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SU M M A R Y

Machining is one o f the most important operations in many industrial environments. 

To prosper in today’s competitive industrial world any machining system should be 

able to deliver the highest possible quality at the lowest possible costs, with very high 

reliability and flexibility. To fulfil these requirements the idea o f e-Monitoring an 

industrial process was introduced by the Intelligent Process Monitoring and 

Management (IPMM) Centre at Cardiff University. It has considerable potential 

applications in industrial systems to not only monitor the health o f the machines but 

also for data management and presentation for future decision making.

The research presented in this thesis considers the evolution o f two different low 

complexity signal analysis techniques which can be used for e-Monitoring the health 

of the cutters used in milling machine tools. The researched techniques are based in 

the time and frequency domains. The frequency domain analysis technique is based 

on the idea o f using switched capacitor filters and microcontrollers to monitor the 

frequencies o f interest in existing machine tool signals (spindle load and speed) thus 

avoiding the need for external sensors. The results o f frequency domain analysis are 

used to assess the health o f the cutter. The time domain analysis technique uses the 

same signals to analyse any variations within a tool rotation period and relate these to 

the health o f the cutter. The results are integrated before final decision making which 

helps in reducing false alarms.

The thesis goes on to logically describe the design and development o f an on-line 

microcontroller based distributed intelligent e-Monitoring system for a milling 

machine tool model Kondia B500, using the proposed signal analysis techniques. 

Some additional features such as internet and GSM connectivity have also been added 

to the designed system. The designed system was interfaced to the machine tool and 

tested for its reliability which was found to be competitive with many other very 

expensive systems. The designed system can be fitted into a machine tool at the 

manufacturing stage or it could be interfaced to an existing machine tool for 

automatically detecting a tooth breakage.
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CHAPTER 1

INTRO DUCTIO N

The advancements in technology in the current era have been at an enormous pace. It is 

now possible for researchers to explore techniques and methods for the design and 

development of global systems with capabilities of relevance to a wide range of 

applications. In today’s system integration era, the importance of systems engineering 

research applications is increasing constantly. In general, systems engineering can be 

defined as “the application of engineering in finding solutions to a complete problem in 

its full environment by the systematic use of different engineering tools in the context of 

the lifetime use o f the system”. Alternatively, it may also be defined as “a management 

technology where the technology is the result of, and represents a totality of the technique 

and its application with regards to use of scientific knowledge for the enhancement of 

systems” [1.1]. This concept emphasises the need for using as many engineering 

approaches and tools as required in order to achieve the best possible solution to an 

existing problem.

The manufacturing industry plays a key role in any country’s economic growth and 

continued well being. A major portion of the Gross Domestic Product (GDP) of any 

country is linked directly or indirectly to this industry. Manufacturing plays a key role in 

keeping the job market healthy and has a strong positive or negative implication on many 

other related industries. The impacts of strength variations within the manufacturing 

industry in the context of the overall economy of any country are enormous.

The manufacturing industry’s technological growth rate has been very high. Consequent 

to the demands arising associated with increasing overall productivity the manufacturing 

industries are now paying more attention to the monitoring of industrial processes. The 

recent technology advancements have also been a major driving force behind increased 

process automation in every field in general and within the manufacturing sector in 

particular. Global competition is responsible in compelling most manufacturers to 

improve plant machinery and processes to stay competitive. These trends are shaping new
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dynamics in the global automation market. Here “automation” can be defined as “the 

process of making machines self-acting or self-moving and the technique of making a 

device, machine, process or procedure more fully automatic thus reducing the need for 

human intervention” [1.2]. As part of this manufacturing companies have a need to track 

and improve their process and plant productivity and performance through real-time 

monitoring and management systems. These industries have to adopt this approach in 

order to increase their productivity and quality to remain competitive in the market.

Embedded systems are a key player in making automation more efficient, reliable and 

cost effective. An embedded system may be defined as “a special-purpose computer 

system, which is completely encapsulated by the device it controls. It has specific 

requirements and performs pre-defined tasks, unlike a general-purpose personal 

computer” [1.3]. These characteristics are not the only factors which are making 

embedded systems more and more popular. There are other positive aspects behind the 

growth of their application rate. For example in most of today's applications, the space 

for controlling or monitoring hardware is a major issue. The embedded systems require 

much less space as compared to a PC if these can effectively be used to perform the same 

task.

The need for monitoring systems which can be used for different processes and attached 

resources is being increasingly recognised. Monitoring systems for manufacturing 

processes and machines are becoming almost a requirement. These can be either 

integrated monitoring systems or distributed monitoring systems or a combination of 

both. The combination of integrated and distributed monitoring systems using the 

available communication infrastructure makes it possible to reach effective, more reliable 

and accurate decisions in less time. These systems open up the current states of the 

process to concerned engineers, managers and technicians. This is the area where 

embedded systems if used to their best potential can deliver excellent results. Although 

the use o f embedded systems in control applications has been established for some time 

their use for monitoring systems has been very restricted, despite their advantages.

Metal cutting forms a major part of the manufacturing industry. There are many types of 

machines used for metal cutting. One of the most important types o f machines is a
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milling machine. Milling is normally defined as the process of machining flat, curved, or 

irregular surfaces by feeding the workpiece against a rotating cutter containing a number 

of cutting edges. The health of a milling tool in use by any milling machine directly 

affects the quality and finish of the part and the productivity and power consumption of 

the machine. The condition of the tool is thus very important for producing high quality 

products. There has been a large body of research around the world for developing an 

effective tool condition monitoring system. Despite this effort no truly practical solution 

has been developed; the search goes on. The demand for such systems is very high. It is 

supported by the fact that manufacture and use of machine tools has been subject to 

changing patterns over a number of years. In particular the survival o f UK machine tool 

manufactures has been under great threat [1.4]. This is due to the fact that they have been 

subjected to strong competition from machine tools designed with many added features 

from overseas. Therefore research into these additional capabilities such as the 

monitoring o f the cutting tools and their implementation are important.

1.1 Aim s and O bjectives

• The research presented in this thesis is aimed at developing tool condition 

monitoring techniques using both time and frequency domain analysis.

• These methods are combined in an integrated monitoring technique.

• It also investigates the deployment of embedded systems within machine tools 

for implementing these techniques.

• It goes on to explore the use of embedded systems for improved data analysis and 

for the effective transfer o f data using the Ethernet, and mobile messaging 

services to relay the information to the concerned users. Embedded systems have 

been used in this work to their best potential in order to achieve all of these 

features in the designed and implemented monitoring system. The resulting tools 

are shown to provide a low cost yet effective e-Monitoring solution with excellent 

capabilities for tool condition monitoring.
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1.2 Thesis Structure

The thesis is organised into the following chapters.

Chapter 2 discusses the major motivations behind this research. The needs and demands 

of the modem manufacturing industry are identified, their economic trends are explored 

and a holistic view about the requirements and roles of e-Monitoring systems for such 

applications is presented. This narrows down to the requirements for Tool Condition 

Monitoring Systems (TCMS) for milling machines to provide a focus on the main 

objectives o f the research.

Chapter 3 presents a review of techniques, methods and systems researched in the past. 

The different aspects and techniques related to TCMS in terms of data acquisition, data 

analysis, decision making and its presentation/communication to end user are explored. It 

goes on to explore the merits and demerits of different systems with a view to providing 

comparative analysis for their best possible application.

Embedded system technology in terms of the requirements of the researched system's 

design, cost, effectiveness and availability is reviewed in Chapter 4. It further explores 

the technologies used in general and their specific attributes in particular. The PIC 18F458 

microcontroller is explained in detail along with Tiny Internet Interface (TINI) system for 

Ethernet connectivity and uWeb Lite embedded system for providing real time GSM 

connectivity using mobile phones. It also includes a brief audit of the machine (Machine 

Tool Kondia B500) used for system implementation and testing.

The low complexity frequency domain signal analysis techniques known as “Sweeping 

Filter Frequency Analysis” and “Parallel Filtering for Signal Analysis” are discussed in 

Chapter 5. The supporting hardware and software are discussed in complete detail. The 

real time results of these techniques are presented. It is worth noting that for both 

techniques spindle load and spindle speed signals have been used as the source of 

information thus eliminating the need for using any additional sensors.
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Chapter 6 explains a reliable time domain signal analysis technique called “Tooth/Tool 

Rotation Energy Estimation (TREE)” and its role within the designed machine tool 

condition monitoring system. It includes the description of the designed hardware as well 

as the software used in the implementation of the technique. Real time results of different 

tests are presented and analysed. The effectiveness of the supporting hardware 

technology in terms o f system requirements is analysed and discussed. It also explores 

the features of the supporting technology used in terms of the designed system 

requirements.

Chapter 7 presents a complete structure of the integrated system implementation as an 

effective and complete e-Monitoring solution in the context of a true embedded solution 

for machine tool condition monitoring. It also presents the design and implementation of 

additional features in the system including; Ethernet connectivity and the system’s 

capability o f supporting a GSM mode M2M (Machine to Machine, Machine to Man) 

connectivity. The benefits achieved as a result of these extra features are explored and 

discussed.

Chapter 8 presents the overall communication architecture of the system. The data and 

result communication between tiers one and two of the system are discussed. It also 

describes the internet and GSM connectivity of the proposed system.

Chapter 9 presents a critical assessment of the research work. It contains the description 

of the overall characteristics of the subsystems in terms of today’s TCMS requirements. It 

also describes hypothesis, demonstrates precision, thoroughness, contribution, and 

comparisons. The designed system’s architecture in terms of its effectiveness is analysed. 

The comparative analysis o f previously designed systems and techniques with respect to 

this particular research area is presented and the needs for future work are identified and 

discussed.

Chapter 10 presents the important conclusions drawn from this research. These 

conclusions are drawn based on the results obtained from the complete implementation of



both time and frequency domain analysis techniques on designed system hardware with 

supporting software.

In the course of this research a thorough review has been carried out outlining effective 

techniques of data analysis, design and implementation of supporting system for a cost 

effective, efficient and reliable TCMS. However it is accepted that the complexity of the 

problem does not allow solving all the relevant issues. Therefore this research is 

presented as a contribution to the overall area of machine tool condition monitoring 

systems. The keywords “author” and “researcher” have been used to refer to the writer of 

this thesis.

REFERENCE
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1.3 [WWW]. http://en.wikipedia.org/wiki/Embedded system Accessed on 27

September 2005.

1.4 R. I. Grosvenor, In-process measurement of machine component dimensions, PhD 

thesis, pp-1, Cardiff University, 1994.
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CH APTER 2

RESEARCH  M OTIVATION

The search for improvements in Electronics and IT system design has been constant and 

the results have been enormous. The resulting developments have been a source of 

motivation for researchers in many different fields, including manufacturing. In this area 

work has included the use of Intelligent Process Monitoring and Management Systems 

for improving product quality and achieving process reliability. The reliability and 

productivity of industrial systems and machines is directly linked to their failure rate, 

failure detection time and their associated repair times. All of these factors contribute to 

the downtime o f the machines.

The contribution made by improvements in reducing machine downtime may be 

illustrated using an approach known as Overall Equipment Effectiveness (OEE). The 

OEE of any system/machine is dependent upon three factors:-

OEE = System Availability Rate x Performance Rate x Quality Rate

The system availability rate measures any machine system’s availability as a whole 

within the context o f a manufacturing industry. It includes setup losses and downtimes 

due to failures. The performance rate accounts for overall performance of the 

system/machine in terms o f its efficiency. The quality rate as obvious from the name is 

related to quality related losses. The OEE of many computer integrated manufacturing 

systems has been lower than expected [2.1].

The improvement of OEE for a manufacturing system is dependent upon improvements 

in all of its constituent components. If a catastrophic failure occurs and goes unnoticed 

due to the absence o f an effective monitoring system, it will not only affect the quality of 

the product but will require additional set up costs once it has been detected. Since both



of these factors are components of the overall OEE of the system the importance of an 

effective TCMS can not be over emphasised.

One of the major motivations behind this research was to design a low cost yet effective 

tool condition monitoring system. The above presented facts make a strong case for 

monitoring the tool condition dynamically during a cutting process. Although there has 

been a great deal of research aimed at the development of an effective tool condition 

monitoring system no definitive solution has been designed and implemented. There have 

been various techniques and technologies developed, implemented and tested but mostly 

for academic research purposes. Different factors responsible for this situation can be 

identified as follows.

One o f the major factors behind industrial organisations’ reluctance in adopting machine 

Tool Condition Monitoring Systems (TCMS) is their overall cost as compared to their 

performance. In this context there are two different techniques used for data acquisition 

for TCMS: direct sensing and indirect sensing. In indirect sensing, the existing sources of 

information from a machine tool are used whereas in direct sensing additional sensors 

need to be deployed to acquire the required information. Although there has been 

research on indirect sensing using existing signals from the machine tool to supply 

information to TCMS the results have up to this time not been as effective as the systems 

designed by using additional sensors. However the overall cost of direct sensing is 

significantly higher and the use and placement of the sensors restricts the freedom of 

operation o f machines thus reducing its overall effectiveness. For example the use of a 

dynamometer (a popular technique for data acquisition and analysis in designing TCMS) 

requires the purchase o f the dynamometer (normally costing around £10,000) and its 

supporting equipment, Data Acquisition Card (costing around £600-900) and a PC 

(costing around £500-£600) in addition to expensive software. To further illustrate the 

cost and performance issues o f TCMS design, consider the findings of Al-Habaibeh and 

Gindy [2.2] who analysed the subject by using 15 sensory signals and considering the 

effectiveness of 23 different signal processing and feature extraction systems. These 

researchers suggested that the cheapest system costs around £3900 with an accuracy of 

around 80%, where as a system of accuracy around 91% costs around £19,000. This 

factor has limited the take up of TCMS in industry. Therefore the improvement of the 

cost effectiveness of such monitoring systems remained another motivation behind this
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research effort. The data analysis and management costs are in addition to the system cost 

in conventional condition monitoring systems. Therefore for a cost effective system the 

design and management costs need to be as low as possible. To meet these demands and 

overcome these limitations the work reported here using embedded direct sensing was 

undertaken. It was taken as a challenge to research data analysis techniques which can be 

implemented on resource limited 8-bit microcontrollers and still have the capabilities to 

detect tool breakage in real time. The data analysis techniques should not be 

mathematically very complex as some of the microcontroller resources need to be used 

for real time data communication using the CAN bus. The approach of real time data 

analysis was adopted to avoid unnecessary storage of data. All these factors were taken 

into consideration to meet the demands in designing a low cost yet effective TCMS.

The reliability and performance of existing TCMS is another major issue which affects 

their use. Reliability is assessed in terms of a system’s capabilities to detect faults 

effectively as well as generating the minimum possible false alarms. The generation of 

false alarms reduces the system’s availability rate whereas undetected faults affect 

performance and quality rate. Therefore a monitoring system with a very high reliability 

rate plays an important role in improving the OEE of manufacturing systems. The 

improvement of the reliability of tool monitoring system was taken as another challenge 

and the technique of integrating results from time domain to frequency domain and vice 

versa was used.

Flexibility of the designed TCMS is another important requirement. This normally refers 

to the ability of any system to be used for a different application which has changed 

parameters. The absence of this basic attribute in most of the designed systems is one of 

the major reasons behind industrial managers’ reluctance towards accepting TCMS for 

implementation. To meet these needs any designed system using existing machine signals 

should have the capacity to deal with different signals in different scenarios thus 

providing more flexibility. This research focussed on designing a system which does not 

need any changes in the overall hardware infrastructure o f the system to achieve the 

desired flexibility.
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The efficient and timely communication of data to concerned individuals is a primary 

requirement of an effective and reliable TCMS. Real time decision making capability is 

an important characteristic o f such systems. The data processing, communication and 

data presentation in an accurate and desired format was taken as another challenge in the 

course of this research. The designed monitoring system is capable o f either analysing the 

data or transferring it to a more powerful system for further analysis if required. It can 

take immediate decisions and act accordingly to initiate the generation o f an alarm and 

transfer the information about this event to concerned persons e.g. 

engineer/manger/technician in all the required details and formats.

Taking all these challenges as a combined source of motivation for this research it was 

identified that a low cost yet reliable, flexible, reusable and effective TCMS was required 

to increase the OEE o f machines in manufacturing industries. This research proposes that 

the latest technological trends and breakthroughs can be used to implement new 

techniques in the design and implementation of such a TCMS. The following paragraphs 

describe this research’s aims and outlines procedures to effectively tackle all o f the 

challenges in the design and implementation of such a system.

The advantages o f using existing machine tool signals to remove the requirement of using 

additional sensors for information retrieval have been identified above. In this research 

spindle speed and spindle load signals have been used as sources of information for 

analysis and decision making. The system uses two different data analysis techniques; 

one each for time and frequency domain analysis of the acquired signals before decision 

making. The results o f each technique are integrated before reaching a final decision 

which increases the reliability of the system. These techniques are efficient enough to be 

used for designing a reliable TCMS yet simple enough to be implemented on 8-bit 

microcontrollers.

The integration of monitoring systems within the actual machining systems is an ideal 

scenario. The monitoring system needs to be fitted into the actual system it is monitoring 

and still be able to communicate with the rest o f the world. The designed system uses a 

Tiny Internet Interface (TINI) not only to act as a second tier in the overall system 

architecture but also to transfer data over the internet as and when required. The normal
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role of a second tier in the system is to provide some additional analysis and storage 

support to the first tier in case it is required when abnormalities are observed.

In the context o f larger manufacturing set ups the communication of brief summaries 

about the productivity, OEE and current status of different sections/machines may be 

important to different individuals involved in decision making. The research presented 

suggests the addition of GSM capabilities to our monitoring systems. In this way M2M 

connectivity can be achieved and rapid actions made possible.

The reusability of such systems can be achieved by using microcontroller based 

technology at the heart of such designs. Attempts have been made by the researcher to 

keep the software programming efficient enough so that changing machine parameters 

e.g. spindle speed and number of teeth in the cutter are automatically detected and any 

dependent variable is adjusted accordingly by the system itself.
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LITERATURE SURVEY

3.1 Introduction

This chapter provides a comprehensive review of the machine tool condition monitoring 

systems and methodologies developed for CNC milling machines. Milling is one of the 

most important machining processes. To achieve unmanned machining, the demand for a 

reliable and cost effective Tool Condition Monitoring System (TCMS) has grown. This 

has led to extensive research into this area. A TCMS is essentially an information flow 

and processing system in which the information source selection and acquisition, 

information processing and refinement, and decision-making based on the refined 

information are integrated [3.1]. Any comprehensive machine tool condition monitoring 

system can generally be sub-divided into three major sub-systems (methods) namely:-

a. Data retrieval and acquisition from the machine.

b. Data refinement and processing (feature extraction).

c. Final decision making.

Each of these sub-systems is discussed in necessary detail in the following paragraphs.

TCMS techniques are generally sub-divided into two main categories namely: direct 

monitoring techniques and indirect monitoring techniques [3.2]. Figure-3.1 represents the 

major data retrieval options when designing such a monitoring application [3.3]. The 

direct monitoring techniques deal with the actual direct sensing of the health of the tool. 

Examples of these are the use of optical sensors, proximity sensors and touch trigger 

probes. The major practical problem with direct sensing is that since the cutting area is 

normally inaccessible, the on-line TCMS development is very complicated. The indirect 

monitoring techniques rely on the data retrieved by other sources which may involve the 

deployment o f additional sensors or the use of machine signals for information retrieval 

before final decision making by correlating the information obtained to the tool health.



Examples include the use of a dynamometer for force signals, Acoustic Emission (AE) 

sensors and using the machine’s current or power signals.

The major requirement for the reliability of such designs is to ensure the calibration of the 

measured signals with the actual process parameters before making final decisions. The 

cutting conditions including spindle speed, feed rate and depth of cut affect the acquired 

signals and therefore there exists a strong requirement for calibration before setting alarm 

levels.

Figure-3.2 represents a selection of the possible data refinement and processing options 

drawn from review o f different research papers whereas Figure-3.3 illustrates some of the 

basic routes to final decision making about the health of the tool. The dashed rectangles 

in each of these figures represents the route adopted for this research.

Figure-3.4 gives an understanding o f different conditions and parameters which affect 

cutting tool life. Despite the requirement for more precise practical calibration, the 

majority of the research methods use indirect sensing techniques [3.4,3.5] because of 

their stated advantages over direct sensing.
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The practical ability and success rate of any TCMS relies on two basic elements: first, the 

number and type of sensors used and second, the associated signal processing and 

simplification methods utilised to extract the necessary important information from 

machining signals [3.2]. The first element involves expensive hardware which influences 

the cost of the system, whereas the second element affects the efficiency and the speed of 

the system. It is worth noting that there exists a balance between the above mentioned 

two elements; as the number of sensors used for better information retrieval and higher 

reliability increases so does the overall cost of the system. It is therefore imperative for 

researchers to take all these parameters into consideration. It is also necessary for any 

TCMS to be reliable and safe, highly automated and fast in response generation. The 

overall objective is to design a TCMS with high efficiency, short development time and 

with a reduced number o f sensors. This basically includes the selection of sensors and 

associated signal processing methods which provide the minimum classification error of 

process faults. The aim o f the research being reported here has been to develop a TCMS 

which is based on existing machine signals thus producing a low cost yet effective 

monitoring solution.

The following review o f research is divided into three main sections. The approaches 

taken to Sensor Selection and the associated Data Acquisition processes are discussed in 

Section 3.2. Signal Processing and Feature Extraction techniques are then considered in 

Section 3.3. The use of these elements as inputs in the assessment o f Process Condition 

and hence in Decision Making is considered in Section 3.4. This approach is taken to 

allow the consideration o f the development of an optimum milling process monitoring 

system, which exhibits the most effective attributes of the systems being reviewed.

3.2 Sensor O ptions and Data Acquisition.

As mentioned in the previous section, TCMS can be designed by using additional sensors 

or can rely upon existing machine tool signals or use a combination of both. This section 

deals with the reported literature related to the first part of a TCMS design namely; sensor 

and non-sensor based data acquisition systems. Any data acquisition system for a 

machine tool condition monitoring system needs to collect data from different applicable
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sources at the correct time and under the correct conditions [3.6]. Different additional 

sensors which have been used in the past for designing such a system and the levels of 

research associated with them are shown in Figure-3.5 [3.7].
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Figure-3.5, Sensors and their applications in TCMS applications [adapted from 3.7]

The review of research presented here starts by examining approaches where sensors are 

used to acquire process related information.

3.2.1 C u ttin g  F orce Signals

Cutting force has received a great level of attention from researchers. Both the static and 

dynamic components of cutting force contain information about the state of chip 

formation and the cutting tool [3.8]. Dynamometers are the most commonly used force 

sensors for the machine tool condition monitoring. A dynamometer typically consists of 

four three-component force sensors fitted between a base plate and a top plate. Each 

sensor contains three pairs of quartz plates, one sensitive to pressure in the Z direction 

and the other two responding to shear in the X and Y direction respectively. The following 

researchers have based their work on dynamometer measurements. The main aim of these 

methods is the identification and/or detection of tool wear.

Kuljanic and Sortino [3.9] have proposed a Tool Wear Estimation Method (TWEM) for 

face milling based on the analysis of force signal variations. They used a Kistler 9123C 

rotating type dynamometer to acquire the force signal. The dynamometer signals were
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stored in a PC using a data acquisition board. The effects of three different cutting 

parameters namely; cutting speed, feed per tooth and depth of cut were analysed. The 

feature extraction approach used by them is explained in Section 3.3.2 (in line with 

overall review structure).

Tansel et al [3.10] have proposed a Genetic Tool Monitor (GTM) to identify problems in 

milling operations by using an analytical model for micro-end-milling operations and an 

associated Genetic Algorithm (GA). The researchers used the components of cutting 

force in the horizontal plane to support process related decision making.

Astakhov [3.11] discussed the current methods and criteria used in flank wear 

measurement for cutting tools. It was argued that the existing criteria for the flank wear 

measurements were insufficient for its proper characterization. The researcher has shown 

a correlation between the work required by the cutting system and the flank wear which is 

independent of the particular cutting regime, cutting time and other parameters of the 

cutting process. The experimental data obtained using a dynamometer showed that the 

influence o f cutting speed on the contact characteristics between the flank-workpiece can 

not be generalised as it differs considerably from material to material. Astakhov suggests 

that minimum tool wear occurs at optimum cutting speed and the apparent friction 

coefficient reaches its lowest value at this speed. This supports the selection o f the most 

appropriate cutting speed for different materials for minimum wear.

Zhu et al [3.12] reported a model based monitoring and fault diagnosis methodology for 

free form surface machining. They have proposed a threshold based fault detection 

method using the cutting force signal. They have used the National Instruments™ 

Labview software system for further processing details of which are reported in Section

3.3.1 of this chapter.

Sarhan et al [3.13] reported the interrelationship between cutting force variations and 

cutting tool wear in end milling operations in terms of magnitudes of the frequency 

harmonics o f the cutting force signals. The researchers have designed and manufactured a 

high sensitivity strain gauge dynamometer to be used in measuring the cutting force 

signal. The dynamometer was calibrated in both static and dynamic ranges. The acquired
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data was amplified and converted to digital format using an A/D card and passed to a PC 

for further processing and decision making.

Two different encoding methods to estimate tool wear from the cutting force signal data 

were reported by Tansel et al [3.14, 3.15] using a back-propagation neural network. The 

methods used were force variation based encoding and the segmental average based 

encoding. Force signals were digitised and stored simultaneously, using digital 

oscilloscopes and a PC for further processing and decision making about the health of the 

tool. They have reported that there is a relationship between cutting force and tool usage 

and claim it is possible to estimate tool wear from the characteristics of cutting force. 

They have produced a large body of research in this area [3.16-3.20] aimed at developing 

more accurate and robust systems.

Alauddin et al [3.21] have reported the effects of variations in cutting speed, feed rate and 

axial depth of cut on the cutting forces in end milling operations. They used a table type 

three-component piezoelectric transducer for force signal acquisition. The acquisition of 

average cutting force data was performed using an A/D card and a PC. These researchers 

advocated the idea that cutting forces decrease as the cutting speed increases. They also 

reported that cutting forces increase for an increase in feed rate as well as in the axial 

depth of cut.

Charbonnaud et al [3.22] have reported the design and validation of a monitored robust 

force control strategy for achieving an improvement in the quality of face milling 

operations. They suggested that for an industrial implementation mean force could be 

used to regulate the cutting process for higher quality manufacturing. Moreover, 

maximum force level should be taken into account in the monitoring application for 

controller switching. The milling action was modelled and a force controller implemented 

using a Kistler dynamometer.

Lin and Yang [3.23] have reported a force signal based model for wear monitoring in 

face milling operations. They suggested that a relationship between the flank wear and 

average cutting force coefficients can be used to estimate tool wear. The relationship has 

been drawn from the data obtained from a series of experiments which show that normal



19

force coefficients increase linearly as tool wear increases, while increases in the frictional 

coefficient are approximately proportional to the square of the average flank wear.

Using similar approaches there has been further research into machine tool condition 

monitoring using force signals as the primary information medium [3.24-3.32]. 

Consequently, it is accepted as proven that cutting force signals measured using 

dynamometers can be used to monitor the health of the milling process. However there 

exist many issues which oppose their application for an industrial TCMS design. Most of 

the dynamometers are generally more suited to a laboratory environment rather than 

practical applications on production machines due to the limitation of workpiece size, 

mounting constraints, and their high sensitivity to overload [3.33]. Moreover the cost of a 

dynamometer is much higher than any other sensor normally used for such an 

application. In addition, cutting force sensors must have a bandwidth which can cover 

force frequency ranges of interest in common multi-tooth machining operations. All of 

these factors in combination provide support for adopting a research approach based upon 

using indirect force measurement. There now follows a review of some examples of this 

method and the benefits it can provide.

Albrecht et al [3.33] presented an indirect method of measuring cutting forces from the 

displacements of rotating spindle shafts. A capacitance displacement sensor was 

integrated into the spindle that measured static and dynamic variations of the gap between 

the sensor head and the rotating spindle shaft under any applied cutting load. The radial 

displacement of the rotating spindle shaft was used to measure the cutting forces 

indirectly via this setup. To calibrate the sensing system, the tool was loaded statically 

and its deflection measured with a capacitance probe. However, the measurement 

bandwidth was limited by the natural modes of the spindle structure. In order to increase 

the bandwidth of the indirect force sensor by compensating for the spindle dynamics, the 

design of a Kalman filter scheme based on the Frequency Response Function (FRF) of 

the displacement sensor system to the cutting force was used. The researchers have 

claimed to increase the frequency bandwidth of the sensor system significantly, from 350 

to approximately 1000 Hz by employing the suggested sensing and signal processing 

method. The indirect force sensor system was tested experimentally by conducting 

cutting tests at up to 12,000 rpm with a five-fluted end mill. The measured cutting force
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signal may be used further for machine tool condition monitoring in any configuration as 

reported in earlier paragraphs.

Auchet et al [3.34] have reported an experimental approach to indirectly measure the 

cutting forces in a milling operation as a function of the measured command voltages of 

the milling spindle’s magnetic bearings. A spindle is normally composed of two radial 

active magnetic bearings and one axial bearing. In this experimental approach, the 

spindle has been treated as a “ black box” , where the transfer functions linking the 

unknown cutting force with command voltages are established experimentally. The 

cutting forces have been analysed by the reaction o f two radial electro-magnetic bearings 

due to movements o f the rotor. The researchers applied FFT analysis to the acquired data 

to determine the frequency spectra of the signal. The researchers have shown the 

calculations for measuring the force value from either a single bearing command voltage 

signal or using the command voltages of both bearings and have concluded that adopting 

the later approach yields better results. It has been claimed that the cutting forces 

calculated from the command voltages of magnetic bearings are in good agreement with 

the ones measured with a Kistler four-component dynamometer.

Jeong and Cho [3.35] have reported the use of rotating and stationary feed motor currents 

as a measure o f estimating cutting force rather than using a dynamometer. They 

established a relationship between the current of the stationary feed motor and the cutting 

force normal to machined surface with an error of less than 20%. The experimental 

variables used by the researchers were the tooth passing frequency and the depth of cut. 

They have shown a relationship between the cutting forces and feed motor current. The 

data sampling rate in their research has been fixed at 500 samples per second, which may 

be much lower than the actual encoder pulse rate for the motor control. This may result in 

missing the peaks in the actual signal and thus lead to the misinterpretation of results. 

This is a very important aspect in data analysis for this application and has been discussed 

in detail by the author in Chapter-6.

Kim and Kim [3.36] have developed an adaptive cutting force controller for a machining 

centre by using indirect cutting force measurement. The cutting forces of x, y and z axes 

have been indirectly measured by the information retrieved from the currents drawn by
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a.c. feed-drive servo motors. The researchers have developed a typical model for the 

feed-drive control system of a horizontal machining centre to analyze cutting force 

measurement from the drive motor. The pulsating milling forces are measured indirectly 

within the bandwidth of the current feedback control loop of the feed-drive system. The 

sampled data is fed to a signal processing card fitted in a PC which has the necessary 

signal processing algorithms. The PC provides necessary control signals to the CNC 

controller for the regulation of cutting force under various conditions. Despite of the fact 

that the designed system does not require a dynamometer, it still requires additional 

sensors and a PC for the processing of the data and issuing command signals back to the 

CNC controller.

Alauddin et al [3.37] have reported the development of a mathematical model for the 

average tangential cutting force in end milling. The predictive cutting force model was 

developed in terms o f cutting speed and axial depth of cut using a response surface 

methodology. The researchers have claimed the validity of the predictive equation within 

the feed range o f 0.06-0.088 mm/tooth and the axial depth of cut range 0.5-2.0 mm.

Spiewak [3.38] has also reported a similar methodology in which a milling cutter may be 

instrumented with a three-component accelerometer as an indirect sensor of dynamic 

cutting forces. The accelerometer measurements are transformed from the rotating 

coordinate system of the spindle to a stationary reference system of the machine tool. 

These transformed accelerations have been double-integrated to obtain the instantaneous 

error motion of the tool centre. It has been suggested that in static and quasi-static 

conditions the forces acting on the tool-spindle system can be obtained by multiplying the 

deflections o f the spindle (relative to the housing) by suitable stiffness coefficients. It has 

been recommended that an impact of the inertial and dissipative forces, which are due to 

the spindle mass and viscous damping, should be taken into account if the measured 

forces vary rapidly.

This section of review does not contain all the research publications in this area to date 

but is deemed sufficient to give an idea of the popularity of force signal used as a medium 

of information retrieval in designing a reliable TCMS. Although force signal based 

methods have been successful in tooth breakage detection and tool health monitoring
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applications their usage has mainly been limited to laboratory based systems or for result 

verification purposes. This is mainly due to the fact that normally a dynamometer is used 

as a force sensing element and that has many issues involved with its industrial 

applications as described earlier e.g. limited workpiece size, cost and mounting 

constraints. The sensors used as replacement to the dynamometer have also faced some 

practical problems e.g. calibration, mounting and range of application. These facts have 

encouraged researchers to explore other avenues and an alternative approach to force 

signal for data retrieval including the use of Acoustic Emission (AE) signals is reviewed 

in the following paragraphs.

3.2.2 Acoustic Emission (AE) Signals

Acoustic emission (AE) can be defined as “the spontaneous release of elastic energy by 

any material when it undergoes deformation’'. It refers to sounds, in the form of acoustic 

and ultrasonic energy, emitted from either a process or material which can provide further 

information about that process or material [3.39]. AE signals are generally classified as 

either continuous-type AE signals or burst-type AE signals. Continuous-type AE signals 

are associated with plastic deformations in ductile materials, while burst-type signals are 

observed during crack growth in the materials. It is generally agreed that during metal 

cutting, plastic deformation (continuous-type AE signals) and fracture o f the material 

(burst-type AE signals) are the major sources for AE waves. Additionally, chip impacts 

or chip tangling generates burst-type AE signals.

In the last decade a significant amount of research work has been carried out in using AE 

sensors to monitor the tool condition in milling, turning and drilling operations. The 

general trend in AE is to monitor the sensory signals at a high frequency range, to obtain 

the Root Mean Square (RMS) value and to classify this signal by using various methods. 

The data retrieval options from milling process based applications in relevant research 

publications are reviewed here.

Axinte et al [3.40] have reported an approach to use the triangulation technique applied to 

arrays o f acoustic emission sensors for the location of uneven events occurring during
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machining. They have suggested that most o f the sensory signals (e.g. force, acceleration, 

spindle power) do not have enough sensitivity to detect such tiny events. In some of these 

situations, the AE signal shows enough sensitivity to detect surface anomalies.

Pai et al [3.41] have presented a tool wear estimation method in face milling operations 

using the Resource Allocation Network (RAN) technique. AE signals, surface roughness 

parameters and cutting conditions (cutting speed, feed) have been used to formulate input 

patterns. The researchers have compared the outputs from Multi Layer Perceptron (MLP) 

to the results obtained from RAN. The MLP consisted of 12 input nodes with one hidden 

layer. It is suggested that RAN produces smaller approximation errors than MLP and has 

faster learning ability. The disadvantage of MLP has been reported as its much higher 

number o f nodes.

Wilkinson et al [3.42] have presented an application o f AE sensors in conjunction with an 

artificial neural network towards the classification of tool wear stages. The input features 

of the monitoring system were derived from the measurements of acoustic emission 

during machining and topography of the machined surfaces. Five input features were 

applied to a back-propagating neural network to predict a wear category which was then 

categorised as light, medium or heavy.

Govekar et al [3.43] have reported the use of multiple AE sensors and an analysis and 

selection strategy for the monitoring of machining processes. They have further 

categorised important parameters of the cutting process into a monitoring system’s sub

parts namely; chip formation, tool wear and the onset of chatter vibration. The AE signals 

were detected by a piezoelectric AE sensor with frequency bandwidth of 900 kHz. In all 

36 AE signals were measured and transformed into a power spectrum in the frequency 

band from 100 to 900 kHz for further analysis.

Inasaki [3.44] has reported the application of an AE sensor and its retrieved data for 

monitoring cutting processes with single-point and multi-point cutting tools as well as the 

grinding process. The sensor placement in multi-point cutting tools has been discussed by 

the researchers in greater detail. As one of the practical solutions to meet the requirement 

in terms of the signal transmission, it has been proposed to effectively utilize the cutting
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fluids as the medium for transmitting the AE signal. The AE sensor is attached to the 

cutting fluids’ supply nozzle so that the AE signal generated at the cutting point can be 

transmitted through the fluids and consequently detected by the sensor. The sensed signal 

by the AE sensor is pre-amplified and then fed to an amplifier with a gain of 40dB. The 

amplified signal is passed through a 400 KHz high pass filter. The filter signal is rectified 

and converted to digital format by using an A/D converter card for onward transmission 

to a PC which carries out the further processing. The processing technique has been 

reviewed by the author in Section 3.3 of this chapter.

Tansel et al [3.45] have reported the use of an acoustic emission sensor for the design of a 

tool wear and breakage detection system for micro milling applications. It has been 

suggested that acoustic emission signals are a good alternative to force signals in micro 

machining applications. This is mainly due to the fact that dynamometer signals include 

high noise associated with inertial forces in machine oscillations (at high speeds). At the 

same time it is also suggested that users should take extra care with acoustic emission 

signals because they also include extensive noise created by any moving components. In 

this application a specially designed piezo-electric sensor was used to detect the 

excitations. The system used a narrow band pass filter at 40 KHz centre frequency to 

obtain the meaningful low frequency spectrum of the signal.

It has been a general approach across this category of research to pre-process the AE 

signal at the first stage using analogue hardware to get a low frequency spectrum, and 

then digitise the signal for transmission to the next medium (generally a PC) for further 

processing. The researchers have followed the same approach and have used a PC for 

further processing of the data to reach a conclusion.

In addition to the above, many other authors have contributed to this area. For example 

Ramalingam et al [3.46] have reported the use of acoustic emission signal for the 

detection of tool breakage. However they indicated practical limitations such as a milling 

cutter with several cutting edges can lead to different signal interactions. Entry and exit 

transients, due to sudden loading and unloading, also produce a large acoustic emission 

burst. Tlusty and Andrew [3.47] carried out a survey o f the unmanned condition 

monitoring possibilities. They concluded that two of the approaches can be considered to
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be of worthy of further development. One approach is based upon the analysis of the 

acoustic emission signal coinciding with the tool breakage. The second approach is based 

upon the analysis of feature changes in the cutting force signal. However the major 

disadvantage of both these approaches is that they require additional sensors.

In a wider context, the AE technique has provided some successful applications in tool 

monitoring during turning operations. However, its applications in the milling processes 

have been less straightforward. The major problem in using AE signals for condition 

monitoring in milling operations is that pulse shock loading occurs during the entry and 

exit of each individual tooth. It is possible that the magnitude o f these shock pulses may 

be equivalent to those generated during tooth fracture itself. Moreover during metal 

cutting operations, a substantial amount of AE is generated and it is hard to provide a 

separation between the AE generated by metal cutting and the AE generated by tool 

breakage itself. It is also argued that the generated AE in such operations is dependent 

more on the structure o f the cutting material than on the cutting tool, with its signal 

reflecting the behaviour of the response from the machine tool setup rather than the 

cutting tool [3.48]. Finally, choosing a suitable area to place the AE sensors for better 

results is another major parameter in designing such TCMS. These factors have limited 

the practical application of this technique in this area.

3.2.3 Vibration Signals

The field o f vibration signal analysis for machine tool condition monitoring has also been 

the basis of extensive research interest. In principle, the vibration of the machine tool or 

workpiece is observed and investigated as a means of assessing the health of a machine 

tool. Accelerometers are typically used as the vibration sensor. The following is a brief 

review of the research in this area.

Li and Tzeng [3.49] presented a study to establish a signal processing methodology that 

can infer the state of milling insert wear from translational vibration measured on the 

spindle housing of a milling machine. They used a vertical milling machine and a 5-insert 

face milling cutter for experimental data collection. A torsional accelerometer was fitted 

on top of the machine and a translational vibration sensor was fitted on the spindle



26

housing. Data acquisition was performed with a 486-based computer and a Metrabyte 

DAS-20 multi-channel data acquisition board. Both the translational vibration signal and 

torsional vibration signal were digitised. At the first stage, a tool wear signature in the 

form of a translational vibration is accentuated by mapping the translational vibration into 

a torsional vibration using a previously identified non-linear relationship between the 

two. Secondly, a time-frequency distribution is calculated from the torsional vibration. 

The data were transferred to the PC after necessary pre-processing for further processing 

which will be discussed in Section 3.3.4.

Chen and Jen [3.50] used a dynamometer and an accelerometer as a vibration sensing 

system along with PC based data acquisition. The high sensitivity accelerometer was 

attached to the frame of the spindle shaft. The response of the detected signal was found 

to be affected by the position of attachment. It was reported that attaching the sensor 

close to the bearing increased the amplitude of the response signals. The extraction of the 

feature elements from the independent data sets using data fusion techniques was applied 

to extract useful tool wear information.

Vafaei et al [3.51] reported the vibration monitoring of high speed spindles using spectral 

analysis. The researchers monitored the vibration in spindle systems while running in the 

horizontal radial plane (i.e. X  and the Y directions if Z is considered to be the spindle’s 

vertical direction) and linked it to the tool’s health using the Autoregressive Moving 

Average (ARMA) technique.

Jun and Sue [3.52] obtained a time-domain vibration signal from a sensor attached on the 

spindle bracket o f a CNC milling machine. They elected to convert the sensor signal to an 

appropriate voltage level and to show the analogue signal on an oscilloscope. This 

approach is important since it supports local decision making i.e. at the machine itself. 

The acquired data file can be subsequently analysed using a PC to support further 

conclusions. It was suggested that this is a good approach in detecting catastrophic tool 

breakage but may not be very effective for tool wear monitoring. Moreover the average 

performance of the system has shown that a rate of 2% of false alarms may be generated 

and around 25% or more breakages may not be detected at all. It also highlighted that
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there is a trade off between both types of errors. If efforts are made to detect the missed 

breakages, the number o f false alarms goes up and vice versa.

Insperger et al [3.53] have reported more analytical and experimental identification 

research for chatter frequencies in milling operations. They have suggested that the 

stability o f the milling action can be linked to the resulting vibrations and analysis o f the 

produced chatter signals. They reported the use of a single non-contact, eddy current 

displacement transducer. A commercial data acquisition hardware system was used to 

acquire the data which was then transferred to PC for further processing. They 

mathematically modelled the milling action and suggested that for healthy milling there 

are certain chatter frequencies which should not arise. The presence of these frequencies 

in the frequency spectra of a vibration signal should always be taken as an indication of 

possible problems concerning the machine tool’s health.

Klamecki [3.54] has reported another very relevant and promising example of applying 

vibration signals as condition monitoring tools. It was suggested that output from a 

vibration sensor is normally swamped by noise in a machining environment and that this 

needs some powerful data filtering methods before it can be used for reliable decision 

making. Klamecki reported the use of stochastic resonance for enhancement of such a 

signal. The stochastic resonance normally refers to the increase in certain aspects of a 

non-linear system’s output with the addition of noise to the system’s input. It has been 

argued that it could prove to be a very useful technique in extracting useful information 

for industrial condition monitoring applications. The intent of the development is the 

prediction of the threshold crossing rate when noise is added to a signal. That is, the 

initial-signal-plus-noise augmented signal is characterised by its threshold crossing 

frequency. More specifically, the threshold crossing rate for different components of a 

multi-component signal is sought. The results from the experiments conducted for 

enhancing the low-level vibration signals for further processing and decision making 

were discussed.

Again, there have been many more research publications in this area but as is evident that 

a final practical solution has not yet been achieved. This approach bears some 

disadvantages which limit its applicability. These include a PC based system to start with,
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choice o f an appropriate sensor, location of the sensor and need for excessive hardware 

for signal acquisition, amplification and filtering etc. These restrictions can be overcome 

and there have been some interesting solutions presented e.g. as Klamecki [3.54] reported 

using stochastic resonance to gain important information from a signal buried in the 

noise. Other alternative approaches which researchers have been exploring include the 

use of information from the machine itself. The next section presents a review of research 

following this route.

3.2.4 Spindle System Signals

There are various existing machine signals which can be used as the source of process 

information. Two of the most important sources of information from machine itself are in 

the Spindle System and Axis Drive System (Section 3.2.5). The analysis of these signals 

has a basic advantage of no extra need for additional sensors at the information retrieval 

stage. Different indirect methods which are normally used to evaluate tool wear and 

determine tool failure can be implemented by monitoring the spindle motor variables. 

These include spindle speed, spindle current and spindle power. Various researchers have 

used a single parameter, multiple parameters or a combination of these and added sensors 

in designing such systems. A brief review of data retrieval methods suggested in some of 

the research papers is presented below.

Cho et al [3.55] have reported a tool breakage detection system which utilizes multiple 

sensors to record cutting forces and power consumptions in a milling process for the 

detection of tool breakage. The researchers used Kistler and Artis sensing systems for the 

data acquisition of force and spindle power consumption measurements respectively. The 

cutting forces are measured by the dynamometer during machining. True power 

consumption (Ps) in the spindle drive motor is measured using two Hall Effect sensors, 

which are embedded in the machining centre. The signals obtained from the Hall sensors 

are amplified before further processing and analysis. It has been reported by the 

researchers that the cutting power is proportional to cutting force in general and power 

consumption data has been used to support the cutting forces for more precise failure 

detection using a Support Vector Machine (SVM) learning algorithm in this research. In 

the approach outlined the cases that are identified as ‘failures’ based on the force data are
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re-evaluated by the power data for more accurate detection. They argue in favour of using 

the force signal in addition to the spindle power signal (i.e. multiple signals) for reaching 

a reliable decision about the tool’s health.

Shao et al [3.56] have reported a cutting power modelling strategy for online machine 

tool condition monitoring for variable cutting conditions. They have suggested that 

among all o f the tool condition monitoring systems, the spindle motor power monitoring 

system is considered to be one of the most applicable systems for shop floor applications 

because it is relatively simple and its mounting hardly affects machining operations. The 

researchers have presented a constantly updating threshold comparison strategy, as 

compared to a single threshold value by taking into account the varying cutting 

conditions. The data acquisition system was composed of a motor power transducer, an 

A/D conversion card and a personal computer. The systems have been described as being 

capable enough to make an online identification of cutting conditions and calculating 

cutting power threshold values accordingly for decision making about the health of the 

tool.

Tseng and Chou [3.57] interfaced a PC based system to the machine tool. The software 

was divided into four parts; namely I/O data reading and calculating, rules and 

judgement, communication and finally the user interface. The spindle work load 

fluctuations have been used as an indicator for the determination of the machine tool’s 

health. The detection system is based on the concept of extracting the workload of the 

spindle motor from the CNC controller, and then transmitting the data using the I/O card 

for further processing. Observation of the data indicated that when workload exceeded 8- 

15% above that o f the normal processing operation the tool was close to breaking point. 

Depending upon the variations of the motor load signal, the researchers derived three 

rules to categorise the operation within normal, semi normal and abnormal states. 

However the designed system may encounter practical problems of generating false 

alarms because of the absence of any counter verification strategy before generating any 

alarm or process stoppage.

Cuppini et al [3.58] have selected the use of cutting power as a system variable to design 

a tool wear monitoring system. They have confirmed from experimental results that the
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cutting power increases in parallel to tool wear and shows repeated patterns. A power 

monitoring device was connected to the machine tool spindle motor. This device 

measures the current, voltage and power factor of the spindle motor and computes the 

power consumption at any instant. They further researched the computation of net cutting 

power and its relationship with tool wear. It was also observed that power consumption of 

the spindle in idle running is strongly affected by the operating temperature. Based upon 

these findings, they suggested a system which used a power monitoring device, a 

tachometer and a thermocouple as sensors to be used in the system for sensing power, 

spindle speed and system temperature respectively. Using the sensor signals and after 

making necessary calculations from the equations provided, it can be decided whether to 

carry on with the cutting or change the tool.

Rao and Hope [3.30] have suggested using fuzzy based reasoning for developing an on

line tool condition monitoring system. The work is based on using power and force 

sensors for data acquisition, an investigation into the appropriate features required to 

represent tool wear states and the use of a technique they called ‘feature filtered fuzzy 

clustering’ which was developed for the classification of tool wear states under various 

cutting conditions. The spindle power signal (using a power transducer) and the cutting 

force signal (using dynamometer) were acquired and processed for final decision making.

Liang et al [3.59] reported a method deploying a fuzzy controller system which 

monitored the spindle power in end milling applications. They suggested the 

simultaneous adjustment o f both feed rate and spindle speed in case of any abnormality in 

the cutting process to avoid any potential machine overloads and tool failures. This 

control system has two inputs and two outputs. The inputs include: power error and 

power change. The two outputs are: adjusted feed rate and spindle speed.

The spindle power was measured and the processed output signals were filtered by a 4th 

order Butterworth low-pass filter to eliminate the signal noise. The filtered signals were 

then digitized and used as the inputs for a fuzzy logic controller. The control commands 

were sent to the Digital to Analogue Converter (DAC) section of the converter and then 

to the feed drive and spindle speed control box. The feed command, in a form of 

overriding percentage of the full scale feed rate and the speed command in actual rpm are
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converted to analogue voltage signals. The output signals from the controller to the feed 

and spindle speed drivers were obtained from relevant control boxes. They have 

suggested that the feed rate can be changed to a suitable percentage o f the full scale feed 

rate at the System Operation Console (SOC) whereas the spindle speed limits were 

specified in the control program via a PC. They have shown the cutting test result using 

various metals and the effectiveness of the proposed system for applications of avoiding 

the tool breakage and spindle overloading.

Takata et al [3.60] used the fluctuations in the rotational spindle speed of a vertical 

milling machine in describing a method for the tooth breakage detection. The 

fundamental fluctuation frequency of spindle speed was determined by the number of 

revolutions of the spindle per second multiplied by the number of teeth in the cutter. The 

fluctuation signal of the spindle rotation is obtained through a pulse generator installed in 

the AC spindle motor. The pulse signal is converted to a voltage signal by a frequency to 

voltage converter and pre-processed by a bandpass filter to enhance the frequency 

component corresponding to the speed signal variations. The acquired data are transferred 

to a PC and processed for further decision making about the health of the tool. It was 

reported that although the use of spindle current signal is also very useful and cheap route 

to follow it is only reliable with the heavy breakages of the cutting tools. The researchers 

have suggested that an AE sensor technique is very sensitive for small sized tool health 

monitoring applications only.

Kaye et al [3.61] also reported the use of spindle speed variations for tool wear 

monitoring in metal cutting operations. The spindle speed changes were monitored by 

mounting an optical encoder at one end of the spindle shaft and checking the speed. The 

encoder’s output has been interfaced to custom designed electronics to estimate the tool 

condition based on a suggested mathematical model.

As is evident from the brief review already presented above that there has been extensive 

research in the area of using information from the spindle system as a source for 

designing TCMS. It is noticeable that in most of the cases focus has been on observing 

the spindle power consumption variations and their verification using force sensors
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before reaching a reliable conclusion. Moreover, it is also evident that mostly power 

sensors have been used for measuring spindle power thus in reality not making it a 

sensor-less system. A very similar scenario can be observed with the system designed 

using spindle speed variations as the heart of the system. These systems can be made 

sensor-less at the data acquisition stage by exploring the machine electronics in detail and 

acquiring the signal from appropriate locations, but the most important issue which has 

not been paid enough attention in this area of research is the sampling rate of acquired 

data. The NC controller for a normal machine (e.g. Kondia B500) receives more than 

1000 feedback pulses/revolution about the position and velocity of spindle itself. 

Exploring the fact further reveals that for a normal spindle speed of 500RPM, the 

controller sends over 8000 control pulses per second. In the research presented in this 

thesis it was observed that the sampling rate for any data acquisition from such sources if 

they are to be used for TCMS applications should normally match the controller’s control 

pulse rate or the variations will normally be controlled by the controller before the data 

are acquired. This does not mean that all the variations will be missed at lower sampling 

rates, but actually means that the variations of point of interest may be missed out before 

taking decisions about a tool’s health.

3.2.5 Axis Drive System Signals

As reviewed in Section 3.2.1 force measurements are commonly acquired by using a 

dynamometer mounted on a worktable or a tool holder of a machine tool. The physical 

characteristics of the dynamometer mounted on a worktable not only limit the size of the 

workpiece but its cost is also a major concern. This has encouraged researchers to explore 

the advantages of feed axis motor current-based TCMS. These methods either process the 

motor current signal directly or estimate cutting force by means of the motor current, and 

then the estimated cutting force is used to monitor the tool’s health during end milling 

operations. There has been extensive research in this area and a brief overview of data 

retrieval options for such systems is presented in the following.

Xiaoli and Guan [3.62] reported an algorithm which consisted of wavelet-based de- 

noising, discrete-time-frequency analysis, FFT and second differencing of the feed motor 

current signal for the detection of cutting edge fracture during end milling. The three axes
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feed motor currents were acquired using Hall Effect current sensors and passed through 

low pass filters for noise removal. The analogue signal was converted to digital format at 

1 KHz. They have reported wavelet based de-noising of the signal before applying the 

Discrete Time-Frequency analysis approach for feature extraction. The wavelet based de- 

noising has been reported as being very effective in removing the influence of non-linear 

friction and cogging force (cyclic physical resistance felt in some alternator designs from 

magnets passing the coils) to the motor current signals. These non-linearities are 

introduced by the feed screw and gear systems and must be removed before reaching a 

reliable decision about the health of the cutter. The tooth passing frequency was also 

taken into consideration for final decision making.

Romero-Troncoso et al [3.63] have reported the design of a Field Programmable Gate 

Array (FPGA) based stand alone tool breakage detection system. The technique uses the 

cutting forces on the feed axes to compute the discrete wavelet transform of the resultant 

force. The current signals of axis motor drives have been used to estimate the cutting 

force for a non-dynamometer based system. The researchers have used the control 

currents to the axis drive as indicator of the force and these signals are fed to the signal 

conditioner and filtering stage. This stage has been used not only to limit noise but also to 

eliminate the interfering signals by using an 8th Order anti-aliasing Chebyshev filter. The 

data acquisition system was based on a 12-bit, 2-channel simultaneous sampling analogue 

to digital converter (ADC). The processing was done on a Hardware Signal Processing 

(HSP) system as part o f a “System on Chip” (SoC) implementation for specific 

application designs. They have also reported another system [3.64] which takes into 

account the influence o f the most important spurious signal components in order to 

determine the optimal parameters for signal conditioning. The most undesirable 

components within the spectrum of a current drive signal are generated by high frequency 

noise, current control commutation and ball screw effects. In order to extract the desired 

cutting force signal for further analysis, the dynamic ranges of the signal to specify the 

analogue filter parameters have been determined. Different formulae showing the 

calculations of the different frequencies being generated by responsible components are 

shown and the overall driver current spectra are shown with all the required as well as 

undesired frequencies.
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The Intelligent Process Monitoring and Management (IPMM) centre at Cardiff 

University has published various papers on monitoring applications including machine 

tool condition monitoring. For example, Grosvenor et al [3.65] have reported the 

evolution of a hybrid approach to machine and process condition monitoring. The 

advantages and implications of this approach have been illustrated with practical 

examples in different areas including machine tool monitoring. It is emphasised that 

whichever route is being followed, the intelligent maintenance of data is very important. 

To this end, the authors propose different processing methods depending upon the 

application and requirement.

The same authors [3.66] reported a non-sensor based integrated approach to machine tool 

and cutting process condition monitoring. The approach suggested using the embedded 

sources o f information from the machine e.g. encoders, switches, sensors and signals for 

the information retrieval for further analysis rather than employing additional sensors. 

The use o f three existing machine tool signals to detect tool breakage was reported 

namely; velocity feedback signal, armature current and the velocity command signal 

generated by the controller. The variations in the tachometer velocity feedback signal are 

used to monitor the tool’s health. The system uses additional Data Acquisition (DAQ) 

cards consisting of the filtering and ADC stages before the data are transferred to the PC 

for further processing and decision making.

Szecsi [3.67] has reported a cutting tool condition monitoring system based on the 

measurement of the main DC motor current. It consists of current and speed sensors, a 

cutting tool-part touch sensor, analogue memory, amplifier stage, filters and a PC. It was 

reported that there is an increase in cutting force with the progression of flank wear. To 

avoid the use of an expensive dynamometer for the force measurement, the design and 

development of the system based on DC motor armature current and its relationship to 

the cutting force has been suggested. The system is trained by a genetic algorithm based 

fuzzy rule set to support its application.



35

Stein and Wang [3.68] reported the possibility of using an AC induction motor drive 

system as torque sensors. The motor drive system has been modelled with a view to using 

it as a torque sensor to support the monitoring o f tool wear or breakage detection as well 

as machine component failures. The CNC milling spindle drive system has been 

modelled to show that the rotor input power is linearly related to the static as well as 

dynamic cutting torques under normal process conditions. It has also been reported that 

the static sensitivity of the spindle system as a sensor increases and the bandwidth 

decreases as the spindle speed is increased. It is accepted by the researchers that though 

extensive research has been done in this area, there is not a generic solution to all possible 

scenarios for tooth breakage detection, nor is this system capable enough to deal with all 

possible scenarios. It is reported that the system is reliable enough to deal with spindle 

speeds up to 2000 RPM.

Lee et al [3.69] reported the use of induction motor current for the design of a tool 

breakage detection system. The research is based on the theory that square of the stator 

current of induction motor is approximately proportional to the motor torque. The 

occurrence of tool fracture will cause cutting force and torque variations and the stator 

current of the motor will change accordingly i.e. the changes in the current can be used in 

identification o f the tool’s health. They measured and analysed only one of the stator 

currents reasoning that each stator current has the same peak-to-peak amplitude, but is 

displaced in time by a phase angle of 120 degrees. In order to perform the sensitivity 

analysis for the square o f the stator current signal, a dynamometer was also used.

Y. Altintas [3.70] has researched the usage of the feed drive current for the prediction of 

cutting forces and to determine tool breakage. The importance of periodicity of milling 

forces at tooth passing intervals has been highlighted. It is suggested that the bandwidth 

of the current loop is important, so the spindle drive motor current which has a low 

bandwidth is identified as being not very useful for such applications when compared to 

the feed drive motor current loop. He has modelled the velocity and position loops of the 

feed drive system of a particular vertical milling machine system. The friction in a steady 

state machining feed is considered and the current required to overcome this friction is 

calculated. The three feed axes of the machine used for this research had recirculating 

ball screw drives and directly driven by Pulse Width Modulated (PWM) permanent
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magnet DC motors. The average current was sampled by an analogue circuit with the data 

acquisition being determined by the tooth passing interval, as obtained by an encoder 

mounted on the spindle shaft using a PC. It was suggested that whenever a tooth breaks, 

it does not remove any metal and the current will drop, whereas the next tooth will be 

removing more metal as compared to a normal one and the current will increase. The 

current will be the same for the remaining two cutters. These variations in the current will 

clearly indicate the breakage of a tooth.

The proposed algorithm uses the current value o f the feed drive current and compares it 

against the dynamically set threshold values to determine the state of the cutting tool. The 

sampling rate for the current signal has been set at the tooth passing frequency, which 

could normally be very low as compared to the CNC encoder providing the axis motor 

speed variations to the controller. This could result in the control o f current to the motor 

by the controller before the system takes current samples i.e. the controller could act to 

reduce the effect of a broken tooth before the monitoring system is able to provide an 

accurate diagnosis. This is a potential drawback to the system potentially in high speed 

milling.

Despite the reviewed and other research in area of using axes current drives for the 

monitoring of machine tool’s health there has not been a great success in designing a 

standalone monitoring system. One of the major reasons behind this is the existence of 

non-linearity of friction, cogging and temperature variations in the feed drive system 

which contains screw and gears. It makes it very hard to estimate an accurate cutting 

force from the motor current. Meanwhile, the dynamic characteristics of the current 

feedback control loop of the feed-drive system limit the bandwidth of the current sensing 

system, so the motor current cannot track the cutting force under high speed conditions.
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3.2.6 Vision Sensors

Vision sensor based systems have been widely researched, but their industrial 

applications are still at an early stage because of their high complexity, costs and low 

reliability and flexibility. With respect to other methods, the main advantages of vision 

are: natural human like operation, ability to recognise different morphologies, high 

information content in images, high availability of image processing algorithms, 

independence from the cutting conditions and sufficient accuracy. Lanzetta [3.71] has 

reported the use of a vision system as part of such a monitoring system. An exhaustive 

classification of defects in cutting inserts and the design of an automated sensor to 

recognise the defects and to measure the tool wear for an automatic tool condition 

monitoring system has been researched. The classification of the tool morphologies has 

been based on standards available in technical and scientific literature. The quantitative 

parameters required to be used as threshold values for automatic recognition have also 

been selected from the established standards. The researchers have proposed a defect 

detection and wear measurement flowchart which deals with a variety of cutting 

conditions and scenarios. The author has used an auto-focus zoom lens to maintain 

uniformity when dealing with different tool sizes and varying distances.

Although the field looks exciting and promising there have not been any astonishing 

results in this particular area of research for the applications in machine tool condition 

monitoring applications. There are different reasons behind this and some of them are:-

• Sensitivity of such systems to normal industrial disturbances.

• The presence o f chips, fluids and dirt in such an environment.

• Mechanical influences.

• A very high maintenance need in such systems which accounts for unnecessary 

down times.

• High investment costs.
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3.2.7 Multi-Sensor Systems

In parallel to sensor-less or single sensor based TCMS there has been ongoing research 

into multi-sensor TCMS. The overall objective of this has been to design a TCMS to 

monitor the loss of functions of a machine tool and the reduction of machining accuracy 

and performances in order to detect an abnormal state as soon as possible. It must also 

indicate to the controller of the machine tool the conduct of proper corrective or safe 

action. Most common methods of tool breakage detection have focused on the 

development of signal processing techniques that can enhance the effect of tool breakage 

on the measurements, such as cutting force, acoustic emission and spindle motor current. 

The effect of tool breakage is usually revealed by an abrupt change in these processed 

measurements for example the exceeding of a threshold value. However, a tool breakage 

signal from a single measurement may make a misjudgement due to the complicated 

dynamic characteristic of the cutting process and the instability of the machine tool itself 

[3.72]. To prevent this from happening integrated approaches based on measurements 

from several sensors have been proposed by various researchers.

Al-Habaibeh and Gindy [3.2] have reported an Automated Sensory and Signal Selection 

System (ASPS) for milling tool condition monitoring. They have used many of the major 

methods of signal processing including wavelet analysis, average value, signal deviation 

and FFT. In addition, the system uses a number of sensors including an AE sensor, a 

Dynamometer, a piezoelectric sensor, thus adding to the overall cost of the system. They 

have identified the benefits o f different sensors and have shown the related accuracy of 

the system versus its cost. The cheapest system costs around £3900 with an accuracy of 

around 70%, whereas a system with accuracy of around 91% costs around £19,000.

Fu et al [3.73] used power, force, AE and vibration sensors for the design of an intelligent 

condition monitoring system for on-line classification of machine tool wear. They 

favoured the multi sensor fusion technique to develop a more reliable TCMS. The signals 

from AE sensor, dynamometer, accelerometer and current sensor are pre-amplified and 

filtered for noise elimination. The filtered signals are acquired by a PC at different 

sampling rates which are corresponding to each signal’s characteristics. The PC is used
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for further processing of the signals using fuzzy pattern recognition technique before final 

decision making.

Ertekin et al [3.74] discuss an identification approach towards the sensory features that 

can be used for the control and monitoring of milling operations under varying cutting 

conditions. They have reported cutting experiments and multi-sensor data acquisition, 

signal processing, data reduction, analysis and feature selection, and multiple regression 

analysis of multi-sensor data. The sensor data includes cutting force measurements, 

spindle quill vibration, and acoustic emission, each of which has been further divided into 

measurable components which were acquired simultaneously. Although the suggested 

system is said to be capable of detecting tool breakage effectively it does have a very 

high cost involved and the implementation issues do not really support its practicality in 

an industrial application.

Kang et al [3.75] have also reported a monitoring technique using a multi-sensor 

approach. The researchers have used the combination of a dynamometer, AE sensor, 

acceleration sensor and gap sensor to determine the tool condition. The signals were 

acquired from the sensors and frequency filtering was performed in accordance with the 

frequencies o f the signals after necessary amplification. The signals were acquired by a 

PC and analysed using a specialist software package before making any further decisions.

Although the multi-sensor machine tool monitoring systems may be very effective in 

certain applications; the additional cost involved in the installation of these sensors adds 

to the overall cost o f the system. As is clearly evident from the research reported by Al- 

Habaibeh and Gindy [3.2] that to get sufficiently reliable results, the cost factor may be as 

high as £19,000, which is almost half way to the price of a normal machine tool system 

used in Small to Medium Enterprises (SMEs). The need for more affordable systems has 

thus guided researchers towards sensor-less TCMS activity in the area, including the 

research outlined in this thesis.
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Signal processing and feature extraction is the second major consideration in designing 

any TCMS. The ability of any condition monitoring system depends upon two basic 

elements: first, the number, type and effectiveness of any sensor (if) used and second, the 

associated signal processing and simplification methods utilised to extract the necessary 

important information from acquired signals before decision making. Signal processing 

plays the key role in feature extraction from the acquired and filtered data before final 

decision making. Feature extraction can be described as being a process that deploys an 

algorithm that reconstructs features from data and/or other features of the source. The 

idea of using a mathematical model to describe the behaviour of a physical phenomenon 

is well established. In particular, it is sometimes possible to derive a model based on 

physical laws, which enables the calculations of some time dependent quantity nearly 

exactly at any instant of time. If exact calculations are possible, such a model is named as 

“deterministic”. In actual circumstance this is not always possible. In such situations a 

model is derived to calculate the probability of a future value lying between two specific 

limits and is referred to as “stochastic model” [3.76].

In model based approaches observations are considered as a time ordered stochastic 

process. The techniques used in this area include parameter estimation, state estimation, 

use o f observers and parity equations. It is true to say that the better the model used to 

represent the dynamic behaviour of the system the better will be the chance of detection 

of faults. However, modelling errors and disturbances in complex engineering systems 

are almost certain. One of the approaches emphasised to overcome such issues is to 

generate models in which residuals are insensitive to uncertainty and sensitive to system 

faults. This approach is termed as “active” and the examples are unknown input observers 

and robust parity equations. On the other hand there is another approach termed as 

“passive” which uses an adaptive threshold strategy at the decision making stage and 

propagates the effects of system uncertainties observed to the model for future actions. In 

the passive approach, the uncertain parameters of the model may be bounded in intervals 

which are generally named as interval models. These may be generally classified as linear 

interval observers [3.77] and non-linear interval observers [3.78]. Considerations needed
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in developing this approach include the accuracy requirement of the designed model 

which should be as high as possible. In addition measurements have to be made on a 

healthy system, and healthy response needs to be retained for reference. Different 

measurements and models are required for each machine and process to be monitored. 

Whilst automated testing can reduce the time (and cost) associated with this process the 

need for complete and accurate models of the process under all possible conditions 

remains an important consideration.

In contrast to the model based approaches, a feature based approach has no strict 

requirement regarding the full prior knowledge database about the faults in the 

application area of such system [3.79]. The feature extraction techniques in this area are 

based on extracting the information from real time signals coming directly from the 

machine or process. It is normally required in any feature extraction technique to retain 

the original variables but to process a smaller set to reduce the processing burden in order 

to get the maximum information from minimum processing power. It is also required to 

remove those input variables which do not contribute significantly to the actual 

monitoring system. All of this contributes significantly to the design of a much faster and 

efficient system at a lower cost. This has been the driving theme of the research activity 

being reported here. A review of research work carried out in the area of signal 

processing/feature extraction from different signals for assessing the machine tool’s 

health is presented in the following sections. This builds upon the data acquisition and 

signal processing activities already reported.

3.3.1 Mathematical Modelling

The study of the interaction between cutting tool and work piece is as old as machining 

process itself but it gained a real momentum with the advancement in technology and in 

knowledge that has become available over the last few decades [3.5]. One of the most 

frequently used methods for machine tool condition monitoring is time domain 

mathematical modelling o f the process. There are various time series modelling 

techniques used including Autoregressive (AR) modelling, Moving Average (MA) 

modelling, the mixture of both Autoregressive and Moving Average (ARMA) modelling
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and Autoregressive Integrated Moving Average (ARIMA) modelling. These methods 

form the basis o f many approaches outlined in this section.

An example of a modelling based approach was reported by Tansel et al [3.10] who 

developed a Genetic Tool Monitor (GTM) for micro end milling operations. The milling 

operation is modelled by considering the trajectory of the tip of the cutting edges of the 

tool. The monitoring strategy is based on parameter estimation. Key parameters such as 

operating conditions and tool geometry are input into the model. Depending upon the 

operating conditions one or more of the parameters are estimated by the system and are 

used for the estimation and analysis of major affecting conditions. For example, the 

cutting force may be estimated by the analytical model. The accuracy of the estimated 

cutting force parameter is evaluated by comparing its value to one which is sampled by 

using a dynamometer. The validity of the model is thus confirmed and over time the need 

for the verification process is reduced.

Zhu et al [3.12] reported a model based monitoring and fault diagnosis methodology for 

machining processes. A dynamometer was used as a source o f force signal inputs to the 

system. The process modelling was carried out using cutting conditions, cutting 

coefficients, tool path geometry and critical run out as inputs. They proposed a two step 

process; a fault detection step and a fault diagnosis step. In the fault detection step of the 

system, a monitoring index has been calculated as the deciding factor. The monitoring 

index is based on the spectrum analysis of the measured force signal. For the given tool 

path geometry and cutting conditions, the cutting engagement conditions are determined 

and used in the process model to obtain the threshold values along the tool path. The 

measured monitoring index is then compared against the threshold value for fault 

detection. After the fault has been detected (by the fault detection step) the fault 

diagnostic step is used to determine whether the fault is due to run out, chipping/breakage 

or both.

The estimated and measured force signals were analysed by using a wavelet transform to 

obtain a measured feature vector and an estimated feature vector. After obtaining the 

measured and estimated feature vectors, both of these were normalised and synchronised. 

These vectors were then used for a mathematical calculation to diagnose the fault. One
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problem with the designed system was that it requires a great detail of information before 

it can be employed. For example it has to be provided with the tool path geometry which 

may prevent the system from being applied in general purpose applications. Moreover the 

use of the dynamometer, a data acquisition card and a PC along with Lab View software 

adds to the overall cost o f the system.

Lin and Yang [3.23] reported a force signal based model for wear monitoring in face 

milling operations. They have suggested a relationship between the flank wear and 

average cutting force coefficients using cutting parameters. The continuous variations 

arising in milling operations, in contrast to single point tool operations (e.g. turning) have 

been considered. The force equations have been modelled based on the effective lead 

angle and nominal axial rake angle. The cutting force equations have been used to 

estimate cutting force coefficients (normal force coefficient and friction force 

coefficient). The estimated cutting force coefficients are dependent upon the cutting 

parameters. These effects have also been analysed in detail in order to categorise the 

significance of each parameter in this context. They used least squares estimation to 

determine the model for cutting force coefficients as functions o f the average chip 

thickness. It was shown that the normal force coefficient linearly increases as tool wear 

increases while the increase in the frictional coefficient was approximately proportional 

to the square of the average flank wear. It was also suggested that the cutting force 

coefficients are decreased as the depth of cut increases. Moreover the cutting force 

coefficients decrease as the feed rate per tooth increases and they slightly change with an 

increase in the cutting speed.

Choudhry and Rath [3.25] proposed a cutting force model for the estimation of cutting 

tool wear using relationship between flank wear and the average tangential cutting force 

coefficient. It has been approximated for the model building that the feed rate is much 

smaller than the cutter radius in order to assume the cutter path as a circle rather than a 

cycloid. The same concept was supported by the author and is explained in Chapter-6. 

They have claimed to experimentally establish the relationship between the tangential 

cutting force and the cutting parameters. A dynamometer was used to acquire force 

signals for experimentation and testing of the approach. It has been claimed that the 

cutting force coefficient is inversely proportional to the feed per tooth as well as depth of
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cut. In other words as either the depth of cut or feed per tooth or both increase, the flank 

wear increases.

Tansel and McLaughlin [3.19] reported the use of a time series based Tooth Period 

Modelling Technique (TPMT) for the detection of tool breakage. They have used the 

dynamometer to acquire the force signal. TPMT uses data which has been sampled in 

phase with the pulses o f an encoder at predetermined rotational angles of the spindle. For 

each data point the estimation error is calculated by using an AR model of the signal at 

the end of the previous tooth period. The sum of the squares of the estimation error is 

calculated for each tooth period. Tool breakage can then be detected from the sum of 

squares pattern. The parameters of a 20th to 24th order AR model were used for this 

application. At the end of each tooth period, the parameters of the estimated model of the 

last data point are selected as a reference. If the cutting conditions change (i.e. by an 

increase in the depth of cut etc.) during any tooth period, the sum of squares of the 

estimation errors will increase. In the following tooth periods will keep changing until the 

transition period ends and the cutting process stabilises. For a broken tooth, the sum of 

squares o f the estimation error will be high as long as the broken tooth stays in the 

workpiece. However, when the broken tooth leaves the workpiece, the perfect tooth starts 

cutting and the sum of squares of the estimation errors will be reduced. This makes it 

possible for the TMPT method to detect the difference in signals arising due to tool 

breakage from a new tool as well as from changes in the cutting parameters. They have 

also reported the use o f a neural network approach for the tool breakage detection [3.20]. 

Here they have used the force signal and have applied both supervised and unsupervised 

learning methods for training the applied neural networks. They proposed simulation 

based training of the neural networks for real time applications, as it may not be possible 

to train them for all the possible practical situations. This is clearly indicative of one of 

the problems faced by neural networks for such applications. It was noted that, if the 

cutting conditions continuously change or heavy tool wear is allowed, the RCE may 

classify a large number of inputs as “unidentified”. The system’s success rate in best 

conditions was around 97.4% using the force signal. The use of force signal has been 

advocated because of its purity. This could be a possible limitation because of the cost 

involved and the restriction of the workpiece dimensions due to the dynamometer size.
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Kaye et al [3.61] used spindle speed changes for tool condition monitoring. They derived 

a mathematical model of the cutting process. The model required initial flank wear 

information prior to the first point-to-point calculation. Since it is practically not possible 

to monitor initial cutting with every new tool to populate the monitoring application with 

this information before it can be used for its actual job; they used a response surface 

methodology to generate these values from the results of specific cutting tests. The initial 

value of the flank wear was obtained by using different ranges of the independent 

variables (cutting speed, feed rate, and depth of cut). However it should be noted that 

performing a complete statistical analysis is never a very simple process if it is necessary 

to obtain a complete picture by changing all the involved variables at all possible levels. 

They also used spindle speed as an input to the model and the tangential cutting force was 

taken as a predictor o f the tool condition.

3.3.2 Real Time Series Signal Analysis

Another route to follow in order to extract useful information from acquired and filtered 

signals for further decision making is real time signal analysis using either statistical 

approaches or an algorithm. In such applications the signals from the sensors or machine 

sources are directly analysed after necessary filtering and signal conditioning without 

using any mathematical models of the system. The output of these analysers is normally 

based on a comparison between a healthy signal and the acquired signal. Reliability has 

been a major challenge in the design of such monitoring applications as the cutting 

process parameters are subject to change all o f the time and the presence of transients in 

monitored signals can also be misleading.

The method for Tool Wear Estimation (TWEM) reported by Kuljanic and Sortino [3.9] 

used a dynamometer to measure force signals for real time statistical analysis. They 

developed feature parameters to represent the information contained in the cutting force 

signal. These parameters are numeric values which quantify one or more characteristics 

of the cutting force signal for a given set of data. For example the mean cutting force 

during a cut, i.e. between the entrance and the exit of the tooth, was chosen and adopted 

as a feature parameter. Similarly, the mean cutting perpendicular force, the mean axial 

cutting force and the mean torque during a cut were also adopted as feature parameters. It
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was established that all cutting forces were influenced by feed per tooth and depth of cut, 

while cutting speed had a significant effect only on mean axial cutting force. They have 

reported that all mean forces were influenced by tool wear, but their sensitivity was 

different. The mean cutting force was very sensitive to tool wear. In general, the cutting 

force and the power both increase when the tool wear increases. It was observed that 

there is a power increase of approximately 20-22%, when the face milling cutter is worn, 

in comparison to the power when the cutter is sharp. The Mean Axial Force is most 

sensitive to tool wear detection, however, the signal is noisy at lower degrees of tool 

wear.

Tansel et al [3.14] have reported two different encoding methods namely; Force Variation 

Based Encoding (FVBE) and Segmental Average Based Encoding (SABE) to estimate 

tool wear from the cutting force signal using a back-propagation type neural network. 

The FVBE method calculated the variation of the feed and thrust direction cutting forces. 

These two variations were used as inputs to the neural network for further wear 

classification. In the SABE method, the feed and thrust direction forces were sampled and 

normalised. The researchers acquired data for one complete revolution and divided it into 

ten segments of equal length. The segments were then averaged. In all 20 segments were 

presented to the neural network as the input for further decision making. They used a 

dynamometer to acquire cutting force signal.

Tansel et al [3.15] have also presented an approach for tool condition monitoring during 

the machining of a non-metal workpiece. It deals with situations when the cutting forces 

are so low that the signal to noise ratio is really not significant enough to be analysed as 

is the case when machining some non-metals. The system is referred a neural network 

based periodic tool inspector. As is evident from the name, the system evaluates the 

tool’s efficiency using a test cut on a test material (normally a metal piece) periodically. 

The researchers have used a dynamometer to acquire the force signals. The test piece is 

attached to the dynamometer whereas the machine does the normal operation without 

cutting on the test piece for a predetermined period. The tool is periodically moved to the 

test piece for inspection and the acquired data are analysed. Whilst this approach removes 

the established restriction on workpiece size normally related to dynamometer based 

methods it does not then support continuous tool monitoring.
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Wilcox et al [3.80] reported the use of cutting force and acoustic emission signals from a 

milling operation simultaneously in determining the tool wear. They have used a table 

mounted dynamometer, a charge amplifier, an acoustic emission sensor and low pass 

filters for data acquisition. The acquired data is transferred to a PC through an A/D card 

for further processing and decision making. The research focussed on drawing 

quantitative conclusions as to how local insert geometry at the cutting edge affects the 

cutting force and how this is represented in AE data. Acoustic emission and force 

measurements were made for a range of wear geometries and the effects of these 

geometries were estimated from basic mechanical principles. The component of cutting 

force perpendicular to the feed direction was averaged over the central part of each cut 

and the mean plus one standard deviation was used as a rough measure of the force 

pulsation peak height. A similar type of processing was applied to the root mean square 

(rms) value of the AE signal. The test results for the worn inserts were compared against 

the data obtained from new cutter experiments. The researchers suggest that flank wear 

can be expected to produce an increase in both cutting force and acoustic emission when 

it affects all inserts in a milling cutter approximately equally and edge damage such as 

notch wear or crumbling increases the overall cutting force.

Axinte et al [3.40] proposed an approach using an array of three acoustic emission (AE) 

sensors to locate uneven events (e.g. tool breakage) in the machining process. A 

triangulation technique was used for the sensor placement and by analysing the arrival 

times of the acoustic waves the exact location of the energy release can be calculated. 

They carried out extensive testing of the proposed system and have mentioned the 

possible practical applications of the system along with certain limitations. The major 

limitation of this approach in tool breakage detection is the inability of the system to 

reach a decisive conclusion about the tooth breakage since energy releases may not only 

arise due to tooth breakage but may occur normally in the machining process.

Wilkinson et al [3.42] reported a tool wear estimation strategy using acoustic emission 

sensing and presented a combination of time and frequency domain analysis of these 

signals to neural networks for final decision making. In their reported approach, during 

each pass of the milling cutter through the workpiece, acoustic emission was detected by
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a non-contacting fibre-optic probe and a conventional piezoceramic transducer. The 

variations of the mean frequency components of the AE signal along with the variations 

in the flank wear were obtained by performing an FFT analysis of the AE signal. They 

extracted five different features from the processed data before presenting it to the neural 

networks. The features used were: mean frequency, rms value, surface finish integrated 

spectral content in a low frequency spectral band (below the tooth passing frequency), 

surface finish integrated spectral content in a kinematic frequency spectral band (around 

the tooth passing frequency) and surface finish integrated spectral content in a high- 

frequency spectral band (above the tooth passing frequency). The training process 

presented the five features and associated targets, at random, to the neural network for a 

total of 96000 iterations. The system presented satisfactory results.

Tansel et al [3.45] applied real time signal analysis methodologies to acoustic emission 

sensor signals to detect tool wear and breakage. The proposed system is claimed to 

separate tool entry and exit conditions from those arising due to tool breakage in the 

acquired signal. The proposed monitoring system evaluates characteristics of the impact 

of each tooth with the workpiece. It has been reported that AE frequencies of excitations 

by such impacts are normally higher than 20 KHz. He selected 40 KHz for the 

application design. To detect a tool breakage from this signal, he used two different 

signal processing approaches. In the first one, the signal from the system was simply 

compared against a preset threshold value. In case of the signal crossing the threshold, the 

slope of the curve was calculated to reach a final decision about tool breakage. In the 

second approach, a low pass filter was used to filter the signal coming from the system. 

The use of this additional low pass filter along with linear interpolation on a set of 

obtained data made it possible to distinguish tool entry, exit, breakage, avoiding aliasing 

and eliminating sudden jumps and decays.

Jun and Suh [3.52] reported the use of vibration sensor time domain statistical signal 

processing methodologies for tool breakage detection. They have focused only on the 

steady state milling and have excluded the transient phases of tool entry and exit in the 

reported research. The Statistical Process Control (SPC) measures X-bar control schemes, 

Exponentially Weighted Moving Averages (EWMA) and Adaptive (EWMA) schemes 

have been applied to the vibration signal for decision making. It has been reported that
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these control schemes automatically determine their threshold values independent of 

cutting conditions under the proposed design. To undertake the minimum possible 

experiments encountering maximum possible cutting conditions, they have used the 

orthogonal array approach (L27) in determining cutting test parameters. The factors 

considered for the orthogonal array approach were the diameter of the cutting tool, 

number of flutes in the tool, spindle rpm, feed rate, axial depth of cut and workpiece 

material. The proposed system has a trade off between the detection of the faults and 

generation of false alarms.

As is evident from the brief review presented above, most of the signals in practice are 

time domain signals in their raw format. That is, whatever that signal is measuring, is a 

function of time. When we analyse the signals in the time domain itself we obtain a time- 

amplitude representation of the signal. This representation is not always the best 

representation of the signal for some signal processing related applications. In some of 

the cases most distinguished information is hidden in the frequency content of the signal. 

This fact has always been an encouraging factor for researchers to also investigate this 

area. The frequency domain analysis based systems for TCMS designs are reviewed in 

the following section.

3.3.3 Frequency Domain Analysis

As stated, in addition to real time signal analysis, frequency domain analysis has also 

been the basis o f tool monitoring application designs. The FFT of any time domain signal 

shows its frequency amplitude representation. Although FFT is probably the most 

popular transform being used, it is not the only one. There are many other 

transformations that are often used by engineers and mathematicians e.g. Short-Time 

Fourier transform and Wigner distributions. Although the FFT gives a very clear 

spectrum of the signal being analyzed it does not indicate the exact time scale of the 

existence of those frequency components. This information is not required when the 

signal is stationary, but it is of vital importance in a non-stationary signal analysis 

application. This problem was overcome to some extent by the introduction of the Short 

Time Fourier Transform (STFT). The signal is divided into smaller segments for STFT
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analysis and these segments are considered as “stationary”. For this purpose a window 

function is chosen and the width of the window must be the same as chosen segment of 

the signal where the stationary characteristic is applicable.

Sarhan et al [3.13] reported the relation between cutting force variation and tool wear in 

end milling. They examined and presented the effect of wear variation on the magnitude 

of the cutting force harmonics. They have used a model based simulation of the force 

signal of the machining process. In parallel a dynamometer was used to measure the 

actual force signal from the machine at different wear levels of the tool. Both of these 

signals have been analysed using FFT. It has been observed that the magnitude of certain 

harmonics in the force signals (both simulated and measured) increases significantly with 

flank wear whereas some of the harmonics are unaffected. For example in the case of a 

four-tooth cutter, the second and third harmonics are unaffected by flank wear. On the 

other hand; the first harmonic increased significantly with flank wear. At the same time, 

any changes in the cutting conditions or on the tool performance lead to changes in the 

amounts of flank wear, leading to changes in the cutting forces harmonics.

Elbestawi et al [3.31] reported the use of cutting force signatures in determining tool 

wear. They have analytically and experimentally shown that the magnitudes of the 

individual harmonics of the cutting force are affected differently by flank wear and claim 

that this phenomenon can be used as an indicator of the amount of flank wear. 

Mathematical simulations of the cutting process with respect to cutting force and 

frequency spectrum have been presented. They have shown that, since milling is a 

dynamic metal cutting process, any changes in the condition of the tool, such as that 

caused by an increased amount of flank wear, would also appear as changes in the 

signature profile of the cutting force spectrum. They show that the fundamental tooth 

passing frequency and its harmonics are related to flank wear. Thus the effects of flank 

wear on the cutting force will be manifested as an increase in the magnitude of the cutting 

force harmonics provided the cutting conditions remain unchanged. One possible 

limitation with the system could be the breakage of a tooth, which would change the 

tooth passing frequency and all its harmonic values to new ones. They have reported that 

the magnitude of certain harmonics increases significantly with flank wear whereas 

others remain unaffected. This is dependent upon the number of teeth in the cutter as well
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as the nature of the cutting process being undertaken which could be another practical 

limitation in implementing this system in a real time tool condition monitoring system.

Tamg [3.32] presented a mechanistic model for the prediction of the cutting force and its 

analytical analysis and verified the results through practical experimentation. This 

assumed that cutting force in the run out free cutter is periodic with tooth frequency. 

Therefore, the characteristics of the cutting force signal and its frequency components 

change with the event of a tooth breakage. A table type dynamometer was used to acquire 

the force signal which was processed in the frequency domain to examine the frequency 

spectrum. It was suggested by the frequency domain analysis that the tooth passing 

frequency and its harmonics are dominant for a new cutter. In the event of breakage 

however since one of the teeth is missing and the next one has to do extra cutting, a clear 

indication of the rise in the cutting force for that particular tooth was seen. This was 

responsible for the change in overall frequency spectra. This one rise per revolution 

introduces a frequency component of tool rotation and its harmonics. These frequency 

components get stronger and stronger with time and could be used to give clear indication 

of the breakage. However it was suggested that it is difficult to detect tool breakage using 

the instantaneous cutting force directly. This was mainly due to the reason that cut 

geometry; run-out, vibration, measurement errors and noise are all involved. To 

overcome these problems, Tamg has suggested using a data acquisition system and 

digital filtering techniques. The cost factors associated with using a PC based system in 

addition to using a dynamometer could limit the practicality of this approach for 

industrial applications.

Inasaki [3.44] reported the use of acoustic emission sensor and a spectral analysis 

technique for the monitoring of turning, milling and grinding operations. This work 

suggested that the ratio o f two characteristic peaks in the power spectrum of the refined 

AE signal change due to tool chipping. The first peak in the frequency spectrum is 

associated with the tool rotation frequency. The second peak is related to the tooth 

rotation frequency. The tooth rotation frequency can be calculated by multiplying the tool 

rotation frequency by the number of teeth in the cutter. The amplitude ratio of these peaks 

was used by the researcher as an indicator of tooth breakage in the milling operation 

using a reasonable threshold value for making a decision about the tool breakage. The
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usage of a single threshold may prove to be a practical limitation of this system because 

of many dynamically varying parameters involved in the milling process.

3.3.4 Combined Time & Frequency Domain Approach

The previous sections have shown that time domain signal analysis and frequency 

domain signal analysis techniques have their own merits and limitations. This has 

encouraged researchers to use techniques which are based on a combination of both time 

and frequency domain (e.g. wavelet transform). Another approach is to use these methods 

together and to confirm and verify the results as part of a decision making procedure. 

Short Time Fourier Transform (STFT) is a well established technique for frequency 

analysis but suffers from a resolution problem.

The Wavelet Transform (WT) was developed as an alternative approach to the STFT to 

overcome the resolution problem. Wavelet analysis is done in a similar way to STFT 

analysis, in the sense that the signal is multiplied by a function, (similar to the window 

function in the STFT) and the transform is computed separately for different segments of 

the time-domain signal. There are two main differences between the STFT and the 

wavelet transform. Firstly Fourier transforms of the windowed signals are not taken and 

therefore single peaks are seen corresponding to a sinusoid, i.e. the negative frequencies 

are not computed. Secondly the width of the window is changed as the transform is 

computed for every single spectral component. This is probably the most significant 

characteristic of the wavelet transform.

Lee and Tamg [3.28] reported the use of the discrete wavelet transform for the analysis of 

the force signal in its application to the detection of tooth breakage in the cutting tool. 

The overall system was based on a dynamometer, charge amplifier, data acquisition 

board and a PC. The detection algorithm was based on the concept of tooth passing 

frequency and its strength under normal and broken cutter scenarios. It is reported that 

under normal conditions, the tooth passing frequency is dominant in the spectrum, 

whereas with a broken insert signal the tool rotation frequency becomes important. This 

frequency shift has been linked to the concept of broken tooth engaging in the cutter once
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every revolution. The shift in the frequency may alternatively be due to the engagement 

of the tooth following the broken one into the cutting as it is bearing more cutting load 

which increases the strength of this particular frequency component. These researchers 

used a discrete wavelet transform and produced a technique that gave satisfactory results 

following a process of signal decomposition and analysis.

Tansel et al [3.18] reported a tool failure detection system for end milling by using 

Wavelet Transformation and Neural Networks (WT-NN). They favoured the wavelet 

transformation method arguing that it required fewer calculations when compared to FFT 

in order to achieve the same results. Cutting force signals were used as the basis to apply 

the technique. The variations in the cutting force for a normal cutter and a cutter with a 

broken insert were analysed as the spindle turned through discrete rotation angles. This 

gave a clear indication, using a Daubechies type Wavelet transformation, of a marked 

difference between the cutting state with a new cutter and that with a broken one. An 

ART2-type neural network was also used in combination to the wavelet transformation to 

classify the tool conditions from the acquired data.

Govekar et al [3.43] reported a method which used both time and frequency domain 

analyses of dynamometer and AE sensor outputs for tool wear detection. To maintain 

high quality machining three important parameters; chip form, tool wear and chatter 

vibration were monitored. The characterisation of the measured sensor signals and 

corresponding phenomenon has been attempted by a set of time invariant characteristics. 

The measured AE signal, for example, was filtered using a moving average filtering 

approach to reduce the statistical fluctuations before further processing to characterise 

chip formation. To support tool wear estimation, the dynamometer signal was acquired in 

the time domain. The time series of feed force (Ff) and cutting force (Fc) components 

were sampled at 25 KHz and spectral analysis was carried out at different wear levels of 

the tool in order to correlate tool wear with the spectral components. They suggested that 

a high value of entropy rate is typical for a chatter free cutting environment. Therefore, a 

threshold value was established which was reported to be particularly appropriate to 

detect the onset of chatter.
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Li and Tzeng [3.49] reported a signal processing methodology to infer the state of milling 

insert wear from translational vibration measured on the spindle housing of a milling 

machine. The acquired signal was filtered against the line frequency and segmented into 

pieces that begin at the moment of initial contact between an insert and the work-piece 

and end just before the next insert comes into contact with the work-piece. Variation in 

the rotational speed causes the segments to contain different numbers of samples. Linear 

interpolation has been used to make every segment have the same number of points. They 

applied a Fourier transform to each segment of data separately. The transforms were 

averaged and the result was converted back into the time domain. They employed a 

500x75 Choi-Williams time-frequency Distribution (CWD) matrix that spans a time 

period between 0 and 20 ms (where initial contact between the insert and the work-piece 

occurs at 2 ms) and a frequency range from 0 to 9.375 kHz. To reduce the computational 

burden for the wear size estimator in the next stage of signal processing, the resolution 

was lowered to reduce the number of CWD elements to 50x5 matrix. Thereafter a neural 

network has been suggested to estimate the size of flank wear from the values of the 15 

CWD elements.

Chen and Jen [3.50] advocate a data fusion strategy before presenting the data to a neural 

network for decision making regarding tool wear. A dynamometer for force sensing and 

an accelerometer for vibration sensing were used. The detected raw signals were pre- 

processed to identify the feature elements of each independent signal data set. Several 

data fusion methods were deployed to calculate the fusion indices from the obtained 

feature elements. The first o f the fusion techniques used was to calculate the average of 

the magnitude of the detected signals. The sampling rate was kept variable as the total 

data points were linked to one sample at each degree of the tool rotation. The average was 

calculated for each data set where data set defines the data collected within the time 

period of one cutting cycle. A feature index was also defined based on the result of 

average of a single cutting cycle. A further average of the ten repeated feature indices 

was used to represent the real feature index of the data.

For a normal cutting process, these average values remain within a reasonable range. 

When the cutting tool is worn or damaged, these values vary significantly. The variations 

of operating parameters normally arising in real cutting processes will also affect the
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results. They have therefore suggested using operating parameters as one of the data input 

for training the neural networks before final decision making. The acquisition of data 

from multi-sensors was synchronised using a trigger sensor. They have also suggested 

data fusion methodologies for investigating variance of the amplitudes of the detected 

data as well as the frequency components in the same data.

Xiaoli and Guan [3.62] used wavelet-based de-noising, discrete-time-frequency analysis, 

FFT and second differencing as data processing techniques on the acquired feed motor 

current signal for the detection of cutting edge fracture during end milling. They 

suggested that the ideal feed motor current during end milling varies periodically with 

frequency, which is equal to the product of spindle rotational frequency per second and 

the number of flutes in the cutter. After necessary data filtering through a wavelet based 

filter, the signals were analysed by the discrete time-frequency approach. According to 

the calculated frequency of signals based on the given spindle speed and the number of 

cutter flutes, the primary frequency components were selected from the time-frequency 

plan and named as “feature signals”. The maximum value of the FFT of the “feature 

signals” was taken as a feature point for detecting cutting edge fracture. Furthermore, 

they have suggested using a second differencing method to extract a marked feature to 

indicate the tool condition from the feature point and the previous two feature points 

during end milling. Finally, the marked feature value was compared against a threshold 

value. If the marked feature was found to be over the threshold value, the tool was 

considered as broken. They have suggested that the system is capable of clearly 

distinguishing between the entry/exit and tool breakage conditions and is much more 

reliable than other sensor-less systems.

Zanardelli et al [3.81] reported wavelet based methods for the fault prognosis in electrical 

motor failures. They investigated the detection of problems in electric motors and in 

associated systems. Machine tool operation and health is a good example in which such a 

system can be employed. The merits of wavelets based methods with classical frequency 

domain analysis techniques such as Fourier series for the analysis of non-stationary 

signals were compared to support decision making in an industrial environment. They 

presented two examples of the application of proposed system namely: wiper motor and
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fuel pump motor monitoring in automobile applications. The acquired data were analysed 

using three different wavelet based algorithms before decision making.

This part of the review has dealt with most if not all o f the signal processing 

methodologies used in the design of TCMS. Each of these approaches has its own merits 

and demerits as discussed. These factors are responsible for making each approach a 

more or less researched area. For any TCMS, the signal processing can be named as the 

heart of the system and has to be as accurate as possible as the final decision is based on 

the information provided by this stage. The next section of the review explores different 

decision making techniques used in the final phase of TCMS design as reported by 

various researchers.

3.4 Decision M aking

The final and most important stage in the design of any TCMS is decision making 

regarding the health o f the tool based on the information obtained from processed signal. 

In any industrial environment the importance of this particular stage is further increased 

by the fact that any misjudgements due to the complicated dynamic characteristics of the 

cutting process may result in unnecessary down times. This tendency has thus far limited 

the implementation of many of the previously researched systems. There are various 

methodologies which have been used by various researchers at this stage of the TCMS. 

These include: fuzzy logic, neural network, control charts, threshold and pattern 

recognition. The research in the area of using a predefined threshold is moving forward 

and more attention is being paid to designing adaptive thresholds which vary with the 

changes in machining parameters thus avoiding the generation of false alarms.

There has been a recent increase in the use of artificial intelligence in the design of 

TCMS. The two main areas of artificial intelligence used in this context are fuzzy logic 

and neural networks.
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3.4.1 Fuzzy Logic

As the name suggests Fuzzy logic is a system of logic dealing with the concept of partial 

truth with values ranging between completely true and completely false. There are several 

features of fuzzy logic which make it a suitable basis for TCMS applications. These 

include the point that it does not require precise and noise free inputs, it can be 

independent of the number of feedback inputs and it can deal with non-linear systems 

more easily than mathematical models are able to.

Rao and Hope [3.30] used a ‘feature filtered fuzzy clustering’ technique for the 

classification o f tool wear states under various cutting conditions. A characteristic 

relationship was developed between mean spindle power and mean cutting force signals 

at the ‘learn’ stage. In the classification stage, they determined the cluster centres from 

the characteristic coefficients obtained in the learn stage. Furthermore they then 

determined a membership function based on the normalised distance between the 

measured features and the evaluated cluster centres under specific cutting conditions. The 

final classification result provides information regarding the milling cutter tool’s health. 

It is the composite result o f the membership functions o f the two features namely; mean 

power consumption and mean cutting force.

Chen and Black [3.29] reported a “Fuzzy-Nets-In-Process” (FNIP) system for tool 

breakage monitoring in milling operations. The FNIP system consists of two components: 

a Fuzzy Search Classifier (FSC); and a Fuzzy Adaptive Controller (FAC). Tool breakage 

detection was approached using Fuzzy Associative Memory (FAM) rules that solve the 

non-linear behaviour problem of the milling action. The FSC has been used to perform a 

mapping operation of a state vector into a recommended action using fuzzy pattern 

recognition. The FAC maps a state vector and a failure signal into a scalar grade that 

indicates state integrity. The FAC was also used to produce the active value to upgrade 

FSC mapping according to the variation of the input state. They used the force signal 

derived from a dynamometer linked to a PC based Data Acquisition (DAQ) system. A 

five-step learning procedure was proposed for generating FAM rules which include 

dividing the input space into fuzzy regions, generating fuzzy rules from input-output data 

pairs, avoiding conflicting rules by using Top-down and Bottom-up methodologies,
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developing a combined fuzzy rules base and finally, determining a mapping based on the 

fuzzy rule base. After the thorough training of the FNIP system, the researchers carried 

out the experimental tests and reported a success rate of approximately 90%.

Fu et al [3.73] used fuzzy pattern recognition for the final classification of a tool’s health. 

In order to classify the tool wear value, they selected several groups of inserts with 

typical wear values as models. These models were considered as fuzzy sets. By 

calculating the ‘distance’ between the tool being monitored and the wear value models it 

was possible to determine to which model the tool should be classified. The acquired 

signals from various sensors including spindle load, force, AE and vibration were 

processed and membership functions for every feature were determined. They reported 

that experimental results showed a highest closeness grade of 0.9086 which represents a 

level of performance similar to the system considered above [3.29].

Sokolowski [3.82] suggested that the design of a fuzzy logic system must be based on 

provided data, instead of using a human expert’s knowledge, in order to increase its 

implementation accuracy. A fuzzy logic system consisting of five layers was used. The 

nodes at the first layer have been used as input nodes for the linguistic variables. The 

nodes at the second and fourth layer act as Gaussian input and output membership 

functions respectively. Each node in the third layer has been used as a rule node which 

represents one fuzzy rule. The links between second and third layer define the premises 

of fuzzy rules and links between third and fourth layer define the consequents of fuzzy 

rules. The nodes at the fifth layer are used for defuzzification. This research has shown 

experimental results which suggest that the results obtained using fuzzy logic in the 

monitoring of drilling applications were much superior to those obtained in cutting 

applications. It suggests that for cutting applications the feed forward back propagation 

neural networks provide much better results when compared to fuzzy logic.
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3.4.2 Analytical Neural Networks

Neural networks are analytic techniques which are modelled on the processes of learning 

in cognitive systems and the neurological functions of the brain. Neural networks use a 

data 'training set' to build rules capable of making predictions or classifications on data 

sets. The idea is to have a human-like reasoning emerge on the macro-scale. Neural 

networks can carry out some form of pattern recognition and are able to analyse data to 

discover predominant features and patterns within it. After initial training, neural 

networks continue to learn from the experience of later data. The learning methods of 

neural networks fall into two major categories namely: supervised learning and 

unsupervised learning. The supervised learning methods include back-propagation and 

probabilistic methods whereas unsupervised methods include Kohonen’s method and 

Adaptive Resonance Theory (ART) networks.

Researchers working on the design of TCMS and using neural networks for decision 

making make claims regarding their importance stating that “no diagnostic system can 

ever be complete without the aid of neural networks”[3.30]. A very brief review of some 

of the research in this area is presented below. This is not a comprehensive review of this 

particular field but an indication of the current application o f this approach in this area.

Dimla and Lister [3.27] reported a neural network based modular tool condition 

monitoring system based upon the acquisition and analysis of cutting force and vibration 

data. Wear on the tool edges was measured, and the results, together with the processed 

data, were fed to a neural network which was thus trained to distinguish between tool 

states. Threshold values were used on the flank wear in deciding whether or not a tool 

was still sharp. The researchers used a Multi Layer Perceptron (MLP) topology and its 

configuration has been chosen through an investigation that involved training several 

networks containing a different number of nodes in a single hidden layer. The network 

with the least errors was selected with 12 inputs, one binary output and 20 hidden nodes 

in one hidden layer. They have reported the success rates of up to 90% but only for 

constant and known cutting conditions. They reported that changing the data presented to 

the system from one cutting condition to another does affect the accuracy of the system. 

It was also reported that the system was capable of fault detection for a chipping event,
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but was incapable of reasonable tool state classification for sharp and partly worn tool 

states. The improvement of the system to make it robust from changes occurring in the 

signal due to the changes in machining parameters has been recommended for further 

investigation.

Baek et al [3.83] reported the use of a Digital Signal Processor (DSP) chip for tool 

breakage detection. They suggested using several neural networks in a system working 

simultaneously to determine different conditions. This is because if a neural network is 

used to learn many states (e.g. chatter, breakage and wear) its accuracy becomes low. In 

view of this, the proposed system performs parallel processing with two neural networks 

to monitor tool breakage and tool chipping states respectively. They used signal 

processing techniques such as FFT, AR modelling and band energy using digital filters 

and compared their performance by applying them on the cutting force signal. The 

features extracted from these techniques were used as inputs to a pattern classifier with a 

back propagation learning algorithm for final decision making about the health of the 

tool. The health index feature extraction was based on the phenomenon that a broken tool 

will not engage in cutting and the next insert will be cutting double the amount of its 

normal cutting. Both the AR model of the filtered output of the cutting force and the band 

energy show that there is a change when a broken tool is cutting compared to the signals 

acquired under normal cutting conditions. Threshold values could be set to decide about 

health of the cutter using these methods.

Haber and Alique [3.84] presented an intelligent supervisory system supported by a 

model-based approach. They have used the system for predicting tool wear in machining 

processes. An artificial neural network based model was created which is used to predict 

the process output. They used residual errors as the basis for decision making about the 

health of the cutting tool. The difference between the actual cutting-force and the cutting 

force estimated from the neural network based model was used to generate the residuals. 

The deviation of the cutting force has therefore been used as the primary criterion for 

inferring tool condition. Residual evaluation and diagnosis decision making were 

performed using a Weighted Sum Squared Residuals (WSSR) method. To deal with the 

inherent uncertainty in the model, generated residuals are not expected to be zero in the 

fault free case. They have therefore suggested that a “nonzero” threshold must be applied
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to reject “ false” residuals. An adaptive threshold strategy has been used to increase the 

robustness of the overall system.

In addition to the above mentioned research activities, Neural Network based decision 

making has been utilised in several of the research publications previously reviewed [3.4, 

3.15, 3.18, 3.20, 3.42, 3.49, 3.50]. In each case the balance between the accuracy and the 

training of the system means that the continuously changing conditions met during 

normal milling procedure still present a major challenge.

3.4.3 Use of Threshold & Adaptive Threshold Strategies

The use o f threshold values to support decision making about the health of the tool or 

process is a very commonly used strategy, particularly within the fuzzy logic and neural 

networks based approaches described above. In this strategy if the value of the observed 

parameter is below or above (as appropriate) a certain level, it is considered to be normal. 

If it crosses the limits, some remedial action may be taken. A fixed threshold scheme can 

be relatively easily implemented in practice due to its simplicity, but it requires presetting 

with possibly different threshold values [3.52]. It may be noted that setting threshold 

values is not a trivial problem since they may well vary according to cutting conditions, 

cutting tools and workpiece materials.

The adaptive threshold technique is a relatively new one and is receiving more attention 

and popularity in the field due to its flexibility and reliability. The most important factor 

in the design of any tool monitoring application is that the decision making stage is 

independent of the cutting conditions i.e. the threshold values for decision making must 

be irrelevant to the cutting parameters. This is only possible if an adaptive threshold 

strategy is implemented [3.73] for such applications designs.

Kim and Choi [3.72] reported a multi-sensor based tool breakage detection. They used 

the deviation of average cutting force, peak value of acceleration and relative 

displacement between the tool and the workpiece to determine the tool state. The 

detection of any observed values in excess of the threshold values represents tool
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breakage. In order to monitor on-line and to be capable of setting up the threshold 

adaptively irrespective of the cutting condition, an X-bar control chart scheme was used 

to yield upper and lower control limits. The current threshold values were updated using 

both the mean and deviation of the previous signal and these were used for final decision 

making.

Takata et al [3.60] used fluctuations in the spindle rotational speed of a vertical milling 

machine for tooth breakage detection. The spindle rotational speed and fundamental 

frequency of the fluctuations in the speed were chosen as the main focus of research. It is 

basically a time domain approach which compares the values in a reference vector 

(prepared and stored in the system earlier for each tool) to the values obtained in an 

observed vector using a tachometer or pulse generator (for spindle rotational speed) for 

every spindle revolution. The distance between the vectors is the key in identifying the 

state of the cutting tool. The most important aspect of the approach is setting the 

threshold values for the distance between the vectors to avoid generating false alarms. 

They have further suggested the use of a normalisation technique in order to make the 

reference as well as observed vectors as insensitive to the cutting conditions as possible 

to avoid false alarms.

Jun and Suh [3.52] applied a modified version of Statistical Process Control (SPC) 

measures including X-bar control schemes, Exponentially Weighted Moving Averages 

(EWMA) and adaptive EWMA schemes to vibration signals for decision making. These 

control schemes automatically determine their threshold values independent of cutting 

conditions. In the X-bar control scheme, subgroup averages are calculated over time and 

modified so that the Upper Control Limit (UCL) and the Lower Control Limit (LCL) for 

the subgroup are obtained. They also used an exponentially weighted moving average to 

produce a smoothing constant which was useful in detecting minor variations in the mean 

of a process. An adaptive EWMA scheme was also tested. After the practical 

implementation and testing of these schemes, the authors have reported that the X-bar 

scheme is outperformed by both the EWMA and adaptive EWMA schemes. The adaptive 

EWMA scheme was proposed as the most suitable for such application designs.
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Apart from detecting tool condition (i.e. breakage and wear) there are some other areas 

related to machine tool operation which have received considerable attention by the 

researchers in recent past. These include controlling the process variable (e.g. machine 

power, depth of cut or spindle speed etc.) in case there is any abnormality observed by 

the monitoring system. This technique not only prevents damage to involved components 

but also helps in maintaining high quality operations. A brief review of some of the 

related research is presented in this section of the review.

Charbonnaud et al [3.22] argued in favour of force control in the milling operation in 

order to increase a tool’s operational life. They have suggested that, due to the variations 

in radial depth of cut and feed per tooth, chip thickness represents an important factor in 

the assessment o f chip load on the cutting edge. The correct value of the feed per tooth 

not only increases the tool’s performance but also gives increased efficiency to the 

machining process. The deteriorating quality of the cutting edge and tool wear induces 

the force variations. In the reported application, the start of the machining cycle 

undertaken is done by a predefined feed rate set point having an initial feed per tooth 

value. The force signal acquired using a dynamometer is observed and if the mean cutting 

force does not exceed a preset threshold value the workpiece will be machined. If the 

mean cutting force exceeds the preset threshold value, the force controller is called into 

action. During force control action the force regulation decreases the speed to the level 

that the problem may be overcome or can be reduced. During the end of the pass, the feed 

per tooth increases to maintain the cutting force at a reference level. If the critical value 

of the mean cutting force is achieved during milling, a machine stopping procedure is 

activated to avoid any catastrophic damage.

A similar approach reported by Tansel [3.17] et al monitors the cutting force in a milling 

operation and reduces the metal removal rate when it predicts tool breakage. The 

approach is based on calculating the average cutting force values and predicting their 

future values up to 0.3-0.5 seconds ahead in time using the least squares method. This is 

based upon findings which indicate that cutting force increases with tool wear. It is said
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to be 10-30% different at the same cutting conditions when two different cutting tools are 

used. In view o f the above it was recommended that simply using the force variations to 

generate alarms about tool breakage may not be very reliable. This favours the argument 

of controlling the cutting parameters to avoid not only the false alarms but unnecessary 

down time. However, there may be a practical limitation in the implementation of such 

systems since although the number of false alarms may be reduced; the associated 

reduction in metal removal rates may affect the Overall Equipment Effectiveness (OEE).

Kim and Kim [3.36] have used the same approach of controlling the cutting force to 

avoid tool failures in practical cutting conditions. The difference between this approach 

and others reported is the usage of low cost sensors as compared to a dynamometer. They 

use the current signals of the feed drive motors in order to avoid the cost effect of 

dynamometer. A typical model for the feed-drive control system of a horizontal 

machining centre has been reported to analyse cutting force measurement from the drive 

motor. The pulsating milling forces have been measured indirectly within the bandwidth 

of the current feedback control loop of the feed-drive system. It is shown that indirectly 

measured cutting force signals can be used in the adaptive controller for cutting force 

regulation.

3.5 The Current Situation -  A Summary

The evidence gained from previous and current research work strongly supports the fact 

that the design and development of a standalone TCMS is an important goal. There is 

unlikely to be a single globally accepted solution to the problem. Factors to be 

determined when devising a solution include: the overall cost of the system, size of the 

system, practical implementation issues, use or non-use of sensors and the response time. 

The solutions to these will combine to provide a system that meets the satisfaction level 

of industrial users. The research activity in this area should be interfaced with actions 

taken at the machine tool manufacture level in order to further enhance the diagnostics of 

machine tool problems. There are many instances in which diagnostic and monitoring 

actions may be implemented within the machine control system but currently these are 

not being produced.
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All the technologies and techniques above have advantages and disadvantages. 

Mathematical modelling techniques are not absolute and measurements have to be made 

on a healthy system before defining acceptable models. The resulting healthy responses 

are stored for further comparisons for generating residuals. Every machine normally 

needs specific measurements to be taken, as the measurements taken from one machine 

can not simply be applied to another. This adds to the overall cost and the time for such 

system design and implementations.

The use of additional sensors adds to the overall cost of the system in addition to the 

logistical problems and inconvenience of placement of the sensor. There has been an 

extensive usage of Data Acquisition (DAQ) cards in addition to PCs for the signal 

acquisition, storage, data processing and decision making which again adds to the overall 

cost. The majority of the systems have been based on using PCs as their processing unit 

after acquiring the data from different additional sensors applied in the system. This route 

of TCMS is generally opposed by industrial managers as it not only affects their 

prioritised shop floor settings but also adds to the costs involved.

The recent developments in embedded technology have laid the foundation for a route 

which if followed can be more successful. There has been considerable research in this 

field [3.82, 3.85-87]. There are various factors which support this approach. 

Microcontrollers are being developed with an increased processing power, lower size, 

increased memory and moreover with a much higher reliability [3.87]. All these factors 

have encouraged their use in areas where computer based systems were the only choice in 

previous years. One of these areas is machine tool condition monitoring and the essence 

of this research is also based on these simple facts. The author has endeavoured to 

research tool condition monitoring techniques both in the time and frequency domain 

using microcontrollers, and counter verify the results before making a final decision 

about the health of the tool. This route has been adopted in order to satisfy the industrial 

management about their requirements from a 21st century’s TCMS.
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CH A PTER  4

T EC H N O LO G IC A L FU N D A M EN TA LS & SY STEM  

R E Q U IR E M E N T S

4.1 Introduction

Having conceived an idea for any system design, the next stage normally is to carry 

out a detailed survey o f available supporting technology which can be used for the 

implementation o f designed system. It includes a comparative analysis of these 

supporting hardware technologies in terms o f cost, reliability, their functional 

capabilities and efficiency viewed in the overall context o f the actual requirements of 

the system being designed. These design principles were adhered to in this research. 

The monitoring system’s actual requirements in terms o f data acquisition, data 

processing, further communication, Ethernet connectivity as well as GSM 

connectivity were assessed. These findings were used as the basis o f a technological 

analysis o f possible supporting hardware including PCs, Microcontrollers and Digital 

Signal Processors. The aim was to choose a cost effective design hardware which had 

sufficient capabilities to meet the system requirements.

The main aim o f this research was to establish data processing techniques efficient 

enough to detect tool breakage and yet simple enough to be implemented and 

supported by cost effective hardware. The initial design o f the system was based on a 

three tier architecture both for software and hardware implementation. The design is 

based on the concept o f a distributed monitoring system thus adding extra processing 

power along with adequate simplicity to the overall architecture. A distributed system 

as defined by Tanenbaum is “A collection o f independent computers 

(microcontrollers/microprocessors in the case o f embedded systems) that appears to 

its users as a single coherent system” [4.1]. A distributed system design not only adds 

to the flexibility o f the system but also improves its overall capability in terms of data 

processing [4.2]. The technology selection for such a design is an important aspect in 

terms o f its capabilities and needs to be carefully analysed before making the final 

choice about system implementation.
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4.2 General Requirements of a Monitoring System

A monitoring system is normally interfaced to a process and collects data in real time 

in addition to undertaking dynamic analysis and making decisions. As an embedded 

monitoring system’s role is performed close to the process itself it should be reliable 

and robust enough to withstand an industrial environment. The block diagram of a 

generic monitoring system is shown in Figure-4.1. Any monitoring system needs the 

appropriate interfaces for digital and analogue signals. These interfaces need 

protection to limit any damage in the event o f a fault in the process, controller, 

monitoring system or any other part o f the system. It has also to be ensured that 

interfaces must not significantly load the signals, add any disturbances or change the 

operation o f the process.

Information
Sharing

Control
Signals

Feedback, h 
Signals

Process
Information

Process

Controller Monitoring System

F igure-4.1, G eneric M onitoring System

The installation o f any designed monitoring system should normally be simple 

enough so that it does not interact with the operation o f the process/machine itself. 

Moreover access to the machine should not be limited in case o f any maintenance 

requirements. It should be able to provide interfaces for external inputs as required. 

For example; a machine tool condition monitoring system may need some of the 

operating parameters (e.g. depth of cut) and the designed system should provide 

necessary interface for the communication o f such inputs. Furthermore, the 

monitoring system must be able to operate reliably in accordance with the industrial 

environment.

In terms o f the software requirements o f a monitoring system; it should be able to 

acquire data at the required acquisition rate, self calibrate and scale any signal or 

sensor values dynamically. These values should be temporarily stored until either
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being finally discarded if normal process/machine condition is observed or 

communicated to the next tier for analysis if required. This temporary storage and any 

other storage must be managed to prevent software failure in the case of the storage 

medium reaching its capacity.

The system should have the capability to take necessary precautions in order to 

prevent data loss in the event of communications failure. In large factories, normally 

more than one monitoring and/or analysis system are networked together. Therefore, 

precautions need to be taken to prevent conflicts between the systems and the transfer 

o f the incorrect information.

The analysis capabilities of an effective and reliable monitoring system should 

normally be able to efficiently handle the acquired data. Generally, a data analysis 

stage has a number o f elements e.g. the deviation detection element determines if the 

collected data relates to a normal process condition or not. The fault diagnosis 

element relates these deviations to the likely cause behind the actual process/machine 

failure.

4.3 General Architecture of the Researched System

A simple representation o f the hardware architecture o f the developed system is 

shown in Figure-4.2. The tiered architecture increased the system capabilities not only 

in terms o f data processing but also for data and message communications using either 

Ethernet or GSM access. All o f these functions were incorporated into the designed 

monitoring system to provide the true capabilities o f a generalised e-Monitoring 

system.

The architectures used are described briefly to give an idea o f technological 

requirements. Figure-4.2 shows the first tier o f the system comprising o f Front End 

Nodes (FENs). The signals from the system being monitored are interfaced to these 

FENs after necessary signal conditioning and anti-aliasing. The parameter monitoring 

and decision making node and FENs at tier one are connected by a Controller Area 

Network (CAN) for information sharing and for the transfer o f data to the second tier
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for further analysis as and when required. CAN is one o f the connectivity mediums 

used in industrial applications due to its reliability of operation. The second tier node 

uses a Tiny Internet Interface (TINI) board. This acts as an interface for the FENs and 

provides Ethernet connectivity and Global System for Mobile communications (GSM) 

connectivity. The second tier also acts as an additional source o f data processing thus 

adding extra processing power to the system capabilities. In the initial design stage of 

the system it was expected that the third tier o f the system will be used to perform up 

to 4% o f the data analysis but in the actual testing o f the system (Chapter-7) it was 

concluded that not many cases need to be referred to this stage. Therefore the third 

tier was not implemented in the final design stage o f this research.

Internet
Third Tier (if required)

Mobiles
Devices

CAN Bus

TINI

FEN-3FEN-1 FEN-N

GSM Connectivity

P aram eter Monitoring 
and D ecision Making

Figure-4.2, Generic Hardware A rchitecture o f  the System

The software architecture o f the system presented in this research is shown in Figure- 

4.3. It was targeted that the supporting software for first tier nodes should be capable 

of dealing with around 80% of the situations in addition to performing continuous 

data acquisition. In actual system testing it was observed that it can deal with 85% of 

the cases (Chapter-7). The acquired data for normal situations are stored for a required 

length o f time in a cycle before it is eventually discarded or passed on to avoid 

memory overloads. Software in the second tier node deals with around 16% of the 

situations out o f the remaining 20% (in the actual testing it dealt with all o f the 

referred cases therefore removing the need for implementing the third tier) which are 

referred by the FENs. The following sections explain the selection criteria and their 

implementation within the hardware used at tier one and two o f the proposed TCMS.
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Figure-4.3, G eneric Softw are A rchitecture o f  the System

4.4 Selection of Processing Hardware at First Tier

The core hardware is the most important part in the processing layer o f a system. It is 

crucial because it plays an important role in determining the system’s overall 

capabilities as well as limitations. In recent years, the alternatives available for use at 

the front end o f monitoring systems have increased. This has been due to recent 

advancements in electronics and its use in designing embedded systems. The majority 

o f embedded systems are designed to perform specific functions at a low cost. Such 

systems are based on the integration o f software engineering, microcomputer 

hardware, digital and analogue electronics, electrical engineering, and data 

communications. The term “embedded” illustrates that they are generally an integral 

part of the system where they are being used. These may also be differentiated from 

general purpose computers in a way that these are special purpose devices and 

normally their capabilities are restricted to the application supporting environments.

The technological breakthroughs and introduction o f microcontrollers has 

revolutionised this area. These are single chip devices not only capable o f storing an 

actual programme but also o f performing a number o f tasks e.g. data acquisition, data 

processing, temporary and permanent storage. They can communicate with the 

outside world both in digital and analogue format. The following sections examine in 

detail the devices selected in this implementation.
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4.4.1 Processing Hardware Selection

After finalising the idea o f using microcontrollers the next phase was to make the 

selection. It was a complex situation and resolving it was challenging. There are 

different manufacturers providing microcontrollers in the market including Atmel, 

Dallas Semiconductors, Hitachi, IBM and Microchip. These are not the only 

manufactures but just a few examples. The microcontrollers are categorised as 8-bit, 

16-bit and 32-bit according to their processing capabilities. Furthermore, different 

products from the same company are divided into different families in terms o f their 

features for example availability o f memory space, analogue and digital signal 

acquisition capabilities. Lastly, there are different microcontrollers in a particular 

family and a final choice has to be made based on design requirements.

A comparative analysis o f different microcontroller manufacturers in terms of their 

products, features, cost and market standing was carried out to finally select a 

processing core for system design. This revealed that Microchip Technology Inc(R) 

was the leading 8-bit microcontroller supplier according to the 2002 microcontroller 

market share and unit shipments [4.3]. An important consideration was the established 

expertise and facilities in the IPMM Centre were almost exclusively based upon 

Microchip hardware. In addition the previous exposure o f the author in the course of 

MSc project work within IPMM Cent was also to the Microchip hardware.

These considerations supported the choice o f the PIC microcontroller as the heart of 

the TCMS design. The system’s overall requirements in terms of data acquisition, 

data storage, processing and communication were investigated. It was concluded that 

the monitoring system needs both digital and analogue data acquisition capabilities, 

more than IK  Random Access Memory (RAM), a Controller Area Network (CAN) 

interface, a pulse width modulation module, a hardware multiplier for faster 

processing, hardware and software interrupts and timer modules. The features of 

different PIC microcontroller families were analysed and are tabulated in Table-4.1

After carefully analysing different features o f PIC families presented in Table-4.1 and 

the research application’s requirements the PIC18F458 microcontroller was selected
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for this application. The selected microcontroller meets the demand requirements o f 

the research.

An important fact to be considered is that Table-4.1 presents a brief summary of 

Microchip’s microcontrollers which were available at the start o f this research in 

2002. With technology advancements the demands from embedded design engineers 

grew in terms o f product differentiation, lower cost, and low risk development. To 

meet these requirements Microchip has expanded its product portfolio to include new 

compatible families o f 16-bit PIC24 microcontrollers and dsPIC^ Digital Signal 

Controllers (DSC) offering a new level o f performance and higher integration [4.4]. 

Recognising that this was bound to occur the system operation and supporting 

architecture was designed in such a way so as to allow its eventual uploading into new 

devices.

The main features o f the selected PIC microcontroller and a brief summary of their 

usage for TCMS presented in this research are presented below:-

• 40MHz clock speed, which is an important requirement as designed system 

operates at a high Data Acquisition rate (normally more than 8000 samples per 

second for time domain analysis). It also supports real time processing for 

immediate decision making.

• 1536 Bytes o f data memory and 32K Bytes o f programme memory. The size 

o f data memory is important to allow the system to store data temporarily 

before discarding it for normal situations.

• The availability o f both serial and CAN interfaces. The serial interface was 

used in the design and testing phase. The system was interfaced to a PC for 

data analysis. In the next phase o f research CAN was a necessity for 

interfacing different FENs and the TINI board.

• Analogue to Digital Converter (ADC) module. This module was an absolute 

necessity. The proposed TCMS used internally available analogue signals 

from the machine i.e. spindle speed and spindle load, and these were converted 

to digital format using ADC before actual processing.

• The timer was used for sampling rate calculations o f the ADC. The timer runs 

in the background and can generate interrupts on completion of set values; this
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allows the processor to analyse/communicate (if required) the previously 

acquired data before the next sample is acquired.

• The PWM module o f the microcontroller was used to provide the clock to the 

filter IC.

• PIC18F458 has an 8x8 hardware multiplier. This multiplier was used for data

processing in the developed Tooth Rotation Energy Estimation (TREE) 

technique (explained in Chapter-6). A simple illustration of increase in 

efficiency is that for an 8x8 unsigned multiplication; a microcontroller without 

such multiplier executes 69 instruction cycles whereas this controller performs 

the same operation in 1 instruction cycle at the same clock speed.

• Relatively small instruction set consisting o f 75 instructions for a powerful 

microcontroller.

• PIC18F458 has three communication modules implemented onboard capable

o f providing powerful communication features including Controller Area 

Network (CAN) module used in this research.

The embedded peripherals and other main features like timers, ADCs, comparators, 

and I/O control add to the versatility o f the selected microcontroller and provide 

design flexibility. The technical details o f each element summarised here is 

considered in more detail in Appendix “A”. This analysis supports the choice of the 

selected PIC18F458 as the FEN in the developed monitoring system.



Family Pins
Frequency

(Max)
Program
Memory

Data
Memory

I/O Pins Analogue Timers Serial CAN

PICIOCxxx 6 8MHz 750 Bytes 24 Bytes 4 Yes 1 No No

PIC12Cxxx 8 4-20MHZ
750 Bytes- 
3.5 Kbytes

25 Bytes- 
128 Bytes

6 Yes 1-2 No No

PIC14Cxxx 28 20MHz 7 Kbytes 192 Bytes 20 No 2 No No

PIC1 BCxxx 20-64 10-40MHZ
750 Bytes- 
14.3 Kbytes

24 Bytes- 
368 Bytes

6-33 Yes 2-3 Yes No

PIC18Cxxx 18-80 40MHz
4KBytes-

128KBytes
128 Bytes- 
1536Bytes

16-70 Yes 2-5 Yes Yes

Table-4.1 PIC Families of Microcontrollers and their Characteristics
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4.5 Supporting Technology Selection for Second Tier

The second tier o f the system deals with more challenging processing tasks as 

compared to FENs. It also acts as a bridge between the first tier and the Ethernet/GSM 

connectivity. It needs more processing and data storage capacity to facilitate decision 

making for complicated situations. After finalising the supporting hardware for the 

first tier o f system architecture the next requirement was to analyse the architecture 

for the second tier according to the system requirements.

The design analysis for TCMS under research (shown in Figure-4.2 and Figure-4.3) 

revealed that in the following tier two features were very important:-

• Extra programme memory to store software capable o f interacting with both 

tier one and Ethernet as well as the GSM connectivity module.

• Extra temporary storage space to store data communicated by parameter 

monitoring and decision making node for further analysis.

• The availability o f a CAN controller to provide interfacing with FENs, 

preferably with at least eight different message centres. These message centres 

store data from different FENs separately before further analysis and decision 

making.

• Ethernet connectivity was required to add extra flexibility to the system 

making it capable o f not only communicating globally but also able to present 

data/results wherever required.

• A higher system clock frequency to process data in the minimum possible time 

to communicate results and/or data to tier one and/or Ethernet about tool 

condition.

• The availability o f hardware support for mathematical functions.

• Serial port support - an important requirement in the design and testing phase 

o f the research.
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4.5.1 Technology Survey and Selection

A survey o f available market technology revealed different available options. Several 

network enabled controllers and their features are tabulated in Table-4.2. Analysis of 

these features and TCMS requirements helped in choosing Tiny Internet Interface 

(TINI) from Dallas Semiconductors for this research application.

4.5.2 Factors Supporting Selection

There are various factors supporting the selection o f a TINI as the second tier 

hardware and these are summarised below [4.5]:-

• Availability o f a CAN controller with 15 message centres. The CAN 

controller provided connectivity between first and second tier. The 

availability o f extra message centres made it possible to store data temporarily 

before transferring it to RAM for analysis and decision making.

• The Ethernet support for connectivity between second tier and internet. The 

TINI has onboard 10/100 Ethernet MAC which provides it a unique MAC 

address.

• Onboard math accelerator and capability for accessing 1MB data memory 

supports the mathematical functions for complex data analysis.

• The capability o f providing a maximum clock rate o f 75MHz resulting in a 

minimum instruction cycle time o f 54nSec. The higher speed enabled the 

controller to cope with the highly loaded network reliably to provide Ethernet 

access in addition to achieving minimum time processing capabilities.

• TINI supports Java as a higher level programming language. Java is a no cost 

solution available to the programmers.

• The last but most important factor is its actual price. It is the cheapest internet 

enabled microcontroller based module in the list tabulated in Table-4.2.
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4.5.3 TINI Characteristics and Operational Requirements

The TINI CPU is Dallas Semiconductor DS80C400 TINI Single Inline Memory 

Module (SIMM) which requires the support of a socket board to enable its 

connectivity with external peripherals. The analysis of supporting socket boards in 

terms o f associated costs, available tools and implementation support helped in 

choosing DSTINIs400 socket board. TINI provides an interface between tier one and 

tier two as well as Ethernet and processing capabilities needed at tier two (TINI acts 

as the basic hardware for tier two). The block diagram of generic system connectivity 

is shown in Figure-4.4. The CAN module o f TINI is interfaced to the FENs at tier 

one. Since there are fifteen different message centres in TINI, the software is 

structured to handle the interfacing of fifteen different microcontrollers. This provided 

a “Plug and Play” capability to the system design. The software has the ability to 

detect the addition o f any microcontroller on the CAN network by accepting its 

messages and sending back appropriate instructions. This adds to the overall 

flexibility o f design hardware and software as the system can be used in different 

applications where different numbers o f microcontrollers (as compared to this 

particular application) are used. The complete details o f the TINI hardware are 

attached as Appendix “B” and may be referred to by the reader if further 

understanding o f modules is required.

To PC  
If Required

C A N  Bus Connecting 
PIC Microcontrollers

1-Wire Connection

Figure-4.4, B lock  Diagram o f  TINI System  C onnectivity [Adapted from 4.6]



Family Processor
Programme

Memory

Data

Memory
Network Protocols

Serial

Port

Preferred

Language
Price

EtherNut
Atme 

Atmega 103
128K 32K lObase-T

TCP/IP

HTTP
RS232 C $125

N etl86
AMD 

AMI 86-EX
512K 512K 1 Obase-T

TCP/IP

HTTP

2x

RS232

C

Assembly
$420

Orlin

Technology
PIC16F877 128K 368 Bytes

2400 baud 

Modem

TCP/IP PPP 

UDP

RS232

RJ11

PIC

Assembly
$299

Picoweb
Atmel

AT90S8515
8K 512K 1 Obase-T

TCP/IP

HTTP
RS232 Assembly $149

Rabbit

TCP/IP

Rabbit

Processor
512K 128K 1 Obase-T

TCP/IP HTTP 

SMTP FTP

RS232

RS485
C $199

Siteplayer Philips 8051 48K 768 Bytes 1 Obase-T
TCP/IP

HTTP
-

Site

Objects
$99

TINI
Dallas

80C400
1MB 1MB 10/100 base-T

TCP/IP FTP 

Telnet SMTP

RS232

CAN
Java $85

Table-4.2 Comparison of different features offered in a range o f TINI socket boards available, tabulated from [4.6]



87

To enable access to the network, a full application-accessible TCP IPv4/6 network 

stack and Operating System (OS) are provided in ROM. The network stack supports 

up to 32 simultaneous TCP connections and can transfer up to 5Mbps through the 

Ethernet MAC. Access to large program or data memory areas is possible with a 24- 

bit addressing scheme that supports up to 16MB o f contiguous memory.

To accelerate data transfers between the microcontroller and memory, the DS80C400 

provides four data pointers, each o f which can be configured to automatically 

increment or decrement upon execution o f certain data pointer-related instructions. 

With extensive networking and I/O capabilities, the DS80C400 can serve as a central 

controller in a multi-tiered network. The 10/100 Ethernet MAC enables the 

DS80C400 to access and communicate over the Internet. While maintaining a 

presence on the Internet, the microcontroller can actively control tier one FENs with 

dedicated on-chip hardware. The FENs were connected to the hardware using CAN 

bus and reliable results were obtained which are discussed in Chapter-5, 6 and 7.

Instant connectivity and networking support are provided through an embedded 64KB 

ROM. The ROM firmware realizes a full, application-accessible TCP/IP stack, 

supporting both IPv4 and IPv6, and implements UDP, TCP protocols. The DS80C400 

incorporates five internal memory areas, four o f which are RAM and one is ROM. 

These include: 256 Bytes o f scratchpad RAM, 8KB of SRAM for Ethernet MAC 

transmit/receive buffer memory, 1 KB of SRAM configurable as various combinations 

of data memory and stack memory, 256 Bytes o f RAM reserved for CAN message 

centres and 64KB embedded ROM firmware. The DS80C400 has resources that far 

exceed those normally provided on a standard 8-bit microcontroller. Many functions, 

which might exist as peripheral circuits to a microcontroller, are integrated into the 

DS80C400 microcontroller. The DS80C400 also incorporates a 10/100Mbps Ethernet 

controller.

4.5.4 Controller Area Network (CAN) Module

DS80C400 has an on-chip CAN controller fully compliant with CAN 2.0B 

specification. CAN is used in a wide range o f applications including automotive.
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medical, heating, ventilation, and industrial control. CAN architecture allows for the 

construction o f sophisticated networks with a minimum of external hardware. The 

CAN controller supports the use o f 11 -bit standard or 29-bit extended acceptance 

identifiers for up to 15 messages, with the standard 8-Byte data field, in each message. 

Fourteen o f the 15 message centres are programmable in either transmit or receive 

modes, with the 15th designated as a (First In First Out) FIFO-buffered, receive-only 

message centre to help prevent data overruns. Each message centre was programmed 

independently to test incoming data. Global controls and status registers in the CAN 

unit can be used to evaluate error messages, generate interrupts, locate and validate 

new data, establish the CAN bus timing, establish identification mask bits, and verify 

the source o f individual messages. Since each message centre is individually equipped 

with the necessary status and control bits these were used to establish direction, 

identification mode (standard or extended), data field size, data status, remote frame 

request and acknowledgments and performing masked or non-masked identification- 

acceptance. Since CAN has been used as the main transmission medium between tier 

one and tier two its brief overview is presented in section 4.6.1 o f this chapter.

4.6 Industrial N etw orks and Selection o f CAN

In this research it was proposed to design and implement a practical, cost effective, 

distributed and reliable e-Monitoring system. The simultaneous achievement of all 

these functions in one single system was not easy. However; using embedded 

hardware capable o f providing interconnectivity by using industrial networking 

standards in conjunction with internet protocols made it possible. Therefore a brief 

review o f industrial networks and supporting internet protocols is presented along 

with the appropriate details o f networks used and their implementation in this 

research. A detailed analysis was carried out to analyse the advantages o f different 

fieldbus standards in order to finalise the selection o f networking strategy at the lower 

level o f the system (between tier one and tier two). The results showing the 

capabilities o f different standards are presented in Table-4.3.
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Standard E ncoding
A ccess

M ethod

M edia

T ype
T opology

T rasm n

Speed

M ax

L ength

M ax

N odes

FIP

Manchester 

With 

Violation bits

Centralised

Polling

Twisted

Pair/

Fibre

optics

Bus/Star

31.25K.bits 1500m

32/256
1 M bits 500m

2.5 Mbits 500m

5 M bits 100m

PROFIBUS
NRZ

A synchronous

Token

Passing

with

Polling

Twisted

Pair
Bus

9.6K bits 1200m

32/127

19.2Kbits 1200m

93.75K bits 1200m

187.5Kbits 600m

500K bits 200m

SERCOS
NRZI with 

Bit stuffing

Slotted

Ring

Fibre

Optics
Ring 2M bits

Longer 

due to 

FO

255/255

C A N N R Z P2P U T P Bus

1 M bits 40m

Unlimited250K b its 500m

50K b its lK m

T able-4.3 , Industrial Com m unication Standards, Tabulated from [4.7, 4.8]

C riter ion FIP C A N P R O F IB U S SE R C O S

Speed Good G ood M edium Good

C ost M edium G ood Good Medium

A vailability M edium G ood Good Medium

R eliability Good G ood Good Good

P2P capability M edium G ood Medium Medium

M em ory

Requirement
Poor G ood Medium High

A vailability  

o f  too ls
M edium G ood Good Medium

T able-4.4, Characteristics o f  Industrial C om m unication Standards, Tabulated from [4.9, 4 .10 , 4.11]

After considering different technological aspects o f some of the fieldbuses; their 

important features were also analysed and are tabulated in Table-4.4. The different 

fieldbuses, their technical capabilities and related aspects were analysed with respect 

to selected hardware. The built-in CAN controllers in the PIC and TINI helped to 

conclude that CAN was the best choice for the research presented in this thesis. A 

brief overview o f CAN is next presented illustrating different aspects of its use in this 

research and providing logical justification for its selection. A more detailed review is 

contained in Appendix “C*\
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4.6.1 Controller Area Network

Controller Area Network (CAN) protocol is an ISO standard (ISO 11898) for serial 

data communication. CAN is used as an embedded network for machine control 

within industries like manufacturing, textile, injection moulding and packaging [4.2]. 

This protocol is based upon a broadcast mechanism where every node gets the 

message transmitted by a node. It defines Physical and Data Link layers of the 

network protocol as well as some message types, arbitration rules for bus access, and 

methods for fault detection and confinement. The CAN arbitration method ensures 

that each CAN node deals with the relevant messages only [4.12]. It operates on a 2- 

wire balanced wiring system using a twisted pair.

4.6.2 Supporting Facts for Selecting CAN

In addition to the fact that both PIC18F458 and TINI (using DS80C400) had built in 

CAN controllers; there were some very important supporting facts for selecting the 

CAN as a communication medium in this research. Some o f these are:-

• The protocol was designed for noisy environments therefore in industries 

where various machines are used it provides reliable communication.

• The messages are small, at most eight data bytes and are protected by a 

checksum. Therefore communication between tier one and tier two is reliable.

• There is no explicit address in the messages; instead, each message carries a 

numeric value that controls its priority on the bus.

• There are effective means for isolating faults which was a primary requirement 

o f an effective TCMS.

Microchip offers different microcontrollers both with CAN and stand-alone 

peripherals to meet the demand for CAN bus solutions. PIC microcontrollers can be 

interfaced to a CAN bus using the following two approaches depending upon the 

hardware features o f the microcontroller:-

• Through a CAN Controller (e.g. MCP2510) and CAN Transceiver (e.g. 

PCA82C250).

• Using just a CAN Transceiver (e.g. PCA82C250) if  the micro-controller offers 

a built-in CAN controller. Both these approaches are shown in Figure-4.5. In
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this research a CAN transceiver was used for interfacing as the selected 

microcontroller has a built in CAN controller.

120 Q

CAN Interface Using just 
CAN Transceiver

CAN Interface Using CAN Controller 
and CAN Transceiver

Figure-4.5, B lock  diagram to illustrate PIC M icrocontroller Interface to C A N  Bus. (W ith and without

on-chip C A N  controller capabilities.)

4.6.3 Implementation CAN Connectivity between Tier One and Tier Two

Figure-4.6 shows the Block diagram o f a six node CAN network developed using 

PIC18F458 microcontrollers and a PCA82C250 as a CAN transceiver. This presents 

the actual networking implemented for communication between tier one and tier two 

in this research. A brief summary o f implementation is presented in the succeeding 

paragraphs. The CAN bus has the capacity to add more nodes as and when required 

thus providing “Plug and Play” functionality to the architecture. As shown in the 

system architecture both time and frequency domain analyses o f the signals were 

carried out. The results were integrated for verification and accuracy thus avoiding the 

generation o f false alarms. The details o f these operations are discussed in Chapters-5, 

6 and 7.

All nodes on the network performed their assigned monitoring tasks and used CAN as 

the communication medium for information sharing. For example if a node in the time 

domain detected a problem it sent a signal to the parameter monitoring and decision 

making node using the CAN bus. The parameter monitoring and decision making 

node has complete information from other FENs using the CAN bus which it uses for 

decision making. Depending upon the complexity o f the problem the decisions are 

made.
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There are two types o f decisions made at this level: whether the situation can be 

handled at tier one or if  the situation is more complex and there is a need to involve 

the second tier in the data processing and decision making. The information sharing 

between tier one and tier two is again using CAN bus connectivity.

CANH

CAN L

! Frequency Domain Analysis j T,er 006 Time Domain Analysis Spindle Load

CANT* CANHSptnde
Load CAN L

CANRx Rx CANTxCANH
CAN L

Spindle
Load

CANTx Tx CANH CANRx Rx
CAN L

^ANRx Rx CAN Bus CANTxCANH
Spindle
Load CAN LCANTx CANH

CANRx Rx
CANL

CANRx Rx> Tier One
Spindle Speed i

 CAR----
Transceiver
PCA82C250

 CAR-----
Transceiver
PCA82C250

 CAR-----
Transceiver
PCA82C250

 CAR-----
Transceiver

PCA82C250

CAN
Transceiver
PCA82C250

 CAR-----
Transceiver

PCA82C250

Parameter 
Monitoring Node

Spindle
Load
TREE

Analysis

Spindle
Speed
TREE

Analysis

TINI
DS80C400

Broken
Tooth

Frequency

Tool
Rotation

Frequency

Tooth
Rotation

Frequency

Figure-4.6, B lock Diagram  o f  C AN  C onnections for a 5 N od e N etw ork . (N ote 120Q  Termination  

resistors at both ends o f  the C A N  are very important for the functionality o f  the network.)

4.7 Audit of Machine Tool Kondia B500

The testing and implementation of researched techniques for TCMS and its final 

implementation were carried out on a CNC Machine Tool Kondia B500. Therefore 

before implementing the actual techniques developed an audit of the machine was 

carried out. The main objective o f this audit was to explore the mechanical feature and 

corresponding electrical characteristics/signals in order to gain the required 

knowledge about machine functionality. These details were used later to test the 

developed techniques by simulating machine functions in MATLAB as well as on 

developed hardware. In the simulation phase, acquired data from the machine tool 

was used for the testing o f the designed hardware architecture.

One of the major motivations for this research was to develop a sensorless low cost 

TCMS. The main signals which were finally used are spindle speed and spindle load. 

Both these signals were available from the machine controller without using any 

additional sensors. Before interfacing these signals to the actual system directly, these
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along with other signals such as X-axis current, Y-axis current, Z-axis current and 

power supply references were acquired using a DAQ card. The acquisition o f these 

signals through the DAQ card was carried out in order to ensure the reliability and 

accuracy o f developed techniques. In the final phase o f TCMS design and 

implementation the signals were directly interfaced to the system through necessary 

anti-aliasing filtering circuitry thus eliminating the need of a DAQ card. In all, ten 

analogue inputs were used to acquire spindle speed, spindle load, current signals from 

three axes and power supply references. The current signals were also used in the 

simulation stage o f this research for cross verification o f the machine behaviour for 

different faulty conditions. These current signals were not used in the final 

implementation stage as spindle speed and spindle load signals provided the required 

information for decision making about health o f the tool.

4.7.1 Machine Controller

The CNC controller o f the Kondia machine tool has a power supply card, graphics 

card, axes control card, I/O card and memory card. These cards generate different 

signals in order to perform the required operations. For example the axes control card 

generates appropriate commands to control the feed rate after getting necessary 

position and velocity feedback from the pulse coder o f the AC servo motor. The 

required signals from I/O and power supply card were acquired for this research.

The spindle unit o f the machine tool consists o f an AC spindle servo unit, AC spindle 

motor, encoder, cooling fan, thermal switch and drive belt. The encoder’s main 

components are a pulley, shaft, toothed belt and ball bearings. The AC spindle servo 

motor is a three phase motor operating at 220-230 V using a 50Hz 3-phase supply. It 

has a transistor PWM inverter, regenerative braking and analogue outputs which 

correspond to running speed and load at different conditions.

The running speed o f spindle is represented by a corresponding analogue DC signal 

named Speed o f Machine (SM) which ranges from 0-10 Volts. The maximum speed 

for the spindle is 6000RPM and this corresponds to an output o f a 10V analogue DC 

signal. The load consumption of the spindle motor at any instant is shown by the Load 

o f Machine (LM) signal ranging from a 0V to 10V analogue DC signal. The important 

point to be noted is that a LM signal o f 6.1V corresponds to 100% load consumption
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(i.e. 3.7kW) 8.3V to 136% (i.e. 5.5kW) and 10V corresponds to 164% load (i.e. 

6.6k W).

4.7.2 Speed Control

There are certain digital outputs generated by the spindle unit. These are used by the 

controller to control the spindle speed dynamically. These signals are labelled as zero 

speed (SSTA) which is in logic “High” in cases where the spindle speed is less than 

45 rpm, Speed arrival signal (SARA) which goes to logic “High” when spindle speed 

is within 15% o f the demand speed and Speed detection signal (SDTA) which is the 

inverse o f the speed arrival signal. The operation o f spindle speed demand by the 

input parameters and corresponding response o f these signals is shown in Figure-4.7.

CNC Demand

± 15%

Spindle Speed
±45 rpm

Zero speed 
(SSTA)

Speed arrival 
(SARA)

■ >  Time

Figure-4.7, R elationship betw een C NC  dem and, spindle speed and digital signals

The speed o f the AC spindle motor ranges from 100RPM to 6000RPM. The encoder 

generates 1024 pulses per revolution of the spindle to provide feedback to the 

controller about the actual speed o f the spindle motor. It means that for a spindle 

speed o f 500RPM, the encoder will generate 8530 pulses per second. This is a high 

pulse rate and correspondingly the variations caused by different problems including 

tooth breakage are very difficult to detect via monitoring systems using a low
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sampling rate. It is worth noting that the vast majority o f the TCMS designed in the 

past use a sampling rate o f around 500-1000 samples per second. This indicates that 

by the time a sample is acquired, the machine controller normally has controlled the 

variations in the speed and an accurate picture o f the situation may not be drawn. This 

issue is discussed in detail in Chapter-6.

4.7.3 AC Servo Axes Controllers

The feed rate in all three axes (i.e. X, Y and Z) is controlled by individual digital AC 

axis servo controllers. A block diagram representing the configuration of a digital AC 

axis servo control unit is shown in Figure-4.8. These servo control systems have 

different operational parameters and characteristics. The main operational 

characteristics o f X, Y and Z axes servo systems are tabulated in Table-4.5 for ease of 

reference.

Axes Servo

Type

Operation AC

Motor

Speed Encoder 

Pulse Rate

Ball

Screw

X -axis A C Left to Right 1 kW 2500

RPM

2500

Pulses/rev

Dia

32m m

Pitch

10mm

Travel

560m m

Y -axis A C Front to Back 1 kW 2500

RPM

2500

Pulses/rev

Dia

32m m

Pitch

10mm

Travel

380m m

Z -axis A C Vertical 1.2 kW 2000

RPM

2500

Pulses/rev

Dia

32m m

Pitch

10mm

Travel

380m m

T ab le-4 .5 , Operational Characteristics for X, Y , Z axes servo system s.
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PWM
signal

Current
feedback

I Position & VelocityNC Controller
feedback

M icroprocessor
M ain

C ontroller

P u lse
coder

A C  Servo  
M otor

Figure-4 .8 , C onfiguration o f  digital A C  axis servo

4.8 Conclusion

The manufacturing industry is implementing more and more automation aimed at 

reducing product costs, improving product quality, reducing lead times and providing 

a greater degree o f operational management in order to remain competitive in the 

market. All these factors are being supported by developments emerging from the 

electronics industry providing solutions to these requirements.

In this chapter a detailed review has been presented about the importance of 

monitoring systems, their general architecture and the actual architecture o f the 

monitoring system implemented in this research. In addition technological 

requirements o f system implementation were analysed. The availability o f supporting 

hardware in terms o f system requirements was surveyed and discussed in terms of 

cost, supporting resources and technical details. Technological comparisons have been 

presented and discussed before choosing hardware for implementation at different 

levels o f the system. The facts o f fast moving technology change have been 

established.

In order to achieve practical functionality and general architecture discussed in this 

chapter, there was a requirement to actually investigate some practical and 

implement-able techniques using the resource limited 8-bit microcontrollers. These 

were investigated and are discussed in detail along with their actual implementation in 

Chapters-5, 6 and 7.
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C H A PTER  5

SW EEPING  A N D  PA R A L L E L  FILTER ING  TEC H N IQ U ES FO R  

F R E Q U E N C Y  A N A L Y SIS OF M ACH INE SIG NALS

5.1 Introduction

This chapter describes a microcontroller based application design for frequency 

domain analysis o f machine tool signals to provide the basis for tool breakage 

monitoring. In order to improve the overall reliability o f the system diagnosis is 

integrated with time domain analysis. The technique used to do this and 

corresponding results for different machine signals will be discussed in Chapter-6. 

Frequency domain analysis reveals information about the overall signal content which 

is otherwise hidden in time domain analysis.

The objective o f frequency analysis is to breakdown a complex signal into its various 

frequency components. Mathematicians and theoretical engineers generally tend to 

interpret “components” as being the result o f a Fourier Transform whereas practical 

engineers often think in terms o f measurements made with filters tuned to different 

frequencies [5.1]. Normally for frequency domain analysis a signal is sampled in the 

time domain and its frequency response is calculated using different mathematical 

techniques e.g. Fast Fourier Transform (FFT). Although the FFT is the most popular 

technique, it is not the only one. There are many other transforms used for the same 

purposes including Short Time Fourier Transform (STFT) and Wigner Transform.

Signals are normally classified as being one of the two basic types: stationary and 

non-stationary. A stationary signal is assumed to be in a particular state of statistical 

equilibrium. This means that the signal properties are unaffected by a change in the 

time domain. A stationary signal may be characterised by its mean and auto

covariance or its mean, variance and auto-correlation function being constant. If these 

conditions are not satisfied the signal is characterised as a non-stationary signal [5.2].
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The FFT is widely used for frequency analysis. The FFT is normally only suitable for 

stationary signals and is not very effective for non-stationary signals; it cannot reveal 

complete information about a non-stationary signal [5.3]. This does not mean that the 

FFT cannot be used for machine tool monitoring. The FFT can also be used in cases 

where average energy at each frequency line is to be calculated. In machine tool 

monitoring application, some specific frequencies are monitored constantly and 

therefore the FFT can be reliably used.

However, there are some issues which need to be dealt with. The most important one 

is the resources available to perform such a mathematical operation. As was 

mentioned in Chapter-4 the microcontroller which has been used in this research 

(which was the latest microcontroller available at the start o f the research) has 

constraints in its capacity to perform the FFT. In the context o f this research these are 

discussed below.

Frequency resolution is one o f the most important features to differentiate different 

frequency components in a signal. At low resolutions it is difficult to differentiate 

closely related frequencies. The frequency range and resolution on the x-axis of a 

spectrum plot depends on the sampling rate and number o f data points acquired. The 

frequency components as a result o f the FFT are half o f the sampling rate. The first 

frequency is normally at zero and the last one can be calculated as shown in equation 

5.1.

Lf  = (F s l2 )-(F s  IN) (eq.5.1)

Where Lf  is the last frequency in the range, Fs is the sampling rate and N  is the 

number o f acquired samples. The frequency resolution or frequency separation 

interval can be defined as:-

A / = Fs/N  (eq.5.2) or

Af = \/(N.At) (eq.5.3)

Where At is the sampling period.

These equations illustrate that sampling rate determines the frequency range and for a 

given sampling rate the number o f data points acquired in the time domain determine 

the resolution. Therefore to increase the frequency resolution for a given signal at a 

constant sampling rate the number o f data points used must increase. The execution 

time is another limiting factor in this scenario. The higher the number o f data points 

used to increase the resolution, the longer it will take to acquire and process these. For
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example acquiring 500 samples at a sampling rate o f 500 samples per second will 

yield a resolution o f 1Hz but there will be a waiting time o f 8.33 spindle revolutions 

(at 500RPM) before the processing starts.

Microchip Technology Inc(R) states that the PIC18F458 (chosen for this application) is 

capable o f performing FFT operations. This has certain limitations with regard to 

machine tool signal analysis. One o f these is the resolution required for differentiating 

different frequencies accurately and another is the data acquisition time needed to 

achieve the required resolution. As shown in equations 5.2&5.3, the separation 

between two frequency components is directly proportional to sampling rate (keeping 

the number o f data points constant) and inversely proportional to the number o f points 

used for the FFT analysis (keeping sampling rate constant).

For machine tool breakage detection systems it is a very important requirement to 

detect tool breakage as soon as it happens. In this research a target o f two revolutions 

was accepted for a practical implementation. Considering the fact that PIC18F458 can 

perform a 256 point FFT operation in order to achieve a 1Hz resolution (at 500 RPM) 

the sampling rate should be 256 samples per second. At 500 RPM using such a low 

sampling rate data acquisition will take 8.33 machine tool revolutions. In addition, the 

processing (including windowing which is a requirement to avoid spectral leakage) 

and the result communication times will add to this. The processing time for 256 point 

FFT is around 150 mSec [5.4] meaning a delay o f 1 tool revolution at spindle speed of 

500 RPM and 6 revolutions at a spindle speed o f 3000 RPM. This indicates that the 

available PIC may be capable of performing small number FFT operations but for 

higher speed machining operations where higher number FFT is required, it cannot do 

so. Some o f these situations are tabulated in Table-5.1 to illustrate this.

The objective o f this research as stated in Chapter-3 was to investigate a low cost 

distributed embedded solution for tool condition monitoring. Therefore low cost 

microcontrollers for Front End Nodes (FENs) were chosen which normally have 

limited resources to perform complex mathematical operations. To overcome these 

constraints, emphasis was given to developing techniques which can be implemented 

using this hardware.
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Case

Number

Spindle

Speed

Sampling

Rate

Data points 

FFT
Resolutions

Machine Tool 

Revolutions

1 500 256 256 1H z 8 .33+  PT+CT

2 500 512 256 2H z 4.16+P T +C T

3 500 1024 256 4 H z 2.08+P T +C T

4 500 2048 256 8H z 1.08+PT +C T

5 1000 256 256 1H z 16.66+PT +C T

6 1000 512 256 2 H z 8.33+PT +C T

6 1000 1024 256 4 H z 4.16+P T +C T

8 1000 20 4 8 256 8 H z 2.08+P T +C T

9 3 0 0 0 256 256 1H z 50+PT +C T

10 3 0 0 0 512 256 2H z 25+PT +C T

11 3 0 0 0 1024 256 4 H z 12.5+PT+C T

12 3 0 0 0 20 4 8 256 8 H z 6.25+PT +C T

T able-5 .1 , P IC 18F 458 capabilities and constraints for FFT operation in term s o f  m achine tool 

requirem ents (PT: P rocessing T im e, CT: C om m unication T im e.)

The FFT can be referred to as a set o f parallel filters having a bandwidth of A/centred 

at each frequency increment. As has already been discussed the PIC18F458 cannot 

normally handle the monitoring tasks using this technique at higher spindle speeds 

(normally more than 2000RPM). Therefore, the option o f using some other time- 

frequency analysis technique was considered. STFT is one o f these techniques but 

given its similarities to FFT its implementation was not a practical solution at the 

FENs. In addition, STFT has some inherent problems with regard to such 

applications. One o f these is that it provides a constant resolution for all frequencies 

as it uses the same window for the entire signal. Therefore by using a wide window, 

good frequency resolution can be achieved for low frequency components but it will 

not yield the same results for high frequency components [5.5]. FFT is one o f the 

most reliable techniques for frequency analysis. As such it was proposed to be used at 

the second tier o f the system to handle complex situations referred up by the FENs. 

The details o f this are discussed in the System Integration chapter (Chapter-7).

Having analysed most o f the frequency transformation techniques with regard to 

resources available at the FENs, the application of using filters for frequency analysis 

was also considered and analysed. Filters are normally categorised as analogue or
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digital filters. Both types have different preferences with regard to application 

domains. For example, when using analogue filters, the emphasis is on the handling 

limitations o f the electronics such as the accuracy and stability o f resistors and 

capacitors. In digital filters this emphasis shifts to signal limitations and theoretical 

issues regarding processing requirements [5.5].

There has been consistent research in the past decade relating to multi-channel multi

rate filtering o f digital signals in the field o f digital signal processing. Although the 

roots o f this research stem from switched capacitor filters (discussed in the next 

section) it is mostly based on using software based digital signal processing 

techniques. A common task in digital signal processing is to pass a signal through a 

filter in which the widths o f the pass band and the transition band are a small fraction 

o f the sampling frequency [5.6]. If a Finite Impulse Response (FIR) filter is used for 

this task, the order o f the filter required to meet the specifications is usually very high, 

entailing a heavy computation burden. On the other hand, an Infinite Impulse 

Response (HR) filter can perform these operations using a design o f a much lower 

order. Microchip Technology Inc(R) has provided an application note for the 

implementation o f this type o f filter. This technique was not used in this application 

due to two reasons. Firstly; the PIC18F458 has three data pointers in all. These data 

pointers are used for data acquisition, data storage and communication purposes in the 

designed system whereas an HR implementation technique requires all these data 

pointers for different calculations. Secondly it is a complex mathematical operation 

and it can only be effectively used for applications where a controller is not engaged 

in performing other real time tasks. Such a technique may not be suitable for an 8-bit 

controller which is involved in different tasks in real time.

In addition to the frequency estimation techniques discussed earlier there are other 

frequency estimation techniques such as Swept Spectrum Analysis. This approach is 

used for very high frequency estimation with correspondingly low resolution in 

conjunction with filter banks which are normally used in digital signal processing. A 

swept spectrum analyser is based on a different configuration to the FFT analyser. It 

uses a super-heterodyne configuration in which the attenuator and gain stages are used 

to adjust the signal to fit the input range o f the analyser. A Voltage-Controlled 

Oscillator (VCO) sweeps through a range o f frequencies that are mixed with the 

incoming signal. The signal from the input and the signal from the VCO are passed
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through a mixer, which is a nonlinear device that produces the sum and difference o f 

the original signal and the signal from the VCO, as well as the original signals and 

their harmonics. An Intermediate Frequency (IF) filter extracts the desired sum or 

difference o f the original signals. The detector produces a voltage level relative to the 

amount o f power received from the incoming signal. This technique is normally used 

for the frequency analysis o f high frequency signals where the use o f the FFT is 

difficult due to the requirements o f very high sampling rates. Since the swept 

spectrum analysers are normally used for higher frequency applications and require a 

VCO stage to sweep through a range o f frequencies, these have not been researched 

for applications in machine tool monitoring.

After considering the limitations imposed by the FEN capabilities it was concluded 

that using analogue filters for this application was the only viable solution. However 

along with some advantages there are several limitations with analogue filters. There 

has been ongoing research to overcome these limitations. With the breakthroughs in 

digital technology and Integrated Circuit (IC) fabrications, there have been continuous 

efforts to implement analogue filters on ICs. There are still certain limitations in 

fabricating a number o f  RC filters on Metal Oxide Semiconductor (MOS) integrated 

circuits [5.7]. For example; in order to fabricate a low pass filter with a 100Hz cut off 

frequency and using a lOOpF capacitor requires a resistor o f 16MT2. For implementing 

this resistor on an IC, a large space will be required thus drastically reducing the 

overall space available for further implementations. In addition to this, the tolerances 

o f resistors are higher and filter accuracy cannot be guaranteed. Due to these issues 

research in this area has shifted to simulating resistors rather than using real resistors. 

The requirements for such an implementation are two switches and a capacitor and 

both are readily available in MOS form. Filters using the concept of simulated 

resistors are known as “Switched Capacitor Filters”.

5.2 Switched Capacitor Filters

The concept o f switched capacitor filters was researched and published by Ghaderi et 

al in 1982 [5.7]. This was not the first publication in this area but is intended to 

illustrate a simple representation of switched capacitor filters. Figure-5.1 shows a 

simple representation o f three path bandpass filters using switched capacitors. The 

filters are interfaced in parallel and can have different centre frequencies depending
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upon the application requirements. The external switches are used to select a filter 

when required. The switched capacitor approach used to achieve this switching design 

for implementation on MOS ICs is shown in Figure-5.2.

Yin
Vout

BPF-1 (f l)

BPF-2 (£2)

BPF-3 (f3)

F igure-5 .1 , Three path Sw itched Capacitor Filter

S2 si
V2 ^  VI

• - — ---------- 1----------• ---------- ► I-----^
C l T

I

R
Vin Vout

  ►

F igure-5.2, Sim ulation o f  a Resistor

In the switched capacitor circuit as shown in Figure-5.2, switch SI and switch S2 

open and close alternately. As a result a charge is transferred from V2 to V I. The 

charge transferred can be calculated as:-

Aq = C1(V2-V1) (eq.5.4)

If N is the number o f capacitor switching and these are opened and closed at regular 

time intervals At, the amount o f charge transferred per unit time is:- 

(Aq/At) = C l(V 2-V l)*(N /A t) (eq.5.5)

The left hand side o f eq.5.5 represents charge per unit time and that equals the current. 

The number o f cycles per unit time is the switching frequency (fcik). The current can 

be calculated as:

i = C1(V2-V1)* fclk (eq.5.6)

The resistor value can be calculated as:-

(V2-Vl)/i = l/(C l* fdk) = R (eq.5.7)

Eq.5.7 verifies that a switched capacitor is actually equivalent to a resistor. The value 

o f this resistor is inversely proportional to the switching frequency as well as the 

capacitance. Based upon this idea the technique o f switched capacitors for filter



105

design was introduced a few decades ago and filters have been designed in band pass 

configuration for signal conditioning [5.7].

Switched capacitor filters have not been used for applications such as machine tool 

monitoring in the context o f signal analysis where frequency analysis is generally a 

requirement. The major hindrance for such applications was the resolution o f such 

bandpass filters. These limitations have been overcome in the recent past when due 

attention was given to this technique in the form o f IC fabrications.

Since these filters have started to be fabricated on ICs, their availability in monolithic 

form has increased. This has resulted in their utilisation in various applications. In 

addition, the switched capacitor filter approach overcomes many inherent problems in 

standard active filters. The switched capacitor filters allow very sophisticated, 

accurate, and variable cutoff frequency analog circuits to be manufactured without 

using resistors. Switched capacitor filters do not need external precision capacitors or 

inductors like active filters and their cut off frequencies provide an accuracy of around 

0.2% by using an external clock frequency [5.8]. This technique further improves the 

reliability, consistency and reduces temperature sensitivity as well as overall 

implementation costs.

5.3 Frequency Analysis of Machine Tool Signals

The frequency analysis o f machine tool spindle axis signals reveal some very 

important features which are otherwise hidden and which cannot be detected in the 

time domain analysis. The frequency spectrum o f machine tool signals has a link to 

cutting tool health. There are different frequency components in machine tool signals 

which reveal this information. In the discussion o f the frequency analysis technique 

developed for tool condition monitoring three terms will be used. These are: tool 

rotation frequency, tooth rotation frequency and broken tooth frequency. Tool rotation 

frequency is the number o f revolutions o f the spindle per second. Tooth rotation 

frequency is the multiplication o f tool rotation frequency with the number of teeth on 

the cutter. The broken tooth frequency is the multiplication of tool rotation frequency 

with the number o f remaining teeth on the cutter after the breakage o f one tooth. 

These will be referred to by the short names o f tool rotation frequency, tooth rotation 

frequency and broken tooth frequency respectively in this thesis. The tool rotation



106

frequency and the tooth rotation frequency and their harmonics are dominant for a 

new cutter. In the event o f a tool breakage it is assumed that one o f the teeth is now 

missing and the next tooth has to do extra cutting. Under these circumstances a clear 

indication o f a rise in the cutting force corresponding to the action of the tooth 

undertaking extra cutting is seen. This is responsible for a change in the overall 

frequency spectra. In order to analyse the signal’s frequency spectrum, switched 

capacitor filters were used to investigate techniques capable o f revealing the required 

frequency components. This was undertaken with a view to the method being 

implemented on a resource limited 8-bit microcontroller.

There are many ICs available that use switched capacitors for implementing different 

types o f analogue filters. This application uses a MAX264 filter IC. The PIC 

microcontroller was used to generate the necessary control signals for the filter IC in 

order to automatically configure it to handle varying parameters using the sweeping 

filter technique explained in the following section.

5.4 Sweeping Filter Frequency Analysis Technique

Given that the switched capacitor filter may be configured for different centre 

frequencies by changing its clock input the idea o f a sweeping filter frequency 

analysis technique was investigated. Most signal acquisition and processing 

applications require a signal conditioning and filtering stage and these may be 

implemented with a programmable filter whose operating mode (i.e. low pass, band 

pass or high pass) and centre frequencies can be changed on-the-fly. In this case a 

programmable band-pass filter has been used and its band selection controlled by the 

input clock frequency o f the filter IC. The programmable gain and control settings o f 

the filter IC are then used to manipulate and optimise the frequency analysis for an 

anticipated range o f frequencies of interest. These clock and control signals are 

generated by using the PIC microcontroller. The entire frequency range o f interest is 

thus scanned to generate a total profile of the signal. The result is a simple, 

computationally efficient (requiring simple mathematical functions only) and easy to 

implement technique. After setting up for a specific application, the filter band 

frequency is selected and data acquired for a minimum of one complete cycle of the 

longest time period in the band. The number o f samples per cycle is selected 

according to the tolerable error. Maximum and minimum values are determined and
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their difference is taken to determine the peak to peak amplitude. The peak-to-peak 

difference corresponds to the relative power o f scanned frequency band. The process 

is then repeated for each incremental filter band frequency across a desired sweeping 

range and the frequency spectrum profile is accumulated.

The MAX264 filter was used to approximate the following second order filter 

function in this application:-

G(s) = HimP* , Q *a<‘--------
S ~  /  S  \  1 T + ( ) + I

o)0 Q*co0J

Where:- H o b p = G ain at CO=CDo and fo= GV27C.

The centre frequency o f  the complex pole pair is fo. It is measured as the peak 

frequency o f the bandpass output. “Q” is defined as the quality factor/gain of the 

complex pole pair in the bandpass mode o f the IC. It is ratio o f the centre frequency 

(fo) to the -3dB bandwidth o f the 2nd order bandpass filter. “Q” is always measured at 

the bandpass filter’s output. The notation “Q” is interchangeably used for the gain and 

quality factor for this IC when configured in the bandpass mode of operation.

The filter IC MAX264 has a programmable gain ranging from l to 64. It can be 

configured to 128 different values within this range depending upon the signals at the 

control pins, which are strapped to the microcontroller’s digital output lines. A higher 

value of gain results in a relatively narrow bandwidth and increased resolution. 

However a higher gain selection also places a limit on the input voltage levels to

avoid the saturation o f the gain amplifier. For lower gain values and input clock/cut

off frequency ratios, the deviation from ideal response becomes more pronounced. 

This error is predictable and can be eliminated by using the values o f error provided in 

the data sheet o f MAXIM filter IC [5.9].

The block diagram of the sweeping filter signal analysis system is shown in Figure- 

5.3. It is a generalised illustration of the technique developed. The figure shows that 

the number o f sweeping filters can be different for different applications depending
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upon the system/analysis requirements. This number can vary in accordance with the 

total input signals as well as scanning time limitations. For example for a faster 

response time, separate sweeps are recommended. This is due to the fact that although 

the PIC18F458 has eight different A/D converter channels it cannot scan more than 

one channel simultaneously. Therefore different microcontrollers and filter ICs can be 

used for scanning more than one input signal in a shorter time
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F igure-5 .3 , B lock  Diagram o f  S w eep ing  Filter A n alysis System

Figure-5.3 shows more than one sweeping filter scanning different input signals to 

formulate their corresponding frequency response. For an application in which a faster 

response is not a crucial requirement, a single microcontroller can be used to control 

more than one filter IC. For such applications, after setting one filter IC for a bandpass 

configuration and acquiring the input signal, the control outputs o f the microcontroller 

can be changed to the requirements o f next filter IC and its output can be acquired. 

This operation can be repeated cyclically until the profile o f the entire bandwidth of 

interest has been scanned and the frequency contents analysed.
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The hardware and software block diagrams o f a single node o f sweeping filter 

functionality are shown in Figures-5.4(a) and 5.4(b) respectively. As shown in Figure- 

5.4(a), all o f the control inputs o f the filter (including Mode control, gain control and 

centre frequency) are connected to the MCU providing total control to the developer. 

This approach makes it possible to change different parameters o f the filter by 

changing the controlling software whenever required rather than changing the overall 

hardware design each time. The signal conditioning system was primarily used to 

adjust the input level o f the signal in accordance with the gain and mode o f operation 

o f the filter to avoid the saturation o f the gain amplifier.
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F igu re-5 .4(a), B lock  Diagram o f  Hardware o f  Sw eep ing  Filter N od e

In a bandpass configuration the gain o f the filters can be selected by selecting the 

quality factor. In low pass configuration the gain of the filter varies between 0.5 and 

2. In both configurations, the phase is shifted by 180 degrees which can be adjusted 

by using any suitable technique depending upon the application requirements.

The MAX264 has two internally implemented second order analogue switched 

capacitor filters which provide outputs of low pass, high pass or bandpass filters on 

different output pins simultaneously depending upon mode selection. For example in 

mode one configuration if a band pass filter is implemented for a centre frequency of 

/ 0, the bandpass output centres at f 0, and the low pass output has a cut o ff frequency of 

f 0. This additional feature adds to overall design flexibility as for one configuration, 

two or more outputs can be acquired if required.
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The Centre frequency o f the filter is adjusted by a clock input to the IC. This basically 

controls the switching frequency of the internal MOSFET configured as switches. A 

change in clock frequency changes the switching rate o f the internal switches and the 

centre frequency shifts accordingly. In this application the Pulse Width Modulation 

(PWM) module (built-in to the PIC microcontroller) was used to generate the required 

clock signal for the filter, thus reducing software overheads.

As shown in Figures-5.4(a&b), the signal (spindle load for frequency analysis) is 

interfaced to the corresponding node after necessary signal conditioning. The 

parameter monitoring node as shown in Figure-5.3 constantly monitors the spindle 

speed signal and communicates the frequencies o f interest to all other FENs on the 

network via the CAN bus which then adjust their sweeping band accordingly. The 

spindle speed signal is acquired in analogue voltage form and linked to the actual 

running speed of the spindle as discussed in Chapter-4. This node also monitors the 

spindle load signal in the initialisation stage to establish the starting o f the cutting 

process. The sweeping band o f this is dependent upon the running speed o f the
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machine and the number o f teeth on the cutter. The values for the starting clock 

frequency, required increments and the final clock frequency are calculated 

accordingly.

Each node acquires the signal and converts it to digital format using the ADC module 

o f MCU. The signal acquisition rate (sampling rate) normally depends on the 

application requirements and is set in an initialisation phase o f the software. In this 

technique the value o f the sampling rate does not affect the overall performance of the 

system. This is due to the fact that in a comparative analysis technique the same filter 

settling time is used in each cycle. Therefore the frequency strength o f a signal for a 

constant time band is compared each time which eliminates the chances of any 

comparison errors.

After the acquisition o f a data sample the value is compared against the previously 

calculated maximum and minimum values. If the current value is lower than a 

previous minimum value it replaces it. A similar action is repeated against the 

previously acquired maximum value. The dynamic comparison o f these data values 

makes it possible to store only the calculated peak-to-peak difference for each 

frequency band rather than storing the whole data and unnecessarily filling the 

memory.

Having completed the acquisition (of 32 samples in this application) for one 

frequency setting, the filter is re-configured to the next frequency range of interest and 

the next set o f 32 samples are acquired and compared in a similar way. A timer 

interrupt has been used to generate accurate sampling times. There is ample time for 

the MCU programme to calculate the peak to peak amplitude o f the previously 

acquired data during each interrupt phase. The microcontroller can be set up to trigger 

an alarm as soon as it senses some deviation from the expected profile for normal 

behaviour even when part way through an entire sweep. This approach is especially 

attractive in applications where the details o f every frequency component are not 

required and only specific components indicate likely faulty conditions.

Four memory banks have been reserved for storing the peak-to-peak values o f each 

frequency band. Therefore in one sweep, the relative peak-to-peak amplitude of 1024 

different frequencies o f interest can be calculated. In a machine tool operation the
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frequency spectra o f spindle speed and spindle load signals o f a healthy and broken 

tool are different. In this chapter the results o f four toothed cutter rotating at a spindle 

speed of 500RPM and a feed rate o f 100mm per minute are considered with a view to 

making comparisons o f healthy and broken cutters under the same cutting conditions. 

This is a representative o f a number o f similar tests undertaken to develop the 

methodologies. A complete range o f cutting tests and the results are discussed in 

Chapter-7 (System Integration chapter). The time required for scanning the profile o f 

a signal depends upon various factors including:-

• Resolution requirements.

• Filter settling time.

•  Frequency band o f the signal to be scanned i.e. gap between first and last 

frequency o f interest in a signal.

• Number o f data points for each frequency band.

• Sampling rate.

• Application type e.g. single sweep or multi sweep operation.

The number o f samples acquired for each frequency band analysis, sampling rate and 

filter settling time also have a combined effect on the system. For example; at a lower 

sampling rate and higher number o f data samples taken the filter settles and the value 

o f the peak-to-peak difference is higher; whereas for a higher sampling rate and same 

number o f data samples, the peak-to-peak value o f same signal is lower because the 

filter has not settled as yet. This indicates that for a single sweep operation these 

variation factors need to be normalised for each frequency bin (or band) to ensure the 

accurate frequency analysis o f a signal. For multi sweep operations carrying out 

comparative signal analysis this factor does not have any effect on the overall system 

performance. For example if a comparison has to be made among the same 

frequencies in the same frequency band after making two consecutive frequency 

sweeps then the value o f “yb” (any frequency in the sweep band) acquired in the first 

sweep can be compared with the value o f “/b” (same frequency) acquired in the 

second sweep. This is due to the fact that the same parameters are being used each 

time and thus the acquired values are scaled by constant factors each time and the 

results only vary if there is a change in the frequency strength o f the input signal.
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For single sweep operations a higher sampling rate is not recommended for this 

technique. The logic behind this argument is that at higher sampling rates the filter 

does not have enough settling time and cannot reveal reliable information about the 

frequency contents in the signal. Therefore it is recommended that the sampling rate 

should be kept low to provide more settling time to the filter for each frequency 

acquisition.

5.4.2 Technique Verification by Simulation and Lab Testing

Extensive testing was carried out using Matlab simulation and lab testing to analyse a 

range o f generated signals including sine, square and sawtooth. Moreover the actual 

machine signals were acquired and used as inputs to the designed system for 

verification o f the functionality and reliability o f this technique before any hardware 

implementation on the machine tool itself. These tests have produced excellent results 

to prove the functionality o f technique. These are discussed in the succeeding 

paragraphs sequentially along with graphical representations.

Firstly the capability o f the technique to pass a frequency o f interest and suppress 

other frequencies when configured to specific frequency monitoring is shown in 

Figures-5.5(a&b). Figure-5.5(a) shows an 8Hz Sine wave input signal to a simple 8Hz 

bandpass filter designed using the MAX264 and PIC microcontroller hardware. Since 

the filter is configured to the 8Hz frequency pass-band the output o f the system for 

this signal rises to the same value as input signal as shown in Figure-5.5(b).
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Figure-5.5(a) -  8 H z  S in e  In p u t fo r a  F ilter c o n f ig u re d  a t 8 H z . F ig u re -5 .5 (b )  - O u tp u t  f ro m  a  f i l te r  c o n f ig u re d  a t  8 H z .

(X -a x is  s h o w s  t im e  a n d  Y -a x is  s h o w s  re la t iv e  s tr e n g th ,  N o  s w e e p , U n ity  G a in ) .
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The output signal indicates a delay before reaching its actual expected value. This 

delay is dependent upon the filter settling time and the frequency o f the input signal. 

The signal rise time (or delay) may be important in some applications but in this 

application it can be ignored since this is a comparative value analysis technique that 

compares the strength o f a particular frequency component against the same 

component (during the next sweep). Hence the signal rise time does not make any 

difference as long as it allows the output signal to gain a reasonable value.

Figures-5.6(a&b) prove the validity o f approach taken to suppress unwanted 

frequency components in a signal. The filter’s ability o f suppressing the unwanted 

frequency components has been illustrated in these figures. Figure-5.6(a) shows a 

16Hz sine wave input signal used for a filter configured at 8Hz pass-band using the 

designed system. The output shown in Figure-5.6(b) clearly shows the suppression of 

this unwanted frequency component. This validates the approach’s capabilities to 

separate pass band frequencies from stop band.
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Figure-5 .6 , F ilter’s capability to rem ove unwanted signal com ponents.

Figures-5.7(a&b) show the results from the actual sweeping filter approach. The 

system is swept across a signal to determine its frequency components which range 

from 1Hz to 40Hz. Since the input signal is an 8Hz sinusoidal waveform, the results 

show the presence o f this component only. As previously described in section 5.4, the 

analogue output signal from the filter for each pass band is acquired by the 

microcontroller and its peak-to-peak value represents the relative amplitude of that 

particular frequency. The main noticeable differences between these figures are: (a)
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relative amplitude value o f frequency component detected and (b) the bandwidth. 

Both these factors are linked to the Quality Factor o f the band pass filter.

For the MAX264 filter IC, the Quality Factor is equal to the filter Gain in the band 

pass configuration. Therefore for a higher Gain setting (Figure-5.7-b), the relative 

amplitude o f the detected frequency component rises and the bandwidth o f the filter 

decreases (as compared to Figure-5.7-a). These figures clearly indicate the benefits o f 

using a Gain value o f 16 for the final system design in order to achieve the required 

frequency resolution. Therefore this value has been used for the results discussed in 

this chapter.
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F igure-5.7, Gain effect on the output o f  the filter.

The capabilities o f the technique were similarly assessed for the multiple frequency 

component detection in a signal. Figure-5.8(a) shows the system’s output for an input 

signal o f 8 & 12Hz sinusoidal wave forms. Figure-5.8(b) shows the ability o f the 

system to detect harmonics in addition to the original signal. The figure shows output 

of an 8Hz square wave input signal. Its base frequency and its third harmonic have 

been detected whilst there are no signs o f the second harmonic which follows the 

square wave harmonic’s theory. In addition to these tests various other laboratory tests 

were carried out to verify the functionality o f the system and the results duly verified 

the technique and the system.



116

£  24 - a> O)

12  -

40 16 24

Frequency (Hz)
32 40

Frequency (Hz)

F ig u re -5 .9 ,  O u tp u t  fo r  8 H z  S q u a re  w a v e ; S w e e p in g  fil te r ; 

G a in =  16.

F ig u re -5 .8 , O u tp u t  fo r  8 + 1 2  H z  S in e  w a v e ; S w e e p in g  fil te r ; 

G a in =  16.

F ig u re  5 .8  (a ) , D e te c t io n  o f  tw o  fr e q u e n c ie s  F ig u r e  5 .8 (b ) ,  D e te c t io n  o f  a S q u a re  W a v e

5.5 Machine tool Signal Analysis using Sweeping Filter Technique

After the functional verification and testing o f the abilities o f the proposed technique 

and supporting system in various circumstances, sample machine tool signals were 

interfaced to the system for its practical implementation. Both spindle load and speed 

signals were analysed and similar results were obtained. It is assumed that cutting 

starts with a healthy tool. The parameter monitoring and decision making node 

calculates the required process parameters and communicates these to all the FENs. 

The number o f teeth in the cutter is calculated by generating a sweep at the start o f 

cutting process. The base frequency information retrieved is used as a divisor to the 

highest frequency observed in the sweep and the result equates to number o f teeth in 

the cutter. This information is communicated to other nodes in the monitoring 

network. Similarly the spindle speed is automatically determined by the system. After 

the start o f the cutting process the system determines the start o f actual metal cutting. 

The procedure is illustrated in Figure-5.9. The Spindle load signal is used to 

determine the start o f the cutting process. The values o f the spindle load signal prior 

to and during the cutting process are significantly different as is evident in Figure- 

5.10. This change allows the parameter monitoring node to determine the start o f 

cutting and then to communicate this to all the other nodes via the CAN bus as a 

signal to start the monitoring process.

There is a time delay before the spindle load reaches the threshold which is also used 

as a tool entry period before the start o f the monitoring process. Figure-5.10 shows the 

flow chart o f the overall supporting software used for the system implementation. The
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parameter monitoring node determines the required range o f frequencies to be swept 

depending upon the spindle running speed and the number o f cutter teeth.
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Figure-5.9, Start o f  the cutting process

For example for a four toothed cutter rotating at 500RPM, the frequencies o f interest 

are 8.33, 25 and 33Hz. The parameter monitoring node communicates this 

information to other FENs again using the CAN bus connectivity. After finalising the 

sweep parameters, there is a further nominal delay to cater for the tool’s full entry into 

the work piece. The delay is variable and is directly proportional to the tool diameter 

and inversely proportional to the feed rate. This completes the initialisation process as 

shown in Figure-5.10 and the system is ready to monitor tool’s health.

A full range sweep is carried out to set the threshold values o f the frequencies o f 

interest. These threshold values are different to the threshold values used to determine 

the start o f the cutting process and are used to generate a warning signal about the 

tool’s health. Setting a reliable threshold value is very important for tool monitoring 

systems because it reduces the chances o f false alarms and improves overall system 

reliability. A decrease in false alarms reduces unnecessary down time thus increasing 

the OEE of the system (explained in chapter-7) which is highly desirable.

Extensive testing was carried out to determine a full range o f spindle load signal 

variations from a healthy cutter to a broken cutter. The cutting parameters o f a four 

toothed cutter are tabulated in Table-5.2. It shows that cutting is smooth and evenly 

balanced for a healthy cutter whereas number o f teeth engaged in cutting varies for 

the different angular windows for a broken cutter. These factors result in variations in 

the cutting process that are used to detect the breakage. With three teeth cutting after 

the breakage o f one tooth (for a four teeth cutter) the variations in the angular
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displacement between consecutive teeth as well as the number o f teeth engaged in 

cutting simultaneously (refer to Table-5.2) affect the strengths o f the tool rotation 

frequency and its multiples such that they are different than the strengths o f a healthy 

cutter. An increase o f at least 400% (for Gain value o f 4) and more than 1000% (for 

gain value o f 16) in the strength o f the frequency components o f interest was observed 

in spindle load signal from a healthy cutter to broken one even for a nominal depth o f 

cut (0.5mm). Therefore threshold values o f up to 500% of the actual values were used 

in this design. Experiments also revealed that any increase in value is also dependent 

on the depth o f cut to some extent i.e. at a higher depth o f cut, the gap between the 

strength o f the frequency components observed between a healthy and broken cutter 

increases. A brief comparison o f the output signals observed for gain value o f 16 is 

discussed later in this chapter. Considering various factors such as input signal 

amplitude, filter operation mode and its polarity o f operation, a Gain value o f 16 was 

selected. After analysing the different cutting situations in conjunction with the 

varying cutting parameters a threshold value o f 5 times the initial value for a healthy 

cutter was set to avoid any false alarms.

In this application design tests were carried out using two different filter window 

lengths to assess the functional accuracy and efficiency o f the system. These settings 

included acquiring 32 as well as 16 samples for each frequency window (one 

frequency o f interest) at a sampling rate of 100 samples per second before moving the 

window settings forward. For a spindle rotational speed o f 500RPM, the frequency 

range o f interest is from 8Hz-33Hz meaning 25 different frequency windows.

After finalising the initial system setup it starts monitoring the tool health by using the 

cyclic sweep strategy. The cyclic sweeps entail carrying out a sweep from the first to 

the last frequency o f interest and repeating the procedure cyclically. For one 

frequency window setting 32 samples are taken and the difference between the 

maximum and minimum values is calculated. This difference indicates the relative 

strength o f that frequency. The sweep is completed in the same way and relative 

strengths o f different frequencies are stored. The relative strength o f frequencies of 

interest is compared against the thresholds set and decisions are made about tool 

health.
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Parameter Healthy Cutter Broken Cutter
Number o f teeth cutting (t) 4 3

Number o f teeth cutting 
at one time (W) 2 for 360 degrees 2 for 180 degrees 

1 for rest o f the cycle.
Angular displacement 
between two adjacent 

healthy teeth {degrees)
90 degrees

90 degrees between 
two pairs 180 degrees 

between one pair.
T ab le-5 .2 , Cutting parameters for four-toothed cutter.

(Note: The detail o f  the cutting process and the effec ts  upon it that a broken tool produces are outlined  

in Section  6.2.1 o f  this thesis).

The sweep results for a spindle speed o f 500RPM, feed rate o f 100 mm per minute 

and filter gain value o f 16 are discussed in this chapter. These results for different 

values o f depth o f cut ranging from 0.5mm to 2.0mm are discussed to prove the 

reliability o f the technique. The results for new, blunt and broken cutters are presented 

to show the difference o f behaviour. The number o f samples taken for each frequency 

window setting affects the overall system efficiency due to filter settling time. For 

example the relative frequency strength for higher number o f samples is higher than 

lower number o f samples for the same cutting parameters. This factor is discussed in 

detail later in this chapter. The results for a 32 samples per frequency window and 16 

samples per frequency window are discussed for a comparative analysis.

Figure-5.11(a) shows the relative strength o f different frequencies for a sweep ranging 

from 0Hz to 40Hz for new, blunt and broken cutters for a 2mm depth o f cut. For these 

tests 32 samples per frequency windows were acquired to calculate the relative 

strength o f each frequency. Similarly Figure-5.11(b) shows the results for the same 

parameters using 16 samples per frequency window to calculate the relative strength 

of each frequency. After a tooth breaks the variations in the spindle load signal are 

high therefore the sweeping filtering technique was implemented on the spindle load 

signal.
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Figure-5.11, Sw eeping Filter results for new, blunt and broken cutters. 
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In these Figures (5.11 -a&b) green lines indicate the relative strength of frequencies 

for a new cutter whereas blue and red colours correspond to the behaviours of blunt 

and broken cutters respectively. Both figures indicate that the technique has the 

capabilities to detect the tool breakage in either situation. A thorough analysis of the 

results presented in Figures-5.1 l(a&b) reveals that peaks of relative strength of 

frequencies detected are much sharper when 32 samples per frequency window are 

acquired as compared to 16 samples per frequency window. This means that higher 

number of samples result in a better resolution thus ensuring a more reliable decision. 

Higher resolution is required particularly for low spindle speeds when frequencies of 

interest are much closer as compared to high spindle speed where frequencies are far 

apart and can be easily detected. For example, for a four toothed cutter rotating at 

500RPM, the frequencies of interests are 8.33, 25 and 33Hz. These frequencies are 

tool rotation frequency (8.33Hz), tooth rotation frequency (33Hz) and broken tooth 

frequency (25Hz). For the same cutter rotating at 1000RPM, the frequencies of 

interest are 16.66, 50 and 66Hz which are further apart as compared to the 500RPM 

speed. Therefore lower values of resolution can be used to detect tool breakage at high 

speed spindle rotations.

Typically observed relative strength values for different frequencies of interest for a 

cutting operation using four toothed cutter at a 500RPM spindle speed and 2mm depth 

of cut are tabulated in Table-5.3.
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Gain=16 Sweeping Filter Data (32 Points)
Frequency

(Hz)
Relative
Strength
(New)

Relative
Strength
(Broken)

Percentage
Increase

8.33 12 181 1408%
25 8 70 775%
33 15 19 27%

T able-5.3, Four-toothed tool data.

For a new cutter, the strength of the frequency components is very weak but 

noticeable on a smaller graphical scale. The presence of an 8Hz (tool rotation 

frequency) and a relatively higher strength 33Hz (tooth rotation frequency) as 

compared to 25Hz (broken tooth frequency) indicate that the tool is healthy. As the 

tool goes blunt the strength of these frequency components increases proportionally 

but retains the same trend as can be noticed in Figures-5.1 l(a&b). As soon as a tooth 

breaks there is a significant increase in the strength of the tool rotation frequency. 

This increase is basically an additive sum of the tool rotation frequency and the 

frequency of the tooth which is now required to undertake the cutting of the extra 

metal. Since both frequencies are the same the increase is much more significant 

(Table-5.3 -  an increase of 1462% for 8.33Hz).

The frequency component corresponding to the broken tooth frequency (25Flz in this 

case) also increases. This increase is mainly due to two reasons: firstly, one of the 

teeth has broken and actual number of teeth actively engaged in cutting is one less 

than the total number of teeth which generate this frequency component. Secondly, 

the harmonic o f tool rotation frequency is strong enough to show an additive effect. 

The increase can be noted in Table-5.3 (725% for 25Hz).

In accordance with the theory of number o f teeth engaged in cutting; the tooth rotation 

frequency component (33Hz in this case) should disappear as there are only three 

teeth cutting but in practical situations this is not observed. This frequency component 

remains close to the previous value due to the harmonic effect of a very strong tool 

rotation frequency component (Table-5.3 -  33Hz). Although the reduction in this 

frequency component is desirable it is not mandatory because a significant difference 

in the strength of two other frequency components is sufficient to raise concerns about 

the health of the tool.
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The reliability o f the approach has been illustrated for a 2mm depth o f cut. The 

relative strength of frequency components of interest gets even more prominent and 

easy to detect for higher depth of cuts. The technique is also efficient enough to detect 

tool breakage for lower values of depth of e.g. even at a nominal value o f 0.5mm as 

shown in Figures-5.12(a-f). In Figures-5.12(a-f) green lines show the relative 

frequency strength in the spindle load signal acquired using a new cutter whereas blue 

and red colours correspond to blunt and broken tools respectively. Figures-5.12(a) 

shows results for 1.5 mm depth of cut. In these tests 32 data samples were acquired to 

calculate the relative strength of each frequency component ranging from 0 to 40Hz. 

Figure-5.12(b) shows the test results using the same parameters but using 16 data 

samples per frequency window. It can be noted that the peaks of the detected 

frequency components are much sharper and the resolution is better when using the 

higher number o f data samples. This is because of the fact that the filter gets a higher 

settling time and the difference between the maximum and minimum detected values 

increases. The same trend can be noted in Figures-5.12(c-f). It is worth noting that 

even for a nominal value of 0.5 mm depth of cut the breakage can be detected 

(Figures-5.12- e,f).

The reliability of the developed technique required the consideration o f another 

crucial factor; the response lead time. This can be defined as the time taken by a 

system to acquire, analyse and make a decision about a tool’s health. A longer lead 

time in decision making results in a higher number of tool rotations and hence in the 

amount of cutting undertaken before stopping the machine if a tooth is broken. To 

ensure high quality machining a lower value of decision lead time is desirable. Lead 

time in the sweeping filter technique is directly proportional to number of cutter teeth 

and spindle rotational speed, since a reasonable time at each bandpass window is 

required to acquire the relative strength of different frequency components before 

decision making.
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A sweep operation acquiring 32 samples per window at the specified sampling rate 

takes 8 seconds to complete. For a spindle speed of 500RPM this setup will detect the 

breakage after 66 tool revolutions. Similarly, at 16 samples per window breakage can 

still be detected but there is a lead time of 33 tool revolutions. The lead time increases 

further for higher spindle rotation speeds as the frequency range of interest increases. 

For example; the frequency range of interest for spindle speed of 1000RPM ranges
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from 16Hz-66Hz showing a proportional increase in sweep range in line with the 

spindle rotation speed.

Theoretically this lead time can be reduced by increasing the sampling rate but this is 

not a practical solution. By increasing the sampling rate the data can be acquired in a 

smaller time but the peak-to-peak value o f each frequency window is virtually 

meaningless because the filter does not have appropriate settling time. Therefore an 

improvement in the same technique was researched and is discussed in the following 

section.

5.6 Three Point Filtering Technique for Tool Monitoring

It has been verified in the last section that monitoring the relative strengths of three 

frequency components can help in detecting a tooth breakage. These frequency 

components include the tool rotation frequency, tooth rotation frequency and broken 

tooth frequency. The major hindrance however is the lead time, which is much higher 

than a reasonable value and will not be accepted by industrial users. Therefore the 

further development o f the same idea was considered and a Three Point Filtering 

Technique approach was developed for the same application.

This Three Point Filtering Technique is based on the simple idea o f investigating the 

three frequency components of interest rather than scanning the whole range of 

frequencies. A significant reduction in overall lead time towards tooth breakage 

detection is possible using this approach. The lead time is independent o f spindle 

rotation speed and always remains constant as there are only three frequencies that 

need to be investigated. These frequencies change in relation to the spindle speed and 

the number of cutter teeth.

For a four toothed cutter and spindle rotation speed of 500RPM, the three frequencies 

of interest are 8.33Hz, 25Hz and 33Hz as discussed in Section 5.5. Using this 

technique, the filter is tuned to the first frequency and data is acquired and analysed 

before filter shifts to the second frequency o f interest. In this approach these three 

frequencies are analysed cyclically and comparative analysis made using their relative 

strengths. Tests were carried out for different filter settling time settings and it was 

observed that 16 samples per frequency window at a sampling rate o f 100 samples per
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second can reliably determine a tooth breakage by analysing either spindle load or 

spindle speed signals. A constant time of 0.48 second is required to determine a tooth 

breakage using this technique independent of the spindle rotation frequency.

Figures-5.13(a) shows the time spent on scanning the frequency components that are 

not actually required for monitoring the health of the machine tool. To save this time 

and improve the lead time for tooth breakage detection Figure-5.13(b) shows Three 

Point Filtering technique which monitors the frequencies of interest only. The green 

lines/dots represent the cutting test result of a healthy cutter whereas blue and red 

colours correspond to the blunt and broken cutters respectively.

200
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required practically
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Figure-5.13(a) -  Sw eeping Filter Technique: Full frequency range scanned
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Figure-5.13(b) -  Three Point Filtering Technique: Frequencies o f  interest scanned only

It can be noted that relative strength of detected frequency components in the 

Sweeping Filter technique is higher than the Three Point Filtering technique. This is 

due to the fact that in the Sweeping Filter technique the frequencies before and after 

the frequency of interest are also scanned which increases the overall settling time of 

the filter and difference between maximum and minimum values acquired is higher.



127

In the Three Point Filtering technique the filter is tuned to a specific frequency only 

before moving to the next frequency o f interest. These are far apart. Therefore the 

overall settling time remains exactly the same as programmed which keeps the output 

signal relatively lower than full sweep technique. This factor does not affect the 

overall approach as it is based on the concept o f comparative analysis. In comparative 

analysis if  a fixed settling time is used for each frequency component monitoring, the 

results are not affected as one set of values is compared against another set where both 

have been acquired using the same settling time.

Figures-5.14(a) and 5.14(b) show the test results using the Three Point Filtering 

technique for analysing spindle load and spindle speed signals respectively. Both 

these tests show the reliability o f the technique for detecting tooth breakage. It is 

worth noting that the variations in strengths o f the frequency components of interest 

are much higher for the spindle load signal as compared to the spindle speed signal. A 

higher strength variation helps in using higher threshold values that increases the 

system reliability and decrease the chances of false alarms. Therefore the spindle load 

signal was finally chosen to be used in Three Point Filtering technique for tooth 

breakage detection.

This approach significantly reduces the lead time needed for breakage detection but it 

is still higher than the lead time of a practically acceptable tool condition monitoring 

system. For a spindle speed o f 500RPM, three point filtering detects the variations in 

strength o f frequency components within 4 tool revolutions. Since the detection time 

of this monitoring approach is always constant as the spindle speed increases so the 

number o f revolutions prior to the abnormality detection increases. This increase is 

nonlinear for the reasons described in section 5.5 but still it affects the lead time 

significantly. For example at spindle speed o f 2000RPM, the breakage detection delay 

is between 12-15 tool revolutions. Therefore the concept was further refined to reduce 

the lead time and enable it to provide a practical implementation as discussed in the 

next section.
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5.7 P aralle l F iltering  T echnique (P FT )

It is proposed that a practical tool condition monitoring system should be able to 

detect signal abnormalities within 2 revolutions of the tool independent of its 

operational speed. Cost effectiveness is also an important requirement for such 

systems. The PIC microcontrollers are very cost effective embedded solutions.

Given the development, and limitation, o f previously outlined solutions the use o f 

more than one microcontroller in parallel was considered to reduce overall lead time 

of the system for breakage detection. This approach is simply based on the idea of 

using one frequency analysis subsystem for each of the three frequency components 

of interest. Three subsystems will then be used in parallel; each responsible for 

monitoring its frequency of interest and communicating results to parameter 

monitoring and decision making node for final decision making. The block diagram of 

the proposed system is shown in Figure-5.15 with corresponding results. As shown in 

the figure three nodes namely the tool rotation frequency monitoring node, broken



129

tooth frequency monitoring node and tooth rotation frequency monitoring node 

operate in parallel and monitor one frequency component each.
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Figure-5.15, Block Diagram o f  Parallel Filtering Technique

5.7.1 System Efficiency

The start of the monitoring operation in this approach is similar to the Sweeping Filter 

approach. After the start of a cutting process each monitoring node sets its threshold 

value in relation to the initially acquired values for a healthy tool. The threshold value 

of broken tooth frequency monitoring node depends upon the observed value of tooth 

rotation frequency strength for a healthy cutter. This is due to the fact that it compares 

its strength against the tooth rotation frequency strength. Each monitoring node starts 

the monitoring process based on a comparative analysis of freshly acquired data with 

previously acquired values on the fly. There is no requirement for a filter settling time
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while using this approach as the filter output window is tuned permanently to one 

frequency o f interest unless the spindle rotation speed is changed. This approach 

therefore is much faster when compared to both those discussed earlier.

The sampling rate has been set at 256samples per second and data is acquired for one 

spindle rotation independently of its rotational speed. A variable data point 

comparison technique has been used to detect signal variations within one spindle 

rotation. For example at spindle speed of 500RPM, 30 data samples are acquired and 

compared whereas at 3000RPM, 6 data samples are sufficient to reveal the required 

signal variation information.

Figure-5.15 shows the test results from the three different nodes (subsystems) using 

new, blunt and broken tools. It can be noted that each node is monitoring one single 

frequency component continuously thus reducing lead time for tool breakage 

detection down to two tool revolutions. Green dots represent the new tool data 

whereas blue and red colours correspond to the blunt and broken tools respectively. It 

can be noted from the results o f the tool rotation frequency monitoring node that the 

relative strength o f the signal is much higher (acquired value 100) when a tool breaks 

as compared to a new tool (acquired value 6). Similarly the broken tooth frequency 

(25Hz) goes higher (acquired value 55) as compared to tooth rotation frequency 

(33Hz, acquired value 25). These variations in relative strengths of frequency 

components o f interest indicate a tool breakage within two tool rotations. The system 

has the capability to detect tool breakage using either spindle load or spindle speed 

signals using Parallel Filtering Technique. The variations in spindle load signal are 

more prominent and therefore it was chosen as the input to the system. The proposed 

technique also has the capability to detect tooth breakage for a minimal depth of cut 

ranging from 0.5 mm onwards.

5.8 Conclusion

The application o f sweeping filters in general and the development of the parallel 

filtering approach in particular have been discussed in detail. The Frequency analysis 

nodes are part o f a complete TCMS which includes the time domain analysis o f the 

acquired signal as well. The time domain analysis technique developed is explained in
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next the chapter (Chapter-6). An alarm is not generated unless there is an indication of 

abnormality from both the time and the frequency domain monitoring nodes.

The technique is fairly simple to implement using cost effective microcontrollers. It 

has the potential to detect tooth breakage during a machining operation in almost real 

time. This approach is implemented at the Front End Nodes (FENs). More complex 

situations are referred to the second tier o f the hardware design which is explained in 

the system integration chapter (Chapter-7).

The PIC Microcontroller implemented as the heart of the first tier monitoring node in 

the overall system design along with its communication features on the CAN bus have 

been proven successful for this application. The use o f distributed embedded systems 

for machine tool condition monitoring applications has been verified as being reliable. 

The application of sweeping filter and parallel filtering techniques for a real life 

machine tool condition monitoring has been proven to be successful. It has thus been 

identified that a distributed machine tool monitoring application using these

techniques can be implemented using PIC microcontroller.
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TO O TH /TO O L R O TA TIO N  ENERG Y ESTIM A TIO N  

TECH NIQ UE (TREE) FO R  M ACH INE TO O L SIG NAL

A N ALYSIS

6.1 Introduction

Much o f statistical methodology is concerned with models in which the observations 

are assumed to vary independently. A great amount of data in engineering 

applications occur in the form of time series where observations are dependent and the 

nature o f this dependence is used for the development of an analysis technique. The 

body o f techniques available for the analysis o f such a series of dependent 

observations is called time series analysis [6.1]. Time series is generally defined as an 

ordered sequence o f values o f a variable at equally spaced time intervals.

Time series data often arise when monitoring industrial processes or tracking 

corporate business metrics. Therefore the use of time series analysis is twofold: firstly 

to obtain an understanding o f the underlying structure that produced the observed data 

and secondly to fit a model and proceed to forecasting, monitoring or even feedback 

and feed forward control. Since this thesis focuses on an industrial monitoring 

application design time series analysis has been investigated only in this perspective. 

Time series analysis accounts for the fact that data points taken over time may have an 

internal structure such as autocorrelation, trend or seasonal variation that may lead to 

information retrieval through different techniques for analysis and decision making.

Sweeping filter or parallel filtering as described in Chapter-5 are types o f such data 

analysis techniques. There are many others available for frequency domain analysis. 

These have been used to analyse spindle speed and spindle load signals for machine 

tool condition monitoring as discussed earlier. In addition to frequency domain 

analysis, the time domain analysis of the same signals was researched for integration 

of results to increase the overall reliability o f the system. This approach o f synergistic 

decision making considerably reduces the percentage o f false alarms and increases the 

reliability o f the monitoring system.
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As in most other analyses, it is assumed in time series analysis that data consists o f a 

systematic pattern (usually a set o f identifiable components) and random noise error 

which usually makes the pattern difficult to identify. Most time series analysis 

techniques involve some form of filtering out o f the noise in order to make the pattern 

more salient. The majority of time series patterns can be described in terms o f two 

basic classes o f components: trend and seasonality. Trend represents a general 

systematic linear or (most often) nonlinear component that changes over time and 

does not repeat or at least does not repeat within the time range captured by the data 

e.g. exponential growth. Seasonality normally has a formally similar nature and 

repeats itself in systematic intervals over time.

For reliable time series data analysis it is very important to consider that any 

technique used should be sufficiently flexible to handle practical situations. In 

particular time series analysis often deals with non-stationary systems. For these 

situations trends and other characteristics change with time and therefore need to be 

treated as statistical (stochastic) phenomenon rather than deterministic [6.1]. There are 

various time series data analysis and modelling techniques starting from control charts 

and moving on to sophisticated techniques like Box and Jenkins Auto-regressive 

Integrated Moving Average (ARIMA) and Multivariate models. The selection and 

application o f these techniques for a particular application depends upon the system 

requirements e.g. its complexity, needs and the resources available. Therefore it is 

very important to analyse the complexity of a process in terms of its application 

requirements and the available resources before finalising the choice o f technique to 

be implemented.

Machine tool condition monitoring is an industrial application where time series data 

analysis can be correlated to a tool’s health by using various analysis techniques. The 

field o f time series data analysis and its correlation to a machine tool’s health is not 

new and there has been extensive research in this area over the past few decades as 

mentioned in the literature survey chapter (Chapter-3). The aim o f the research being 

described in this thesis was to detect a tool breakage in the milling process using 

existing machine tool signals and a minimum of hardware, thus avoiding the 

additional cost o f sensors. In this research, time series data analysis was investigated 

with a view to develop a simple approach that can be implemented on a resource
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limited 8-bit PIC microcontroller and yet be capable o f analysing data in real time for 

decision making. This chapter discusses in detail the concept o f such a technique 

which observes variations in the spindle load and speed signals over time and 

correlates them to a tool’s health with integration o f the parallel filtering results.

6.2 Machine Tool Monitoring

A Tool Condition Monitoring System (TCMS) is essentially an information flow and 

processing system in which the information source selection and acquisition (sensors 

and data collection), information processing and refinement (signal processing and 

feature extraction), and decision-making based on the refined information (condition 

identification) are integrated [6.2]. An effective and time efficient on-line 

identification o f machine tool failure plays a key role in enhanced productivity, better 

quality and lower costs particularly for unmanned, automated manufacturing systems. 

The most important success factor for a robust and reliable TCMS is to develop 

appropriate signal processing techniques to maximize the information utilization o f 

the input signals. A major hindrance towards the design of these systems is the 

reliability o f any decision made from the information retrieved from a source which 

may not be directly related to the decision making area [6.3]. Therefore in a non

sensor design a combinational approach is normally much more reliable in decision 

making.

6.2.1 Metal Removal with Regard to Tool Rotation

In normal milling operations the uncut chip area o f the removed material at each tooth 

and the effective cutting force (which is proportional to spindle load) vary according 

to the rotation angle o f a tool. Depending upon the number of teeth on a tool, the total 

cutting force on the tool shows some small variations and spectral analysis of the 

spindle signals show the existence of many frequency components. The spectral 

estimation and its variations for various tool health conditions have already been 

discussed in Chapter-5. In the past, data acquisition in monitoring systems has been 

carried out by using two approaches. In the first approach data are sampled at fixed 

intervals o f time, independent of the spindle rotational angle, whereas in the second 

approach data are sampled with the pulses of an encoder at predetermined rotation 

angles of the spindle [6.4]. Both approaches have been used in various research
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applications for different reasons. Since this research is based upon the comparative 

analysis of spindle load variations within each tooth/tool rotation, acquiring data 

samples at predetermined spindle rotation angles is not a primary requirement. The 

supporting facts for this argument are described below.

Figure-6.1 shows the rotational area o f each tooth in a cutting process for one spindle 

rotation using a four toothed healthy cutter. It can be noted that overall cutting 

contribution by different teeth in terms o f rotational area is equal to eight segments o f 

90 degrees in each tool rotation that adds to 720 degrees o f cutting. This is due to the 

fact that for a four teeth cutter; two teeth are always engaged in metal cutting process. 

The figure shows two different cases o f tool rotation angles. In the first case (top left 

Figure-6.1) it can be seen that at the start o f the data acquisition process, tooth-2 is at 

the entry stage and tooth-3 has completed half of its cutting cycle. Therefore tooth-2 

and tooth-3 are engaged in the cutting process for the next segment o f 90 degrees. If 

cutting contribution by one tooth for 90 degrees is represented by N then the total 

cutting contribution by both teeth is 2N. After this segment o f cutting, tooth-3 leaves 

the workpiece and tooth-1 enters. These two teeth (tooth-2 and tooth-1) cut for the 

next cutting segment o f 90 degrees. The total cutting contributions is again 2N.
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The cycle continues and each tooth cuts two segments of 90 degrees in one tool 

rotation (for a healthy cutter). Therefore ideally the variations in spindle load signal
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over one tool rotation should be zero or almost negligible (in actual cutting 

environments small but negligible variations are observed).

In the second case (lower row o f Figure-6.1), tooth-2 is 45 degrees into the work piece 

from where a 90 degree segment has been measured. For the next cutting segment o f 

90 degrees, tooth-2 cuts for 90 degrees whereas tooth-1 and tooth-3 contribute for 45 

degrees each. The total cutting contribution remains 2N (tooth-2 contributes N and 

tooth-1 and tooth-2 contribute 0.5N each). In both cases, the overall contribution for 

one complete tool rotation remains constant and the difference between the maximum 

and minimum spindle load for one tool rotation is negligible. It can also be noted that 

each tooth cuts for two segments of 90 degrees each i.e. 180 degrees in one tool 

rotation. Since this is an illustration o f a healthy cutter no major variations can be seen 

and the sum o f the normal cutting contributions made by the four teeth adds to 8 

segments o f 90 degrees each in one tool rotation.

It must be noted that feed rate also affects the overall metal removal contribution 

made by each tooth but in practical scenarios this can assumed to be negligible. For 

example at a feed rate o f 100 mm per minute and spindle rotation speed of 500 RPM 

the machine tool only moves 0.2 mm into a workpiece for each tool rotation. For a 

tool diameter o f 10 mm this ratio is 1:50 and is thus assumed to be negligible.

The rotational area for a four toothed cutter with one broken tooth is same for each 

tooth i.e. 2 segments each o f 90 degrees, but the cutting contributions made by each 

tooth are different. These variations can thus be analysed and correlated to the tool’s 

health. The cutting rotation cycle o f a machine tool with one broken tooth is shown in 

Figure-6.2. The figure also shows that if  acquired data are considered for a complete 

tool rotation the variations in the spindle load signal will always be observed. For a 

healthy tool and one with a broken tooth the basic difference is in the cutting 

contributions of different teeth. For a broken toothed cutter there are only three teeth 

engaged in metal removal. Since a broken cutter does not contribute to the cutting 

process therefore the tooth following the broken one has to make a double 

contribution in overall cutting within one revolution. Therefore in one tool rotation, 

two o f the 90 degree tooth rotation segments are not contributing to the cutting 

process whereas two are contributing double what would be expected from a normal 

healthy tooth.
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Figure-6.2 shows the same cases as discussed in Figure-6.1 with the difference that 

Figure-6.1 represented the load variations for a healthy cutter and Figure-6.2 

represents these variations for a broken cutter. In the first case the data acquisition 

starts from the tool entry point and continues for one tool rotation. The figure shows 

that the healthy tooth following a broken tooth always cuts double the amount it is 

expected to cut in normal cutting conditions. Therefore the variations in the spindle 

load signal are much higher for a broken cutter as compared to a healthy cutter.
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Figure-6.2, Rotational Area o f  each tooth in one tool rotation: 4 teeth broken cutter

It is evident that variations in cutting force or spindle load significantly increase for a 

tool with one broken tooth and therefore can be expected to affect respective 

monitored signals. The spindle load increases and spindle speed decreases when a 

healthy tooth following a broken one enters the workpiece as it has to do extra cutting. 

In order to compensate the speed drop, the machine controller increases the speed 

accordingly but as soon as a combination o f healthy cutters is engaged in cutting, the 

speed increases and has to be controlled by the controller. Therefore variations in 

spindle speed and spindle load are much more significant when a tool with one broken 

tooth is engaged in cutting. These variations in acquired time series data reveal very 

useful information about health o f a cutting tool. The spindle load variation indices
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for both healthy cutter and with one broken tooth are tabulated in Table-6.1 & 6.2 

respectively.

Cutting load for different teeth in one tool rotation (healthy tool)

Cutter Tooth 1 Tooth2 Tooth3 (N 3) Tooth4 (N 4) Variation

( N l ) (N 2) Index

4 Teeth 

(Healthy)

2x90° Segm ents 2x90° Segm ents 2x90°

Segm ents

2x90°

Segm ents

Ideally None

T able-6.1, Cutting load variation index, healthy cutter

Cutter

Cutting load for different teeth in one tool rotation (broken tool)

T ooth 1 ( N l ) Tooth2 (N 2) Tooth3 (N 3 ), (B  for 3 

teeth cutter)

T ooth4

(B )

Variation

Index

4 Teeth 

(Broken)

2x90°

Segm ents

2x90°

Segm ents
4x90° Segments None 4

T able-6.2, Cutting load variation index, broken cutters

6.3 Basic Concept of Tooth Rotation Energy Estimation (TREE)

The basic concept o f Tooth Rotation Energy Estimation (TREE) technique follows 

almost the same principle as described in the Parallel Filtering approach in Chapter-5. 

It monitors the signal variations in each tooth/tool rotation in a combinational 

approach and correlates the strength o f these variations to the health of the tool. The 

main difference between the approaches is the signal analysis domain. In the first 

approach (Parallel Filtering) hardware based filtering is used and variations in the 

strength o f the different frequency components are calculated and correlated to the 

tool’s health in the software. In the second approach (TREE) there is no additional 

hardware involved and data is analysed in the time domain after direct acquisition 

from the machine through an anti-aliasing filtering stage only.

The spindle speed o f machine tool Kondia B-500 ranges from 100RPM to 6000RPM. 

The feedback o f spindle running speed is provided to the machine controller by using 

an encoder at a pulse rate o f 1024 pulses per revolution. At such a high feedback rate 

the machine controller controls the speed variations almost instantaneously. Therefore 

to observe any changes in spindle speed it is important to keep the data sampling rate 

as near to the control rate as possible. Moreover the feedback rate is variable and 

depends upon the spindle speed. Therefore as speed increases, the feedback rate
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increases and vice versa. In order to meet varying feedback and control conditions a 

variable data sampling rate approach was used in this research.

Various laboratory simulation tests were carried out to find an appropriate data 

sampling rate that can be supported by the PIC18F458 and still reveals enough 

information about signal variations for tool breakage detection. It was concluded that 

there is a requirement to sample the spindle signals at a minimum rate o f half the 

encoder pulse rate. Therefore for a spindle speed o f 600RPM, a data sample rate of 

5.12K samples per second or above is required. The PIC18F458 supports a maximum 

sampling rate up to 30K samples per second. In addition it also needs signal 

processing time. Therefore a maximum data acquisition rate o f 25.6K samples per 

second was used in this application design. This means that the TREE technique, 

when implemented on a PIC18F458, can support tool monitoring o f up to 3000 RPM 

spindle speed.

There are more modem versions of PIC Microcontrollers available now that support a 

much higher data sampling rate e.g. dsPIC30F6014 supports a data sampling rate of 

up to 1M samples per second. Using this new microcontroller and the same technique 

described in this chapter much higher spindle speeds can be monitored and is 

discussed in Chapter-9 (System Analysis, Discussion and Future Work).

6.4 Hardware Architecture

The proposed TREE technique architecture is based on the two tier system as shown 

in Figure-6.3 (it can be extended to three tiers depending upon the system 

requirements). In this technique there are two front end nodes that monitor variations 

in spindle speed and spindle load signals. Both front end nodes are based on 

PIC18F458 microcontrollers. The input signal is passed through an anti-aliasing 

filtering stage before interfacing it to the microcontroller. A parameter monitoring 

node is used centrally that monitors spindle speed and load signals and communicates 

necessary information about these variables to the FENs using CAN bus connectivity.
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The spindle speed and spindle load signals are tapped from the machine controller and 

interfaced to an isolation card. This card provides high voltage protection between the 

machine tool signals and analogue inputs to the system. The isolation card is housed 

in a signal conditioning card rack fitted into the machine tool for research applications 

and signal distribution. The hardware architectural design and details o f these boards 

have already been reported by Jennings et al [6.5].

The outputs from the isolation card are interfaced to the first tier monitoring nodes. 

The first tier microcontrollers use 40MHz crystal oscillators. The microcontrollers are 

linked together using the CAN bus and PCA82C50 CAN transceiver. The system has 

been designed based upon extended data frame CAN protocol usage. The same 

communication medium is used to link the entire first layer o f the system to second 

tier, which is based on a Tiny Internet Interface (TINI) system. Each front end node is 

responsible for monitoring the health o f at least one machine signal. In the event of 

any abnormal situation developing the parameter monitoring and decision making 

node analyses the situation and a decision is made either at tier one or decision 

verification requested from tier two if higher computational power is required.

6.5 Software Considerations

The instruction set o f a PIC18F458 Microcontroller is based upon 16 bit wide 

instructions (with the exception o f three instructions). The machine signals are
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interfaced to the Analogue to Digital Converter (ADC) conversion module o f 

microcontroller. The ADC module allows conversion o f an analogue input signal to a 

corresponding digital number. A number o f instructions are available for data 

manipulation in this device, which is ideal for such applications.

The initialisation block of the software in the first tier nodes sets up the micro

controllers’ operating mode, selects and configures the digital and analogue I/O pins. 

It initialises the CAN activity and does essential handshaking to verify health of the 

system at initialisation as well as at regular operating intervals.

6.5.1 Software Architecture

The software o f each monitoring node for time series analysis o f acquired data has 

been organised to support the monitoring of one individual machine signal 

independent o f the signal’s origin i.e. each node can monitor spindle speed or spindle 

load signals or vice versa. Since it has to deal with a high speed data acquisition rate 

and real time processing to detect signal variations as well as needing instruction 

execution time, the implemented time windows have been carefully compared against 

available time windows to avoid any overlapping situations. These considerations are 

necessary to avoid false results as unexpected interrupts can change register values 

thus changing the whole architecture of the signal processing.

It is assumed that at the start o f the cutting process a healthy cutter is used. At the start 

of the monitoring process, the system waits for the actual cutting process to start. The 

start o f the cutting process is determined by a significant increase in the spindle load 

by the parameter monitoring node as explained in Chapter-5. After the start o f the 

cutting process the parameter monitoring node calculates the necessary parameter 

information e.g. the spindle speed and frequencies o f interest etc. and communicates 

to the other nodes on the monitoring network. This information is communicated to 

other nodes in the monitoring network.

The parameter monitoring node conveys the required data acquisition rate to the 

spindle load and speed monitoring nodes. The system waits for the tool’s entry into 

the workpiece before making any decision. This delay time is used to discard higher 

tooth energy variations while a tool is entering a workpiece. This delay is important to
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set the accurate threshold levels at the start o f the cutting process. The delay time is 

normally dependent upon feed rate and tool diameter. A delay time o f three seconds 

was used in this application. This amount o f delay ensures that a cutter o f 5mm radius, 

cutting at 100 mm per minute feed rate enters the work piece in 3 seconds. The same 

delay time is sufficient for higher feed rates as entry time reduces for higher feed 

rates. The flow chart o f this software architecture is shown in Figure-6.4.
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It shows the software flow for the spindle load monitoring node. The same approach 

is implemented in the spindle speed monitoring node as well. After the initialisation 

of the system a cyclic monitoring process starts. At the start o f monitoring process, 

variations are observed in the signals that are used to set monitoring thresholds. In the 

monitoring process, each node observes variations in tooth and tool rotation periods 

and compares these to set thresholds. After detecting any threshold crossings, the 

information is sent to the integration stage which decides about the tool’s actual 

health. This information is used for alarm generation in conjunction with the data 

from other FENs.

6.5.2 Technique Implementation

This technique uses a variable data acquisition rate which has been explained in the 

previous section. The data is acquired and analysed in segments o f one tooth rotation 

each. During the data acquisition stage, tooth rotation energy variations are calculated 

in both spindle load and spindle speed signals. These variations are calculated in 

almost real time.

Even after passing the signal through an anti-aliasing filtering stage, it still contains 

considerable noise which needs to be removed before obtaining reliable results. 

Therefore at start o f data monitoring, it is filtered by applying a moving average 

filtering technique. This technique has been used due to the fact that well modelled 

discrete-time systems can take a given input and process it to generate a desired set of 

output sequences. An effective implementation for this purpose is the moving average 

system, also known as an FIR averaging filter. The aim of a moving average system is 

to smooth irregularities and random variations in a data set or signal. A moving 

average filter is mathematically modelled as shown in equation 6.1. In this equation 

the upper limit “M” can be any number. The value of M also determines the order of 

the filter.

i  M - 1

y(n) = —  £ * [ «  + £] eq. 6.1. [6.6]
M  k=Q

A moving average filter is a convolution using a simple filter kernel. It can be referred 

to as convolution o f the input signal with a rectangular pulse having an area o f one.
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The order of the implemented moving average filter in this application was variable. It 

is dependent upon the number o f data samples acquired per tooth rotation. In 

simulations and during laboratory testing it was observed that an order proportional to 

the tooth rotation data samples was best suited. For example, at a data sample rate o f 

240 samples per tooth rotation, a moving average filter o f the order o f 240 was used. 

Although the order seems too high its assembly language based software was 

relatively simple and implementable for real time results. Moreover it was observed 

that it provides much better signal smoothing than lower order results.

The dividing factor M in equation 6.1 is a scalar value and it does not affect the final 

results if  they are to be used for comparative analysis. It only scales down the final 

value if used for division. In this application, the dividing factor was implemented 

independent o f the actual order o f the filter because o f its scalar property. This 

approach was adopted due to two factors. Firstly it is a comparative analysis 

technique and therefore a scalar division o f two values by an appropriate constant 

does not affect the comparative results. Secondly, the implementation o f higher order 

division in PIC18F458, although possible, takes unnecessary extra time especially in a 

case where there is no special advantage o f using it. Therefore a simple technique o f 

8-bit division was implemented by discarding the lower 8-bits out o f a cumulative 16 

or 24 bits o f data sum to divide it by 256. This approach provided a scalar downshift 

o f the final value in moving average filtering stage. In this chapter the results specific 

to fixed cutting parameters are described to avoid unnecessary details. A complete 

range o f tests and results are discussed in detail in Chapter-7. Theses parameters 

include a spindle speed o f 500RPM and a feed rate o f 100 mm per minute using a four 

toothed cutter. The results obtained by using different depth o f cut values are shown 

to prove the functionality o f technique for various situations.

The moving average filtering stage was implemented in the form o f a circular buffer 

in the RAM of PIC18F458. By using this approach RAM locations equal to the order 

of implemented filter are required only, thus avoiding unnecessary overloading o f the 

available memory. Moreover this implementation strategy provided a constant 

efficiency in terms o f calculation time regardless o f the filter order. The implemented 

equation is shown in equation 6.2 and Figure-6.5
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Surrii = (Sumj.i -  Vali.order + Valt)/256 Eq. 6.2.

Where Sum* = Current Sum, Sunij.i = Previous Sum, Vali.order = Starting data value o f 

the filter order, V af = Current data value.

Val,

I-order

F igure-6 .5 , Circular buffer im plem entations for m oving average filter in PIC 18F458.

At the start o f the process, data samples equal to order o f the implemented filter are 

acquired and filtering is carried out in parallel. The calculations are carried out using a 

single equation based on three variables only. Therefore calculation time is not 

affected by the change in order of the filter and always remains constant. A moving 

average filter decreases the amount of random noise in a signal but at the same time it 

reduces the sharpness o f the edges in an input signal. The amount o f noise removal is 

equal to the square root o f the order o f a filter used. For example a moving average 

filter of the order o f 100 removes the noise by a factor of 10 [6.6]. Therefore in this 

application design the order o f designed filter was kept variable and in proportion to 

the data samples in a tooth rotation. The reason behind this strategy was that as the 

spindle speed increases, encoder pulses for its feedback also increase and a higher 

sampling rate is required to capture signal variations before they are controlled. 

Moreover a higher sampling rate increases the amount o f acquired noise. Therefore a 

higher order filter more effectively reduces the signal noise. The moving average 

filter’s effect on edge sharpness removal does not affect this application as variations 

in the spindle load signal for a broken cutter are not instantaneous and are more or 

less similar to a sinusoidal shape as can be observed in Figure-6.6(b).

The ability o f this technique to remove noise in spindle load signal is shown in 

Figure-6.6. Figure-6.6(a) shows original spindle load signal whereas 6.6(b) shows 

filtered signal. The noise removal is an important requirement to observe signal
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variations while using the segmental averaging and comparison technique developed 

for this research application. The effectiveness o f  the developed technique is evident 

as the original spindle load signal acquired by the PIC microcontroller and its filtered 

output shown in the figures clearly indicate the difference.
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F ig u re-6 .6  (a & b ), N o ise  rem oval in sp in d le  load sig n a l u s in g  m o v in g  average  Filtering.

At the start o f  monitoring programme, two variables: “minimum value” and 

“maximum value” are defined. These are assigned hypothetical values. The minimum 

value variable is assigned the highest possible value that can be acquired and 

maximum value variable is assigned a lowest value i.e. zero. After acquisition o f  each 

filtered data sample, it is compared against the existing values o f both variables. If the 

acquired data value is higher than the current maximum variable values, it replaces 

the current m aximum variable. Similarly if the acquired data value is lower than 

current minimum variable value, it replaces it. The process runs until the data is 

acquired for one tooth rotation. The loop counter values for the required data samples 

in each tooth rotation are calculated and communicated by param eter monitoring 

node. At the end o f  one tooth rotation, the difference between the minimum and 

maximum values acquired gives the signal variation in that particular tooth rotation. 

In this way the signal variations for all four tooth revolutions are calculated for a four 

teeth cutter. The variations in the data acquired directly and the filtered data are 

significantly different and are shown in Figure-6.7 (a&b) respectively. Figure6.7(a) 

shows pure signal variations and 6.7(b) shows filtered signal variations. The results 

are based on integer calculations used in PIC microcontroller.

The observed variations in both figures clearly indicate the importance o f moving 

average filtering before analysing the data for energy variations within each tooth/tool 

rotation. By using a moving average filter, the noise level in a signal is scaled down. It 

can also be observed that in Figure-6.7(a) signal variations range from 10-90 whereas
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in filtered data these variations range between 0-6. The signal processing includes 

software filtering, finding the peak to peak difference in the acquired samples, 

segmental average and variance (if required). A very simple flow diagram o f the 

implemented software is shown in Figure-6.8.

Broken T oolBroken T ool

Figure-6.7 (a& b), Signal V ariations in each tooth rotation for pure and filtered data.
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F igure-6 .8 , B lock  Diagram  o f  Softw are Im plem entation

After the initialisation process the programme calculates the threshold values as 

shown in Figure-6.8. Data are acquired by the ADC after receiving a tool entry signal 

from the parameter monitoring node. An Interrupt Service Routine (ISR) is used to 

carry out these calculations independently and store them in the memory.

In the event o f abnormal indications, the observant node communicates to parameter 

monitoring and decision making node for verification and depending upon results 

from other nodes it can generate a warning and or alarm or can send data to the TINI 

board for further analysis or advice. The CAN module o f each node is configured to 

operate and support extended data frames. The CAN bus in this application is 

operating at a data rate o f 125Kbits per second. This data rate was selected to keep a 

balance between the noisy industrial environment and timing requirements to enable 

the system to achieve its aim o f calculating results within two tool revolutions.
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6.6 Monitoring Results

The TREE technique compared both average tooth and average tool rotation energy 

estimation strategies and their variations to determine the tool condition. Tests were 

carried out using a range o f machining parameters. The results discussed here are 

based on a spindle speed of 500 RPM, feed rate of 100 mm per minute and two 

different depths o f cut 1mm and 2mm using a four teeth cutter. Under the described 

spindle speed and data sampling rate, 240 data samples per tooth rotation and 960 data 

samples per tool rotation were analysed.

Figure-6.9 (a) shows the acquired spindle speed signal for both healthy and broken 

cutters. In all 24000 data points are shown consisting o f 12000 data points for healthy 

and broken cutter each. It is not possible to prearrange a tool breakage therefore the 

data files of two tests (one each for healthy and broken cutter) are interfaced midway 

to show the variations for both conditions and to simulate a tooth breakage.

The machining environment noise clearly dominates the signals although the signals 

have been acquired after a first stage of anti-aliasing filtering and signal conditioning. 

Therefore extracting some useful information in the time domain needs further 

filtration of acquired data. The moving average filtering technique was used to further 

filter the data. The order o f moving average filter is variable for this application 

design, which depends on spindle speed. The order of the filter used for these tests 

was 240 (corresponding to one tooth rotation data samples). Figure-6.9(b) shows the 

results calculated using Matlab software. The noise has been filtered out very 

effectively.

Figure-6.9(c) shows the results of moving average filtering using the actual PIC 

microcontroller based designed system. Matlab uses floating point calculations of a 

much higher order as compared to the PIC microcontroller. Therefore the results are 

smooth in Matlab based graphs. Tests also revealed that integer calculations (PIC 

based) are efficient enough to detect signal variations although results are not as 

smooth as Matlab. Therefore to reduce the calculation load further, integer 

calculations were used in PIC microcontroller and still very reliable results were 

obtained as shown in Figure-6.9(c).
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Figure-6.9, M oving average filtering results for spindle speed signal.
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Figures-6.10 (a) -  6.10(c) show the corresponding results from the spindle load signal. 

It can be clearly seen that the variations in the spindle load signal are much higher as 

compared to the spindle speed signal after the simulated breakage o f a tooth. The 

main reason behind these higher variations in the spindle load signal is that machine 

controller controls spindle speed dynamically whereas it cannot control the varying 

spindle load.

These results show overall variations in the signal for both healthy and broken cutters. 

Although these results graphically show enough information to detect a tool breakage 

a more intelligent and self detecting technique needs to be implemented for actual 

breakage detection. The estimation of tooth/tool rotation energy variations serves this 

purpose.

In the TREE technique these variations for both tooth rotation period and tool rotation 

period (tool rotation period corresponds to one tool rotation) were analysed and higher 

variations were observed for complete tool rotation period as compared to tooth 

rotation period. This is due to the fact that for a tooth that cuts extra metal or for a 

tooth that does not cut the overall load increases or decreases but the actual variations 

within that tooth rotation period are not significant. Whereas for a tool rotation period, 

load increases when a tooth cuts extra metal and it decreases when a tooth does not 

cut thus increasing overall variations in one complete rotation.
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F igure-6 .10, M oving average filtering results for spindle load signal.

The variations observed for 20 tooth rotations and corresponding 5 tool rotations (as a 

four toothed tool was used) are shown in Figure-6.11 (a & b) for spindle speed signal 

and Figure- 6.12 (a & b) for spindle load signal.
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F igure-6.12, S ignal V ariations for tooth and tool rotation periods in the spindle load signal.

These signals show data for 20 tooth rotations each for new and broken cutters that 

are interfaced midway in each figure. It can be noted that spindle speed variations for 

a healthy cutter are almost constant but increase in a broken cutter signal. These 

variations increase almost linearly for four teeth and follow the same pattern. The 

variations in tooth cutting period can be linked to the signal variations with respect to 

cutting area o f each tooth as shown in Tables-6.1&6.2.

Cutting load decreases at entry point of a broken tooth increasing the spindle speed. 

This increase is controlled by the machine controller. The healthy tooth following the 

broken one has to do extra cutting therefore spindle speed decreases and spindle load 

increases. This cycle o f cutting continues and variations in each tool rotation follow 

the same pattern.

It can also be noted that for a healthy cutter, variations are almost constant and much 

smaller but are much higher for a broken cutter. These variations follow an almost 

linearly decreasing pattern in spindle load signal. This can again be linked to cutting 

cycle o f a broken cutter as shown in Figure-6.2. The highest load variation or energy 

variation is observed at broken tooth entry point and it linearly decreases as the 

cutting cycle goes to normal as shown in Figure-6.2.

Although the variations shown in Figures-6.11(a) and 6.12(a) for healthy and broken 

cutters are significant they cannot be reliably used for tool breakage detection purpose 

as they follow an inconsistent pattern. This inconsistent pattern is due to the energy
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variations arising when cutting different amounts o f metal during various cutting 

segments. Therefore complete tool rotation variations were analysed to find a 

consistent variation pattern. Figures-6.11(b) and 6.12(b) show these variations in 

spindle speed and load signals respectively for one complete tool rotation. Both 

figures show that signal variations for a healthy cutter are much smaller as compared 

to a broken cutter. The strength o f these variations in the spindle load signal is higher 

as compared to spindle speed signal. This is due to the fact that speed is controlled 

immediately after any variation detection by the machine controller whereas load 

varies with respect to metal removal amount in each cutting segment of 90° for a four 

teeth cutter in all cutting cycles. Figures-6.13 and 6.14 show the variations in spindle 

speed and spindle load respectively for a different depth o f i.e. 2mm. It can again be 

noted that signal variations for spindle speed and energy variations for spindle load 

signals are significantly different for healthy and broken cutters.
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F igure-6.13, M oving  A verage Filtering (M A F ) o f  A SS Data (2m m  D O C ). X -axis show s sam ple 

num ber and Y -ax is sh ow s A D C  value (relative strength)
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A comparison o f Figure-6.15 (a) (for 1mm depth o f cut) and 6.15(b) (for 2mm depth 

o f cut) reveals that spindle speed variations are almost independent o f the depth o f cut 

because their strengths are similar. This is due to the fact that speed changes are 

immediately controlled by machine controller on detection and these are the 

maximum variations that can be detected. Furthermore it indicates the reliability o f 

the system as variations for a healthy cutter are always significantly lower as 

compared to a broken cutter.

Most reliable results were obtained by calculating the variance o f both spindle speed 

and load signals after applying the moving average filtering for a period of one tool 

rotation. Figures-6.16(a)&(b) show these results for spindle speed and load signals 

respectively. These figures show a highly reliable method o f tooth breakage detection 

using the same acquired data. The variance in both signals for a healthy cutter is 

almost zero and it rises significantly while cutting with a broken tooth cutter.
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F igure-6 .15 , M ovin g  average filtering o f  A SS data at tw o levels o f  DOC
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F igure-6 .16, V ariance in spindle speed and spindle load signals

Both the time and frequency domain signal analysis techniques have been discussed 

in detail with their implementation and processing requirements. The techniques are 

integrated and a reliable monitoring system is proposed in the next chapter. The 

integration increases the system reliability. For example if  the time domain signal 

analysis technique is used independently it can generate false alarms at tool entry 

situations (explained in Chapter-7). These false alarms are avoided by using the 

integrated system (explained in Chapter-7).

6.7 Conclusion

A time domain data analysis technique along with its implementation on an 8-bit 

microcontroller based system and its results for a real world application have been 

reported. The capabilities o f PIC Micro-controller implemented as a heart of the first 

tier monitoring node in the overall system design along with its communication



158

features on the CAN bus have been fully explored. The use o f distributed embedded 

systems for machine tool condition monitoring applications has been verified for its 

reliable applicability.

Use of the existing machine tool signals have proven very useful for its future 

applications. The monitoring system designed for any industrial applications needs to 

be extra robust and reliable to cater for noisy environments. The milling operation in 

particular needs extra care as is evident from the acquired signals shown in Figures- 

6.9(a) and 6.10(a). To increase the reliability o f the designed systems further it is 

integrated with frequency domain analysis technique discussed in Chapter-5. The 

integration o f both techniques for an overall application is discussed in detail in 

Chapter-7.
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SY STEM  IN T E G R A T IO N  AN D  D EC ISIO N  M A K IN G

7.1 Introduction

The two signal analysis and feature extraction techniques developed in this research 

have been discussed individually in the last two chapters. This chapter describes the 

integration o f these techniques, the supporting software/hardware and final decision 

making.

System integration has traditionally been referred to as combining two or more sub

systems and/or software packages which allow these systems to produce final results. 

The integrated system should be capable o f analysing the overall system capabilities, 

its characteristics and reliability. The integrated system for this research has the 

capabilities o f monitoring the system performance and identifying any problems 

arising in the system itself.

Decision making is the most important stage in any designed system. The reliability, 

effectiveness and success rate o f any system is judged by the percentage of accurate 

decisions made by the system from the retrieved information. As the individual 

reliability of both techniques has been proved in the previous two chapters this 

chapter discusses in detail the decision making o f the integrated system for a range of 

cutting tests carried out and the results obtained. There has been extensive research in 

the past in the area o f machine tool monitoring but there have not been many practical 

success stories. There are various reasons behind this, with the most important one 

being the percentage o f accurate decisions made by such systems. The Overall 

Equipment Effectiveness (OEE) o f any system depends upon its availability rate, 

performance and quality rate. If a monitoring system generates false alarms by 

making inaccurate decisions then the overall availability rate decreases thus bringing 

down the OEE o f the system. No manufacturing industry and in particular SMEs can 

afford such waste. Since this research work was aimed at providing a monitoring 

solution suitable for SME applications special attention was given to a reliable final 

stage o f integration and decision making.
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The communication o f process related information and the decisions made from this 

information to concerned machines and individuals in a suitable format is another 

important requirement from such systems. The content requirements for various 

individuals in a setup may be different. Therefore various communication 

methodologies were investigated and implemented at this system integration stage of 

this research. CAN bus connectivity was used for information transfer between 

subsystems. Ethernet connectivity was implemented for process related data transfer 

over the Internet. GSM connectivity has been added to transfer messages such as tool 

breakage reports or OEE to concerned individuals. Using the latest technology mobile 

phones webpage access is also possible and it provides access to process information 

from anywhere. The details o f these implementations are discussed in Chapter-8. The 

frequency and time domain signal analysis techniques investigated for this application 

design have been discussed in Chapter-5 and Chapter-6 respectively. The integration 

of these techniques in terms o f initial information communication and final decision 

making is discussed in the next section.

7.2 System Integration at Tier One

There are five FENs in the first tier to monitor spindle signals in both the time and 

frequency domains. In addition there is a parameter monitoring and decision making 

node (adding the total FENs to six) which monitors the signals and calculates the 

system parameters at the initialisation stage and communicates this information to all 

FENs for setting their threshold values before starting the actual monitoring process. 

It also sends information about the start o f the process to different FENs in the 

monitoring system. The parameter monitoring node also monitors these signals 

continuously in real time to detect any changes. If any changes are detected by this 

node, it communicates these to concerned FENs for dynamic adjustment o f their 

parameters. The FENs process corresponding information using the Parallel Filtering 

and Tooth/Tool Rotation Energy Estimation Techniques which have been explained 

in Chapter-5 and Chapter-6 respectively.

The current status o f the machine tool’s health is dynamically communicated to the 

decision making node by all the FENs. These signals are communicated to the 

decision making node which analyses them by using two different approaches. Firstly
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an OR logic (Software based using CAN connectivity) is used for all five FEN 

messages to the PIC18F458 microcontroller. This technique ensures that as soon as 

any one o f the five FENs reports an abnormality, the decision making node gets a 

message. Since all FENs have the CAN connectivity with the parameter monitoring 

and decision making node it checks the status of all signals on getting a message from 

one of them. This information is integrated to aid decision making about the tool’s 

health. The actual process o f decision making at tier one is discussed in the next 

section.

The software architecture o f system integration at tier one is shown in Figure-7.1. 

There is a major change in spindle load signal which arises as the tool enters the 

workpiece which is used to indicate the start o f the cutting operation. A threshold 

level on the spindle load signal is set at the start o f a monitoring process and its 

crossing depicts the start o f the cutting process. After the start o f the cutting process 

the node responsible for parameter monitoring and decision making calculates all 

required system parameters e.g. spindle speed and number o f teeth and communicates 

them to concerned FENs.
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F igure-7.1, Softw are Architecture o f  D ecision  making.

After communicating initialisation parameters to all FENs, the parameter monitoring 

and decision making node performs two tasks in parallel: firstly to constantly monitor 

the changes in the process and corresponding parameters by observing spindle speed 

and load signals and secondly to make decisions in the case o f any abnormalities 

detected by any FEN. The parameter monitoring continues and if  any changes are 

observed, these are communicated to relevant nodes if  required. For example if the 

spindle speed changes the parameter monitoring node sends the information to all 

FENs to adjust their monitoring frequencies/sampling rate. This technique of “real
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time” parameter monitoring and adjustment increases the reliability, flexibility and 

versatility o f the implemented system.

7.3 Decision Making at Tier One and Two

The parameter monitoring and decision making node is not only responsible for 

decision making at tier one but is also responsible for data transmission to tier two if  

further analysis is required. All five monitored signals (three main frequency signals 

and two from time domain analysis) provide information to the parameter monitoring 

and decision making node. If there is any threshold crossing detected by any 

monitoring node the information is relayed to the parameter monitoring and decision 

making node. As soon as this information is received by the parameter monitoring 

node it checks the status o f other FENs. The flow diagram o f sequence o f the events 

in the process is shown in Figure-7.2. The PIC microcontroller is interfaced to all 

monitoring nodes for real time data acquisition and decision making. It acquires signal 

status from all monitoring nodes and decides about the health o f a tool. The presence 

o f one time based together with one frequency based indication o f tool breakage is 

sufficient to generate an alarm.
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Figure-7.2, D ecision  m aking at tier one.

If there is only one threshold crossing (in total) detected in either the time or 

frequency domain, it is discarded and the monitoring cycle continues as normal. If a
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tooth breakage is detected by all the FENs in one analysis domain (whether it is in the 

time or frequency domain) and there is no detection by the other domain, the situation 

is referred to the second tier for further analysis and decision making.

Signal analysis is carried out at the second tier using FFT and an alarm is generated if 

this output verifies a broken tooth. If there is no detection of a breakage, then a 

message is sent to the decision making node at tier one to continue monitoring as 

normal. The 256 point FFT routine which has been implemented at second tier 

provides a 1Hz frequency resolution (as the data acquisition rate is also set at 256 

(samples/second). Since FFT is a highly reliable signal analysis technique no further 

counter verification has been implemented. If a situation has been referred to the 

second tier whether by the time or frequency domain analysis nodes, the results of the 

FFT are considered final.

The parameter monitoring and decision making node transmits a data packet of 256 

samples to the TINI board at the start o f the monitoring process. The TINI carries out 

the FFT o f the data and sets the threshold level for tool breakage detection in the 

initialisation stage. The dynamic phase o f process monitoring starts after the 

initialisation o f the monitoring system. As soon as an abnormality is detected the 

parameter monitoring and decision making node acquires 256 data samples and 

transmits it to the TINI. In the case o f a broken tooth situation being detected at tier 

two, the TINI sends a message to the parameter monitoring and decision making node 

to take appropriate action i.e. to initiate an alarm generation (implemented in this 

research) or stopping the process (not implemented in this application).

7.3.1 Decision Verification using Laboratory Simulations

The decision making capabilities o f the integrated system were tested using laboratory 

simulations before final implementation on the hardware. A machine tool emulator 

was designed using Lab Windows software. The designed emulator was used to 

simulate the generation o f real time signals from data acquired from previous cutting 

tests. The designed emulator has the capability to generate any signal from a complete 

range of available signals taken from the machine tool. These signals include spindle 

load, spindle speed and three axis motor currents. In this research application only the 

spindle speed and spindle load signals were used to design the final monitoring
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system. A National Instruments PCI-6035E analogue output interface card was used 

to convert the stored data into the corresponding analogue signals. The system was 

programmed to use the same sampling rate for signal generation that was used at the 

signal acquisition stage. This is a primary requirement for such designs to avoid any 

information loss which may lead to false results. The generated signals were 

interfaced to the designed system for further analysis and decision making.

Figure-7.3 shows the Graphic User Interface (GUI) designed machine emulator that 

was used during the system testing phase. The generated signals were interfaced to the 

actual hardware of the system. The generated data was acquired from the machine 

running at 500RPM using a four teeth cutter (for various feed rates and values of 

depth of cut). Figures-7.4 and 7.5 show the results o f the monitoring system from the 

generated signals using healthy and broken cutters respectively. These Figures show 

the information retrieved from all FENs.

[^1 d : \  A S w e e p  F ilte r  \ L a b W i n \ m a c h s i m .p r j
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F igure-7 .3 , M achine tool Emulator.

These results represent the laboratory testing o f the integrated system to prove its 

reliability. An in depth analysis o f a complete range o f practical tests carried out for 

normal milling, shoulder milling and tool entry situations are presented and discussed 

in Section-7.4 o f this Chapter. It can be noted from both the figures that the strength
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of tool rotation frequency increases for a broken cutter. Moreover the strength o f 

broken tool frequency also increases for a broken cutter thus indicating a tool 

breakage. In the time domain analysis the signal variations for both spindle load and 

speed signals also increase for a broken cutter.

The blue lines in Figure-7.4 represent the observed values of monitored process 

parameters for a cutting test using a new tool. The red dots indicate the threshold 

levels set for each parameter. It is worth noting that the values of thresholds are 

different for each parameter. This is due to the fact that frequency strength of various 

components is affected by a different percentage when a tool breaks. Similarly, the 

variations in spindle speed and load signals are also different.

As the speed signal variations are constantly controlled by the feedback controller the 

variations in speed signal are lower as compared to the variations observed in the 

spindle load signal. Figure-7.4 shows that none o f the parameters being monitored has 

crossed the set threshold and therefore the final decision taken by the parameter 

monitoring and decision making node about the health o f the tool is “OK”.

D istributed Im bedded  M achine Tool M onitoring System

100-

E®

D a ta  Chart

Threshold Observed
Value

S  GO
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‘ T ool Rotation Frequency 

MDdt- ThtMltoWV'

Broken Tooth Frequency Tooth Rotation Frequency Spindle Load Variations Spinde Speed Variations

Tool OK! Tool Broken1

Liowrioad C0M1 Open [  pioTj | QUIT

Figure-7.4, Data analysis results for a Healthy cutter (1m m  depth o f  cut, 500R PM , 100mm per minute

feed  rate).
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Figure-7.5 shows the result o f the system for a cutting test using a broken tool. It can 

be noted that tool rotation and broken tooth frequencies cross the threshold levels by a 

high percentage. In comparison the tooth rotation frequency crosses the threshold 

value by a very low percentage. In true argument its value should decrease as the 

cutting teeth are reduced as compared to a healthy cutter. But its value still increases 

due the harmonic effect of the tool rotation frequency. Therefore its implementation 

versus the advantages achieved have been analysed in the future work chapter 

(Chapter-9). In the monitoring result shown in Figure-7.5 all FENs have observed the 

crossing of threshold values and the tool breakage has been detected. After 

verification of the integrated system by using various laboratory simulations it was 

interfaced to the actual machining environment in the two tier architecture and very 

reliable results were obtained. These results and the decision methodologies used are 

discussed in the next section.

D istributed  Em bedded M achine Tool M onitoring S /stem

Data Chart

oo 40

'  Tool Rotation Frequency Broken T ooth Frequency Tooth Rotation Frequency Spndte Load Variations Spinde Speed Variations

Tool OK; Tool Broken

[.’O'An'ik'ad m  C0M1 Open Plot auiT.)

Figure-7.5, Data analysis results for a Broken cutter (1m m  depth o f  cut, 500R PM , 100mm per minute feed rate).
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7.4 Integrated System Implementation and Decision Making

The final system was integrated and tested for its functional accuracy and reliability 

by interfacing it to the machine tool. The block diagram o f  the integrated system is 

shown in Figure-7.6. The first two tiers o f  the system have been im plem ented in this 

research application. CAN bus has been used as a com m unication medium between 

all monitoring nodes. It is simply a two wire system that connects all the nodes and is 

very reliable communication medium. The PIC 18F458 has a built in CAN controller 

but it needs a CAN transceiver to com municate the inform ation over the CAN bus. 

PCA82C250 CAN transceiver was used in this application design. A small summary 

o f system operation is described in the succeeding paragraphs.
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Figure-7.6, B lock  diagram o f  the Final system  im plem entation.

The parameter monitoring node provides necessary process inform ation to all 

monitoring nodes (both in time and frequency domain monitoring). This information 

along with the actual signals is used to set the threshold levels by different monitoring 

nodes. The parameter monitoring node also sends a signal to indicate the start o f  the 

process to all FENs. After receiving this signal the FENs start the monitoring process.
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Any numbers o f fault indications are reported to and monitored by the parameter 

monitoring nodes before making a decision. The parameter monitoring node also 

decides about using a localised decision making strategy or referring the situation to 

the second tier. The decision is referred to the second tier in cases where breakage is 

detected by all the monitoring nodes in one domain (time or frequency) and none in 

the other domain.

The parameter monitoring and decision making node also shares information about 

the tool’s health with the TINI board using the CAN bus connectivity. The TINI 

board relays this information to the internet at pre-programmed intervals. In addition 

TINI board performs FFT operations on the data transferred from tier one for further 

analysis and communicates the final decision to the parameter monitoring and 

decision making node. The TINI board is also interfaced to the uWeb Lite module for 

generating SMS to concerned individuals as and when required.

7.4.1 Detection Results for a Set of Normal Milling Tests

Table-7.1 shows the test results for one set o f cutting tests carried out for normal 

milling. The tests were carried out using a range o f process parameters including 

depth o f cut values o f 0.5mm, 1.0mm, 1.5mm, 2.0mm and feed rates o f 80mm per 

minute, 100mm per minute, and 120mm per minute for new, blunt and broken cutters 

(broken cutter had one completely chopped off tooth). The six boxes for one cutting 

test represent the decisions made by frequency domain monitoring nodes (three), time 

domain monitoring nodes (two) and second tier analysis node using the TINI board (if 

the case was referred). The blank white box (within these six) represents that the case 

was not referred to the TINI and the decision was made at tier one. The blue box (if 

shown) represents that the case was referred to and was decided by the TINI. The 

letter “OK” represents a healthy tool whereas “B” is used to indicate the breakage 

detected by the individual monitoring nodes. The results (OK or B) shown in Yellow 

indicate a false decision made by a particular monitoring node. If a letter “OK” is 

shown in yellow colour it represents that actually the tool was broken but the node 

detected it as healthy. The same rule applies for “B” shown in yellow. The overall 

green colour for five monitoring nodes shows a decision o f “healthy” tool by the 

integrated system whereas red colour shows a “breakage”. Table-7.1 shows that some
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of the “Individual Monitoring Nodes” missed the breakage detection at lower values 

of depth of cut e.g. 0.5mm. It happens due to the fact that the generated frequency 

components are not strong enough to cross the threshold levels.
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T able-7.1, Monitoring Results for a Set o f  N orm al M illing tests, The Six B oxes for each test represent 

different monitoring nodes (five FEN s and one for T IN I) - Y ellow  d ecisions are “False D ecision s by 

individual nodes” . The yellow  dashed lines box represents a “W rong D ecision  by Integrated S ystem ” 

i.e. it m issed a Broken case (it is not a false alarm). [The Sam e rule applies for all the tables show n in 

this chapter].
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It can be noted in Table-7.1 that the “Integrated System” has only missed the tool 

breakage detection for process parameters o f 0.5mm depth o f cut and a feed rate o f 80 

mm per minute. The major reason behind this is the same (i.e. the frequency strength 

o f monitored frequencies do not cross the threshold levels for such a low depth o f 

cut). Similarly the spindle speed variations were very low (for the same test) and did 

not cross the threshold level either. It can also be noted that the tooth rotation 

frequency for some o f the cutting tests at 0.5 mm depth o f cut does not cross the 

threshold value. This is due to the fact that harmonics o f the tool rotation frequency 

are not strong enough to affect the tooth rotation frequency component. It is evident 

that the overall reliability rate o f the integrated system increases (97.2%) as compared 

to the decisions made by the individual monitoring nodes (94.4%). This is due to the 

fact that the results are integrated before making the final decisions.

It is also worth noting that there has been no false alarm generated by the integrated 

system. The breakage has been missed in one case for the lowest depth o f cut. The 

detailed analysis in terms of its implications reveals that missing the detection o f tool 

breakage at low depth of cut though important does not affect the overall system 

drastically. This is due to the fact that the tooth following the broken one can easily 

manage the metal cutting thus avoiding major deterioration in the workpiece quality. 

Table-7.2 shows the overall reliability rate o f the proposed system for a set o f normal 

milling tests presented in Table-7.1.
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T able-7.2, System  R eliability Rate for a set o f  Norm al M illing tests.

The reliability rate o f single node monitoring system is 94.4% because 170 decisions 

out of 180 were correct. The reliability rate for the integrated system is 97.2% as 35 

decisions out of the 36 in this set o f tests are correct. It is also worth noting that no 

false alarms were generated. Therefore the idea o f improved reliability using
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integrated approach is verified. It is not possible to prearrange a tool breakage for 

these tests. Therefore in the actual implementation, the threshold levels were set using 

a healthy cutter. After monitoring its performance a broken cutter was then used to 

verify that a reliable detection o f  its action would occur.

7.4.2 Detection Results for a Set of Shoulder Milling Tests

Table-7.3 shows the results for a set o f  shoulder milling tests. These results are very 

similar to the normal milling with the only difference that in certain cases the strength 

o f the frequency components and signal variations for a broken cutter are lower than 

expected. This is due to the fact that if  the milling area is less than the diameter o f the 

tool, the metal removed in one tool rotation is less than normal milling. This reduces 

the strength o f the frequency components as well as signal variations in some cases 

and certain cases o f broken tooth go undetected.
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T able-7.3, M onitoring R esults for a Set o f  Shoulder M illing tests.
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Table-7.4 shows the reliability rate o f  the individual and integrated monitoring 

approaches for the set o f  tests presented in Table-7.3. The reliability rate o f  single 

node monitoring for shoulder m illing is 92.8% and it increases to 94.5% when the 

integrated system is used. None o f the cases has been referred to second tier during 

these tests and all decisions were been m ade at the first tier. It can be noted that no 

false alarm was generated.
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T able-7.4, System  R eliability Rate for a Set o f  Shoulder M illing  tests.

7.4.3 Detection Results for a Set of Tests for Milling into a Shoulder

Table-7.5 shows the results for a set o f  tests carried out for milling into a shoulder. 

Three levels o f shoulder depth (0.5 mm, 1.0 mm and 1.5 mm) were used for these 

tests as shown in Figure-7.7. A constant value o f  0.5 mm for depth o f cut was used 

before the tool entered into the shoulder.

T
o
o t 0.5 mm

£  0.5 mm

1.0 mm

0.5 mm

1.5 mm

0.5 mm

Figure-7.7, D ifferent leve ls  o f  Shoulder Depth.
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Table-7.5, M onitoring Results for a Set o f  tests for M illing into a Shoulder.

As soon as the tool enters a shoulder the spindle load and speed variations increase. 

This increase causes the threshold crossing o f spindle load and speed monitoring 

nodes. This results in a false decision by time domain monitoring nodes for a healthy 

cutter as shown in Table-7.5. The frequency monitoring nodes are not affected by 

these changes as the frequencies are not highly affected by the increase o f depth of 

cut. Therefore a situation arises where the case is referred to the second tier by the 

parameter monitoring and decision making node. The second tier uses FFT to analyse 

the referred data. The “blue” boxes shown in Table-7.5 show the cases referred to and 

decision made by the TINI board at the second tier. It can be noted that five o f the 

nine cases were referred to the second tier and a reliability rate o f 100% was achieved. 

The reliability of the second tier has been very high due to the effectiveness o f the 

FFT calculations.

Figure-7.8 shows the FFT results of an example data analysis that was referred to tier 

two for illustration purposes. The process parameters for this analysis were: 1.5 mm 

depth of cut, 100mm per minute feed rate, 500RPM spindle speed. Both a healthy and 

broken cutters were tested. The figure clearly indicates that the strength of the tool 

rotation frequency and the broken tooth frequency rise significantly for a broken 

cutter and the decision is reliable.
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Figure-7.8, Second Tier data analysis using FFT.

Table-7.6 shows the reliability rates for single node monitoring as well as integrated 

monitoring approaches for the set o f cutting tests carried out for milling into a 

shoulder. The reliability o f single node monitoring approach is lower because o f  

signal variations at the tool entry into the shoulder. The reliability o f  the integrated 

system is much higher and for the set o f  tests carried out in this research it remained 

100%.
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Table-7.6, System R eliability Rate for Set o f  Tests for M illing into a Shoulder.

7.4.4 Detection Results for a Set of Tests for Tool Entry into the W orkpiece

Figure-7.9 represents the cutter-workpiece relationship as the tool enters into the 

workpiece. The first tool entry at the initialisation o f the process is ignored by using a
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software delay as the thresholds are set after the tool first time enters the workpiece. 

These test results are for situations where a tool re-enters the workpiece after entering 

a slot or hole in the workpiece. It can be noted that the metal cutting starts with a 

single tooth entering the workpiece. Therefore at the restart o f the process the spindle 

load is very low. Similarly, the speed drop is also low and is immediately controlled 

by the machine controller.

Small amount o f 
metal being cut

Medium amount 
o f  metal being cut

Actual amount o f  
metal to be cut

a r
W o rk p iece

Figure-7.9, Cutting variations at tool entrance w hich result in the signal variations.

The process continues and two teeth start cutting spindle load increases. It continues 

until the tool enters the workpiece (the figure shows the tool entry at an exaggerated 

feed rate for illustration purpose). After the tool entry a normal cycle starts and the 

signal variations are almost the same until an abnormality is detected. Figure-7.10 

shows the actual spindle load signal at the start o f a cutting process. The initial rise o f 

the spindle load proves this concept.
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Figure-7.10, Actual spindle load signal at tool entry into the w orkpiece. X-axis - sample number and Y-

axis - spindle load
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At the start o f the cutting process a delay is used and the threshold values are set after 

this period. But if the tool re-enters the workpiece after a hole in workpiece the 

described effects are observed. It can be noted that if  a tool breaks in the initialisation 

delay period (i.e. before the threshold values are set) it cannot be detected. As soon as 

the tool re-enters the workpiece high signal variations are observed in the spindle 

signals. This is due to the fact that the amount o f metal cutting in each tool rotation is 

different and the variations are high until the tool has re-entered. This causes a 

threshold crossing o f time domain signals in most cases. The frequency monitoring 

nodes are not affected as the number o f teeth striking the workpiece is the same and 

therefore no false decision is made in the frequency domain.

Table-7.7 shows the test results for a set o f tests for tool entry situations into the 

workpiece. It can be noted that the ratio o f cases referred to second tier has been high 

as compared to normal milling tests (14 cases referred out o f 36). This is due to the 

fact that spindle load and speed variations are high as the tool re-enters the workpiece 

as explained in Section-7.4.3.

D e p t h  o f  C u tT o o l  

C o n d i t i o n
F e e d  R a t e

1 .5  m m 0  m m0 .5  m m 1 .0  m m

O K  O K  O K O K  O KO K  O K O K  O K

8 0

m m /m in u te

Broken

O K  O KO K  O K  O K  O K  O KO K  O K

O K  O K  O K  O K  O KO K  O K100 

m m /m in u tc

1 IB roken

O K  O KO K  O K  O K  O K  O K

O K  O K  O K  O K  O K O K  O K120 
m m /m in u te

B roken

T able-7.7, M onitoring R esults for a Set o f  T ests for T ool Entry Situations.
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Table-7.8 shows the reliability rates for single node monitoring as well as integrated 

monitoring approaches. The reliability o f  single node monitoring approach is lower 

because o f signal variations at the tool entry as explained earlier. The reliability o f  the 

integrated system is much higher and for the tests carried out in this research it 

remained 100%. It is due to the fact that the reliability o f the second tier has been very 

high due to the FFT calculations at tier two.
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R e l ia b i l i ty

R a te

S in g le

N o d e
180 139 41 7 7 .2 %

N o t  A p p l ic a b le  a s  s y s te m  is  b a s e d  o n  s in g le  

n o d e  o n ly  so  c a n n o t  r e f e r  th e  ca se s .
-

I n te g r a te d

S y s te m
3 6 2 2

0

(1 4

R e f e r r e d )

6 1 .1 % 14 14 0 1 0 0 % 1 0 0 %

T able-7.8, System  R eliability  Rate for T ool Entry Situations.

7.4.5 System Results for a Set of Tests for Different Levels of Tooth Breakage

To assess the system reliability to detect different levels o f tooth breakage a set o f 

cutting tests was carried out. It included four different levels o f tooth breakage (0.5 

mm, 1.0 mm, 1.5 mm and 2.0 mm). The tests were carried out for four different levels 

o f depth o f cut (0.5 mm, 1.0 mm, 1.5 mm and 2.0 mm). The spindle speed was 500 

RPM and a feed rate o f  100 mm per minute was used.

Table-7.1 shows that some o f  the “ Individual Monitoring Nodes” missed the breakage 

detection for lower value o f  tooth breakage. This is due to the fact that the tooth 

following the broken one has to remove a small amount o f metal and can easily 

manage the situation. This results in situations where generated frequency 

components as well as spindle load and speed variations are not strong enough to 

cross the threshold levels.
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D e p t h  o f  C u tL e v e l  o f  

B r e a k a g e

T o o l  

C o n d i t i o n 0 .5  m m 1 .0  m m 1 .5  m m 2 .0  m m

OK OK OK OKOK OK

0.5 mm B roke n

B lun t
OK OK OK OK

1.0 mm Broken

O K  O K

B lun t
OK OK

1.5 m m Broken

2.0 mm B roke n

Table-7.9, M onitoring Results for a Set o f  Tests with Different Levels o f  Tooth Breakage.

It can also be noted that the tooth rotation frequency for most of the cutting tests at 0.5 

mm depth o f cut does not cross the threshold value. This is due to the fact that 

harmonics o f the tool rotation frequency are not strong enough to affect the tooth 

rotation frequency component as explained in Section-7.4.1. It is also worth noting 

that there has been no false alarm generated by the integrated system. The breakage 

has been missed for low levels o f tooth breakage. Table-7.10 shows the overall 

reliability rate o f the proposed system for the set of tests presented in Table-7.9. The 

reliability rate o f single node monitoring system is 86.7%. The reliability rate for the 

integrated system increases to 91.2% as 44 decisions out of the 48 in this set of tests
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are correct. Therefore the idea of improved reliability using integrated approach is 

verified.

S tr a t e g y
T o ta l

C a s e s

T i e r  O n e T i e r  T w o

D e te c te d M is se d
R e l ia b i l i ty

R a te

T o t a l

R e f e r r e d
D e te c te d M is s e d

R e l ia b i l i ty

R a te

O v e r a l l

R e l ia b i l i ty

R a te

S in g le

N o d e
2 4 0 2 0 8 3 2 8 6 .7 %

N o t  A p p l ic a b le  a s  s y s te m  is  b a s e d  o n  s in g le  

n o d e  o n ly  so  c a n n o t  r e f e r  th e  c a s e s .
-

I n te g r a te d

S y s te m
48 44 4 9 1 .7 - - - - 9 1 .7 %

T able-7.10, System  R eliability Rate for a set o f  tests for D ifferent L evels o f  Tooth Breakage.

7.4.6 Overall System Reliability

In addition to the set o f tests presented in Sections-7.4.1 -  7.4.5 a large number of 

tests were carried out in the course o f this research to tests the reliability of the 

system. These included a number o f sets o f tests carried out for different cutting 

conditions including normal milling, shoulder milling, milling into a shoulder and tool 

entry situations. Since it is not possible to present all the tests in the thesis therefore a 

summary of the overall reliability rate o f the data analysis and decision making 

capabilities of the system is presented in Table-7.11. It can be noted that the overall 

reliability rate of individual monitoring node approach is 87.7% and for the integrated 

approach it rises to 96.2%. It can be noted that breakage detection at low values of 

depth of cut particularly at 0.5 mm and low level o f tooth breakage (0.5 mm) has been 

missed in a number o f cases which brings the reliability rate down. At the same time 

it is also a fact that no false alarms have been generated which is a major achievement 

of using the integrated approach. These results verify that the approach of integrated 

monitoring increases the overall system reliability and eliminates the false alarms.

S tr a t e g y
T o ta l

C a s e s

T i e r  O n e T i e r  T w o

D e te c te d M is s e d
R e l ia b i l i t y

R a te

T o t a l

R e f e r r e d
D e te c te d M is se d

R e l ia b i l i ty

R a te

O v e r a l l

R e l ia b i l i ty

R a te

S in g le

N o d e
1850 16 2 2 2 2 8 8 7 .7 %

N o t A p p l ic a b le  a s  s y s te m  is  b a s e d  on  s in g le  

n o d e  o n ly  so  c a n n o t  r e f e r  th e  c a se s .
-

I n te g r a te d

S y s te m
3 7 0 321

14

(3 5

R e f e r r e d )

- 3 5 3 5 0 1 0 0 % 9 6 .2 %

T a b le-7 .11, Overall System  Reliability Rate.
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7.4.7 Overall System Analysis

The proposed system was originally designed in a three tier hierarchy. The overall 

data processing distribution for the system software at three tiers is shown in Figure- 

7.11. Tier one was designed to handle more than 80% of the monitoring cases. Tier 

one included both time and frequency domain analysis nodes in addition to the 

parameter monitoring and decision making node. Table-7.12 shows that in the tests 

discussed earlier around 85% of the decisions were made at tier one and remaining at 

tier two. In actual situations the tier one handles a much higher percentage o f the 

cases. This is due to the fact that a number o f tests discussed in this chapter represent 

the tool entry as well as milling into a shoulder situations and a majority o f these 

needs to be referred to tier two. Tier two handled all o f the cases reported by tier one. 

Therefore tier three has not been implemented in this research.

Data A cquisition

>85%  C ase H andling

Around 15% C ase handling

N o n e  in this research

T ier O ne

T ier T w o

T ier Three

F ig u re-7 .1 1, A n a lysis Hierarchy

7.5 Conclusion

Reliability is the most important requirement from any machine tool condition 

monitoring system. The practical implementation and its long term practical use 

depends upon its reliability. This is due to the fact that false alarms cause unnecessary 

delays in the manufacturing process. False alarms result in reduced equipment 

availability rate which is responsible for lowering the OEE of the machines and 

overall manufacturing plant.

The integrated system has been implemented and tested for its reliability. The overall 

reliability o f the system has been very high (96.2% in this research, with no false



181

alarms) while monitoring the milling cutting process. The system was used to monitor 

normal milling and shoulder milling operations and it has the capability to detect tool 

entry situations. Both time and frequency domain monitoring techniques proved very 

reliable for different cutting conditions. The energy variations for a tool rotation in the 

shoulder milling operation are lower but still can be detected for decision making. The 

system proves reliable for such operations due to cross checking o f results in both 

domains (time and frequency) before making final decisions.

The cost effectiveness o f such monitoring systems is another important requirement. 

SMEs can not afford high cost monitoring systems which use additional sensors. In 

addition these systems normally need an additional PC for interfacing and analysing 

the acquired data before final decision making. These factors not only add to the 

overall costs but also reduce the available space at the shop floor level. The cost of 

developing each FEN was around £10 for this system.

The designed system does not require any additional sensors as it uses the existing 

machine tool signals (spindle speed and spindle load) for analysis and decision 

making. M oreover it has been designed using very low cost 8-bit microcontrollers 

which fit on to one Printed Circuit Board (PCB) that can be fitted into a rack inside 

the machine tool. The TINI board is also based on an 8-bit microcontroller with some 

additional features like extended memory and extra CAN message centres etc.
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C H A P T E R  8

C O M M U N IC A T IO N  A R C H IT E C T U R E

8.1 Introduction

The frequency and time domain signal analysis techniques and their integration into a 

reliable sensor-less tool condition monitoring system have been discussed. This 

chapter discusses the communication architecture o f the system designed to relay data 

and results between tier one and two as well as tier two and internet/mobiles. Real 

time information transfer to concerned users results in timely actions. This approach 

reduces the equipment downtime and increases OEE of the systems. Therefore 

research was carried out to transfer data and results between two tiers of the system 

and the users in real time.

The overall communication architecture used CAN bus connectivity between tier one 

and two and internet and GSM connectivity between tier two and the remote users. 

The TINI board was used to relay information over the internet as well as for mobile 

messaging and mobile internet access. These techniques proved successful in transfer 

of relevant information to the users for immediate appropriate actions. Figure-8.1 

shows a block diagram o f communication architecture of the system.

FEN-1

FEN-2

FEN-5

Param eter
Monitoring

CAN
Communication

Tier-1

CAN
-  TINI b/lodule

GSM/GPRS 
Connectivity using 

GR47 module

Tier-2

Internet
Connectivity

Mobile
Messaging

F igure-8 .1 , B lock  diagram o f  com m unication architecture o f  the system
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In addition to transmission accuracy CAN provided additional benefits like reduction 

in wiring costs (a single pair o f wires provides complete communication among all 

connected devices). This supported the building of intelligent data communication for 

the application. If one network node is defective in the entire hardware architecture 

the network is still able to operate. This characteristic o f the network was used in the 

proposed system. The parameter monitoring and decision making node was used to 

send test messages at fixed intervals to all FENs in order to check their status. No 

checks have been implemented to detect the failure of the parameter monitoring node 

itself however its implementation requirements are considered as a future work in 

Chapter-9. The CAN bus communication was based on the broadcast concept where 

data transmitted by any FEN was received by all other nodes in the network. However 

data filters by each node were used to differentiate between messages that needed to 

be accepted or rejected. This characteristic o f communication added to the overall 

reliability as all nodes share the same information.

8.2 Bridge and Communication Node

Tier two o f the system not only processes the referred data but also acts as a 

communication bridge between tier one and the Intemet/GSM. The TINI board which 

is based on DS40C400 network enabled microcontroller has been used as the heart o f 

the second tier. The TINI board uses a Single Inline Memory Module (SIMM) that 

requires the support o f a socket board to enable its connectivity with external 

peripherals.

The TINI board was used for data processing referred from parameter monitoring and 

decision making node in complex situations. There are fifteen CAN message centres 

in the TINI microcontroller. Six o f these were interfaced to the tier one nodes 

individually and the remaining message centres can be used for future interfacing as 

and when required. In the practical implementation the parameter monitoring and 

decision making node was used to communicate with the TINI board. The software 

was however initialised for connectivity o f all the FENs to support any future 

software changes. The availability o f extra message centres made it possible to
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dynamically store data before its analysis and decision making and transmitting it 

further using the Ethernet.

The TINI microcontroller is capable o f providing a maximum clock rate o f 75MHz. 

This results in a minimum instruction cycle time o f 54nSec. This capability was used 

to accelerate the data processing speed. In addition the higher speed enabled the 

controller to cope with the highly loaded university network (on which the system 

was tested) in providing reliable Ethernet access. Moreover it ensured that the data 

processing was carried in a minimum time for real time decision making.

8.2.1 Internet Connectivity

For two computers or embedded systems to  communicate, they must speak the same 

language. A communication language framework is referred as a “protocol”. 

Protocols do not just enable communication but also restrict them. So a protocol in 

addition to defining communication also provides a framework for information 

exchange [8.1]. However, in all networks, the purpose o f each layer in a protocol is to 

provide certain specific services to the higher layers, shielding those layers from the 

details of how these services are actually implemented [8.2].

The TINI board has a unique Media Access Control (MAC) address as should any 

Ethernet device. It was given an IP address from Cardiff School of Engineering 

computer section. It was also allocated a network name to enable easy access by just 

typing http://uQ94.engi.cf.ac.uk rather than remembering its actual IP address. For 

such applications the DNS server finds the actual IP address of the device to ensure 

that the data packets are received by the actual device as discussed earlier.

TINI supports three servers namely File Transfer Protocol (FTP), Telnet and Serial 

Port servers. One or more o f these servers may be run at the same time. In this 

application FTP and Telnet servers were programmed to run simultaneously for data 

communication. Both o f the FTP and Telnet serves were programmed to listen to the 

connection requests on different ports. Each connection started a new session to 

handle a particular request.

http://uQ94.engi.cf.ac.uk
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Telnet was used as an application layer protocol on top o f TCP/IP stack. It provided 

an interface between a user (at application layer) and the transport layer. The Telnet 

server is designed as a password protected server in this application. Any access 

request by a remote user is verified through this password protected system and 

accordingly the request can be accepted or denied. The logged in users can be listed 

by using available commands on a command prompt. The “Slush” commands were 

used by the logged in user for starting or stopping an application. A list o f useful 

Slush commands in attached as Appendix-D. Depending upon the application 

requirements it is possible to provide access for a normal user through Telnet. It can 

also be programmed to only listen to requests from certain users who are considered 

to be more relevant for a particular application. In this application Telnet was 

programmed to provide access to only a limited number o f users.

The operations o f uploading and downloading files to and from the TINI were 

performed using an FTP server. This server acts more efficiently as it is designed for 

these applications. Any computer running Internet Explorer software can perform the 

file downloading operation in a more user friendly way. An important limitation of 

Internet Explorer (IE) is its inability to upload files. In this application’s 

implementation stage, the FTP server operation was only available to a limited 

number of registered users.

An HTTP server was programmed and implemented in addition to three servers 

described above. This server was used to present information to ordinary users. It was 

used to host a dedicated webpage. This webpage provides current process information 

to all users who need to access it. This webpage can be accessed using internet 

explorer. The webpage address for this application is http://u094.engi.cf.ac.uk . Any 

interested user can access this webpage and see the process information (only when 

the TINI board is powered on). Since an automated upload is not possible using IE it 

has been programmed to refresh its contents after a pre-programmed interval. This 

interval can be programmed depending upon the application requirement. In this 

application it has been programmed as 120 Seconds. The time interval for updating 

web information is not critical because the system has the GSM connectivity and an 

SMS is sent to the concerned individuals immediately after detecting a problem.

http://u094.engi.cf.ac.uk
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Figure-8.2 and 8.3 show the WebPages that display the tool status relayed to the 

internet by the TINI board. These show information when cutting using both healthy 

and broken cutters. The decisions made by each FEN about the tool health are shown 

on the internet. The webpage displays information from both frequency and time 

monitoring FENs. Figure-8.2 shows that none o f the FENs has detected any breakage 

and the tool status is shown as “OK”. Similarly a detected breakage relayed over the 

internet is shown in Figure-8.3.

3  Welcome to IPMM Machine Tool Monitoring System - Microsoft Internet Explorer

File Edit: View Favorites Tools Help

Back * 0  I*] Ls) &  Search ^  Favorites ■ 0

Address | http://u094.enqj.rf.ac.uk

M achine Tool Health Status

R e s u l t s  o f  F r e q u e n c y  M o n i t o r i n g  N o d e s

O b s e r v e d  P a r a m e t e r R e s u l t
F o o l  R o t a t i o n  F r e q u e n c y O K
B r o k e n  T o o t h  F r e q u e n c y O K
T o o t h  R o t a t i o n  F r e q u e n c y O K

R e s u l t s  o f  T i m e  M o n i t o r i n g  N o d e s

S p i n d l e  L o a d  V a r i a t i o n s O K
S p i n d l e  S p e e d  V a r i a t i o n s O K

Tool Status : OK
Figure-8. 2 , W ebpage inform ation for a “Healthy” tool

3  Welcome to IPMM Machine Tool Monitoring System - Microsoft Internet Explorer

File Edit View Favorites Tools Help

0 B a c k  • Q  |* 5  P  Search Favorites 0  0  - @

Address [~  http://u094.engl.cf.ac.uk

M achine Tool Health Status

R e s u l t s  o f  F r e q u e n c y  M o n i t o r i n g  N o d e s

O b s e r v e d  P a r a m e t e r R e s u l t
T o o l  R o t a t i o n  F r e q u e n c y B
B r o k e n  T o o t h  F r e q u e n c y B
T o o t h  R o t a t i o n  F r e q u e n c y B

R e s u l t s  o f  T i m e  M o n i t o r i n g  N o d e s

S p i n d l e  L o a d  V a r i a t i o n s B
S p i n d l e  S p e e d  V a r i a t i o n s B

Tool Status : BROKEN

Figure-8.3, W ebpage information for a “Broken” tool

http://u094.enqj.rf.ac.uk
http://u094.engl.cf.ac.uk
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8.2.2 Machine-to-Machine/Man-to-Machine (M2M) Connectivity

M2M (Machine to Machine or Man to Machine or Machine to Man or Mobile to 

Machine or Machine to Mobile) is a concept o f communication between a device that 

contains some data and a device which requires that data. The latest advancements in 

technology, more capabilities and coverage o f wireless devices (e.g. cell phones) and 

reductions in the costs o f using satellite data services is making this technology more 

effective and popular.

The design and implementation o f remote monitoring systems can be done using a 

variety of options including wireless LAN, radio networks and dialup modems etc. 

However the best option for such designs is the use o f Global System for Mobile 

Communication (GSM). This is due to a number o f reasons including low cost as 

compared to preparing a new network and GSM network security. But the most 

important o f these is the wide spread coverage of this network that makes the 

monitored information available almost every where. Therefore GSM connectivity 

system for this application was researched and implemented in the design stage.

Focussing on the manufacturing environment the implementation o f such a system 

provides many benefits. These benefits are both in terms o f reducing operational costs 

(e.g. the cost o f labour that controls or monitors the machines) as well as saving time 

(e.g. when machine is far away and the time to get to the machine is long as compared 

to sending a simple text message). These benefits lead to improved product quality, 

the reduction o f overall operational costs and an increased Overall Equipment 

Effectiveness (OEE) o f the system.

Based on cost effects, the availability o f products as well as technical literature 

Comtech’s uWeb Lite GSM/GPRS module was selected for implementing the M2M 

capability in the designed system. It uses Sony Ericsson’s GR47 module to provide 

communication facilities in addition to some extra supporting hardware for enhancing 

its feature and making it user friendly.
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TINI was used as an external device as Data Terminal Equipment (DTE). It 

communicates with the module over its serial interface. It controls the module via a 

supported set o f extended AT commands. The AT commands are used for 

establishing and controlling connections as well as sending/receiving SMS and data 

packets. Subscriber Identity Module (SIM) card was inserted in the GR47 module and 

used to communicate with the GSM engine. The communication was carried out on a 

system connector fabricated within the GR47 module. The messages/data were 

transmitted through the GSM/GPRS mediums through an external antenna. GSM 

connectivity was implemented at tier two o f the system.

GR47 module was interfaced to uW eb Lite module for full functionality o f the 

system. The TINI board has two built in serial communication ports and one of these 

was used to communicate with uWeb Lite. The messages can be sent using either text 

or Packet Data Unit (PDU). In this application the PDU transmission was used for 

communication between TINI and the uWeb Lite module.

Before sending any message TINI sends a “CMGS” AT command to the uWeb Lite 

and it gets attended for receiving further data. By using appropriate AT commands; 

the TINI board transfers required information to uWebLite for further transmission in 

the form of an SMS to the registered mobile numbers o f different users depending 

upon the message contents. For example; any message about a fault needing 

immediate attention can be programmed to be sent to a concerned engineer/technician 

and the overall equipment productivity can be communicated to concerned managers. 

This was implemented at the final stage o f the research and one mobile number was 

registered for sending the messages about process information. Figure-8.4 shows the 

message sent by the system about a broken tool on a mobile phone.

At the end o f each message transmission the uWeb Lite sends the message 

communication information (message status report) back to the TINI board. The 

message sent from uWeb Lite contains information about the success or failure o f the 

transmitted message. The system can also be programmed to receive message from 

these users to change/update future operations/requirements but this has not been 

implemented in this research.



Figure-8.4, Real time mobile messaging using the designed system 

8.2.3 M obile In te rn e t A ccess

With the latest advancements in mobile technology it is possible to access the Internet 

using mobile phones. The researched system has Internet connectivity as discussed in 

Section-8.2.1. The TINI board has its own unique web address 

http://u094.engi.cf.ac.uk and can be accessed using a mobile phone from any where in 

the world (provided mobile phone and the network being used have the capabilities 

and the TINI board is powered on). The system was programmed and tested for 

simultaneous access using PC based internet and mobile internet connections and it 

provided the information accurately. Figure-8.5 shows the monitoring web page 

hosted by the designed system that is accessed using a mobile phone.

(Current Process 
[status - M.trhme OFF ' 
!l a s t  R e su lts  i

Results ut 
Frequent if MoutttHinij 1 
Norit's

Mi I t Lj
■ M

Figure-8.5, Monitoring system web page access using mobile phone.

The system updates its contents automatically after the pre-programmed interval as 

discussed earlier. Therefore the data download speed affects the mobile internet 

access to the information. This is due to the fact that mobile phones have smaller

http://u094.engi.cf.ac.uk
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display screens and by the time screen is scrolled down and information read properly 

the TINI may upload the latest information. After the uploading o f information the 

mobile screen goes back to the start and it has to be scrolled down again. This 

limitation was overcome by increasing the automatic upload interval.
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C H A PTE R  9

SY STEM  A N A L Y SIS , D ISC U SSIO N  AND FUTURE W O R K  

9.1 Introduction

There has been extensive research in the field o f condition monitoring systems in 

general and machine tool monitoring systems in particular. The importance of 

machine tool condition monitoring to the manufacturing industry can not be over 

emphasized. It has been verified in the Chapter-5, 6 and 7 that a reliable and cost 

effective machine tool monitoring system increases the OEE of a manufacturing plant. 

Researchers have developed a number o f techniques for data analysis and their 

linkage to the machine tool’s health. It has also been reviewed (Chapter-3) that a vast 

majority o f these techniques have been implemented using computer based 

technologies.

It has been verified in Chapter-4 that high speed computer systems with ever 

increasing resources and multi purpose data acquisition systems are readily available. 

The technological analysis presented in Chapter-4 shows that a range o f sensor 

systems using latest detection hardware, analysis and communication facilities can be 

used in designing such systems. These subsystems when integrated together increase 

the reliability but at an increased cost. The concept o f increasing reliability which is 

directly proportional to the cost is not acceptable in today’s competitive 

manufacturing industry. Industrial users prefer a cost effective and reliable monitoring 

system. The cost effectiveness o f any system depends on both fixed and variable 

costs. Theses are analysed in Section-9.5.

The reduction in the cost o f such systems has become possible due to recent 

technological breakthroughs. The use of embedded systems in general and 

microcontrollers in particular for designing such systems reduces the overall cost. The 

use o f existing machine tool signals for designing machine tool monitoring systems 

further reduces the overall cost o f the system. Moreover the latest versions of
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microcontrollers have the capabilities to connect to the internet and send SMS to 

mobile phones. All these qualities when integrated together in the final design add to 

the overall significance o f such monitoring system.

This chapter discusses the integral subsystems and important characteristics o f the 

proposed monitoring system in comparison to the traditional approaches used in this 

area. The advantages o f proposed methodologies/techniques and their implementation 

aspects are discussed and recommendations are made for future work in the area o f 

machine tool condition monitoring.

9.2 Data Sources and Acquisition

Data acquisition is the basic foundation o f any machine tool condition monitoring 

system. The data acquisition system needs to collect data from appropriate sources at 

the correct time and under correct conditions. The reliability, cost and flexibility o f 

the monitoring system stem from this basic information. The reliability o f the 

decisions made by any monitoring system directly depends upon the accuracy o f the 

data used for processing purposes.

In this research the existing machine tool signals were selected as the primary source 

o f information. These include spindle speed and spindle load as discussed in detail in 

Chapter-5 & 6. The advantages o f using existing machine tool signals are twofold: 

firstly it reduces the overall cost o f the system and secondly it provides reliable 

information as it originates directly from the source.

In this research the front end monitoring nodes were used for data acquisition in 

addition to data processing. These nodes were designed using the PIC18F458 

microcontrollers. The output o f the anti-aliasing filtering stage was directly interfaced 

to the ADC of the PIC microcontroller. The results o f various tests showed that the 

lower 8-bits of the 10-bit ADC can be used due to limited memory resources o f the 

microcontroller and an acceptable level o f accuracy can be achieved. This resolution 

proved reliable enough for accurate data analysis which led to reliable decision 

making in the final design stage.
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The data acquisition system used in this research is simple enough to be implemented 

on an 8-bit microcontroller but is reliable enough to provide accurate results. It is 

more cost effective than using data acquisition cards. A National Instrument 6035E 

data acquisition card costs around £500 whereas a PIC microcontroller costs less than 

£5.

9.3 Data Processing and Feature Extraction Techniques

The data processing and feature extraction is an important stage o f machine tool 

condition monitoring systems. The effectiveness o f monitoring systems depends on 

the associated data simplification and signal processing techniques used. In both 

model based and feature based approaches it is important that observed changes 

should be insensitive to uncertainty and sensitive to faults. These important aspects 

have been emphasized by the researchers in the past and have been used as primary 

requirements in this application design.

In comparison to the data analysis techniques and application specific algorithms used 

in the past, this research uses two signal analysis techniques; one each for time and 

frequency domain analysis o f the acquired data. The results o f both techniques are 

integrated before making any final decisions. To make best possible use o f the system 

hardware these techniques were formulated to function within the resource limitations 

applying when using these microcontrollers.

The sweeping filter and parallel filter frequency analysis techniques provide the 

information required to assess the health o f the machine tool. There are only three 

frequencies o f interest for the machine tool condition monitoring system developed in 

this research. The idea o f analysing only these frequencies in real time was 

implemented. The parallel filtering technique contributes to meeting these 

requirements.

The proposed time domain signal analysis technique uses the acquired data for real 

time variation detection. This technique is also implemented on an 8-bit
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microcontroller and has the ability to detect signal variations in each tooth/tool 

rotation period and link the observed variations to the tool’s health. This technique 

does not use any com plex mathematical modelling and therefore can be implemented 

on a PIC microcontroller. The tooth/tool rotation energy estimation technique does 

not require any external hardware apart from the microcontroller on which it is 

implemented. This quality o f the developed technique makes it unique. It uses a low 

pass filter (moving average) to remove unwanted noise components from the acquired 

data. The filtered data is analysed to detect the signal variations within one tooth/tool 

revolution. The values o f  these variations are significantly different for healthy and 

broken cutters. These variations were used as the basis to make decisions about tool’s 

health.

9.4 Hardware Design Analysis

The overall hardware architecture o f any machine tool condition monitoring system 

plays an important part in its performance. The hardware components o f different 

systems include sensors, data acquisition cards and PCs. Recent research applications 

have also used embedded systems and application specific ICs for designing such 

systems.

The designed system was implemented in a two tier hierarchy. The hardware for both 

tiers was based on 8-bit microcontrollers. Three FENs were used for frequency 

domain signal analysis and two for time domain analysis. These FENs were based on 

PIC18F458 microcontrollers. The system used existing machine signals thus avoiding 

the need for any additional sensors. The second tier o f the system used a TINI board 

as its hardware base. The overall hardware architecture o f the system was compact 

and can be fabricated on a single PCB to be fitted inside the machine being 

monitored.

9.5 Cost Effectiveness

The focus o f this research was to provide a reliable and effective machine tool 

condition monitoring system . The cost analysis is based on using both variable and
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fixed costs o f a designed system. The fixed costs include sensors and software 

packages, PCs and data acquisition cards etc. The variable costs are the costs o f 

running the system e.g. manpower, computing resources for data management and 

running repairs. By way o f an example Al-Habaibeh and Gindy carried out a detailed 

comparative analysis o f different data analysis techniques and widely used sensors for 

tool condition monitoring systems [9.1]. They concluded that the lowest fixed cost for 

a monitoring system (using sensors) was around £3900 and the system had a 

reliability rate o f 79.63%. They also proposed a high accuracy system (with a 

reliability rate o f 91.11%) which costs around £19900 (fixed cost only).

The variable costs o f any monitoring system increase if real time data analysis and 

decision making is not used. For example in the Tooth/Tool Rotation Energy 

Estimation technique a sampling rate o f 8K samples per second was used. The 

implemented technique analyses the data in real time and discards the data if  no 

further action is required unless programmed to store it. If real time data analysis is 

not implemented 29MB data will be stored per hour. The analysis o f this data will 

incur added costs in terms o f time and money. Therefore the implemented system is 

highly cost effective both in terms o f fixed and variable costs.

The cost effectiveness o f any monitoring system reduces if  completely new hardware 

architecture has to be designed for any changes in the overall system requirements. 

Therefore to meet these requirements any monitoring system should be flexible to 

handle such changes. In this research application the required degree of flexibility was 

achieved by designing a system which is independent o f the changes in the system 

being monitored. For example in frequency analysis approach the number of 

frequencies to be monitored is always three. The values o f these depend on the 

number o f teeth in the cutter and the spindle rotation speed. Similarly in the time 

domain analysis approach used in this system both spindle load and spindle speed 

signals are analysed for signal variations in tooth/tool rotation intervals using the 

software and the results are compared. Since the final implementation o f the 

technique used one complete tool rotation period to determine the signal variations 

therefore the number o f teeth in a cutter does not affect the results.
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The overall cost o f the system was relatively low as compared to normally available 

machine tool monitoring systems due to different factors. These included using 

existing machine signals (no additional sensors), the use o f 8-bit microcontroller at 

both tiers of the designed hardware, using CAN as a communication medium for local 

communication, providing internet access by using most widely used internet explorer 

(rather than designing an application specific interface) and using a simple hardware 

kit for generating SMS (uWeb Lite was used in this application). In addition the TINI 

board supports Java as a higher level programming language. Java is a “no cost” 

solution available to the programmers anywhere. It can be downloaded from different 

internet sites and in particular from Sun (who originally launched the software).

9.6 System Reliability

The reliability o f any machine tool condition monitoring system is the most important 

requirement. It has been a major challenge in the research area o f machine tool 

monitoring. The major reason behind non-acceptance of many monitoring systems by 

industrial users has been their reliability. Any monitoring system that generates a 

higher number o f false alarms is finally discarded in the actual industrial environment 

as it reduces the equipment availability rate thus reducing the OEE o f the equipment.

There are two different types o f false decisions made by the monitoring systems. The 

first type is in which a monitoring system fails to detect a broken tooth and the second 

is when a monitoring system generates an alarm for a healthy tool. Both types have 

different implications on the overall system performance. When a monitoring system 

misses the breakage detection the workpiece quality may deteriorate if  there is a 

complete breakage. This could cause extensive damage to the expensive workpiece 

and should be avoided when possible. Perhaps thresholds could be varied for 

particular circumstances (i.e. finish cuts and for expensive workpieces). The 

implications of false alarms are higher. This is due to the fact the process has to be 

unnecessarily stopped which reduces the equipment availability.

Intensive practical testing was carried out o f the proposed techniques for data analysis 

in this research and a very high reliability rate was observed. The technique of system
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integration was used and a reliability rate o f 96.2% was observed. Moreover the 

designed system did not generate any false alarms. The system though missed 

breakage detection for some tests but these were for low depth o f cut (normally 0.5 

mm) and low breakage levels (0.5 mm). Both these situations normally do not affect 

the system performance drastically as the tooth following the broken one can easily 

manage the metal removal thus avoiding any deterioration in the quality. The cases o f 

missing breakage detection can be overcome if  the depth o f cut can be estimated. This 

is explained and recommended in Section-9.7 o f this chapter.

This high reliability rate from a cost effective system based on 8-bit microcontrollers 

added to the overall significance o f the design. The definition o f system’s maximum 

reliability can be linked to the resources available in the FENs. It has already been 

discussed in Chapter-5 that frequency monitoring nodes based on PIC18F458 

microcontroller can monitor a maximum spindle speed o f 6000RPM. It has also been 

explained in Chapter-6 that FENs using PIC18F458 microcontrollers can monitor a 

maximum spindle speed o f 2500RPM for tool rotation energy estimation purposes. 

This is due to a very high feedback rate in the machine controller and a limited data 

acquisition rate o f the ADC in comparison. These constraints o f the hardware have 

been highlighted and have not been ignored to keep the system’s reliability rate as 

high as possible.

9.7 Recommendations for Future Work

The application areas o f embedded systems have been growing almost exponentially 

in the recent past. It has led to the development o f advanced embedded controllers 

with increased capabilities and resources. For example at the start o f this research the 

PIC18F458 was the latest release by Microchip Technology Inc(R) with all available 

resources required for this application design. Whereas by the end o f 2005, Microchip 

has marketed various advanced DSP controllers named as dsPIC family of 

microcontrollers.
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The dsPIC are 16-bit microcontrollers (as compared to the PIC18F458 which is an 8- 

bit microcontroller). They have additional resources like extended memory, high 

speed clocks and better data analysis capabilities. These improved features and 

resources clearly indicate that these controllers can be used to improve the 

functionally o f the techniques discussed in Chapters-5&6 and overcome the 

limitations described in the Section-9.6 of this chapter.

There is never a final design in any engineering application and the same applies to 

this research. There is always room for improvement with the advent o f latest 

technology. The processing speed in the proposed sweeping filtering technique can be 

increased by implementing digital Infinite Impulse Response (HR) filters. A dynamic 

digital filtering concept was tested at the very last stage o f this research to monitor the 

same frequencies of interest and highly reliable results were obtained. The 

dsPIC30F6014 was used for dynamic bandpass filtering and signal analysis.

In the testing phase o f proposed technique two different Infinite Impulse Response 

(HR) bandpass filters were implemented in the controller simultaneously whose pass 

bands were dynamically determined and the filter coefficients adjusted by the 

controller depending upon the machine parameters “on the fly”. The tool rotation 

frequency and the broken tooth frequency were used as the centre frequencies o f the 

pass bands of these filters. The monitoring of tooth rotation frequency was discarded 

as these two parameters provided sufficient information for detecting a tooth 

breakage.

The linear relation o f spindle speed signal with the actual spindle speed of machine 

was used by the controller in determining the working coefficients for the bandpass 

filters. The dsPIC microcontroller was operated using 7.3728MHz crystal oscillator. 

The clock speed although seem relatively low but the inbuilt clock multiplier was 

used to achieve the optimum rate of 30 Million Instruction per Second (MIPS). The 

Dynamic Coefficient Selection technique was used which utilised existing spindle 

speed and spindle load signals of the machine.

The sampling rate of spindle load signal was kept directly proportional to the spindle 

speed. For example; for a spindle speed of 500RPM a sampling rate o f 500 samples
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per second was selected and for a speed of 1200RPM the sampling rate was 1200 

samples per second. This linear relationship ensured that at any spindle rotation speed, 

there are 60 samples for each tool rotation available for analysis and decision making 

after the filtering stage.

The relative strength o f frequency components of interest was used to monitor the 

tool’s health dynamically as discussed in Chapter-5. This technique observed two 

frequencies (tool rotation frequency and broken tooth frequency) in parallel using one 

microcontroller. The monitoring technique used two different variables to achieve the 

dynamic monitoring characteristics. Firstly a fixed set of coefficients was used for a 

predefined frequency range and the sampling rate acted as a variable. For example for 

a range o f spindle speeds from 250-750RPM, the filter coefficients for both the HR 

bandpass filters were the same whereas the sampling rate varied with the spindle 

speed thus changing the centre frequency o f the pass band to the frequency of interest. 

This technique was used for one range o f spindle speed. Whenever the spindle speed 

shifted from that particular range to any other, the filter coefficients changed to that 

particular band’s coefficients dynamically.

Figure-9.1 shows the filter’s output for a new and broken cutter at 1mm depth o f cut. 

It is obvious from the results that as soon as the cutter breaks, the frequency strength 

of frequency components o f interest increases many fold. This increase was used as a 

signal for alarm generation about the tool breakage. To further support the same 

concept, Figure-9.2 presents a much clearer picture.

The normal value o f Relative Energy Index (REI) for a broken cutter is significantly 

higher (around 9-10 times) than the normal value of REI for a new cutter. Although it 

may be noted that due to the impulse response of the filter there is a settling time 

before reliable results may be obtained. This settling time is one time affair and in this 

particular design it is around 500msec.
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It is not a completely different research path to the one described in Chapter-5. The 

idea of digital IIR filters is simply a different approach to implement the parallel 

filtering technique. The parallel filtering technique as described in Chapter-5 is based 

on analogue filters whereas the one described here is based on digital filtering. It 

further proves that the idea of parallel filtering is a reliable approach for cutting tool 

breakage detection no matter which implementation methodology is selected. It was 

the basic testing of a proposed idea and therefore has not been implemented as an 

integral part of this research. It shows the possible avenues available for further 

research in this area by using the latest technology. The use of the available
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technology not only increases the processing efficiency o f the proposed techniques 

but also has the capabilities to implement more complex algorithms if required for 

example to determine depth o f cut etc.

The depth o f cut is an important parameter in the cutting process. It directly affects 

the spindle load and the life o f the cutting tool. The strength o f monitored frequency 

components depends on the depth o f cut to some extent. Despite of the importance of 

this area not a lot o f research has been carried out in the past to estimate the depth of 

cut. In this research an increase in the strength o f frequency components without 

affecting their pattern was taken as indication o f an increase in the depth o f cut. 

Although it worked in most circumstances this method is not highly reliable. The 

major reason supporting the argument is that any change in the hardness of the metal 

(particularly increased hardness) will have the same affect as an increase in the depth 

of cut.

Therefore the real time detection o f an increase or decrease in the depth of cut is 

recommended as future work in the area of machine tool monitoring. The detection 

and linkage o f depth o f cut with the proposed monitoring system using the CAN bus 

connectivity can further enhance the reliability and flexibility o f the system.

The third tier in the monitoring system hierarchy has not been implemented. Although 

it was not required for monitoring decision making it can be used as data storage 

medium for the future analysis o f data. Further research to investigate the advantages 

versus overall cost for implementing this tier is also recommended.

The failure detection o f any FEN has been implemented in this research. The 

parameter monitoring and decision making node sends messages to all FENs to detect 

their operational status. The status monitoring of the parameter monitoring node itself 

has not been implemented in this research because it was considered as the 

monitoring o f the monitoring system. Using this approach will always increase the 

hierarchical tiers and increase overall cost and complicate the hardware unnecessarily. 

An analysis of the requirement to monitor the status o f the parameter monitoring node 

is recommended.
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It was observed during the testing o f the system that FENs monitoring tooth rotation 

frequency, broken tooth frequency and spindle load variations provided highly 

reliable results. Although in the course o f this research analysis o f all possible 

signals/options was carried out but for system optimisation it is recommended that a 

monitoring system using only these three FENs be researched. If it proves successful 

the need for high sampling rate at time domain signal analysis nodes will be 

eliminated. This is due to the fact that there will be no need to cope with the high 

feedback rate o f the speed signal as it will no more be monitored.

Application Specific Integrated Circuit (ASIC) design is a newly emerging and 

application intensive field. ASICs are the chips that have been built to act as a 

particular application. ASICs can consolidate the work o f many chips into a single, 

smaller, faster package, reducing manufacturing and support costs while boosting the 

speed of the device built with them. ASIC design for such e-Monitoring applications 

is recommended to be investigated and its possibilities explored. Machine tool 

monitoring systems require a data acquisition system, a processor core, memory core, 

DSP core and communication protocol implementation. These requirements are 

general enough for investigating the potential applications of ASICs. Therefore it is 

recommended that:-

• A feasibility study o f System On Chip (SoC) implementation of the machine 

tool condition monitoring be undertaken including, data acquisition core, 

processor core, DSP core and communication protocols.

• Research in the area o f co-designing software and hardware functionalities in 

SoC design is also recommended.
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C H A P T E R  10

C O N C LU SIO N

10.1 Main Contributions of the Research

This research was aimed at developing intelligent and reliable signal analysis 

techniques for implementation on resource limited 8-bit microcontrollers for a 

machine tool condition monitoring system. The research has produced the following 

important contributions :-

• The application o f two low complexity signal analysis techniques, one each 

for frequency and time domain analysis o f the acquired signals that are 

capable o f feature extraction to detect a tool breakage.

• Tooth breakage detection within two tool rotation by using the developed 

techniques.

• Achieving reliable results by using existing machine tool signals thus 

eliminating the requirements o f  additional sensors for tool breakage detection.

• A monitoring approach which keeps the hardware infrastructure independent 

from any major changes in the future. This is possible due to monitoring only 

frequencies o f interest and signal variations for a complete tool rotation.

• The use o f 8-bit microcontroller to implement these techniques in addition to 

providing the internet and GSM connectivity to the proposed system.

• The use o f low cost communication mediums for both local and remote 

data/information transfer.

• The use o f  integrated system strategy for decision making which enhances the 

system reliability.

• The CAN bus connectivity to provide two wire communication to the entire 

hardware architecture.

Both signal analysis techniques have been intensively tested and the achieved results 

have been demonstrated for a range o f different process parameters. The integration 

o f both subsystems and the addition o f some important features like internet and GSM
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connectivity have been reliably tested, verified and demonstrated. The overall cost 

effect index o f the proposed system in comparison to the achieved results was found 

highly satisfactory.

10.2 Conclusions

The most important conclusion drawn from the research can be summarised as:-

• The main frequencies o f interest in a machine tool condition monitoring 

system are tool rotation frequency, broken tooth frequency and tooth rotation 

frequency. The number o f these frequencies is fixed (i.e. always three) and the 

values depend on the number of teeth in the cutter and the spindle rotation 

speed.

• The strength o f these frequencies for healthy and broken cutters is 

significantly different and these variations can reliably be used to detect a 

tooth breakage.

• The energy variations in a tool rotation period are significantly different for a 

healthy and broken cutter. These variations can be reliably used to detect a 

tooth breakage.

• The system integration increases the overall reliability o f a monitoring system.

• The proposed data analysis techniques can be implemented on resource 

limited 8-bit PIC18F458 microcontrollers.

• The PIC18F458 microcontrollers are reliable and flexible embedded devices 

for the implementation of reliable and cost effective machine tool condition 

monitoring system.

• Low cost embedded hardware is available and can be used to provide internet 

connectivity to such motoring systems.

• GSM connectivity can be provided using low cost hardware that provides 

multiple advantages to the monitoring system including an increase in overall 

flexibility.

• The depth o f cut is an important process parameter in machining process and 

its automated detection is recommended.



205

• The PIC18F458 microcontroller is a highly multiplexed controller i.e. most o f 

its port pins can be used for different applications depending upon the 

configuration o f the pins. Such multiplexing features make the PIC 

microcontrollers adaptable to industrial monitoring application

Considering these points in more detail it is evident that the process information can 

be extracted from machine tool signals by analysing them in the time or frequency 

domain. Both domains clearly show the signal variations that can be used to detect a 

tooth breakage. Designing a monitoring system which uses information of process 

variation from both domains and cross verifies the results has a higher reliability. This 

monitoring strategy reduces the false alarms and increases the OEE.

The PIC18F458 microcontroller fulfils the requirements for the implementation of 

low-cost machine tool monitoring system. The PIC18F458 microcontroller uses 

multiplexed input and output functions and is capable o f implementing the proposed 

monitoring techniques.

The designed monitoring system is a low cost solution as the count of external 

components in the final design is very low. Moreover the FENs are designed for 

multitasking i.e. data acquisition, processing and result/data communication. 

Although frequency domain signal analysis approach requires external analogue filter 

ICs (their cost is also very low) the time domain analysis technique is purely software 

based and does not require any external components. It was concluded that the best 

use o f the microcontroller is based on using its embedded resources as used in this 

design (using single chip for multiple functions).

It is also concluded the CAN bus is a reliable and efficient communication medium 

and can be effectively used for communication among all monitoring nodes. The 

distributed approach used in this architecture represents an appropriate choice to 

achieve reliable results.

Based on the testing and verification o f the proposed data analysis techniques, their 

implementation and the results obtained it is possible to conclude that the proposed 

monitoring system is capable o f providing a low cost machine tool condition
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monitoring. It fulfils the main requirements by providing information for monitoring 

and maintenance activities. This information can be made available on the Internet or 

can be sent to mobile phones in the form o f SMS. In comparison to the complexity o f 

some tool monitoring systems, the proposed architecture provides a reliable yet easily 

implementable solution.
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APPENDIX “A”
PIC 18F458 Microcontroller

Schematic Block Diagram
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PIC18F458 Features

High-Performance RISC CPU:
• Linear program memory addressing up to 

2 Mbytes
• Linear data memory addressing to 4 Kbytes
• Up to 10 MIPS operation
• DC -  40 MHz dock input
• 4 MHz-10 MHz osdllator/clock input with 

PLL active
• 16-bit wide instructions, 8-bit wide data path 
» Priority levels for interrupts
* 8 x 8  Single-Cyde Hardware Multiplier

Peripheral Features:
» High current sink/source 25 mA/25 mA
• Three external interrupt pins
• Timert) module: 8-bit/16-bit timer/counter with 

8-bit programmable prescaler
• Timer! module: 16-bit timer/counter
• Timer2 module: 8-bit timer/counter with 8-bit 

period register (time base for PWM)
• Timer3 module: 16-bit timer/counter
• Secondary oscillator dock option -  Timerl /Timer3
• Capture/Compare/PWM (CCP) modules;

CCP pins can be configured as:
- Capture input: 16-bit, max resolution 6.25 ns
- Compare: 16-bit, max resolution 100 ns (Tcy)
- PWM output: PWM resolution is 1 to 10-bit 

Max. PWM freq @: 8-bit resolution = 156 kHz
10-bit resolution = 39 kHz

• Enhanced CCP module which has all the features 
of the standard CCP module, but also has the 
following features for advanced motor control:
- 1 ,2  or 4 PWM outputs
- Selectable PWM polarity
- Programmable PWM dead time

• Master Synchronous Serial Port (MSSP) with two 
modes of operation:
- 3-wire SPI™ (Supports all 4 SPI modes)
- !2C™ Master and Slave mode

• Addressable USART module
- Supports interrupt-on-address bit

Advanced Analog Features:
• 10-bit, up to 8-channel Analog-to- Digital Converter 

module (A/D) with:
- Conversion available during Sleep
- Up to 8 channels available

• Analog Comparator module:
- Programmable input and output multiplexing

• Comparator Voltage Reference module
• Programmable Low-Voltage Detection (LVD) module:

- Supports interrupt-on-Low-Voltage Detection
• Programmable Brown-out Reset (BOR)

CAN bus Module Features:
• Complies with ISO CAN Conformance Test
• Message bit rates up to 1 Mbps
• Conforms to CAN 2 0B Active Spec with:

- 29-bit Identifier Fields
- 8-byte m essage length
- 3 Transmit Message Buffers with prioritization
- 2 Receive Message Buffers
- 6 full, 29-bit Acceptance Filters
- Prioritization of Acceptance Filters
- Multiple Receive Buffers for High Priority 

M essages to prevent loss due to overflow
- Advanced Error Management Features

Special Microcontroller Features:
• Power-on Reset (POR), Power-up Timer (PWRT) 

and Oscillator Start-up Timer (OST)
• Watchdog Timer (WDT) with its own on-chip RC 

oscillator
• Programmable code protection
• Power-saving Sleep mode
• Selectable oscillator options, including:

- 4x Phase Lock Loop (PLL) of primary oscillator
- Secondary Oscillator (32 kHz) clock input

• In-Circuit Serial Programming™ (ICSP™) via two pins

Flash Technology:
• Low-power, high-speed Enhanced Flash technology
• Fully static design
• Wide operating voltage range (2.0V to 5.5V)
• Industrial and Extended temperature ranges
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Execute INST (PC 2)

OSC2/CLKO L .  
(RC Mode)



Program Memory Map

________ PC<20:0>
CALL. RCALL. RETURN 2 1 /
RETFIE, RETLW jp ---------7 ^ ~

Slack Level 1

Stack Level 31

Reset Vector OOOOh

High Priority Interrupt Vector OOOBh

Low Priority Interrupt Vector 0018h

On-Chip 
Program Memory

7FFFh
8000h

Read 'o*

IFFFFFh
200000n

Us
er

 M
em

or
y 

Sp
ac

e



Data Memory Map
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BSR<3:0>

-  0000  ►

-  0001

. 0010   ►

. 0011 
 ►

«  0100  
 ►

-  0101 
 ►

. 0110  ►
-  1110 
 ►

-  1111 
 ►

Data Memory Map

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

00 h

FFh
OOh

FFh
OOh

FFh
OOh

FFh

OOh

FFh

Bank 6 
to

Bank 14

A ccess RAM 

GPR

GPR

GPR

GPR

GPR

GPR

OOOh
05Fh
060h
OFFh
100h

1FFh
200h

2FFh
300h

3FFh
400h

4FFh
500h

5FFh
600h

. Unused o~. 
^  Read 'OOh' ^

Bank 15
OOh

FFh

SFR

SFR

EFFh
FOOh
F5Fh
F60h
FFFh

A ccess Bank

A ccess Bank low 
(GPR)

A ccess Bank high 
(SFR)

OOh

5Fh
60h

FFh

When a = o,
the BSR is ignored and the 
A ccess Bank is used.

The first 96 bytes are 
general purpose RAM 
(from Bank 0).

The next 160 bytes are 
Special Function Registers 
(from Bank 15).

When a = l ,
the BSR is used to specify 
the RAM location that the 
instruction u ses
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CAN Buffers and Potocol Engine

BUFFERS

M essage
Q ueue
Control

TXREQ TXBO
TXABT
TXLARB M ESSAGE
TXERR
TXBUFF

M essage
R equest

TXREQ TXB1
TXABT
TXLARB MESSAGE
TXERR
TXBUFF

TXREQ TXB2
TXABT
TXLARB MESSAGE
TXERR
TXBUFF

Transm it Byte S equencer

A ccept

A ccept
A cceptance Mask 

RXMO

* »
A cceptance Fitter 

RXFO
-►

* ♦
A cceptance Filter 

RXF1 -►

RXBO *<*-

Identifier

A cceptance M ask 
RXM1

I  ♦
A cceptance Filter 

RXM2

* ♦
A cceptance Filter 

RXF3

* ♦
A cceptance Filter 

RXF41 f
A cceptance Filter 

RXF5

RXB1

JD ata and  D ata and A
Identifier Identifier T

M essage  A ssem bly Buffer

Identifier

PROTOCOL
ENGINE

Transm it Shift R eceive Shift

Com parator

CRC R egister

Transmit
Logic

P ro to co l
FSM

Bit Timing 
G enerator

Bit Timing 
Logic

Transm it Receive
Error Error

Counter Counter

RXERRCNT

Bus-Off

E rr-Pas

TXERRCNT

V
TX RX
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CAN Filter/Mask Truth Table

Mask 
bit n Filter bit n

Message 
Identifier 
bit n001

Accept or 
Reject 
bit n

0 X X Accept
l 0 0 Accept
l 0 1 Reject
l 1 0 Reject
l 1 1 Accept

Legend: x = don’t care

A/D Block Diagram

CHS2:CHS0

 UJ.......
AN7*1> 

AN6<1) 

AN5<1> 

AN4 

AN3 

AN 2 

AN1 

ANO

VSS

Note 1: C hannels AN5 through AN7 are not available on PIC 18F2X8 devices. 

2: All I/O pins have diode protection to Vdd and Vss.

10-bit
Converter

A/D

, Reference 
1 voltage

Vain

(Input Voltage)

VREF+

Vref-

PCFGO
...L... vpp"<>" _r_
-cr^o-

v
V
V
V
V
V
V
V

110

101

100

o n

010

001

ooo

E
E l
E l
E l
E l
E l
E



P3
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-P
3.

7 
M

il 
I/O 
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M
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APPENDIX “B”
DS80C400 Microcontroller

Schematic block diagram

P1.0-P1.7 P0.0-P0.7

1-WIRE
CONTROLLER

$ - t—
Z
U J
2

5  S O
< P*
4
2 o

u
£C
U J

M
il

I/O

l l
U .
3
CD

PORT 1

PORT LATCH

SERIAL 
PORT 1

L- TIMER 2
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x
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Oa

03
at
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QQQQ
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Microcontroller Features

• High-Performance Architecture

o Single 8051 Instruction Cycle in 54ns 

o DC to 75MHz Clock Rate 

o Flat 16MB Address Space

o Four Data Pointers with Auto-Increment/Decrement and Select- 

Accelerate Data Movement, 16/32-Bit Math Accelerator

• Multi-tiered Networking and I/O

o 10/100 Ethernet Media Access Controller (MAC) 

o CAN 2.0B Controller 

o 1-Wire Net Controller 

o Three Full-Duplex Hardware Serial Ports 

o Up to eight Bidirectional 8-Bit Ports (64 Digital I/O Pins)

• Robust ROM Firmware

o Supports Network Boot Over Ethernet Using DHCP and TFTP 

o Full, Application-Accessible TCP/IP Network Stack 

o Supports IPv4 and IPv6

o Implements UDP, TCP, DHCP, ICMP, and IGMP 

o Pre-emptive, Priority-Based Task Scheduler

• 10/100 Ethernet MAC

o Low-Power Operation

o 8kB On-Chip Tx/Rx Packet Data Memory with Buffer Control Unit 

reduces load on CPU 

o Half- or Full-Duplex operation with flow control 

o Multicast/Broadcast Address Filtering with VLAN Support

• Full-Function CAN 2.0B Controller

o 15 Message Centres

o Supports Standard (11-Bit) and Extended (29-Bit) identifiers and 

global masks

o Media Byte Filtering to Support DeviceNet™, SDS, and Higher Layer 

CAN Protocols 

o Auto-Baud Mode and SIESTA Low-Power Mode
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• Integrated Primary System Logic

o 16 Total Interrupt Sources with Six External 

o Four 16-Bit Timer/Counters

o 2x/4x Clock Multiplier Reduces Electromagnetic Interference (EMI) 

o Programmable Watchdog Timer 

o Oscillator-Fail Detection

• Advanced Power Management

o Energy Saving 1.8V Core 

o 3.3V I/O Operation, 5V Tolerant

o Power-Management, Idle, and Stop Mode Operations with Switchback 

Feature

o Ethernet and CAN Shutdown Control for Power Conservation

• Enhanced Memory Architecture

o Selectable 8/10-Bit Stack Pointer for High-Level Language Support 

o lkB  Additional On-Chip SRAM Usable as Stack/Data Memory 

o Merged Program/Data Memory Space Allows In-System Programming 

o Defaults to True 8051 -Memory Compatibility
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POWER MANAGEMENT
BLOCKMil MANAGEMENT

BLOCK 
<SER1AL 

INTERFACE BUS TO 
EXTERNAL PHY(s)>

CSR REGISTERSE XTERNAL
PH Y(s)

D S80C400
CPU

Ml I/O BLOCK

(TRANSMT, 
RECEIVE. AND 

FLOW CONTROL)

BCU
ADDRESS CHECK 

BLOCK

DS80C400 ON-CHIP ETHERNET CONTROLLER

Block Diagram of Ethernet Controller

TINI Stick Mounted on Socket
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APPENDIX “C”

Tx

Rx

GND

CAUL

CANH

120*2

1000 Meters {Max} 
— Bus Length
  *

A
Differential 

Driver /  Receiver

L

UTP arSTP

.------ •

H
•i

120 «  |  
Termination 

Resistor

[ ,1
------ < i

Tx

Rx 

GND 

Tx

Rx 

•  GND

CA N  Bus

Arbitration
Field Slot

Control 1 End of 
Field Data Field CRC Field W  Frame

Identifier 1 IUI I
A ♦

Start of RTR
Frame

CAN 2.0A - Standard CAN Data Frame

CRC if  ^ACK 
Delimiter Delimiter

Arbitration
Field Control

Field Data Field CRC Field

ACK
Slot

1
End of 
Frame

Identifier Identifier

*  t \ I
Start of SRR IDE RTR
Frame

CRC if  ^ACK 
Delimiter Delimiter

CAN 2.OB - Extended CAN Data Frame
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DS80C400 PIC 18F458
C O T X  C O R X C A N T X  C A N R X

+ 5V

N C

35 34

4

T X D R X D

V C C RS

PCA 82C250
V R E F G N D

C A N L C A N H

C A N H

+5V

N C

35

1

36

4

T X D R X D

VCC RS

PCA 82C250
VREF G N D

C A N L C A N H

>120 n 120 Q

C A N L

+ 5V

N C

C A N L  C A N H

V C C  RS 

PCA 82C250
V REF G N D

T X D R X D

1 4

35 36

C A N T X C A N R X

PIC18F458

CAN Bus Connections
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Initialisation and M essag in g  in a Three N odes C A N  N etw ork

120 Q

CANTx Tx CANH

CANRx Rx CANL

CANTx Tx CANH

CANRx Rx CANL

CANTx Tx CANH

CANLCANRx Rx 120 Q

CAN 
T ransceiver 
PCA82C250

CAN
Transceiver
PCA82C250

CAN
Transceiver
PCA82C250

PIC18F458 
W ith CAN 
Controller

PIC18F458 
With CAN 
Controller

PIC18F458 
With CAN 
Controller

Block Diagram  o f a 3 Node Network.

Initialisation Routine

An example setting is shown in the following code.

BCF T R IS B ,2 ;C A N T X

BSF T R IS B ,3 ;C A N R X

M OVLW H'80'

M OVW F C A N C O N C o n figu ra tion  m ode

CLRF C A N S T A T

CLRF C O M S T A T

M OVLW H '201 ;D isab le C A N  capture (D on't use RC2 pin)

M OVW F C IO C O N ;T x pin H igh w hen inactive

Setting for CAN baud rate Registers for 125000 bps, At 40MHz Oscillator 

Frequency.
M OVLW H'49' T q =  (2*10 )/F osc

M OVW F B R G C O N 1 S y n c  jum p w idth tim e = 2*T q

M OVLW H'AB' Propagation tim e = 4*T q, Sam ple once

M OVW F B R G C O N 2 P hase seg l tim e = 6*T q, M ax o f  IPT & PHEG1

M OVLW H '03’ P hase seg2  tim e = 4*Tq

M OVW F B R G C O N 3 C A N  not used for w ake-up
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Transmit buffers, receive buffers, filters and masks are then initialised as required. 

After completing the initialisation, CAN may be set to operate in normal mode by 

clearing the CANCON register. If a message is now received on CAN bus, RXBnlF 

bit will be set in PIR3 register. An interrupt will also be generated, if  enabled.

Let us suppose that Node 1 wants to transmit a message using transmit buffer 0. It 

will execute the following example code.

BTFSC  T X B O C O N ,T X R E Q ,B A N K E D  ;Any pending transm ission?

B R A  $-2  ;Wait for com pletion

B SF  T X B O C O N ,T X R E Q ,B A N K E D

B T F SS P IR 3,T X B 0IF  ;W ait until transm ission com pleted

B R A  $-2

The transmitted message will be received by the other two nodes. The identifier bits 

reaching the second stage will be matched with corresponding bits o f receive filters. 

Suppose it does not match with any o f the filters in Node 2. The node 2 will discard 

the message as it is not interested in this type o f messages. Suppose the identifier bits 

match with a receive filter for receive buffer 0 in Node 3. This means that Node 3 is 

interested in receiving this message. Bit RXBOIF will be set in register PIR3 to 

indicate reception o f the message. I Filter hit bits in RXBnCON register will show 

which filter has accepted the message. Node 3 will be executing the following 

example code.

Loop

BTFSC PIR3,RXBOIF ;A ny m essage received?

GOTO R ecv ;Y ES, go to receive m essage

BR A  Loop ;N o, check again

Recv

;Do whatever is required with the received m essage here 

BCF PIR3,RXBOIF ;Clear in softw are

BCF R X B O C O N ,R X FU L  ;Clear in softw are

RXBOIF and RXFUL bits are to be cleared in software to enable next reception in this 

receive buffer. This gives a protection from a new message accidentally overwriting 

the old one. *
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APPENDIX “D”
System Related Details

FEN Main Loop

Main
;Check i f  a n ew  C A N  m essage is available
M O V F C A N _R C ount,W
C PFSE Q  C A N _W C ount
C A LL C A N P R O C

;Check i f  a n ew  sam ple is available 
;FSR0 and FSR1 (w riter and reader)
M O V F  FSR 0H ,W
C PFSEQ  FSR 1H
G O TO  N e w S a m p le
M O V F FSR 0L ,W
C PFSEQ  FSR 1L
G O TO  N e w S a m p le
G O TO N o S a m p le  ;No new  sam ple available for p rocessin g

N e w S a m p le
;Process the n ew  sam ple  
C A L L  P r o c e s sS a m p le

N o S a m p le
G O TO  M ain

FEN CAN Initialisations

BCF T R ISB ,2  ;CANTX
B SF T R ISB ,3 ;CANRX

;Setting for C A N  control registers 
M O V L W  H '801
M O V W F C A N C O N  ;Configuration m ode
CLRF C A N ST A T
CLRF C O M ST A T

;Setting for C A N  I/O control register
M O V L W  H'20' ;D isable C AN  capture (Don't use R C 2 pin)
M O V W F CIOCON ;Tx pin High when inactive

;Setting for C A N  baud rate R egisters for 125000 bps for 40  M H z osc illa tor  
M O V L W  H'49' ;Tq = (2 * l) /F o sc , Prescaler is 10 for 4 0  M H z crystal
M O V W F BRG CO N1 ;Sync jum p width tim e = 2*T q
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M O V L W H 'A B1 ;Propagation tim e = 4*T q, Sam ple once
M O V W F BR G C O N 2 ;Phase s e g l tim e = 6*Tq
M O V L W H'04' ;Phase seg2 tim e = 5*Tq
M O V W F BRG CO N3 ;CAN not used for w ake-up

;Setting for C A N  transmit registers
;Transmit B uffer 0
M O V L W H'03'
M O V W F T X BO C O N ,BA N K ED ;Priority level 3 (h igh est priority)
M O V L W H '061 ;EID28-EID21
M O V W F TXBOSIDH, B A N K E D
M O V L W H'08'
M O V W F T X BO SID L,BA N K ED ;Extended identifier and E ID 20-E ID 16
M O V L W N odeN um ;N odeNum  defined for each node
M U LLW D'16' ;M ultiply node num ber w ith 16

;(lower nibble -->  higher n ibb le in P R O D L  register)
M O V F PR O D L,W ;M ove result in W
A D D L W D'OT ;Make SU IN  the destination
M O V W F T X BO EID H ,BA N K ED ;EID15-E1D8
M O V L W H'OO'
M O V W F T XBO EID L,BA N K ED ;EID7-EID0
M O V L W H'OO’
M O V W F TXBODLC, B A N K E D ;TXRTR bit clear, 0 data bytes

;Setting for C A N  receive registers
;R eceive B uffer 0
M O V L W H'40'
M O V W F RXBOCON ;R eceive valid m essages w ith extended identifier

;Set R ece iv e  M ask 0 to check only the destination node number (sam e for all FEN s)
M O V L W H ’OO’
M O V W F R XM O SIDH ,BAN K ED ;EID28-EID21
M O V L W H'OO’
M O V W F R XM O SIDL,BAN K ED ;EID 20-EID 16
M O V L W H'OF'
M O V W F R XM O EIDH ,BA NK ED ;EID15-EID8
M O V L W H'OO’
M O V W F RXM O EIDL,BAN K ED ;EID7-EID0

;Set R ece iv e  Filter 0 to accept m essages for current node only
M O V L W H'OO'
M O V W F R X FO SID H ,BA N K ED ;EID28-EID21
M O V L W H'08'
M O V W F R X FO SID L,BA N K ED ;Extended identifier, E ID 20-E ID 16
M O V L W N odeN um ;Current node
M O V W F R XFO EID H ,BA NK ED ;EID15-EID8
M O V L W H'OO'
M O V W F R XFO EID L,BA NK ED ;EID7-EID0

;Set R ece iv e  Filter 1 to accept broadcast m essages (sam e for all FEN s)
M O V LW H'OO'
M O V W F R X F 1SID H ,B A N K E D ;EID28-E1D21
M O V LW H'08’
M O V W F R X F 1SID L ,B A N K E D ;Extended identifier, E ID 20-E ID 16
M O V L W H'OO' ;For broadcast m essage
M O V W F R X F 1E ID H ,B A N K E D ;EID 15-EID 8
M O V L W H'OO'
M O V W F R X F 1E ID L ,B A N K E D ;EID7-EID0
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CLRF C A N R C o u n t
CLRF C A N W C o u n t
LFSR F S R 2,400H  ;Start address o f  C A N  buffer for , 12 bit operation

;CAN interrupt configuration
BCF PIR3,RXBOIF ;Clear to initialize
M O VLW  0 1 H ;Set high priority for RXBO interrupt
M OVW F IPR3
M OVLW  0 1 H ;Enable RXBO interrupt
M OVW F PIE3

BSF R C O N ,IPE N  ;Enable interrupt priorities
M OVLW  0C 0H  ;Enable all high & low  priority interrupts g lobally
M OVW F IN TCO N

M OVLW
M OVW F

H'OO'
C A N C O N ;Norm al m ode for C A N



Some Useful Slush Commands

Command Description

date Set the system date and time

del Remove the named file

ftp Connect to a remote FTP server

help Display usage information for Slush commands

ipconfig Configures and displays the network settings

java Executes a Java program

kill Kill the identified process

Is List the contents o f the current directory

md Make the named directory

netstat Displays all TCP connections

passwd Set the password for the specified user

pwd Present working directory

rd Remove the named directory

sendmail Send email to designated recipients

startserver Start up the specified server

stopserver Shut down the specified server

useradd Add a new user account

userdel Delete the specified user account

who List all currently logged in users



Some Useful AT Commands
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Command Description

AT Attention command

AT&F Set to factory default

AT+CHUP Hang up call

AT+CLCK Lock facility (including all incoming barring services ‘AC’)

AT+CLIP Enable/disable calling line identification (CLI)

AT+CMAR Master reset

AT+CMGF Select message format

AT+CMGS Send message

AT+CMSS Send message from storage

AT+CSCS Select character set

AT+CSIL Silent mode

AT+CSQ Signal strength
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TREE FEN (without external memory)
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APPENDIX “F”
List of Research Papers
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and Diagnostic Engineering Management. ISBN 0-954 1307-1-5, pp 195- 

203.

4. W. Amer, Q. Ahsan, R. I. Grosvenor and P. W. Prickett, “Machine Tool 

Signal Analysis Using Sweeping Filter Technique”, In proceedings o f Quality, 

Reliability, and Maintenance (QRM), 1-2 April 2004, 5th International 

Conference. Oxford University, UK. Professional Engineering Publishing 

Limited, Bury St Edmunds and London, UK. ISBN 1 86058 440 3, pp 189- 

192.

5. Q. Ahsan, W. Amer, R. I. Grosvenor and P. W. Prickett, “Sweeping Filter 

Technique for Frequency Analysis”, In proceedings o f Quality, Reliability, 

and Maintenance (QRM), 1-2 April 2004, 5th International Conference.
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