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ABSTRACT

Articular cartilage is a resilient and load bearing material that provides 
diarthrodial joints with excellent friction, lubrication and wear characteristics required 
for continuous motion. However, articular cartilage has a poor regenerative capacity 
and its degeneration is a common cause of morbidity in terms of loss of joint function 
and osteoarthritis, frequently resulting in the need for total knee replacement.

Articular cartilage has a distinct zonal architecture with biochemical and 
cellular variations existing from the surface zone to the deeper calcified layers. Thus, 
the development of the tissue must be stringently controlled, both spatially and 
temporally in order for the complex structure to be established. Importantly, the 
surface zone is believed to be responsible for the appositional growth of articular 
cartilage during development and this growth is believed to be driven by a population 
of slow cycling progenitor cells within the surface zone itself.

The focus of this thesis is the isolation and characterisation of articular 
cartilage progenitor cells together with an exploration of the cells capabilities in 
potential cartilage repair therapies. The cells were identified on the basis of 
differential adhesion assays and colony forming ability. Subsequent experiments were 
carried out to show the differential expression of various cell surface markers eg 
Notch 1 receptors and the role of the onco-foetal form of fibronectin, known as 
fibronectin-EDA on the modulation of cell behaviour. In terms of the potential of the 
cells for use in tissue engineering, a promising feature of the cells is the discovery that 
enriched populations of the cells can undergo extensive expansion in simple 
monolayer cultures and yet retain their ability to undergo chondrogenic 
differentiation. This property may enable the use of the cells in commercial cartilage 
repair and/or tissue engineering strategies.
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Chapter 1: Introduction

1.1 ARTICULAR CARTILAGE STRUCTURE. FUNCTION AND

DEVELOPMENT

1.1.1 Introduction

Articular cartilage is a resilient and load-bearing material that provides diarthrodial 

joints with excellent friction, lubrication and wear characteristics required for 

continuous gliding motion and also acts as a shock absorber to distribute applied loads 

over the subchondral bone (Mow et al., 1992; Mankin et al., 1994). Although articular 

cartilage varies in thickness, cell density, matrix composition, and mechanical 

properties within the same joint, among joints, among species and with age, in all 

synovial joints it consists of the same components, the same general structure and 

performs the same functions (Stockwell, 1971; Athanasiou et al, 1991). Despite 

articular cartilage being in the order of only a few millimetres in thickness, its unique 

structure and composition allow it to withstand considerable biomechanical forces 

over many decades of walking, running and jumping (Buckwalter and Mankin, 1997; 

Mowetal., 1992).

The uniqueness of articular cartilage arises from the tissue being primarily composed 

of extracellular matrix with relatively few cells, known as chondrocytes. There is no 

direct blood supply, relying on diffusion for nutrition. Articular cartilage lacks nerves 

and a lymphatic system (Mankin et al., 1994). Although at first glance the tissue may 

appear to be of a simple nature, detailed examination reveals it to possess a distinct, 

highly ordered structure (Jeffery et al., 1991; Poole et al., 2001) that facilitates a 

complex interaction between the extracellular matrix and the chondrocyte (Benjamin 

et al., 1994; Buckwalter and Mankin, 1997) which serves to actively maintain the 

tissue throughout the life of the organism.

Articular cartilage has a limited capacity for repair (Campbell, 1969), a consequence 

of the unique properties described above. The chondrocytes have a low mitotic ability 

and are restricted in their ability to migrate to the site of injury due to the cells being 

individually enclosed in extracellular matrix. In addition, the lack of a blood supply 

eliminates the prospect of a repair response initiated and orchestrated by the process 

of inflammation (Newman, 1998). The lack of an effective reparative response means
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Chapter 1: Introduction

that limited damage to articular cartilage due to trauma or from degenerative diseases 

will remain unhealed. Such lesions, over time, may progress to more severe and 

progressive disabilities of the joint, culminating in total erosion of the articular 

cartilage and loss of joint function. Total or partial joint replacement procedures are 

routinely used to restore pain free motion as a last resort in the treatment of end-stage 

degenerative joint disease (Buckwalter and Lohmander, 1994; Buckwalter and 

Mankin, 1997a; Gilbert, 1988; Newman, 1998; Hunziker, 2001a).

This section presents an overview of the current understanding of articular cartilage 

structure, function and development in order to provide a basis for understanding its 

degeneration, current repair techniques and the prospects for more efficacious future 

therapies.

1.1.2 The chondrocyte

Articular cartilage is composed of a single cell type known as the chondrocyte which 

occupy around only 10% of the total tissue volume (Archer and Francis-West, 2003). 

This figure varies highly, primarily depending upon factors such as age and species 

(Buckwalter and Mankin, 1997). Chondrocytes differ in size, shape and metabolic 

activity throughout the thickness of the tissue (Zanetti et al, 1985; Aydelotte and 

Kuettner, 1988; Aydelotte et al., 1988; Archer et al., 1990) and these differences in 

chondrocyte phenotype are responsible for subtle differences in matrix composition 

throughout the depth of the tissue (Poole et al., 2001) (this aspect will be covered in 

greater detail in section 1.1.3). The structure of articular cartilage is illustrated in 

figure 1.1. Despite these location specific differences, chondrocytes share a number of 

features which together distinguish them from other cell types. The chondrocytes are 

metabolically active and are responsible for the synthesis and maintenance of a unique 

and stable extracellular matrix with which the chondrocytes surround themselves 

preventing the formation of cell-cell contacts. The chondrocytes are primarily 

spherical in shape, synthesise type II collagen and aggrecan (a large aggregating 

proteoglycan) (Buckwalter and Mankin, 1997) and various other minor collagens, 

proteoglycans and non-collagenous proteins (Neame et al., 1999; Poole et al., 2001). 

These matrix components are assembled by the chondrocyte into the complex 

structure that gives articular cartilage its characteristic properties. This complex
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Chapter 1: Introduction

structure needs to be constantly maintained by the cell, involving replacement of 

degraded matrix components and alterations in the macromolecular composition and 

framework in response to loading of the joint during use (Buckwalter and Mankin, 

1997). Thus the cells must sense these changes in the extracellular matrix composition 

due to degradation and loading and respond accordingly (Buschmann et al., 1995; 

Quinn et al., 1998; Durrant et al., 1999; Salter et al., 2001; Smith et al., 2004).

In the adult organism articular cartilage is avascular, thus chondrocytes derive most of 

their nutrition from the synovial fluid. The nature of this system results in a low 

oxygen concentration in the tissue relative to other tissues as nutrients must first 

diffuse through the synovial fluid and then through the cartilage matrix which is also 

restrictive with respect to molecular size and charge. Therefore, the chondrocyte 

depends primarily on glycolytic metabolism (Buckwalter and Mankin, 1997).

Chondrocyte activity and density within articular cartilage differs significantly 

between the phase of skeletal growth during foetal development and in the early 

stages of life and the phase when skeletal growth has ceased in the adult (Mankin et 

al., 1994). Cartilage is formed from undifferentiated mesenchymal condensations in 

the foetus (Archer et al., 1994; Archer and Francis-West, 2003) and subsequent matrix 

synthesis leads to the separation of cells which assume a spherical morphology. At 

these early stages in the growth of articular cartilage the cell density and metabolic 

activity is high as the chondrocytes proliferate rapidly and synthesise large quantities 

of matrix, thus driving growth. With skeletal maturity, metabolic activity, matrix 

synthesis and cell division declines and hence cell density declines (Stockwell, 1967; 

Leutert, 1980; Buckwalter and Mankin 1997). In the mature skeleton, articular 

chondrocytes rarely undergo mitosis under normal physiological conditions, although 

still synthesise collagens, proteoglycans and other matrix components in an ongoing 

maintenance of the macromolecular framework. With ageing, the capacity of the cells 

to synthesise certain components of the matrix (Thonar et al., 1986; Bolton et al., 

1999) and respond to stimuli, such as growth factors, decreases (Gueme et al., 1995; 

Loeser et al., 2000), thus limiting the ability of the cell to maintain the tissue. These 

age-related changes may ultimately contribute to the development of degenerative 

joint disease (Roughley, 2001).
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Figure 1.1: Histological section of articular cartilage (canine) stained with 

haematoxylin and eosin (Bar = 100pm) (A) and schematic representation of 

human articular cartilage illustrating the different zones and diameter and 

orientation of collagen macrofibrils (inset) (B). Taken from Breinan et al., (2001) 

and Poole et al., (2001) respectively.
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Chapter 1: Introduction

1.1.3 Extracellular matrix

The extracellular matrix (ECM) of articular cartilage is composed of tissue fluid and a 

complex framework of structural macromolecules. As the chondrocytes comprise only 

a small proportion of the total volume, the chemical nature of this complex molecular 

framework dictates the mechanical properties of the tissue. The stiffness and 

resilience of the articular cartilage is provided by the interaction of the tissue fluid 

with the macromolecular framework.

1.13.1 Tissue fluid

Water is the most abundant component of articular cartilage, contributing 80% 

of the wet weight. The interaction of water with the matrix macromolecules 

strongly influences the mechanical properties of the tissue (Maroudas and 

Schneiderman, 1987). The fluid contains dissolved gases, small proteins, 

metabolites and a high concentration of cations to balance the abundance of 

poly-anionic proteoglycans. A portion of the water is able to move freely in 

and out of the tissue. The volume, concentration and behaviour of the water 

within the tissue depends primarily on its interaction with the structural 

macromolecules, in particular the large aggregating proteoglycans that help 

maintain the fluid within the matrix and the concentration of electrolytes in the 

fluid (Buckwalter and Mankin, 1997). The abundance of poly-anionic 

carboxylate and sulphate groups of the proteoglycans attracts cations such as 

Na+. This increase in the osmolarity of the tissue is known as the Donnan 

effect. The increase in Donnan osmotic pressure caused by the cations 

associated with the proteoglycans is resisted by the collagen network. Thus, 

there is a balance of swelling pressure (hydration) and constraining forces 

(collagen network) leading to the formation of a cohesive and strong solid gel.

1.1.3.2 Structural macromolecules

Collagens, proteoglycans and non-collagenous proteins comprise the structural 

macromolecules of the tissue. Collagens contribute about 60% of the dry 

weight; proteoglycans 25-35%; non-collagenous proteins and glycoproteins
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Chapter 1: Introduction

15-20%. Collagens are distributed evenly throughout the thickness of the 

cartilage (except for the collagen rich superficial zone) and the collagen 

fibrillar network provides the tensile strength. Proteoglycans bind to the 

collagenous meshwork or become mechanically entrapped within it. The 

framework is organised and stabilised by non-collagenous proteins 

(Buckwalter and Mankin, 1997).

1.1.3.3 Collagens

More than 20 different collagen types have been identified so far (Gelse et al.,

2003), with types II, VI, IX, X and XI being present in articular cartilage 

(Mankin et al., 1994). Collagens contain a characteristic triple-helical structure 

composed of three polypeptide a-chains. The a-chains of collagen types II 

and XI aggregate together to form cross-banded fibrils that can be seen with 

electron microscopy. The fibrils are organised into a tight meshwork, 

providing tensile stiffness and mechanically entraps large proteoglycans 

(figure 1.2). Collagen types VI, IX and X do not form fibrils and are termed 

non-fibrillar collagens.

The major cartilage collagen which represents 90-95% of the total, is type II 

(Mankin et al., 1994; Buckwalter and Mankin, 1997). Type IX collagen 

molecules bind to the surfaces of the type II fibrils and project into the matrix 

and may also bind covalently to other collagen type IX molecules. Type XI 

collagen molecules bind covalently to type II collagen molecules and may 

form part of the interior structure of the cross-banded fibrils. Although the 

precise function of type IX and XI is uncertain, they probably help in the 

formation and stabilisation of the fibrils and stabilise both the collagenous 

meshwork and the collagen-proteoglycan interaction (Bruckner et al., 1988; 

Mankin et al., 1994). Type VI collagen forms an important part of the matrix 

immediately surrounding the chondrocyte and may be involved with matrix 

stabilisation and chondrocyte attachment to the matrix (Marcelino and 

McDevitt, 1995; Keene et al., 1988). Type X collagen is located only in the 

calcified cartilage zone at the junction of the articular cartilage with the

7



Chapter 1: Introduction

subchondral bone, suggesting a role in mineralisation (Schmid and 

Linsenmayer, 1985).

1.1.3.4 Proteoglycans

Proteoglycans are complex macromolecules that consist of a protein core to 

which are linked extend glycosaminoglycan (GAG) chains. Approximately 

80-90% of all proteoglycans in articular cartilage are of the large aggregating 

type called aggrecan (Mankin et al., 1994; Hardingham and Fosang, 1995) the 

structure of which is illustrated in figure 1.3. These proteoglycans consist of a 

large extended protein core to which are attached up to 1 0 0  chondroitin 

sulphate (CS) and 50 keratan sulphate (KS) glycosaminoglycans chains. The 

protein core is large and complex with several distinct globular and extended 

domains. One extended domain contains the majority of KS GAG chains 

which is adjacent to a large extended domain rich in attached CS GAG chains. 

A G1 globular domain at the N-terminal end of the protein core functions to 

non-covalently bind the proteoglycan to hyaluronate, and this binding is 

stabilised by link protein. As the GAG hyaluronate chain may be long and 

unbranching, many proteoglycans chains (up to 300) may bind, forming a 

large proteoglycan aggregate (Hardingham and Fosang, 1995). The formation 

of the large aggregates helps anchor the proteoglycans within the matrix 

preventing their displacement during deformation of the tissue. Versican is 

another hyaluronate binding proteoglycan from the same family as aggrecan, 

that also includes neurocan and brevican (Margolis and Margolis, 1994). 

Versican is present in articular cartilage to a lesser extent than aggrecan and 

may function (together with aggrecan) to stabilise the ECM and cell-matrix 

interactions (Chen et al., 2003).

Besides the large aggregating proteoglycans in cartilage there are small, 

leucine-rich proteoglycans including decorin, biglycan, fibromodulin, perlecan 

and lumican (Roughly and Lee, 1994; Poole et al., 1996a and 2001). Type IX 

collagen is also considered a proteoglycan as it contains a CS chain (Mankin 

et al., 1994). Decorin has one dermatan sulphate chain, biglycan has two 

dermatan sulphate chains and fibromodulin has several KS chains. Perlecan

8



Chapter 1: Introduction

contains heparan sulphate whereas lumican contains KS. These small non

aggregating proteoglycans have shorter protein cores than do aggrecan 

molecules and do not fill a large volume of the tissue or contribute directly to 

the mechanical behaviour. Instead these proteoglycans may bind to other 

macromolecules and/or influence cell behaviour. Decorin and fibromodulin 

bind type II collagen and may be involved with fibrillogenesis, organising and 

stabilising the type II meshwork (Hedbom and Heinegard, 1993; Mankin et al., 

1994; Roughly and Lee, 1994; Poole et al., 2001). Biglycan is localised in the 

pericellular matrix and may interact with type VI collagen (Roughly and Lee, 

1994).

1.1.3.5 Non-collagenous and non-proteoglycan components

Other matrix components include anchorin CII (a collagen binding 

chondrocyte surface protein involved in anchoring the chondrocyte to the 

collagen fibrils of the matrix), COMP (cartilage oligomeric protein), matrillin- 

I, CILP (cartilage intermediate layer protein), fibronectin and tenascin. The 

functions of the components is not clearly understood but may be involved in 

organisation and maintenance of the macromolecular structure of the matrix 

and cell-matrix interactions (Mollenhauer et al., 1984; Hedbom et al., 1992; 

DiCesare et al., 1994; Chevalier et al., 1994 and 1996; Lorenzo et al., 1998; 

Neame et al., 1999; Poole et al., 2001).
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Hyaluronic acid M onom er

Interstitial fluid

C o lla g en  fibril

A ttach ed  m onom er

40  nm .

Figure 1.2: Molecular organisation of the solid matrix of articular 

cartilage as a fibre-reinforced composite solid matrix. The swelling 

pressure exerted by the proteoglycan keeps the collagen network inflated. 

Taken from Mankin et al., 1994.
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Secon d  globular 
domain (G2)

HA binding 
domain (G1)

Hyaluronate 
(HA)

Link 
protein

KS-rich
region

Keratan sulfate 
chains (KS)

CS-rich
region

C-terminal 
domain (G3)

Chondroitin 
sulfate 

chains (CS)

Protein core

protein 200-400nm

1200 nm

Link 
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Figure 1.3: (A) Schematic diagram illustrating the structure of the 

aggrecan molecule and its binding to hyaluronate. The protein core has 

several globular domains (Gl, G2, and G3), with other regions containing 

the keratan sulphate and chondroitin sulphate glycosaminoglycan chains. 

The N-terminal Gl domain is able to bind specifically to hyaluronate. 

This binding is stabilised by link protein. (B) Schematic diagram 

illustrating arrangement of aggrecan monomers as an aggregate which 

would be immobilised within the collagen network. Taken from Mankin 

et al., 1994.
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1.1.4 Architecture of articular cartilage

1.1.4.1 Zonal arrangements

Articular cartilage has a distinct zonal architecture (figure 1.1), comprising a 

superficial (or tangential zone), a transitional zone, a radial or deep zone and a 

calcified cartilage zone (Buckwalter and Mankin, 1997). The relative size and 

appearance of the zones varies with age, among species and between joints. 

Importantly this distinct architecture is now believed to be pivotal to the 

function and mechanical properties of the tissue.

In each zone, the chondrocytes are responsible for organising the collagens, 

proteoglycans and non-collagenous components into a unique and highly 

ordered structure. Although collagen II and aggrecan are present throughout 

the depth of the tissue, there are subtle differences in collagen II abundance, 

fibril size, orientation (Poole et al., 2001) and proteoglycan aggregate size and 

composition throughout the thickness (Zanetti et al., 1985; Bayliss et al., 1999; 

Poole et al., 2001). This zonal variation in composition is illustrated in figure 

1.1. In addition there are also variations in the presence of specific matrix 

components, for example Del 1 (Pfister et al., 2001) and lubricin 

(Proteoglycan-4 or superficial zone protein) (Schumacher et al., 1999) are 

localised in the surface layers. CILP is localised to the intermediate layers 

(Lorenzo et al., 1998) and the deeper zones are characterised by the presence 

of type X collagen (Schmid and Linsenmayer, 1985).

This biochemical heterogeneity is paralleled by variations in chondrocyte 

cellularity, morphology and metabolic activity in each of the different zones 

(Zanetti et al, 1985; Aydelotte and Kuettner, 1988; Aydelotte et al., 1988; 

Archer et al., 1990). In the superficial zone, the cells are ellipsoid-shaped and 

arranged parallel to the articular surface. In the transitional zone the cells 

assume a spheroidal shape in the deeper zone the cells lie in columns which 

are arranged perpendicular to the joint surface (Buckwalter and Mankin, 

1994). Superficial zone cells in culture are known to secrete less proteoglycan 

than cells lying deeper in the tissue (Aydelotte and Kuettner, 1988) and this
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proteoglycan contains a lower level of KS GAG chains (Zanetti et al., 1985). 

These properties of cultured chondrocytes isolated from the specific zones 

correspond to the known biochemical composition throughout the thickness of 

the tissue. Hence the biochemical composition and consequently biophysical 

properties of the matrix at different depths is a reflection of the specific 

metabolic activities of the cells within the particular zone.

1.1.4.2 Regional variations

Within the zones there are variations or regions in the cartilage matrix 

components, illustrated in figure IB. These are known as the pericellular, 

territorial and inter-territorial regions (Mankin et al., 1994; Buckwalter and 

Mankin, 1997; Poole et al., 2001). In the pericellular and territorial regions the 

chondrocytes bind to matrix macromolecules and protect the cells from 

damage during loading of the tissue. These regions may also act as a system 

whereby signals are transmitted to the chondrocyte following loading and 

deformation of the cartilage, thus allowing the chondrocyte to sense 

mechanical stimuli and respond appropriately (Buschmann et al., 1995; Quinn 

et al., 1998; Durrant et al., 1999; Salter et al., 2001). The primary function of 

the inter-territorial region is to provide the mechanical properties of the tissue 

(Mankin et al., 1994).

Pericellular region: The pericellular matrix covers the cell surface, is rich in 

proteoglycans and contains little collagen. Also present is the cell membrane- 

associated molecule Anchorin CII (Mollenhauer et al., 1984) and the non- 

fibrillar type-VI collagen (Marcelino and McDevitt, 1995). Cytoplasmic 

extensions project from the chondrocyte through the pericellular matrix and 

into the territorial matrix.

Territorial region: The territorial matrix envelopes the pericellular matrix. The 

thin collagen fibrils of the territorial matrix closest to the cell appears to bind 

to the pericellular matrix whereas more distant to the cell the fibrils bisect at 

various angles to form a fibrillar basket around the cells. This basket structure
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is thought to provide protection for the chondrocyte from mechanical loading 

(Mankin et al., 1994; Buckwalter and Mankin, 1997).

Inter-territorial region: This region makes up most of the volume of the tissue 

of adult, mature articular cartilage and contains the largest diameter collagen 

fibrils. In the superficial zone the fibrils are thinner and arranged parallel with 

the joint surface. In the transitional zone the fibrils lie at oblique angles 

relative to the joint surface and in the radial zone the fibrils are arranged 

perpendicular to the surface (Mankin et al., 1994; Buckwalter and Mankin, 

1997).

1.1.5 Changes in structure with age

The development of articular cartilage in the embryo and foetus will be discussed in 

the section 1.1.6. Following birth there is a shift from the immature to the mature 

form of articular cartilage (Mankin et al., 1994). Articular cartilage from neonatal or 

immature animals is relatively thick and blue-white in colour. The thickness of the 

articular cartilage reduces as ossification from the secondary centre of ossification 

progresses. In addition, immature articular cartilage is considerably more cellular than 

mature adult articular cartilage (Leutert, 1980) and there are also differences in the 

thickness of the various articular cartilage zones between immature and mature 

cartilage.

Cell replication in immature articular cartilage occurs at two distinct regions: one 

region occurs subjacent to the articular surface and probably accounts for the growth 

of the tissue during development. The second region occurs above the subchondral 

plate (Mankin, 1962). As the cartilage matures, proliferation becomes confined to the 

region above the subchondral plate and proliferation at the articular surface ceases. 

All mitotic activity ceases in the adult, coinciding with the development of a well- 

defined tidemark.

In addition to changes in cellularity there are also changes in matrix composition with 

age. Water content is higher in immature tissue and slowly reduces to a static level 

that remains constant throughout adulthood. In addition, the collagen content of foetal

14



Chapter 1: Introduction

articular cartilage is lower than that of mature cartilage, with collagen concentration 

rising after birth and maintained throughout life. The major changes that take place in 

the cartilage matrix occur with the proteoglycans. Proteoglycan content is highest at 

birth and diminishes slowly throughout life. In addition, the length of the protein core 

and GAG chains reduce with age, together with the level of proteoglycan aggregation. 

There is also a shift towards reduction in the level of chondroitin sulphate relative to 

keratan sulphate (Thonar et al., 1986; Mankin et al., 1994; Bolton et al., 1999). There 

are subtle differences in the composition of GAG chains of minor proteoglycans such 

as decorin, fibromodulin, biglycan and lumican with age. Some of the changes are due 

to variations in synthesis whereas others are due to variations in degradation 

(Roughly, 2001). Although the functional consequences of these changes remains 

unclear it is likely some of the alterations in composition may predispose the tissue to 

degenerative changes.

1.1.6 Development of articular cartilage

Embryonic skeletal development involves the recruitment, commitment, 

differentiation and maturation of mesenchymal cells into cartilage and bone along the 

intramembranous and endochondral ossification pathways. The process of 

endochondral ossification begins during the sixth week of human embryonic 

development when mesenchymal cells differentiate, condense, and transform into 

chondrocytes which form a cartilaginous model of the early skeleton (Archer, 1994; 

DeLise et al., 2000; Vortkamp, 2001; Tuan, 2004). In the central region of the 

cartilaginous anlage, the chondrocytes hypertrophy and the matrix begins to calcify. 

Subsequently a periosteal sleeve of bone forms around the periphery of the anlage in 

the central portion. By the eighth week, capillary buds invade this central portion of 

the hypertrophied and calcified cartilaginous anlage, which brings mesenchymal cells 

to the region which subsequently differentiate into osteoblasts and osteoclasts 

(Iannotti, 1990). The osteoblasts lay down an osteoid matrix on the spicules of 

calcified cartilage forming trabecular bone. At this stage, the primitive long bone 

element now consists of a central diaphyseal region of trabecular bone with 

cartilaginous regions at both epiphyseal ends. At both interfaces between the 

epiphyseal cartilaginous regions and the central bone portion the growth plates form. 

Longitudinal bone growth at the growth plates is driven by proliferation of pre
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chondrocytes, with subsequent chondrogenic differentiation and hypertrophy, terminal 

differentiation and mineralisation. At around birth, the epiphyseal cartilaginous 

regions ossify through secondary centres of ossification which form in the epiphyseal 

ends (Iannotti, 1990).

The mechanism underlying chondrocytic differentiation during endochondral 

ossification at epiphyseal growth plates has been the focus of much research in recent 

years (Sandell and Adler, 1999; DeLise et al., 2000; Vorthamp, 2001). Cartilage 

growth at epiphyseal plates is regulated by a complex series of molecular signals such 

as bFGF, IGF-I, Indian Hedgehog, parathyroid hormone related peptide, GDF-5, bone 

morphogenetic proteins and wingless signalling systems (Francis-West et al., 1999; 

Sandell and Adler, 1999; Volk and Leboy, 1999; DeLise et al., 2000; Vorthamp, 

2001; Buxton et al., 2003; Tuan, 2004). The factors driving the growth of articular 

cartilage during development have received comparatively less attention, possibly a 

result of a presumption that articular cartilage represents the remnants of the 

embryonic epiphysis that fails to be replaced by bone during endochondral 

ossification (Archer et al., 2003). Although this may still be case, it is now becoming 

clear that the development of articular cartilage is a complex process involving 

numerous signalling mechanisms regulated in a temporal and spatial manner (Archer, 

1994; Archer et al., 1994; Hayes et al., 2001; Hayes et al., 2003; Archer et al., 2003; 

Dowthwaite et al., 2004). In addition, complex temporal and spatial changes in 

patterns of matrix components of articular cartilage during growth have also been 

described (Morrison et al., 1996; Archer et al., 1996). In view of the well documented 

limited repair capacity of articular defects (Campbell, 1969; Hunziker, 2001a), 

understanding the mechanisms underlying the development of articular cartilage and 

the cellular and molecular processes involved in tissue patterning and morphogenesis 

may greatly facilitate the development of regenerative approaches to cartilage repair.

Of particular interest is the manner by which, during development, articular cartilage 

shifts from an immature, highly cellular and predominantly isotropic tissue with 

collagen orientation running parallel to the articular surface, to a mature, anisotropic 

tissue with a distinct zonal architecture with decreased cellularity (Meachim, 1969; 

Leutert, 1980; Mankin et al., 1994) and with collagen fibres predominantly 

perpendicular to the articular surface in the basal regions which then arch over to
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become parallel at the surface (Jeffrey et al., 2001). Does this change in matrix 

structure occur through remodelling of the existing matrix or by replacement of the 

existing matrix (Hayes et al., 2001; Archer et al., 2003)?

How this shift occurs is likely to be explained by understanding the mechanism by 

which articular cartilage develops following joint cavitation. As described earlier, 

early in development, condensation of pre-chondrogenic mesenchyme, via N- 

cadherin, N-CAM and CD44 interactions, begins the process of the formation of the 

cartilaginous skeleton (Archer, 1994; DeLise et al., 2000; Vortkamp, 2001; Tuan,

2004). Initially in the location of the prospective joint there is cartilaginous continuity 

which then segments secondarily through the formation of a non-cartilagenous region 

known as the interzone (Craig et al., 1987; Archer et al., 1994; Archer et al., 2003). 

The interzone comprises a thin layer of elongated cells closely compacted between the 

developing articular surfaces. The interzone becomes an important signalling centre 

(Hartman and Tabin, 2000) as the elements begin to oppose, and joint cavitation 

occurs, driven by the selective high-level synthesis of hyaluronan (Dowthwaite et al., 

1998; Ward et al., 1999) by interzone cells and presumptive synovial cells. The 

interzone subsequently disperses during cavity enlargement as the articular surfaces 

further develop.

In immature rabbit articular cartilage, two zones of proliferation are evident, one 

above the subchondral plate, one just beneath the articular surface. When skeletal 

maturity is reached, no zones of proliferation can be observed (Mankin, 1962 and 

1964). This observation is suggestive that articular cartilage growth occurs by 

apposition from the articular surface rather than by interstitial mechanisms. 

Subsequent studies using BrdU labelling in the articular cartilage of Monodelphis 

domestica (a marsupial bom with the hind limbs at an early stage of development) has 

indeed demonstrated that subsequent to the formation of the secondary centre of 

•ossification, the surface zone is responsible for the appositional growth of articular 

cartilage during development (Hayes et al., 2001). In addition, other studies have 

shown that the surface region has a central role in joint cavitation (Ward et al., 1999) 

and that many growth factors such as IGF-I and -II, and TGFpi-3 and their receptors 

are also highly expressed in this region (Archer et al., 1994; Hayes et al., 2001).
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Although the above evidence illustrates that the surface region plays a key role in the 

development and growth of articular cartilage, such a growth mechanism would 

require the presence of a population of progenitor cells in the surface of the tissue. 

These cells would generate new progeny which would then go onto expand within the 

transitional zone and progress to terminal differentiation in the upper and lower radial 

zones (figure 1.4). The extensive hypertrophy that accompanies terminal 

differentiation during endochondral ossification need not occur in the case of articular 

cartilage as there is no requirement for longitudinal growth. The deeper zones would 

be remodelled and resorbed during endochondral ossification (Hayes et al., 2001).

It is possible, the identification and characterisation of the progenitor cells present 

within the surface regions would further knowledge of cartilage developmental 

mechanisms and may provide insights into potential novel tissue repair routes.
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Progenitor cell (articular surface)

Transit amplifying unit cells 
(transitional zone)

Differentiation

Terminal
differentiation

Figure 1.4: Diagram summarising proposed cell lineage of articular cartilage. 

Progenitor cells in the articular surface divide to give to daughter cells, one being 

another progenitor cell, the other being a transit-amplifying cell within the 

transitional zone. The transit amplifying unit cell can then undergo further cell 

divisions along the chondrocyte differentiation pathway. Note that the maturing 

chondrocytes do not migrate through the matrix. Rather, as the articular 

cartilage grows through apposition, the relative position of the original transit 

amplifying cells moves relative to the original progenitor cells, which remain at 

the articular surface. Adapted from Hayes et al., 2001.
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1.2 ARTICULAR CARTILAGE INJURY AND OSTEOARTHRITIS

1.2.1 Introduction

Normal pain free movement depends on the unique properties of articular cartilage 

(Buckwalter and Mankin, 1997). Damage or degeneration of articular cartilage causes 

joint pain and loss of mobility and is amongst the most frequent cause of impairment 

in middle-aged and older people (Creamer & Hochberg, 1997; Jackson et al., 2001; 

Buckwalter et al., 2004). The degeneration of articular cartilage results from complex 

cellular, metabolic and structural changes in the tissue (Sandell and Aigner, 2001) and 

occurs most frequently in the clinical syndrome of idiopathic or primary osteoarthritis 

(OA). Articular cartilage degeneration may also result from joint injury (Buckwalter, 

2002; Buckwalter and Brown, 2004) or from developmental, metabolic (Lieberman et 

al., 1992) or inflammatory disorders that destroy the articular surface causing 

secondary osteoarthritis (Buckwalter and Mankin, 1997a; Creamer and Hochberg, 

1997).

In order to develop therapies for articular cartilage damage and osteoarthritis we first 

need to understand the biology of the tissue, the process of degeneration and the 

response of the tissue to injury and disease. The overriding feature of articular 

cartilage that pre-disposes the tissue to degeneration is the intrinsic lack of a 

reparative capacity of the tissue following injury and disease (Campbell, 1969; 

Newman, 1998) and was first described in the scientific literature centuries ago 

(Hunter, 1743). Although a limited attempted repair response is evident following 

injury (Campbell, 1969) the repair is ineffectual. This limited repair response 

challenges earlier views that the tissue is an inert material that simply degrades with 

wear and joint use. It is now evident that the degenerative process that occurs during 

idiopathic or secondary OA following trauma or other pathological disturbance is a 

highly complex cycle of events including cell changes, cell signalling and matrix 

changes (Sandell and Aigner, 2001). In addition, besides the articular cartilage, OA 

involves the entire synovial joint including the synovium and underlying bone 

(Buckwalter and Mankin 1997a; Buckwalter et al., 2000).
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This section presents an overview of the current understanding of articular cartilage 

injury and its degeneration, including an introduction to the disease of osteoarthritis. 

Changes that occur at the cellular and biochemical level will be described in order to 

provide a basis for understanding current and future repair strategies.

1.2.2 Impact of diseases of articular cartilage: prevalence and costs

OA affects people of all ethnic groups in all geographic locations. It develops in both 

men and women, although it occurs most commonly in women and it is the most 

common cause of long-term disability in most populations of people over 65. It is 

estimated that more than 20 million Americans have OA; the World Health 

Organisation estimates that 10% of the world’s people over the age of 60 years suffer 

from OA, and that 80% of people with OA have limitation of movement and 25% 

cannot perform major daily activities (Jackson et al., 2001; Woolf and Pfleger, 2003; 

Buckwalter et al., 2004). Interestingly, in areas of China, OA of the hip is reported to 

be 80-90% less frequent than in white persons in the US (Nevitt, et al., 2002).

The prevalence of OA in all joints increases with age. More than a third of people 

over 45 years report symptoms that vary from a sensation of occasional joint stiffness 

and intermittent aching associated with activity, to permanent loss of motion and 

constant deep pain. In some populations, more than 75% of people over the age of 65 

have OA that involves more than one joint (Buckwalter et al., 2004).

After the age of 40, the incidence of OA increases rapidly with each passing decade in 

all joints and in most joints the incidence is greater in women than in men. Because of 

the strong correlation between age and the incidence of OA, the total number of 

people suffering from this disease is rising rapidly as the proportion of the population 

over age 40 increases.

It is reported that the total economic burden of arthritis is 1 to 2.5% of the gross 

national product of western nations and that OA accounts for a major share of this 

burden. OA is estimated to cost more than $60 million per year in the US. OA is 

currently one of the most prevalent chronic conditions in the US and is second to 

heart disease in causing work disability in men over 50 years. These estimates of costs

21



Chapter 1: Introduction

and economic impact do not include pain and suffering, adverse psychosocial effects, 

lost opportunities for increased productivity, decreased ability to participate in regular 

exercise that could improve general health and the costs to family members who help 

provide care for patients with OA (Jackson et al., 2001; Buckwalter et al., 2004; 

Heijbel et al., 2005).

1.2.3 Risk factors

In addition to the disorders responsible for the multiple forms of secondary OA, 

genetic pre-disposition, obesity, female gender, greater bone density and joint laxity 

have been identified as risk factors. Although these factors may increase the risk of 

OA in selected populations, the most important risk factor in all populations is age. 

Repetitive joint use over decades, joint injury, post-traumatic joint incongruity, 

instability or malalignment and joint dysplasia all can create mechanical demands that 

damage articular surfaces (Buckwalter and Brown, 2004; Buckwalter et al., 2004; 

Felson, 2004).

1.23.1 Age

Age is the overriding risk factor for OA. The percent of people with evidence 

of OA in one or more joints increases from less than 5% of people between 15 

and 44 years, to 25-30% of the people between 45 to 64 years of age and to 

more than 60% (may be as high as 90% in some populations) of the people 

over 65 years of age (Buckwalter et al., 2004; Gorevic, 2004).

The composition of the articular cartilage matrix changes with increasing age 

and this is linked to alterations in the activity of the chondrocyte (see section 

1.1.5). Importantly, with increasing age, chondrocyte senescence increases and 

the capacity of the chondrocyte to synthesise matrix components and respond 

to stimuli decreases (Thonar et al., 1986; Mankin et al., 1994; Gueme et al., 

1995; Bolton et al., 1999; Loeser et al., 2000; Martin & Buckwalter, 2002; 

Aigner et al., 2004; Loeser, 2004; Martin et al., 2004) (see section 1.1.2). 

Thus, there is an age-related decrease in the ability of the tissue to repair itself.
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Some of the changes in matrix composition are due to variations in synthesis 

whereas others are due to variations in degradation (Roughley, 2001). 

Chondrocyte senescence is considered to result in phenotypic changes within 

the cell altering the expression of mediators of cartilage destruction such as the 

matrix metalloproteinases (MMPs) and the tissue inhibitors of 

metalloproteinases (TIMPs) (Price et al., 2002). Although the functional 

consequences of these age-related changes remains unclear, it is likely some of 

the alterations in composition may predispose the tissue to degenerative 

changes (Roughley, 2001).

1.2.3.2 Joint injury

Joint injuries and intra-articular fractures frequently lead to progressive joint 

degeneration that causes the clinical syndrome of post-traumatic osteoarthritis 

(Buckwalter and Brown, 2004). The pathophysiology of post-traumatic OA 

has not been fully explained, and it is not simply the magnitude and type of 

injury that determines whether an injured articular surface will repair and 

remodel or undergo progressive degeneration. Joint dislocations, direct and 

indirect joint impact loading, cruciate and collateral ligament, joint capsule 

and meniscal tears all lead to increased risk of OA (Lohmander and Loos, 

1994; Buckwalter and Mankin, 1997a; Buckwalter et al., 2000; Englund et al., 

2003; Buckwalter and Brown, 2004; Felson, 2004). Studies have found men 

with a history of knee injury were at a 5-6-fold increased risk of developing 

osteoarthritis (Felson et al., 1995). This usually occurs in a younger age group 

and can lead to prolonged disability and unemployment. Articular cartilage 

injuries will be covered in greater detail in section 1.2.6.

1.2.3.3 Overuse

Lifelong normal daily activities and regular recreational running have not been 

shown to cause increase the risk of joint degeneration (Buckwalter et al., 

2004). However, repetitive loading of joints over a decade or more, for 

example by individuals in physically demanding occupations such as farmers, 

construction workers, metal workers, miners and pneumatic drill operators
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increases the risk of joint degeneration (Sandmark et al., 2000; Holmberg et 

al., 2004). The risks are highest in jobs that entail both knee bending and 

mechanical loading (Cooper et al., 1994). The strongest association with 

occupational activity has been shown with OA of the knee in men. It is 

thought that up to 30% of all knee OA is attributable to occupational activity 

that involves repeated knee bending, kneeling, squatting or climbing (Felson 

& Zhang, 1998). Sports that subject joints to repetitive high levels of impact 

and torsional loading have also been demonstrated to increase the risk of joint 

degeneration, particularly in association with injuries (Buckwalter and Martin, 

2004). The continuous stress that physical activity places on the joints can 

result in microtrauma and degeneration of the articular cartilage. The onset of 

OA appears to be dependent upon the frequency, intensity and duration of the 

physical activity (Saxon et al, 1999).

1.23.4 Genetics

Epidemiological studies have demonstrated a major genetic component to OA. 

These studies have also revealed differences in risk between males and 

females and for different skeletal sites. Twin pair and family risk studies have 

highlighted the surprisingly large genetic component of OA. Linkage analysis 

studies have highlighted that chromosomes 2, 4, 6, 7, 11, 16 and the X may 

each harbour an OA susceptibility gene. Chromosomes 2, 4 and 16 were 

identified in multiple genome scans and are, therefore, the most likely to 

encode susceptibility. Association analysis of candidates suggests that the 

syntenic genes for collagen II and the vitamin D receptor (12ql2—ql3.1 may 

also encode for OA susceptibility (Loughlin, 2001; Loughlin, 2002; Spector 

and MacGregor, 2004; Peach et al., 2005; Spencer et al., 2005).

1.23.5 Obesity

Obesity is a well accepted risk factor for osteoarthritis and this has been 

demonstrated in numerous studies (Coggon et al, 2001; Nevitt, 2002; Eaton, 

2004; Felson, 2004a; March & Bagga, 2004). Although it is believed the 

increased risk of OA associated with obesity results from both mechanical and
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metabolic factors (Eaton, 2004), other studies (Davis et al., 1990; Sturmer et 

al., 2000) have indicated the risk is associated with the mechanical aspects 

only, with little evidence for the metabolic or systemic effects of obesity. 

Obesity is also associated with the development of disability and the 

radiological progression of OA once established (March & Bagga, 2004).

1.2.3.6 Sex

Although it appears there is a risk factor associated with gender in OA, reports 

vary on the actual prevalence. Data from the U.S. has shown there is a greater 

incidence of hand and knee OA in females, particularly beyond the age of 50, 

with incidences of hip OA being similar (with the exception of women in their 

80’s, where there seems to be a sharp increase in incidence compared to men) 

(Oliveria et al., 1995).

Other studies (March and Bagga, 2004) have suggested that prior to the age of 

50, men have more radiological OA than women, presumed to be largely due 

to secondary OA of the knee following trauma. After the age of 50, the 

prevalence among women increases dramatically. In the hip, the prevalence is 

higher in men aged 55-64. After the age of 65, the prevalence becomes greater 

in women. In the hand, women have a 2.6 times greater risk of developing 

OA. The figures described here are a good estimate of the ratio of OA in men 

and women and it is clear that women are generally at a higher risk of 

developing OA than men.

1.2.4 The degeneration of articular cartilage and osteoarthritis

OA develops most commonly in the absence of a known cause (primary or idiopathic 

OA). Less frequently it may develop as a result of joint injury, joint infection or from 

one of a variety of developmental, metabolic, inflammatory or neurological disorders 

when it is known as secondary or post-traumatic OA (Buckwalter and Mankin, 

1997a).
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OA is characterised pathologically by focal areas of damage to the articular cartilage, 

centred on load bearing areas, associated with remodelling and sclerosis of 

subchondral bone and in many cases the formation of subchondral bone cysts and 

marginal osteophytes (Reimann et al., 1977; Sobokbar et al., 2000; Salaffi et al., 

2003; Durr at al., 2004) (figure 1.5). There will also be varying degrees of mild 

synovitis and thickening of the joint capsule. OA is characterised clinically by the 

presence of symptoms and signs that may include joint pain, restriction of motion, 

crepitus with motion, joint effusions and deformity (Buckwalter and Mankin, 1997a). 

Although OA occurs most frequently in the foot, knee, hip, hands and spine it may 

occur in any synovial joint (Buckwalter, 2004).

Although there is a strong association between age and OA and a widespread view 

that OA develops as a result of “normal wear and tear,” the relationship between joint- 

use, aging and joint degeneration is uncertain. What is clear however is that OA is not 

simply a result of aging and mechanical wear from joint use (Aigner et al., 2004). Nor 

is primary OA caused by inflammation, although inflammatory episodes are common. 

OA consists of a sequence of changes in the cells and matrix that results in the loss of 

structure and function of articular cartilage accompanied by cartilage repair and bone 

remodelling reactions (Sandell and Aigner, 2001). Because of the repair and 

remodelling reactions, the degeneration of the articular surface is not uniformly 

progressive and the rate of degeneration varies among individuals and among joints. 

Occasionally, degeneration occurs rapidly, but in most cases it progresses slowly over 

many years, although it may stabilise or even decrease spontaneously, with at least 

partial restoration of the articular surface and a decrease in symptoms (Buckwalter 

and Mankin, 1997a).

Although OA is primarily characterised by loss of articular cartilage and remodelling 

of subchondral bone and formation of osteophytes, it usually additionally involves all 

of the tissues that form the synovial joint, including synovial tissue, ligaments, joint 

capsule and muscle. The earliest histological changes seen in OA include fraying or 

fibrillation of the superficial zone of articular cartilage, extending into the transitional 

zone (Buckwalter and Mankin, 1997a) (figure 1.6). As the disease progresses, these 

surface irregularities become clefts, more of the articular surface becomes roughened 

and the fibrillation extends deeper into the subchondral bone. There is decreased
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staining for proteoglycan in the superficial and transitional zones, breaching of the 

tidemark by blood vessels from subchondral bone and remodelling of subchondral 

bone (Reimann et al., 1977; Hamerman and Stanley, 1996). Chondrocytes are present 

as small clones, which arise from an attempted repair response involving limited 

chondrocyte proliferation. It is unclear at present whether the subchondral bone 

remodelling occurs initially and leads to the degeneration of the articular cartilage or 

whether loss of articular cartilage increases stresses on the subchondral bone leading 

to remodelling (Radin and Rose, 1986). Interestingly, in the Dunkin-Hartley guinea 

pig model of spontaneous OA, subchondral bone changes occur prior to the onset of 

changes in the articular cartilage (Anderson-Mackenzie et al., 2005). As the disease 

progresses and the cartilage fissures deepen, fragments of cartilage tear and are 

released into the joint space, decreasing the thickness of the cartilage. Eventually, the 

progressive loss of articular cartilage leaves only dense and often necrotic ebumated 

bone.
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Figure 1.5: Slab radiograph of (A) normal and (B) osteoarthritic femoral head. 

Osteoarthritic joint shows marginal osteophytes, change in shape of bone, 

subchondral cysts and focal areas of extensive loss of articular cartilage. Taken 

from Dieppe and Lohmander, 2005.
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Figure 1.6: Comparison of normal (A) and osteoarthritic (B) articular cartilage. 

Coronal sections taken from the knee of a Dunkin-Hartley Guinea pig, stained 

with Safranin O. Loss of proteoglycan staining in the matrix is clearly evident 

together with superficial fibrillation and clefts (black arrow) and chondrocyte 

cloning (white arrow). Scale bar = 250pm.
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1.2.5 Cel! biology of osteoarthritis

It is generally believed that degradation of cartilage in OA is characterised by two 

phases: a biosynthetic phase, during which the chondrocytes attempt to repair the 

damaged extracellular matrix and a degradative phase in which matrix synthesis is 

inhibited and enzymes produced by the chondrocytes digests the extracellular matrix. 

In the degradative phase, erosion of the cartilage is accelerated (Howell, 1986; 

Hamerman, 1989). It is during OA that the biosynthetic activity is unable to keep pace 

with the degradative catabolic activity, and degeneration of the tissue results.

1.2.5.1 Cytokines in the pathophysiology of OA

The presence of inflammation during the development of OA is well 

documented and believed to be involved in the progression of the disease. IL- 

lp and TNF-a are the predominant pro-inflammatory cytokines synthesised 

during the OA process. In addition to IL-ip and TNF-a there are a number of 

other cytokines that may modulate OA progression by having pro- 

inflammatory and anti-inflammatory properties (van de Loo et al., 1995; 

Martel-Pelletier et al., 1999).

The pathogenesis of OA involves the disturbance of the balance of degradation 

and repair of articular cartilage. In addition to changes in the articular 

cartilage, there are also distinct changes that occur in the synovial membrane 

and subchondral bone. Cytokines and growth factors appear to be first 

produced by the synovial membrane, and diffuse into the cartilage through the 

synovial fluid. They activate the chondrocytes, which in turn are able to 

produce catabolic factors such as proteases and pro-inflammatory cytokines. 

In the OA synovial membrane, the synovial lining cells are key inflammatory 

effectors (Martel-Pelletier et al., 1999).

1.2.5.2 Pro-inflammatory cytokines

IL-ip and TNF-a are believed to play key roles in the development of the 

disease process. IL-ip stimulates cartilage degradation and TNF-a drives the
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inflammatory process (van de Loo et al., 1995). IL-ip and TNF-a up regulate 

chondrocyte and synovial cell synthesis of IL-8, IL-6 and LIF in addition to 

increasing protease and prostaglandin production.

Although IL-lp and TNF-a are believed to be the key inflammatory mediators 

in OA, other pro-inflammatory cytokines including IL-8, LIF, IL-11, IL-6 and 

IL-17 have been shown to be expressed in OA. IL-8 is a potent chemotactic 

cytokine for neutrophils and also stimulates them to synthesise reactive 

oxygen intermediates. In OA patients, IL-8 has been detected in the synovial 

fluid, the lining cell layers of the synovium and the chondrocytes and can 

enhance the release of inflammatory cytokines such as IL-1 p, IL-6 and TNF-a 

in human mononuclear cells, which may further modulate the inflammatory 

process (Gueme et al., 1989; Maier et al., 1993; Villigier et al., 1993; 

Dechanet et al., 1994; Deleuran et al., 1994; Martel-Pelletier et al., 1999).

Leukemia inhibitory factor (LIF) has been detected in the synovial fluid of OA 

patients (Dechanet et al., 1994) and has been shown to enhance IL-1 p and IL-8 

expression in chondrocytes and IL-lp and TNF-a in synovial fibroblasts 

(Villigier et al., 1993). In addition, LIF stimulates the expression of 

collagenase and stromolysin by human articular chondrocytes without 

affecting production of specific tissue inhibitor of metalloproteinases (TIMPs).

1.2.5.3 Anti-inflammatory cytokines, antagonists and growth factors

The anti-inflammatory cytokines IL-4, IL-10 and IL-13 have been found in 

increased levels in the synovial fluid of OA patients (Martel-Pelletier et al.,

1999). These cytokines are considered to decrease production of IL-1 p, TNF- 

a  and MMP, up regulate IL-IRa and TIMP-1 and inhibit PGE2 release in 

various cell types. In human OA synovial fibroblasts, IL-10 down regulated 

TNF receptor density. IL-13 also has anti-inflammatory effects in human OA 

synovial tissue. IL-IRa blocks many of the pathological effects of OA 

including PGE2 production in synovial cells, collagenase production by
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chondrocytes and cartilage matrix degradation. Although IL-IRa is elevated in 

OA it is thought that this level may not be enough to inhibit the action of IL-1.

1.2.5.4 Cellular response in OA cartilage

The cellular responses seen in OA cartilage can be summarised into 3 

categories: (1) proliferation and cell death, (2) changes in extracellular matrix 

synthetic activity and degradation, (3) alterations in chondrocyte phenotype.

Proliferation and cell death

Although normal chondrocytes have a limited mitotic potential (depending on 

species), chondrocytes in OA cartilage have a proliferative capacity, albeit low 

(Hulth et al., 1972). The reason for this is unclear and is probably the activity 

that causes characteristic chondrocyte clustering in osteoarthritic cartilage 

(figure 1.6). There have been various reports on the extent of cell death in OA 

cartilage. Although cell death and apoptosis is believed to occur in OA 

cartilage the true extent of the actual amount remains undetermined due to 

varying reports in the literature (Meachim et al., 1965; Vignon et al., 1976; 

Blanco et al., 1998; Kim et al., 2000; Sandell and Aigner, 2001). Figures range 

from 5-11% cell death in normal cartilage to 22 to 51% in OA cartilage.

Changes in extra-cellular matrix synthetic activity and degradation

During OA there is an enhanced synthesis of extracellular matrix components. 

However, loss of proteoglycan from the matrix is a key feature of OA cartilage 

and can be clearly seen in histological sections (figure 1.6). Although some 

researchers have assumed this simply to be due to increased overall 

degradation, the true picture may be more complex as differences in matrix 

loss and chondrocyte activation occur in the different zones of the cartilage 

(Sandell and Aigner, 2001).

In normal cartilage, the overall rate of synthesis of matrix components by the 

chondrocytes matches the level of degradation. However, in OA the balance is
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altered such that the rate of proteoglycan degradation is increased through 

increased action of aggrecanases (Little et al., 1999; Sabatini et al., 2005). In 

addition, there is gross tissue reduction in proteoglycan synthesis although 

there are focal increases in proteoglycan around individual chondrocytes or 

groups of chondrocytes. The inhibition of proteoglycan synthesis and 

increased MMP production is believed to result from altered growth 

factor/cytokine signalling from pro-inflammatory cytokines such as IL-1 and 

TNFa.

Whereas the loss of proteoglycan is believed to be reversible, the degradation 

of collagen is considered to result in irreversible disruption of the collagen 

network (Shingleton et al., 1996). The loss of the proteoglycan is believed to 

be a key factor in the degradation of articular cartilage, resulting in decreased 

mechanical properties, predisposing the collagen network to mechanical 

disruption resulting in tissue fibrillation and Assuring. MMP-13 (collagenase 

3) and aggrecanase are the principle enzymes responsible for collagen and 

proteoglycan degradation in OA. Other MMPs are known to be involved in the 

catalytic process, by either activating pro-MMP13, secondary cleavage of 

collagen helices or directly degrading fibrilar collagen (i.e. MMP-3 

(stromolysin) and MT1-MMP) (Murphy et al., 1987; Ohuchi et al., 1997; 

Cowell et al., 1998).

The elevated MMP activity observed in OA is not only attributed to the 

increased synthesis and activation of MMP but also to a decrease in the 

production of the inhibitors of MMPs, the TIMPs and a2Macroglobulin. Thus, 

there is believed to be a shift in the balance in the regulation of MMP activity 

favouring excessive matrix degradation.

Alterations in chondrocyte phenotype

During OA there is a shift in the phenotype of the chondrocytes which is 

dependant on zone. The chondrocytes in the middle zone begin to express 

collagen IIA, typically associated with chondroprogenitor cells, in addition to
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aggrecan and collagen type II (Sandell and Aigner, 2001). In the upper middle 

zone there is a shift towards expression of collagen III. In the deeper zones the 

cells begin to re-express collagen X, a specific marker for hypertrophy of 

growth-plate chondrocytes.

1.2.6 Articular cartilage injuries

Despite the well known relationship between joint damage and the subsequent 

development of OA (section 1.2.3.5), the natural history of articular surface injuries is 

poorly understood (Lohmander, 1998; Newman, 1998; Buckwalter, 2002; Shelboume 

et al., 2003). Difficulties in diagnosis and limited awareness of these injuries make it 

difficult to determine their incidence or their relationship to the development of OA. 

Difficulties in understanding the natural history of chondral lesions or surface defects 

also arise as such injuries often occur in association with injuries to other tissues of 

the synovial joint such as the menisci, ligaments, joint capsule and synovium 

(Lohmander and Roos, 1994). In these cases, it is difficult to distinguish the effects of 

the cartilage injury from the effects of the injuries to the other tissues. In addition, the 

cartilage injury may be overlooked in such cases. The natural history of the lesion will 

also be dependant on whether the fracture is purely chondral or osteochondral or may 

not even result in visible disruption to the articular surface. Such latter injuries 

probably occur with greater frequency than chondral or osteochondral fractures but 

are more difficult to detect (Buckwalter, 2002).

1.2.6.1 Types of articular surface mechanical injury

Mechanical injuries to articular surfaces can be classified into 3 types: (1) 

Damage to cells and matrix of articular cartilage and subchondral bone not 

associated with visible disruption of the joint surface. (2) Visible disruption of 

articular cartilage limited to the articular cartilage eg. chondral flap tears or 

chondral defects. (3) Visible mechanical disruption of articular cartilage and 

bone known as intra-articular fractures. Each type of tissue damage stimulates 

a different repair response (Buckwalter and Mankin, 1997a; Newman, 1998; 

Buckwalter and Brown, 2004). Each of these types of injury will be dealt with 

in turn.
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1.2.6.2 Cell and Matrix Damage

The intensity and type of joint loading that cause chondral and subchondral 

damage without visible articular surface disruption has not been well defined. 

Impacts above normal physiological levels of joint loading generated during 

activities such as walking or lifting can produce disruption to the cartilage 

matrix, damage or kill chondrocytes, decrease proteoglycan synthesis, 

disruption of the collagen fibril framework and alter the hydration status of the 

tissue (Buckwalter, 2002). All of this can occur without visible disruption to 

the cartilage surface. The ability of chondrocytes to sense changes in matrix 

composition and synthesise new molecules makes it possible for them to 

repair damage to the macro-molecular framework (Buckwalter and Mankin, 

1997). It is unclear as to at what point this type of injury becomes irreversible 

and leads to progressive loss of articular cartilage. Chondrocytes will be able 

to restore the matrix as long as the loss of proteoglycan does not exceed the 

capabilities of re-synthesis and provided the fibrillar framework remains intact 

and enough chondrocytes remain capable of responding in the local area.

Hence when the balance of factors results in an inability to repair the damaged 

tissue, then the chondrocyte will be exposed to excessive stresses due to the 

altered mechanical properties of the tissue caused by the matrix disruption and 

will increase risk of subsequent degeneration.

1.2.6.3 Cartilage disruption

Following injury to cartilage that does not extend into the subchondral bone, 

the chondrocytes proliferate and increase synthesis of matrix molecules near 

the site of the injury. However, the newly synthesised matrix and proliferating 

cells do not fill the tissue defect, and soon after the injury, the increased 

proliferative and synthetic activity ceases (Campbell, 1969; Mankin, 1982; 

Newman, 1998; Buckwalter and Brown, 2004). The cellular proliferation 

results in small clusters of chondrocytes (chondrones), and is seen only in 

injury and osteoarthritis. Although this results in a permanent articular surface
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defect, it is a matter of debate as to whether these lesions progress to OA 

(Newman, 1998; Shelboume et al., 2003).

1.2.6.4 Intra-articular fractures

Injuries that extend into subchondral bone cause haemorrhage and fibrin clot 

formation and activate an inflammatory response. Thus, the sequence of 

events following intra-articular fractures differs from injuries that cause only 

cell and matrix injury or damage limited to the articular cartilage surface only. 

Studies show that soon after injury, blood escaping from the damaged bone 

blood vessels forms a haematoma that temporarily fills the defects site. Fibrin 

forms within the haematoma, creating a fibrin clot that fills the bone defect 

and partially fills the cartilage defect and becomes invaded by undifferentiated 

mesenchymal cells from the marrow (Shapiro et al., 1993). At around 2 weeks, 

a portion of the mesenchymal cells assume the form of rounded chondrocytes, 

synthesising a matrix containing collagen II and proteoglycans, producing a 

hyaline-like matrix in portions of the defect. Later in the process, there are 

significant amounts of type I collagen present (20-35%) in the repair tissue 

and the proteoglycan content decreases significantly (Furukawa et al., 1980). 

In the bony portion of the defect, the cells produce immature bone, fibrous 

tissue and hyaline like cartilage and becomes vascularised. This is in contrast 

to the chondral portion of the defect which is rarely entered by blood vessels.

This fibrocartilagenous repair tissue that fills the osteochondral defect is less 

stiff and more permeable than normal articular cartilage with a composition 

intermediate between hyaline cartilage and fibrocartilage. In addition, the 

orientation and organisation of the collagen fibrils does not resemble that seen 

in normal articular cartilage (Mitchell and Shepard, 1976; Buckwalter and 

Mankin, 1997, Buckwalter and Brown, 2004) and there will be poor 

integration of the collagen fibrils of the repair tissue with that of the residual 

cartilage at the defect edge (Shapiro et al., 1993). By 12 months the matrix and 

cells become more typical of fibrocartilage. Evidence suggests that the 

chondral repair tissue begins to degenerate within 1 year or less (Buckwalter 

and Mankin, 1997a; Buckwalter, 2002). The fibrous tissue usually fragments
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and often disintegrates, leaving areas of exposed bone. The inferior 

mechanical properties of chondral repair tissue are thought to be responsible 

for its frequent deterioration (Furukawa et al., 1980; Buckwalter and Mankin, 

1997a).

It can be seen from this section that damage to articular cartilage occurs frequently in 

the population and the responses to that damage by the tissue is not only complex but 

can also be debilitating. The focus of the next section is to overview the current 

treatment options available today in order to understand where the prospects for 

therapies to be developed in the future may lie.
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1.3 CARTILAGE REPAIR

1.3.1 Introduction

The aims of operative treatment for cartilage defects or osteoarthritis (OA) are to 

decrease or eliminate pain and to improve function through increased range of motion 

(Buckwalter and Lohmander, 1994). Given the multitude of possible origins of these 

lesions, treatment attempts have involved symptomatic measures which are useful 

only if the patient gains relief, joint functionality can be significantly restored and if 

the progression to severe joint degeneration can be prevented or slowed down 

(Hunziker, 2001a).

There exists a wide variety of treatment options available to the clinician or surgeon 

depending on the patient, the nature of the lesion and the extent of the degeneration. 

These options range from relatively simple arthroscopic interventions, such as lavage 

and debridement at one extreme, to total joint replacement for late stage OA. 

Although these treatments tend to involve either the resection (eg. debridement, 

shaving) or replacement (eg. allograft, total joint replacement) of damaged tissue, or 

the relief of load and stresses on the tissue (eg. high tibial osteotomy), the ultimate 

goal is the restoration or regeneration of the joint surface, including hyaline cartilage 

and subchondral bone, which remains elusive (Buckwalter and Lohmander, 1994; 

Hunziker, 2001a). Whereas the techniques involved in resection, relief and 

replacement of damaged tissue have been around for some time and are current 

practice, the techniques for the regeneration of hyaline cartilage are only just being 

developed and are some years away from fruition in a commercial product or accepted 

surgical technique. Current techniques aimed at repair such as microfracture and, 

possibly, autologous chondrocyte implantation (ACI) fall short of regenerating true 

hyaline articular cartilage. In addition, as future techniques tend to involve biologic 

approaches (eg. cell-based therapies), as more studies are done the complexities and 

hurdles that need to be overcome along the way are becoming ever more apparent 

(Hunziker, 1999). This section will focus on current techniques for the treatment of 

articular cartilage defects, prior to a description of tissue engineering based 

approaches in the next section.
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1.3.2 Lavage and arthroscopy

The irrigation or lavage of a joint with solutions of saline is believed to be beneficial 

in osteoarthritic patients with painful knee joints. Some investigators have reported 

the beneficial effects to persist for greater than 12 months (Livesley et al., 1991), 

whereas others have reported no beneficial effect (Gibson et al., 1992). Other 

investigators have suggested the beneficial effects of lavage may be related to a 

placebo effect of the surgical intervention. There is no direct scientific evidence for 

the reported effects of lavage and indeed no biological basis for the beneficial effects 

seen. It is possible the effects may be due to the removal of debris or the rinsing 

removing some of the catabolic cytokines and other mediators involved in the 

generation of pain (Gilbert, 1988; Moseley et al., 2002).

1 3 3  Chondral shaving and debridement

Arthroscopic chondral shaving removes diseased or disrupted cartilage tissue using 

specially designed surgical tools. Although now only performed infrequently it is 

mainly used for the treatment of patello-femoral pain or chondromalacia patellae 

(Ogilvie-Harris and Jackson, 1984). The objective of the shaving is to remove the 

fibrillated cartilage to provide a smoother surface with reduced friction.

Debridement of the joint involves the arthroscopic shaving of severely degenerated 

cartilage combined with lavage, removal of loose bodies, meniscectomy and limited 

excision of osteophytes (McLaren et al., 1991; Gibson et al., 1992). Debridement used 

in combination with lavage has been shown to alleviate pain and provide short-term 

benefit in the treatment of osteoarthritis (Chang et al., 1993; Shannon et al., 2001).

Reports have indicated that debridement decreases the symptoms of OA in most 

patients (Baumgaertner et al., 1990; Ogilvie-Harrie and Fitsialos, 1991). As with 

lavage, the procedures do not initiate a repair response in the cartilage and the effect 

may be due to placebo or a decrease in pain stimulus due to the removal of cartilage 

particulates and/or inflammatory mediators from the joint space (Moseley et al., 

2002).
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1.3.4 Penetration of subchondral bone (abrasion chondroplasty, Pridie drilling 

and microfracture)

These techniques involve surgical penetration of the subchondral bone in regions of 

full thickness cartilage loss, leading to bleeding from the marrow spaces into the 

defect and the formation of a fibrin clot (Hunziker, 2001a). Undifferentiated 

mesenchymal cells from the marrow present in the fibrin clot are responsible for 

forming a fibrocartilagenous repair tissue of limited durability (Kim et al., 1991; 

Shapiro et al., 1993; Menche et al., 1996).

Surgeons have developed various methods for the penetration of subchondral bone to 

stimulate cartilage repair such as drilling (Pridie drilling), abrasion (abrasion 

chondroplasty), use of sharp picks (microfracture) or resection (spongialisation) 

(Insall, 1974; Ficat et al., 1979; Moseley et al., 1996; Akizuki et al., 1997; Sledge, 

2001).

Abrasion arthroplasty involves superficially abrading the subchondral bone so that 

bleeding and fibrin clot are produced. Subchondral drilling (Pridie drilling) is similar 

to abrasion arthroplasty except that the subchondral bone is penetrated in a more 

precise fashion using small drills. Microfracture (figure 1.7) involves the debridement 

of the damaged tissue down to the subchondral bone which is then perforated 

repeatedly with the use of a small pick (Gilbert, 1998; Sledge, 2001). It is currently 

not clear as to which of these methods produces the better results with few clinical 

studies directly comparing the different techniques. Although these procedures can 

lead to positive outcomes, the improvements can be variable which results from the 

unpredictable nature and limited durability of the fibrocartilagenous repair tissue itself 

and the age of the patient (Johnson, 2001; Steadman et al, 2003). One study compared 

abrasion with drilling for the treatment of experimental defects in rabbits and showed 

drilling to give better long term results (Menche et al., 1996). One clinical study 

compared abrasion chondroplasty and osteotomy to osteotomy alone and reported that 

individuals who received the combined approach had improved hyaline repair tissue 

formation after 12 months compared to osteotomy alone (Akizuki et al.,1997). There 

was no difference in clinical outcome observed after 2 years.
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Figure 1.7: Arthroscopic microfracture.

Taken from http://www.kneeclinic.info/probIems_articular_cartilage.php

http://www.kneeclinic.info/probIems_articular_cartilage.php
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1.3.5 Osteotomy

High tibial osteotomy is a palliative surgical treatment frequently adopted for the 

treatment of painful OA (Wright et al., 2005). It is also undertaken to correct large 

extra-articular deformities such as those affecting the valgus or varus which can occur 

in association with OA. Osteotomy is thus undertaken with a view to not inducing 

cartilage repair but to relieve pain, improve alignment as well as biomechanical load 

transfer in knee joints. In cases of painful OA, patients are usually relieved of pain for 

some considerable time.

1.3.6 Perichondrial and periosteal grafting

The use of perichondrial and periosteal tissue to promote repair of cartilage lesions 

was first recognised approximately 50 years ago and has subsequently been utilised as 

an auto-transplantation material for cartilage repair in both rabbits and humans 

(Cohen, 1955; Homminga et al., 1990; Coutts et al., 1992; Kreder et al., 1994).

The basis underlying these studies is that the cambial layer of the perichondrium or 

periosteum maintains chondrogenic activity throughout life (Cohen, 1955; Nakahara 

et al., 1991) and this is considered to be due to a population of adult stem cells within 

this layer that can be driven down a chondrocytic lineage given the correct stimuli (De 

Bari et al., 2001). During the transplantation process, the tissue is oriented such that 

the cambial layer is uppermost on the floor of the full thickness cartilage defect. This 

allows the adult stem cells to proliferate, differentiate and hence repair the defect.

Studies examining the efficacy of periosteal and perichondral grafting in both humans 

and animals have yielded mixed results (Hunziker, 2001a), consequently some studies 

have attempted to improve outcomes by incorporating growth factors such as TGF-p, 

using continuous passive motion or polylactic acid matrices. All have met with 

limited success.
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1.3.7 Osteochondral grafting

The transplantation of multiple autologous osteochondral plugs is often referred to as 

Mosaicplasty™ (Smith &Nephew) or OATS™ (Arthrex) and is a widely used 

technique for the treatment of large osteochondral defects (figure 1.8). The procedures 

can be carried out on an open-joint or by arthroscopy. The procedures involve the 

removal of small cylindrical osteochondral plugs from non-weight bearing portions of 

the joint surface at the periphery of the joint using specialised surgical tools. The 

plugs are then transplanted into the previously prepared and debrided defect area on 

the weight bearing portion of the knee (Hangody et al., 2001; Jakob et al., 2002). 

Although the osseous portion of the plug is considered to become stably integrated 

into the subchondral bone, it is not currently known as to the longevity of the cartilage 

layer (Hunziker, 2001a). Clinical outcomes are reported to be favourable, showing 

reduced pain and improved joint function (Hangody et al., 2001; Jakob et al., 2002).

Allogeneic osteochondral grafting has been in practice for many years and uses fresh 

or cryopreserved tissue derived from cadaveric donors (Meyers et al., 1983; Czitrom 

et al., 1986; Garrett, 1986) and has yielded good results in patients with large 

osteochondral defects, such as those resulting from osteochondritis dissecans, 

extensive trauma, tumour resection or osteonecrosis. The results have been positive 

despite concerns over possible immunological problems or loss of tissue viability 

following cryopreservation (Langer et al., 1978; Stevenson et al., 1989; Sirlin et al., 

2001). However, a disadvantage of the technique is the low availability of suitable 

donor tissue, either fresh or cryopreserved.
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Figure 1.8: (A) Schematic diagram of osteochondral transplantation using 

mosaicplasty. Cylindrical grafts have been removed from the donor site (blue 

arrows) and implanted at the recipient site (red arrow). Taken from 

http://wTvw.pathologv.unibe.ch/Forschung/osteoart/osteoart.htm). (B) Open 

mosaicplasty on the medial and lateral femoral condyles. Taken from Hangody 

et al., 2001.
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1.3.8 Autologous chondrocyte implantation (ACI)

ACI was first described in the literature by Grande et al., (1989) and its subsequent 

use in the clinical setting was reported some years later (Brittberg et al., 1994). The 

procedure involves two operations (figure 1.9). In the initial operation, small portions 

of the patient’s cartilage are harvested during arthroscopy from non-load bearing areas 

of the joint. The chondrocytes are then harvested from this tissue and expanded in 

culture for 3-4 weeks. In the second procedure, the defect is debrided of all fibrous or 

damaged tissue and a periosteal flap is sewn to the edge of the normal tissue forming 

a cover over the defect. The cultured chondrocytes are then placed underneath the 

periosteal flap which may be sealed with fibrin glue (Hunziker, 2001a).

A number of concerns have been raised over the technique. Firstly the technique is 

expensive, involving two procedures and a culturing phase. Secondly it is 

questionable as to whether the outcomes are superior to that of marrow stimulating 

techniques such as microfracture (Knutson et al., 2004; Clar et al., 2005) although 

other studies have shown superiority of ACI over mosaicplasty (Bentley et al., 2003). 

Thirdly, the expansion of chondrocytes in monolayer conditions rapidly leads to their 

dedifferentiation or loss of phenotype (Benya and Schaffer, 1982; Von der Mark et 

al., 1997; Binette et al., 1998). The reversal of this process can occur in 3-dimensional 

culture and using combinations of growth factors but the reversal is rarely complete 

and occurs to a progressively lesser extent the longer the chondrocyte is kept in 

monolayer culture (Benja and Schaffer, 1982; Bonaventure et al., 1994). Thus one 

would expect the cartilage forming capabilities of the transplanted cells to be low.

A study has demonstrated an inability to reproduce in a canine model the results that 

were obtained in rabbits earlier (Grande et al., 1989; Breinan et al., 1997) and showed 

that the transplanted cells did not contribute to the repair response. Other studies have 

shown that the majority of the periosteal flaps are frequently lost from the defect soon 

after implantation (Hunziker, 2001a) unless suitable measures are taken to immobilise 

the joint.

Despite these issues, ACI is widely used in clinical practice with reportedly good to 

excellent results (Brittberg et al., 1994; Peterson et al., 2000). However, a recent
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report of a randomised clinical trial comparing ACI and the less expensive technique 

of microfracture suggests little difference in clinical outcomes and repair responses 

between the two techniques at two years post surgery (Knutson et al., 2004).

A recent development has been the replacement of the periosteal flap with a collagen 

membrane (Haddo et al., 2004). The use of the periosteal flap has been associated 

with complications such as hypertrophy of the graft and decalcification and 

delamination. The harvesting of the periosteum increases operating time and may lead 

to increased pain for the patient. Another development has been the introduction of 

three dimensional scaffolds or matrices in combination with the autologous 

chondrocyte transplantation. In these studies the chondrocytes are seeded onto a 

matrix such as a collagen membrane (MACI™) or hyaluronan (Hyalograft C™) 

(Pavesio et al., 2003; Ronga et al., 2004). The procedures have the advantage that the 

matrix can be secured using fibrin glue without a cover and so are suture-free -  

sutures have been associated with cell death in the healthy cartilage surrounding the 

defect (Breinan et al., 1997). Because no periosteal coverage is required to keep the 

graft in place, surgical time and morbidity are reduced, and handling of the graft is 

much simpler than currently available autologous chondrocyte implantation 

techniques. However, a recent study has shown that although MACI™ is technically 

attractive, clinical, arthroscopic and histological outcomes were similar for both ACI 

and MACI™ (Bartlett et al., 2005).
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Figure 1.9: Diagram illustrating the technique of autologous chondrocyte 

transplantation.

Taken from

http://www.alphaklinik.de/de/toft/diagnose therapie/arthrose/bioprothese-detail
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1.4 TISSUE ENGINEERING

1.4.1 Introduction

It is clear from the previous section that functional restoration of articular cartilage 

remains a challenge and none of the existing treatment regimens gives a consistently 

good outcome (Hunziker, 2001a). Orthopedic tissue engineering is a growing field 

which has the potential to develop novel approaches to the regeneration of cartilage 

defects.

Tissue engineering involves the investigation of how to repair and regenerate organs 

and tissues by the delivery of cells, maybe in combination with growth factors and 

biomimetic scaffolds (Sittinger et al., 2004). Key to the development of tissue 

engineering has been an increase in the knowledge of the role of growth factors in the 

control of proliferation and differentiation of many cells types, combined with the 

development of novel protocols for the rapid expansion of specifically selected cell 

populations. In addition, development of knowledge of the biology and culture of 

adult mesenchymal stem cells has signalled these cells may have an important role to 

play in regenerative biology.

Initial interest in tissue engineering began with the regeneration of skin and epidermis 

(Potten and Booth, 2002) and has since been applied to a whole range of tissue types 

including blood vessels, cardiac tissue, cornea, liver, kidney, bladder and pancreas 

(Atala and Lanza, 2002). Interest in the tissue engineering of cartilage has grown for a 

number of reasons. Firstly, the high incidences and high level of morbidity linked 

with cartilage degeneration and costs associated with it (Jackson et al., 2001; 

Buckwalter et al., 2004). Secondly, articular cartilage is aneural, avascular, and is 

considered to be composed of 1 functional cell type, the chondrocyte (Buckwalter and 

Mankin, 1997), thus negating the need for complex arrangements of multiple cell 

types (although this may be true that cartilage is composed of only 1 cell type, it is 

clear that chondrocytes are very different throughout the thickness of the cartilage 

(Zanetti et al, 1985; Aydelotte and Kuettner, 1988; Aydelotte et al., 1988; Archer et 

al., 1990)). As articular cartilage is avascular, its nutrition is derived from diffusion
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from the synovial fluid and thus chondrocytes may be ideally suited to the growth of 

tissue constructs in vitro in bioreactor conditions.

This section will overview current progress in the area of tissue engineering of 

articular cartilage and the potential use of mesenchymal stem cells in these 

applications. The important components of a tissue engineering system such as 

scaffold and cell type will each be reviewed followed by differing approaches to 

articular cartilage tissue engineering: (1) implantation of mature of semi-mature tissue 

or (2) in situ regeneration.

1.4.2 Scaffolds

Scaffolds or matrices in tissue engineering are intended to act as a 3-dimensional 

template to guide the regeneration of the tissue. Requirements that need to be borne in 

mind in the design of a tissue engineering scaffold are summarised in table 1.1. 

Scaffolds can be of natural or synthetic origin, each having their advantages and 

disadvantages.

1.4.2.1 Collagen

Scaffolds composed of collagen sponges or gels have been evaluated for tissue 

repair for many years (Speer et al., 1979). They have been evaluated in 

combination with cells such as chondrocytes (Kawamura et al., 1998) and 

bone marrow derived mesenchymal stem cells (Wakitani et al., 1994), 

sometimes with the inclusion of growth factors (Toolan et al., 1996).

1.4.2.2 Fibrin

Fibrin is a natural choice for a scaffold in articular cartilage tissue engineering 

due to its role in normal wound healing and its part in the repair of full 

thickness articular cartilage defects (Shapiro et al., 1993). Fibrin is pro- 

inflammatory with numerous roles involving cell adhesion, migration and 

binding of growth factors (Clark, 2001). In addition, the degradation products 

also have pro-inflammatory effects. Fibrin has been used in combination with
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Matrix properties Biological basis

Porosity Cell migration, ingress and egress of nutrients and cell

waste products

Carrier Lodgement and release of signalling substances

Adhesion Cell attachment

Biodegradability Physiological remodelling

Volume stability Smooth surface contour of repair tissue flush with that of

native articular cartilage

Biocompatibility Good contact with the native tissue compartment

Bonding Enhances interfacial integration between collagen fibrils

in repair and native tissue compartments

Internal cohesiveness Prevention of matrix outflow

Elasticity Resiliency during and following dynamic or static

deformation

Structural anisotropy Promotion of native anisotropic tissue organsiation

Table 1.1: Requirements of a scaffold for tissue engineering of articular 

cartilage. Adapted from Hunziker, 2001a.
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chondrocytes (Hendrickson et al., 1994) and with combinations of 

chondrocytes and growth factors (Fortier et al., 1999) or with growth factors 

alone (Nixon et al., 1999).

1.4.2.3 Agarose and Alginate

Agarose and alginate are polysaccharide hydrogels derived from seaweed 

(Frenkel and Di Cesare, 2004). Although both agarose and alginate have been 

used extensively in in vitro studies of chondrocyte differentiation (Benya and 

Shaffer, 1982; Bonaventure et al., 1994; Yaeger et al., 1997), studies in vivo 

have yielded poor results in cartilage repair studies. Alginate and agarose have 

slow resorption rates, and elicit a foreign body reaction (Rahforth et al., 1998; 

Diduch et al., 2000; Fragonas et al., 2000).

1.4.2.4 Chitosan

Chitosan is a co-polymer of glucosamine and N-acetylglucosamine and may 

be modified to form a hydrogel. Although in vitro it has been evaluated as to 

its ability to support chondrocyte growth and differentiation (Lahiji et al.,

2 0 0 0 ) it has not yet been used in in vivo cartilage repair studies.

1.4.2.5 Hyaluronan (HA)

Hyaluronan (Hyaluronic acid) is a major component of the cartilage matrix. 

Scaffolds composed of cross-linked HA have been used in conjunction with 

chondrocytes (Brun et al., 1999) and bone-marrow-derived mesenchymal stem 

cells (Radice et al., 2000) and favourable results have been obtained in vivo 

(Solchaga et al., 1999 and 2000). HA is also currently used clinically in 

autologous chondrocyte implantation techniques (Pavesio et al., 2003).

1.4.2.6 Polylactic acid/polyglycolic acid (PLA/PGA)

These polymers have been utilised in cartilage repair applications for over 10 

years (Vacanti et al., 1988; Freed et al., 1993; Vacanti et al., 1994; Cao et al.,
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1997) in the form of foams and fibrous mats. The scaffolds have been used 

chiefly to serve as a 3 dimensional scaffold for in vitro culture of chondrocytes 

to generate semi-mature or mature tissue prior to implantation.

1.4.3 Cell type

The choice of cell type for tissue engineering is key. Obviously the cell must be able 

to form a cartilage-like matrix. Ideally the cell type must support extensive expansion 

while retaining its ability to form a cartilaginous matrix in the appropriate conditions. 

In addition the cell type should be abundant in a readily accessible source.

1.43.1 Chondrocytes

Not surprisingly chondrocytes have been extensively studied in cartilage tissue 

engineering protocols. Both autologous (Grande et al., 1989) and allogeneic 

chondrocytes (Kawamura et al., 1998) have been investigated on fibrin 

(Hendrickson et al., 1994), agarose (Sittinger et al., 1994) or PGA scaffolds 

(Vacanti et al., 1988; Freed et al., 1993; Vacanti et al., 1994; Cao et al., 1997).

Although in general, positive results have been obtained, questions have been 

raised about the immunologic properties of allogeneic chondrocytes (Kawabe 

and Yoshinao, 1991) and the potential of chondrocytes to re-express the 

chondrocytic phenotype following expansion in monolayer culture (Benya and 

Shaffer, 1982; Bonaventure et al., 1994).

1.4.3.2 Perichondrial/periosteal cells

The chondrogenic potential of perichondrial and periosteal tissue has been 

known for some time (Cohen, 1955) and cells derived from these tissues have 

been investigated in tissue engineering applications (Chu et al., 1997; 

Dounchis et al., 2000). Despite the advantage that these cells may represent a 

precursor cell population with a high proliferative and differentiative capacity 

irrespective of donor age (De Bari et al., 2001) these cells have not proceeded 

past pre-clinical studies.
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1.4.3.3 Synovial cells

The chondrogenic capacity of synovial cells and tissue is well documented 

(Nishimura et al., 1999; De Bari et al., 2001a) and is believed to result from a 

common pool of chondrogenic precursor cells that has important functions 

during the development of the joint (Dowthwaite et al., 1998; Archer et al., 

2003). Although isolated synovial cells have not yet been used in tissue 

engineering studies for cartilage repair, studies have been attempted to use 

growth factors such as TGF-p to recruit synovial cells in situ into partial 

thickness defects (Hunziker and Rosenberg, 1996).

1.4.3.4 Stromal cells of the bone marrow

Mesenchymal stem cells (MSCs) were first identified in the bone marrow 

stroma by Owen and Friedenstein (1988) who isolated bone forming 

progenitor cells from the rat marrow. The cells have the capacity to 

differentiate into cells of connective tissue lineages, including bone, fat, 

cartilage and muscle. In addition, they play a role in providing the stromal 

support system for haematopoietic stem cells in the marrow. MSCs represent a 

very small fraction, 0 .0 0 1 -0 .0 1 % of the total population of nucleated cells 

(Pittenger et al., 1999). However, they can be isolated and expanded with high 

efficiency, and induced to differentiate to multiple lineages under defined 

culture conditions. The cells have generated a great deal of interest because of 

their potential use in tissue engineering and regenerative medicine (Deans and 

Moseley, 2000; Tuan et al., 2003; Barry and Murphy, 2004).

The strong chondrogenic potential of the cells derived from both rabbit 

(Johnstone et al., 1998) and human bone marrow (Mackay et al., 1998) led to 

suggestions as to the possibilities of the use of the cells in articular cartilage 

tissue engineering (Johnstone and Yoo, 2001). Indeed, the cells have been 

used in in vivo cartilage repair studies (Wakitani et al., 1994; Im et al., 2001) 

and in a human study for articular cartilage repair using ACI-like protocols 

(Wakitani et al., 2002).

53



Chapter 1: Introduction

1.4.4 Tissue engineering approaches

One approach to the functional tissue engineering of cartilage involves the in vitro 

cultivation of cartilaginous constructs that would have a capacity to further develop 

structurally and biomechanically following implantation, and to integrate completely 

with the adjacent bone and cartilage. In these approaches, chondrogenic cells are 

seeded at high density onto biodegradable scaffolds and cultured in bioreactors 

(specialised environments designed to promote chondrogenesis) (Freed et al., 1999; 

Vunjak-Novakovic, 2003). This process is designed to generate immature but 

functional constructs which would subsequently remodel and mature following in vivo 

implantation.

However, these approaches have encountered problems with cell source, mechanical 

fixation and tissue integration and little success has been achieved to date in vivo. This 

has led many groups to attempt to induce chondrogenesis in situ using exogenous 

growth factors on suitable carrier matrices. For example studies have utilised IGF-I in 

fibrin matrices or TGF-p in a variety of matrices in partial and full thickness defects 

(Hunziker and Rosenberg, 1996; Nixon et al., 1999; Hunziker, 2001; Hunziker et al.,

2001). Some studies have combined these scaffolds with cells, for example 

chondrocytes in fibrin and IGF-I (Fortier et al., 1999), chondrocytes in agarose and 

FGF-2 (Weisser et al., 2001) and perichondrial cells in a polylactide matrix containing 

TGF-p (Dounchis et al., 1997).

It is unclear as to which of these approaches may prove to be successful in the future. 

Little success has been achieved to date over many decades of research (Hunziker, 

2001a). However, our increasing knowledge of cell signalling and developmental 

biology, combined with further advances in biomaterial development may lead to 

efficacious therapies in the future.
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1.5 AIMS OF THIS THESIS

As described in this introduction, articular cartilage is a complex tissue, reliant on a 

complex framework of extracellular matrix that dictates the mechanical properties of 

the tissue. The extracellular matrix is maintained by the chondrocyte, which 

constantly synthesises and remodels the matrix in response to changes in its 

composition and alterations in patterns of loading and other factors (Buckwalter and 

Mankin, 1997).

Current transplantation and tissue engineering strategies such as ACI (Brittberg et al., 

1994) have employed in vitro expanded chondrocytes from the full depth of the 

cartilage. However it is clear that chondrocytes differ in size, shape and metabolic 

activity throughout the thickness of the tissue (Zanetti et al, 1985; Aydelotte and 

Kuettner, 1988; Aydelotte et al., 1988; Archer et al., 1990) and these differences in 

chondrocyte phenotype are responsible for subtle differences in matrix composition 

throughout the depth of the tissue. Thus, in ACI-like procedures, these sub

populations of chondrocytes will not be re-implanted in the zones they are present in 

the native tissue. In light of this, some studies have been carried out to assess the 

functional importance of the various sub-populations of cells in tissue engineering 

protocols (Waldman et al., 2003). Furthermore, section 1.1.6 introduced the 

developmental biology of the synovial joint and the importance of a putative 

population of chondroprogenitor cells in the surface region of the articular cartilage 

which drive the appositional growth of the tissue during development. In view of the 

possible role of these cells in driving development they could also potentially be 

applied to new tissue repair or tissue engineering therapies for the treatment of defects 

in articular cartilage and may also further our knowledge of cartilage developmental 

biology. In addition, in terms of cartilage repair, the re-establishment of the specific 

zones after injury or matrix degradation due to OA would be beneficial from a 

functional aspect since most repair strategies generate a fibrocartilagenous matrix and 

even when a hyaline matrix is achieved, there is little evidence of zonal variation 

(Kim et al., 1991; Shapiro et al., 1993; Menche et al., 1996). The matrix of this repair 

tissue does not have the same biochemical and hence biomechanical features of the 

normal articular cartilage and thus is prone to further injury or incomplete restoration 

of function.
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The isolation and characterisation of these articular cartilage progenitor cells from the 

superficial zone (SZCs) is the focus of this thesis, together with an exploration of the 

cells capabilities in potential repair therapies.

Chapter 2: General materials and methods:

General protocols used throughout the thesis.

Chapter 3: Characterisation:

This chapter describes the methods used to demonstrate the presence of the cells in 

the superficial zone of immature bovine articular cartilage and the methods to produce 

enriched cultures of the cells. It also describes the immunolabelling of the cells with 

antibodies to a number of cell surface markers.

Chapter 4: Fibronectin-EDA+:

Fibronectin-EDA+ is a form of fibronectin expressed during development, wound 

healing and tumourigenesis. This chapter describes the demonstration of the 

expression of fibronectin-EDA+ by articular cartilage progenitor cells in the 

superficial zone and the effect of fibronectin-EDA+ on articular cartilage progenitor 

cell behaviour.

Chapter 5: Articular cartilage progenitor cell expansion and chondrogenic 

ability:

The ability of a cell to undergo extensive in vitro expansion while still retaining its 

chondrogenic ability would be a desirable characteristic for tissue engineering 

purposes. This chapter describes the extensive subculture of enriched populations of 

bovine articular cartilage progenitor cells and an evaluation of their chondrogenic 

potential during the expansion process.
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Chapter 6: Surgical cartilage cutting techniques and ex vivo cell transplantation 

defect creation:

The objective of this chapter is to determine whether the implantation of enriched 

populations of superficial zone articular cartilage progenitor cells into experimental 

defects in articular cartilage can reduce the cell death and matrix loss at the wound 

margin associated with surgical cutting techniques.

Chapter 7: Human studies:

Previous studies describing evidence for the existence of a population of articular 

cartilage progenitor cells within the superficial zone of articular cartilage have 

investigated developing or neonatal oppossum, murine or bovine tissue. The prospect 

of isolating articular cartilage progenitor cells from human cartilage would be of 

interest as the cells may replicate the extensive expansion and chondrogenesis 

properties exhibited by their bovine counterparts (Chapter 5). This chapter describes 

attempts to generate cultures enriched in human articular cartilage progenitor cells and 

examine the extent of retention of chondrogenic capacity during the expansion 

process.
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2.1 TISSUE DISSECTION

For studies on bovine tissue, metatarsophalangeal joints of 7 day-old calves were 

obtained from an abattoir. The joints were washed thoroughly using Virkon and 

transferred to a laminar flow hood. The skin was removed and the joint opened 

aseptically to expose the articular cartilage (figure 2 .1 ).

For cartilage cutting studies, strips of cartilage, approximately 30mm in length, 4mm 

wide and 3mm deep were removed and transferred to PBS (Oxoid) until used (figure 

2.1). For histological staining and immunostaining, tissue was further chopped into 

smaller pieces as required prior to embedding.
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Figure 2.1 Photograph of 7 day-old bovine metatarsophalangeal joints with 

cartilage strips removed (A) and a photograph of the removed cartilage strip (B).
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2.2 CELL CULTURE

2.2.1 Materials

All cell culture materials were obtained from Sigma unless otherwise stated. Heat 

inactivated foetal calf serum was obtained from Helena Biosciences.

2.2.2 Methods

All procedures were carried out in a class II laminar flow biological safety cabinet 

using standard aseptic technique. All reagents and disposable culture vessels were of a 

tissue culture grade.

2.2.2.1 Media components

Cell culture media was composed of the following components: Dulbecco’s 

Modified Eagles Medium (DMEM) with 4500mg/l glucose. DMEM was 

supplemented with the following components: Foetal calf serum (FCS) (10%), 

L-Glutamine (2mM), Penicillin (50IU/ml)/Streptomycin (50ug/ml) and Non- 

essential amino acids (1%). Tissue culture media was stored at 4°C.

2.2.2.2 Passaging and general cell culture maintenance

All cells were maintained at 37°C in a 5% CO2 atmosphere. When cells 

reached confluence the spent tissue culture media was removed and the 

monolayer was washed with PBS (Oxoid). Sufficient pre-warmed 

trypsin/EDTA (0.05% w/v/0.02% w/v) was added to the flasks to cover the 

monolayer. The cells were incubated in trypsin/EDTA at 37°C until they had 

started to round up and lift from the plastic. The cells were finally dislodged 

by gently tapping the flask and sufficient DMEM + 10% FCS was added to 

bring the final volume to lOmls. The cell suspension was centrifuged at 300g 

for 5 minutes at 4°C. Following centrifugation the supernatant was removed 

and the pellet resuspended in fresh DMEM + 10% FCS. Aliquots of the
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suspension were transferred to fresh flasks as appropriate to obtain the desired 

split ratio.
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2.3 HISTOLOGY AND IMMUNOSTAINING

2.3.1 Materials

All solvents, phosphate buffered formaldehyde and acetic acid were obtained from 

Fisher Scientific. Paraffin wax, DPX mountant and Weigert’s haematoxylin were 

supplied by Surgipath. Gill’s and Mayer’s haematoxylin were supplied by TAAB. All 

other materials and reagents were obtained from Sigma unless otherwise stated.

2.3.2 Paraffin wax embedding

For wax embedding all tissue samples were washed once with PBS and fixed 

overnight in phosphate buffered formaldehyde. Samples were chopped into small 

portions and transferred to embedding cassettes and infiltrated with wax using a 

Tissue-Tek VIP processor according to the protocol shown in table 2.1.

2.3.3 Sectioning

Paraffin wax blocks were sectioned at a thickness of 5 pm using a Reichert-Jung 

microtome. Sections were floated onto water and transferred onto ‘Superfrost’ glass 

slides (BDH). Sections were dried overnight on the slides at 40°C and then stored at 

room temperature.

2.3.4 Histological staining

Paraffin wax sections were dewaxed and stained using a Leica Autostainer XL. 

Staining protocol for Haematoxylin and Eosin is shown in table 2.2. Staining protocol 

for Safranin O/haematoxylin is shown in table 2.3. Staining protocol for Picrosirius- 

red is shown in table 2.4. Following staining, sections were mounted using DPX 

mountant and coverslipped.
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Reagent Concentration Time (hours:mins)

1 IMS 50% 1 : 0 0

2 IMS 70% 1 : 0 0

3 IMS 90% 1 : 0 0

4 IMS 1 0 0 % 1:30

5 IMS 1 0 0 % 1:30

6 IMS 1 0 0 % 1:30

7 Chloroform 1 0 0 % 0:30

8 Chloroform 1 0 0 % 0:30

9 Chloroform 1 0 0 % 0:30

1 0 Wax - 0:30

1 1 Wax - 0:30

1 2 Wax - 1 : 0 0

Table 2.1: Protocol for paraffin wax embedding using the Tissue-Tek VIP tissue 

processor.

IMS -  Industrial methylated spirits

64



Chapter 2: General materials and methods

Reagent Time (min)

Xylene 5

Xylene 5

100% IMS 2

100% IMS 2

Distilled water 2

Gills haematoxylin 2-4

Gills haematoxylin 2-4

Tap water 2

Tap water 2

Scott’s tap water 2

Tap water 2

70% IMS v/v 1.5

90% IMS v/v 1.5

Alcoholic eosin 4

100% IMS 2.5

100% IMS 2

Xylene 2

Xylene 2

Xylene Mount

Table 2.2: Staining protocol for Haematoxylin and Eosin (H&E)
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Reagent Time (min)

Xylene 5

Xylene 5

100% IMS 2

100% IMS 2

95% IMS v/v 2 0  secs

70% IMS v/v 2 0  secs

Distilled water 1

Weigerts iron haematoxylin 6

Tap water 2

1 % acidified alcohol 1 sec

Tap water 3

0.02% Fast green FCF (aqueous w/v) 4

1 % acetic acid 3 secs

0.1% Safranin O 6

95% IMS v/v 1

100% IMS 2

100% IMS 2

Xylene 2

Xylene 2

Xylene Mount

Table 2.3: Staining protocol for Safranin O/Haematoxylin
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Reagent Time (min)

Xylene 5

Xylene 5

100% IMS 2

100% IMS 2

Distilled water 2

Celestine blue 14

Distilled water 0.5

Mayer’s haematoxylin 14

Tap water 2

Scott’s tap water 2

Tap water 1

Picro-sirius red 60

Acidified water 2

Acidified water 2

100% IMS 2

100% IMS 2

100% IMS 2

Xylene 2

Xylene 2

Xylene Mount

Table 2.4: Staining protocol for Picro-sirius red
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2.3.5 Reagents for histological staining

Scott’s tap water

2g Sodium hydrogen carbonate 

lOg Magnesium sulphate 

1000ml Tap water

Acidified water

5ml glacial acetic acid 

1000ml Water (tap or distilled)

1% acidified alcohol

5ml Hydrochloric acid (cone)

500ml IMS

Celestine blue

2.5g Celestine blue B 

25g Ferric ammonium sulphate 

500ml Distilled water 

70ml Glycerin

Picro-sirius red

500ml Saturated aqueous picric acid 

0.5g Sirius red F3BA
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2.3.6 Frozen embedding and sectioning

For frozen embedding, tissue samples were chopped into small portions 

(approximately 4mm x 4mm), immersed in OCT (Gurr) and then frozen using a liquid 

nitrogen cooled iso-pentane slush. 7 pm sections were cut from the specimens using a 

Leica Jung CM3000 cryostat and transferred onto poly-lysine coated slides (Sigma). 

Sections were fixed by immersion in acetone for 10 minutes at room temperature and 

air-dried. Slides were stored at -20°C until used.
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3.1 INTRODUCTION

The introduction (section 1.1) described the complex, zonal architecture of articular 

cartilage. The chapter described how although the main components of the articular 

cartilage extracellular matrix such as collagen II and the large aggregating 

proteoglycan aggrecan, are present throughout the thickness of the tissue, there are 

subtle differences in minor collagens and non-collagenous proteins from the surface 

zone to the deeper calcified layer (Zanetti et al., 1985; Bayliss et al., 1999; Poole et 

al., 2001). This biochemical heterogeneity results from different chondrocyte 

morphology and phenotypes at different depths in the tissue (Zanetti et al, 1985; 

Aydelotte and Kuettner, 1988; Aydelotte et al., 1988; Archer et al., 1990). For 

example, the surface zone is characterised by flattened, discoid cells that express 

lubricin (superficial zone protein, proteoglycan-4) and Del 1 (Schumacher et al., 

1999; Pfister et al., 2001). The mid zone is composed of rounder cells that express 

cartilage intermediate layer protein (CILP) (Lorenzo et al., 1998) and the deeper 

zones and calcified layers express collagen type X and alkaline phosphatase (Schmid 

and Linsenmyer, 1985).

In order for such complex tissue architecture to be established, the differentiation and 

proliferation of the chondrocytes during development of the tissue must be stringently 

controlled both temporally and spatially. It is now becoming clear that the surface 

zone is centrally involved in the regulation of the development of articular cartilage. 

The surface zone is an important signalling centre during development, where many 

growth factors are expressed (Archer et al., 1994; Hayes et al., 2001) and also plays a 

major role in the morphogenesis of the joint via differential matrix synthesis (Ward et 

al., 1999). Studies using BrdU labelling in Monodelphis domestica, a marsupial bom 

at an early stage of development, have illustrated that subsequent to the formation of 

the secondary centre of ossification, articular cartilage growth is appositional in nature 

(Hayes et al., 2001), a mechanism which requires the presence of population of 

stem/progenitor cells in the surface zone.

Stem cells have previously been identified in the epidermis on the basis of high cell 

surface expression of a 5pi integrins and rapid adhesion to extracellular matrix
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proteins (Jones and Watt, 1993). The cells that adhered most rapidly to substrates 

such as fibronectin possessed the ability to form large colonies from an initial low 

seeding density. Fibronectin is a component of the cartilage extracellular matrix, and 

articular cartilage chondrocytes are known to express the 015P1 integrin homodimers 

which are known to bind to fibronectin (Salter et al., 1995).

This chapter describes the identification of a population of articular chondrocytes 

within the superficial zone of developing articular cartilage with a high affinity for 

fibronectin and the ability to form large numbers of colonies from a low seeding 

density as described in Dowthwaite et al., (2004). These cells are believed to represent 

the stem/progenitor cell population hypothesised in Hayes et al., (2001). This chapter 

also describes a limited study of the expression of a number of cell surface proteins by 

superficial zone cells in vivo as well as an examination of the relative differences in 

cell size throughout the thickness of the tissue. These latter aspects have been 

investigated with a view to identifying possible routes to more rapid or more efficient 

means of isolation/enrichment of articular cartilage progenitor cells.
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3.2 MATERIALS AND METHODS

3.2.1 Differential adhesion and colony forming assays

3.2.1.1 Fibronectin coating of plates

Bovine plasma fibronectin (Sigma) was reconstituted to 2mg/ml with 2ml 

sterile deionised water and incubated at 37°C for 30 minutes to dissolve. This 

was diluted to lOpg/ml using Dulbecco's PBS with ImM MgC^ and lmM 

CaCb (Sigma). This solution was added to each well of 24 well plates and 

incubated overnight at 4°C for coating. The fibronectin solution was then 

aspirated and the plates were blocked with 1% BSA prior to addition of 

chondrocytes. Control plates were treated with Dulbecco's PBS with ImM 

MgCl2 and ImM CaCh containing 1% BSA (uncoated wells).

3.2.1.2 Cell isolation

Chondrocytes were isolated from the surface, middle and deep zone articular 

cartilage of 2-3 week old bovine metatarsophalangeal joints by fine dissection. 

The portions of cartilage were placed directly into Dulbecco's Modified Eagle 

Medium (DMEM) containing 5% foetal calf serum (FCS) and 0.1% pronase 

(Merck, 4xl06  units/g) and incubated at 37°C for 3 hours. Cartilage was then 

washed once with PBS and incubated in DMEM containing 5% FCS and 

0.04% collagenase (Worthington, 237U/mg) and incubated overnight at 37°C 

with gentle shaking.

Tissue digests were strained through a 70pm cell strainer (Falcon) to remove 

debris. The resultant filtrate was centrifuged at 300g for 5 minutes to pellet 

cells. Cell pellet was resuspended in 10ml of serum free DMEM, centrifuged 

at 300g for 5 minutes and the pellet resuspended in 10ml serum free DMEM. 

Cell number was then counted according using a Neubauer haemocytometer 

and resuspended to a final concentration of 4000 cells/ml.
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3.2.1.3 Differential adhesion and colony forming efficiency assays

After isolation, 750 chondrocytes in serum free DMEM were seeded into wells 

of coated and uncoated 24 well plates and incubated at 37°C for 20 minutes. 

After 20 minutes, the media was gently swirled and transferred to a second 

well and incubated for a further 20 minutes at 37°C. After 20 minutes the 

media was gently swirled and discarded. After removal of media at both time 

points, fresh DMEM containing 5% FCS was added to each well. Plates were 

incubated at 37°C in a 5% CO2 atmosphere.

Within 3 hours after initial plating, chondrocyte adhesion was assayed by 

counting the total number of cells adhering to the bottom of the dish using an 

inverted microscope equipped with phase contrast optics. Adhesion was 

expressed as a percentage of the initial seeding density.

After 7 days, media was removed from the wells and washed with PBS. Cells 

were then fixed for 1 0  minutes with ice-cold methanol and allowed to air dry. 

Wells were washed once with distilled water to remove the salt residue. 

Numbers of colonies (>32 cells) per well were either counted using darkfield 

illumination or the cells were stained using 0.1% crystal violet for 30 minutes 

and then washed extensively in distilled water prior to viewing using phase 

contrast microscopy. Colony forming efficiency (CFE) was calculated by 

dividing the number of colonies by the initial number of adherent cells.

Data was analysed using Student’s t-test to determine where significant 

differences exist. Differences were considered significant at the 0.05 

confidence limit.

3.2.2 Immunolabelling: Notch 1, BST-1, CD106 and CD166

Strips of cartilage were removed from 2-3 week old bovine 

metatarsophalangeal joints were frozen, embedded in OCT and sectioned as 

described in section 2 .1 .
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For immunolabelling, sections were washed twice for 10 minutes in PBS 

(Oxoid) prior to blocking with 2.5% normal rabbit serum (Dako) in PBS for 

20 minutes at room temperature. Blocking solution was wicked off using a 

tissue and sections were incubated with primary antibodies in PBS overnight 

at 4°C as described in table 3.1.

Sections were then washed three times for 10 minutes with PBS and incubated 

with secondary antibodies for 45 minutes at room temperature followed by 

washing again three times for 10 minutes. Sections labelled with biotinylated 

secondary antibodies were subsequently incubated in a 1 : 1 0 0  dilution of 

streptavidin-FITC (Dako) followed by washing three times for 10 minutes in 

PBS. Sections were then mounted with Vectashield (Vector) containing 

propidium iodide, coverslipped and viewed using a Leica confocal microscope 

and ArKr laser exciting at 488nm and 568nm.

Controls comprised of sections incubated with non-specific IgG raised in the 

same species as the corresponding primary antibody.
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Primary antibody Final
concentration

Secondary
antibody

Dilution

Notch 1 
(2 0 0 ja.g/ml)

Goat anti 
Notch 1 (Santa 
Cruz)

2 0 |ag/ml Rabbit anti 
goat IgG-FITC 
conjugated 
(Sigma)

1 in 1 0 0

BST1 
( 1  mg/ml)

Mouse anti
human BST 1 
(MBL)

2 0 jig/ml Rabbit anti 
mouse IgG, 
FITC- 
conjugated 
(Sigma)

1 in 1 0 0

CD 105 
(0.25mg/ml)

Goat anti
human TGF- 
pRIII (R&D)

12.5|ig/ml Rabbit anti 
goat IgG, 
biotin- 
conjugated 
(Sigma)

1 in 1 0 0

CD 166 
(0 .2 mg/ml)

Rabbit anti
human 
ALCAM 
(R&D)

1 0 |ig/ml Rabbit anti 
goat IgG, 
biotin- 
conjugated 
(Sigma)

1 in 1 0 0

Table 3.1: Details of antibodies used in immunolabelling studies.
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3.2.3 Cell size analysis

Superficial, middle and deep zone chondrocytes were isolated from the articular 

cartilage of 2-3 week old bovine metatarsophalangeal joints as described in section 

3.2.1.2.

Aliquots of the isolated cell suspensions were pipetted onto a haemocytometer and 

coverslipped. Cells were viewed using an inverted Olympus CK40 microscope and 

photographed at xlOO magnification ensuring sufficient cells were present in the 

image (n>120). Image analysis using Image-Pro plus software calibrated with a 

graticule was carried out to determine the average diameter of cells present in the 

image. Statistical analysis was carried out using the Student’s t-test.
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3.3 RESULTS

3.3.1 Differential adhesion

Table 3.2 shows the initial cell adhesion over the two 20 minute time points for 

superficial, middle and deep zone chondrocytes cultured on fibronectin coated and un

coated wells (BSA coated).

Significant differences in adhesion were evident between cells from all zones grown 

on fibronectin for 20 minutes and those grown on uncoated dishes for 20 minutes. 

Although there was no significant difference in adhesion between the first 20 minute 

time point and second 20 minute point for the superficial zone cells grown on 

fibronectin, there was a significant difference for the middle and deep zone cells 

between the time points when grown on fibronectin (p<0.05 and p<0.005 

respectively). Significant differences in adhesion were noted between superficial 

zones cells and middle zone cells (p<0.005), superficial zone cells and deep zone cells 

(p<0.05) and middle and deep zone cells (p<0.05) when cultured for 20 minutes on 

fibronectin.

3.3.2 Colony forming assays

Figure 3.2 shows the colony forming efficiency (CFE) of superficial, middle and deep 

zone chondrocytes cultured on fibronectin coated and uncoated wells for 7 days after 

the differential adhesion assay. CFE of the cohort of superficial zone cells that 

adhered to fibronectin within the first 20 minutes was significantly greater than the 

cohort of superficial zones cells than bound to fibronectin during the second 20 

minute incubation and all other middle and deep zone cell cohorts (p<0.01).
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Percentage cell adhesion

SFZ20 SFZ40 MZ20 MZ40 DZ20 DZ40
Fibronectin

coated
6.01±1.23 5.01±0.52 13.17±1.88 9.1811.37 7.2210.32 4.0210.21

Uncoated

(BSA

coated)

1.21±0.10 2.22±0.34 4.5911.18 3.0011.00 4.0011.98 3.0512.02

Table 3.2: Initial adhesion to fibronectin coated and uncoated we lls. SFZ =

superficial zone cells; MZ = middle zone cells; DZ = deep zone cells; 20 = first 20 

minute time point; 40 = second 20 minute time point, n = 4

Figure 3.1: Image illustrating colony formation by the population of superficial 

zone cells that binds to plasma fibronectin within 20 minutes. The adherent cells 

were cultured for 7 days in 5% FCS. Viewed using darkfield illumination on a 
stereomicroscope with x4 magnification.
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Figure 3.2: Colony forming efficiency of surface, middle and deep zone 

chondrocytes plated onto fibronectin coated and uncoated plates and cultured 

for 7 days in 5% FCS. FN = fibronectin coated; UN = uncoated; S= superficial 

cells; M = middle zone cells; D = deep zone cells; 20 = first 20 minute time point; 

40 = second 20 minute time point. *p<0.01 compared to all other cohorts.
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3.3.3 Immunolabelling: Notch 1, BST-1, CD106 and CD166

Figure 3.3A and B are confocal microscope images showing the immuno-localisation 

of Notchl in 2-3 week old bovine cartilage. Figure 3.3B is a higher magnification 

image of the superficial zone. Red fluorescence is a result of propidium iodide 

labelling of cell nuclei. Arrows illustrate the articular surface. Immediately apparent is 

that Notchl expression is almost entirely confined to the uppermost 2-3 cell layers of 

the cartilage. Figure 3.4 shows confocal microscope images of the immuno- 

localisation of BST-1, CD105 and CD166 in 2-3 week old bovine articular cartilage. 

BST-1 and CD 105 appear to be expressed differentially in the superficial zone. There 

was no noteable expression of CD 166. No expression of any of the proteins was 

detectable in the middle or deep zones of the cartilage. No green fluorescence was 

noted in any of the control sections.
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Figure 3.3: Confocal microscope images showing immunolocalisation of Notch 1 

in 2-3 week old bovine articular cartilage at low magnification (A) and higher 

magnification of the superficial zone (B). Scale bars = 100pm and 10pm in (A) 

and (B) respectively.
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Figure 3.4: Images showing immunolocalisation of BST-1 (A), CD105 (B) and 

CD166 (C). Arrows indicate articular cartilage surface. Scale bar = 50jim
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3.3.4 Cell size analysis

The diameter of chondrocytes from the surface, middle and deep zones of articular 

cartilage was determined using image analysis immediately following isolation. 

Figure 3.5 shows representative photographs of a superficial, middle, and deep zone 

chondrocytes respectively, viewed using phase contrast optics. Images analysis was 

used to determine the average diameter of large numbers of superficial (n=124), 

middle (n=275) and deep zone (n=182) chondrocytes and the results are shown in 

figure 3.6. There was a significant difference in average diameters between both 

superficial zone and middle zone (p>0.05) and superficial and deep zone cells 

(p>0.005).
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Figure 3.5: Phase contrast images of superficial (A), middle (B) and deep (C) 

zone articular chondrocytes immediately following isolation. Scale bar = 50pm
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Figure 3.6: Average cell diameter of superficial, mid and deep zone chondrocytes 

(means +/- SEM). *p < 0.05, **p < 0.005 compared to superficial zone.
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3.4 DISCUSSION

This chapter and published data (Dowthwaite et al., 2004) has described the use of 

differential adhesion to serum fibronectin to identify a population of progenitor cells 

within the surface layers of developing bovine articular cartilage. The cells are 

capable of forming large numbers of colonies from an initially low seeding density, 

unlike cells isolated from the middle and deeper zones which also have a high affinity 

for fibronectin. The strong adhesiveness of the chondrocytes to fibronectin is 

explained by the high level of expression of the asPi integrin subunits, the fibronectin 

receptor (Dowthwaite et al., 2004). Interestingly, although surface zone cells express 

higher levels of the aspi subunits than middle and deep zone cells, this does not 

correspond with increased adhesiveness to the fibronectin substrate, rather middle 

zone cells exhibited a higher affinity for fibronectin but lack colony forming ability 

and may signify a transit amplifying cell population.

Previous studies have documented the expression of Notch family members during 

articular cartilage and growth plate development (Hayes et al., 2003). The expression 

of Notch 1 at the surface of the developing murine cartilage was mirrored in this 

chapter by Notch 1 expression at the surface of developing bovine articular cartilage. 

Genes of the Notch family encode a series of type I transmembrane receptors involved 

in controlling cell fate during development (Artavanis-Tsakonas et al., 1999; Bianchi 

et al., 2006). The signals transmitted by Notch receptors, combined with other cell 

factors, influence differentiation, proliferation and apoptotic events at all stages of 

development. For example, in skin, activation of Notch by the ligand Delta promotes 

terminal differentiation (Lowell et al., 2000), whereas in the growth plate, Delta- 

Notch 2 signalling inhibits the differentiation of pre-hypertrophic to hypertrophic 

chondrocytes (Crowe et al., 1999). Data described in Dowthwaite et al., (2004) 

suggests that Notch 1 plays a significant role in the signalling mechanisms controlling 

the clonality of surface zone chondrocytes, although its precise role in this regard is 

unclear, data suggests Notch 1 signalling maintains clonality, promoting proliferation 

and inhibiting differentiation.

In addition to Notch 1, data described here shows further proteins that are 

differentially expressed in the surface layers of developing bovine articular cartilage,
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bone marrow stromal cell antigen-1 (BST-1; CD157) and CD105 (endoglin). BST-1 is 

a highly glycosylated, glycosylphosphatidylinositol (GPI)-anchored membrane 

protein with a molecular weight of 43 kDa. which displays ADP ribosyl cyclase 

activity and facilitates pre-B cell growth. It is expressed in the bone marrow stroma 

and is thought to be involved in the regulation of haematopoiesis (Podesta et al., 

2005). Studies using gene chip analysis to compare gene expression between surface 

zone and middle zone chondrocytes highlighted the differential expression of BST-1 

by surface zone cells (B Thomson, personal communication). Immunolabelling 

studies described here have confirmed this finding at the protein level. The role of 

differential expression of BST-1 by the surface zone cells is unclear at present. 

CD 105, also known as endoglin is a homodimeric membrane glycoprotein and is 

thought to play a key role in cellular interactions with transforming growth factor-P 

(TGF- p). The precise role of endoglin in the surface layers is unknown. High levels 

of are known to be expressed in this region (Hayes et al., 2001) and thus, CD 105 may 

play a role in the regulation of TGF- P signalling in the surface regions during 

development.

Although Notch 1, BST-1 and CD 105 appear to be differentially expressed by the 

superficial zone chondrocytes, an examination of the data reveals that expression of 

these proteins is not restricted to progenitor cells. From the data it is clear that only 1- 

2% of the cells in the superficial zone are capable of forming colonies whereas the 

majority of the cells in the superficial zone appear to express these proteins. In the 

case of Notch 1, 75% of the superficial zone cells have been determined to express 

Notch 1 (Dowthwaite et al., 2004). Thus, these proteins could not be considered 

markers of the progenitor cells.

Chondrocytes are known to exhibit different phenotypes and morphologies 

throughout the depth of the tissue (Zanetti et al, 1985; Aydelotte and Kuettner, 1988; 

Aydelotte et al., 1988; Archer et al., 1990). In order to compare cell phenotype 

throughout the depth of the tissue, a protocol is needed for optimal separation of the 

different zones. Various methods of dissecting articular cartilage into separate zones 

of cartilage have been reported (Archer et al., 1990; Sun and Kandel, 1999), although 

it is unlikely these techniques yield pure preparations of the different types of 

chondrocytes, nor do they give cell populations that correspond exactly with the
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different zones of the tissue. The finding in this chapter that the middle and deep 

zones possess different sizes compared to the surface zone cells raises the possibility 

of the use of density gradient centrifugation to prepare more uniform and more pure 

fractions of chondrocytes (Min et al., 2002) that also correspond more accurately to 

the different zones of the tissue.

In conclusion, the surface zone of immature bovine articular cartilage contains a 

progenitor cell population that is responsible for the appositional growth of articular 

cartilage. The focus of the following chapters is to further characterise the cells and to 

investigate the potential of the cells in human cartilage repair therapies.
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CHAPTER 4 

FIBRONECTIN-EDA+
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4.1 INTRODUCTION

It is well accepted there is a close relationship between cellular phenotype and 

specialised extra-cellular (ECM) matrix formation. Cells synthesise an ECM 

according to their state of maturation and function and matrix components are able to 

modulate fundamental cellular properties, for example proliferation and 

differentiation (Adams and Watt, 1993). Tissue modulation processes in embryonal 

and immature tissues require a supporting and connecting extracellular matrix. In this 

respect, the ECM protein fibronectin has been extensively studied and found to be a 

nearly ubiquitous cell-cell and cell-matrix adhesion molecule.

Fibronectins (FNs) are multifunctional adhesive glycoproteins present as an insoluble 

form in the ECM and as a soluble form in various body fluids such as plasma. FNs are 

involved in many cellular processes, acting as substrates for cell migration and 

adhesion during embryogenesis, tumour progression, tissue repair and blood clotting 

(Hynes, 1990). FNs are disulphide-bonded dimers of two closely related subunits, 

each consisting of three types of homologous repeating units termed types I, II and III 

(Kosmehl et al., 1996). The domain structure of fibronectin is illustrated in figure 4.1. 

These repeats are organised into a series of functional domains that bind to integrins, 

collagens, heparin and heparan sulphate, fibrin, and FNs themselves.

FNs also interact with cells at three distinct regions: the central cell binding domain 

(CCBD), the COOH-terminal heparin-binding domain (Hep2), and the type Ill- 

connecting segment (IIICS) including the CS1 region. CCBD is the major cell- 

adhesive domain of FN and contains the Arg-Gly-Asp (RGD) motif and the Pro-His- 

Ser-Arg-Asn (PHSRN) sequence that are recognised by members of the integrin 

family of cell adhesion receptors, including a5(31, the primary FN receptor in many 

cell types (Manabe et al., 1997). Interaction of a5pl with CCBD has been shown to 

transduce signals that regulate cell proliferation, differentiation, and apoptosis 

(Giancotti and Ruoslahti, 1990; Meredith et al., 1993).

FNs purified from different sources have been determined to possess different subunit 

sizes. This heterogeneity of FN subunits arises mainly from alternative splicing of a

90



Chapter 4: Fibronectin-EDA+

primary transcript at three distinct places termed EDA, EDB and IIICS (Kombliht et 

al., 1985). The EDA and EDB segments are each encoded by single exons and 

comprise intact type III repeats, whereas the IIICS segment consists of five distinct 

variants due to exon subdivision. Up to 20 different FN subunits may result from 

alternative splicing at these regions.

Although there is substantial evidence that alternative splicing at these regions is 

regulated in a tissue-specific and onco-developmental manner, little is known about 

the specific functions of these various isoforms. Soluble plasma FN produced by adult 

hepatocytes contains neither EDA or EDB segments in both subunits and lacks the 

entire IIICS segment in one of the subunits (Yamada et al., 1985), whereas insoluble 

cellular FNs expressed during wound healing and in fetal and tumour tissues contain a 

greater percentage of EDA and EDB segments than those expressed in normal adult 

tissues (Camemolla et al., 1989; fffench-Constant et al., 1989; fffench-Constant and 

Hynes, 1989). Correspondingly, fibroblastic, tumourigenic and fetal cell lines express 

greater quantities of FNs with EDA and/or EDB segments. The presence of the EDA 

segment within the FN molecule has been shown to promote cell spreading and 

migration (Manabe et al., 1997) and regulate cell cycle progression and mitotic signal 

transduction through up-regulation of integrin-mediated mitotic signal transduction 

(Manabe et al., 1999). Thus EDA containing FN appears to be associated with cellular 

processes requiring high levels of cell proliferation and migration as occurs in 

tumourigenesis, embryogenesis and wound healing.

Specific temporal and spatial changes in the content of the extracellular matrix or in 

expression of cell adhesion molecules is likely to be involved in the regulation of 

cartilage differentiation and chondrocyte function (Dessau et al., 1980; Adams and 

Watt, 1993; Tuan, 2004). In addition, cartilage homeostasis is partly regulated by 

chondrocyte-extracellular matrix interactions and FN is known to play a role in 

chondrocyte adhesion and mechano-transduction signalling events (Millward-Sadler 

et al., 2000). Interestingly, although FN-EDA has been demonstrated to be absent 

from mature articular cartilage (Chevalier et al., 1996; MacLeod et al., 1996) its 

expression has been demonstrated in the surface layers of human fetal articular 

cartilage (Salter et al., 1995) and in chick embryonic limb pre-cartilage mesenchyme 

(Kuo et al., 2002; Peters et al., 2002; White et al., 2003), thus suggesting a specific
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role for the isoform during chondrocyte differentiation. Furthermore, antibodies 

specific for the EDA region inhibited chondrogenesis of limb micro-mass cultures in 

vitro and when injected into chick limb buds in vivo, caused moderate to severe 

skeletal malformations (Gehris et al., 1996 and 1997). Thus, the function of the EDA 

region appears to be the regulation of mesenchymal cell spreading (White et al., 2003) 

therefore permitting and/or promoting adequate cell-cell interaction to take place 

during the condensation form of chondrogenesis. The tissue localisation of FN-EDA 

during development appears to overlap with the predicted location of the articular 

cartilage progenitor cells (Salter et al., 1995). The enhanced adhesiveness of FN-EDA 

and its ability to promote cell spreading, migration and proliferation via increased 

binding to the a5pl integrin (Manabe et al., 1999) may be important to the 

maintenance of phenotype of the progenitor cells and/or necessary for supporting the 

high proliferative potential of the cells in this region.

The aims of this study were three-fold:

[1] Determine the expression of FN-EDA in immature bovine articular cartilage.

[2] Evaluate the expression of FN-EDA by fibroblast, tumour and fetal cell lines 

and purify FN-EDA from media conditioned by a selected cell line using immuno- 

affinity chromatography.

[3] Compare the difference between plasma fibronectin and purified FN-EDA on 

superficial zone and middle zone chondrocyte attachment and colony forming 

efficiency.
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Figure 4.1: Model of the domain structure of a fibronectin subunit. Taken from 

Kosmehl et al., 1996.
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4.2 MATERIALS AND METHODS

4.2.1 Immuno-localisation of Fibronectin-EDA in immature articular cartilage

4.2.1.1 Fibronectin-EDA immunolabelling

Strips of cartilage were removed from 7 day-old bovine metatarsophalangeal 

joints as described in section 2.1. The cartilage was embedded in OCT and 

sectioned as described in section 2.3.6.

For immunolabelling, sections were washed twice for 10 minutes in PBS 

(Oxoid) prior to blocking with 2.5% normal rabbit serum (Dako) in PBS for 

20 minutes at room temperature. Blocking solution was then wicked off using 

a tissue and sections were incubated with 50pg/ml IgG of a monoclonal mouse 

anti-fibronectin-EDA antibody (Oxford Biotechnologies) in PBS overnight 

and 4°C. Sections were washed three times for 10 minutes with PBS and 

incubated with a 1:100 dilution in PBS of a biotinylated rabbit anti-mouse 

secondary antibody (Dako) for 45 minutes at room temperature followed by 

washing three times for 10 minutes. Sections were then incubated with a 1:100 

dilution in PBS of a Streptavidin-FITC conjugate (Amersham Pharmacia) for 

1 hour at room temperature followed by washing for three times for 10 

minutes. Sections were finally mounted with Vectashield (Vector, 

Peterborough) containing propidium iodide for visualisation of cell nuclei, 

coverslipped and viewed using a Leica confocal microscope with an ArKr 

laser exciting at 488nm and 568nm.
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4.2.1.2 Fibronectin-EDA/Notchl double labelling

Protocol was repeated as described above with the addition of 20pg/ml of the 

polyclonal goat anti-human Notch 1 (C-terminal) antibody (Santa Cruz) 

together with the anti-fibronectin-EDA antibody. Detection was carried out 

using a rabbit anti-goat-FITC conjugated secondary antibody (Dako) for 

Notchl and a biotinylated rabbit anti-mouse secondary antibody followed by a 

streptavidin-Texas Red conjugate (Amersham Pharmacia) for fibronectin- 

EDA. The use of Texas Red provides a greater separation of emission spectra 

from FITC than TRITC and also excites to a greater degree on the 568nm 

spectral line of the ArKr laser than TRITC. Sections were mounted with 

Vectashield (Vector, Peterborough) without propidium iodide. Special care 

was taken to minimise crossover of fluorescence between the two photo

multipliers due to emission spectra overlap by reduction of laser power at the 

specific excitation values.

4.2.13 Controls

Control sections were incubated with the same concentration of non-immune 

mouse IgGl and/or goat IgG.

4.2.2 Purification of Fibronectin-EDA from conditioned media

In these studies, fibroblastic, tumourigenic and fetal cell lines were used as these 

would be expected to produce greater quantities of FNs with the EDA segment (see 

section 4.1).

4.2.2.1 Fibronectin-EDA immunocytochemistry on cell lines

Human dermal fibroblasts (passage 4), MRC-5 cells (human fetal lung 

fibroblasts) (passage 22) and MG-63 cells (human osteosarcoma) (passage 

107) were passaged and maintained as described in section 2.2. Cells were
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counted using a haemocytometer and seeded into 4-well chamber slides at

100,000 cells/well and grown to confluence.

Monolayers were washed three times with PBS and fixed for 10 minutes with 

-20°C methanol. Monolayers were then washed three times for 10 minutes 

with PBS and blocked with 2.5% normal rabbit serum in PBS for 20 minutes. 

Monolayers were washed once with PBS and incubated with 50pg/ml IgG of a 

mouse monoclonal anti-FN-EDA antibody (Oxford Biotechnologies) in PBS 

for 90 minutes. Monolayers were again washed three times for 10 minutes 

with PBS, incubated with a 1:100 dilution of a biotinylated rabbit anti-mouse 

secondary antibody (Dako) for 1 hour, washed three times for 10 minutes with 

PBS and incubated with a 1:100 dilution of a streptavidin-FITC conjugate 

(Amersham Pharmacia) in PBS for 1 hour. Monolayers were then washed 

three times for 10 minutes with PBS, mounted with Vectashield (Vector, 

Peterborough) containing propidium iodide, coverslipped and viewed using a 

Leica confocal microscope with an ArKr laser exciting at 488nm and 568nm.

4.2.2.2 Fibronectin-EDA ELISA on conditioned media

ELISAs were used semi-quantitatively as a guide to the efficiency of 

production of fibronectin-EDA by the cell lines.

For coating of plates, media conditioned by various cell lines for various 

amounts of time was pipetted into the wells of 96 well plates at 200pl/well. 

Cell lines used are illustrated in table 4.1. MG-63 and MRC-5 cells were used 

to condition media over a 6 day period. In addition, MG-63 cells were allowed 

to condition media in the absence of serum. The use of media without serum 

would be preferable as serum contains large quantities of plasma fibronectin. 

Samples of this treatment were also taken over time to look at the extent of 

accumulation of FN-EDA in the media over the conditioning period. Human 

dermal fibroblasts and RCM-1 cells were allowed to condition media for a 

greater length of time as these cells took longer to reach confluence. 

Dermagraft conditioned media was also used (Supplied by Advanced Tissue
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CaCb and MgCE) was used for coating. Coating was allowed to take place 

overnight at 4°C.

PBS-T was prepared by adding 0.04g sodium azide and 0.1ml Tween-20 to 

200ml PBS. After coating, wells were washed five times with PBS-T and then 

blocked with 5% low fat milk powder in PBS-T for 2 hours at 37°C. Plates 

were washed five times with PBS-T and incubated with lOOpl of lOpg/ml 

anti-FN-EDA antibody (Oxford Biotechnologies) in PBS-T containing 1% low 

fat milk powder overnight at 4°C. Plates were then washed five times with 

PBS-T and incubated with lOOpl of an alkaline phosphatase conjugated rabbit 

anti-mouse secondary antibody (Sigma, Poole) diluted 1:3000 in PBS-T 

containing 1% low fat milk powder for 90 minutes at 37°C. Plates were then 

washed five times and the substrate added (lOmg p-nitrophenyl phosphate in 

lOmM diethanolamine, ImM MgCl2 , pH 9.8) and development of yellow 

colouration monitored and photographed.

In addition to the above, wells coated with plasma fibronectin were detected 

using a pan-fibronectin antibody (rabbit anti-human FN; Dako) diluted 1:100 

and detected using a horseradish peroxidase conjugated goat anti-rabbit 

secondary antibody at 1:100 dilution (Dako). The substrate for this consisted 

of 200pl of lOmg/ml tetramethyl benzidine in DMSO and 3 pi of hydrogen 

peroxide added to 20ml of 0.1 M sodium acetate buffer pH 6.0. Development 

of blue colouration monitored and photographed.
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Cell line Description Passage number Length of time 

conditioned (days)
MG-63 in serum-free 

media
Human

osteosarcoma

116 1

MG-63 in serum-free 

media
Human

osteosarcoma

116 2

MG-63 in serum-free 

media
Human

osteosarcoma

116 6

MG-63 Human

osteosarcoma

117 6

MRC-5 Human fetal 

lung fibroblast

43 6

Human dermal 

fibroblasts
Human

fibroblast

30 8

RCM-1 Human

adenocarcinoma

70 9

Table 4.1: Cell lines used to condition media for ELISA to evaluate FN-EDA 

content.
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4.2.2.3 Production of fibronectin-EDA immuno-affinity column

Anti-FN-EDA antibody (2mg) was dialysed twice against coupling buffer 

(0.1M NaHCC>3 , 0.5M NaCl, pH8.3) for 90 mins and overnight respectively at 

4°C using 10,000 MWCO dialysis tubing. CNBr activated Sepharose 4B 

(Amersham Pharmacia Biotech) (lg) was swollen in ImM HC1 and washed 

with >200ml ImM HC1 on a scinter funnel. The dialysed antibody was mixed 

with the gel and rotated at room temperature for 2 hours before the remaining 

active sites were blocked by incubation in 0.1 M Tris-HCl for 2 hours at room 

temperature. The gel was then washed with 3 cycles of high and low pH buffer 

to ensure removal of unbound material, transferred to PBS containing 0.02% 

sodium azide and packed into a column and equilibrated at lOml/h.

Aliquots of antibody (2 x 20pl) were removed prior to mixing with gel. In 

addition, aliquots of supernatant (2 x 20pl) were removed after incubation 

with gel. These aliquots were removed for protein estimation using the BCA 

assay (Pierce) according to the manufacturer’s instructions to evaluate degree 

of antibody coupling to the gel.

4.2.2.4 Affinity purification of fibronectin-EDA from conditioned media

Immuno-affinity chromatography methods used were similar to that described 

by Miyashita et al., (1998). Two confluent flasks of MG-63 cells were 

transferred to serum-free media and the media collected after two days, (p- 

amidino-phenyl)methanesulphonyl fluoride (PMSF; Sigma, Poole) was made 

up by dissolving 34.8mg in 95% ethanol. This was added at a ratio of 1:100 to 

the collected media to bring the final concentration to 2mM PMSF. Media was 

stored at -70°C until used.

All chromatographic steps were carried out at 4°C. Forty ml of the conditioned 

media was applied to column at lOml/h and re-circulated. Unbound material 

was washed from the column using PBS, fractions were collected every 10 

minutes and the absorbance at 280nm determined using a Perkin Elmer
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Lambda 2 spectrophotometer. When the absorbance reached a stable baseline, 

FN-EDA was eluted from the column with elution buffer (20mM CAPS, 

150mM NaCl, lOmM EDTA, pHl 1). Eluted fractions with peak absorbance at 

280nm were pooled and dialysed against 41 of lOmM CAPS, 150mM NaCl, 

ImM CaCb, pH 11 overnight at 4°C using 10,000 MWCO dialysis tubing. 

Aliquots were taken for protein estimation, SDS-PAGE and ELISA and the 

remainder stored at -70°C.

ELISA of the un-fractionated conditioned media, the unbound material from 

the column and eluted fractions were carried out as described above. Media 

and solutions from the column were added to the wells of the 96-well plates at 

200pl/well and coating was allowed to take place overnight at 4°C.

For SDS-PAGE, aliquots were freeze-dried and reconstituted to lOOpg/ml 

protein with deionised water. Ten pi aliquots of 1OOpg/ml of purified FN- 

EDA, plasma fibronectin (Sigma, Poole) and cellular fibronectin (Sigma, 

Poole) were prepared. Three pi of sample buffer (see below) was added to 

each of the samples. The total sample (lpg) of plasma fibronectin, cellular 

fibronectin and purified FN-EDA from the column was applied to a 4-12% 

bis-acrylamide gel (Nupage-Novex) and run at 200V for 2 hours in a running 

buffer of 25mM Tris, 190mM glycine, 0.1%SDS, pH8.3. The gel was stained 

with Simply Blue Safestain (Invitrogen, Paisley) for 1 hour at room 

temperature then washed twice for 45 minutes in distilled water. Rainbow 

recombinant protein markers (Amersham) with a molecular weight range of

10,000 to 250,000 were used for comparison according to the manufacturers 

instructions.

Sample buffer: lmg bromophenol blue; 800pl 2M Tris-HCl pH8.8; 50ml 60% 

sucrose; 3.5ml 20% w/w SDS; 500pl 2-Mercaptoethanol; 200pl UHQ water.
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4.2.2.5 Cell adhesion to purified FN-EDA

Pooled FN-EDA from the column (lOOp.1) was added to 6 wells of a 96 well 

plate and incubated overnight at 4°C. Control wells were coated with 1% 

BSA. The wells were then washed 3 times with PBS, blocked for 1 hour at 

37°C with 1 % BSA and washed a further 3 times with PBS. MG-63 cells 

were trypsinised as described in section 2.2.2.2, counted using a 

haemocytometer, resuspended in serum-free DMEM and 30,000 cells added to 

the wells of the 96-well plate and the cultures incubated for 30 minutes at 

37°C. The wells were then washed and live cell stain added (2.5pl calcein AM 

in 5ml PBS -  Molecular Probes), and viewed using a Leica DM-IRBE 

inverted confocal microscope using an ArKr laser exciting at 488nm.

4.2.3 Evaluation of articular cartilage progenitor cell behaviour on 

Fibronectin-EDA

4.2.3.1 Differential adhesion and colony forming efficiency assays using 

purified Fibronectin-EDA

Differential adhesion and colony forming assays were carried out as described 

in section 3.2.1. Plates were coated with purified FN-EDA, bovine plasma 

fibronectin (pFN) (Sigma) at lOpgml’1 using Dulbecco's PBS with ImM 

MgCE and ImM CaCE (Sigma).

Colonies were counted after 7 days. Media was removed from the wells and 

washed with PBS. Cells were then fixed for 10 minutes with ice-cold 

methanol and allowed to air dry. In some cases, fixed cells were stained with 

0.1% crystal violet for 30 minutes and washed with distilled water. Colonies 

were counted using phase contrast optics and colony forming efficiency (CFE) 

was calculated by dividing the number of colonies by the initial number of 

adherent cells. Data was analysed using a Student’s T Test and considered 

significant at the 0.05 confidence limit.
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4.3 RESULTS

4.3.1 Fibronectin-EDA immunohistochemistry

Figure 4.2A is a confocal microscope image showing the immuno-localisation of FN- 

EDA in the articular surface of 2-3 week old bovine cartilage. Figure 4.2B is an image 

taken from the middle zone and figure 4.2C shows the control image incubated with 

an equivalent concentration of non-immune mouse IgGl. Red fluorescence is a result 

of propidium iodide labelling of cell nuclei. Arrows illustrate the articular surface. 

Immediately apparent is that FN-EDA expression is cell-associated and is almost 

entirely confined to the superficial zone of the cartilage. Small amounts of 

fluorescence can be seen in the lower regions, however this was also seen on the 

control sections.

Figure 4.3 is a confocal microscope image of the articular surface showing Notch 1 

and FN-EDA co-localisation in the cells of the superficial zone of immature bovine 

articular cartilage. Arrows illustrate the articular surface. Control images showed no 

fluorescence.
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Figure 4.2: Immunolocalisation of Fibronectin-EDA in 2-3 week old bovine 

articular cartilage. Fibronectin was localised pericellularly around superficial 

zone chondrocytes (A) and absent from chondrocytes deeper into the tissue (B). 

Staining was absent in control sections incubated with a non-specific mouse IgGl 

(C). Scale bar = 50pm
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B

Figure 4.3: Co-localisation of Fibronectin-EDA (red fluorescence) and Notchl 

(green fluorescence) in the superficial zone of immature bovine articular 

cartilage (A). Staining was absent in control sections incubated with a non

specific mouse and goat IgG (B). Scale bar = 50pm
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4-3.2 Fibronectin-EDA immunocytochemistry on cell lines

Figures 4.4 (A), (B) and (C) are confocal microscope images of anti-FN-EDA 

immunocytochemistry on the three cell lines. Figure 4.4 (D) is a confocal microscope 

image of MG-63 cells stained with an equivalent concentration of non-immune mouse 

lgGl as a control. FN-EDA in the cell monolayer is clearly visible in all three cell 

lines- Red fluorescence is a result of propidium iodide labelling of cell nuclei.
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(D) Control (non-specific IgG)

Figure 4.4: Confocal microscope images of three cell lines immunostained for 

FN-EDA. Scale bar = lOOpm.
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4.3.3 Fibronectin-EDA ELISA on conditioned media

Figure 4.5 illustrates the ELISA results from the conditioned media. The colouration 

that developed was not quantified using spectrophotometry. Instead, visual 

comparisons were made between the different treatment groups. There appeared to be 

little difference between any of the samples from the MG-63 cells (with or without 

serum), MRC-5 cells or the human dermal fibroblasts. From these results it was 

decided to use MG-63 cells in serum-free media as the source of FN-EDA. MG-63 

cells were chosen as the cells not only appear to secrete large amounts of FN-EDA 

into the media, but they also grow rapidly in culture. It was decided to use serum-free 

media for conditioning as serum contains a high level of plasma fibronectin that may 

interfere with the purification process and also non-specific proteases that may 

degrade the column. The absence of serum does not appear to affect the production of 

FN-EDA by the MG-63 cells. Figure 4.5 also shows that the anti-FN-EDA antibody 

does not cross-react with plasma fibronectin.

4.3.4 Production of fibronectin-EDA immuno-affinity column

Aliquots of antibody solution were taken before and after mixing with the Sepharose 

4B gel for protein estimation to estimate the degree of antibody coupling. Protein 

concentration in the antibody solution during the coupling step should decrease as the 

antibody binds to the Sepharose 4B gel. Table 4.2 shows the protein concentrations of 

the antibody solutions before and after coupling and suggests that all the antibody has 

bound to the gel. The reason for the negative protein value after coupling is unclear 

and may be due to the presence of material from the coupling gel interfering with the 

assay.
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Figure 4.5 Digital photographs of colour change during FN-EDA ELISA on 

various conditioned media and forms of fibronectin.

Protein concentration 

(pg/ml)

Before Coupling 188.6

After Coupling -29.4

Table 4.2: Protein concentrations of antibody solutions before and after coupling 

to the sepharose 4B gel.
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4.3.5 Affinity purification of fibronectin-EDA from conditioned media

Figure 4.6 shows the elution profile of proteins exiting the column. Fractions with 

peak absorbance after the addition of elution buffer were pooled and dialysed, then 

analysed by ELISA and SDS-PAGE to confirm the identity of the protein.

Figure 4.7 illustrates anti-FN-EDA and anti-total FN ELISA of various fractions from 

the column. This identifies the protein in the pooled fractions as being FN-EDA. The 

results also indicate that all the FN-EDA is not being fully removed from the 

conditioned media during the affinity purification as there is a level of FN-EDA 

present in the unbound material (ie. media which has passed through the column).

The pooled fractions were also subjected to SDS-PAGE in order to check the purity of 

the FN-EDA. Cellular fibronectin and plasma fibronectin was also added to the gel as 

a comparison. The results are shown in figure 4.8. The FN-EDA appears at 

approximately 270 kDa and runs as a tight band in comparison to cellular fibronectin 

and plasma fibronectin, thus suggesting its relative purity. FN-EDA and cellular 

fibronectin appear at a higher molecular weight than plasma fibronectin due to 

presence of extra polypeptide domains that are absent in plasma fibronectin.

4.3.6 Biological activity of FN-EDA

Figures 4.9 (A) and (B) show the attachment and spreading of MG-63 cells to non

coated and purified FN-EDA coated cell culture plates in serum-free media. Whereas 

few cells adhered to the non-coated wells, MG-63 cells rapidly adhered to the FN- 

EDA coated wells, suggesting the purified FN-EDA has retained some of its 

biological properties.
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Affinity purification of FN-EDA+
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Figure 4.6: Elution profile during immuno-affinity purification of FN-EDA.
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Figure 4.7: Digital photograph of colour change during ELISA of fractions from 

affinity column.
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Figure 4.8: SDS-PAGE of cellular and plasma fibronectin in comparison to 

purified FN-EDA.
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B) Control -  non coated

Figure 4.9: Adhesion of MG-63 cells to purified fibronectin-EDA (A) in 

comparison to a non-coated surface (B). Scale bar = 100pm.
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4.3.7 Differential adhesion and colony forming efficiency of articular cartilage 

progenitor cells on FN-EDA in comparison to plasma fibronectin 

4.3.7.1 Differential adhesion

Table 4.3 shows the initial cell adhesion over the two 20 minute time points 

for superficial and middle zone chondrocytes cultured on FN-EDA and pFN 

coated wells.

The data illustrates that although middle zone chondrocytes have a higher 

affinity to the fibronectins than the superficial zone chondrocytes, there is no 

statistically significant difference between adhesion of the chondrocytes to 

pFN and FN-EDA at either time point.

4.3.7.2 Colony forming efficiency

Figure 4.10 shows the colony forming efficiency of superficial and middle 

zone chondrocytes cultured on FN-EDA and pFN coated wells for 6 days after 

the differential adhesion assay. The only detectable difference between the two 

substrates could be noticed in the superficial zone cells over the first 20 

minute adhesion; Superficial zone cells that adhere to FN-EDA over the first 

20 minutes appear to have a lower CFE than those that adhere to pFN 

(p<0.005). There no obvious differences in colony size.
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Percentage cell adhesion

SFZ20 MZ20 SFZ40 MZ40

FN-EDA

coated

9.83±1.7 15.13±2.7 3.8±1.3 8.45±2.8

pFN

coated
12.5±3.1 15.6±2.5 4.24±0.9 7.6±0.79

Table 4.3: Initial adhesion to FN-EDA and plasma fibronectin (pFN) coated 

wells. SFZ = superficial zone cells; MZ = middle zone cells. N = 4
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Figure 4.10: Colony forming efficiency of superficial and middle zone chondrocytes on plasma-FN (pFN) and FN-EDA following 20 

minute and 40 minute adhesion.

P < 0 .0 0 5  

 I_____

I
■

JrlUli
Ilf X

- L -

— ----------

I
SXV

pFN S20 FN-EDA pFM 
S20 M20

FN-EDA pFN S40 FN-EDA pFN FN-EDA 
M20 S40 M40 M40

115



Chapter 4: Fibronectin EDA+

4.4 DISCUSSION

There is substantial evidence that extracellular matrix regulates development and cell 

differentiation (Adams and Watt, 1993). Controlled production of matrix proteins and 

their isoforms in a spatial and temporal manner will have important roles in 

chondrocyte function and cartilage development. For example, regulated expression 

of various FN isoforms is a key mediator of chondrogenic differentiation. During 

chick embryonic limb chondrogenesis, FN structure changes from EDA+ in pre

cartilage mesenchyme to EDA- in differentiated cartilage (Peters et al., 2002; White et 

al., 2003; Kuo et al., 2002). In addition, FN-EDA is reported to be expressed in 

human fetal cartilage (Salter et al., 1995), but not in the adult tissue (MacLeod et al., 

1996; Chevalier et al., 1996).

Heterogeneity of the FN molecule results from alternative splicing of a common 

primary mRNA transcript at three segments, EDA, EDB and IIICS (Kosmehl et al., 

1996). Although it is known the expression of the EDA and EDB segments is 

regulated spatially and temporally during development, wound healing and 

tumourigenesis, little is known about the function of the variable domains (Manabe et 

al., 1997). In vivo expression patterns of FN isoforms suggest a role for FN-EDA in 

cell growth and migration. The EDA segment is included in FN species expressed in 

embryonic tissues but is spliced out of the molecule as embryonic development 

progresses (Vartio et al., 1997; ffrench-Constant and Hynes, 1989). In adults, EDA 

containing FN reappears during wound healing and in tumour tissues (ffrench- 

Constant et al., 1989; Oyama et al, 1989), with levels of FN-EDA being higher in 

invasive tumours than in non-invasive ones (Oyama et al., 1989). Such an expression 

pattern in tissues populated with cells having high proliferative and migratory 

potentials suggests a role in promoting cell adhesion and migration in vivo.

In light of the evidence describing an association between primitive mesenchymal 

progenitor cells and FN-EDA expression (Gehris et al., 1996 and 1997; Peters et al., 

2002; White et al., 2003; Kuo et al., 2002) this study has sought to determine whether 

the isoform is also associated with the articular cartilage progenitor cells of the 

superficial zone, and to examine whether the isoform is important in maintaining or 

promoting the function/phenotype of the cells.
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Firstly, EDA containing FN was determined to be associated in a pericellular fashion 

with the superficial 2-3 cell layers of immature bovine articular cartilage and was seen 

to be co-expressed with Notch 1 in double labelling immunostaining experiments. As 

described in section 3.3.3 and discussed in section 3.4, Notch 1 is a cell fate 

determination receptor (Artavanis-Tsakonas et al., 1999) expressed non-exclusively 

on the surface of articular cartilage progenitor cells in the superficial zone of 

developing articular cartilage (Hayes et al., 2003; Dowthwaite et al., 2004). Thus, the 

differential expression of EDA containing FN by the progenitor cells suggests it may 

be an important component of the progenitor cell pericellular environment and may 

act to influence cell behaviour.

Secondly, experiments were carried out to determine whether isolated superficial zone 

cells displayed increased adhesiveness to purified EDA containing FN in comparison 

to plasma FN, and to examine the effect of growth of the progenitor cells on a 

substrate of EDA containing FN in comparison to plasma FN in terms of colony 

forming efficiency. Although no effect on adhesion could be determined, subsequent 

culture of the cells that had adhered to the substrates demonstrated a reduction in 

colony forming efficiency from 0.44 with plasma fibronectin to 0.33 (p<0.005) with 

FN-EDA in the cohort of superficial zone cells that binds in the 20 minute adhesion 

step ie. the cohort that contains the progenitor cell population.

Previous studies have described contradictory results in terms of cellular adhesiveness 

to FN-EDA. Guan et al., (1990) showed no difference between recombinant EDA+ 

and EDA- in terms of cell adhesion whereas Manabe et al., (1997) and (1999) showed 

increased adhesion of human HT1080 fibrosarcoma cells to EDA+FN. White et al., 

(2003) also found no difference in adhesion of chick limb-bud mesenchymal cells to 

various combinations of EDA and EDB containing recombinant FNs although 

spreading was decreased on EDA+/EDB+ FN. These discrepancies may, in part, be 

due to the nature of the EDA containing FN used in the studies. The recombinant 

EDA+ FN used in the studies of Guan et al., (1990) did not contain the IIICS segment 

whereas the IIICS segment was included in the isoforms evaluated in the studies of 

Manabe et al., (1997) and (1999) and this segment may be required for the EDA- 

dependant potentiation of the cell-adhesive activity of FNs. In the studies described
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here, the nature of the EDA+ containing FN is unclear. For example, the FN-EDA 

was purified from media conditioned by the human MG-63 osteosarcoma cell line 

solely on the basis of the presence of the EDA segment using immuno-affinity 

chromatography. The EDA containing FN may be heterogeneous in composition as it 

is unknown as to the extent of the presence of the EDB segment or other segments in 

the EDA containing FN. In addition, EDA containing FN occurs naturally in vivo as 

an insoluble aggregate of dimers of FN molecules (Yamada and Akiyama, 1984) 

whereas the EDA containing FN in the conditioned media in this study must have 

possessed a high degree of solubility and thus may differ structurally from the EDA 

containing FN shown to be laid down in the cell monolayers (figure 5.4) and that 

which is present in extracellular matrices. In addition, novel cartilage-specific variants 

of fibronectin have been demonstrated in human (Parker et al., 2002) and animal 

tissues (Macleod et al., 1996). Although the precise physiological roles for these 

variants is yet to be determined, the abundance of these isoforms in the tissue (50- 

80% of the total FN transcripts in cartilage) suggests they may play a key regulatory 

role in chondrocyte interactions with the ECM. It is unlikely EDA containing FN 

purified from MG-63 cell conditioned media will contain a high level of these variants 

and, thus, may not provide the correct signals to the chondrocytes and/or progenitors.

The reduction in CFE of the cohort of superficial zone cells that binds in the 20 

minute adhesion step (the cohort that contains the progenitor cell population) on FN- 

EDA was surprising, given the putative role of the isoform during development, and 

the significance of this is not clear. The reduced proliferation could either be due to 

alterations in integrin-mediated mitotic signal transduction induced by the presence of 

the EDA segment or the EDA segment could have resulted in the adhesion of a subtly 

different population of cells in the cohort that binds in the first 20 minutes. At this 

point it is unclear as to whether the FN-EDA remained bound to the tissue culture 

plastic throughout the experiment or whether it was competed from the surface after 

the adhesion step by the abundance of plasma fibronectin in the bovine serum of the 

culture media. In addition, the chondrocytes are likely to have secreted their own 

fibronectin rich ECM in culture (Dessau et al., 1978 and 1981) which would be the 

predominant substrate to which the progenitor cells would be attached. These data 

suggest altered integrin-mediated mitotic signal transduction may not be responsible
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for the reduced CFE as the influence of the FN-EDA on the behaviour of the 

progenitor cells may reduce with time.

In conclusion, this study has demonstrated the purification of EDA containing FN and 

an in vitro examination as to its effect on cell behaviour. Initial data suggests EDA 

containing FN may play a role in modulation of articular cartilage progenitor cell 

proliferation in vivo. Further studies using a more characterised FN-EDA substrate 

would be required to confirm the precise nature of the role of the EDA segment in 

articular cartilage progenitor cell behaviour.
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5.1 INTRODUCTION

The poor regenerative capacity of articular cartilage is well characterised (Hunziker, 

2001a) and has been attributed to a lack of proliferative activity of the chondrocytes 

surrounding the cartilage lesion (Campbell, 1969). Such lesions are frequently linked 

to joint pain, reduced function and often progress to secondary osteoarthritis 

(Buckwalter and Mankin, 1997a). Therapeutic intervention in the degenerative 

process includes debridement, various abrasion strategies, microfracture, mosaicplasty 

and arthroscopy (Gilbert, 1998), thus imposing a significant economic burden on 

healthcare providers (Jackson et al., 2001).

Recent studies have highlighted the promise of tissue engineering or cell 

transplantation for cartilage repair (Freed et al., 1993; Sittinger et al., 1994; Cao et al., 

1998). Such studies have employed cells frequently seeded onto synthetic (Freed et 

al., 1993; Cao et al., 1998) or natural scaffolds such as collagen (Kawamura et al., 

1998) or fibrin (Hendrickson et al., 1994). In addition to providing mechanical 

support, the scaffold acts as a provisional extracellular matrix and is supposed to 

support the cells in an optimal 3-D environment that supports cell proliferation and 

differentiation (Freed et al., 1999). The identification of a suitable cell source for 

cartilage tissue engineering has proved elusive. Whilst attention has mainly focussed 

on the use of autologous (Grande et al., 1989) or allogeneic (Kawamura et al., 1998; 

Grande et al., 1987) chondrocytes and mesenchymal stem cells derived from bone 

marrow (Wakitani et al., 1994; Kadiyala et al., 1997; Im et al., 2001; Johnstone and 

Yoo, 2001; Wakitani et al., 2002), other cell sources such as periosteum (De Bari et 

al., 2001), perichondrium (Chu et al., 1997) and synovial cells (Nishimura et al., 

1999; De Bari et al., 2001a;) have also been investigated.

Difficulties arise in the use of chondrocytes in tissue engineering processes due to the 

limited number of cell divisions a mature chondrocyte will undergo in vitro prior to 

the onset of senescence coupled with a loss of ability to form cartilage induced by the 

cell culture environment (Benya and Shaffer, 1982; Evans and Georgescu, 1983; 

Binette et al., 1998). The proliferative potential is dependent on species and inversely 

proportional to the age of the donor. The importance of this becomes apparent 

considering the limited number of chondrocytes that can be harvested from a patient
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and the large numbers of cells required for cell transplantation procedures and tissue 

engineering scaffold seeding protocols. The limited growth potential of chondrocytes 

in culture is further complicated by the rapid loss of phenotype, known as 

dedifferentiation, of chondrocytes in monolayer culture. Dedifferentiation is 

characterised by a loss of the normal spherical cell morphology with concomitant 

decrease in collagen II and aggrecan synthesis to a fibroblastic-like morphology with 

up-regulation of collagen I, III and versican (Benya and Shaffer, 1982; Von der Mark 

et al., 1997; Binette et al., 1998). This process is illustrated in figure 5.1. Possible 

solutions to enable the rapid expansion of chondrocytes whilst retaining their 

phenotype have been suggested and usually involve the use of growth factors such as 

basic-FGF or TGF-pi (Froger-Gaillard et al., 1989; van der Kraan et al., 1992; Pujol 

et al., 1994; de Haart et al., 1999; Martin et al., 1999; Jakob et al., 2001; Barbero et 

al., 2004). The reversal of dedifferentiation, known as redifferentiation, by transfer of 

the cells into a culture format that supports a spherical cell morphology such as 

agarose, alginate or pellet culture systems (Benya and Shaffer, 1982; Bonaventure et 

al., 1994; Yaeger et al., 1997; Jakob et al., 2001) has also been described. However, 

redifferentiation is rarely complete and occurs to a progressively lesser extent the 

longer the chondrocyte is kept in monolayer culture (Benya and Shaffer, 1982; 

Bonaventure et al., 1994). Although these methods at first glance appear promising, 

the inclusion of growth factors or the need to utilise 3-D culture environments to 

retain articular chondrocyte phenotype during expansion significantly increases the 

cost and complexity of the tissue engineering process.

The identification of a cell with extensive growth potential and which retains its 

chondrogenic ability after extensive growth in culture would be a major step forward 

in addressing these issues. Mesenchymal stem cells (MSCs) from the bone marrow 

stroma have a high capacity for self-renewal (Bruder et al., 1997) and therefore 

thought to be of great value for cartilage repair and other tissue engineering 

applications (Johnstone and Yoo, 2001). The chondrogenic potential of MSCs is well 

characterised (Johnstone et al., 1998; Mackay et al., 1998; Pittenger et al., 1999) and 

the effect of various growth factors on the proliferation and differentiation of MSCs 

have also been studied (van den Bos et al., 1997; Mastrogiacomo et al., 2001; Worster 

et al., 2001; Solchaga et al., 2005). However, MSCs have been shown to generate
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repair tissues with varying degrees of success in in vivo cartilage repair studies 

(Wakitani et al., 1994; Im et al., 2001).

Although we have demonstrated the ability of superficial zone articular cartilage 

progenitor cells to form colonies in vitro, it remained unclear as to whether this 

growth could be sustained to enable long-term cultures of phenotypically stable 

articular cartilage progenitor cells to be established. Furthermore, the extent to which 

the chondrogenic potential of these cells is retained during extensive growth and 

passaging in culture is unknown. The chondrogenic ability of progenitor cell 

populations can be studied by culture in pellet format in the presence of a serum-free 

media containing insulin and TGF-Pi, a system widely used by other workers to study 

chondrogenic differentiation and maturation (Kato et al., 1988; Ballock and Reddi, 

1994).

The objective of this study was to prepare enriched populations of bovine superficial 

zone articular cartilage progenitor cells (SZCs) and to evaluate their chondrogenic 

potential during expansion by transfer into pellet culture. Chondrogenesis was 

determined using safranin O staining and collagen I and II immunostaining.
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Figure 5.1: De-differentiation of adult human articular chondrocytes. Freshly 

isolated chondrocytes at day 1 of culture (A) and after 10 days in culture (B). 

Diagram illustrating the process is shown in (C). Bar = 100pm.
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5.2 MATERIALS AND METHODS 

5.2.1 Isolation and expansion of populations of cells enriched in articular 

cartilage progenitor cells 

5.2.1.1 Cell isolation

Bovine plasma fibronectin (Sigma) was used at lOpgml'1 in Dulbecco's PBS 

with ImM MgCb and ImM CaC^ (Sigma). This solution was then added to 

each well of 6 well plates and incubated overnight at 4°C for coating. The 

fibronectin solution was aspirated and the plates were blocked with 1% BSA 

prior to addition of cells.

Seven day-old bovine metatarsophalageal joints were dissected as described in 

section 2.1 and chondrocytes were isolated from the superficial zone of the 

articular cartilage by fine dissection. The portions of cartilage were placed 

directly into Dulbecco's Modified Eagle Medium (DMEM) (Sigma) containing 

5% foetal calf serum (FCS) and 0.1% pronase (BDH, 4x106 units/g) and 

incubated at 37°C for 3 hours. Cartilage was washed once with PBS and 

incubated in DMEM containing 5% FCS and 0.04% collagenase 

(Worthington, 237U/mg) and incubated overnight at 37°C with gentle shaking.

Tissue digests were strained through a 70pm cell strainer (Falcon) to remove 

debris. The resultant filtrate was centrifuged at 300g for 10 minutes to pellet 

cells and then resuspended in 10ml of serum free DMEM followed by 

centrifuging again at 300g for 5 minutes. The cell pellet was resuspended in 

10ml serum free DMEM, cell number counted and resuspended to a final 

concentration of 4000 cells ml"1.

5.2.1.2 Differential adhesion

Following isolation, 4000 superficial zone cells in 1ml serum free DMEM was 

seeded into each of the wells of fibronectin coated 6-well plates and incubated
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at 37°C for 20 minutes. After 20 minutes, the media was gently swirled and 

discarded. Fresh DMEM supplemented with 10% FCS, 2mM L-glutamine, 1% 

non-essential amino acids, lOOIU/ml penicillin and lOOpg/ml streptomycin 

was added to each well. The plates were incubated at 37°C in a 5% CO2  

atmosphere.

Within 3 hours after initial plating, chondrocyte adhesion was assayed by 

counting the total number of cells adhering to the bottom of the dish using an 

inverted microscope equipped with phase contrast optics. This was carried out 

on 6 wells to estimate the percentage of cells attached and used for calculation 

of the initial number of doublings that occur in the 6-well plate.

5.2.1.3 Cell expansion

When cells in the 6-well plate were seen to be approaching confluency, media 

was removed and the monolayer washed with PBS. Cells were removed by the 

addition of 1.5 ml typsin/EDTA (0.05% w/v/0.02% w/v) to each well for 10 

minutes. DMEM containing 10% FCS was then added and the media aspirated 

and pooled. The cell suspension was centrifuged at lOOOrpm for 5 minutes and 

the resultant pellet resuspended in lOmls DMEM/10% FCS and the cells were 

transferred to a 75cm culture flask (PI). When these cells were approaching 

confluency, the cells were removed from the flask by trypsinisation and
•y

transferred to a 175cm culture flask (P2). Cells were maintained and passaged 

during the expansion as described in section 2.2. Subsequent growth in
'y

175cm culture flasks was carried out by continual passage at a ratio of 1:3. 

Passaging occurred prior to the cells reaching full confluence to maintain the 

cells in the log phase of growth. Detailed accounts of cell numbers harvested 

and seeded at each stage were kept throughout the process to allow the number 

of population doublings at each stage to be calculated.

Number of cell doublings at each stage was calculated using the following

equation:

N° of doublings
N° cells harvested
N° cells seeded

l o g  2
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Aliquots of cells at PI, P3, P6, P9, PI2 and P23, were removed for pellet 

culture.

5.2.1.4 Controls

Normal chondrocytes were isolated from the full thickness of 2-3 week old 

bovine metatarsophalangeal joints by sequential digestion in pronase and 

collagenase as described above. These cells were maintained in culture and 

passaged at a ratio of 1:3. Pellet cultures were set up immediately following 

isolation and at P9. P9 was chosen as the cells would have been expected to 

have fully dedifferentiated by this point.

5.2.2 Chondrogenic differentiation: pellet culture

At PI, P3, P6, P9, P I2 and P23, cells were harvested, counted using a 

haemocytometer and aliquots of 250,000 cells were resuspended in chondrogenesis 

media (DMEM supplemented with 50IU/ml penicillin and 50pg/ml streptomycin, ITS 

premix (Becton Dickinson), ascorbate 2-phosphate (lOOpM; Sigma), dexamethasone 

(10'7M; Sigma) and TGFp-1 (lOng/ml; R & D Systems). One ml aliquots of this 

suspension were transferred into 15ml polypropylene Falcon tubes and the cells 

pelleted by centrifugation at lOOOrpm for 5 minutes. Pellets were incubated with the 

lids of the tubes loosened at 37°C in a 5% CO2 atmosphere for 14 days with media 

changes carried out every 2-3 days.

5.2.2.1 Histology and immunolabelling

After 14 days in culture, pellets were fixed overnight in phosphate buffered 

formaldehyde and embedded in paraffin wax as described in section 2.3. 

Sections of 5pm thickness were cut and stained with Safranin O/haematoxylin 

as described in sections 2.3.3 and 2.3.4 and immunostained for the presence of 

collagens I and II.
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§.2.2.2 Collagen II immunolabelling

Sections were dewaxed in xylene and transferred to 100% Industrial 

Methylated Spirits (IMS) (1 minute), followed by distilled water (1 minute) 

and finally into PBS. Antigen retrieval was carried out using Pepsin (Dako) in 

0.2N HC1 for 15 minutes at 37°C and washed in PBS. Sections were blocked 

with 2.5% normal rabbit serum for 20 minutes at room temperature followed 

by incubation with 2pg/ml mouse anti-collagen II antibody (Neomarkers clone 

2B1.5) overnight at 4°C. Some sections were also incubated with an 

equivalent concentration of non-immune mouse IgG as a control. Sections 

were washed again three times for 5 minutes with PBS and incubated with a 

1:100 dilution of biotinylated rabbit anti-mouse secondary antibody (Dako) in 

PBS for 1 hour at room temperature. Finally, sections were washed three times 

for 5 minutes with PBS and incubated with a 1:100 dilution of Streptavidin- 

FITC (Amersham) for 1 hour at room temperature. Following washing, slides 

were mounted with Vectashield (Vector) and coverslipped. Sections were 

viewed using fluorescence microscopy and photographed.

5.2.2.3 Collagen I immunolabelling

Method was repeated as described in section 6.2.2.2 with the following 

exceptions: Sections were blocked with 2.5% normal goat serum prior to 

incubation with lOug/ml of a polyclonal rabbit anti-bovine type I collagen 

primary antibody (Biogenesis) and detected using a biotinylated goat anti

rabbit secondary antibody (Dako). Some sections were also incubated with an 

equivalent concentration of non-immune mouse IgG in place of the primary 

antibody as a control.

5.2.3 Osteogenic differentiation

A 175cm2 flask of P5 SZCs was passaged using trypsin/EDTA (0.05% w/v/0.02%

w/v), centrifuged for 10 minutes at lOOOrpm and resuspended in DMEM/10% FCS.

Cells were counted haemocytometer and resuspended to 50,000 cells/ml. One ml of
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this suspension was then transferred to each of 6 wells of 2 x 24 well plates. Cells 

were incubated overnight at 37°C in a 5% CO2 atmosphere. Media in the wells of one 

of the 24-well plates was then replaced with osteogenic media (see below). Media in 

the other plate was replaced with DMEM/10% FCS. Plates were incubated for 12 

days at 37°C in a 5% CO2 atmosphere with media changes every 2-3 days.

Osteogenic media: DMEM/10%FCS supplemented with 50IU/ml penicillin and 

50pg/ml streptomycin, 2mM L-glutamine, 1% non-essential amino acids, ascorbate 2- 

phosphate (50pM) (Sigma), dexamethasone (10*7M) (Sigma); and p-glycerophosphate 

(ImM) (Sigma).

Cell monolayers were examined visually for the presence of nodules and stained for 

the presence of alkaline phosphatase using Sigma Histochemical staining kit (86-R) 

according to the manufacturers instructions.
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5.3 RESULTS

5.3.1 Cell growth

Populations of cells enriched in bovine superficial zone articular cartilage progenitor 

(SZCs) cells underwent approximately 61 population doublings over 162 days in 

culture. At PO the cells had a doubling time of approximately 24 hours where after the 

cells maintained a moderately constant rate of growth, requiring subculture every 3-4 

days. This was maintained until P28 when the rate of growth declined with subculture 

being required every 7-8 days. After P35 cell growth had virtually stopped. Figure 5.2 

(A) and (B) illustrate the cumulative population doublings of SZCs plotted as a 

function of time and passage number respectively. The bars represent an average of 

two flasks from one experiment. Normal chondrocytes isolated from the full thickness 

of bovine articular cartilage were expanded in culture to P9, equating to 13 population 

doublings over 34 days. These cells were used as controls for the pellet culture 

experiments.
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Figure 5.2: Population doubling potential of bovine SZCs as a function of time 

(A) and passage number (B). Points and bars in black indicate stages at which 

pellet cultures were set up.
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5.3.2 Cellular Morphology

Cultures of SZCs at PO, P2 and P I6 consisted mainly of cells with a flattened 

morphology (figure 5.3). This morphology was generally maintained until at high 

passage (P25) a proportion of SZCs began to adopt broader, often bi-nucleate, 

irregular morphologies and these were in greater proportion at P36. Cultures of 

normal bovine chondrocytes consisted of predominantly spindle-shaped fibroblastic 

cells up to P9 (34 days).
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Figure 5.3: Morphology of bovine SZCs and chondrocytes cells throughout 

expansion. Cells are shown at PO (A), P2 (B), P I6 (C), P25 (D) and P36 (E). 

Normal chondrocytes isolated from the full thickness of bovine articular 

cartilage at P5 are shown in (F). * - denotes binucleate cells. Bar = 100pm.
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5.3.3 Chondrogenic differentiation: pellet culture

Enriched populations of bovine superficial zone articular cartilage progenitor (SZCs) 

expanded in culture and subsequently grown in pellets synthesised a cartilage-like 

matrix that stained strongly with Safranin O, indicating an abundance of sulphated 

proteoglycans (figure 5.4). The periphery of the pellets at all time points stained 

weakly with Safranin O. In addition, flattened cells were seen to be present on the 

surface of the pellet. PI, P3, P6, P9 and PI2 (PI2 = 25 population doublings) SZC 

cell pellets were rich in collagen II (figure 5.5) whereas pellets derived from P23 (P23 

= 42 population doublings) SZCs appeared to contain only low levels of collagen II. 

Control sections incubated with non-immune mouse IgG were negative for collagen II 

(data not shown). Pellet cultures of freshly isolated normal chondrocytes appeared to 

be smaller in size and histologically have less matrix and rounder cells than SZC 

pellets (figure 5.6). The matrix stained strongly for collagen II. In comparison, pellet 

culture of expanded normal chondrocytes at P9 (13 population doublings) synthesised 

a greater amount of matrix but this contained negligible collagen II. A low level of 

collagen I was consistently noted to be located around the periphery of all pellet 

cultures from both SZCs and full thickness chondrocytes. An example of this is 

illustrated in figure 5.7.

5.3.4 Osteogenic differentiation

When monolayers of SZCs were cultured in conditions known to promote osteogenic 

differentiation of mesenchymal stem cells (Pittenger et al., 1999), no osteogenic 

differentiation was noted. No nodules were seen to form and no red staining indicative 

of alkaline phosphatase was noted in the cells cultured in osteogenic media (figure 

5.8).
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Figure 5.4: Pellet culture of culture expanded SZCs. Safranin O staining 

(Bar = 200pm). Low magnification image inset (Bar = 500pm).
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Figure 5.5: Collagen II immunolabelling of pellet cultures of culture expanded 

SZCs. Note decrease in staining in pellets derived from bovine SZCs at P23 (Bar 

= 200pm).
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Figure 5.6: Pellet culture of control freshly isolated (A,C) and culture expanded 

full thickness chondrocytes at P9 (B,D). Safranin O staining (A,B) and collagen 

II staining (C,D). Bar = 200pm (Inset = 500pm).

137



Chapter 5: Articular cartilage progenitor cell expansion and chondrogenic ability

Figure 5.7: Collagen I immunolabelling of a pellet culture of expanded SZCs at 

P6 (A) and a control section incubated with an equivalent concentration of non- 

immune mouse IgG in place of the primary antibody (Bar = 200pm).
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Figure 5.8: Osteogenic differentiation assay. Expanded bovine SZCs (P5) culture 

in control (A) and osteogenic media (B). Note lack of alkaline phosphatase 

activity (red staining) of cells cultured in osteogenic media. Bar = 200pm.
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5.4 DISCUSSION

Previous studies have indicated that articular cartilage growth during development 

occurs by apposition from the articular surface (Hayes et al., 2001) rather than by 

interstitial mechanisms. This growth appears to be driven by a slowly dividing 

population of cells in the superficial zone of articular cartilage and a more rapidly 

dividing population of cells in the transitional zone. These observations suggest the 

presence of a specific articular cartilage precursor or chondroprogenitor cell 

population in the superficial zone and a population of transit amplifying cells in the 

transitional zone. Studies described in chapter 3 and published studies (Archer et al., 

2002; Dowthwaite et al., 2004) have confirmed that a population of articular cartilage 

progenitor cells do indeed exist in the superficial zone that exhibit differential 

adhesion to fibronectin, differential integrin expression, and the ability to form 

colonies from an initially low seeding density; properties that are common to known 

progenitor cell populations of other tissues (Jones and Watt, 1993). The study 

described here has produced cultures enriched in superficial zone articular cartilage 

progenitor cells (SZCs) and evaluated their ability to form cartilage as a function of 

expansion in culture.

This work has demonstrated the high expansion potential of SZCs. SZCs maintained a 

stable cellular morphology even after extensive expansion in monolayer culture. The 

polygonal morphology of SZCs contrasted with the more fibroblastic normal 

chondrocytes isolated from the full thickness of bovine articular cartilage. At high 

passage the growth rate of SZCs declined, and this was accompanied by a gradual 

increase in the proportion of SZCs adopting a broader, irregular, often binucleate 

morphology. Similar features have been described of chick sternal chondrocytes after 

a prolonged time in culture (Von der Mark et al., 1997), although SZCs in this study 

underwent this shift in morphology at a significantly later stage and is clearly age and 

species dependant.

Other studies have described the cloning of bovine SZC colonies and subsequent 

expansion and chondrogenic differentiation in comparison to full thickness 

chondrocytes with similar results to that described here ie reduction in collagen II in 

pellets derived from SZCs at around 40 population doublings. (Bishop et al., 2004).
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Interestingly these studies also showed the retention of Sox-9 expression by SZCs 

during expansion whereas Sox-9 expression was rapidly down-regulated in full 

thickness chondrocytes during expansion. Sox-9 is a transcription factor involved in 

the regulation of genes expressed during chondrogenesis. This clonal expansion 

results in a more homogeneous initial cell population which may have benefits in 

terms of characterisation of the cells and would be more advantageous in terms of 

transplantation.

Importantly, SZCs can be expanded using standard monolayer conditions and 

standard media components, whilst retaining their ability to differentiate into 

chondrocytes, synthesising a hyaline-like cartilage matrix following high levels of 

expansion. This expansion occurs without the need to incorporate growth factors in 

addition to the FCS during the expansion phase as has been suggested for bovine 

(Martin et al., 1999) and human (Jakob et al., 2001; Barbero et al., 2004) 

chondrocytes. SZCs retain the ability to synthesise a hyaline-like cartilage matrix rich 

in collagen II and sulphated proteoglycans, with low levels of collagen I even after 12 

passages (25 population doublings). Thus, SZCs can undergo chondrogenesis after a 

33xl06-fold expansion in monolayer culture. Low levels of immuno-detectable 

collagen II were also evident at P23, where the cells had undergone 42 population
19doublings, a 4x10 -fold increase in cell number. As expected in this study, normal 

chondrocytes isolated from the full thickness of immature bovine articular cartilage 

dedifferentiated relatively rapidly in monolayer culture and completely lost the ability 

to redifferentiate in pellet culture at P9, corresponding to 13 population doublings. 

Thus, in contrast to the SZCs, normal chondrocytes lost the ability to undergo 

chondrogenesis after only an 8000-fold increase in cell number. Further studies are 

required to determine whether the differentiation of SZCs produces a stable 

chondrocytic phenotype, without progression to terminal differentiation characterised 

by expression of alkaline phosphatase and Type X collagen (Kato et al., 1988), a 

property exhibited by bone marrow derived MSCs. Lack of progression towards 

terminal differentiation would be a desirable property of a cell for articular cartilage 

tissue engineering, as terminal differentiation may subsequently promote vascular 

invasion and calcification of the implanted cells.
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In this study, monolayers of SZCs exhibited an inability to differentiate down an 

osteogenic lineage in vitro. This data may illustrate the SZCs are committed to the 

chondrocytic lineage and lack multipotentiality. However, it contrasts with other 

studies showing plasticity of bovine articular cartilage progenitor cells in an 

embryonic chick trafficking system (Dowthwaite et al., 2004), where the cells 

engrafted into a variety of tissues including bone. This suggests component(s) of the 

embryonic environment that enable and drive osteogenic differentiation are absent 

from the in vitro culture conditions described here.

The reason for the increased phenotypic stability of SZCs in comparison to 

differentiated chondrocytes is unclear. Previous authors have speculated whether 

phenotypic stability in chondrocyte culture populations is related to their degree of 

maturity (Von der Mark et al., 1997), with younger or more undifferentiated cells (eg. 

from regions immediately beneath the perichondrium or in this case, the superficial 

zone of articular cartilage) requiring more doublings to dedifferentiate than older or 

more differentiated chondrocytes.

Similar data to that reported here has been obtained with other mesenchymal 

stem/progenitor cell populations. De Bari et al., (2001) and (2001a) have described 

the isolation of a population of cells from human periosteum and synovium that 

maintain a stable phenotype and retain a chondrogenic potential throughout the 

expansion phase. Although Bruder et al., (1997) have described the extensive 

subculture of bone marrow derived human MSCs and the retention of osteogenic 

potential even after extensive subculture, other groups have shown that the retention 

of chondrogenic potential of MSCs requires the addition of growth factors such as 

basic fibroblast growth factor (bFGF) in the culture media during the expansion phase 

(Mastrogiacomo et al., 2001; Solchaga et al., 2005).

The findings from this study could provide significant benefits in their application to 

cell based-strategies for cartilage repair. Current cartilage repair strategies have 

focused on Autologous Chondrocyte Implantation (ACI) (Brittberg et al., 1994) and 

tissue engineering (Freed et al., 1993; Hendrickson et al., 1994; Sittinger et al., 1994; 

Cao et al., 1997; Kawamura et al., 1998; Freed et al., 1999) approaches. ACI involves 

arthroscopically harvesting an area of the patient’s own cartilage from a non-weight

142



Chapter 5: Articular cartilage progenitor cell expansion and chondrogenic ability

bearing location for cell isolation. Chondrocytes are then isolated in a designated 

laboratory facility, expanded in culture and then, in a second procedure, the cells are 

returned to the defect site either by injection beneath a periosteal flap or via a 

biodegradable scaffold. There are a number of drawbacks to autologous cell 

approaches. The initial biopsy creates a second defect site with associated issues of 

donor site morbidity. Furthermore, there may be only a limited amount of healthy 

cartilage available for biopsy. As the ACI procedure requires two operations it is 

expensive and requires a specialised laboratory service for cell isolation and 

expansion. The extent of dedifferentiation of the chondrocytes during the expansion 

phase on the overall clinical outcome of the procedure is also unknown. The use of 

allogeneic progenitor cells such as SZCs has the potential to reduce this process to a 

one step procedure, preventing donor site morbidity and negating the need for a costly 

specialised laboratory service. While it appears that the SZC cell type would have 

sufficient expansion potential to meet the commercial need, it is currently not known 

if the cell type would be tolerated in the joint by the host immune system. Further 

studies are therefore required in order to determine the feasibility of such an approach.

An alternative approach to ACI for cartilage repair is that of tissue engineering routes 

where allogeneic cells are seeded onto a 3-D scaffold acting as a provisional 

extracellular matrix (Freed et al., 1999). These cell-seeded constructs may either be 

implanted immediately or cultured in bioreactor conditions in order to generate a 

functional tissue engineered neo-cartilage for subsequent implantation (Freed et al., 

1993). Whilst this process may have the advantage in that the matrix deposited around 

the cells may lower their immunogenicity, the fixation of such mature grafts into a 

joint site may prove problematic.

In conclusion, the development and application of both ACI and tissue engineering 

approaches in the clinical environment has been hampered due a restricted availability 

of suitable cartilage producing cells caused by limited chondrocyte growth potentials 

and culture-induced loss of phenotype (Benya and Shaffer, 1982; Evans and 

Georgescu, 1983; Von Der Mark et al., 1997; Binette et al., 1998). The enhanced 

potential of these SZCs to retain the ability to form cartilage after extensive expansion 

in culture may enable the generation of large cell banks for use in allogeneic tissue 

engineering applications.
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CHAPTER 6 

SURGICAL CARTILAGE CUTTING 
TECHNIQUES AND EX VIVO CELL 

TRANSPLANTATION
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6.1 INTRODUCTION

Lesions in articular cartilage generally do not repair or repair only partially under 

certain conditions. Such defects are often associated with disability, joint pain, 

locking and reduced range of motion. Left untreated these lesions may progress to 

osteoarthritis, requiring extensive surgical interventions such as osteochondral 

transplantation (mosaicplasty), high tibial osteotomy and joint replacement 

(Campbell, 1969; Gilbert, 1988; Buckwalter and Lohmander, 1994; Buckwalter and 

Mankin, 1997a; Newman, 1998; Hunziker, 1999; Hunziker, 2001a).

Surgical removal of articular cartilage is commonplace in the treatment of 

osteoarthritic diseases (McLaren et al., 1991). Osteochondral transplantation 

techniques such as mosaicplasty involves the incision of healthy articular cartilage, 

both to create the tissue plugs and prepare the lesion site for implantation of the plugs 

(Hunziker, 1999; Hangody et al., 2001;). In addition, early surgical interventions in 

the degenerative process such as lavage and arthroscopy, chondral shaving and 

debridement is carried out on the principle such options provide symptomatic relief 

from pain, restore joint functionality and delay the need for total joint replacement 

(Buckwalter and Lohmander, 1994; Newman, 1998; Gilbert, 1998; Hunziker, 2001a). 

Chondral shaving and debridement involves mechanical removal of loose cartilage 

fragments and smoothing of fibrillated areas using surgical cutting tools and 

instruments (Mitchell and Shepard, 1987; Kim et al., 1991; McLaren et al., 1991). 

Arthroscopic chondral shaving is also commonly used for the treatment of 

chondromalacia patellae (Ogilvie-Harris and Jackson, 1984). However, the beneficial 

effects of techniques such as chondral shaving and debridement remain controversial, 

with a lack of experimental or clinical evidence to justify the procedures (Buckwalter 

and Lohmander, 1994; Newman, 1998; Hunziker, 2001a). For example, chondral 

shaving has been shown to stimulate neither a degenerative nor reparative response in 

one study (Mitchell and Shepard, 1987) and induce degeneration in the remaining 

cartilage in other studies (Schmid and Schmid, 1987; Kim et al., 1991).

Experimental mechanical wounding of cartilage tissue using cutting tools has been 

demonstrated to initiate a deleterious response in the cartilage tissue immediately 

adjacent to the wound edge. This response is characterised by cartilage degeneration
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and cell loss (Shapiro et al., 1993; Hunziker and Quinn, 2002; Tew et al., 2000; 

Redman et al., 2004), probably due to both necrosis and apoptosis, and altered matrix 

metabolism characterised histologically by empty lacunae and loss of metachromasia 

from the extracellular matrix at the lesion edge (Bennett et al., 1932; Tew et al., 2000; 

Walker et al., 2000). In contrast, deeper into the tissue, adjacent to this ‘zone of cell 

death’ there is a zone of cell proliferation and up-regulation of matrix synthesis 

evidenced by increased 3H-thymidine and 35S incorporation in the territorial matrix of 

this region (Calandruccio and Gilmer, 1962; Mankin, 1962; Buckwalter, 2002; 

Redman et al., 2004). The use of sharper cutting instruments, such as scalpels, 

diminishes the extent of the ‘zone of necrosis’ thus causing cell proliferation and up- 

regulation of matrix synthesis to occur at the wound edge (Redman et al., 2004).

Current research into mechanisms of improving cartilage repair encompasses a variety 

of combinations of approaches such as incorporating growth factors into the defect 

(Hunziker, 2001), synthetic or natural scaffolds either alone (Solchaga et al., 2002) or 

seeded with chondrocytes or mesenchymal stem cells (Freed et al., 1993; Hendrickson 

et al., 1994; Wakitani et al., 1994; Cao et al., 1997; Kawamura et al., 1998). Cell- 

based approaches using mesenchymal stem cells (Im et al., 2001; Wakitani et al., 

2002), and in the technique of autologous chondrocyte transplantation (Brittberg et 

al., 1994) have also incorporated cells in the defect without a scaffold. Studies such as 

these have frequently been hampered by poor integration of the repair tissue with the 

native articular cartilage (Shapiro et al., 1993; Wakitani et al., 1994; Hunziker, 2001). 

This phenomenon may be partly due to the cell and matrix changes described above, 

as the lesion sites are most likely to undergo some form of preparation prior to the 

implantation procedure using surgical cutting tools and instruments. Thus, repair 

tissue may be attempting to integrate into ‘dead cartilage’ and may eventually 

separate in time. Therefore, the use of sharper, more precise cutting instruments may 

reduce this effect, allowing cell proliferation and matrix synthesis to occur 

immediately at the would edge and promote a more successful integration of the 

repair tissue with the host.

The superficial zone articular cartilage progenitor cells are believed to be responsible 

for the appositional growth of articular cartilage during development (Hayes et al., 

2001; Dowthwaite et al., 2004). As the cells appear to play a pivotal role in the

146



Chapter 6: Surgical cartilage cutting techniques and ex vivo cell transplantation

growth of articular cartilage, we hypothesised they also may play an important role in 

repair. They may either be directly responsible for the laying down of the new repair 

tissue or may orchestrate a repair response by the secretion of growth factors or 

cytokines that may modulate the synthetic activity of the chondrocytes surrounding 

the defect site or may prevent entry of the cells into the apoptotic pathway. If this is 

the case then it may be that the cells could reduce the deleterious effects described 

above that occur at cartilage wound margins when implanted into the defect site.

Therefore the objectives of this study were two-fold:

[1] To develop a model to study the extent of cellular necrosis that occurs in 

cartilage following wounding and to use the model to evaluate the extent of 

cell death caused by several different surgical cutting techniques.

[2] To determine whether the implantation of populations of cells enriched in 

superficial zone articular cartilage progenitor cells (SZCs) into an 

experimental defect in articular cartilage can reduce the cell death and matrix 

loss at the wound margin in an ex vivo wound model.
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6.2 MATERIALS AND METHODS

6.2.1 Effects of surgical cutting techniques on cell viability at the cartilage 

wound margin.

6.2.1.1 Cartilage Cutting

Strips of cartilage were removed from 7 day-old bovine metatarsophalangeal 

joints as described in section 2.1 and kept in PBS (Oxoid) until used for 

cutting (1-2 hours).

Cartilage strips were then cut using the following techniques:

[A] Scalpel blade (fresh blade for each cut).

[B] Duckling elevator Acufex punch (014765 LI94).

[C] 4.0mm Full radius Dyonics powered cutter (7205306 L397678)

[D] 4.5mm Mosaicplasty tubular chisel (7207097 L395249)

[E] 6.5mm drilled trephine (7205515 L362684)

Cutting technique [A] served as a minimally traumatic negative control. 

Cutting technique [C] is an arthroscopic shaving tool illustrated in figure 6.1 A. 

For this technique, the strip of cartilage was clamped in a specially crafted 

aluminium cutting jig (figure 6.IB) using two crocodile clips. This was to 

allow accurate, reproducible cutting. The jig with attached cartilage strip was 

submerged in PBS for cutting. For cutting technique [D], the procedure was 

carried out prior to removal of the cartilage from the bone. Once the cartilage 

had been cut it was removed as previously described.

Following the cutting procedure the cartilage strips were cut into small pieces 

(approx. 5mm in length) and transferred to 6-well tissue culture plates 

containing 6ml DMEM +10% FCS. Plates were incubated overnight in a RS 

Biotech incubator at 37°C in humidified 5% CO2  atmosphere.
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6.2.1.2 Visualisation of live and dead cells at cut cartilage surfaces

After the culture period, cartilage portions were processed by either of two 

methods:

[1] Live/dead staining o f cryostat sections

Cartilage portions were washed briefly with PBS and then immersed in PBS 

containing 2 pl/ml ethidium homodimer-1 (2mM, Molecular Probes) for 3 

hours to label the dead cells. Longer incubations, up to overnight, were also 

tried.

Cartilage portions were washed for 4 hours in 20ml PBS containing 

0.04mg/ml salmon sperm DNA (Sigma) and then frozen in OCT (Gurr) using 

a liquid nitrogen cooled iso-pentane slush. 7pm sections were cut from the 

centre of the portion using a Leica Jung CM3000 cryostat, placed on poly

lysine coated slides (Sigma) and counterstained using 2pl/ml SytolO (2mM 

Molecular Probes). SytolO is a green fluorescent stain that will bind to the 

DNA of all cells present, live or dead. Sections were viewed using a Leica 

confocal microscope with an ArKr laser exciting at 488nm and 568nm.
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Figure 6.1: Illustration of Dyonics powered cutter (A) and cutting jig (B)

Portion of cartilage

Fxnerim ental cut Axis of second 
cut

Figure 6.2: Diagram illustrating axis of second cut perpendicular to the axis of 

the first experimental cut surface (red) for visualisation of wound margin using 

optical sectioning technique (Section 6.2.1.2).
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[2] Optical sectioning o f live/dead stained specimens

Portions were washed briefly with PBS and the cut across the centre of the 

portion, using a fresh scalpel blade each time, perpendicular to the axis of the 

first experimental cut surface (figure 6.2).

Samples were then immersed in 5ml PBS containing the 2.5pi of the green 

fluorescent probe Calcein AM (1 mg/ml) and lOpl of the red fluorescent probe 

Ethidium homodimer-1 (2mM) (both Molecular Probes) for 1.5 hours to label 

live and dead cells respectively. The portions were then viewed with the 

second cut surface face down in a petri-dish, containing a small quantity of 

PBS, using the inverted Leica confocal microscope with an ArKr laser 

exciting at 488nm and 568nm. Images from 6 different wound margins were 

captured with the wound margin parallel to the edge of the image for 

quantitation using image analysis.

6.2.1.3 Image analysis

Images from wound margins were captured for quantification using Image 

pro-plus software. The image was calibrated by the fact that when using the 

xlO objective the image is 1,000pm x 1,000pm or 2,000pm x 2,000pm when 

using the x5 objective. Image pro plus then calculated the average distance, in 

microns, between the two lines. This is illustrated in figure 6.3. Statistical 

significance was determined using one way ANOVA test followed by Tukey’s 

post hoc testing to determine where significant differences exist between 

treatment groups. Differences were considered significant at the 0.05 

confidence level.
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w it  512512

Figure 6.3: Illustration of image analysis technique to estimate the depth 

of the wound margin.
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6.2.2 Cell Transplantation

6.2.2.1 Cell isolation

Chondrocytes were isolated from the superficial and middle zone of articular 

cartilage of 7 day-old bovine metatarsophalangeal joints as described in 

section 3.2.1.2. After isolation, 2 x 106 cells in 1ml serum free DMEM were 

seeded into each of the wells of the fibronectin coated (10 pg/ml) 6 well plates 

(coated as described in section 3.2.1.1) and incubated at 37°C for 20 minutes. 

After this time, the media was gently swirled and discarded. Adherent cells 

were washed once with 5ml PBS and 1ml trypsin/EDTA 

(0.05%w/v/0.02%w/v) was added to each well and incubated at 37°C in a 5% 

CO2 atmosphere for 10 minutes. One ml of DMEM containing 10% FCS was 

then added and media from wells containing each cell type were pooled, 

centrifuged at 300g to pellet and resuspended in lOmls DMEM containing 

10% FCS. Cells were counted using a Neubeuer haemocytometer. For 

transplantation into defects made using a drill bit, cells were resuspended to 

give approximately 1.5 x 106 cells/3.5pi. For transplantation using the 

'Agarose gel system', cells were resuspended to approximately 1 x 106 cells 

/150pl.

6.2.2.2 Cartilage wounding using a drill bit and cell transplantation

Strips of articular cartilage were dissected from 7 day-old bovine 

metatarsophalangeal joints as described in section 2.1 and chopped into 

portions 5mm in length. Cartilage explants were placed into DMEM 

containing 10% FCS and incubated at 37°C in a 5% CO2  atmosphere overnight 

while the above cell isolation was taking place.

The next day, a defect a 2mm deep was made in the cartilage portions using a 

2mm drill bit. 3.5pl of cell suspension was carefully pipetted into the defect 

and cells were allowed to settle. The cartilage explant was very slowly covered
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with DMEM containing 10% FCS and incubated at 37°C in a 5% CO2 

atmosphere for 6 days. Replicates of 6 were used for each cell type.

6.2.2.3 Agarose gel-based system

Strips of cartilage were isolated as described above, chopped into 5mm x 5mm 

portions and placed in DMEM containing 10% FCS. The next day, a fresh 

wound margin was created on one side of the portion using either a scalpel or 

3.5mm Acufex punch.

Low melting temperature agarose (Sigma; A-9045) was made up to 4.6% in 

50ml deionised water and autoclaved. Agarose was remelted by briefly 

microwaving and kept molten in a 50°C water bath. From this solution, 6.5 ml 

was removed to leave 43.5 ml. To this remaining solution, 5ml lOx DMEM 

(sigma -  D-2554), 0.5ml 5000IU/ml penicillin and 5mg/ml streptomycin, 

0.5ml 200mM L-Glutamine and 0.5ml non essential amino-acids was added. 

The resulting solution was 4% agarose. It was also necessary to adjust the pH 

of the molten gel solution using several drops of 1M NaOH to return to the 

cherry red colouration. A small amount of this solution was then pipetted into 

5ml bijou tubes and a gel former was then placed into the agarose and allowed 

to solidify. This procedure forms a gel with a narrow slot that allows a portion 

of cartilage to be placed in it (figure 6.4). The cartilage portions were then 

transferred to the agarose slot with the wound margin facing upwards (figure

6.4 B) and DMEM containing 10% FCS was then used to cover the agarose 

and cartilage. Cells were introduced onto the wound margin by carefully 

inserting the pipette tip down into the agarose slot and pipetting 150pl of cell 

suspension just above the wound margin. A modified screw cap that had been 

drilled to accommodate a luer lock fitting and a 0.2pm filter was then placed 

onto the bijou tube to allow gas exchange and maintain sterility (figure 6.4 C). 

Explants were incubated at 37°C in a 5% CO2  atmosphere for 6 days. 

Replicates of 6 were used for each cell type.
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6.2.2.4 Histology and confocal microscopy

Cartilage explants were bisected perpendicular to the wound margin. One half 

was embedded in paraffin wax, sectioned and stained with Safranin 0 / 

haematoxylin as described in section 2.3. The other half was used to evaluate 

cell viability at the wound margin using confocal microscopy as described in 

section 6.2.1.2 method [2]. Image analysis of confocal images was carried out 

as described in section 6.2.1.3.
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Figure 6.4. Photographs illustrating agarose gel based system. (A) Gel former in 

bijou tube. (B) Cartilage explant (*) embedded in agarose with wound margin 

facing upwards (solid white arrow). (C) Modified bijou tubes for culture of 

explants (section 6.2.2.3).
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6.3 RESULTS

6.3.1 Effect of surgical cutting technique on cell viability at the cartilage wound 

margin.

The first processing technique (Live/dead staining of cryostat sections) was 

discontinued from use due to the ethidium homodimer-1 only penetrating approx 100- 

200pm into the tissue. This was demonstrated using pieces of cartilage freeze-thawed 

repeatedly prior to incubation in the ethidium homodimer-1. Penetration depth was 

not increased significantly even after overnight incubation in the ethidium 

homodimer-1. Although literature evidence suggests full penetration of ethidium 

homodimer-1 will occur after 24 hours at 4°C (Poole et al., 1996) a 24 hour 

incubation may result in additional cellular effects. In addition, this length of 

incubation plus the lengthy, work intensive sectioning results in a long turn around 

time for results.

By using the second processing technique (Optical sectioning of live/dead stained 

specimens) the problem of dye penetration could be avoided. Provided penetration of 

the ethidium homodimer-1 is more than a few cells deep and the laser power of the 

confocal microscope is kept high, the extent of cell death at the wound margin could 

be visualised.

Using this technique, images were captured of cell death at the wound margins caused 

by the five cutting techniques. Representative examples of the images captured for 

each cutting technique are shown in figure 6.5 and results of the quantification of the 

cell death using image analysis shown in table 6.1. Cartilage cutting using a scalpel 

produced minimal cell death whereas using an Acufex punch and the Dyonics 

powered cutter produced relatively low levels of cell death (54.7pm and 32.4pm 

respectively) although there was no significant difference from that achieved using the 

scalpel. Cartilage cutting using the 4.0mm Tubular Chisel and the drilled 6.5mm 

Trephine produced extensive cell death. However this effect may be due more to the 

instruments being blunt after extensive use than the cutting technique itself.
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Figure 6.5: Confocal microscope

images illustrating cell death at the 

wound margins of cartilage cut using 

various surgical cutting techniques. 

Images were obtained by Optical 

sectioning of live/dead stained 

specimens. The cut edge is towards the 

right hand side of the image. Scale bar 

= 200pm

Cutting
technique

A B C D E

Depth of 
cell death 
(pm ± s.d.)

9.2 ± 2.2 54.7 ±3.1 32.4 ± 7.3 215.0 ± 
54.1*

456.6 ± 
232.0**

Table 6.1: Table showing average wound margin thickness (depth of cell death) 

using various cutting techniques calculated using image analysis as described in 

section 6.2.I.3. Statistical significance was determined using one way ANOVA 

and Tukeys’ post hoc testing. *p<0.05; **p<0.01 compared to scalpel blade (A).
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6.3.2 Cell transplantation: effect on articular cartilage wounded using a drill 

bit.

It was evident from the histology and confocal microscopy (figures 6.7 and 6.8) that 

wounding the cartilage explants using a drill bit produced extremely variable defects, 

often involving quite extensive trauma to the cartilage. This variability and extensive 

trauma would make the quantification of the effect very difficult. In addition, 

although transplantation of cells into the defect in this manner resulted in a large 

number of cells being present in the defect, this also appeared variable. Apparent from 

the images is that the transplanted cells from the superficial or mid zone had little 

effect on the wound margin in terms of cell viability or matrix glycosaminoglycan 

(GAG) loss. The effect of the cells may have been masked by the variability inherent 

in the model. Therefore, a method of creating more constant defects was required, in 

addition to a means of introducing a more uniform number of cells onto the wound 

margin.

6.3.3 Cell transplantation using the agarose gel-based system

The use of this system allowed the creation of more consistent defects and the 

introduction of a more uniform number of cells onto the wound margin. Therefore, a 

more reliable evaluation of the effect of the cells on the wound margins could take 

place.

The use of a scalpel to wound the cartilage resulted in a very narrow wound margin of 

approximately 1-3 cells deep. This resulted in difficulties in determining whether the 

transplanted cells had any effect on the wound margin. It was, therefore, decided to 

use a 3.5mm Acufex punch to create the defect. The use of this tool resulted in a 

wound margin of approximately 9-11 cells deep. Results of transplanting the cells into 

the defects are illustrated in figures 6.9 and 6.10 and the results from the image 

analysis of the confocal images are shown in table 6.2. Apparent from the images and 

the data is that the transplantation of cells from the superficial or mid zone that have a 

high affinity for fibronectin had little effect on the wound margin in terms of cell 

viability. There was also no visible effect on matrix (GAG) loss, although this was not 

quantified.
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Transplanted cells

Wound 
r > margin

Figure 6.7: Confocal microscope images showing cell viability at wound margins 

created using a drill bit and left empty (A), transplanted with cells with a high 

affinity for fibronectin from superficial zone (B) and middle zone (C).

Scale bar = 200pm.

Figure 6.8: Images showing Safranin O staining of defects created using a drill 

bit and left empty (A), transplanted with cells with a high affinity for fibronectin 

from superficial zone (B) and middle zone (C). Scale bar = 400pm.
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Figure 6.9: Confocal microscope images from the agarose gel based system 

showing cell viability at wound margins created using a 3.5mm Acufex punch 

and left empty (A), transplanted with cells with a high affinity for fibronectin 

from superficial zone (B) and middle zone (C). Scale bar = 400pm.

Control (no cells) Superficial Zone Middle Zone
Thickness (pm ± SD) 180.3 ±  13.8 183.9 ±  12.1 185.3 ± 23.3

Table 6.2: Table showing average wound margin thickness (depth of cell death) 

using a 3.5mm Acufex punch and transplanted with cells calculated using image 

analysis as described in section 6.2.I.3.
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Figure 6.10: Images showing Safranin O staining of defects created using a 

3.5mm Acufex punch, cultured using the agarose gel based system and left empty 

(A), transplanted with cells with a high affinity for fibronectin from superficial 

zone (B) and middle zone (C). Scale bar = 400pm.
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6.4 DISCUSSION

This study has demonstrated the capacity of various different cutting tools used for 

the surgical management of lesions in articular cartilage to induce cell death in the 

remaining native articular cartilage immediately adjacent to the lesion edge. 

Numerous other studies have observed similar responses to that described here 

following wounding of articular cartilage using surgical techniques (Bennett et al., 

1932; Schmid and Schmid, 1987; Kim et al., 1991), using experimental defects in in 

vivo (Shapiro et al., 1993; Hunziker and Quinn, 2002), and ex vivo models using 

trephines (Tew et al., 2000; Redman et al., 2004). Laser chondroplasty has also been 

shown to cause necrosis (Mainil-Varlet, 2001). Moreover, the use of sharp scalpels 

has been shown to induce minimal cell death and leave viable chondrocytes at the 

wound edge (Redman et al., 2004) and one study has even demonstrated total healing 

of articular cartilage defects created using a sharp scalpel to occur in a foetal lamb 

model (Namba et al., 1998). Redman et al., (2004) demonstrated minimal cell death 

induced in articular cartilage using scalpels in comparison to a trephine but did not 

compare the range of surgical cutting tools described here. These studies together with 

data generated here demonstrate that the extent of cell death induced is dependant on 

the type of cutting technique used with drill-powered trephines creating extensive cell 

death in comparison to the minimal or low levels of cell death caused by sharp 

scalpels, Acufex punches and the Dyonics powered cutter. Thus, the use of sharper, 

less traumatic and more precise cutting tools would reduce the mechanical stresses at 

the lesion edge and reduce cell death.

The confocal microscope technique used here utilises the properties of two fluorescent 

cell viability probes, calcein AM and ethidium homodimer-1 that detect live and dead 

cells respectively. Calcein AM is a cell membrane-permeant probe that is metabolised 

within living cells to a green fluorescent product that is excited by the 488nm line of 

the Krypton-Argon laser. Ethidium homodimer-1 can only cross the compromised 

membranes of dead cells where it binds nucleic acids and emits a red fluorescence 

when excited by the 568nm line of the Krypton-Argon laser. The use of these probes 

together allows the simultaneous visualisation of live and dead cells within the 

cartilage explants. However, previous studies have demonstrated that the cell death 

induced by wounding of cartilage with a trephine comprises a combination of necrosis
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and apoptosis (Tew et al., 2000; Walker et al., 2000). The initial necrotic response is 

proposed to be caused by the mechanical insult that occurs as a consequence of the 

wounding. This necrosis is followed by a ‘wave’ of apoptosis that occurs over the 

subsequent days following injury, extending deeper into the tissue and believed to be 

caused by mechanical disruption of the chondrocyte-extracellular matrix interaction 

(Tew et al., 2000; Buckwalter, 2002; Kuhn et al., 2004). Although the ethidium 

homodimer-1 does not discriminate between apoptotic and necrotic mechanisms of 

cell death the extent of the apoptotic response is likely to be proportional to the 

magnitude of the initial mechanical insult and extent of disruption of the chondrocyte- 

extracellular matrix interaction (Redman et al., 2004). In addition, the cell death in 

this study was measured 1 day after wounding whereas other studies have 

demonstrated the apoptotic cell death response to continue up to 10 days following 

wounding (Tew et al., 2000). Thus the degree of cell death shown here may be an 

underestimation of the total response that will occur over time.

The results described here were obtained from immature cartilage tissue and it is not 

known how this correlates with the responses that will occur in adult or more mature 

cartilage tissue. Previous studies have demonstrated immature and mature cartilage to 

respond to wounding in a similar manner (Tew et al., 2001) whereas another study has 

shown injurious compression to induce a greater apoptotic response in immature 

cartilage compared to more mature cartilage (Kurz et al., 2004).

Immediately evident from the above discussion is that understanding the events that 

occur in articular cartilage in response to wounding is of prime importance if future 

cartilage repair approaches are to prove successful. A feature frequently described of 

attempts to repair defects in articular cartilage is the poor integration between the 

repair tissue and the native articular cartilage (Shapiro et al., 1993; Wakitani et al., 

1994; Hunziker, 2001). The extent of cell death induced by the surgical cutting 

technique is likely to have a major bearing on whether or not the repair tissue that 

forms within the defect integrates successfully with the host tissue i.e. the use of 

sharper cutting techniques would reduce the size of the zone of cell death between 

repair tissue and host tissue and may promote a more successful integration (Tew et 

al., 2000; Redman et al., 2004). Wounding with a trephine has been shown to induce a 

zone of cell death and stimulate cell proliferation and up-regulation of matrix
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synthesis deeper in the tissue and adjacent to the ‘zone of cell death’ (Redman et al., 

2004). Interestingly, although wounding with a sharp scalpel induces minimal cell 

death and matrix disruption, presumably a result of minimising the stresses that occur 

in the tissue, there is still an up-regulation of matrix synthesis and cell proliferation 

immediately adjacent to the wound edge in response to the wounding (Redman et al., 

2004). Understanding the factors responsible for this shift in the attempted repair 

response to the lesion edge when mechanical stresses and hence cell death and matrix 

loss has been kept to a minimum is an example of how future approaches to cartilage 

repair may be improved. Alternatively, approaches to inhibit the apoptotic response 

may be of benefit. For example, such approaches could include the localised use of 

molecular inhibitors of apoptosis or the prevention of the loss of survival factors such 

as IGF-I from the extracellular matrix using hydrogels (Kuhn et al., 2004).

The potential ability of a chondrogenic cell type to prevent the detrimental apoptosis 

and loss of glycosaminoglycans that occurs in cartilage following wounding would be 

of great interest for tissue engineering based approaches to cartilage repair. However, 

data generated in this study showed there to be little effect of transplanting 

populations of cells enriched in superficial zone articular cartilage progenitor cells 

onto cartilage wound margins. No effect was observed on the wounding induced 

necrosis or loss of glycosaminoglycans from the wound edge. These results are in 

contrast to data generated in other studies (Bishop et al., 2002) that indicate that 

transplanting similar cells into defects in articular cartilage reduces the extent of cell 

death and matrix loss at the wound margin. The reasons for the contrasting results are 

unclear although may be due to the fact that the studies of Bishop et al., (2002) used 

cells transplanted in the form of pellets that were created several days prior to 

transplantation. Thus, the cells may have been in a different state of differentiation at 

the time of implantation in the defect to the cells used in the studies presented here. It 

would also be interesting to look at the effect on wound margins of purer populations 

of progenitor cells using clonal lines derived from individual colonies following 

differential adhesion. The populations used in these studies were only enriched and 

thus any beneficial effect of the progenitor cells may be being diluted by non

progenitor cells in the populations.
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In conclusion, the surgical removal of articular cartilage has a detrimental effect on 

the remaining articular cartilage and this detrimental effect may, in part, lead to the 

poor integration of repair tissue in the defect. The extent of the detrimental response is 

dependant on the cutting technique used. Although the implantation of populations of 

cells enriched in articular cartilage progenitor cells failed to influence events at the 

wound margin, the model developed may be useful for evaluating the effects and 

integration of other cells or tissue engineered cartilage constructs on cartilage wound 

margins. The model may therefore provide a useful tool for the design of cell-based 

strategies for cartilage repair prior to in vivo evaluations.
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CHAPTER 7 

HUMAN STUDIES
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7.1 INTRODUCTION

Previous studies describing evidence for the existence of a population of articular 

cartilage progenitor cells within the superficial zone of articular cartilage and their 

role in development have investigated developing or neonatal opossum, murine or 

bovine tissue (Hayes et al., 2001; Hayes et al., 2003; Dowthwaite et al., 2004 

respectively). Little is known about the role of the cells in the development of human 

articular cartilage and the fate of the cells during maturation of the cartilage through 

to the adult organism. The prospect of isolating articular cartilage progenitor cells 

from human cartilage would be of interest as the cells may replicate the extensive 

expansion and chondrogenesis properties exhibited by their bovine counterparts 

(Chapter 5). The large expansion potential may allow the development and 

commercialisation of cartilage repair therapies through the establishment of allogeneic 

cell banks.

In order to study the properties of the human cells a tissue source is needed. As little 

is known about the existence of human articular cartilage progenitor cells or their fate 

during the ageing process, the optimal age of donor for their isolation is unknown. 

Bearing in mind their role in cartilage development they are likely to be more 

abundant in human neonatal or paediatric cartilage, however a demonstration of their 

existence in adult human tissue would be of benefit as it would be relatively easier to 

obtain suitable adult donor tissue compared with human neonatal or paediatric tissue. 

With this in mind, together with previous data suggesting their existence in 

developing neonatal animal articular cartilage (Hayes et al., 2001; Hayes et al., 2003; 

Dowthwaite et al., 2004) it was decided to attempt to prepare enriched populations of 

human articular cartilage progenitor cells from both adult and developing human 

tissue.

Little is known about the effect of aging on human chondrocyte proliferation and 

redifferentiation ability (Barbero et al., 2004). Previous studies have investigated age- 

related changes in proliferation of chondrocytes derived from human (Gueme et al., 

1995; Barbero et al., 2004) and animal donors (Adolphe et al., 1983; Evans and 

Georgescu, 1983). These studies have shown a species dependant proliferative 

potential with an inverse relationship between proliferative potential and age of the
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donor (Evans and Georgescu, 1983). The proliferative and chondrogenic ability of 

adult human chondrocytes during culture is low, preventing the widespread use of the 

cells in cartilage repair therapies or in the generation of allogeneic cell banks. The 

large numbers of cells required for these applications suggest the requirement for a 

stem cell or cartilage progenitor cell with extensive and rapid expansion capabilities. 

However, it is now becoming apparent that even mesenchymal stem cells derived 

from human bone-marrow lose their chondrogenic ability during expansion 

(Mastrogiacomo et al., 2001) thus prompting research into specific expansion 

conditions to prevent this. Studies have evaluated the effect of culture conditions or 

various serum lots (Lennon et al., 1996; Caterson et al., 2002; Sekiya et al., 2002) or 

the addition of growth factor supplements such as FGF-2 to the culture media on the 

cartilage forming potential of human marrow derived stem cells (Mastrogiacomo et 

al., 2001; Solchaga et al., 2005). These studies have shown it to be possible to 

enhance the retention of chondrogenic ability of human cartilage forming progenitor 

cells during expansion by careful optimisation of the culture conditions.

The objective of this study was to prepare enriched populations of human superficial 

zone articular cartilage progenitor cells (SZCs) and expand under different conditions 

and evaluate their chondrogenic potential at various passages by transfer into pellet 

culture. Chondrogenesis was determined using safranin O staining and collagen II 

immunolabelling. Neonatal, paediatric and adult human cartilage were examined. A 

secondary objective was to examine the structure of human articular cartilage 

throughout development using histological techniques.
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7.2 MATERIALS AND METHODS

7.2.1 Human Tissue

Human knee joints of neonatal, paediatric and adult donors were obtained using 

informed consent. Summary of the donors are shown in table 7.1. The knee joints 

were opened aseptically and the articular cartilage surfaces exposed. Tissue was 

removed for histology and cell culture.

7.2.2 Histology and immunolabelling

Articular cartilage was excised from condyle and in some cases the patellar groove 

surface of the joint. The cartilage was washed once in PBS, fixed and embedded in 

paraffin wax as described in section 2.3. Sections of 5pm thickness were cut and 

stained with haematoxylin and eosin as described in sections 2.3.3 and 2.3.4. Some 

sections were stained with safranin O/haematoxylin and picro-sirius red.

In some cases, cartilage was frozen as described in section 2.3.6 and embedded in 

OCT. Frozen sections were cut and immunolabelled for the presence of Notch 1-4 as 

follows.

Antibodies for Notch receptors 1, 3 and 4 were goat polyclonals against the human 

epitope. Antibody against Notch 2 was a rabbit polyclonal against the human epitope. 

Antibodies were provided by Santa Cruz. Immunolabelling for BST-1 and 

fibronectin-EDA was carried out as described in sections 3.2.2 and 4.2.1.1 

respectively.

For immunolabelling, sections were washed twice for 5 minutes in PBS (Oxoid) prior 

to blocking with 2.5% normal rabbit serum (2.5% goat serum for Notch 2 slides) 

(Dako) in PBS for 20 minutes at room temperature. Blocking solution was wicked off 

using a tissue and sections were then incubated with 20pg/ml of the antibodies in PBS 

for 45 minutes at room temperature. Sections were washed three times for 3 minutes 

with PBS and incubated with a 1:100 dilution in PBS of a biotinylated rabbit anti-goat
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secondary antibody (Notch2 sections biotinylated goat anti-rabbit secondary antibody) 

(Dako) for 45 minutes at room temperature followed by washing for three times for 3 

minutes. Sections were then incubated with a 1:100 dilution in PBS of a Streptavidin- 

FITC conjugate (Amersham Pharmacia) for 45 minutes at room temperature followed 

by washing three times for 3 minutes. Sections were mounted with Vectashield 

(Vector) containing propidium iodide, coverslipped and viewed using fluorescence 

microscopy.

Control sections were incubated with the equivalent concentration of non-immune 

IgG of the same species the primary antibody was raised in.

7.2.3 Cell isolation and expansion

7.2.3.1 Isolation and expansion of populations of cells enriched in 

articular cartilage progenitor cells

Protocol was repeated as described in section 5.2.1 with the following 

exceptions:

Human plasma fibronectin (Sigma, Poole) was used at lOpgml'1 in Dulbecco's 

PBS with ImM MgCk and ImM CaCb (Sigma, Poole) for coating of plates.

Following isolation, 7.8ml of the 4000 cells ml"1 suspension of superficial 

zone cells (SZCs) in serum free DMEM was seeded into each of 4 coated 

75cm2 flasks and incubated at 37°C for 20 minutes. After 20 minutes, the 

media was gently swirled and discarded. Expansion was carried out in media 

as shown in table 7.2. Fetal bovine serum (FBS) was obtained from Helena 

Biosciences. Human serum (HS) was obtained from Sigma (HI513). FGF-2 

was obtained from R&D Systems, Oxfordshire.
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1.232  Full Thickness Chondrocyte Controls

Chondrocytes were isolated from the full thickness of the articular cartilage 

(FTCs) of each of the donor joints. The tissue was harvested from the 

remaining half of the condyle and patellar groove that had not been used for 

superficial zone cell isolation. Cartilage was digested as described above. 

Following isolation, approximately 1 x 106 cells were seeded into each of 4 x 

75cm2 flasks and cultured in either DMEM/10% FBS and DMEM/10% HS 

(Donors 1 & 2), DMEM/10% FBS with and without 5ng/ml bFGF (Donor 3) 

or DMEM/10% FBS alone (Donors 4 & 5).

7.2.4 Chondrogenic differentiation: pellet culture

Pellets were cultured and analysed histologically as described in section 5.2.2.
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Donor Age/Sex Cause of Death Supplier

1 33 weeks gestation
Male
Neonatal

Trisomy 13 Cell Dynamics 
(Georgia)

2 35 days post-natal
Female
Neonatal

Pontus
cerebellum
hypoplasia

Cell Dynamics 
(Georgia)

3 2 years post-natal
Male
Paediatric

Microencephaly Cell Dynamics 
(Georgia)

4 38 years old
Female
Adult

Cirrhosis, liver 
failure

ScienceCare
Anatomical
(Arizona)

5 45 years old
Female
Adult

Respiratory 
failure, stomach 
sclerosis

ScienceCare
Anatomical
(Arizona)

Table 7.1: Summary of human donors used in these studies.

Donor Expansion Media

1 DMEM/10% FBS 

DMEM/10% HS

2 DMEM/10% FBS 

DMEM/10% HS

3 DMEM/10% FBS ± 5ng/ml FGF-2

4 DMEM/10% FBS

5 DMEM/10% FBS

Table 7.2: Expansion conditions for putative human superficial zone progenitor 

cells
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7.3 RESULTS

7.3.1 Histology

7.3.1.1 Donor 1

Histological staining of articular cartilage from donor 1 revealed a deep, 

highly cellular, vascularised and immature cartilage tissue (figure 7.1 A & B) 

that comprised most of the epiphysis of the femur and contained abundant 

sulphated glycosaminoglycans (figure 7.1C). The architecture and defined 

zones of articular cartilage present in the adult were absent. Large vascularised 

canals were present throughout the depth of the tissue, often extending to the 

surface. There also appeared to be a fibrous, denser staining region on the 

surface of the tissue that contained a greater abundance of collagen (figure 

7.2C) and little or no sulphated proteoglycans (figures 7.1C & 7.2B). This 

region contained highly oriented collagen fibres lying parallel with the surface 

of the tissue as shown when sections were stained with picro-sirius red and 

viewed using polarised light (figure 7.ID). Higher magnification examination 

of this surface area revealed it to be continuous with both the vascularised 

canals and vascularised synovial tissue at the periphery of the joint (figure 

7.2). The surface of this layer was composed of numerous flattened cells 

whereas deeper in this layer there were numerous chondrocyte clones 

indicating it to be a region of active cell proliferation (figure 7.2).
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Femoral condyle Patellar groove

Patellar groove Patellar groove

Figure 7.1: Haematoxylin and eosin (A & B) and safranin O (C) staining of 

donor 1 articular cartilage. A section stained with picrosiruis red and viewed 

using polarised light is shown in (D). Vascularised areas indicated by solid 

arrows. A & B bar = 1000pm. C & D bar = 400pm.
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Figure 7.2: Higher magnification image of area highlighted in Figure 7.1B 

stained with haematoxylin and eosin (A), safranin O (B) and picro-sirius red (C). 

Flattened cells are indicated by solid arrows. Chondrocyte clones are indicated 

by open arrows. Bar in all images = 200pm.
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7.3.1.2 Donor 2

Haematoxylin and eosin and safranin O staining of patellar groove cartilage 

derived from donor 2 again revealed a thick, highly cellular and immature 

tissue (figure 7.3). In contrast to donor 1, the tissue contained a much lower 

degree of vascularity and the fibrous surface layer evident in donor 1 was 

generally absent, only present toward the very periphery of the joint surface. 

There was a reduced level of glycosaminoglycans in the surface regions 

(figure 7.3B).

7.3.1.3 Donor 3

Haematoxylin and eosin and safranin O staining of patellar groove cartilage 

derived from donor 3 again revealed a highly cellular, immature tissue (figure 

7.4). However the cartilage appeared less cellular than donor 2 indicating a 

higher degree of maturity. The reduced glycosaminoglycan level in the surface 

layers was more extensive, extending deeper into the tissue. Vascularity 

occurred only in the very deepest regions of the cartilage and the fibrous 

surface layer was completely absent.

7.3.1.4 Donor 4 and Donor 5

Haematoxylin and eosin staining revealed features typical of mature cartilage. 

The cellularity was relatively lower than that noted in the immature cartilage 

from donors 1 to 3 and the cells were present in lacunae and arranged in 

columns in the deeper regions. The surface zone was sparsely populated with 

flattened cells (arrows) and contained a high proportion of empty lacunae. The 

surface zone of donor 4 appeared fibrous, although in contrast to donor 1 this 

region was relatively acellular, possibly a result of some form of early 

degradative changes.
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B

Figure 7.3: Haematoxylin and eosin (A) and safranin O (B) staining of donor 2 

articular cartilage from the patellar groove. Bar = 200pm.

-

Figure 7.4: Haematoxylin and eosin (A) and safranin O (B) staining of donor 3 

articular cartilage from the patellar groove. Bar = 200pm.
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________

Figure 7.5: Haematoxylin and eosin staining of adult articular cartilage from the 

femoral condyle of donor 4 (A) and donor 5 (B). Arrows indicate flattened 

surface cells. Bar = 200|im.
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7.3.2 Immunolabelling: Notch 1-4, fibronectin-EDA and BST-1

Figures 7.6 and 7.7 show the distribution of Notch 1-4 in normal neonatal 

(donor 1) and adult human (donor 4) articular cartilage. Red fluorescence is a 

result of propidium iodide counter staining of cell nuclei. Results are 

summarised in tables 7.3 and 7.4. The scores in tables 7.3 and 7.4 were 

obtained from an independent observer.

In the neonatal cartilage, Notch 1 was present towards the surface of the 

articular cartilage although it was not expressed in the uppermost cell layers. 

Notch 2 and 3 were present throughout the thickness of the tissue with slightly 

increased expression towards the surface. Notch 4 was undetectable.

In the adult cartilage, the superficial zone appeared to contain a population of 

Notch 3 positive cells (arrows). Notch 3 was not present in the middle zone. 

The middle zone contained predominantly Notch 2 positive cells. Notch 1 and 

Notch 4 were not detected in this study. Control sections were blank.

Figure 7.8 shows the expression of BST-1 and fibronectin-EDA in neonatal 

human articular cartilage. In a similar fashion to Notch 1, BST-1 was present 

towards the surface of the articular cartilage although it was not expressed in 

the uppermost cell layers. Fibronectin-EDA was abundant in the surface layers 

of the tissue. Expression of both proteins was absent in the deeper zones.
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Surface Deep Zone

Notch 1

Notch 2

Notch 3

Notch 4

Figure 7.6: Immunostaining of Notch 1-4 in neonatal human articular cartilage 

(donor 1). Notch 1 expression was noted in the surface regions (white arrow) 

although it was not expressed in the uppermost cell layers. Bar = 100pm
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Surface Middle/Deep Zone

Notch 1

Notch 2

Notch 3

Notch 4

Figure 7.7: Immunostaining of Notch 1-4 in adult human articular cartilage 

(donor 4). Arrows illustrate Notch 3 expression in uppermost cell layers. Bar = 

100pm
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Zone
Notch Superfical Middle Deep

1 +++ - -

2 + + (low) + (low)
3 + + (low) + (low)
4 - - -

Table 7.3: Summaiy of distribution of Notch 1-4 in neonatal human articular 
cartilage (donor 1) in figure 7.6

Zone
Notch Superfical Middle Deep

1 Very low/background levels throughout
2 + (low) ++ +
3 +++ + (low)# + (low)
4 Intermittent v. low level stain throughout. Occasional bright cell

- occasional groups of ++ stain extending into middle zone.

Table 7.4: Summary of distribution of Notch 1-4 in adult human articular 
cartilage (donor 4) in figure 7.7
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Figure 7.8: Immunostaining of BST-1 (A), fibronectin-EDA (B) at the surface of 

neonatal human articular cartilage (donor 1). Control of non-specific IgG is 

shown in (C). BST-1 expression was noted in the surface regions (white arrow) 

although it was not expressed in the uppermost cell layers. Fibronectin-EDA was 

clearly present in very surface layers of the tissue (grey arrow). Bar = 100pm
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7.3.3 Growth kinetics 

Donor 1

Both FTCs and SZCs derived from Donor 1 underwent between approximately 19 and 

24 population doublings (pds) over approximately 100 days in culture (figure 

7.9).There was little difference in growth rate between cells in human serum (HS) and 

foetal bovine serum (FBS), although expansion in HS promoted the growth of 

fibroblastic colonies (figure 7.13) which persisted throughout the expansion process.

Donor 2

Both FTCs and SZCs derived from Donor 2 underwent between approximately 14 and 

16 population doublings over approximately 75 days in culture (figure 7.10). The 

growth rate of both cell types declined after approximately 13 population doublings. 

Again, as with donor 1, expansion in HS promoted the growth of fibroblastic colonies 

which persisted throughout the expansion process.

Donor 3

FTCs derived from Donor 3 underwent approximately 10 population doublings when 

cultured with or without bFGF over 30 and 50 days in culture respectively (figure 

7.11). SZCs derived from donor 3 underwent 14 and 10 population doublings when 

cultured with and without bFGF respectively. The addition of 5ng/ml bFGF to the 

culture media resulted in a faster rate of growth of both SZCs and FTCs (figures 7.11 

and 7.14) and the cells adopted a more spindle-shaped morphology (figure 7.15).

Donor 4

The cells underwent approximately 15 population doublings over 55 days in culture 

(figure 7.12). The rate of growth rapidly declined after the first passage.

Donor 5

Initial SZC growth was extremely slow, requiring 4 weeks to reach confluence. 

Subsequent growth was negligible. Normal chondrocytes isolated from the full 

thickness of the articular cartilage also expanded extremely slowly. Cells were 

discarded after a further 4 weeks in culture and data is not plotted. No pellet cultures 

initiated.
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Figure 7.9: Donor 1 - Expansion of FTCs (A) and SZCs (B) in both human serum 

and foetal bovine serum
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Figure 7.10: Donor 2 - Expansion of FTCs (A) and SZCs (B) in both human 

serum and foetal bovine serum
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+bFGF -bFGF

Growth of 3rd donor FTCs
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Growth of 3rd donor SZCs

10 20 30

Time (days)
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Figure 7.11: Donor 3 - Expansion of FTCs (A) and SZCs (B) in DMEM 10% FBS 

+/- bFGF
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Figure 7.12: Donor 4 - Expansion of SZCs in foetal bovine serum
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7.3.4 Cellular morphology

szc

szc

FTC

Figure 7.13: Images of human neonatal (donor 1) SZCs with a high affinity for 

fibronectin expanded in culture in FBS and HS showing altered growth 

characteristics in HS. HS tended to promote the growth of fibroblastic colonies 

(solid arrow) which remained throughout the expansion process as seen in (D) 

and (F). Bars = 100pm.

FBS HS
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(B) +bFG(A) -bFGF

Figure 7.14: Images of human neonatal (donor 3) SZCs (PI) with a high affinity 

for fibronectin expanded in culture in FBS with and without 5ng/ml bFGF. 

Images illustrate the faster growth in the presence of bFGF. Bar = 100pm.

(A) -bFGF bFGF

Figure 7.15: Images of human neonatal (donor 3) SZCs (P2) with a high affinity 

for fibronectin expanded in culture in FBS with and without 5ng/ml bFGF. 

Images illustrate the more spindle-shaped morphology in the presence of bFGF. 

Bar = 200pm.
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7.3.5 Pellet Culture

Donor 1 FTCs and SZCs expanded in culture and subsequently grown in pelleted 

micromasses synthesised a matrix that stained strongly with Safranin O and contained 

abundant collagen II (figure 7.16). However, this occurred only in pellet cultures 

derived from cells in the early stages of expansion -  up to 11 pds for SZCs and 1 pd 

for the FTCs. At higher levels of expansion the ability of the cells to produce a 

cartilagenous matrix rapidly declined. Safranin O staining was absent and the tissue 

was of a more fibrous nature. Collagen II staining was also absent at higher levels of 

expansion. Expansion in HS resulted in a slightly inferior quality cartilagenous matrix 

in that safranin O staining was reduced.

As with Donor 1, Donor 2 FTCs and SZCs at early stages of expansion synthesised a 

matrix that stained strongly with safranin O and contained abundant collagen II 

(figure 7.17). The quality of cartilage produced by Donor 2 FTCs and SZCs expanded 

in HS declined at approximately 5 pds and 10 pds respectively. Expansion in FBS 

resulted in a slightly poorer quality cartilagenous matrix than expansion in HS. Thus, 

cells derived from Donor 2 lost the ability to synthesise a cartilagenous matrix at an 

earlier stage than cells derived from Donor 1.

Pellet culture of expanded SZCs and FTCs derived from donor 3 gave rise to a vastly 

inferior cartilage matrix quality compared to donors 1 and 2 (figure 7.18). Only FTCs 

at PI gave rise to a matrix that stained with safranin O. Supplementation of the 

expansion media with 5ng/ml bFGF resulted in a slight increase in safranin O staining 

at P4 and PI for the FTCs and SZCs respectively.

Donor 4 SZCs expanded in culture to PI and subsequently grown in pelleted 

micromasses synthesised a cartilage-like matrix that stained moderately with safranin 

O (figure 7.19). Cells were rounded and present in lacunae. At P4, safranin O staining 

was completely absent and the tissues were of a more fibrous nature. FTCs derived 

from donor 4 expanded to PI and transferred to pellet culture synthesised a matrix 

that stained weakly with safranin O. Thus, as with donor 1, the SZCs retained the 

ability to form a cartilagenous matrix at a higher level of expansion that the FTCs.
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Figure 7.17: Donor 2 
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• % ■ i  • . > , . !  . . . ' i '■ *, : J Jii.i '* • . .

* . • '  •v r  ,-V
i : V M

. v1: ^

M  »’« * - ■/»■ (+ **■” A*
■.va€̂>

. t *
 ̂ . * K-., , . *

-•"r: J

~ v 
’ • ; •

\  ' \ *' / • • .

;/ ’ ■': -V r
\ * * ‘ * < •• 1

r
. »* 4

. .
■

f 5.6 PDs
__:_l!________ ■

y i . ’* - •_ -r * ^

'4.S PI»s
• .  - ' i '  ' ' '

9.8 PDs

* *  f * 'j 
, • r .  :

• ■ '
*■ '  * 1

* • *\ Vi \  ’
i  V .

'  •  •

l l . lP D s

.
**■ , * .* , V * ■ •>•’» r ... . *• • , . *

*. i y - ' *f t * V - . '

V \  ■

.# v
’*<7 * *  V*► *

'

^  -A
f
14.2 PDs

.  •>
* % * « ** * 

. ..
;

i

- Pellet culture of HS culture expanded human SZCs and FTCs. Safranin O staining. Collagen II staining inset.

192



FTC PI FTC P4 SZC PI SZC P4

+bFGF 4l#

11.3 PDs5.5 PDs0.6 PDs 7.3 PDs

^  • .V: *,•>:> ■. ■ 
:.v; *.;■ V'-v;bFGF

5.7 PDs 9.9 PDs7.3 PDs

Figure 7.18: Donor 3 - Pellet culture of human SZCs and FTCs expanded in DMEM/10% FBS with and without 5ng/ml bFGF. Safranin 
O staining. Bar = 200pm.
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7.4 DISCUSSION

Interesting properties exhibited by enriched populations of bovine superficial zone 

articular cartilage progenitor cells (SZCs) warranted attempts at isolating the cells 

from human articular cartilage as the value of human cells possessing similar 

properties in potential cell-based cartilage repair therapies would be high.

Initial studies used histological techniques and immunolabelling to gain general 

information on the morphology of the tissue during development and to study the 

expression profile of the Notch family of receptors and other proteins by the 

developing chondrocytes. This profile would be compared to published information 

(Hayes et al., 2003; Dowthwaite et al., 2004) on developing animal tissue in order to 

gain clues as to the existence of the cells in the human case.

The neonatal and paediatric tissue showed morphological features typical to that of 

normal developing articular cartilage (McDermott, 1943; Gray and Gardner, 1950). 

Macroscopically, the cartilage comprised most of the epiphyses of the femur and tibia. 

The architecture and defined zones of articular cartilage present in the adult 

(Buckwalter and Mankin, 1997) were absent. The cartilage was also highly 

vascularised. Interestingly, the surface of the most immature donor tissue (donor 1; 33 

weeks gestation) showed histological features indicative of the appositional growth 

mechanisms described in Hayes et al., (2001) in that the surface of the tissue was 

composed of numerous flattened cells whereas immediately beneath these were 

numerous chondrocyte clones indicating it to be a region of active cell proliferation. 

As development advanced, the thickened fibrous layer on the surface of the tissue and 

vascularised canals evident in donor 1 receded together with the level of cellularity of 

the tissue, which further decreased into adulthood. It is important to note that the 

thickened fibrous layer on the surface of Donor 1 articular cartilage probably provided 

the bulk of the cells that were cultured. This layer was absent from the other donors so 

the expanded cell population of Donor 1 was taken from a different anatomical 

location. Some similarities existed in the expression of Notch receptor isoforms 

between data generated here and published data on bovine and murine tissue (Hayes 

et al., 2003; Dowthwaite et al., 2004). Notch 1 was expressed only in the surface 

regions of the developing human tissue. Notch 2 and 3 were expressed at low levels
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throughout the depth of the tissue. In this study we were unable to detect any level of 

Notch 4 expression which is in contrast to published data for mice (Hayes et al.,

2003). These data suggest Notch 1 may also play a role in determining cell fate during 

development of human articular cartilage as it is believed to in other species. In the 

adult human tissue, Notch 1 expression became absent from the surface regions and 

Notch 2 was confined to the middle regions. Notch 3 was expressed to a greater extent 

in the surface of the tissue, which is in contrast to published data (Hayes et al., 2003).

A factor that must be bome in mind when using human tissue is that it is unclear as to 

the effect of the pathologies that resulted in death of the donor had on the 

development and biology of the articular cartilage. For example, donor 1 suffered 

from a trisomy 13 (Patau Syndrome) which is associated with skeletal abnormalities 

such as polydactyly and syndactyly, although there were no obvious morphological 

abnormalities noted in the articular cartilage in this study. Donor 3 suffered from a 

microencephaly which may have resulted in disability and decreased mobility. This 

may have reduced the stresses and strains normally applied to the cartilage following 

birth. These mechanical factors play an integral role in the development of the tissue 

(Pitsillades, 2003) and their absence is bound to have affected the normal progression 

of the maturation of the tissue. In the case of the adult tissue, the cartilage will be 

undergoing the normal age related changes and even may be in the very initial stages 

of the development of osteoarthritis. It is also unknown as to the effect of the drugs 

the donors were receiving as part of their medical treatment prior to death, on the 

biology of the chondrocytes in culture.

The populations of cells enriched in superficial zone progenitor cells (SZCs) isolated 

from donor 1 displayed enhanced chondrogenic ability as a function of expansion in 

comparison to normal chondrocytes isolated from the full thickness of the cartilage of 

the same donor. This property was not replicated by the other donors apart from, 

curiously, the adult donor 4. Although this property is interesting, it is doubtful the 

expansion levels obtained in this study would be sufficient from a commercial 

perspective. The costs of establishing and maintaining an allogeneic cell bank for 

therapeutic use is extremely high. The establishment of a cell bank derived from more 

than 1 donor increases the costs dramatically due to expenses incurred through 

procurement of a suitable donor, screening and other regulatory and development
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aspects. Therefore one would ideally develop the cell bank from 1 donor as was the 

case with Dermagraft™, a human fibroblast-derived dermal substitute previously 

marketed by Smith and Nephew for the treatment of diabetic foot ulcers. If we 

consider the US focal defect market to be approximately 600,000 cases per year 

(Medtech Insight report, 2003) and estimate a product could achieve an initial 10% 

penetration into that market and if we also assume we would use approximately 1
V * * • 11xlO cells in a tissue engineered device then we would require around 6x10  cells to 

supply the market for one year. If we could achieve a total yield of 1 x 106 progenitor 

cells per donor then they would need to undergo over 18 population doublings to 

achieve the desired amount. Clearly there are a lot of assumptions made in this 

calculation but it serves to highlight the issues involved.

The inability to replicate entirely the bovine data is likely to be due to a lack of 

optimisation of the isolation, expansion and possibly differentiation conditions for the 

human cells. The optimisation process was hampered by difficulties in the 

procurement of tissue to the required specification. We required normal articular 

cartilage with no evidence of osteoarthritis or other pathologies. We were keen to 

obtain the whole knee to maintain the sterility of the cartilage during transit with a 

timeframe of less than 48 hours post mortem to cell isolation. The neonatal and 

paediatric tissue is particularly difficult to obtain to this specification. Obtaining tissue 

from amputations or surgical discard from operations is not feasible as these 

procedures are very rare in this age group. It was necessary to work with groups that 

see large numbers of potential donors, who are trained in obtaining consent, hospital 

liaison and working with the tissue banks and organ procurement organisations to 

check donor suitability, for serology, tissue harvest and shipment. The complexities of 

obtaining tissue to a challenging specification must be appreciated early in future 

research projects in order to ensure to supply of tissue does not become rate limiting.

As part of the limited optimisation process that was carried out, cells were expanded 

cells in both foetal bovine serum (FBS) and human serum (HS). The hypothesis being 

tested was that species-specific factors in the serum may be necessary for optimal 

expansion and differentiation. For example, bovine-specific factors present in the FBS 

may be necessary for the expansion and differentiation characteristics of the bovine 

SZC cell population. Although expansion in HS induced morphological changes in a
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subpopulation of the cells in the cultures this did not lead to an increased proliferative 

potential or differentiative capability, rather in one case (donor 1) HS marginally 

decreased the matrix quality of the cartilage-like tissue produced in the pellet cultures. 

The factors present in HS that promoted the altered cell morphology are unknown.

This study has served to highlight species-specific differences in cell behaviour in that 

it is difficult to extrapolate data obtained using animal cells to the human situation. 

For future studies, there are a number of factors that would need to be known in order 

to move forward. The optimal age of donor tissue for cell isolation is unknown. This 

is because the fate of the cells during development and subsequent maturation of the 

tissue is unknown, together with the level of variability between donors. Also, the 

technique used to produce enriched populations of the cells used in the study was 

identical to that used for bovine cells. More sophisticated techniques may be required 

for isolation of the human cell equivalents. For example, a more detailed 

characterisation of possible markers would aid identification of the cells in the tissue 

and tracking the fate of the cells during development and ageing. It would also aid 

optimisation of the isolation protocol in that it would allow calculations of yields and 

also may enable immuno-selection techniques such as fluorescence activated cell 

sorting (FACS) to enrich the populations if the markers are cell surface-based. A 

candidate for this may be the cell surface receptor Notch 1. However, FACS analysis 

and colony forming studies have shown that although 75% of the bovine cells from 

the superficial zone express Notch 1, only 1-2% of these cells form colonies 

(Dowthwaite et al., 2004) indicating Notch 1 expression in itself is not a marker of 

progenitor chondrocytes.

The expansion conditions would also need to be optimised. Researchers looking to 

study chondrogenic differentiation of bone marrow derived mesenchymal stem cells 

(MSCs) often rigorously select the serum to be used to supplement the medium 

(Lennon et al., 1996). The use of suboptimal serum lots is reported to result in rapid 

loss of multipotentiality and slow mitotic expansion. In addition, small differences in 

the cell culture protocols, such as seeding density of primary and subsequent cultures 

or formulation of the base medium is also reported to result in reduction in 

chondrogenic potential (Sekiya et al., 2002; Caterson et al., 2002; Solchaga et al., 

2005). Supplementation of the media with growth factors such as TGF-p and bFGF
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has been suggested to promote the retention of chondrogenic potential of bovine 

(Martin et al., 1999) and human (Jakob et al., 2001; Barbero et al., 2004) 

chondrocytes and human MSCs (Mastrogiacomo et al., 2001; Solchaga et al., 2005). 

However, data generated in this study showed supplement of the expansion media 

with bFGF led to only a very limited enhancement of chondrogenesis by SZCs.

In conclusion, this study describes the first attempts to demonstrate the existence of a 

population of cells within the superficial zone of human adult and neonatal articular 

that possess the ability to undergo expansion in monolayer culture and retain the 

ability to undergo chondrogenic differentiation to a greater extent than normal 

chondrocytes. Although data in this chapter has demonstrated this is possible, further 

optimisation of the isolation and expansion conditions will be necessary for the 

human cells.
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8. GENERAL DISCUSSION

Articular cartilage has a distinct zonal architecture with biochemical and cellular 

variations existing from the surface zone to the deeper calcified layers. Thus, the 

development of the tissue must be stringently controlled, both spatially and 

temporally in order for the complex structure to be established. A number of studies 

have highlighted the importance of the surface areas of articular cartilage in both the 

morphogenesis of the joint and in the regulation of subsequent growth and 

differentiation of the tissue (Archer et al., 1994; Ward et al., 1999; Hayes et al., 2001; 

Archer et al., 2003; Hayes et al., 2003). Importantly, the surface zone is believed to be 

responsible for the appositional growth of articular cartilage during development and 

this growth is believed to be driven by a population of slow cycling progenitor cells 

within the surface zone itself (Hayes et al., 2001; Dowthwaite et al., 2004).

This thesis has described a set of studies looking to isolate and partially characterise 

articular cartilage progenitor cells from the surface zone. In view of the possible role 

of these cells in driving development this thesis has also investigated potential 

applications of enriched populations of the cells in novel tissue repair or tissue 

engineering therapies for the treatment of defects in articular cartilage. Chapter 3 

described the techniques used to identify the cells within the superficial zone of 

immature bovine articular cartilage and a limited characterisation in terms of some 

cell surface markers expressed by the cells. The differential expression of Notch 1, the 

cell-fate determination receptor, is believed to play a key role in the developmental 

process by controlling the clonality of the surface zone cells (Dowthwaite et al.,

2004). Chapter 4 showed the cells are present within the surface zone in a distinct 

extra-cellular matrix enriched in the foetal splice-variant of fibronectin which contains 

the additional EDA segment. This chapter also illustrated that this specific form of 

fibronectin may act to modulate the behaviour of the cells and may play an important 

role in vivo in the control of proliferation and differentiation.

In terms of the potential of the cells for use in tissue engineering, a promising feature 

of the cells is the discovery that enriched populations of the cells can undergo 

extensive expansion in simple monolayer cultures and yet retain their ability to 

undergo chondrogenic differentiation (Chapter 5). If this could be replicated using
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human cells then this would side-step well documented issues with the use of adult 

chondrocytes in tissue engineering such as low growth potentials and loss of 

chondrogenic ability following expansion (Benya and Shaffer, 1982; Evans and 

Georgescu, 1983; Von Der Mark et al., 1997; Binette et al., 1998). The expansion and 

differentiation properties of the cells may allow the generation of large allogeneic cell 

banks for cell transplantation therapies from only small quantities of donor cartilage 

tissue. Sadly, our results using human cells did not replicate entirely those obtained 

from bovine cells (Chapter 7). However, this is most likely due to a lack of 

optimisation of isolation and expansion conditions for the human cell cultures, rather 

than an inherent lack of ability of the cells to perform like their bovine counterparts. 

The optimisation process was hampered due to difficulties in the procurement of 

normal human articular cartilage, in particular human neonatal articular cartilage. This 

limitation of tissue supply places great restrictions on the range of experiments that 

can be carried out, thus preventing an effective optimisation of the isolation and 

expansion conditions.

A survey of the literature and results obtained in clinical studies indicates we are still 

a long way off a viable and efficacious cell-based therapy for the regeneration of 

articular cartilage. The current treatment closest to that of a tissue engineering 

approach is ACI. Although ACI is a widely used technique with promising outcomes, 

doubts still remain as to its superiority over simpler and cheaper approaches such as 

microfracture (Breinan et al., 1997; Knutson et al., 2004). However, ACI is constantly 

evolving with the incorporation of scaffolds and the replacement of the periosteal flap 

(Pavesio et al., 2003; Haddo et al., 2004; Ronga et al., 2004) which may eventually 

lead to improvements in efficacy, ease of technique or reductions in costs. The 

problems faced by ACI will be faced by all future cartilage repair therapies. 

Techniques such as microffacture are cheap, safe, have a long history of use and as 

good a level of efficacy as every other technique. In order to displace techniques such 

as microfracture from the operating room new therapies must obviously offer 

significant advantages alongside increased efficacy. This does not necessarily mean 

that the cell-based therapy must work to the extent that it achieves a recreation of the 

architecture of the native articular cartilage and restore the joint to full pain free 

mobility. Although this would be a long term goal, it is too optimistic to believe we 

can achieve this in the near future. Extension of the efficacy of current treatment
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regimes using small step-wise changes would be of immediate benefit in delaying the 

need for total knee replacement further.

There are significant issues that need to be addressed in order to bring an effective cell 

based articular cartilage repair therapy to market. Cell source, promotion of lateral 

integration, control of differentiation and immunological aspects all require 

considerable attention.

The choice of cell type and source of that cell type is critical. Autologous cell sources 

have the benefits of the removal of the risks of disease transmission from donors and 

also reduce the risks of immunologic rejection. However, high costs associated with 

autologous cells, as seen during ACI, may drive the use of banked allogeneic cells in 

potential “off-the-shelf’ transplantation therapies. The use of allogeneic cells 

immediately raises concerns of immunologic rejection. Articular cartilage is an 

avascular tissue and thus may be shielded from detection by circulating immune cells. 

Allogeneic osteochondral grafts have been in widespread use for many years with 

positive outcomes although concerns have been raised about immunologic rejection 

(Meyers et al., 1983; Czitrom et al., 1986; Garrett, 1986; Stevenson et al., 1989; Sirlin 

et al., 2001). Whether the osseous or chondral parts of the graft are responsible for the 

immune response is uncertain, although recent reports suggest there is an immune 

response to the cartilage component (Phipatanakul et al., 2004). In light of concerns 

over immunologic responses, researchers have speculated on the potential of 

progenitor cells such as MSCs from the bone-marrow or synovium due to their 

interesting immune-modulting properties. Evidence suggests bone marrow derived 

MSCs have immune-suppressing capabilities, for example, in vitro, MSCs are capable 

of suppressing mixed lymphocyte reactions in response to autologous or allogeneic T 

cells. T cell proliferation stimulated by the addition of irradiated allogeneic peripheral 

blood lymphocytes or dendritic cells has been shown to be greatly suppressed when 

the cultures contained MSCs (Barry and Murphy, 2004). Also MSCs lack HLA Class 

II expression and have a low expression of co-stimulatory molecules thus rendering 

them non-immunogenic. Class II expression has also been shown to be absent from 

the surface of differentiated MSCs and the differentiated cells do not elicit an 

alloreactive lymphocyte proliferative response (Le Blanc et al., 2003). There are also 

several clinical reports of the use of allogeneic donor mis-matched MSCs with little
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evidence of host immune rejection or graft versus host disease (Aggarwal and 

Pittenger, 2005). It would be interesting to determine whether these same properties 

and indeed other properties of MSCs such as homing (Barry and Murphy, 2004) are 

also exhibited by human SZCs.

The fundamental principle behind the use of progenitor cells or MSCs is that 

undifferentiated cells, once delivered to the repair site, will differentiate under local 

signals into cells of the appropriate phenotype (Barry, 2003). These differentiated 

cells then contribute to the repair of the injured tissue. For example, studies have 

shown that scaffolds loaded with MSCs and implanted in osteochondral lesions give 

rise to both cartilage and bone cells. In addition, studies have shown that MSCs, when 

delivered by infusion to an immunocompromised mouse, can engraft to the normal 

myocardium and differentiate into a cardiomyocyte phenotype. Whereas such 

evidence indicates MSCs do indeed differentiate in situ, little is known about the 

specific local signals that drive it (Barry, 2003).

Although efforts are focussed on the use of cells on 3D scaffolds with the appropriate 

cues, there role of transplanted cells in repair is unknown. Solchaga et al., (2002) 

reported that a fibronectin coated hyaluronan-based sponge was able to organise and 

facilitate the reparative response following implantation within an osteochondral 

defect, even without pre-loading the scaffold with autologous bone marrow, 

suggesting an enhancement of the natural repair response by scaffold alone. 

Furthermore, it is unknown as to the fate of cells once implanted into the defect. The 

extent to which they persist or survive at the implantation site and the extent of their 

contribution to the repair tissue is uncertain. Although some studies have shown little 

contribution of the cells to repair in ACI (Breinan et al., 1997) other studies have 

shown that expanded chondrocytes persist at the repair tissue and contribute to the 

matrix formation in a goat model (Dell’ Accio et al., 2003). Other studies have shown 

that MSCs injected intra-articularly in a goat model of OA where the whole meniscus 

had been previously excised led to the prevention of articular cartilage degeneration 

due to the removal of the meniscus through the regeneration of a ‘neo-meniscus’ 

(Murphy et al., 2003). The injected MSCs did not appear to directly contribute to the 

regeneration of the neo-meniscus, rather they engrafted into various joint tissues and 

orchestrated the repair directly carried out by other cell types within the joint space.
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Although another study has shown cartilage tissue formed by MSCs derived from the 

synovium is unstable and rapidly resorbed when implanted subcutaneously in nude 

mice, more studies need to be carried out in relevant cartilage defects to confirm this 

(De Bari et al., 2004). The fate of the cells may also become an issue when cells are 

transplanted in OA joints. In these circumstances the environment is hostile, 

containing degradative enzymes and inflammatory cytokines, thus the cells and matrix 

they produce may require some protection in order to lay down an effective repair 

tissue.

Another aspect that requires attention is that of lateral integration. The poor 

integration of repair tissue with the native articular cartilage is widely recognised 

(Hunziker, 2001a). Poor integration must be addressed in order to achieve prolonged 

healing. Although various attempts have been made to resolve integration, for 

example using biological glues and other adhesives or brief enzymatic degradation, 

this still remains an issue. Without proper integration there will be constant shear 

stresses at the interface between the two tissues and incorrect distribution of 

mechanical forces over the joint surface.

In conclusion, tissue engineering is still in its infancy with many issues that need to be 

addressed. The widespread use of tissue engineering will depend upon the availability 

of validated methods for large scale culture, storage and distribution of a 

chondrogenic cell type.
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Introduction. Articular cartilage is a layered tissue, with differing cellular 
constituents, matrix components and matrix architecture in the superficial, 
mid and deep zones. Our research on cartilage wound biology has shown 
that a population o f chondroprogenitor cells exists within the superficial 
zone o f articular cartilage. These cells form colonies in vitro, express the 
cell signaling receptor Notch-1, produce the ECM component fibronectin- 
EDA, have a high affinity for fibronectin in cell adhesion assays and 
synthesize a cartilage-like ECM when grown in pellet cultures. Our 
research into tissue engineering has shown the need for a particulate cell 
binding material that can act as a microcarrier during the early stages o f cell 
culture and as a 'synthetic interterritorial matrix' during construct assembly. 
We have found that by adsorbing different cell adhesion factors onto a 
particulate biomaterial and regulating the cell-seeding conditions it is 
possible to produce cell seeded particulate biomaterials coated with either 
progenitors or more mature chondrocytes. Such differentially seeded 
particulate biomaterials could be assembled into a tissue engineered 
construct that begins to re-create the zonal cell distribution of healthy 
cartilage.

Methods. Synthesis and coating o f  the biomaterial. A polyanionic, 
particulate biomaterial was synthesized by sulphating Intrasite polymer 
(Smith and Nephew) with sulphur trioxide-pyridine complex. The material 
was freeze dried, washed in PBS, autoclaved and coated with either (i) 
heparin-binding cell-adhesion factors, (e.g. Fibronectin or Collagen VI; 
60mg/ml; 2.5 ml; 2h at 4°C), (ii) mixtures o f adhesion factors absorbed 
from foetal calf serum (FCS; 10%; 2.5 ml; 2h at 4°C) or (iii) PBS, 
(control). The chemical nature o f the modified polymer was confirmed by 
Raman, infrared spectroscopy, histological staining, (alcian blue CEC or 
safranin O) and elemental analysis, whilst the absorbtion o f the cell 
adhesion factors was confirmed by immunocytochemistiy.
Seeding the material with cells. Bone marrow stromal cells (BMSC) were 
obtained from fragmented trabecular neonatal bovine bone, grown to 
confluence and harvested by mild tiypsinisalion. Superficial zone 
chondrocytes (SZC) were obtained from superficial zone neonatal bovine 
cartilage by fine dissection and sequential digestion in 0.1% pronase and 
0.04% collagenase; chondrocytes were obtained from full thickness 
explants of neonatal bovine articular cartilage digested with 0.1% 
collagenase, (Worthington type II).
Sulphated Intrasite, (SI; 4.125 mg per layer o f construct) was coated with 
plasma fibronectin, (60ml/ml; 2.5 ml; 2h at 4°C) and seeded with 750k 
BMSC; or coated with serum-derived cell attachment factors, (10%; 2.5 ml; 
2h at 4°C), and seeded with 750k chondrocytes. Cultures were incubated 
for 3h to 28 days in 20 ml o f DMEM plus FCS; (10%), penicillin, 
streptomycin, non-essential amino acids, L-glutamine and ascorbate-2- 
phosphate (25mg/ml). Cell viability was assessed using MTT, (1 mg/ml; 
2.5 hours), whilst matrix production was assessed using 
immunocytochemistry, (collagen I, Biogenesis; collagen II, NeoMaricers; 
collagen VI, Abeam) and histological dyes, (picrosirius red and safranin O). 
Colony forming cell adhesion to cell-attachment factor coated SI. A  
minority of BMSC and SZC form colonies o f > 16 cells when cultured on 
tissue culture plastic in DMEM/10%FCS for 4 and 6 days respectively. 
These colony forming cells were regarded as putative progenitor cells. In 
these experiments, colony forming cells that do not attach to the coated SI 
particles attach to the culture plastic and may subsequently form colonies. 
Cells that do bind to the SI particles are removed during the washing step, 
thereby reducing the number of colonies formed on the culture plastic. 
Sulphated Intrasite was coated with plasma fibronectin, cellular fibronectin, 
collagen IV, polylysine, laminin (all 60mg/ml) or PBS in 2.5ml DMEM for 
2h at 4°C. The coated biomaterial was incubated with BMSC or SZC 
suspensions (125k cells/ml in serum free medium) for 3h at 37°C, the 
suspension diluted 1000 fold and aliquoted, (4 ml) to the wells of 12 well

plates. FCS (0.4 ml) was then added to the wells and the cultures incubated 
for a further 16 - 24 hours. The wells were then washed with PBS, and the 
cultures incubated for a further 4 - 6  days in DMEM/10% FCS (2 ml). 
Colonies, (discrete clusters o f > 16 cells), were visualized by phase contrast 
microscopy and counted blind. Results were expressed as a 'colony 
depletion score', defined as the number of colonies formed by cell 
suspensions exposed to adhesion factor pre-treated sulphated Intrasite 
divided by the number of colonies per well formed by cells exposed to PBS 
pretreated sulphated Intrasite.

Results. Sulphation and coating o f  the polymer. The sulphation of the 
polymer was confirmed by a distinct infrared spectroscopy peak at 1280 
cm-1 and by the binding of alcian blue to the modified material in the 
presence of 0.9 M MgC12 compared to <0.3 M for the unmodified material. 
Immunocytochemistry showed plasma fibronectin, cellular fibronectin, 
fibronectin-EDA and collagen VI all bound to SI. Likewise, a mixture of 
cell adhesion factors absorbed onto the surface o f the material, (including 
fibronectin and vitronectin) when it was incubated with serum.
Cell growth on coated SI. Neither mature chondrocytes nor BMSC adhered 
to unmodified Intrasite or to sulphated Intrasite that had been pre-treated 
with PBS alone. Both cell types bound to the surface o f the cell adhesion 
factor coated SI particles within 3 - 2 4  hours. The cells proliferated on 
adhesion factor coated SI, (ovine chondrocytes increased in numbers 14.4 
fold over 16 days when grown on FCS-coated SI), and agglomerated the 
particles to form macroscopic aggregates of cells, biomaterial and 
extracellular matrix components. Microscopic examination of chondrocytes 
growing on FCS coated sulphated Intrasite showed rounded, MTT+ve cells 
distributed on and between the polymer particles and lying within a 
picrosirius red positive matrix. Immunocytochemistry showed that mature 
chondrocytes secreted types II and VI collagens but not type I collagen 
during a 27 day incubation period. In contrast, BMSC produced a matrix 
that contained type I but not type II collagen.
Adhesion o f  colony forming cells to coated SI. Microscopic examination of 
the diluted suspensions o f cells and particles after the initial 3 hour 
incubation revealed a sparse distribution of particles, (some with adherent 
cells), together with unattached cells. Addition of FCS to these cultures for 
16-24 hours allowed the cells that had not attached to the biomaterial 
particles to adhere to the tissue culture plastic. The subsequent washing 
step removed the particles and any cells that had adhered to them, leaving 
only those cells that had adhered to the culture plastic. Results showed that 
there were 46.8±3.76 colonies per well when SZC were incubated with 
PBS pre-treated sulphated Intrasite compared to 21.0±1.39 colonies per 
well when the SZC were exposed to plasma fibronectin coated sulphated 
Intrasite, (i.e. a colony depletion score of 0.45; p< 0.001). Likewise BMSC 
incubated with adhesion factor coated sulphated Intrasite gave colony 
depletion scores o f plasma fibronectin, 0.49; collagen IV, 0.67; cellular 
fibronectin, 0.8; polylysine, 0.88 and laminin 1.26.

Discussion. These results show that colony forming cells, (i.e. putative 
progenitor cells), from the superficial zone o f articular cartilage or bone 
marrow stroma adhered to plasma fibronectin coated sulphated Intrasite 
particles. BMSC grown upon the fibronectin coated SI to formed 
aggregates o f cells, extracellular matrix and biomaterial. Chondrocytes 
attached to SI coated with serum-derived attachment factors, proliferated 
upon the material but retained their rounded morphology and secreted a 
matrix containing collagens II and VI but not collagen I, indicating that 
they had retained their differentiated phenotype. Assembly o f these two 
types o f cell-seeded particulates will allow the creation of a tissue 
engineered cartilage construct with a zonal architecture in which a layer of 
progenitor cells overlays a layer o f more mature chondrocytic cells.
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Introduction: There are two major problems which afflict current strategies in 
cartilage repair. One problem is tissue integration between host and reparative 
tissue. The second problem is the generation o f a repair tissue with the 
structural characteristics o f  articular cartilage. Using the marsupial 
Monodelphis domestica  as a model system, it has been shown that articular 
cartilage grows by apposition from the articular surface towards the 
subchondral bone and that this growth is driven by the proliferation o f  surface 
zone cells (1, 2), Additionally, a population o f  cells with an increased cell 
cycle time was identified within the surface zone; a property typical o f  many 
progenitor cell populations (2). The aim o f  our research is to identify and 
characterise a chondroprogenitor population from articular cartilage to enable 
the rapid culture o f  undifferentiated chondrocytes in vitro for future clinical 
use. Here we describe the isolation and partial characterisation o f  a cell 
population from the articular surface which exhibits differential adhesion to 
fibronectin, differential integrin expression and the ability to form large 
numbers o f colonies from an initialy small seeding density; properties that are 
common to known progenitor cell populations o f  other tissues. Additionally 
we report on the presence o f  the cell surface signalling molecule Notch 1 (N l)  
in a subpopulation o f  surface zone chondrocytes and that this Nl-expressing 
subpopulation has an enhanced ability to form large numbers o f  colonies from 
an initially low seeding density.
Materials and Methods: Tissue culture and  differential adhesion assay: 
Cartilage slices were isolated from the surface (SZ), middle (MZ) and deep 
(DZ) zones o f 7 day old bovine metacarpal-phalangeal joints by fine 
dissection. Slices were then incubated in pronase (0.1% in DMEM/5%FCS) 
for 3 hours at 37°C followed by collagenase (0.04% in DMEM/5%FCS) for 
16 hours at 37°C. Chondrocytes were counted and seeded onto fibronectin 
(10pg ml ')-coated or PBS/1% BSA-coated 35 mm dishes at 4,000 cells ml'1 
in serum free DMEM (DMEM-) for 20 minutes. After 20 minutes, media and 
non-adherent cells were removed and placed in similarly treated dishes for a 
further 40 minutes before this media and nonadherent cells were placed in a 
third dish. After removal o f  media at 20 and 40 minutes, fresh DMEM- was 
added to the remaining cells which were cultured for up to 10 days. In all 
experiments 6 fibronectin and 6 uncoated dishes were used for each zone o f 
cartilage. Fibronectin was used as a ligand in the experiments since it is 
known to be differentially expressed at the articular surface during 
mammalian development (3). Within three hours o f  plating, chondrocyte 
adhesion was assayed by counting the total number o f cells per dish using 
phase contrast microscopy and expressed as a percentage o f  the initial seeding 
density. Additionally, colonies o f  chondrocytes consisting o f  32 or more cells 
were counted at 0, 3, 6 and 10 days after differential adhesion (n = 6 
experiments). Colony forming efficiency (CFE) was calculated by dividing 
the number o f  colonies by the initial number o f  adherent cells. In some 
experiments (n = 3) the number o f  cells per colony were counted to determine 
the average number o f cells per colony. Results were analysed using the 
Students t test. Flow cytometry. Four hours after differential adhesion, 
chondrocytes were removed from dishes non-enzymatically and 2 x 10s cells 
were incubated for 3 hours with antibodies to a5  (AB1928) and p i 
(MAB1951) integrin subunits and anti-Nl (SC 6014) at room temperature. 
Cells were centrifuged at 3,000rpm, supernatants removed and cells washed 
three times in PBS with centrifugation between each wash. Cells were then 
incubated with relevant F1TC conjugated secondary antibodies for 1 hour at 
room temperature and washed three times in PBS as described above. Finally, 
labelled cells were resuspended in 500pi PBS and subjected to flow  
cytometry. Notch 1 Immunolabelling and  Immunomagnetic Isolation: Frozen 
sections o f 7 day bovine full depth articular cartilage were immunolabelled 
with anti-Nl antibody and localised with the appropriate secondary FITC

conjugated secondary antibody. Chondrocytes were isolated by sequent!; 
pronase/collagenase digestion from surface middle and deep zone articuk 
cartilage and incubated with M450 tosyl-activated Dynal beads conjugated t 
goat anti-human N l antibody for 4 hours at 4°C. N l selected cells wer 
counted and 4,000 cells ml'1 subjected to differential adhesion to fibronecti 
for 20 minutes. Initial adhesion and CFE were assessed as described above.
In all experiments, results were analysed using Students t test.
Results: Initial adhesion ranged between 3.5% and 14.5% o f the original cel 
number. Significant differences in adhesion were evident between surfac 
zone chondrocytes seeded on fibronectin for 20 minutes (9.05% +/- 0.44) am 
those seeded on PBS coated dishes for 20 minutes (3.83% +/- 0.27; p < 0.001 
and also with those seeded on fibronectin for 40 minutes (4.89% +/- 0.43; p ■ 
0.001). Middle zone chondrocytes were significantly more adherent at 21 
minutes (14.53% +/- 0.86) than at 40 minutes (10.58% +/- 0.51) when seede( 
onto fibronectin-coated dishes (p < 0.01). Additionally, middle zom 
chondrocytes were more adhesive to fibronectin at both time points comparer 
with PBS-coated dishes (p < 0.001). No differences in adhesion wen 
observed between deep zone chondrocytes regardless o f  substrate or timt 
point (p > 0.05 in all cases).
At days 0 and 3, no colonies containing 32 or more cells were present in an) 
sample. At 6 and 10 days, the CFE of surface zone chondrocytes initially 
cultured on fibronectin for 20 minutes was greater than that of the othei 
samples (p < 0.01 at 6 days, p < 0.001 at 10 days). In addition, the CFE ol 
surface zone cells initially cultured for 20 minutes on fibronectin was greater 
at 10 days compared with that at 6 days (p < 0.05). No change in CFE was 
evident between 6 and 10 days for any other sample (p > 0.05 in all cases). 
The average number o f cells per colony was greater in surface zone cells 
initially grown on fibronectin for 20 minutes at both 6 (p < 0.05) and 10 (p < 
0.01) days compared with all other samples. FACS analysis showed elevated 
levels o f both ot5 and p i integrin subunits in surface zone cells compared with 
middle and deep zone cells (p > 0.05).
N l immunolabelling revealed occasional N l positive cells within uppermost 
2-3 cell layers o f the articular cartilage. When surface zone cells were 
isolated and analysed for N l using FACS over 84% o f the surface zone 
population were N l positive and this result was reflected in the cell counts 
obtained after N l selection. Adhesion assays performed using N l selected 
chondrocytes revealed that the N l positive cells were more adherent than 
either negative cells or unselecetd cells (p > 0.05) and that the CFE of N l 
selected cells was increased 4 fold relative to negative cells and unselected 
cells (p > 0.001).
Discussion: The ability o f a population o f  cells to form large numbers o f 
chondrocyte colonies from a low seeding density, differences in a 5 p i integrin 
subunit expression and differentail N l expression when taken together with 
previous results demonstrating the prolonged cell cycle time at the articular 
surface (2), strongly suggest that a subpopulation o f progenitor chondrocytes 
resides in the articular surface. Additionally, the prolonged adhesiveness o f  
mid zone cells, their restricted ability to form large numbers o f colonies and 
their relatively short cell cycle (2) strongly indicates the presence o f transit 
amplifying cells within this zone. Furthermore, the use o f N l selection 
increases the CFE o f surface zone cells seeded on fibronectin fourfoldrelative 
to unselected cells suggesting that N l will be a useful marker in the further 
purification o f chondroprogenitor cells. The eventual isolation and 
purification o f  such a progenitor population will prove to be vital in advancing 
staetegies for cartilage repair.
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Introduction. The use o f  chondrocytes in cartilage repair strategies is 
hampered by the limited num ber o f  cell divisions a m ature chondrocyte 
will undergo in vitro  This lim ited growth potential in culture is further 
complicated by the rapid loss o f  phenotype, known as dedifferentiation, 
o f  chondrocytes in m onolayer culture characterised by a loss o f  spherical 
morphology and concom itant decrease in collagen II and aggrecan 
synthesis to a  fibroblastic-like m orphology w ith upregulation o f  collagen 
I and versican [1], A lthough the dedififerentiation o f  mature 
chondrocytes can be reversed by transferring cells into an environm ent 
supporting a spherical m orphology eg. pellet culture, alginate o r 3D 
scaffolds, their redifferentiation is rarely com plete. The identification o f 
a cell w ith extensive grow th potential and w hich retains its chondrogenic 
ability after extensive grow th in culture would be a m ajor step forward 
in addressing these issues. O ur research has identified a population o f 
chondroprogenitor cells in the superficial zone o f  articular cartilage with 
an extended cell cycle time, a high affinity for fibronectin in cell 
adhesion assays and an ability to form ©Ionies in vitro  from a low 
seeding density [2], Here we report on the isolation and extensive 
subculture o f  these cells together w ith an evaluation o f  their 
chondrogenic ability at various passages by transfer into pellet culture.

M ethods. Isolation o f  chondroprogenitor cells: C artilage portions were 
isolated from the surface zone articular cartilage o f  2-3 week old bovine 
metatarsophalangeal jo in ts  by fine dissection and sequential digestion in 
pronase (0.1%  w/v; 3 hours) and collagenase (0.04%  w/v; overn igh t) in 
DMEM containing 5%  FCS at 37°C. A fter isolation, 4000 superficial 
zone cells in serum  free DM EM  were seeded into w ells o f  fibronectin 
coated (10pg/m l) 6-well plates and incubated at 37°C  for 20 minutes. 
After 20 minutes, the m edia was rem oved and discarded. Fresh DM EM  
containing 10% FCS w as added to  each well. Expansion in Culture: 
When cells in the 6-well plate were approaching confluency (P0), cells 
were trypsinised and transferred to a 75cm2 culture flask ( P I ) and then 
into a 175cm2 culture flask (P2) when near-confluency was reached. 
Subsequent grow th in 175cm2 culture flasks w as earned  out by continual 
passage at a ratio o f  1:3. A t P0, P2, P5, P8, PI 1 and P22 a liquots o f  cells 
were removed for pellet culture. Detailed accounts o f  cell num bers 
harvested and seeded at each stage were kept throughout the process to 
allow the num ber o f  population doublings at each stage to be calculated. 
Controls for this experim ent consisted o f  norm al chondrocytes isolated 
from the full thickness o f  bovine articular cartilage placed into pellet 
culture immediately after isolation and also following expansion in 
culture to P8 (approx 13 population doublings over 34 days) to dlow  
dedifferentiation. Q uantitative real-tim e PCR (Taqm an) for collagen 1, II 
and aggrecan m RNA was carried out on these control m onolayer 
cultures o f normal bovine chondrocytes in order to confirm  
dedifferentiation had taken place. Pellet C ulture. A liquots o f  250,000 
cells were resuspended in chondrogenesis m edia (see below), gently 
centrifuged in 15ml polypropylene tubes and incubated at 37°C  in a 5%  
CO: atmosphere for 14 days with m edia changes carried out every 2-3 
days. Chondrogenesis m ed ia  DMEM  supplem ented with pen/strep; ITS 
premix; ascorbate 2-phosphate (lOOpM ), dexam ethasone (10 M); and 
T G F |i-l (lOng/m l). Histology a nd  immunolabelling: Pellets were fixed 
overnight in 10% neutral buffered formalin and em bedded in paraffin 
wax. Sections o f  5pm thickness were cut and stained with Safranin 
O/haematoxylin. For im m unolabelling, sections were labelled with 
antibodies to collagen I and II and visualised using appropriate 
secondary FITC conjugated antibodies.

Results. Cellular M orphology: Cultures o f  bovine chondroprogenitor 
cells at P0, P2 and PI 6 consisted mainly o f  cells o f  a polygonal, 
flattened morphology. This morphology was generally maintained, 
although at high passage (P25), a  proportion o f  chondroprogenitor cells 
began to adopt large, often binucleate, irregular morphologies. This is in 
contrast to cultures o f  normal bovine chondrocytes w hich consisted o f  
predominantly spindle-shaped fibroblastic cells up to P8 (34 days). 
Taqman confirm ed dedififerentiation o f  control full thickness bovine 
chondrocytes had taken place in that by 14 days in m onolayer culture

they were expressing negligible levels o f  collagen II and aggrecan 
mRNA and high levels o f  collagen I mRNA. Growth: 
C hondroprogenitor cells underwent approximately 58 population 
doublings over 134 days in culture. At P0 the cells had a doubling time 
o f  approxim ately 24 hours where after the cells m aintained a fairly 
constant rate o f  growth with cells requiring subculture every 3-4 days. 
This was maintained until P28 when the rate o f  growth declined with 
subculture being required every 7-8 days. Pellet Culture: 
C hondroprogenitor cells expanded in culture up to P22 and subsequently 
grow n in pellets synthesised a cartilage-like matrix that stained strongly 
with Safranin O, indicating the presence o f  sulphated proteoglycans 
(figure 1). The periphery o f  the pellets at all time points stained weakly 
with Safranin O but was positive for collagen I. P0, P2, P5, P8 and PI 1 
(PI 1 =  25 population doublings) chondroprogenitor pellets were rich in 
collagen II w hereas pellets derived from P22 (42 population doublings) 
chondroprogenitor cells appeared to contain low amounts o f  collagen II. 
Pellet cultures o f  freshly isolated normal chondrocytes appeared to be 
sm aller in volum e and histologically have less m atrix and rounder cells 
than in chondroprogenitor pellets (figure 2). The matrix stained strongly 
for collagen II. In com parison, pellet culture o f dedifferentiated normal 
chondrocytes at P8 (13 population doublings) synthesised a greater 
am ount o f  matrix but this stained less strongly for safranin O and 
contained negligible collagen II.

Figure 1: Pellet culture o f  culture expanded chondroprogenitor cells. 
Safranin O  staining. Collagen II im m unostaining inset. Bar =  200pm.

F0 1 P2 - £  M P5

P8

Figure 2: Pellet culture o f  freshly isolated and also culture expanded 
normal chondrocytes. Safranin O  staining. Collagen II immunostaining 
inset. B ar = 200pm .

I I

Freshly isolated P8

*■

m m
Discussion. This study has demonstrated the high expansion potential o f 
articular cartilage progenitor cells in comparison to normal bovine 
chondrocytes. The cells retain the ability to synthesise a  cartilage-like 
hyaline m atrix rich in collagen II even after 11 passages which equated 
to 25 population doublings. Some collagen II was also evident at P22 
(42 population doublings). In this study, normal chondrocytes isolated 
from bovine articular cartilage rapidly dedifferentiated in m onolayer and 
had completely lost the ability to redifferentiate in pellet culture at P8 
(13 population doublings) although it remains to be seen whether this 
loss o f  redifferentiation potential had occurred at an earlier stage o f 
expansion. The enhanced potential o f  these articular cartilage progenitor 
cells to retain the ability to form cartilage after extensive expansion in 
culture is a  m ajor step forward for cartilage repair as it may enable the 
generation o f  large cell banks for use in allogeneic tissue engineering 
applications. Investigations are currently focusing on em ploying these 
cells in cartilage repair strategies.

References. [1] Von der Mark et a! (1977) Nature 267:531-532. [2] 
A rcher CW  e t a l (2002) Trans ORS 009.
♦♦School o f  B iosciences, C ard iff University, Cardiff, Wales, UK.
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ARTICULAR CARTILAGE PROGENITOR CELLS: CHONDROGENIC 
POTENTIAL DURING EXPANSION IN MONOLAYER CULTURE

S. Bover1, R. Turner1,1. Honeybome1, M. Smith1, B. Thomson1, G.P. Dowthwaite2, C.W. Archer2.
1 Smith & N ephew Research Centre, York Science Park, York. UK  

2 Connective Tissue B io logy Laboratories, School o f  Biosciences, C ardiff University, Wales, UK

INTRO DUCTIO N: Current strategies in cartilage 
repair are based on the transplantation o f cells from 
a variety o f  sources into the defect in question in 
order to generate a functional repair tissue. 
Difficulties arise in the use o f  chondrocytes due to a 
limited mitotic ability o f  mature chondrocytes in 
vitro and rapid loss o f  phenotype, known as 
dedifferentiation, in monolayer culture [1]. Previous 
research has identified a population o f  articular 
cartilage progenitor cells in the superficial zone o f  
articular cartilage with an extended cell cycle time, 
a high affinity for fibronectin in cell adhesion 
assays, ability to form colonies in vitro from a low  
seeding density [2]. Here we report on the isolation 
and extensive subculture o f these cells together with 
an evaluation o f their chondrogenic ability at 
various passages by transfer into pellet culture.

M ETHODS: Cell isolation: Superficial zone cells 
were isolated by sequential digestion in pronase and 
collagenase o f  superficial zone cartilage from the 
articular cartilage o f 2-3 week old bovine 
metatarsophalangeal joints. After isolation, 4000  
superficial zone cells in serum free DMEM were 
seeded into wells o f  fibronectin coated 6-well plates 
and incubated at 37°C for 20 minutes. After 20  
minutes, the media was removed and discarded. 
Fresh DMEM containing 10% FCS was added to 
each well. Expansion in Culture: Cells were 
subsequently transferred into 75cm2 and 175cm2 
culture flasks. Growth was maintained by continual 
passaging at a ratio o f  1:3. At various passages 
aliquots o f cells were removed for pellet culture and 
Real-time PCR (Taqman). Controls consisted o f  
normal chondrocytes isolated from the full thickness 
o f bovine articular cartilage. Pellet Culture'. 
Aliquots o f  250,000 cells were resuspended in a 
serum free chondrogenic media containing TGFp-1 
and centrifuged to form a pellet. Pellets were 
incubated for 14 days and then paraffin embedded 
and sections stained with Safranin O/haematoxylin 
and immunolabelled with antibodies to collagen I 
and II. Taqman was used to quantify expression o f  
collagen I, II, aggrecan and versican mRNA in the 
pellets.

RESULTS: Growth: Articular cartilage progenitor 
cells underwent approximately 61 population 
doublings over 162 days in culture. At P0 the cells 
had a doubling time o f  approximately 24 hours 
where after the cells maintained a moderately 
constant rate o f growth with cells requiring 
subculture every 3-4 days. This was maintained 
until P28 when the rate o f growth declined with 
subculture being required every 7-8 days. After P35 
cell growth had virtually stopped. Pellet Culture: 
Articular cartilage progenitor cells expanded up to 
P22 and grown in pelleted micromasses synthesised 
a hyaline-like cartilage matrix that stained strongly 
with Safranin O. PI, P3, P6, P9 and P12 (25 pop 
doublings) pellets were rich in collagen II protein 
and mRNA whereas pellets derived from P22 (42 
population doublings) cells contained low levels of 
collagen II. Pellet cultures o f freshly isolated 
normal chondrocytes also stained strongly with 
Safranin O and contained abundant collagen II. 
Dedifferentiated normal chondrocytes at P8 
contained negligible collagen II.

DISCUSSIO N & CONCLUSIONS: Although 
this study has illustrated the high expansion 
potential o f articular cartilage progenitor cells, 
more importantly, the cells retain the ability to 
synthesise a cartilage-like hyaline matrix rich in 
collagen II even after 12 passages (25 pop 
doublings). In contrast, normal bovine articular 
chondrocytes rapidly dedifferentiated in monolayer 
and completely lost the ability to redifferentiate in 
pellet culture at P8 (13 pop. doublings). This 
important property to retain the ability to form 
cartilage after extensive expansion in culture may 
enable the generation o f  large cell banks for use in 
allogeneic tissue engineering applications. 
Investigations are currently focusing on developing 
human articular cartilage progenitor cells isolation 
and expansion protocols and employing these cells 
in cartilage repair strategies.

REFERENCES: ‘K. Von Der Mark, V. Gauss, H. Von 
Der Mark, P. Muller. (1977) Nature 267, 531-2. 
2Dowthwaite et al J Cell Sci. (in press)
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Summary
It is becoming increasingly apparent that articular 
cartilage growth is achieved by apposition from the 
articular surface. For such a mechanism to occur, a 
population of stem/progenitor cells must reside within the 
articular cartilage to provide transit amplifying progeny 
for growth. Here, we report on the isolation of an articular 
cartilage progenitor cell from the surface zone of articular 
cartilage using differential adhesion to fibronectin. This 
population of cells exhibits high affinity for fibronectin, 
possesses a high colony-forming efficiency and expresses 
the cell fate selector gene Notch 1. Inhibition of Notch 
signalling abolishes colony forming ability whilst activated

Notch rescues this inhibition. The progenitor population 
also exhibits phenotypic plasticity in its differentiation 
pathway in an embryonic chick tracking system, such that 
chondroprogenitors can engraft into a variety of connective 
tissue types including bone, tendon and perimysium. 
The identification of a chondrocyte subpopulation with 
progenitor-like characteristics will allow for advances 
in our understanding of both cartilage growth and 
maintenance as well as provide novel solutions to articular 
cartilage repair.

Key words: Cartilage, Progenitor cell, Notch

Introduction
Articular cartilage is an avascular, aneural tissue with a high 
matrix to cell volume ratio. The matrix comprises mainly type 
II collagen fibres and the high molecular weight aggregating 
proteoglycan aggrecan. The tissue is not, however, 
homogeneous with biochemical and morphological variations 
existing from the surface zone to the deeper calcified layer. The 
surface zone of the tissue is characterised by flattened, discoid 
cells that secrete surface zone proteoglycan (proteoglycan 4) 
(Schumacher et al., 1994). The mid zone of the tissue 
comprises rounded cells arranged in perpendicular columns 
and in addition to type II collagen and aggrecan, expresses 
cartilage intermediate layer protein (CILP) (Lorenzo et al.,
1998). The deep zone and calcified zone chondrocytes express 
type X collagen and alkaline phosphatase (Schmid and 
Linsenmayer, 1985), and in the deep zone the chondrocytes are 
considerably larger than in the other zones.

Clearly, the differentiation and proliferation events occurring 
during the development of articular cartilage must, therefore, 
be strictly controlled both temporally and spatially in order for 
the distinct zonal architecture of the tissue to be established. 
Various studies have shown that the surface zone of articular 
cartilage is centrally involved in the regulation of tissue 
development and growth. Not only does the surface of articular 
cartilage play a major role in the morphogenesis of the

diarthrodial joint via differential matrix synthesis (Ward et al., 
1999), but file expression of many growth factors and their 
receptors at the articular surface (Archer et al., 1994; Hayes et 
al., 2001) suggest that this region represents an important 
signalling centre. In addition, it has been shown in vivo that 
the surface zone of articular cartilage is responsible for the 
appositional growth of articular cartilage and from these 
studies we hypothesised that the surface zone of articular 
cartilage contains a progenitor/stem cell population that allows 
for the appositional growth of the tissue (Hayes et al., 2001). 
Identification of such cells holds exciting possibilities in the 
field of cartilage tissue engineering because the tissue has 
limited inherent reparative capacity after trauma (Hunziker,
1999). Here, we describe the isolation and partial 
characterisation of a specific articular cartilage progenitor cell 
using a previously described differential adhesion assay (Jones 
and Watt, 1993).

Materials and Methods
Cell isolation, differential adhesion  a ssa y  and tissu e culture 
Petri dishes (35 mm) were coated with 10 pg ml-1 bovine fibronectin 
(FN; Sigma, UK) in 0.1 M phosphate buffered saline (PBS, pH 7.4) 
containing 1 mM MgCk and 1 mM CaCh (PBS+) overnight at 4°C. 
Dishes were blocked with 1% bovine serum albumin (BSA) in PBS+

mailto:archer@cardiff.ac.uk
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before chondrocytes were added. Control dishes were treated with 
PBS+ containing 1% BSA overnight at 4°C.

Previous studies have utilised differential adhesion to fibronectin in 
vitro to identify epidermal stem cells (Jones and Watt, 1993). 
Fibronectin is expressed in developing mammalian articular cartilage 
in addition to the classic fibronectin receptor integrin subunits a5 and 
Pi (Hynes, 1992). We therefore utilised fibronectin in an in vitro 
adhesion assay to identify and partially characterise articular cartilage 
progenitor cells. Chondrocytes were isolated from the surface, middle 
and deep zones of articular cartilage of 7-day-old calves by sequential 
pronase/collagenase digestion as previously described (Archer et al., 
1990). After isolation, chondrocytes (4000 ml-1) were seeded onto 35 
mm plastic Petri dishes at 37°C for 20 minutes in 1:1 DMEM/F12 
containing 0.1% Gentamycin (DMEM/F12-). After 20 minutes, 
media (and non-adherent cells) was removed and placed in a second 
dish for 40 minutes at 37°C before this media (and non-adherent cells) 
was removed and placed in a third dish. After removal of media at 20 
and 40 minutes, fresh 1:1 DMEM/F12 containing 0.1% Gentamycin, 
0.5 |ig ml-1 ascorbate, 1 |ig ml-1 glucose and 10% foetal calf serum 
(FCS; DMEM/F12+) was added to the remaining adherent cells which 
were maintained in culture for up to 10 days. In all experiments, six 
fibronectin-coated dishes and six untreated dishes were used for each 
time point and for each zone of cartilage. Controls comprised cells 
subjected to differential adhesion on dishes coated with 1% BSA in 
PBS+.

For Notch 1 selection, magnetic tosyl-activated Dynal Beads 
(Dynal, UK) were coated with polyclonal anti-Notch 1 antibody (5 jig 
ml-1; Santa Cruz, CA) following the manufacturer’s instructions. 
Freshly isolated chondrocytes from the surface, middle and deep zone 
were incubated with antibody-coated beads for 30 minutes at 4°C and 
separated from Notch-negative cells using a powerful magnet. Non
magnetic cells were aspirated and Notch-positive cells washed three 
times in PBS before isolated cells were resuspended in DMEM/F12 
and the purified cells counted using a haemocytometer. Notch 1- 
positive cells were then subjected to differential adhesion on 
fibronectin for 20 minutes (4000 cells ml-1 in 35 mm dishes as 
described above), and initial adhesion and colony forming efficiency 
assayed up to 10 days as described below.

Within 3 hours of plating, initial chondrocyte adhesion was assayed 
by counting the total number of cells adhering to the bottom of the 
dish using an inverted microscope equipped with phase contrast optics 
and expressed as a percentage of the initial seeding density. Colonies 
(defined as consisting of more than 32 chondrocytes) were counted 
using the same microscope at 3, 6 and 10 days. Thirty-two cells were 
chosen as this represents a population of cells derived from more than 
5 population doublings of a single cell, thereby discounting a transit 
amplifying cell (Jones and Watt 1993). Colony forming efficiency 
(CFE) was calculated by dividing the number of colonies by the initial 
number of adherent cells. In some experiments (n=3), the number of 
cells per colony was counted to determine the average number of cells 
per colony. Results were analysed using the Student’s t-test. However, 
for comparative purposes, we also analysed the data in terms of 
colonies comprising more than 4 cells.

For y-secretase inhibition studies, cells were isolated and subjected 
to differential adhesion to fibronectin as described above. Cells 
were maintained in media containing 50 nM N-[N-(3,5- 
diflurophenylacetate)-L-alanyl]-(S)-phenylglycine t-butyl ester 
(DAPT) (Dovey et al., 2001) in 0.1% DMSO for 7 days with media 
changes every 48 hours. Initial adhesion and CFE were assayed as 
described.

For explant cultures, full-depth cartilage chips were removed and 
bisected. One half of each explant was cultured in the presence of 50 
nM DAPT in DMEM/F12+ and 0.1% DMSO for 7 days, whereas the 
other half of the explant was cultured in DMEM/F12+ and 0.1% 
DMSO. Media was changed every 48 hours and samples fixed in 10% 
NBFS, wax embedded and stained with toluidine blue. Sections were 
examined using brightfield optics and digital images obtained. A

calibrated grid was then used to count the number of cells 0-100 p.m 
and 101-200 jim from the articular surface. Results were analysed 
using the Student’s t-test.

In separate experiments, explants were excised and cut in half. Half 
of each explant was maintained in 50 nM DAPT and the other half 
was maintained in control media as described above for 7 days. On 
days 4, 5 and 6, the thymidine analogue bromodeoxyuridine (BrdU; 
final concentration 50 mM) was added to control and experimental 
media in order to identify s-phase chondrocytes. Explants were 
removed after 24, 48 and 72 hours’ incubation in BrdU, fixed in 10% 
formalin and wax embedded. Dewaxed sections were then 
immunolabelled with monoclonal anti-BrdU (5 pg ml-1 in PBS) and 
localised using goat anti-mouse fluorescein-conjugated secondary 
antibody.

Im munocytochemistry
Chondrocytes were labelled with antibodies raised against ot5 and |5l 
integrin subunits after sequential pronase/collagenase digestion and at 
various time points after differential adhesion. Briefly, chondrocytes 
(2x10s cells ml-1) were fixed in 95% ice-cold ethanol for 10 minutes 
and washed in PBS. The cells were incubated with primary antibodies 
diluted in PBS (2 jig ml-1) for 1 hour at room temperature, washed three 
times in PBS and incubated with appropriate FITC-conjugated 
secondary antibodies (2 pg mH) diluted in 20% heat inactivated foetal 
calf serum in PBS. Cells were washed in PBS and mounted in 
Vectashield containing 1.0 mg mP1 propidium iodide. Cells were then 
observed and photographed using a fluorescent microscope. To 
determine integrin, FN-extra domain A (EDA) and Notch 1 expression 
in vivo, full-depth articular cartilage was excised from 7-day-old bovine 
metacarpal-phalangeal joints and chilled by precipitate immersion in n- 
hexane at -80°C. Cryostat sections (10 pm) were cut on a Bright’s 
cryostat and collected on APES (3-aminopropyltriethoxysilane)-coated 
slides and stored at -20°C. Sections were defrosted, post-fixed in ice- 
cold acetone for 5 minutes, washed in PBS and incubated with primary 
antibody diluted in PBS/0.01% Tween 20 (PBST) for 1 hour at room 
temperature. After washing in PBST, sections were incubated with 
relevant FTI’C-conjugated antibodies diluted in 20% heat-inactivated 
FCS in PBST for 1 hour before washing three times with PBST and 
mounting in Vectashield. Labelled sections were examined and 
photographed using either a Zeiss or an Olympus photomicroscope 
fitted with epifluorescent optics.

Flow cytometry
To assess integrin expression before differential adhesion, freshly 
isolated chondrocytes were incubated in fresh DMEM/F12- at 37°C 
on a roller prior to labelling for FACS analysis. After differential 
adhesion, chondrocytes were removed from dishes non-enzymatically 
(Sigma) and labelled for FACS analysis. All samples were counted 
and 2x10s cells were incubated for 3 hours with antibodies to cx5 and 
pi integrin subunits and Notch 1 in sextuplicate at room temperature. 
Cells were centrifuged at 500 g, supernatants removed and cells 
washed three times in PBS with centrifugation between each wash. 
Cells were then incubated with relevant FITC-conjugated secondary 
antibodies for 1 hour at room temperature and washed three times in 
PBS as described above. Finally, labelled cells were re-suspended in 
200 nl PBS and subjected to single channel FACS analysis.

Notch intracellular domain (NICD) transfection
Activated Notch constructs (Notch ICv) were obtained from Raphael 
Kopan (University of Washington) (Schroeter et al., 1998). Surface 
zone chondrocytes were subjected to differential adhesion to 
fibronectin and grown in the presence of 50 nM DAPT for 3 days. 
Excess (1 |xg) plasmid DNA was transiently transfected into surface 
zone chondrocytes 3 days after differential adhesion using Effectene
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plasmid DNA (1 pg VSV-G and 1 pg lacZ) was 
resuspended in 148 pi condensation buffer and vortexed, 
16 pi of enhancer reagent was added, mixed and 
incubated at room temperature for 5 minutes. Following 
incubation, 50 pi of Effectene reagent was added to the 
solution, mixed and after 10 minutes’ incubation at room 
temperature, 1 ml of DMEM/F12+ was added. The 
solution was mixed and the suspension added drop-wise 
to 293GP cells. Transfected cells were cultured for 3 days 
in DMEM/F12+ and viral supernatants collected after 3 
days and frozen at -80°C.
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Fig. 1. Frozen sections (A.B) and isolated chondrocytes (C-F) from 7-day bovine 
articular cartilage immunolabelled for a5 (A,C,E) and p i (B.D,F) integrin 
subunits. a5 and pi integrin subunits are localised throughout the depth of the 
articular cartilage (A,B) although not every chondrocyte is labelled. Isolated 
chondrocytes from surface zone immediately after sequential pronase/collagenase 
isolation labelled with antibody to alpha a5  (C) and pi (D) subunits. Labelling for 
a5 (E) and pi (F) is also present 72 hours after differential adhesion to fibronectin. 
Fibronectin-EDA was localised in frozen tissue sections to the surface 2-3 cell 
layers (G). Integrin oc5 and pi subunit expression was assessed by flow cytometry 
after sequential pronase/collagenase digestion (4 hours) and 72 hours after 
differential adhesion assay to fibronectin (H). At 4 hours and 72 hours, there was 
no difference in integrin subunit expression between surface zone chondrocytes 
(P>0.05), although during this time period the overall expression of a5 and pi 
subunits was significantly decreased (P<0.01). At 4 hours, middle zone 
chondrocytes had a higher expression of P5 subunits relative to P 1 subunits 
(P<0.01), although there was no difference in expression after 72 hours (P>0.05).

reagent (Qiagen), and colonies consisting of more than 32 cells were 
counted 10 days after differential adhesion and colony forming 
efficiency calculated.

Chondroprogenitor cell isolation and infection
Surface and deep zone chondrocytes were isolated from 
7-day-old bovine articular cartilage using sequential 
pronase/collagenase digestion and 5xl06 cells subjected 
to differential adhesion to FN (10 jig ml-1 in PBS+) in 60 
mm dishes for 20 minutes. Non-adherent cells were 
aspirated and chondrocytes were cultured for up to 5 days 
prior to infection. Chondrocytes were infected with 
pseudotyped retrovirus-conditioned media (5-6x106 CFU 
ml-1) containing 10 pg ml-1 polybrene for 24 hours prior 
to injection. Media was removed and cells washed in 
DMEM containing no additives, trypsinised, centrifuged 
and resuspended at 1x10s cells 10 pH .

In ovo injections and tissue processing
After harvesting, 10 pi aliquots of cell suspension 
containing lxlO5 cells (both surface and deep zone 
derived) were immediately injected into the proximal or 
distal wing bud of 3-day-old (Stage 12-14) (Hamburger 
and Hamilton, 1951) chick embryos which had been 
previously windowed. Eggs were resealed with adhesive 
tape and re-incubated for various times up to day 10 
(Stage 36-37). Embryos were killed by cervical 
dislocation, a note of their developmental stage taken and 
embryos washed in 0.1 M PBS (pH 7.4). After washing, 
embryos were fixed in 2.5% paraformaldehyde in 0.1 M 
PBS (pH 7.4) for 1 hour at room temperature followed by 
3x20 minute washes in 0.1 M PBS containing 2 mM 
MgCL, 0.01% deoxycholic acid and 0.02% igepal 
[(Octylphenoxy)polyethoxyethanol, pH 7.4]. Embryos 
were then reacted at 37°C overnight for lacZ in 0.1 M 
PBS containing 2 mM MgCh, 0.01% deoxycholic acid, 
0.02% igepal, 5 mM potassium ferricyanide, 5 mM 
potassium ferrocyanide, 1 mM spermidine 
trihydrochloride and 1 mg ml-1 X-gal previously 
solubilised in DMSO. Embryos were washed extensively 
in 0.1 M PBS, post-fixed in 10% NBFS overnight and 
wax embedded. Serial wax sections (8-10 pm) were taken 
onto 3-aminopropyl triethoxy silane-coated slides air 
dried overnight, dewaxed, stained with 1% eosin for 15 
seconds and examined under bright field microscopy after 
coverslipping. In separate experiments, immuno

cytochemistry using antibody to bacterial gene product was performed 
as a control against endogenous P-galactosidase activity and also to 
co-localise bovine-specific type I collagen within engrafted tissues.

Culture and transient transfection of 293GP packaging cells
293GP cells expressing the gag and pol proteins (Burns et al., 1993) 
were cultured to 70-80% confluency in DMEM/F12 containing 0.5 
mg ml-1 Gentamycin and 10% FCS. Cells were then transfected with 
1 pg plasmid DNA encoding VSV-G and lacZ using the Quiagen 
Effectene kit following the manufacturer’s instructions. Briefly,

Results
Initially, we examined integrin and fibronectin expression in 7- 
day-old bovine articular cartilage using immunocytochemistry 
and flow cytometry (Fig. 1). Both a5  and p i integrin subunits 
were expressed in the majority o f chondrocytes at the surface
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Table 1. Initial adhesion of chondrocytes to fibronectin
T r e a tm e n t

A d h e s io n  t im e S F N S P B S M F N  M P B S D F N D P B S

2 0  m in u te s  

4 0  m in u te s

9 . 0 5 % ± 0 . 4 4 * 4

4 .8 9 % ± 0 .4 3

3 .8 3 % ± 0 .2 7  

4 . 1 2 % ± 0 .3 4

M ^ S h t O - S b ^ - l  3 .9 4 % ± 0 .1 9  

1 0 .8 5 % ± 0 .5 1 n  4 .2 % ± 0 . 1 9

3 .5 9 % ± 0 .2 2

3 .9 5 % ± 0 . 3 0

3 .6 8 % ± 0 .2 3

4 .2 1 % ± 0 . 3 6

I n i t i a l  a d h e s io n  to  f ib ro n e c t in  a n d  P B S -c o a te d  d is h e s . C h o n d ro c y te s  w e re  p la te d  as d e s c r ib e d  in  th e  M a te r ia ls  a n d  M e th o d s  a n d  a s s a y e d  fo r  c e l l  a d h e s io n  a t 2 0  

a n d  4 0  m in u te s . D ,  d e e p ; F N ,  f ib ro n e c t in -c o a te d  d ish es ; M ,  m id d le ;  P B S , P B S -c o a te d  d is h e s ; S , s u rfa c e . * P < 0 .0 0 1  c o m p a re d  w i th  4 0  m in u te s ;  +P < 0 .0 1  

c o m p a re d  w i th  4 0  m in u te s ; * P < 0 .0 0 1  c o m p a re d  w ith  P B S  c o n tro l;  §P < 0 .0 1  c o m p a re d  w i th  s u rfa c e  F N  2 0 ;  ^ P c O .O O l c o m p a re d  w i th  d e e p  F N  2 0 .

of the tissue with decreasing label intensity and decreasing 
numbers of chondrocytes labelled in the deeper zones of the 
cartilage (Fig. 1A,B). Using chondrocytes immediately after 
isolation and at various times after differential adhesion, 
surface, middle and deep zone chondrocytes were shown to 
express a5  and |3l subunits at all time points analysed 
regardless of substrate although differences in labelling 
intensity and the number of labelled cells were noted (Fig. 1C- 
F and data not shown). FN-EDA was localised pericellularly 
within the surface 2-3 cell layers of the articular cartilage (Fig. 
1G). Using flow cytometry immediately after isolation and 4 
hours after differential adhesion (Fig. 1H), (31 subunits were 
shown to be preferentially expressed by surface zone 
chondrocytes (88%±4.8) compared with middle (67%±2.1) 
and deep (62%±3.7) zone chondrocytes. Substantially more 
cells in the surface zone expressed a5 subunits (79%±4.8) 
compared with middle (5%±2.1) and deep (2.5%±1.7) zone 
chondrocytes.

Next, we assessed the degree of chondrocyte adhesion to 
fibronectin (Table 1). Surface and middle zone chondrocytes 
were more adherent to fibronectin than the other cohorts 
examined at 20 minutes. Initial adhesion ranged between 3.5% 
and 14.5% of the original cell number. Significant differences 
in adhesion were evident between surface zone chondrocytes 
plated on fibronectin for 20 minutes and those plated on 
fibronectin for 40 minutes (PcO.OOl) and cells cultured on 
BSA-coated dishes for 20 minutes (P<0.001). Middle zone 
chondrocytes were significantly more adhesive at 20 minutes 
than at 40 minutes when plated on fibronectin-coated dishes 
(P<0.001). In addition, middle zone chondrocytes were more 
adhesive to fibronectin at both time points compared with 
BSA-coated dishes (PcO.OOl). No differences in adhesion 
were observed between deep zone chondrocytes regardless of 
substrate or time point (P>0.05 in all cases).

If these cells with a high affinity for fibronectin are a 
population of chondroprogenitor cells then they should have 
the ability to form large numbers of colonies from an initially 
low seeding density, as is the case in other tissues with a clearly 
defined stem cell population (Jones and Watt 1993). To 
determine the clonality of the adhesive chondrocytes, we 
counted the number and size of colonies of chondrocytes 
subjected to differential adhesion to fibronectin (Fig. 2A). 
Differences in the initial adhesion of surface zone cells were 
reflected in CFE at 6 and 10 days that was not matched by the 
CFE of middle zone cells (Fig. 2B). The CFE of surface zone 
chondrocytes initially cultured on fibronectin for 20 minutes 
was greater than that of all other samples (P<0.01 at 6 days 
and P<0.001 at 10 days) when we applied the definition of a 
colony as being more than 32 cells. Indeed, using the criteria 
of 32 cells as indicative of a colony, no colonies were present

in any other cohort besides surface zone cells initially plated 
on fibronectin. Using 4 cells as being indicative of a colony for 
comparative purposes, the same trend is apparent with surface 
zone cells subjected to differential adhesion to fibronectin for 
20 minutes having a significantly enhanced CFE at both 6 and 
10 days relative to all other cohorts (Fig. 2C,D). In addition, 
the average number of cells per colony was greater in surface 
zone cells initially grown on fibronectin for 20 minutes at both 
6 (Fig. 2E) (P<0.05) and 10 (Fig. 2F) (P<0.01) days compared 
with all other samples.

These results suggest that a subpopulation o f cells within the 
surface zone have the properties of a progenitor cell. Other 
studies in our laboratory using BALBc mice had identified 
Notch family members within the surface zone of developing 
articular cartilage and that Delta was widely distributed 
through the remainder o f the tissue (Hayes et al., 2003). These 
studies suggested that Notch 1 was a suitable marker for the 
chondroprogenitor population and immunolabelling of bovine 
cartilage with a panel of antibodies to Notch family members 
revealed the presence of Notch 1 in the surface 2-3 cell layers 
of 7-day bovine articular cartilage (Fig. 3A), although not all 
cells within this layer were labelled. Another cohort of Notch 
1-positive cells was also observed in the mid and deep zone of 
the tissue. Using flow cytometry, we showed that 86% of the 
surface zone cells isolated by pronase/collagenase digestion 
were Notch 1-positive compared with 10% and 34% from the 
middle and deep zone, respectively (Fig. 3B). Using Dynal 
Bead capture of Notch 1-positive surface zone chondrocytes, 
we showed that a Notch 1-enriched population o f chondrocytes 
had both an increased adhesion to fibronectin (P<0.01) 
(Fig. 3C) and an increased CFE (P<0.05) (Fig. 3D) relative 
to unselected cells. These data suggest that the Delta/ 
Notch signalling pathway may have a major influence in 
controlling both chondrocyte colony forming efficiency and 
differentiation.

To determine the role of Notch signalling in the colony 
forming ability of surface zone chondrocytes we cultured 
surface zone cells in the presence of a y-secretase inhibitor, 
DAPT (Dovey et al., 2001), which is known to bind to the 
active site of presenillin in the y-secretase complex and not 
interfere with (3-catenin-mediated signalling (Kornilova et al., 
2003). The y-secretases are responsible for the cleavage of the 
amyloid precursor protein during the progression of 
Alzheimer’s disease and are also responsible for the 
intramembranous cleavage of Notch receptors (Berezovska et 
al., 2000). Because of their role in Alzheimer’s disease 
progression, much interest has focused on the development of 
Y-secretase inhibitors (Dovey et al., 2001), which not only 
prevent the accumulation of amyloid plaques but also prevent 
Notch family signalling (Berezovska et al., 2001). Treatment
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F i g .  2 .  Chondrocytes were subjected to differential adhesion to 
fibronectin as described in the Materials and Methods, and 
colonies consisting of more than 32 cells were counted at 6 and 
10 days and the results expressed as colony forming efficiency as 
described in the Materials and Methods. (A,B) Colonies initially 
appeared at 6 days in samples derived from the surface zone 
subjected to differential adhesion to fibronectin for 20 minutes 
and the CFE of this cohort had increased by 10 days. Using 4 
cells as being indicative of a colony the same trend was apparent, 
with surface zone cells subjected to differential adhesion to 
fibronectin for 20 minutes showing enhanced CFE at both 6 and 
10 days (C,D). Colony size of surface (S), middle (M) and deep 
(D) zone chondrocytes was also assessed at 6 (E) and 10 (F) 
days. Cells were plated and the number of cells per colony was 
counted at 6 and 10 days. Surface zone chondrocytes formed 
bigger colonies when plated onto fibronectin for 20 minutes 
(SFN 20) at both 6 (E) and 10 (F) days than any other sample. 
There was no difference in colony size within any other cohort at 
either time point. In addition, the colony size of surface zone 
cells plated on fibronectin for 20 minutes was increased at 10 
days compared with 6 days and there was no increase within any 
of the other cohorts. *P<0.01 compared with 6 days;

**F<0.01 compared with all 
other cohorts at the same time 
point; ***P<0.001 compared 
with all other cohorts at the 
same time point. Abbreviations 
as in Table 1.

n 11 n fi n n n n fl fl

with DAPT did not affect the initial adhesion o f chondrocytes 
to fibronectin (Fig. 4A), but abolished clonality at both 6 and 
10 days compared with controls when the 32 cell definition was 
applied (Fig. 4B) such that CFE was equal to that o f  deep zone 
chondrocytes. NICD was able to rescue colony abolition when 
added to DAPT-treated cultures after 3 days (P<0.05) (Fig. 4C) 
but NICD transfection did not increase colony forming 
efficiency compared with controls (P>0.05) (Fig. 4C). Culture 
of cartilage explants in the presence o f 50 nM DAPT for 7 days 
produced a region o f  hypocellular, weakly stained matrix 
immediately beneath the surface zone (Fig. 4D,E). The region 
101-200 pm from the articular surface contained fewer cells in 
DAPT-treated samples compared with controls (P<0.05) (Fig. 
4D-F), whereas there was no difference in cell number 0-100

pm from the articular surface (P>0.05) (Fig. 4D-F). In 
addition, it was shown that incubation of explants in 50 nM 
DAPT prevented cell proliferation as there was no evidence of 
BrdU incorporation in any of the treated samples examined 
(n=24) (Fig. 4G,H).

In order to assess the differentiation potential o f the 
progenitor population, we infected a lineage label into the cells 
and injected them into the proximal limb o f stage 22 chick 
embryos and tracked them for 1 week in ovo. Twenty-four 
hours after injection, (3-galactosidase-positive cells were 
present in positions corresponding to the original injection site 
(Fig. 5A,B). Examination o f embryos injected with labelled 
deep zone cells gave variable results. Labelled cells were either 
absent suggesting that the cells could not survive in the chick
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embryos, or if cells were present they were seen as masses of 
labelled cells in loose connective tissue not integrated into 
surrounding host tissue (Fig. 5K).

Examination of embryos incubated to 10 days (Stage 36) 
revealed (3-galactosidase-positive cells in numerous tissue 
types, including cartilage, bone, tendon and muscle connective 
tissues (Fig. 5C-F). The sites of these positive cells 
corresponded with the sites of injection such that proximal 
injections gave (3-galactosidase-positive cells in proximal 
tissues and distal injections revealed (3-galactosidase-positive 
cells in distal structures. Furthermore, if cells were injected 
into the central proximal region of the limb bud, cells engrafted 
into the humerus. More lateral injections engrafted into 
tendons and perimysim. In order to test for functional 
engraftment, we used an antibody specific for bovine type I 
collagen. We found that in tendon, parallel arrays of fibrillar 
collagen ran along the tendon length (Fig. 5H) contrasting with 
dense immunofluorescence in the subperiosteal bone (Fig. 5J). 
In addition, both the perichondrium and articular fibrocartilage 
(Fig. 5G) and the perimysium (Fig. 5H) labelled with anti- 
bovine type I collagen antibody.

Discussion
Using differential adhesion to serum fibronectin, we have 
described the isolation and partial characterisation of a 
subpopulation of articular cartilage chondrocytes with 
properties akin to those of a progenitor cell and that are able to 
engraft into a variety of tissue types, albeit of the connective 
tissue lineage. These cells reside within the surface zone of 
articular cartilage, where the EDA isoform of fibronectin is

differentially expressed and the cells have an extended cell cycle 
time (Hayes et al., 2001). This sub-population of surface zone 
cells has a high affinity for serum fibronectin but not other 
ligands, e.g. collagen types I, II and IV. laminin and tenascin 
(J.C.B., G.P.D. and C.W.A., unpublished results), and were 
capable of forming large numbers of colonies from an initially 
low seeding density, unlike cells isolated from the middle zone 
which also have high fibronectin affinity. The initial adhesion 
of surface zone chondrocytes to fibronectin can be explained by 
their high expression of a5(3l integrin subunits, the ‘classical’ 
fibronectin receptor (Hynes, 1992). This high level of a5|3l 
expression and affinity for fibronectin does not, however, 
provide a marker of the cells’ colony forming ability. Middle 
zone chondrocytes exhibit higher affinity for fibronectin than 
surface zone cells (~15% middle compared with ~10% surface) 
(Table 1), but lack the ability to form colonies (Fig. 2) and may 
represent a transit amplifying population. In addition, the 
percentage of cells that possess a high colony forming 
efficiency within the surface zone (approximately 1-2% of the 
initial number adhered) is only a fraction of the number of 
cells expressing a5(3l subunits (approximately 75%), for this 
reason we could not use a5(3l integrin expression as a 
chondroprogenitor marker.

Previous studies have documented the expression of Notch 
family members during articular cartilage and growth plate 
development (Hayes et al., 2003; Crowe et al., 1999). Of 
particular interest was the specific expression of Notch 1 at the 
developing articular surface of mouse knee joints (Hayes et al., 
2003). This specific expression in the surface zone of articular 
cartilage suggested that Notch 1 may provide a marker for 
colony forming cells in the bovine model used in the present
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study. Indeed, Notch 1 expression in immature bovine articular 
cartilage matches that in developing mouse articular cartilage, 
such that in both species, Notch 1 is present in the chondrocytes 
of the surface zone articular cartilage to a depth o f 2-3 cells (see 
Fig. 3) (Hayes et al., 2003). Flow cytometry o f freshly isolated

chondrocytes revealed that Notch 1 expression was significantly 
increased in surface zone chondrocytes and these high levels o f  
Notch 1 expression were maintained in surface zone cells after 
differential adhesion, relative to middle and deep zone 
chondrocytes. Using magnetic immunoselection, Notch 1-
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positive cells were isolated from bovine articular cartilage and 
subjected to differential adhesion. Surface zone cells thus 
isolated had a higher affinity for fibronectin than Nl-selected  
middle and deep zone cells and unselected cells (Fig. 3). These

Fig. 5. lacZ-infected chondrocytes were injected into the w ing bud of 
stage 22 chick embryos and incubated for stage 36 (10 days). 
(3-galactosidase-positive cells were present 24 hours after injection in 
the humerus (A,B. arrow), i.e. in the proximal region corresponding 
to the site of injection. After 10 days’ incubation, |3-galactosidase 
activity was present in several tissues, including perimysium (C), 
tendon (D), bone (E, arrow) and articular fibrocartilage (F. arrow). 
Using anti-/ucZ and bovine-specific collagen type 1 antibody, bovine 
cells and collagen were co-localised in articular fibrocartilage 
(G, arrow), tendon (H. arrow), perimysium (I, arrow) and bone 
(J. arrow). Samples from animals injected with deep zone cells 
contained few /ucZ-positive cells and when present were not 
identifiable in any organised tissue (K. arrow).

Nl-selected surface zone cells also had an increased colony 
forming efficiency compared with unselected cells. These 
results suggest that Notch 1 plays a significant role in the 
signalling mechanisms controlling the clonality of surface zone 
chondrocytes, although given that approximately 75% of 
surface zone cells express Notch 1 and only 1-2% of these 
selected cells form colonies. Notch 1 expression per se is not a 
specific marker of progenitor chondrocytes. The precise role of 
Notch in the promotion of clonality or maintenance of 
progenitor status remains unclear, although our own studies 
have shown the expression of several Notch ligands (Jagged and 
Delta) in articular cartilage, although their expression is not 
specific to the articular surface (Hayes et al.. 2003). Notch 1 
signalling may play one of two roles in the surface zone of 
articular cartilage; it may function to maintain cells in a 
proliferative state, i.e. maintain clonality, or it may promote 
chondrocyte differentiation and hence cartilage growth. In skin, 
activ ation of Notch by Delta promotes terminal differentiation, 
i.e. prevents proliferation (Lowell et al., 2000). however the 
high CFE of Notch 1-selected chondrocytes and the reduction 
in CFE by Notch signal inhibition would suggest that Notch 1 
signalling within articular cartilage maintains clonality and 
proliferation. These inhibitory effects are negated by activated 
Notch but activated Notch does not increase colony forming 
ability, suggesting that clonality is dependent upon rate limiting 
factors downstream of Notch signalling.

Cartilage explants cultured with DAPT contain a 
hypocellular zone beneath the articular surface and BrdU 
immunolabelling highlights the lack of proliferation in DAPT- 
treated samples. These results would indicate that Notch 
inhibition via DAPT inactivation of presenillin prevents 
chondroprogenitor proliferation, thus depleting the number of 
daughter cells capable of differentiating and contributing to 
articular cartilage growth.

At present, we cannot sate which member of the Notch 
family controls chondrocyte proliferation/differentiation, but 
the results o f the immunolabelling for Notch 1 in both bovine 
and mouse (Hayes et al., 2003) and the enhanced clonality of 
Notch 1-selected chondrocytes suggests that this family 
member is central to cartilage growth and differentiation.

The engraftment of bovine surface zone-derived cells and 
their tissue-specific matrix synthesis in ovo highlights the 
plasticity of this cell population. This plasticity further 
supports our argument that these cells represent a progenitor 
population as plasticity is a key marker of a stem cell 
population (Morrison et al., 1997).

We conclude that immature articular cartilage contains a
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population of progenitor cells (which as yet has no definitive 
marker) that is responsible for the appositional growth of the 
tissue and that this population of cells exhibits a significant 
degree of plasticity in its differentiation pathway. The existence 
of a progenitor population within the surface zone of articular 
cartilage opens up the possibility of using this population 
to engineer cartilage in vitro. Because these cells are 
undifferentiated, they should have the capability to reproduce 
the structural and hence biomechanical properties of normal 
articular cartilage and thus integrate more fully into articular 
cartilage lesions.
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