cilioflagellata. Den Norske Nordhavs-Expedition 1876. 1878 
7(4): 1-36.

Genus: Cocconeis
Ref: C.G. Ehrenberg 1837

Abh. Konigl. Acad. Wiss. Berlin. 1835: 173.
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Genus:
Ref:

Genus:
Ref:

Genus:
Ref:

Genus:
Ref:

Species:
Ref:

Genus:
Ref:

Species:
Ref:

Species:
Ref:

Genus:
Ref:

Species:
Ref:

Species:
Ref:

Genus:
Ref:

Species:
Ref:

Gomphonema
Ehrenberg, C.G. (1832) Abh. Konigl. Akad. Wiss. Berlin, 1831: 87, 
1832.

Navicula
Bory de st-Vincent (1822) Diet. Class. Hist. Nat. 2: 128.

Nitzschia
Hassall, (1845) Hist. Brit. Freshwater Algael: 435.

Odontella
Agardh, C.A. (1832) Consp. Crit. Diat.: 56.
O. weissflogii (Janisch) Grunow
In van Heurck, H. (1882) Synopsis des diatomees de Belgique PI 78- 
103. Ducaju et cie., Anvers. J.R. Dieltjens, Anvers. 128 pp.

Porosira
Jorgensen, E. (1905) Bergens Mus. Skr. 7: 97.
P. glacialis (Grunow) Jorgensen
Jorgensen, E. (1905). Bergens Mus. Skr. Hydrological and Biological 
investigations o f Norwegian fjords: 47-145.
P. pseudodenticulata (Hustedt) Jouse
Jouse, A.P., Koroleva, G.S. & Nagaeva, G.A. (1962) Trudy Inst. 
Okeanol. 61: 19-92.

Proboscia
Sunstrom, B.G. (1986) The marine diatom genus Rhizosolenia. A new 
approach to the taxonomy, p 99. Lund. 117 pp.
P. inermis (Castracane) Jordan & Ligowski
Jordan, R.W., Ligowski, R., Nothig, E.-M. & Priddle, J. (1991) Diat. 
Res. 6(1): 63-78.
P. truncata (Karsten) Nothig & Ligowski
Jordan, R.W., Ligowski, R., Nothig, E.-M. & Priddle, J. (1991) Diat. 
Res. 6(1): 63-78.

Pseudo-nitzschia H. Peragallo in H. & M. Peragallo
Peragallo, H. & M. (1897-1908) “Diatomees marines de France” (M.J.
Tempere, ed), pp 1-35.
Pseudo-nitzschia turgidula (Hustedt) Hasle
Hasle, G.R. (1993) Beiheft zur Nova Hedwigia. 106: 315-321.
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Genus:
Ref:

Species:
Ref:

Species:
Ref:

Species:
Ref:

Species:
Ref:

Genus:
Ref:

Species:
Ref:

Genus:
Ref:

Genus:
Ref:

Species:
Ref:

Species:
Ref:

Species:
Ref:

Species:
Ref:

Species:
Ref:

Species:
Ref:

Species:
Ref:

Species:
Ref:

Rhizosolenia 
T. Brightwell 1858
Quart. J. Microsoc. Sci. 6: 94 (nom. Cons.)
R. antennnata f. antennata (Ehrenberg) Brown
Brown, N.E. (1920) English Mechanic and World of Science. I l l :
210-211,219-220, 232-233.
R. antennata f. semispina Sundstrom
Sundstrom, B.G. (1986) Doctoral dissertation. Lund University, Lund, 
Sweden.
R. polydactyla f. polydactyla  Castracane
Castracane, F. (1886) Report on the scientific Results of the voyage of 
H.M.S. Challenger during the Years 1873-76. Botany 2(4): I-III: 1- 
178.
R. species Armand & Zielinski
Armand, L. and Zielinski, U. (2001) Diatom Research 16(2): 259- 
294.

Stellarima
Hasle, G.R. & Sims, P.A. (1986) Br. Phycol. J. 21: 111.
S. microtrias (Ehrenberg) Hasle & Sims
Hasle, G.R. & Sims P.A. (1986) Br. Phycol. J. 21: 97-114.

Stephanodiscus
Ehrenberg, C.G. (1845) Ber. Bekanntm. Verh. Konigl. Preuss. Akad. 
Wiss. Berlin: 80.

Thalassiosira
Cleve, P.T. (1873) Bih. Kongl. Svenska. Vetensk-Akad. Handl. 1: 6. 
T. ambigua
Kozlova, O.G. (1967) Novit. Syst. Paint. Non. Vas. 54-62.
T. anatarctica Comber
Comber, T. (1896). J. R. micr. Soc. 9: 489-491.
T. australis
Peragallo (1921) Deux. Exped. Antarct. Francaise 1908-1910. 
Botanique: 1-98.
T. gracilis (Karsten) Hustedt
Hustedt, F. (1958). Dt. Antarkt. Exped. 1938/39 (2):103-191.
T. gracilis var. expecta (Van Landingham) Fryxell & Hasle 
Frxell, G.A. & Hasle, G.R. (1979) Phycologia. 18: 378-393.
T. gravida Cleve
Cleve, P.T. (1896) Bihang till Kongliga Svenska Vetenskaps- 
Akademiens Handlingar. 22(3-4): 1-22.
T. lentiginosa (Janisch) Fryxell
Fryxell, G.A. (1977) Phycologia. 16: 95-104.
T. lineate Jouse
Jouse, A.P. (1968) Novitas Systematicae Plantarum non Vascularium. 
1968:12-21.
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Species:
Ref:

Species:
Ref:

Species:
Ref:

Species:
Ref:

Species:
Ref:

Genus:
Ref:

Genus:
Ref:

Species:
Ref:

Genus:
Ref:

Species:
Ref:

Genus:
Ref:

Species:
Ref:

Genus:
Ref:

Species:
Ref:

T. oestrupii (Ostenfleld) Hasle 
Hasle, G.R. (1972) Taxon. 21: 543-544.
T. oliverana (O ’Meara) Makarova & Nikolaev 
Makarov, I.L. & Nikolaev, B.K. (1983).
T. poroseriata (Ramsfjell) Hasle 
Hasle, G.R. (1972) Taxon. 21: 543-544.
T. ritscheri (Hustedt) Hasle in Hasle & Heimdal
Hasle, G.R & Heimdal, B.R. (1970) Beiheft zur Nova Hedwigia
T. tumida (Janisch) Hasle in Hasle et a l,
Hasle, G.R., et al., (1971) Antarctic Research Series. 17: 313-333.

Thalassionema
A.Grunow ex F. Hustedt (1932) In Rabenhorst Krypt.-Flora. 7 (2): 
244.

Thalassiothrix
Cleve, P.T. & Grunow, A. (1880) Kongl. Svenska Vetenskap. Akad. 
Handl., Ser2. 17(2): 108.
T. antarctica Schimper ex Karsten
Karsten, G. (1905) Deutsche Tiefsee-Expedition 1898-1899. 2(2): 1- 
136.

Trachyneis 
Cleve, P.T. (1894)
T. aspera (Ehrenberg) Cleve
= Navicula aspera. Lectotype selected by Boyer (1928) Proc. Acad. 
Nat. Sci. Philad. 79 Suppl.: 428.

Trichotoxon
Reid, F.M. H. & Round, F.E. (1987) Diat. Res. 2: 224.
T. reinboldii (Van Heurck) Reid & Round
Reid, F.M.H. & Round, F.E. (1987) Diat. Res. 2(2): 219-227.

Trigonium
Cleve, P.T. (1868) Ofvers Kongl. Vetensk-Akad. Forhandl. 1867: 
663.
T. arcticum (Brightwell) Cleve (==Triceratium arcticum)
Cleve, P.T. (1868). Ofversigt a f Kongliga Vetenskaps-Akademiens 
Forhandlingar. 25(3): 213-240.
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A.2 Diatom Images

This appendix contains images o f diatoms identified in laminated sediments from 

Palmer Deep, Mertz Ninnis Trough and Durmont d ’Urville Trough and supports 

chapter 3, section 3.5 and chapters 6, 7 and 8. Appendix 1 lists the taxonomic 

classification for these diatoms.
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A.3.1 Palmer Deep, Western Antarctic Peninsula

Two tables are presented in this section. The first (ODP Core 178-1098A-6H) gives 

details of the lamina diatom assemblages. The second (ODP Core 178-1098A-6H & - 

1098C-5H) was not examined in the SEM; therefore, lamina thicknesses were 

measured on the thin sections, to extend the lamina thickness data range. The lamina 

log number 192, ODP Core 178-1098A-6H is equivalent to lamina 2 in ODP Core 

178-1098A-6H&-1098C-5H.

Abbreviations used in the Palmer Deep (ODP Core 178-1098A-6H) table: 

Terrigenous or biogenic content

B Biogenic laminae
T Terrigenous laminae

Diatom assemblage of laminae or sub-laminae

M Mixed diatom assemblage, includes some or all o f the following species:
Hyalochaete Chaetoceros spp. resting spores, Thalassiosira antarctica, 
Coscinodiscus bouvet, Odontella weissflogii, Corethron pennatum, 
Fragilariopsis spp.

C Near-monogeneric Hyalochaete Chaetoceros spp. resting spore
CB Characterised by Coscinodiscus bouvet
CP Characterised by Criophilum pennatum
OW Characterised by Odontella weissflogii resting spores
TA Characterised by Thalassiosira antarctica resting spores

Other features

Bioturb Bioturbation
Gyp Grains of gypsum
TP Terrigenous pulse
FP Faecal pellets

Double lines within the table indicate a break in the laminated interval.
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A.3.1.1 ODP Core 178-1098A-6H

Log
no.

Depth (mcd) Laminae Biogenic / Diatom Other Year
No.

years
Base o f  
laminae

Top o f  
laminae

thickness
(mm)

terrigenous
laminae

species
assemblage

Sub-laminae informa
tion

thickness
(mm)

193 42.5154 42.5124 3 T M
10.3 96192 42.5227 42.5154 7.3 B C FP

191 42.532 42.5227 9.3 T M CP,TA
22.3 95

190 42.545 42.532 13 B C

189 42.558 42.545 13 T M Bioturb
17.2 94

188 42.5622 42.558 4.2 B C FP

187 42.5673 42.5622 5.1 T OW
23.1 93

186 42.5853 42.5673 18 B C FP

185

184

42.5871

42.6011

42.5853

42.5871

1.8

14

T

B

M

C
15.8 92

183

182

42.6036

42.607

42.6011

42.6036

2.5

3.4

T

B

C

CP

Bioturb
5.9 91

181

180

42.6098

42.6183

42.607

42.6098

2.8

8.5

T

B

c
c FP

11.3 90

179

178

42.6213

42.6238

42.6183

42.6213

3

2.5

T

B

M

C
5.5 89

177

176

42.6263

42.63215

42.6238

42.6263

2.5

5.85

T

B

M

M
8.35 88

175

174

42.6379

42.64415

42.63215

42.6379

5.75

6.25

T

B

M

C

CP Bioturb
12 87

173

172

42.6475

42.65495

42.64415

42.6475

3.35

7.45

T

B

M

C
10.8 86

171

170

42.66695

42.67405

42.65495

42.66695

12

7.1

T

B

M

C
19.1 85

169

168

42.69655

42.69745

42.67405

42.69655

22.5

0.9

T

B

M

C

Bioturb
23.4 84

167

166

42.71665

42.71865

42.69745

42.71665

19.2

2

T

B

M

C

CP,TA
21.2 83

165

164

42.73865

42.75115

42.71865

42.73865

20

12.5

T

B

M

C

C,CB.CP,TA
32.5 82

163

162

42.77595

42.78475

42.75115

42.77595

24.8

8.8

T

B

M

C

C,CP,TA TP

FP
33.6 81

161 42.78715 42.78475 2.4 T M
16 80

160 42.80075 42.78715 13.6 B C FP

159

158

42.81995

42.83595

42.80075

42.81995

19.2

16

T

B

M

C

C,CP,CP,TA

FP
35.2 79

157

156

42.87595

42.88655

42.83595

42.87595

40

10.6

T

B

CB

C

C,TA
50.6 78

155

154

42.89055

42.89215

42.88655

42.89055

4

1.6

T

B

M

C

TA
5.6 77

153 42.92815 42.89215 36 T M C,C,TA
Bioturb,

FP 39.95 76

152 42.9321 42.92815 3.95 B C Bioturb

151 42.9496 42.9321 17.5 T M Bioturb
27.5 75

150 42.9596 42.9496 10 B C

149 42.9706 42.9596 11 T M TA
24 74

148 42.9836 42.9706 13 B C

147 43.0006 42.9836 17 T M 22 73
146 43.0056 43.0006 5 B CP
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145

144

143

142

141

140

139

138

137

136

135

134

133

132

131

130

129

128

127

126

125

124

123

122

121

120

119

118

117

116

115

114

113

112

1 1 1

1 1 0

109

108

107

106

105

104

103

102

101

100

99

98

97

96
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Depth (mcd) Laminae B iogen ic  / D iatom Other Year
Base o f Top o f th ickness terrigenous species Sub-lam inae informa thickness
laminae laminae (m m ) lam inae assem blage tion (mm)

43.0082

43.0162

43.0056

43.0082

2.6 M

C

FP

No.
years

10.6 72

43.0187

43.0417

43.0162

43.0187

2.5

23

M

C FP
25.5 71

43.0447

43.0469

43.0417

43.0447

3

2.2
M

C

TA
5.2 70

43.0511

43.0553

43.0469

43.0511

4.2

4.2

M

C

TA
8.4 69

43.0598

43.0938

43.0553

43.0598

4.5

34

M

C

Bioturb

FP
38.5 68

43.1138

43.1288

43.0938

43.1138

20

15

M

C

C ,C B,C P,TA ,O W
35 67

43.1314

43.1654

43.1288

43.1314

2.6

34

43.1894

43.1948

43.1654

43.1894

24

5.4

M

C

M

C

CB, C, CP, TA

36.6 66

29.4 65

43.1984

43.2038

43.1948

43.1984

3.6

5.4

M

C FP
64

43.2503

43.2667

43.2038

43.2503

46.5

16.4

M

C

Bioturb
62.9 63

43.2857

43.3057

43.2667

43.2857

19

20

M

C

TA,C
39 62

43.3089

43.31595

43.3057

43.3089

3.2

7.05

M

C,CP
10.25 61

43.3222

43.3525

43.31595

43.3222

6.25

30.3

M

C

C,CP
36.55 60

43.3693

43.3849

43.3525

43.3693

16.8

15.6

M

C

OW ,TA
32.4 59

43.3876

43.4186

43.3849

43.3876

2.7

31

M

C
33.7 58

43.4301

43.4337

43.4186

43.4301

11.5

3.6

M

C

TA

Bioturb
15.1 57

43.4441

43.4644

43.4337

43.4441

10.4

20.3

43.4661

43.4679

43.4644

43.4661

43.475

43.4943

43.4679

43.475

1.7

1.8 

7.1 

19.3

M

C

C,C,C,

M

C

M

C

30.7 56

3.5

26.4

55

54

43.4962

43.512

43.4943

43.4962

1.9

15.8

43.5234

43.525

43.512

43.5234

11.4

1.6

43.5406

43.5559

43.525

43.5406

15.6

15.3

M

C

TA

M

C

CB,C

TA

17.7

13

30.9

53

52

51

43.5839

43.5867

43.5559

43.5839

28

2.8

43.5891

43.598

43.5867

43.5891

2.4

8.9

M

C

TA, C

CP

c

30.8

11.3

50

49

43.5998

43.6011

43.598

43.5998

1.8

1.3

M

C
3.1 48
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Log
no.

Depth (mcd) Laminae
thickness

(mm)

B io g en ic / 
terrigenous 

laminae

Diatom
species

assemblage
Sub-laminae

Other
informa

tion

Year
thickness

(mm)

No.
years

Base of 
laminae

Top of 
laminae

95 43.6042 43.6011 3.1 T M

94 43.6082 43.6042 4 B C
7.1 47

93 43.6108 43.6082 2.6 T M

92 43.6265 43.6108 15.7 B C
18.3 46

91 43.6278 43.6265 1.3 T M

90 43.6335 43.6278 5.7 B C
7 45

89 43.6355 43.6335 2 T M

88 43.6374 43.6355 1.9 B C
3.9 44

87 43.6417 43.6374 4.3 T M

86 43.6585 43.6417 16.8 B C
21.1 43

85 43.6621 43.6585 3.6 T M
32 42

84 43.6905 43.6621 28.4 B C

83 43.7015 43.6905 11 T M
23.1 41

82 43.7136 43.7015 12.1 B C

81 43.7335 43.7136 19.9 T M C,C,TA
28.5 40

80 43.7421 43.7335 8.6 B C

79 43.7903 43.7421 48.2 T M TA
64.7 39

78 43.8068 43.7903 16.5 B C

77 43.8131 43.8068 6.3 T M TA
11.8 38

76 43.8186 43.8131 5.5 B C

75 43.8208 43.8186 2.2 T M
11.4 37

74 43.83 43.8208 9.2 B C

73 43.837 43.83 7 T M TA
18.25 36

72 43.84825 43.837 11.25 B C

71 43.86645 43.84825 18.2 T M TP
38.1 35

70 43.88635 43.86645 19.9 B C

69 43.88755 43.88635 1.2 T M
6.5 34

68 43.89285 43.88755 5.3 B C

67 43.89465 43.89285 1.8 T M
17.9 33

66 43.91075 43.89465 16.1 B C

65 43.93195 43.91075 21.2 T M TA TP
28.4 32

64 43.93915 43.93195 7.2 B C

63 43.94065 43.93915 1.5 T M TA
12.4 31

62 43.95155 43.94065 10.9 B C

61 43.96385 43.95155 12.3 T M TA,TA,TA
32.8 30

60 43.98435 43.96385 20.5 B C

59 43.99195 43.98435 7.6 T M TA
20.6 29

58 44.00495 43.99195 13 B C

57 44.00765 44.00495 2.7 T M 7.8 28
56 44.01275 44.00765 5.1 B C

55 44.01885 44.01275 6.1 T M 16.5 27
54 44.02925 44.01885 10.4 B C

53 44.03105 44.02925 1.8 T M TA
22.8 26

52 44.05205 44.03105 21 B C

51 44.05645 44.05205 4.4 T M TA
20.6 25

50 44.07265 44.05645 16.2 B C

49 44.08445 44.07265 11.8 T M OW
27.05 24

48 44.0997 44.08445 15.25 B C TA

47 44.1076 44.0997 7.9 T M CP 26.4 23
46 44.1261 44.1076 18.5 B C
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Log
no.

Depth (mcd) Laminae
thickness

(mm)

Biogenic / 
terrigenous 

laminae

Diatom
species

assemblage
Sub-laminae

Other
informa

tion

Year
thickness

(mm)

No.
yearsBase o f 

laminae
Top o f  

laminae

45 44.1341 44.1261 8 T M TA Bioturb
44 44.1423 44.1341 8.2 B CP

16.2 22

43 44.1502 44.1423 7.9 T M C
26.95 21

42 44.16925 44.1502 19.05 B C

41 44.1702 44.16925 0.95 T M TA
4.75 20

40 44.174 44.1702 3.8 B C

39 44.17615 44.174 2.15 T M TA
9.15

38 44.18315 44.17615 7 B C
19

37 44.1955 44.18315 12.35 T M TA
26.85 18

36 44.21 44.1955 14.5 B C Bioturb

35 44.275 44.21 65 T M C,C,C,T A,T A,T A Bioturb
66.6 17

34 44.2766 44.275 1.6 B C

33 44.2998 44.2766 23.2 T M TA,TA,TA
47.2 16

32 44.3238 44.2998 24 B C

31 44.3443 44.3238 20.5 T M C, CP, TA TP
22.4 15

30 44.3462 44.3443 1.9 B C CP

29 44.3501 44.3462 3.9 T M
19.6 14

28 44.3658 44.3501 15.7 B C

27 44.3687 44.3658 2.9 T M
4.8 13

26 44.3706 44.3687 1.9 B C

25 44.3735 44.3706 2.9 T M
25.9 12

24 44.3965 44.3735 23 B C

23 44.3989 44.3965 2.4 T M TA
25.4 11

22 44.4219 44.3989 23 B C

21 44.43 44.4219 8.1 T M C, TA Gypsum
33.6 10

20 44.4555 44.43 25.5 B C

19 44.457 44.4555 1.5 T M Gypsum
20.5 9

18 44.476 44.457 19 B C

17 44.4958 44.476 19.8 T M CB, TA, OW
23.4 8

16 44.4994 44.4958 3.6 B C

15 44.5174 44.4994 18 T M
48 7

14 44.5474 44.5174 30 B C

13 44.6116 44.5474 64.2 T M CP, TA, TA, TA TP
80.4 6

12 44.6278 44.6116 16.2 B C Bioturb

11 44.6358 44.6278 8 T M
19 5

10 44.6468 44.6358 11 B C

9 44.6718 44.6468 25 T M
30.5 4

8 44.6773 44.6718 5.5 B C Bioturb

7 44.7056 44.6773 28.3 T M Bioturb
37.4 3

6 44.7147 44.7056 9.1 B C

5 44.796 44.7147 81.3 T M CP, TA Bioturb
102.2 2

4 44.8169 44.796 20.9 B C Bioturb

3 44.967 44.8169 150.1 T M TA, C Gypsum
156.1 1

2 44.973 44.967 6 B C Bioturb

1 45.03 44.973 57 T M TA, TA, C
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A.3.1.2 ODP Core 178-1098A-6H & -1098C-5H (combined)

Log
no.

Depth (mcd) Lamina Biogenic / 
terrigenous 

laminae
Base o f  
laminae

Top o f  
laminae

thickness
(mm)

Number o f  
years

155 40.6638 40.6338 30 T
77

154 40.6668 40.6638 3 B

153 40.7108 40.6668 44 T
76

152 40.7118 40.7108 1 B

151 40.7148 40.7118 3 T
75

150 40.7178 40.7148 3 B

149 40.7188 40.7178 1 T
74

148 40.7208 40.7188 2 B

147 40.7598 40.7208 39 T
73

146 40.7668 40.7598 7 B

145 40.7748 40.7668 8 T
72

144 40.7798 40.7748 5 B

143 40.7848 40.7798 5 T
71

142 40.7898 40.7848 5 B

141 40.8098 40.7898 20 T
70

140 40.8128 40.8098 3 B

139 40.8748 40.8128 62 T
69

138 40.8848 40.8748 10 B

137 40.8868 40.8848 2 T
fiR

136 40.8938 40.8868 7 B

135 40.8968 40.8938 3 T
67

134 40.9028 40.8968 6 B

133 40.9073 40.9028 4.5 T
66

132 40.9133 40.9073 6 B

131 40.9193 40.9133 6 T
65

130 40.9223 40.9193 3 B

129 40.9263 40.9223 4 T
64

128 40.9323 40.9263 6 B

127 40.9523 40.9323 20 T
63

126 40.9573 40.9523 5 B

125 40.9673 40.9573 10 T
62

124 40.9743 40.9673 7 B

123 40.9808 40.9743 6.5 T
61

122 40.9823 40.9808 1.5 B

121 40.9853 40.9823 3 T
60

120 40.9933 40.9853 8 B

119 41.0133 40.9933 20 T
59

118 41.0193 41.0133 6 B

117 41.0273 41.0193 8 T
58

116 41.0413 41.0273 14 B

115 41.0433 41.0413 2 T
57

114 41.0473 41.0433 4 B

113 41.0533 41.0473 6 T
56

112 41.0553 41.0533 2 B

111 41.0613 41.0553 6 T
55

110 41.0663 41.0613 5 B
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Log
no.

Depth (mcd)
Biogenic / 

terrigenous 
laminae

Base o f  
laminae

Top o f  
laminae

thickness
(mm)

Number o f  
years

109 41.1033 41.0663 37 T
54108 41.1073 41.1033 4 B

107 41.1228 41.1073 15.5 T
53106 41.1248 41.1228 2 B

105 41.1448 41.1248 20 T
52104 41.1473 41.1448 2.5 B

103 41.1513 41.1473 4 T
51

102 41.1563 41.1513 5 B

101 41.1803 41.1563 24 T
50

100 41.1853 41.1803 5 B

99 41.1873 41.1853 2 T
49

98 41.1883 41.1873 1 B

97 41.1903 41.1883 2 T
48

96 41.2003 41.1903 10 B

95 41.2033 41.2003 3 T
47

94 41.2058 41.2033 2.5 B

93 41.2098 41.2058 4 T
46

92 41.2288 41.2098 19 B

91 41.2343 41.2288 5.5 T
45

90 41.2433 41.2343 9 B

89 41.2513 41.2433 8 T
44

88 41.2583 41.2513 7 B

87 41.2723 41.2583 14 T
43

86 41.2893 41.2723 17 B

85 41.3143 41.2893 25 T
42

84 41.3203 41.3143 6 B

83 41.3263 41.3203 6 T
41

82 41.3453 41.3263 19 B

81 41.3862 41.3453 40.9 T
40

80 41.3922 41.3862 6 B

79 41.4092 41.3922 17 T
39

78 41.4122 41.4092 3 B

77 41.4295 41.4122 17.3 T
38

76 41.4375 41.4295 8 B

75 41.4405 41.4375 3 T
37

74 41.448 41.4405 7.5 B

73 41.46 41.448 12 T
36

72 41.465 41.46 5 B

71 41.5575 41.5515 6 T
35

70 41.563 41.5575 5.5 B

69 41.574 41.563 11 T
34

68 41.579 41.574 5 B

67 41.6305 41.6245 6 T
33

66 41.6445 41.6305 14 B

65 41.669 41.6445 24.5 T
32

64 41.762 41.758 4 B

63 41.777 41.762 15 T
31

62 41.7845 41.777 7.5 B I
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Log
no.

Depth (mcd)
Biogenic / 
terrigenous 

laminae
Base o f  
laminae

Top o f  
laminae

thickness
(mm)

Number o f  
years

61 41.787 41.7845 2.5 T
30

60 41.8 41.787 13 B

59 41.87 41.854 16 T
29

58 41.8735 41.87 3.5 B
57 41.8785 41.8735 5 T

28
56 41.8815 41.8785 3 B

55 41.883 41.8815 1.5 T
27

54 41.888 41.883 5 B

53 41.928 41.888 40 T
26

52 41.977 41.968 9 B

51 41.9935 41.977 16.5 T
25

50 41.999 41.9935 5.5 B

49 42.005 41.999 6 T
24

48 42.0125 42.005 7.5 B

47 42.0205 42.0125 8 T
23

46 42.0305 42.0205 10 B

45 42.0345 42.0305 4 T
22

44 42.0385 42.0345 4 B

43 42.054 42.0385 15.5 T
21

42 42.077 42.054 23 B

41 42.0815 42.077 4.5 T
20

40 42.0945 42.0815 13 B

39 42.136 42.0945 41.5 T
19

38 42.1395 42.136 3.5 B

37 42.144 42.1395 4.5 T
18

36 42.1495 42.144 5.5 B

35 42.157 42.1495 7.5 T
17

34 42.16 42.157 3 B

33 42.1758 42.1668 9 T
16

32 42.1818 42.1758 6 B

31 42.2088 42.1818 27 T
15

30 42.2208 42.2088 12 B

29 42.2263 42.2208 5.5 T
14

28 42.2403 42.2263 14 B

27 42.2415 42.2403 1.2 T
13

26 42.2555 42.2415 14 B

25 42.2595 42.2555 4 T
12

24 42.2775 42.2595 18 B

23 42.2825 42.2775 5 T
11

22 42.2895 42.2825 7 B

21 42.3075 42.2895 18 T
10

20 42.336 42.3075 28.5 B

19 42.345 42.336 9 T
9

18 42.3495 42.345 4.5 B

17 42.3655 42.3495 16 T
8

16 42.3715 42.3655 6 B

15 42.3855 42.3715 14 T
7

14 42.392 42.3855 6.5 B
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Log
no.

Depth (mcd) Lamina Biogenic / 
terrigenous 

laminae

Number o f  
yearsBase o f  

laminae
Top o f  
laminae

thickness
(mm)

13 42.398 42.392 6 T
6

12 42.422 42.398 24 B

11 42.427 42.422 5 T
5

10 42.443 42.427 16 B

9 42.445 42.443 2 T
4

8 42.4465 42.445 1.5 B

7 42.4535 42.4465 7 T
3

6 42.4585 42.4535 5 B

5 42.48 42.4585 21.5 T
2

4 42.493 42.48 13 B

3 42.528 42.515 13 T 1
2 42.537 42.528 9 B

1 42.55 42.537 13 T
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A.3.2 M ertz N innis T rou gh , E a st A n ta rctic  M argin

Two tables are presented in this section, NBP0101 JPC10 and KC10A.

Abbreviations used in NBP0101 JPC10 and KC10A tables: 

Lamina types

A Near-monogeneric Hyalochaete Chaetoceros spp. resting spore biogenic
laminae

B Biogenic laminae characterised by Corethron pennatum
C Biogenic laminae characterised by Rhizosolenia spp.
D Mixed diatom assemblage biogenic laminae, includes some or all of the

following species: Hyalochaete Chaetoceros spp. resting spores,
Phaeoceros Chaetoceros spp., Fragilariopsis spp., Porosira glacialis 
resting spores, Stellarima microtrias resting spores, Rhizosolenia spp., 
Eucampia antarctica, Corethron pennatum, Odontella weissflogii resting 
spores

E Mixed diatom assemblage terrigenous laminae, includes some or all of the
following species: Hyalochaete Chaetoceros spp. resting spores,
Phaeoceros Chaetoceros spp., Fragilariopsis spp., Porosira glacialis 
resting spores, Stellarima microtrias resting spores, Rhizosolenia spp., 
Eucampia antarctica, Corethron pennatum, Odontella weissflogii resting 
spores, Trigonium arcticum

F Terrigenous sub-laminae characterised by Porosira glacialis resting spores
G Biogenic laminae characterised by Fragilariopsis spp.
H Terrigenous laminae characterised by Fragilariopsis spp.

Other features

Bioturb Bioturbated
Gyp Grains o f gypsum
TP Terrigenous pulse
FP Faecal pellets

Double lines within the table indicate a break in the laminated interval.
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A.3.2.1 NBP0I01 JPCIO

Log no.
Depth (mbsf) Laminae

thickness
(mm)

Diatom
species

assemblage

Year
thickness

(mm)

Number 
o f  years

Other
informationBase o f  

laminae
Top o f  
laminae

279 17.41828 17.40208 16.2 A

in 17.42738 17.41828 9.1 E 13.4 116
277 17.43168 17.42738 4.3 A

276 17.43688 17.43168 5.2 E 11.3 115
275 17.44298 17.43688 6.1 A

274 17.46228 17.44298 19.3 E 21.3 114
in 17.46428 17.46228 2.0 A

111 17.47228 17.46428 8.0 E 19.6 113
271 17.48168 17.47228 9.4 A
270 17.4839 17.48168 2.2 D

269 17.4892 17.4839 5.3 E 24.1 112 TP
268 17.496 17.4892 6.8 D

267 17.508 17.496 12.0 A FP

266 17.5121 17.508 4.1 E 7.1 111

265 17.5151 17.5121 3.0 A

264 17.5163 17.5151 1.2 E 7.3 110

263 17.5224 17.5163 6.1 A

262 17.5324 17.5224 10.0 E 24.3 109

261 17.5467 17.5324 14.3 A

260 17.5508 17.5467 4.1 E 9.8 108

259 17.5565 17.5508 5.7 A

258 17.5676 17.5565 11.1 D 11.1 107 Bioturb

257 17.5828 17.5676 15.2 E 23.7 106

256 17.5913 17.5828 8.5 A

255 17.6141 17.5913 22.8 E 29.8 105

254 17.6211 17.6141 7.0 B

253 17.6484 17.6211 27.3 E 28.9 104 Bioturb

252 17.65 17.6484 1.6 A

251 17.788 17.7788 9.2 E 11.3 103

250 17.7901 17.788 2.1 B

249 17.7908 17.7901 0.7 F 12.3 102

248 17.7957 17.7908 4.9 E

247 17.8024 17.7957 6.7 B

246 17.8074 17.8024 5.0 E 32.0 101

245 17.8344 17.8074 27.0 B

244 17.8459 17.8344 11.5 E 92.5 100

243 17.9269 17.8459 81.0 B FP

242 17.9317 17.9269 4.8 E 6.3 99

241 17.9332 17.9317 1.5 A

240 17.9361 17.9332 2.9 E 9.6 98

239 17.9428 17.9361 6.7 B

238 17.948 17.9428 5.2 E 10.7 97

237 17.9535 17.948 5.5 B

236 17.9564 17.9535 2.9 E 18.3 96

235 17.9718 17.9564 15.4 D

234 17.9754 17.9718 3.6 E 4.5 95

233 17.9763 17.9754 0.9 A

232 17.9776 17.9763 1.3 E 16.1 94

231 17.9851 17.9776 7.5 D FP
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Depth (mbsf) Laminae
Diatom species 

assemblage

Year
Number o f  

years
Other

information
Log no. Base o f  

laminae
Top o f  
laminae

thickness
(mm)

thickness
(mm)

230 17.9924 17.9851 7.3 A FP
229 17.9996 17.9924 7.2 E
228 18.0036 17.9996 4.0 A 11.2 93

227 18.0119 18.0036 8.3 E
226 18.0251 18.0119 13.2 A 21.5 92

225 18.0288 18.0251 3.7 E
224 18.0323 18.0288 3.5 A 7.2 91

223 18.0473 18.0323 15.0 E
222 18.0703 18.0473 23.0 E 41.5 90
221 18.0738 18.0703 3.5 D

220 18.077 18.0738 3.2 E
219 18.083 18.077 6.0 D 10.3 89
218 18.0841 18.083 1.1 D

217 18.0876 18.0841 3.5 E
7.0216 18.0911 18.0876 3.5 A 88

215 18.0938 18.0911 2.7 E
5.8 87214 18.0969 18.0938 3.1 D

213 18.1 18.0969 3.1 E
5.3 86

212 18.1022 18.1 2.2 A

211 18.1053 18.1022 3.1 E
5.1 85

210 18.1073 18.1053 2.0 A

209 18.1104 18.1073 3.1 E
24.0 84

208 18.1313 18.1104 20.9 B

207 18.1353 18.1313 4.0 E
9.8 83

206 18.1411 18.1353 5.8 A FP

205

204

18.1791

18.184

18.1411

18.1791

38.0

4.9

E

A
42.9 82

203

202

18.1893

18.2

18.184

18.1893

5.3

10.7

E

A 16.0 81

201

200

18.7689

18.7821

18.7498

18.7689

19.1

13.2

E

A
32.3 80

199

198

18.7835

18.7888

18.7821

18.7835

1.4

5.3

E

A
6.7 79

197

196

18.7902

18.7942

18.7888

18.7902

1.4

4.0

F

A
5.4 78

195

194

18.8051

18.8129

18.7942

18.8051

10.9

7.8

E

D
18.7 77

193

192

18.8149

18.8278

18.8129

18.8149

2.0

12.9

E

D
14.9 76

191 18.8304 18.8278 2.6 F

190

189

18.8453

18.8522

18.8304

18.8453

14.9

6.9

E

D
35.5 75

188 18.8633 18.8522 11.1 B

187

186

18.8659

18.8671

18.8633

18.8659

2.6

1.2

E

D
3.8 74

185 18.8723 18.8671 5.2 E
11.1 73

184 18.8782 18.8723 5.9 C

183

182

18.88

18.8855

18.8782

18.88

1.8

5.5

E

D
7.3 72

181

180

18.8875

18.8885

18.8855

18.8875

2.0

1.0

E

A
3.0 71
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Depth (mbsf) Laminae Diatom species 
assemblage

Year Number o f  
years

Other
informationLog no. Base o f  

laminae
Top o f  

laminae
thickness

(mm)
thickness

(mm)
179 18.891 18.8885 2.5 E

178 18.8931 18.891 2.1 C 6.5 70
177 18.895 18.8931 1.9 A

176 18.8973 18.895 2.3 E
3.1 69175 18.8981 18.8973 0.8 A

174 18.9015 18.8981 3.4 E
5.5 68173 18.9036 18.9015 2.1 A

172 18.9039 18.9036 0.3 E

171 18.9045 18.9039 0.6 F

170 18.91 18.9045 5.5 E

169 19.1972 19.1897 7.5 D

168 19.2047 19.1972 7.5 C 17.7 67

167 19.2074 19.2047 2.7 A

166 19.2082 19.2074 0.8 E
2.0 66

165 19.2094 19.2082 1.2 B

164 19.2133 19.2094 3.9 E

163 19.2183 19.2133 5.0 C 20.5 65
162 19.2299 19.2183 11.6 D Bioturb

161 19.2441 19.2299 14.2 E
15.9 64

160 19.2458 19.2441 1.7 A

159 19.2548 19.2458 9.0 E

158 19.2556 19.2548 0.8 F

157 19.256 19.2556 0.4 E 35.8 63
156 19.2769 19.256 20.9 D

155 19.2816 19.2769 4.7 B

154 19.2843 19.2816 2.7 E
8.2 62

153 19.2898 19.2843 5.5 A

152

151

19.3005

19.314

19.2898

19.3005

10.7

13.5

E

D
24.2 61

150 19.32 19.314 6.0 E
7.2 60

149 19.3212 19.32 1.2 A

148 19.3231 19.3212 1.9 E

147 19.3307 19.3231 7.6 E 9.9 59

146 19.3311 19.3307 0.4 A

145 19.332 19.3311 0.9 F

144 19.3374 19.332 5.4 D

143 19.339 19.3374 1.6 A 12.2 58

142 19.3426 19.339 3.6 B

141 19.3433 19.3426 0.7 A

140 19.345 19.3433 1.7 E

139 19.3521 19.345 7.1 D 9.5 57

138 19.3528 19.3521 0.7 B

137

136

19.3537

19.3547

19.3528

19.3537

0.9

1.0

E

A
1.9 56

135

134

19.3715

19.3761

19.3547

19.3715

16.8

4.6

E

D
21.4 55

133

132

19.3787

19.3876

19.3761

19.3787

2.6

8.9

E

B
11.5 54

131 19.3885 19.3876 0.9 F
24.4 53

130 19.412 19.3885 23.5 B Bioturb
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Depth (mbsf) Laminae
Diatom species 

assemblage

Year Number o f  
years

Other
information

Log no. Base o f  
laminae

Top o f  
laminae

thickness
(mm)

thickness
(mm)

129 19.4203 19.412 8.3 E
29.8 52

Bioturb

128 19.4418 19.4203 21.5 B

127 19.4449 19.4418 3.1 E
31.1 51126 19.4729 19.4449 28.0 B

125 19.4976 19.4729 24.7 E
27.1 50124 19.5 19.4976 2.4 A

123 19.512 19.5 12.0 E
27.8 49122 19.5278 19.512 15.8 D

121 19.5285 19.5278 0.7 F
7.4 48120 19.5352 19.5285 6.7 A

119 19.5363 19.5352 1.1 F

118 19.5381 19.5363 1.8 E 11.0 47
117 19.5462 19.5381 8.1 A

116 19.6162 19.5462 70.0 B 70.0 46
115 19.6178 19.6162 1.6 F

114 19.6313 19.6178 13.5 E 15.7 45
113 19.6319 19.6313 0.6 D

112 19.6353 19.6319 3.4 E
5.0 44

111 19.6369 19.6353 1.6 A

110 19.6374 19.6369 0.5 F

109 19.6396 19.6374 2.2 E 49.6 43
108 19.6865 19.6396 46.9 A

107 19.6925 19.6865 6.0 E
9.2 42

106 19.6957 19.6925 3.2 A

105 19.702 19.6957 6.3 E
6.5 41

104 19.7022 19.702 0.2 B

103 19.7035 19.7022 1.3 F
11.1 40

102 19.7133 19.7035 9.8 B

101 19.7143 19.7133 1.0 E
1.8 39

100 19.7151 19.7143 0.8 B

99 19.7169 19.7151 1.8 F

98 19.7391 19.7169 22.2 B 30.0 38

97 19.7451 19.7391 6.0 D

96

95

19.7485

19.7513

19.7451

19.7485

3.4

2.8

E

A
6.2 37

94

93

19.7528

19.7608

19.7513

19.7528

1.5

8.0

E

D
9.5 36

92

91

19.7616

19.764

19.7608

19.7616

0.8

2.4

E

A
3.2 35

90 19.7648 19.764 0.8 F

89 19.7684 19.7648 3.6 E 8.6 34

88 19.7726 19.7684 4.2 D

87

86

19.7789

19.7794

19.7726

19.7789

6.3

0.5

E

A
6.8 33

85

84

19.7976

19.798

19.7794

19.7976

18.2

0.4

E

A
18.6 32

83

82

19.7999

19.8006

19.798

19.7999

1.9

0.7

E

D
2.6 31

81

80

19.8216

19.8227

19.8006

19.8216

21.0

1.1

E

B
22.1 30
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Depth (mbsf) Laminae Diatom species 
assemblage

Year
Number o f  

years
Other

informationLog no. Base of 
laminae

Top of  
laminae

thickness
(mm)

thickness
(mm)

79 19.8355 19.8227 12.8 E
13.7 29

78 19.8364 19.8355 0.9 A

77 19.8384 19.8364 2.0 E
7.0 28

76 19.8434 19.8384 5.0 B

75

74

19.858

19.8623

19.8434

19.858

14.6

4.3

E

D
18.9 27

73 19.8647 19.8623 2.4 E
4.0 26

72 19.8663 19.8647 1.6 A

71 19.8714 19.8663 5.1 E
5.7 25

70 19.872 19.8714 0.6 B

69 19.8737 19.872 1.7 E

68 19.9097 19.8737 36.0 B 44.0 24

67 19.916 19.9097 6.3 A Bioturb

66 19.94 19.916 24.0 E Bioturb

65 19.9408 19.94 0.8 F
37.0 23

Bioturb

64 19.9478 19.9408 7.0 E Bioturb

63 19.953 19.9478 5.2 A Bioturb

62 19.97 19.953 17.0 E

61

60

20.1565

20.1593

20.1366

20.1565

19.9

2.8

E

C
22.7 22

TP

59 20.1611 20.1593 1.8 F

58 20.1723 20.1611 11.2 A 20.3 21
57 20.1796 20.1723 7.3 D

56 20.182 20.1796 2.4 E

55 20.1849 20.182 2.9 D 5.8 20
54 20.1854 20.1849 0.5 D

53 20.1861 20.1854 0.7 F

52 20.1893 20.1861 3.2 E 7.8 19
51 20.1932 20.1893 3.9 D

50 20.1943 20.1932 1.1 F

49 20.1995 20.1943 5.2 E
8.7 1848 20.2015 20.1995 2.0 D

47 20.2019 20.2015 0.4 C

46 20.2034 20.2019 1.5 E

45 20.2173 20.2034 13.9 D 16.2 17
44 20.2181 20.2173 0.8 A

43 20.2231 20.2181 5.0 E
6.4 1642 20.2245 20.2231 1.4 A

41 20.2283 20.2245 3.8 E
7.6 1540 20.2321 20.2283 3.8 A

39 20.2377 20.2321 5.6 E
9.7 1438 20.2418 20.2377 4.1 A

37 20.2451 20.2418 3.3 E
8.4 1336 20.2502 20.2451 5.1 A

35 20.2562 20.2502 6.0 E
11.2 1234 20.2614 20.2562 5.2 D

33 20.3257 20.2614 64.3 E
69.4

Bioturb
32 20.3308 20.3257 5.1 A 11

31 20.3439 20.3308 13.1 E Bioturb

30 20.3508 20.3439 6.9 D 103.2 10
29 20.3636 20.3508 12.8 B
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APPENDIX 3

Depth (mbsf) Laminae
Diatom species 

assemblage

Year
Base o f Top o f thickness thickness
laminae laminae (mm) (mm)

Number o f  
years

Other
information

20.3645

20.434

20.3636

20.3645

0.9

69.5

20.4356

20.4421

20.434

20.4356

1.6

6.5

TP

20.4476

20.4584

20.4597

20.4634

20.4421

20.4476

20.4584

20.4597

5.5

10.8

1.3

3.7

21.3

TP

20.4638

20.4691

20.4718

20.4634

20.4638

20.4691

0.4

5.3

2.7
8.4

20.4741

20.4748

20.4718

20.4741

2.3

0.7
3.0

20.4764

20.4891

20.5281

20.4748

20.4764

20.4891

1.6

12.7

39.0
53.3 TP

20.5297

20.5597

20.5281

20.5297

1.6

30.0
31.6

20.5619

20.5742

20.5814

20.5849

20.5597

20.5619

20.5742

20.5814

2.2
12.3

7.2

3.5

25.2

20.5873

20.5902

20.5957

20.5849

20.5873

20.5902

2.4 

2.9

5.5
10.8

20.5967

20.5987

20.6

20.5957

20.5967

20.5987

1.0

2.0
1.3

3.0
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A.3.2.1 NBP0101 KCIOA

Depth (m bsf) Lam inae D iatom Year
Num ber 
o f years

Other
information

Log no. Base o f 
laminae

Top o f  
lam inae

thickness
(m m )

species
assem blage

thickness
(mm)

35 2.055 2.045 10.0 G
34 2.06 2.055 5.0 E

19.0 17
33 2.074 2.06 14.0 A
32 2.084 2.074 10.0 E

25.1 16
31 2.0991 2.084 15.1 D
30 2.1003 2.0991 1.2 E

25.7 1529 2.1248 2.1003 24.5 G
28 2.1266 2.1248 1.8 E

4.8 14
27 2.1296 2.1266 3.0 D
26 2.1536 2.1296 24.0 H

36.3 13
25 2.1659 2.1536 12.3 D
24 2.1949 2.1659 29.0 E

35.5 12
23 2.2014 2.1949 6.5 D Bioturb
22 2.2064 2.2014 5.0 E

7.1 11
21 2.2085 2.2064 2.1 G
20 2.2132 2.2085 4.7 H

7.6 10
19 2.2161 2.2132 2.9 G
18 2.2321 2.2161 16.0 H

22.0 n
17 2.2381 2.2321 6.0 A Bioturb
16 2.2415 2.2381 3.4 E

13.1 Q
15 2.2512 2.2415 9.7 D
14 2.2562 2.2512 5.0 H

7.1 1
13 2.2583 2.2562 2.1 D
12 2.2613 2.2583 3.0 E

6.2
11 2.2645 2.2613 3.2 D

10 2.2673 2.2645 2.8 E
17.8 *

9 2.2823 2.2673 15.0 D Bioturb

8 2.2903 2.2823 8.0 E
18.0 A Bioturb

7 2.3003 2.2903 10.0 D Bioturb

6 2.3093 2.3003 9.0 E
9.7 3

5 2.31 2.3093 0.7 D

4
3

2.3164
2.319

2.31
2.3164

6.4
2.6

E
D

9.0 2

2
1

2.3269
2.3279

2.319
2.3269

7.9
1.0

E
G

8.9 1
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A.3.3.1 MD03 2597

Log
no.

Depth (mbsf) Laminae Biogenic / Year
Number Other

Base of 
laminae

Top of 
laminae

thickness
(mm)

terrigenous
laminae

type thickness
(mm) of years information

339 18.8032 18.7766 26.6 B V

338

337

18.8111

18.8213

18.8032

18.8111

7.9

10.2

T

B
X
V

18.1 121

336

335

18.8363

18.8557

18.8213

18.8363

15.0

19.4

T

B

X

V
34.4 120

334

333

18.8617

18.8843

18.8557

18.8617

6.0

22.6

T

B

X

V
28.6 119

332 18.8963 18.8843 12.0 T X

331 18.9028 18.8963 6.5 B X 25.7 118

330 18.91 18.9028 7.2 B V

329

328

18.913

18.9142

18.91

18.913

3.0

1.2

T

B

X

u
4.2 117

327

326

18.9362

18.9443

18.9142

18.9362

22.0

8.1

T

B

X

X
30.1 116

325

324

18.9534

18.9563

18.9443
18.9534

9.1

2.9

T

B

X

V
12.0 115

323

322
18.9633

18.9681

18.9563

18.9633

7.0

4.8

T

B

X

V
11.8 114

321 18.9711 18.9681 3.0 T Y
320 18.9741 18.9711 3.0 T X 12.0 113
319 18.9801 18.9741 6.0 B V

318 18.9828 18.9801 2.7 T Y

317 18.9912 18.9828 8.4 T X 19.9 112

316 19 18.9912 8.8 B V

315 23.4132 23.4046 8.6 B u
314 23.424 23.4132 10.8 T X
313 23.425 23.424 1.0 B u

16.5
312 23.4289 23.425 3.9 B X

1 1 I

311 23.4297 23.4289 0.8 B s
310 23.4317 23.4297 2.0 T X

2.9 110
309 23.4326 23.4317 0.9 B s
308 23.4398 23.4326 7.2 T X
307 23.4441 23.4398 4.3 T X 14.0 109
306 23.4466 23.4441 2.5 B V
305
304

23.4506

23.4685

23.4466

23.4506

4.0

17.9

T

B

V

V
21.9 108

303

302
23.4748

23.4806

23.4685

23.4748

6.3

5.8

T

B
X

V
12.1 107

Bioturb

301 23.4825 23.4806 1.9 T z
300 23.492 23.4825 9.5 T X 14.1 106 Bioturb
299 23.4947 23.492 2.7 B u
298

297
23.5292

23.532

23.4947

23.5292
34.5

2.8

T

B
X

V
37.3 105

296 23.5352 23.532 3.2 T X
295 23.5363 23.5352 1.1 T z

18.0 104294 23.5384 23.5363 2.1 T X TP
293 23.55 23.5384 11.6 B w

292 33.8754 33.8629 12.5 B V
291 33.8797 33.8754 4.3 B V
290 33.8835 33.8797 3.8 T X

12.6 103289 33.8923 33.8835 8.8 B V
288

287
33.9123
33.9187

33.8923

33.9123

20.0

6.4

T

B
X

R
26.4 102
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APPENDIX 3

A.3.3 Dumont d’Urville Trough, East Antarctic Margin

One table is presented in this section, MD03 2597.

Abbreviations used in MD03 2597 table: 

Terrigenous or biogenic content

B Biogenic laminae
T Terrigenous laminae

Lamina types

R Laminae characterised by Corethron pennatum and Rhizosolenia spp.
S Laminae characterised by Corethron pennatum
T Laminae characterised by Rhizosolenia spp.
U Laminae characterised by Hyalochaete Chaetoceros spp. resting spores
V Laminae characterised by Hyalochaete Chaetoceros spp. resting spores and

Fragilariopsis spp.
W Laminae characterised by Fragilariopsis spp.
X Mixed diatom assemblage laminae
Y Sub-laminae characterised by Porosira glacialis resting spores
Z Laminae characterised by Stellarima microtrias resting spores, Porosira

glacialis resting spores and / or Coscinodiscus bouvet

Other features

Bioturb Bioturbated
Gyp Grains of gypsum
TP Terrigenous pulse
FP Faecal pellets

Double lines within the table indicate a break in the laminated interval.
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APPENDIX 3

A.3.3.1 MD03 2597

Log
no.

Depth (mbsf) Laminae Biogenic / Lamina
Year Number Other

Base of 
laminae

Top of 
laminae

thickness
(mm)

terrigenous
laminae

type
thickness

(mm)
of years information

339 18.8032 18.7766 26.6 B V

338
337

18.8111
18.8213

18.8032
18.8111

7.9
10.2

T
B

X
V

18.1 121

336

335

18.8363
18.8557

18.8213
18.8363

15.0
19.4

T

B
X
V

34.4 120

334

333

18.8617

18.8843

18.8557
18.8617

6.0

22.6

T
B

X
V

28.6 119

332 18.8963 18.8843 12.0 T X

331 18.9028 18.8963 6.5 B X 25.7 118

330 18.91 18.9028 7.2 B V

329

328

18.913
18.9142

18.91

18.913

3.0
1.2

T

B

X

u
4.2 117

327
326

18.9362

18.9443

18.9142
18.9362

22.0

8.1

T
B

X
X

30.1 116

325
324

18.9534

18.9563
18.9443
18.9534

9.1

2.9

T

B

X

V
12.0 115

323
322

18.9633

18.9681

18.9563

18.9633

7.0

4.8

T

B

X

V
11.8 114

321 18.9711 18.9681 3.0 T Y
320 18.9741 18.9711 3.0 T X 12.0 113

319 18.9801 18.9741 6.0 B V

318 18.9828 18.9801 2.7 T Y

317 18.9912 18.9828 8.4 T X 19.9 112

316 19 18.9912 8.8 B V

315 23.4132 23.4046 8.6 B u
314 23.424 23.4132 10.8 T X
313 23.425 23.424 1.0 B u

16.5 111
312 23.4289 23.425 3.9 B X
311 23.4297 23.4289 0.8 B s
310 23.4317 23.4297 2.0 T X

2.9 110
309 23.4326 23.4317 0.9 B s
308 23.4398 23.4326 7.2 T X
307 23.4441 23.4398 4.3 T X 14.0 109
306 23.4466 23.4441 2.5 B V
305
304

23.4506

23.4685
23.4466

23.4506

4.0
17.9

T

B
V
V

21.9 108

303
302

23.4748

23.4806
23.4685
23.4748

6.3

5.8

T
B

X
V

12.1 107
Bioturb

301 23.4825 23.4806 1.9 T z
300 23.492 23.4825 9.5 T X 14.1 106 Bioturb
299 23.4947 23.492 2.7 B u
298
297

23.5292

23.532
23.4947

23.5292
34.5

2.8

T
B

X
V

37.3 105

296 23.5352 23.532 3.2 T X
295 23.5363 23.5352 1.1 T z

18.0 104294 23.5384 23.5363 2.1 T X TP
293 23.55 23.5384 11.6 B w
292 33.8754 33.8629 12.5 B V
291 33.8797 33.8754 4.3 B V
290
289

33.8835

33.8923
33.8797

33.8835
3.8
8.8

T
B

X
V

12.6 103

288
287

33.9123
33.9187

33.8923
33.9123

20.0
6.4

T
B

X
R

26.4 102
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Log
no.

Depth (mbsf) Laminae Biogenic / Lamina
Year Number Other

Base of 
laminae

Top of 
laminae

thickness
(mm)

terrigenous
laminae

type
thickness

(mm)
of years information

286

285

33.9209

33.9289

33.9187

33.9209

2.2

8.0

T

B

X
w

10.2 101

284

283

33.9402

33.9516

33.9289
33.9402

11.3
11.4

T

B

X

V
22.7 100

282 33.9543 33.9516 2.7 T Y

281
280

33.9583
33.965

33.9543
33.9583

4.0
6.7

T
B

X
V

19.5 99

279 33.9711 33.965 6.1 B T Bioturb

278
277

33.9748
33.9776

33.9711

33.9748
3.7

2.8

T
B

V
V

6.5 98

276

275

33.9862
33.9934

33.9776

33.9862

8.6

7.2

T

B

X
w

15.8 97

274

273

33.9949

34.0081

33.9934
33.9949

1.5
13.2

T
B

X
w

14.7 96

272
271

34.0114

34.0145

34.0081
34.0114

3.3
3.1

T
B

X
V

6.4 95

270
269

34.0181
34.0231

34.0145
34.0181

3.6
5.0

T
B

X
V

8.6 94

268
267

34.0265
34.0331

34.0231
34.0265

3.4

6.6

T
B

X
w

10.0 93
Bioturb

266 34.0357 34.0331 2.6 T s
265 34.05 34.0357 14.3 T X

264

263

37.8166

37.8357

37.8

37.8166

16.6

19.1

T

B

X

X
35.7 92

262 37.8427 37.8357 7.0 T X
18.6 91

261 37.8543 37.8427 11.6 B V FP, Bioturb
260
259

37.8639

37.8663
37.8543
37.8639

9.6
2.4

T
B

w
w

12.0 90

258 37.8995 37.8663 33.2 T X
257 37.9142 37.8995 14.7 B w

07

256 37.9156 37.9142 1.4 T z
255 37.9405 37.9156 24.9 T X 33.4 88
254 37.9476 37.9405 7.1 B V
253 37.95 37.9476 2.4 T X

252 38.5689 38.5616 7.3 B V
251 38.5801 38.5689 11.2 T X

21.4 87
250 38.5903 38.5801 10.2 B V
249 38.5918 38.5903 1.5 T X

7.5 86
248 38.5978 38.5918 6.0 B R FP
247 38.6021 38.5978 4.3 T X
246 38.6051 38.6021 3.0 T X
245 38.6075 38.6051 2.4 T z 20.1 85
244 38.6163 38.6075 8.8 T X
243 38.6179 38.6163 1.6 B X
242 38.6249 38.6179 7.0 T X

33.0 84
241 38.6509 38.6249 26.0 B V
240 38.689 38.6509 38.1 T X Bioturb
239 38.6928 38.689 3.8 B V 46.7 83
238 38.6976 38.6928 4.8 B z
237 38.7 38.6976 2.4 T Y

236 40.6 40.592 8.0 B u
235 40.6044 40.6 4.4 T X
234 40.6237 40.6044 19.3 B u 26.8 82
233 40.6268 40.6237 3.1 B z
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Log
no.

Depth (mbsf) Laminae Biogenic / Lamina
Year Number Other

Base of 
laminae

Top of 
laminae

thickness
(mm)

terrigenous
laminae type

thickness
(mm) of years information

232
231

40.6373
40.6613

40.6268

40.6373
10.5
24.0

T
B

X
U 34.5 81

230
229

40.6672

40.6705

40.6613
40.6672

5.9

3.3

T

B
Y

U 9.2 80

228 40.6781 40.6705 7.6 T X

227 40.6922 40.6781 14.1 B u 22.9 79

226 40.6934 40.6922 1.2 B u
225 40.7016 40.6934 8.2 T X

224

223
40.703
40.706

40.7016

40.703

1.4

3.0

B

T
Y
Z

28.7 78

222 40.7221 40.706 16.1 B w
221 40.7237 40.7221 1.6 T z
220 40.729 40.7237 5.3 T X 27.9 77

219 40.75 40.729 21.0 B X

218 41.0629 40.8449 10.7 B X

217 41.0713 41.0629 8.4 T X Bioturb
216 41.0856 41.0713 14.3 T X 41.9 76 Bioturb
215 41.1048 41.0856 19.2 B V

214

213

41.12

41.1334

41.1048

41.12
15.2
13.4

T

B
X
w 28.6 75

212 41.142 41.1334 8.6 T X
211
210

41.15
41.1548

41.142

41.15

8.0

4.8

B
B

X
T

23.2 74

209 41.1566 41.1548 1.8 B T
208 41.16 41.1566 3.4 T z
207 41.162 41.16 2.0 B z

14.2 73
206 41.168 41.162 6.0 B z
205 41.1708 41.168 2.8 B z
204

203
41.1731
41.1772

41.1708
41.1731

2.3
4.1

T
B

X
X

6.4 72

202 41.1854 41.1772 8.2 T X
18.9 71

201 41.1961 41.1854 10.7 B X
200 41.2 41.1961 3.9 T X

199 44.4396 44.4326 7.0 T X
198 44.4432 44.4396 3.6 B w
197 44.4464 44.4432 3.2 B z
196 44.4551 44.4464 8.7 T X 18.5 70
195 44.4617 44.4551 6.6 B X
194 44.4758 44.4617 14.1 T T

28.5 69193 44.4902 44.4758 14.4 B T
192 44.4952 44.4902 5.0 T X

10.0 68191 44.5002 44.4952 5.0 B T
190 44.5095 44.5002 9.3 T T

20.0 67189 44.5202 44.5095 10.7 B T
188 44.5299 44.5202 9.7 T X
187 44.5317 44.5299 1.8 T Y
186 44.5339 44.5317 2.2 T X

24.2 65185 44.5359 44.5339 2.0 T Y
184 44.5384 44.5359 2.5 T X
183 44.5444 44.5384 6.0 B V FP
182 44.5467 44.5444 2.3 T X

3.3 64181 44.5477 44.5467 1.0 B V
180
179

44.5503
44.57

44.5477

44.5503
2.6
19.7

T

B
X
V

22.3 63
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Log
no.

Depth (mbsf) Laminae Biogenic / Lamina Year
thickness

(mm)

Number Other
Base of 
laminae

Top of  
laminae

thickness
(mm)

terrigenous
laminae type of years information

178 44.5712 44.57 1.2 T Y

177 44.5763 44.5712 5.1 T X 14.4 62

176 44.5844 44.5763 8.1 B V

175
174

44.6008
44.6058

44.5844

44.6008

16.4
5.0

T
B

X
V

21.4 61
Bioturb

173 44.6086 44.6058 2.8 T Y

172 44.6176 44.6086 9.0 T X

171 44.6228 44.6176 5.2 B Y

170 44.6268 44.6228 4.0 T X 36.6 60

169 44.6328 44.6268 6.0 B U

168 44.6388 44.6328 6.0 B s
167 44.6424 44.6388 3.6 B V

166 44.65 44.6424 7.6 T X

165 47.6679 47.6536 14.3 B s
164 47.6699 47.6679 2.0 T X

163 47.6712 47.6699 1.3 T Y

162 47.6717 47.6712 0.5 T X 7.9 59

161 47.6722 47.6717 0.5 T Y

160 47.6758 47.6722 3.6 B V

159 47.6766 47.6758 0.8 T X

158 47.6789 47.6766 2.3 T Y

157

156

47.6802

47.6812
47.6789
47.6802

1.3

1.0
T
T

X

Y
14.0 58

155 47.688 47.6812 6.8 T X
154 47.6898 47.688 1.8 B V

153
152

47.6931

47.7105
47.6898
47.6931

3.3
17.4

T
B

X
V

20.7 57
FP

151
150

47.7147

47.7345
47.7105

47.7147

4.2

19.8
T

B
X
R

24.0 56
FP

149

148

47.7382

47.7456
47.7345
47.7382

3.7
7.4

T

B
X
X

11.1 55

147

146

47.7478

47.7563
47.7456

47.7478

2.2

8.5
T
B

u
u 10.7 54

FP
145 47.7599 47.7563 3.6 T X

4.8 53
144 47.7611 47.7599 1.2 B s
143 47.7629 47.7611 1.8 T X

14.7 52142 47.7758 47.7629 12.9 B s
141 47.779 47.7758 3.2 T X

5.4 51
140 47.7812 47.779 2.2 B X
139 47.7861 47.7812 4.9 T X
138 47.7909 47.7861 4.8 B V 10.7 50
137 47.7919 47.7909 1.0 B V
136 47.7922 47.7919 0.3 T X

49
135 47.793 47.7922 0.8 B V
134 47.7971 47.793 4.1 T X
133 47.7978 47.7971 0.7 T Y

8.0 48132 47.7994 47.7978 1.6 T X
131 47.801 47.7994 1.6 B V
130 47.8127 47.801 11.7 T X

23.0 47
129 47.824 47.8127 11.3 B V
128 47.8402 47.824 16.2 T X TP
127 47.8534 47.8402 13.2 B V 33.4 46
126 47.8574 47.8534 4.0 B V
125 47.8624 47.8574 5.0 T X

7.8 45
124 47.8652 47.8624 2.8 B u
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Log
no.

Depth (mbsf) Laminae Biogenic / Lamina
Year Number Other

Base of 
laminae

Top of  
laminae

thickness
(mm)

terrigenous
laminae type thickness

(mm) o f years information

69 52.5535 52.5488 4.7 B V

68 52.5549 52.5535 1.4 T Y
67 52.5633 52.5549 8.4 T X 20.0 26

66 52.5735 52.5633 10.2 B V FP

65 52.5748 52.5735 1.3 T y
64

63

52.5824

52.5921
52.5748
52.5824

7.6
9.7

T
B

X
X

25.2 25
TP

62 52.5987 52.5921 6.6 B V

61
60

52.6045
52.6078

52.5987

52.6045

5.8
3.3

T
B

X
w

9.1 24

59 52.6112 52.6078 3.4 T X
11.1 23

58 52.6189 . 52.6112 7.7 B X Bioturb

57
56

52.6389

52.6445

52.6189
52.6389

20.0
5.6

T
B

X
V

25.6 22

55
54

52.6533
52.6636

52.6445
52.6533

8.8

10.3

T

B
X
X

19.1 21

53

52

52.6764

52.68

52.6636

52.6764

12.8

3.6

T

B

X

u
16.4 20

51 53.0215 53.0175 4.0 B u
50
49

53.0294

53.031
53.0215
53.0294

7.9

1.6
T
B

X
V

9.5 19

48
47

53.0368

53.0495

53.031

53.0368

5.8
12.7

T
B

X
V

18.5 18

46

45

53.0516

53.0663

53.0495

53.0516

2.1

14.7

T

B
X
V

16.8 17

44 53.0689 53.0663 2.6 T Y FP
43 53.0699 53.0689 1.0 T X 9.2 16
42 53.0755 53.0699 5.6 T V
41 53.0781 53.0755 2.6 B Y
40 53.0811 53.0781 3.0 T X 17.0 15
39 53.0925 53.0811 11.4 B V
38 53.095 53.0925 2.5 T Y
37 53.0965 53.095 1.5 T X 9.3 14
36 53.1018 53.0965 5.3 B s FP
35 53.1093 53.1018 7.5 T z

11.1 13
34 53.1129 53.1093 3.6 B X Bioturb
33 53.1301 53.1129 17.2 T X

25.2 12
32 53.1381 53.1301 8.0 B s FP
31 53.1429 53.1381 4.8 T z

11.9 11
30 53.15 53.1429 7.1 T X
29 56.585 56.5781 6.9 B X
28 56.5893 56.585 4.3 T Y
27 56.5926 56.5893 3.3 T X 33.3 10
26 56.6183 56.5926 25.7 B s Bioturb
25 56.6211 56.6183 2.8 T Y
24 56.6533 56.6211 32.2 T X 40.6 9 Bioturb
23 56.6589 56.6533 5.6 B X
22 56.6599 56.6589 1.0 T Y
21 56.6688 56.6599 8.9 T X

19.020 56.6765 56.6688 7.7 B X
8

19 56.6779 56.6765 1.4 B R
18 56.6806 56.6779 2.7 T X

5.7
17 56.6836 56.6806 3.0 B R

7

16

15
56.6861
56.7071

56.6836
56.6861

2.5

21.0
T

B
X
R

23.5 6
FP

FP
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Log
no.

Depth (mbsf) Laminae
thickness

(mm)

Biogenic / 
terrigenous 

laminae

Lamina
type

Year
thickness

(mm)

Number 
o f years

Other
informationBase of 

laminae
Top of 
laminae

14 56.7102 56.7071 3.1 T Y

13 56.7226 56.7102 12.4 T X
25.0 5

12 56.7311 56.7226 8.5 B R

11 56.7321 56.7311 1.0 B U

10 56.7561 56.7321 24.0 T X
36.2 4

9 56.7683 56.7561 12.2 B V FP

8 56.7739 56.7683 5.6 T Y

7 56.7855 56.7739 11.6 T X 20.2 3

6 56.7885 56.7855 3.0 B s
5 56.7994 56.7885 10.9 T X

16.2 2
4 56.8047 56.7994 5.3 B s
3 56.806 56.8047 1.3 B Y

2 56.8169 56.806 10.9 T X 25.3 1

1 56.83 56.8169 13.1 B R
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A.4 Quantitative diatom abundance data

This appendix lists the diatom valve count data for Palmer Deep (ODP Core 178- 

1098A-6H), Mertz Ninnis Trough (NBP0101 JPC10 and KC10A) and Durmont 

d’Urville Trough (MD03 2597). Hyalochaete Chaetoceros spp. resting spores 

dominate the diatom assemblages of all three core sites, therefore, two separate counts 

per sample are made; a total species count and a Chaetoceros spp. free count. The 

Chaetoceros free counts allow trends of less common species to be revealed (Leventer 

et al., 1996). All slides were prepared in a beaker with a diameter of 10 cm and the 

area of the microscope field of view used during counting was 0.00143 cm . The log 

numbers in the tables refers to the number allocated to individual laminae in 

Appendix 3.

A.4.1 Palmer Deep, Western Antarctic Peninsula

A.4.1.1 ODP Core 178-1098A-6H

Quantitative diatom analysis samples were taken from biogenic laminae, terrigenous 

laminae and terrigenous sub-laminae identified during backscattered electron imagery 

(BSEI) analysis. This data is used to support results and discussions in chapter 6.

Table A4.1.1.1 Palmer Deep, ODP Core 178-1098A-6H, biogenic laminae 
quantitative diatom abundance counts, all species.

L o g  n u m b e r 4 58 60 72 74 130 134 172
D e p th  (m c d ) 44 .9 7 0 4 3 .9 9 6 43 .978 43.841 4 3 .825 43 .191 43 .1 1 7 42.651

N u m b e r  o f  F O V 2 3 3 4 3 3 2 4
M a s s  (g ) 0 .0 0 6 0 .0 0 6 0.0 0 6 0 .0 0 6 0.005 0 .0 0 6 0 .0 0 6 0 .0 0 5

S pec ies

Hyalochaete Chaetoceros  spp . (v e g e ta tiv e )  G ran 14 5 5 0 0 0 9 5

Hyalochaete Chaetoceros  spp . ( re s tin g  sp o re )  G ran 491 417 427 4 69 431 421 40 2 4 7 8

Eucampia antarctica  (v e g e ta tiv e )  (C a s tra c a n e )  M an g in 0 1 0 1 0 0 0 0

Fragilariopsis curta (V an  H e u rc k )  H u s ted t 0 0 1 5 0 0 1 0

Fragilariopsis cylintlrus (G ru n o w ) K rieg c r 1 0 0 4 0 0 0 1

Fragilariopsis cylindriformis  (H a s le )  H asle 0 1 0 0 0 0 0 0

Fragilariopsis rhomhica  (O ’M eara )  H u s ted t 0 0 0 0 0 0 0 1

Fragilariopsis ritscheri (H u s te d t)  H asle 0 1 0 0 0 0 0 0

Fragilariopsis vanheurckii (M . P e rg a llo )  H u s te d t 0 0 0 2 0 0 0 1

Porosira glacialis  (G ru n o w ) Jo rg e n se n 1 0 0 0 0 0 0 0

Prohoscia  spp . S u n strd m 1 0 0 0 0 0 0 0

Thalassiosira antarctica  ( re s tin g  sp o re  - w a rm ) C o m b e r 0 0 1 0 1 0 0 1

Thalassiosira lentiginosa  ( Ja n isc h )  F ry x e ll 0 0 0 0 0 1 0 0

U n iden tified  p en n a tes 1 0 0 0 0 0 0 0

T o ta l: 509 4 2 5 4 34 481 4 3 2 4 22 4 1 2 4 8 7
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Table A4.1.1.2 Palmer Deep, ODP Core 178-1098A-6H, biogenic laminae 
quantitative diatom abundance counts, Hyalochaete Chaetoceros spp. free.

L o g  n u m b e r 4 58 6 0 72 74 130 134 172

D e p th  (m c d ) 4 4 .9 7 0 4 3 .9 9 6 4 3 .9 7 8 43.841 4 3 .8 2 5 43.191 4 3 .1 1 7 42.651

N u m b e r  o f  F O V 3 48 393 4 34 317 723 85 9 362 465

M a ss  (g ) 0 .0 0 6 0 .0 0 6 0 .0 0 6 0 .0 0 6 0 .0 0 5 0 .0 0 6 0 .0 0 6 0 .0 0 5

Spec ies

Aclinocyclus actinochilus (E h ren b e rg ) S im o n sen 6 7 4 3 3 0 5 2

Aclinocyclus curvatulus Jan isch  in S ch m id t 0 0 0 0 0 2 0 0

Aclinocyclus spp . E h ren b erg 0 0 0 0 0 1 0 0

Asteromphalus spp. E h ren b e rg 0 0 0 0 0 0 1 1

Phaeoceros Chaetoceros spp . G ran 1 0 0 0 0 0 0 3

Cocconeis spp . E h ren b erg 0 0 0 0 0 6 0 1

Corethron pennatum  (G ru n o w ) O sten fe ld 0 3 9 11 0 32 5 6

Eucampia antarctica  ( re s tin g  sp o re) (C a s tra c a n e )  M an g in 0 0 0 1 0 1 1 0

Eucampia antarctica  (v eg e ta tiv e ) (C a s tra c a n e )  M an g in 41 68 15 8 7 2 17 4

Fragilariopsis curta  (V an  H eu rck ) H u s ted t 37 63 112 128 84 65 161 81

Fragilariopsis cylindrus (G ru n o w ) K rie g e r 86 15 73 66 145 72 77 77

Fragilariopsis cylindriformis (H as le ) H asle 0 1 1 1 0 1 1 0

Fragilariopsis kerguelensis ( O ’M eara )  H u s ted t 10 23 2 0 6 5 1 27

Fragilariopsis ohliquecostata  (V an  H e u rc k )  H e id en 0 1 0 0 1 2 0 0

Fragilariopsis rhombica  (O ’M eara ) H u s ted t 25 17 3 0 2 8 3 38

Fragilariopsis ritscheri (H u s ted t) H asle 10 10 3 6 1 8 13 5

Fragilariopsis separanda  H usted t 3 1 0 0 0 0 2 5

Fragilariopsis sublinearis (V an  H eu rck ) H e id en 0 2 1 4 1 4 12 4

Fragilariopsis vanheurckii (M . P e rg a llo ) H u sted t 9 14 19 71 3 9 19 18 19

Fragilariopsis spp. H usted t 10 10 25 20 16 6 2 0 22

Gomphonema spp . E h ren b e rg 0 0 0 0 0 5 0 0

Navicula spp. B o ry  d e  S t-V in cen t 4 6 23 16 17 32 15 23

Nitzschia spp. H assa ll 0 .5 1 0 .5 0 0 0 .5 0 0

Odontelia weissflogii (Jan isch ) G ru n o w 0 2 1 0 1 0 0 3

Porosira glacialis (G ru n o w ) Jo rg en sen 6 27 2 2 1 1 6 8

Porosira pseudodenticula  (H u sted t) Jo u se 0 0 0 0 0 0 0 1

Proboscia spp. SunstrO m 6 0 0 0 0 0 0 0

Proboscia inermis (C as tracan e )  Jo rd an  &  L ig o w sk i 47 4 6 3 2 4 6 6 0

Proboscia truncata (K a rs ten ) N d th ig  &  L ig o w sk i 3 3 1 1 1 1 0 0

Pseudonitzschia turgidula  (H u s ted t) H as le 1.5 4 .5 3.5 4 3.5 1 4 5.5

Rhizosolenia antennata  f. antennata  (E h re n b e rg )  B ro w n 3 0 0 0 0 0 0 1

Rhizosolenia antennata  f. sem ispina  S undstrO m 4 0 0 0 0 0 0 3

Rhizosolenia sp ec ie s  A A rm and 0 1 0 0 0 0 0 0

Rhizosolenia spp. B righ tw ell 2 1 0 0 0 0 0 0

Stellarima microtrias ( re s tin g  sp o re ) (E h re n b e rg )  H as le  &  S im s 0 5 1 1 0 2 0 1

Stephanodiscus spp . E h ren b erg 0 0 0 0 0 1 17 0

Thalassiosira ambigua  K o z lo v a 0 2 0 0 0 0 1 0

Thalassiosira antarctica  (re s tin g  sp o re  - co ld )  C o m b e r 3 19 11 12 1 6 1 0

Thalassiosira antarctica  ( re s tin g  sp o re  -  w a rm ) C o m b e r 52 66 6 9 30 60 57 17 24

Thalassiosira antarctica  (v e g e ta tiv e )  C o m b e r 9 2 4 3 0 3 0 5

Thalassiosira australis P erag a llo 0 0 1 0 0 0 0 0

Thalassiosira gracilis  v. expecta  (V an  L a n d in g h a m ) F ry x e ll &  H asle 3 0 3 2 0 1 0 1

Thalassiosira gracilis v. gracilis  (K a rs te n )  H u s ted t 0 0 0 2 0 0 0 4

Thalassiosira gravida  C lcve 1 3 0 0 1 0 0 2

Thalassiosira lentiginosa  (Jan isch ) F ry x e ll 7 0 1 0 0 6 0 10

Thalassiosira ritscheri (H u s ted t) H asle 0 12 5 3 0 1 0 1

Thalassiosira tumida  (Jan isch ) H asle 3 4 1 2 2 1 0 4

Thalassiosira spp. C lev e 6 7 2 0 0 4 1 2

Thalassiothrix antarctica  S ch im p er ex  K ars ten 0 0 0 0.5 0 0 0 0.5

Tricholoxon reinboldii (V an  H eu rck ) R e id  &  R o u n d 0 1 0 0 0 0 0 0 .5

Trachyneis aspera  (E h re n b e rg )  C le v e 0 0 0 0 0 0 0 1.5

U nidentified cen trics 1 0 3 0 6 2 2 2

Unidentified p en n a tes 1 0 3 1 3 2 0 8

T otal: 401 4 0 5 .5 40 8 4 0 1 .5 4 0 3 .5 4 0 6 .5 40 7 4 0 6
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Table A4.1.1.3 Palmer Deep, ODP Core 178-1098A-6H, terrigenous laminae 
quantitative diatom abundance counts, all species.

Log number 5 59 59 61 73 75 135 135 135 173

Depth (mcd) 44.790 43.989 43.987 43.962 43.833 43 819 43.112 43.105 43.100 42.646

Number of FOV 9 3 6 9 6 5 7 10 8 8

M«m  (g) 0.0093 0.0083 0.0089 0.0071 0.0072 0.0092 0.0079 0.0078 0.0083 0.0074

Species

Hyalochaete Chaetoceros spp. (vegetative) Gran 0 0 13 0 1 3 0 0 0 6

Hyalaochaete Chaetoceros spp. (resting spore) Gran 420 398 466 421 427 449 404 388 408 449

Phaeoceros Chaetoceros  spp. Gran 0 0 0 0 0 0 0 0 0 0

Eucam pia an tarctica  (vegetative) (Castracane) Mangin 0 0 1 0 0 0 0 0 0 0

Fragilariopsis c urta  (Van Heurck) Hustedt 5 0 1 3 2 1 2 3 4 2

Fragilariopsis cylindrus  (Grunow) Krieger 0 0 2 0 I 0 2 3 3 0

Fragilariopsis kerguelensis (O'M eara) Hustedt 1 I 0 0 0 0 0 0 0 0

Fragilariopsis rhom bica  (O’Meara) Hustedt 0 0 0 0 0 1 0 0 0 0

Fragilariopsis r itscheri (Hustedt) Hasle 1 0 I 0 0 0 0 0 0 1

Fragilariopsis vanheurckii (M. Pergallo) Hustedt 0 0 0 0 0 0 0 0 I 0

Navicula spp  Bory dc St-Vincent 2 0 0 0 0 0 0 0 1 0

Odontella w etssflogii fJanisch) Grunow 0 0 I 0 0 0 0 1 0 0

Proboscia truncata  (Karsten) N&thig &  Ligowski I 0 0 0 0 0 0 0 0 0

Pseudonitzschia turgidula  (Hustedt) Hasle 0 0 0.5 0 0 0 0 0.5 0 0

Rhizosolenia a n tennata  f. sem isp ina  Sundstrfim 0 0 0 0 0 0 0 0 1 0

Thalassiosira antarc tica  (resting spore -  warm) Comber 6 2 3 6 2 1 0 1 1 0

Thalassiosira gracilis v gracilis (Karsten) Hustedt 0 0 0 I 0 0 0 0 0 0

Thalassiosira len tiginosa  (Janisch) Fryxell 0 0 0 0 0 0 0 2 0 1

Thalassiosira spp  Cleve 0 0 0 1 1 0 0 0 0 0

Stephanodiscus spp. Ehrenberg 0 0 0 0 0 0 0 3 0 0

Total: 436 401 488.5 432 434 455 408 401.5 419 459
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Table A4.1.1.4 Palmer Deep, ODP Core 178-1098A-6H terrigenous laminae 
quantitative diatom abundance counts, Hyalochaete Chaetoceros spp. free.

Log num ber 

Depth (mcd) 

Num ber of FOV 

Mass (e)

5

44.790

378

0.0093

59

43.989

430

0.0083

59

43.987

473

0.0089

61

43.962

439

0.0071

73

43.833

367

0.0072

75

43.819

376

0.0092

135

43.112

444

0.0079

135

43.105

684

0.0078

135

43.100

422

0.0083

173

42.646

514

0.0074

Species

Achnanthes spp. Bory de St.-Vincent 0 1 0 0 0 0 0 0 0 0

Actinocyclus ad in o c h itu s  (Ehrenberg) Simonsen 3 5 8 3 3 3 3 13 1 3

Aclinocyclus curvaiulus Janisch in Schmidt 0 0 0 0 0 0 1 1 0 0

Asteromphalus spp. Ehrenberg 0 0 0 0 1 1 1 0 0 0

Phaeoceros Chaetoceros spp. Gran 0 0 0 0 0 0 0 0 0 9

Cocconeis spp. Ehrenberg 2 1 0 0 2 1 3 2 1 0

Corethron p ennatum  (Grunow) Ostenfeld 3 3 0 8 1 9 4 1 1 16

Eucampia antarctica  (resting spore) (Castracane) Mangin 0 3 2 1 0 6 1 6 I 11

Eucampia antarctica  (vegetative) (Castracane) Mangin 6 9 9 1 3 1 13 I 2 10

Fragilariopsis curta  (Van Heurck) Hustedt 102 110 112 77 108 93 164 130 107 102

Fragilariopsis cylindrus (Grunow) Krieger 38 20 17 11 80 31 25 38 61 23

Fragilariopsis cylindriform is (Hasle) Hasle 0 0 0 0 0 0 1 1 1 0

Fragilariopsis kerguelensis (O’Meara) Hustedt 20 35 23 4 7 29 9 9 4 21

Fragilariopsis obliquecostata  (Van Heurck) Heiden 0 2 0 0 0 3 2 0 0 0

Fragilariopsis pseudonana  (Hasle) Hasle 0 0 1 0 0 0 0 0 0 0

Fragilariopsis rhom bica  (O ’Meara) Hustedt 6 9 7 5 3 21 11 4 0 29

Fragilariopsis ritscheri (Hustedt) Hasle 8 17 8 2 4 5 13 4 3 8

Fragilariopsis separanda  Hustedt 1 6 0 0 3 1 0 0 0 2

Fragilariopsis sublinearis  (Van Heurck) Heiden 1 3 1 0 0 0 5 3 1 3

Fragilariopsis vanheurckii (M. Pergallo) Hustedt 8 22 16 17 43 24 14 31 39 29

Fragilariopsis spp. Hustedt 20 9 6 1 10 14 10 1 12 9

Gomphonema spp. Ehrenberg 1 0 0 0 0 0 0 0 0 0

Navicula spp. Bory de St-Vincent 9 7 13 5 24 8 15 12 23 19

Nitzschia spp. Hassall 8 0.5 1 0 4 0 0 1.5 1 0

Odoniella w eissflogii (Janisch) Grunow 1 1 5 3 1 3 1 5 2 14

Porosira glacialis  (Grunow) Jorgensen 4 8 10 10 7 17 17 7 3 3

Porosira pseudodenticula  (Hustedt) Jouse 0 0 0 0 0 0 0 0 0 1

Proboscia inermis (Castracane) Jordan & Ligowski 3 1 0 0 0 0 1 1 4 2

Proboscia truncata  (Karsten) Nftthig & Ligowski 4 0 1 1 2 1 1 1 22 0

Pseudonitzschia turgidula  (Hustedt) Hasle 17 12.5 4 1 5.5 14 4 2.5 6 14

Rh'aosolenia antennata  f. sem isp ina  Sundstrdm 13 3 1 2 0 0 0 1 3 4

Rhizosolenia spp. Brightwell 1 0 1 0 0 I 0 0 0 1

Stellarima microtrias (resting spore) (Ehrenberg) Hasle & Sims 1 0 0 0 1 1 0 0 1 0

Stephanodiscus spp. Ehrenberg 0 0 0 0 0 0 18 7 6 0

Thalassiosira antarctica  (resting spore) Comber 1 23 13 18 1 0 6 3 0 8

Thalassiosira antarctica  (resting spore -  warm) Comber 104 80 106 214 66 82 39 72 76 30

Thalassiosira antarctica  (vegetative) Comber 1 1 10 2 8 1 9 10 4 1

Thalassiosira gracilis  v. expecta  (Van Landingham) Fryxell & Hasle 1 2 4 2 0 0 3 3 2 1

Thalassiosira gracilis  v. gracilis  (Karsten) Hustedt 1 1 4 2 0 3 1 1 1 4

Thalassiosira gravida  Cleve 5 0 0 0 0 7 0 0 0 0

Thalassiosira lentiginosa  (Janisch) Fryxell 15 3 0 1 8 7 2 11 4 19

Thalassiosira poroseriata  (Ramsfjell) Hasle 1 0 1 0 0 2 0 1 1 0

Thalassiosira ritscheri (Hustedt) Hasle 0 0 6 1 0 2 1 4 1 1

Thalassiosira tum ida  (Janisch) Hasle 0 5 0 10 1 0 8 10 4 4

Thalassiosira spp. Cleve 7 3 6 3 5 8 2 2 2 5

Thalassiothrix antarctica  Schimper ex Karsten 0.5 0 0 0 0 0.5 0.5 0 0 0.5

Thalassiothrix spp. Cleve & Grunow 0 0 0.5 0 0 0 0 0 0 0

Trichotoxon reinboldii (Van Heurck) Reid & Round 0 0 0 0 0 0 0 0 0 0.5

Unidentified centrics 2 0 1 1 1 I 1 2 1 1

l/nidentified pennates I 0 9 1 4 2 1 2 2 3

Total: 419.5 406 406.5 407 406.5 402.5 410.5 404 403 411
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Table A4.1.1.5 Palmer Deep, ODP Core 178-1098A-6H, terrigenous sub-laminae 
quantitative diatom abundance counts, all species.

Hyalochaete Chaetoceros
spp. RS

Coscinodiscus
bouvet

Corethron
pennatum Thalassiosira antarctica RS Odontella 

weissflogii RS

Log num ber 

Depth (mcd) 

Number of FOV 

Mass (e)

131

43.177

8

0.0071

135

43.109

7

0.0087

135

43.107

20

0.0077

131

43.171

19

0.007

59

43.987

14

0.007

131

43.174

13

0.007

135

43.098

4

0.008

135

43.096

17

0.0081

Species

Actinocyclus actinochilus (Ehrenberg) Simonsen 0 0 1 1 0 0 0

Hyalochaete Chaetoceros spp. (vegetative) Gran 0 9 0 1 0 0 0 2

Hyalaochaete Chaetoceros  spp. (resting spore) Gran 409 394 406 411 368 427 427 435

Phaeoceros Chaetoceros spp. Gran 0 0 0 1 0 0 0 0

Corethron pennatum  (Grunow) OstenfeJd 1 0 1 1 0 0 0 0

Coscinodiscus bouvet Karsten 0 0 0 0 0 0 0

Eucampia antarctica  (resting spore) (Castracane) Mangin 0 0 0 0 0 0 0

Eucampia antarctica  (vegetative) (Castracane) Mangin 0 0 0 0 0 0 0 3

Fragilariopsis curta  (Van Heurck) Hustedt 3 2 0 6 0 7

Fragilariopsis cylindrus  (Grunow) Krieger 2 0 2 11 0 2

Fragilariopsis kerguelensis  (O'Meara) Hustedt 0 0 0 0 0 0 0

Fragilariopsis pseudonana  (Hasle) Hasle 0 0 0 0 0 0 0 2

Fragilariopsis rhom hica  (O'Meara) Hustedt 0 0 0 0 0 0 0

Fragilariopsis ritscheri (Hustedt) Hasle 1 0 0 3 0 0 0 2

Fragilariopsis vanheurckii (M. Pergallo) Hustedt 0 1 0 0 0 0 0 0

Fragilariopsis spp Hustedt 0 0 0 0 0 0 2

S'avicula spp  Bory de St-Vincent 1 0 1 0 0

Odontella w eissflogii (Janisch) Grunow 0 0 0 0 0 0 0 4

Proboscia inermis (Castracane) Jordan &  Ligowski 1 0 0 0 0 9

Proboscia truncata  (Karsten) Ndthig & Ligowski 0 0 0 1 0 0 0 5

Pseudonitzschia turgidula  (Hustedt) Hasle 0 0 0.5 0 0 0 0 2

Rhizosolenia spp. Brightwell 0 1 0 0 0 0 0 0

Rhizosolenia an tennata  f. sem isp ina  Sundstrflm 0 0 0 0 0 0 0

Thalassiosira an tarctica  (resting spore) Comber 0 0 0 0 16 0 0 I

Thalassiosira an tarctica  (resting spore -  warm) Comber 0 0 4 1 19 4 3

Thalassiosira an tarctica  (vegetative) Comber 0 0 0 0 20 4 I

Thalassiosira lentiginosa  (Janisch) Fryxell 0 0 0 0 0 0 0

Thalassiosira ritscheri (Hustedt) Hasle 0 0 0 0 0 0 0 1

Thalassiosira tum ida  (Janisch) Hasle 2 0 0 0 1 0 0 0

Thalassiosira spp. Cleve 1 1 0 0 2 0 0 0

Unidentified centric 0 0 0 0 1 0 0 0

Total: 421 408 417.5 430 447 442 443 483
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Table A4.1.1.6 Palmer Deep, ODP Core 178-1098A-6H, terrigenous sub-laminae 
quantitative diatom abundance counts, Hyalochaete Chaetoceros spp. free.

Hyalochaete 
Chaetoceros spp. RS

Coscinodiscus
bouvet

Corethron
pennatum

Thalassiosira 
antarctica RS

Odontella 
weissflogii RS

Log number 

Depth (mcd) 

Number of FOV 

M«ss(g)

131

43.177
400

0.0071

135

43.109
736

0.0087

135

43.107
681

0.0077

131

43.171
931

0.007

59

43.987
87

0.007

131

43.174
368

0.007

135

43.098
137

0.008

135

43.096
214

0.0081

Species

Actinocyclus actinochilus  (Ehrenberg) Simonsen 11 10 35 7 4 4 5 6

Actinocyclus curvatulus Janisch in Schmidt 0 0 0 0 0 0 0 0

Am phora  spp. (Ehrenberg) Ktlkzing 0 1 0 0 0 0 0 0

Asterom phalus spp. (Ehrenberg) 0 0 0 0 0 0 0 0

Phaeoceros C haetoceros spp. Gran, 0 0 0 1 0 0 0 0

Cocconeis spp. Ehrenberg 2 1 3 4 0 0 0 0

Corethron pennatum  (Grunow) Ostenfeld 17 5 7 20 3 2 0 1

Coscinodiscus bouvet Karsten 0 0 3 0 0 0 0 0

Coscinodiscus spp. Ehrenberg 1 0 0 0 0 0 0 0

Denticulopsis spp. (Simonsen) Akiba &  Yanagisawa 0 0 1 0 0 0 0 0

Eucampia an tarctica  (resting spore) (Castracane) Mangin 1 1 5 4 0 2 0 6

Eucampia an tarctica  (vegetative) (Castracane) Mangin 3 II 1 1 0 1 0 11

Fragilariopsis curta  (Van Heurck) Hustedt 149 130 145 99 36 66 96 75

Fragilariopsis cylindrus  (Grunow) Krieger 25 34 14 25 51 70 7 12

Fragilariopsis cylindriform is (Hasle) Hasle 0 0 0 0 0 0 0 0

Fragilariopsis kerguelensis (O'Meara) Hustedt 7 2 4 2 1 1 4 6

Fragilariopsis ob liquecostata  (Van Heurck) Heiden 1 0 1 2 0 3 0 0

Fragilariopsis p seudonana  (Hasle) Hasle 0 0 0 0 0 0 0 2

Fragilariopsis rhom bica  (O ’Meara) Hustedt 2 3 2 7 I 3 1 2

Fragilariopsis ritscheri (Hustedt) Hasle 10 14 7 13 0 3 20 24

Fragilariopsis separanda  Hustedt 0 1 2 3 1 1 0 0

Fragilariopsis sublinearis  (Van Heurck) Heiden 3 3 3 2 0 I 2 0

Fragilariopsis vanheurckii (M. Pergallo) Hustedt 36 25 22 34 0 17 10 9

Fragilariopsis spp. Hustedt 8 5 5 16 2 11 1 9

Gomphonema  spp. Ehrenberg 0 0 0 0 0 0 0 1

Navicula spp. Bory de St-Vincent 25 17 14 15 27 39 2 3

Nitzschia spp. Hassall 0 1.5 1.5 3 0 2 0 0

Odontella weissflogii (Janisch) Grunow 4 8 5 5 0 2 3 44

Porosira glacia lis  (Grunow) Jorgensen 6 7 2 3 0 2 7 2

Proboscia inerm is  (Castracane) Jordan & Ligowski 3 1 2 3 0 2 5 84

Proboscia truncata  (Karsten) Nflthig & Ligowski 1 2 1 2 0 0 6 45

Pseudonitzschia turgidula  (Hustedt) Hasle 1.5 1 4 2 1 1.5 0.5 6.5

Rhizosolenia antennata  f. sem ispina  Sundstrflm 0 3 9 1 0 0 2 0

Rhizosolenia species A Armand 0 0 1 0 0 0 0 0

Rhizosolenia  spp. Brightwell 0 3 2 0 0 0 0 0
Slellarima m icrotrias (resting spore) (Ehrenberg) Hasle & 
Sims 0 0 0 0 1 0 5 1

Slephanodiscus spp. Ehrenberg 2 0 6 0 0 0 0 0

Thalassiosira antarctica  (resting spore -  cold) Comber 4 1 2 1 66 4 32 5

Thalassiosira antarctica  (resting spore -  warm) Comber 60 73 72 90 135 107 194 25

Thalassiosira antarctica  (vegetative) Comber 4 6 5 8 72 47 2 3
Thalassiosira gracilis  v. expecta  (Van Landingham) Fryxell & 
Hasle 1 0 1 5 0 0 0 0

Thalassiosira gracilis  v. gracilis (Karsten) Hustedt 1 2 3 3 0 0 0 1

Thalassiosira gravida  Cleve 0 0 0 0 1 0 0 0

Thalassiosira lentiginosa  (Janisch) Fryxell 3 11 2 14 0 11 0 2

Thalassiosira ritscheri (Hustedt) Hasle 2 1 3 0 0 0 1 2

Thalassiosira tum ida  (Janisch) Hasle 8 5 8 1 1 1 3 4

Thalassiosira spp. Cleve 5 8 1 4 3 1 0 8

Thalassiothrix antarctica  Schimper ex Karsten 0.5 0 0 0 0 0 0 0

Trichotoxon re inboldii (Van Heurck) Reid & Round 0 0 0 0 0 0 0 0.5

Unidentified centrics 1 3 1 0 1 0 0 1

Unidentified pennates 1 1 3 2 0 2 0 0

Total: 409 400.5 408.5 402 407 406.5 408.5 401
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A.4.2 Mertz Ninnis Trough, East Antarctic Margin

A.4.2.1 NBP0101 JPC10

Quantitative diatom analysis samples were taken from the six types of laminae/sub

lamina identified during BSEI analysis. This data is used to support results and 

discussions in chapter 7. Five counts were made per lamina type and the average used 

in chapter 7.
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Log num ber 200 38 177 173 175 98 243 243 116 27 60 184 163 18 168 11 19 97 122 151

Depth (mbsf) 18.770 20.230 18.894 18.903 18.898 19.720 17.880 17.900 19.580 20.390 20.157 18.875 19.215 20.470 19.200 20.540 20.466 19.740 19.521 19.310

Num ber o f FOV 4 7 3.5 2 7.5 8 9 10 7 30 7 5 20 14.5 8 ' 5 16 8 3 6

Mass (g) 0.006 0.0067 0.005 0.0053 0.0066 0.0069 0.006 0.0059 0.006 0.0066 0.0055 0.007 0.0061 0-0056 0.0058 0.0059 0.0056 0.0051 0.0068 0.0051

Species / Lam ina type Near-■monogeneric C h a e t o c e r o s  spp. 
spore biogenic laminae

resting Biogenic laminae characterised by C o r e t h r o n  
p e n n a t u m

Biogenic laminae characterised 
R h i z o s o l e n i a  spp.

by Mixed Diatom Assemblage biogenic laminae

A ctinocyclu s actinoch ilu s  (Ehrenberg) Simonsen l 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0
A ctinoccylu s c u rva tu lus Janisch in Schmidt 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0
A sterom pha lus  spp. Ehrenberg 0 0 0 0 0 0 0 0 0 2 1 0 1 0 0 0 0 1 0 0
H ya lochae te  C haetoceros  spp. (vegetative) Gran 15 10 4 0 8 7 4 3 4 19 2 6 14 5 1 4 9 6 8 8
H ya lochae te  C haetoceros  spp. (resting spore) Gran 435 402 364 438 318 329 332 326 375 301 442 407 256 251 416 432 289 358 450 342
P haeoceros C haetoceros  spp. Gran 0 0 1 6 4 3 6 4 0 0 2 2 3 1 4 0 2 8 0 0
C orethron  pen n a tu m  (Grunow) Ostenfeld 0 0 1 0 0 21 35 46 11 32 0 0 0 6 0 0 1 4 1 3
C osc inod iscus spp. Ehrenberg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E ucam pia  a n tarc tica  (Castracane) Mangin 0 2 0 0 1 1 0 0 1 0 0 0 6 1 0 0 0 2 1 1
F rag ila r iopsis curta  (Van Heurck) Hustedt 7 7 8 4 20 15 19 14 10 29 2 8 24 29 4 16 29 20 3 33
F rag ila r iopsis  cy lindrus  (Grunow) Krieger 4 0 5 0 1 7 27 24 10 2 4 11 34 33 0 4 45 3 1 14
F rag ila r iopsis c ylindr ifo rm is  (Hasle) Hasle 0 0 1 0 0 0 0 0 0 0 0 I 0 10 0 0 1 0 0 0
F rag ila r iopsis kerguelensis  (O ’Meara) Hustedt 5 2 3 0 11 2 0 3 I 5 4 2 1 5 8 4 1 2 2 1
F ragilariopsis ob liquecos ta ta  (Van Heurck) Heiden 0 2 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0
F rag ila r iopsis  p seudonana  (Hasle) Hasle 0 0 0 0 0 0 0 1 2 0 0 0 0 3 0 0 5 0 0 0
F ragilariopsis rhom bica  (O’Meara) Hustedt 1 3 2 1 12 14 2 6 2 9 6 8 21 19 9 4 31 2 3 5
F rag ila r iopsis  r itscheri (Hustedt) Hasle 0 0 0 0 0 2 0 0 0 2 1 0 1 0 2 1 0 3 0 0
F rag ila r iopsis se paranda  Hustedt 1 0 4 0 9 0 1 0 0 3 I t 2 23 0 0 1 2 0 0
F rag ila r iopsis sub linearis  (Van Heurck) Heiden 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F rag ila r iopsis vanheurckii (M. Pergallo) Hustedt 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
F rag ila r iopsis  spp. Hustedt 0 0 2 0 6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
N av icu la  spp. Bory de St-Vincent 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
P orosira  g lac ia lis  (Grunow) Jorgensen 1 2 1 1 0 0 0 0 1 1 0 1 2 1 0 1 1 0 3 1
P robosc ia  inerm is  (Castracane) Jordan & Ligowski 0 0 0 0 0 0 1 0 0 0 t 0 5 1 1 0 0 0 0 0
P robosc ia  truncata  (Karsten) Ndthig & Ligowski 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
P seudon itzsch ia  tu rg idu la  (Hustedt) Hasle 0.5 0 1 0 1 3 0 3 2 0 0 4 4.5 3 0.5 0.5 3.5 0 0 1
R hizoso len ia  an tenna ta  f. sem isp ina  Sundstrdm 1 1 2 0 0 0 0 0 2 1 1 3 23 1 2 0 2 1 0 0
R hizoso len ia  po lydacty la  Castracane f. po lydacty la 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
R hizoso len ia  species A Armand 0 0 0 0 1 1 0 0 0 0 1 0 8 1 2 0 0 0 0 0
R hizoso len ia  spp. Brightwell 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Thalassiosira  an tarc tica  (resting spore) Comber 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Thalassiosira  g rac ilis v. expecta  (Van Landingham) Fryxell&Hasle 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 2 0 0 0 1
Thalassiosira  grac ilis  v. grac ilis  (Karsten) Hustedt 0 3 0 0 1 0 1 0 1 3 0 1 0 3 1 0 1 2 0 3
Thalassiosira  g rav ida  Cleve 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0
Thalassiosira  len tig inosa  (Janisch) Fryxell 0 0 0 1

0
0 I

0
0 0 1 2 0 1 6 0 0 0 1 0 2 3

Thalassiosira  linea ta  Jouse 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0
Thalassiosira  oestrup ii (Ostenfeld) Hasle 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Thalassiosira  poroseria ta  (Ramsfjell) Hasle 0 5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
Thalassiosira  r itscheri (Hustedt) Hasle 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
Thalassiosira  tum ida  (Janisch) Hasle 0 0 0 0 0 0 0 0 0 1 0 0 2 0 1 0 1 0 0 2
Thalassiosira  spp. Cleve 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
T halassio thrix  an tarc tica  Schimper ex Karsten 0 0 0 0 0.5 0 0.5 0.5 0 I 0 0 0 0 0 0.5 0 0 0.5 0
Trichotoxon  re inbold ii (Van Heurck) Reid & Round 0 0 0 0 2.5 0 0 0 0.5 1 0 0 0.5 0 0.5 0 0 0 0 0
Unidentified centrics 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Unidentified pennates 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Total: 471.5 442 402 446 400 409 428.5 430.5 425.5 417 468 459 423 400 454 471 424.5 417 474.5 419

Table 
A4.2.1.1 

M
ertz 

N
innis 

Trough, N
BP0101 

JPC10, biogenic 
lam

inae 
quantitative 

counts, all species
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Log num ber 200 38 177 173 175 98 243 243 116 27 60 184 163 18 168 11 19 97 122 151
Depth (mbsf) 18.770 20.230 18.894 18.903 18.898 19.720 17.880 17.900 19.580 20.390 20.157 18.875 19.215 20.470 19.200 20.540 20.466 19.740 19.521 19.310

Number of FOV 4 7 3.5 2 7.5 8 9 10 7 30 7 5 20 14.5 8 5 16 8 3 6

Mass (g) 0.006 0.0067 0.005 0.0053 0.0066 0.0069 0.006 0.0059 0.006 0.0066 0.0055 0.007 0.0061 0.0056 0.0058 0.0059 0.0056 0.0051 0.0068 0 0051

Species / Lam ina type Near- monogeneric C h a e t o c e r o s  spp. 
spore biogenic laminae

resting Biogenic laminae characterised by C o r e t h r o n  
p e n n a t u m

Biogenic laminae characterised 
R h i z o s o l e n i a  spp.

by Mixed Diatom A ssem blage biogenic lam inae
A ctinocyclus actinoch ilu s  (Ehrenberg) Simonsen 0 I 0 4 0 2 0 1 1 3 1 0 1 1 i i 2 0 0 0
A ctinocyclus cu rva tu lus  Janisch in Schmidt 0 0 0 0 0 I 0 0 0 1 0 0 0 0 0 i 0 0 0 0
A sterom pha lus spp . Ehrenberg 3 2 1 2 2 6 0 0 0 3 5 3 1 2 i 4 2 3 2 0
A zpe itia  tabularis (Grunow) Fryxell & Sims 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C occoneis  spp. Ehrenberg 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0
C orethron  pen n a tu m  (Grunow) Ostenfeld 1 3 5 0 0 134 158 186 122 127 11 1 3 8 2 5 13 17 40 5
Coscinodiscus spp. Ehrenberg 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cyclo tella  spp. Ehrenberg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E ucam pia  a n ta rc tica  (Castracane) Mangin 1 3 2 5 0 7 2 2 8 3 9 11 10 4 6 8 0 8 24 1
Fragilariopsis curta  (Van Heurck) Hustedt 173 122 113 136 123 103 93 101 97 93 69 68 85 104 62 153 95 148 79 156
F ragilariopsis cy lindrus  (Grunow) Krieger 39 12 12 42 0 31 102 58 68 16 69 46 73

I
125 11 21 154 39 4 136

F ragilariopsis c ylindr ifo rm is  (Hasle) Hasle 0 0 I 0 0 0 0 2 1 0 3 1 8 0 I 2 0 0 0
F ragilariopsis kerguelensis  (O ’Meara) Hustedt 60 42 30 43 51 15 4 19 25 25 55 21 14 12 71 38 7 36 8 14
F ragilariopsis ob liquecos ta ta  (Van Heurck) Heiden 3 4 4 8 3 2 1 0 2 1 2 0 2 0 3 0 0 5 1 4
F ragilariopsis p seudonana  (Hasle) Hasle 0 0 3 1 1 0 I 1 3 0 0 0 1 7 0 2 7 I 0 4
F ragilariopsis rhom bica  (O’Meara) Hustedt 43 61 61 41 58 55 8 16 23 51 56 135 49 67 103 99 81 47 108 18
F ragilariopsis r itscheri (Hustedt) Hasle 10 8 5 6 7 13 3 2 16 23 8 2 4 2 8 4 0 17 12 14
F ragilariopsis se paranda  Hustedt 17 2 75 33 88 0 13 2 2 7 18 5 4 17 0 10 2 11 7 0
F ragilariopsis sub linearis  (Van Heurck) Heiden 0 1 0 3 0 2 0 0 2 1 0 1 0 0 2 2 0 4 4 3
F ragilariopsis vanheurckii (M. Pergallo) Hustedt 1 1 4 1 1 2 0 4 1 1 1 0 4 0 4 4 0 2 1 4
F ragilariopsis spp. Hustedt 2 3 6 19 13 6 8 4 1 3 11 1 0 5 4 2 1 4 12 5
N avicu la  spp. Bory de St-Vincent 1 0 5 1 0 0 1 0 3 2 2 3 2 1 2 2 0 1 0 5
O donte lla  w e issflog ii (Janisch) Grunow 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
P orosira  g lac ia lis  (Grunow) Jorgensen 14 31 8 5 7 12 1 0 10 13 11 6 10 0 10 2 1 16 57 2
P orosira  p seudoden ticu la ta  (Hustedt) Jouse 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Proboscia  inerm is  (Castracane) Jordan & Ligowski 1 0 1 5 0 1 5 0 2 1 1 17 14 8 6 5 2 2 2 0
Proboscia  truncata  (Karsten) Nothig & Ligowski 0 0 0 1 0 2 0 0 0 0 0 5 1 1 3 2 0 0 1 1
P seudonitzsch ia  tu rg idu la  (Hustedt) Hasle 3 1.5 14 20 12.5 0 2 7.5 6.5 0.5 14 22.5 8 6 13 12 8 11.5 3 4.5
R hizoso len ia  an tennata  f. antenna ta  (Ehrenberg) Brown 0 0 0 0 0 0 0 0 I 0 1 0 1 0 6 1 1 0 0 1
R hizoso len ia  an tenna ta  f. sem isp ina  Sundstrom 12 1 5 1 0 1 0 0 4 5 24 27 72 8 29 3 13 4 6 1
R hizoso len ia  po lydacty la  Castracane f. po lydacty la 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0
R hizoso len ia  species  A Armand 0 0 8 1 2 1 0 0 0 0 3 3 23 6 6 0 0 0 1 0
R hizoso len ia  spp . Brightwell 1 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 3 0 0
S te llarim a m icro trias  (resting spore) (Ehrenberg) Hasle & Sims 1 2 0 0 0 2 0 0 0 1 0 0 0 0 1 0 1 0 2 0
Thalassiosira an tarc tica  (resting spore) Comber 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Thalassiosira A ntarc tica  (vegetative) Comber 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Thalassiosira g ra c ilis  v. expecta  (Van Landingham) Fryxell&Hasle 2 5 1 3 2 3 0 0 0 3 2 4 2 1 0 3 0 3 2 2
Thalassiosira g rac ilis  v. g ra c ilis  (Karsten) Hustedt 5 10 7 0 5 5 5 3 3 7 8 3 1 1 12 9 3 6 2 8
Thalassiosira g rav ida  Cleve 3 4 1 3 3 0 0 0 0 0 3 14 1 0 3 6 1 1 2 2
Thalassiosira len tig inosa  (Janisch) Fryxell 9 14 13 5 3 4 0 2 9 8 11 4 8 2 17 5 1 7 14 7
Thalassiosira linea ta  Jouse 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Thalassiosira oestrup ii (Ostenfeld) Hasle 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Thalassiosira o /iver iana  (O'M eara) Makarova & Nikolaev 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Thalassiosira poroseria ta  (Ramsfjell) Hasle 0 54 2 2 2 2 0 I 5 2 I 6 I 0 7 3 0 5 3 3
Thalassiosira r itscheri (Hustedt) Hasle 1 7 0 0 0 1 0 0 0 0 3 0 2 0 1 0 2 2 7 0
Thalassiosira tum ida  (Janisch) Hasle 7 13 6 0 8 3 1 5 2 3 5 4 6 3 11 7 5 6 5 8
Thalassiosira sco tia  Fryxell & Hoban 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Thalassiosira spp. Cleve 3 7 4 2 2 0 0 2 0 2 0 2 2 0 1 3 1 0 0 0
Thalassiothrix/nem a/toxon 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Thalassiothrix  an tarc tica  Schimper ex Karsten 1.5 0.5 1 0.5 1 0 0.5 0.5 0 1 0 3.5 0.5 0 0.5 2 0 0 0.5 0
Trichotoxon re inbold ii (Van Heurck) Reid & Round 0.5 0.5 0 0.5 3 0 0 0 0.5 1 0.5 2 1.5 0 0.5 0 0 0.5 1 0
Trachyneis aspera  (Ehrenberg) Cleve 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Unidentified centrics 0 0 1 2 0 0 0 0 1 2 0 0 2 0 0 0 1 0 0 I
Unidentified pennates 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
Total: 420 416-5 400 400 400 417 408.5 419 419 409.5 411.5 424 414 400 410 420 406 411 410.5 410.5

Table 
A4.2.1.2 
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L og n u m b e r 62 135 181 179 174 6 119 99 119 121
D epth  (m bsf) 19.960 19.360 18.887 18.889 18.900 20.586 19.536 19.716 19.536 19.528

N u m b e r o f  FO V 12 6 5 5 4 6 2 7 3 2.5
M ass (g) 0.0081 0.0095 0.0093 0.0093 0.008 0.0085 0.0067 0.0097 0.007 0.0083

Species / L am in a  type M ixed D iatom  A ssem blage te rr ig en o u s  lam inae T errig en o u s  su b -lam in ae  ch a ra c te r ise d  by 
Porosira g lacialis  re s tin g  spores

A ctinocyclus aclinochilus  (Ehrenberg) Sim onsen 0 1 0 0 1 0 0 0 0 0
A ctinocyclus curvatulus  Janisch in Schmidt 0 0 0 0 0 0 0 0 0 0
Asterom phalus spp. Ehrenberg 0 0 1 0 0 0 1 0 0 0
H yalochaete C haetoceros  spp. (vegetative) Gran 21 11 6 1 0 1 5 8 3 0
H yalochaete C haetoceros  spp. (resting spore) Gran 353 367 403 315 388 399 414 373 407 389
Phaeoceros C haetoceros  spp. Gran 1 0 0 1 0 0 0 1 0 0
Corethron pennatum  (G runow ) Ostenfeld 0 3 1 0 0 0 0 2 1 0
C oscinodiscus spp. Ehrenberg 0 0 0 0 0 0 0 0 1 0
Eucam pia antarctica  (C astracane) M angin 0 2 0 0 1 1 0 0 1 0
Fragilariopsis curta  (V an H eurck) Hustedt 13 13 10 33 21 9 0 15 1 2
F ragilariopsis cylindrus  (G runow ) Krieger 11 5 5 4 3 2 1 11 0 0
F ragilariopsis cylindriform is  (H asle) Hasle 0 0 0 1 0 0 0 0 0 0
F ragilariopsis kerguelensis  (O ’M eara) Hustedt 6 5 4 9 6 7 1 1 1 2
F ragilariopsis obliquecostata  (Van H eurck) Heiden 0 1 0 0 0 0 0 1 1 0
F ragilariopsis pseudonana  (H asle) Hasle 0 0 0 0 0 0 0 0 0 0
F ragilariopsis rhom bica  (O ’M eara) Hustedt 9 3 14 13 11 7 1 10 2 1
F ragilariopsis ritscheri (H ustedt) Hasle 0 3 0 0 0 0 0 1 0 0
F ragilariopsis separanda  Hustedt 0 0 1 4 1 3 1 1 1 3
F ragilariopsis sublinearis  (V an H eurck) Heiden 0 0 0 0 0 1 0 0 0 0
F ragilariopsis vanheurckii (M . Pergallo) Hustedt 0 2 1 0 0 0 0 0 0 0
F ragilariopsis spp. Hustedt 0 0 2 3 2 0 2 2 1 0
N avicula spp. B ory de St-Vincent 0 0 1 I 0 0 0 0 0 0
Porosira glacia lis  (G runow ) Jorgensen 2 1 2 2 1 1 0 1 1 1
Proboscia inermis  (C astracane) Jordan & Ligowski 0 0 1 0 0 0 0 0 0 0
Proboscia truncata  (K arsten) N othig & Ligowski 0 0 0 0 0 0 0 0 0 0
Pseudonitzschia lurgidula  (H ustedt) Hasle 2 1 1 1 0 1 0 4 0 0
Rhizosolenia antennata  f. sem ispina  Sundstrdm 1 0 0 0 0 0 0 0 0 0
Rhizosolenia polydactyla  C astracane f. polydactyla 0 0 0 0 0 0 0 0 0 0
Rhizosolenia  species A Armand 0 0 0 1 0 0 0 0 0 0
Rhizosolenia spp. Brightw ell 0 0 0 0 0 0 0 0 0 0
Thalassiosira antarctica  (resting spore) C om ber 0 0 0 0 0 0 0 0 0 0
Thalassiosira gracilis  v. expecta  (V an Landingham ) Fryxell &  Hasle 0 2 0 0 0 0 0 0 0 0
Thalassiosira gracilis v. gracilis  (K arsten) Hustedt 1 1 1 1 0 0 0 1 0 0
Thalassiosira gravida  Cleve 0 2 0 0 0 0 0 0 0 0
Thalassiosira lentiginosa  (Janisch) Fryxell 0 0 2 5 0 0 0 2 1 2
Thalassiosira lineata  Jouse 0 0 0 0 0 0 0 0 0 0
Thalassiosira oestrupii (O stenfeld) Hasle 0 0 0 0 0 0 0 0 0 0
Thalassiosira poroseriata  (Ram sfjell) Hasle 0 0 0 0 0 0 0 0 0 0
Thalassiosira ritscheri (H ustedt) Hasle 0 0 0 0 0 0 0 0 0 0
Thalassiosira tum ida  (Janisch) Hasle 1 2 1 5 0 0 0 0 0 0
Thalassiosira spp. C leve 1 0 0 0 0 0 0 0 0 0
Thalassiothrix antarctica  Schim per ex Karsten 0 0.5 0 0 0 0 0 0 0 0
Trichotoxon reinboldii (V an Heurck) Reid &  Round 0 0 0 0 0 0 0 0 0 0

U nidentified centrics 0 0 0 0 0 0 0 0 0 0

Unidentified pennates 0 0 1 0 0 0 0 0 0 0

T o ta l: 422 425.5 458 400 435 432 426 434 422 400
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------------------------------------------------------------------------------------------l..>g non.teCT---- 62 135 181 1 7 9 17 4 6 1 19 99 1 19 121

Deptb (mbsf) 1 9 .9 6 0 1 9 .3 6 0 1 8 .8 8 7 1 8 .8 8 9 1 8 .9 0 0 2 0 .5 8 6 1 9 .5 3 6 1 9 .7 1 6 1 9 .5 3 6 1 9 .5 2 8

N u m b e r  o f  F O V 79 56 4 9 37 45 78 106 57 104 71

M a s s  ( g ) 0.0081 0 .0 0 9 5 0 .0 0 9 3 0 .0 0 9 3 0 .0 0 8 0 .0 0 8 5 0 .0 0 6 7 0 .0 0 9 7 0 .0 0 7 0 .0 0 8 3

S p e c ie s  /  S a m p le  n u m b e r
Mixed Diatom Assemblage terrigenous laminae Terrigenous sub-laminae characterised by Porosira g lacialis

resting spores
A ctinocyclus actinochilus  (E h re n b e rg )  S im o n se n 0 4 0 3 0 1 1 4 5 2

Actinocyclus curvatulus  J a n is c h  in  S c h m id t 0 0 1 1 0 0 0 0 0 0

Asterom phalus spp. E h re n b e rg 7 0 3 0 3 2 1 2 3 3

Azpeitia  tabularis  (G ru n o w ) F ry x e ll  &  S im s 0 0 0 0 0 0 0 0 0 3

Cocconeis  spp . E h re n b e rg 0 0 0 0 0 0 0 0 0 1

Corethron pennatum  (G ru n o w ) O ste n fe ld 3 23 4 1 1 6 34 25 . 7 9

Coscinodiscus spp. E h ren b e rg 0 0 0 0 0 0 0 0 0 0

Cvclotella  jp p .(K iitz in g )  B reb is so n 0 0 0 0 0 0 0 0 0 3

Eucam pia antarctica  (C a s tra c a n e )  M an g in 2 19 9 1 2 5 20 9 9 9

Fragilariopsis curta  (V a n  H e u rc k )  H u s te d t 98 95 179 132 184 106 67 130 83 81

Fragilariopsis cylindrus  (G ru n o w ) K rie g e r 52 26 4 15 12 15 3 22 4 23

Fragilariopsis cylindriform is  (H a s le )  H as le 0 1 1 0 0 0 0 0 0 0

Fragilariopsis kerguelensis  ( O ’M ea ra )  H u s te d t 38 54 73 61 43 50 36 43 4 6 29

Fragilariopsis obliquecostata  (V a n  H e u rc k )  H e id en 5 7 5 1 1 4 1 5 4 25

Fragilariopsis pseudonana  (H a s le )  H as le 4 0 1 2 0 1 0 0 1 0

Fragilariopsis rhom bica  (O ’M e a ra )  H u s te d t 79 58 67 85 95 9 6 91 68 62 14

Fragilariopsis ritscheri (H u s te d t)  H as le 5 22 12 6 7 17 10 10 6 11

Fragilariopsis separanda  H u s ted t 25 13 34 22 8 19 16 11 48 6 9

Fragilariopsis sublinearis  (V a n  H e u rc k )  H e id en 0 1 0 0 0 16 6 1 0 0

Fragilariopsis vanheurckii (M . P e rg a llo )  H u s ted t 4 7 0 3 1 0 3 1 0 2

Fragilariopsis spp. H u s ted t 10 4 13 4 14 0 7 4 3 7

Navicula spp. B o ry  d e  S t-V in c e n t 3 1 1 3 3 2 2 4 0 2

Odontella w eissflogii (Janisch) Grunow 0 0 0 0 0 0 0 0 0 0

Porosira glacialis  (G ru n o w ) Jo rg e n se n 13 11 10 8 6 25 50 38 56 66

Porosira pseudodenticula  (H u s te d t)  Jo u se 0 0 0 0 0 0 0 0 0 1

Proboscia inermis  (C a s tra c a n e )  Jo rd a n  &  L ig o w sk i 1 1 2 0 0 2 0 0 1 2

Proboscia truncata  (K a rs te n )  N o th ig  &  L ig o w sk i 0 0 1 0 1 0 0 0 0 0

Pseudonitzschia turgidula  (H u s te d t)  H as le 13 4 2.5 2 5 10 5 7.5 3 2.5

R hizosolenia antennata  f. antennata  (E h re n b e rg )  B ro w n 0 0 0 0 0 1 2 1 0 0

Rhizosolenia antennata  f. sem ispina  S u n d s tro m 6 1 4 5 0 4 7 4 1 0

Rhizosolenia polydactyla  C a s tra c a n e  f. polydactyla 1 1 0 0 0 0 0 0 0 0

R hizosolenia  sp e c ie s  A  A rm a n d 1 0 1 9 1 0 1 0 3 4
R hizosolenia spp. B rig h tw e ll 1 0 0 0 0 0 0 0 0 0
Stellarim a m icrotrias (resting spore) (E h re n b e rg )  H a s le  & 0 1 0 0 0 0 0 0 3 0
Thalassiosira antarctica  ( re s tin g  sp o re )  C o m b e r 0 2 2 3 0 0 0 0 0 0
Thalassiosira antarctica  (v e g e ta tiv e )  C o m b e r 0 2 0 0 0 0 0 0 0 0
Thalassiosira gracilis v. expecta  (V a n  L a n d in g h a m ) F ry x e ll 4 3 3 1 1 10 5 2 6 2
Thalassiosira gracilis  v. gracilis  (K a rs te n )  H u s te d t 8 12 12 3 3 10 1 6 5 4
Thalassiosira gravida  C le v e 2 1 0 2 0 3 1 1 1 1
Thalassiosira lentiginosa  (J a n isc h )  F ry x e ll 15 17 13 11 5 10 13 6 12 8
Thalassiosira lineata  Jo u se 1 0 0 2 1 0 0 0 2 0
Thalassiosira oestrupii (O s te n fe ld )  H as le 0 0 0 0 1 0 0 0 0 0
Thalassiosira oliverana  (O ’M e a ra )  M a k a ro v a  &  N ik o la e v 0 0 0 0 0 0 0 0 0 0
Thalassiosira poroseriata  (R a m sf je ll)  H as le 3 8 3 2 4 0 6 2 4 1
Thalassiosira ritscheri (H u s te d t)  H as le 2 1 0 0 0 1 9 3 2 1
Thalassiosira tum ida  (J a n isc h )  H as le 3 6 3 8 1 11 8 4 15 9
Thalassiosira scotia  F ry x e ll &  H o b an 0 0 0 0 0 0 0 0 1 0
Thalassiosira spp. C le v e 3 3 3 2 0 1 4 0 6 2
Thalassiothrix/nema/toxon 0 0 0 0 0 0 0 0 0 0
Thalassiothrix antarctica  S c h im p e r  ex  K ars ten 0 1.5 0.5 0 .5 0 0.5 0 0 0 0
Trichotoxon reinboldii (V a n  H e u rc k )  R e id  &  R o u n d 0 .5 0 1.5 0.5 0.5 0.5 0 0.5 0 0
Trachyneis aspera  (E h re n b e rg )  C le v e 0 0 0.5 0 0 0 0 0 0 0.5
U n id e n tif ie d  c e n tr ic s 0 0 0 1 0 0 0 0 0 3

U n id e n tif ie d  p en n a te s 0 1 0 0 0 0 0 0 0 0

TOTAL: 4 1 2 .5 4 1 1 .5 4 6 9 4 0 0 4 0 3 .5 4 2 9 41 0 4 1 5 4 02 4 0 0
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APPENDIX 4

A A.2.2 NBP0101 KCIOA

Quantitative diatom analysis samples from the two lamina types identified during 

BSEI analysis that are restricted in occurrence to KCIOA. These data are used to 

support results and discussions in chapter 7.

Table A4.2.2.1 Mertz Ninnis Trough, NBP0101 KCIOA, quantitative diatom 

abundance counts, all species.

Log num ber 35 26
Depth (mbsf) 2.050 2.140

Number of FOV 18 5
Mass (g) 0.0056 0.0091

Species / Lamina type Biogenic laminae characterised 
by Fragilariopsis spp.

Terrigenous laminae characterised 
by Fragilariopsis spp.

Hyalochaete Chaetoceros spp. (vegetative) Gran 30 5
Hyalaochaete Chaetoceros spp. (resting spore) Gran 225 325
Phaeoceros Chaetoceros spp. Gran 3 12
Cocconeis spp. Ehrenberg 2 0
Eucampia antarctica (resting spore) (Castracane) Mangin 1 0
Eucampia antarctica (vegetative) (Castracane) Mangin 0 6
Fragilariopsis curta (Van Heurck) Hustedt 30 16
Fragilariopsis cylindrus (Grunow) Krieger 14 8
Fragilariopsis cylindriformis (Hasle) Hasle 2 0
Fragilariopsis kerguelensis (O’Meara) Hustedt 24 8
Fragilariopsis obliquecostata (Van Heurck) Heiden 1 0
Fragilariopsis rhombica (O’Meara) Hustedt 49 17
Fragilariopsis ritscheri (Hustedt) Hasle 2 8
Fragilariopsis separanda Hustedt 7 0
Fragilariopsis vanheurckii (M. Pergallo) Hustedt 1 2
Fragilariopsis spp. Hustedt 2 4
Navicula spp. Bory de St-Vincent 1 0
Proboscia inermis (Castracane) Jordan & Ligowski 0 1
Pseudonitzschia turgidula (Hustedt) Hasle 1.5 0
Stellarima microtrias (Ehrenberg) Hasle & Sims 1 0
Thalassiosira gracilis v. gracilis (Karsten) Hustedt 3 2
Thalassiosira gravida Cleve 2 0
Thalassiosira lentiginosa (Janisch) Fryxell 2 2
Thalassiosira poroseriata  (Ramsfjell) Hasle 2 2
Thalassiosira tumida (Janisch) Hasle 0 1
TOTAL: 405.5 419
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Table A4.2.2.2 Mertz Ninnis Trough, NBP0101 KCIOA, quantitative diatom 
abundance counts, Chaetoceros spp. free,.

Log num ber 
Depth (mbsf) 

Number of FOV 
Mass (g)

35
2.050

47
0.0056

26
2.140

32
0.0091

Biogenic laminae Terrigenous laminae
Species / Lamina type characterised characterised

by Fragilariopsis spp. by Fragilariopsis spp.
Asteromphalus spp. (Ehrenberg) 0 2
Cocconeis spp. Ehrenberg 2 0
Corethron pennatum  (Grunow) Ostenfeld 1 12
Eucampia antarctica (Castracane) Mangin resting spore 1 1
Eucampia antarctica (Castracane) Mangin vegetative 0 15
Fragilariopsis curta (Van Heurck) Hustedt 107 101
Fragilariopsis cylindrus (Grunow) Krieger 20 23
Fragilariopsis cylindriformis (Hasle) Hasle 2 0
Fragilariopsis kerguelensis (O ’Meara) Hustedt 72 35
Fragilariopsis obliquecostata (Van Heurck) Heiden 2 0
Fragilariopsis pseudonana  (Hasle) Hasle 1 0
Fragilariopsis rhombica (O’Meara) Hustedt 126 112
Fragilariopsis ritscheri (Hustedt) Hasle 14 43
Fragilariopsis separanda Hustedt 10 4
Fragilariopsis vanheurckii (M. Pergallo) Hustedt 3 8
Fragilariopsis spp. Hustedt 8 18
Navicula spp. Bory de St-Vincent 1 1
Porosira glacialis (Grunow) Jorgensen 3 3
Proboscia inermis (Castracane) Jordan & Ligowski 0 3
Pseudonitzschia turgidula (Hustedt) Hasle 3.5 1.5
Rhizosolenia antennata f. sem ispina  Sundstrom 0 1
Rhizosolenia polydactyla  Castracane f. polydactyla 0 2
Rhizosolenia species A Armand 0 1
Stellarima microtrias (Ehrenberg) Hasle & Sims 2 4
Thalassiosira gracilis v. expecta (Van Landingham) 
Fryxell & Hasle
Thalassiosira gracilis v. gracilis (Karsten) Hustedt

0

17

1

7
Thalassiosira gravida  Cleve 6 2
Thalassiosira lentiginosa (Janisch) Fryxell 4 7
Thalassiosira poroseriata  (Ramsfjell) Hasle 5 5
Thalassiosira tumida (Janisch) Hasle 1 6
Thalassiosira spp. Cleve 1 3
Thalassiothrix antarctica Schimper ex Karsten 1 0
TOTAL: 413.5 421.5
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A. 4.3 Durmont d’Urville Trough, East Antarctic Margin

A.4.3.1 MD03 2597

Quantitative diatom analysis samples were taken from the nine types of laminae/sub

lamina identified during BSEI analysis. This data is used to support the results and 

discussions in chapter 8. At least three counts were made per lamina/sub-lamina type 

and the average used in chapter 8.
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Table A4.3.1.1 Durmont d ’Urville Trough, MD03 2597, quantitative diatom 
abundance counts of all species, lamina types: laminae characterised by Hyalochaete 
Chaetoceros spp. resting spore; and laminae characterised by Hyalochaete 
Chaetoceros spp. resting spores and Fragilariopsis spp.; and Fragilariopsis spp..

Lam ina log num ber 11 96 231 9 39 280 335 222 257 273

Depth (mbsf) 56.732 49.772 40.65 56.762 53.087 33.962 18.846 40.714 37.907 34.002

Number of FOV 39 19 9 28 13 20 16 21 13 13

Mass <g) 0.0062 0.0063 0.0071 0.0056 0.0084 0.007 0.0064 0.0064 0.0062 0.0068

Species / Lamina type
Lam inae characterised by Hyalochaete 

Chaetoceros spp. resting spore s
Lam inae characterised by Hyalochaete Chaetoceros 

spp. resting spores and Fragilariopsis spp.
Lam inae characterised by 

Fragilariopsis spp.

Actinocyclus ac tinochdus  (Ehrenberg) Simonsen 1 0 1 0 I 0 0 1 0 3

Asteromphalus spp. Ehrenberg 0 1 0 0 1 0 0 2 0 1

Hyalochaete Chaetoceros spp. (vegetative) Gran 3 0 1 0 4 0 0 0 0 0

Hyalochaete Chaetoceros spp. (resting spore) Gran 153 193 291 188 263 102 170 157 77 46

Phaeoceros Chaetoceros spp. Gran 9 4 28 6 16 45 49 31 18 27

Cocconeis spp. Ehrenberg 0 0 0 0 0 1 0 0 1 1

Corethron pennatum  (Grunow) Ostenfeld 1 0 1 1 1 3 4 0 0 4

Eucampia antarctica  (resting spore) (Castracane) Mangin 2 0 0 0 2 3 0 1 1 2

Eucampia antarctica  (vegetative) (Castracane) Mangin 4 0 2 0 3 0 0 11 1 2

Fragilariopsis curta  (Van Heurck) Hustedt 99 82 35 99 57 111 61 69 90 130

Fragilariopsis cylindrus (Grunow) Krieger 12 24 19 22 21 15 46 32 145 82

Fragilariopsis cylindriform is (Hasle) Hasle 0 0 0 0 0 0 0 0 1 0

Fragilariopsis kerguelensis (O'Meara) Hustedt 25 17 12 24 10 12 14 16 15 6

Fragilariopsis obhquecostata  (Van Heurck) Heiden 1 0 0 1 1 2 1 2 1 4

Fragilariopsis p seudonanna  (Hasle) Hasle 0 0 0 0 0 0 0 0 6 1

Fragilariopsis rhom bica  (O’Meara) Hustedt 29 30 23 34 10 33 17 48 16 54

Fragilariopsis r itscheri (Hustedt) Hasle 14 5 5 8 5 15 3 13 7 8

Fragilariopsis separanda  Hustedt 0 0 0 0 1 0 0 0 0 0

Fragilariopsis sublinearis  (Van Heurck) Heiden 5 21 2 6 8 13 2 3 1 1

Fragilariopsis vanheurckii (M. Pergallo) Hustedt 2 0 2 1 2 2 1 4 0 0

Fragilariopsis spp. Hustedt 3 6 2 3 1 21 18 8 3 12

Navicula spp. Bory de St-Vincent 5 1 1 2 2 4 0 0 1 1

Porosira glacialis (Grunow) Jorgensen 13 4 2 4 8 2 6 9 1 2

Porosirapseudodenticula (Hustedt) Jouse 3 0 0 0 0 0 0 0 0 0

Proboscia inertnis (Castracane) Jordan & Ligowski 0 0 2 0 0 0 1 0 2 0

Proboscia truncata (Karsten) NOthig & Ligowski 0 0 0 0 0 1 0 0 1 0

Pseudonitzschia turgidula  (Hustedt) Hasle 0 1 1 2 1.5 0 4 0.5 2.5 2.5

Rhizosolenia antennata  f. sem isp ina  Sundstrdm 0 0 0 0 0 2 2 0 0 2

Rhizosolenia species A Armand 0 0 0 0 0 2 0 0 0 0

Rhizosolenia spp. Brightwell 0 0 0 0 1 0 0 0 0 0

Stellarima m icrotrias (resting spore) (Ehrenberg) Hasle &  Sims 2 0 0 1 0 0 0 0 0 0

Thalassiosira an tarctica  (resting spore • warm) Comber 0 0 0 0 0 0 0 0 1 0

Thalassiosira an tarctica  (vegetative) Comber 1 0 0 0 0 0 0 0 0 0

Thalassiosira gracilis v. expecta  (Van Landingham) Fryxell & 
Hasle 0 2 1 1 0 1 0 1 3 1

Thalassiosira gracilis v. gracilis (Karsten) Hustedt 2 2 1 6 3 2 2 1 5 3

Thalassiosira gravida  Cleve 0 0 0 0 0 0 1 1 1 0

Thalassiosira lentiginosa  (Janisch) Fryxell 5 6 0 3 3 3 1 1 2 0

Thalassiosira poroseriata  (Ramsfjell) Hasle 9 2 0 4 1 3 0 1 2 3

Thalassiosira ritscheri (Hustedt) Hasle 0 0 0 0 0 1 0 2 0 0

Thalassiosira tum ida  (Janisch) Hasle 1 0 0 0 0 3 0 4 0 0

Thalassiosira spp. Cleve 2 1 2 4 1 3 0 1 2 1

Thalassiothrix/nema/to.xon I 0 0 0.5 0 0.5 0 0 0 0

Thalassiothrix antarctica  Schimper ex Karsten 0 2 1 0.5 1 1 0.5 0.5 0 0

Trichotoxon reinboldii (Van Heurck) Reid & Round 0.5 0.5 0 1.5 0.5 0 0 0 0.5 1

Unidentified centrics 1 1 1 0 0 1 0 4 0 0

Unidentified pennates 0 0 0 0 1 0 0 1 0 0

Total: 408.5 405.5 436 422.5 430 407.5 403.5 425 407 400.5
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Table A4.3.1.1 continued Durmont d’Urville Trough, MD03 2597, quantitative 
diatom abundance counts of all species, lamina types: laminae characterised by 
Corethron pennatum and Rhizosolenia spp.; laminae characterised by C. pennatum; 
and laminae characterised by Rhizosolenia spp..

Lamina log num ber 12 15 15 77 142 144 189 190 191 193 194

Depth (mbsf) 56.723 56.693 56.700 49.851 47.769 47.760 44.515 44.505 44.498 44.483 44.469

Number of FOV 12 32 31 19 30 29 21 21 17 18 20

Mass <r) 0.0068 0.0062 0.0064 0.006 0.0061 0.0076 0.0053 0.0062 0.0081 0.0067 0.0058

Species / Lamina type
L am inae characterised by 
C ore th ron  p e n n a tu m  and 

R h izo so len ia  spp.

Lam inae characterised by 
C ore th ron  p e n n a tu m

Lam inae characterised by R h izo so len ia  spp.

Actinocyclus actinochilus (Ehrenberg) Simonsen 0 0 2 1 0 0 0 0 0 0 0

Asteromphalus spp. Ehrenberg 0 0 1 2 1 2 2 2 1 2 1

Hyalochaete Chaetoceros spp. (vegetative) Gran 10 15 0 2 0 0 4 7 6 13 5

Hyalochaete Chaetoceros spp. (resting spore) Gran 238 133 124 190 73 106 36 77 113 107 104

Phaeoceros Chaetoceros spp. Gran 8 16 56 12 10 7 4 2 9 9 3

Cocconeis spp. Ehrenberg 0 0 0 0 0 0 0 1 0 0 1

Corethron pennatum  (Grunow) Ostenfeld 0 6 3 1 7 3 0 1 0 2 0

Eucampia an tarctica  (resting spore) (Castracane) Mangin 1 1 I 0 0 2 0 1 1 0 0

Eucampia an tarctica  (vegetative) (Castracane) Mangin 19 8 1 0 5 0 1 1 1 3 4

Fragilariopsis curta  (Van Heurck) Hustedt 19 60 60 42 102 92 33 79 93 57 59

Fragilariopsis cylindrus (Grunow) Krieger 27 38 36 51 130 65 173 90 67 119 108

Fragilariopsis cylindriform is (Hasle) Hasle 1 0 0 0 1 0 1 0 0 0 0

Fragilariopsis kerguelensis (O'Meara) Hustedt 4 6 19 14 9 13 4 13 7 12 9

Fragilariopsis obliquecostata  (Van Heurck) Heiden 3 2 1 0 4 2 0 1 2 0 0

Fragilariopsis p seudonana  (Hasle) Hasle 0 0 0 1 1 3 1 1 2 3 5

Fragilariopsis rhom bica  (O’Meara) Hustedt 29 21 38 27 22 40 14 26 36 30 43

Fragilariopsis ritscheri (Hustedt) Hasle 14 31 9 18 6 9 2 4 3 3 4

Fragilariopsis separanda  Hustedt 5 1 1 0 0 0 1 2 I 0 0

Fragilariopsis sublinearis (Van Heurck) Heiden 2 12 6 2 9 9 5 5 5 1 5

Fragilariopsis vanheurckii (M. Pergallo) Hustedt 0 0 0 0 1 0 1 1 1 0 1

Fragilariopsis spp  Hustedt 3 8 2 5 4 10 2 4 10 5 3

Comphonema spp. Ehrenberg 0 0 0 0 0 0 0 0 1 0 0

Navicula spp. Bory de St-Vincent 0 2 0 1 1 0 2 1 1 2 0

Odontella litigiosa  (van Heurck) Hoban 0 0 0 0 0 1 0 0 0 0 0

Odontella w eissflogii (janisch) Grunow I 0 0 0 0 0 0 1 0 0 0

Porosira g lacialis (Grunow) Jorgensen 3 3 5 3 2 7 0 5 2 3 4

Porosira pseudodenticula  (Hustedt) Jouse 0 1 1 0 1 0 0 0 0 0 0

Proboscia inerm is (Castracane) Jordan & Ligowski 3 3 1 2 1 4 89 61 40 7 5

Proboscia truncata (Karsten) Nfithig & Ligowski 0 0 0 1 0 0 0 3 1 1 0

Pseudonitzschia turgidula  (Hustedt) Hasle 0.5 7 8.5 9 2 4.5 6.5 4 6 13 12

Rhizosolenia an tennata f. an tennata  (Ehrenberg) Brown 0 0 0 0 0 0 0 1 0 0 0

Rhizosolenia an tennata  f  sem ispina  SundstrOm I 18 10 4 2 3 9 3 13 7 11

Rhizosolenia sim a  Castracane f. sim a 0 0 0 0 0 0 0 0 0 1 1

Rhizosolenia s im plex  Karsten 0 0 0 2 0 0 0 0 0 0 0

Rhizosolenia species A Armand 0 3 0 0 0 1 0 0 0 0 0

Rhizosolenia spp. Brightwell 0 7 2 1 0 3 0 0 0 1 0

Stellarima m icrotrias (resting spore) (Ehrenberg) Hasle & Sims 0 0 0 0 1 0 0 2 1 2 0

Thalassiosira antarctica  (resting spore - cold) Comber 1 2 3 0 0 0 1 0 0 0 0

Thalassiosira antarctica  (resting spore - warm) Comber 0 0 0 0 0 0 0 0 0 0 6

Thalassiosira an tarctica  (vegetative) Comber 2 2 1 0 0 0 0 0 0 0 0

Thalassiosira gracilis v. expecta  (Van Landingham) Fryxell &  Hasle 0 2 1 0 2 2 0 0 1 4 3

Thalassiosira gracilis v. gracilis (Karsten) Hustedt 3 2 1 4 5 4 3 3 4 5 1

Thalassiosira gravida  Cleve 0 0 0 1 0 0 0 0 0 3 2

Thalassiosira lentiginosa  (Janisch) Fryxell 2 4 5 13 4 6 2 1 1 1 1

Thalassiosira poroseria ta  (Ramsfjell) Hasle 0 0 1 0 2 0 0 1 0 0 0

Thalassiosira ritscheri (Hustedt) Hasle 0 0 0 0 0 0 0 0 0 2 1

Thalassiosira tum ida  (Janisch) Hasle 1 0 1 1 1 1 0 0 0 0 0

Thalassiosira spp. Cleve 1 2 2 1 1 2 1 1 0 0 1

Thalassiothrix antarctica  Schimpcr ex Karsten 0 0.5 1.5 0 0 0.5 0 0.5 0 0 0.5

Trachyneis aspera (Ehrenberg) Cleve 0 0 0 0 0.5 0 1 0 0 0 0

Trichotoxon re inboldii (Van Heurck) Reid & Round 0 0 0 0 0 2.5 0.5 0 0 1 0.5

Unidentified centrics 0 0 4 2 I 4 2 1 0 1 3

Unidentified pennates 0 0 0 0 0 0 1 0 0 0 0

Total: 401.5 416.5 408 413 411.5 408.5 402 406.5 429 420 407
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Table A4.3.1.1 continued Durmont d ’Urville Trough, MD03 2597, quantitative 
diatom abundance counts of all species, lamina types: mixed diatom assemblage 
biogenic laminae; and mixed diatom assemblage terrigenous laminae.

Lamina log num ber 54 195 263 10 13 143 145 192 196 232 281 336

Depth (mbsf) 52.658 44.458 37.826 56.744 56.7164 47.762 47.7581 44.493 44.451 40.632 33.9563 18.829

Num ber of FOV 21 20 11 26 21 28 26 17 25 10 31 17

M ass (g) 0.0088 0.0075 0.0074 0.0082 0.0094 0.0081 0.0094 0.0081 0.0078 0.0079 0.0088 0.0089

Species 1 Lamina type
Mixed d iatom  assemblage biogenic 

laminae
Mixed diatom  assemblage terrigenous laminae

Aclinocyclus actinochilus (Ehrenberg) Simonsen 0 I 0 0 0 2 0 0 0 2 0 0

Asteromphalus spp  Ehrenberg 1 I 0 2 0 2 1 2 2 1 1 0

Hyalochaete Chaetoceros spp. (vegetative) Gran 3 3 2 3 18 0 0 6 2 25 2 3

Hyalochaete Chaetoceros spp. (resting spore) Gran 219 95 219 153 228 115 111 116 133 281 93 159

Phaeoceros C haetoceros spp. Gran 5 5 16 1 1 15 4 6 4 15 15 30

Cocconeis spp. Ehrenberg 0 I 0 0 0 0 1 2 0 0 0 1

Corethron pennatum  (Grunow) Ostenfeld 0 1 3 1 2 4 0 0 0 2 1 9

Eucampia antarctica  (resting spore) (Castracane) Mangin 0 4 0 1 0 1 4 1 I 0 1 2

Eucampia antarctica  (vegetative) (Castracane) Mangin 0 0 2 0 0 1 2 1 7 2 2

Fragilariopsis curia  (Van Heurck) Hustedt 105 69 93 107 31 102 106 59 74 23 127 80

Fragilariopsis cylindrus (Grunow) Krieger 15 99 15 17 25 57 27 120 63 41 25 34

Fragilariopsis kerguelensis  (O’Meara) Hustedt 18 19 4 20 16 14 22 14 19 9 30 17

Fragilariopsis obhquecosta ta  (Van Heurck) Heiden 0 0 1 4 4 2 2 2 0 0 1 2

Fragilariopsis pseudonana  (Hasle) Hasle 0 0 0 0 0 0 1 3 2 0 0 1

Fragilariopsis rhom bica  (O ’Meara) Hustedt 24 42 11 37 34 40 45 23 37 9 37 23

Fragilariopsis ritscheri (Hustedt) Hasle 5 8 2 20 8 6 9 4 10 3 16 5

Fragilariopsis separanda  Hustedt 2 0 0 0 0 0 0 2 0 0 0 0

Fragilariopsis suhlinearis (Van Heurck) Heiden 3 5 6 1 1 3 11 9 5 5 6 4

Fragilariopsis vanheurckii (M. Pergallo) Hustedt 0 1 2 3 I 5 3 0 I 1 3 3

Fragilariopsis spp. Hustedt 5 14 9 2 7 7 11 2 14 2 14 16

Navicula spp. Bory de St-Vincent 1 1 2 1 0 2 1 0 1 0 2 1

Odontella litigiosa  (van Heurck) Hoban 0 0 0 0 0 0 0 0 1 0 0 0

Odontella weissflogii (Janisch) Grunow 0 0 0 0 0 1 0 0 0 0 0 0

Porosira glacialis  (Grunow) Jorgensen 2 5 0 14 12 5 6 7 11 15 6 14

Proboscia inerm is (Castracane) Jordan & Ligowski 0 3 0 0 0 4 2 6 I 2 0 1

Proboscia truncata  (Karsten) Nfllhig & Ligowski 0 1 0 0 0 0 0 0 0 0 0 2

Pseudonitzschia turgidula  (Hustedt) Hasle 2 7 0.5 0 1 2.5 0.5 4.5 3.5 2 0.5 2.5

Rhizosolenia an tennata  f. sem isp ina  Sundstrdm 0 5 1 0 3 4 3 6 2 0 3 0

Rhizosolenia spp. Brightwell 0 0 1 0 0 1 5 0 2 0 0 0

Stellarima m icrotrias (resting spore) (Ehrenberg) Hasle & Sims 0 5 0 0 0 0 0 1 0 1 0 0

Thalassiosira antarctica  (resting spore - cold) Comber 1 0 0 0 0 0 2 0 0 0 0 0

Thalassiosira an tarctica  (vegetative) Comber 0 1 0 0 1 1 0 0 0 1 0 0

Thalassiosira gracilis  v. expecta  (Van Landingham) Fryxell &  Hasle 1 1 1 2 0 0 3 1 0 0 0 0

Thalassiosira gracilis  v. gracilis  (Karsten) Hustedt 2 4 2 13 2 5 7 2 0 4 4 2

Thalassiosira gravida  Cleve 0 3 0 0 0 0 0 6 2 3 1 0

Thalassiosira len tiginosa  (Janisch) Fryxell 4 3 1 0 2 6 4 5 6 2 5 0

Thalassiosira o liveriana  (O ’Meara) Makarova & Nikolaev 0 0 0 0 0 0 I 0 0 0 0 0

Thalassiosira poroseria ta  (Ramsfjell) Hasle 0 2 2 13 8 0 2 3 3 0 9 1

Thalassiosira ritscheri (Hustedt) Hasle 0 0 0 I 0 0 0 1 0 0 1 2

Thalassiosira tum ida  (Janisch) Hasle 1 1 0 0 1 0 4 0 0 2 1 3

Thalassiosira spp. Cleve 4 1 1 1 0 0 6 0 1 0 0 1

Thalassiothrix/nema/toxon 0.5 0 0 0 0 0 0 0 0 0 0 0

Thalassiothrix antarctica  Schimper ex Karsten 0.5 1.5 0 0 0 1.5 1 0 1.5 0 1 1

Trachyneis aspera  (Ehrenberg) Cleve 0 0 0 0 1 0.5 0.5 0.5 0.5 0 0 0

Trichotoxon re inboldii (Van Heurck) Reid &  Round 0.5 0.5 0.5 0 0 0 1 1.5 1.5 0 0 1

Unidentified centrics 0 1 0 0 0 1 0 0 1 0 0 0

Unidentified pennates 0 1 1 0 0 2 0 0 0 0 0 0

Total: 424.5 415 401 419 407 411.5 408 417.5 406 458 407.5 422.5
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Table A4.3.1.1 continued Durmont d’Urville Trough, MD03 2597, quantitative 
diatom abundance counts of all species, lamina types: sub-laminae characterised by 
Porosira glacialis resting spores; and laminae characterised by Stellarima microtrias 
resting spores, P. glacialis resting spores and / or Coscinodiscus bouvet.

Lamina log num ber 14 224 282 35 205 206 207 233

Depth (mbsf) 56.709 40.702 33.953 53.106 41.169 41.165 41.161 40.625

N um ber of FOV 13 7 26 11 21 18 25 15

Mass (g) 0.0076 0.0065 0.0064 0.0098 0.0073 0.0079 0.0081 0.0073

Species / Lamina type
Sub-lam inae characterised by P orosira  

g la c ia lis  resting spores
Lam inae characterised by S te lla r im a  m icro tr ia s  resting spores, P orosira  

g lac ia lis  resting spore and / or C osc inod iscus bouvet

Actinocyclus actinochilus (Ehrenberg) Simonsen 0 0 I 1 0 0 4 1

Asteromphalus spp. Ehrenberg 0 2 1 0 2 0 1 3

H yaiochaete Chaeloceros spp. (vegetative) Gran 12 0 0 3 0 4 2 2

Hyaiaochaete C haetoceros spp. (resting spore) Gran 297 353 93 203 97 176 165 186

Phaeoceros Chaetoceros spp. Gran 0 4 14 11 11 7 2 40

Cocconeis spp. Ehrenberg 0 0 I 0 1 0 0 0

Corethron pennatum  (Grunow) Ostenfeld 2 0 0 3 2 0 2 8

Eucampia antarctica  (resting spore) (Castracane) Mangin 1 0 4 0 0 0 0 0

Eucampia an tarctica  (vegetative) (Castracane) Mangin I 2 1 2 5 2 1 5

Fragilariopsis curta  (Van Heurck) Hustedt 19 11 89 72 59 61 56 31

Fragilariopsis cvlindrus (Grunow) Krieger 3 1 11 25 94 51 30 48

Fragilariopsis cylim iriform is  (Hasle) Hasle 7 0 14 11 10 13 21 21

Fragilariopsis kerguelensis (O ’Meara) Hustedt 0 3 3 3 2 1 1 1

Fragilariopsis ohliquecosta ta  (Van Heurck) Heiden 0 0 1 0 3 0 1 0

Fragilariopsis pseudonanna  (Hasle) Hasle 0 1 0 0 0 0 0 0

Fragilariopsis rhom bica  (O’Meara) Hustedt 11 8 24 20 19 18 27 13

Fragilariopsis ritscheri (Hustedt) Hasle 10 2 7 4 8 11 13 7

Fragilariopsis scparanda  Hustedt I 0 2 5 0 2 0 0

Fragilariopsis sublinearis  (Van Heurck) Heiden 4 0 6 6 11 6 4 1

Fragilariopsis vanheurckii (M. Pergallo) Hustedt 0 3 1 0 5 1 2 1

Fragilariopsis spp. Hustedt 3 J 6 5 6 4 3 3

Navicula spp. Bory de St-Vincent 0 0 0 1 3 0 0 0

Porosira glacia lis  (Grunow) Jorgensen 15 9 64 17 11 9 10 13

Proboscia inerm is  (Castracane) Jordan & Ligowski 0 1 0 0 5 4 3 6

Proboscia truncata  (Karsten) Ndthig &  Ligowski 0 0 0 0 0 0 1 0

Pseudonitzschia turgidula  (Hustedt) Hasle 0.5 2 0 2 3 3 0.5 2

Rhi2osolenia an tennata f. sem isp ina  Sundstrttm 1 0 1 1 2 0 1 2

Rhizosolenia  species A Armand 0 0 0 1 0 0 0 0

Rhizosolenia spp. Brightwell 4 0 0 1 0 0 1 0

Stellarima m icrotrias (resting spore) (Ehrenberg) Hasle &  Sims 3 0 0 2 6 8 6 1

Thalassiosira an tarctica  (resting spore - cold) Comber 4 0 0 0 1 0 0 0

Thalassiosira an tarctica  (vegetative) Comber 2 0 5 1 5 0 1 0

Thalassiosira gracilis  v. expecta  (Van Landingham) Fryxell & Hasle 1 1 0 0 5 4 0 1

Thalassiosira gracilis  v. gracilis (Karsten) Hustedt 1 2 7 2 0 1 4 3

Thalassiosira gravida  Cleve 0 2 0 0 0 3 1 0

Thalassiosira lentiginosa  (Janisch) Fryxell 2 1 5 5 3 0 5 2

Thalassiosira perpusilla  Kozlova 0 0 1 0 0 0 0 0

Thalassiosira poroseria ta  (Ramsfjell) Hasle 0 5 41 0 20 22 35 2

Thalassiosira ritscheri (Hustedt) Hasle 0 3 3 0 3 2 1 0

Thalassiosira tum ida  (Janisch) Hasle 2 0 2 1 3 2 0 1

Thalassiosira spp. Cleve 4 0 6 7 2 4 3 1

Thaiassiothrix an tarctica  Schimper ex Karsten 0.5 0 0 0 0.5 0 1 0.5

Trachyneis a spera  (Ehrenberg) Cleve 1 0 0 0 0 0 0 0

Trichotoxon reinbold ii (Van Heurck) Reid &  Round 0 0 0 0.5 0 0 0 0.5

Unidentified centrics 1 1 0 1 1 0 I 0

Total: 413 418 414 416.5 408.5 419 409.5 406
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Table A4.3.1.2 Durmont d ’Urville Trough, MD03 2597, quantitative diatom 
abundance Hyaiochaete Chaetoceros spp. free counts, lamina types: laminae 
characterised by Hyaiochaete Chaetoceros spp. resting spore; laminae characterised 
by Hyaiochaete Chaetoceros spp. resting spores and Fragilariopsis spp.; and laminae 
characterised by Fragilariopsis spp..

Lamina log num ber 11 231 96 9 39 280 335 222 257 273

Depth (mbsf) 56.732 40.65 49.772 56.762 53.087 33.962 18.846 40.71 37.907 34.002

Num ber of FOV 58 26 33 48 29 30 27 34 17 15

M ass (£) 0.0062 0.0071 0.0063 0.0056 0.0084 0.007 0.0064 0.006 0.0062 0.0068

Species / Lamina type Lam inae characterised  by H ya io ch a e te  
C hae toceros  spp. resting spore

Laminae characterised by H ya iochae te  
C hae toceros spp. resting spores and F ragilariopsis  

spp.

Lam inae characterised by 
F rag ila r iopsis spp.

/tcfirtocyc/uj actinochilus (Ehrenberg) Simonsen 1 1 1 1 0 1 0 3

Asteromphalus spp. Ehrenberg 0 1 2 1 1 0 0 3 2 1

Phaeoceros Chaetoceros spp. Gran 9 95 13 11 29 61 77 48 29 30

Cocconeis spp. Ehrenberg 0 0 0 0 0 1 1 1

Corethron pennatum  (Grunow) Ostenfeld 1 0 1 3 10 2 0 5

Eucampia an tarctica  (resting spore) (CastTacane) Mangin 1 0 0 2 1 1 1 2

Eucampia an tarctica  (vegetative) (CastTacane) Mangin 6 5 0 0 7 0 0 14 3 2

Fragilariopsis curia (Van Heurck) Hustedt 159 104 170 171 145 152 101 101 i 18 147

Fragilariopsis cylindrus (Grunow) Krieger 15 42 39 33 57 18 94 47 190 95

Fragilariopsis cylindriform is (Hasle, in Hasle & Booth) Hasle 0 0 0 0 0 0 0 0 1 0

Fragilariopsis kerguelensis (O’Meara) Hustedt 44 32 32 44 38 16 22 22 20 7

Fragilariopsis ob liquecostata  (Van Heurck) Heiden 2 0 3 5 3 2 I 5

Fragilariopsis pseudonanna  (Hasle) Hasle 0 0 0 0 0 0 0 0 6 1

Fragilariopsis rhom bica  (O’Meara) Hustedt 53 44 47 53 26 48 28 72 21 64

Fragilariopsis ritscheri (Hustedt) Hasle 20 11 14 12 14 22 9 21 7 8

Fragilariopsis separanda  Hustedt 0 1 0 0 3 0 0 0 0 0

Fragilariopsis sublinearis (Van Heurck) Heiden 6 6 38 7 17 9 5 7 1 3

Fragilariopsis vanheurckii (M. Pergallo) Hustedt 6 0 3 2 2 6 0 1

Fragilariopsis spp. Hustedt 20 15 6 9 28 28 11 5 12

Navicula spp. Bory de St-Vincent 1 2 2 5 1 0 1 1

Odontella w eissflogii (Janisch) Grunow 0 0 0 1 0 0 0 0 0 0

Porosira g lacialis (Grunow) Jorgensen 26 5 10 13 14 12 12 2 2

Porosira pseudodenticula  (Hustedt) Jouse 4 0 0 0 0 0 0 0 0 0

Proboscia inerm is (Castracane) Jordan & Ligowski 3 0 0 0 0 1 0 2 0

Proboscia truncata  (Karsten) N6thig & Ligowski 0 0 0 0 0 0 0 1 0

Pseudonitzschia turgidula  (Hustedt) Hasle 0.5 3 1 3 3.5 1.5 6.5 1 3 2.5

Rhizosolenia an tennata  f. sem isp ina  Sundstrdm 0 1 1 0 3 0 0 3

Rhizosolenia spp. Brightwell 0 1 0 2 0 0 0 0

Stellarima m icrotrias (resting spore) (Ehrenberg) Hasle & 
Sims 1 0 1 0 0 0 1 0 0

Thalassiosira antarctica  (resting spore - cold) Comber 0 0 0 0 3 0 0 0 0 0

Thalassiosira an tarctica  (resting spore - warm) Comber 0 0 0 0 0 0 0 0 1 0

Thalassiosira an tarctica  (vegetative) Comber 0 0 0 0 0 0 0 0 0

Thalassiosira g racilis v. expecta  (Van Landingham) Fryxell & j 4
Hasle 4 1
Thalassiosira g racilis v. gracilis (Karsten) Hustedt 6 7 5 12 6 4 2 6 4

Thalassiosira gravida  Cleve 0 0 0 0 0 0 2 3 0

Thalassiosira lentiginosa  (Janisch) Fryxell 4 9 5 3 6 2 2 1

Thalassiosira oliverana  (O ’Meara) Makarova & Nikolaev 0 0 0 0 0 0 0 0

Thalassiosira poroseria ta  (Ramsfjell) Hasle 15 2 4 8 3 5 0 3 3

Thalassiosira ritscheri (Hustedt) Hasle 0 0 0 0 0 1 1 3 1

Thalassiosira lum ida  (Janisch) Hasle 0 1 0 1 4 1 0 0

Thalassiosira spp. Cleve 2 1 5 2 4 0 I 1

Thalassiothrix/nema/toxon 0 0 1 0 0.5 0 0 0 0

Thalassiothrix an tarctica  Schimper ex Karsten 0.5 1 2.5 0.5 1 1.5 0.5 0.5 0 0

Trichotoxon re inboldii (Van Heurck) Reid & Round 0.5 0 0.5 1.5 1 0 0.5 0 0.5 1

Trigonium arcticum  (Brightwell) Cleve 0 0 0 0 0 1 0 0 0 0

Unidentified centrics 1 1 0 0 1 0 6 0 0

Unidentified pennates 0 0 0 0 2 0 0 1 0

Total: 414.5 403 414 404 4063 4143 4143 403.5 435.5 407.5
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Table A4.3.1.2 continued Durmont d ’Urville Trough, MD03 2597, quantitative 
diatom abundance Hyaiochaete Chaetoceros spp. free counts, lamina types: laminae 
characterised by Corethron pennatum  and Rhizosolenia spp.; laminae characterised by
C. pennatum; and laminae characterised by Rhizosolenia spp..

Lam ina log num ber 12 

Depth (mbsf) 56.723 

N um ber o f FOV 33 

Mass (g) 0.0068

15

56.693

48

0.0062

15

56.700

46

0.0064

77

49.851

40

0.006

142

47.769

36

0.0061

144

47.760

41

0.0076

189

44.515

24

0.0053

190

44.505

28

0.0062

191

44.498

25

0.0081

193

44.483

24

0.0067

194

44.469

25

0.0058

Species / Lamina type
Lam inae characterised by 

C ore th ro n  p e n n a tu m  and / or
R h izo so len ia  spp.

Lam inae characterised by 
C ore th ron  p e n n a tu m

Laminae characterised by R h izo so len ia  spp.

A ctinocyclus actinochilus (Ehrenberg) Simonsen 1 0 2 2 0 1 0 0 0 0 0

Asterom phalus spp. Ehrenberg 1 0 1 2 1 3 2 2 1 2 2

Phaeoceros Chaetoceros spp. Gran 16 22 82 20 10 9 4 4 13 10 4

Cocconeis  spp. Ehrenberg I 0 0 2 0 0 0 2 0 0 1

Corethron pennatum  (Grunow) Ostenfeld 2 10 3 3 11 3 0 1 0 4 1

Eucam pia an tarctica  resting spores (Castracane) Mangin 1 1 1 0 0 2 0 1 1 0 0

Eucam pia antarc tica  vegetative (Castracane) Mangin 50 12 1 1 6 0 1 1 1 6 4

Fragilariopsis curta  (Van Heurck) Hustedt 55 92 88 85 130 131 37 105 136 75 77

Fragilariopsis cylindrus  (Grunow) Krieger 65 52 50 102 154 88 197 112 97 152 138

F ragilariopsis cylindriform is (Hasle) Hasle 4 0 0 0 1 0 2 0 0 0 1

Fragilariopsis kerguelensis (O’Meara) Hustedt 15 16 36 28 13 20 5 16 11 20 14

Fragilariopsis obliquecoslata  (Van Heurck) Heiden 7 4 2 3 5 2 0 1 3 1 0

Fragilariopsis pseudonana  (Hasle) Hasle 1 1 0 3 1 3 1 1 2 4 6

Fragilariopsis rhom bica  (O’Meara) Hustedt 70 36 53 52 28 53 19 36 51 43 55

Fragilariopsis ritscheri (Hustedt) Hasle 40 40 15 23 11 10 2 5 4 5 9

Fragilariopsis separanda  Hustedt 14 2 1 0 0 0 1 2 1 0 0

Fragilariopsis sublinearis (Van Heurck) Heiden 6 22 6 8 9 10 5 6 7 2 7

Fragilariopsis vanheurckii (M. Pergallo) Hustedt 0 1 2 1 1 0 1 1 2 0 1

Fragilariopsis spp Hustedt 11 11 3 10 4 11 3 4 14 14 6

G om phonem a  spp. Ehrenberg 0 0 0 0 0 1 0 0 1 0 0

Navicula  spp. Bory de St-Vincent 0 4 1 3 1 0 2 1 2 3 9

Odonteila litigiosa  (van Heurck) Hoban 0 0 0 0 0 1 0 0 0 0 0

Odontella w eissflogii (Janisch) Grunow 1 0 0 1 0 0 0 1 0 0 0

Porosira g lacialis (Grunow) Jorgensen 9 5 6 5 2 11 0 7 2 3 4

Porosira pseudodenticu la  (Hustedt) Jouse 0 2 1 0 1 0 0 0 0 0 0

Proboscia inerm is  (Castracane) Jordan St Ligowski 4 3 1 4 2 5 103 71 57 9 9

Proboscia truncata  (Karsten) Ndthig &. Ligowski 0 0 0 1 0 1 1 4 1 2 0

Pseudonitzschia turgidula  (Hustedt) Hasle 4.5 10.5 10 6.5 3 6 7 1.5 5 14 16

Rhizosolenia an tennata f. an tennata  (Ehrenberg) Brown 0 0 0 0 0 0 0 1 0 1 0

Rhizosolenia an tennata  f. sem ispina  Sundstrdm 6 32 10 5 2 0 11 5 16 10 16

Rhizosolenia sim a  Castracane f. sim a 0 0 0 0 0 0 0 0 0 I 2

Rhizosolenia sim plex  Karsten 0 0 0 2 0 0 0 0 0 0 0

Rhizosolenia  species A Armand 1 3 2 0 0 1 0 0 0 0 1

Rhizosolenia  spp. Brightwell 2 7 2 I 0 3 0 0 0 2 0

Stellarima m icrotrias (resting spore) (Ehrenberg) Hasle & Sims 0 0 0 0 1 0 0 2 1 2 0

Thalassiosira an tarctica  (resting spore - cold) Comber 3 3 4 0 0 0 1 0 0 0 0

Thalassiosira an tarctica  (vegetative) Comber 2 3 1 0 0 0 0 0 0 0 0

Thalassiosira grac ilis  v. expecta  (Van Landingham) Fryxell & Hasle 0 2 1 1 2 2 0 0 2 4 3

Thalassiosira gracilis  v. gracilis  (Karsten) Hustedt 4 2 2 6 5 4 3 3 6 5 3

Thalassiosira g ravida  Cleve 1 0 0 1 0 0 0 0 0 3 2

Thalassiosira lenhginosa  (Janisch) Fryxell 8 8 7 15 4 9 2 2 1 2 2

Thalassiosira lineata  Jousi 0 0 0 0 0 0 0 0 0 0 0

Thalassiosira poroseria ta  (Ramsfjell) Hasle 4 1 2 3 2 0 0 2 0 0 0

Thalassiosira ritscheri (Hustedt) Hasle 0 0 0 1 0 0 0 0 0 2 1

Thalassiosira lum ida  (Janisch) Hasle 2 0 1 1 1 1 0 I 0 0 0

Thalassiosira  spp. Cleve 5 4 3 1 1 2 1 1 1 1 1

Thalassiothrix an tarctica  Schimper ex Karsten 0.5 1 1.5 1 0.5 0.5 0 1 0 0 0.5

Trachyneis aspera  (Ehrenberg) Cleve 0 0 0 0 0.5 0 1 0 0 0 0

Trichotoxon reinbold ii (Van Heurck) Reid &  Round 0 0 0 0 0 2.5 0.5 0 0 1.5 0.5

Unidentified centrics 1 0 4 3 1 4 2 1 0 2 4

Unidentified pennates 0 0 0 0 0 1 1 0 0 0 0

Total: 418 412.5 405.5 406.5 414 401 415.5 404.5 439 405.5 400
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Table A4.3.1.2 continued Durmont d ’Urville Trough, MD03 2597, quantitative 
diatom abundance Hyaiochaete Chaetoceros spp. free counts, lamina types: mixed 
diatom assemblage biogenic laminae; and mixed diatom assemblage terrigenous 
laminae.

Lamina log num ber 54 263 195 10 13 143 145 192 196 232 281 336

Depth (mbsf) 52.658 37.826 44.458 56.744 56.7164 47.762 47.7581 44.493 44.451 40.632 33.9563 18.829

Num ber of FOV 37 22 25 42 54 39 37 24 46 33 40 29

Mass (g) 0.0088 0.0074 0.0075 0.0082 0.0094 0.0081 0.0094 0.0081 0.0078 0.0079 0.0088 0.0089

Species / Lamina type
Mixed diatom  assemblage 

biogenic lam inae Mixed diatom  assemblage terrigenousi laminae

Actinocyclus aciinochilus (Ehrenberg) Simonsen 0 0 1 0 2 2 0 0 0 2 0 1

Asteromphalus spp. Ehrenberg 1 3 1 2 2 4 1 3 2 7 1 0

Phaeoceros Chaetoceros spp. Gran 7 46 6 1 3 18 4 9 8 49 20 57

Cocconeis spp. Ehrenberg 0 0 1 1 0 0 1 2 1 0 0 2

Corethron pennatum  (Grunow) Ostenfeld 0 5 2 2 5 4 1 1 0 7 1 12

Coscinodiscus houvet Karsten 0 0 0 0 1 0 0 0 0 0 0 0

Eucampia antarctica  (resting spore) (Castracane) Mangin 1 0 4 1 3 2 5 2 3 0 3 3

Eucampia antarctica  (vegetative) (Castracane) Mangin 0 9 1 4 2 1 2 4 1 20 3 4

Fragilariopsis curta  (Van Heurck) Hustedt 210 209 95 177 96 150 147 77 130 54 167 129

Fragilariopsis cylindrus (Grunow) Krieger 20 30 126 21 41 80 36 161 88 76 28 59

Fragilariopsis cylindriform is (Hasle) Hasle 0 0 0 0 0 0 0 0 0 0 0 0

Fragilariopsis kerguelensis (O’Meara) Hustedt 38 15 21 32 37 14 34 16 44 31 37 26

Fragilariopsis obliquecostata  (Van Heurck) Heiden 1 1 0 8 5 3 3 2 1 1 1 2

Fragilariopsis p seudonana  (Hasle) Hasle 0 0 1 0 0 1 1 4 2 1 0 1

Fragilariopsis rhom bica  (O’Meara) Hustedt 51 36 57 70 92 50 60 34 64 25 53 39

Fragilariopsis ritscheri (Hustedt) Hasle 13 8 11 27 31 7 14 9 12 6 23 7

Fragilariopsis separanda  Hustedt 4 0 0 0 0 0 0 2 0 0 0 0

Fragilariopsis sublinearis (Van Heurck) Heiden 7 16 7 4 1 4 13 10 11 11 6 6

Fragilariopsis vanheurckii (M. Pergalio) Hustedt 0 2 1 3 2 6 4 0 4 2 3 3

Fragilariopsis spp. Hustedt 11 11 15 3 11 11 13 4 21 4 16 18

Gomphonema spp. Ehrenberg 1 0 0 0 0 0 0 0 1 0 0 0

Navicula spp. Bory de St-Vincent 1 4 4 2 1 3 1 2 4 0 2 2

Odontella weissjlogii (Janisch) Grunow 0 1 0 0 0 1 0 0 0 0 0 0

Odontella Utigiosa (van Heurck) Hoban 0 0 0 0 0 0 0 0 1 0 0 0

Porosira glacialis  (Grunow) Jorgensen 5 0 6 28 24 7 11 8 16 51 7 18

Porosira pseudodenticula  (Hustedt) Jouse 0 0 0 0 0 0 0 1 0 0 0 0

Proboscia inerm is (Castracane) Jordan & Ligowski 0 0 4 0 2 4 2 11 4 8 0 1

Proboscia truncata  (Karsten) Nflthig & Ligowski 0 0 1 0 0 0 0 0 1 0 0 3

Pseudonitzschia turgidula  (Hustedt) Hasle 3.5 1.5 8 0 2 2.5 1.5 6 6 7 1 2.5

Rhizosolenia an tennata  f. antennata  (Ehrenberg) Brown 0 0 0 0 0 0 0 0 1 0 0 0

Rhizosolenia antennata  f. sem ispina  Sundstrbm 1 1 6 1 6 5 3 11 6 0 5 0

Rhizosolenia spp. Brightwell 1 1 0 1 0 1 5 0 4 0 0 0

Stellarima m icrotrias  (resting spore) (Ehrenberg) Hasle & Sims 0 0 5 1 0 0 0 0 0 2 0 0

Stephanodiscus spp. Ehrenberg 0 0 0 0 0 0 0 1 0 0 0 0

Thalassiosira antarctica  (resting spore - cold) Comber 3 0 0 0 0 0 3 0 0 0 0 0

Thalassiosira antarctica  (vegetative) Comber 0 0 1 0 3 1 0 0 0 2 0 0

Thalassiosira gracilis v. expecta  (Van Landingham) Fryxell & Hasle 1 3 2 4 0 0 3 3 0 4 1 0

Thalassiosira g racilis v. gracilis  (Karsten) Hustedt 7 4 5 9 4 5 8 2 2 12 5 2

Thalassiosira gravida  Cleve 0 0 3 0 1 0 0 6 3 4 1 1

Thalassiosira lentiginosa  (Janisch) Fryxell II 1 5 9 6 8 7 8 8 7 7 0

Thalassiosira o liverana  (O’Meara) Makarova & Nikolaev 1 0 0 0 0 0 1 0 0 0 0 0

Thalassiosiraporoseriata (Ramsfjell) Hasle 1 3 2 16 15 2 4 3 3 0 15 3

Thalassiosira ritscheri (Hustedt) Hasle 1 0 0 I 0 0 0 1 2 4 1 2

Thalassiosira tum ida  (Janisch) Hasle 2 0 1 3 4 0 4 0 1 9 1 4

Thalassiosira spp. Cleve 5 1 1 1 1 2 7 0 1 3 0 1

Thalassiothrix/nema/toxon 0.5 0 0 0 0 0 0 0 0 0 0 0

Thalassiothrix antarctica  Schimper ex Karsten 2 0.5 1.5 0 0 1.5 1.5 0 2 0 1 1

Trachyneis aspera  (Ehrenberg) Cleve 0 0 0 0 1 1 0.5 0.5 0.5 0 0 0

Trichotoxon re inboldii (Van Heurck) Reid & Round 1.5 0.5 0.5 0 0 0.5 I 2 1.5 0.5 0 1

Unidentified centrics 0 0 2 0 0 1 0 0 3 0 0 0

Unidentified pennates 0 1 1 0 0 3 0 0 0 0 0 0

Total: 412.5 413.5 409 432 404 405.5 402.5 405.5 463 409.5 409 410.5
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Table A4.3.1.2 continued Durmont d’Urville Trough, MD03 2597, quantitative 
diatom abundance Hyaiochaete Chaetoceros spp. free counts, lamina types: sub
laminae characterised by Porosira glacialis resting spores; and laminae characterised 
by Stellarima microtrias resting spores, P. glacialis resting spores and / or 
Coscinodiscus bouvet.

Lamina log number 14 224 282 35 205 206 207 233

Depth (mbsf) 56.709 40.702 33.953 53.106 41.169 41.165 41.161 40.625

Number of FOV 48 44 36 21 28 30 42 28

Mass (g) 0.0076 0.0065 0.0064 0.0098 0.0073 0.0079 0.0081 0.0073

Species / Lamina type Sub-lam inae characterised by Porosira 
glacialis resting spores

Lam inae characterised by Steiiarima microtrias resting spores, 
Porosira glacialis resting spore and / o r Coscinodiscus bouvet

Actinocyclus actinochilus (Ehrenberg) Simonsen I I 1 1 0 1 4 1

A sterom phalus spp. Ehrenberg I 3 3 1 2 0 1 3

Phaeoceros C haetoceros spp. Gran 2 23 16 23 11 16 10 74

Cocconeis spp. Ehrenberg 1 1 1 0 1 0 1 0

Corethron pennatum  (Grunow) Ostenfeld 4 0 0 3 3 I 3 13

E ucam pia an tarctica  (resting spores) (Castracane) Mangin 1 0 7 0 0 1 0 0

E ucam pia  an tarctica  (vegetative) (Castracane) Mangin 5 9 1 5 5 5 2 10

F ragilariopsis curta  (Van Heurck) Hustedt 76 82 108 153 76 106 90 64

F ragilariopsis cylindrus (Grunow) Krieger 24 7 13 46 130 85 49 89

F ragilariopsis cylindriform is (Hasle) Hasle I 0 0 0 0 0 0 0

F ragilariopsis kerguelensis (O’Meara) Hustedt 18 57 20 25 16 18 39 37

Fragilariopsis obliquecostata  (Van Heurck) Heiden 4 1 4 6 3 1 4 1

Fragilariopsis pseudonana  (Hasle) Hasle 1 1 1 0 4 0 1 0

Fragilariopsis rhom bica  (O’Meara) Hustedt 46 43 30 42 27 33 46 27

F ragilariopsis ritscheri (Hustedt) Hasle 39 14 9 10 9 19 16 12

F ragilariopsis separanda  Hustedt 4 0 2 6 0 2 0 0

F ragilariopsis sublinearis (Van Heurck) Heiden 14 8 8 13 17 6 8 2

F ragilariopsis vanheurckii (M. Pergallo) Hustedt 0 6 1 0 5 3 3 1

F ragilariopsis spp. Hustedt 7 8 8 13 8 10 4 7

G om phonem a  spp. Ehrenberg 0 1 0 0 0 0 0 0

N avicula spp  Bory de St-Vincent 1 2 1 1 4 1 3 1

O dontella w eissjlogii (Janisch) Grunow 0 0 I 0 0 0 0 0

Porosira g lacia lis  (Grunow) Jorgensen 57 51 82 37 12 14 21 22

P orosira pseudodenticu la  (Hustedt) Jouse I 0 0 0 0 0 0 0

P roboscia inerm is (Castracane) Jordan &  Ligowski 0 1 0 1 6 8 3 9

P roboscia truncata  (Karsten) Nfilhig &  Ligowski 0 0 0 0 0 0 1 0

P seudonitzschia lurgidula  (Hustedt) Hasle 2 9 0.5 3 4 4 1 3.5

R hizosolenia an tennata  f. sem ispina  SundstrOm 14 2 1 2 2 1 4 4

R hizosolenia species A Armand 2 0 0 1 0 0 0 0

R hizosolenia spp. Brightwell 6 0 0 2 0 1 1 0

Stellarim a m icrotrias (resting spore) (Ehrenberg) Hasle & Sims 11 0 0 5 7 8 11 2

Thalassiosira antarc tica  (resting spore - cold) Comber 19 3 0 4 1 0 0 0

Thalassiosira antarc tica  (resting spore - warm) Comber 1 0 0 0 0 0 0 0

Thalassiosira an tarctica  (vegetative) Comber 4 0 12 1 8 2 1 0

Thalassiosira am bigua  Kozlova 1 0 0 0 0 0 0 0

Thalassiosira g racilis  v. expecta  (Van Landingham) Fryxell & Hasle 3 7 0 1 7 2 1 1

Thalassiosira g racilis  v. gracilis (Karsten) Hustedt 9 8 8 4 1 7 7 5

Thalassiosira g ravida  Cleve 13 17 0 0 2 1 1 1

Thalassiosira lentiginosa  (Janisch) Fryxell 0 11 5 7 3 6 5 3

Thalassiosira oeslrup ii (Ostenfeld) Hasle 1 0 0 0 0 0 0 0

Thalassiosira perpusilla  Kozlova 0 0 1 0 0 0 0 0

Thalassiosira poroseria ta  (Ramsfjell) Hasle 3 19 51 1 30 32 61 3

Thalassiosira ritscheri (Hustedt) Hasle 1 7 3 I 4 3 5 0

Thalassiosira lum ida  (Janisch) Hasle 2 0 2 1 3 2 1 2

Thalassiosira  spp. Cleve 10 0 8 7 2 6 5 4

Thalassiothrix an tarctica  Schimper ex Karsten 0.5 1.5 0 0 0.5 0.5 1 0.5

Trachyneis aspera  (Ehrenberg) Cleve 1 0 0 0 0 0 0 0

Trichotoxon reinbold ii (Van Heurck) Reid & Round 0 1.5 0 1 0 0 0 0.5

Unidentified centrics I 1 0 1 1 0 1 1

Unidentified pennates 0 0 0 0 0 0 1 0

Total: 412.5 406 408.5 428 4)4.5 405.5 416 403.5
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A.5 Markov chain analysis

This appendix contains Markov chain analysis of lithology transitions within ODP 

site 1098A Palmer Deep. Lithology transition information can be found in appendix 3.

1. Three lithologies (m) are defined: Biogenic laminae (BL), Terrigenous 

laminae (TL), Terrigenous laminae with sub-laminae (SL).

Markov chain results are reliable if:

number of observed transitions > 5 x (number of litholoigal catergories)2

192 > 5x (3)2 

192 >45

Observed transition frequency matrix

To

BL TL SL T otal

BL 0 46 50 96

TL 45 0 0 45

SL 51 0 0 51

T o ta l 96 46 50 192

Observed transition probability matrix (elements of the matrix divided by row totals)

To

BL TL SL

From BL 0 0.48 0.52

TL 1 0 0

SL 1 0 0

This matrix allows a flow diagram to be constructed which may elucidate the nature 

of the pattern.

SL

TL BL

0.48

This flow diagram shows that there are two cycles that are more likely to occur:
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BL -> SL -> BL 

BL -> TL -> BL

This appears to have a cyclic pattern, but it is necessary to test whether this succession 

is significantly different from random.

Fixed probability vector (probability of going to each lithology):

BL 0.5

TL 0.24

SL 0.26

Expected random probability matrix

To

BL TL SL

From BL 0.5 0.24 0.26

TL 0.5 0.24 0.26

SL 0.5 0.24 0.26

Expected random transition frequency matrix (probabilities converted into expected 

counts: row totals from the transition frequency matrix multiplied with probabilities)

To

BL TL SL

From BL 48 23.04 24.96

TL 22.5 10.8 11.7

SL 22.5 12.24 13.26

The observed transition frequency matrix and expected random transition frequency 

matrix are compared using x2.

m 2 /  \

Where t?  = 1 ( 0 , - E  )2 IE ,
j =1

with (m-1)2 degrees of freedom 

where

Oj = observed transition frequency in the j th class.

Ej = frequency from the expectedrandom transition frequency matrix
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Ho: the data came from a population of transitions that are random; the probability of 

encountering a lithology is not dependent on the underlying lithology 

H\ \ the data came from a population of transitions that are non-random

Class Oj Ej (Oj'Ej)2/Ej
BL-BL 0 48 48

BL-TL 46 23.04 22.88

BL-SL 50 24.96 25.12

TL-BL 45 22.5 22.5

TL-TL 0 10.8 10.8

TL-SL 0 11.7 11.7

SL-BL 5.1 25.5 25.5

SL-TL 0 12.24 12.24

SL-SL 0 13.26 13.26

£ =  172

The degrees of freedom

v — ((number of lithologies) -  1) 

x = (3 - l ) 2 = 4

The critical value is

Xo.os.4 = 9-49

(using Appendix 2.6 in Swan and Sandilands (1995)) 

The calculated value exceeds the critical value, so the null hypothesis is rejected and 

conclude that there is a significant Markov property. That the occurrence of 

lithologies is, to an extent, dependent on preceeding lithology.

2. Four lithologies are defined: Biogenic laminae (BL), Terrigenous laminae

(TL), Terrigenous laminae with sub-laminae including T. antarctica (TAL) and 

terrigenous laminae with sub-laminae not including T. antarctica (NTAL).

192> 5x (4)2 

192 >80
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Transition frequency matrix

To

BL TL NTAL TAL Total

BL 0 46 8 42 96

TL 45 0 0 0 45

NTAL 8 0 0 0 8

TAL 43 0 0 0 43

Total 96 46 8 42 192

Observed transition probability matrix

To

BL TL NTAL TAL

BL 0 0.48 0.08 0.44

TL 1 0 0 0

NTAL 1 0 0 0

TAL 1 0 0 0

Flow diagram
0.48

TL BL

NTAI

TAL

BL -» TL -> BL

BL -» TAL BL

Fixed probability vector:

BL 0.5 

TL 0.24 

TAL 0.22 

NTAL 0.04
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Expected random probability matrix

To

BL TL NTAL TAL

BL 0.5 0.24 0.04 0.22

TL 0.5 0.24 0.04 0.22

NTAL 0.5 0.24 0.04 0.22

TAL 0.5 0.24 0.04 0.22

Expected random transition frequency matrix (probabilities converted into expected

counts)

To

BL TL NTAL TAL

From BL 0 23.04 3.84 21.12

TL 22.5 0 0 0

NTAL 4 0 0 0

TAL 21.5 0 0 0

Class Oj Ej (O r Ej)5/Ej

BL-BL 0 0 0

BL-TL 46 23.04 22.88

BL-NTAL 8 3.84 4.51

BL-TAL 42 21.12 20.64

TL-BL 45 22.5 22.5

TL-TL 0 0 0

TL-NTAL 0 0 0

TL-TAL 0 0 0

NTAL-BL 8 4 4

NTAL-TL 0 0 0

NTAL-NTAL 0 0 0

NTAL-TAL 0 0 0

TAL-BL 43 21.5 21.5

TAL-TL 0 0 0

TAL-NTAL 0 0 0

TAL-TAL 0 0 0

E = 92.03
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p = ( 4 -  l)2 = 9

The critical value is

Xo.05,9 ~ 16.92

using Appendix 2.6 $  distribution in Swan and Sandilands (1995). 

The calculated value exceeds the critical value, so the null hypothesis is rejected and 

conclude that there is a significant Markov property. That the occurrence of 

lithologies is, to an extent, dependent on preceeding lithology.
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