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Studies of Co-firing Coal with Biomass on a Two Stage Simulator for Utility Boilers

Abstract

Co-firing coal with biomass has gained much interest in recent times by power 

generators keen on exploiting the environmental and economic benefits. Various trials 

have been undertaken on small substitution levels of typically below 10% of the total 

thermal input. Higher substitution levels would expose potential problems in terms of 

slagging and fouling on heat transfer surfaces. The research study investigated the use 

o f a novel small scale combustor to simulate the conditions of real industrial furnaces. 

The design and manufacture o f the novel combustor is explained with detailed 

discussion on the developments to suit the combustor for co-firing trials. Successful 

simulations of a 500kW semi-industrial and a 235 MWe full scale furnaces were 

achieved. Co-firing trials were performed with three types of waste biomass; dried 

sewage sludge, sawdust and refuse derived fuel. Numerous valuable deposition data 

was generated during the research study. The data included deposition observations, 

fouling deposition rates, fuel and fly ash analyses, slag deposition analyses and online 

flue gas analyses. These would form part of an advanced slagging and fouling 

predictor. References to traditional empirical indices for slagging and fouling are also 

included.
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01 Introduction

1. Introduction

1.1. Role of Coal in World Energy

Since the industrial revolution coal has been heavily utilised as commercial 

fuel. Today coed still plays a major role, meeting 27% of the total world energy 

demand1. World coal consumption figures had been increasing annually and the trend 

is predicted to continue inline with the emerging economic growth of developing 

nations . Coal offers widespread availability in a well supplied worldwide market 

ensuring coal prices to be lower and more stable than other types of fuel. Coal is also 

the largest single source fuel for generating electricity and currently stands at 39% of 

the total fuel supply to this sector. This is expected to drop only one percentage point 

in the next couple o f decades4 as shown in Figure 1.2.

Current reserves to production ratio for coal is predicted to last 164 years, over 

four times more than oil and almost three times that of gas. Oil and gas poses high 

insecurity, which instils instability and hence fluctuation in prices and supply. Other 

sources of renewable energies are still too limited to meet the world energy demand. 

Concerns are constantly raised over issues of intermittency of supply and very high 

capital outlay. Though nuclear is seen by some as a viable alternative it still faces 

concern over political acceptability and the safety of nuclear waste disposal.

Coal will continue to be an attractive fuel for the near and mid-term future 

especially in offering security and reliability of supply. However there is a major 

concern regarding the environmental impact o f coal utilisation. Carbon is the main
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component of coal and this result in high carbon dioxide (CO2) emissions when 

combusted. CO2 is a major greenhouse gas that contributes to the pressing issue of 

climate change and global warming. Higher levels CO2 are released per unit of heat 

energy during coal combustion compared to other fossil fuels. Although the world 

reliance on coal as a fuel source is inescapable, steps have to be taken to reduce the 

impact of coal utilisation on the environment.

Oil, 37%

Hydroelectric,
6%

Nuclear, 6%

Natural Gas, 
24%

Coal, 27%
Figure 1.1 Primary energy consumption by fuel type

Oil, 8% Oil, 7%

Natural Gas, 
L 18% Natural Gas, 

k  24%

Nuclear,
13%Nuclear,

17%

Coal, 39% Coal, 38%

(a) 2002, history (b) 2025, projected
Figure 1.2 Total world electricity generation by fuel
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In tackling the issue o f climate change, The Kyoto Protocol6 was adopted on 11 

December 1997 and entered into force on 16 February 2005 under the United Nations 

Framework Convention on Climate Change. Member countries of the Kyoto Protocol 

were set with legally-binding targets to limit or reduce their greenhouse gas emissions. 

An overall cut in greenhouse gas emissions of at least 5% worldwide from 1990 levels 

within the commitment period of 2008-2012 has been the initial target. The UK agreed 

to cut its greenhouse gas emissions by 12.5% to meet a joint target of 8% reduction for 

the European Union.

1.2. Co-firing of Coal and Biomass

Co-firing o f biomass in an existing coal fired furnaces is viewed as an 

immediate solution in reducing CO2 emissions by power generators. This is due to the 

fact that biomass is a CO2 neutral fuel and co-firing systems is relatively easy to 

implement. Introducing biomass in coal power generation furnaces would also help to 

stretch the reserves to production ratio of coal.

Power generators also considered co-firing as an economical means of utilising 

biomass fuel. Co-firing would involve lower capital costs and reduced commercial 

risks compared to a constructing a stand-alone dedicated biomass plant. A large scale 

fossil fuel fired plant would generally achieve greater overall efficiencies than a 

smaller scale dedicated biomass plant. Numerous operators had successfully co-fired 

biomass in existing coal fired plants with only little modifications to the fuel handling

3
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systems . Co-firing was observed to have little impact on the furnace operations and 

efficiency. A decrease in SO2 and NOx emissions were also reported.

Utilisation o f biomass residue in co-firing diverts this waste from going to ever 

growing landfill sites. The waste would otherwise release methane into the atmosphere 

during its natural decomposition in landfills. Methane has 21 times more heat trapping 

effect of CO2 and is regarded as the second most important greenhouse gas. This effect 

would further help in meeting targets of the Kyoto Protocol by cutting both major 

greenhouse gases. The residual unbumt component of the biomass ash is well mixed 

with the coal ash during combustion. Studies have shown few problems in using this 

ash in the normal manner mostly as additives to construction cements and concrete. 

However, current standards for use o f fly ash in concrete require that the fly ash is 

derived only from coal combustion. These standards are at present under review to 

accommodate co-firing ash.

1.3. Slagging and Fouling

Slagging and fouling are the terms used in describing ash deposition in boilers. 

Deposits found mainly in the radiative region are referred to as slagging while fouling 

usually refers to deposits found in the convective sections of a boiler9. The physical 

characteristics of slagging and fouling are defined by the combustion conditions. 

Slagging is generally consisted of molten ash while fouling is mainly formed by 

sintered deposits.

4
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Deposition formed on heat transfer surfaces would lead to adverse effect on the 

overall efficiency o f a steam raising power generation boiler. A particular coal boiler is 

designed to fire a specific coal to optimise efficiency and cut downtime caused by 

deposits. Co-firing coal with a substitute fuel changes the fuel characteristics. This will 

lead to a change in combustion characteristics within the boiler and hence altering the 

slagging and fouling behaviour. Ash deposition is also a major concern in co-firing 

coal with biomass due to the high content of ash in this particular fuel source.

1.4. Objectives of Current Research

Current knowledge on slagging and fouling behaviour of coal-biomass blends 

is limited especially on waste biomass substitutions. This is vital for power generators 

interested in co-firing biomass in their existing coal fired boilers. This research study 

was instigated to provide an understanding of the combustion behaviour of different 

blends of coal and substitute fuels and hence its characteristics of slagging and fouling. 

The research was carried out through practical small-scale testing to simulate the 

combustion conditions o f a real industrial boiler. The experimental work utilised a 

novel small scale combustor which by modelling the appropriate gas residence time- 

temperature history would generate a wide range of data sets relevant to co-firing. The 

study also detailed the design, commissioning and operational stages of the combustor 

which included the problems encountered in developing an effective programme of 

work. This programme of work was designed to produce data for calibration against 

large scale utility boilers using a specific range of coal-biomass fuel blends.

5
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The current research formed part of a European Union funded research 

programme called PowerFlam10,11 with 10 research partners and co-ordinated by 

Cardiff University. The partners included three large European utilities, two research 

centres and one trade association involved in the power generating sector. The overall 

objective was to develop a system of predicting the behaviour and growth 

characteristics of slagging and fouling for a new blend of coal and a substitute fuel in 

utility boilers. Both experimental data and computational modelling were utilised for 

this purpose with considerable possibilities for cross-correlations of results. This thesis 

is concerned primarily with the experimental work undertaken as part of the overall 

programme which also provides data to the other partners of the consortium for their 

part of the research.

The boiler simulator system has been developed as small scale so that it could 

be easily used by industrial operators before trying out a new fuel blend in a full scale 

boiler, thus reducing the risk of damages and downtime.

1.5. Structure of the Thesis

A review of co-firing and ash deposition work is detailed in Chapter 2. The 

review discussed the motivations and current status of co-firing in coal boilers. 

Different boiler configurations are also considered. A review of studies on effects of 

deposits, ash formation and deposition processes in coal fired utility boilers are also 

made. The chapter also detailed the methods of predicting ash deposition behaviour 

used in industry.

6
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The design o f the novel experimental rig is outlined in Chapter 3. The design 

and manufacturing stages are detailed as well as the ancillary equipments used in the 

research work. Commissioning work of the rig is also detailed.

Chapter 4 reports the experimental work carried out during this period. A 

programme o f work was conceived to generate useful data for the research. Fuel data 

consisting o f characteristics and ash analyses is provided. A general summary of the 

fuel results is also included. Fuel preparation and rig operational procedure are detailed 

including methods o f collecting data from each trial. General operational problems 

encountered during the trials are outlined and errors and sensitivities in obtaining the 

data are also presented.

Results obtained in the investigations are presented in Chapter 5. Comparisons 

were made between each coal-biomass fuel blends. Physical observations of the 

deposit are also included. A general summary is provided for each of the result 

presented in this chapter.

Detailed discussions o f the research are further explained in Chapter 6 in 

chronological order o f work completed for the study. This included the methods of 

obtaining data and experiences gained during the research. Fuel and sample data are 

cross examined as well. The impact of the research on the industrial sector is included.

Finally Chapter 7 draws conclusions from the work. Key areas are highlighted 

and future recommendations for further research are outlined.

7
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2. Review on Co-Firing and Ash Deposition

2.1. Co-firing of Coal and Biomass

Biomass is regarded as a CO2 neutral fuel due to the fact that it releases the 

same amount o f CO2 when combusted as that was absorbed from the air during its 

lifetime. Biomass combustion for power generation is generally carried out at 

relatively small scale ranging from 20MWC to 60MWC owing to the economics of 

transporting the low bulk density fuel over distances larger than 100km. This, coupled 

with the relatively low efficiency, rje, of such plant of typically 30% , has lead to the 

growth of co-firing in existing coal fired utility boilers. This route also capitalises on 

the large existing investment and infrastructure associated with fossil fuel fired power 

stations with a relatively modest outlay to accommodate the biomass fuel.

Co-firing is also accepted as a means of meeting renewables obligations as well 

as carbon emissions targets for the near future. In the UK this is reflected as the 

inclusion o f co-firing under the Renewables Obligation Certificate15. Similar ‘green 

certificates’ schemes are also implemented throughout the world especially in Europe 

and North America. Hence co-firing biomass as a substitute fuel is currently gaining 

interests from power generators operating coal fired power plants.

2.1.1. Current Status

Several co-firing schemes are already in operation worldwide both 

commercially and under trial basis. Rapid development took place in the last 5-10 

years in coal boilers ranging from approximately 50MWe to 700MWe. In the UK most

8
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large coal power stations have had experience in co-firing by various power 

generators. The majority o f these schemes were adapted on pulverised coal boilers as 

this is the most common type o f coal fired boilers currently in operation as listed in 

Table 2.1.

Table 2.1 Current status of co-firing work in the UK14

Station
Capacity

/M W e G enerator Status Biomass Fuel
Aberthaw 1,455 RWE npower Commercial Various

Cockenzie 1,200 ScottishPower Commercial Wood

Cottam 2,000 EdF Commercial Various

Didcot 2,100 RWE npower Commercial Wood

Drax 4,000 Drax Power Commercial Various

Eggborough 1,960 British Energy Commercial Various

Ferrybridge 2,035 Scottish & Southern Commercial Various

Fiddler’s Ferry 1,995 Scottish & Southern Commercial Various

Ironbridge 970 E.ON UK Commercial Various

Kingsnorth 2,034 E.ON UK Commercial Various

Longannet 2,400 ScottishPower Commercial Dried Sewage Fuel

Ratcliffe 2,010 E.ON UK Commercial Various

Rugeley 1,000 International Power Commercial Various

Tilbury 1,085 RWE npower Commercial Wood

West Burton 1,980 EdF Trial Olive Cake

9
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Direct co-firing is applied where solid biomass fuel is burned together with the 

coal in the same furnace as it is the most straightforward and relatively quick to 

implement19. On almost all of these the biomass is pre-blended with the coal and fired 

through the existing burner installations as this incurs minimal costs on modifying the 

furnace. In many cases blending was done prior to the mills and in some cases the 

biomass is milled separately and added into the fuel stream before the furnace. Hence 

this project focussed on direct co-firing of pre-blended pulverised coal with biomass to 

correspond with the technique most commonly applied in industry. Figure 2.1 below 

shows a typical layout of a pulverised coal fired plant.

Burners

Coal Stock

Convection
b a n l^ \

Furnace

\

Stack

Economiser

Flue gas 
desulphurisation

Electrostatic
precipitator

AAA

1 ftFigure 2.1 Layout of a typical pulverised coal fired furnace system

2.1.2. Utilisation of Waste Biomass

Various types of biomass fuel have been co-fired in coal furnaces by different 

generators at substitution levels of up to 15% in terms of thermal energy input20.
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Recently efforts are concentrated more towards using waste biomass as the substitute 

fuel. Most o f these are usually in form of forestry residues such as bark and woodchips 

or farming residues such as straw and husks. Trials were done on co-firing sewage and 

cattle manure by various generators and one UK operator has successfully co-fired 

dried sewage sludge commercially. Several operators have also looked into co-firing 

refuse derived fuel where most of these are pre-sorted pelletised form of municipal 

solid wastes.

A major advantage o f utilising biomass residues to power generators is the

lower fuel costs compared to energy crops. Currently energy crops could not meet the

demand for large scale co-firing of biomass. This is reflected in the commercial import

o f agricultural waste for co-firing in several UK power stations. Using waste biomass

as substitute fuel would also help to limit land clearing for farming energy crops. There

are pressures from groups concerning poorly managed farming of energy crops

especially in developing nations where costs will likely to take precedence over the

environmental impacts o f forest clearing. From an environmental view utilising waste

biomass material would also help in addressing the issues of land pollution and release

0 1of harmful gases associated with landfill sites .

2.1.3. Impact of Co-firing

Experience in co-firing biomass have shown no impact or at worst slightly 

decreased efficiency o f a coal-fired power plant. However several technical issues 

have been identified in implementing co-firing successfully. These issues are 

manageable but require careful consideration of the biomass fuels and in the existing 

boiler operating conditions and design22.
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The first major technical challenge is in preparation and handling of the 

biomass fuel23,24. Biomass decomposes quickly and is therefore unsuitable to be kept 

on site in a similar manner to coal. Installation of a dedicated silo is needed specific to 

the biomass to be utilised close to the milling plant. An efficient supply chain of the 

biomass fuel from the supplier to the power plant is also essential. Biomass fuels are 

generally less brittle and have lower density compared to coal. These properties affect 

the size and shape o f the biomass leaving the milling plant to the furnace. Biomass also 

has a higher level of volatile content which would normally be the limiting factor of 

the amount of biomass that can be co-milled safely with coal.

The next challenge can be categorised as the effects of co-firing on the furnace 

operations. It was first viewed that large non-spherical biomass particles would have 

an adverse effect on the fuel conversion efficiency. This was found to be compensated 

by the fact that devolatilisation occurs rapidly in biomass and the low density particles 

oxidise at rates much higher than coal. SOx formation generally decreases during 

combustion in proportion to the lower sulphur in the fuel blend. NOx may increase, 

decrease or remain the same depending on fuel and firing conditions. Total NOx 

emissions can be reduced by using wood based biomass where nitrogen content is 

notably lower than coal and also by air staging due to the high volatile content in 

biomass26.

Ash deposition behaviour depends heavily on the type and amount of biomass 

co-fired into the pulverised coal furnace. Different mineral contents of biomass react 

differently in reducing or oxidising conditions. Biomass ash tended to have lower ash 

fusion temperatures in general, thus increases the risk of slagging . The higher ash

12
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content in for instance sewage sludge and refuse derived fuel are also a concern. In 

trials, it was found that herbaceous materials potentially produced high ash deposition 

rates while wood waste produced relatively lower deposition rates. More detailed 

investigations are needed in this area.

Co-firing o f coal and biomass has resulted in significant deactivation of several 

selective catalytic reduction systems. This was confirmed in laboratory tests where 

high amounts o f alkali or alkaline earth metals in biomass ash were found to be 

significant poisons to vanadium based catalysts. Fly ash from biomass co-firing is 

unusable in the concrete market under current standards. Extensive studies have shown 

that the co-fired fly ash is qualitatively similar to coal only fly ash in terms of 

structural and performance properties when incorporated into concrete. These 

standards are at present under modification.

2.2. Ash Deposition

2.2.1. Pulverised Fuel Boilers

The mechanism o f ash depositions in coal fired furnaces depends heavily on 

the type and rank o f coal being combusted. This prior knowledge on coal 

characteristics also dictates the design of a particular boiler to optimise its efficiency 

and minimise maintenance29. Pulverised fuel firing offered operators a level of 

flexibility in boiler design for firing a wider range of coal types. This is usually in the 

form of burner configurations, availability o f air staging and installation of 

sootblowers. Additional ancillaries such as the milling plant and electrostatic
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precipitators can also be tailored to accommodate different coal types without major 

modifications to the furnace. This means that co-firing of biomass can be matched to 

most to pulverised coal furnace with relatively minor modifications. Most pulverised 

fuel boilers are designed for a specific furnace exit gas temperature. This is reflected in 

the volume of the boiler and can pose as a limit to the amount of biomass fuel 

substitution. Typical boiler configurations are highlighted in Figure 2.2.

(a) (b) (c)

(a) front wall-fired
(b) opposed wall-fired
(c) corner-fired / tangential
(d) downshot firing
(e) downshot firing with 

staged air addition for 
anthracite fuel

(a)

(b)

(c)

burners
— >

Figure 2.2 Typical pulverised fuel boiler configurations30
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2.2.2. Effects of Deposition

Ash deposition can pose major problems when operating pulverised fuel boilers 

as 60% to 80% of the ash passes through the flue gas system of the furnace to be 

collected in the electrostatic dust precipitators. Operators usually opt for better boiler 

designs to minimise ash deposition for a particular type and rank of the coal to be fired. 

This causes problems in the lack of understanding in deposition behaviour when firing 

different coals into a particular boiler. Boiler manufacturers and operators are in 

agreement that a reliable prediction of ash deposition and its effects is needed as 

current available methods are inadequate. This is most important when new fuels are 

being considered for co-firing into an existing boiler.

Previous experiences of switching different coals had resulted in varying levels 

of slagging and fouling problems arising from ash deposition. The most obvious effect 

is the reduction in heat transfer efficiency that increases operating costs. Deposits in 

the radiant section also reduce the emissivity of the surfaces, adversely affecting the 

evaporation/superheat ratio and lowering the overall boiler efficiency. Increased risks 

of unplanned outages for maintenance are reported. Most involved work in removing 

of large pieces o f slag from the wall and superheater tubes. This was done to prevent 

the slag pieces falling into the furnace, damaging the burners or heat transfer tubes 

further down the furnace. Problems with the ash hopper bridging also caused 

unplanned outages. Deposition on metal surfaces can also increase the rate of corrosion 

depending on the ash mineral content. Lastly, the furnace gas temperature can be 

raised corresponding to the drop in thermal efficiency, which itself can promote more 

slagging. This can also lead to higher exit flue gas temperatures with the risk of
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overheating at the air preheaters and consequent damage to equipments further 

downstream.

2.2.3. Deposition Mechanisms

Ash content is a convenient and widely used term which quantifies the unbumt 

residue that remains after coal firing30. This can also be applied to other solid fuels 

including coal-biomass blends. Ash in coal is usually a mixture of both organically- 

bound and inorganic elements. The characteristics of the ash residue depend on the 

inorganic mineral matter present in the coal and the conditions under which it is 

formed. In pulverised coal some minerals are liberated from the coal particle during 

milling and can be removed with coal cleaning techniques. However this cannot be 

applied to co-firing when the two fuels are milled together, as the biomass particles are 

different to coal both in shape and size. Careful selection of coal type and biomass fuel 

is important to control ash deposition.

The transformations of inorganic mineral matter are strongly influenced by the 

effects of both cooling and heating. Deposition is the result of movement to a heat 

transfer surface with either sudden or gradual cooling of the inorganic intermediates. 

This is governed by the particle size, momentum and its stickiness. If the surface is 

itself sticky, then virtually all incident particles will adhere. Transport of particles to 

the surface may be seen as occurring in two stages, transport through the bulk gas 

stream to the boundary region and then through the boundary region to the surface. In 

the first stage, particles are transported via molecular and Brownian diffusion, thermal 

diffusion, eddy diffusion, gravitational and electrostatic effects. The second stage is 

more important for deposition growth and involves inertial transport, condensation,
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thermophoresis and chemical reaction. These effects are all a strongly influenced by 

particle size.

Inertial deposition mainly occurs for the larger particles with sufficiently high 

momentum enabling it to deviate from the gas streamlines and through the boundary 

layer to the surface. Impaction rates are highest on the leading edge of tubes where the 

gas flow velocity is at its lowest and can cause bridging with adjacent tubes. 

Condensation of vapours passing over a cool heat transfer surface traps particles to 

form a thin uniform layer o f deposit. This layer may itself be sticky and promotes 

deposition growth. Condensation also takes place around a particle as the gases cool 

along the furnace and adheres to surfaces upon impact. Thermophoresis is the transport 

of material along a temperature gradient. There is a tendency o f smaller particles to 

move from the hot to the colder region where considerable temperature gradients exist. 

In boilers this is usually found in the boundary layer between the hot gases and the 

cooler heat transfer surfaces. Chemical reaction mechanisms are those which can 

determine whether particles stick and whether the deposit grow. The most important 

chemical reactions with respect to ash deposition are the formation of eutectics, 

sulphation, alkali absorption and oxidation. These processes are strongly temperature 

dependent and result in variations of deposit characteristics in different areas o f a 

boiler.

2.2.4. Slagging and Fouling

Slagging and fouling are the common terms used to describe the basic types of 

deposition on heat transfer surfaces found normally inside a furnace. Deposition 

growth is governed by a state o f its stickiness. Fly ash in the flue gas adheres to sticky
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heat transfer surfaces along a furnace promoting slagging and fouling. The difference 

between slagging and fouling are defined by the conditions of the combustion and heat 

transfer regions and can be recognised by the resulting difference in physical structure.

Slagging generally refers to the deposition o f fly ash on heat transfer surface 

subjected to radiant heat transfer or the ‘flame exposure region’. It mainly consists of 

molten or semi-fused ash as well as sintered deposit and dry ash. Stickiness in slagging 

is mainly due to the melted and semi-liquid state of the deposit as the local temperature 

exceeds the melting point of all or some components in the fly ash. Initially, powdery 

deposits form on cool tubes surfaces facing in a downward direction. This then joins 

with deposits below to form an insulating layer of dry porous material. Eventually the 

surface exposed to the gas is hot enough to remain soft and finally forms a layer of 

molten ash. In some places slag may freeze to form a hard glassy deposit.

Fouling is used to identify deposition generally found on the heat recovery 

section subjected to convective heat transfer. Here the flue gas is cooled to a 

temperature below its boiling point as it travels along the convective region. The main 

causes of stickiness are condensation of volatiles and sulfidation by SO3 in the flue 

gas. Deposits on heat transfer tubes grow outwards on the side facing the direction of 

the gas flow and are built o f successive layers differing in particle size and chemical 

compositions. Small amount of deposits are also collected on the downstream side of 

the tube due to eddy effects convecting small particles. Figure 2.3 identifies typical 

fouling and slagging growth mechanisms, while Figure 2.4 highlights the zones where 

slagging and fouling occurs within the boiler.
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direction of gas flow
L powdery deposit ii. deposition growth

porous, dry

iii. slagging deposit
development

flow
outer sinter layer, 
agglomerates of 

glass and mett phase 
with a lew unreacted 

minerals

initial fine
particle layer

initial deposit

final wedge- 
shaped  deposit

inner sinter layer, 
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very little bonding of 
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inner white layer, 
rich in Na2S 0 4

(b)
Figure 2.3 Formation of (a) slagging and (b) fouling deposits30
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Slagging

Fouling

To air preFieater, 
ESP and stack

Main locations of ash deposition
1. Ash hopper (bridging)
2. Ash slope (mechanical damage)
3. Burner (eyebrows)
4. Wall slag
5. Division wall slag
6. Platen (birdnesting)
7. Convection bank (bonded deposits)
8. Economiser (bonded deposits)
9. Air heater (gas inlet fouling)

Figure 2.4 Heat transfer surfaces arrangement, and slagging and fouling zones
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2.2.5. Predictions and Empirical Indices

The importance o f predicting slagging and fouling behaviour is widely 

recognised but most current techniques still rely on basic empirical indices derived 

from past experience . These indices should provide better predictions when applied 

to ash samples taken from a boiler firing the intended blend. However predictions are 

mostly done on laboratory ash before firing a new blend o f fuel to anticipate any 

potential deposition problems as full scale firing pose a high risk of damage to 

equipment. Laboratory ash samples are usually prepared under controlled conditions 

and behave differently to actual ash deposition. Slagging and fouling predictions are 

also widely used in the design stages of a boiler for the blends of coal which are 

intended to be used.

The most commonly used prediction methods are a range of temperature 

indicators termed ash fusion temperature (AFT) tests. These tests looked at the effects 

of high temperature on the condition of the ash. Over the years different standards of 

AFT have been developed to cater for different type of coal usually on a regional basis. 

Critical temperature points are identified as physical changes occur on a conical or 

pyramidal ash sample which is heated as summarised in Figure 2.5.

A slagging index, FS, is derived from the AFT test and is stated as:

FS = 4 IDT + HT  ( 2  ^

where IDT  is the initial deformation temperature 

HT  is the hemispherical temperature

20



02 Review on Co-firing and Ash Deposition

A lower index temperature compared to its operational conditions would 

indicate a risk o f slagging. The slagging index is accepted as satisfactory for boiler and 

equipment designs. However there are concerns over its subjectivity as the 

temperatures are defined by observations instead of measurements and often vary in 

practice.

IV V

i. Unheated specimen

ii. Initial deformation temperature

iii. Softening temperature

iv. Hemispherical temperature

v. Fluid / flow temperature

conical or pyramidal ash sample 

first signs of fusion at top of sample 

height of sample is equal to base diameter 

height of sample is half of base diameter 

sample is fluid and forms a pancake shape

Figure 2.5 Summary of ash fusion temperature tests

Other slagging indices have been developed using chemical composition data 

of the ash. This method offers a better reliability and repeatability compared to the 

AFT test. The most basic o f this is looking at the iron content o f the ash mostly in the 

form of Fe2 0 3 . The propensity of slagging is normally strongly dependent on the ash 

calcium and iron content which can be assessed by the silica ratio, SR.

££   __________ S i0 2__________  ^ 2  2 )
S i0 2 + Fe20 3 + CaO + MgO
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Other ratios used previously are iron to calcium content and silica to alumina 

content of the ash. These ratios are however considered to be unreliable and give 

contradictory results over a wide range of coal types. Table 2.2 shows the relationship 

between SR and iron content. The higher the iron oxide content lowers the SR value 

and the potential for slagging is greater.

Table 2.2 Slagging potential based on iron content and Silica Ratio

Slagging potential Fe2C>3 /% w t SR

High 1 5 -2 3 0.5 -  0.65

Some 8 - 1 5 0.65 -  0.72

None 3 - 8 0 .7 2 -0 .8 0

The fouling potential of coal ash has been predicted using a total alkali index 

reflecting the effect o f condensation of sodium and potassium vapours. Coal chlorine 

content is also used in fouling prediction based on the assumed co-existence of 

chlorine and sodium in coal. The relationship between the two is shown in Table 2.3.

Table 2.3 Slagging potential based on chlorine content and total alkali in ash

Fouling potential Coal Cl /% w t Ash alkali /% w t

Low

Medium

High

Severe

< 0 . 2  

0 .2 -0 .3  

0 .3 -0 .5  

>0.5

<0.5 

0 . 5 - 1 . 0  

1 .0 -2 .5  

>2.5

22



02 Review on Co-firing and Ash Deposition

A more widely used deposition indicator is the base to acid ratio, Rb, , where
/a

the terms base and acid refers to the sums of the weight percentages of the basic and 

acidic oxides. The ratio was based on the fluxing effect o f certain basic oxides in 

lowering the ash viscosity and hence increasing slagging tendency.

R = Fg2 Q3 + CaO + MgO + K 2Q + Na2Q 
% S i0 2 + A l20 2 + Ti02

A slagging index can be derived by incorporating the coal sulphur level into the 

ratio as high pyrite contents in coal are known to promote slagging. The ratio can also 

be adapted for fouling by incorporating the sodium content o f the ash.

Slagging index: Rs = Rb/ x S  in coal (2.4)
/a

Fouling index: Rf  = Rb, x Na2O m  ash (2.5)
/ a

Experience in using the empirical indices had shown that certain indices 

perform better with certain types of coal. This regional variation existed as the indices 

were developed when a certain coal rank was preferred in a particular area due to 

limitations in transporting coal then. Some earlier indices such as FS were developed 

for stoker-grate boilers and are unsuitable for pulverised fuel furnaces. Most of the

indices are also more effective with northern hemisphere than southern hemisphere

coals since this is where the indices originated from.

2.2.6. Further Prediction Methods

Significant developments are seen within the last ten years in generating more 

reliable methods of predicting ash deposition behaviour. Initially most of the work
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were started to investigate the impact of firing new coal blends in an existing boiler 

due to the growth in international coal trade. Work in this area has further expanded to 

be applied to investigations of co-firing coal with biomass as progress are made in 

achieving more accurate methods of prediction.

One o f the earliest methods researched is estimating ash viscosity as this is an 

indicator to the stickiness of a heat transfer surface. Traditionally efforts had 

concentrated on finding a temperature of critical viscosity for a range of different coal 

blends. This approach had proved to be difficult as viscosity measurements of slag 

inside a boiler is impossible. Correlations are usually made using laboratory ash and 

were sometimes found to be inaccurate for in a boiler the ash is subjected to varying 

conditions of temperatures and oxygen levels. A further development of this method is 

investigating the solid-liquid phase equilibrium of elements for crystal formation in 

ash31. Any viscosity estimation needs to be applied over a large number of ash samples 

from various fuels and operating conditions to achieve reliable accuracy.

The advancement o f computational processing technology made it possible to 

model the combustion behaviour inside a boiler more accurately34. These models can 

be used to identify potential problem areas based on the temperature and mass flow 

velocity predictions. However a model would be limited to a particular boiler firing a 

particular type o f fuel. Modelling all boilers for different fuel blends would be 

uneconomical for a power generator. Correlations are usually made between boilers of 

similar designs as there are limited available deposition data to validate the model 

prediction results.

24



02 Review on Co-firing and Ash Deposition

Another advanced approach currently being developed is the utilisation of 

computer controlled scanning electron microscopy (CCSEM) in investigating the coal 

and ash elemental analyses. The principle behind this approach is that the structure and 

composition o f the inorganic matter in the coal blend is a key factor in ash formation 

and hence slagging and fouling36. This would give a more accurate representation of 

the phases o f the ash occurring during combustion over traditional indices which 

tended to simply suggest the effect of the presence of various elements in ash. 

However CCSEM analyses are less adopted in industry as this method requires the 

services o f specialist laboratories.

Full scale testing of co-firing coal with biomass has been carried out by various 

boiler operators as detailed earlier in this chapter. Data collected from these tests 

provide more accurate information of the combustion and deposition behaviour38. 

However most full scale tests are not specifically intended for investigating slagging 

and fouling. Hence only small amounts of biomass substitution are co-fired to 

minimise the negative impact of deposition growth. A real large scale boiler is also 

limited in terms o f accessibility for measurement apparatus. Small and pilot scale tests 

are preferred by boiler operators as it offers better flexibility while removing the risk 

of downtime and damages to the boiler. Small and pilot scale combustors are used to 

simulate the combustion conditions occurring in a real boiler. These tests would be 

able to provide specific data for each combustion condition being investigated. The ash 

samples generated from the small and pilot scale tests would be a better representation 

of the real boiler ash compared to laboratory prepared samples for further analyses. 

Lastly small scale testing can be carried out relatively quickly and easier than pilot 

scale testing and thus forms the main part of the research study for this thesis.
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2.3. Sum m ary

Co-firing o f coal with biomass is a growing activity as power generators show 

interest in exploiting its economical and environmental benefits. No major problems 

had been encountered from previous experience of co-firing relatively small amount of 

biomass in existing coal fired furnaces. However higher levels of biomass substitution 

of typically above 1 0 % o f the total thermal input are likely to cause problems in terms 

of slagging and fouling.

Ash formation and deposition processes in coal fired boilers are well 

understood in respect o f the mechanisms of slagging and fouling. Early work in 

predicting ash deposition behaviour generated indices widely used by boiler designers 

and manufacturers. However these empirical indices are inadequate due to being coal 

specific and hence does not relate to co-firing a blend of different fuels.

Work in ash deposition prediction had grown rapidly in the last ten years as 

interest in co-firing increased. Developments have been seen utilising more complex 

methods in investigating ash viscosity. Other advanced methods include computational 

boiler modelling work and the application of CCSEM for coal and ash analyses. 

Considerable effort is also seen in small and pilot scale co-firing tests and this forms 

the main part o f the research programme leading to this thesis.
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3. Experimental Rig

3.1. Introduction

A novel experimental rig was constructed to simulate the conditions of a real 

boiler based on the principles of an inverted cyclone combustor for co-firing a range of 

coal-biomass blends. Most small scale and laboratory scale co-firing trials have been 

conducted on linear firing reactors where the residence times are much shorter than 

normally found in a real boiler. Here, a novel approach was taken where the rig was 

designed to operate both similar residence times and temperatures as industrial 

pulverised fuel combustion systems. This enabled the simulated conditions of the rig to 

closely match the gas linear path of a boiler. The operating conditions could be varied 

relatively easily to match a specific range of distances in the gas path and hence 

different boiler configurations. It was assumed that better simulation of the combustion 

conditions would produce a better understanding of the slagging and fouling behaviour 

when co-firing coal with biomass. The rig would be used in conjunction with an 

advanced slagging and fouling predictor developed under PowerFlam. An effective 

method of operating the rig for a specific case study of a real industrial boiler has been 

successfully developed during the course of the research study.

3.2. Design Principles

Cyclone combustors use swirling gas flows to provide long particle residence 

times during combustion40. Usually air and fuel is injected tangentially into a large,
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cylindrical chamber where the combustion mostly occurs and exhausts through a 

centrally located exit hole at one end. The experimental rig for this research work was 

designed by combining two inverted cyclone combustors which have the tangential 

inlet at the bottom o f the chamber and the axial velocity is in the upwards direction. 

The exit o f the first or primary reactor formed the primary air/fuel inlet of the 

secondary reactor. The two reactor configuration allowed the reducing region near the 

burner to be isolated from the upper main combustion region. This was based on the 

well accepted view of coal combustion mechanism involved two main stages. The first 

being thermal decomposition with rapid physical and chemical changes followed by 

subsequent combustion o f the porous solid residue ’ . The ducting connecting the two 

stages could also be configured to simulate a tangentially fired furnace or a wall fired 

furnace. Detailed drawings o f the experimental rig are included in Appendix A.

The small scale tests were carried out on the rig mainly to generate deposition 

samples when co-firing coal with biomass. The simulation was to be undertaken by 

matching the time-temperature profile of the rig to that of an industrial boiler. Hence 

temperature measurement ports were incorporated throughout the rig. A slag probe 

port was included to provide deposition rates investigations. Different types of slag 

samples and fly ash were collected for elemental ash analyses. Online flue gas analyses 

were also carried out to further understand the combustion behaviour when co-firing.

Another consideration for the experimental rig was easy on-site operation for a 

boiler operator. The intention was that co-firing tests can be carried out by an industrial 

operator to investigate the effects of introducing a particular biomass fuel to its 

existing coal fired boiler. Any potential problems could then be identified without the
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risk of damage. This also outlined the need for the rig to be simple to manufacture, low 

cost to operate as well as compact in size.

3.2.1. Primary Reactor

The primary reactor is where the coal-biomass blend would be carried into the 

rig with the primary air. Here devolatilisation and char formation take place under 

reducing conditions. The reactor operates as a non-slagging combustor where the wall 

and gas temperatures were kept at typically 1000°C to 1100°C, and below 1300°C 

respectively. The char and most of the solid particles would be carried through to the 

secondary reactor through a central exit at the bottom of the primary reactor.

The primary reactor was constructed of three modular sections and the 

combustion chamber is cylindrical with a diameter of 156mm and a height of 510mm. 

The inlet and outlet is incorporated into the bottom module and each module is fitted 

with a temperature measurement port. The reactor was situated on top of steel legs to 

match the exit to the inlet ducting of the secondary reactor.

3.2.2. Secondary Reactor

Complete combustion o f the fuel occurs in the secondary reactor with the 

additional secondary air being introduced tangentially just below the fuel inlet. This 

arrangement also helps to set up the cyclonic flow in the system. Combustion gases 

exhaust was situated at the top of reactor, tangential to the circumference. This 

configuration allowed fly ash to escape from the combustor. In a normal cyclone 

combustor most of this fly ash would be trapped inside the combustor. This reactor 

was used to simulate the real conditions of the part of the boiler to be investigated. It
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would normally produce a slag layer in the base as a result of the high temperatures 

generated here. This is very similar to the type of deposits found on the front water 

wall sections of boilers and in and around the burners.

The secondary reactor was constructed in a similar manner to the primary 

reactor with the combustion chamber 300mm in diameter and 900mm in height. The 

air and fuel inlets were incorporated into the bottom module and the exhaust into the 

top module. There was an additional fuel inlet at the bottom module to simulate 

overfire air but this was not used during the research study. Sampling ports which 

could be modified as viewing ports were situated directly opposite the fuel inlets. Each 

module was fitted with two temperature measurement ports which could also be 

modified for sampling or viewing. Figure 3.1 highlights the plan view of the rig 

showing the connections between the two cyclone reactors with the directions of the 

cyclonic flows indicated. Figure 3.2 shows the primary and secondary reactors of the 

experimental rig. It can be seen that the construction is modular such that sections can 

be added or removed to modify the residence times and hence the temperature profiles.

Secondary inlet

Figure 3.1 Plan view of experimental rig showing the directions of the gas flows

Primary reactor

Secondary reactor
N V

Primary inlet

N  % N V A JFlow directions

Refractory lining
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Secondary reactor

Exhaust
Primary reactor

Primary inlet k:
Refractory
lining

Secondary inlet

Ducting

Figure 3.2 Original design of the rig with cross sections of inlets and exhaust

3.3. Materials and M anufacture

The two-stage rig was assembled in-house with the main modular sections 

being pre-fabricated out of steel with a cast refractory inner section. The compact size 

of the sections ensured the low cost and fast delivery of the parts. The exit of the 

primary reactor, the bottom section of the secondary reactor and the connecting duct 

were stainless steel to cater for the higher combustion temperatures. The rest of the rig 

was made from mild steel. All the temperature ports were made to conform to British 

Standard Pipe (BSP) of 2” inner diameter and the inlet viewing ports were 1” BSP to 

allow for easy fitment of any additional equipment.
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3.3.1. Refractory Lining

Refractory lining of the walls were cast using GunCretel60 at a general 

thickness of 50mm. The primary reactor wall sections were bolted together and 

refractory casting was completed as a single piece. It was assumed that a non-slagging 

cyclone combustor suffers very little refractory erosion and damages. The refractory 

lining for the secondary reactor was cast in modular sections for easier general 

maintenance from slagging and later modifications if required. A 50mm lip was cast to 

ease fitment and reduce the risk of leakage between the wall sections. The tops and 

bases of the reactors were cast separately. The refractory was then left to dry slowly 

over a 36 hour period.

The refractory material has to undergo a rigorous curing cycle to allow for 

chemical bonding for it to withstand the intended operating temperatures. The cycle 

involved heating the refractory material at various stages in a constant run lasting over 

44 hours. Initially the reactor chambers were held at a temperature or 120°C for 8  

hours to completely dry the refractory. Then the temperature was increased by 25°C 

per hour until it reached 500°C. This temperature was held for a further 4 hours before 

it was increased by 50°C per hour until it reached 1000°C. This temperature was then 

held for one hour before the two-stage reactor was left to cool naturally. The reactor 

took a period o f over two days to completely cool down.

Initially the curing process was carried out in-house with both the primary and 

secondary reactor pre-assembled. Both reactors were heated with gas burners through 

the air inlet ducts as shown in Figure 3.4. The heated gases were removed by 

connecting the exhaust to the extraction system installed in the laboratory.
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Temperatures of both reactors shown in Figure 3.3 indicated that the gases in the 

secondary reactor struggled to reach the 1000°C target. This could have resulted in a 

weaker refractory lining in the secondary reactor. The whole process was also carried 

out in an environment not suited to very long combustion periods. Consequently all 

curing work after this was outsourced to a boiler parts supplier. However, the curing 

operation gave a valuable insight into the warm up and cooling behaviour of the two- 

stage combustor and the shortcomings of using gas burners.

3.3.2. Rig Assembly

The design of the experimental rig utilised parts and materials readily available 

to the engineering sector. Both reactors were built separately from the base upwards 

and each section was sealed with gaskets cut out from 5mm Kaowool ceramic fibre 

paper at the flanges. All joining refractory faces and both reactors’ tops were sealed 

with Mastic. Both reactors were then connected together at the ducting, sealed with 

both Mastic and a ceramic fibre paper gasket. A trolley-bench was built to ease the 

positioning of the rig inside the combustion laboratory. This was then integrated into 

the design adding portability to the whole installation as shown in Figure 3.5.

1200
Primary Chamber 
Combustion Chamber1000 4-

8 0 0

6 0 0

4 0 0

Time /hr

Figure 3.3 The temperature-time relationship for drying and curing the refractory
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Figure 3.4 The two-stage combustor during refractory curing

(a) Side view (b) Front view
Figure 3.5 The two-stage combustor
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3.4. Ancillary Installations

The following ancillary equipments were installed to the novel experimental rig 

to meet its design objectives.

3.4.1. Air Supply

Compressed air from the mains was used for the primary air and exhaust 

ejectors. Secondary air is supplied through a radial fan as the mains pressure of 8bar 

proved to be too high and caused back pressure at the primary inlet. All three air 

supplies were controlled via appropriate rotameters installed together with the 

secondary air fan switch box.

3.4.2. Hopper / Feeder Arrangement

The feeding system for the fuel was not specified at the drawing stage and was 

developed as the experimental work commenced. Initially the mains gas supply was 

used for warming up the rig prior to solid fuel combustion. Special fittings were 

prepared for this incorporating an ejector to carry the solid fuel with the primary air.

A simpler warm-up procedure was adapted during the commissioning period of 

the rig. This led to a simpler hopper / feeder arrangement where the feeder was simply 

a stainless steel cone fixed over an ejector with the nozzle placed inside the inlet as 

shown in Figure 3.6. A screw feed hopper was situated above this cone by placing it on 

top of a steel bench. The hopper would approximately hold 50kg of coal when full. 

This amount was sufficient to carry out a standard test and the hopper was emptied at 

the end of each run.
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3.4.3. Data Logging Instrumentation

At the start of the research programme, temperatures were recorded using K- 

types and R-types thermocouples connected to a Delta-T DL2e data logger. The data 

logger was placed on a shelf fixed to the steel bench of the hopper. Ceramic fibre 

boards were used to protect the sensitive data logger from the surrounding heat loss 

during the rig’s operation. The logger was then connected to a PC via an RS232 link 

where all the necessary software to analyse the data were installed. Thermocouple 

leads were kept tidy using plastic tubing.

During a major modification work, a new Digital Device Monitor and National 

Instruments FieldPoint data-logging system was introduced for use with the 

experimental rig. The main features of this new system are higher sampling rates, 

visualisation of online temperature profile plot and running on the windows platform. 

The online temperature plot was found to be very useful in understanding and 

predicting what was happening inside the rig during a run. Running on windows also 

meant that multitasking can take place especially in terms of recording notes on 

activities that took place and parameters used in a particular run.

3.4.4. Deposition Probe

A deposition probe was used to determine the rate of deposition growth at 

various points in the secondary reactor rig. In earlier co-firing tests a deposition probe 

as shown in Figure 3.7 was adopted from one used by an industrial boiler operator 

from the PowerFlam consortium. The probe was lowered into the combustion chamber 

via a hoist and pulley assembly through a port on the lid o f the secondary reactor. A 

stopper plate was incorporated on the probe design to position it at any specific height
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to be investigated. The lid of the secondary reactor can be rotated prior to each test to 

vary the probe position within the rig. Compressed air from mains is used to cool the 

deposition probe down to its working temperature.

As the research progressed, it was found that the slag probe was placed in a 

much hotter area than the ones investigated at under industrial conditions. This makes 

it difficult to compare results and much higher deposition rates were obtained. 

Deposition collection methods were then reanalysed and resulted in the use of a 

dedicated probe sampling section to be installed after the exhaust. A more appropriate 

deposition probe with a different design was also chosen after further research work. 

The new probe was built in-house and can be adapted to use air or water cooling to 

meet specific operating parameters. Figure 3.8 shows the current deposition probe and 

a drawing is included in Appendix A.

3.4.5. Flue Gas Analyser

A TESTO 350 ML portable combustion gas analyser was used for flue gas 

analyses during a co-firing test. The analyser unit comes complete with a gas sampling 

probe attachment. A simple gas sampling port was incorporated into the probe 

sampling section. The flue gas data can be recorded from the analyser unit straight to 

the PC using the supplied software via RS232 link.

3.4.6. Fly Ash Collection Pot

A cyclone dust separator was connected at the end of the exhaust as an ash 

collection pot. The pot was also used to collect unbumt coal from the warm up period 

of the rig which was kept separated from the co-firing fly ash. The ash pot was made
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from stainless steel with a heat reflector guard mounted around the pot as shown in 

Figure 3.10.

3.4.7. Exhaust Ejector

An exhaust ejector was fitted after the ash pot to help control back pressure 

problems occurring inside the two-stage combustor. The ejector utilises compressed air 

from mains and be used to run the rig under slight negative pressure in operation. The 

ejector nozzle directs the exhaust gases straight into the extraction system readily 

installed in the laboratory.

(a) Fuel hopper
Figure 3.6

(b) Feeder arrangement 
Fuel hopper and feeder assembly
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Figure 3.7 Original air-cooled deposition probe

Figure 3.8 Current design of the deposition probe

Primary
reactor

Secondary
reactor

Bench

A - Data logger 1 - Primary air
B - Fan air bank 2 - Secondary air
C - Compressed air banks 3 - Exhaust ejector air
D -PC

E - Cooling Extension J - Swirl direction
F - Cyclone dust separator (f
G - Exhaust ejector - RS232 link

Figure 3 .9 Schematic view of the two-stage combustor with ancillary installations
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(a) Guard open (b) Guard fully fitted 
Figure 3.10 Fly ash collection pot and heat reflector guard

Figure 3.11 Vibrating table for secondary reactor sawdust feed during warm up
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3.5. Commissioning Work

Commissioning work was carried out to investigate the characteristics of the 

experimental rig and to produce a working methodology for the research programme. 

The rig operational procedure was conceptualised during the commissioning period as 

well. During this period the rig was fired at various operating modes with two types of 

coal blends, South African and Colombian, as well as biomass in the form of sugar 

beet and sawdust.

3.5.1. Rig Start-up

The two-stage combustor chambers need to be sufficiently heated for coal to 

start combusting. This was to be achieved by firing gas burners through both primary 

and secondary air inlets. A complex arrangement of fittings was made from standard 

pipes to allow the use o f the mains gas for the preheating process. However it was 

found to be difficult to use especially when switching from the gas burner to coal 

firing. A simpler method was adapted where normal propane burner heads were used 

connected to 57kg propane bottles for each inlet. This was found to be more effective 

and the propane bottles could last for over 35 firing tests.

Early trials suggested that the primary reactor needed to be heated up to 900°C 

before coal can be introduced and this is a relatively lengthy process. Stable conditions 

took up to 3 hours to establish as the gas burner could not heat the secondary reactor 

effectively. Problems of non-ignition were also encountered when using primary inlet 

velocities higher than 5m/s. This was needed to heat up the higher region of the 

primary reactor for coal firing. Further tests carried out succeeded in igniting the coal
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inside the reactor by introducing sawdust at the start of combustion. The ignition 

temperature was also found to be lower at around 700°C leading to faster warm up 

time. It was assumed that solid fuels burnt differently to gas. The sawdust was an 

easier fuel to ignite and sets up the appropriate ‘hot spots’ in the reactor for the coal to 

start burning. This method was successful in starting the rig with an inlet velocity of up 

to 15 m/s and was then adopted in the warm up procedure. Sawdust was also fired into 

the secondary reactor during warming up to cut down the total time to reach stable 

conditions as shown in Figure 3.11.

3.5.2. Reactor Firing Tests

Coal firing tests were carried out with the primary air lowered from 

stoichiometric to its gasification limit. This was found to be around 15% for both coal 

types at different primary inlet velocities and it was suggested that the limit was posed 

by the reactor volume.

Total air was set at 1.05 times stoichiometric to match experimental work 

carried out on semi-industrial 500kW down fired furnace. The ratio of primary to 

secondary air was chosen to be 55:50, 45:60, 35:70, 25:80 and 15:90. It was observed 

that fuel rich combustion flame failed to establish in the primary reactor when the 

primary air ratio was lower than 15% and the coal only started combusting as it enters 

the secondary reactor. The gas temperature in the primary reactor was also found to be 

peaking over 1300°C when firing with primary air ratios of over 45%. This meant that 

the primary reactor was in slagging mode and consequently slagging damage was 

observed. The high temperature was also a concern as it would damage the stainless 

steel primary exit tube.
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During these tests it was observed that the main regions of the secondary 

reactor did not reach its intended operating temperatures. An external insulation was 

fitted in the form o f 50mm Superwool 607 Max ceramic fibre blanket around the body 

and on top o f both reactors. The external insulation was supplied with FoilSafe lining 

to reduce the release of ceramic dust during operation of the rig. The temperatures 

were improved and a maximum of 1700°C can be obtained with coal and over 1200°C 

when firing sawdust. Sugar beet was found to suffer fuel handling problems as the 

high moisture fuel blocked the hopper screw and stable operation was never 

established.

Ash deposition behaviour was as expected of both reactors when firing coal 

over the range o f conditions tested. Sufficient quantities of deposits for chemical 

analyses were generated by the experimental rig. Sawdust firing was observed to give 

very little deposition as most o f the lighter ash is carried away in the flue gas.

3.6. Modification Work

The experimental rig underwent a major modification work after some initial 

co-firing trials. This was carried out as various parts o f the refractory had suffered 

erosion and needed to be relined. The bottom of the secondary reactor was subjected to 

severe slagging damage. The ducting connecting the two reactors, the secondary 

exhaust and the primary exit were also severely eroded in certain areas. The 

opportunity was taken to revise the trials operating procedures during this period and
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resulted in the temperature measurement points given in Figure 3.14. A new frame was 

built to replace the trolley bench. The frame accommodated the new configuration of 

the rig as well as all ancillary equipments and gave better portability to the whole two- 

stage combustor system.

3.6.1. Reactor Modifications

The two-stage rig was found to closely match the time-distance relationship of 

the 500kW semi-industrial scale furnace. However, a full scale boiler runs at higher 

operating temperatures than what could be achieved on the rig’s original configuration. 

It was agreed upon that a higher thermal input was needed. This was only possible by 

increasing the rig’s volume to allow more air and fuel into the combustion process. As 

the primary reactor was working at its intentional temperature and flowrates, it was not 

subjected to any volume change. Thus another middle section was added onto the 

secondary reactor as shown in Figure 3.13 to achieve the increase in volume. It was 

estimated that this added approximately 200mm of critical linear distance. The extra 

section would also increase the gas residence times of subsequent trials depending on 

the operating temperatures. This exercise reflected the flexibility of manufacturing the 

rig in modular sections. Another advantage of this design aspect was the ease of 

transporting all the modular parts for refractory curing as seen in Figure 3.15. Curing 

prior to assembly also meant that the parts can be fired in conventional furnaces.

The second module of the secondary reactor failed during further research 

work. Cracks formed on the refractory lining after been subjected to severe thermal 

cycles. Cyclic mechanical loading was also experienced since the secondary reactor
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was separated at this point for slag sampling work. This part was then replaced by a 

similar design fabricated from stainless steel.

3.6.2. Cooling Extension

The experimental rig was used to mimic the combustion regions of an 

industrial boiler. This fits the requirement for slagging prediction but it does not cater 

for fouling which occurs in the convective section further downstream. For this an 

extension of water cooled duct was designed and fitted after the exit of the secondary 

reactor. Another additional section was made with provisions for deposition probe and 

flue gas sampling ports. Both sections were fabricated from stainless steel. External 

insulation was fitted to the sampling section. The fly ash collection pot and exhaust 

ejector were then fitted after these extension sections. Figure 3.12 shows a pictorial 

representation of the sampling section fitted to the end of the cooling extension while 

Figure 3.16 shows the cooling extension supported in place.

Deposition 
probe port

Flue gas 
analyser

probe port

Figure 3.12 Diagram of the sampling extension
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To
ash
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Water-cooled extension Sampling extension
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Refractory
lining

Figure 3.13 New configuration of the two-stage combustor
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TJ TK TL

—FE
T herm ocouples List TSIag

T1 Bottom section of primary reactor

T2 Middle section of primary reactor

T3 Top section of primary reactor

T4 Exit gas of primary reactor

T5 Ducting before inlet of secondary reactor

TA&TB Bottom section of secondary reactor

TC&TD First middle section of secondary reactor

TE&TF Second middle section of secondary reactor

TG&TH Top section of secondary reactor

Tl Inlet of cooling extension

TJ Inside wall of cooling extension

TK Outlet of cooling extension

TL Outlet of sampling section

TSIag Deposition probe end

Figure 3.14 Thermocouples list and temperature measurement points
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Figure 3.15 Modular sections of the experimental rig to be sent for curing

Figure 3.16 Water cooled extension and supports
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4. Experimental Study

4.1. Introduction

Experimental research work was carried out in two phases, before and after the 

main rig modification work. Most of the two-stage combustor operational parameters 

had been established during the commissioning work conducted on the earlier rig 

configuration. This was then followed by combustion studies with pure coal and coal- 

biomass blends. For this phase, the biomass used was dried sewage sludge co-fired at 

5% and 10% of thermal input substitution. The trials were carried out simulating the 

operational conditions o f an industrial down fired furnace. The early co-firing trials 

pointed out several issues regarding the original configuration of the two stage 

combustor. This then led to the modification work previously discussed in Chapter 3.

The next phase o f the research study concentrated on rebuilding the two stage 

combustor to the new configuration. The rig then underwent a commissioning period 

to ensure that the new design would operate as intended. A revised research procedure 

was also introduced using the experiences gained from the earlier co-firing trials. This 

was mainly in the form o f a practical work structure summarised in Figure 4.1 as well 

as the addition of online flue gas and fly ash analyses. Phase two co-firing experiments 

were then carried out on simulated operating conditions of one of Laborelec’s coal 

fired furnace reheater section which the rig matched successfully. Three different types 

of biomass were investigated and the results generated from this period of work 

formed the main part of the research data.
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The experim ental work can be sum m arised into three main elem en ts

Fuel Preparation

Com bustion Trials

S lagging and Fouling A n alyses

Trials

Predictor

Deposition
Rate

A sh Fusion  
T est

Flue G as  
A n alyses

Coal
Blends

Fuel
Characterisation

A sh
Elemental
A n alyses

S lag Sam pling  
and Fly A sh  

Collection

Figure 4.1 Structure of the programme of research work

4.2. Fuel

All the fuels used in this research work were received from various industrial 

sources within Europe. Each fuel received was then sampled for characterisation in 

accordance to international standards as applied in industry44,45. All fuels were kept in 

air-tight storage drums indoors to preserve its moisture content and to stop decay of the 

biomass. Each drum held no more than 50kg of fuel to ease mobility and optimise 

storage space. Results from the fuel characterisation work are presented in this section 

and the full set of detailed fuel data is included in Appendix C.
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Different types of coal were used in the research according to availability. A 

South African sub-bituminous coal was used for all commissioning, tests and rig 

preparation work as this was the most easily obtained. In the early trials the base coal 

blended with the dried sewage sludge was from a Colombian origin. Both coal types 

were found to be similar in combustion behaviour in pure coal firing of the original 

two stage combustor. The dried sewage sludge originated from Belgium. All three 

fuels were received separately and blended on-site prior to co-firing. Table 4.1 below 

shows the names designated for the earlier research fuel during co-firing trials and 

chemical analyses.

Table 4.1 Identifiers for fuel and blends used in the earlier phase of research period

Name Description

PFSA

PFCOL

PFSS

South African coal 

Colombian base coal 

Belgian dried sewage sludge

PF105

PF110

Coal blended with 5%th of dried sewage sludge 

Coal blended with 10%th of dried sewage sludge

The later co-firing work on the new configuration of the rig utilised a different 

base coal of South African origin. This coal is sourced from Laborelec and is the same 

blend that is fired at its Llangerlo furnace which was used as the basis for comparison. 

During this phase three types of biomass were chosen as the substitute fuel namely 

dried sewage sludge, sawdust and a refuse derived fuel (RDF). The dried sewage 

sludge was similar to the one used in the earlier trials, sawdust was of the European

51



04 Experimental Study

softwood type familiar to the furniture industry and RDF was sourced from a supplier 

in Germany. Figure 4.2 shows the three types of biomass in its raw form. Each of the 

biomass was co-fired with the base coal at substitution levels of 5%, 10%, 15% and 

20% by thermal input. The following designations shown in Table 4.1 were used to 

identify the different fuel blends during co-firing trials and chemical analyses. For this 

period of work the coal and biomass were received as pre-blended fuel.

Table 4.2 Identifiers for fuel blends used in the later phase of research period

Name Description

CSF000 Llangerlo base coal (South African)

CSF105

CSF110

CSF115

CSF120

Coal blended with 5%th of dried sewage sludge 

Coal blended with 10%th of dried sewage sludge 

Coal blended with 15%th of dried sewage sludge 

Coal blended with 20%th of dried sewage sludge

CSF205

CSF210

CSF215

CSF220

Coal blended with 5%th of sawdust 

Coal blended with 10%th of sawdust 

Coal blended with 15%th of sawdust 

Coal blended with 20%th of sawdust

CSF305

CSF310

CSF315

CSF320

Coal blended with 5%th of RDF 

Coal blended with 10%th of RDF 

Coal blended with 15%th of RDF 

Coal blended with 20%th of RDF
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Sawdust

Dried sewage sludge Refuse derived fuel

Figure 4.2 Biomass fuels used in the co-firing trials

4.2.1. Grinding and Blending

During the earlier co-firing trials both coals were received in pulverised form 

as used in industry. The dried sewage sludge was in pelletised form of 10mm average 

diameter and had to be grinded prior to blending with the base coal. All grinding work 

was carried out in house using a rotating mill with steel ball pulverisers. This is similar 

in operation to a typical coal milling plant available at industrial coal boiler 

installations. The biomass was then blended with the Colombian coal at its planned 

substitution levels using the same rotating mill without the steel ball pulverisers. The 

grinding and blending work were carried out just before each co-firing experiment as 

practised at a real large scale boiler.

Biomass fuels in phase two studies were received pre-blended with the South 

African base coal at its various planned substitution levels. This was mainly due to 

current legislation in place that required obtaining special permits to transport raw
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biomass between EU member states. Hence no further grinding and blending work 

were required on these fuels. Each fuel drum was placed on rotating wheels to obtain a 

constant mix o f coal and biomass before co-firing experiment.

4.2.2. Fuel Characterisation

Each type o f pulverised fuel was sampled and characterised, as received, in 

conjunction with international standards. These were proximate analyses, size 

distribution, net calorific values and ultimate analyses. The first two fuel 

characteristics were performed in-house while the later two was sent out to an external 

laboratory.

4.2.2.1 .Proximate Analyses

Proximate analyses were used to determine the ash content, volatile matter and 

moisture content o f the fuel. A fuel sample of lg  was used for each analysis. A fuel 

sample was heated in air at 800°C for one hour and the remaining mass is weighed for 

the ash content. A different sample was heated at 900°C in low oxygen by using a 

closed crucible for 10 minutes and another was placed in a drying oven at 120°C for 

one hour. In both cases the difference between the remaining mass and the initial 

sample mass is the volatile matter and moisture content respectively. These values 

were then subtracted from unity to approximate the fixed carbon content of the fuel. 

Figure 4.3 summarises the result o f the proximate analyses of fuel. The results 

suggested that introducing biomass generally increases ash content and volatile matter 

while reducing fixed carbon content as expected. This would give an operator early 

insight of the fuel combustion behaviour.
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4.2.2.2.Size Distribution

Fuel size distribution was carried out on both coals in the earlier phase using a 

wet sieving apparatus. This provided a more precise size data than dry sieving which is 

normally used by boiler operators. This was deemed necessary at the time as the results 

obtained also formed the basic size distribution data of the computer modelling work. 

However biomass was unsuitable for wet sieving process as it dissolves in the solution 

and would be unrecoverable for useful data to be obtained. Dry sieving was utilised 

initially but the apparatus later failed a safety inspection on the grounds of dust hazard. 

Figure 4.4 to Figure 4.6 show the results of the phase one fuels size distribution work. 

Pulverised fuel size requirement of over 70% less than 75pm and over 50% less than 

50pm as adapted in industry were obtained with both coals as expected.

As the later fuels were prepared as was practised in industry, the size 

requirement, as received, were met for pulverised fuel firing. Hence further size 

distribution investigations were not performed as it was viewed not necessary 

especially when the time and cost o f outsourcing were taken into consideration. 

Physically the dried sewage sludge was in similar form of the coal, sawdust included 

larger particles up to 0.5mm and RDF was in the form of fibrous floe.

4.2.2.3.Ultimate Analyses and Calorific Values

Ultimate analyses of the fuel would give a better indication of the combustion 

behaviour of a particular fuel. Data from the ultimate analyses were also used to 

estimate the amount o f air needed and hence the air to fuel ratios in the co-firing 

experiments. Figure 4.7 shows the results of the ultimate analyses and indicated a 

general decrease o f carbon content as the biomass substitution is increased. Chlorine
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was only present in the coal-RDF blends and high oxygen content of wood is reflected 

in the characteristics of the coal-sawdust blends. Ash content was found to increase in 

the coal-biomass blends, decrease in the coal-sawdust blends while remained constant 

in the coal-RDF blends.

Fuel net calorific values (lower heating values) were used in determining the 

thermal rating of the rig operation. As expected the net calorific value of fuel decreases 

as the substitution levels of biomass were increased as shown in Figure 4.8. This was 

found to be least severe with RDF. The ultimate analyses results and the fuel calorific 

values were also used as parameters for the computer modelling work.

PFSA

PFCOL

PFSS

CSFOOO

CSF105

CSF110

CSF115

CSF120

CSF205

CSF210

CSF215

CSF220

CSF305

CSF310

CSF315

CSF320

■  Fixed Carbon ■  Ash □  Moisture □  Volatile

Figure 4.3 Results obtained from proximate analyses
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Figure 4 .4 Wet sieved size distribution of the South African coal
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Figure 4.5 Wet sieved size distribution of the Colombian base coal
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Figure 4.6 Dry sieved size distribution of the dried sewage sludge
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Figure 4.7 Results of the ultimate analyses of fuel
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Figure 4.8 Effect of biomass substitution levels on the net calorific value of fuel
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4.2.3. Ash Analyses

Fuel ash analyses were regarded as being important for boiler operators. The 

revised work plan during the rig modification period reflected this importance. Ash 

analyses were carried out on each fuel blend. Several ash samples were prepared for 

each fuel blend by heating lOg of fuel sample at 850°C for one hour. The ash was then 

subjected to the following tests.

4.2.3.1.Ash Fusion Temperature

Samples were subjected to the ash fusion temperature (AFT) test as discussed 

in Chapter 2. For each blend, ash samples were shaped into a pyramid and placed in a 

furnace at various temperatures ranging from 1100°C to 1500°C in steps of 50°C. The 

physical characteristic of the ash after the heating process is observed and noted as in 

Table 4.3 below. Sintered ash can be interpreted as the initial deformation temperature 

(IDT) and fused ash as the hemispherical temperature (HT). The results were then used 

to determine the slagging index, FS, from equation (2.1) detailed in section 2.2.5 of 

Chapter 2. Figure 4.9 shows the physical form of sintered ash and fused ash samples.

Figure 4.9 AFT tests samples of (a)sintered and (b)fused ash
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Table 4.3 Ash fusion temperature test results

Temperature 1100°C 1150°C 1200°C 1250°C 1300°C 1350°C

Pure Coal

CSF000 P P P s s F

Coal-Sewage Sludge Blends

CSF105 P P P s s F

CSF110 S s s F

CSF115 s s F

CSF120 s s F

Coal-Sawdust Blends

CSF205 p p P S s F

CSF210 p p P S s F

CSF215 p p P S s F

CSF220 p p P S s F

Coal-RDF Blends

CSF305 p p S s s F

CSF310 p s s s F

CSF315 s s s F

CSF320 s s s F

Key : P = powdered, S = sintered, F = fused

4.2.3.2.Ash Elemental Analyses

Elemental analyses were performed on fuel ash samples using an inductively 

coupled plasma (ICP) device. An ash sample of 0.25g for each fuel was dissolved in a 

10% hydrochloric acid solution and passed through a Perkin Elmer Plasma 400
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emission spectrometer. The following results given in Table 4.4 were obtained and 

used in evaluating the slagging and fouling indices as discussed earlier in Chapter 2. 

The results were also compared with fly ash analyses results from the co-firing trials.

Table 4.4 Fuel ash analyses results

Oxides S i0 2 CaO MgO Mn304 k 2o Na20 T i0 2 Fe2 ( > 3 a i2o 3 P2Os

Pure Coal 

CSF000 44.21 12.55 3.95 0.19 0.80 1.05 1.29 6.98 26.85 2.13

Coal-Sewage Sludge Blends

CSF105 40.59 13.85 3.74 0.19 0.85 0.97 1.26 7.45 26.36 4.74

CSF110 34.92 14.40 3.63 0.22 1.16 1.04 1.08 10.45 21.69 11.42

CSF115 32.96 13.67 3.62 0.24 1.32 1.11 0.91 12.63 18.41 15.12

CSF120 34.97 14.29 3.57 0.22 1.18 1.06 1.06 10.91 20.70 12.04

Coal-Sawdust Blends

CSF205 39.99 14.07 4.10 0.22 0.95 1.00 1.43 7.23 28.80 2.22

CSF210 42.57 13.90 3.82 0.23 0.94 0.91 1.32 6.20 28.11 1.99

CSF215 41.69 14.34 3.84 0.26 1.11 0.89 1.35 6.25 28.28 1.98

CSF220 42.54 14.34 4.02 0.35 1.49 0.89 1.27 6.18 26.78 2.13

Coal-RDF Blends

CSF305 43.98 13.02 3.28 0.11 0.68 1.06 1.42 5.96 28.80 1.70

CSF310 44.25 13.78 3.20 0.10 0.73 1.29 1.55 5.44 28.07 1.60

CSF315 43.80 14.87 3.07 0.10 0.71 1.29 1.98 5.25 27.41 1.51

CSF320 43.38 15.38 3.08 0.09 0.83 1.41 2.00 5.29 27.01 1.52
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The following observations can be summarised from Table 4.4 for the fuel ash 

analyses. High levels of P2 O5 were present in the coal-sewage sludge blends as 

expected due the high content of phosphorus normally found in sewage sludge. The 

coal-sawdust blends showed similar levels with the base coal while the coal-RDF 

blends showed a lower amount compared with the base coal. The results also showed 

that the alkali metal oxides increases as the substitution level were increased with all 

three types o f biomass. It was noted that slightly higher levels of Na20 were present in 

the coal-RDF blends and correspondingly lower levels of K2O. Another significant 

observation was that higher levels of Fe2C>3 in the coal-sewage sludge blends with 

respect to the base coal. Coal-sawdust blends depicted no significant change in Fe2 0 3  

constitution and the coal-RDF blends were slightly lower with respect to the base coal. 

AI2O3 constitution in general seemed to be the opposite to the levels of Fe2C>3 where in 

the coal-RDF was slightly higher, coal-sawdust was similar, and coal-sewage sludge 

was significantly lower with respect to the base coal.

4.3. Air-Fuel Ratio

Stoichiometric air needed for complete combustion of fuel was estimated using 

data from the ultimate analysis results. Firstly, it was assumed that oxygen was used to 

bum up the carbon, hydrogen, chlorine, and sulphur to CO2 , H2O, CIO and SO2 

respectively.

Using carbon as an example, the following reaction equation was used to 

determine the mass of oxygen for complete combustion of carbon in 1kg of fuel.
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C + O2 -  CO2 

considering molecular masses,

32 = 44 
+  12 “  12

f 32l f 44l= mr
U 2 J t I12J

mc + m c

(  32^\hence by comparison, m0j(C) = mc —

where mc is the carbon content in 1kg of fuel

m0j(C) is the mass of oxygen for combustion of carbon in 1kg of fuel

A similar approach was used to determine the mass of oxygen needed for the 

hydrogen, chlorine and sulphur in 1kg of fuel using the following reaction equations. 

H2 + V2O2 = H2O for hydrogen,

Cl + V2O2 = CIO for chlorine, 

and S + O2 = SO2 for sulphur.

The mass o f oxygen needed for complete combustion of 1kg of fuel, mo2(/uei)> 

was then obtained by summing up the individual oxygen mass.

m 0 2{Juel) =  m 0 2(C) + m 0 2(H) + m 0 2(Cl) +  m 0 2(S)

where m0l(H) is the mass o f oxygen for combustion of hydrogen in 1kg of fuel 

mo2(ci)ls the mass o f oxygen for combustion of chlorine in 1kg of fuel 

m0j(S)is the mass o f oxygen for combustion of sulphur in 1kg of fuel
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The oxygen content o f the fuel was then subtracted from this value to give the 

amount of oxygen needed from the air, m0 i.

m 0 2 =  m 0 2(Juel) ~  m O

where mQ is the mass of oxygen content in 1kg of fuel

Finally, the amount of air needed, mair, is then this result divided by the 

gravimetric ratio o f oxygen content in the air.

100
171 air ~  m O X ---------2 23.3

A full set o f air calculations for each fuel blend is included as Appendix D.

In the earlier research period the air-fuel ratio was set at 1.05 of stoichiometric 

to match the operating conditions of the 500kW semi-industrial down fired furnace. 

This was set as the criteria at both primary and secondary air inlets with no feedback 

from the exhausting flue gas. Co-firing experiments were carried out at various 

primary to secondary air ratios ranging from 15:90 to 45:60 as this gave stable rig 

operations when firing pure coal. The temperature profile of the 500kW rig was best 

matched when using a ratio o f 40:60 this was then set to be the base operating primary 

to secondary air ratio throughout the earlier phase of research.

The two stage combustor simulated the operating conditions of the Llangerlo 

furnace for the later research period which is fired with 20% excess air. This was 

obtained from observing the oxygen content of the flue gas as in industry. The research 

used the following relationship built in to the portable combustion analyser used in the
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experimental studies where the target value for X was 1.2. Complete combustion of fuel 

was assumed when no CO or H2 are detected in the flue gas.

A -  _____
20.95% - 0 2Ulm)%

where X is the equivalence ratio

O2(flue) is the measured oxygen in the flue gas

Experience in commissioning the new configuration of the rig had shown that 

this value for X was achieved when using approximately 90% of the estimated 

stoichiometric air. A primary to secondary air ratio of 25:75 was also found to produce 

a temperature profile that simulated a section inside the Llangerlo furnace. These were 

then set as the criteria at the primary and secondary air inlets for the second phase of 

the research.

4.4. Co-firing Trials

Co-firing trials were carried out on the two stage combustor to evaluate the 

combustion behaviour o f each fuel blends. The trials also generated slagging and 

fouling data, as well as ash deposition for analyses and classification. Each coal blend 

was tested twice due to the limited availability of fuel.

4.4.1. Rig Operational Procedure

Detailed operational procedure of the two stage combustor carried out for the 

co-firing investigations is highlighted in this section. Figure 4.10 shows the two stage
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combustor identifying the key instrumentation stations. Two Excel spreadsheets 

installed on the PC were used during a trial. One calculates the level of air and fuel 

required for a particular thermal input and the other is a template for recording the 

parameters and events taken place during an experimental run. The second spreadsheet 

also calculates the gas residence times and averages the flue gas analyses values.

TN TL

TH
TSIagl

TF TE
T3

T2
TD TC

TB TA

T4

Figure 4.10 Temperature measurement points of the experimental rig

4.4.1.1.Rig Setup Procedure

A setup procedure listed below was devised to be carried out before each trial 

run to maintain safety and ensure a smooth operation of the rig. This is as follows:

• Firstly the rig was checked that it was connected securely especially between 

the primary to secondary reactors and the secondary reactor to the exhaust 

extensions.
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• The exhaust was checked that it was directed into the stack and the extraction 

system was working properly.

• Next all air lines were checked to ensure no leaking and able to reach 

maximum output.

• All thermocouple caps and ports needs to be securely fitted and lag 

appropriately with thermal wool and the frame wheels are securely locked.

• Next the data instrumentation was ensured to be operating with all 

thermocouples functioning properly and the logger is reading correctly.

• The target air and fuel were set using the calculator spreadsheet.

• The warm up nozzle was placed at the primary inlet. The secondary sawdust 

feed was securely set up in place.

• Both propane burner heads were securely fitted in front of its respective inlets. 

The propane bottles must be situated away from frame of the rig ensuring that 

the hose was not stretched, coiled, or obstructing other equipments.

• To ensure that the hopper agitator and feeder screw was turning smoothly 

without problems throughout its operating range.

• Cooling extension water supply is available and the outlet is fixed to the drain.

• To check that the deposition probe end clean of ash or slag from previous tests. 

Deposition probe water was ensured not to be leaking and the outlet is fixed to 

the drain. The deposition probe position is pre-determined and the sampling 

port and stopper plate was adjusted accordingly.

• It was ensured that all events and experimental parameters were documented in 

the provided template spreadsheet.
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4.4.1.2. Warm-up Procedure

The rig needed to be warmed up prior to solid fuel combustion. This was 

achieved using propane gas burners fired at both inlets. Sawdust was then introduced 

to help reduce warm up time during switch over from gas to solid fuel. South African 

coal was then used as a warm-up fuel to get the rig to a steady state before actual tests 

were carried out. The warm up procedure for the two stage combustor was as follows;

1. Fill the hopper with two standard bags, approximately 18kg, of the base coal.

2. Turn on the extraction system in the laboratory.

3. Turn on the exhaust ejector air and open the valve to 10001/min.

4. Fully open the water inlet valve of the cooling extension and then open the 

outlet valve halfway to let the cooling extension filled with water.

5. Open all valves on the first propane bottle.

6. Ignite the primary burner head.

7. Adjust gas flow until a stable blue flame is obtained.

8. Repeat 5-7 for the secondary propane burner at the secondary inlet.

9. Stop secondary burner head when the bottom thermocouple of the secondary 

reactor, TA, reaches 500°C as shown in Figure 4.10.

10. Decrease the exhaust ejector air to 8001/min to stop back pressure at the inlets.

11. Start secondary sawdust feed with the vibrating table control dial set at 86.

12. Stop the primary burner head when the bottom thermocouple of the primary 

reactor, T l, reaches 750°C as shown in Figure 4.10.

13. Stop secondary sawdust feed and block the secondary inlet with a piece of 

ceramic fibre blanket.
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14. Take off primary warm up nozzle with tongs provided and leave it to cool 

down in a safe place. Insert feeder attachment in its place.

15. Slowly feed sawdust into the cone using the provided plastic scoop while 

keeping an eye on the temperatures of the first stage. Care must be taken as 

back pressure may occur.

16. Switch on coal feed controller position to 11 when a steady increase in 

temperature is observed in the first stage. Stop primary sawdust feed.

17. Turn on secondary air fan to 2001/min and fix airline to the secondary inlet 

when T1 reaches 900°C. Make sure that the ceramic fibre blanket is removed.

18. Turn off the exhaust ejector air.

19. Steadily increase the coal feed to 16, adjusting both primary and secondary air 

accordingly. Ensure that the primary reactor temperatures are below 1100°C.

20. Stable conditions should be reached in just over one hour where the secondary

reactor temperatures are consistently over 1000°C. Ensure that the coal does

not run out before stable conditions are achieved.

4.4.1.3 .Experimental Operation

The following procedures were carried out for each experimental run.

1. Let the remaining coal in the hopper finishes, maintaining stable conditions.

2. Block the primary secondary inlet with a piece of ceramic fibre blanket as soon 

as the warm up coal finishes and set the hopper control dial back to 0.

3. Fill the hopper with two bags of the coal blend to be investigated.

4. Empty the ash pot. Care must be taken due to hot surfaces and ash. This ash

must be kept separately from the actual trial fly ash.
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5. Start the coal feed controller at dial setting 11 and steadily increase the coal 

feed to the desired setting, adjusting both primary and secondary air 

accordingly. Ensure that the primary reactor temperatures are below 1100°C.

6. Deposition rates investigations are carried out once stable conditions are 

established in both reactors.

7. Adjust the desired gas temperature at the sampling extension, TK, as shown in 

Figure 4.10 using the water outlet valve of the cooling extension to control the 

water flowrate.

8. Fully open the deposition probe cooling water valve. A slight drop in the slag 

probe temperature, TSlag, will be observed shown in Figure 4.10.

9. Turn on the exhaust ejector air and open the valve to 12001/min.

10. Fully open the sampling port valve and insert the deposition probe to the 

stopper level. Secure the probe using the sampling valve and the stopper cap. 

Care must be taken due to hot gases exiting the port.

11. Turn off the exhaust ejector air and the rig should return to stable conditions.

12. The probe cooling water was adjusted so that the end o f the deposition probe, 

TSlag, reads 550°C shown in Figure 4.10.

13. Leave the deposition probe in-situ for approximately one hour. Primary and 

secondary air might be adjusted slightly to maintain stable conditions.

14. Connect the gas analyser probe to the port using the cooling copper tubing. 

Care must be taken due to hot surfaces around the sampling extension.

15. Analyse the flue gas three times while the probe is in-situ and key in the results 

into the spreadsheet. The gas analyser needs to be recalibrated in air between 

each analysis and this takes approximately 15 minutes. The gas analyser probe 

must not be left in hot flue gas stream for long periods of time.
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4.4.1.4.Shutdown and Rig Cooling Procedures

The following procedures were carried out to stop the co-firing trial. The 

deposition probe was taken out during shutdown to avoid high velocities in the 

sampling area when using the exhaust ejector air as this might disturb the collected 

deposition sample. All air lines and water connection was disconnected and stored 

safely after shutdown. The two stage combustor was then left to cool down to room 

temperature and this takes approximately 30 hours. The following steps were used.

1. Stop the fuel feed.

2. Decrease both primary and secondary air to 1501/min.

3. Undo the sampling stopper cap and fully open the sampling port valve. 

Carefully remove the deposition probe. Fully open the slag probe cooling water 

valve to help the collected deposits solidify on the probe surface.

4. Stop the data logger and save the data file to the PC. Restart the logger if 

cooling data is needed and this can be saved separately from the trial data.

5. Turn on exhaust ejector air and set to 2001/min.

6. Take off the secondary air line and block secondary inlet with a piece of 

ceramic fibre blanket. Turn off secondary air fan.

7. Close primary air valve and take off feeder.

8. Place the ‘HOT EQUIPMENT’ sign on the trolley-frame, ensuring that it is 

clearly visible by the side of the rig.

9. Empty the ash pot. Keep the collected fly ash for analysis.

10. Empty the remaining hopper content into 250-gauged polythene bags. Seal and 

clearly mark bags with the fuel blend type.
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11. Turn off exhaust ejector air and the extraction system approximately 45 

minutes after shutting down. Close mains compressed air valve feeding the 

compressed air banks.

12. Stop the data logger to collect cooling data approximately four hours after 

shutting down.

4.4.2. Deposition Rates

Deposition rates investigations were carried out when stable conditions were 

achieved using the trial fuel. The end of the slag probe was set at 550°C as this was 

assumed to be the temperature on the wall of a heat transfer surface of an industrial 

boiler. Deposits were collected from the probe to be weighed. The collection area is 

60mm long around the circumference of the probe. The deposition rate was determined 

as follows:

where r is the deposition rate

mr is the mass of the collected deposits

d  is the outer diameter of the probe in mm

t is the time the deposition probe stayed in-situ in hrs

4.4.3. Flue Gas Analyses

Flue gas analyses were carried out online as an indication of the air-fuel ratio 

when running the rig. The portable combustion analyser unit also analyses the flue gas 

for the following gases shown in Table 4.5. The results were then compared to typical

m
(4.2)r
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coal fired furnace and used to ensure that the rig was operating within the range found 

in industry.

Table 4.5 Gases analysed using the portable combustion analyser

Gases Units

o2 volume %

co2 volume %

CO ppm

NO ppm

no2 ppm

S 0 2 ppm

h 2 ppm

NOx mg/m3

4.4.4. Residence Time

The residence times for each run were estimated as is carried out in industry. 

This is strictly the gas residence time for the rig. The two stage combustor was divided 

into sections where each has its own partial volumes. Partial residence times for each 

subsection were calculated using the volume flowrates and its corresponding 

temperatures. A point of steady state was chosen from the temperature history for each 

experiment.

The following relationship can be applied assuming air as ideal gas,

PV  = mR0T  (4.3)
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where P  is the air pressure

V is the volume flowrate 

m is the mass flowrate 

Ro is the molar gas constant for air 

T  is the air temperature in Kelvin

Since the mass flowrate is constant and the rig operates at atmospheric 

pressure, the equation can be rewritten as below and hence the steady state volume 

flowrate were determined.

V TV hot _  1 hot

^co ld  ^'cold

The new volume flowrate was then used to work out the partial residence time

for each subsections volume

= V_ 
s V

where s  is the subsection partied residence time 

V is the subsection volume

The total residence time for a steady state condition was then the sum of the 

partial residence times from each subsection. A time-temperature curve was drawn.

4.4.5. Temperature Profile

The time-temperature curve was then used to produce a temperature profile of 

the two stage combustor for each trial experiment. Gas linear distance for the two stage 

combustor was derived from projecting the centre lines on the inlets and outlets as well
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as using the computer modelling work. Physical observations on the wall of secondary 

reactor reconfirmed the computer models prediction of the gas path.

The temperature profile when firing the base coal was compared to temperature 

profiles of the 500kW semi-industrial down fired furnace and the Llangerlo furnace. A 

match in these temperature profiles was assumed to show that the simulation behaviour 

mimics the actual boiler. Figures 4.11 and 4.12 show the base temperature profiles 

used in the earlier and later periods of the co-firing trials respectively. In the earlier 

work, the match was obtained when running the rig at 70kW of thermal input. During 

the commissioning work after the rig modifications, the rig was found to match the 

Superheater3 and Reheater2 section of the Llangerlo furnace when running at 80kW of 

thermal input. These were then used as the control temperature profiles for the research 

work.

1200

1000

^  800

600

400

200
Down Fired Furnace 
Cardiff Combustor

Linear Distance /m

Figure 4.11 Temperature profiles of Cardiff combustor and Down Fired furnace

75



04 Experimental Study

1600

1400

1000

800

600

200

0
6025 30 35 50 5540

Linear Distance /m
45

-  Llangerlo Furnace 
Superheater 3

- Economiser 2

Burner Banks 
Reheater 2 
Economiser 1

Water Walls 
- - Superheater 1 
k— Cardiff Combustor

- Superheater 2 
Reheater 1

Figure 4.12 Temperature profiles of the Cardiff combustor and Llangerlo furnace

4.4.6. Slag Sampling

Slag samples were collected from different areas inside the rig to correspond 

with different sections of an industrial boiler. This was carried out after the rig was left 

to cool down to room temperature after shutdown. Slag sampling areas inside the rig is 

shown in Figure 4.13 and Figure 4.14.

ICP chemical composition analyses of the slag samples were performed. This 

data was then used to calculate the empirical slagging indices as used in industry. Data 

from the chemical analyses were also presented as part of the depositions database 

generated from the PowerFlam research. Physical and chemical comparisons between 

coal only and each substitute blend were also observed.
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Slaa SamDlina Areas

1. Floor and bottom wall of 
primary reactor

2. Exit of primary reactor

3. Ducting from primary reactor

4. Entrance of transfer duct into 
secondary reactor

5. Floor of secondary reactor

6. Wall in bottom section of 
secondary chamber opposite to 
the transfer duct entrance 
(hottest part)

7. Wall of secondary reactor

Figure 4.13 Slag sampling areas for the earlier phase of research

Slaa SamDlina Areas

1. Floor and bottom wall of 
primary reactor

2. Exit of primary reactor

3. Transfer duct

4. Entrance of transfer duct into 
secondary reactor

5. Floor of secondary reactor

6. Wall in bottom section of 
secondary chamber opposite 
to the transfer duct entrance 
(hottest part)

7. Wall of secondary reactor

8. Exit of secondary reactor

Figure 4.14 Slag sampling areas for the phase of research after rig modification
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Only the top layer from each area was collected to minimise interaction with 

the coal ash deposits during warm-up. A thin layer of porous ash was usually formed 

in the secondary reactor which separated the deposits from warm-up and actual co­

firing test. The two stage combustor should be cleaned of all deposits after each 

experimental run. However removing slag that had seeped through the refractory was 

impractical. The coal ash deposits from warm up helped to ensure to a certain extent 

that the collected slag sample is from the actual co-firing test.

4.4.7. Operational Problems

Several problems were encountered during the experimental runs and are 

detailed as follows;

4.4.7.1.Erosion

It was observed that the area surrounding the primary reactor exit was 

subjected to an abrasive condition that caused erosion of the stainless steel exit tube. 

This caused thinning of the tube and once a hole was breached temperature at the 

affected region rose rapidly and melted the tube. This then caused slagging to occur in 

the primary reactor and may block the transfer duct. The tube had to be subsequently 

replaced several times throughout the research. Other materials had been investigated 

namely heat resistant metals and ceramic. Special heat resistant metals were too 

expensive as it needs to be ordered in low volumes. Ceramic tubes were available but 

proved to be too brittle and cracks easily when slag sampling and cleaning the primary 

reactor.
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The problem also depended on the type of biomass being co-fired as shown in 

Figure 4.15. Coal-RDF blends was found to be extremely abrasive while coal-sewage 

sludge blends was similar to pure coal. Erosion was also found to occur at a much 

lesser rate in the primary side of the transfer duct. The duct had only been replaced 

twice throughout the research.

(a) after 7 runs of coal-sawdust blends (b) after 3 runs of coal-RDF blends
Figure 4.15 Damage sustained at the exit tube of the primary reactor

4.4.7.2.Back Pressure

Back pressure was sometimes encountered during the warm up stages of a 

particular experimental run. This was mostly during sawdust warm up of the secondary 

reactor. During solid fuel firing back pressure occurred in two distinct forms. Short 

bursts of back pressure were easily handled by opening the exhaust ejector at a 

relatively low flowrate.
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A sustained back pressure would usually indicate a blockage either at the 

transfer duct or the exhaust. Here the exhaust ejector air was opened at a high flowrate 

but in short periods of time. This method would increase the temperature in the 

primary reactor so care was taken to ensure that the primary reactor was not operating 

in the slagging mode.

4.4.7.3.Fuel Bridging at Feeder

Potential problems were also observed at screw-feed hopper with the coal-RDF 

blends. Coal trapped in RDF fibres formed bridges over the screw-feed due to the fact 

that RDF floe was very fibrous and much lighter than coal. Coal-sewage sludge and 

coal-sawdust blends had little problem at the feeder.

4.5. Errors and Sensitivities

The experimental study for this research relied upon various measurements in 

obtaining the results. The following detailed the errors for each area of measurements 

and its sensitivities to the results.

4.5.1. Fuel Characterisation

Errors in the fuel characterisation work performed in-house would mainly have 

originated from samples weighing. The scales available to the research used in both he 

proximate analyses and size distribution investigations were accurate to 0.001 g. 

Samples of lg  were used for the proximate analyses contributing to errors of ±0.05%. 

Size distribution samples had a mean mass of 75g with errors o f ±0.0007% before
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losses. The furnace used for determining ash and volatile contents of fuel has a 

thermostat control accuracy of 50°C with errors of ±3%. The drying cupboard for the 

moisture content has a temperature gauge accuracy of 10°C contributing to errors of 

±0.05%. Both investigations are not sensitive to any further research results.

Results o f the ultimate analyses were received from the local laboratory was 

quoted with errors o f ±0.05%. Errors from the ultimate analyses would directly affect 

the stoichiometric air-fuel ratio calculations for each fuel blend. Both gross and net 

calorific values were received with an accuracy of 5J/g with errors of approximately 

±0.001%. This is sensitive to the substitution levels of biomass when blending was 

done for the earlier co-firing trials. Subsequently the thermal rating and hence the 

temperature profiles o f the experimental rig would be affected by the errors from the 

ultimate analyses and calorific values investigations.

4.5.2. Ash Fusion Temperatures

Ash fusion temperature (AFT) tests were performed on the same furnace used 

in the proximate analyses. The errors are slightly lower at ±2% due to the higher range 

of temperatures involved. The method adapted in determining the physical conditions 

of the ash samples also involved observational errors of the laboratory operator. These 

errors would directly affect the slagging index, FS.

4.5.3. ICP Analyses

Ash elemental analyses were carried out on fuel and slag samples generated 

from the experimental study on an inductively coupled plasma (ICP) device. Results 

were given with an accuracy of 0.001%. However the total oxides quantitatively
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derived from the emission spectrometer varies from 80% to 120% with errors of 

±10%. This is found to be ‘acceptable’ results according to industry while ‘good’ and 

‘exceptional’ ranged from 90% to 110% and 98% to 102% respectively49. Therefore all 

the results from the ICP analyses were normalised to be applied to the indices 

calculations. The normalised results were also used in the deposition characteristics 

database for comparison purposes.

4.5.4. Air Flowrate

Air flowrate were controlled via several air rotameters connected to its 

respective supplies. The rotameter for the primary air was accurate to 201/min while 

the secondary air and exhaust ejector air uses similar rotameters with an accuracy of 

501/min. Primary air passes through an ejector nozzle to the primary inlet of the 

experimental rig. This ejector effect had been calibrated by measuring the air flowrate 

at nozzle output relative to the rotameter reading and the result were plotted as a 

calibration curve. Primary air was calculated against this calibration curve during the 

rig operation. Errors from the air flowrate readings are sensitive to the thermal rating 

of the experiments. This would also affect the oxygen levels during combustion and 

hence the quality of the slag generated at the secondary reactor.

4.5.5. Fuel Feeding Rate

The fuel hopper utilised in the research was calibrated by timing the mass of 

fuel passing through the screw feed. A set of calibration curves were plotted for the 

screw feed control dial setting against the mass of fuel collected in one minute. This 

was then calculated to provide a fuel feeding rate relationship for each fuel blend in 

units of kg/hr. Hopper calibration was undertaken using a stopwatch with an accuracy
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of 0.01s. Any human reaction error in simultaneously starting/stopping the coal feed 

and the stopwatch was assumed to be negligible. Errors in the fuel feeding rate are 

sensitive to the thermal rating and hence the temperature profiles of the experimental

rig-

4.5.6. Thermocouples and Data Logging Instruments

Temperatures inside the two stage combustor were measured using two types 

of thermocouples. The K-type thermocouples have an emf change of approximately 

39|iV/°C at its normal operating temperature range with a tolerance value of ±9°C. The 

R-type thermocouples have a smaller emf change of approximately 13pV/°C at its 

normal operating temperature range with a lower tolerance value of ±1.9°C.

All thermocouples were connected to a Delta-T data logger during the phase 

one study. A platinum resistance temperature device (RTD) was also connected to the 

data logger as the thermocouple cold junction compensation. The RTD was kept at 

room temperature and has a tolerance value ±0.1 °C. The data logger was specified at 

±6% of reading error of voltage input accuracy for the range of the thermocouples used 

and at ±5Q typical o f resistance readings for the RTD. The software supplied with the 

data logger was used to convert the readings into temperatures via its built-in reference 

tables. National Instruments FieldPoint FP-TC-120 modules were then used during the 

phase two study to collect the temperature readings. Each module was fitted built-in 

linearization and cold junction compensation for both types of thermocouples. The 

cold junction accuracy was 0.3°C contributing to errors of ±0.75%. The FieldPoint 

module was specified at ±5pV of maximum offset errors for the range of operating 

temperatures in the research study.
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Errors in temperature measurements affect the rig temperature profiles and 

hence the residence time estimation work. This is then sensitive to the profile matching 

work in simulating real boiler conditions.

4.5.7. Flue Gas Analyser

The TESTO 350 ML portable combustion gas analyser system is comprised of 

several detection cells for the flue gas analyses housed in an analysis box. The analyser 

probe was connected to this analysis box with reading errors of ±5%. The errors 

involved are based on the gas being analysed due to the separate detection cells. 

Oxygen (O2) and carbon dioxide (CO2) were specified with a detection resolution of 

0.01% by volume, contributing to errors of ±0.25% and ±0.03% respectively. 

Hydrogen (H2) compensated carbon monoxide (CO) has a detection resolution of 

lppm while low CO levels was 0.1 ppm. The nitrogen-oxides (NO) measuring module 

has a detection resolution of 0.1 ppm and sulphur dioxide (SO2) was lppm. Other 

hydrocarbons (HC) modules were specified with a detection resolution of lOppm for 

methane, propane and butane. Errors in the flue gas analyses readings are not sensitive 

to any further results.
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5. Results

5.1. Introduction

This chapter presents the research data for the various trials undertaken within 

the research programme. These are divided into distinct sections and general 

summaries are provided for each presented results. Firstly, results from the fuel ash 

analyses work were used to evaluate the empirical indices discussed in Chapter 2. 

Secondly, the results o f the experimental co-firing trials are presented starting with the 

rig temperature profiles. This was then followed by the deposition rates including 

deposition observations and the flue gas analyses. The next sections then presented 

results obtained from the slag sampling activities. Both physical observations and 

chemical analyses are included. Finally, the results from the fly ash sampling and 

chemical analyses studies are also presented and summarised.

5.2. Empirical Indices

The results o f the fuel ash analyses in Table 4.4 were used to evaluate the 

empirical indices for slagging and fouling as listed in Table 5.1 and Table 5.2 

respectively. Each fuel blend is listed as designated in Table 4.2 for the phase two fuels 

from section 4.2 o f the previous chapter.

Slagging index based on the ash fusion temperature (AFT) tests, FS, the coal- 

sewage sludge blends showed the highest risk o f slagging as its values dropped to well
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below the average operating temperature. Increasing RDF substitution would lead to 

increased risk o f slagging while no change in slagging behaviour was observed in the 

coal-sawdust blends.

Table 5.1 Empirical indices for slagging derived from fuel ash analyses results

Indices F S /°C SR Fe(> 2  /% w t Rs

Pure coal

CSF000 1270 0.65 6.98 0.22

Coal-Sewage Sludge Blends

CSF105 1270 0.62 7.45 0.36

CSF110 1130 0.55 10.45 0.54

CSF115 1080 0.52 12.63 0.66

CSF120 1080 0.55 10.91 0.60

Coal-Sawdust Blends

CSF205 1270 0.61 7.23 0.32

CSF210 1270 0.64 6.20 0.26

CSF215 1270 0.63 6.25 0.22

CSF220 1270 0.63 6.18 0.21

Coal-RDF Blends

CSF305 1230 0.66 5.96 0.28

CSF310 1180 0.66 5.44 0.27

CSF315 1130 0.65 5.25 0.28

CSF320 1130 0.65 5.29 0.28
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Table 2.2 from section 2.2.5 of Chapter 2 was then used to asses the severity of 

slagging potential according to the silica ratio, SR, and the iron content in ash. SR 

evaluation showed that introducing sewage sludge and sawdust substitution was 

predicted to give a high potential of slagging, while RDF substitution would show no 

difference in slagging potential compared to pure coal. In all cases the slagging 

potential was highly underestimated using iron content in ash as all fuel blends falls 

within the range o f 3% - 8% by mass. This showed the shortcoming of the accepted 

standard when applied to southern hemisphere coal blends. Both methods predicted 

that slagging potential was increased as sewage sludge substitution was increased. 

Increasing sawdust substitution gave contradictory results where slagging potential 

was predicted to increase using SR but decrease using iron content in ash. Using SR 

predicted no change in slagging potential when RDF substitution level was increased 

while using iron content in ash predicted a decrease in slagging potential.

Propensity for fouling was next evaluated using Table 2.3 from section 2.2.5 of 

Chapter 2 by investigating the chlorine content in coal and alkali content in ash. The 

first method was simply not suitable for the base coal under investigation due to its 

negligible chlorine content. Only the coal-RDF blends would show an increasing 

fouling potential as the RDF substitution was increased.

Alkali content in ash showed that all fuel blends were within the range of high 

fouling potential which is between 1.0% - 2.5% by mass. In general, all coal-biomass 

blends were predicted to exhibit an increase in fouling potential compared to the base 

coal as the substitution levels were increased.
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Table 5.2 Empirical indices for fouling derived from fuel ash analyses results

Indices Coal Cl/%wt Alkali /%wt Rf

Pure Coal

CSF000 0.00 1.85 0.37

Coal-Sewage Sludge Blends

CSF105 0.00 1.82 0.38

CSF110 0.00 2.19 0.55

CSF115 0.00 2.43 0.69

CSF120 0.00 2.24 0.58

Coal-Sawdust Blends

CSF205 0.00 1.94 0.39

CSF210 0.00 1.85 0.32

CSF215 0.00 2.00 0.33

CSF220 0.00 2.38 0.34

Coal-RDF Blends

CSF305 0.09 1.74 0.34

CSF310 0.15 2.02 0.43

CSF315 0.23 2.00 0.44

CSF320 0.30 2.24 0.51

Slagging index Rs and fouling index R/ were also calculated from the base to 

acid ratio, Rb/a- The propensity of the ash to slag was predicted higher in all coal- 

biomass blends compared to the base coal. This was also true for fouling with the 

exception of the coal-sawdust blends. Increasing sewage sludge substitution
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significantly increases the risk of slagging and fouling. Increasing sawdust substitution 

decreases the risk of slagging. The risk of fouling in coal-sawdust blends was predicted 

to be lower than the base coal. Variations in RDF substitution would not affect the risk 

of slagging while slightly increasing the risk of fouling.

The results from the empirical indices highlighted the variations and hence 

unreliability that was encountered when slagging and fouling are investigated using 

these traditional methods. The limited range defined for some of the indices also 

restricted the prediction as little variation in slagging and fouling propensity could be 

derived for different levels of biomass substitution. Contradictory results have also 

been derived for the same biomass substitution using these traditional empirical 

indices.

5.3. Temperature Curves

The two stage combustor was fired to match the operating conditions of the 

500kW semi-industrial furnace in the earlier phase of the research period. This was 

successfully met as shown in Figure 4.9 with the Colombian base coal, PFCOL, at a 

thermal input o f approximately 70kW. For this result the two stage combustor was 

operating at 1.05 o f calculated stoichiometric air with a primary to secondary air ratio 

of 40:60. These values were then used as the control parameters of the subsequent co­

firing trials of 5% and 10% substitution by thermal input of sewage sludge. Figure 5.1 

shows the temperature profiles of the original two stage combustor.
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The two stage combustor then simulated sections of a reheater and superheater 

banks of a large scale utility boiler as shown in Figure 4.10 in the next phase of the 

research period. The secondary reactor was used to mimic the conditions of 

Superheater3 and the cooling extension lowered the gas temperature down similar to 

Reheater2 of the Llangerlo furnace. The region under investigation would be subjected 

to both slagging and fouling as indicated in Figure 2.4. This condition was achieved 

when firing the base coal, CSF000, at approximately 80kW of thermal input. The rig 

was operating at 20% excess air and the primary to secondary air ratio was 25:75. 

These values were then used as the control parameters of the subsequent co-firing trials 

of the three types of biomass at various levels of substitution. Results from the next 

phase of co-firing trials with the coal-sewage sludge, coal-sawdust and coal-RDF 

blends are shown in Figure 5.2, Figure 5.3 and Figure 5.4 respectively.
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o
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Coal Only

Coal + 5% th Sewage Sludge 

Coal + 10% th Sewage Sludge
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3.00 3.50 4.000.00 0.50 1.00 1.50 2.00 
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Figure 5.1 Temperature-distance curves of from phase one research study

90



05 Results

1400

1200

1000

2  800

2. 600

400

200

38.535.5 36.5 37.5
Linear distance /m

Figure 5.2 Temperature-distance curves of co-firing coal-sewage sludge blends
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Figure 5.3 Temperature-distance curves of co-firing coal-sawdust blends
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Figure 5 .4 Temperature-distance curves of co-firing coal-RDF blends

The following can be summarised for the results from the earlier phase of 

research period given in Figure 5.1. Sewage sludge substitution increased the 

temperature at the region near the fuel inlet and resulted in a lower exhaust 

temperature correspondingly. The 5%th substitution generated a combustion region 

with similar temperatures to the base coal while the 10%th substitution resulted in a 

hotter combustion region by approximately 50°C. This suggests that 5%th sewage 

sludge substitution would generate similar amount of slag to the base coal and 

increasing sewage sludge substitution to 10%th would suffer more severe slagging.

Figure 5.2 shows the result from the co-firing trials of coal with sewage sludge 

on the new configuration of the two stage combustor. It was observed that the 

operating temperature of the rig was higher when co-firing which the highest occurred 

at 15%th substitution. In general, sewage sludge substitution produced temperatures in
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the order o f 100°C higher than the other biomass substitutes. Co-firing sawdust 

substitution showed the most consistent and stable operation of the rig as seen in 

Figure 5.3. Firing the coal-RDF blends were difficult to control and this is reflected in 

the temperature profiles shown in Figure 5.4. This then led to the variations in exhaust 

temperatures. Sawdust and RDF substitution showed to have similar peak operating 

temperatures. In all cases the peak operating temperatures were observed just after the 

inlet of the secondary reactor. In general, the operating temperatures on the rig 

increased as the biomass substitution levels were increased. This would mean that a 

higher risk of slagging was likely to occur when co-firing and the most severe case 

would be with sewage sludge.

5.4. Deposition Rates

Slag deposition rates collected on the original 25mm outer diameter probe 

during the earlier research are summarised in Table 5.3. The probe was then positioned 

just before the exit o f the secondary reactor where the gas temperature was around 

1000°C. At this position the deposition probe surface temperature was kept at 530°C as 

applied at the 500kW semi-industrial furnace. This was also to reflect the superheated 

steam temperature inside a heat exchange tube surface. An increase in deposition rate 

can be observed as more substitute fuel is introduced in the blend as expected. This 

was in agreement o f the previous assumption of slagging behaviour made from 

observing the temperature profiles of the two stage combustor. PFCOL refers to the 

Colombian base coal and PFSS is the Belgian dried sewage sludge.
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Table 5.3 Measured deposition rates on the original experimental rig

Fuel 2Deposition rate /g/m /hr

PFCOL 24

PFCOL + 5%th PFSS 38

PFCOL + 10%th PFSS 46

During the next phase of experimental study the deposition probe was 

positioned further downstream of the secondary reactor exit at a dedicated sampling 

port. At this point the flue gas temperature was cooled down to around 800°C and the 

probe surface temperature was maintained at approximately 550°C to reflect the 

simulated region o f the Llangerlo furnace. The result from the phase two experimental 

trials is listed in Table 5.4. The original probe was still in use during the coal-sewage 

sludge blends investigations. The subsequent coal-sawdust and coal-RDF blends 

experiments utilised the newer 16mm outer diameter deposition probe at the same 

position. For the coal only trial, CSF000, the first value is the average deposition rate 

measured on the original probe and the second value is on the new probe.

The deposition probe was situated in a less turbulent flow at the dedicated 

sampling port compared to the earlier phase one position. Initially the original probe 

was utilised at this position with the new configuration of the two stage combustor. An 

average deposition rate o f 51g/m2/hr was seen when firing on the base coal, CSF000. 

However this result was averaged from a large variation ranging between 42g/m2/hr to 

66g/m /hr. A significantly lower deposition rates were also obtained from the coal- 

sewage sludge trials. It was suggested that this resulted from an interaction effect of
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the gas flow in the sampling section with the deposition probe. The original probe was 

found to have significantly large effective impact area ratio of approximately 1:3. This 

was thought to have disturbed the flow around the probe. This was also reflected in the 

physical structure o f the deposit where the deposition was a thin coating of uniform 

layer all around the probe as shown in Figure 5.5.

Table 5.4 Measured deposition rates with different coal-biomass substitutions

Fuel Deposition rate /g/mz/h r

Pure Coal

CSF000 51*/64

Coal-Sewage Sludge Blends*

CSF105 24

CSF110 25

CSF115 22

CSF120 18

Coal-Sawdust Blends

CSF205 50

CSF210 39

CSF215 30

CSF220 4

Coal-RDF Blends

CSF305 64

CSF310 67

CSF315 65

CSF320 68

* Deposition rates investigated using 0=2Omm probe
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A new deposition probe was then commissioned to be used at the sampling 

section. A similar design was chosen with a smaller outer diameter of 16mm as this 

was the smallest probe that can be built in house. The new probe has an effective 

impact area ratio of approximately 1:5. The average deposition rate for CSF000 was 

64g/m2/hr with a better range between 60g/m2/hr to 66g/m2/hr. More deposit was also 

collected on the impaction side as expected in fouling deposition growth as shown in 

Figure 5.6. This corresponds to fouling growth behaviour explained earlier as Figure 

2.3(b) in Chapter 2. Co-firing trials of coal-sewage sludge blends were not repeated 

with the new deposition probe due to the limited availability of fuel.

Figure 5.5 Deposit collected on the original deposition probe when firing CSF000

Figure 5.6 Deposit collected on the new deposition probe when firing CSF000
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Deposit collected when co-firing coal-sawdust blends were found to be in the 

form of soft ash that was easily brushed off the deposition probe. There were also 

visible signs of an area where a larger deposit had dropped off the slag probe on the 

impaction side. This occurred with all levels of sawdust substitution and was most 

severe with the 20%th substitution as shown in Figure 5.7. It was assumed that the soft 

dusty ash did not sinter onto the slag probe and had knocked off in the turbulent flow 

as it grows larger and heavier. This process accounts for the decreasing deposition 

rates obtained with the coal-sawdust blends.

Figure 5.7 Mark of knocked off deposit from CSF220 trial

Figure 5.8 Deposit collected from CSF315 trial
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The coal-RDF blends produced similar amount of fouling as the base coal. 

Only slight increase was observed as RDF substitution levels were increased. It was 

also observed that the deposition from all coal-RDF trials consisted of some black ash 

in the formation layer. Figure 5.8 shows an example of this from the 15%th RDF 

substitution. This suggested that some unbumt carbon were still present in the flue gas 

probably due to the difficulty experienced in maintaining stable combustion inside the 

secondary reactor.

Fouling deposit from the coal-sewage sludge blends was similar in physical 

structure to the base coal. The deposit was much lighter than the base coal resulting in 

the lower values o f deposition rates.

5.5. Flue Gas Analyses

Table 5.5 lists the results obtained from the portable combustion gas analyser 

unit during the online flue gas analyses. This combustion gas analyser was only 

available to the research during the second phase of study. The results of the online 

flue gas analyses showed that in general, the condition of 2 0 % average excess air was 

maintained according to the oxygen content of the flue gas. However complete 

combustion of fuel was only observed with the base coal and coal-sewage sludge 

blends. A significant amount of carbon monoxide (CO) was present in the flue gas of 

all coal-sawdust blends. Both CO and hydrogen were present in the coal-RDF blends. 

NOx levels were found to be very high in the coal-sewage sludge blends due to its 

higher operating temperatures. Carbon dioxide content of the flue gas generally did not
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show any significant variation from the base coal trial. Sulphur dioxide content of the 

flue gas was varied with all three types of biomass substitution, generally higher than 

the base coal trial.

Table 5.5 Results from the online flue gas analyses

M easured

o 2 c o 2

/ % / %

CO

/ ppm

NO

/ppm

h 2

/ppm

s o 2

/ ppm

Calculated 

n o 2 NOx

/ ppm /mgnf3

Pure Coal 

CSF000 3.92 14.96 0 396 0 13 7 678

Coal-Sewage Sludge Blends

CSF105 2.97 15.80 0 527 0 543 4 846

CSF110 3.10 15.68 0 488 0 13 7 794

CSF115 3.43 15.23 0 445 0 125 5 854

CSF120 3.66 15.02 0 402 0 203 1 882

Coal-Sawdust Blends

CSF205 3.93 14.96 190 370 0 272 9 638

CSF210 3.20 12.97 231 387 0 75 13 776

CSF215 3.16 15.63 150 421 0 2 0 7 6 8 8

CSF220 3.55 15.29 46 353 0 116 5 588

Coal-RDF Blends

CSF305 3.47 15.36 698 476 50 358 1 780

CSF310 3.78 15.09 255 391 2 0 209 5 6 6 6

CSF315 3.02 15.75 56 392 23 37 3 630

CSF320 3.92 14.97 81 397 63 275 6 677
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5.6. Physical Observations of Slag

Slag samples were collected from the two-stage combustor at different areas 

that show significant differences in physical characteristics. Table 5.6 outlines the 

observations made in the earlier phase of co-firing study corresponding to the areas 

identified in Figure 4.13.

The observations listed in Table 5.6 confirmed that the severity of slagging was 

higher with the 10%th sewage sludge substitution in all areas of the rig. The base coal 

trial produced deposit that was as expected when operating at the respected 

temperatures. The introduction of sewage sludge significantly changed the deposit 

formation behaviour especially at the bottom section of the primary reactor and the 

walls of the secondary reactor. The changes at the primary reactor can be explained by 

the higher content of volatile matter in the sewage sludge. The high presence of 

solidified molten ash in the secondary reactor reflected the concentration of higher 

operating temperatures as well as the lower ash fusion temperatures of the blends.

During the earlier phase of research study, it was observed that the slag 

formation was similar in both cases of sewage sludge substitution. This then led to a 

more general approach in noting the slag formation observations for the next phase of 

research period. The area near the exit of the secondary reactor was also observed to 

have a significantly different deposit formation from the other areas of the rig and 

hence is included in Table 5.7. The observations correspond to the areas designated in 

Figure 4.14 for the phase two study from the previous chapter.
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Table 5.6 Comparison of slag samples between 5%th and 10%th sewage sludge substitution with coal only

Sample Coal only Coal + 5 %th sewage sludge Coal + 1 0 %th sewage sludge

1 Uneven layer of dusty and porous ash Porous ash ~ 4mm, more on floor Porous ash ~ 6 mm, more on wall

2 A layer of dusty ash coating ~ 1mm Top layer of dusty ash coating ~ 1mm 

Bottom layer of black porous ash ~ 1mm

Top layer of dusty ash coating ~ 1mm 

Bottom layer of black porous ash, ~ 3mm

3 Even layer of molten slag ~ 1mm Even layer of molten slag ~ 3mm Even layer of molten slag ~ 5mm

4 Coating of glassy, molten slag ~ 5mm Porous inner layer ~ 10mm, coated with 

molten layer ~ 2 mm

Solid molten layer ~ 2 0 mm

5 Top layer of dusty ash coating of ~ 5mm 

Bottom layer of molten slag ~ 30mm

Porous ash top layer, fragile ~ 25mm 

Bottom layer of molten slag ~ 40mm

Mix of porous ash and unbumt fuel ~ 10mm 

Glassy, molten layer joint to Sample 6  ~ 15mm 

Bottom layer of molten slag ~ 40mm

6 Coating of molten slag ~ 8 mm Coating of molten slag ~ 15mm Coating of molten slag ~ 20mm 

Presence of solidified bubbles

7 Impingement of porous, dusty ash Impingement of molten ash ~5mm, flow 

patterns (sprayed) observed

Impingement of molten ash, over molten slag 

flowing down with small solidified bubbles
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Table 5.7 Comparison of slag samples for different coal-biomass substitutions

Sample Coal Only Coal-Sewage Sludge Blends Coal-Sawdust Blends Coal-RDF Blends

1 Uneven layer of dusty and 

porous ash

Coating of porous ash, more on wall Coating of porous ash, more on 

floor

Mix of porous ash and some 

molten on floor

2 Thin coating of dusty ash Coating of dusty ash over porous ash Coating of porous ash Thin coating of porous ash

3 Layer of molten slag Thick layer of molten slag Porous ash over molten slag Layer of molten slag

4 Coating of glassy, molten slag Mixture of molten slag and porous 

ash, more of molten

Porous ash over glassy, molten 

slag

Mixture of molten slag and 

porous ash

5 Thin coating of dusty ash 

Bottom layer of molten slag

Mix of porous ash and unbumt fuel 

Glassy, molten slag layer

Top coating of brown porous 

ash over dusty ash

Layer of uneven porous ash 

and molten slag

6 Coating of molten slag Coating of molten slag with 

solidified bubbles

Coating of porous ash over a 

layer of molten slag

Uneven coating of porous ash 

over a layer of molten slag

7 Impingement of porous ash Impingement of molten slag Impingement of molten slag Impingement of porous ash

8 Formation of porous, dusty ash Molten slag formation with small 

solidified bubbles

Formation of brown porous ash Mixture of brown porous ash 

and dusty ash
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No significant difference of deposit formation was noted when firing the base 

coal on the new configuration of the rig compared to the earlier work. This suggested 

the reliability o f the two stage combustor in producing the expected deposition 

behaviour. In general, it was observed that increasing the substitution of particular 

blend of biomass with the base coal produced more quantity of the similar forms of 

deposit. The coal-sewage sludge blends produced more molten ash deposit while the 

coal-sawdust blends produced more porous and dusty ash. The coal-RDF blends were 

observed to have produced both forms of deposits either in distinct layers in some 

areas or as a mixture in other areas.

Another significant observation made during these trials was the level of 

slagging severity in the secondary reactor. Threshold substitution levels for each type 

of biomass to generate severe slagging were evident for different type of biomass 

substitution as shown in Figure 5.9. Figure 5.9(a) shows the slagging formation when 

firing the base coal. This relatively thinner layer of molten slag was found at the 

bottom of the secondary reactor below a fine coating of dusty ash. Operating above 

10%th of sewage sludge substitution caused severe slagging seen in Figure 5.5(b) 

below the dusty ash. The slag is similar in colour to the base coal slag but is 

significantly thicker on the floor and the wall of the reactor. The coal-sawdust trials did 

not produced much molten slag even up to the 20%th substitution as shown in Figure 

5.5(c). The threshold substitution level when co-firing coal with RDF was found to be 

at 15%th substitution as Figure 5.5(d) showed that the CSF320 trial caused severe 

slagging. The coal-RDF deposit was lighter in colour compared to the base coal with 

some areas consisted o f porous ash.
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(b) CSF115

Figure 5.9 Severity of slagging at various levels of different biomass substitution

5.7. Elemental Analyses of Slag

Samples collected in the slag sampling exercise were analysed for its oxide 

contents to be collated into a database of deposition characteristics. The ICP 

spectrometer was only available to the research during the second phase of study and 

hence elemental analyses were only applied to the phase two slag samples.
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In this section a selection of trials were chosen for brief summarisation more 

specifically when severe slagging occurred corresponding to Figure 5.9. Elemental 

analyses o f oxides from the base coal trial, CSF000, given in Table 5.8 were used as 

the control results. The results from the 15%th substitution of sewage sludge, CSF115, 

20%th substitution of sawdust, CSF220, and 20%th substitution of RDF, CSF320, are 

given in Table 5.9, Table 5.10 and Table 5.11 respectively. A full set of slag elemental 

analyses data is included in Appendix E.

Highest levels o f P2O5 were present in the CSF115 samples as expected. 

Samples from CSF220 and CSF320 trials showed similar levels of P2O5 in all areas 

while CSF000 trial showed higher concentration were present in the secondary reactor. 

The results also showed that the alkali metal oxides present in the collected deposit 

were slightly lower in coal-sawdust and coal-RDF compared to the base coal and coal- 

sewage sludge trials. Significantly high levels of Fe2(>3 were found in the primary 

reactor than the secondary reactor in all cases. This undermined the contribution of 

iron oxide to slagging potential as there was little slagging in that region. This was 

probably due to the traditional view of the effect of iron oxide content on slagging was 

being conceived with northern hemisphere coal. Overall Fe2 0 3  was also lower in the 

CSF220 and CSF320 slag samples compared to the base coal. AI2O3 content in the slag 

samples were more concentrated in the secondary reactor for all cases. The highest 

levels of AI2O3 were seen with CSF320 slag samples as expected corresponding to the 

previous fuel ash analyses results. CaO content was higher in the secondary reactor 

than the primary reactor in all cases where slightly lower levels were seen with the 

CSF220 slag samples.
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Table 5.8 Slag analyses of oxides for CSF000 trial

Sample S i0 2 CaO MgO M 113O4 k 2o Na20 T i0 2 Fe2C>3 a i 2o 3 P2O5

1 35.19 14.71 3.20 0.37 0.43 0.89 1.29 17.73 24.70 1.51

2 7.68 5.23 1 . 0 2 3.40 0.24 0.82 0.19 76.73 4.18 0.50

3 10.07 0.83 5.41 1.44 0.28 0.85 0.30 73.90 5.96 0.96

4 37.11 14.92 3.36 0.14 0.60 0.99 1.50 9.85 26.69 1.83

5 37.15 14.67 3.32 0.16 0.62 0 . 8 8 1.57 9.90 29.15 2.56

6 38.52 14.67 2.87 0.14 0.50 0.74 1.26 7.48 31.46 2.36

7 35.40 12.35 3.14 0.13 0.94 0.99 2.70 4.74 37.60 2 . 0 2

8 38.84 13.42 3.66 0.15 0.72 1 . 1 0 1.82 8.56 29.82 1.91

Table 5.9 Slag analyses of oxides for CSF115 trial

Sample S i0 2 CaO MgO M 113O4 k 2o Na20 T i0 2 Fe20 3 a i 2o 3 P2O5

1 30.21 14.10 2.95 0.40 0.58 1 . 0 0 0.75 27.15 16.12 6.73

2 9.48 5.47 1 . 2 0 0.95 0.23 0.95 0.26 72.76 5.03 3.69

3 13.68 6.36 1.57 0.96 0.27 0.82 0.40 62.13 7.76 6.05

4 37.56 14.17 3.10 0.14 0.65 0.83 1.39 7.79 29.09 5.27

5 41.35 9.55 1.58 0.07 0.73 0.67 1.46 4.07 37.82 2.71

6 38.88 13.88 2.71 0 . 1 2 0.72 0.83 1.45 6.04 30.11 5.24

7 41.97 9.39 1.32 0.06 0.73 0.71 1.59 3.30 38.84 2 . 1 0

8 29.87 13.30 3.18 0 . 2 0 1.09 1.25 1.37 17.16 21.70 10.87
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Table 5.10 Slag analyses of oxides for CSF220 trial

S i0 2 CaO MgO Mn30 4 k 2o Na20 T i0 2 Fe20 3 a i 2o 3 P2O5

35.18 14.51 3.34 0.37 0.15 0.37 0.78 22.52 21.50 1.29

41.12 11.70 3.11 0.30 0.19 0.55 1.18 14.88 25.51 1.47

12.17 4.62 1 . 2 1 1.33 0.15 0.29 0.49 70.83 7.92 0.99

43.97 13.06 3.46 0.17 0.53 0.69 1.14 8.41 26.92 1.63

46.49 12.25 3.25 0.17 0 . 6 8 0.76 1.15 4.69 28.99 1.57

48.03 9.96 2.78 0.14 0.40 0.71 1.34 3.50 31.42 1.72

47.52 10.72 3.00 0.16 0.64 0.78 1.34 4.28 30.00 1.56

46.12 1 0 . 8 8 3.11 0.16 0.59 0.78 1.47 4.82 30.42 1 . 6 6

Table 5.11 Slag analyses of oxides for CSF320 trial

Si0 2 CaO MgO Mn3 0 4  K20  Na20  T i0 2 Fe20 3  A120 3 P2Os

45.29 12.67 2.72 0.30 0.14 0.61 1.36 10.87 24.87 1.16

42.37 13.87 3.16 0.27 0.15 0.59 1.69 12.13 24.34 1.43

20.87 7.32 1.56 0.97 0.14 0.36 0.71 53.39 13.73 0.95

37.48 15.61 3.22 0.14 0.23 0.53 1.54 14.56 25.43 1.25

47.20 12.29 2.59 0 . 1 1 0.28 0.93 2.04 3.88 29.31 1.39

47.57 12.76 2.60 0 . 1 1 0.44 1 . 0 1 2.06 4.35 27.77 1.33

45.88 11.62 2.59 0 . 1 1 0.32 0.81 2.24 3.92 31.02 1.48

43.31 13.88 3.32 0 . 1 2 0.35 1 . 0 1 2.47 5.31 28.56 1.67
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5.8. Fly Ash

Fly ash collected from the ash pot for each fuel blend was weighed and the 

results are shown in Figure 5.10. In general, the mass o f the collected fly ash increased 

as substitution levels were increased for all types of biomass. A significant increase 

was seen with the coal-sawdust blends where almost 1 kg of ash was collected with the 

20%th substitution. Fly ash from the base coal, coal-sewage sludge and coal-sawdust 

trials showed complete combustion o f fuel as light coloured dusty ash. The coal-RDF 

blend however showed some unbumt char in ash in all substitution levels.

Collected fly ash was also put through the ICP spectrometer for elemental 

analyses of oxides and the results are as listed in Table 5.12. The results showed that 

P2O5 content was higher in all coal-biomass blends compared to the base coal. Again 

coal-sewage sludge blends were observed with the highest P2O5 content which 

increased as the substitution levels were increased. Levels of P2O5 were observed to 

decrease with increasing levels of sawdust substitution. Alkali metal oxides in the fly 

ash were higher in the coal-sewage sludge and coal-RDF blends compared to the base 

coal. The coal-sawdust blends produced slightly lower levels of alkali metal oxides in 

the fly ash compared to the base coal. It was observed that slightly higher levels of 

Fe2C>3 were present in the coal-sewage sludge blends and correspondingly lower levels 

of AI2O3 . Fe2C>3 and AI2O3 in the fly ash from the coal-sawdust and coal-RDF blend 

were similar to the base coal. The coal-sewage sludge blends showed significantly 

varied levels of CaO which decreased as the substitution levels were increased. CaO in 

the fly ash from the coal-sawdust and coal-RDF blend were slightly higher compared 

to the coal.
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Table 5.12 Fly ash analyses results

Oxides Si0 2 CaO MgO Mn304 K20 Na20 T i0 2 Fe2 0 3 a i2o 3 p2o 5

Pure Coal 

CSF000 44.44 12.56 3.88 0.14 0 . 2 0 0.71 1.59 5.89 28.95 1.64

Coal-Sewage Sludge Blends

CSF105 33.56 23.57 3.89 0 . 1 2 0.71 0 . 6 8 1.26 9.46 2 1 . 2 0 5.56

CSF110 30.72 21.70 3.62 0 . 1 1 0.38 0.63 1.04 8.47 25.31 8.03

CSF115 32.97 12.90 4.11 0.16 1.33 1.26 1.31 5.99 22.65 17.33

CSF120 35.35 14.56 4.08 0.33 1.39 1.09 1.04 10.32 20.63 1 1 . 2 2

Coal-Sawdust Blends

CSF205 44.29 13.47 4.10 0.15 0.19 0.62 1.55 5.59 27.88 2.14

CSF210 44.84 12.59 3.67 0.17 0.24 0 . 6 6 1.41 5.74 28.73 1.95

CSF215 43.86 14.35 4.20 0.19 0 . 2 2 0.62 1.42 5.37 28.05 1.72

CSF220 44.33 14.11 4.06 0 . 2 1 0.19 0.59 1.43 4.92 28.41 1.75

Coal-RDF Blends

CSF305 45.83 13.49 3.81 0.14 0.14 0.70 1.87 4.99 27.39 1.65

CSF310 42.81 14.82 3.95 0.13 0.33 1.03 1.98 5.60 27.69 1.67

CSF315 44.42 13.96 3.75 0 . 1 2 0.64 1.48 1.89 5.18 26.81 1.76

CSF320 43.01 15.62 3.56 0.13 0.51 1 . 2 2 2.55 5.12 26.71 1.58

Results from the ICP analyses of fly ash were also compared with the fuel ash 

analyses. A similar pattern was observed in all cases with P2O5 content with the fly ash 

showing slightly higher levels. Alkali metal oxides in the fly ash were lower than in 

the fuel ash where significant reductions were observed with the base coal and coal-
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sawdust blends. Fe20 3  content were similar in the base coal and coal-sewage sludge 

blends while higher in the fly ash for coal-sawdust and coal-RDF blends. Similar 

levels of AI2O3 were observed in all cases. CaO content of the fly ash were slightly 

higher for the base coal and the coal-RDF blends than the fuel ash. The coal-sewage 

sludge blends CaO content were significantly higher in the fly ash while the coal- 

sawdust blends were slightly lower.
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Figure 5.10 Mass of fly ash collected for different levels of biomass substitution
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6. Discussion

6.1. Introduction

This chapter provides detailed discussion of the work carried out for this 

research. Work progress is arranged in chronological order starting from the 

commissioning work and methodology planning stages. Next is the rig firing trials to 

generate the right temperature profiles and the co-firing trials of the phase one fuels. 

This is then followed by the development work of the deposition probe. Results 

obtained during this period of research work are further discussed.

Modifications to the experimental rig at the start of the second phase of study 

are then outlined. This is then followed by phase two fuels analyses and the results are 

further discussed. Next the commissioning work of the new experimental rig is 

outlined followed by the co-firing trials of the phase two fuels. Results obtained during 

this period of research work are compared with data received from PowerFlam 

industrial partners.

Throughout this study findings from any stage of the research was reviewed 

and discussed between partners to determine the next course of actions taken. This is 

stated where it was applied. Finally the chapter included a section outlining the impact 

of this research to the industrial sector focussing on small scale testing and the 

database of deposition characteristics.
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6.2. Commissioning Work

Rig commissioning work was carried out after the rig curing process detailed in 

Section 3.3.1 of Chapter 3. Commissioning was performed in several stages starting 

with coal firing tests o f the primary reactor. The secondary reactor was being installed 

onto the trolley bench and mains gas connections were being assembled during this 

time. The next stage comprised of fuel firing tests of the fully assembled two stage 

combustor. Firing o f alternative solid fuels was undertaken with varying degree of 

success. Operating procedures of the experimental rig was first drafted during this 

time. Key areas such as warm-up methods and rig cooling behaviour were also 

identified. The exhaust ejector was also developed during the commissioning period.

6.2.1. Rig Firing Trials

The experimental rig was tested for sustained solid fuel combustion at the start 

of the research programme. The following sections detailed the progress and outcomes 

during this exercise.

6.2.1.1 .Primary Reactor

Investigations on solid fuel firing started with the primary reactor isolated from 

the rest of rig. Pulverised coal of South African origin was used as the test fuel. The 

primary reactor was pre-heated to 850°C using a propane burner through the primary 

inlet prior to coal combustion. It was observed that a stable flame did not established 

when the inside wall of the primary reactor was below this temperature. Coal ignition 

was achieved when the inside wall was above approximately 700°C but soon 

extinguished as the flame front moved along the path of the primary reactor.
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Pulverised coal was fed using a vibrating table feeder via an ejector nozzle into the 

primary air stream. The fuel hopper and feeder was being installed onto the trolley 

bench during this time. During these tests it was also observed that adequate swirl was 

not generated to heat the entire reactor chamber especially in the higher region when 

the inlet velocity was less than 5m/s.

Several tests then were performed at varying levels of fuel rich conditions in 

understanding the combustion behaviour of the primary reactor. Figure 6.1 shows the 

temperature profiles generated from the trials. The reactor would operate as intended at 

equivalence ratios within the range of 0.2 to 0.5 of stoichiometric air. The fuel rich 

conditions limited the temperatures to provide non-slagging operation needed for coal 

gasification55. It was then assumed that almost all of the char exhausted through the 

primary exit. This was later confirmed as fine dusty ash deposition was observed in 

post trials inspection of the primary reactor in all cases.

A bright orange flame was visible at the exit of the primary reactor when fired 

with the above equivalence ratios as shown in Figure 6.2. This occurred as the char 

completed combustion with the oxygen in the surrounding air. The flame was 

significantly dimmer as the equivalence ratio was increased over 0.5 as most of the 

char was combusted within the reactor chamber. A further observation was the 

immediate formation o f sintered ash deposit on this thermocouple as it was put into the 

gas path. This further suggested that the exhaust consisted of char particles as unbumt 

ash would not have sintered over such short period of time. Char combustion was not 

observed after the primary exit for equivalence ratios higher than 0.7 and this is 

reflected in the low temperatures recorded at the exit of the reactor,T5.
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Figure 6.1 Primary reactor temperatures operating at different equivalence ratios

Figure 6.2 Primary reactor firing pulverised South African coal
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The trolley bench assembly work was undertaken during this period. This 

included the installation o f the fuel hopper and the secondary reactor. The design and 

fabrication of the mains gas connections were also being carried out. Considerations 

were also made regarding fuel storage at the Mechanical Engineering workshop 

facilities.

6.2.1.2.Two Stage Combustor

Firing tests of the fully assembled experimental rig was carried out in the next 

stage of commissioning work. Initial problems were encountered with the mains gas 

assembly as it was difficult to operate especially during the switchover to coal. The 

coal feed nozzle had to be pushed through the mains gas nozzle connected to the 

primary inlet. The primary air had to be switched on prior to this to stop the coal from 

igniting in the coal feeder nozzle before entering the primary reactor. This 

consequently cooled the inside wall of the primary reactor. Hence the period of mains 

gas warm up then had to be extended, further heating the primary reactor to 900°C to 

cater for this cooling effect. Once coal combustion had started, the exhausting gases 

from the primary reactor were used to heat the secondary reactor to a stable condition 

before the secondary air was introduced. Introducing secondary air before stable 

condition was established would cause back pressure in the primary reactor and 

extinguish the flame entirely. This was a relatively long process. The decision was then 

taken to pre-heat the secondary using a propane burner to reduce the warm-up period. 

This procedure was later adopted on the primary reactor as the complicated mains gas 

warm-up assembly was later abandoned. The propane burner head installation was also 

easier to control than the mains gas.
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The next challenge encountered was the problems of non-ignition in the 

primary reactor when starting the two stage combustor with inlet velocities higher than 

5m/s. High inlet velocities was needed to generate adequate swirl flows in the primary 

reactor as stated in the previous section. This lack of swirl flows resulted in coal 

particles were not carried upwards to the whole of the primary reactor for partial 

combustion and gasification. The problem is depicted as shown in Figure 6.3 of a 

computational model of the two stage combustor. During this event the flame in the 

primary reactor gradually subsided. The coal particles then simply pass through the 

primary reactor and only ignited in the secondary reactor. Complete combustion of 

coal was not achieved in the limited volume of the secondary reactor.
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Figure 6.3 Coal particle traces coloured by residence time56
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Previous experiences in co-firing coal research had showed enhanced burner 

intensity when sawdust was used as the biomass substitution57. This then suggested the 

introduction o f sawdust together with the coal at the start of coal firing. This approach 

succeeded in igniting the coal inside the primary reactor at a lower temperature of 

approximately 700°C leading to faster warm up time. The higher intensity combustion 

achieved to rapidly heat the whole o f the primary reactor avoiding the non-ignition 

problems. It was also assumed that the sawdust burnt differently as being solid fuel to 

gas and sets up the appropriate ‘hot spots’ in the reactor for coal combustion to occur. 

This method was successful in starting the rig with an inlet velocity of up to 15 m/s. 

Sawdust was also fired into the secondary reactor during warming up to further reduce 

the total time to reach stable conditions.

Subsequent coal firing trials undertaken outlined the coal combustion 

behaviour and succeeded in producing the rig temperature profiles. The generated 

temperature profiles were found to be much lower than the temperatures investigated 

on a 500kW down fired furnace o f one PowerFlam partner. The decision was then 

taken to fit external insulation blanket around the body and the top of both primary and 

secondary reactors. This resulted in higher temperatures to be achieved within the 

range of the 500kW furnace as shown in Figure 6.4. Further coal firing tests suffered 

little operational stability problems apart from the occasional back pressure into the 

primary reactor. Initially this was controlled by sharply decreasing the primary air and 

gradually increasing it back to the target point. This method, while effective, did affect 

stability and care must be taken not to lose combustion in the primary reactor. Two 

stage combustion would then be difficult to restart once primary reactor combustion is 

lost.
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Figure 6.4 Temperature profiles of the Cardiff combustor and the 500kW furnace

The two stage combustor was also tested for biomass only firing with two types 

of biomass fuels, namely sawdust and sugar beet. Sawdust trials were completed 

without any major problems. A similar shape of rig temperature profile to the coal 

firing tests was obtained at lower temperatures. A maximum temperature of over 

1200°C was seen at the lower region of the secondary reactor. The sawdust firing test 

left small amount of dusty ash deposition in the two stage combustor exhibiting non­

slagging modes of operation in both reactors. Sugar beet trials were not successful in 

achieving sustained combustion due the problems encountered in feeding and handling 

the fuel. The relatively long, stalky form of sugar beet easily blocked the fuel feed 

nozzle. The high moisture content of sugar beet also jammed the screw feed of the fuel 

hopper. Similar difficulties in biomass fuel handling were experienced by various 

boiler operators performing co-firing trials.
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6.2.2. Other Developments

6.2.2.1 .Operating Procedures

A working rig operating procedure was first conceived from the experiences 

gained during the commissioning period. Efforts were mainly concentrated on the rig 

warm up process as detailed in the previous section. Small changes were then applied 

to the operating procedures to overcome the minor problems encountered from 

consistent operations o f the experimental rig. Appropriate changes were also made to 

cater the additional ancillary equipments introduced throughout the research study. 

This finally led to the procedures listed in Section 4.4.1 of Chapter 4.

6.2.2.2.Ancillarv Equipment

Various ancillary equipment was realised during the commissioning period to 

be used with the experimental rig. One of the first ancillary equipment vital to this 

research was the fuel feeder. The feeder consisted of a stainless steel cone placed on 

top of an air ejector. Originally the ejector was assembled using a 1” British standard 

pipe (BSP) ‘T ’ connector with one end connected to a compressed air supply and the 

other to a 300mm long 1” BSP as the ejector nozzle. In the event of a back pressure 

coal was observed to be collecting in the ‘T’ connector as the primary air was 

decreased. This often led to coal blockage of the feeder as shown in Figure 6.5. A new 

configuration of the feeder was adopted where the ‘T’ connector was replaced with a 

1” BSP 90° bend. The primary air supply was also reduced to a 6mm diameter to 

increase the air flowrates and hence decreasing the pressure inside the ejector. This 

new arrangement shown in Figure 6.6 was effective in avoiding feeder blockage.
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Figure 6.5 Cross section view of original feeder arrangement
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Figure 6.6 Cross section view of current feeder arrangement

The secondary air supply was initially provided from the mains compressed air 

similar to the primary air. The compressed air was supplied at a mains pressure of 

8bar. The air cooled down as it expands to atmospheric pressure in accordance to the
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Thomson-Joule58 effect. This badly affected the temperatures of the secondary reactor. 

Fan air at atmospheric pressure was then used as the supply for the secondary air. An 

electric centrifugal blower was fitted to the trolley bench for this purpose.

6.3. Phase One Study

Simulation investigations of the 500kW down fired furnace were carried out at 

the start of this phase of the research study. A satisfactory simulation was achieved and 

was used as the basis for the co-firing trials of the phase one base coal blended with 

dried sewage sludge. Deposition behaviour from these trials was observed.

The exhaust ejector air was introduced during the early phase of research study 

to help control back pressure problems. This was found to be a more effective solution 

as it generated a similar effect of decreasing the primary without slowing down the 

actual coal feed. This resulted in a smaller impact to the stable condition ensuring 

smooth operations o f the two stage combustor.

6.3.1. Rig Temperature Profile

Several coal firing trials were performed to further understand the combustion 

characteristics of the two stage combustor. Confidence was gained in running the two 

stage combustor on coal during this period. The effects of the primary to secondary air 

ratios and thermal input to the rig temperature profiles were explored. Figure 6.7 

shows the temperature profiles obtained from coal firing at lOOkW. This clearly 

indicates that the air ratios significantly affected the shape of the temperature profiles.
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Figure 6.7 Temperature profiles of Cardiff combustor at various air ratios
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Figure 6.8 Temperature profiles of Cardiff combustor at various thermal ratings
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Initially the primary to secondary air ratio of 45:65 was chosen for the 

simulation to best match the 500kW down fired furnace. Further trials at this condition 

indicated that the thermal input has a small impact on the temperature profiles as 

shown in Figure 6.8. A better simulation was later obtained when the base coal was 

fired at approximately 70kW with a primary to secondary air ratio of 40:60 shown in 

Figure 6.9. The temperatures of the secondary reactor were closer to the 500kW 

furnace combustion region with these conditions. It was then adapted as the operating 

parameters of the co-firing trials.
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Figure 6.9 Chosen base temperature profile of the two stage combustor

These trials also indicated the maximum thermal rating of the two stage 

combustor for sustained coal combustion at approximately lOOkW. Difficulties in 

sustaining stable operations were experienced with higher thermal input of coal firing. 

Erosion of the primary exit tube explained in section 4.4.7.1 of Chapter 4 was first

123



06 Discussion

encountered during these trials. The stainless steel exit tube was replaced at 

approximately every ten runs of the experimental rig.

The next stage of phase one study was the co-firing trials of the Colombian 

base coal with dried sewage sludge. Dried sewage sludge substitution was at 5% and 

10% of the base coal by thermal input. Two experiments were performed for each 

substitution level and consistent combustion conditions were observed. No new major 

problems were encountered with respect to the operations of the experimental rig. A 

slightly more severe signs of erosion was observed on a newly replaced stainless steel 

primary exit tube fitted before the co-firing trials.

6.3.2. Deposition Observation

The physical structure of the deposition inside the two stage combustor was 

observed and summarised as Table 5.6 in Chapter 5. Deposit observed in the primary 

reactor from pure coal firing was consistent with ash from complete combustion of 

coal. The deposit was mostly in the form of light coloured soft dusty ash. Some of this 

ash was sintered to the bottom and wall surfaces of the primary reactor as shown in 

Figure 6.11.

Figure 6.12 shows the physical nature of molten ash deposit collected at the 

bottom of the secondary reactor. The slag deposition was fully solidified, glassy and 

dark brown in colour. A coating of the same molten deposit was also observed on the 

wall of the secondary reactor. This was consistent with slag found on inside walls of a 

coal fired utility boiler at a similar temperature region. Pattern of the swirl flows was 

also clearly visible on the wall of the secondary reactor.
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Figure 6.10 Primary reactor deposition from pure coal firing

Figure 6.11 Secondary reactor deposition from pure coal firing
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(a) 5%th sewage sludge substitution (b) 10%th sewage sludge substitution
Figure 6.12 Secondary reactor deposit from co-firing coal with dried sewage sludge

Figure 6.12 shows the deposition collected at the bottom of the secondary 

reactor from the co-firing trials. Some sintered ash was observed at the bottom of the 

secondary reactor from the 5%th sewage sludge substitution trial. Generally the 

deposition from both levels of biomass substitution showed similar physical structure. 

The severity of slagging was significantly increased with the higher biomass 

substitution. Both levels of sewage sludge substitution also deposited some unbumt 

char in the form of black porous ash at the bottom of the primary reactor. Ash 

deposition inside both reactors was cleaned before each trial run. This was a strenuous 

process and also damaging to the refractory lining especially where slagging deposit 

was present in the secondary reactor. The deposition cleaning activity was revised 

when major modification work was taking place for the phase two study.

Slag deposition rates were also investigated with the original deposition probe 

situated just before the exit of the secondary reactor. The results given in Table 5.3 

from the previous chapter were actually significantly higher than the investigations
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carried out at the 500kW industrial furnace. This was mainly due the positioning of the 

deposition probe. At the industrial furnace a probe of similar design was placed further 

downstream in a less turbulent flow with the flue gas temperature at approximately 

850°C. The deposit collected in the research was also of higher density and darker in 

appearance than the deposit from the 500kW furnace. It was concluded that the deposit 

collected at the original two stage combustor consisted of a mixture of slagging and 

fouling where the 500kW industrial rig was mostly fouling deposit.

6.4. Deposition Probe Development

Deposition rates were investigated using a deposition probe that simulated a 

heat transfer tube inside a utility boiler.

6.4.1. Slag Probe Positioning

Initially a probe sampling port was adapted on the lid o f the secondary reactor. 

The intention was that the probe can be lowered into the secondary reactor to any level 

of interested temperature region. Fitting the sampling port off-centre on the lid also 

enabled the probe position to be rotated all around the reactor near the inside wall. The 

deposition probe was positioned near the exit o f the secondary reactor during the phase 

one study. During these investigations no practical comparisons could be made with 

the deposition rates from the 500kW furnace. It was noted that the probe position was 

further upstream in a hotter region as shown in Figure 6.13 and this resulted in the 

higher rates of deposition obtained.
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Figure 6.13 Temperature profiles of the original combustor and 500kW furnace

The procedures of the deposition rates investigations was reanalysed during the 

major modification work. This resulted in the design of a dedicated sampling extension 

for the deposition probe. This section can be fitted directly onto the secondary exit or 

after a new cooling extension. The water cooled extension was used to cool down the 

exhaust gases so that better simulation of the investigated region of the utility boiler 

can be achieved. This facility was utilised during the phase two study of the research 

programme.

6.4.2. Original Design

A deposition probe was initially commissioned from the design of the probe 

used at the 500kW semi industrial down fired furnace. Mains compressed air was used 

to cool the probe down to simulate the surface of a heat transfer tube inside a full scale 

industrial boiler. The probe was designed with the typical heat transfer tube 

dimensions of 25mm outer diameter and constructed of stainless steel. This probe was
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utilised in the phase one study and during the coal-sewage sludge trials of the phase 

two study.
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Figure 6.14 Temperature profiles of Cardiff combustor and Llangerlo furnace

The deposition probe was positioned in the dedicated sampling port simulating 

the Reheater2 region of the Llangerlo furnace in the later phase of research study. The 

new cooling extension was used to cool the flue gas down to 800°C before the new 

sampling section. Figure 6.14 shows the temperature profile of the new configuration 

of the two stage combustor against the Llangerlo furnace for pure coal operations. 

During these investigations the deposition rates obtained was inconsistent between 

trials of similar fuels operating at similar conditions. The collected deposit also did not 

show the wedge shape of a developed fouling deposition. This structure was observed 

on a 10mm diameter thermocouple situated in the gas path just before the entry to the 

cooling extension as shown in Figure 6.14. This section has the same cross sectional 

area of the sampling section and a similar fouling deposition was expected on the
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probe for this reason. A uniform coating of fine ash layer was collected all around the 

probe as seen in Figure 5.5 from the previous chapter. Further investigations suggested 

that the original probe has an effective impact area ratio of 1:3 of the sampling section. 

This impeded the flow and increased the gas velocity around the probe as shown in 

Figure 6.1662. This then expanded the low velocity region on the surface facing the gas 

flow, limiting the frequency of ash particles impacting the probe.

Figure 6.15 Fouling deposition on thermocouple before cooling extension

r~j)low |  
velocity |l 
region l]

deposition
probe

eddies

 high velocity gas flow

Figure 6.16 Gas flow around the deposition probe
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6.4.3. New Design

Computational investigations undertaken by one of the research partners 

suggested that a smaller probe would improve the deposition growth at the sampling 

section. Figure 6.17 show that the smaller tube in the same gas path has less low 

velocity region on the surface facing the flow. The gas also flows over the smaller tube 

at a lower velocity. This would increase the frequency of particles impacting the tube. 

A new slag probe was then commissioned based on a similar design and material of 

the original probe but with an outer diameter of 16mm. This was the smallest 

deposition probe that can be feasibly built in-house within the limited time available to 

the research period. The new probe has an effective impaction area ratio of 1:5. 

Improved range of deposition rates was obtained and the expected structure of fouling 

growth was observed from pure coal firing trials as shown in Figure 5.6 of Chapter 5.
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Figure 6.17 Computational model of gas flows around tubes of various sizes
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6.5. Rig Modification Work

The two stage combustor underwent major modification work at the end of 

phase one study o f the research period. During this time the opportunity was taken to 

revise the structure o f the co-firing research programme. Further ancillary equipments 

were also introduced. Commissioning work was then was carried out with this new 

configuration o f the two stage combustor.

6.5.1. Design Objectives

The decision was initially made to reline the inside wall of the secondary 

reactor due to the damages sustained during the rig cleaning activity in the earlier 

phase o f research. The opportunity was taken then to revisit the design of the 

experimental rig. Previous experiences revealed that the maximum thermal rating of 

the original combustor at approximately lOOkW was inadequate in achieving the 

higher temperatures and longer gas paths occurring in a full scale industrial boiler 

operation. The solution was the additional secondary reactor section shown in Figure 

3.13 of Chapter 3. The increase in volume was to provide improved simulation of an 

industrial boiler in terms o f temperature and the gas critical linear distance.

A water cooled extension was fitted to the exit of the secondary reactor as part 

of the slag probe positioning work detailed in the previous section. The objective was 

to provide better simulation of the gas temperatures at the deposition investigation 

position. This extension also increased the critical linear distance and could be used to 

match the residence time of a particular boiler region for deposition investigations.
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The primary reactor was operating satisfactorily for coal partial combustion 

and gasification and hence was not subjected to any major modifications. 

Considerations were also made regarding the material used for the primary exit tube to 

minimise the erosion problems.

6.5.2. Research Methodology

The research methodology for investigating slagging and fouling behaviour 

when co-firing coal with biomass was finalised during the rebuilding work of the new 

configuration of the rig. The intention was to provide a programme of work that could 

be carried out by boiler operators interested in small scale testing with the two stage 

combustor. The phase two fuels were recently received at this time and thus fuel 

investigations were included in the work programme. The resulting work programme 

is summarised as the flowchart in Figure 4.1 of Chapter 4. This programme of work 

was effective in generating the phase two research data with the two stage combustor.

6.5.3. Further Ancillary Equipments

Bespoke software for reading the thermocouple measurements was introduced 

during the modification work. The Digital Device Monitor (DDM) was developed by a 

software company commissioned by the Cardiff School of Engineering. This new 

software was specifically designed to read off measurements from various types of 

data logging equipment available to the engineering sector. Currently most readers in 

the market are limited for used with data loggers from specific manufacturers. The 

software was set up for temperature measurement modules of the National Instrument 

FieldPoint data-logging system. The system was chosen to be used for the research as 

it is widely available and well supported by the manufacturer. This was important so
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that small scale testing on the two stage combustor could be carried out by boiler 

operators regardless of their site location. The DDM software was also more cost 

effective compared to the National Instruments own LabView software for data 

acquisition systems. LabView is valuable to academic institutions being very flexible 

in processing over large range o f data types but these would be superfluous to a boiler 

operator who is only interested in the more basic measurements such as temperatures, 

pressures and control relays. This system is not strictly unique to the two stage 

combustor. The operator could install any existing data logging and data acquisition 

system available to be used with the two stage combustor.

The importance of fly ash and flue gas data for comparison with a real utility 

boiler was realised during meetings with other research partners. This then led to the 

fitment of a cyclone dust separator just before the exhaust as a fly ash collection pot. 

Detailed drawing of the dust separator is included in Appendix A. The TESTO 350ML 

combustion gas analyser was chosen for the online flue gas analyses with reasons of 

the unit’s portability and compactness. It was also possible to connect the unit to 

personal computer for data extraction to a spreadsheet. The manufacturer was also 

recognised in the engineering sector to provide support and calibration for the unit.

A new trolley frame was designed and built during this period to house all the 

ancillary equipments for running the rig. The new frame assembly maintained the 

experimental rig as a relatively mobile and compact unit as intended. Drawings of the 

new frame assembly are included in Appendix A.
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6.5.4. Rig Commissioning

Commissioning work was performed on the new configuration of the rig with 

pure coal at various thermal inputs. Figure 6.18 shows the temperature profiles of the 

original and new configurations o f the two stage combustor at operating at 85kW. The 

cooling extension was used at maximum water flowrate and this cooled the sampling 

section gas temperature down to approximately 700°C. The two stage combustor 

completed the coal firing commissioning work with no new major problems. The 

target operations o f all new ancillary equipments were also achieved.
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Figure 6.18 Comparison between the original (Mkl) and new (Mkll) combustor

The new configuration o f the rig now was rated at approximately 130kW for 

coal firing. Sustainable combustion was observed up to 150kW of coal thermal input 

but this generated high temperatures in the primary reactor. The reactor was working 

in slagging mode then and the slag collected also exhibited some trapped unbumt char
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particles. The bottom and the wall of the secondary reactor were lined with a thin layer 

of temperature resistant Mastic prior to a rig firing trial. This considerably helped the 

slag cleaning activity required after each experimental trial.

Tests with pre-cured ceramic tube at the primary reactor exit were performed to 

reduce the effect o f erosion. The tube was available off the shelf and could be ordered 

pre-cut to any required length. The dimensions were not too different from stainless 

steel stock sizes with a thinner wall of the ceramic tube. However the ceramic tube was 

too brittle and easily cracked during the thermal expansion cycles of the experimental 

rig. The original material of stainless steel was then used for the rest of the research. 

Further investigations, though necessary, were not taken for a better heat resistant alloy 

under reducing conditions for this part of the rig due to limited time and the high costs 

involved.

6.6. Phase Two Study

Phase two of the research study investigated the effect of co-firing coal with 

biomass with the experimental rig simulating a full scale industrial furnace. The target 

temperature profile was from a 235MWe pulverised fuel furnace. Biomass fuel 

investigated during this phase of research was received pre-blended with the base coal 

at its respective substitution levels. Fuel characterisation was the first stage of the 

phase two research in accordance with the new research methodology. Ash elemental 

analyses were also performed on the received fuels. Data generated from the fuel 

analyses work was used on the traditional empirical indices.
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The co-firing trials were then undertaken including the deposition rates and flue 

gas investigations. The temperature profiles obtained in this period formed the first 

part of the new slagging and fouling predictor. This was then followed by the slag 

sampling activity. Slag deposition was collected from different areas of the two stage 

combustor for ash elemental analyses. Fly ash collection and analyses were performed 

and all elemental analyses results were submitted for the deposition characteristics 

database. The database and the temperature profiles would then form part of the 

slagging and fouling predictor for the PowerFlam study.

6.6.1. Phase Two Fuel

6.6.1.1.Fuel Characterisation

Three different biomass fuels were nominated for the co-firing investigations 

under PowerFlam namely dried sewage sludge, sawdust and RDF. These residue fuels 

were chosen for the added environmental benefits of waste reduction. There is also a 

lack of current co-firing activity with these residue fuels. Current EU legislations 

prohibited the transport o f raw waste biomass especially sewage sludge and RDF 

between EU member states due to their classification under hazardous materials. This 

then led to the decision for the distribution of the biomass pre-blended with the base 

coal as research fuels.

The received fuel underwent similar fuel characterisation process as in the 

earlier phase except for size distribution. Wet sieve size distribution was unsuitable 

due to the presence o f biomass. Dry sieving in-house was inadequate as the smallest 

available sieve was 250pm while the requirement for pulverised fuel firing was 70%
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below 75pm by weight. It was assumed that the size distribution requirement was met 

because the fuels were milled and blended together with the base coal as was practised 

in industry. After further discussion it was then decided not to include size distribution 

investigations as this would also incur extra cost and time of outsourcing. Data from 

size distribution investigation is not further considered.

The results from the proximate analyses shown in Figure 6.19 indicates the 

significant increase of volatile matter as substitution level was increased in all fuel 

blends. This would translate into higher combustion intensities in the primary reactor 

due to the early realise of volatile. Severe deposition problems would be encountered 

with the sewage sludge substitution from observing the ash content of the fuels. 

Moisture content for all fuels were least affected in the blends due to the dry nature of 

all fuels.
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Figure 6.19 Proximate analyses results of phase two fuel
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6.6.1.2.Fuel Ash Data

Data obtained from the fuel ash analyses were used to evaluate the traditional 

empirical indices for slagging and fouling as listed in Table 5.1 and Table 5.2 of the 

previous chapter. The experience gained from the fuel ash analyses investigations 

reflected the inadequacies of the traditional empirical indices detailed in Chapter 2.

Further observation of the ash fusion temperature (AFT) investigations 

revealed possible significant errors in evaluating the slagging index FS. These 

inaccuracies would arise from the difficulties experienced when performing the AFT 

tests. Observing the physical nature of an ash sample when heated was impractical. 

Methods of estimating the temperatures when changes occur varied with different 

laboratories according to the available apparatus and the standards adopted. The actual 

interpretation of the physical stages of the ash sample was also varied between 

different laboratories as well as different test operators. These difficulties in 

practicality lead FS  to be ineffective in predicting slagging both in terms of reliability 

and repeatability.

6.6.2. Rig Temperature Profile

Figure 6.20 shows the temperature profiles of the two stage combustor running 

on pure coal during the early stages of this phase of research. A greater range of 

temperatures was obtainable with the new configuration of the rig. The two stage 

combustor was then used to simulate the Superheater3 and Reheater2 region of the 

235MWC Llangerlo furnace for the phase two co-firing study. The matched 

temperature profiles shown in Figure 6.14 were achieved when the experimental rig 

was operating on the base coal at 80kW of thermal input. The primary to secondary air
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ratio was 25:75 with 20% excess air. This was used as the base operating parameters of 

the phase two co-firing trials.
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Figure 6.20 Temperature profiles of the Mkll Cardiff combustor when firing coal at 

various thermal inputs and primary to secondary air ratios.

Two experiments were performed for each blended fuel and consistent 

combustion was observed for all cases. The coal-sewage sludge and coal-sawdust 

blends trials did not encounter any major problems. Complications with back pressure 

were faced more frequently with the coal-RDF blends. This was probably due to the 

physical structure of the RDF floe assuming back pressure was caused by some form 

of blockage within the two stage combustor. This then produced the variations 

observed on the temperature profiles shown in Figure 5.4 of Chapter 5. Back pressure
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caused flame instability in the both reactors and resulted in difficulties in maintaining 

the target temperature of the sampling section.

The use o f the portable combustion gas analyser during this phase of research 

enabled the oxygen content of the flue gas to be monitored online. This was mainly 

used to maintain the two-stage combustor operating at 20% excess air. The TESTO 

unit also provided online flue gas analyses as listed in Table 5.5 in Chapter 5. Values 

for nitrogen dioxide (NO2) and higher nitrogen-oxides (NOx) were derived by the 

software provided with the analyser from a single NO detection cell. A coiled copper 

cooling tube was used to reduce the hot flue gas temperature from the sampling section 

to below 500°C to protect the detection cells from damage. It was assumed that this 

had caused some condensation of the sulphuric content of the collected gas resulting in 

the significant variation of the sulphur dioxide (SO2) readings in all cases.

High severity o f erosion was observed during co-firing trials. The worst case 

was experienced with the coal-RDF blends. The high levels of erosion would lead to 

contamination of the deposition inside the two stage combustor with iron from the 

stainless steel primary exit tube.

6.6.3. Deposition Observation

The physical structure of the deposition inside the two stage combustor during 

this phase was observed and summarised as Table 5.7 in Chapter 5. Similar form of 

deposition was observed in both reactors to the phase one investigations for coal firing. 

These observations demonstrate the two stage combustor was operating as intended. 

During this phase o f research study slag deposition samples were collected for
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elemental analyses. Approximately lOg of deposit was collected from the top layer of 

each sampling area to minimise contamination from the coal warm up stage. The rest 

of the deposition was then cleaned after each firing test. Slag cleaning activities were 

much improved with the application of the temperature resistant Mastic layer prior to 

each firing test. The refractory lining was also protected from further damages from 

the slag cleaning activities as well as slag inclusion into cracks. Deposit collected on 

the deposition probe was insufficient for elemental analyses. It was agreed that the 

period for deposition probe investigations was too short for sufficient deposition to 

occur. However this was restricted by the limited availability of the blended fuels.

Mass of fly ash collected in the cyclone dust separator is given in Figure 5.10 

from the previous chapter. The results could be used by an operator as an indication of 

problems that might be encountered further downstream after the furnace. For example 

high quantity of fly ash as seen with the sawdust substitution could overload the 

electrostatic precipitators and baghouse filters. Char in the fly ash would also continue 

to bum and increase the furnace exit gas temperature and cause damage to downstream 

equipments.

Comparisons made between elemental analyses data of the collected fly ash 

and the laboratory prepared fuel ash samples showed significant differences. This 

further emphasized the inaccuracies of slagging and fouling predictions based on 

laboratory prepared ash samples.
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6.7. Impact to the Industrial Sector

Opportunities in co-firing coal of with biomass are expected to experience 

major growth in the near future both in small scale research work as well as full scale 

industrial firing. The research work developed a novel small scale combustor to 

simulate furnace conditions firing a large range of dry solid fuels. The combustor itself 

would provide as a useful tool in evaluating the behaviour of firing new fuels as well 

as to produce deposits at various operating conditions. Data generated from the co­

firing trials would be used in a database of deposition characteristics for further 

evaluation and validation from real boiler co-firing work in industry.

6.7.1. Small Scale Testing of New Fuels

The research developed a method for small scale testing of new solid fuels with 

the use of a novel two stage combustor. The experimental rig was found to be 

successful in simulating the conditions found inside an industrial test rig as well as a 

real boiler. The design brief for the rig was that it could be duplicated by operators 

interested in investigating the combustion behaviour of new fuels unfamiliar to the 

industrial sector. This was reflected in overall compactness of the two stage combustor 

and the approach of using modular sections. Constructing the rig also utilised materials 

and measurement apparatus familiar to boiler manufacturer and parts supplier. The two 

stage combustor can also be easily adapted to meet a particular boiler specification 

such as the addition o f air preheating and viewing ports due to its modular 

construction.
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The decision for the design was made so that small scale testing of various fuel 

blends can be easily performed in-house by a particular boiler operator. Small scale 

testing on the two stage combustor can be carried out prior to pilot scale testing on a 

real boiler. This approach would greatly lower the risk of damaging a real furnace and 

its ancillary plants as potential problems when co-firing would have been identified. A 

particular section o f interest in a furnace could then be further investigated as exercised 

in the research work. Small scale testing would also help the operator to narrow down 

the various options o f fuel blends for pilot testing. This would also mean that higher 

levels of feasible biomass substitution could be investigated without the risk of damage 

to the furnace fuel feed. Appropriate modifications for the fuel feed system can then be 

researched for the pilot scale co-firing test. This presents an economical alternative to 

hiring an independent laboratory to perform small scale testing of specific fuel blends 

the operator is interested in.

The deposit produced from the small scale tests would be useful in predicting 

slagging and fouling behaviour o f various new fuel blends. Actual deposition 

formation can be observed directly as had been done during the research. These can 

then be compared for different variations of fuel blends as well as with any prior small 

scale investigations with the two stage combustor.

6.7.2. Database o f Deposition Characteristics

The deposit from the small scale tests with the two stage combustor would 

form part of the deposition characteristics database being compiled for the PowerFlam 

research. The database would be useful for boiler operators interested in exploiting any 

new co-firing opportunities. The risks of slagging and fouling that might arise from a
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particular coal-biomass blend at a specific area of an industrial furnace could be 

evaluated. This would affect the decision for a boiler operator to co-fire a particular 

biomass fuel and at a particular substitution rate. The deposition database would also 

be used in predicting the behaviour of deposit formation for a higher substitution rate 

currently in operation. Data collected from the deposit analyses could also be used in 

exploring the more advanced methods of predicting slagging and fouling currently in 

development.
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7. Conclusions and Recommendations

7.1. Introduction

The research programme undertaken at Cardiff University leading to this thesis 

had succeeded in simulating real industrial combustion behaviour in a novel, small 

scale two stage combustor. The simulation investigations were used to evaluate 

slagging and fouling potential when co-firing coal with biomass. A set of conclusions 

can be drawn from the research study and is presented in the following section. A 

number of future recommendations are also detailed in the next section especially for 

further combustion investigations on the two stage combustor.

7.2. Conclusions

• Coal will still play a major source of energy in the near future. Current 

reserves to production ratio saw an increased in the previous year as opposed 

to the depleting reserves of oil and gas. Latest statistical data also predicts a 

drop of 1% point of coal usage in the next two decades.

• Many interests in co-firing coal with a substitute fuel were shown by power 

generators in the last decade to exploit the environmental and cost benefits. 

Various full scale trials had taken place with low substitution levels in 

avoiding severe slagging and fouling problems.
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•  Mechanisms o f coal ash deposition are well understood. Previous studies in 

this area had foreseen problems of unpredictable deposition behaviour when 

blending coal with a secondary fuel.

•  Traditional predictive indices for coal ash deposition are ineffective for co­

firing studies due to each index being coal specific to location of origin. 

Differences in interpretations and standards adopted in evaluating these 

indices also led to further inaccuracies in the slagging and fouling predictions.

• Coal firing was succeeded on a novel small scale combustor operating at the 

two separate stages o f coal combustion. These are devolatilisation/gasification 

stage and char combustion stage respectively. The novel combustor was used 

to simulate the temperatures and residence times of real furnaces.

• Successful simulation o f a 500kW semi-industrial down fired furnace was 

achieved on the two stage combustor for coal firing. This was followed by co­

firing investigations o f coal blended with dried sewage sludge at the simulated 

operating conditions.

• Successful simulation of a superheater and reheater regions of a 235MWe full 

scale furnace was achieved on the two stage combustor. This was followed by 

co-firing investigations of coal blended with three different types of waste 

biomass at the simulated conditions.
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• Deposition rates investigations were performed for the co-firing studies. This 

resulted in an effective procedure and the development of a deposition probe 

for achieving valuable data.

• Observations were taken of the physical structure of slagging deposition from 

the various types o f substitute fuels. Elemental analyses data was also obtained 

for different levels of biomass substitution to form a deposition characteristics 

database for slagging and fouling predictions.

• Comparisons were made of elemental analyses data of the fly ash collected 

from the combustor to laboratory prepared fuel ash samples. Significant 

differences were seen and noted.

• The final conclusion can be made that small scale study would form as a 

useful tool in investigating slagging and fouling behaviour in industrial 

furnaces. Trials on the two stage combustor could be used to generate a 

deposition database for better prediction of slagging and fouling.

7.3. Future Recommendations

There are areas of the research that are needed to be further studied to provide a 

better understanding o f the slagging and fouling behaviour of co-firing coal with 

biomass. Some relates to the procedures of the research conduct and some relates to
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design improvements on the combustor. These were not implemented in the current 

study due to practical obstacles and the limited time available to the research.

Validation o f the deposition data generated during the research with the real 

furnaces was not made. There are practical challenges to co-fire the range of substitute 

fuels used in this research in the real furnaces. Nevertheless co-firing the lower levels 

of biomass substitution should be possible in the semi-industrial furnace. Data 

validation is viewed as valuable tool in improving the deposition predictions.

Future investigations should consider limiting the base coal warm up stage to 

ensure better depiction of co-fired deposition behaviour. Using pre-blended during this 

warm up stage would also ensure the deposits collected are not mixed with the base 

coal only operation. Another advantage of this approach would be the opportunity for 

mass balance investigations. However this does meant the use of high quantity of 

preblended fuel. Deposition rates investigations are recommended to be performed for 

longer periods of time. This would enable sufficient deposit build up for elemental 

analyses. Another area of research is the coal-sewage sludge trials on with the new 

deposition probe to complete the knowledge base.

Further research is also needed in finding a suitable material for the primary 

reactor exit tube. Materials of minimal erosion would minimise contamination of the 

deposits left inside the two stage combustor. Considerations should also be made in 

incorporating viewing ports on the combustor for gathering visual data. Finally, 

provisions could be made for pre-heating the secondary air to achieve greater 

combustion temperatures.
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Appendix A 

Technical Drawings

General Assembly of Original Combustor 

Original Combustor on Bench Trolley 

General Assembly of Current Combustor 

Dimensions of Current Combustor 

Frame Bench for Current Combustor 

Sampling Section 

Deposition Probe 

Ash Cyclone Dust Separator
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A ppendix B: Photos

Proximate analyses for ash

Proximate analyses for volatiles
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Sieve used in size distribution process

Wet sieving apparatus
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Rotating drum mill for grinding and blending of fuels

(a) primary reactor (b) secondary reactor
Combustor warm-up on (a) primary and (b) secondary reactors
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Two-stage combustor assembly on the frame bench

Deposition probe in situ at the sampling section

169
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Appendix C : Fuel Data

A) Proximate Analyses Data Cardiff University

S Afr Col Belg Liang 5%th 10%th 15%th 20%th
Coal Coal SS Coal SS SS SS SS

PF1SA PF1COL PF1SS CSF000 CSF105 CSF110 CSF115 CSF120
Fixed Carbon 55.4% 51.5% 0.2% 54.5% 49.5% 37.3% 35.6% 39.6%

Ash 10.5% 10.4% 56.7% 10.7% 12.3% 17.8% 15.4% 14.4%
Moisture 4.8% 5.7% 1.8% 3.9% 5.2% 6.3% 5.3% 5.0%

Volatile 29.3% 32.4% 41.3% 30.9% 33.0% 38.6% 43.8% 41.0%

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

5%th 10%th 15%th 20%th 5%th 10%th 15%th 20%th
Sd Sd Sd Sd RDF RDF RDF RDF

CSF205 CSF210 CSF215 CSF220 CSF305 CSF310 CSF315 CSF320
Fixed Carbon 45.8% 41.7% 37.0% 30.2% 48.7% 45.3% 44.1% 39.7%

Ash 9.8% 9.1% 8.7% 7.9% 10.1% 8.9% 8.6% 10.5%

Moisture 4.4% 5.2% 5.1% 7.3% 4.3% 4.6% 4.3% 3.8%

Volatile 40.0% 44.0% 49.2% 54.7% 36.9% 41.2% 43.0% 46.0%

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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B) Calorific Values Minton, Treharne & Davies

Gross PF1SA PF1COL PF1SS CSF000 CSF105 CSF110 CSF115 CSF120
cal/g 6505 6630 2220 6670 6230 5735 5445 5415

BTU/lb 11710 11930 4000 12000 11220 10320 9800 9740

J/g 27220 27760 9300 27920 26100 24010 22795 22660

CSF205 CSF210 CSF215 CSF220 CSF305 CSF310 CSF315 CSF320
cal/g

BTU/lb

J/g

6185

11135

25895

6050

10895

25340

5735

10325

24020

5640

10150

23610

6560

11825

27550

6510

11735

27340

6490

11680

27260

6470

11665

27175

Net PF1SA PF1COL PF1SS CSF000 CSF105 CSF110 CSF115 CSF120
cal/g 6265 6360 2050 6415 5970 5480 5180 5150

BTU/lb 11280 11450 3690 11550 10740 9860 9330 9270

J/g 26240 26640 8580 26870 24990 22940 21690 21560

CSF205 CSF210 CSF215 CSF220 CSF305 CSF310 CSF315 CSF320
cal/g

BTU/lb

J/g

5940

10690

24870

5800

10445

24290

5470

9840

22890

5375

9675

22500

6300

11355

26460

6250

11265

26250

6210

11195

26080

6175

11130

25935

C) Ultimate Analyses Minton, Treharne & Davies

Base Fuel S African coal Colombian coal Belgian SS Llangerlo coal
Wet Dry Wet Dry Wet Dry Wet Dry

Carbon 

Hydrogen 

Nitrogen 

Sulphur 

Oxygen by diff

68.10%

4.00%

1.80%

0.46%

10.34%

71.53%

4.20%

1.89%

0.48%

10.86%

68.00%

4.49%

1.60%

0.60%

9.21%

72.11%

4.76%

1.70%

0.64%

9.77%

21.80%

3.00%

3.40%

0.70%

12.30%

22.38%

3.08%

3.49%

0.72%

12.63%

69.10%

4.40%

1.80%

0.61%

9.49%

71.90%

4.58%

1.87%

0.63%

9.88%

Ash

Moisture

10.50%

4.80%

11.03% 10.40%

5.70%

11.03% 56.20%

2.60%

57.70% 10.70%

3.90%

11.13%

100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

dry content 95.20% 94.30% 97.40% 96.10%
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Ultimate Analyses (cont.)

MSS Blends 5%th w coal 10%th w coal 15%th wcoal 20%th wcoal

Wet Dry Wet Dry Wet Dry Wet Dry

Carbon 

Hydrogen 

Nitrogen 

Sulphur 

Oxygen by diff

64.56%

4.25%

2.10%

0.87%

10.72%

68.10%

4.48%

2.22%

0.92%

11.31%

58.80%

4.15%

2.50%

0.96%

11.89%

62.55%

4.41%

2.66%

1.02%

12.65%

54.90%

4.22%

2.60%

0.99%

12.99%

58.84%

4.52%

2.79%

1.06%

13.92%

54.90%

4.32%

2.90%

1.02%

12.76%

58.59%

4.61%

3.09%

1.09%

13.62%

Ash

Moisture

12.30%

5.20%

12.97% 15.70%

6.00%

16.70% 17.60%

6.70%

18.86% 17.80%

6.30%

19.00%

100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

dry content 94.80% 94.00% 93.30% 93.70%

Sawdust Blend 5%th

Wet

w coa l

Dry

10%th

Wet

wcoal

Dry

15%th

Wet

w coal

Dry

20%th

Wet

wcoal

Dry

Carbon 

Hydrogen 

Nitrogen 

Sulphur 

Oxygen by diff

64.50%

4.28%

1.60%

0.77%

14.05%

68.18%

4.52%

1.69%

0.81%

14.85%

63.10%

4.33%

1.50%

0.70%

15.97%

66.84%

4.59%

1.59%

0.74%

16.92%

59.40%

4.71%

1.20%

0.55%

21.24%

63.19%

5.01%

1.28%

0.59%

22.60%

58.40%

4.69%

1.10%

0.52%

22.49%

62.33%

5.01%

1.17%

0.55%

24.00%

Ash

Moisture

9.40%

5.40%

9.94% 8.80%

5.60%

9.32% 6.90%

6.00%

7.34% 6.50%

6.30%

6.94%

100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

dry content 94.60% 94.40% 94.00% 93.70%

RDF Blends 5%th

Wet

w coal

Dry

10%th

Wet

wcoal

Dry

15%th

Wet

w coal

Dry

20%th

Wet

wcoal

Dry

Carbon

Hydrogen

Nitrogen

Sulphur

Chlorine

Oxygen by diff

67.30%

4.19%

1.70%

0.81%

0.08%

8.82%

72.06%

4.49%

1.82%

0.87%

0.09%

9.44%

66.40%

4.44%

1.60%

0.79%

0.14%

11.43%

69.67%

4.66%

1.68%

0.83%

0.15%

11.99%

65.50%

4.83%

1.60%

0.76%

0.22%

11.69%

68.80%

5.07%

1.68%

0.80%

0.23%

12.28%

64.90%

5.17%

1.50%

0.73%

0.29%

12.11%

68.03%

5.42%

1.57%

0.77%

0.30%

12.69%

Ash

Moisture

10.50%

6.60%

11.24% 10.50%

4.80%

11.02% 10.60%

4.80%

11.13% 10.70%

4.60%

11.22%

100.00% 100.00% 100.10% 100.00% 100.00% 100.00% 100.00% 100.00%

dry content 93.40% 95.30% 95.20% 95.40%
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Appendix D: Air-fuel Ratio Calculations

A) Coal air-fuel ratios 

Llangerlo /CSF000
Ultimate Analysis dry basis for 1 kg kg/kmol mol
Carbon 69.10% 71.90% 12 59.87

Hydrogen 4.40% 4.58% 2 22.71

Nitrogen 1.80% 1.87% 28 0.67

Sulphur 0.61% 0.63% 32 0.20

Chlorine 0.00% 0.00% 17 0.00

Oxygen by diff 9.49% 9.88% 32 3.09

Ash 10.70% 11.13% dry content

Moisture 3.90% 96.10%

100.00% 100.00%

for stoichiometric combustion of 1 kg of Llangerlo coal:

C + 02 = C02 H2 + 0.502 = H20 S + 02 = S02

12 32 44 2 16 18 32 32 64

1.000 2.664 3.664 1.000 7.937 8.937 1.000 0.998 1.998

0.719 1.916 2.635 0.046 0.363 0.409 0.006 0.006 0.013

mass 02, in reaction 

from coal 

required from air

2.285 kg 
0.099 kg mass of air = 

volume of air =

9.384 kg 
7.666 m3

2.187 kg

South African
Ultimate Analysis dry basis for 1 kg kg/kmol mol
Carbon 68.10% 71.53% 12 59.56

Hydrogen 4.00% 4.20% 2 20.84

Nitrogen 1.80% 1.89% 28 0.67

Sulphur 0.46% 0.48% 32 0.15

Chlorine 0.00% 0.00% 17 0.00

Oxygen by diff 10.34% 10.86% 32 3.39

Ash

Moisture

10.50%

4.80%

11.03% dry content 

95.20%

100.00% 100.00%
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Coal air-fuel ratios (cont.)

for stoichiometric combustion of 1 kg of South African coal:

c + 02 = C02 H2 + 0.502 = H20 S + 02 = S02

12

1.000

0.715

32

2.664

1.906

44

3.664

2.621

2

1.000

0.042

16

7.937

0.333

18

8.937

0.375

32

1.000

0.005

32

0.998

0.005

64

1.998

0.010

mass 02, in reaction 

from coal

2.244

0.109
kgkg mass of air = 

volume of air =

9.165

7.487
kgm3

required from air 2.135 kg

Colombian

Ultimate Analysis

dry

basis for 1 kg kg/kmol mol
Carbon

Hydrogen

Nitrogen

Sulphur

Chlorine

Oxygen by diff

68.00%

4.49%

1.60%

0.60%

0.00%

9.21%

72.11%

4.76%

1.70%

0.64%

0.00%

9.77%

12

2

28

32

17

32

60.04

23.62

0.61

0.20

0.00

3.05

Ash

Moisture

10.40%

5.70%

11.03% dry content 

94.30%

100.00% 100.00%

for stoichiometric combustion of 1kg of Colombian coal:

C + 02 = C02 H2 + 0.502 = H20 S + 02 = S02

12

1.000

0.721

32

2.664

1.921

44

3.664

2.642

2

1.000

0.048

16

7.937

0.378

18

8.937

0.426

32

1.000

0.006

32

0.998

0.006

64

1.998

0.013

mass 02, in reaction 

from coal

2.305

0.098
kgkg mass of air = 

volume of air =

9.475

7.740
kgm3

required from air 2.208 kg
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B) Coal-sewage sludge blends air-fuel ratios

CSF105 5%th MSS substitution 

Ultimate Analysis dry basis

Carbon 64.56% 68.10%

Hydrogen 4.25% 4.48%

Nitrogen 2.10% 2.22%

Sulphur 0.87% 0.92%

Chlorine 0.00% 0.00%

Oxygen by diff 10.72% 11.31%

Ash 12.30% 12.97%

Moisture 5.20%

100.00% 100.00%

dry content 

94.80%

for stoichiometric combustion of 1kg of CSF105

C + 02 = C02 H2 + 0.502 = H20 S + 02 = S02 CI + 0.502 = CIO

12 32 44 2 16 18 32 32 64 17 16 33

1.000 2.664 3.664 1.000 7.937 8.937 1.000 0.998 1.998 1.000 0.941 1.941

0.681 1.814 2.495 0.045 0.356 0.401 0.009 0.009 0.018 0.000 0.000 0.000

mass of 02, in reaction 

from fuel 

required from air

2.179 kg 
0.113 kg mass of air = 

volume of air =

8.868 kg 
7.321 m3

2.066 kg
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Coal-sewage sludge blends air-fuel ratios (cont.)

CSF115 15%th 

Ultimate Analysis

MSS substitution

dry basis

Carbon 54.90% 58.84%

Hydrogen 4.22% 4.52%

Nitrogen 2.60% 2.79%

Sulphur 0.99% 1.06%

Chlorine 0.00% 0.00%

Oxygen by diff 12.99% 13.92%

Ash 17.60% 18.86%

Moisture 6.70%

100.00% 100.00%

dry content 

93.30%

for stoichiometric combustion of 1 kg of CSF115

C + 02 = C02 H2 + 0.502 = H20 S + 02 = S02 CI + 0.502 = CIO

12 32 44 2 16 18 32 32 64 17 16 33

1.000 2.664 3.664 1.000 7.937 8.937 1.000 0.998 1.998 1.000 0.941 1.941

0.588 1.568 2.156 0.045 0.359 0.404 0.011 0.011 0.021 0.000 0.000 0.000

mass of 02, in reaction 

from fuel 

required from air

1.937 kg 
0.139 kg mass of air = 

volume of air =

7.716 kg 
6.371 m3

1.798 kg
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Coal-sewage sludge blends air-fuel ratios (cont.)

CSF120 20%th 

Ultimate Analysis

MSS substitution

dry basis

Carbon 54.90% 58.59%

Hydrogen 4.32% 4.61%

Nitrogen 2.90% 3.09%

Sulphur 1.02% 1.09%

Chlorine 0.00% 0.00%

Oxygen by diff 12.76% 13.62%

Ash 17.80% 19.00%

Moisture 6.30%

100.00% 100.00%

dry content 

93.70%

for stoichiometric combustion of 1 kg of CSF120

C + 02 = C02 H2 + 0.502 = H20 S + 02 = S02 CI + 0.502 = CIO

12 32 44 2 16 18 32 32 64 17 16 33

1.000 2.664 3.664 1.000 7.937 8.937 1.000 0.998 1.998 1.000 0.941 1.941

0.586 1.561 2.147 0.046 0.366 0.412 0.011 0.011 0.022 0.000 0.000 0.000

mass of 02, in reaction 

from fuel 

required from air

1.938 kg 
0.136 kg mass of air = 

volume of air =

7.732 kg 
6.383 m3

1.802 kg
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C) Coal-sawdust blends air-fuel ratios

CSF205 5%th 

Ultimate Analysis

RDF substitution

dry basis

Carbon 64.50% 68.18%

Hydrogen 4.28% 4.52%

Nitrogen 1.60% 1.69%

Sulphur 0.77% 0.81%

Chlorine 0.00% 0.00%

Oxygen by diff 14.05% 14.85%

Ash 9.40% 9.94%

Moisture 5.40%

100.00% 100.00%

dry content 

94.60%

for stoichiometric combustion of 1 kg of CSF205

C + 02 = C02 H2 + 0.502 = H20 S + 02 = S02 CI + 0.502 = CIO

12

1.000

0.682

32

2.664

1.816

44

3.664

2.498

2

1.000

0.045

16

7.937

0.359

18

8.937

0.404

32

1.000

0.008

32

0.998

0.008

64

1.998

0.016

17

1.000

0.000

16

0.941

0.000

33

1.941

0.000

mass of 02, in reaction 

from fuel 

required from air

2.184 kg 
0.149 kg mass of air = 

volume of air =

8.734 kg 
7.211 m3

2.035 kg
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Coal-sawdust blends air-fuel ratios (cont.)

CSF210 10%th RDF substitution 

Ultimate Analysis dry basis

Carbon 63.10% 66.84%

Hydrogen 4.33% 4.59%

Nitrogen 1.50% 1.59%

Sulphur 0.70% 0.74%

Chlorine 0.00% 0.00%

Oxygen by diff 15.97% 16.92%

Ash 8.80% 9.32%

Moisture 5.60%

100.00% 100.00%

for stoichiometric combustion of 1 kg of CSF210

C + 02 = C02 H2 + 0.502 = H20 s  + 02 = S02 CH- 0.502 = CIO

12

1.000

0.668

32

2.664

1.781

44

3.664

2.449

2

1.000

0.046

16

7.937

0.364

18

8.937

0.410

32

1.000

0.007

32

0.998

0.007

64

1.998

0.015

17

1.000

0.000

16

0.941

0.000

33

1.941

0.000

mass of 02, in reaction 2.152 kg mass of air = 8.511 kg
from fuel - 0.169 kg volume of air = 7.027 m3
required from air 1.983 kg
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Coal-sawdust blends air-fuel ratios (cont.)

CSF215 15%th 

Ultimate Analysis

RDF substitution

dry basis

Carbon 59.40% 63.19%

Hydrogen 4.71% 5.01%

Nitrogen 1.20% 1.28%

Sulphur 0.55% 0.59%

Chlorine 0.00% 0.00%

Oxygen by diff 21.24% 22.60%

Ash 6.90% 7.34%

Moisture 6.00%

100.00% 100.00%

for stoichiometric combustion of 1 kg of

dry content 

94.00%

CSF215

C + 02 = C02 H2 + 0.502 = H20 s + 02 = S02 CI + 0.502 = CIO

12

1.000

0.632

32

2.664

1.683

44

3.664

2.315

2

1.000

0.050

16

7.937

0.398

18

8.937

0.448

32

1.000

0.006

32

0.998

0.006

64

1.998

0.012

17

1.000

0.000

16

0.941

0.000

33

1.941

0.000

mass of 02, in reaction 2.087 kg mass of air = 7.987 kg
from fuel - 0.226 kg volume of air = 6.594 m3
required from air 1.861 kg

181



Studies of Co-firing Coal with Biomass on a Two Stage Simulator for Utility Boilers

Coal-sawdust blends air-fuel ratios (cont.)

CSF220 20%th 

Ultimate Analysis

RDF substitution

dry basis

Carbon 58.40% 62.33%

Hydrogen 4.69% 5.01%

Nitrogen 1.10% 1.17%

Sulphur 0.52% 0.55%

Chlorine 0.00% 0.00%

Oxygen by diff 22.49% 24.00%

Ash 6.50% 6.94%

Moisture 6.30%

100.00% 100.00%

dry content 

93.70%

for stoichiometric combustion of 1 kg of CSF220

C + 02 = C02 H2 + 0.502 = H20 S + 02 = S02 CI + 0.502 = CIO

12

1.000

0.623

32

2.664

1.660

44

3.664

2.284

2

1.000

0.050

16

7.937

0.397

18

8.937

0.447

32

1.000

0.006

32

0.998

0.006

64

1.998

0.011

17

1.000

0.000

16

0.941

0.000

33

1.941

0.000

mass of 02, in reaction 

from fuel 

required from air

2.063 kg 
0.240 kg mass of air = 

volume of air =

7.825 kg 
6.460 m3

1.823 kg
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D) Coal-RDF blends air-fuel ratios

CSF305 5%th 

Ultimate Analysis

RDF substitution

dry basis

Carbon 67.30% 72.06%

Hydrogen 4.19% 4.49%

Nitrogen 1.70% 1.82%

Sulphur 0.81% 0.87%

Chlorine 0.08% 0.09%

Oxygen by diff 8.82% 9.44%

Ash 10.50% 11.24%

Moisture 6.60%

100.00% 100.00%

for stoichiometric combustion of 1kg of

dry content 

93.40%

CSF305

C + 02 = C02 H2 + 0.502 = H20 s + nCMO

S02 CI + 0.502 = CIO

12

1.000

0.721

32

2.664

1.920

44

3.664

2.640

2

1.000

0.045

16

7.937

0.356

18

8.937

0.401

32

1.000

0.009

32

0.998

0.009

64

1.998

0.017

17

1.000

0.001

16

0.941

0.001

33

1.941

0.002

mass of 02, in reaction 2.285 kg mass of air = 9.402 kg
from fuel - 0.094 kg volume of air = 7.735 m3
required from air 2.191 kg
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Coal-RDF blends air-fuel ratios (cont.)

CSF310 10%th 

Ultimate Analysis

RDF substitution

dry basis

Carbon 66.40% 69.67%

Hydrogen 4.44% 4.66%

Nitrogen 1.60% 1.68%

Sulphur 0.79% 0.83%

Chlorine 0.14% 0.15%

Oxygen by diff 11.43% 11.99%

Ash 10.50% 11.02%

Moisture 4.80%

100.10% 100.00%

dry content 

95.30%

for stoichiometric combustion of 1kg of CSF310

C + 02 = C02 H2 + 0.502 = H20 S + 02 = S02 CI + 0.502 = CIO

12

1.000

0.697

32

2.664

1.856

44

3.664

2.553

2

1.000

0.047

16

7.937

0.370

18

8.937

0.416

CM 
O 

00 
00 

O 
O

o 
oO

32

0.998

0.008

64

1.998

0.017

17

1.000

0.001

16

0.941

0.001

33

1.941

0.003

mass of 02, in reaction 2.236 kg mass of air = 9.080 kg
from fuel - 0.120 kg volume of air = 7.470 m3
required from air 2.116 kg
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Coal-RDF blends air-fuel ratios (cont.)

CSF315 15%th RDF substitution

Ultimate Analysis dry basis

Carbon 65.50% 68.80%

Hydrogen 4.83% 5.07%

Nitrogen 1.60% 1.68%

Sulphur 0.76% 0.80%

Chlorine 0.22% 0.23%

Oxygen by diff 11.69% 12.28%

Ash 10.60% 11.13%

Moisture 4.80%

100.00% 100.00%

for stoichiometric combustion of 1 kg of CSF315

C + 02 = C02 H2 + 0.502 = H20 s + 02 = S02 CI + 0.502 = CIO

12

1.000

0.688

32

2.664

1.833

44

3.664

2.521

2

1.000

0.051

16

7.937

0.403

18

8.937

0.453

32

1.000

0.008

32

0.998

0.008

64

1.998

0.016

17

1.000

0.002

16

0.941

0.002

33

1.941

0.004

mass of 02, in reaction 2.246 kg mass of air = 9.111 kg
from fuel - 0.123 kg volume of air = 7.496 m3
required from air 2.123 kg
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Coal-RDF blends air-fuel ratios (cont.)

CSF320 20%th 

Ultimate Analysis

RDF substitution

dry basis

Carbon 64.90% 68.03%

Hydrogen 5.17% 5.42%

Nitrogen 1.50% 1.57%

Sulphur 0.73% 0.77%

Chlorine 0.29% 0.30%

Oxygen by diff 12.11% 12.69%

Ash 10.70% 11.22%

Moisture 4.60%

100.00% 100.00%

dry content 

95.40%

for stoichiometric combustion of 1kg of CSF320

C + 02 = C02 H2 + 0.502 = H20 S + 02 = S02 Cl + 0.502 = CIO

12

1.000

0.680

32

2.664

1.812

44

3.664

2.493

2

1.000

0.054

16

7.937

0.430

18

8.937

0.484

32

1.000

0.008

32

0.998

0.008

64

1.998

0.015

17

1.000

0.003

16

0.941

0.003

33

1.941

0.006

mass of 02, in reaction 

from fuel 

required from air

2.253 kg 
0.127 kg mass of air = 

volume of air =

9.125 kg 
7.507 m3

2.126 kg
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Appendix E : Results

A) Results of the elemental analyses for oxides

Chemical analyses o f fuel ash samples -  Raw data

Fuel S i02 CaO MgO Mn30 4 k 2o Na20 Ti02 Fe20 3 a i2o 3 P2Os
CSF000 30.36 8.62 2.71 0.13 0.55 0.72 0.89 4.79 18.44 1.46
CSF105 28.28 9.65 2.60 0.13 0.59 0.68 0.88 5.19 18.37 3.30
CSF110 26.21 10.81 2.72 0.16 0.87 0.78 0.81 7.84 16.28 8.57
CSF115 24.69 10.24 2.71 0.18 0.99 0.83 0.68 9.46 13.79 11.33
CSF120 26.40 10.79 2.70 0.17 0.89 0.80 0.80 8.23 15.62 9.09

CSF205 26.68 9.39 2.73 0.15 0.63 0.66 0.95 4.82 19.21 1.48
CSF210 29.57 9.66 2.65 0.16 0.66 0.63 0.92 4.31 19.52 1.38
CSF215 28.64 9.85 2.64 0.18 0.76 0.61 0.93 4.29 19.43 1.36

CSF220 28.91 9.75 2.73 0.24 1.01 0.61 0.87 4.20 18.20 1.45

CSF305 37.18 11.01 2.77 0.09 0.58 0.89 1.20 5.04 24.35 1.44

CSF310 38.21 11.90 2.76 0.09 0.63 1.11 1.34 4.70 24.23 1.38

CSF315 37.31 12.66 2.62 0.08 0.61 1.10 1.69 4.47 23.35 1.29

CSF320 35.76 12.68 2.54 0.08 0.68 1.17 1.65 4.36 22.27 1.26

Chemical analyses o f fuel ash samples -  Normalised

Fuel Si02 CaO MgO Mn30 4 k 2o Na20 Ti02 Fe20 3 a i2o 3 p2o 5

CSF000 44.21 12.55 3.95 0.19 0.80 1.05 1.29 6.98 26.85 2.13

CSF105 40.59 13.85 3.74 0.19 0.85 0.97 1.26 7.45 26.36 4.74

CSF110 34.92 14.40 3.63 0.22 1.16 1.04 1.08 10.45 21.69 11.42

CSF115 32.96 13.67 3.62 0.24 1.32 1.11 0.91 12.63 18.41 15.12

CSF120 34.97 14.29 3.57 0.22 1.18 1.06 1.06 10.91 20.70 12.04

CSF205 39.99 14.07 4.10 0.22 0.95 1.00 1.43 7.23 28.80 2.22

CSF210 42.57 13.90 3.82 0.23 0.94 0.91 1.32 6.20 28.11 1.99

CSF215 41.69 14.34 3.84 0.26 1.11 0.89 1.35 6.25 28.28 1.98

CSF220 42.54 14.34 4.02 0.35 1.49 0.89 1.27 6.18 26.78 2.13

CSF305 43.98 13.02 3.28 0.11 0.68 1.06 1.42 5.96 28.80 1.70

CSF310 44.25 13.78 3.20 0.10 0.73 1.29 1.55 5.44 28.07 1.60

CSF315 43.80 14.87 3.07 0.10 0.71 1.29 1.98 5.25 27.41 1.51

CSF320 43.38 15.38 3.08 0.09 0.83 1.41 2.00 5.29 27.01 1.52
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Chemical analyses o f base coal slag samples -  Raw data

Sample Si02 CaO MgO Mn3Oj k 2o Na20 TiOz Fe2C>3 a i2o 3 P20 6
1 28.68 11.99 2.61 0.30 0.35 0.73 1.05 14.45 20.13 1.23

2 7.03 4.78 0.93 3.11 0.22 0.75 0.18 70.16 3.82 0.46

3 8.74 0.72 4.69 1.25 0.24 0.74 0.26 64.10 5.17 0.83
4 29.37 11.81 2.66 0.11 0.47 0.78 1.19 7.79 23.50 1.45

5 31.58 12.48 2.82 0.14 0.53 0.75 1.33 8.42 24.78 2.18
6 33.07 12.60 2.47 0.12 0.43 0.63 1.08 6.42 27.01 2.02
7 31.16 10.87 2.76 0.11 0.83 0.87 2.38 4.17 33.10 1.78

8 34.22 11.82 3.22 0.13 0.63 0.97 1.60 7.54 26.28 1.69

Chemical analyses o f base coal slag samples -  Normalised

Sample Si02 CaO MgO Mn3 0 4 k 2o Na20 Ti0 2 Fe20 3 a i2o3 p2o 6
1 35.19 14.71 3.20 0.37 0.43 0.89 1.29 17.73 24.70 1.51

2 7.68 5.23 1.02 3.40 0.24 0.82 0.19 76.73 4.18 0.50

3 10.07 0.83 5.41 1.44 0.28 0.85 0.30 73.90 5.96 0.96

4 37.11 14.92 3.36 0.14 0.60 0.99 1.50 9.85 29.69 1.83

5 37.15 14.67 3.32 0.16 0.62 0.88 1.57 9.90 29.15 2.56

6 38.52 14.67 2.87 0.14 0.50 0.74 1.26 7.48 31.46 2.36

7 35.40 12.35 3.14 0.13 0.94 0.99 2.70 4.74 37.60 2.02

8 38.84 13.42 3.66 0.15 0.72 1.10 1.82 8.56 29.82 1.91

Key: Primary reactor

Secondary reactor
Secondary reactor exit
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Chemical analyses of coal-sewage sludge blends slag samples -  Raw data
Sample Si02 CaO MgO Mn3Q4 k2o Na2Q Ti0 2 Fe20 3 a i2o 3 p2o 6

5%th sewage sludge substitution

1 48.21 19.04 3.65 0.14 0.24 0.54 1.33 12.73 37.97 2.75

2 25.93 16.94 3.48 0.83 0.36 0.67 0.83 51.05 14.54 7.79

3 18.00 14.14 2.82 1.11 0.12 0.54 0.50 70.79 9.26 6.41

4 46.93 22.40 4.98 0.28 0.48 0.67 1.33 15.16 23.23 10.31

5 46.07 20.86 4.15 0.14 0.48 0.67 1.33 12.58 27.20 6.18

6 42.86 20.72 3.98 0.14 0.60 0.67 1.17 11.30 26.82 6.18

7 46.93 17.08 4.48 0.14 0.60 0.81 1.83 9.58 33.62 6.41

8 31.93 15.96 3.15 0.42 0.48 0.94 1.50 56.06 20.59 5.50

10%th sewage sludge substitution

1 44.79 26.60 3.65 0.14 0.24 0.67 1.00 15.02 28.14 9.85

2 36.86 24.92 3.48 0.42 0.24 0.67 0.83 29.75 22.48 11.45

3 12.00 13.02 1.82 1.11 0.36 0.67 0.33 59.06 11.14 6.41

4 42.21 21.28 4.05 0.14 0.72 0.81 1.17 10.73 25.31 10.08

5 49.50 20.02 3.48 0.14 0.84 0.81 1.50 7.01 32.68 5.04

6 45.86 19.88 3.48 0.14 0.72 0.94 1.33 8.29 32.49 5.50

7 47.14 17.22 3.15 0.14 0.48 0.81 1.50 8.44 38.53 5.50

8 32.14 21.84 3.81 0.14 0.60 0.94 1.50 15.87 35.32 10.54

15%th sewage sludge substitution

1 20.55 9.59 2.01 0.27 0.40 0.68 0.51 18.47 10.96 4.58

2 8.35 4.81 1.05 0.83 0.20 0.84 0.23 64.09 4.43 3.25

3 12.20 5.67 1.40 0.86 0.24 0.73 0.35 55.42 6.92 5.40

4 35.01 13.21 2.89 0.13 0.61 0.78 1.30 7.26 27.12 4.91

5 36.87 8.52 1.41 0.06 0.65 0.60 1.30 3.63 33.73 2.42

6 35.56 12.70 2.48 0.11 0.66 0.76 1.33 5.53 27.54 4.80

7 37.63 8.42 1.18 0.05 0.65 0.64 1.42 2.95 34.82 1.88

8 25.94 11.54 2.76 0.17 0.94 1.09 1.19 14.90 18.84 9.44

20%th sewage sludge substitution

1 14.11 5.97 1.55 1.02 1.30 1.23 0.31 39.73 6.46 5.77

2 14.28 6.04 1.56 1.03 1.32 1.25 0.32 40.20 6.54 5.84

3 8.64 4.08 1.07 1.43 0.48 0.82 0.28 59.27 4.89 5.00

4 2.28 12.44 2.63 0.20 0.70 0.81 0.89 10.12 21.30 9.43

5 34.54 8.08 1.19 0.09 0.60 0.60 1.10 5.29 28.45 3.26

6 29.32 11.87 2.65 0.13 0.83 0.84 0.93 9.28 18.73 10.19

7 35.81 5.42 0.88 0.05 0.58 0.47 0.74 2.10 30.15 1.23

8 25.03 9.50 2.77 0.20 1.14 0.90 0.77 10.99 14.10 12.69
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Chemical analyses of coal-sewage sludge blends slag samples - Normalised
Sample S i02 CaO MgO Mn30 4 k2o Na2Q Ti02 Fe2Q3 a i2o 3 p2o 5

5%th sewage sludge substitution

1 38.08 15.04 2.88 0.11 0.19 0.43 1.05 10.05 29.99 2.17

2 21.18 13.84 2.84 0.68 0.30 0.55 0.68 41.70 11.88 6.36

3 14.55 11.43 2.28 0.90 0.10 0.44 0.40 57.23 7.48 5.18

4 37.45 18.10 3.48 0.12 0.53 0.59 1.02 9.87 23.44 5.40

5 38.50 17.43 3.46 0.12 0.40 0.56 1.12 10.52 22.73 5.17

6 37.31 17.81 3.96 0.22 0.38 0.54 1.06 12.05 18.47 8.19

7 38.63 14.06 3.69 0.11 0.50 0.67 1.51 7.89 27.68 5.28

8 23.39 11.69 2.31 0.31 0.35 0.69 1.10 41.06 15.08 4.03

10%th sewage sludge substitution

1 34.42 20.45 2.80 0.11 0.19 0.52 0.77 11.54 21.63 7.57

2 28.11 19.01 2.66 0.32 0.18 0.51 0.64 22.69 17.15 8.73

3 11.33 12.29 1.72 1.05 0.34 0.64 0.31 55.75 10.52 6.05

4 38.65 16.76 2.94 0.12 0.61 0.80 1.12 6.99 27.38 4.63

5 40.90 16.54 2.88 0.11 0.70 0.67 1.24 5.79 27.00 4.16

6 36.24 18.27 3.47 0.12 0.62 0.69 1.00 9.21 21.73 8.65

7 38.35 14.01 2.56 0.11 0.39 0.66 1.22 6.86 31.35 4.47

8 26.19 17.80 3.11 0.11 0.49 0.77 1.22 12.94 28.78 8.59

15%th sewage sludge substitution

1 30.21 14.10 2.95 0.40 0.58 1.00 0.75 27.15 16.12 6.73

2 9.48 5.47 1.20 0.95 0.23 0.95 0.26 72.76 5.03 3.69

3 13.68 6.36 1.57 0.96 0.27 0.82 0.40 62.13 7.76 6.05

4 38.88 13.88 2.71 0.12 0.72 0.83 1.45 6.04 30.11 5.24

5 41.35 9.55 1.58 0.07 0.73 0.67 1.46 4.07 37.82 2.71

6 37.56 14.17 3.10 0.14 0.65 0.83 1.39 7.79 29.09 5.27

7 41.97 9.39 1.32 0.06 0.73 0.71 1.59 3.30 38.84 2.10

8 29.87 13.30 3.18 0.20 1.09 1.25 1.37 17.16 21.70 10.87

20%th sewage sludge substitution

1 18.22 7.71 2.00 1.32 1.68 1.59 0.40 51.30 8.34 7.45

2 18.22 7.71 2.00 1.32 1.68 1.59 0.40 51.30 8.34 7.45

3 10.05 4.74 1.25 1.66 0.56 0.95 0.32 68.95 5.69 5.82

4 34.59 14.00 3.12 0.15 0.98 0.99 1.10 10.94 22.10 12.03

5 41.51 9.72 1.43 0.11 0.73 0.72 1.32 6.35 34.19 3.92

6 3.75 20.46 4.32 0.33 1.15 1.33 1.47 16.65 35.04 15.50

7 49.38 7.59 1.07 0.07 0.88 0.77 1.04 3.14 34.17 1.89

8 32.05 12.17 3.55 0.26 1.46 1.16 0.98 14.08 18.06 16.24
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Chemical analyses of coal-sawdust blends slag samples -  Raw data
Sample SiOs CaO MgO Mn30 4 k2o Na2Q Ti0 2 Fe2Q3 a i2o 3 P2Oe

5%th sawdust substitution
1 40.89 10.80 2.56 0.13 0.42 0.68 1.01 9.98 30.46 3.42
2 27.40 9.01 2.49 0.55 0.18 0.42 0.67 26.80 18.57 2.44
3 40.95 10.67 2.35 0.22 0.24 0.47 0.89 13.48 29.46 1.32
4 41.30 8.61 2.54 0.18 0.53 0.70 1.18 9.82 28.71 1.73
5 47.23 10.31 2.91 0.11 0.44 0.78 1.15 4.78 31.37 1.54
6 43.53 8.77 2.13 0.09 0.45 0.67 1.10 4.59 33.12 1.99
7 44.74 9.33 2.55 0.10 0.64 0.79 1.44 4.27 33.14 1.89
8 41.70 11.10 3.27 0.14 0.52 0.81 1.75 5.59 29.42 1.80

10%th sawdust substitution

1 33.42 11.19 2.52 0.23 0.13 0.36 0.77 15.37 21.65 1.06
2 32.17 10.85 2.78 0.52 0.23 0.45 0.83 20.91 19.64 1.25
3 8.71 4.14 1.18 0.84 0.08 0.19 0.26 39.21 6.45 1.06
4 43.26 12.50 3.23 0.17 0.38 0.61 1.11 10.25 27.20 2.53

5 45.38 12.11 3.21 0.15 0.52 0.71 1.23 6.01 28.95 2.22
6 46.80 10.04 2.85 0.13 0.45 0.70 1.31 4.16 30.37 1.64

7 46.20 8.62 1.99 0.09 0.45 0.61 1.20 3.87 34.88 1.88

8 41.57 11.39 3.42 0.15 0.57 0.82 1.59 5.40 28.32 2.11

15%th sawdust substitution

1 37.11 14.21 3.31 0.23 0.17 0.48 0.86 15.45 21.59 1.29

2 19.66 7.83 1.94 0.48 0.06 0.23 0.48 24.64 12.43 0.75

3 5.87 2.07 0.46 0.17 0.09 0.19 0.06 13.10 3.35 0.62

4 28.74 8.04 2.13 0.11 0.22 0.44 0.82 4.46 18.40 1.07

5 54.04 13.76 3.72 0.18 0.59 0.85 1.48 6.01 34.51 1.93

6 46.12 10.13 2.86 0.14 0.45 0.70 1.32 4.32 30.57 1.69

7 47.30 10.70 3.03 0.15 0.58 0.78 1.42 4.54 30.79 1.67

8 32.06 9.40 2.72 0.14 0.37 0.58 1.24 3.79 21.86 1.28

20%th sawdust substitution

1 32.92 13.58 3.12 0.34 0.14 0.35 0.73 21.07 20.12 1.21

2 35.68 10.15 2.69 0.26 0.16 0.48 1.02 12.91 22.13 1.28

3 7.70 2.92 0.77 0.84 0.09 0.19 0.31 44.79 5.01 0.62

4 44.14 13.11 3.47 0.17 0.54 0.69 1.14 8.45 27.03 1.64

5 46.42 12.23 3.24 0.17 0.68 0.76 1.15 4.69 28.95 1.57

6 47.85 9.92 2.77 0.14 0.40 0.71 1.34 3.49 31.30 1.71

7 47.86 10.79 3.02 0.17 0.64 0.79 1.35 4.31 30.21 1.57

8 46.85 11.05 3.16 0.16 0.59 0.79 1.49 4.90 30.90 1.69
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Chemical analyses of coal-sawdust blends slag samples -  Normalised
Sample Si02 CaO MgO Mn30 4 k2o Na20 Ti0 2 Fe2Q3 a i2o 3 p2o 5

5%th sawdust substitution
1 45.14 9.09 2.21 0.09 0.47 0.70 1.14 4.76 34.34 2.07
2 46.93 10.25 2.89 0.11 0.44 0.77 1.15 4.75 31.18 1.53
3 43.35 9.04 2.66 0.19 0.55 0.73 1.24 10.30 30.12 1.81
4 40.93 10.66 2.35 0.22 0.24 0.47 0.89 13.47 29.44 1.32
5 30.95 10.18 2.82 0.63 0.20 0.47 0.76 30.27 20.97 2.76
6 40.75 10.76 2.55 0.13 0.42 0.67 1.01 9.95 30.35 3.41
7 45.24 9.44 2.58 0.10 0.65 0.80 1.45 4.32 33.51 1.91
8 43.39 11.55 3.40 0.14 0.54 0.84 1.82 5.82 30.62 1.87

10%th sawdust substitution

1 42.73 12.35 3.19 0.17 0.37 0.61 1.10 10.12 26.87 2.50

2 45.16 12.05 3.20 0.15 0.52 0.70 1.23 5.98 28.81 2.20

3 47.54 10.19 2.89 0.13 0.46 0.71 1.34 4.23 30.85 1.66

4 38.54 12.91 2.90 0.27 0.15 0.42 0.89 17.73 24.97 1.23

5 35.89 12.11 3.10 0.58 0.25 0.51 0.92 23.32 21.92 1.39
6 14.02 6.67 1.90 1.34 0.12 0.31 0.43 63.13 10.38 1.70

7 44.31 9.33 2.39 0.13 0.56 0.68 1.34 6.89 32.69 1.68

8 43.60 11.95 3.59 0.15 0.60 0.86 1.67 5.66 29.71 2.21

15%th sawdust substitution
1 44.60 12.48 3.30 0.17 0.35 0.69 1.27 6.92 28.56 1.66

2 46.16 11.76 3.18 0.16 0.50 0.72 1.26 5.13 29.48 1.65

3 46.93 10.30 2.91 0.14 0.46 0.71 1.34 4.40 31.10 1.72

4 39.19 15.01 3.49 0.25 0.18 0.51 0.91 16.31 22.80 1.36

5 28.70 11.43 2.83 0.70 0.09 0.34 0.70 35.97 18.14 1.09

6 22.59 7.98 1.76 0.67 0.35 0.73 0.25 50.41 12.89 2.37

7 45.39 11.11 3.13 0.16 0.59 0.77 1.51 4.66 30.98 1.71

8 43.65 12.79 3.71 0.19 0.50 0.80 1.69 5.16 29.77 1.74

20%th sawdust substitution

1 48.03 9.96 2.78 0.14 0.40 0.71 1.34 3.50 31.42 1.72

2 46.49 12.25 3.25 0.17 0.68 0.76 1.15 4.69 28.99 1.57

3 43.97 13.06 3.46 0.17 0.53 0.69 1.14 8.41 26.92 1.63

4 35.18 14.51 3.34 0.37 0.15 0.37 0.78 22.52 21.50 1.29

5 41.12 11.70 3.11 0.30 0.19 0.55 1.18 14.88 25.51 1.47

6 12.17 4.62 1.21 1.33 0.15 0.29 0.49 70.83 7.92 0.99

7 44.10 12.62 3.80 0.21 0.44 0.79 1.72 5.26 29.16 1.89

8 46.12 10.88 3.11 0.16 0.59 0.78 1.47 4.82 30.42 1.66

192



Studies o f  Co-firing Coal with Biomass on a Two Stage Simulator for Utility Boilers

Chemical analyses of coal-RDF blends slag samples -  Raw data
Sample S i02 CaO MgO Mn3Q4 k 2o Na20 Ti0 2 Fe20 3 Al20 3 P2Ob

5%th RDF substitution

1 28.83 8.85 2.20 0.10 0.08 0.39 0.74 5.95 16.99 0.95
2 19.64 6.24 1.62 0.48 0.06 0.30 0.56 27.06 11.67 0.76
3 16.22 6.00 1.43 0.60 0.11 0.30 0.40 34.59 8.95 0.60
4 42.72 13.79 3.48 0.13 0.20 0.60 1.40 8.62 26.27 1.50
5 45.62 10.58 2.79 0.10 0.48 0.85 1.51 3.71 30.19 1.50
6 47.61 10.98 2.97 0.11 0.39 0.83 1.52 4.21 30.14 1.52
7 44.84 10.03 2.52 0.10 0.29 0.71 1.67 4.54 31.12 1.19
8 41.08 10.52 3.03 0.11 0.41 0.91 1.64 4.63 26.30 1.56

10%th RDF substitution

1 37.03 9.47 2.10 0.14 0.07 0.44 0.93 6.11 19.55 0.85

2 33.33 9.28 2.31 0.22 0.10 0.51 1.01 11.37 19.77 1.08
3 24.68 7.96 2.02 0.37 0.12 0.45 1.00 23.94 15.22 0.95

4 44.96 11.39 2.74 0.12 0.29 0.73 1.55 6.31 28.95 1.31

5 46.06 11.80 2.81 0.10 0.50 1.01 1.87 3.93 28.32 1.48

6 45.69 13.80 3.11 0.12 0.31 0.88 1.76 5.40 26.08 1.40

7 44.96 10.49 2.71 0.11 0.40 0.91 1.92 4.14 29.09 1.56

8 41.16 12.06 3.19 0.11 0.37 1.01 2.06 4.60 26.33 1.62

15%th RDF substitution

1 45.89 14.97 3.05 0.18 0.13 0.60 1.36 8.31 24.37 1.16

2 27.24 8.78 2.02 0.49 0.18 0.53 1.05 25.60 15.42 0.93

3 35.89 14.16 3.31 0.46 0.28 0.73 1.54 30.44 22.23 1.26

4 34.21 8.88 1.95 0.07 0.38 0.86 1.33 3.21 19.28 1.02

5 47.68 11.05 2.75 0.11 0.56 1.18 1.77 4.20 29.10 1.59

6 46.40 10.37 2.71 0.11 0.60 1.10 1.73 4.08 30.07 1.59

7 43.16 15.94 3.31 0.13 0.22 0.76 1.84 7.15 23.58 1.37

8 43.21 12.82 3.35 0.13 0.44 1.24 2.25 4.65 27.70 1.78

20%th RDF substitution

1 41.06 11.48 2.46 0.27 0.13 0.55 1.23 9.86 22.55 1.06

2 37.56 12.29 2.80 0.24 0.13 0.53 1.50 10.75 21.58 1.27

3 12.53 4.39 0.94 0.58 0.08 0.22 0.43 32.06 8.24 0.57

4 36.32 15.13 3.12 0.13 0.23 0.51 1.49 14.12 24.65 1.21

5 47.72 12.42 2.61 0.11 0.28 0.94 2.06 3.92 29.63 1.41

6 39.10 10.49 2.14 0.09 0.36 0.83 1.69 3.57 22.82 1.09

7 44.44 11.26 2.51 0.11 0.31 0.79 2.17 3.80 30.05 1.44

8 40.46 12.97 3.10 0.12 0.32 0.95 2.31 4.96 26.69 1.56
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Chemical analyses of coal-RDF blends slag samples -  Normalised
Sample S i02 CaO MgO Mn3 0 4 k 2o Na2Q Ti0 2 Fe20 3 a i2o3 P20 8
5%th RDF substitution

1 44.31 13.60 3.38 0.15 0.13 0.59 1.13 9.14 26.11 1.46
2 28.72 9.13 2.37 0.69 0.09 0.44 0.81 39.56 17.06 1.12
3 23.44 8.67 2.07 0.87 0.15 0.44 0.57 49.99 12.93 0.86
4 43.27 13.97 3.53 0.14 0.21 0.61 1.42 8.73 26.62 1.52
5 46.87 10.87 2.87 0.10 0.50 0.88 1.55 3.81 31.02 1.54
6 47.48 10.95 2.97 0.11 0.39 0.83 1.51 4.20 30.06 1.52
7 46.22 10.34 2.60 0.10 0.30 0.73 1.72 4.68 32.08 1.23
8 45.66 11.66 3.36 0.12 0.45 1.01 1.81 5.13 29.17 1.73

10%th RDF substitution

1 48.29 12.35 2.74 0.18 0.10 0.57 1.21 7.97 25.50 1.11
2 42.20 11.75 2.93 0.28 0.13 0.65 1.28 14.40 25.03 1.37

3 32.18 10.37 2.64 0.48 0.15 0.59 1.30 31.22 19.84 1.23
4 45.71 11.58 2.79 0.13 0.29 0.74 1.58 6.42 29.43 1.34

5 47.05 12.06 2.87 0.10 0.51 1.03 1.91 4.02 28.93 1.51

6 46.36 14.01 3.15 0.12 0.32 0.89 1.78 5.48 26.46 1.42

7 46.70 10.90 2.81 0.12 0.41 0.94 1.99 4.30 30.21 1.62

8 44.49 13.03 3.45 0.12 0.40 1.09 2.23 4.97 28.46 1.75

15%th RDF substitution

1 45.88 14.97 3.05 0.18 0.13 0.60 1.36 8.31 24.36 1.16

2 33.12 10.68 2.45 0.60 0.22 0.64 1.28 31.13 18.75 1.13

3 32.54 12.84 3.00 0.42 0.25 0.66 1.40 27.60 20.15 1.15

4 48.05 12.48 2.75 0.10 0.53 1.21 1.87 4.50 27.07 1.43

5 47.68 11.05 2.75 0.11 0.56 1.18 1.77 4.20 29.10 1.59

6 46.97 10.50 2.75 0.11 0.61 1.12 1.76 4.13 30.44 1.61

7 44.28 16.36 3.40 0.13 0.23 0.78 1.89 7.34 24.19 1.41

8 44.29 13.14 3.44 0.13 0.45 1.27 2.31 4.77 28.39 1.82

20%th RDF substitution

1 45.29 12.67 2.72 0.30 0.14 0.61 1.36 10.87 24.87 1.16

2 42.37 13.87 3.16 0.27 0.15 0.59 1.69 12.13 24.34 1.43

3 20.87 7.32 1.56 0.97 0.14 0.36 0.71 53.39 13.73 0.95

4 37.48 15.61 3.22 0.14 0.23 0.53 1.54 14.56 25.43 1.25

5 47.20 12.29 2.59 0.11 0.28 0.93 2.04 3.88 29.31 1.39

6 47.57 12.76 2.60 0.11 0.44 1.01 2.06 4.35 27.77 1.33

7 45.88 11.62 2.59 0.11 0.32 0.81 2.24 3.92 31.02 1.48

8 43.31 13.88 3.32 0.12 0.35 1.01 2.47 5.31 28.56 1.67
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Chemical analyses o f  f ly  ash samples -  Raw data

Fuel S1O2 CaO MgO Mn30 4 k2o Na20 Ti02 Fe20 3 ai2o3 P2O5

CSF000 37.44 10.58 3.27 0.12 0.17 0.60 1.34 4.96 24.39 1.38

CSF105 40.07 28.14 4.64 0.14 0.84 0.81 1.50 11.30 25.31 6.64
CSF110 39.43 27.86 4.64 0.14 0.48 0.81 1.33 10.87 32.49 10.31
CSF115 32.67 12.78 4.07 0.16 1.31 1.25 1.30 5.93 22.44 17.17
CSF120 20.29 8.36 2.34 0.19 0.80 0.63 0.60 5.92 11.84 6.44

CSF205 34.10 10.37 3.16 0.12 0.15 0.48 1.20 4.31 21.47 1.65

CSF210 37.77 10.60 3.09 0.14 0.21 0.55 1.19 4.84 24.20 1.64

CSF215 35.44 11.59 3.39 0.15 0.18 0.50 1.15 4.34 22.66 1.39

CSF220 35.54 11.31 3.26 0.17 0.15 0.47 1.15 3.95 22.78 1.40

CSF305 31.00 9.12 2.58 0.09 0.09 0.47 1.27 3.37 18.52 1.12

CSF310 36.46 12.62 3.36 0.11 0.28 0.88 1.68 4.77 23.59 1.42

CSF315 39.56 12.43 3.34 0.11 0.57 1.31 1.68 4.61 23.88 1.57

CSF320 33.93 12.32 2.81 0.10 0.40 0.96 2.01 4.04 21.07 1.25

Chemical analyses o f  f ly  ash samples -  Normalised

Fuel Si02 CaO MgO Mn30 4 k2o Na20 Ti02 Fe20 3 ai2o3 P2O5

CSF000 44.44 12.56 3.88 0.14 0.20 0.71 1.59 5.89 28.95 1.64

CSF105 33.56 23.57 3.89 0.12 0.71 0.68 1.26 9.46 21.20 5.56

CSF110 30.72 21.70 3.62 0.11 0.38 0.63 1.04 8.47 25.31 8.03

CSF115 32.97 12.90 4.11 0.16 1.33 1.26 1.31 5.99 22.65 17.33

CSF120 35.35 14.56 4.08 0.33 1.39 1.09 1.04 10.32 20.63 11.22

CSF205 44.29 13.47 4.10 0.15 0.19 0.62 1.55 5.59 27.88 2.14

CSF210 44.84 12.59 3.67 0.17 0.24 0.66 1.41 5.74 28.73 1.95

CSF215 43.86 14.35 4.20 0.19 0.22 0.62 1.42 5.37 28.05 1.72

CSF220 44.33 14.11 4.06 0.21 0.19 0.59 1.43 4.92 28.41 1.75

CSF305 45.83 13.49 3.81 0.14 0.14 0.70 1.87 4.99 27.39 1.65

CSF310 42.81 14.82 3.95 0.13 0.33 1.03 1.98 5.60 27.69 1.67

CSF315 44.42 13.96 3.75 0.12 0.64 1.48 1.89 5.18 26.81 1.76

CSF320 43.01 15.62 3.56 0.13 0.51 1.22 2.55 5.12 26.71 1.58
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B) Results of deposition rates

Phase One
Fuel Dep Rates

PFCOL 24
PFCOL + 5%th PFSS 38

PFCOL + 10%th PFSS 46

Phase Two
Fuel Dep Rates

Pure Coal
CSF000 51* / 64
Coal-MSS Blends
CSF105 24*
CSF110 25*
CSF115 22*
CSF120 18*
Coal-Sawdust Blends
CSF205 50
CSF210 39
CSF215 30
CSF220 4
Coal-RDF Blends
CSF305 64
CSF310 67
CSF315 65
CSF320 68
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C) Results of online flue gas analyses

O2  CO2  CO

/ % / % / ppm

NO

/ppm

N02
/ ppm

S 0 2
/ ppm

h2
/ppm

NOx

/mgm3

Pure Coal
CSF000 3.92 14.96 0 396 7 13 0 678

Coal-MSS Blends
CSF105 2.97 15.80 0 527 4 543 0 846

CSF110 3.10 15.68 0 488 7 13 0 794

CSF115 3.43 15.23 0 445 5 125 0 854

CSF120 3.66 15.02 0 402 1 203 0 882

Coal-Sawdust Blends
CSF205 3.93 14.96 190 370 9 272 0 638

CSF210 3.20 12.97 231 387 13 75 0 776

CSF215 3.16 15.63 150 421 7 20 0 688

CSF220 3.55 15.29 46 353 5 116 0 588

Coal-RDF Blends
CSF305 3.47 15.36 698 476 1 358 50 780

CSF310 3.78 15.09 255 391 5 209 20 666

CSF315 3.02 15.75 56 392 3 37 23 630

CSF320 3.92 14.97 81 397 6 275 63 677
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ABSTRACT

This paper describes a work programme designed to evolve a 
lOOkW simulator for large utility boilers, based on replicating 
the time temperature history of the large dry bottomed utility 
Boiler in a much smaller, portable unit. The rationale behind 
the work is the increased use of biomass/coal blends in Utility 
Boilers and necessity of obtaining cheaply, quickly and 
economically information on slagging and fouling propensities 
in different parts of the boiler. A further problem is that many 
materials being considered for use as co-firing fuels have site 
specific licenses for use, and hence can only be utilized on that 
site, thus requiring site tests.
The evolved solution comprises a two stage cyclone 
combustion system, which because of the cyclonic flows can 
produce similar time temperature histories with a much 
smaller unit and allow the possibility of investigating slagging 
and fouling in critical boiler areas.
The design is based on a first stage inverted cyclone 
combustor operated fuel rich to simulate the first stage of Low 
NOx burners, followed by a second stage cyclone combustor 
where secondary air is added to complete the combustion 
process. Slag and deposits are collected from a number of 
areas of the system and are analyzed in the laboratories of 
Cardiff University for a wide range of physical, morphological 
and chemical properties. These results are then compared to 
deposits and slags collected from full size Utility boilers to

calibrate the system and ensure that results obtained are 
representative of those found industrially.
The paper will discuss the development of the system and how 
it can be matched to different boiler systems

Keywords :Cyclonic Combustion, Slagging, Fouling, Utility 
Boilers

INTRODUCTION

This work arises from the perceived need to be able to 
physically model the behavior of the mixes of coal and 
biomass/wastes which are now regularly fired in many Utility 
Boilers in diverse parts of the world. When, as is common 
practice, now only small levels of substitution of coal by 
biomass are used, say up to 5% by heating value, often 10% 
by mass, few combustion and boiler problem arise. 
Commonly the biomass material is fed in with the coal 
through the normal mills, minimizing costs. At present most 
problems are encountered with biomass handling, storage, 
health and safety issues etc. Indeed in some case benefits of 
reduced NOx emissions are seen. However it is recognized 
that as the level of substitution is increased new 
combustion/boiler problems can be encountered with for 
instance slagging and fouling, altered heat transfer 
characteristics, enhanced corrosion etc.
For instance the conventional slagging/fouling indices used for 
coal firing, are well established, but have limited applicability
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for coal/biomass fuel blends The conventional solution is via 
expensive tests on boiler rigs o f typically 1MW capability. 
This paper describes a programme o f work to evolve a small 
boiler simulator of about lOOkW thermal input which has 
similar time-temperature history to that found in large Utility 
Boilers so that effects o f differing fuel blends can be 
investigated and compared. Initial work focuses on studies of 
slagging and fouling, but the paper will discuss ways in which 
the concept can be extended further. An important aspect of 
the work is to ensure the portability of the rig as many of the 
biomass fuels used are site specific, and depending on local 
legislation cannot be allowed off site for testing

RIG DESIGN AND OPERATION

The rig has been developed from many years experience with 
cyclonic combustion with solid fuels; a review of the field is 
available in references [1,2]. Both slagging and non slagging 
units have been used, developed and tested. In particular a 
novel inverted non slagging unit has been evolved and tested 
both on coal and more recently biomass [3]. This system 
demonstrated non-slagging operation providing the system 
temperature was limited by fuel rich operation. In these 
systems the cyclonic operation gives rise to exceptionally long 
residence times and thus enables a simulation of the many 
seconds residence time achieved in large utility Boilers. In 
this size range it is well known that mere replication of a scale 
model of a large pulverized fuel burner will not give 
conditions analogous to those found in large units owing to the 
relatively slow burnout times of solid fuels. However 
conditions in a cyclone combustor can be adjusted to give the 
required level o f residence time.
The design of the device is thus based very much on the 
devices described in Fick et al [3], but suitably adjusted for the 
required modeling conditions, figure 1. The system consists 
of a first stage inverted cyclonic gasifier, which is fired 
through a single tangential inlet located around the exhaust 
sleeve. No ash or particulate collection devices are used as 
previously highlighted [1-3]. The appropriately prepared 
coal/biomass fuel blend is thus fired into the device which is 
refractory lined, and operated fuel rich to simulate the first 
stage of Low NOx burners. Here the fuel is ignited, 
devolatilses, partially burns and passes out through the device 
through the centrally located exhaust and an associated 
tangential off take. This material is then passed to a second 
design of cyclone combustor, loosely based on that described 
in reference [3], and again refractory lined. The products from 
the first stage, consisting of burning devolatilisation products 
and burning char, enter the base of the second chamber where 
they are mixed with secondary air which can be preheated to 
assist in fine tuning the derived temperature profile. The total 
air supply is adjusted to give final excess air levels 
corresponding to the boiler which is being modeled The height 
of the refractory lined secondary chamber can be varied by 
altering the number of standard sections that can be used, thus 
enabling further variations in residence time to be achieved. 
The flow is removed from the top of the device via another 
tangential off take into a long duct, where sampling and ash 
deposition probes are mounted. More details o f the 
interconnection of the cyclone combustors are shown in figure 
2 together with photographs of the units before they were

insulated
In operation the device is warmed up with natural gas 
combustion in both the first and second stages to temperatures 
close to those expected in the utility boiler being modeled. As 
the pattern of combustion is different for solid and gaseous 
fuels, biomass material is next introduced to allow solid fuel 
combustion to develop, then followed in a few minutes by the 
appropriate fuel blend of coal and biomass. Typically the 
system takes about 1 to 2 hours to warm up on natural gas, 
followed by about half hour to reach stable operating regimes 
with solid fuel. Stable operating regimes are considered to 
have been reached when stable wall temperatures are 
measured. Continuous monitoring of a wide range of different 
combustion properties are carried out through out the tests 
including a wide range of system temperatures, air flow rates, 
fuel flow rates and exhaust emissions. Fuel blends are pre­
prepared, being ground to an appropriate size distribution, 
loaded into a hopper mounted on the rig. A calibrated screw 
feeder is then used to feed the material into a venturi where it 
is entrained by the combustion air into the first stage cyclonic 
unit. The venturi and air supply system to the first stage 
combustor are carefully calibrated to allow for the intake of 
extra air into the venturi with the solid fuel.
A photograph of the system is shown in figure 2 uninsulated 
and without the fuel feed system.

OPERATION OF THE RIG AND CALIBRATION

The rig has been extensively calibrated in a number of 
different ways, including CFD studies, time/temperature 
history characterization and collection of deposits from a 
number of areas to compare against real boiler deposits. A 
wide range of different coal/biomass blends have been tested, 
especially for the effect of increasing substitution of coal by 
biomass.

CFD ANALYSIS OF THE SYSTEM

CFD studies have been used extensively with Fluent software 
to characterize the system in a number o f  areas including 
particulate residence time. A grid o f 198535 hexahedral cells 
has been created for modelling purposes. Because o f the 
importance o f the near wall region, a thicker grid waj 
necessary near the wall, being o f 10 mm size and 1 mm thick 
near the rig surface. During the simulation three different 
operating conditions have been analysed in line with the 
variation in the experimental rig operation. These conditions 
related to ratio between the primary and secondary air flow 
rates, while the overall fuel/air ratio remains the same. Tables 
1 and 2 below show the air flow distribution between the two 
stages and the operating conditions respectively. The coal 
used for this preliminary simulation is Colombian with a 
heating value o f 32.58 MJ/kg and a volatile content o f 38.8% 
(ultimate analysis C-81.1%, H -5.27%, 0-11.28%, N+S- 
2.26% dry ash free analysis).
The PDF model of combustion was used together with the 
RSM turbulent stress model due to the cyclonic nature o f the 
flow. The Rosin-Rammler equation is used to describe the sizs 
distribution o f the coal particles, 0.2%> 150pm, 2.6%> 75
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pm, mean diameter ~ 45pm. Convergence is variable but can 
take up to 10,000 iterations or more for each case, with careful 
adjustment o f the under relaxation parameters being needed 
throughout.

Table 1 A ir ratios for the P rim ary  and  Secondary Flows

Case P rim ary Secondary

A 50% 50%

B 100% 0%

C 34% 66%

Table 2 O pera ting  C onditions

O perating  conditions Cases A, B & C

Coal feeding (kg/s) 0.00416667

Air mass rate (kg/s) 0.075425

Air inlet temperature (K) 300

Turbulence intensity at inlets 10%

Some typical temperatures predicted for case A with 50: 50 air 
split between the primary and secondary chambers are shown 
in figures 3 ,4 , 5 and 6. The temperature is reasonably uniform 
inside the chambers, ranging between 1000 K and 1410 K. 
The peak temperature, as expected, is present at the bottom of 
the secondary chamber, due to the presence o f  oxygen to 
complete the combustion o f the products formed by the 
simulation o f the fuel rich primary stage o f the power station 
burner. Temperature fields are highlighted in figures 4 and 5 at 
the primary and secondaiy fuel inlets respectively. As 
expected the high temperature peaks are due to the rapid 
reactions taking place, which are clearly shown. This has clear 
implications for deposition rates and slag formation emanating 
from the lower region o f the secondary combustor and how 
samples o f fouling material and slag should be considered. 
Wall temperatures, figure 6, in the upper section o f the 
secondary chamber are well within the range o f  those expected 
in the upper part o f large Utility Boilers

The temperatures calculated by the simulation study for all the 
cases analysed are highlighted in table 3 below. By varying 
the air distribution it can be seen that mean temperature can be 
varied by 500K. The mean temperature in the primary 
chamber varies by 200K and is indicative o f the pyrolysis

reactions taking place as a function of the available oxygen. 
Case B produces the higher primary and secondary exhaust 
temperatures, this is due to the higher initial equivalence ratio 
used, and the fact that the total reaction path is longer. In the 
transfer ducting connecting the two chambers the temperature 
increases for the case A, i.e. reactions are still taking place. 
For case B it begins to reduces slightly from the primary 
exhaust temperature due to enhanced heat losses, but this is 
small. For case C the transfer ducting temperature remains 
reasonably constant. The mean temperatures in the secondary 
chamber are used as an initial guide for slagging analysis and 
reflect primary chamber conditions. These values o f course 
hide significant temperature gradients, depending on the 
primary and secondary equivalence ratios. Although not 
shown as diagrams for the various cases under consideration, 
some observations can be made or the species present in the 
combustion process, these are:

Table 3 Typical M ean Static T em perature For three cases

M ean tem perature  (K)

Case P rim ary

cham ber

Prim ary

Exhaust

T ransfer

Ducting

Second
cham ber

A 1200 1200 1300 1200

B 1100 1600 1500 1300

C 1300 1200 1300 1500

■ CO: maximum value is the same in the three cases 
analyzed. In cases A and B the maximum value is located 
in the primary chamber, however for case C the mass 
fraction o f  CO is spread between the two chambers.

■ CO2: this was produced early in all reaction zones. In 
cases A and B it is possible to notice the presence o f C 0 2 
in the primary chamber and in the bottom o f the second 
chamber where secondary air is injected to complete the 
combustion process. For case C the C 0 2 in the secondary 
chamber is lower than that in the previous cases because 
the reaction is biased towards the primary chamber as aH 
the air is injected here .

■ 0 2: oxygen is rapidly used in the combustion process and 
the peak is located near die air inlets, in all cases 
depending on the air distribution.

The overall particle residence times, primary inlet to 
secondary chamber outlet, for the three cases are shown in 
Table 4; these have been evaluated from Fluent’s particle 
tracking routine and enable calculations o f differing residence 
for different sizes o f  coal particle to be made.

T able 4. Particle Residence Times

Average residence time (sec)

D iam eter 10 p 45 p 150 p

Case A 3.47 6.71 12.6

Case B 2.72 7.84 14.5

Case C 1.97 2.59 16
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Calculations are based on 200 particles tracked, 10 ji is the 
minimum particle diameter, 150 p  the maximum and 45 p  the 
Rosin-Rammler mean diameter. As to be expected there is a 
significant variation in the residence time with diameter 
especially for all three cases. The range o f residence times are 
within those expected and indeed necessary for obtaining the 
necessary time temperature history to model large Utility 
boiler systems.

CALIBRATION OF THE RIG

Having obtained a system for modeling the residence time of 
the Cardiff two stage simulator, numerous runs have been 
undertaken to characterize the temperature distribution as a 
function of load, operational methodology, air distribution, 
coal type, with and without substitute fuel. A typical curve 
obtained is shown in figure 7 for the case of 90% coal plus 
10% sewage sludge. Temperatures used in the comparison are 
near wall temperatures, and correspond to the equivalent wall 
temperatures in a 500 kW  test furnace. For this preliminary 
assessment the following conclusions can be derived;
•  There are only small differences in the residence 

time/temperatures distribution for the 100% coal and 90% 
coal plus 10% sewage sludge cases.

•  Both curves are close to an original test furnace profile 
albeit over a  narrower range o f residence time.

The residence time range of the Cardiff Simulator can 
obviously be readily extended by a number of measures, 
including load variation and provision o f a further secondary 
or tertiary cyclonic chamber.
An important part of the work associated with the Cardiff 
Simulator is the collection and analysis of deposits and 
comparison with those found in real boilers. Table 5 shows the 
characteristics o f 9 samples o f collected materials/deposits 
from the system, all deposits are located in different sections 
are correspond to deposits which would occur in different 
parts of a Utility Boiler.
O f especial interest is the samples collected in the secondary 
chamber as they are corresponding to residence times found 
near the superheater areas of Utility Boilers, these are samples 
2 and 9
A number of interesting results emerge, Table 6. Clearly ash 
material which sinters and fuses at low temperatures is being 
deposited in the primary chamber, Samples 5, 6, 7, where very 
few deposits are normally found, clearly an effect o f the 
sewage sludge. The deposits in the bottom of the secondary 
chamber and in the transfer duct between the two chambers 
have similar ash fusion temperatures for sintering and fusion 
as well as similar low bulk density, Samples 1 to 3. Possibly 
these particles have been light enough to have avoided being 
impacted on a wall in a sufficiently sticky state earlier in the 
unit to be retained. Samples 8 and 9 are interesting and have 
been obtained from the wall o f the secondary Chamber. Ash 
sintering and fusion temperatures are high of order 
145Q/1500°C and this also corresponds to high level of bulk 
density, and obviously temperature in the Simulator. This is to

be expected in the secondary part o f the unit as secondary air 
is added to complete combustion.
Morphological examination of the samples reveals many 
interesting points as follows by considerations of microscopy 
o f the gathered samples. The most interesting photographs are 
obtained from Sample 9, figure 8. Here the ash fusion 
temperature could not be determined as the sample stayed in 
the sintered state until 1500°C. The layer is fairly thin and 
some o f the refractory lining has been removed at the same 
time. However, gas bubbles in the layer are much smaller 
than in other samples, but most interestingly there is a surface 
deposit o f fine globules of condensed ash, very reminiscent of 
that on sampling probes in large Utility Boilers. X-Ray 
diffraction analysis of the samples showed some differences 
between Samples 1, 5 and 9.

Table 5 - Samples Coal + 5% Sewage Sludge Test

Sample Description
Solid sub layer -  glassy, denser, molten ash- 
bottom o f secondary chamber 
Porous top layer -  solidified ash, fragile-bottom of 
secondary chamber
‘Near burner’ -  transfer duct to secondary
chamber, semi-molten, more porous than coal
only slag o f similar region
Side wall o f secondary chamber -  porous outer
layer, fused (impinged) ash
Outlet ducting of primary chamber -  thicker layer
(~5mm) than coal only slag (~lm m ) of similar
region
Exit o f primary chamber -  black (carbonated), 
porous, low density, never encountered with coal 
only combustion
Bottom floor of primary chamber -  ash, dusty, 
porous
Wall o f secondary chamber, first segment, 
opposite entrance of transfer duct -  hottest part, 
coating of molten ash
Wall o f secondary chamber, second segment, in 
general -  impingement of molten ash, distinct 
flow patterns can be seen______________________

Table 6 Summary ash fusion and bulk density information

Sample
1100
°C

1150
°C

1200
°C

1450
°C

1500
°C

0-
g/cc

1 P S F 1.17
2 S S F 1.1
3 S S F 1.11
4 P S F 1.71
5 S F 2.25
6 S F 1.61
7 S F 2.24
8 P P S F 2.16
9 P P P S S 2.17

Key: Bulk Density 0-g/cc:

Symbols used: P = Powder: S = Sintered: F  = Fused
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Samples 1 and 5 are generally similar with only small 
differences, but Sample 9 showed much larger peaks for 
calcium and silica (the largest peak being iron for all samples), 
reflecting the much higher ash fusion temperature. The 
analysis of Sample 9 shows some peaks due to heavy metals, 
clearly arising from the sewage sludge.

CONCLUSIONS AND FUTURE DEVELOPMENT

Preliminary studies indicate that the Cardiff Simulator is 
producing time temperature histories that can be adjusted to 
match those occurring in the initial sections of large Utility 
Boilers, certainly up to and beyond the superheater tubes. The 
secondary chamber can easily be extended in height to 
increase the residence time. In the initial primary stage/first 
part of the secondary chamber the material collected is very 
similar to that produced in the furnace bottom of large boilers. 
Morphological analysis o f the deposits from the top section of 
the system shows close similarity to deposits produced on 
superheater tubes. More recently we have been applying a 
standard design of slag probe in the secondary chamber 
exhaust to compare results with those obtained on large 
boilers. Clearly more validation work is needed against data 
from large systems.
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Figure 1 Schematic of the two stage Cyclonic Combustion Simulator Rig
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(a)

(b)

Figure 2 Details of the Interconnections of the two Cyclone Combustors (a) and 
Photograph of the rig without insulation (b)
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Figure 8 Fives time enlargement of slag section from sample 9
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