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Abstract
This thesis describes the theoretical and experimental study of group 9 and 10 

transition metal N-heterocyclic carbene complexes in catalytic reactions.

In order to overcome decomposition reactions discovered in the use of carbene 

complexes for carbon monoxide/ethylene copolymerisation, chelating thiazolium salts 

were prepared for the synthesis of corresponding palladium complexes. Complex 

formation proved difficult and experimental attempts to overcome possible side 

reactions caused by reactant-metal interactions were unsuccessful. Theoretical studies 

indicated a sulfur-palladium interaction may be contributing to alternative products, 

with the use of the bulky lBu coordination at the thiazolium 5 position likely to block 

this interaction enough to allow C2 carbene formation.

Theoretical calculations for the oxidative addition of azolium salts to a model 

Wilkinson’s catalyst (RhCl(PH3)3) is described. According to free energy calculations, 

a six ligand associative route with a concerted three-centred transition structure may 

be competitive to a route in which phosphine predissociation occurs. Exchange of the 

phosphine molecule on the metal centre with trimethylphosphine had a significant 

effect in lowering the barrier to oxidative addition and decreasing the endothermicity 

of the reaction, while explicit and bulk solvation was found to have a moderate effect 

on the overall reaction.

Extension of the oxidative addition of azolium salts to rhodium carbene complexes 

have been examined, in which a range of ligands is described from the pi-acidic 

carbon monoxide ligand to multiple carbene ligands. Increasing basicity decreases 

activation barriers while increasing the exothermicity of the overall reaction for C-H 

activation, however the complex most successful at C-H activation was not 

considered hospitable enough for related C-C activation of 2 -methylazolium salts. 

Switching to iridium indicated a large benefit in C-H activation. Unfortunately, C-C 

activation remained unfavourable for iridium due to a high barrier to reaction.

A mechanism for the experimentally successful C-C coupling of azolium salts to 

alkenes by nickel complexes is studied, indicating an oxidative addition, alkene 

insertion and reductive elimination cycle seems likely. Experimentally, the switching 

of catalytically active phosphine ligands to the related carbenes causes the reaction to 

be halted. Theoretical calculations imply minor changes to reaction conditions may
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significantly affect the outcome of catalytic reactions by stabilisation of important 

reaction intermediates. Further studies of the alternative C4 activation of the azolium 

salts and use of related azoles show C4 activation and coupling may be possible, 

while the unactivated azoles are unlikely to be coupled using the same mechanism.

The related C-C coupling of azoles with alkenes by rhodium complexes has been 

successfully employed in experimental conditions, with Bergman’s group examining 

a mechanism in which a rhodium carbene complex is formed as part of the catalytic 

cycle. Comparisons of this mechanism to the oxidative addition, ethylene insertion 

and reductive elimination reaction implied for nickel are reported. Both five and six 

membered ring products are found experimentally, and mechanistic studies using both 

Bergman’s recommended route and ours indicate the activation barriers for the six 

membered ring are lower than the corresponding five membered ring, despite the five 

membered ring being the thermodynamically favoured product. Other reaction factors 

including alkene isomerisation, the addition of adjacent methyl groups on the alkene 

chain and alternative alkene coordination to the metal have no impact on the favoured 

product. While there is no obvious indication as to which mechanism is preferred for 

azole coupling, addition of an acid catalyst strongly favours our mechanism.
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Abbreviations
cod 1,5-cyclooctadiene

Cy cyclohexyl

dba dibenzylideneacetone

DCM dichloromethane

Dipp 2 ,6 -diisopropylphenyl

dmiy 1,3-dimethylimidazol-2-ylidene

DMSO dimethylsulfoxide

dppe l,3-bis(diphenylphosphino)ethane

dmpe l,3-bis(dimethylphosphino)ethane

IMes l,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene

Me methyl

MeCN acetonitrile

Mes mesityl, 2,4,6-trimethylphenyl

NBO natural bond order

NHC N-heterocyclic carbene

NMR nuclear magnetic resonance

OAc acetate anion

Ph phenyl

R alkyl or aryl group

lBu tertiary'-butyl

THF tetrahydrofuran

TON turn over number

X halogen
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Chapter 1 -  Review  o f  the Current Literature

1 Review of the Current Literature

1.1 Introduction

A catalyst is described as “a substance that increases the rate of a reaction but is not 

itself consumed”1. Used both in nature and in the laboratory, they have become very 

important in today’s industry for the production of many types of organic compounds 

that would otherwise not be available on an industrial scale due to slow, unselective, 

or expensive non-catalysed reactions. It was estimated that in 1994, catalysts 

contributed one-sixth the value of all manufactured goods in industrialised countries, 

and that 13 of the top 20 synthetic chemicals used catalysts'. As such, it is not 

surprising there has been extensive study carried out in the use of catalysts in recent 

years.

Homogenous catalysis, where the complexes used are in the same phase as the 

reactants, took a big leap forward when Otto Roelen used a catalyst for the oxo 

synthesis in 1938:. While it was originally thought homogenous catalysis would not 

take off due to problems with separation of the catalysts from reaction products, many 

benefits in their use were recognised and research in the area persisted.

In general, homogenous catalysts display high activity and high product selectivity 

under mild conditions and are much more stable towards poisoning than are 

heterogeneous catalysts3. In addition, one of the most important advantages of 

homogenous catalysis is the ability to investigate the mechanism for reactions much 

more readily than for heterogeneous methods4. Combined with a capacity for 

controlling steric and electronic properties of the catalysts themselves, this makes 

designing and refining homogenous catalysts for customised products possible; a huge 

advantage over the previously used heterogeneous catalysts.

For many important catalytic reactions to date, phosphines have been the ligands of 

choice for the metals in catalysts. As good 2-electron sigma donors, they provide the 

metal centre with direct electron density w ith minimal backbonding. Further, 

substitution of the R groups attached to the phosphine give the ligand great versatility, 

both electronically and sterically, allowing for excellent control over important 

catalyst characteristics.
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Chapter 1 -  Review  o f  the Current Literature

Despite their popularity, phosphines possess a small number of undesirable qualities 

that are a cause for concern in many reaction conditions. Often the phosphines 

employed in catalytic reactions are not environmentally friendly and in many cases, 

toxic. More importantly, degradation of the catalyst occurs through P-C cleavage 

within the phosphine and as such, an excess of phosphine is required in many 

reactions.

Recently, a new type of ligand has emerged as a popular replacement for phosphines. 

With many similar properties to the related phosphines, carbenes display further 

benefits to catalysis that mean they have become an exciting ligand class for the 

future.

1.2 The history of carbenes

Carbenes are "uncharged compounds with a divalent carbon 

atom and two unshared electrons” 5 (Figure l-l) . First 

introduced over 10 0  years ago6, many reactions studied at 

various times in the past have shown an unusually stable 

intermediate, which was thought to be a carbene. The demonstrated stability of these 

carbenes challenged researchers to isolate the free carbenes7.

In general, carbenes take on a bent shape, implying sp2 hybridisation at the carbene 

carbon8. This leaves an unchanged py orbital perpendicular to the sp2 plane, suggesting 

4 possible ground state spin multiplicities: l triplet and 3 singlet states8 (Figure l -2).

In general for the three singlet states, singlet state (b) is more stable than (c). and (d) 

can be considered an excited singlet state.

T r i p l e t  S i n g l e t  S i n g l e t  S i n g l e t

(a) (b) (c) (d)

Figure I-2 C arbene  ground state spin multiplicities

Figure 1-1 

A simple carbene
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Chapter 1 -  Review o f  the Current Literature

The singlet/triplet gap for carbenes has been studied extensively, mainly by theoretical

methods9 l0. Whether a carbene takes on a singlet or triplet state depends largely on the

substituents surrounding the carbene centre, with a a-p 7i gap of 2 eV required to give

a singlet carbene by interaction of the unoccupied carbene

p orbital with aromatic electrons. As such, a  electron

withdrawing substituents favour the singlet state as they

can stabilise the carbene lone pair9, while n electron 
Figure 1-3 Stabilisation

donors can stabilise the formallv empty pTi orbital5 11
of the singlet carbene

12(Figure 1-3).

Steric bulk around the carbene centre also plays a minor role in determining the 

carbene ground state. The triplet state is favoured by linear molecules, and as bulkier 

substituents tend to repel each other, carbenes with very bulky substituents prefer the 

triplet state11 12.

Overall, with a large variety of both steric and electronic properties available in the 

substituents flanking the carbene centre, a non-linear triplet ground state has been 

experimentally established for the majority of carbenes5.

1.2.1 Stable singlet carbenes

In the 1960's, Wanzlick tried to isolate the first free nucleophilic singlet carbene using 

the o electron withdravving/7i electron donating carbene substituent hypothesis. In 

addition, he postulated the resonance provided by a ring structure would help stabilise 

the singlet carbene1'. As such, he introduced the imidazole ring into carbene 

chemistry'.

Unfortunately, all his attempts to isolate free carbenes based on the imidazole ring 

failed14 and cross coupling experiments proved the dimers he was forming were not in 

equilibrium with the carbenes themselves15 16. Recently, Denk et al17 and Hahn et al18 

found proof to the contrary1, although there is contradictory proof that Wanzlick's 

conclusions were valid19 with the reasons for carbene dimerisation recently becoming 

clearer20.
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Despite the disappointment at not being able to isolate free carbenes, Wanzlick did 

trap the carbenes he created in a mercury complex 14 2l(Figure 1-4).

Ph

KO/Bu
©)'y / (-nciOji
N C l( )4

Ph

Ph

•N

N

Ph

1 : Hgci

Ph

■N

N

Ph

Hg

Ph

N

Ph

Figure 1-4 Early trapp ing  of carbenes as a mercury  complex 

Thirty years later. Arduengo adopted the same ideas postulated by Wanzlick to isolate

the first free carbene by deprotonation of 

imidazolium salts using sodium hydride and 

catalytic amounts of the DMSO anion22 

(Figure 1-5). While the NMR produced 

proved this was a singlet, further ab initio 

MO calculations confirmed the singlet 

carbene was more stable than the triplet2'.

Figure 1-5 The first stable singlet carbene  Amazingly, this carbene showed no

(l,3-di(l-adam antyl)im idazol-2-ylidene) decomposition in d8-THF under a few

atmospheres of carbon monoxide after several years'.

N

- H ; .  N a C 'lcr

1.2.1.1 C arbene properties and stability'

The next challenge facing singlet carbene chemistry revolved around understanding 

the reasons for their stability. Arduengo's free carbene contained many characteristics 

that could explain their unusual stability. The imidazole system provided nitrogen a- 

acceptors. 7r-donors. and a ring system in which to delocalise the 7r-electron system 

even further. In addition, Arduengo had substituted the ring nitrogens with the very 

bulky adamantyl groups, providing steric protection for the carbene centre. Which of 

these factors, individually or in combination was most affecting the stability of the 

carbenes? What followed was an in depth look at both the kinetic and thermodynamic 

possibilities for stability241’.

Page 4



Chapter 1 -  R eview  o f  the Current Literature

It is now well accepted that the main reason for the stability of TV-heterocyclic 

carbenes is due to the a-electron withdrawing and 7t-donation ability of the 

heteroatoms adjacent to the carbene carbon. Planar molecules with potential 71-  

delocalisation (eg NCN) stabilise the carbene carbon with respect to methylene by 

about 70 kcal mol"'26. Further, when the C4 and C5 carbons are joined to form a 

saturated ring, up to 6  kcal m of1 o f additional stability may be observed. Inclusion of 

a double bond in the backbone of the ring (C4=C$) creating a truly aromatic ring, may 

add up to 26 kcal mol' 1 of stability26. Overall, TV-heterocyclic carbenes that include all 

of these characteristics have been found to have the largest singlet/triplet gap for any 

divalent compound at around 85 kcal mol'134.

These ideas have all been combined by various groups experimentally to isolate a 

considerable variety of free carbenes including saturated (a32,35), acyclic (b36, c37), 

sterically unhindered (d38,39), bi-(e40) and tri-dentate (f11), functionalised (g42), 

backbone substituted (h43,44), heteroatom substituted (i45, j46, k47, | 48) 30 31-495 and single 

donor carbenes (m50, n51) (Figure 1-6).
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Figure 1-6 Isolated free carbenes
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1.2.2 Carbene complexes

Fischer first introduced carbenes into organometallic chemistry in 196452. The

complexes he synthesised all exhibited a-donor/7r-acceptor 

behaviour for the bound carbene, and exhibited metal to 

carbon bonds shorter than the usual single bond5.

With the synthesis of further carbene complexes, it became 

apparent there were two distinct types of complexes 

emerging. Fischer carbene complexes combine weakly 

donating singlet carbene, which accepts back bonding from 

low-valent metal4 5 8 (Figure 1-7 a). In contrast, the Schrock 

carbene complexes that emerged combined a covalent triplet 

carbene and triplet metal fragment (Figure 1-7 b). These 

carbenes generally contain alkyl substituents, are 

nucleophilic, and coordinate with high oxidation state metals.

Arduengo’s success at isolating free carbenes generated renewed interest in 

nucleophilic carbene complexes. At first glance, N-heterocyclic carbenes such as 

Arduengo’s may appear to yield Fischer carbene complexes upon bonding to a metal 

centre, but the bonding properties actually display entirely different characteristics. 

Due to the back donation from the adjacent heteroatoms and their strong capacity as 

CT-donors to metals, A-heterocyclic carbene ligands form only a single a-bond to 

metals with 7i-back donation negligible5 8 and therefore these complexes exhibit very 

different reaction chemistry to either Fischer- or Shrock-type complexes.

With renewed interest in the field of carbene and carbene coordination chemistry, 

many new carbene complexes were synthesised. Carbenes are now known to 

coordinate to a wide variety of metals, from main group to rare earth metals53'57.

Further, electron rich transition metals have been used to synthesise a variety of 

interesting and catalytically active carbene complexes58,57,59'65’66. It is these transition 

metal complexes suitable for catalysis that form the basis of this study.

Fisher Complex 

<»)

Shrock Complex 

(b)

Figure 1-7 Bonding 

in carbene complexes
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1.2.2.1 Transition metal TV-heterocyclic carbene complex synthesis

As the vast majority of complexes suitable for catalysis involve transition metals, a 

great deal of effort has been expended refining simple methods for synthesising 

carbene complexes of the transition metals. A number of routes have been developed, 

and have allowed the preparation of complexes bearing carbene ligands with a large 

variety of electronic and steric properties67.

In a significant number of cases, the azolium salt o f the carbene is initially synthesised 

either by nucleophilic substitution of the related azole, or by a multi-component 

construction. The straightforward synthesis of a range of imidazolium salts provides 

access to carbene ligands with a variety of electronic and steric properties, ideal for 

tailoring the properties of the resulting complex as catalysts.

1.2.2.1.1 In-situ deprotonation o f  azolium salts

A popular and straightforward route to many carbene complexes has been the in-situ 

deprotonation of azolium salts. These methods involve the use of a base to directly 

deprotonate the azolium salt in the presence of a metal acceptor and do not require the 

free carbene to be isolated, with three main methods commonly used: basic metallate 

anions, basic metal ligands and external bases.

The use of basic metallate anions has the advantage that the metal used to deprotonate 

the azolium salt becomes the ligand acceptor. While this limits the final oxidation 

state of the metal, a variety of complexes have been created successfully by this 

method68'70 (Figure 1-8).

R R

+ [HCr(C05)J )  Cr(CO)5

R R

Figure 1-8 C arbene  complexes th rough  basic metallate anion depro tonation
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The use of basic metal salts is another popular method for creating carbene 

complexes, generally through metals with acetate59,71'75, alkoxo59,76 or oxide77,78 

ligands. Despite being a relatively simple method, the imidazolium counterion is 

generally incorporated into the nascent carbene complex unless non-coordinating 

anions are used. Good yields generally require the use of a solvent, such as THF or 

DMSO, however solvent-free reactions have still been successful59 72 (Figure 1-9).

The use of an external base can allow the formation of dimeric complexes not 

produced in other reactions. Popular external bases include potassium79 and lithium80 

/er/-butoxide, sodium hydride66, butyl lithium81,82, and to a lesser extent 

triethylamine83,84 and phosphazenes85 (Figure 1-10).

Finally, molecules of methanol and chloroform can be eliminated from the diaza- 

ortho-Qster41,86 and trichloromethyl-substituted87'89 relatives o f imidazolium salts. 

Thermal elimination of the 2-substituents results in the carbene, which can then be 

trapped by a suitable metal precursor.

R

Pd(OAc)2
2 HO Ac

\ RR

Figure 1-9 Carbene complexes through basic ligand deprotonation

R

+ Pd(OAc)2
KO/Bu

Nal

R

R

Figure 1-10 Carbene complexes through external base deprotonation
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1.2.2.1.2 Complexes via free carbenes

After Arduengo first isolated l,3-diadamantylimidazol-2-ylidene, a wide variety of 

new carbene complexes could be synthesised readily with few requirements on the 

metal precursor complex. While various methods, such as thermal elimination of 

methanol47,86 and chloroform87 89 can be utilised to generate the free carbenes, use of 

the strong bases sodium hydride and potassium /crf-butoxide in THF22,31, or a mixture 

o f THF and liquid ammonia42,59 are the most popular routes (Figure 1-11).

R ^? i
• N

C N NaH [| \ .

°  THF/NH3 (1) N
-H2, -NaCl

RR

Figure 1-11 Free carbene synthesis 

Once the free carbene has been formed, complexation is generally straightforward. 

Among the most popular methods of complex synthesis are cleavage of dimeric metal 

precursors with bridging ligands such as halides, or carbon monoxide42,59 90'94, and 

exchange of other ligands on the metal centre such as phosphines40,73,95,96, carbon 

monoxide66,80,90,97, solvents58,60,63_66,73,98,", or olefins61,100102 (Figure 1-12).

c> (A)

R R1 1
   N -~ND : ? C >! R R

•N I N

C1 N I ^ - N

)  Pd P(o-tol)3 ------  ► [| ) ------Pd------ /  1  (B)

. v  , , N -P (o-tol)3 N N

R R R

Figure 1-12 C arbene  complex formation from  free carbenes and dimeric cleavage (A) and

phosphine exchange (B)
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1.2.2.1.3 Ligand transfer reactions

Intermolecular transfer of carbene ligands from one metal to another has proved a 

popular method for the preparation of carbene complexes not directly accessible by 

other routes. This method was observed in the disproportionation of (dmiy)Cr(CO)5, 

to yield (dmiy)2Cr(CO)4 and Cr(CO)6103. It was then discovered chromium, 

molybdenum and tungsten complexes could be used for carbene transfer to a variety 

of metals including rhodium(I), palladium(II), platinum(II), copper(I), silver(I) and 

gold(I)104'106. Success has similarly been found for silver carbene complexes formed by 

in -situ deprotonation of the azolium salts with silver oxide or silver carbonate, with 

transfer to group 8 and 10 metals78,107 (Figure 1-13).

~ | + [AgBr2]-

2 | Br‘ + Ag20 c Ag
(CH3CN)2PdCl2
 ►

- 2 AgBr C PdCI;

Figure 1-13 Carbene complex formation via silver transfer reactions

1.2.2.1.4 Oxidative addition reactions

Recently the acidity of the C2 substituent has been utilised in synthesising carbene 

complexes from C-H activation of the azolium salts by low-valent metal precursors108' 

"2. The groups of Lappert1,3 and Stone et al. used a similar method in the 1970’s for 

creating thiazol-2-ylidene complexes from 2-chlorothiazolium salts114 115. While 

generally restricted to nickel, palladium, platinum, rhodium and iridium, these are 

some of the more commonly used metals in catalysis and oxidative addition reactions 

of azolium salts may provide an easily accessible route to catalytically active carbene 

complexes (Figure 1-14).

n

AR N + N-----
W

R -M- /
L

/  
Mll+

/  \
Figure 1-14 Carbene complexes from azolium oxidative addition
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1.2.2.1.5 Other methods

Various other methods have been successfully employed for the preparation of 

carbene complexes. These include vapour phase synthesis for sublimable free 

carbenes"6, building of the carbene onto the metal centre117120 and transmetallation of 

2-lithioimidazoles121. Although highly successful, preparation of carbene complexes 

via these methods tend to be highly specific and have not been general enough to 

create a range of complexes for varying carbene ligands as found for other methods 

described above.

1.2.3 Carbene complexes as catalysts

Many of the original Fischer- and Schrock-based carbene complexes had been trialed 

in catalytic reactions, however they had a tendency to suffer from M-C cleavage, 

rendering them catalytically inactive5. In contrast, TV-heterocyclic carbene ligands form 

exceptionally stable bonds with metals and are able to accommodate a wide range of 

oxidation states, making them very suitable for many catalytic cycles.

As 2-electron donors, carbene ligands are related to ethers, amines, isonitriles, and 

phosphines with regard to coordination chemistry5. In fact, the o-donor ability of 

nucleophilic carbene ligands has been shown to be very similar to electron rich 

phosphines, and it was this that caused the realisation that the carbene complexes may 

be good in homogenous catalysis66.

In fact, it was a need for polymer cross-linking catalysts that led Arduengo back to 

stable carbenes in the 1980’s7. By 1994, the promise of N-heterocyclic carbene 

complexes as catalysts was steadily evolving as indicated by the publication of many 

patents, with the TV-heterocyclic carbene ligands much more strongly bound to the 

metal centre compared to their phosphine counterparts and showing little n- 

backdonation from the metal centre5. Interestingly, these patents generally involved 

the use of unsaturated carbenes, as the saturated analogues tested had shown no 

improvement over traditional phosphine complexes122 123.

Further, as demonstrated in the previous section, a wide variety of routes are available 

to synthesise carbene complexes with diverse steric and electronic properties. As such, 

it is not surprising a substantial amount of effort has been invested into the catalytic
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properties of N-heterocyclic carbene complexes with success found in numerous 

important applications.

1.2.3.1 The success of NHC carbene catalysts

Carbene complexes show a remarkable stability in many catalytic environments, and 

are often stable to heat, oxygen and moisture. Further, the catalysts can frequently be 

synthesised in- situ without the necessity of prior isolation. As such, the carbene 

complexes are now known to catalyse a wide range of organic reactions including 

hydrogenation of olefins123'125, hydroformylation126, hydrosilylation42,80,90,91,123,127'129, 

olefin metathesis94 95 126, IM133, polymerisation of alkynes134, cyclopropanation135, furan 

synthesis136, and atom transfer radical polymerisation of vinyl monomers137.

Another area of importance where carbenes have found considerable success is in C-C 

coupling reactions, including the Suzuki, Stille and Heck reactions100,138'141. Carbenes 

were first used as catalysts in the Heck reaction in 1995 by Hermann and co workers72 

142. The palladium carbene complexes involved were often stable beyond 300°C, and 

could withstand oxidative conditions that destroy their phosphine counterparts3. This 

unusual stability meant that chloroarenes could be successfully used in the reaction, 

with no byproduct-formation being observed3 72 142.

Whilst the carbene complexes produced good TONs, the reaction seemed to have an 

induction period, possibly related to the reduction of Pd(II) to Pd(0) at the start of the 

catalytic cycle. In many cases, adding a reducing agent avoided the induction period72, 

as did starting with a Pd-methyl complex101. The Pd-methyl complexes produced were 

comparable in TONs and TOFs to the highly active palladacycles3.

Since the initial discovery of the advantages of carbene complexes in the Heck 

reaction, many results have been published tailoring the catalysts and investigating the 

probable mechanism involved72,79,100, l01,140'146.
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1.2.3.2 Limitations of NHC complexes in catalysis

While in general carbene catalysts have performed remarkably well and show great 

promise as efficient and environmentally friendly catalysts, some reactions have 

indicated the NHC ligands may not always behave as desired and certain 

characteristics of the ligands should be considered when employing carbene 

complexes in a catalytic environment.

1.2.3.2.1 Carbene ‘wrong-way  ’  binding

Most N-heterocyclic carbene complexes used in catalysis contain ligands bound to the 

metal through the C2 carbon of the carbene. However, in a study by Crabtree et al. 

using a pyridine-linked imidazolium salt and IrH5(PPh3)2, unusual binding was 

discovered with the carbenes coordinating through the ring C4147 (Figure 1-15).

Figure 1-15 ’Wrong Way' binding for iridium carbene complexes 

Despite experimental and theoretical results indicating the C2 bonding is much more

carbene complexes prepared in- situ, care should be taken when designing reactions as 

minor changes in reaction conditions can greatly affect the expected catalytic 

properties and hence overall reaction outcomes.

R l3
R

1 i S  1 *1Qthermodynamically favourable , steric crowding and the selection of imidazolium 

salt counter ion150 can affect the binding of the carbene ligands. With many catalytic
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1.2.3.2.2 Catalyst decomposition

Initial success was found for the copolymerisation of CO and ethylene with 

application of chelating dicarbene palladium catalysts resulting in high molecular 

weight, strictly alternating polymers151. However, in a study by McGuinness et al., the 

carbene catalyst decomposed during the reaction, giving unsatisfactory results152. 

Further investigation indicated decomposition was a result of reductive elimination of 

cis located carbene and alkyl or acyl ligands110,153 154(Figure 1-16).

Figure 1-16 Decomposition for the carbon monoxide ethylene copolymerisiation 

This reaction is thought to be assisted by the twist of the carbene with respect to the 

square planar Pd(II) centre by approximately 60°, allowing the formally empty p 

orbital on the carbene centre to be directed towards the alkyl/acyl group adjacent to it 

on the metal centre. As the acyl/carbene intermediates are necessary intermediates in 

the CO/ethylene catalytic cycle, the decomposition route was quite disturbing, and 

there have been no further reports of successful carbene complex catalysis of this 

reaction.

n +

Page 15



Chapter 1 -  R eview  o f  the Current Literature

1.3 Aims and thesis overview

Despite the recent success of many carbene-based catalysts, there remain factors 

adversely affecting some reactions where the cause is either unknown, or there has 

been no general solution. In many of these catalytic cycles, minor adjustments to 

environment can dramatically affect reaction outcomes. The aim of this project was to 

clarify selected internal and external factors affecting carbene catalysis with the 

intention of increasing the stability, reactivity and selectivity of some of these 

reactions.

In particular, focus was given to three main areas: an improved carbene catalyst for 

carbon monoxide/ethylene copolymerisation; factors affecting oxidative addition 

reactions of azolium salts to create carbene complexes; and the mechanisms involved 

in carbon-carbon coupling reactions between ethylene and azoles or azolium salts.

Section l (Chapter 2) outlines the study of novel carbene complexes designed to 

overcome the reductive elimination decomposition found for monodentate palladium 

carbene complexes for the carbon monoxide/ethylene copolymerisation. It was 

anticipated the different electronic and steric properties provided by chelating 

thiazole-based carbene ligands could overcome the factors contributing to catalyst 

decomposition. This chapter outlines theoretical and experimental results for thiazole- 

based carbene complexes and their use as catalysts.

Section 2 (Chapters 3 and 4) focuses on one of the major steps common to many 

catalytic systems: oxidative addition. As mentioned, reductive elimination of a 

carbene and an adjacent ligand can be a cause of catalyst decomposition. 

Strengthening the characteristics for reversal of this reaction through oxidative 

addition of azolium salts may not only stabilise existing catalysts, but may lead to an 

easily accessibly route for in- situ synthesis of new carbene complexes suitable for 

catalysis. Further, these studies have implication on the growing popularity of 

imidazolium ionic liquids in catalysis, with the ionic liquids not necessarily the 

innocent bystanders they are often assumed to be.
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Chapter 3 focuses on the theoretical study of oxidative addition of 1,3- 

dimethylimidazolium to a system well known for these types of reactions:

Wilkinson’s catalyst. The effect of phosphine ligand lability, phosphine exchange, 

explicit and bulk solvation, and the change of the starting azolium on product 

thermodynamics and reaction energetics are all examined.

As previously reported results and results from Chapter 3 indicate oxidative addition 

reactions are promoted by basic ligands, the study was extended to include complexes 

incorporating the highly basic carbene ligands in the metal reactant. As such, Chapter 

4 outlines theoretical results for systematic electronic and steric exchange of carbon 

monoxide, phosphine and carbene ligands on the oxidative addition of 1,3- 

dimethylimidazolium to rhodium and iridium.

Section 3 (Chapters 5 and 6 ) involves theoretical mechanistic studies of carbon- 

carbon coupling reactions of alkenes to azoles and azolium salts. In particular,

Chapter 5 centres on the nickel-based catalytic conversion of imidazolium salts to 2 - 

alkyl imidazolium salts. Experimentally, success was found through the use of nickel 

phosphine complexes, with a carbene equivalent complex producing an unusually 

stable nickel hydride that halted further reaction. The theoretical study in this chapter 

presents results on an oxidative addition, alkene coordination and insertion, and 

reductive elimination cycle (Cavell/McGuinness mechanism) including indications as 

to why the carbene complex fails as a catalyst while the phosphine equivalent 

succeeds. Further results follow the reaction of the related azole, and the possibility of 

the coupling reaction occurring at position 4 or 5 of the azolium ring.

Finally, Chapter 6  examines the same mechanism studied in Chapter 5 for related 

azole carbon-carbon coupling reactions using a rhodium catalyst. Bergman has 

successfully catalysed many azoles and alkenes experimentally using a rhodium 

phosphine complex and in one paper proposes an unusual mechanism for the reaction 

involving a rhodium carbene intermediate. This chapter compares the 

Cavell/McGuinness mechanism to that proposed by Bergman including factors 

affecting the overall reaction such as phosphine lability, product thermodynamics 

alkene isomerisation, alkene coordination, added bulk on the alkene chain, and acid 

assisted catalysis.
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2 Thiazole Based Palladium Carbene Complexes

2.1 Introduction

Palladium carbene complexes have been used successfully in a variety of catalytic 

reactions, resulting in good turn over numbers in many cases. In particular, the 

copolymerisation of CO and ethylene has found 

success and resulted in high molecular weight, 

strictly alternating polymers when [{l , l ’- 

di(methyl)-3,3’-methylenediimidazolin-2,2’- 

diylidene}palladium(II)-bis(acetonitrile)][BF4]2 

and [{l,r-di(m esityl)-3,3’- 

methylenediimidazolin-2,2 ’ - 

diylidene}palladium(II)-bis(acetonitrile)][PF6]2

were used as catalysts1 (Figure 2-1). Figure 2-1 Successful carbene catalyst

However, in a study by McGuinness et al on the for CO/ethylene copolymerisation

use of non-chelating palladium carbene complexes for carbon monoxide/ethylene 

copolymerisation, the catalyst rapidly decomposed2*4. Further theoretical and 

experimental investigation revealed decomposition was the result of reductive 

elimination of cis located carbene and alkyl/acyl ligands on the metal centre4"6 (Figure 

2 - 2 ).

R

M =  Pd, N i  
R =  alkyl, aryl

Figure 2-2 Catalyst decomposition discovered for CO/ethylene copolymerisation

Traditionally, carbene ligands used in catalysis have been based on the easily 

accessible and versatile imidazole ring. Due to the strong back donation of electron 

density from the p orbitals of the ring nitrogens to the carbene p orbital, little or no
7 8back donation from the metal centre has been found for NN carbene complexes ’

NCC H ;

R  N

R  =  M e s ity l ,  X = P F 6 
R  =  M e , X = B F 4
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This effectively creates a single 2 electron a-bond from the metal centre to the ligand, 

allowing the ligand to rotate freely about the ligand to metal axis.

The decomposition reaction discovered for the carbon monoxide/ethylene 

copolymerisation is thought to be partially assisted by ability of the carbene to twist

directed towards the adjacent alkyl or acyl group on the

Figure 2-3 Orbital metal centre, facilitating interaction and consequent
interactions causing

catalysis decomposition reductive elimination of the azolium salt (Figure 2-3).

ligands are necessary intermediates in the carbon monoxide/ethylene catalytic cycle, 

the decomposition route is quite disturbing.

With previous success of carbene complexes reported, we decided to extend our 

investigations to attempt to create more stable group 10 metal carbene catalysts for 

carbon monoxide/ethylene copolymerisation. Our aim was to produce more rigid 

carbene catalysts using a combination of carbene heteroatom substitution and ligand 

chelation.

Subtle electronic benefits were anticipated with replacement of the traditional 

imidazole ring with the related thiazole. The larger sulfur group found in thiazoles is 

expected to have a less efficient orbital overlap with the carbene p orbital, resulting in 

only a partially filled 7i-orbital on the carbene centre. With the decrease in rc-donation 

from the single nitrogen to the carbene centre, it was hoped an enhancement of the 

metal to ligand back donation may be found in compensation, inducing more of a 

double bond character in the carbene-metal bond. This in turn may inhibit the 

prominent twist of the ligand.

Additional stability benefits were expected with the inclusion of properly designed 

bidentate carbene ligands. With the addition of a chelating arm, if reductive 

elimination of the carbene and acyl groups did occur, chelation would hold the 

resultant azolium salt in the reacting sphere of the catalyst, promoting recoordination 

via oxidative addition and continuation of the catalytic cycle. Further, reduction in the 

twisting flexibility of the carbene was envisaged with chelation creating a more rigid 

complex in which the carbene ring is drawn back into the plane of the metal, in turn

Me with respect to the square planar Pd(II) centre. With an 

equilibrium dihedral angle of approximately 70°, the 

formally empty p orbital on the carbene centre may be

Further, as the complex containing the acyl and carbene
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disallowing the carbene/acyl interaction. Importantly, the thiazolylidene ligand has a 

distinct advantage over the corresponding imidazolylidene with respect to the amount 

of space required for the planar ligand. Steric disadvantages brought about by 

interaction of the N-substituent in the imidazolylidene and other metal ligands are not 

applicable for the divalent sulfur.

This chapter details the results for the study of chelating thiazole-based ligands in 

palladium mediated catalysis. Included are details on the synthesis and 

characterisation of a range of chelating thiazole based ligand precursors and palladium 

complexes, and theoretical studies of the benefits and disadvantages of thiazole based 

carbene complexes in catalytic environments.
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2.2 Computational details

Geometry optimisations and harmonic vibrational frequencies for chelating pyridine 

thiazole complexes were calculated at the B3LYP9' 11 level of theory with the 

LANL2DZ basis set on palladium, which incorporates the Hay and Wadt12 small core 

relativistic effective core potential and double zeta valence basis set, and 6-31g(d) on 

all other atoms. Zero point vibrational energy corrections were obtained using 

unsealed frequencies. All energies quoted in this paper refer to the final AH298-

All other geometry optimisations and harmonic vibrational frequencies were 

calculated at the B3LYP911 level of theory with the LANL2DZ basis set, which 

incorporates the Hay and Wadt12 small core relativistic effective core potential and 

double zeta valence basis set on palladium, phosphorus and sulfur, with the Dunning 

and Huzinaga13 double zeta basis set on all other atoms. Zero point vibrational energy 

corrections were obtained using unsealed frequencies. All transition structures 

contained exactly one imaginary frequency and were characterised by following the 

corresponding normal mode towards the products and reactants.

All calculations were performed with the Gaussian 9814 set of programs.
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2.3 Results and discussion

2.3.1 Theoretical considerations -  the effect of sulfur and bridging 

ligands on palladium carbene complexes

One of the primary aims of this section of research was to engineer thiazole-based 

carbene ligands to establish if this would reduce the carbene twist in palladium 

complexes and in turn, produce more stable palladium carbene complexes for 

catalysis.

The use of thiazole-based carbene or chelating 

ligands are not unique to palladium 

complexes. Palladium bisbenzothiazolylidene 

complexes have been prepared15 and used to 

successfully catalyse aryl halide 

carbonylation16 and the Heck reaction17 

(Figure 2-4). Similarly, many examples of 

chelating carbene palladium complexes

exist ’ including pyridine functionalised complexes ' . However, there have been 

no reports of the combination of chelating thiazole carbene complexes.

Initially, we studied the effect of the switch to the thiazolylidene ligand and additional 

chelation theoretically to determine if the concept was worth pursuing experimentally. 

Figure 2-5 shows the optimised geometries and relative carbene twist angles for a 

range of simple Pd(II) diphosphine complexes containing 1,3- 

dimethylimidazolylidene (1), 3-methylthiazolylidene (2), abridging 3-(pyridin-2- 

ylmethyl)thiazolylidene (3) and 3-pyridinethiazolylidene (4).

Figure 2-4 Benzothiazole based 
palladium complex used in 

catalysis

3 ^

1 2 3 4

73.9° 74.4° 49.8° 0.1°

Figure 2-5 P-Pd-C2-N dihedral angles for various palladium carbene complexes
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Based on geometry alone the results indicate the use of thiazole based carbene ligands 

is not enough to prevent twisting of the carbene ligands. Despite the reduced bulk of 

the divalent sulfur with no protruding methyl group, the lowest energy conformer 

remains with the carbene ligand twisted at around 74° (Figure 2-5, structure 2).

Introduction of a bridging pyridine group has a more significant effect on the 

geometry of the resultant carbene complex. With the thiazolylidene ligand connected 

to the pyridine via a methyl bridge, the carbene ligand dihedral angle reduces to 50° 

(Figure 2-5, structure 3). Further, after the methyl bridge from the picolyl group is 

removed, the carbene ligand and pyridine ring sit almost perfectly planar (Figure 2-5, 

structure 4).

These results indicated chelating thiazole-based carbene ligands could have benefits 

over monodentate imidazolylidenes for complex stability and were worth pursuing 

experimentally in the hope of producing stable, active catalysts for palladium catalytic 

reactions.

2.3.2 Chelating thiazolylidene ligands - xylene linked biscarbene 

complexes

A popular and catalytically active variety of palladium 

carbene complexes has emerged with the use of linked
] n , r- -%

biscarbene complexes ’ . One particular type focused /  \
k

on by the groups of Baker29,30, Cavell20, and Tessier | +

and Youngs31 used xylene linked imidazolium salts as N

precursors to cyclophane complexes. These cyclophane

complexes were successful in catalysing Heck and

Suzuki reactions and as such, we decided to examine
Figure 2-6 An example

the thiazole based alternatives. imidazolium linked cyclophane

As the imidazolium salts contain two nitrogen atoms, they can be linked by bridging 

xylene rings on both sides creating a cyclophane (Figure 2-6).

Whilst only being linked by one xylene ring, it was expected the thiazolylidene 

equivalents could form interesting and useful palladium complexes, with less steric 

bulk and therefore different complex behaviour than their imidazolylidene 

counterparts.
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Ortho- and meta-xylene thiazolium salts were synthesised by RX addition with 2 

equivalents of 4-methylthiazole. Further, as carbene complexes of benzothiazole have 

proved successful catalysts in the past15' 17 and the effects of different substituents on 

the thiazole backbone are of interest, a w-xylene bisbenzothiazolium salt was 

produced by RX addition of a ,a ’-dibromo-/w-xylene with 2 equivalents of 

benzothiazole. Carbene complexes were then prepared by reaction of the salts with 

palladium acetate in DMSO (Figure 2-7).

P d(O A c):

2Br

D M S O

/ \Br' Br

2Br'

Pd(OAc);

DMSO

Pd 

/  \

P d ( O A c ) :

D M S O

Figure 2-7 Formation of thiazole based palladium carbene complexes

Further analysis and characterisation of the resulting complexes proved difficult. The 

'H NMR of the m-xylene structures showed broad peaks, thought to be due to the 

mobility of the xylene ring or cis/trans isomerisation. Unfortunately, with the 

exception of DMSO, all complexes displayed a lack of solubility in most common 

solvents; a property shared with the imidazole based counterparts20. Due to this lack 

of solubility, attempts to sharpen the peaks using low temperature NMR was not 

possible. Further work is required to increase the solubility through non-halide ligands 

before the true nature of these complexes is realised.
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2.3.3 Chelating thiazolylidene ligands -  carbene/pyridine linked 

complexes

Given that many chelating carbene complexes have been synthesised and found to be 

active in catalytic reactions1,16'21,30, we decided to study the mixed donor- 

functionalised system containing the pyridine ring. Imidazole-based equivalent

complexes have been reported26,27 and found to be efficient catalysts for C-C
28coupling reactions and it was anticipated this success could transfer to the thiazole 

based complexes.

2.3.3.1 Bridging 3-(pyridin-2-ylmethyl)thiazolylidene ligands

The first pyridine thiazolium salt attempted was that based on the methyl bridged 3- 

(pyridin-2-ylmethyl)thiazolium (Figure 2-8).

s ^ N
X-

Figure 2-8 3-(pyridin-2-ylmethyl)thiazolium template

3-(pyridin-2-ylmethyl)-4-methylthiazolium chloride was produced in moderately low 

yields through RX addition of 2-picolyl chloride to 4-methyl thiazole. The salt was 

highly hygroscopic, and proved hard to separate from unreacted picolyl and thiazole.

While a variety of simple methods are known to produce carbene complexes from 

azolium salt precursors in high yields7,8’32,33, all attempts to synthesise palladium 

complexes from the thiazolium salt gave disappointing results (Figure 2-9).

Pd(OAc)2 
— X —  

thf / DMSO

LDA, -78°C, thf
 X ►
PdCl2(MeCN)2

Figure 2-9 -  Palladium carbene complex formation routes

The standard palladium acetate route33 resulted in mixtures of products that were not 

easily separated, regardless of the solvent used. This route had proved difficult and 

low yielding for the imidazolium based ligands , and a more successful route has 

been developed involving in situ deprotonation with the soft base LDA, followed by
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trapping of the resultant carbene with PdCl2(MeCN)2 . Unfortunately, this route also 

proved unsatisfactory for the thiazolium salt, with no carbene complex isolated.

It was envisaged the difficulty in carbene complex formation for both types of 

azolium salt may in part be caused by the relatively high acidity of the methylene 

bridge protons linking the salt with the pyridine ring. These protons are located 

between two electronegative nitrogens and could be removed in preference to the 2-H 

of the azolium salt, causing a variety of side reactions and undesired products.

To endeavour to overcome this, two new ligands were synthesised. The first contained 

a methyl group in place of one of the bridging hydrogens, providing both steric and 

electronic protection for the remaining hydrogen (Figure 2-10 a). The second ligand 

contained a two carbon bridge, thereby increasing the distance between the 

electronegative nitrogens and decreasing the direct effect on the acidity of each of the 

bridging hydrogens (Figure 2-10 b).

Figure 2-10 -  Thiazolium salts designed to overcome the effects of highly acidic bridging

Both salts were prepared by RX addition of appropriate starting materials and 4- 

methylthiazole and once again, attempts were made to produce a palladium complex 

via the popular standard methods (Figure 2-11). In both cases, direct formation of 

carbene complexes from the palladium acetate route was attempted. Additional 

methods were employed for the methyl bridged salt (Figure 2-10 a) including capture 

of the carbene with a suitable complex precursor (PdC^MeQSTh) after deprotonation 

by a base (potassium bis(trimethylsilyl)amide34 and sodium hydride35) and finally via 

transfer of a silver complex formed with either silver oxide or silver carbonate. 

Again, no complexes were isolated with a mixture of unidentified complex 

decomposition and thiazole ring opened products formed.

a b

hydrogens.
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AfcCOa

D C M

Br

P d (O A c)-. _
 X —

D M S O

A g 20

 x- ►
D M S O , D C M

K N (S iM e 3)2 or N aH

— X ►
-7 8 °C , thf, P d C l2(M e C N )2

P d (O A c)-.
 X—

D M S O

Figure 2-11 -  Further attempts at bridging thiazolylidene carbene complexes

Computational studies performed by Graham on oxidative addition reactions of 

thiazolium, imidazolium and oxazolium salts to various metals have shown there can 

be a significant interaction between the sulfur atom in the thiazole ring and the metal 

centre36. While the sulfur/metal interaction was discovered for oxidative addition 

reactions, in the right conditions the sulfur can behave as an independent ligand 

regardless of the reaction involved, and it may well be this interaction that is causing 

difficulties in both silver and palladium complex synthesis. Further complications 

may arise from ring-opening caused by this interaction for the benzothiazole system 

as reported previously37,38.

It is possible that this obstacle could be overcome by the use of bulky substituents in 

the 5 position of the thiazole ring. Any added bulk in this position could impede any 

sulfur/metal interaction enough to allow the carbene C2/metal centre to become the 

favoured interaction as desired. As such, we decided to base our studies on the 

oxidative addition reaction of the thiazolium salts to palladium, which initially 

indicated this interaction was possible (Figure 2-12).

ci /
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\ n +
M e, H

P
Me2

R

Me2 R'

R = bulky substituent

Figure 2-12 -  B ulk in the thiazolium  backbone to enhance carbene/m etal in teraction

2.3.3.2 Bulk in position § -  will it help with palladium thiazole based carbene 

complexes?

of thiazole based carbene complexes. While incorporating bulk into the backbone of 

the thiazolium salt may aid in blocking this interaction enough for carbene formation, 

a literature review revealed inclusion of an unreactive bulky substituent in position 5 

of the thiazolium ring may be experimentally challenging.

To initiate our studies, we synthesised a small amount of 4,5-diphenylthiazolium 

chloride based on the method of Karimian39 by condensation of thioamide and desyl 

chloride. However, the reaction is very low yielding, due mainly to the instability of 

thioformamide intermediate. More importantly, application of a number of the 

standard methods as indicated above for carbene complex synthesis was unsuccessful 

and no palladium complexes were successfully isolated.

It is possible the two dimensional bulk of the phenyl rings does not provide enough 3 

dimensional bulk to prevent the metal/sulfur interaction. Before proceeding with 

experimental work, we therefore decided to look theoretically at the effect of bulky 

substituents on the backbone of the carbene ring on the metal reaction centre.

As Graham demonstrated36, sulfur/metal interaction could be impeding the formation
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2.33.2.1 2-Methyl-5-(bulk)-thiazolium salts

As Graham’s study involved the study of C-C activation by palladium, we chose 

originally to use 2-methylthiazolium salts in our study of oxidative addition to 

palladium bis(dimethylphosphino)ethane so as to compare our results to those 

obtained previously36 (Figure 2-13).

F igure 2-13 R eaction for the  form ation of carbene complexes w ith bu lk  on the thiazolium

Our study included the comparison of four increasingly bulky backbone substituents 

in the order H < /Pr < fBu < dicyclohexylmethyl as depicted in Figure 2-14.

n +

R =H, tBu, iPr, dicyclohex
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2-Me Starting
Materials

Precursor Transition Structure Product

2

5-/Pr

4

5-

dicyclo

hexyl

methyl

Figure 2-14 Bulk in the 5 position of the carbene ligand 
(structure 4 hydrogens omitted for clarity)

As can be seen in Figure 2-14, geometries at the reactive centre had very little 

variation, regardless of the substituent in position five of the carbene ring. Each 

transition structure included the three-atom centre with the 2-methyl of the thiazolium 

salt bending out of the salt plane before formation of the four-coordinate square- 

planar product. Most importantly, regardless of how ‘big’ the substituent in position 

5, it does not deter the sulfur/metal interaction in the precursor complex. Even the 

very large dicyclohexylmethyl substituent, which appears to provide the best
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protection above and below the plane in three dimensions is not enough to prevent the 

sulfur interacting with the metal centre.

-  -5

“  -10 14.3\
o
E -15.2

-19.0
“  -15

«
J -  -20
SC
< --2 5
£2
• -

-30.4  d ic y c lo h e x y lm e th y l 

-32.5 ;B u
--3 0

_  -35 -34.8 iPr
-37.9  H

35.5

--4 0

-  -45

-  -50

Precursor
Complex

Transition
StateR eactan ts Final Product

Reaction Coordinate
Figure 2-15 Reaction energies with bulk in the 5 position of the carbene ligand

Inspection of the energies for this oxidative addition reaction confirm there is little 

benefit in bulk in the 5 position of the carbene ligand (Figure 2-15). While the 

stability of the precursor complex with respect to the reactants does decrease when 

increasing the bulk from H > /Pr > rBu > dihex, each respective point along the 

pathway is raised almost an equal amount. In fact, Table 2-1 reveals there is only a 

drop of 3.1 kcal mol'1 in the activation energy from 5-H to the extremely bulky 

dicyclohexylmethyl substituent, with the precursor complex remaining the most 

thermodynamically stable structure on each pathway.
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Substituent in 

position 5

Activation

Energy

H 27.2

iPr 26.6

fBu 26.5

dicyclohexylmethyl 24.1

T able  2-1 A ctivation energies (kcal m ol'1) for bu lk  in the 5 position of the carbene ligand

It appears that any small benefits bulk at the 5 position on the thiazolium ring would 

provide in protection for the sulfur in this reaction would be far outweighed by the 

experimental complexity of synthesising such a precursor ligand.

2.3.3.2.2 Electron ic protection

As bulk has proved to be experimentally difficult while providing little theoretical 

benefit in preventing the sulfur/metal interaction, is it possible to provide the 

protection against this interaction electronically?

One important example of a catalytically active palladium thiazolylidene complex has 

been based on the benzothiazole ring15' 17. The inclusion of the aromatic ring on the 

backbone of the thiazole provides a different electronic environment than the 

unsaturated thiazole and as such, this subtle difference may be why the 

benzothiazolium salts form carbene complexes via pathways that proved elusive for 

other related thiazolium reactants.

Another form of electronic protection could be envisaged through hydrogen bonding 

between the sulfur atom and a nearby polarised group. Therefore, we included a study 

of a flexible polar group by attaching a propanol group to the thiazolium 5-position.

Optimised structures for both reactions are shown in Figure 2-16.
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2-Me Starting Precursor Transition Structure Product 
Materials

5

Benzo

6

5-

propanol

Figure 2-16 Electronic effects in the 5 position of the carbene ligand

As geometries in Figure 2-16 show, both the benzothiaolium and 5-(3- 

hydroxypropane)-thiazolium made no modifications to the overall barriers for the 

reaction, with the precursor still exhibiting strong metal/sulfur interactions.

A closer look at the 5-(3-hydroxypropane)-thiazolium reveals the result is not 

surprising, as no hydrogen bonding was observed in the reactant or any reaction 

intermediates. While the alkyl chain was long enough to allow this interaction, the 

low-energy conformers had the hydrogen pointing away from the sulfur, indicating no 

energy benefits were likely from hydrogen bonding between the alcohol and sulfur 

groups. Further, as no inductive electronic effects are expected due to the length of the 

alkyl chain, no benefit is expected from inclusion of the polarised group whatsoever. 

The energies and activation energies for both the benzothiaolium and 5-(3- 

hydroxypropane)-thiazolium repeat the pattern previously observed with the rise in 

precursor instability mirrored in the transition structures and products (Figure 2-17 

and Table 2-2). In fact, the small drop in activation energy observed for the 5-(3- 

hydroxypropyl)-thiazolium compared to the 5-H is most likely due to steric factors, 

with the activation energy in the same range as that observed for the 5-zPr and 5-tBu 

analogues.
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Figure 2-17 Reaction energies with electronic changes in the 5 position of the carbene ligand

(kcal m ol'1)

S u b s ti tu e n t  in 

p o s itio n  5

A ctivation

E n erg y

H 27.2

d icy c lo h ex y lm e th y l 24.1

b e n z o 26.0

OH 26.9

Table 2-2 Activation energies for electronic changes in the 5 position (kcal m ol'1)

Overall, it would appear a more drastic change in electronic structure would be 

required to influence the sulfur interaction without affecting the stability of the 

desired product.
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2.3.3.2.3 2-H-5-(bulk)-thiazolium salts

It is well known C-C activation is more difficult than the 2-H equivalent, due mainly 

to the directional nature of the interaction40"42. In the case of 2-methylthiazolium salts, 

the steric demands of the added bulk in the 2 position as studied above may be 

encouraging the metal/sulfur interaction, as the sulfur is considerably more open to 

interaction than the 2-C of the salt. As the majority of carbene complex precursor salts 

contain a hydrogen at the ring 2 position, we decided to continue the study using the 

2-H thiazolium salts more closely tied to our experimental goals. This included the 

examination of three possible salts with different electronic and steric properties: 3- 

methylthiazolium, 3-methylbenzothiazolium and 3-methyl-5-/er/-butylthiazolium 

(Figure 2-18).
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Starting

Materials
2H Precursor Transition Structure Product

5-H

benzo

Figure 2-18 Bulk in the 5 position of the carbene ligand, 2H

As Figure 2-18 indicates, the benzothiazolium salt still displays a strong sulfur/metal 

interaction, with the precursor complex again the most stable in the reaction sequence. 

However, the oxidative addition reactions for the 5-H and 5-/Bu salts have precursor 

complexes that no longer contain a sulfur/metal interaction. Further, as shown in 

Figure 2-19 the products for these two reactants are the most stable species in the 

overall reaction sequences, which are strongly exothermic.
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Figure 2-19 Energies fo r bulk in the 5 position of the carbene ligand, 2H

While the results for the 5-H and 5-/Bu complexes were quite promising with no 

sulfur interaction being present in the precursor complex, the stability of the sulfur 

interaction complexes in previous reactions led us to believe that there could be a 

corresponding sulfur interaction for the 5-H and 5-fBu thiazolium salts even if it is not 

an intermediate in the oxidative addition reaction.

Indeed, this turned out to be the case for the 2-H thiazolium, with a sulfur interaction 

found as depicted in Figure 2-20.
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Figure 2-20 Sulfur/M etal interaction  for 2H carbene ligands

The geometry of this interaction is identical in nature to those found for the precursor 

complexes in the 2-methyl salts. More importantly, this complex lies 53.2 kcal mol’1 

lower in energy than the reactants and 1 2 .6  kcal mol' 1 lower in energy than the 

oxidative addition precursor, indicating this interaction is much more stable than any 

point on the oxidative addition reaction pathway.

Interestingly, no such metal/sulfur interaction was found in the 5-/Bu case. This result 

indicates that for 2-H thiazolium salts, a small degree of bulk included in the 

thiazolium backbone may be enough to deter any sulfur/metal interaction and allow 

the carbene complexes to react as expected. Further experimental work is required to 

confirm this result.
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2.4 Conclusions

The application of thiazole-based carbene complexes for catalytic reactions has been 

successful in the past, and it was hoped the electronic and steric differences between 

chelating thiazolylidene and imidazolylidene ligands would provide stable palladium 

complexes suitable for carbon monoxide/ethylene copolymerisation.

While complex formation was successful for three related xylene-linked thiazolium 

salts, insolubility of the complexes limited their characterisation and value in catalytic 

reactions.

Chelation with a pyridine arm attached to the reacting thiazolium salt was another 

avenue explored to attempt to create stable palladium carbene catalysts. The reacting 

salt proved difficult to handle, with a variety of common methods for palladium 

complex creation ineffective.
jo

Low yields had been discovered previously for the imidazolium equivalent reactions 

and it was envisaged this could be due to the high acidity of the bridging protons, 

causing them to react in preference to the carbene C2 proton. As such, two slightly 

modified pyridine-linked thiazolium ligand precursors were synthesised to try and 

overcome this problem; one with an extended bridge between the thiazolium salt and 

the pyridine ring and another with a methyl group in place of one of the bridge 

protons. Again, no palladium complexes were isolated.

Previous studies have shown the sulfur from the thiazole ring could directly interact 

with both palladium and silver. In the case of silver, this has lead to ring opening
^7 i o

decomposition of the thiazole ’ . Studies on the inclusion of bulk in the backbone of 

the thiazole ring to assist in preventing unwanted interaction showed little benefit in 

the case of 2-methylthiazolium salts. In these cases, any interaction required for 

further reaction of the thiazolium C2 requires orientation that promotes the 

sulfur/metal interaction. Neither inductive electronic effects nor hydrogen bonding 

provided any further protection.

Despite being unsuccessful in blocking the sulfur/metal interaction for 2- 

methylthiazolium salts, bulk in the thiazolium backbone did show improvements in 

the 2-H salts. While sulfur/metal interaction was still found for the 5-H reactant, 

increasing the bulk using a 5-/Bu group showed promise in preventing the unwanted 

interaction.
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Oxidative addition reactions to low valent metals have been successful in creating 

pyridine functionalised palladium carbene complexes43. Further, 2-chloro azolium 

starting materials have been used to create imidazolylidene44 and thiazolylidene45 

complexes. This method may prove successful in creating the chelating thiazolylidene 

complexes that have been elusive to date. Further, inclusion of bulk in the thiazolium 

precursor salts may provide enough protection for traditional carbene complex 

forming methods with these results warranting further investigation.

Overall, the thiazolylidene complexes have proved more difficult to synthesise and 

isolate than their imidazolylidene counterparts. Careful tuning of the thiazolium 

precursor salts may alleviate problems associated with standard techniques for 

carbene complex formation. With the different electronic and steric properties 

provided by the thiazolylidene ligand, these enhancements would be worth pursuing.
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2.5 Experimental

2.5.1 Salt precursors

2-(a-bromoethyl)pyridine

Prepared by the method of Walker46 with minor modifications.

To a stirred solution of N-bromosuccinimide (5.83g, 32.8mmol) and 2-ethylpyridine 

(3.7mL, 32.4 mmol) in anhydrous methyl acetate under argon was added a medium 

sized pellet of l,l-azobis(chlorohexanecarbonitrile). The solution was covered in foil, 

set to reflux and a lamp shone on the flask. After 3.5 hours, the heat was turned off 

and the reaction left to cool slightly and the solvent removed in vacuo. The resultant 

orange oil and precipitate were taken up in DCM, extracted three times with 20mL 

water, then the organic layer was dried using M gS04. Removal of the DCM in vacuo 

left a yellow oil which deepened to red on standing. Yield: 4.37g (72%)

'H NMR (400 MHz, CDCl3): 68.57 (m, 1H, pyridyl H6), 67.69 (m, 1H, pyridyl H4), 

67.45 (m, 1H, pyridyl H3), 67.21 (m, 1H, pyridyl H5), 65.12 (q, 1H, C//BrCH3), 

62.07(d, 3H, CHBrCZ/j)

2-(2-chloroethyl)pyridine

Prepared by the method of Ohki and Noike47.

To stirred 2-(2-hydroxyethyl)pyridine (6.26g, 50.8mmol), thionyl chloride (5mL, 68.5 

mmol) was slowly added. The solution was left to stir for 15 minutes, then heated to 

70°C for two hours. Excess thionyl chloride was distilled off, and the resultant 

solution carefully extracted with 2x1 OmL of 10% HC1, followed by the addition of 

Na2C0 3 until the pH reached 8 . Extraction with DCM (2x1 OmL, lx 5mL), and 

removal of the solvent in vacuo produced 2-(2-chloroethyl)pyridine. Yield: 4.54g

'H NMR (400 MHz, CDC13): 68.56 (m, 1H, pyridyl H6), 67.70 (m, 1H, pyridyl H4), 

67.31 (m, 1H, pyridyl H3), 67.23 (m, 1H, pyridyl H5), 64.00 (t, 2H, CH2C //2C1),

63.19(t, 2H, C //2CH2C1)
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4,5-diphenylthiazole

Prepared by the method of Karimian et al39 with minor modifications:

A suspension of phosphorus pentasulfide (1.23g, 5.53 mmol) and Na2CC>3 (0.2g, 4.44 

mmol) in 20 mL dry toluene was stirred for 15 minutes. Formamide (lml, 25.2 mmol) 

was very slowly syringed in, after which the yellow colour of the solution 

disappeared. After stirring for 10 minutes, the solution was heated to 80°C. A solution 

of desyl chloride (4.69g, 20.4 mmol) in dry toluene was added dropwise over an hour. 

After heating at 100°C for 4 days, the precipitate was removed by filtration, and the 

filtrate was extracted with 3x15mL 10% HC1. The aqueous phase was neutralised with 

Na2C0 3  and extracted with 2x20mL ether. Removal of the solvent in vacuo gave an 

orange, slightly oily solid, which was recrystallised from hexane. Yield: 1.44g (30%)

2.5.2 Thiazolium salts

3-(pyridin-2-ylmethyl)-4-methylthiazolium chloride

To a solution of picolyl chloride (23.6 mmol prepared by basifying 3.87g of picolyl 

chloride hydrochloride) in 20mL of 1-butanol was added 4-methylthiazole (2.57g, 

25.9mmol). After it was stirred and heated to 100°C overnight, the solution was 

allowed to cool and was dried over MgSO.*. After filtering, dry ether was added to the 

solution to precipitate a brown oil, which was triturated for 4 hours, filtered and 

washed with dry ether.

]H NMR (400 MHz, CDC13): 510.45 (s, 1H, NC//S), 58.56 (m, 1H, pyridyl H6), 58.13 

(s, 1H, C(CH3)C//), 57.98 (m, 1H, pyridyl H4), 57.66 (m, 1H, pyridyl H3), 57.47 (m, 

1H, pyridyl H5), 56.07 (s, 2H, CH2N), 52.57 (s, 3H, C(C//j)CH)
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3-(pyridin-2-ylmethyl)-4-inethylthiazolium iodide

This compound was prepared from 3-(pyridin-2-ylmethyl)-4-methylthiazolium 

chloride by heating the salt in acetone with sodium iodide. The solvent was removed 

in vacuo, and the product taken up in hot DCM and filtered. The solution was then 

allowed to cool and a light yellow/brown solid precipitated. This was collected by 

filtration and dried in vacuo.

‘H NMR (400 MHz, CDCI3): 510.32 (s, 1H, NC//S), 58.56 (m, 1H, pyridyl H6), 58.13 

(s, 1H, C(CH3)C//), 57.98 (m, 1H, pyridyl H4), 57.66 (m, 1H, pyridyl H3), 57.47 (m, 

1H, pyridyl H5), 56.14 (s, 2H, C //2N), 52.77 (s, 3H, C(C//3)CH)

3-(a-methylpicolyl)-4-methylthiazolium bromide

To a solution of 2-(a-bromoethyl)pyridine (3.37g, 18.1 mmol) in 20mL of 1-butanol 

was added 4-methylthiazole (2.08g, 21.0 mmol). After it was stirred and heated to 

100°C overnight, the solution was allowed to cool and was dried over M gS04. After 

filtering, dry ether was added to the solution to precipitate a yellow/brown oil. The oil 

was dried in vacuo, and was subsequently washed with dry ether to produce a light 

brown powder. Recrystallisation from DCM or ethanol/ether produced a 

yellow/brown powder.

'H NMR (400 MHz, CDC13): 810.37 (s, 1H, NC//S), 88.45 (m, 1H, pyridyl H6), 88.00 

(s, 1H, C(CH3)CH), 87.87 (m, 1H, pyridyl H4), 87.60 (m, 1H, pyridyl H3), 87.36 (m, 

1H, pyridyl H5), 86.16 (m, 1H, C(CH3)HN), 82.34 (s, 3H, C(CT/3)CH), 81.88 (d, 3H, 

C(C7/3)HN)

3-(a-methylpicolyl)-4-methylthiazolium tetrafluoroborate

To 3-(a-methylpicolyl)-4-methylthiazolium bromide (0.51g, 1.54 mmol), silver 

tetrafluroborate (0.30g, 1.54mmol), and 3A molecular sieves under argon was added 

15 mL of dry methanol. The suspension was covered with foil and left to stir 

overnight. The solution was then filtered through celite and the solvent concentrated 

in vacuo to 2mL. Dry ether was added to precipitate the product, which was then 

triturated for an hour. The solvent was decanted off and the product dried in vacuo to 

yield a yellow powder.
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3-(2-ethylpyridine)-4-methylthiazolium iodide

2-(2-Chloroethyl)pyridine (4.54g, 32.1 mmol), 4-methylthiazole (3.53g, 35.6 mmol) 

and sodium iodide (4.04, 27.1 mmol) were added to a flask containing acetone 

(20mL). After refluxing for 60 hours, the solution was filtered and the acetone 

concentrated to 3mL in vacuo and ether added to precipitate the product. 

Recrystallisation from DCM/ether produced a yellow solid.

'H NMR (400 MHz, CDC13): 610.08 (s, 1H, NC//S), 68.60 (m, 1H, pyridyl H6), 68.07 

(s, 1H, C(CH3)C//), 67.90 (m, 1H, pyridyl H4), 67.45 (m, 1H, pyridyl H3), 67.33 (m, 

1H, pyridyl H5), 64.95 (t, 2H, CH2C //2N), 63.46 (t, 2H, C //2CH2N), 62.59 (s, 3H, 

C(CH3)C H)

3,3’-(m-Phenylenedimethylene)-di-(4-methyIthiazolium) dibromide

To a solution of a ,a ’-dibromo-m-xylene (2.26g, 8.56 mmol) in 20mL butanol was 

added 4-methylthiazole (2.18g, 22.0 mmol). The solution was heated to 100°C, and a 

white precipitate formed almost immediately. After heating overnight, the solution 

was left to cool and the precipitate was filtered off, and washed with ether. Yield: 

2.24g (57%).

'H NMR (400 MHz, CDCI3): 810.27 (s, 2 H, NC//S), 8 8 .1 0  (s, 2 H, C(CH3)C//)> 87.52 

(m, 1H, benzene H5), 67.35 (d, 2H, benzene H4/H6), 67.25 (s, 1H, benzene H2), 65.83 

(s, 4H, C //2N), 62.41 (s, 6 H, C(C//3)CH)

3,3,-(o-PhenyIenedimethylene)di(4-methylthiazolium) dibromide

To a solution of a ,a ’-dibromo-o-xylene (2.29g, 8 .6 8  mmol) in 20mL butanol was 

added 4-methylthiazole(2.00g, 20.2 mmol). The solution was heated to 100°C, and a 

white precipitate formed almost immediately. After heating overnight, the solution 

was left to cool and the precipitate was filtered off, and washed with ether. Yield: 

1.72g (43%).

‘H NMR (400 MHz, CDC13): 89.96 (s, 2H, NC//S), 88.11 (s, 2H, C(CH3)C//), 87.43 

(m, 2H, benzene H3/H6), 86.90 (m, 2H, benzene H4/H5), 85.94 (s, 4H, C/-/3 N ), 82.43 

(s, 6 H, C(C/7j)CH)
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3,3,-(m-Phenylenedimethylene)dibenzothiazolium dibromide

To a solution of a ,a ’-dibromo-m-xylene (2.42g, 9.17 mmol) in 20mL acetone was 

added benzothiazole(2.69g, 19.9 mmol). The solution was refluxed for 42 hours. The 

solution was filtered of mono-substituted salt (3 -(a-bromo-m-xylene)benzothiazolium 

bromide), and the solvent removed in vacuo to produce a light brown salt. 

Recrystallisation from acetone/ether resulted in a pale brown product.

'H NMR (400 MHz, CDC13): 810.93 (s, 2H, NC//S), 88.65 (m, 2H, benzothiazole 

H2), 88.21 (m, 2H, benzothiazole H5), 87.88-87.92 (m, 4H, benzothiazole H3/H4), 

87.73 (s, 1H, benzene H2), 87.58-87.62 (m, 3H, benzene H4/H5/H6), 86.24 (s, 4H,

CH2 N)

2.5.3 Palladium complexes

Pd{3,3’-(m-PhenyIenedimethylene)-di-(benzothiazolin-2-ylidene)}Br2

3,3’-(m-Phenylenedimethylene)di(4-methylthiazolium) dibromide (0.25g,

0.541 mmol) and Pd(OAc) 2 (0.1 lg, 0.499 mmol) were put under argon and 15mL of 

dry DMSO was added. The orange suspension was stirred at 60°C over night, and 

filtered through celite. DMSO was removed in vacuo at 40°C until approximately 

2mL remained, then 3OmL dry methanol was added to precipitate a very light brown 

product. Further washing with methanol (3x30mL), followed by thf (2x20mL) 

produced a yellow brown powder. Lack of solubility in most solvents prevented 

successful recrystallisation.

Pd{3,3’-(o-Phenylenedimethylene)-di-(4-methylthiazoIin-2-ylidene}Br2

3,3’-(o-Phenylenedimethylene)di(4-methylthiazolium) dibromide (0.25g, 0.541mmol) 

and Pd(OAc) 2 (0.1 lg, 0.499 mmol) were put under argon and 15mL of dry DMSO 

was added. The orange suspension turned very deep brown almost immediately and 

was stirred at 60°C over night, followed by filtering through celite. DMSO was 

removed in vacuo at 40°C until approximately 2mL remained, then 30mL dry 

methanol was added to precipitate an olive green product. Further washing with 

methanol (3x30mL), followed by thf (2x20mL). Lack of solubility in most solvents 

prevented successful recrystallisation.

Page 54



Chapter 2 -  Thiazole Based Palladium Carbene C om plexes

Pd{3,3’-(m-Phenylenedimethylene)di(4-methylthiazolin-2-ylidene}Br2

3,3’-(m-Phenylenedimethylene)di(benzothiazolium) dibromide (0.25g, 0.541mmol) 

and Pd(OAc)2 (0.12g, 0.535 mmol) were put under argon and 15mL of dry DMSO 

were added. The brown suspension was stirred at 60°C over night, and filtered 

through celite. DMSO was removed in vacuo at 40°C until approximately 2mL 

remained, then 3OmL dry methanol was added to precipitate a very light brown 

product. Further washing with methanol (3x30mL), followed by thf (2x20mL) 

produced a yellow brown powder. Lack o f solubility in most solvents prevented 

successful recrystallisation.
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3 Oxidative Addition of Azolium Salts to a Model 

Wilkinson’s Catalyst

3.1 Introduction

Since the isolation of the first free carbene by Arduengo et al in 1 9 9 1 there has been 

a resurgence in interest in the chemistry of nucleophilic carbenes and their 

complexes. The carbene catalysts could be used for a wide variety of reactions 

including C-C coupling, aryl animation, hydrosilylation and hydrogenation. Not only 

did the complexes in many cases return excellent turn over numbers, but the strong o- 

donor nature of the ligands resulted in much more stable catalysts than the phosphine 

analogues2. However, these studies have assumed that carbenes are innocent ligands 

and do not partake directly in the chemistry of the reactions.

Of importance in many catalytic cycles is the oxidative addition and reductive 

elimination of various species. Under certain conditions, reductive elimination of 

carbene ligands from palladium, platinum and nickel has been observed, resulting in 

catalyst decomposition3,4. The groups of Cavell and Crabtree have since been 

successful in “reversing” this reaction, forming carbene complexes through the C-H 

activation of imidazolium salts by low valent metals4'9.

Selection of a metal to provide the right environment in which to promote oxidative 

addition is very important, with transition metals on the right hand side of the 

periodic table more conducive to oxidative addition than those on the le f tl0. In fact, 

there was found to be negligible barrier for many of the group 9 and 10 metals with 

palladium showing almost no barrier. Conversely, 

however, these palladium complexes also showed the 

lowest barrier to reductive elimination11,12.

Rhodium and iridium have long been known for their 

ability to perform redox reactions under mild conditions.

The first example of transition metal alkane complex as

an intermediate for oxidative addition and reductive Figure 3-1 B ergm an's post-
oxidative addition iridium

elimination was in a study by Bergman involving an alkyl complex for oxidative addition
and reductive elim ination studies

halide Cp*IrPMe3 complex1 (Figure 3-1). Similarly, the

Page 59



Chapter 3 -  O xidative Addition o f  Azolium  Salts to a M odel W ilkinson’s Catalyst

first unactivated C-H insertion reactions were achieved using rhodium and iridium 

complexes14"16.

Recently, the use of rhodium and iridium as C-H and C-C activation catalysts has 

been of great interest for organometallic, biological and industrial processes, with 

several exciting results being reported17'30. In addition, rhodium complexes have been 

used as catalysts for numerous hydrogenation and hydroformylation reactions using 

imidazolium based ionic liquids as solvents, with the catalytic cycles believed to 

involve many oxidative addition and reductive elimination cycles in the formation of 

products3 M2.

Combining this knowledge, it seems likely that the azolium salts used as ionic liquids 

could become directly involved in the redox processes of rhodium based catalysts. 

Therefore, we thought to further extend our studies of oxidative addition/reductive 

elimination cycles common in catalysis to the reactions of carbene ligands themselves 

and related imidazolium salts with low-valent rhodium. To gain more insight into the 

mechanism and ease of oxidative addition of imidazolium salts to low-valent metal 

centres, we decided to study a catalyst system well known for this type of reaction: 

that of Wilkinson’s Catalyst.

In this chapter we report on the reaction of a model Wilkinson’s catalyst 

(RhCl(PH3)3) with 1,3-dimethylimidazolium by two competing pathways, and take 

into account the effects of changing the phosphine ligands, solvation, and the use of 

alternative azolium salts (Figure 3-2).

+

R3p\\'" | ,///PR3
PR3

X = n -c h 3, s

Figure 3-2 Overall oxidative addition reaction of azolium salts to Rh(PH3)3Cl
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3.2 Computational details

All geometry optimisations and harmonic vibrational frequencies were calculated at 

the B3LYP43 45 level of theory with the LANL2DZ basis set, which incorporates the 

Hay and Wadt46 small core relativistic effective core potential and double zeta valence 

basis set on rhodium, phosphorus, chlorine and sulfur, with the Dunning and 

Huzinaga47 double zeta basis set on all other atoms. Zero point vibrational energy 

corrections were obtained using unsealed frequencies. All transition structures 

contained exactly one imaginary frequency and were characterised by following the 

corresponding normal mode towards the products and reactants. Higher level single 

point calculations were performed on the B3LYP/LANL2DZ optimised geometries at 

the B3LYP method with a LANL2augmented:6-311+G(2d,p) basis set, incorporating 

the LANL2 effective core potential and a large LANL2TZ+(3f) basis set on rhodium. 

This basis set was obtained by us in the same way as described for the Pt 

LANL2TZ+(3f) basis set reported previously48. All other atoms used the 6- 

311+G(2d,p)49 51 basis set. Energies from these single point calculations were 

combined with the thermodynamic corrections at the lower level of theory to obtain 

AH298 and AG298 numbers. All energies quoted in this chapter refer to these final 

AH298 or AG298values.

Bulk solvent calculations were carried out on the B3LYP/LANL2DZ optimised 

structures with the polarised continuum method of Tomasi and coworkers52 53 using 

the conductor-like polarisable continuum model54 (CPCM) with standard tesserae area 

of 0.4A2 and the previously discussed LANL2 augmented: 6-311+G(2d,p) basis set.

Radicals used to calculate bond energies were optimised using the restricted open 

B3LYP level of theory with the LANL2DZ basis set on rhodium and 6-31G(d) on all 

other atoms, with final energies using the unrestricted B3LYP method and the 

LANL2augmented:6-311+G(2d,p) basis set as described above. Other non-radicals 

were optimised and higher level energies calculated as above.

All calculations were performed with the Gaussian 9855 set of programs.
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3.3 Results and discussion

3.3.1 Stereoisomers

The oxidative addition of the C2-H bond of 1,3-dimethylimidazolium salt can result 

in a variety of stereoisomers. Work done previously on the H2/RhCl(PH3)3 system by 

Dedieu56,57, Margl30 and Daniel58 on alkane C-H activation59 predicts that the most 

stable isomer for our system would be that with a chloride trans to the hydride ligand 

(Figure 3-3g). However, Margl and Daniel studied systems with phosphine 

predissociation, while Dedieu did not perform geometry optimisations, with 

structures based on experimental observations. As our systems involve much larger 

carbene ligands, we thought it prudent to consider alternate stereoisomers.

Starting

Materials
Precursor Complex Transition Structure 6  Coordinate Product

Pathway 1

Pathway 2

Figure 3-3 Optimised geometries of oxidative addition of 1,3-dimethylimidazolium to

Rh(PH3)3Cl with alternative direction of attack (associative routes).

Reaction pathways for the oxidative addition of 1,3-dimethylimidazolium to 

RhCl(PH3)3 were studied with two isomeric transition structures; one with the 

imidazolium salt interacting along the P-Rh-P line (Figure 3-3c), and the other along 

the Cl-Rh-P line (Figure 3-3f)-
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3.3 Results and discussion

3.3.1 Stereoisomers

The oxidative addition of the C2-H bond of 1,3-dimethylimidazolium salt can result 

in a variety of stereoisomers. Work done previously on the H2/RhCl(PH3)3 system by 

Dedieu56,57, Margl30 and Daniel58 on alkane C-H activation59 predicts that the most 

stable isomer for our system would be that with a chloride trans to the hydride ligand 

(Figure 3-3g). However, Margl and Daniel studied systems with phosphine 

predissociation, while Dedieu did not perform geometry optimisations, with 

structures based on experimental observations. As our systems involve much larger 

carbene ligands, we thought it prudent to consider alternate stereoisomers.

Starting

Materials
Precursor Complex Transition Structure 6  Coordinate Product

Pathway 1

Pathway 2

Figure 3-3 Optimised geometries of oxidative addition of 1,3-dimethylimidazolium to

Rh(PH3)3CI with alternative direction of attack (associative routes).

Reaction pathways for the oxidative addition of 1,3-dimethylimidazolium to 

RhCl(PH3)3 were studied with two isomeric transition structures; one with the 

imidazolium salt interacting along the P-Rh-P line (Figure 3-3c), and the other along 

the Cl-Rh-P line (Figure 3-3f)-
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Each pathway originated from identical reactants and passed through the same 

precursor complex involving a strong hydrogen bond between the 2H on the salt and 

the rhodium chloride ligand (Figure 3-3b/3e), reflecting the acidity of the 

imidazolium hydrogen. The two transition structures show little variation in the bond 

lengths and angles for the carbene and hydride ligands. Although it has been shown 

that N-heterocyclic carbenes generally form single bonds to metal centres with 

consequent low barriers to rotation, the angle of the carbene ligand, with respect to 

the square-plane of the resultant octahedral complex probably reflects the bulk 

surrounding the carbene ligand itself. Similarly, the bond lengths for the respective 

products vary only slightly with the final C2 -Rh distances of 2.06A for 3d and 2.07A 

for 3g. These distances are slightly higher, but in reasonably good agreement with 

experimental rhodium(III) carbene results7'25.

The principal difference in the geometries lies in the position of the carbene ligand 

itself. The trans P-Rh-C2 angle in the transition structures is vastly different, and is 

even more pronounced in the products. Due to the greater steric bulk of a phosphine 

below the carbene in comparison to a chloride, the product (Figure 3-3d) has a trans 

P-Rh-C2 angle of 167°, almost 11 degrees more bent than the essentially planar 3g.
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Figure 3-4 Pathway energies for oxidative addition of 13-dimethylimidazoliuni to Rh(PH3)3Cl.

The energies of each step reflect the similarity in geometries (Figure 3-4). Only 4.8

kcal m o l1 separate the transition structures, and 3.7 kcal mol' 1 separate the products.

Despite this, the reactions show opposite kinetic and thermodynamic properties. From

the precursor complex, pathway 1 with the phosphine out of plane has a relatively

high activation energy of 36.5 kcal mol*1 and overall is exothermic by 3.2 kcal m o l1.

Pathway 2 with the chloride out of plane has a higher activation energy of 41.3 kcal

mol'1, but is exothermic by 6.9 kcal mol'1. These results imply the arrangement of

ligands is relatively unimportant, and either pathway or a combination thereof for the

reaction seems possible in a favourable experimental environment.

For further sections, we have used the stereoisomer with the phosphine bending out of 

the plane, as it is supported by studies completed by other groups and more closely 

resembles the mechanism of the alternative dissociative route that we have also 

studied.
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3.3.2 Pathway studies -  dissociative vs associative

The reaction mechanism of azolium salt addition to RhCl(PH3)3 was investigated 

taking into consideration current views on the reaction of H2 with Wilkinson’s 

catalyst in hydrogenation reactions58,60'62, C-H activation of alkanes29,30 59 63 64 and 

known imidazolium salt additions to group 10 metals6 9. Oxidative addition reactions 

involving Wilkinson’s catalyst are thought to proceed by two possible routes; one 

which involves straight oxidative addition of H2 to the four coordinate RJ1CIL3 

(associative route), and another with phosphine predissociation, resulting in oxidative 

addition of H2 to either a 3 coordinate RhClL2 species, or solvated RhClL2(solvent) 

(dissociative route).

Experimental evidence shows the use of a phosphine absorber or dissociation induced 

by weak ultraviolet irradiation increases the reaction rate of H2 oxidative addition to 

RhCl(PPh3)365'67. In these cases, the equilibrium for the dissociated and associated 

rhodium complexes lies significantly towards the undissociated species (pi = 1.4 x 10" 

4 at 25°), but a dissociated species reacts at least 104 times faster68. However, rhodium 

complexes are usually found to contain 16 or 18 electrons and these dissociated 

complexes are at variance with opinions regarding the instability of 14 electron 

complexes.

Therefore, when evaluating the energies for oxidative addition of an imidazolium salt 

to RhCl(PH3)3, we considered both possible reaction pathways (Figure 3-3, a-d;

Figure 3-5, a-f). The product of each reaction was the same 6 -coordinate rhodium 

complex, with both routes proceeding though a concerted 3-centre transition state as 

was shown to occur in similar reactions of azolium salts with low-valent palladium 

and platinum6. The first pathway, referred to as the associative pathway (Figure 3-3, 

a-d), involves straight oxidative addition to the four coordinate RhCl(PH3)3 as 

discussed in the previous section.
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3.3.2.1 Dissociative route

It is thought that in catalytic cycles involving Wilkinson’s Catalyst (Rh(PPh3)3Cl) for 

both C-H and C-C activation the active catalyst contains only two phosphine ligands. 

Although many theoretical studies focus on the use of /ra«s-RhCl(PH3)2, 

experimental work by Brown suggests the cis complex may be the active one in 

catalytic cycles61,62,69. We therefore looked at this reaction involving loss of 

phosphine, resulting in a vacant coordination site on the rhodium with phosphines in 

the cis position. The reaction can be thought of as a five step process (Figure 3-5, a-f): 

phosphine dissociation, an initial imidazolium/rhodium precursor complex, a 

transition structure, a 5-coordinate product, and finally coordination of the free 

phosphine to form the octahedral product.

Starting Phosphine

Materials Dissociation

Transition 5 Coordinate 6  CoordinatePrecursor

Complex Structure ProductProduct

Figure 3-5 Optimised geometries of oxidative addition of 1,3-dimethylimidazolium to

Rh(PH3)3Cl with phosphine predissociation (dissociative route).

The dissociation of a phosphine ligand resulted in an almost T-shaped rhodium 

complex, with the ligands spreading out slightly to compensate for the vacant 

coordination site. The precursor complex showed a weak agostic bond as the salt 

approached the metal centre. This bond became even more pronounced in the 

transition structure. Transforming the transition structure into the product proceeded 

through a 5-coordinate intermediate, in which each ligand to metal bond was found to 

be slightly shorter than the octahedral product -  a compensation to some degree for 

the vacant coordination site.

Page 66



Chapter 3 -  Oxidative Addition o f  Azolium  Salts to a Model W ilkinson’s Catalyst

r- 35 32.

- 3 0 27.2 - 28.2 

25.1 '5b
-  25

c
E
1

\  20.1 
20.0

18.1
-  20

16.4

3
c
35

1
02
Urn4>
CW
3J
>

AG
3d/5f-  10

3.23a/5a AH
3d/5f_  -5

Key:
Associative
Dissociative

_ - 1 0

-  -15
-18.4,

Reactants Phopshine Precursor 
Dissociation Complex

Transition 5-Coordinate Final Product 
State Product

Reaction Coordinate
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Rh(PH 3 )3Cl by alternate routes

In this second pathway, the initial phosphine dissociation from the square planar 

rhodium leaving a three coordinate species was, not surprisingly, an endothermic 

process (Figure 3-6). Dissociation of a phosphine without coordination of a solvent 

molecule in the vacant site results in a 14 electron high energy, unstable complex. As 

the imidazolium salt draws near, the agostic bond stabilises the reactants somewhat in 

comparison to the separated species. This interaction becomes stronger in the 

transition structure. It seems highly unlikely that the 5-coordinate carbene hydride 

intermediate (Figure 3-5e), which is the initially formed product, would exist under 

experimental conditions, and a potential energy surface scan with a free phosphine in 

the vicinity of this complex proceeded towards the more thermodynamically stable 6 - 

coordinate product with no barrier.
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3.3.2.2 Associative or dissociative route?

A look at the geometries at all points revealed two main differences in the associative 

and dissociative routes. Firstly, the vacant site provides the carbene ligand more 

space. This was reflected in the transition structures, with the trans P-Rh-C2 angle 

near 167° for the dissociative route, but only 145° in the associative. Another aspect 

was the twist of the carbene with respect to the square plane of the metal. With no 

ligands at the octahedral points, the carbene ligand itself displayed a much more 

prominent twist in the coordinatively unsaturated structures. This was most 

significant in the 5 coordinate versus 6 -coordinate product with twists of 83° and 64° 

respectively.

A direct comparison of the enthalpies (AH) of the two pathways seems to favour the 

associative route for these simple complexes, with all points on the pathway at a 

lower relative energy than their corresponding dissociative pathway analogues. 

However, it is interesting to note that the most stable structure overall is the precursor 

complex with associated phosphine (3b). The relative stability of this initial 

interaction compared to the separated species is unsurprising. The imidazolium cation 

itself is a relatively small molecule with a large charge. Therefore, the interaction 

with the chloride ligand in this way represents a stabilisation of this large charge.

Further, due to its relatively low energy, the precursor complex may be thought of as 

the energetic starting point for both the associative and dissociative routes, with 3b 

reverting to the separated 3a before phosphine dissociation takes place in the 

dissociative case. The reaction barriers therefore become 36.5 kcal mol' 1 for the 

associative route (3b->3c) and a very high 45.6 kcal mol' 1 for the dissociative route 

(3b->3a->3b). However, it should be noted that there are many alternatives to 

consider in these types o f reaction conditions. Firstly, there may be a lower energy 

dissociative pathway, not via 3a but instead with direct phosphine dissociation from 

3b. Secondly, there are numerous alternative ways in which the stabilisation found in 

3b could be achieved in a true experimental situation. It is expected both the rhodium 

complex and the imidazolium cation benefit from the imidazolium/chloride 

interaction shown. For the complex, this stabilisation could be found from solvation. 

In particular, if the reaction were to take place in an imidazolium ionic liquid where 

there is a large excess of salt, it would be expected that every point along the pathway 

would have the imidazolium/chloride interaction depicted in 3b. For the reacting
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imidazolium cation itself, the same charge distribution could be achieved through 

various sources such as counter ions and solvation. As it is not possible to do 

calculations for all these possibilities, we chose to view the complex 3b, which was 

found from following the reaction pathway from the corresponding transition 

structure, more as a qualitative indication that there is no initial imidazolium/metal 

interaction as was found in the dissociative route precursor complex 3c.

From the separated starting materials, the transition structure lies 18.1 kcal m o l1 

higher in energy for the associative pathway. The dissociative pathway transition 

structure is slightly higher in energy again, lying 25.1 kcal mol"1 above the reactants. 

Overall, however, it is the initial predissocation of a phosphine molecule to create the 

three-coordinate rhodium complex that gives rise to the highest energy barrier in the 

process and once this dissociation has taken place, the reaction proceeds smoothly to 

products. This result has been reflected in other theoretical studies for Wilkinson’s 

Catalyst that assume a 3-coordinate starting material58’70’71.

As a further consideration, while enthalpy is important for these types of reactions, it 

is well known that a dissociative route can often become more favourable than an 

associative one due to entropy effects. Therefore, it is prudent at this point to consider 

the energy surface with respect to the Gibbs Free Energy (Figure 3-6). As expected, 

examining the free energy results indicate an advantage in following a dissociative 

pathway. The entropy benefits of phosphine pre-dissociation drop the dissociative 

route energy barrier below that of the associative route. Further, the associative 

transition structure becomes the highest energy structure on the energy surface, with 

less energy required to dissociate a phosphine than to directly add the imidazolium 

cation. As such, it appears that the dissociative pathway could be the preferred route.

However, it is important to note that despite enthalpy calculations suggesting a 

slightly exothermic reaction, the free energy results indicate that overall this is not a 

favourable reaction at 298K with the products lying 11.4 kcal mol"1 higher in free 

energy than the separated reactants.
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3.3.3 Phosphine ligand effects

Many oxidative addition reactions are more favourable when there is a higher 

electron density at the metal centre. Donation from the a C-H orbital to empty o-type 

orbitals on the metal, along with strong back donation from the metal to the o* C-H 

orbitals results in C-H activation. We therefore decided to look at the effect of 

substituting the model phosphine ligands with trimethylphosphine ligands, which 

have a higher electron donating capacity and higher steric bulk.

Starting Phosphine Precursor Transition 5 Coordinate 6  Coordinate

Materials Dissociation Complex Structure Product Product

Figure 3-7 Optimised geometries of oxidative addition of 1,3-dimethylimidazolium to 

Rh(P(CH3)3)3Cl by dissociative and associative routes 

(non-reacting hydrogens omitted for clarity).

The change from PH3 to the more basic and more sterically demanding PMe3 resulted 

in very little change in the geometries of either reaction route (Figure 3-7, associative: 

7a, 7f-h; dissociative: 7a-e, 7h). In all complexes and intermediates, the larger 

phosphines had longer phosphorus to metal bond distances, as expected. The most
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important change in these geometries came from the direction and final position of 

the carbene ligand itself. With greater crowding in the square planar rhodium(I) 

complex caused by the PMe3 groups, the transition structures show the imidazolium 

salt approaching slightly more out of the plane (7d and 7g). Similarly, in the final 

products the extra bulk pushes the carbene ligand slightly more perpendicular to the 

plane. The dissociative precursor complex also reveals the effect of the added bulk. 

While the interaction appears the same, the distance of the incoming imidazolium salt 

to the rhodium is much greater in the PMe3 complex than the corresponding PH3.
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Figure 3-8 Pathway energies for oxidative addition of 1,3-dimethylimidazolium to Rh(PH3)3Cl

and Rh(P(CH3)3)3Cl (AG)
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As predicted, the change to a more basic phosphine does decrease the endothermicity 

of the overall reaction (Figure 3-8). In fact, the switch also lowers the relative 

energies of all reaction points on the pathway. The precursor complex drops by 8 .8  

kcal mol' 1 for the dissociative route compared to a drop of 4.0 kcal mol' 1 for the 

associative route. Similarly, decreases of 9.6 kcal m o l1 and 3.9 kcal m o l1 are found 

respectively for the transition structures. These decreases are slightly larger at all 

points for the dissociative pathway, and the dissociative route is now favoured over 

the associative route by 10.3 kcal m ol'1. Overall, the increase in basicity of the 

phosphine ligands lowers the barriers to oxidative addition while decreasing the 

endothermicity of the reaction, but again, once entropy effects are included (Figure

3-8), the reaction is overall an unfavourable one at 298K.

Consistent with our calculations, in real catalyst systems with triphenylphosphine 

substituted for trimethylphosphine, it is known that hydrogenation reactions are 

inhibited by excess triphenylphosphine72, implying a dissociative route is being 

followed. The added bulk and lower basicity of triphenylphosphine may lead to the 

energies of the dissociative route dropping even further below those of the associative 

route.
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3.3.4 Solvent effects

3.3.4.1 Explicit addition of a THF molecule

It is thought that in catalytic cycles involving Wilkinson’s catalyst, any dissociation 

of a triphenylphosphine is followed by coordination of a less sterically demanding 

solvent molecule. In fact, in most experimental conditions it is highly likely that a 

solvent molecule would fill any free coordination site. Therefore, we introduced an 

explicit THF molecule into the reaction sequence to study the effects on energies and 

geometries.

Transition 5 Coordinate 6  CoordinateStarting

M aterials

Phosphine

Dissociation

Precursor

Complex Structure Product Product

Figure 3-9 Optimised geometries of oxidative addition of 1,3-dimethylimidazolium to

Rh(P(CH3)3)3Cl by dissociative route with THF molecule.

A look at the geometries of all points with this added THF molecule revealed some 

interesting information (Figure 3-9, a-f). The precursor complex exposed some of the 

problems in working with simplified solvation reactions. As the reaction pathway is 

followed from the transition structure back towards the starting materials, the 

imidazolium salt draws away from the rhodium and forms a hydrogen bond between 

the imidazolium 2-H and the oxygen on the THF (Figure 3-9c). Although this has a 

large stabilising effect on the salt, under experimental circumstances it would be 

expected that there would be another THF molecule in the vacant coordination site of 

the rhodium complex (Figure 3-1 Oc). The relative energies of the three-coordinate
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rhodium (Rh(PMe3)2Cl) and a THF/imidazolium interaction (Figure 3-10a) compared 

to the four-coodinate Rh(PMe3)2(THF)Cl and free imidazolium (Figure 3-1 Ob) show 

surprisingly little difference: a mere 1.6  kcal mol'1. In an experiment, the 

concentration of THF would give rise to both the stabilised THF/imidazolium and 

four coordinate Rh(PMe3)2(THF)Cl (Figure 3-10c) -  a much more stable system (- 

1 2 .0  kcal m o l1) . f

Relative 

Energies (kcal 

mol*1)

0.00 - 1.6 - 12.0

Figure 3-10 Various interactions of Rh(P(CH 3 ) 3 ) 2  and 1,3-dimethylimidazolium with two THF

molecules.

The reaction path with the added THF molecule highlighted further interesting 

features. While the starting rhodium complex (Figure 3-9b) had the THF coordinated 

at close proximity to the metal centre (2.19A), the optimisation of the transition 

structure resulted in a very long rhodium/THF distance of 5.22A, implying the

f Ideally, these results suggest it would be wise to include a second, or more, THF molecules in the 

reaction sequence, but the increased computational time and the indirect influence of introducing this 

second molecule in later structures led us to continue with only one THF molecule and choose 8 c to be 

the precursor complex as found from the reaction transition structure.

Page 74



Chapter 3 -  Oxidative Addition o f  A zolium  Salts to a M odel W ilkinson’s Catalyst

solvent molecule could at best be considered weakly bound. Further, the resulting 

complex had an identical geometry at the rhodium centre to that of the dissociative 

route without the THF. All attempts at optimising with closer rhodium/THF distances 

failed, indicating the long THF bond length was the lowest energy structure.

In following this transition structure to the 5-coordinate product, the THF does not 

fully rejoin the complex but does draw closer, resulting in a rhodium/THF distance of 

4.36A (Figure 3-9e). An almost identical product slightly higher in energy was found 

with a much closer rhodium/THF distance of 2.44A in a more classical octahedral 

complex. While there is only a small energy difference between the two (4.5 kcal 

m of1) a relaxed potential energy surface scan revealed a tiny barrier, possibly due to 

a steric interaction between the incoming THF molecule and the rhodium phosphine 

ligands. Again, comparison of the geometry of these two products revealed an extra 

twist in the carbene ligand, with the long rhodium/THF distance allowing more room 

for the carbene ligand and resulting in a near 90° twist, compared to 75° in the 

octahedral complex.
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Figure 3-11 Pathw ay energies for oxidative addition of 1,3-dimethylimidazolium to

Rh(P(CH 3)3)3Cl and  R h(P(C H 3)3)2(THF)Cl (AG).

Overall, the use of an added THF molecule results in only small changes in the 

relative energies of the dissociative route (Figure 3-11). The most significant changes 

are the stabilisation of the precursor complex (Figure 3-9c) and the destabilisation of 

the 5-coordinate product (Figure 3-9e). A comparison of our enthalpy and free energy 

calculations show that the latter change is due to entropy effects.

3.3.4.2 Bulk solvent effects

The use of an added solvent molecule assisted in revealing some of the stabilising 

effects of solvents, so we extended this work to include energy calculations 

incorporating bulk solvent effects. Although a reoptimisation of the structures in 

solvent was not performed, recalculation of all energies including a bulk THF solvent 

interaction showed stabilising effects of the solvent on the charge separation within 

the reaction species as depicted in Figure 3-12.
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Figure 3-12 Pathway energies for oxidative addition of 1,3-dimethylimidazolium to Rh(P(CH3)3)3Cl 

and Rh(P(CH3)3)2(THF)CI including bulk solvent effects (AG).
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In each case, every point on the reaction pathway was stabilised to a large extent with 

respect to the equivalent point in the gas phase reactions. The most significant feature 

highlighted by these calculations was the relative lowering in energies of the reactants 

with respect to the rest of the points on the pathways. On closer inspection, this is due 

to the much greater stabilisation in solution of the free imidazolium salt. Being a 

smaller molecule with a relatively large charge, the dispersion of this charge through 

a solvent has a much greater stabilising effect than in the larger complexes, where the 

charge can be more effectively dispersed throughout the complex itself.

This stabilisation of the imidazolium salt in solution has implications on the overall 

reaction thermodynamics. The rhodium hydride product formed from the oxidative 

addition of the imidazolium is much less thermodynamically stable than the reactants, 

and results in a reaction, which is endothermic by 20.2 kcal mol’1. Further, the 

activation energies of the dissociative routes have been increased to above 31 kcal 

mol’1, while the associative route rises above 44 kcal mol’1.

Overall, the bulk solvation calculations imply that while the dissociative route is still 

the preferred route in solution, this may be irrelevant due to high activation energies 

and an overall endothermic reaction.

3.3.5 The effect of different azolium salts

3.3.5.1 Imidazolidium salts

It is known that unsaturation in N-heterocyclic carbenes helps increase the 

singlet/triplet gap with the possibility of full electron delocalisation, even though this 

is not the primary reason for their stability73. We therefore decided to look at the 

saturated l,3-dimethyl-4,5-dihydroimidazolium salt to see if saturation could possibly 

promote oxidative addition reactions.
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6  Coordinate
Starting Materials Precursor Complex Transition Structure

Product

F ig u re  3 -13  O p tim is e d  g e o m e tr ie s  o f  o x id a tiv e  a d d it io n  o f  l,3 -d im e th y l-4 ,5 -d ih y d ro im id a z o liu m

to Rh(P(CH3)3)3Cl by associative route (phosphine hydrogens omitted for clarity).

Optimisation of all species for the saturated analogue resulted in essentially identical 

structures to those for the unsaturated imidazolium (Figure 3-13, a-d), with a few very 

minor exceptions. Firstly, due to the saturated backbone, the carbene ring itself in the 

transition structure (Figure 3-13c) is slightly buckled, with carbons 4 and 5 being 

slightly above and below the plane of the ring by about 7 degrees. The products also 

show the saturated carbene ligand marginally closer to the rhodium centre and the 

bond between the rhodium and the bottom phosphine ligand in this complex slightly 

longer. All other bond lengths and angles are in effect unchanged. Overall, the 

relative energies reflect the identical nature of the reactions, with no more than 0.3 

kcal mol' 1 separating the relative energies of the saturated and unsaturated carbene 

complexes at any point (Figure 3-14).
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Figure 3-14 Pathway energies for oxidative addition of 1,3-dimethylimidazolium and 1,3- 

diniethyl-4,5-dihydroimidazolium to Rh(P(CHj)3)3Cl (AG).

These results tend to confirm previous thoughts that the saturation of the imidazole 

ring has very little effect on the properties and reactivity of the carbene centre and its 

behaviour as a ligand. Complexes of both the saturated and unsaturated imidazole 

based carbene ligands have frequently proved to be similar, for example, iron 

carbonyl complexes of both showing similar trans CO stretching frequencies in the IR 

spectra74.
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3.3.5.2 Thiazolium salts

Unlike the saturated imidazoles, thiazole based carbenes can be expected to have 

different electronic and steric effects. The larger sulfur has very little rc-electron 

donation compared to nitrogen due to poorer orbital overlap75, resulting in a lower 

singlet/triplet gap. Further, the divalent sulfur generates less steric bulk than trivalent 

nitrogen.

Transition 6  Coordinate
Starting Materials Precursor Complex

Structure Product

Figure 3-15 Optimised geometries of oxidative addition of 3-methyIthiazoliuin to

Rh(P(CH3)3)3CI by associative route (phosphine hydrogens omitted for clarity).

Not surprisingly therefore, geometries for the thiazolium oxidative addition were 

different across the board (Figure 3-15, a-d). The precursor complex for the 

thiazolium salt showed an initial interaction between the C2 of the salt and the 

rhodium, with the 2-H bent out of the plane of the thiazolium ring. It was earlier 

shown bulk could be a factor in the choice between dissociative and associative 

routes and a close interaction as shown for the thiazolium salt is not as favourable for 

the imidazolium salts, with the methyl groups attached to two nitrogens increasing the 

steric bulk. The transition structure for the thiazolium is also much more advanced 

than that of the imidazolium: the rhodium to carbon bond is much shorter, with the 

carbon to hydrogen bond much longer. The extra space afforded by the divalent sulfur 

is also evident here. While the imidazolium ring is quite twisted with respect to the
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rhodium square plane (64°), the thiazolium ring remains much closer to the plane 

(42°). This trend is reversed in the product, however, with the thiazolium being 

twisted to almost 71° compared to the imidazolium 67°. The general structures of the 

two products are very similar, with the thiazolium showing a slightly shorter Rh-C2 

bond length.
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Figure 3-16 Pathw ay energies fo r oxidative addition of 1,3-dimethylimidazolium and 3-

m ethylthiazolium  to R h(P(C H j)3)3CI (AG).

The energies of the thiazolium pathway reveal that it is a much more 

thermodynamically favourable route, with the products lying 9.1 kcal mol' 1 below the 

reactants (Figure 3-16). Further, the activation energy is lower, with the transition 

structure only 12.5 kcal mol' 1 higher than the separated reactants.
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3.3.5. 2.1 M -Carbene bond strength

Graham has calculated the C2-H bond energy in thiazolium salts to be less than the 

respective bond energy in the imidazolium salts, making this bond easier to break76. 

However, coordination of the formed carbene to a metal recovers much of this 

energy. When complexing to palladium, energy recovery for the imidazol-2-ylidene 

was much more than for the thiazol-2 -ylidene, but overall it was found that the 

reaction for thiazolium was approximately 7 kcal mol’1 more exothermic than the 

imidazolium analogue.

As mentioned previously, the thiazolium salts oxidatively add to rhodium complexes 

in a more exothermic reaction than the corresponding imidazolium salts. In these 

reactions, the overall energy of the reaction can be thought of as the energy required 

to break bonds, compared to the energy obtained when new bonds are formed. As 

both reactions result in the formation of a rhodium-hydrogen bond, this difference in 

energy must come from either a weaker C2-H bond in the original salts, or a stronger
7 7  78carbene-rhodium bond in the product. Sakaki ’ devised a method of calculating the 

average bond energies of transition metal ligands by studying the homolytic bond 

cleavage of subreactions: AEreaction = bonds broken -  bonds formed. In the case of 

carbene-rhodium bond strengths, the equivalent reaction becomes AEreactjon = E(C2 -  

H) -  [E(Rh-H) + E(Rh-C2)], with relevant equations set out in Figure 3-17.

\= J

H

(a)

H

— N XA ■N / + a
w

+ H (b)
w

H + H (c)

Rh(PH3)3Cl + H2 Rh(PH3)3Cl(H)2 (d)

Figure 3-17 Reactions used to calculate average bond energies
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Therefore, the energy of the carbene-rhodium bond can be calculated:

E(Rh-C2) = E(C2-H) -  E(Rh-H) - AE

Where AE is obtained directly from reaction (a) in Figure 3-17, the azolium C2-H 

bond strength (E(C2-H)) can be calculated from reaction (b), and the Rh-H bond 

strength can be calculated from reactions (c) and (d). Results of all calculations are 

shown in Table 3-1.

Reaction
Figure 3-17 

reference

C2-H bond strength

[ROB3LYP/6-31g(d) // 

UB3LYP 6-311+G(2d,p)]

(kcal/mol)

AEimidazolium (a) -1.6

AEthiazolium (a) -21.8

E(C2-H)jmidazolium (b) 1 5 2 .5

E(C2-H)thiazolium (b) 1 0 5 .6

AEn2oxad (d) 4 .7

E ( H -H ) (c) 1 0 4 .5

E (R h -H ) [E ( H -H )-

AEH2oxad]/2

4 9 .9

E(Rh-C2)jrnjdazolium E ( C 2 - H )  -  

E (R h -H )  - A E

1 0 4 .2

E(RJl-C2)thiazolium E ( C 2 -H )  -  

E (R h -H )  -  A E

7 7 .5

Table 3-1 Reaction energies used to calculate rhodium-carbene bond strength

As these results indicate, the imidazolium C2-H bond is noticeably stronger than the 

corresponding thiazolium bond, however much of the energy required to break the 

thiazolium bond is recovered in the formation of the carbene-rhodium bond in the 

product. Similar to the results found by Graham for palladium, the imidazole based 

carbene ligand forms a much stronger bond to rhodium than does the thiazol-2 - 

ylidene, due to increased sigma donation from the carbene ligand, however the
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exothermicity of the reaction is less due to the energy required to break the much 

stronger C2-H bond.
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3.4 Conclusions

Consistent with experimental results for the oxidative addition of H2 to Wilkinson’s 

catalyst during the hydrogenation reactions, theoretical results for the oxidative 

addition of azolium salts to RhCl(PR3)3 show that oxidative addition could occur by 

either an associative or dissociative route, depending on reaction conditions. 

Predissociation of a phosphine molecule does appear to be the favoured route and if it 

does occur the precursor complex can then be stabilised by filling the vacant 

coordination site with a smaller solvent molecule. Inclusion of a bulk solvent has 

significant effects on the overall reaction, in particular in stabilising the charge 

distribution for the smaller reactant molecules. With the inclusion of a bulk solvent, 

the products become much less thermodynamically stable, and other factors are 

required to increase the exothermicity of the reaction for imidazolium salts, either 

through the use of an alternative solvent or by using ligands with a greater electron 

donating capacity.

While saturation on the backbone of the carbene ligand appears to have little effect on 

the reaction, replacing the imidazolium salt with a thiazolium salt increases the 

exothermicity of the reaction while also lowering activation energies. This result 

appears to be influenced by both the different steric and electronic interactions of the 

thiazolium.

Of importance is the observation that the reductive elimination reaction, involving the 

carbene complex converting back to the azolium salt and rhodium(I) complex, is 

simply the reverse of the reactions studied. With the products being much less 

thermodynamically stable, and the reverse activation energies relatively lower than 

the forward reaction, it appears that reductive elimination could occur in rhodium 

carbene hydride species in solution to form the corresponding azolium salt. Electron 

donating auxiliary ligands, combined with the use of thiazole based carbene ligands 

may help produce more stable rhodium(III)-carbene complexes.
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4 Rhodium and Iridium Oxidative Addition Reactions

4.1 Introduction

The previous chapter indicated carbene ligands may be involved in oxidative addition 

and reductive elimination reactions from catalytically active rhodium complexes. The 

replacement of C-H bonds with C-X is important in numerous academic and industrial 

processes. However, the methods currently used to perform these conversions often 

require high temperatures and can be unselective, especially for abundant, but 

generally inert, alkanes. Due to the importance of these conversions, much 

experimental and theoretical study has been devoted to understanding what conditions 

affect the transition metal oxidative addition and reductive elimination reactions 

involved.

As would be expected in reactions involving metal complexes, the ligand set used on 

the metal can have a significant influence on the chemistry of oxidative addition, both 

electronically and sterically. Electronic structure requirements for a low barrier to 

oxidative addition involve the metal reactant being in a low-lying triplet state1.

Further, oxidative addition in general becomes more favourable as the system 

becomes more negatively charged2. Therefore, more basic ligands with minimal back- 

bonding tend to enhance the oxidative addition ability of a metal.

Sterically, the metal centre needs to be accessible to allow 

the reactant to interact with the metal centre. Thus, low- 

valent metal complexes may require heat or light for 

predissociation of a ligand to form a coordinatively 

unsaturated complex capable of oxidative addition3’6. For 

the same reason, oxidative addition reactions have been 

slowed by excess ligand, as this shifts the equilibrium 

towards the undissociated species7. Further, a bulky ligand 

set can often lead to undesired intramolecular 

cyclometallation reactions, which renders the metal centre 

inactive to further reaction8’10 (Figure 4-1).

Figure 4-1 Example 
intramolecular C-H 
activation product"
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As was shown in the previous chapter, a model of Wilkinson’s catalyst, RhCl(PR.3)3 

could potentially be used to create rhodium(III) carbene complexes via C-H activation 

of azolium salts. Phosphines have frequently been used as ligands to create complexes 

capable of oxidative addition reactions, with the range of electronic and steric effects 

provided making it possible to tailor the environment at the metal centre so oxidative 

addition can occur with a low barrier and with maximum product stability.

Despite this, the exact combination of electronic and steric factors provided by the 

ligands is often not as obvious as may seem. Often the R groups in PR3 ligands point 

away from the metal centre, resulting in only minor steric interactions at the reacting 

metal centre, and significant alteration of R groups directly affects the basicity of the 

phosphine ligands. Further, phosphine complexes have been known to degrade via P- 

C cleavage within the ligand itself. Traditionally, this has resulted in the requirement 

of excess phosphines in reaction mixtures to compensate for any ligand loss due to 

degredation; a condition that may suppress oxidative addition reactions.

As shown in the previous chapter, the oxidative addition of azolium salts to 

rhodium(I) species could be possible under the right experimental conditions. Further, 

a change from the PH3 to the more basic PMe3 ligand increased electron density on 

the metal centre and in turn increased the exothermicity and decreased the activation 

energy for the overall oxidative addition reaction. Carbenes have been shown to be 

more basic11 and as versatile as phosphines, with substitution at the nitrogen and 4,5 

positions of the carbene ring relatively easily achieved, consequently providing an 

alternative means of controlling both steric and electronic factors on the metal centre. 

There are already many reactions known to yield PhhP/// \\CI

carbene complexes by oxidative addition12' 17. Mes

Further, many carbene complexes have proven to be PI^P 

excellent catalysts in reactions with known 

oxidative addition/reductive elimination cycles18'21 

(Figure 4-2). As such, we thought to extend our
Figure 4-2 Example carbene

previous work on oxidative addition reactions by complex for hydroformylation
catalysis23

Wilkinson’s catalyst (Rh(PR3)3Cl) by replacing the

phosphines used in the rhodium complex with carbene ligands themselves, to see if 

this could further promote the activation of the C2-H bond in azolium salts. This 

chapter presents the results of systematically altering this ligand set, ranging from the

Mes
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7t-acidic carbon monoxide, to the high a-electron donation capacity of the carbene 

ligands themselves. In addition to C-H and C-C activation of the azolium salts, the 

effect of exchange of the central rhodium atom for the larger iridium is studied.
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4.2 Computational details

All geometry optimisations and harmonic vibrational frequencies were calculated at 

the B3LYP22'24 level of theory with the LANL2DZ basis set, which incorporates the 

Hay and Wadt22 small core relativistic effective core potential and double zeta valence 

basis set on rhodium, phosphorus, chlorine and sulfur, with the Dunning and 

Huzinaga25 double zeta basis set on all other atoms. Zero point vibrational energy 

corrections were obtained using unsealed frequencies. All transition structures 

contained exactly one imaginary frequency and were characterised by following the 

corresponding normal mode towards the products and reactants. NBO and Mulliken 

populations were calculated at this level of theory.

Higher level single point calculations were performed on the B3LYP/LANL2DZ 

optimised geometries at the B3LYP level with a LANL2augmented:6-311+G(2d,p) 

basis set, incorporating the LANL2 effective core potential and a large 

LANL2TZ+(3f) basis set on rhodium. This basis set was obtained by us in the same 

way as described for the Pt LANL2TZ+(3f) basis set reported previously26. All other 

atoms used the 6-311+G(2d,p)27 29 basis set. Energies from these single point 

calculations were combined with the thermodynamic corrections at the lower level of 

theory to obtain AH298 and AG298 numbers. All energies quoted refer to these final 

AH298 or AG298values.

All calculations were performed with the Gaussian 9830 set of programs.
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4.3 Results and discussion

4.3.1 Ligand effects -  C-H activation

4.3.1.1 Rh(dmiy)(CO)2Cl

It has been demonstrated experimentally that, in the solid state, the carbonyl ligands 

ofRh(dmiy)(CO)2Cl occupy mutually cis positions31'34. Geometry optimisations of 

both the cis and trans forms reflected experimental conditions with the cis form 9 kcal 

mol*1 more stable than the trans form at the optimisation level of theory (Figure 4-3).

r p *

a b

0 .0  kcal mol*1 -9.0 kcal mol' 1

Figure 4-3 Isomers of Rh(dmiy)(CO)2Cl

For the oxidative addition of 1,3-dimethylimidazolium to Rh(dmiy)(CO)2Cl, two 

transition structures were considered; one with the incoming imidazolium pushing a 

CO ligand below the rhodium plane and the other with the larger carbene ligand being 

displaced. Not surprisingly, geometries for each pathway were very similar, with the 

C2-Rh and C2-H distances in the transition structures almost identical at 2.20A (C2- 

Rh) and 1.44A (C2 -H) for Figure 4-4 1 c and 2 .18 A (C2 -Rh) and 1.46A (C2 -H) for 

Figure 4-4 2c.
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ProductStarting Materials Precursor Complex Transition

Structure

a

Figure 4-4 Oxidative Addition of 1,3-dimethylimidazolium to Rh(dmiy)(CO)2Cl.

(1) Displacement of a carbonyl ligand; (2) Displacement of a dmiy ligand (Reactions 1 and 2)

Despite the similar geometries, the activation energy and overall thermodynamics

marginally favour Reaction 1 with the carbene ligands located in the trans positions

(Figure 4-5). This is most likely due to steric factors, as the carbene ligands are far

bulkier than any of the remaining ligands and a trans arrangement affords the greatest

relief of steric congestion in all reaction structures. The effect of this additional bulk

in the carbene ligand is reflected in the transition structure, with the smaller CO and

chloride ligands allowing the carbene more room in which to react without steric 
.
interference.
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s

5 1 .1

'4 7 .2

\  3 2 .9

\  2 6 .5

Reaction 2

R e a c t io n  1

R eactan ts

I

P recu rsor  
C o m p le x  

I__

T ra n sit io n
Stru cture

I
F inal Product 

I
Reaction Coordinate

Figure 4-5 Energies for oxidative addition of 1,3-dimethylimidazolium to Rh(dmiy)(CO)2Cl

(Reactions 1 and 2)

Regardless of the route, the oxidative addition of the imidazolium salt to 

Rh(dmiy)(CO)2Cl is energetically unfavourable. There is a high overall activation 

energy barrier of 55.3 kcal mol' 1 to overcome, and the reaction is endothermic by 26.5 

kcal mol' 1 at best.
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4.3.1.2 Rh(dmiy)(CO)(PMe3)Cl

Increasing the electron density on the metal by replacement of one of the 7r-acidic CO 

ligands with the a-donating PMe3 had the expected effect, reducing the activation 

energy and altering the thermodynamics to a result in a more favourable oxidative 

addition reaction.

The rhodium starting material was again compared to experimental results and a low 

level computational comparison completed for verification (Figure 4-6). Due mainly 

to steric considerations, the most favourable isomer was with the bulky carbene and 

phosphine ligands in trans positions; more than 8 .8  kcal mol' 1 more stable than the 

closest isomer at the optimisation level of theory. This result is reflected 

experimentally, with all reported rhodium carbene complexes with related phosphine 

and carbene ligands in the trans positions32,34,35.

%

a b c

0 .0  kcal mol' 1 -3.0 kcal mol*1 -1 1 .8  kcal mol -l

Figure 4-6 Isomers of Rh(dmiy)(CO)(PMe3)CI

Previous results by Diggle suggest the high influence of CO ligands makes the 

hydride trans to either the carbene or phosphine a more stable product19. While the 

previous section indicated a CO ligand would be located trans to the hydride in the 

Rh(dmiy)(CO)2Cl oxidative addition reaction, this result is expected to be mainly 

influenced by steric interactions. As the larger ligands cannot be separated in the 

Rh(dmiy)(CO)(PMe3)Cl system, the results by Diggle were used as a template for this 

reaction. Hence, two transition structures were considered with the carbene and 

phosphine ligands trans to the final hydride ligand (Figure 4-7).
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Starting Materials Precursor Complex Transition Structure Product

Figure 4-7 Oxidative addition of 1 ,3 -dimethylimidazolium to Rh(dmiy)(CO)(PMe3)Cl
(Reactions 3 and 4)

The similarity of the phosphine and carbene ligand influence on other ligand 

geometries is reflected in the transition structures, with the position and distance of 

the new carbene and hydride ligands comparable in each case.
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The resemblance of the two classes of ligands is again mirrored energetically with the 

two routes within 2 kcal m o l1 of each other at the stationary points (Figure 4-8).
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Figure 4-8 Energies for oxidative addition of 1,3-dimethylimidazolium to 
Rh(dmiy)(CO)(PMe3)Cl (Reactions 3 and 4)

Despite lowering the barrier of activation and decreasing the endothermicity of the

oxidative addition reaction compared to the di-carbonyl complex, the reaction is still

unfavourable. The precursor complexes are by far the most stable species on the

reaction pathway, with the barrier from these complexes to the transition structures

over 50 kcal mol' 1 and overall the reaction is still slightly endothermic. In addition, a

much lower barrier of 2 0  kcal mol’1 exists for the reverse reaction in which the

carbene and hydride ligands reductively eliminate to reform the salt and rhodium(I)

species. This suggests that even if the oxidative addition reaction did take place, the

reductive elimination of the salt would almost certainly revert any product back to the

reactants.
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4.3.1.3 Rh(PH3)2(dmiy)Cl

To continue the series of decreasing 7i-acidic and increasing a-donating ligands, the 

final carbon monoxide ligand was replaced by another phosphine. Due to the extra 

computational effort, it was decided to switch to the less basic PH3 ligand. However, 

it should be noted that from results in the previous chapter, the trimethylphosphine 

would be expected to provide lower activation energies and greater exothermicity 

than the PH3 ligand.

A comparison of the two possible rhodium starting complexes revealed a very small 

energy difference of 1.3 kcal m of1 (at the optimisation level of theory) between the 

cis and trans isomers (Figure 4-9), implying both species would be present in 

solution. Despite this, previously reported rhodium carbene complexes of this form
-v •y “j / :

indicated the trans conformation is preferred in the solid state ’ .

a b

0 .0  kcal mol' 1 -1.3 kcal mol' 1

Figure 4-9 Isomers of Rh(dmiy)(PH3)2Cl

Preceding sections indicated a slight preference in both reaction activation and 

thermodynamics for phosphines over carbenes trans to the hydride ligand, with a 

further favouring for steric separation of bulky ligands. In addition, phosphines are 

known to be labile in many transition metal reactions and as such, two transition 

structures were considered, both involving one of the phosphine ligands being 

displaced below the ligand plane. Depending on the conformation of the starting 

material, this gave rise to the possibility of trans or cis located carbene ligands in the 

final product (Figure 4-10 a-e and Figure 4-10 f-i respectively).
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Starting Precursor Transition Initial Product Final Product 

Materials Complex Structure

5

a b c d e

6

f g h i

Figure 4-10 Oxidative Addition of 1,3-dimethylimidazolium to Rh(dmiy)(PH3)2CI

(Reactions 5 and 6 )

Interestingly, while neither reaction displayed an initial salt to metal interaction, the 

slight variation in positioning of the phosphines contributed to vastly different 

reaction structures for the remainder of the reaction.

While the cis positioned carbenes had a transition structure very similar to those 

found previously, the trans carbene structure expelled the lower phosphine ligand 

from the complex altogether in a similar fashion to the dissociative route found in the 

preceding chapter. This transition structure for the five coordinate structure displayed 

little difference in bond lengths for the remaining ligands, however the overall 

structure is more advanced towards the products with the salt displaying longer C2-H

Page 103



Chapter 4 -  Rhodium and Iridium Oxidative Addition Reactions

distance by 0.162 A and shorter C2-Rh and H-Rh distances by 0.045A and 0.10 0 A 

respectively.

Overall, the bond distances for the six membered products indicate the influence the 

carbene ligands have over the ligands located in the trans position on the metal centre. 

With these strong trans influence carbenes located in mutual trans positions, the 

carbene to metal distances are around 0.07A longer than in the cis complex, with all 

remaining ligands shorter than their cis complex counterparts.

Despite its coordinatively unsaturated nature, the transition structure for the trans

located carbene product (Reaction 5) shows only a slightly higher activation energy 

barrier than the corresponding route with c/s-located carbenes, being 27.4 kcal mol' 1 

and 19.3 kcal mol' 1 above the separated reactants respectively (Figure 4-11).

However, the products of each reaction differ more significantly. While the cis 

product is endothermic by 4.3 kcal mol'1, the trans product prior to recoordination of 

the separated phosphine, is only endothermic by 2.0 kcal mol'1. Even more 

surprisingly, recoordination of the phosphine increases the Gibbs Free Energy of the 

trans product by 10.4 kcal mol'1, indicating the entropic benefit from the separated 

species has more influence than the unsaturated nature of the complex.
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Figure 4-11 Energies for oxidative addition of 1,3-dimethylimidazoliuin to Rh(dmiy)(PHj)2Cl
(Reactions 5 and 6 )

Once again, the most stable complex overall appears to be the precursor complex with 

interaction between the imidazolium cation and the rhodium chloride ligand.

However, unlike previous systems, the reaction barriers are relatively low and the 

rhodium(III) products almost equal in energy to the separated reactants. In particular, 

the reaction in which the carbene ligands are trans in the final product (Reaction 5) is 

the oxidative addition reaction with the lowest activation energy so far.

4.3.1.4 Rh(PH3)(dmiy)2Cl

With replacement of one of the phosphine ligands with a second carbene ligand, the 

starting Rh(PH3)(dmiy>2Cl complex could again display cis/trans isomerisation. 

Experimentally, similar rhodium complexes have been isolated and characterised with
‘j ' j  *>*7

the carbene ligands in trans positions in the solid state ’ . Our calculations, 

however, indicated the cis complex is marginally more stable at the optimisation level 

of theory (Figure 4-12). Despite this, the calculated energy separation of the two 

isomers is experimentally insignificant at 1.6 kcal mol'1, indicating isomerisation in 

solution would most likely be rapid.
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■ H i

0 .0  kcal mol' 1 - 1 .6  kcal mol' 1

Figure 4-12 Isom ers of Rh(dmiy)2(PH 3)Cl

As dissociation or displacement of a phosphine ligand is more likely than carbene 

dissociation (Section 4.3.1.2), and other results indicating the presence of a carbene 

ligand trans to the reaction site is advantageous (Section 4.3.1.3), it was decided to

focus on the reactant in which the carbene ligands are adjacent (Figure 4-13).

Starting Materials Precursor Complex Transition Structure

Five Coordinate Product Six Coordinate Product

Figure 4-13 O xidative A ddition o f 1,3-dimethylimidazoIium to Rh(dm iy)2(PH 3)Cl (Reaction 7)
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As shown previously, the transition structure with the phosphine ligand displaced 

below the plane optimised with the complete separation of the phosphine from the 

complex. The oxidative addition was found to be considerably more favoured than 

any previously studied in this chapter. Energetically, the reaction displayed some 

interesting results (Figure 4-14). The three coordinate precursor complex (Figure 4-13 

b) was more stable than the four coordinate separated species and salt (Figure 4-13 a), 

and the transition structure was merely 7.0 kcal mol' 1 higher in energy than the 

starting materials. Further, the activation energy from the precursor to the transition 

structure is only 17.0 kcal mol’1, with the five coordinate product exothermic by 9.0 

kcal mol'1.
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Figure 4-14 Energies for oxidative addition of 1,3-dimethylimidazolium to Rh(dmiy)2(PH3)Cl

(Reaction 7)

Once again, recoordination of the dissociated phosphine to form the octahedral 

complex increases the Gibbs Free Energy of the complex, although the six-coordinate 

product is still within 1.7 kcal mol' 1 of the starting species. Interestingly, attempts to 

optimise a transition structure or product for this oxidative addition reaction by 

replacement of the remaining phosphine to form the carbene equivalent of 

Wilkinson’s catalyst, Rh(dmiy)3Cl, were unsuccessful. This failure, along with the 

results for the Rh(dmiy)2(PH3)Cl system indicate the extra flexibility in electronic and 

steric influences afforded from the labile phosphine ligands may be essential in 

allowing this reaction to occur at all.
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Overall, the reaction using the Rh(dmiy)2(PH3)Cl starting material seems much more 

promising in promoting the oxidative addition of imidazolium salts than any other 

complex considered, with the ability of the phosphine ligand to dissociate to allow 

steric and electronic advantages seemingly very important.

4.3.1.5 Chelation - Rh(PH3)(mbiy)CI

It is known that chelating ligands such as dppe (dppe = 1,2- 

bis(diphenylphosphino)ethane) help promote oxidative addition reactions to zero 

valent palladium, platinum and nickel by creating a more sterically favourable 

environment13,38. In the case of group 10 metals, the M(0) complexes generally prefer 

two ligands coordinated in a linear arrangement. Chelation of these ligands forces a 

bent, high energy and open structure that readily promotes oxidative addition to create 

four coordinate, square planar M(I3) products.

Although oxidative addition to rhodium(I) generally forms an octahedral rhodium(HI) 

complex in which only one new ligand joins the same plane as the majority of pre

coordinated ligands, it has been proposed that chelation of the carbene ligands in the 

rhodium(I) starting complex may help sterically open up the plane in which the new
T Q

carbene ligand was to join, and consequently lower the barrier to oxidative addition 

41. Therefore, we looked at an almost identical starting rhodium(I) complex to the one 

examined in the previous section, but with the two carbene ligands joined by a 

methylene bridge (mbiy - methylene bis(3-methylimidazol-2-ylidene); Figure 4-15).
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Starting Precursor Transition Five Coordinate Six Coordinate

Materials Complex Structure Product Product

Figure 4-15 Oxidative addition of 1,3-dimethylimidazoIium to Rh(mbiy)(PH3)Cl
(Reaction 8 )

Despite some changes in the reaction geometries, chelation provided little benefit in 

the overall reaction. As found for the monodentate carbene complex, phosphine 

predissociation was once again observed. The angle between the carbene ligands 

decreased from 90.2° for the non-chelating complex down to 84.3° for the chelating 

complex as anticipated, however the constraining methylene bridge caused twisting of 

the dihedral angle of the carbene ligands from an almost perpendicular position in the 

non-chelating complex (58°), to a more parallel arrangement in the chelating case 

(140°). This flattening of the carbene rings in turn pushed the A-methyl of the carbene 

ligand into the newly created space and as a consequence, the steric advantages 

gained by closing the carbene-metal-carbene angle for the chelating ligand are 

negated by the overall increase in bulk along the metal/carbene plane.

Cancellation of steric advantages was reflected in the energetics of the reaction, with 

the activation energy and exothermicity for the chelating complex almost identical to 

that of the non-chelating analogue (Figure 4-16). Other advantages associated with 

chelation, such as prevention of facile phosphine dissocation in solution are not as 

important for carbene ligands, which have greater binding strength and are not as 

labile as their phosphine analogues. Therefore, it appears chelation in these rhodium
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complexes does not afford the benefits in the oxidative addition reaction found for the 

group 10  metals42.
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Figure 4-16 Energies for oxidative addition of 13-dimethylimidazolium to Rh(mbiy)(PHj)Cl

(Reactions 7 and 8 )

4.3.1.6 Overall rhodium C-H activation summary

As established in the previous chapter, C-H activation of azolium salts to create 

rhodium carbene complexes may be possible with the use of a Rh(PR3)3Cl starting 

complex. Exchange of these phosphine ligands with at least one carbene ligand and a 

combination of phosphines and carbon monoxide indicated the increasing basicity of 

ligands promotes oxidative addition, with overall results for the dominant cycles for 

each starting material displayed in Figure 4-17.
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Figure 4-17 Energies for oxidative addition of 13-dimethylimidazolium to rhodium(I) carbene

complexes

While the overall geometries remain consistent following the concerted three-centred 

transition structures, the energies reflect the changing electronic conditions on 

proceeding from the 7t-acidic CO ligands in Rh(CO)2(dmiy)Cl to the a-donating 

carbenes of Rh(dmiy)2(PH3)Cl. Lower activation energies and product stability 

followed the trend towards the more basic ligands:

R h(C O )2(dm iy)CI < R h(C O )(PM e3)(dmiy)CI <Rh(PH 3)3Cl «  R h(PH 3)2(dm iy)Cl < R h(PH 3)(dmiy)2CI
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Changes in the Mulliken and NBO populations at the rhodium centre reflect the 

general trend of the thermodynamics with the ligands producing a greater increase in 

the central metal charge (translating as a drop in the high electron density at the 

rhodium centre) providing a more thermodynamically stable product (Table 4-1).

System

Change in NBO 

Population

(reactant to product)

Change in Mulliken 

Population 

(reactant to product)

AG Energy 

(kcal mol*1)

Rh(PH3)(dmiy)2CI 0.37 0.24 -9.0

Rh(PH3)2(dmiy)CI 0.31 0.10 2.0

Rh(PH3)3CI 0.23 0.23 7.9

Rh(CO)(PH3)(dmiy)CI 0.22 -0.05 20.5

Rh(CO)2(dmiy)CI 0.14 -0.27 26.5

Table 4-1 Changes in electron density analysis and thermodynamics for rhodium carbene

complexes

Further, within a particular ligand set, reaction in which the strongest trans effect 

ligand was opposite the reaction centre provided the path with the lowest activation 

barrier. NBO analysis of the transition structures showed the complexes with lower 

electron density in both the C-H anti-bonding orbital and C-H bonding orbitals 

occurred in those structures with better o-donating ligands (Table 4-2).

System

C-H Bonding 

Orbital Population 

(Transition Structure)

C-H Anti-Bonding 

Orbital Population 

(Transition Structure)

AG Energy 

(kcal mol'1)

Rh(PH3)(dmiy)2CI 1.743 0.317 -9.0

Rh(PH3)2(dmiy)CI 1.752 0.322 2.0

Rh(PH3)3CI 1.855 0.241 7.9

Rh(CO)(PH3)(dmiy)CI 1.820 0.355 20.5

Rh(CO)2(dmiy)CI 1.802 0.353 26.5

Table 4-2 Changes in transition structure C-H anti-bonding oribital for rhodium carbene

complexes
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Diggle completed a similar study of oxidative addition of H2, CH4 and C2H6 to 

ruthenium using a combination of carbene and phosphine ligands with 

Ru(CO)(carbene)3.n(PH3)n 19. His results indicated minimal change in energetics 

moving from the PH3 to dmiy with slightly higher activation barriers and the products 

being slightly less thermodynamically favourable for the carbene complexes, 

especially for C-C activation. R.U-PH3 and CO stretching frequencies did indicate the 

carbenes create a more electron rich metal centre, but it appeared the extra bulk of the 

carbenes was hindering the reaction.

While these results are interesting, replacement of the PH3 ligand with the more basic 

PMe3 did not decrease the activation barrier or produce a more favourable 

thermodynamic product in Diggle’s study; a result contradictory to the results for the 

rhodium complexes examined in the previous chapter. As such, the fundamental 

reactions of ruthenium and rhodium oxidative addition may be different enough that 

slight changes to electronic and steric factors may greatly influence reaction 

outcomes.

Overall, results for carbene complexes containing a variety of ligand sets imply all 

ligands must be considered when rhodium is used for C-H activation. While carbenes 

possess the high basicity required for successful oxidative addition reactions, 

inclusion of 71-acidic ligands such as carbon monoxide on the metal centre negate any 

benefits of the extra basicity. The combination of two carbenes and a phosphine 

ligand displayed the greatest promise for oxidative addition reaction, with the di~ 

carbenes providing an electron rich metal centre and the lability of the phosphine 

providing easy access to a reaction site for the incoming salt. It is expected this 

reaction may be further enhanced through the substitution of the trihydridophosphine 

for the more labile triphenylphosphine, but in general, Rh(PH3)(dmiy)Cl showed 

enough promise in C-H activation to encourage further study of possible C-C 

activation.
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4.3.2 C-C activation with Rh(dmiy)2(PH3)CI

In general, alkanes are well known for being much less reactive in oxidative addition 

reactions than their di-hydrogen counter parts, following the order H-H > C-H > C-C. 

The reason for this trend appears to be due in part to the strength of the reacting R-R, 

with the strength of the M-H and M-C bonds formed in the products playing an 

equally important role9,10,43.

Traditional ligands such as acetylenes and carbon monoxide have good 71-accepting 

and a-donating ability, generally allowing strong bonds to be formed to metals. 

Conversely, alkanes possess few qualities required for good ligands as they have 

poorly aligned orbitals that are not good donors or acceptors3,44. As such, alkyl 

complexes formed from oxidative addition of alkanes tend to be less stable than the 

starting complexes used in catalytic reactions.

Oxidative addition of C-H is generally 10 kcal mol'1 more difficult than H-H 

activation45, with barriers to C-C activation a further 15-20 kcal mol'1 higher in 

energy46. These activation trends are thought to be caused mainly by steric factors, 

with the symmetry of the H-H molecule allowing easier interaction with the metal 

orbitals than the directional interaction required for C-H activation46'57. Going one 

step further, C-C activation is even more difficult with accessibility to the C-C 

bonding and anti-bonding orbitals far more restricted, in particular for two tetravalent 

sp3 hybridised carbons8.

With this information in mind, the C-H activation of the sp hybridised carbon in 1,3- 

dimethylimidazolium by Rh(PH3)(dmiy)2Cl in the previous section proved promising 

enough for us to study the related C-C activation of 1,2,3-trimethylimidazolium in 

order to create a rhodium(III) alkyl carbene complex.
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4.3.2.1 Steric influences of C-C activation

The extra bulk of the 2-methyl in the imidazolium salt is immediately apparent in the 

steric requirements of the reaction when compared to the equivalent 2-H activation. 

Phosphine predissociation is required as the incoming imidazolium salt no long 

approaches from the side in the transition structure, but from underneath the ligand 

plane (Figure 4-18); an arrangement that allows the least hindered interaction between 

the metal and the salt C2-alkyl group.

Starting Materials Precursor Complex Transition Structure

Five Coordinate Product Six Coordinate Product

Figure 4-18 C-C activation with Rh(dmiy)2 (PH3)Cl 
(carbene ligand hydrogens removed for clarity)

Further, C-C activation with the newly formed carbene coordinating in the same plane

as the existing ligands as seen previously for the C-H activation would result in a

crowded transition structure with the newly created methyl group in a region of high

steric congestion, interacting with the A-methyl groups of the three carbene ligands.

Attack of the salt from below the ligand plane allows a reduction in this congestion

and results in a lower energy structure. As a result, the initial product has more of a
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distorted square pyramid geometry in which the methyl ligand remains in the plane 

with the original carbene ligands, with the newly formed carbene below. 

Rearrangement of this complex into a more traditional square pyramid where the 

methyl group occupies the point of the pyramid results in a more classical shape and a 

lower energy product.

4.3.2.2 Electronic effects of C-C activation

As expected, the reaction barrier and thermodynamics of the C-C activation are much 

more challenging than the corresponding C-H activation (Figure 4-19). The barrier 

from the precursor complex to the transition structure is a reasonable 45.6 kcal mol"1, 

with the initial product lying 29.5 kcal m o l1 above the reactants.

r~4o
37.3

C-C
activation

C-H
activation

-  -20 

-  -25

Reactants Precursor Transition 5 Coordinate p j^ i
Complex Structure Product Product

______ !________________ j______________ |____________ I__________ 1 9

Reaction Coordinate

Figure 4-19 Energies for oxidative addition of 1,2,3-trimethylimidazolium to Rh(dmiy)2(PH3)Cl
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Rearrangement of the initial product to the more traditional square pyramid results in 

a 13.7 kcal mol' 1 decrease in energy, however this complex still remains endothermic 

by 15.8 kcal mol'1. Further, any attempt to find a transition structure that would 

directly result in the lower energy product rearranged to the transition structure 

indicated in Figure 4-18. As such, it appears this transition structure gives the greatest 

steric and electronic advantage to C-C activation and formation of the lower energy 

product would be achieved via product isomerisation, not through a lower energy 

transition structure.

Another important observation is the potential for the reverse reaction. With the 

activation energy for the reductive elimination of the methyl and a carbene from the 

product lower than the forward reaction at 21.5 kcal mol"1, any oxidative addition of 

the C-C bond would very easily reductively eliminate to the separated reactants. 

Despite this, the reverse barrier may be high enough to allow further reaction of any 

alkyl complex formed in a catalytic cycle if  forward barriers were lower than the 21.5 

kcal mol' 1 required for the reversal of this step.

4.3.2.3 Overall C-C activation with Rh(dmiy)2(PH3)Cl

While Rh(PH3)(dmiy)2 showed great potential for C-H activation of 1,3- 

dimethylimidazolium salts, results indicate C-C activation of the related 1,2,3- 

trimethylimidazolium with the same complex would be unlikely. As found 

previously46, C-C activation requires an additional 20.3 kcal mol' 1 in energy over C-H 

activation, with the product 14.1 kcal mol' 1 higher in energy and somewhat 

endothermic. As such, a very different steric and electronic environment would be 

required to allow formation of a stable alkyl complex from intermolecular C-C 

activation, however, the barriers may be low enough and products stable enough for 

further reaction in a catalytic environment.
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4.3.3 Oxidative addition with iridium

While rhodium is used as a catalyst in many reactions with excellent selectivity 

towards both reactants and products, iridium is often more effective at promoting 

oxidative addition reactions, frequently resulting in thermodynamically stable 

products that are not found for the rhodium analogues5. For gaseous iridium ions, 

oxidative addition calculations show there are three reasons for the ease of these 

reactions: the ability of Ir+ to change spin easily, the strength of the Ir-H and Ir-C
 ̂ 5 8bonds and ability of Ir to form up to four covalent bonds .

Recently, there has been a growing interest in the C-H and C-C activation of 

phosphine-based iridium complexes59'65. While these complexes use the advantages of 

a phosphine pincer to promote the C-C activation by forcing the reacting alkyl group 

close to the metal centre, it is none-the-less exciting that the reactions proceed 

smoothly at room temperature59(Figure 4-20).

+ [Ir(COE)2Cl]2 r 'L *»
-COE

R

/
Figure 4-20 Room temperature C-C activation by iridium

■>1 / : / :  / : q

Further, many iridium carbene complexes have been isolated ’ ' , including several 

iridium hydride complexes41,69,70. As such, we decided to continue our studies of the 

C-H activation of imidazolium salts by iridium complexes, initially using a model 

iridium complex equivalent to Wilkinson’s Catalyst.

4.3.3.1 Ir(PMe3)3Cl -  C-H activation

Unlike the dissociation preferred for rhodium, the larger iridium is known to maintain 

all ligands in going from the four-coordinate square planar iridium(I) to the octahedral 

products of oxidative addition. This was supported in our work with an investigation 

of a possible dissociative route, showing that, as expected, the pre-dissocation of a 

phosphine ligand required considerably more energy for iridium than the 

corresponding rhodium complex, standing at 16.3 kcal mol' 1 for dissociation. Any 

attempt to find a transition structure ultimately resulted in direct formation of the 

product, and introduction of the imidazolium salt into the proximity of the three-
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coordinate Ir(PMe3)2Cl complex proceeded smoothly to the products with no apparent 

barrier. However, as the energy required for the initial pre-dissociation of a phosphine 

is considerable, we studied the reaction using the associative pathway used in the 

previous chapter for rhodium.

The geometry of the reaction of Ir(PMe3)3Cl with 1,3-dimethylimidazolium proceeded 

in a very similar manner to that observed for rhodium. In general, the C2-M bond 

distances are almost identical between the rhodium and iridium carbene complexes. 

The most significant difference occurred in the transition structure with the iridium 

transition structure considerably more advanced towards the products. In this case, a 

much larger C2-H distance and closer M-C2 and M-H lengths are found, which is to 

be expected for the more favourable reaction.

Transition Structure ProductStarting Materials Precursor Complex

Figure 4-21 Oxidative addition of 1,3-dimethylimidazolium to Ir(PM e3)3Cl

Once again, the precursor complex in which a bond between the 2-H of the 

imidazolium salt and iridium chloride ligand is formed shows a very large stabilising 

effect for the salt (Figure 4-22). While the activation energy from the precursor to the 

transition structure is fairly high at 35.7 kcal mol’1, the transition structure is still 

reasonably low in energy, only 26.8 kcal m of1 higher in energy than the separated 

reactants.

v
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Figure 4-22 Energies for iridium and rhodium C-H activation

Overall, the reaction seems a very favourable one, with the product lying 15.5 kcal 

mol*1 below the reactants. This high exothermicity is certainly not unexpected, with 

carbene complexes formed in-situ under reasonably mild conditions in work 

previously reported by Crabtree71.

Page 120



Chapter 4 -  Rhodium and Iridium Oxidative Addition Reactions

4.3.3.2 Ir(PMe3)3Cl -  C-C activation

As the 2-H imidazolium salt displayed a highly exothermic oxidative addition 

reaction to iridium with little barrier, it was envisaged the change from rhodium to 

iridium might similarly encourage the 2-methyl activation of 1,2,3- 

trimethylimidazolium. This did not entirely prove to be the case however (Figure 

4-23).

Starting Materials Precursor Complex Transition Product

Structure

Figure 4-23 Oxidative addition of 1,2,3-trimethylimidazoIium to Ir(PMe3)3Cl

With the product standing 11.3 kcal m o l1 higher in energy than the reactants, the 

overall reaction is less endothermic than the rhodium counterpart; however the 

activation energy from the precursor complex to the transition structure was very high 

at 63.4 kcal mol' 1 (Figure 4-24).
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Figure 4-24 Energies for iridium and rhodium C-C activation

This exceptionally high barrier is thought to be due mainly to steric factors. The 

rhodium 2 -methyl activation occurs with phosphine pre-dissociation and the incoming 

salt attacking below the plane of the rhodium(I) ligands, consequently allowing 

considerable space for the newly formed carbene ligand. With slightly different steric 

and electronic properties, iridium phosphine pre-dissociation does not occur before 

the oxidative addition reaction takes place and as a result, the transition structure is
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sterically crowded and unfavourable, resulting in the high energy transition structure 

and a large barrier to reaction.

Overall, while iridium showed promise in decreasing the barrier and relative energy 

of the C-H activation reaction, the lack of ligand dissociation capability may mean 

that C-C activation for azolium salts remains elusive under experimental conditions. 

The high energy of the transition structure would have to be reduced before any 

advantages of the thermodynamically stable alkyl iridium product could be further 

utilised.
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4.4 Conclusion

Recently carbene complexes have been utilised in numerous catalytic cycles involving 

oxidative addition reactions, suggesting they could be strong C-H and C-C activation 

complexes in a variety of conditions. Further, new carbene complexes have been 

synthesised through the C2 activation of azolium salts. In this chapter we combined 

these results to examine whether rhodium carbene complexes could be used to further 

activate azolium salts to produce rhodium(III) carbene complexes.

The combinations of ligands used varied from the 7i-acidic carbon monoxide to 

phosphines. In general, replacing the less basic ligands with the better sigma donors 

decreased the activation barriers significantly and decreased the thermodynamic 

instability of the reaction products.

While the carbon monoxide ligand strongly discouraged oxidative addition with high 

activation barriers and high energy products, use of Rh(dmiy)2(PH3)Cl indicated 

promise as a promoter of the C-H activation with a low energy transition structure and 

a thermodynamically favourable product. Further, within the isomer alternatives for a 

particular reaction, those complexes in which the stronger trans effect ligands were 

positioned opposite the reaction site provided a smoother route for reaction thought to 

be caused by promoting interaction of the metal orbitals with the C2-H antibonding 

orbitals.

Despite the promise shown for Rh(dmiy)2(PH3)Cl as a C-H activating complex, C-C 

activation remains elusive with the transition structure and products of the reaction 40 

kcal mol' 1 and 15 kcal mol' 1 higher in energy than their C-H counterparts, 

respectively. While not unexpected, this outcome is somewhat disappointing as results 

are at the high end of the range generally observed for the barrier and product 

separation between related C-H and C-C activation reactions.

A change to the larger and more reactive iridium resulted in an increased capacity for 

C-H activation for 1,3-dimethylimidazolium. The reaction was highly exothermic, 

with little barrier to reaction. As such, it was expected C-C activation may follow suit 

and become a possibility under reaction conditions. While the reaction did remain 

exothermic, extra bulk around the metal centre combined with an inability to 

dissociate coordinated ligands discouraged C-C activation and increased the

Page 124



Chapter 4 -  Rhodium and Iridium Oxidative Addition Reactions

activation barrier far beyond that displayed for any other system examined in this 

chapter.

Overall, both iridium and rhodium complexes seem capable of C-H activation of 

azolium salts to produce carbene complexes if basic ligands are combined with an 

accessible metal centre. Further work is required for C-C activation however, as 

electronic factors are not favourable for rhodium, while steric factors discourage the 

reaction for iridium.
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5 Nickel Catalysts for Azolium C-C Coupling 

Reactions

5.1 Introduction

Recently, Bergman’s group have used rhodium complexes to produce inter- and intra

molecular C-C coupled 2-alkyl azoles1' 7 (Figure 5-1). It is believed the reaction is 

initiated by C-H activation of the equivalent 2-H azole, with experimental results 

indicating a rhodium carbene complex may be involved as a reaction intermediate1.

[RhCl(coe)2]2

PCy3

Figure 5-1 C-C coupling reaction perfomed by Bergman

In addition to this work, our group has succeeded in a similar C-C coupling reaction 

using nickel and palladium catalysts which, unlike Bergman’s reaction, occurs via the 

activation of 2-H azolium salts to give a carbene hydride before going on to create the 

coupled 2 -alkyl azolium salts8.

Interestingly, this reaction was only catalytic when a Ni(cod)2 precursor complex was 

used with 2.2 equivalents of PPh3. When the corresponding carbene catalyst 

Ni(dmiy) 2 was trialed, the C-C coupled product was not produced, as a stable 

nickel(H) hydride was formed9 (Figure 5-2).

c > -Ni

R

N X-

3  * C;?>
H Y >

Nr
.,\V

N R

+ X*

Figure 5-2 Isolated carbene nickel hydride complex

Despite the general similarities between phosphine and carbene ligands, this result 

again highlighted some major differences between the two classes of ligands. We 

believe the catalytic cycle discovered using Ni(PPh3) 2 proceeds through a mechanism 

of oxidative addition of the azolium salt, replacement of a weakly bound ligand by
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alkene, followed by insertion of the alkene into the metal hydride and finally, 

reductive elimination of the product (McGuinness/Cavell Mechanism - Figure 5-3).

4

Figure 5-3 Proposed catalytic cycle (McGuinness/Cavell Mechanism)

This chapter describes the computational study of the proposed reaction mechanism 

for the successful coupling of ethylene and 1,3-dimethylimidazolium by a range of 

NiLiL2 systems. As revealed experimentally, changes in electronic and steric 

properties dramatically affect the outcome of the reaction and as such, we considered 

a range of ligand sets including Li = L2 = l,3-dimethylimidazol-2-ylidene; Li = 1,3- 

dimethylimidazol-2 -ylidene, L2 = trimethylphosphine; Lj = L2 = trimethylphosphine; 

L] = L2 = triphenylphosphine; Li = L2 = tri-/er/-butylphosphine.
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5.2 Computational details

Geometry optimisations and harmonic vibrational frequencies for the Ni(dmiy)2, 

Ni(PMe3)2 and Ni(PMe3)(dmiy) systems were calculated using the B3LYP10' 12

13method with the LANL2DZ basis set, which incorporates the Hay and Wadt small 

core relativistic effective core potential and double zeta valence basis set on nickel 

and phosphorus with the Dunning and Huzinaga14 double zeta basis set on all other 

atoms. Zero point vibrational energy corrections were obtained using unsealed 

frequencies. All transition structures contained exactly one imaginary frequency and 

were characterised by following the corresponding normal mode towards the products 

and reactants.

Geometry optimisations and frequency calculations for Ni(P*Bu3)2 and Ni(PPh3)2 and 

associated cycle were calculated using the ONIOM method15’21, with the phosphine 

phenyl groups partitioned in the lower layer using molecular mechanics (uff22), and all 

other atoms using B3LYP/LANL2DZ level of theory.

Higher level single point energy calculations were performed on all optimised 

geometries at the B3LYP/6-311+G(2d,p)23'25 level of theory. Energies from these 

single point calculations were combined with the thermodynamic corrections at the 

lower level o f  theory to obtain AG298 numbers. All energies quoted in this chapter 

refer to these final AG298values.

All calculations were performed with the Gaussian 0326 set of programs.
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5.3 Results and discussion

5.3.1 Individual step considerations

The overall cycle studied consisted of four main steps: oxidative addition of the 

imidazolium salt to the nickel starting complex (Figure 5-3: 1 -> 2), coordination and 

insertion of an ethylene ligand into the metal hydride bond (Figure 5-3: 2 -> 3 -> 4), 

and reductive elimination of the product (Figure 5-3: 4 -> 1). The main 

characteristics, mechanism and effects of the different ligands on each of the 

individual steps are described in detail below.

5.3.1.1 Starting materials

In general, the nickel starting complexes displayed highly symmetric geometries. Lj- 

Ni-L2 angles were almost linear ranging from 178.23° for the Ni(PMe3)(dmiy) system 

to 179.92° for the Ni(P'Bu3)2 structure. The exception lay in the Ni(PPh3) 2 complex, 

which displayed a slightly bent configuration, with an Li-Ni-L2 angle of 167.44°.

The Ni(dmiy) 2 calculated geometry is in excellent agreement with known crystal
97 98structures of similar complexes ’ . Intra-carbene N-C-N angles are almost identical 

to experimental values (Calculated (N-Me): 102.32°; Caddick (N-'Bu)27: 102.25°; 

Arduengo28 (N-Mes): 102.0°), and the calculated nickel-carbene bond distance of 

1.864A shows only minor variation from the metal-carbene distances obtained by 

Caddick27 (N-'Bu: 1.874A) and Arduengo28 (N-Mes: 1.829A). This variation can be 

attributed to the difference in carbene basicity with slightly longer bond distances 

associated with more basic ligands.

27Figure 5-4 Ni(dmiy)2 bond angles and distances (experimental values in brackets )

The phosphine complexes reflected the same trend for increased metal-ligand bond 

distance as ligand basicity increased, with the diphosphine nickel(O) complexes
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ranging from 2.182A for triphenylphosphine ligands, 2.192A for trimethylphosphine, 

to 2.214A for the more basic tri-tert-butylphosphine. The nickel(dmiy)(PMe3) 

distances highlighted the increased a-donor strength of the carbene ligands compared 

to phosphines, with the nickel-carbene distance slightly shorter than was found in the 

dicarbene case (1.852A), and the nickel-phosphine distance longer (2.214A).

§.3.1.2 Oxidative addition

It has been shown previously that the oxidative addition of imidazolium salts to group 

10 metals can occur readily to form M(H) hydride products 9’29 31 (F igure 5-5).

I

O - V Y  L
/ N ■ . > >H

-------- ►
v y  L T

N/

M-

M= Ni, Pd, Pt
F igure 5-5 Successful experim ental oxidative addition  reactions 

Theoretical studies have indicated this occurs initially through a weak interaction 

between the metal centre and the salt C2, leading to a concerted three-centred 

transition structure in which the C2-H bond becomes elongated as the salt draws 

closer to the metal29,30. The four-coordinate product has generally been formed with 

little or no barrier and the overall reaction is exothermic.

For the series of ligands used in this study, the geometries for the precursor complexes 

and transition structures were quite varied. While all species displayed some form of 

initial interaction, these interactions were by no means uniform (Figure 5-6).
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Ni(PPh3) 2 Ni(P'Bu) 2

Ni(dmiy)2 Ni(PMe3)(dmiy) Ni(PMe3) 2

Figure 5-6 Oxidative addition transition structures

The Ni(dmiy) 2 complex begins with a C2-metal interaction which bends the 2-H of 

the salt out of the imidazolium plane, but does not significantly lengthen the C2-H 

bond distance. The oxidative addition itself proceeds as the C2 and 2-H draw closer to 

the metal, with the transition structure geometry only marginally altered from the 

precursor complex; the major differences a lengthening of the C2 -H bond by 0.036A, 

and a decrease in the LpNi-L2 angle to more closely resemble the square planar 

geometry.

The diphosphine systems Ni(PMe3) 2 and Ni(PPh3) 2 were the first indication of the 

differences between phosphine and carbene ligands in the catalytic cycle. Both 

systems displayed an initial 2-H to metal interaction with the transition structures 

indicating the only driving force necessary for oxidative addition is a slight tilt of the 

incoming imidazolium to simultaneously expose the C2 and the 2-H to the metal 

centre.

t
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While a similar transition structure could be found for the Ni(P'Bu3)2 system, the 

product of this reaction was not the expected four-coordinate oxidative addition 

product. With four ligands in the coordination sphere, the terf-butylphosphine ligands 

overcrowd the small metal and the salt remains intact and at a distance to the nickel 

centre. However, a transition structure with a concerted 3-centred interaction similar 

to that found in similar group 1 0  metal reactions was found when phosphine 

dissociation occurred prior to salt interaction. Interestingly, an analogous transition 

structure could be found for the triphenylphosphine system, but not for the systems 

associated with less facile ligand dissociation i.e. the trimethylphosphine or carbene 

ligands.

The product in the majority of cases was the four coordinate square-planar nickel(II) 

complex, with the change in ligands resulting in only minor changes in geometries. 

Increasing basicity of the trans ligand increased the metal-hydride bond, ranging from 

1.471 A for the Ni(PPh3) 2 complex to 1.493A for the Ni(dmiy) 2 ligand. In the latter 

case, the oxidative addition product NiH(dmiy) 3 shows slightly longer bonds than 

those found in experimental conditions9 (Figure 5-7).

1/493 1
( 1 . 380)

1.920

Figure 5-7 NiH(dmiy)3 bond distances (experimental values in brackets)

The longer distances are consistent with the slightly higher basicity of the N-Me 

carbene over their N-(2,6-dimethyl)phenyl analogues, increasing the trans effect and 

therefore M-L distances. In fact, this trend continues through the calculated series 

with both the carbene Ni-C2 and Ni-H distances decreasing as the basicity of the 

auxiliary ligands decreases (Table 5-1).
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System Ni-Carbene Ni-H Ni-Li Ni-L2

NiH(dmiy) 3 1.920 1.493 1.920 1.980

NiH(dmiy)2(PMe3) 1.912 1.480 1.914 2.366

NiH(dmiy)(PMe3) 2 1.902 1.481 2.355 2.299

NiH(dmiy)(PPh3) 2 1.894 1.471 2.375 2.326

NiH(dmiy)(P'Bu3)* 1.881 1.433 2.336 -

Table 5-1 NiH(dmiy)L2 bond distances (*NiH(dmiy)(P'Bu3) three coordinate)

Despite the diversity in encounter complexes and transition structures, the ease of this 

initial step in the cycle is highlighted by the relative energies of the products and 

starting materials in all cases (Figure 5-8). Minor barriers around 3 kcal mol' 1 exist 

from precursor complex to transition structure for all nickel complexes, with each 

oxidative addition product lying well below its respective starting materials in Gibbs 

Free Energy. While this may not be surprising for the four-coordinate complexes, it is 

an interesting result for the coordinatively unsaturated tri-tert-butylphosphine 

complex and is an early indication of the effect of using very bulky ligands in 

catalytic cycles.
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Figure 5-8 Energies for the oxidative addition step

5.3.1.3 Coordination of ethylene

For the catalytic cycle to continue after oxidative addition, the alkene must be able to 

coordinate to the metal centre before subsequent insertion into the metal-hydride 

bond. Coordination may occur by two alternative routes or a combination of the two 

(Figure 5-9). In a dissociative route, a previously coordinated ligand would leave the 

coordination sphere of the metal, creating an unsaturated three-coordinate metal 

centre to which an ethylene ligand can then coordinate to reform a four-coordinate 

nickel complex either in a cis or trans arrangement (Figure 5-9 a). Alternatively, five- 

coordinate nickel complexes have been identified previously32, so an associative route 

may be followed in which a five-coordinate NiH(dmiy)L2(ethylene) intermediate is 

formed (Figure 5-9 b). Finally, a combination of these options is conceivable in which 

an incoming ethylene directly prompts the dissociation of another ligand (Figure 5-9 

c).
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Figure 5-9 Ethylene coordination reaction mechanisms

A study of these possibilities using the Ni(PMe3)2 as the model indicated a 

dissociative route was most likely for this reaction step. Ethylene does not bind 

strongly enough to the nickel to directly displace an existing ligand in a pseudo 

associative route. Further, the nickel complex with 5 ligands present in the 

coordination sphere consistently rearranged to a four coordinate state with the 

ethylene ligand excluded from the metal centre, regardless of the starting geometry.

As relatively low-energy three-coordinate structures were located and similar nickel 

complexes with high electron donating ligands have been established in experimental 

conditions33, it is likely this is the preferred route in the cycle studied.

For the dissociative route, geometry optimisations revealed the initial three-coordinate 

dissociated complexes optimised with a T-shaped configuration with all ligands 

slightly closer to the metal than their four coordinate counterparts. Phosphine 

dissociation appears relatively straight forward, requiring 18.0 kcal m of1 for ejection 

of the trimethylphosphine (Figure 5-10). This lowers to 15.2 kcal m of1 for the mixed 

carbene/phosphine system, indicating the extra stability of the nickel complex
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associated with the stronger and more basic carbene ligand. As expected, the larger 

and more weakly bound triphenylphosphine reduces the dissociation barrier 

considerably, with dissociation only requiring 7.9 kcal mol' 1 for formation of the 

three-coordinate intermediate. Further, from the oxidative addition step discussed in 

the previous section, the triphenylphosphine and tri-terf-butylphosphine systems may 

initially proceed through a dissociated route, therefore making subsequent ethylene 

coordination straightforward for these systems.

27.427.1

18.1
—  20

15.515.2 Li= PMe3*, L2=dmiy
Lj=Lo=PMe3
L 1= L 2= P ;B u3

L,=L^=PPh,

% _  15
E

I  -  10
0
<  -  5>►»01 u.
s  -  0

W
4>
>

15.3
7.9

7.8

0 .0  / / 0.0

-10

-15

Figure 5-10 Energies for the ethylene coordination step

In contrast, dissociation of a carbene ligand for the Ni(dmiy>2 system appears very 

limited. While the imidazole-based carbenes have been isolated34 and it is therefore 

highly probable they can exist in reaction cycles such as these, they also form very 

strong metal bonds. A combination of this strength and the relative instability of 

nickel three-coordinate complexes increases the barrier for the Ni(dmiy) 2 system to

27.1 kcal m o l1 for this step.
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In general, only the isomers with the Li and L2 ligands in the trans positions were

stable for the three-coordinate intermediates

(Figure 5-11). The sole exception was the

triphenylphosphine system in which an L 1/L2 cis

form was found with only 2 . 0  kcal mol' 1

separating the cis and trans isomers. This

anomaly may prove to be important in our
Figure 5-11 Example 3 coordinate

system as ethylene insertion into the metal-
nickel hydride complex

hydride bond would be expected to occur only

when the ethylene and hydride are located in cis positions, which in turn requires the 

bulkier ligands to be in a cis arrangement on the nickel complex.

Once the three-coordinate intermediate had formed, ethylene coordination was not as 

beneficial to the overall stability o f the system as expected (Figure 5-10: 2 -> 3). In 

three cases (Ni(dmiy)2 , Ni(PMe3)(dmiy) and Ni(PPh3)2) the four-coordinate ethylene 

complex was within 1 kcal m o f1 o f the respective three-coordinate complex, while the 

Ni(PMe3)2  system showed a minor stabilisation of 2.8 kcal m o f1. For the bulkier tri- 

/cr/-butylphosphine intermediate, coordination of an ethylene ligand decreases the 

stability of the complex by as much as 1 2 .1  kcal mol"1, purely due to overcrowding of 

the small metal centre caused by the extra ligand.

Overall, the coordination of the ethylene ligand is a difficult step in most cases. Due 

to the weak binding of ethylene as a ligand and its inability to directly displace the 

phosphine or carbene ligands from the metal centre, dissociation of a coordinated 

ligand is required prior to coordination of the ethylene. The smaller ligands studied 

(dmiy and PMe3) do not dissociate readily, and therefore have significant barriers to 

ethylene coordination. While the bigger phosphine ligands dissociate more readily, 

the remaining bulk on the small metal increases the energy of the four-coordinate 

ethylene intermediate. Despite this, the triphenylphosphine system provides the 

smoothest path for ethylene coordination when compared to all other ligand 

combinations, with a balance between ease of dissociation and excessive bulk in the 

coordination sphere.
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5.3.1.4 Ethylene insertion

Ethylene coordination may only be followed by insertion of the alkene into the metal- 

hydride bond if the ethylene and hydride are adjacent on the metal centre. As no 

stable five-coordinate nickel species was found and dissociation of a ligand trans to a 

carbene is thought to occur, the initial ethylene complex is expected to contain the 

ethylene and hydride ligands in trans positions. As such, rearrangement of the 

ethylene complex to the equivalent cis form would be required before insertion may 

occur.

The size of the metal ligands had the most significant 

impact on stability of the cis form of the ethylene- 

hydride intermediates. For the smaller ligands (dmiy 

and PMe3 combinations), a cis arrangement of the 

ethylene and hydride moieties resulted in a 

significantly more stable complex than the 

corresponding trans form. Interestingly, these 

complexes displayed a very close H-ethylene bond Figure 5-12 Example nickel ethylene

and are reminiscent of an insertion precursor complex hydride cis complex

(Figure 5-12).

A more conventional cis intermediate can be found

for the Ni(PPh3)2 complex in which the 

ethylene ligand is almost perpendicular to 

the plane of the nickel coordination sphere 

(Figure 5-13). The energy of this complex 

reflects the phosphine ligand bulk, which 

can be more easily accommodated when the 

phosphine and carbene ligands are located 

trans to one another. With the two larger 

ligands in adjacent positions, the square 

planar arrangement becomes distorted to 

partially overcome the negative influence from interaction of these ligands, however a 

twist of the ethylene ligand does result in a much more stable ‘insertion precursor’ 

type complex as found for the other systems. While it may seem contradictory that the 

ethylene parallel to the plane takes up less room than the perpendicular alternative, it

Figure 5-13 NiH(ethylene)(PPh3)(dmiy) 
cis complex 

(hydrogens removed for clarity)
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is the combination of ethylene and hydride that reduces steric strain with the C2-Ni-P 

angle opening to 103.2° compared to 97.5° for the conventional cis 

NiH(ethylene)(dmiy)(PPh3) complex.

The tri-/er/-butylphosphine ligand exacerbates the instability of the four-coordinate

ethylene complexes as found for the Ni(PPh3)2

system. While the trans located ethylene and hydride

complex is reasonably stable, enforcing a cis complex

greatly increases the energy of the intermediate as the

two large ligands are positioned in such close

proximity (Figure 5-14). This strain is most evident in

the nickel-phosphine distance which increases from

2.482A for the trans complex to 2.943 A in the cis

equivalent to attempt to compensate for the

overcrowding. Further, there is no stable insertion-
NiH(ethylene)(P/Bu3)(dmiy)

like precursor complex as found with the complexes
cis complex

containing the smaller ligands. As such, it is expected

any twist of the ethylene ligand will directly result in insertion of the ligand into the 

metal-hydride bond and formation of a three-coordinate ethyl product.

Another important factor for migratory insertion comes from the electronic benefits of 

strong trans effect ligands opposite the hydride ligand (Table 5-2). Rearrangement of 

the complexes to the trans form results in exchange of the ethylene ligand for the 

stronger donating phosphine or carbene ligands opposite the coordinated hydride. The 

effect in most cases is an increase in the metal-hydride distance, supporting a more 

straightforward insertion reaction. The only exception once again is for the Ni(P'Bu3 )2 

system, in which the added bulk increases the phosphine ligand to metal bond, 

consequently decreasing the electronic influence of the phosphine ligand. As a result, 

the nickel-hydride bond remains almost constant.
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System Ni-H cis complex (A) Ni-H trans complex (A)
Ni(dmiy)2 1.817 1.462

Ni(dmiy)(PMe3) 1.817 1.462
Ni(PMe3) 2 2.091 1.464
Ni(PPh3) 2 1.761 1.471
Ni(P'Bu3) 2 1.450 1.453

Table 5-2 Ni-H distances for the cis and trans complexes

For the smaller ligand systems that form the pseudo insertion precursor complex, 

insertion is thought to either occur spontaneously leaving a coordinatively unsaturated 

nickel alkyl intermediate to which the dissociated ligand may rejoin forming the alkyl 

complex, or recoordination of the dissociated ligand directly ‘forces’ insertion to 

occur (Figure 5-15). Further, as double alkene insertions have not occurred in 

experimental conditions, it is envisaged that the dissociated ligand would rejoin the 

complex in preference to another alkene.
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Figure 5-15 Ethylene insertion reaction

While the three-coordinate alkyl intermediate can be found in all systems, a potential 

energy surface scan indicated direct recoordination of the incoming ligand proceeded 

smoothly towards the ethyl insertion product for the smaller ligands and as such, it is 

expected this would be the route taken in experimental conditions. This was not the 

case for the large triphenylphosphine and tri-terf-butylphosphine systems, where the
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increased size of the ligand indicated the three-coordinate complex was the favoured 

structure with no stable four coordinate Ni(ethyl)(P'Bu3)2(dmiy) complex located.

Despite the smaller systems indicating direct conversion from the ‘insertion 

precursor’ complexes to the four coordinate ethyl products with assistance from 

ligand reassociation (Figure 5-15 pathway 2), the 3 coordinate complexes have been 

included in all following reaction energy diagrams so as to afford a more direct 

comparison for all systems studied.
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Figure 5-16 Energies for the ethylene insertion step

For the smaller ligand systems, the form of the complex in which the hydride and 

ethylene are adjacent provides a relatively large decrease in energy compared to the 

corresponding trans form (Figure 5-16). This decrease in energy would provide a 

reasonable driving force for the rearrangement with barriers to the subsequent 

insertion reaction relatively small. Combined with the cis form of the ethylene 

complex comparable in energy to the insertion product, the low reaction barrier results 

in a straightforward, yet reversible, insertion step for these systems.
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The Ni(PPh3)2 system provides a somewhat different result. While there is little 

energy difference between the cis and trans forms, the added bulk in these systems 

gives rise to a more stable three-coordinate ethyl complex, with recoordination of the 

dissociated phosphine significantly increasing the energy of the four-coordinate 

insertion product.

The effect of extra bulk is even more prominently displayed in the tri-tert- 

butylphosphine system, with much larger barriers to alkene trans-cis complex 

rearrangement. However, if the cis complex can form, alkene insertion should be 

facile as the resulting three-coordinate complex greatly reduces steric strain created in 

the initial ethylene complex with no further ligand reassociation expected.

Overall, regardless of individual mechanisms, these results indicate the ethylene 

rearrangement and insertion into the metal-hydride bond should be facile for all 

systems, with the no individual barrier exceeding 12.4 kcal mol"1.

5.3.1.5 Reductive elimination

The reductive elimination step discovered for other group 9 and 10 metal carbene 

complexes was mirrored in the catalytic cycle studied here. A concerted three-centre 

transition structure was formed in which a carbene ligand and cis located ethyl group 

approach each other and later draw away from the metal centre to create the 2 - 

ethylimidazolium salt and reform the original nickel(O) complex.

While there is very little variation in structure along the series, the Ni(P'Bu3)2 

complex once again indicates the effects of very bulky ligands in these reactions. In 

this case, only one phosphine is attached directly to the metal and as a consequence, 

the remaining ligands are much closer to the metal than their four-coordinate 

counterparts, despite the relatively high basicity of the remaining ligands.
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In general, the transition structures for all the nickel complexes studied are very 

similar, with the carbene carbon to nickel distances slightly smaller than the ethyl 

precursor complexes. Surprisingly, the 

complexes have Ni-C2  distance within 0.007A 

of each other (1.870A-1.877A) for all but the 

tri-terf-butylphosphine complex, which has a 

slightly shorter bond distance of 1.852 A in 

compensation for the coordinatively 

unsaturated nature of the metal centre. The 

angle of the interaction between the carbene

and ethyl ligands further results in a weak
Figure 5-17 Example reductive

interaction between one of the ethyl
elimination transition structure

hydrogens and the metal centre (Figure 5-17).

As the transition structure moves towards the final products, the resultant imidazolium 

salt interacts quite closely with the nickel(O) complex through the carbene C2 and one 

of the ring nitrogens, breaking the planarity of the imidazolium ring. All L]-Ni-L2 

angles in the product more closely resemble a four-coordinate nickel complex than a 

two-coordinate planar complex consequently stabilising the unsaturated nickel(O) 

complex.

In previous studies, it has been shown that increasing the bulk or decreasing the 

basicity of ligands decreases the barrier to reductive elimination. While this was 

generally true for the ligands used in this study, it was highlighted that electronic and 

steric factors are equally important and cannot be viewed in isolation. The highly 

basic carbene ligands do not have the 3-dimensional steric influence of the phosphines 

and as such, the four coordinate ethyl complex that is the precursor to reductive 

elimination is quite stable, with the barrier for formation of the 2-ethyl salt a high 24.5 

kcal mol'1. Further, the reductive elimination step in the Ni(dmiy)2 case energetically 

favours the nickel(II) ethyl complex over the separated product by 11.2 kcal mol'1.

The exchange of just one of these ligands with the less basic PMe3 ligand lowers the 

barrier to 19.3 kcal mol' 1 and the reductive elimination from the nickel(II) alkyl 

complex becomes a favourable reaction by 4.6 kcal mol'1. However, the double 

exchange to PMe3 or PPI13 ligands only slightly decreases the overall barrier to 17.7 

kcal mol’ 1 and 17.4 kcal mol' 1 respectively. The reductive elimination step remains
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favourable in both cases, with the added bulk of the triphenylphosphine ligands 

increasing the stability of the separated nickel(O) products slightly more than for the 

PMe3 ligands.

The tri-tert-butylphosphine ligand provides an interesting contrast to the four- 

coordinate counterparts. Despite the unsaturated nature due to dissociation of one tri- 

/er/-butylphosphine ligand, the overall barrier to reductive elimination decreases to 

14.8 kcal mol’1. While it could be conceivable the nature of this complex more closely 

resembles a nickel(O) complex with the combined basicity of all ligands much lower 

than other complexes, which promotes the reductive elimination step, the unsaturated 

nature may equally be seen as a disadvantage to ligand interaction and elimination. 

Further investigation is required to elicit the true factors affecting this reaction.

While the separated reductive elimination products range from ±9 kcal mol’1 in 

energy around their respective nickel(II) ethyl complexes, reversal of this step in all 

cases is unlikely with continuation of the cycle by replacement of the loosely bound 

2-ethylimidazolium with another 1,3-dimethylimidazolium salt providing a lower 

barrier to reaction than the reverse oxidative addition of the 2 -ethylimidazolium 

(Figure 5-18).
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Figure 5-18 Energies for reductive elimination

Overall, the reductive elimination step holds a reasonable barrier for all systems. Not 

only is the transition structure relatively high in energy, but the nickel(II) ethyl 

intermediates are low energy complexes in all cases, including the unsaturated th-tert- 

butylphosphine complex. As such, the system that provides the least demanding route 

is the Ni(P/Bu3)2 system with a relatively high energy ethyl complex and a lower 

energy transition structure.
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5.3.2 Overall cycle

The overall energetics reveal some interesting insights into the conversion of 1,3- 

dimethylimidazolium to 1,3-dimethyl-2-ethylimidazolium. The calculated energy 

pathways for each set of nickel complexes are shown in Figure 5-19 to Figure 5-24 

and overall results have reflected those found experimentally.

5.3.2.1 Ni(dmiy)2

While the overall cycle in the C-C coupling of the alkene and imidazolium salt is 

favourable with respect to Gibbs Free Energy, examination of the catalytic pathway 

indicates why the Ni(dmiy) 2 complex has not been successful in the conversion 

(Figure 5-19).
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Figure 5-19 Overall cycle for Ni(dmiy)2
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Although the initial oxidative addition step is facile, there is a significant barrier for 

ethylene coordination (27.1 kcal mol'1) caused by a combination of the unusual 

stability of the nickel hydride complex and the strength of the metal-carbene bond and 

hence reluctance of carbene ligands to dissociate. Later in the cycle, another sizeable 

barrier of 24.5 kcal mol' 1 exists for the reductive elimination of the final 2-alkyl 

product. While these barriers are significant, they are not insurmountable and as such 

are not what is expected to be the cause of the unsuccessful conversion to the 2 -alkyl 

salt. Closer examination of the pathway reveals the nickel dicarbene system is 

ineffective in converting the original salt due to the stability of the reaction 

intermediates compared to that of the final products. In particular, the oxidative 

addition product (Figure 5-19 structure 4) is the lowest energy structure on the 

pathway by more than 5 kcal mol’1; a condition reflected in experimental results. 

Further, an overall reaction barrier for the forward reaction (lowest energy structure to 

highest energy structure) is 29.9 kcal mol' 1 while the activation barriers for the reverse 

reaction are significantly lower, indicating any product that did form could easily 

revert to the stable hydride.

On the whole, the calculated energy pathway for the Ni(dmiy)2 system indicates that 

the stability of the hydride intermediate and relatively high reaction barriers do not 

encourage catalytic conversion of the imidazolium to the 2 -ethylimidazolium; a 

condition further supported by the isolation of the nickel(II) hydride product despite 

the presence of alkene reactants in experimental conditions.

5.3.2.2 Ni(PMe3)(dmiy)

Substitution of one carbene ligand for a trimethylphosphine results in minor changes 

to the catalytic cycle when compared to the dicarbene complex (Figure 5-20).
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As a dissociative route seems probable for the central steps of the cycle and phosphine 

dissociation is preferred by 18.7 kcal mol' 1 over carbene dissociation, four of the 

central structures remain identical to the Ni(dmiy)2 route. As such, energies for the 

Ni(PMe3)(dmiy) route display the same general profile as those found for the 

Ni(dmiy)2 cycle, but reflect the advantage of having a more easily displaced 

phosphine ligand.

In this mixed ligand system, the nickel hydride oxidative addition product is once 

more the lowest energy structure on the overall cycle. Although only marginally lower 

in energy than the four-coordinate ethyl complex (4.8 kcal mol'1), the nickel hydride 

lies a significant 13.3 kcal mol' 1 lower in energy than the separated catalyst and 2- 

ethylimidazolium product and could once again be the undesired resting state of the 

cycle.

While the initial oxidative addition product is still the lowest energy structure on the 

pathway, the two major barriers for ethylene coordination and reductive elimination 

of the final product have been significantly reduced from 27.1 kcal mol' 1 and 24.5 

kcal mol' 1 to 15.2 kcal mol' 1 and 19.3 kcal mol' 1 respectively. While the overall 

barrier to reaction from lowest energy structure to highest energy structure remains 

high at 28.7 kcal m of1, there are relatively low energy intermediates along the 

pathway that provide a smoother pathway with smaller steps to overcome the overall 

barrier, rather than requiring a significant amount of energy for a single step. Further, 

if the barriers to ethylene coordination and reductive elimination are overcome and 

the cycle is allowed to continue to completion, the reverse reaction for oxidative 

addition of the 2-ethylimidazolium product now has a higher individual barrier of 23.9 

kcal mol' 1 to overcome compared to continuation of the cycle by oxidative addition of 

another imidazolium salt.

This reversal of reaction barriers combined with the closer relative energies of the 

reaction intermediates and products presents a much more favourable cycle for the C- 

C coupling reaction despite the overall barrier from lowest energy structure to highest 

remaining relatively high at 28.7 kcal mol'1.
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5.3.2.2 Ni(PMe3)2

Replacement of both carbene ligands with trimethylphosphine did not significantly 

alter the geometries or overall energy trends of the reaction (Figure 5-21).
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Figure 5-21 Overall cycle for Ni(PMe3)2
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The nickel hydride complex is yet again the most stable structure on the pathway 

lying 7.5 kcal m o l1 below the desired product, however the relative energy of this 

intermediate with respect to the rest of the cycle indicates the intermediate is 

considerably less stable than the NiH(dmiy)3 structure discussed previously. Despite 

the advantages of the higher energy hydride with double exchange of the carbene 

ligands to phosphines, the next step of the reaction indicates dissociation of the 

phosphine prior to ethylene coordination is marginally more challenging. With the 

inferior electron donating capacity of the phosphine ligand, the three coordinate 

intermediate created with dissociation of a ligand is a higher energy complex than the 

one with two highly basic carbene ligands. In fact, the relative stability of all 

intermediates has been raised in the double exchange, with each respective step 

approximately 5 kcal mol’1 less stable than the corresponding mixed ligand system. 

This instability is not enough to be restrictive on the overall reaction and can be seen 

as being advantageous as the final products become closer in energy to the low energy 

intermediates.

Overall, the barriers for reaction are marginally lower than that of the mixed 

carbene/phosphine system with the overall barrier down to 26.5 kcal mol’1. More 

importantly, with the energy gap between the hydride and product lower, the 

Ni(PMe3)2 system appears to be an improved catalyst for the C-C coupling reaction 

over the dicarbene or mixed ligand systems.
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5.3.2.3 Ni(PPh3)2

Examination of the potential energy surfaces for the reaction cycle using the 

Ni(dmiy)2 complex indicated catalysis may be halted due to a combination of the 

stability of the nickel hydride intermediate and metal bond strength of the carbene 

ligand disallowing ethylene coordination. While replacement of the carbene ligands 

with trimethylphosphines indicated an improvement in overcoming the obstacles for 

catalysis, the difference in bulk and basicity between the trimethyl and triphenyl 

phosphines exhibited a remarkable effect in the catalytic cycle that indicates why the 

Ni(PPh3)2 system is so successful in this reaction.

Initially, we studied the triphenylphosphine cycle using the same pathway followed in 

previous systems, with dissociation of a ligand occurring to allow coordination of 

ethylene. As indicated in Figure 5-22, the Ni(PPh3)2 catalyst provides a reaction with 

a low energy pathway. Initial reaction barriers do not exceed 7.9 kcal mol' 1 and for the 

first time, the important intermediates are relatively less stable and lie within 3.4 kcal 

m of1 of the final product.
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Figure 5-22 Overall associative cycle for Ni(PPh3)2
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While this cycle in general indicated a very smooth start to the reaction, the reductive 

elimination step was a cause for concern. It was expected that recoordination of a 

ligand would occur before reductive elimination. The extra bulk around the metal has 

been known to promote reductive elimination, at least in part by the reductive 

elimination reducing steric strain around the metal. In this case, recoordination of the 

dissociated ligand increased the energy of the four coordinate ethyl complex by 13.1 

kcal mol' 1 and the reductive elimination transition structure was a further 17.4 kcal 

m o l1 higher in energy. As no other intermediates are thought to occur in between the 

recoordination of the ligand and reductive elimination, this resulted in an overall 

barrier of a high 30.5 kcal mol' 1 for this step alone; a higher barrier than in any other 

reaction studied.

As this reaction has been catalytically active in relatively mild conditions, the high 

barrier found for reductive elimination was unexpected and it appeared likely another 

route may exist. Due to the ease of dissociation of the triphenylphosphine ligands, we 

looked at an overall catalytic route in which one triphenylphosphine remained 

dissociated for the duration of the catalytic cycle as was found for the tri-terf-butyl 

system. As indicated in Figure 5-23, a dissociative route is not only possible, but has 

distinct advantages over an associative one. Most importantly, despite still being the 

largest barrier to overcome, the energy required for reductive elimination drops to 

24.3 kcal mol"1, with the transition structure now only 4.0 kcal mol' 1 higher in Gibbs 

Free Energy than the separated products. All other barriers remain low with 

corresponding intermediates neither too stable nor unstable.
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Figure 5-23 Overall dissociative cycle for Ni(PPh3)2
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It must further be remembered that the ability of the phosphine to dissociate and 

rejoin as required creates a very flexible system. In experimental conditions, a 

combination of these mechanisms may well occur, in which a phosphine may be 

joined to an intermediate and released as a transition structure is reached. Even though 

it is not possible to study all combinations of these types of interactions, the results for 

the distinct associative and dissociative routes reveal an overall catalytic cycle in 

which the intermediates remain close in energy and transition structures relatively low 

in energy, indicating the procession of the reaction would be relatively free flowing.

5.3.2.4 Ni(PfBu3)2

As the triphenylphosphine cycle shows a smooth run for the early part of the catalytic 

cycle with the greatest barrier to reaction being the large amount of energy required to 

reductively eliminate the final product, it was hoped the change to the tri-tert- 

butylphosphine ligand would reduce the energy of the final step and smooth the 

overall reaction. As has been shown in previous studies, increasing the bulk of the 

ligands on the metal centre can facilitate reductive elimination, and while the change 

to the bulkiest phosphine in the tri-ter/-butylphosphine did reduce the reductive 

elimination barrier to 14.8 kcal m ol'1, it also resulted in dramatic changes to the 

overall reaction energetics (Figure 5-24).
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At all points on the reaction pathway, the extra bulk from the tert-butyl groups causes 

overcrowding on the small nickel centre with all optimised structures containing only 

one phosphine attached to the metal centre. While this arrangement allows facile 

oxidative addition and reductive elimination reactions with relatively stable three- 

coordinate intermediates, the extra bulk adversely affects the coordination and 

insertion of ethylene. The limited space around the metal results in a reasonably high 

energy four coordinate ethylene complex. Conversion of this complex to the cis form 

required for ethylene insertion increases the barrier for the overall ethylene reaction to 

24.5 kcal mol'1. As such, it would be expected that the ethylene coordination could be 

the limiting factor when these ligands are in use and not the reductive elimination as 

found in all other systems. Despite this, the significant intermediates remain close in 

energy to the separated products, indicating the reaction may be possible and once the 

ethyl complex has formed, continuation of the catalytic cycle would proceed 

smoothly.

5.3.3 Cycle comparison

Overall, the results for all ligand combinations reflect the delicate nature of the 

catalytic cycle. Three ligand characteristics appear to have an impact on the success of 

the cycle: basicity, bulk and metal-ligand bond strength.

Ligand basicity appears to play only a minor role with the cycle marginally favouring 

the less basic ligands. Increasing the ligand basicity further stabilises some important 

low energy intermediates, in particular the initial nickel hydride and later the nickel 

ethyl complex. In fact, the hydride intermediate is so stable in the Ni(dmiy)2 system 

catalysis halts after the initial oxidative addition step. Decreasing ligand basicity by 

the successive replacement of the carbenes with phosphine ligands destabilises these 

intermediates without excessively raising barriers to further reaction. Despite this, 

examination of the changes in energies from the Ni(dmiy)2 through Ni(PMe3)(dmiy) 

to Ni(PMe3)2 systems does indicate the basicity of ligands has only trivial 

consequences with respect to other characteristics in the system.

The most influential effect on catalysis for this reaction appears to come from the 

ligand bulk and dissociation ability. The major benefit found in the Ni(PPh3)2 system 

not applicable to any of the other systems is the ability of the phosphine to dissociate
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and rejoin the metal as required. As carbenes form strong bonds to the metals with the 

free form of the ligand relatively unstable in comparison to other ligands, it is 

unsurprising the Ni(dmiy)2 system fails as ligand dissociation is required prior to 

ethylene coordination. In particular, the stability of the hydride complex and inability 

of the carbene to readily dissociate make this step insurmountable under normal 

reaction conditions. While these barriers are considerably lower for the 

trimethylphosphine, the reaction becomes straightforward for the triphenylphosphine; 

a ligand well known for easy dissociation. Further, the added bulk of the 

triphenylphosphine ligand can sterically protect the metal centre with the electron 

donating capacity of the newly formed carbene ligand stabilising from an electronic 

viewpoint. However, increasing the bulk and basicity excessively as found in the tri- 

tert-butylphosphine system has harmful consequences on the cycle, with the benefits 

in lowering the barrier of reductive elimination counteracted by the overcrowding and 

therefore destabilisation of four coordinate ethylene intermediates.

Changing the basicity and the bulk of the ligands has dramatic effects on the overall 

reaction, with basicity decreasing the energy of some major intermediates to the point 

that they can be isolated in experimental conditions. A balance of bulk and basicity 

must be found however as excessive bulk causes overcrowding of the small metal and 

greatly decreases the ability of the intermediates to form the required alkene and alkyl 

complexes. Overall, the cycles show the catalytic conversion of 1,3- 

dimethylimidazolium to 2-ethyl-1,3-dimethylimidazolium can be significantly 

influenced by minor changes in steric or electronic properties of the nickel catalyst. 

The Ni(PPh3)2 complex studied displays the most favourable reaction conditions, with 

all barriers relatively small and the important intermediates not excessively stable; a 

result reflected in experimental conditions.
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5.3.4 Catalysis at the azolium 5-carbon

Catalysis using the NiL2 system has been shown to be successful in creating 2-alkyl 

azolium salts. In addition, Crabtree’s group reported carbene complexes from azolium 

metallation where the carbene was attached to iridium through the C5 carbon instead
o  <r n

of the usual C2 bonding ’ . Our group later reported similar C5 carbene attachment 

to platinum via oxidative addition reactions . As such, it may be possible to create 5- 

alkyl complexes by using the same catalysts studied in this chapter and blocking the 

C2 position of the starting azolium salt.

In order to study a model of the C5 addition, we chose the trimethylphosphine catalyst 

as our basis for comparison. Although the triphenylphosphine is the successful 

catalyst in experimental conditions, it is computationally expensive and the 

comparison between the two systems in the previous sections gives an indication as to 

the trend expected for the simpler reaction.

Overall, the reaction geometries for the C5 

addition are remarkably similar to those for the 

corresponding C2 reaction. The major difference 

for the two reactions is the stability of the 

oxidative addition precursor, with a relatively 

stable precursor found for the C5 addition where 

both salt backbone carbons form a weak bond to 

the nickel causing the attached hydrogens to be Figure 5-25 Azolium 5 addition

bent out of the plane of the imidazolium ring oxida,ive addi,ion precursor

(Figure 5-25 ). These bonds must be broken before the traditional oxidative addition 

transition state is reached, forming a reasonable barrier of 18.9 kcal mol’1 not found 

for any of the reactions where addition occurs in the 2  position.

Energy results indicate addition at the 5 position could be possible following the same 

catalytic cycle proposed for the C2 addition (Figure 5-26). The overall reaction 

displays a very similar trend to its C2 counterpart, with barriers to ethylene 

coordination, insertion and reductive elimination almost identical. Despite this, all 

intermediates for the 5 addition are higher in energy than their 2-addition counterparts 

by between 5 to 10 kcal mol’1. As the only differing factor in this reaction is the 

carbene ligand itself, this difference can be attributed to the strength of the carbene
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ligand formed, with the C2 flanked by 2 nitrogens resulting in a stronger and more 

symmetrical ligand than the C5 equivalent.

On the whole, the C2 addition product is slightly more favourable in energy than the 

5-ethylimidazolium and when this result is combined with the instability of the 5- 

addition intermediates, it would be assumed that addition would occur at position 2  if 

the option of both 2-H and 5-H addition were available in experimental conditions. 

However, these results do indicate that 5-addition may be possible under favourable 

conditions if the 2 -position were blocked, for example by having a 2 - 

alkylimidazolium starting material.
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5.3.5 Catalysis for N-methylimidazole

As mentioned previously, Bergman has been successful recently in C-C coupling 

reactions of imidazoles using rhodium catalysts1'7. In these reactions, various 

imidazoles were coupled with alkenes to produce 2 -alkylimidazoles in relatively mild 

conditions with no activation of the imidazole required. Although a different route to 

the traditional one studied here has been suggested for this reaction, we decided to 

investigate the possibility of the coupling reaction for imidazoles using nickel and the 

McGuinness/Cavell mechanism indicated for the related imidazoliums (Figure 5-27).

4

Figure 5-27 Catalytic cycle for azole/alkene C-C coupling

Once again, the trimethylphosphine model system was used to give an indication of 

the success of this reaction in a computationally efficient manner.

Following the reaction pathway of oxidative addition, ethylene coordination and 

insertion and reductive elimination, the substitution of the imidazolium salt reactant to 

imidazole drastically changes most facets of the reaction geometries and energies.
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While the overall conversion is energetically more favourable than for the 

corresponding imidazolium salt (Figure 5-28), the intermediates present some 

interesting challenges to overcome if the reaction is to be successful.

The initial oxidative addition step is endothermic, with the barrier not insurmountable, 

but relatively large at 15.8 kcal m o l1. Once the four-coordinate complex has formed, 

ethylene coordination, rearrangement and insertion into the metal-hydride bond does 

not require a large amount of extra energy, however each intermediate is still 

relatively unstable when compared to the starting materials. Most importantly, the 

reductive elimination transition state is a considerable 34.9 kcal mol' 1 above the 

separated starting materials.
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While previous cycles for the corresponding imidazolium indicated similar barriers 

from highest point to lowest point, the cycle in this case has no lower energy 

intermediates that can provide some early resting states. As such, the reaction would 

have to proceed directly from start to finish with no reversal of reaction at any point. 

This is highly unlikely in experimental conditions and it is not surprising that the 

catalysts used have been unable to directly catalyse the reaction without prior 

imidazole activation.
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5.4 Conclusions

The calculated energies herein combined with experimental results indicate the 

mechanism for the catalytic conversion of imidazolium salts to 2 -ethylimidazolium 

salts follows a route of oxidative addition, followed by ethylene coordination, 

insertion and reductive elimination of the product.

The Ni(dmiy)2 complex does not catalyse the reaction experimentally, however, the 

isolation of the oxidative addition product along with the calculations here indicate 

the hydride complex is indeed an intermediate for the catalysis using similar 

phosphine ligands. Calculations reveal the hydride complex is consistently one of the 

more stable intermediates on all pathways, and the barriers for ethylene coordination 

via replacement of a strong carbene ligand, and reductive elimination are high and 

discourage the catalytic cycle in the dicarbene case.

In contrast, the Ni(PPh3)2 complex successfully catalyses the reaction in experimental 

conditions. Calculations indicate a reasonable barrier to product reductive elimination 

still exists in this case, however, the bulk and lower basicity of the triphenylphosphine 

ligands destabilises many of the intermediates with respect to their Ni(dmiy) 2 

counterparts, allowing a smoother reaction with a relatively more stable product. As 

the overall barrier for reaction (lowest energy structure to highest energy structure) is 

almost identical for the two reactions (Ni(dmiy)2: 29.9 kcal mol'1; Ni(PPh3)2: 30.5kcal 

mol’1), it becomes clear the destabilising of important intermediates is vital for the 

cycle to continue.

While the other nickel complexes have not been tested experimentally for catalytic 

activity, they provide interesting insight into the factors affecting the overall cycle. 

Increasing the basicity of the ancillary ligands has the most significant effect on the 

oxidative addition reaction and while facile in all cases, the most basic ligands 

increases the relative stability of the four-coordinate nickel hydride complex. In all 

cases, the ethylene insertion occurs relatively easily, with the initial formation of the 

ethylene complex the most significant barrier. The instability of the five-coordinate 

ethylene complexes suggests that a dissociative route must be followed. As such, 

ligand dissociation must be facile, which is not the case for the strongly bound 

carbene ligands. Dissociation occurs much more readily for the phosphine ligands, 

with both bulk and basicity playing a part in the stabilisation of the dissociated 

complex. However, excessive bulk as found in the case of the tri-tert-butylphosphine
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ligands adversely affects some important intermediates by overcrowding the metal 

centre and decreasing the stability of the four coordinate ethylene complex required 

before insertion can take place.

Once again, reductive elimination is enhanced by the bulk of the ligands. Although 

basicity brings down the relative energy of the transition states, it also lowers the 

relative stability of the precursor ethyl complex and leaves the barrier to reaction 

unchanged. The bulky ligands indicate a destabilisation of the transition structure and 

lowering of the barrier to reductive elimination; an important factor as results show 

this transition structure is the highest energy structure that must be overcome in all but 

the Ni(P/Bu3)2 reaction pathway.

Overall, the results indicate the delicate nature of the catalytic cycle with ligand bulk, 

basicity and ligand-metal bond strength all playing a part. Despite only the Ni(PPh3)2 

complex catalysing the C-C coupling reaction experimentally, substitution to other 

ligands has provided vital input in elucidating the mechanism and facilitating catalyst 

engineering.

In reactions involving azole and azolium salts have generally shown C2 activation and 

coupling, recent results indicate reaction at the C4 or C5 positions is possible in 

certain conditions. Energy calculations using the McGuinness/Cavell mechanism 

indicate the unhindered C2 reaction is the favourable one, with all corresponding 

intermediates and reaction barriers at lower relative energy. Despite this, the energy 

differences between the two reactions are moderate with the majority of C5 

complexes lying within 10 kcal mol' 1 o f their C2 counterparts. As indicated in 

experimental results, blocking of the ring C2 could well lead to alternative reaction at 

the ring C5 position.

Further results by Bergman indicate the related azoles can be successfully coupled in 

similar reactions using rhodium catalysts. While the reactions in this case were 

successful with unactivated azole reactants, theoretical results indicate this would be 

unlikely for related nickel catalysts under the redox mechanism studied herein, with 

all intermediates much higher in energy than the azolium counterparts and the 

reductive elimination barrier being particularly restrictive.
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6 Rhodium Catalysts for C-C Coupling Reactions

6.1 Introduction

In 2001, Bergman et al. reported the intramolecular coupling of alkenes to heterocycles 

to create 2-functionalised azoles under mild conditions1' 5 (Figure 6 - 1). Their work 

extended to a range of different imidazoles, thiazoles and even oxazoles1. Variations on 

the initial reactants were later found to be successful, including functionalisation built 

into the reacting alkene, electron withdrawing and donating groups in the imidazole ring 

itself, and intermolecular reactions in which the alkene was not a chelating arm of the 

reacting azole2’5.

[R h C l( c o e )2] 2

X  =  N -R , S , O

Figure 6-1 C-C coupling reaction

In general, the C-C coupling reactions were performed using a [RhCl(coe)2]2 precatalyst 

in the presence of PCy3. While the reaction was catalytic at 150°C with yields 

frequently in the 70-80% range, addition of a weak acid was found to increase the rate 

of the reaction considerably .

To try to elucidate a mechanism for the catalysis, the reaction

was performed at reduced temperature with stoichiometric

quantities of the rhodium precatalyst and phosphine ligand . This

change in experimental conditions led to the isolation of a
Figure 6-2 Isolated

rhodium(I) carbene complex (Figure 6-2) which, when rhodium carbene
intermediate

reintroduced into a catalytic environment, proceeded with

identical results to those established previously. Monitoring of

the reaction by NMR confirmed the carbene intermediate was present in significant

quantities throughout the reaction sequence, indicating it is an important intermediate in

the catalytic cycle.

As such, Bergman et al. combined experimental and theoretical results to propose a 

mechanism for the reaction involving initial C-H activation of the azole to form the

/  R h
x\\CI

N H
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carbene complex (Figure 6-3: A -> B), followed by insertion of the alkene into the 

rhodium-carbene bond (Figure 6-3: B -> D), proton transfer (Figure 6-3: D -> F) and

Figure 6-3 Catalytic cycle for intramolecular C-C coupling proposed by Bergman

As the carbene complex (Figure 6-3: B) appeared to be a resting state of the cycle, 

theoretical results for the proposed mechanism presented by Bergman proceeded from 

this complex and did not include formation of this rhodium carbene from the reactants. 

However, from this point, the highest barrier to reaction was associated with the alkene 

insertion (Figure 6-3: B -> D), standing at 47 kcal mol' 1 with subsequent steps 

progressively less energetically demanding.

In general, the rhodium C-C coupling reaction between azoles and alkenes performed 

by Bergman appeared remarkably similar to the related azolium salt/alkene coupling 

studied in the previous chapter using the Cavell/McGuinness mechanism for nickel 

catalysts6"8. Further, the proposed mechanism for the rhodium catalysis involved similar 

steps, albeit in a modified order and with additional steps. As such, it seems possible the 

oxidative addition, insertion and reductive elimination cycle of the Cavell/McGuinness

reductive elimination of the final product2 (Figure 6-3 : F -> A).

H3P////,. ..*\\CI
A

E
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mechanism may be a viable alternative to the Bergman mechanism for rhodium C-C 

coupling reactions in certain circumstances (Figure 6-4).

V""CI
PHa

\ < * CI
H3P ^  ^ P H 3 \ m /  \ ^ p H,

-H

C^N

2PH 3

Rh"
\=I

Rh:

V n

HjR/,, ,* a  Rh-^*CI

h3p ^  ^ p h 3 h Ph3

/  /--"H
, ll'h i,. I ,lrt\\CI

6 0 Rĥ H 3

hi,, X\\\CI 
•Rh-

J  P H 3

k / N

Figure 6-4 Proposed catalytic cycle for intramolecular C-C coupling of N-butylimidazole

This chapter outlines studies of the initial steps of Bergman’s cycle to create the 

rhodium carbene complex, with a comparison of the completed Bergman cycle to the 

Cavell/McGuinness mechanism. Further, alternative products due to alkene 

isomerisation and alternative alkene coordination are examined, in addition to the 

introduction of an acid catalyst into the reaction environment.
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6.2 Computational details

Geometry optimisations and harmonic vibrational frequencies for all systems were 

calculated at the B3LYP9" level of theory with the LANL2DZ basis set, which 

incorporates the Hay and Wadt12 small core relativistic effective core potential and 

double zeta valence basis set on rhodium, phosphorus, chlorine and sulfur with the 

Dunning and Huzinaga13 double zeta basis set on all other atoms. Zero point vibrational 

energy corrections were obtained using unsealed frequencies. All transition structures 

contained exactly one imaginary frequency and were characterised by following the 

corresponding normal mode towards the products and reactants.

Higher level single point calculations were performed on the optimised geometries at 

the B3LYP level with a LANL2augmented:6-311+G(2d,p) basis set, incorporating the 

LANL2 effective core potential and a large LANL2TZ+(3f) basis set on rhodium. This 

basis set was obtained by us in the same way as described for the Pt LANL2TZ+(3f) 

basis set reported previously14. All other atoms used the 6-311+G(2d,p)1517 basis set. 

Energies from these single point calculations were combined with the thermodynamic 

corrections at the lower level of theory to obtain AG298 numbers. All energies quoted in 

this chapter refer to these final AG298values

All calculations were performed with the Gaussian 0318 set of programs.
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6.3 Results and discussion

6.3.1 Imidazole catalysis

6.3.1.1 Completion of the Bergman cycle

As mentioned in the introduction, the cycle proposed by Bergman proceeded from the 

rhodium carbene complex without investigation of the mechanism for the formation of 

this complex. He did, however, mention this complex was most likely formed through 

alkene coordination to the starting rhodium complex, followed by C-H activation. This 

section outlines computational studies on these initial steps and the subsequent 

completion of Bergman’s catalytic cycle.

6.3.1.1.1 Alkene coordination and oxidative addition

Due to the nature of the reaction studied, it is assumed the alkene arm of the imidazole 

would at some phase in the cycle be directly coordinated to the rhodium centre. While it 

is feasible that coordination may occur either before or after oxidative addition, the 

triphenylphosphine ligand used in experimental conditions is labile and it is likely an 

unsaturated Rh(PR3)2Cl fragment and the alkene arm of an imidazole could combine 

relatively easily to form an alkene complex 

prior to oxidative addition (Figure 6-4 1 2).

In fact, displacement of a phosphine by the 

alkene in our model system indicated the 

alkene complex was only 8.5 kcal mol' 1 higher 

in energy than the triphosphine starting 

complex, with the imidazole effectively Fi8ure 6“5 Initial rhodium alkene complex (2)

‘dangling’ and having no direct interaction 

with the metal (Figure 6-5).

Dissociation of an additional phosphine from the initial alkene complex would allow 

the imidazole to interact with the metal centre and consequently permit oxidative 

addition (Figure 6-4 3-> 5), promoted in part by the close proximity of the imidazole to 

the reacting centre facilitated by the chelation of the alkene arm. Geometry 

optimisations of this initial interaction show a weak bond forming between the rhodium 

and the C2 of the imidazole, with the hydrogen bent out of the plane of the ring (3). As 

found for previous oxidative addition reactions19,20, the initial C2 interaction is
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followed by a three-centred transition structure (4) before formation of a five coordinate 

hydride complex (5).

The oxidative addition reaction for the imidazole is not an energetically favourable one 

(Figure 6 -6 ).
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Figure 6-6 Oxidative addition step for rhodium C-C coupling catalysis

After the initial alkene complex has formed, dissociation of another phosphine to allow 

interaction between the imidazole and the metal centre is energetically reasonable, with 

a further 13.9 kcal mol’1 required to allow the double dissociation. From this point, the 

oxidative addition transition structure requires an extra 17.1 kcal mol’1 to overcome; a 

total of 39.5 kcal mol*1 from the separated starting materials. This relatively high barrier 

is thought to be due in part to the dissociation required for reaction, and further to the 

strength of the C-H bond in the unactivated imidazole.
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Further hindering the reaction is the stability of the oxidative addition product. The 

resulting aryl ligand is moderately weak and as such, the hydride product of the reaction 

is relatively unstable, lying 35.3 kcal mol'1 higher in energy than the reactants.

With all these factors taken into consideration, the initial oxidative addition reaction is 

not a favourable one and results in a high-energy intermediate.

6.3.1.1.2 Formation o f  the carbene complex

The cycle proposed by Bergman uses the carbene complex resting state as the zero 

point energy of the reaction, with formation of the carbene occurring after C-H 

activation of the imidazole starting material as studied in the previous section2. From 

the initial oxidative addition reaction, it is assumed the hydride ligand could migrate to 

the imidazole nitrogen, thus forming the carbene complex used as the starting point in 

Bergman’s studies and as indicated in experimental conditions.

Formation of the carbene complex from the hydride appears to be a relatively 

straightforward process (Figure 6-7).
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Figure 6-7 Formation of the rhodium carbene complex (kcal mol'1)
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The geometry of the transition structure indicates that hydride migration to permit 

formation of the carbene complex requires the hydride to 

be relatively distant to both the metal and the imidazole 

nitrogen (Figure 6 -8 ). Further, the rhodium switches 

from a formal Rh(III) state to Rh(I) in this step with the 

individual barrier 15.8 kcal mol’1. Once formed however, 

the carbene complex proves to be highly stable and is

33.2 kcal mol*1 lower in energy than the alkene hydride

complex. Figure 6-8 Transition structure
for hydride migration to form 

In addition, reversal of hydride migration from the the carbene complex

carbene complex to the corresponding hydride

complex is highly unlikely, requiring 49.0 kcal mol*1 for activation and resulting in a 

much less stable intermediate.

6.3.1.1.3 The overall Bergman cycle

Combining the alkene coordination and oxidative addition steps with the cycle 

presented previously by Bergman2 results in an interesting overall mechanism (Figure 

6-9).
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As indicated previously, the initial oxidative addition step is endothermic with a 

reasonable barrier to reaction and high-energy hydride product. Continuing with the 

catalytic cycle, hydride migration from the oxidative addition product to form the 

carbene complex may not appear restrictive as an individual step, however when 

viewed in sequence it adds a further barrier to the preliminary steps of the reaction, 

increasing the overall barrier from the separated reactants to the carbene complex to a 

high 51.1 kcal mol' 1 and without the presence of low energy intermediates.

Despite the challenge of the initial steps of the reaction, formation of the carbene 

complex results in a remarkably low-energy intermediate. At only 2.1 kcal mol' 1 higher 

in energy than the starting materials, this complex is over 2 0  kcal mol' 1 more stable than 

any other of the central intermediates and it is unsurprising Bergman was able to isolate 

this complex in experimental conditions.

Interestingly, continuation of the cycle from the carbene intermediate requires only 

fractionally less energy than the reversal of the hydride migration and reductive 

elimination of the starting materials, with activation energies standing at 46.9 kcal mol' 1 

and 49.0 kcal mol' 1 respectively. These high barriers on either side of the stable carbene 

complex are consistent with the isolation of the resting state of the cycle and regardless 

of whether for the forward or reverse reaction, it is expected reaction would proceed 

smoothly towards the separated products, with no remaining barrier in either direction 

exceeding 9 kcal mol'1.

Page 187



Chapter 6 -  Rhodium Catalysts for C-C Coupling Reactions

6.3.1.2 The Cavell/McGuinness mechanism

As discussed, the experimental work performed by Bergman included successful 

coupling of a range of azole species to alkenes in both inter- and intramolecular 

reactions to produce 2-addition products. In the previous chapter, we showed a similar 

reaction using azolium salts and a nickel catalyst followed a route of oxidative addition, 

alkene coordination and insertion into the metal hydride, followed by reductive 

elimination of the final product.

As rhodium is well known for supporting oxidative addition and reductive elimination 

cycles in catalysis, it seems plausible the same cycle could be followed for this reaction. 

In this case, the initial steps of the reaction, notably the alkene coordination and 

oxidative addition, would be identical to those described in the previous section for the 

Bergman reaction. From this point, the hydride migration studied by Bergman would be 

replaced by the direct insertion of the alkene into the Rh-C bond of the aryl ligand, 

followed by direct reductive elimination of the product.

To allow a direct comparison to the mechanism proposed by Bergman, we originally 

studied the cycle for the creation of the branched 5-membered ring product with a 

Rh(PH3)Cl base. Described below are the results of the calculation for each of the 

individual steps, followed by a comparison of these results to those discovered by 

Bergman.

63.1.2.1 Alkene insertion

Once the rhodium hydride has formed from the alkene coordination via oxidative 

addition (Section 6 .3.1.1.1), the insertion of the alkene into the metal hydride bond is 

relatively facile (Figure 6-4 5~> 7). As the geometry optimisation of the oxidative 

addition product indicated the alkene ligand is most stable perpendicular to the rhodium 

plane, only a small movement of the hydride ligand towards the alkene itself is required 

to reach the insertion transition structure (6 ). As the new carbon hydride bond forms, 

the other alkene carbon draws closer to the metal centre as a new alkyl to metal a  bond 

forms.

Due in part to the relatively small change in geometry required and close proximity of 

the alkene and hydride ligands, the barrier for the insertion reaction is very small at only

2.9 kcal mol' 1 (Figure 6-10).
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Figure 6-10 Alkene insertion step for rhodium C-C coupling catalysis

Despite this low barrier to insertion, the resultant alkyl complex is only 2.4 kcal mol*1 

more stable than the hydride alkene complex, and with a low barrier to reaction, the 

reverse P-hydride elimination reaction may occur as rapidly as the formation of the 

alkyl complex. As such, this step may be seen as a facile yet easily reversible step in the 

overall reaction.

6.3A .2,2 Reductive elimination

The reductive elimination of the final product occurs when the imidazole and alkyl 

ligands produced by the alkene insertion draw closer to one another (Figure 6-4 7-> 9), 

with a twist of the imidazole allowing interaction with the orbitals of the alkyl ligand.

Due to the open nature and bonding ability of the divalent imidazole nitrogen, the

product of the reductive elimination shows a strong

nitrogen to metal bond as the product rotates and

the nitrogen becomes available as a donor ligand

(Figure 6-11). This interaction aids in stabilising

the coordinatively unsaturated metal centre created

by the coupling of the two organic ligands and

must be broken by displacement of the resultant Figure 6-11 Reductive elimination
nitrogen-rhodium interaction (9)
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imidazole by phosphines or a new uncoupled imidazole to restart the catalytic cycle.

The reductive elimination energetics combine a reasonable barrier to reaction with a 

highly exothermic reaction (Figure 6-12).
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Figure 6-12 Reductive elimination step for rhodium C-C coupling catalysis

Standing at 22.5 kcal mol'1, the barrier to reductive elimination is not insignificant.

Once overcome however, the energy benefits are considerable with the nitrogen-bound 

imidazole product 28.3 kcal mol' 1 lower in energy than the four-coordinate alkyl/acyl 

complex, and the further separation of the loosely bound imidaozle product and 

regeneration of the starting rhodium complex gaining a further 17.1 kcal mol'1. As such, 

the reductive elimination itself is a thermodynamically favourable step, albeit one with 

a reasonable individual barrier to reaction.
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6.3.1.2.3 Overall cycle

The overall results employing the Cavell/McGuinness mechanism exhibit a challenging 

catalytic cycle. As can be seen from the combined energy results, the overall route 

presents some high barriers to reaction with the majority of important intermediates 

relatively high in energy (Figure 6-13).
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The initial oxidative addition is unfavourable, with a large activation energy and a four 

coordinate hydride product 35.3 kcal mol' 1 less stable than the separated starting 

materials. While the insertion of the chelated alkene into the metal hydride appears 

relatively straightforward as an isolated step, the starting hydride and resultant alkyl 

complexes are still distinctly unstable with respect to the starting materials at 35.3 and

32.9 kcal mol' 1 respectively. Further, the high-energy alkyl product of the insertion 

reaction becomes the starting complex for the reductive elimination, which in itself has 

an individual barrier of 22.5 kcal mol'1. While independently this is not a significant 

barrier, combined with the relative instability of the intermediates that lead up to the 

reductive elimination, the overall barrier to the cycle is found to be a restrictive 55.4 

kcal mol'1.

Despite the overall reaction being quite favourable with the C-C coupled product 12.5 

kcal mol' 1 lower in energy than the separated reactant, it appears unlikely that the 

Cavell/McGuinness mechanism studied here would be the favoured route of reaction. 

The high barriers required for reaction are not countered by any energy gains from 

lower energy intermediates or catalyst resting states, with all but the final step easily 

reversible. As such, if  this mechanism is competitive in experimental conditions, other 

factors not yet considered must have significant influence in the cycle. Consequently, 

recoordination and dissociation of phosphines, which may significantly affect the 

stability and characteristics of important intermediates, is examined in the next section.
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6.3.1.2.4 Floating phosphines

In the initial study of the Cavell/McGuinness mechanism above, the rhodium centre 

studied contained only the ligands present in the Bergman mechanism to provide a 

direct comparison to his results. However, one of the most significant differences in the 

Cavell/McGuinness mechanism and that proposed by Bergman is the oxidation state of 

the metal centre. Bergman’s mechanism proceeds from the rhodium(I) carbene 

intermediate, and continues with the formal + 1  charge on the metal for the majority of 

the catalytic cycle. As such, the intermediates are generally square-planar with only a 

single phosphine attached to the metal at any one time. Conversely, the 

Cavell/McGuinness mechanism involves three negatively charged ligands and it is 

likely that the octahedral rhodium(IH) is the favoured geometry when relatively small 

ligands are in use.

As experimental conditions generally have an excess of phosphine in the reaction 

systems and products or intermediates with potentially coordinatively unsaturated 

complexes did not seem favourable, we decided to study the Cavell/McGuinness 

mechanism allowing the phosphines to dissociate and reattach for stability at any point.

Most structures along the pathway displayed improved stability with coordination of an 

extra phosphine (Figure 6-14).
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Figure 6-14 Energies for the Cavell/McGuinness catalytic cycle with extra phosphines
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The oxidative addition reaction proves the only exception to the rule, with the precursor 

complex and transition structure from the rhodium(I) starting material to the 

rhodium(IH) product marginally higher in energy than their single phosphine 

counterparts by 7.2 and 0.9 kcal mol' 1 respectively. However, once the addition has 

been completed, the true six coordinate complex is significantly more stable than the 

five coordinate hydride. From this point, the reaction energies drop by approximately 

10 kcal m of1 for each corresponding six-coordinate structure, with the large 55.4 kcal 

mol' 1 barrier for reductive elimination undergoing a significant reduction to 41.8 kcal 

mol'1. This is consistent with previous results indicating bulk around the metal centre 

promotes reductive elimination.

Another significant improvement noted for additional phosphine interaction is the 

possibility of step reversal. Without consideration of the extra phosphines, forward 

reaction and therefore catalysis relies on each step following in sequence. With low 

energy reactants, high forward barriers and many intermediates similar in energy, 

completion of the full cycle with only a single phosphine present seems unlikely, 

especially with such low barriers for reversal of all but the final step. With the stability 

afforded by the extra phosphine, once the initial oxidative addition has occurred, the 

small barrier to insertion implies reductive elimination of the product is as equally 

probable as the reverse reductive elimination of the starting imidazole. This effectively 

gives a catalytic resting state, which was unseen in the single phosphine cycle.

Overall, these results indicate the lability of the phosphine is an important consideration 

in the catalytic cycle. While the unsaturated nature of a doubly dissociated complex 

improves oxidative addition, recoordination of a phosphine after this step promotes all 

further steps in the reaction by stabilising intermediates and significantly lowering the 

overall reaction barrier. In general, consideration of phosphine lability indicates this 

mechanism may well be in operation under experimental conditions.
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6.3.1.3 Comparison of the Bergman and Cavell/McGuinness mechanisms

A direct comparison of the energies for the Cavell/McGuinness and Bergman 

mechanisms reveals some interesting insights into catalytic cycles (Figure 6-15).
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Figure 6-15 Energy comparison of the Cavell/McGuinness and Bergman mechanisms
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At first glance, it seems likely the Cavell/McGuinness mechanism would be the 

preferred mechanism after the initial C-H activation with the majority of intermediates 

directly following oxidative addition lower in energy, fewer steps, and most 

importantly, only one large barrier for reductive elimination of the final product. 

Conversely, the Bergman mechanism contains two large barriers to reaction, and 

several more steps for reaction completion.

While these observations suggest the Cavell/McGuinness mechanism could be active 

for this reaction, the experimental evidence confirming the presence of the carbene 

complex by NMR observations during catalysis and the actual isolation of this complex 

indicate an alternate mechanism may be in operation at certain temperatures. With the 

exception of the reactants and final products, this complex is by far the most stable 

intermediate over both routes and as such, the energy gain from reaching this complex 

may be the driving force for the overall reaction.

Another important observation is the barriers on either side of the carbene complex. 

With these barriers within 2.1 kcal mol' 1 of each other, continuation of the cycle in 

either direction would be feasible, implying both mechanisms may be operating in 

tandem, as indicated below in Figure 6-16.
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0 .0  kcal mol' 1 -4.9 kcal mol' 1

Figure 6-19 Energies for the five- and six-membered products

It is envisaged that the different products would be the result o f different interactions 

between the reactant and the metal centre. In the system studied herein, we considered 

two possible interactions that could affect the outcome of the reaction. Firstly, the 

direction of the coordinated alkene with respect to the other ligands, in particular the 

hydride ligand, could result in different intermediates and final products. Secondly, 

steric bulk from the geminal methyls may directly affect the interaction of the ligands 

leading to alternative intermediates and consequently, a different product. These 

possibilities are examined in more detail below.

6.3.2.1 Alkene binding direction

When the alkene is located on the end o f the alkyl chain, as may occur for both 

reactants in Figure 6-17 and Figure 6-18, different binding methods to the metal may 

result in different products depending on the orientation of the alkene with respect to 

other reacting ligands (Figure 6-20).

Figure 6-20 Different alkene binding methods

Further, as indicated in Bergman’s initial paper on these coupling reactions1, the N- 

homoallyl benzimidazole undergoes isomerisation in solution, which could also lead to 

alternative alkene binding and subsequent product formation (Figure 6-21).
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6.3.2 Imidazole catalysis - alternative products

The mechanism studied theoretically by Bergman2 concentrated on a branched five- 

membered heterocycle attached to the original imidazole ring as the reaction product. 

Experimentally, this product had been found where the A-homoallyl benzimidazole 

substrate was combined with Wilkinson’s catalyst1 (Figure 6-17).

\  Rh(PPh,),CI f If \

Figure 6-17 Conversion of jV-homoallyl benzimidazole

However, when a similar alkene substrate was used with geminal methyl groups on the
■y

alkene arm, a non-branched six membered product was formed in preference (Figure 

6-18).

[RhCl(coe)j]r  PCy3

Figure 6-18 Conversion of N-homoallyl benzimidazole with geminal methyl groups

The isolation o f a single, pure product in high yields in these reactions and not a 

mixture o f isomers implies that a single mechanism is in operation. However, if the 

mechanism proposed by Bergman is adhered to in experimental conditions, then the 

substrates described in Figure 6-17 and Figure 6-18 should produce the same five- 

membered heterocycles, albeit with extra methyl groups in the resulting ring for the 

reactant in Figure 6-18.

A direct comparison o f the two isomers for the products (excluding geminal methyl 

groups) indicates the six-membered product is thermodynamically favoured (Figure 

6-19). What, then, are the distinguishing experimental factors that make the five- 

membered ring the preferred product for the straight alkene chain in Figure 6-17?
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Figure 6-21 Ar-homoallyl benzimidazole isomers (kcal mol*1)

Theoretical calculations and experimental results indicate the favoured isomer is in fact 

isomer B (Figure 6-21), however, the difference in energy between the three isomers is 

minimal, indicating all three would be available to react with the rhodium catalyst.

Preliminary investigations indicated isomer C is not able to coordinate to rhodium in a 

manner consistent for the catalysis required. With the alkene located so close to the C2 

of the imidazole, steric strain disallows simultaneous coordination of the alkene and the 

imidazole ligand. As such, this isomer is not considered further in this study.

In general, while the two mechanisms discussed in previous sections will be affected in 

different ways, both can be influenced by the alternative alkene coordination described 

above. The affect of this coordination on the outcome of the reaction for both 

mechanisms is described in more detail below.
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6 .3 ,2 .1 .1  T h e C a ve ll/M cG u in n ess  m ech an ism

In the Cavell/McGuinness mechanism, it is the initial oxidative addition product that 

ultimately determines the outcome of the reaction, with the direction of insertion of the 

alkene into the metal hydride bond and reductive elimination of the cyclic product from 

the oxidative addition products resulting in the alternative five- and six-membered 

rings.

As mentioned in Section 6.3.1.1.1, it is expected that dissociation of a phosphine from 

the starting rhodium complex would be followed by coordination of the reacting 

imidazole’s alkene arm before oxidative addition and continuation of the reaction cycle. 

This initial step may result in three different oxidative addition products capable of 

creating the five- and six-membered ring products. The first of these (Figure 6-22 A) is 

created from the 2,3 isomer and leads to formation of the five-membered product. The 

remaining two arise from the 1,2 isomer (Figure 6-22 B and C) and lead to the five- and 

six-membered products respectively.

Figure 6-22 Oxidative addition product isomers

While the initial free alkene benefits from extra stability afforded by the secondary 

alkene, the effect on the overall catalytic cycle geometries is unfavourable. The extra 

bulk around the alkene provides protection for the free alkene, however, coordination of 

the alkene to the metal centre becomes more problematic as the direction of the end- 

chain methyl becomes significant. Further, shortening of the chain between the 

imidazole and alkene ligands requires a further twisting of the azole ligand with respect 

to the rhodium plane. Without chelation, the plane of the azole ring tends to lie 

perpendicular to the metal plane containing the bulkier ligands. When chelation is 

enforced, as found with the alkene located in the 2,3 position, the distance between the 

azole and alkene is restricted, in turn forcing a slightly distorted square plane and
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increasing the dihedral twist of the azole ligand itself; a situation much more strained 

than the more free 1 ,2  alkene coordination.

For the 1,2 alkene isomer, the first notable difference between the two possible 

reactions is the lack o f oxidative addition precursor complex for the reaction leading to 

the six-membered product (Figure 6-22 C). The initial C2-metal interaction found for 

the five-membered analogue simply does not occur for the six-membered alternative 

due to the steric strain introduced into the interaction caused by direction of alkene. 

This strain is also evident in the geometries of the oxidative addition product (Figure 

6 -2 2 ), with the strain introduced by alkene coordination in the complex leading to the 

six-membered product displaying a more planar carbene ring compared to the ligand 

plane than the five-membered analogue with dihedral angles of 141.2° and 135.8° 

respectively.

Further, the energies for all three corresponding cycles reflect the strain introduced for 

the 6 -membered ring cycle and the 2,3 isomer for the 5-membered ring cycle, with the

1 ,2  isomer producing the five-membered product the most stable pathway at almost 

every point (Figure 6-23).
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Figure 6-23 Energies for the Cavell/McGuinness mechanism for five- versus six-membered products
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In general, the alkene isomerisation available for the straight chain TV-butene-imidazole 

does not appear to have any benefit for the formation of the five-membered ring 

product. Due to the extra steric strain introduced into the rhodium complexes by the 

position o f coordination o f the 2,3 alkene chain, intermediates for the reaction are 

higher in energy than all other pathways, regardless of which product these pathways 

generate. As such, it is expected the preference for coordination of the alkene located on 

the tail o f the imidazole alkene arm would be the most significant factor affecting the 

overall reaction mechanism and product, especially considering the relatively small 

energy difference between the reactant isomers.

For the two coordination possibilities of the 1,2 alkene, the energies for intermediates of 

the thermodynamically favoured six-membered ring lie significantly higher in energy 

than their five-membered analogues, with the exception of the reductive elimination 

precursor complex, which is only very marginally lower in energy. Therefore, if the 

Cavell/McGuinness mechanism were the active catalytic cycle for reactions in which 

the alkene were located on the end o f the imidazole arm and with the alkene free to 

coordinate in any manner, the reaction intermediates would dictate a five-membered 

product, despite the six-membered product being thermodynamically more stable.

While this result is reflected in experimental conditions for the A-homoallyl 

benzimidazole, it does not explain the six-membered ring product preference for the 

imidazole with geminal methyls on the alkene chain.
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6.3.2.1.2 The Bergman mechanism

In the case of the Bergman mechanism, it is the direction of interaction of the carbene 

and alkene ligands in the carbene complex that would create alternative products 

(Figure 6-24). Figure 6-24 A is formed from the 2,3 alkene isomer, with carbene 

insertion from this structure forming the five membered ring product. Figure 6-24 B and 

C are formed from the 1,2 alkene isomer with carbene insertion resulting in the five and 

six membered products respectively.

A B C

Figure 6-24 Azole insertion transition state geometries

As was found for the Cavell/McGuinness mechanism, the potential isomerisation of the 

alkene results in no benefits for the Bergman reaction. Due to the shortened distance 

between the coordinated alkene and the azole C2, all intermediates for the reaction are 

very strained with both the alkene and azole ring consequently tilted in most structures 

past their preferred 90° dihedral angle.

Once again, the trend for favouring of the 1,2 isomer mechanism is repeated for the 

Bergman mechanism (Figure 6-25).
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Figure 6*25 Energies for the Bergman mechanism for five-versus six-membered products
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As can be seen in Figure 6-25, the transition structure to the carbene insertion into the 

metal-alkene for the five-membered case (Figure 6-25; C) lies a high 49 kcal mol' 1 

above the reactants and 47 kcal mol' 1 above the carbene complex itself However the 

barrier for the six-membered case is only marginally smaller at 45.6 kcal mol'1, with a 

further high-energy transition structure at 48.3 kcal mol' 1 later in the cycle and all other 

intermediates higher in energy than the five-membered counterparts. Further, the 

carbene complex isomer required for the six-membered insertion transition structure is a 

reasonable 15.6 kcal mol' 1 higher in energy than the five-membered counterpart.

Overall, results for the Bergman mechanism indicate if this mechanism were in 

operation for the catalytic cycle and the alkene were solely located on the end of the 

alkyl arm o f the imidazole, a five-membered product would be favoured.

6,3.2.13 The overall alkene binding direction influence on product isomers

As described in the two previous sections, with only the direction of the coordination of 

the alkene a factor the five-membered ring species would be expected as the product of 

the reaction regardless o f the mechanism involved. While this is consistent with 

experimental results for the straight alkene chain1 (Figure 6-17), it does not explain the 

favouring o f the six-membered ring product for the alkene with geminal methyls (refer 

Figure 6-18).

As such, it is expected a subtle difference in the substrate may lead to the alternative 

product. With all other factors equal, this difference may be caused by the steric 

influence o f the geminal methyl groups, a possibility explored below.
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6.3.2.2 The influence of substrate geminal methyls

With the inclusion o f extra methyl groups around the reacting centre, it is expected 

formation o f the C-C coupled product could require more twisted and sterically 

crowded intermediates than those expected for the straight alkene chain. This proximity 

o f the methyl groups to the metal centre in some important intermediates could 

determine which o f the two likely products is favoured. The effect of these extra methyl 

groups on both mechanisms is detailed below.

6.3.2.2.1 The Cavell/McGuinness mechanism

Inclusion o f the geminal methyls resulted in very little difference for the 

Cavell/McGuinness mechanism. All geometries were almost identical, with the extra 

methyl groups located away from the reacting centre. As such, the geometries for the 

overall reaction for both five- and six-membered ring products remained relatively 

unchanged (Figure 6-26).

Page 211



Chapter 6 -  Rhodium Catalysts for C-C Coupling Reactions

(41.8)
45.0

(45.3)

40.6
(40.6)

6  M e m b e r e d  P r o d u c t
37.1

i.5 (38.9) \

(35.8) \

27.9 

(27.4) 

(25.6)

/ /  44.0', 
/ /  (43.5)'

-  35

I
I
8

I
IUi

-  30 30.3

V 24.8 (21.5)/

\j9 .2j 
(20.7)

-  25

_  20
5 M e m b e r e d  P r o d u c t

(8.5)
4>
»

0.0

-13.2
-10

-15

(-17.4)

Products

Reaction Coordinate
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(Cavell/McGuinness mechanism)
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In general, the intermediates are within 1 kcal mol' 1 of their methyl free counterparts for 

both product pathways. The only real exception is the five-membered reductive 

elimination transition structure (Figure 6-27).

Figure 6-27 R eductive elim ination transition  s truc tu re  for the five-membered ring product

(stra igh t chain on left; w ith methyls on right)

In the straight chain structure (Figure 6-27 i) the end chain methyl is directed away 

from the phosphine ligand. With the extra bulk included with the geminal methyls 

(Figure 6-27 ii) , this methyl is more central to avoid steric interaction with either the 

geminal methyl groups, or the phosphine ligand. While only a subtle difference, this 

extra bulk is enough to raise the energy o f the transition structure by a few kcal m o l1 

and as a result, the energy of the five-membered ring reductive elimination transition 

structure is raised above that of the six-membered ring.

Despite this, in general the 5-membered ring energies indicate this would still be the 

preferred route for the majority of the cycle. Further, there is only minor difference in 

the energies between the five- and six-membered ring reductive elimination transition 

structures indicating the lower energy of the majority of the route for the 5-membered 

ring would likely override any negative influence of this slightly higher energy 

transition structure.
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6.3.2.2.2 The Bergman mechanism

As found for the Cavell/McGuinness mechanism, the initial steps of the Bergman 

reaction remain unaffected by the extra bulk of the methyls on the alkene chain. All 

structures for the oxidative addition, carbene formation and carbene insertion in the 

metal alkene bond remain almost identical in geometry and energy to their straight 

alkene chain counterparts for both the five and six membered ring reactions. From this 

point however, some differences between the reactions were observed (Figure 6-28).
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Minor differences are found for the hydride migration from the carbene back to the 

metal centre for both reactions. While the transition structures and products for this step 

remain within 3.5 to 4 kcal mol' 1 of their straight chain counterparts, it is not expected 

the minor difference is due to the steric nature of the methyl groups. Further, the six- 

membered hydride migration transition structure is negatively affected by the methyl 

groups with an increase in relative energy, while the five-membered structure displays a 

lowering o f the transition structure energy. A subtle electronic effect may be altering 

the energy o f this step for both reactions as all other factors remain relatively 

unchanged with the methyls directed away from the reacting centre.

Unlike the hydride migration step, the final reductive elimination step displays more 

conspicuous differences between the individual reactions. For the six membered ring, 

the extra methyls create enough steric interaction with the phosphine ligand, that the 

carbene ring tilts slightly creating interaction between two of the ring carbons and the 

metal centre. This appears to have a 5 kcal mol*1 stabilising affect for the reaction with 

the geminal methyls (Figure 6-29; B) over the straight alkene chain (Figure 6-29; A).

A B

Figure 6-29 Reductive elimination transition structures for six-membered ring products

The reductive elimination step for the five membered ring indicates some very 

important and subtle differences between the two alkene chains. While the straight 

chain reaction involves a stabilising interaction between the nitrogen of the azole and 

the metal centre, this interaction is not found for the reaction with the geminal methyls 

(Figure 6-30).
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%
A

(Straight chain)

B

(Geminal methyls)

Figure 6-30 Reductive elimination transition structures for five-membered ring products

The stabilisation afforded by this interaction has a significant impact on the energetics 

o f the final reaction step, with the imidazole interaction for the straight chain resulting 

in a 24.5 kcal mol' 1 lower energy transition structure for the five-membered ring. 

Further, without this imidazole interaction in either the five or six membered case, the 

six membered reductive elimination has an almost 10  kcal mol' 1 lower barrier than the 

five membered case. While other steps remain higher in energy for the six-membered 

ring, this observation indicates subtle differences in electronic and steric effects can 

greatly influence the outcome of the reaction.

Overall, the Bergman mechanism indicates the subtle changes introduced by including 

the geminal methyls on the alkene chain can affect the overall geometries and energies 

for the reaction. The five membered ring intermediates generally remain below those of 

the six-membered counterparts, however these results do indicate the geminal methyls 

may have enough of an impact on the intermediates to affect the outcome of the 

reaction.

6.3.2.2.3 Geminal methyl influence on product isomers

In general, the five-membered ring intermediates with inclusion of the geminal methyls 

on the alkene chain remain below those of the six-membered counterparts regardless of 

the reaction mechanism employed. However, results for the Berman mechanism have 

some interesting implications. In the model system studied for this reaction the five- 

membered ring product is still generally favoured over the six-membered product, 

although this observation does not hold true for every step in the reaction with the 

geminal methyls displaying discernible influence on the reactivity of the metal 

complexes. In experimental conditions, the small influences indicated here would be 

exacerbated with coordinating solvents stabilising intermediates as indicated for the
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imidazole nitrogen to metal interaction, and additional bulk from larger phosphines 

used in catalysis causing greater steric interaction with the reacting ligands. These two 

interactions as indicated by the model results may be enough to tip the balance in favour 

o f the six-membered ring reaction as found experimentally.

6.3.2.3 Conclusions for product isomer preference

Pervious results by Bergman indicated both five- and six-membered ring products were 

possible for the C-C coupling o f N-homoallyl benzimidazoles under certain 

experimental conditions. The theoretical study of the model system for both the 

Bergman and Cavell/McGuinness mechanisms give some indication of what factors 

may affect the outcome o f the C-C coupling reaction.

Firstly, even though alkene isomerisation may be possible for a straight chain alkene, 

the chelation between the alkene and azole ligands restricts the coordination of these 

ligands to the metal centre, creating a strained environment for many of the important 

intermediates for either mechanism when the alkene is located closer to the body of the 

azole. When combined with the small energy difference between the isomers, it is 

expected the alkene located on the free end o f the alkyl chain would be the reacting 

isomer in experimental conditions.

Secondly, when the alkene is located on the end of the alkene chain with no other 

restrictions on the reacting centres, intermediates for the five-membered product are 

lower in energy than their six-membered counterparts. Consequently, it is expected the 

five-membered product would be formed in preference regardless of mechanism and 

despite the thermodynamic favouring of the six-membered product; a fact reflected in 

experimental conditions1.

Finally, subtle steric or electronic differences from inclusion of extra methyl groups on 

the alkene chain may steer the product preference towards six-membered ring as 

indicated experimentally2. While generally the extra methyls had very little influence on 

reaction geometries or energies, subtle changes in particular for the reductive 

elimination step o f the Bergman mechanism did indicate the additional bulk could 

affect the overall reaction, even on a model system. As such, it is expected this is the 

major cause for the preference of the six-membered ring over the five-membered ring as 

found for the straight chain alkene.
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6.3.3 Acid catalysed coupling

After successfully catalysing the cyclisation of various alkene heterocycles, Bergman 

made the further observation that the rate and yield of catalysis could be improved by 

addition o f a weak acid catalyst. One explanation for this improvement could be the 

protonation (or general activation) of the imidazole nitrogen, leading in turn to a more 

reactive imidazole 2-H and easing the initial oxidative addition reaction. Further, 

activation o f the imidazole nitrogen throughout the catalytic cycle creates more stable 

carbene or carbene-like complexes as intermediates along the pathway.

This section examines how dramatically this activation affects both mechanisms and the 

reaction outcomes for the five-membered ring product.
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6.3.3.1 Acid catalysed Cavell/McGuinness mechanism

Aside from introducing a carbene ligand, acid catalysis does not dramatically alter the 

proposed mechanism for the C-C coupling reaction as shown in Figure 6-31.

Figure 6-31 Acid catalysed Cavell/McGuinness cycle

Overall, the geometries o f the reaction intermediates change very little from the 

unactivated cycle. The oxidative addition transition structure indicates the highest energy 

structure is found much earlier in the activation, with more distance between the 

interacting azole and the metal and a shorter unactivated C2-H distance. Aside from this, 

most intermediates displayed very similar geometries with the C2-Rh distance of the 

azole slightly closer but within 0.06A of the corresponding carbene distances. Similarly, 

the Rh-H distances were consistently closer for the azole complexes, but generally less 

than 0.08A shorter than the carbene counterparts.
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Despite having little effect on the reaction geometries, N-activation by an acid catalyst 

does dramatically impact the energies for catalysis, with the barriers and the energies of 

the reaction intermediates to the C-C coupling reaction significantly reduced for the 

Cavell/McGuinness mechanism (Figure 6-32).
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Figure 6-32 Energies for the acid catalysed Cavell/McGuinness route
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The barrier to oxidative addition is lowered due to the higher acidity of the reacting 

azolium, while the strength and electron-donating capacity of the carbene ligand 

stabilises all intermediates and helps promote the hydride migration and reductive 

elimination reactions. The overall reaction barrier is significantly lowered, from 45.3 

kcal mol' 1 in the case of the unactivated imidazole, to 33.1 kcal mol' 1 for the acid 

catalysed route. Overall, the reaction becomes much smoother and more accessible as 

reflected in experimental conditions.

6.3.3.2 Acid catalysed Bergman mechanism

Nitrogen-activation has a much more pronounced affect on the overall geometries and 

reaction sequence for the Bergman mechanism. With the carbene ligand forming after 

the initial oxidative addition step, the hydride migration from the metal centre to the 

imidazole nitrogen is no longer required and oxidative addition is followed directly by 

the insertion o f the carbene into the alkene reaction. Further, for the insertion of the 

carbene into the metal-alkene bond, the acid catalyst has effectively protonated the 

metal centre and converts the rhodium centre from a formal rhodium(I) state in the acid- 

free reaction to rhodium(III). Insertion is then followed directly by reductive 

elimination o f the hydride and alkyl chain (Figure 6-33).
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While the /V-activation did have an effect on the energies for the mechanism proposed 

by Bergman, the benefits were not as dramatic as was seen for the Cavell/McGuinness 

mechanism (Figure 6-34).
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From Figure 6-34, TV-activation results in some obvious improvements for the Bergman 

mechanism. Not only are most intermediates lower in energy, the number of steps to 

complete the catalytic cycle has been reduced, with carbene formation and hydride 

migration no longer required.

Despite this, the overall activation energy for the reaction remains high at 42.8 kcal 

mol"1. As such, if  the Bergman mechanism were in play for the acid catalysed C-C 

coupling reaction, it is expected benefits are found from both the reduction in steps and 

some lower energy intermediates, and not from reduction of the barriers to reaction.

6.3.3.3 Overall acid catalysis effects

A comparison of the acid catalysed routes for both proposed mechanisms strongly 

indicates a favouring o f the Cavell/McGuinness mechanism (Figure 6-35).
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Interestingly, with the inclusion of an acid catalyst, the difference between the 

Cavell/McGuinness and Bergman mechanisms becomes one of timing. Both follow a 

path o f  oxidative addition, insertion and reductive elimination; however in the 

Cavell/McGuinness case the insertion is the alkene into the metal-hydride bond, while 

the Bergman mechanism requires insertion of the carbene into the metal-alkene bond. 

With this in mind, it is unsurprising the Cavell/McGuinness mechanism has a lower 

barrier to insertion.

Further, the reductive elimination steps involve C-C reductive elimination 

(Cavell/McGuinness mechanism) against C-H reductive elimination (Bergman 

mechanism). While the barrier is approximately 14 kcal mol' 1 lower for the C-H 

reductive elimination, it is the barrier to insertion that would most determine which 

mechanism would be followed in experimental conditions. At a high 42.8 kcal mol-1, 

this barrier is 15 kcal mol' 1 higher than the reductive elimination barrier for the 

Cavell/McGuinness cycle.

As indicated in experimental conditions where the rate of reaction is found to increase 

with addition o f an acid catalyst, activation o f the imidazole nitrogen has a dramatic 

effect on the mechanism and energies o f the C-C coupling reaction. This activation is 

seen to introduce a carbene ligand throughout the reaction sequence, resulting in many 

lower energy intermediates, and more importantly, a significant reduction in the barriers 

for activation. Further, with only small benefits indicated for the Bergman proposed 

mechanism, it appears that under acidic conditions the Cavell/McGuinness mechanism 

would be followed, with lower energy intermediates and a much lower barrier to 

reaction.
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6.4 Conclusions

After Bergman’s group reported the intramolecular coupling of a range of alkenes to 

heterocycles to create 2 -functionalised imidazoles under mild conditions, they proposed 

an unusual mechanism involving a carbene complex, followed by cycloaddition and 

reductive elimination. Experimental results supported their mechanism with the 

isolation of a stable carbene complex, thought to be an important intermediate. 

Similarity o f their reaction with the nickel catalysed C-C coupling reactions examined 

in the previous chapter prompted a comparison of their mechanism to one involving 

oxidative addition, alkene insertion and reductive elimination (Cavell/McGuinness 

mechanism).

While both five and six membered products can be formed in certain experimental 

conditions, the five-membered product is favoured with a straight alkene chain, while 

the six-membered product was synthesised with geminal methyls incorporated into the 

alkene chain. Results indicate that despite being slightly less thermodynamically 

favourable, the six-membered product has lower activation barriers for both the 

Bergman and Cavell/McGuinness mechanisms. Further results indicated reactant 

isomerisation and alternative alkene coordination to the metal centre do not have 

enough influence to alter this preference for the six-coordinate product.

Overall, it is not clear whether the Bergman or Cavell/McGuinness route would be 

preferred under experimental conditions. While initial formation of the carbene 

complex in Bergman’s route appears restrictive with an activation barrier of over 50 

kcal m ol'1, reductive elimination of the C-C coupled azole in the Cavell/McGuinness 

mechanism has a similar barrier of around 42 kcal mol'1. Overall, the 

Cavell/McGuinness mechanism appears to have a smoother path with many 

intermediates relatively close in energy; experimental isolation and NMR observation 

indicate the carbene complex is indeed involved in the catalytic cycle.

Despite the lack o f clarity in isolating a mechanism for the azole C-C coupling reaction, 

it appears the Cavell/McGuinness mechanism would be followed with inclusion of an 

acid catalyst in the reaction mixture. Experimental results indicate inclusion of either a 

Lewis or Bronsted acid increases the rate of reaction significantly. Through activation 

o f the imidazole nitrogen, it is expected the acid creates an azolium salt. The resultant
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salt significantly favours the Cavell/McGuinness route, with little benefit found for the 

Bergman reaction.
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