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SUMMARY
The Power Amplifier (PA) is a critical component in any mobile communications 
system with performance that is very sensitive to RF envelope dynamics. Achieving 
the required linearity demanded by evolving communications systems invariably 
involves increasing PA complexity at the cost of reducing PA efficiency; the 
consequences of which are severe and include for example reduced operational time 
for portable communications devices and perhaps less obviously the significant 
running, capital and thermal management costs associated with mobile 
communication system base-stations. The Doherty PA is one of a number of elegant 
architectures that have been developed to address this problem, and although 
conceived and patented in the 1930’s, has only recently become established as a 
means of enhancing efficiency in microwave PA applications.

The Doherty is renowned for its elegant simplicity; however, the realisation of 
functional Doherty PAs using modern microwave devices is problematical and 
hindered by many hidden complexities, which are in general brought about by the 
complex, ‘load-pulling’ action of two active devices that conspire to cause a variety of 
performance related problems. Although harmonic behaviour is important, 
understanding device interaction at a fundamental level has been found to be the 
critical factor in achieving good overall Doherty performance.

With this in mind, this thesis concentrates initially on developing an extensive 
understanding of fundamental device interaction through the use of a novel Doherty 
measurement approach which involves replacing the classical Doherty’s symmetrical 
input power division arrangement with independent, phase-coherent excitations. The 
resulting insight has meant that it has been possible to introduce more focused 
measurement techniques including harmonic analysis and waveform engineering in 
order to further explore individual device behaviour. The extensive use of harmonic 
load-pull measurement systems and the direct synthesis of the impedance 
environments that exist within the Doherty have allowed a number of device 
technologies to be considered within the application environment resulting in the 
realisation of GaAs and GaN Doherty prototypes.

As a direct result of this analysis, a number of optimisation approaches have been 
identified that involve the dynamic adjustment of relative input magnitude, relative 
input phase and relative device bias, which has in turn exposed the various design 
trade-offs that exist between linearity and efficiency within the Doherty.

Other work includes the development of modulated measurement systems and 
specialised excitations that allow the meaningful comparison between measured 
single-tone and modulated performance, as well as allowing more comprehensive 
investigations into Doherty linearity under varying IF impedance conditions.
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Chapter 1 - Introduction

Chapter 1 Introduction
1.1 Research perspective
According to recent estimates1 the mobile telephony industry contributed £22.0 billion 

to UK Gross Domestic Product (GDP) in 2003. This represents 2.2% of the UK's total 

economic output and to further place the significance of the industry into perspective, 

is equivalent to the combined contribution of the UK’s oil and gas extraction 

industries. Furthermore, in terms of employment the mobile telephony sector directly 

supported over 170,000 jobs in 2003 which represents 0.6% of total UK employment 

in the same period. These statistics clearly illustrate both the importance of the 

industry as well as the public’s insatiable appetite for both voice and data based 

mobile communications. As well as talking, users equipped with portable computers 

and a growing array of mobile devices incorporating wireless communication 

technologies increasingly need to connect to corporate networks, exchange 

messages, access the internet and transfer multi-media data files. The evolving 

nature of these complex applications continues to impose significant system-wide 

challenges on modem communication systems. The general desire for improved 

spectral efficiency coupled with a continual, and increasing demand in data 

throughput has resulted in the deployment of a variety of complex multi-carrier 

modulation schemes employing a combination of both phase and amplitude 

modulation with RF envelopes possessing significant peak-average power ratios.

1.2 The advent of mobile communications
James Clerk Maxwell was responsible for the first colour photograph, defined the 

nature of gases and with a few mathematical equations exposed the fundamental 

relationship between electricity and magnetism. Between 1864 and 1873, he worked 

on extending Michael Faraday's theories of electricity and magnetic lines of force and 

demonstrated how an oscillating electric charge produces an electromagnetic field. 

Between 1885 and 1889 Heinrich Hertz clarified and expanded Maxwell's 

electromagnetic theory of light, proving that energy can be transmitted as 

electromagnetic waves, which travel at the speed of light and which possess many 

other properties of light. It wasn't until some years later in 1895 that Guglielmo 

Marconi first transmitted radio signals any significant distance. Unable to interest the 

Italian government in his invention, Marconi took his crude transmitter and receiver to

1 Report commissioned by 0 2 In May 2004 http://www.Qsm world.com /docum ents/cebr.Ddf
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England, where the British navy quickly realized the maritime potential of radio: within 

two years, the Marconi Wireless Telegraph Company had been founded, and the era 

of radio communications was bom.

1.3 The Power Amplifier
This Thesis is concerned with a single yet critical part of any mobile 

telecommunication system - the Power Amplifier (PA). In its simplest form, the PA is 

a device that, in response to an input stimulus converts DC energy into a required 

amount of RF energy suitable for transmission. The PA architecture used to achieve 

this amplification depends upon a number of application specific factors, the most 

significant of which being the required efficiency, the required linearity and ultimately 

the cost.

A PA for a satellite application for example will need to be highly efficient due to the 

obvious on-board power limitations. This is in contrast to a mobile handset PA where 

although linearity and efficiency are increasingly significant design drivers, cost 

remains an extremely important consideration due to the highly competitive nature of 

the mobile telephony market.

The very first PAs were generally spark-gap [1], arc [2] or alternator [3] type 

transmitters working in the LF to MF bands and were capable of generating many kW 

of RF power. It wasn’t until 1907 however and the appearance of the thermo-ionic 

vacuum tube or 'valve' that the means to both generate and critically, control RF 

power electronically became available. Valve transmitters were dominant for many 

years up to the 1970’s, and were typified by their high voltage supply requirements 

resulting in conveniently high optimum load impedances.

Discrete solid-state RF power devices started to appear in the 1960’s with the 

introduction of the silicon bi-polar transistor. In contrast to their valve counterparts, 

these devices operated at low supply voltages, higher currents and consequentially 

lower load impedances. It wasn’t until the late 1970s however and specifically, the 

appearance of the GaAs MESFET that transistors started to be used in large 

numbers in microwave applications. The following years witnessed a steady 

progression in the development of solid state microwave device technology and 

associated applications. New devices included HEMT’s, pHEMTs, HFETs, HBTs and 

alike, whilst the materials from which these devices were fabricated became 

increasingly exotic and included GaAs, SiC, InP, InGaP and GaN.
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1.4 The evolution of modulation schemes and associated 
problems

Before the early 1940’s and the earlier publication of Edwin Armstrong’s definitive 

paper [4] introducing the concepts of Frequency Modulation (FM), Amplitude 

Modulation (AM) was the only practical and reliable way to convey information using 

radio transmission. During this time, the very large scale power amplification of 

modulated RF carriers with significant peak to average power ratios resulted in 

extremely high running costs due to poor linear PA efficiency. The cost incentives of 

improving efficiency applied particularly to commercial radio stations that were in the 

business of generating typically many hundreds of kW of RF power; and it is no 

surprise that there was significant motivation in developing efficient, large scale PAs 

that were capable of accurately amplifying the amplitude modulated RF signals of the 

day. This era resulted in a number of rather elegant PA designs that directly 

addressed the problem of linear efficient power amplification, one of which was the 

Doherty PA, the analysis of which forms the basis of this research.

Problems associated with AM transmission resulted in significant commercial and 

defence related motivation and resultant development into other, more accurate, 

increased bandwidth modulation techniques with improved noise immunity. The 

appearance for instance of accurate frequency and phase discrimination techniques 

allowed the use of constant amplitude envelope modulation schemes that could 

convey information using deviations in phase or frequency. This development and 

the adoption of CW modulation schemes such as FM, PSK and GMSK had 

significant implications for the PA as constant envelope modulation techniques 

immediately removed the problematical amplitude variation that led directly to poor 

PA efficiency. This in turn meant that the emphasis of PA design shifted from the 

accurate amplification and reproduction of magnitude variation towards the accurate 

amplification and reproduction of frequency and phase variation. The PA efficiency 

problem was therefore considerably eased with the extensive use of sometimes very 

high efficiency, reduced conduction angle PA architectures using classes of biasing 

including C, D, E and F.

Due to the massive worldwide growth of mobile communications systems over recent 

years, and the unyielding need for ever more spectral efficiency in increasingly 

crowded radio spectrums, complex modulation schemes have evolved that employ 

both phase and amplitude modulation in order to convey the increasing amounts of 

voice and data information. Modern modulation schemes include Quadrature Phase

Page 13 of 201



Doherty Amplifier Structures for Modern Microwave Comm. Systems -  J Lees

Shift Keying (QPSK) and Quadrature Amplitude Modulation (QAM), and are all 

typically generated through vector or l-Q sub-carrier modulation. The latter of these 

schemes result in modulated carriers with simultaneous amplitude and phase 

variation typified by peak to average power ratios ranging typically between 3 and 6 

dB [5].

In a typical, modern, mobile telecommunication system, many such signals will need 

to be amplified and transmitted simultaneously. For example, in the multi-carrier 

environment of a mobile base-station, the combination and hence summation and 

cancellation of amplitude and phase modulated carriers inevitably means that the 

resulting, composite carrier will possess a much higher degree of amplitude variation, 

and will be characterised by peak to average power ratios of anything between 8 and 

13 dB [5J.

Other emerging, high spectral efficiency modulation schemes such as Orthogonal 

Frequency Division Multiplexing (OFDM) [6] rely on the simultaneous use of large 

numbers of carriers to effectively distribute the modulated information over a wide 

bandwidth. This is a powerful technique that is effective in solving a number of 

specific problems including simplification of hardware2 and multi-path mitigation. The 

resulting modulation envelopes of such schemes cause an even greater problem for 

the microwave PA due to significant amplitude variations in the transmitted carrier. 

These developments in modulation schemes, along with the fact that many modern, 

battery reliant mobile devices such as mobile telephone handsets, PDA’s and laptop 

computers need to transmit voice and data information have meant that, as was the 

case in the 1930s, efficiency as well as linearity is once again a primary PA design 

concern.

1.5 Linearity and the PA
PA linearity is essentially a measure of the accuracy of the amplification process or 

more specifically the fidelity with which the PA can amplify both the phase and 

amplitude of an input stimulus. PA non-linearity is conversely any process or 

mechanism that introduces distortion into these quantities and can generally be 

considered as belonging to one of three distinct groups; phase or AM-PM conversion, 

amplitude or AM-AM distortion, and memory effects.

Although memory effects are not themselves considered as classical PA non- 

linearities, they are certainly non-linear processes that can significantly complicate 

the ‘anticipated’ or ‘memory-less’ non-linear system behaviour by introducing time-

2
This is in relation to a conventional FDM approach, where arrays of sinusoidal waveform generators and coherent 

demodulators are replaced with an FFT approach which is nowadays easily realisable.
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dependency into the ‘normal’ AM-AM and AM-PM characteristics of the PA. These 

effects are highly complex and are attributable to a number of factors including 

electrical properties such as time-varying envelope impedances, thermal properties 

such as the electro-thermal couplings between a device its package and the heat­

sink; and finally device physics related properties such as charge storage or 

trapping’ effects.

PA non-linearity has traditionally been characterised by measuring the Carrier to 

Interference (C/I) ratio and specifically the relative magnitude of the third-order inter­

modulation products in comparison to the carrier magnitude. Typically, a linear PA 

will be expected to have a C/I ratio of no more than 30 dB at Peak Envelope Power 

(PEP).

In modem communications systems however, linearity tends to be measured in 

terms of Error Vector Magnitude (EVM) and Adjacent Channel Power Ratio (ACPR) 

which describe the accuracy of the detection process and how non-linearity impacts 

adjacent channels respectively. This shift in approach is not only due to 

improvements in measurement techniques, but can also be considered indicative of 

the fact that over the last 5 to 10 years, PA design has increasingly been driven by 

rigid linearity requirements and the ability of a PA to accurately amplify the phase and 

magnitude of a modulated carrier, as well as minimising spectral re-growth in 

adjacent channels. Figure 1 and Figure 2 illustrate the rigidity of the spectral 

requirements through a 3G-UMTS spectral mask, and an example of a linearised 

Doherty PA measurement respectively.

i  Eminsfci a

f 
J

* 1.5 7-5
| 1 ^  AHMH7] 

K.5 1 iS

—  DP A Output | 
  Lineanz^d Output |

M H z

Figure 1 3G-UM TS Mobile Station spectrum mask [7 ] Figure 2 - spectrum o f a Doherty PA before and 
following linearisation [8 ]
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Attaining required PA linearity has classically been achieved through use of class-A 

or class-AB bias, and ‘backing-off the PA such that the applied modulated excitation 

stimulates only the most linear parts of the device trans-conductance characteristic: 

in other words, the linear dynamic range of the PA must encompasses the dynamic 

range of the modulation. When this is the case, maximum linear power and hence 

maximum linear efficiency will only occur infrequently with the peaks of maximum 

modulation.

This simple approach can involve backing-off the PA by anything between 10 and 20 

dB and involves operating devices well within their peak capability for the vast 

majority of time. Although highly effective in improving linearity, this tends to be 

impractical for many commercial PA applications due to efficiency and PUF 

penalties, and other more complex approaches are generally employed including 

feed-forward, feed-back and digital pre-distortion linearisation techniques.

1.6 Efficiency and the PA
It is evident that with so much recent PA development effort being directed towards 

meeting increasingly stringent linearity requirements, efficient-linear PAs have had to 

take something of a ‘back seat’ in terms of research effort. In the last few years 

however, both academia and industry have realised that the traditional trade-offs 

used in achieving required PA linearity at the expense of efficiency is an increasingly 

unacceptable solution. In the telecommunications industry, this is the case for PA’s 

embedded within both handsets and base-station applications for different reasons: 

primarily reduced battery-life and hence talk-time, and increased running and capital 

costs respectively.

As has been mentioned, the rather major consequence of adopting the traditional PA 

‘back-off approach is that PA efficiency degrades rapidly with increasing PAR of the 

modulation envelope. This renders linear PA’s designed using this approach 

hopelessly inefficient when used to amplify modulation envelopes with significant 

amplitude variation.

Consider for example the amplification of a multi-carrier signal with a 10 dB peak-to- 

average power ratio using ideal class-A and class-B PAs. These ideal amplifiers 

have corresponding PEP efficiencies of 50% and 78.5% and yet when faced with 

amplifying this particular modulation, will have average efficiencies of only 5% and 

28% respectively [5].

As shown in Figure 5, PAR is a very useful and intuitive measure in describing 

modulation envelope dynamics, but is sometimes a little too general when
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considering various complex, ‘continuous’ modulation schemes alongside unorthodox 

PA efficiency characteristics, such is the case with the Doherty and other efficiency 

enhancing PA architectures. A more comprehensive approach involves the statistical 

analysis of modulation dynamics and generation of Probability Density Function 

(PDF) or Cumulative Density Function (CDF) profiles that describe the statistical 

likelihood that a modulation envelope will possess a given amplitude, and the 

likelihood a modulation envelope amplitude is to exceed a single, specific amplitude, 

respectively. These measures are extremely useful as they can be integrated directly 

with PA efficiency characteristics in order to obtain a very accurate estimation of 

efficiency for any non-constant amplitude modulation.

This is an important feature as it allows for example a PA’s efficiency characteristic to 

be engineered and optimised to suit the dynamics of a particular modulation. This is 

certainly the case with the Classical Doherty PA architecture which has two distinct 

efficiency peaks, the relative position of which can be manipulated through design 

[9].

IS95 - Forward Link Modulation Envelope
IS95 PDF and class AB efficiency
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Figure 3 -  multi-carrier envelope (upper and 
lower shown)5

Figure 4 -  multi-carrier CDMA PDF with example 
class-A B efficiency characteristic
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Figure 4 shows the PDF of the IS95-CDMA3 modulation envelope shown in Figure 3 

and Figure 5, overlaid with the simulated efficiency characteristic of a realistic class- 

AB PA. From these two measures, it is clear that in this particular example, the 

modulation spends most of its time around 0 dBm, where the corresponding PA 

efficiency is approximately 10%.

To further place the importance of PA efficiency into perspective, it is constructive to 

consider the impact of poor efficiency from a commercial perspective. For example, 

consider the running and capital cost saving potential for a large network with many 

base-stations. It is shown in [10] for example that across a complete network of 

approximately 10,000 base-stations (based on a major EU country and the DCS1800 

system), an annual power saving of approximately £10M can be achieved through 

the use of improved efficiency linearised multi-carrier PAs alone. Less obvious 

advantages of more efficient PA’s include the possibility of locating cooler, smaller 

PA's in mast-head locations, close to antennas, thus reducing cable costs, cable loss 

and RF power requirements.

1.7 Efficient Power Amplifier Design
There are a number of PA architectures that aim to address the problem of achieving 

high efficiency and simultaneous linear operation. These consist mostly of ‘classical’ 

solutions conceived and patented from the 1930’s, together with their modern-day 

equivalents that have been adapted to work with modern microwave technology, as 

well as modem digital control techniques. All of these techniques however fall into 

two categories: those that can be described as true, ‘RF-in /  RF-out’ PAs, and those 

that are more accurately described as transmitter architectures possessing base­

band or digital inputs and RF outputs. Several of these approaches are briefly 

discussed below.

1.7.1 Stage by-passing and gate switching
The stage by-passing technique improves efficiency by selecting or ‘switching-in’ 

different periphery amplifiers depending upon the instantaneous signal level applied 

to the PA. Avoiding hysteresis and distortion due to switching can be problematical 

with this approach however [11-13].

Gate switching on the other hand typically involves using multiple devices with 

different periphery connected in parallel. These devices are biased such that only a

3 The IS-95 modulation shown is based on a simulation using 9 channels, including pilot, synch, paging, and 
6 traffic channels that used Walsh codes 34-39.
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single device is active for the low power requirements, with the other devices 

becoming active as and when needed. This approach benefits from reduced losses 

due to the absence of RF switching, however as the devices are directly coupled, 

does suffer from dynamic variations in load and source impedance over dynamic 

range.

1.7.2 The Khan technique
The Khan Envelope Elimination and Restoration (EER) technique describes an RF 

transmitter rather than a true PA architecture. The approach employs a highly 

efficient, non-linear RF PA together with another highly efficient low frequency 

envelope amplifier. In its classical form, a limiting amplifier is used to ‘strip-off the 

modulation and pass only the constant amplitude, phase-modulated carrier to the 

non-linear PA. The original envelope is then regenerated through the action of the 

envelope amplifier, which derives its input from the original modulation.

Using this technique, efficiencies have been demonstrate that are three to five times 

that of a conventional linear PA [14].

1.7.3 Class-S modulation
This approach relies upon the principles of Pulse Width Modulation (PWM) and 

typically employs a high power device together with a diode and low-pass filter 

network in order to generate the required modulated envelope [11]. This type of PA is 

ideally 100% efficient, has a potentially large bandwidth, and is attractive for its ability 

to be directly controlled through digital techniques and DSP.

1.7.4 Envelope tracking
This is a similar technique to that of Khan and EER. The difference lies in the fact 

that the Khan technique uses a highly efficient yet non-linear RF PA, where Envelope 

Tracking (ET) employs a modulator, usually in the form of a DC to DC converter, to 

modify the supply voltage delivered to a linear PA in response to the instantaneous 

amplitude of the applied RF envelope. In principle, accurate tracking of the 

modulation envelope by the supply voltage allows high efficiency to be achieved for 

all output amplitudes. ET systems employing modulators with switching frequencies 

up to 20 MHz have been implemented using a variety of different device technologies 

[15-18].
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1.8 Active load-pull within PA structures
Unlike all of the techniques described above, there are a number of unique PA 

architectures that exploit the useful device interaction that occurs when one active 

device is allowed to influence the load presented to another. The Chireix and the 

Doherty are two such PA architectures, and are briefly discussed below.

1.8.1 The Chireix technique
In typical outphasing applications, which now tends to be termed Linear amplification 

using Non-linear Components (LiNC), the output modulation envelope is synthesised 

from the combination of two, constant amplitude, phase modulated carrier signals 

possessing very precise and specific relative phase. Typically, a hybrid combiner is 

used to sum these signals such that the outputs of the active devices are isolated 

from the highly reactive loads that would exist if the device output’s were directly 

connected. [19]. The efficiency of such hybrid-coupled outphasing PAs varies with 

output power, and as both devices are always operating at maximum drive, will be 

inversely proportional to the Peak-to-Average power Ratio (PAR) of the modulation 

[11]. Although it is possible to recover some of the wasted power from the ‘dump’ port 

of the hybrid combiner used, this process is complex and tends to be problematical 

[20].

In the Chireix outphasing technique, the outputs of the active devices are directly 

coupled via a simple transformer and intentionally allowed to influence and actively 

load-pull each other. The inclusion of compensating shunt reactive components at 

the output of each device has the effect of resonating out the highly reactive loads 

that each device experiences as a result of the active load-pull, at a specific point in 

the dynamic range, thus maximising the efficiency at that point. Through careful 

selection of component values, a high efficiency plateau can be engineered that 

exists over typically 6dB of dynamic range.

The Chireix technique, without question, can be highly effective in enhancing PA 

efficiency. It is however a transmitter structure consisting of both a RF synthesis and 

RF combination elements. One disadvantage of this structure lies in the fact that it is 

difficult to synthesise two precisely phased, constant amplitude phase modulated 

carrier signals. Having said this, developments in modern digital techniques and 

accessibility to powerful DSP continues to ease this problem.

1.8.2 The Doherty technique
The Doherty is another structure that employs intentional device interaction and the 

concept of active load-pull in order to enhance efficiency. Unlike the Chireix however,
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the Doherty can be described as a true RF-in, RF-out PA architecture, and in its 

classical form can be realised incredibly simply using two active devices along with a 

simple impedance transforming network.

This extraordinary simplicity coupled with the fact that the Doherty is potentially a 

linear structure offering high efficiency over typically 6dB of dynamic range has 

meant that the Doherty has been the subject of much recent research and 

commercial interest, and as a consequence is now the architecture of choice in many 

base-station PA assemblies.

1.9 Research Motivation
Although the Doherty is now a well-researched and well funded area of microwave 

PA design, there are still many aspects of the Doherty PA architecture that remain 

over-simplified and unexplored. This was especially true at the outset of this 

research, when for example there were no commercial realisations of microwave 

Doherty PA’s, and very few publications that demonstrated clear and convincing 

measured Doherty behaviour. It became clear for instance that it was relatively easy 

to assemble a classical Doherty PA and achieve some degree of enhanced 

efficiency. It was felt however that such realisations although offering some benefit, 

could offer much improved performance through optimisation.

The overriding motivation behind this research was to investigate the Doherty 

structure in more detail, identify sensitivities, and to formulate an optimal design 

approach that if possible, was technology independent.

It was felt that due to the existing capabilities in terms of harmonic load-pull and 

waveform measurement systems at Cardiff University, the research group was 

ideally placed to develop this approach and conduct detailed research into the 

Doherty PA structure.

1.10 Research Objectives
The commercial motivation behind this research was strong, and the main objectives 

of the industrial supporting partner was to learn as much as possible regarding the 

Doherty PA solution, ideally using LDMOS technology, and to understand how the 

Doherty PA might be implemented and ultimately optimised. Such information was 

simply absent in commercial PA design, with working solutions being based upon 

practical engineering and the traditional iterative design process. It was clear that 

industry was lacking a deeper insight into Doherty PA and needed to understand 

ways in which designs could be optimised for base-station applications. Some of the
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significant specific research objectives that were established by the industrial partner 

and Cardiff University are identified in the list below, and shown in Figure 6.

• Suitability of device technologies within the Doherty PA

• Optimising the Doherty for linearity, efficiency and bandwidth

• A description of distortions generated within the Doherty PA

• Device scaling for the main and auxiliary amplifiers

• Optimal matching topologies

• The use of active bias

• Recommended linearisation methods

Whilst developing an understanding of the Doherty PA application and formulating a 

strategy on how best to realise the objectives, it became clear that there was more to 

this ‘simple’ PA structure than was first apparent. A theme of work emerged that 

naturally broke-down into two distinct paths: firstly, addressing the numerous Doherty 

issues relating to fundamental Doherty behaviour, and secondly addressing those 

issues relating to harmonic behaviour of the Doherty.

Deliverables I Outputs

Paper - M T T
Initial Measurement System

New Measurement System 
Excitation Signal Development 
Paper - EuMC 2004 
Paper - EuMC 2005 
Journal publication - IEE  
Electronic Letters

Figure 6 - research strategy

An early decision was taken to focus on the exploration of fundamental Doherty 

behaviour through the development and use of test structures that provided a high 

degree of harmonic suppression. This would allow research effort to concentrate on 

the observation of fundamental Doherty behaviour in the absence of significant

Nov 2001

Single-tone 

Develop understanding

Build and test of simple structure 

Develop Doherty control regimes 
CW Characterisation of Doherty 

Initial Perturbation Analysis 

Development of optimisation

t
Oct 2005

Modulated

2-tone characterisation

3-tone characterisation 

Real-time adaptive-bias Doherty

Doherty Linearity Analysis 

Different device technologies 

Optimising for Efficiency / Linearity

*
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harmonics. It was considered that once a good understanding had been established, 

harmonic analysis could be addressed at a later stage of the research, which would 

involve adapting existing harmonic load-pull and waveform measurement systems to 

support such an activity

1.11 Thesis Organisation
This thesis is laid out and structured in five significant sections, following an 

introduction, Chapter two considers some essential Doherty background and focuses 

on the classical, and a number of other Doherty PA topologies in detail, with the aim 

of highlighting the limitations of simplistic designs. Chapter three goes on to introduce 

some of the measurement issues relating to Doherty characterisation in general, 

whilst chapters four and five address single-tone and modulated Doherty 

measurement and characterisation respectively. Finally, chapter six deals with the 

design, fabrication and measurement of a number of experimental Doherty structures 

using a number of different device technologies and characterisation techniques. The 

thesis concludes with a discussion of future work, and directions for future research.
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Chapter 2 The Doherty Amplifier -  Theory and 
Operation

The purpose of this chapter is to briefly review the fundamental Doherty theory that is 

relevant to the main body of this research, with the intention not to describe Doherty PA 

concepts in every detail (there are many excellent publications that already do this [21- 

24]), but rather to focus on some of the more interesting aspects of Doherty operation that 

are generally not covered in detail in literature.

2.1 Doherty Fundamentals
The Doherty PA is an elegant multiple-device structure that in its classical form works by 

typically employing an auxiliary device to maintain a constant-voltage, high-efficiency state 

at the output of a second, main device. The true elegance of the Doherty lies in the fact 

that the auxiliary power that is injected into the output matching structure, as well as 

bringing about very specific and efficient main device behaviour has an important 

additional role: it combines with the main device power in the load in such a way that the 

overall structure remains linear. This is a truly remarkable feat and promises to offer a 

panacea to modem PA design: high PA efficiency over wide dynamic range with no 

degradation in linearity or output power performance.

2.1.1 The concept of active load-pull
Controlled device interaction and specifically the concept of active load-pull are at the very 

centre of Doherty operation. Understanding this process is fundamental in understanding 

Doherty behaviour itself, and the usual place to begin is by considering the simplified 

circuit shown in Figure 7 [21].

Here, two microwave transistors are modelled using two ideal current sources, Gen-1 and 

Gen-2 connected to a common load {Rl ). It is clear that if current generator Gen-2 is 

inactive and of high impedance, current generator Gen-1 will be presented with a load of

Gen-1

Figure 7 -  simplified equivalent circuit
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R l and will develop a voltage Vl = I\ R i. . If however, Gen-2 begins to supply a current 12 , 

then the resultant voltage developed across the load can be calculated using the simple 

circuit theory summarised in (1) and (2).

Vi. = h  Ri. (i)

Vi. = Ri.(h + 12) (2)

In terms of DC, any additional current flowing in the load will cause an increased voltage 

to be developed across the load, which is the same effect that would be observed if Ri. 

were to physically increase. The diagram of Figure 7 can therefore be redrawn to describe 

the new, ‘effective' load RL that is presented to Gen-1. This is shown in Figure 8 and 

defined in (3).

Figure 8 -  simplified Doherty equivalent circuit from 
perspective o f Gen-1

Substituting (2) into (3), the effective load of R] can be defined in terms of the actual load 

Rl along with currents I \  and 12 , as described by (4), where it is clear that any increase 

in 12 will result in an increase in R, .
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_  Rl( I \  + I i ) 
k l ~ ------- ;-------- (4)

As the structure is symmetrical, the effective load R] presented to Gen-2 can be defined 

using the same approach as shown in Figure 9 and defined in (5), where conversely it can 

be seen that assuming 7i is present, any increase in 12 will cause a decrease in R} .

vL i2

Gen-2

Figure 9 -  simplified DC equivalent circuit from 
perspective o f Gen-2

Rl.(h + l2) 
h (5)

This approach can be easily extended to AC by representing currents, voltages and 

impedances in complex form. With reference to Figure 7, this is summarised in (6) and 

(7).

Z\ = Ri

Z2 = Rl.

i + ' i
h

1 +
I 2

(6)

(7)

In summary, it can be seen how the effective load presented to one device can be 

modified by the injected current from another. In the above example for instance, it is clear 

that an increasing current / 2  will lead to an increasing load impedance Z i, and a 

decreasing load impedance Z 2 .

In the case of the Doherty PA, the current generators Gen-1 and Gen-2 are replaced by 

main and auxiliary active devices. The situation needs to be slightly different however and 

both main and auxiliary devices must experience a decreasing load with increasing input 

drive. This is achieved through the presence of a critical A74 impedance transformer (77 in
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Figure 10) linking the outputs of main and auxiliary devices, which has not been included 

in the above analysis for reasons of simplicity. It is however an essential element in any 

Doherty structure and is responsible for inverting an increasing impedance at the load to 

the necessary decreasing impedance for presentation to the main device.

2.1.2 The classical Doherty -  an Introduction
The classical Doherty architecture consists of main and auxiliary devices connected to a 

shared load via an impedance inverting A/4 transformer (71), as illustrated in Figure 10. In 

order to allow the main and auxiliary voltages to sum in-phase at the load, a delay line 

(T2) is usually incorporated into the auxiliary path to compensate for the phase delay 

introduced by the inverting transformer (71). The following explanation of the principals of 

Doherty operation assumes that the input signal is split symmetrically between the main 

and auxiliary devices.

90°

klA transformer

V  in

Ropt/2

90° 180°

k/4 transformer

Figure 1 0 -  simplified Doherty structure

Conduction behaviour is different for main and auxiliary devices, and can be described as 

a function of input drive voltage magnitude. In order to achieve the required device 

behaviour, control must be established such that the main device remains active over the 

entire defined dynamic range, whilst the auxiliary device becomes active for only part of 

the dynamic range between a pre-defined transition point (pT), and the point of maximum

linear output power (Pmax). In the classical Doherty, pT is defined to exist at 6dB ‘backed- 

off from Pmax. Under maximum drive conditions and regardless of the control mechanism 

used, the main and auxiliary devices must deliver the same maximum output power into a 

load of Ropt, where Ropt is defined as the main device optimum load for the bias condition 

used. The ‘delayed’ conduction of the auxiliary device relative to the main device is 

achieved through the use of fixed, offset biasing in combination with devices with different
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gain. For example, the main device can be biased in class-B whilst the larger auxiliary 

device would be biased in some degree of class-C. Generally, the depth of class-C bias is 

chosen such that the auxiliary amplifier starts to conduct when the input signal reaches a 

magnitude corresponding to the transition point. The gain of the auxiliary device will 

generally need to be increased to more than double that of the main device to 

compensate for lower fundamental current associated with reduced conduction angle 

auxiliary device biasing, and to ensure that both devices are delivering the same 

fundamental current at the point of maximum linear output power.

The devices’ outputs are ultimately combined through a X14 transformer possessing a 

characteristic impedance ( Z r ) equal to Ropt . A load impedance of Ropt 12 must then exist 

at the output of the auxiliary device, which is transformed by the inverting XIA transformer 

to an impedance of 2 Ropt at the output of the main device.

2.1.3 Understanding Doherty behaviour
Firstly consider the behaviour of the main amplifier where the input drive is increased up 

to, but does not exceed the input power corresponding to the transition point. Over this 

low-power region of dynamic range, the auxiliary device can be assumed to be inactive4 

and the structure can be represented by the equivalent circuit shown in Figure 11.

180°

XI4 transformer

Figure 1 1 -  main device in isolation

In response to the applied input voltage Vin, the main device generates an output current 

Ii that flows through transformer T1. This is transformed to a voltage V 2 which is 

developed across the load, and in turn results in a current b flowing in the load.

With reference to Figure 11, basic transmission line theory [25] tells us that the terminal 

voltages and currents will be modified by the KI4 transformer, according to equations (8) 

to (13).

4 This is not the case for all device technologies
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yj, =

Zt = -

Z \  =  Z t ' /Z 2

Z t

/ i= —
Zr

(8)

Z i = Z r’/Z i (9)

(10)

(ID

(12)

(13)
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Figure 12 -  main and auxiliary device Figure 13 -  main and auxiliary device fundamental
fundamental voltage and current power

By setting Zr = Ropt , the net effect of these transformations throughout the low power 

region will be that the load impedance of Ropi/2 will be transformed and presented to the 

main device as an impedance of 2 Ropi , according to (9), which results in the main device 

achieving its maximum fundamental voltage magnitude whilst only delivering half its 

maximum fundamental current magnitude, as shown in Figure 12. This corresponds to the 

first peak of maximum linear efficiency at the transition point ( Pt ).

As the input drive increases beyond the transition point, the auxiliary amplifier begins to 

generate a phase-coherent current Lux, which combines with the main current flowing into 

the load R l.  This area of dynamic range is termed the high-power region and the 

structure can be represented slightly differently, as shown in Figure 14. As discussed 

earlier, the combined current flowing into the load causes an increased voltage V 2 to be
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developed across the load. The impedance Z2 observed at point A, from the perspective 

of the main device will therefore increase, as identified earlier by (6). This will be 

transformed to a decreasing impedance at the output of the main device.

180° Point B Point A

klA transformerV  in lAux‘

Z1

RL = Ropt/2

Figure 14 -  combined structure showing load-pulling action o f auxiliary device

In the high-power region, the increasing main device current Ii is transformed to an 

increasing auxiliary load voltage V 2 at the output of the auxiliary device according to (12). 

Similarly, the constant main device output voltage Vi is transformed to a constant current 

I2 flowing out of the transformer and is described by (10). Considered from an impedance 

perspective, this leads to increasing impedance at point A (constant current, increasing 

voltage) which is transformed to decreasing impedance Zi at point B (constant voltage, 

increasing current).

Simple Ohm’s law and (13) tells us that assuming I2 is constant, a correct choice 

transformer characteristic impedance Z t will lead to the required maximum, constant 

voltage at point B, and maximum main device efficiency over the entire 6dB dynamic 

range of the high-power region.

For any classical Doherty structure, this balancing act involves setting the characteristic 

impedance of the combining transformer to equal Ropt, and the load to Ropt /2.

2.1.4 The advantages of maintaining a constant output voltage
During theoretical analysis of the ideal Doherty, it is usually assumed that the main device 

efficiency will be constant and high throughout the high-power region of operation, i.e., 

where the main device is being actively load-pulled and maintaining a constant output 

voltage magnitude.
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This is not always true however, even in the case of the ideal Doherty and it is important 

to realise that the efficiency profile of two, equal magnitude maximum peaks that has now 

become synonymous with the ideal Doherty behaviour occurs only under certain ideal 

bias conditions; specifically when the main device maintains a constant efficiency 

throughout the high-power region. This in turn only occurs when the main device is biased 

in ideal class-B, where the conduction angle is 180°.

To illustrate this point and to understand the important trade-off between bias, conduction 

angle and maximum achievable main device efficiency within the Doherty environment, it 

is constructive to analyse how a single device behaves whilst being maintained in a 

constant fundamental output voltage state.

2.1.4.1 An ideal analysis using IGOR

This analysis is conducted here using the Wavemetrics IGOR software environment [26] 

and a relatively ideal, simple device model extracted from pulsed DC measurements of a 

GaAs MESFET device, as discussed in 6.1.1. Figure 15 presents the maximum 

achievable efficiency as a function of drive and gate bias for a constant fundamental 

output voltage magnitude, as would be the condition for the main device in a Doherty 

environment. Four different biasing arrangements are highlighted, specifically class-C, 

class-B, class-AB and finally class-A. The simulation results show that the bias condition 

offering the most constant efficiency over the upper 6 dB of dynamic range is class-B, as 

predicted, whereas class-AB and class-A bias conditions show increasingly degrading 

efficiency with back-off due to high quiescent drain current. The class-C case can be seen 

to offer increasing efficiency with back-off.

Figure 16 shows the corresponding gain in dB and illustrates the compressive nature of 

the Doherty’s main device under constant output voltage conditions, which is due to the

Vfl..05<ciw*.Aj 
Vfl. 1 0 (OBM-AB)

Pm (dBm)
10

Figure 15 -  main device efficiency as a function of 
P,„ and gate bias whilst maintaining a constant, 

maximum output voltage

Figure 16 -  main device gain as a function o f P,„ and 
gate bias whilst maintaining a constant, maximum 

output voltage
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fact that the output current is increasing whereas the output voltage is static. It is 

important to remember that if the auxiliary device was considered separately, a similar 

expansion would be observed, resulting in overall constant gain and linear performance. It 

is interesting to observe that the class-B case offers the best agreement, although all 

classes of bias between class-B and class-A offer a reasonable comparison. This is a 

useful analysis as it identifies the role of the auxiliary device, i.e. what it needs to do in 

order to maintain overall linear performance or flat gain. In other words, in order to 

achieve overall linear performance, the auxiliary device needs to produce an expansive 

gain characteristic that is the inverse of the chosen main device gain characteristic.

2.1.4.2 A more realsitic analysis using Agilent’s ADS

By using a simple ADS simulation employing a vendor-supplied Fujitsu FLK-102XV device 

model, it was possible to analyse this in a little more detail and with additional realism. In 

this way, the above ideal analysis could be developed to give a better indication of what 

could actually be expected to happen when the above was practiced on a real device in a 

real measurement scenario. As before, the output voltage swing of a single, main, shallow 

class-B biased device was maintained at a constant, maximum value and over a very 

wide dynamic range of input power. This was achieved within ADS using the optimiser to 

identify the load required to fulfil this condition. The set of load-lines that resulted are 

shown in Figure 17.

Main device load-line Main device load

ing 20

0.3

<
Decreasing

load
3
o
c  0.1
-

o 350 Q

-0.1 I 1 I 1 I '
7 8

T T T T T T T

5 6

Drain Voltage (V)

Figure 17 -  ADS simulated main device dynamic load-lines for Figure 1 8 -  Smith chart trajectory o f dynamic
loads ranging between 20 Q and 350 Q load normalised to 50 Q.

For reasons of simplicity and because the output capacitance of this device is quite small, 

the optimiser was constrained to changing only the real part of the load, the trajectory of 

which is presented in terms of impedance normalised to 50Q in Figure 18. Figure 19
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shows the constant fundamental drain voltage magnitude that is achieved, and also how, 

although high efficiency is maintained over most of the dynamic range, it does begin to 

degrade quite rapidly at lower drive levels. Figure 20 shows the fundamental gain as a 

function of fundamental drain current, and demonstrates the compressive characteristic of 

the shallow class-B main device in the constant output voltage state, which is a 

requirement of Doherty. This clearly does not exist throughout the entire dynamic range 

however with the gain collapsing at lower drive levels, where the load-line is forced to 

operate low-down in the l-V plane.

Efficiency and voltage magnitude
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Figure 1 9 - ADS simulated efficiency andfundamental Figure 2 0 - ADS simulated Gain vs Id  plot fo r device in
drain voltage magnitude vs input power fo r main class-B under constant O/P voltage condition

device in class-B under constant O/P voltage condition

The degradation of efficiency with increasing load is mostly due to output capacitance 

related displacement current; as the fundamental output voltage is largely constant, and 

the displacement current is a response to the output voltage, then the displacement 

current can also be expected to be largely constant. As fundamental output current 

reduces with back-off, displacement current has an increasingly negative impact on 

efficiency.

Although it is usual to consider the required load as a function of the traditional input 

power, it also interesting and possibly more appropriate to consider the required load as a 

function of fundamental output current. Figure 22 shows for instance two pairs of markers 

that both describe an output dynamic range of 6 dB. The upper points of the two pairs 

(PEP1a and PEP2a) represent two cases of maximum power, whilst the lower value 

markers correspond to the output current at two corresponding cases of transition point 

(TP1a and TP2a). For the first pair of points, the required loads found by the optimiser that 

correspond to PEP1a and TP1a are 210 and 430 respectively. If it is assumed that the 

load of 210 at PEP1 is that of Ropt, then the load at the corresponding transition point
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should in theory be 2 Ropt or 42Q. In fact it is found to be 430, which is very close. The 

other two points, which are still 6 dB apart, describe a dynamic range that exists much 

lower in the IV-plane. If these are considered in the same way, the required loads found 

by the optimiser, that correspond to PEP2a and TP2a are 860 and 1710 respectively. 

Again assuming that the load of 860 at PEP1 is that of Ropt, then the load at the 

corresponding transition point should in theory be 2 Ropt or 1720. Again, the optimised 

value is very close at 1710.

If this is now considered in terms of input power, the required loads found by the optimiser 

corresponding to PEP1 and TP1 are 210 and 560 respectively. As before, assuming the 

load of 210 at PEP1 is that of Ropt then the load at the transition point should be 420, 

which is clearly not the case. This problem becomes more significant at lower drive levels: 

consider for instance PEP2 and TP2 in the same way, where the required loads found by 

the optimiser are 410  and 1470 respectively. Assuming the load of 410 at PEP1 is that of 

Ropt, the load at the transition point should be 820, which is very different to the 1470 

reported by the optimiser.
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Figure 21 -  ADS simulated Gain vs Id fo r device in Figure 22 -  ADS simulated Gain vs P,„for device in
class-under constant O/P voltage condition class-under constant O/P voltage condition

This effect is due to non-constant device gain over dynamic range and only becomes an 

issue when considering the required Doherty loads in terms of applied input power. This 

effect has large implications for Doherty structures that rely upon precise relative power 

relationships that are determined at the structure’s input, such as is case is the classical 

Doherty where a passive power splitting arrangement is used.

The final part of this simulated analysis explores what happens when the above simulation 

is conducted for a number of different gate bias conditions. Figure 23 shows the dynamic 

load-lines that result from bias arrangements ranging from class-C, through class-B to 

class-AB. The optimised maximum fundamental output voltage swing is maintained
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constant in each case, and the resulting variation of gain is presented in Figure 24, where 

it is clear that the compressive nature changes significantly for the class-C case. It is also 

clear that the results agree very well with those resulting from the ideal analysis in Figure 

16.

M an device load-line

Figure 23 -  ADS simulated main device dynamic Figure 24 -  gain as a function of input voltage for
load-lines for different cases of gate bias different cases of gate bias

The single device drain efficiency for the different bias cases is presented in Figure 25, 

and shows, as expected the degradation that occurs as the bias moves away from class- 

C and class-B towards class-A, which is again quite accurately predicted by the ideal 

analysis presented in Figure 15.
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Figure 25 -  efficiency as a function o f input power, 
for different cases o f gate bias

This analysis becomes important when considering the operational range of the Doherty 

as when dynamic range is increased, the main device load-line is forced to occupy an 

increasingly large area of the l-V plane. By plotting gain as a function of fundamental drain 

current as in Figure 20, it becomes clear that the dynamic range of the classical Doherty is
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effectively limited by the area of the l-V plane where the trans-conductance is relatively 

constant. This can become particularly important when considering device technologies 

where gain over the l-V plane is non-uniform, which becomes apparent in the design of 

the GaN Doherty discussed in Chapter 6, where the combined effects of ‘current-slump’ 

and ‘knee-walkout’ associated with RF-DC dispersion [27-29] as well as non-uniform gain 

observed at low drive, effectively limit the useable dynamic range to 6 dB area at the 

centre of the l-V plane.

It must be remembered however that it is possible to compensate for non-uniform gain by 

dynamically modifying, or pre-distorting the applied drive or bias of main and auxiliary 

devices. The key point is that this is not possible in the classical or other Doherty 

structures where main and auxiliary input drive is arranged internally to the structure.

2.2 Doherty Implementations
A number of Doherty realisations are discussed in this thesis, all of which can be 

considered as being variations of the classical Doherty approach, differing technically only 

in terms of the methods used to control the conduction behaviour of the auxiliary device. 

All of the implementations however strive to achieve the ideal main and auxiliary 

fundamental current growth profiles shown in Figure 26 below, which assumes that there 

is a linear trans-conductive relationship between input voltage and output current.

•O
LL

V,Input Voltage Magnitude

Figure 26 -  main and auxiliary device ideal fundamental current behaviour as a 
function o f input voltage magnitude

2.2.1 The classical Doherty
The classical Doherty is used here as a reference case upon which all other variations are 

based, so it is worth spending some time defining exactly what constitutes the approach.
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This is of course open to some interpretation, but for the purpose of this work, the 

classical Doherty is defined as possessing the following specific properties:

a) A symmetrical power split at the input and a 90° phase delay is introduced into 

the auxiliary signal path to compensate for the combining XJ4 transformer at the 

output.

b) The point of auxiliary device conduction is controlled through the use of fixed, 

offset bias. This is assumed to be class-B for the main device and the specific 

depth of class-C that causes the auxiliary device to begin conducting at the 

transition point.

c) Both main and auxiliary devices deliver the same maximum fundamental current 

at the point of maximum power.

d) The transition point is located 6dB backed-off from the point of maximum power

hence the active dynamic range is defined as being 6dB.

e) The load impedance at the output of the auxiliary device is arranged to be equal

to Ropt 12 in the low power region of operation.

f) The characteristic impedance of the main combining output transformer is equal

to Ropt, where Ropt is the optimum design impedance for the main device in the 

bias conditions used.

g) The required fundamental output current delivered by each device is achieved by

suitable scaling, i.e. using a larger auxiliary device.

The advantages of the classical Doherty approach over other implementations is that it is 

simple, easily realisable, self-contained and requires no external control or signal pre­

conditioning. A disadvantage of the approach is that use of reduced conduction angle 

biasing of the auxiliary device results in the generation of both even and odd order 

harmonics that can prove difficult to remove. Another disadvantage is associated with the 

turn-on behaviour of the auxiliary device: whereas abrupt turn-on is advantageous in the 

Doherty, a soft turn-on characteristic can cause problems resulting in degraded efficiency 

in the low-power region of operation and around the transition point.

2.2.2 The input-attenuation Doherty
Another way of controlling the conduction behaviour of the auxiliary device is to modify the 

magnitude of the applied auxiliary device excitation in response to the instantaneous 

magnitude of the applied main device excitation, as illustrated in Figure 27. This approach 

can be simplistically visualised by the placement of a variable attenuator in the auxiliary
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input path, as discussed in [2 1 , 2 2 ], but in practice may be more readily accomplished 

using an IQ modulator[30], which has the additional advantage of being able to adjust 

relative input phase5.

There are a number of advantages associated with this approach. Firstly, both main and 

auxiliary devices can be optimally biased in class-B such that odd-order harmonics are 

suppressed, dramatically simplifying harmonic behaviour. As conduction is being 

controlled externally, there is no longer a rigid requirement relating specific device gain, 

thus allowing similar devices to be used. Another important advantage is that any 

unwanted bias-dependent behaviour is avoided, such as bias-dependent gain-phase, 

which for instance has been observed in GaAs and GaN devices used [31-33],

The input-attenuation approach does have its disadvantages however including the need 

for additional complexity, both in terms of input signal pre-conditioning, as well as 

detection of the input magnitude. Also; efficiency tends to be slightly degraded in the low 

power region and around the transition point, due to the unavoidable presence of auxiliary 

device quiescent current. Another problem is the auxiliary device will tend to have low 

gain when its output power is low, which occurs around the transition point. In order to 

reduce the impact of this problem, it is possible to compensate by modifying the applied 

auxiliary input magnitude profile such that proportionately more drive is applied, as 

suggested by the optimal’ trace shown in Figure 27.

Vin max

V>

Vin

Figure 27 -  input voltage profile for input-attenuation Doherty implementation

2.2.3 The adaptive-bias Doherty

Yet another way of meeting the fundamental current contribution requirement illustrated in 

Figure 26 is to control auxiliary conduction by modifying the auxiliary base or gate bias

5 This is mentioned here as it is important for Doherty optimisation, which is discussed in later chapters.
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voltage. This method exploits the fact that trans-conductance (gm), which is a highly non­

linear function of conduction angle and can be approximated as being relatively linear 

over a limited range of conduction angles between 0 and 71 radians. This is illustrated in 

Figure 28 which shows typical device behaviour in terms of fundamental current, DC drain 

current and drain efficiency as a function of conduction angle, and also in Figure 29 which 

presents the harmonic current spectra as a function of applied gate voltage. These results 

have been obtained using the simple GaAs MESFET model and the IGOR software 

environment. Peak values of output current and output voltage have been maintained at 

their maximum values throughout both sweeps.
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Figure 28 -  fundamental current, DC current and Figure 29 -  harmonic current spectra as a function of
efficiency gate voltage

The advantages of this approach include the ability to use similar sized devices, the 

retention of a simple power splitting arrangement at the input as well as improved 

efficiency in comparison to the input-attenuation approach due to the ability to bias the 

auxiliary device completely ‘off in the low-power region of operation. Disadvantages 

include additional complexity and the need to synthesise suitable bias signals in response 

to the instantaneous magnitude of any applied modulation. Other associated problems 

include a rich and complex spectral output as a result of the continually changing 

conduction angle of the auxiliary device, as well as sensitivity to any bias dependent 

performance degradation, such as bias dependent gain-phase. Even with these 

complexities however, adaptive-bias is a very useful approach, especially when 

attempting to extract the best possible efficiency from prototype Doherty structures.

The general adaptive-bias approach is illustrated in Figure 30 and involves firstly adopting 

a specific auxiliary gate-bias voltage that is sufficiently negative (in the case of a depletion 

mode device) to prevent the auxiliary device from conducting during the entire low power 

region of operation. This voltage is termed ‘bias_off and is a critical value in the adaptive- 

bias approach as it needs to be set such that the auxiliary device is almost conducting as
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the transition point is approached. From this point on, the adaptive-bias system takes 

over, applying the necessary gate bias to cause the required auxiliary dev ice conduction.

As with the input-attenuation approach, it is possible to compensate for the soft turn-on 

characteristic of the auxiliary device by modifying the applied auxiliary gate-bias profile 

from the first-order approximation. This is illustrated by the example ‘optimised’ trace in 

Figure 30.

Vin max

class-B —Vgjnain —

O)

. V -

Vg_aux
Bias-off

Figure 30 -  gate voltage profile fo r input adaptive-bias Doherty implementation 

2.2.4 The extended or asym metrical Doherty

For reasons of simplicity, all Doherty realisations discussed in this work employ a dynamic 

range of 6dB. This is of limited use however when considering Doherty realisations for 

modern modulation schemes where the PAR can extend 10 dB or more. Although the 

methods and implications of extend the dynamic range of the Doherty are considered 

outside the main focus of this work, they are discussed briefly in Appendix 5.

2.3 Understanding Doherty load-line behaviour

This section has been included to address the confusion that often exists regarding load- 

line behaviour in terms of the dynamic impedance that is presented to each device. For 

example, there is a common misconception that the main device experiences a 

decreasing load impedance whilst the auxiliary device experiences the inverse, i.e. an 

increasing load impedance. To analyse this, reconsider the simple AC active load-pull 

circuit and design equations presented earlier in this chapter.
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Figure 31 -  simplified equivalent circuit and design equations

Consider the normalised limits that exist within Doherty, firstly in the low power region 

where the auxiliary device is inactive and l2=0. From the design equations in Figure 31 it is 

clear that Z i= R l and Z 2=oo. Similarly, consider the maximum drive point in the high- 

power region when both devices will be delivering the same fundamental current, where in 

terms of normalised quantities L>=Ii=l. Similarly, from the design equations on the right- 

hand-side of Figure 31, it is clear that Z i= 2 R l and Z2=2R l .

So in summary and with reference to Figure 31, the load impedance seen from Gen-1 can 

be expected to increase from RL to 2RL, and the load impedance seen from Gen-2 to 

decrease from infinity to 2RL. In the Doherty structure however, the presence of the 

impedance transformer and the load of Ropt/2 means that the load impedance seen from 

the main device is inverted, and will decrease from 2Ropt to Ropt, whilst the load impedance 

seen by the auxiliary device will also decrease from infinity to Ropt. To further clarify this 

point, the following plots show the simulated impedance presented to both main and 

auxiliary devices for three different Doherty realisations, specifically classical, input- 

attenuation and adaptive-bias.
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Figure 32 -  load impedances in adaptive-bias Doherty Figure 33 -  load impedances in input-attenuation 
(Rop,=8 Q) Doherty (RoP,=8 Q)
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B H  Zmain=Vdmain[1 ]/ld_main.i[1] 

Zaux=Vdaux[1 ]/ld_aux.i[1 ]

Figure 34 -  load impedance in classical Doherty Figure 35 -simulation equations used to extract main
(Rop,=8 Q ) and auxiliary load impedance

These realisations are discussed elsewhere in this chapter, but here it is interesting to 

note that although the expected impedance behaviour is clearly identifiable in all three 

plots, there are some subtle differences in both main and auxiliary impedance behaviour.

It is clear for instance that the change in main device load needed to maintain a constant 

voltage swing for both adaptive-bias and input-attenuation is nearly a linear function of 

input power, which is not the case for the classical approach.

It is also clear from each plot exactly where the auxiliary device becomes active and starts 

to cause the main device load to change. As expected, the adaptive-bias approach 

causes auxiliary conduction to begin at the transition point of 6dBm, whereas in both 

input-attenuation and classical approaches, the auxiliary load can be seen to change 

before the transition point is reached.

2.4 Harmonics and the Doherty

Harmonic generation and termination play important roles in Doherty design and can have 

a large influence on overall performance. It was this realisation that prompted the initial 

approach of developing a Doherty test structure that suppressed harmonics and allowed 

research to focus on understanding fundamental Doherty behaviour. The volume of work 

involved in addressing fundamental Doherty issues turned out to be significant however, 

and has meant that detailed harmonic analysis will need to be addressed as future work, 

and is discussed as such in Chapter 7. Some interesting simulation work has been carried 

out however looking at the generation of various harmonics and the affects these have on 

Doherty performance. This is included in Appendix-2 and briefly discussed below.

2.4.1 Harmonic generation -  help or hindrance

As has been discussed, the Doherty can be realised in a number of different ways, where 

the devices themselves may be established in various bias conditions. For example, both
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main and auxiliary devices biased in class-B, the main device in class-B and the auxiliary 

device in class-C, the main device in class-AB and the auxiliary device in class-B, the 

main device in class-B and the auxiliary device dynamically biased, and so on. Each of 

these approaches has advantages and disadvantages both in terms of performance and 

practicability.

Due to these complexities, it is important to understand the issues surrounding harmonic 

generation within the Doherty structure, as it is considered that detailed understanding of 

harmonic behaviour may prove to have a significant impact on a number of critical design 

issues. These include the following:

Simplification of design -  Unlike suppression of even-order harmonics, suppression of 

odd-order harmonics is problematical. If odd-order harmonics can be to a large extent 

ignored, then the design process can be simplified.

Choice of architecture -  Different Doherty realisations generate harmonics of different 

magnitudes. For example, due to a constantly changing conduction angle with increasing 

drive, the spectra for both classical and adaptive-bias Doherty structures tend to be quite 

complex, and rich in both even and odd harmonic components. In contrast, the input- 

attenuation Doherty involves establishing both devices in a static, optimised class-B bias 

condition, where odd-order harmonics are minimised.

Choice of device -  Device characteristics play a large role in the nature of harmonic 

generation: the magnitude of the generated harmonics is a function of the device dynamic 

transfer characteristic, and the number of significant harmonics generated will relate to the 

operational bandwidth of the device. One example where device properties can present 

an advantage is with LDMOS device technology, where large output capacitance 

effectively limits bandwidth and naturally suppresses harmonic voltage generation. It is 

evident however from recent publications [34-38] that there are significant problems that 

need to be addressed before these devices can be used within Doherty.

Optimisation -  It must be stated that concentrating on suppressing generated harmonics 

may prove not to be the optimal approach, and there may be some advantage in using 

other, specific harmonic terminations for the auxiliary and main devices. One example is 

the possibility of using a class-F approach within a Doherty design [39].
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3.1 Overview
In the field of discrete device characterisation, the objective is generally to use a variety of 

measurement techniques to extract specific device behaviour that is ultimately useful in 

the PA design process. The resulting measurement information is traditionally used in the 

design of bias, matching and stabilisation networks, but is now more commonly used 

within CAD environments, either directly through the import of measurement data into file- 

based simulation components [40], or indirectly through the generation or extraction of 

various types of non-linear device models that can be used in design and optimisation 

[41]. The latter option moves towards the ideal design scenario where all PA design and 

optimisation is conducted within the CAD environment, and all measurement and 

characterisation restricted to only that which is necessary to develop adequate linear and 

non-linear models. This measurement based approach will typically involve measuring DC 

behaviour, small-signal bias dependent s-parameters, single-tone and modulated Pjn -Pout 

as well as source and load-pull characterisation. These measurements would usually be 

conducted under different bias conditions, harmonic terminations and possibly different 

temperatures and IF impedance conditions.

Measurement approaches change when considering PA characterisation in contrast to 

device characterisation however, as it is realised that the discrete device is only one of 

many other components that comprise the PA, which will typically contain other active 

devices, matching networks, biasing networks, along with many other active and passive 

components. The consequence of this necessary and additional complexity is that 

individual active device behaviour is ‘obscured’ from the outside world, and hidden from 

any measurement approach. PA Characterisation is therefore generally limited to ‘black- 

box’ type approaches where the amplifier structure is measured in terms of generalised 

parameters that are a consequence of the interaction of all of these additional 

components. These include classical parameters such as spectral power, gain, efficiency, 

AM-AM, AM-PM, ACPR and EVM. Another way to view this is to realise that for a 

production PA, measurement tends to be limited to that required for ‘compliance testing’, 

and interrogative measurement is made impossible by the filtering nature of the input, 

output and bias structures; for instance it is not possible to measure waveforms as the 

harmonic content will usually have been filtered out.

Having said this, it is usually considered acceptable to ‘lose’ the detailed visibility of 

discrete device behaviour within the PA itself. This view is based upon the assumption
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that the structure would have been optimally designed using detailed device measurement 

data in the first place.

3.2 Characterising the Doherty PA structure
The Doherty is one of a number of PA structures that rely upon beneficial device 

interaction in order to enhance efficiency over wide dynamic range. One of the attractive 

features of the Doherty is its elegant simplicity, with the classical structure consisting of as 

little as two active devices connected via a simple impedance matching network. In reality 

however, the realisation of functional Doherty PAs using modern microwave devices holds 

many hidden complexities that are generally brought about by the non-linear behaviour of 

the devices, coupled with active load-pulling effects; and conspire to cause problems that 

exist at both a fundamental and harmonic frequencies.

With these issues in mind, it can be appreciated that when faced with characterising the 

Doherty PA, there is an immediate and significant measurement problem: whereas 

observing device behaviour within static, well-behaved impedance environments is 

relatively straight forward, achieving the same visibility within the highly complex and 

dynamic impedance environments that exist within the Doherty structure is extremely 

difficult. This problem is further aggravated by the fact that that in some Doherty 

realisations, both the bias and excitation delivered to main and auxiliary devices will be 

dynamic functions of the applied drive magnitude [31, 42, 43].

Understanding the Doherty PA at a theoretical level is usually tackled in terms of the 

fundamental frequency component alone [21, 44]. It must be appreciated however that in 

reality, Doherty structures employ non-ideal and sometimes high-bandwidth devices, and 

the overall performance will be determined by the complete harmonic interaction between 

devices and their surrounding impedance environments. This complex behaviour cannot 

be easily explained through simple, idealised theory, and must be uncovered through 

some form of enhanced measurement approach [45].

3.2.1 A ‘harmonic' measurement approach
At the start of the research activity, it was considered important to identify the 

characterisation approach that would allow the most complete understanding of 

interaction within the Doherty structure. It was quickly realised that in order to achieve this, 

it would be necessary to develop two key objectives: firstly, to understand and be able to 

synthesise the dynamic, harmonic impedance environments that surround both devices 

within the Doherty structure, and secondly, to be able to measure how the devices within
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the Doherty respond to, and behave within these complex dynamic impedance 

environments.

The ability to externally synthesise harmonic impedances would allow the Doherty to be 

considered as separate main and auxiliary sections or branches. Once a ‘first-order’ 

understanding of individual device behaviour within the Doherty had been established, 

approximations of the harmonic impedances generated by main, and then auxiliary 

branches of the Doherty could be synthesised, whilst the real-life behaviour of auxiliary 

and then main devices, respectively, could be observed.

3.2.1.1 Synthesising impedance environments
The impedance environments that exist within the Doherty structure are complex functions 

of a number of dynamic and static variables. These variables include drive level, various 

device specific properties as well as characteristics of the passive impedance 

transforming output network that physically links the two devices. In addition, any device 

matching and harmonic termination networks also play a significant role.

In order to begin synthesising the required impedance environments, an initial, 

theoretically derived idea of the conditions that would exist in an ideal classical structure 

around each device is required [21]. Using harmonic load-pull techniques [46, 47], an 

experimental process is instigated that involves establishing the ideal classical Doherty 

impedance environment, and using this as a starting point from where exploration of how 

the devices react to this environment begins. Characterisation, including perturbation 

analysis is then possible, and this approach will is effective in identifying the conditions for 

optimal Doherty behaviour. As understanding of the impedance environments matures 

and develops, the initially crude behavioural models representing the impedance 

environments surrounding the active devices become increasingly accurate.

Although this approach is in its infancy, it is already proved fruitful and has led to a 

number of key observations relating to GaN Doherty behaviour [48] that are discussed in 

detail in Chapter 6. It is anticipated that further optimisation will become possible, 

specifically the impedance transformation networks responsible for presenting correct 

fundamental impedances, as well as the dynamic control over bias and relative input drive 

that is necessary in achieving Doherty behaviour in input-attenuation and adaptive-bias 

Doherty realisations respectively.

3.2.1.2 Characterising device response
The second requirement is to understand how the devices themselves respond to the 

dynamic impedance environments within the Doherty. Assuming for a moment that the
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approach begins with an approximate, theoretical idea of the harmonic impedances that 

will be presented to the devices within the structure, harmonic load-pull together with 

waveform measurement techniques can be employed to characterise device behaviour 

under a specific range of synthesised harmonic load conditions. The analysis can be 

conducted in a number of different ways, and specifically:

Pseudo-real-time approach - the measured, real-time response of the device is used 

directly in the design and optimisation process.

Offline measurement-based behavioural model approach -  focused measurement 

data can be collected and used ‘off-line’ within a CAD environment, allowing accurate, 

detailed investigation and optimisation exercises based on actual measured data.

The off-line measurement-based behavioural model approach is particularly interesting as 

it allows complex, active devices to be represented using actual, focused measurement 

data, whilst other passive circuit elements such as transmission lines are represented 

using reliable and well established CAD-based components. In using the ‘off-line’ model 

approach, the importance of anticipating the drive, bias and impedance environments 

within the Doherty cannot be understated, as this will allow the measurement scope for 

such a model to be limited to a manageable subset of bias, drive and impedance 

conditions, thus allowing the measurement time to conduct the necessary measurements 

to remain reasonable. As an example, consider a FET measurement based model that 

responds to input voltage, gate bias, drain bias and output reflection coefficient. If the 

eventual environments for the model are unknown, then measurements for all 

combinations of these independent variables will be required, making this an unrealistic 

option. If the application is known to be the Doherty PA however, a good idea of these 

operational conditions can generally be developed, and the number of necessary 

measurements dramatically reduced. Using this ideal approach, it is clear that a large 

degree of characterisation and optimisation could be achieved within the simulation 

environment. The additional advantage of employing the measurement based ‘off-line’ 

behavioural models is that the process is device independent, so could be applied equally 

effectively for example to Doherty structures employing GaAs pHEMT, LDMOS or GaN 

device technologies.

3.2.2 A ‘fundamental’ measurement approach
As discussed earlier in this chapter, it was considered that characterising the deceptively 

simple Doherty structure would lead to observations of many inter-related complexities 

that relate to both fundamental and harmonic behaviour. It was also considered that
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although harmonic behaviour was going to be important, understanding Doherty 

behaviour at a fundamental level would be the critical factor in achieving good overall 

Doherty performance. The adopted strategy was therefore to initially focus on 

fundamental Doherty behaviour in the absence of harmonics.

Achieving this involved the design of a simple, flexible, measurable and open6 Doherty 

measurement prototype structure that is shown in Figure 45, surrounded by a dedicated 

Doherty measurement system [31]. The structures ability to suppress the generation of 

harmonics allowed focus to be maintained on fundamental Doherty analysis. Once a good 

understanding had been developed, it would be possible to interpret the results gained 

from more in-depth Doherty analysis using more complex measurement techniques 

including waveform engineering through harmonic load-pull.

3.3 The Doherty Measurement Prototype
The Doherty measurement structure needed to contain all of the necessary elements to 

support Doherty behaviour, for example active devices, output impedance transformation 

network, harmonic suppression mechanisms, stabilisation mechanisms, bias circuits, etc, 

and would to all intents and purposes be a complete and functional Doherty amplifier. 

Whereas many aspects of the design are covered in Chapter 6, this section aims to 

introduce the first structures that incorporated initially GaAs MESFET devices, and later 

GaN HFET devices.

There are a number of subtle yet critical differences that distinguish the proposed 

measurement structure from other, more conventional Doherty structures. These 

differences were critical to the success of the approach and are identified in the following 

sections.

3.3.1.1 Suppression of harmonics
The suppression of harmonics was achieved through a combination of optimal class-B7 

bias to suppress the generation of odd-order harmonics, and the use of a shorted quarter- 

wave line as an even order harmonic trap, as shown later in Figure 46.

3.3.1.2 Maintaining structure simplicity
Based on measurement observations of previous, early prototype Doherty structures, it 

was decided that the primary design goal for the measurement prototype would be to 

keep the design as simple, symmetrical and compact as possible such that all physical

* The term ‘open’ describes a structure that allows various parameters to be changed or perturbed, which is in contrast to a 
classical ‘dosed’ Doherty design where most parameters are set internally within the structure.
7 Optimal dass-B refers to the bias point near pinch-off that results in the best suppression of odd-order and espedally third- 
order harmonic current spedra.
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effects could be minimised and accurately predicted. One example is to minimise the 

physical distance and delay between each device’s output and the impedance 

transforming network. This involved mounting the active devices literally onto the 

combining transformer in addition to using physically small, low-parasitic device packages. 

This is illustrated in Figure 36, where although exaggerated, the additional delay that can 

be introduced in physically mounting the devices away from the transformer can be 

appreciated, here shown as A1 and A2.

Device phase plane

Figure 36 -  example placement o f main and auxiliary devices on main 
combining transformer

The additional delays can only interfere and detract from the normal operation of the 

critical A74 transformer, whose job it is to establish a precise impedance transformation 

between main and auxiliary device reference planes. Although it is possible to 

compensate for this error by reducing the length of the transformer, the element’s 

behaviour will be significantly affected by any differences in impedance associated with 

the additional delay elements, and the ideal transforming nature of this element will be 

degraded (see 8.1.5) There may also be other parts of the circuit that rely upon this 

transforming element, such as the even-order harmonic trap. This network relies upon the 

main combining transformer being exactly XI4 as the capacitive short needs to propagate 

to both main and auxiliary devices at all even harmonic frequencies.

3.3.1.3 Identical main and auxiliary devices
In any true classical Doherty design, the main and auxiliary devices must deliver the same 

fundamental output current at maximum drive [21]. In order to account for the lower 

auxiliary gain imposed by reduced conduction angle biasing, the auxiliary device needs to 

be typically 2.15 times the periphery of the main device. From a design perspective, it is 

possible to achieve this in a number of ways, for example through the use of devices with
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different physical periphery and hence gain, or by physically coupling multiple packaged 

devices together. There are however a number of problems associated with both of these 

approaches including difficulty in sourcing appropriately sized devices, and the physical 

problems associated with coupling two or more, relatively large packaged devices at 

microwave frequencies.

In order to adhere to the primary design goal of maintaining structure simplicity, it was 

decided that the measurement prototype would employ identical devices. The implications 

of doing this, such as the need to realise increased auxiliary fundamental current would be 

the role of the measurement system, and specifically would be achieved through dynamic 

control of bias, drive or both of these parameters.

3.3.1.4 A measurable and *open1 structure
The ‘openness’ of the structure is arguably the most important and novel feature of the 

measurement prototype. This ‘openness’ is achieved by replacing the typical Doherty 

passive input power divider and auxiliary delay line with two, independent and 

symmetrical input ports allowing the independent excitation of main and auxiliary devices.

The specific advantages of this ‘open’ approach are numerous, the most significant of 

which are listed below.

Isolated inputs -  As well as allowing the independent stimulus of main and auxiliary 

devices, the complete isolation between main and auxiliary inputs allows independent 

measurement of each device’s input characteristics. For example, one interesting 

measurement is the dynamic input reflection coefficient of both devices, as a function of 

input drive. This measurement is important as any significant drive or bias dependent 

change in Sn could obviously have a profound effect on branch gain and hence overall 

performance. This measurement would not be possible in a closed classical structure.

Control over relative input magnitude - One of the properties that defines the classical 

Doherty approach is the fixed power division between main and auxiliary devices. 

Although the power division ratio can be varied through the use of asymmetric power 

splitters, this cannot be easily implemented dynamically. Doherty implementations of this 

type are generally limited to those that can be realised through bias-control. Dynamic 

control of relative input magnitude allows interesting Doherty implementations such as the 

input-attenuation approach to be investigated, which would not be possible using a 

classical structure.
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Control over relative input phase - It was considered probable that the very specific 

relative input phase requirements stipulated by classical Doherty theory could be 

prohibitive. For example, any drive or bias related phase distortion inherent in the devices 

used within a Doherty structure would have a profound effect on Doherty performance. 

Independent input drive allows the perturbation of the relative input phase and 

investigation of this possibility.

3.3.2 Optimum impedance and expected output power
Before the design of the GaAs Doherty structure could begin, it was important to know the 

optimum impedance for the devices to be used. From measured DC behaviour (that is 

presented in Chapter 6), and assuming that and that where Imax is

the maximum useful DC current of the device (as identified on the left-hand y-axis of 

Figure 153), and assuming a somewhat conservative knee voltage of 1V and a supply 

voltage of 5.5V, the optimum impedance (Ropt) for the GaAs MESFET device was 

calculated using (14).

Ropt =
' ( V d - V k ) *  2 ( 5 . 5 - l ) * 2

Imax 0.35
= 25 .70  «25Q (14)

For the initial Doherty design, both main and auxiliary devices were assumed to be driving 

into a load of Ropt at PEP, so both could be expected to deliver the same maximum power. 

This results in a combined output RF power given by (16).

=2DUX
* ( U « ) '

1 - 1
4 * ■Ji J 1 2 1 1 4

(15)

P =2max

(5.5 — I) * (0.35)
= 0.8 Watt (29 dBm) (16)

3.3.3 Initial measurements
The design strategy for the GaAs MESFET Doherty measurement prototype involved 

firstly the collection of static and pulsed DC measurements. These are shown later in this 

thesis and were used to develop the simple model introduced in the previous section and 

that allowed some initial analysis within Wavemetrics-IGOR and Agilent-ADS software 

and simulation environments. This approach allowed the design to commence without 

placing the devices at unnecessary risk.
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Fixture Thru Llne-1 sub-fixture

n  i

V erifica tion  line

Figure 37 -  device and test Fixture Figure 3 8 -  calibration standards

The Anritsu-3680K test fixture and custom built calibration sub-fixture shown in Figure 37, 

together with the specially fabricated TRL calibration standards shown in Figure 38 were 

required for both s-parameter and waveform measurements. The use of a TRL calibration 

[49-51] allowed calibrated reference planes to be defined at the device package plane, 

which is approximately 1.5 mm away from the device die itself.

3.3.3.1 Bias-dependent behaviour

The graph in Figure 39 shows the gain-phase behaviour of the CF015-11 MESFET device 

as a function of input drive level and device gate bias measured at 1.8 GHz. This graph is 

interesting for a number of reasons, one of which is that it is possible to explore device 

behaviour in the context of both Adaptive-bias (AB) and Input-attenuation (IA) Doherty 

realisations, where control is achieved using gate/base bias and relative drive magnitude 

respectively. For example, when considering the AB Doherty, it is possible to define a 

trajectory of the required adaptive-bias voltage as a function of applied input power, and 

observe the expected change in gain-phase.
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Figure 39 -bias dependent gain-phase(CF015-11 MESFET)
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Figure 40 -  bias dependent gain-phase (Mitsubishi GaAs FET)

It is clear for instance from the trajectories shown in Figure 39 that when using the CF015- 

11 MESFET as an auxiliary device in an adaptive-bias arrangement, AM-PM conversion 

of approximately 15° can be expected over the upper 6dB of dynamic range. This is 

compared to approximately 6° for the same device used in an input attenuation Doherty 

arrangement, as illustrated by the IA trajectory’. This is an effect that clearly has 

significant implications for the phase-critical Doherty PA, which becomes apparent in later 

measurements where it is shown for instance that in order to achieve optimum 

performance, the relative input phase of the stimulus applied to main and auxiliary devices 

needs to be dynamically adjusted in response to the magnitude of applied drive.

It must be stated however that this is considered to be a device specific effect. This 

conclusion has been drawn from the outcome of a similar experiment using similar sized 

GaAs FET devices supplied by Mitsubshi. Over comparable drive and conduction angle

Page 53 o f 201



Doherty Amplifier Structures for Modern Microwave Communication Systems -  J Lees

variations, the device can be seen to exhibit a much lower gain-phase variation with drive 

and bias, and it can be seen that there is only approximately 1° of gain-phase change for 

both input attenuation and adaptive bias Doherty approaches. Interestingly, on closer 

examination of the results it is clear that for this particular device, employing adaptive-bias 

will actually result in slightly less AM-PM than would be the case for an input-attenuation 

approach.

It is clear from this simple analysis that care needs to be exercised when selecting 

devices for use within Doherty PAs and AM-PM sensitivity to both bias and drive need to 

be considered. When designing adaptive-bias controlled Doherty PAs for example, the 

use of devices with significant bias dependent gain-phase can be expected to result in 

degraded performance due to phase misalignment at the output.

3.3.4 Load-pull contour plots
In the GaAs MESFET Doherty design, it was found that the use of the optimum design 

impedance calculated from DC measurements alone provided acceptable results. This 

can be expected when the output capacitance and package parasitics are known to be 

small, but for physically large devices, or devices with large parasitic output capacitance 

such as LDMOS, this is not be the case and significant matching effort will be required.

The availability of load-pull measurement systems allow the fundamental load to be varied 

over specified areas of the Smith chart, and as a result, it is possible to identify the loads 

that yield optimum power, gain and efficiency for different drive levels and bias conditions. 

For design, it is usual to present this information in the form of contour plots such as the 

examples shown in Figure 41, Figure 42 and Figure 43. Such plots allow intuitive 

interpretation and the consideration of performance ‘trade-off between the various 

parameters.

Page 54 of 201



Chapter 3 -  Doherty Measurement Issues

Figure 41 - MESFET Pou, contours at IdB compression point (Vg:- Figure 42 -  MESFET Gain contours at ldB compression point
1.25V, Vd:5.5V) (Vg:-1.25V, Vd:5.5V)

Optimum Load fo r output power = (-0.25,-0.06), Pout=25.3 dBm. Optimum Load fo r  gain =(-0.28,0.25), Pmd=24.5 dBm,
Efficiency=57.5% Efficiency=62.7%

From Figure 41 for instance, it is clear that the fundamental load impedance that yields 

maximum output power for the GaAs MESFET devices used in the initial realisation is 

very close, both in terms of reactive and real components to the 25Q predicted by earlier 

DC characterisation.

Gngle F b r t  Behaviour
j*i

V

2Fo

-jHKJ

Fo

Figure 43 -MESFET Efficiency contours at IdB  compression 
point (Vg:- 1.25V, Vd:5.5V)

Optimum Load fo r  efficiency =  -(0.08,0.25), Pout=24.3 dBm, 
Efficiency = 71.1%

Figure 44 -  one-port measurement between 1.8 and 3.6 GHz, 
looking into output of structure
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The simplicity of the structure is evident from the initial measurement prototype, which is 

shown together with its schematic in Figure 45 and Figure 46 respectively.

Point-A
RP ground,
capacitors

Figure 45 -  Fabricated Doherty Figure 46 -  layout of GaAs Doherty

3.3.5 Fabrication

The GaAs Doherty design for Ropt=25Q was convenient as it allowed for an extremely 

simple and discontinuity-free output impedance transformation network, consisting of 

three identical A/4 transformers each with a characteristic impedance (ZT) of 25Q. These 

were connected in series with the active devices attached directly to either end of the 

centre transformer, as shown in Figure 45 and Figure 46. Whereas the role of the centre 

A/4 transformer is clear from Doherty theory [45], the rightmost transformer comprises the 

even harmonic trap, whilst the leftmost transformer is responsible for matching the 

impedance at the output of the auxiliary device (Rop, 12) to the 50Q measurement system 

impedance.

The input structure was designed to be as simple as possible, with a single 10Q series 

stabilisation resistors placed as close as possible to the input of each device. The drain 

connections of each of the device’s were attached as close as possible to the extremities 

of the central A/4 transformer, therefore reducing the possibility of unwanted impedance 

transformation and phase delay associated problems.

The structure itself was realised using Rogers TMM-3 microwave laminate8 and an in- 

house milling process. The necessary device grounding was achieved using solder 

through ground-vias situated as close as possible to each active device, and the 

grounding capacitors of the harmonic trap shown in Figure 46. The rear of the board was

device

A/4, Zt=33O A/4, Zt=50fi A/4, Zt=50Q

auxiliary 
Series-R l/P

stabilisation

main
l/Pauxiliary main

device

Capacitive
short

8 The laminate used has a dielectric possessing er=3.27 and T=30mil, with copper thickness=17.5 urn.
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in turn soldered to a 1 cm thick brass chassis in order to offer both physical protection and 

an effective ground.

3.3.6 Testing
The first step involved experimentally determining the value and position of the RF 

grounding capacitors of the harmonic trap such that fundamental component was largely 

unaffected, whilst even order harmonics, and especially the 2nd harmonic were heavily 

suppressed. Using a single-port calibrated Agilent 8753 Vector Network Analyser (VNA), 

and with reference to Figure 46, port extensions9 were used to move the phase reference 

plane from Port-1 to point-A. The behaviour of the three-transformer network could then 

be examined whilst adjusting the position and value of the capacitors providing the 

harmonic short. This was repeated until the required behaviour was achieved, which is 

specifically a high impedance at the fundamental and low impedance at the second 

harmonic. The measured results in Figure 44 show clearly how at the fundamental 

frequency, the capacitive short is transformed to a near open, and at the second harmonic 

to a near short. As the transforming structure is so simple, it was reasonable to assume 

that the same capacitive short would be transformed to an open at the output of the main 

device (TP-1), on to a short at the output of the auxiliary device, and finally back to an 

open at point-A. Using the same rationale, it was also considered fair to assume that at 

the second harmonic, the capacitive short would be transformed to a short at the main 

device, to a short at the auxiliary device output, and again to a short at Point-A.

So far in this chapter, all discussion has related to the GaAs Doherty measurement 

structure. The GaN Doherty (Ropt=50Q) is discussed in detail in Chapter 6, and is very 

similar in design to the GaAs Doherty (Ropt=25Q) structure. A slightly different approach 

was used when designing the this structure which involved injecting RF energy into the 

main and auxiliary device launch points of the main transforming transmission line 

structure, identified by labels TP-1 and TP-2 in Figure 46.

This was firstly achieved using a crude air-bridge structure in place of each device, with 

reasonable results. Improved results were achieved however by fabricating a small 50 0  

RF probe for use with the VNA. This involved using a short length of semi-rigid cable with 

the centre-conductor protruding slightly. As this was a good 500 line, the associated delay 

could be reliably removed from the measurement using an appropriate port extension, and 

the extra length of the protruding centre conductor (<1mm) had little effect at the 

frequencies of concern. This approach was found to be very effective in measuring the

9 A port extension is a function of the 8753 VNA that allows the phase reference of the defined calibrated 
reference plane to be electrically shifted, relative to the calibrated reference plane.
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fundamental and harmonic impedances that were presented by the passive structure, to 

both main and auxiliary devices.

The markers in Figure 47 shows the measured fundamental impedance seen by the main 

device at TP-2 when the structure output was terminated into 50Q, and the shorting 

capacitor placed in its final, optimum position. This was measured to be 93 + j120. Ideally 

for this structure, an expected load of 50Q will be transformed to Ropt/2=25Q at the 

auxiliary device {TP-1), and then to 2Ropt=100Q at the main device {TP-2), so this is 

reasonably close to the design value.

Figure 48 shows the second harmonic impedance as seen by the main device at TP-2, 

which was measured to be 5.6 + j9.6Q.

Although not the ideal short, this was considered as a reasonable result at this stage. The 

behaviour is further illustrated in Figure 49 which shows the transmission characteristics 

between the main device and the output port are shown. Marker (m l) identifies the point 

corresponding to the fundamental frequency of 1.8GHz, and shows approximately 1 dB of 

insertion loss, whilst marker m2 shows the second harmonic will be suppressed by 

approximately 15 dB.

Figure 47 -  si 1 as seen by Main at 1.8 GHz Figure 48 -  si 1 as seen by Main at 3.6 GHz
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S11

Figure 49 -  s21 between Main device and output port Figure 5 0 - s i  1 seen by auxiliary device at 1.8
at 1.8 GHz and 3.6 GHz (ml and m2) GHz

The fundamental impedance seen by the auxiliary device is shown by the marker in 

Figure 50 and was measured to be a near short at 1.2 + j6.2Q. This is as expected as the 

capacitive short at the end of the second harmonic stub is transformed to an open at 

output of the main device, and then to a short at the output of the auxiliary device. Under 

‘normal’ Doherty operational conditions, it must be remembered that the current supplied 

by the main device would modify the passive impedance existing at the output of the main 

device, and would result in the required Doherty impedance being presented to the 

auxiliary device.

At the second harmonic, the transformation network effectively becomes a series of XI2 

transformers where the short caused by the capacitor is transformed to a short at the main 

device and then on to a further short at the auxiliary device output. This effect is illustrated 

by markers ml and m2 in Figure 52.

The second harmonic short presented to the auxiliary device is shown again in Figure 51 

and measured to be 6 + j13.70. Although this second harmonic short is degraded in 

comparison to that offered to the main device, it is still considered adequate in offering 

suitable suppression to the even-order harmonics.
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s11

Figure 51 -  s i 1 as seen by auxiliary at 3.6 GHz

3.4 Measurement Strategy

Once the measurement approach had been generally specified, some thought was given 

to the measurement system that was to surround, measure and control the experimental 

prototype, as well as to the various types of measurement that needed to be supported. 

This was a necessary step before realising any measurement system due to the large 

implications on measurement architecture.

An initial strategy was defined that involved two distinct phases of work. The first phase 

involved conducting simple, single-tone measurements of classical, input-attenuation and 

adaptive-bias Doherty structures. This would begin with manual control of the 

measurement environment using variable attenuators and variable phase delays, with the 

initial emphasis on the identification of any Doherty behaviour in the simple prototype. If 

successful, automated control of the measurement system would be implemented 

allowing more detailed measurements, perturbation analysis and optimisation.

The early assumption was that the first phase would lead to an increased understanding 

of fundamental Doherty interaction, as well as identifying optimisation strategies that 

would offer an improved efficiency and linearity trade-off in the Doherty PA. To allow the 

evaluation of linearity, a second phase of work was envisaged that involved developing 

the measurement system to support modulated behaviour.

Figure 52 -s21 between auxiliary device and output 
port at 1.8 GHz and 3.6 GHz (ml and m2)
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Chapter 4 Single-tone Measurement and 
Characterisation

4.1 Single-tone Doherty Measurement Systems

4.1.1 Development of the single-tone measurement system
Once the measurement approach, experimental measurement prototype and 

measurement strategy had been specified, it was necessary to identify how these 

translated into measurement system requirements. These requirements effectively 

defined the measurement system that had the role of monitoring and controlling the 

behaviour of the prototype. These are identified in the following paragraphs.

4.1.1.1 Generation of main and auxiliary excitation signals
In order to support the dual-input measurement prototype, two independent, phase- 

coherent excitation signals were required with adjustable relative phase and magnitude. 

This flexibility allowed the required conditions needed for Doherty behaviour to be easily 

established and importantly, allowed perturbation of relative input phase and magnitude 

and the investigation of sensitivities of the Doherty structure together with various 

optimisation possibilities. These excitations were initially generated simplistically using a 

single RF source, power dividers, line stretchers and variable attenuators, and later, using 

two software controlled, independent, phase-coherent RF signal sources.

4.1.1.2 Provision of required bias environment
Precise control and measurement of drain and gate DC bias for both main and auxiliary 

devices was also necessary. Whereas the structure shared a common drain connection, 

independent control of gate bias was essential as for some Doherty implementations, the 

auxiliary gate bias needs to be changed dynamically with increasing input drive. This 

required an accurate, programmable DC power supply capable of measuring voltage and 

current, connected using both commercially available and custom, in-house designed bias 

networks.

4.1.1.3 Measurement of power spectrum
In order to calculate the important, gain and efficiency parameters of the Doherty structure 

it was necessary to measure the fundamental signal components within output power 

spectra. This was achieved this using a spectrum analyser.

4.1.1.4 Software control
Although it was possible to conduct simple measurements manually, measurement 

complexity, repeatability and required measurement time meant that an alternative 

approach was necessary that made use of software control and automation. This required
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all key instruments to be connected to a control PC using the IEEE-488 General Purpose 

Information Bus (GPIB).

4 .1.2 Looking for classical Doherty behaviour

Following fabrication of the early measurement prototype, the first measurements involved 

simply trying to detect what was at the time illusive’ Doherty behaviour. Although the 

prototype Doherty structure was equipped with multiple input ports and designed to 

accommodate a number of Doherty implementations, for simplicity initial measurements 

were limited to using a single microwave source to synthesise the necessary phase 

coherent drive signals for the Doherty structure. This arrangement is shown in Figure 53.

Doherty StructureHF Section

Main

Variable
Attenuator

RF Bias-T

Aux
Line

Stretcher
Static
bias

RF Bias-T

Static
bias

RF Bias-T

DC

9 0  d e g re e  
H y b r id

Spectrum
Analyser

ESG
(RF source)

Figure 53 -  simple Doherty measurement set-up

In this measurement system, a 90° hybrid coupler was used to split the CW power 

generated by the Agilent E-series Signal Generator (ESG) into two, equal magnitude 

phase coherent excitation signals, with a relative phase difference of 90°. In order to 

allow a degree of relative phase and magnitude control between the two inputs, a variable 

attenuator and variable phase-shifter (line stretcher) were inserted into main and auxiliary 

branches respectively. Commercial bias networks possessing a low-frequency bandwidth 

of 400MHz were used to supply DC to both gate and drain bias connections, with the 

structure output connected through a 20 dB attenuator to a spectrum analyser. All RF 

connectivity was via semi-rigid cable, which was necessary in order to minimise relative 

phase variation between inputs.
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4.1.2.1 Measuring Doherty behaviour -  a pseudo-classical approach
The simplest realisation of Doherty, i.e. the classical [21] or static offset-bias approach

was employed as a means of validating the measurement approach, and for 

completeness is briefly discussed here. This realisation generally requires main and 

auxiliary devices to have dissimilar gain. This immediately presents a challenge when 

attempting to realise the classical, Doherty using the measurement prototype as this 

structure was designed to use identical main and auxiliary devices. The consequence of 

using the simple measurement structure in this way is that only a limited-performance 

form of classical Doherty is possible [22], which is achieved through modifications to both 

the classical, symmetrical input drive power division ratio, and the auxiliary bias condition. 

Specifically, relatively more drive needs to be delivered to the auxiliary device, which 

needs to begin to conduct at a slightly lower drive level.

One of the overall requirements of the classical Doherty approach is that each device 

delivers the same maximum fundamental current to the load. When both devices are the 

same size and have the same gain, it is possible to achieve the required behaviour by 

arranging for more drive, specifically twice the voltage or four times the power, to be 

diverted to the auxiliary device than is delivered to the main device. For the initial 

measurement, this was achieved by adjusting the variable attenuator so that 6dB of 

attenuation existed in the main input path. As the variable attenuator introduced additional 

phase delays, an additional phase shifter and attenuator was used to compensate and 

restore the required relative phase offset.

When considering this approach more closely, it was quickly realised that the maximum 

available unsaturated fundamental current for the auxiliary device would be lower than 

that of the main device [52], due to the reduced conduction angle (class-C) mode of 

operation.

In order to overcome this problem, a compromise solution was adopted that involved 

adopting a lower than usual value of l Mm for both devices, corresponding to the maximum

auxiliary fundamental current at maximum drive. For the main device, this involved 

operating some way within its maximum capability and hence at reduced Power Utilisation 

Factor (PUF). A similar method of employing similar sized devices in a classical, offset- 

static-bias Doherty configuration has since been documented in [22] and is termed 

,Doherty-Lite\

For example, the maximum theoretical fundamental current expected from the main class- 

B device will be I Max / 2 , where I Max is the maximum device saturated DC current. The
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class-C biased auxiliary device will not be able to deliver this and typically will be able to 

source a maximum fundamental current o U Max/2 .2 , or 45% o U Max. In order to adhere to

classical Doherty theory and maintain the same maximum current values at maximum 

input drive, it is therefore necessary to use a larger auxiliary device, or if this is not 

possible as is the case here, to somehow limit the maximum main device fundamental 

current to the lower of these two values, i.e. I Mmj  2.2.

The effect this limitation has on Doherty behaviour is illustrated in Figure 54 which shows 

ideal main and auxiliary fundamental current transfer characteristics as a function of 

Doherty input voltage {Vin), for both limited-classical and normal classical approaches. The 

reduction in main and auxiliary current is evident through the shift from point-A to point-B 

maximum current values.
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Figure 54 -simulatedfundamental current behaviour between the limited and ideal 
classical Doherty approaches

The implications of using this approach are reduced maximum output power coupled with 

degradation in overall device efficiency due to reduced main device voltage swing. 

Although it is theoretically possible to recover some performance by moving the transition 

point, this involves increasing the load impedance. This was unfortunately not an option 

when using this measurement structure as the passive impedance environment had 

already been fixed during the design phase, and was based on the value of Ropt for the 

device used. Ropt had also been used to specify other critical circuit parameters such as 

the characteristic impedance of the main transforming line, together with other impedance 

transforming elements of the circuit.
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In order to achieve optimum Doherty operation within the limited available structure, a 

number of steps were necessary. Firstly, the already asymmetrical input power split (6dB) 

needed to become even more asymmetrical (7dB) and was re-adjusted to allow still more 

drive to be delivered to the auxiliary device to compensate for its reduced relative gain. In 

addition to this, the gate bias voltage applied to the auxiliary device was adjusted to cause 

conduction at a slightly reduced drive level.
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Figure 55 -simulated efficiency behaviour o f the limited and ideal classical Doherty 
approaches compared to that o f a reference class-B PA of similar size.

Figure 55 shows the simulated efficiency for ideal and limited classical Doherty structures 

together with that of a class-B reference amplifier. From these results, it is clear that the 

approach, although not exhibiting the ideal twin-peak efficiency plateau, is capable of 

producing relatively good and certainly identifiable Doherty plateau behaviour. This 

analysis was effective in demonstrating that the limited classical Doherty approach could 

be used at least as a proof of concept, and as a suitable vehicle through which it could be 

shown that the structure was capable of producing Doherty behaviour. Having said this, 

the approach would almost certainly not be viable in a commercial realisation due to the 

reduction in PUF and waste of main device periphery.

Using this approach, a typical classical Doherty measurement involved setting the bias 

conditions such that the main device was established in class-B and the auxiliary device in 

the required degree of class-C, such that auxiliary conduction commences at the transition 

point. The input drive relative power ratio was then checked using a power meter, and 

only then connected to the Doherty structure. The source power would then be increased 

to some value close to its pre-defined maximum, and the phase delay in the auxiliary
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signal path adjusted until maximum power was observed, indicating the optimum relative 

input phase. The Doherty measurement prototype was then ready for initial 

characterisation using simple Pjn / Pout sweep measurements,.

4.1.3 Investigating other Doherty implementations

Although the measurement results demonstrated the definite presence of Doherty 

behaviour through the observation of improved efficiency in the presence of non­

compressive gain, they were also indicative of non-optimal performance. More 

specifically, although there was a definite efficiency improvement, there was no clear 

efficiency plateau that is typical in ideal simulation and published ideal Doherty behaviour. 

The observed behaviour was considered not solely due to the effects of the simple limited 

classical approach being used, but also due to other, as yet unexplained factors.

VinmaxVinmax

class-B —Vg_main ~ 7

// ,

CDC
>

Bias-off Vgmain

VinVin

Figure 56 -  profiles for input-attenuation and adaptive-bias Doherty implementations

In order to investigate these observations and to begin to consider other, more interesting 

Doherty realisations, a change to the measurement approach was necessary. Specifically, 

the measurement system needed to be able to support the dynamic modification of 

relative input magnitude and relative gate bias in order to implement input-attenuation and 

adaptive-bias Doherty realisations respectively.

Whereas in previous measurements, both of these parameters remained fixed over the 

entire operational dynamic range, there was now a need for them to become dynamic 

functions of input drive level. Simple classical Doherty design theory [21] was used to 

derive the first-order approximations of input-attenuation and adaptive-bias profiles, which 

were then applied manually at each point in the power sweep. These profiles are 

discussed in more detail in Chapter 2 and are shown in Figure 56, where both ideal 

asymptotic and optimised profiles are shown. In both of these cases, the optimised
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Chapter 4 -  Single-Tone Measurement and Characterisation

profiles are effective in compensating for the ‘soft’ turn-on characteristic that is typical of 

the devices used.

It was evident that the manual adjustment at each point in the measurement was a very 

tedious process, but the simple approach was effective in providing the first comparison of 

two variations of the classical Doherty approach: input-attenuation and adaptive-bias.
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Figure 57 -  measured efficiency for input-attenuation and adaptive-bias Doherty implementations

The initial measured results are shown in Figure 57, where efficiency and gain are 

compared for the four cases of Adaptive-bias Doherty, Input-attenuation Doherty, a main 

device in isolation and a single device evaluation board. The two single device structures 

are used here as reference cases and, in order to allow meaningful comparison with the 

two-device Dohertys, the output powers have been normalised by scaling the single 

device output power by a factor of two. The main device in isolation case consists of the 

measurement prototype without the auxiliary device being physically present and is useful 

in illustrating the required low power behaviour of the different Doherty structures.

Doherty behaviour is clearly evident in the form of enhanced efficiency over 6dB of 

dynamic range, in the presence of non-compressive gain for both Doherty approaches. 

The efficiency of the input-attenuation approach can be seen to be generally well 

behaved, but degraded in comparison to the adaptive-bias approach. This is anticipated 

due to the presence of a small quiescent current when using the input-attenuation 

approach, and the fact that the auxiliary device is biased in shallow class-B, and conducts 

throughout the entire region of dynamic range below the transition point. The adaptive- 

bias approach exhibits the most impressive efficiency up to the transition point, which then 

becomes erratic between the transition point and the point of Peak Envelope Power 

(PEP). There was one critical observation for the adaptive-bias approach, where it was 

noticed that the efficiency could be improved between the transition point and PEP by
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making small manual adjustments in the relative input phase using the line stretcher in the 

auxiliary input signal path. This, together with the generally well behaved efficiency 

characteristic of the input-attenuation approach suggested that there was some form of 

dependency on relative input phase that was interesting and needed further investigation.

4.1.3.1 Automation and the control of relative input phase
One of the major disadvantages of the previous approach was the excessive time needed 

to manually establish the required input and bias conditions and to conduct the actual 

measurements. For the input-attenuation approach for example, this involved adjusting 

and measuring the relative input power, correcting the relative input power, accurately 

setting the relative input phase and reconnecting the Doherty.

From observations in previous measurements, it was also necessary to be able to 

investigate relationships involving relative input phase, and how in reality, the optimum 

may differ from the 90 degrees specified by classical theory, especially under dynamic 

drive and bias conditions.

With these requirements in mind, the measurement system was enhanced to allow much 

more detailed investigations into Doherty behaviour. Specifically, this involved the 

systematic perturbation of relative input phase, relative input magnitude and relative bias 

profile, together with the measurement of the effects of these perturbations in terms of key 

performance parameters including drain efficiency, gain, and AM-PM conversion. 

Performing these perturbations manually, using the existing arrangement was not a 

practical option and automation of the process became the only realistic option. This 

involved the replacement of manually adjustable phase and magnitude devices with 

programmable, phase-coherent instruments, and the development of a software based 

control environment.

4.1.3.2 Hardware changes
With reference to Figure 58, the line stretcher (phase shifter), variable attenuator and 

power divider were removed and replaced with two, independent microwave signal 

generators, ESG-1 and ESG-2. It was essential that the independent main and auxiliary 

RF signals applied to the measurement prototype were phase coherent, and this was 

achieved using the standard 10 MHz instrument synchronisation link available on these 

instruments. It must be stated that the viability of achieving precise phase coherence of 

two microwave frequency sources using a relatively low frequency (10MHz) 

synchronisation signal was an unknown quantity. It was understood for instance that any
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phase noise, jitter or drift in the synchronisation signal would be transformed into much 

larger errors in the high frequency signal, so caution was exercised.

H F  S ection Doherty Structure

f l
£  o

Main

ESG-1
Com RF Bias-T Main

Static
bias

CouplerAuxiliary

ESG-2 RF Bias-T Aux

Switch. X 4Static
biasM TA

Spectrum
A nalyser

RF RF Bias-T

DC & IF

Programmable 
DC Supply

Figure 58 -  multi-port measurement system

Achieving phase synchronisation is only half of the problem however and the standard 

10MHz Phase Locked Loop (PLL) method discussed is only effective in locking the phase 

of the microwave sources at some arbitrary relative phase. It is necessary therefore to 

perform an additional step in order to align the relative input phase, following the 

synchronisation phase. In order to perform this alignment of the two RF signals, it was 

necessary to place 20 dB directional couplers at each input port to monitor the relative 

input phase. This measurement could be achieved using a Vector Network Analyser 

(VNA), but for this system, a Microwave Transition Analyser (MTA) was used. The MTA is 

essentially an RF oscilloscope with two coherent measurement channels, capable of 

measuring frequency components up to 40 GHz. The instrument is well-proven and is 

detailed in [53]. For this discussion, it can be assumed that the instrument can very 

accurately measure relative phase and absolute spectral power presented to its two 

channels, especially at the relatively low CW frequency of 1.8 GHz.
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A further 20 dB directional coupler was included at the output of the measurement 

prototype to allow the measurement of any AM-PM conversion. As the MTA is a two 

channel instrument, it was necessary to include and interface some RF switching to 

effectively multiplex these signals and allow the measurement of both relative input phase 

and gain phase.

At this stage, there was no need to measure absolute phase, only to measure and control 

the relative phase in order to identify the Doherty’s phase sensitivities through 

perturbation analysis. This dramatically simplified the calibration process, which typically 

involved the Doherty being established in a maximum drive condition and the relative 

input phase adjusted until maximum output power was observed using a spectrum 

analyser. This relative phase would then be used as the reference, with the relative input 

phase being varied either side of this point.

Using this approach, a desired relative phase would be achieved by firstly measuring the 

phase error, and then adjusting the phase of the auxiliary stimulus accordingly. A re­

measurement was found to be necessary as in some cases a single phase adjustment 

was not sufficient in achieving the required relative phase accuracy.

4.1.3.3 Software environment
Development of a software environment was necessary to support system calibration, 

measurement control, data presentation and a user interface. As well as the control 

software, extensive post-processing software was necessary to analyse and interpret the 

measured data, allowing for example derivation of optimum conditions and presentation of 

the data in meaningful formats.

IGOR, a scripting language produced by WaveMetrics [26] was used to develop this 

functionality. This software platform offered a number of advantages at the time it was 

required, and was used extensively by the research group, offering good instrument 

communication interfaces through GPIB connectivity.

Once the adopted phase synchronisation and alignment approach had been verified (see 

section 4.1.5), the measurement system was configured as shown in Figure 58. Using this 

approach, significant advances in Doherty measurements were possible. Perturbation of 

parameters such as relative input phase quickly led to large amounts of generated 

measurement data, and following some experimentation, it was found that the most 

effective way of presenting this information was graphically, through the use of 3- 

dimensional surface plots. Some examples of this approach are shown in the efficiency 

and gain surfaces of Figure 59 and Figure 60, which show that sweeping the relative input
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phase at each point in a power sweep measurement uncovered some interesting relative 

phase dependent behaviour. It is clear for instance that for these initial GaAs FET 

structures, performance, and specifically gain and efficiency are very much functions of 

relative input phase.

Relative input Phase (deg)

Figure 59 -  efficiency vs. P,„ vs. relative input phase Figure 60 -  gain vs. P,„ vs. relative input phase

To highlight this behaviour, contours10 of maximum efficiency and constant gain have 

been added to the surface plots of Figure 4 and Figure 3 respectively. The contours show 

how the relative input phase for maximum efficiency and constant gain deviate 

significantly in the high power region of operation. These results clearly show that in order 

to achieve maximum efficiency performance, it would be necessary to dynamically adjust 

the relative input phase such that it followed the identified contour, which for this particular 

device varies by up to 30° [31].

These results are discussed in detail later in this chapter, and are more typical for Doherty 

structures employing adaptive-bias control, which was seen to be the case in both GaAs 

MESFET and GaN Doherty measurement prototypes.

10 Note that these contours are quite noisy compared to the relatively smooth surfaces. This is due to the fact 
that the contours have been extracted from the actual measurement data, typically 20x20 arrays o f measured 
points, and the surfaces have been smoothed through some degree o f interpolation. The contour ‘noise’ 
should N O T be interpreted as actual device behaviour.
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4.1.4 Calibration and verification

4.1.4.1 System calibration requirements
Unlike the majority of measurement systems used by the research group, the Doherty 

measurement system calibration requirements were quite relaxed for a number of 

reasons. Initially, the interest was in only relative and not absolute phase relationships 

between the two inputs. This meant that the usual, extensive calibration techniques could 

be dispensed with and replaced with much simpler approaches. In addition to this, the 

required phase accuracy was also quite relaxed as the measured Doherty structures were 

found to be insensitive to small variations in relative input phase. To place this in 

perspective, and with reference to Figure 70 through Figure 75, an accuracy of ±2° was 

considered adequate for the necessary alignment and perturbation analysis.

Relative phase calibration is somewhat arbitrary, but it was important to derive some form 

of phase reference for each measurement. Typically, this would be established by 

configuring the Doherty in a maximum drive condition, and adjusting the relative input 

phase until maximum output power was observed.

In terms of magnitude accuracy, the power levels delivered to main and auxiliary Doherty 

inputs had a tendency to vary over time; an effect that was largely due to the inclusion of 

the necessary drive amplifiers. Although this drift could be minimised by allowing the 

amplifiers to stabilise, as well as the use of Automatic Gain Control (AGC) feedback, it 

was found that the required accuracy could not be guaranteed. An approach was adopted 

where the fundamental power incident at both main and auxiliary inputs was measured 

and corrected in advance of each measurement. This calibration step involved attaching a 

calibrated power meter to the main and auxiliary ports of the measurement system, and 

measuring the difference between the coupled power delivered to each MTA channel, and 

the incident power delivered to main and auxiliary ports of the measurement system. 

Simple error terms could then be calculated that allowed accurate measurement and 

correction of the powers incident to each port.

4.1.5 Validity of phase synchronisation approach
As mentioned earlier, the validity of the adopted approach of phase-synchronising high 

frequency signals using a relatively low frequency synchronisation signal is questionable. 

Although the phase measurement accuracy of the MTA is well established [53], the ability 

of the standard 10MHz synchronisation approach to maintain phase-lock of two high- 

frequency sources was a concern. This phase stability is critical, and must be achieved 

with sufficient accuracy and longevity for any measurement, following phase alignment to
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be considered as accurate. It was therefore considered necessary to experimentally test 

this assumption.

In order to perform this experiment, two microwave sources ESG-1 and ESG-2 were 

synchronised via the 10MHz link with their outputs connected via semi-rigid coax to a 90 

degree hybrid coupler. In order to observe the effects of phase noise and jitter at a 

relevant frequency, the CW frequency and power of each instrument was set to 2 GHz 

and -3dBm respectively. The relative phase was then adjusted until the combined voltage 

components cancelled, where the measured output power of the coupler reached a 

minimum. Power measurement was then recorded over a duration of 90 seconds in order 

to observe any effect of phase drift.

In order to place these results into perspective and to clarify the relationship between 

observed minimum power and phase accuracy, a simple ADS simulation was run to 

obtain the ideal cancellation profile. The simulated results are useful as a reference and 

from Figure 61, indicate for example that assuming ideal components, a relative phase 

accuracy between the two sources of approximately +1-2 degrees is required in order to 

obtain a cancellation null of -40dB. By overlaying the simulated and measured results, an 

indication of the effectiveness of the synchronisation approach emerges. It is clear for 

instance that the minimum measured power is -40 dB, so it is reasonable to assume that 

this approach, at 2GHz has an accuracy of ±2°.

Phase synchronisation test
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Figure 61 -  simulated and measured signal cancellation
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As a second, more reliable check, a simple load-pull arrangement was established 

involving a single ESG driving directly into port-1 of an Agilent 8753 VNA. The instruments 

were synchronised in the usual way using a 10 MHz synchronisation link, and the VNA set 

to CW (time sweep) mode with amplitude and frequency matching that of the ESG. This is 

a much more relevant test for the Doherty measurement system, as this involves 

simplistically simulating the behaviour of the auxiliary device in load-pulling the main 

device.

By measuring un-calibrated s11, and adjusting the ESG phase and magnitude, a stable 

and specific reflection coefficient was synthesised, in this case a short circuit (r=1Z l80°). 

Multiple, time swept measurements were then taken over a period of 90 seconds to 

investigate the effect of phase jitter and drift in the 10 MHz synchronisation signal.
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Figure 62 -  measured, synthesised reflection Figure 63 -  effect o f phase drift on reflection
coefficients for Fc ranging between 1 and 6 coefficient at 2GHz over a 90 second period.

GHz.

Firstly, consider Figure 62 which illustrates measured reflection coefficients observed over 

a period of approximately 100ms. Measurements were conducted using five frequencies 

between 2GHz and 6GHz, and the phase angle of the set reflection coefficient has been 

offset for each to allow comparison. Although the error in magnitude can be seen to be 

small, the phase error is quite noticeable, and increases with frequency, which can be 

expected. This is a useful plot, especially with relation to the concepts of active harmonic 

load-pull that are employed within Doherty, where it describes the best accuracy to which 

a harmonic impedance can be specified at this magnitude of reflection coefficient. This is 

the best case however as it is only a measure of random error over a short time period of 

100 ms, and ignores for instance the effect of phase drift.
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Considering more closely the effects of drift, Figure 63 shows the results of a 

measurement where a reflection coefficient has been set, and a measurement taken 

every 5 seconds over a period of 90 seconds. The random noise, as observed above, is 

removed from each individual reflection coefficient measurement through averaging, and 

then plotted over a period of 90 seconds. This gives an effective measure of drift in both 

phase and magnitude of reflection coefficient at 2 GHz. The same data is presented in 

rectangular form in Figure 64, where the phase can be seen to be drifting by 

approximately 2 degrees/minute at 2 GHz, which translates to approximately 6 

degrees/minute at 6 GHz. The magnitude has remained static with a drift of approximately 

0 .001 .
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Figure 64 -  analysis o f effect ofphase drift on reflection coefficient at 2GHz over a 90 second period.

To finalise this experiment, the random phase error results (excluding drift) are analysed 

statistically for each frequency, and presented in Table 1. At 2 GHz, it can be seen that a 

phase error of 0.86°(1SD) can be expected, and the maximum error that can be seen to 

be ±2°, which agrees with the first approach using cancellation as shown in Figure 61.

Random phase Error excluding drift
Sd Max Min p-p

Freq
(GHz) Mag Pha mag Pha Mag Pha mag pha

1 0.001045228 0.410055 0.996755 189.6884 0.989786 187.4165 0.00697 2.271823
2 0.001026687 0.860117 0.999284 189.0035 0.993272 184.912 0.006012 4.09154
3 0.002805192 1.369231 1.009444 188.6826 0.990582 181.5825 0.018862 7.100088
4 0.003525119 1.096442 0.992249 189.9963 0.974588 185.2498 0.01766 4.746441
5 0.004387204 1.955524 1.013911 189.8963 0.984898 180.2202 0.029013 9.676099
6 0.006425338 2.47025 1.004971 189.0582 0.969337 177.1944 0.035635 11.86374

Table I  -  statistical analysis of measurement results
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From the results, it can be concluded that for the frequency range used for Doherty 

experiments (1.8 GHz), it will be very likely that the phase will be aligned to an accuracy 

within 1°, and will drift by no more than 2°/minute. So, as long as the measurement is 

conducted within a short time (10 seconds) of the phase alignment, the approach can be 

considered as valid.
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4.2 Single-Tone Doherty Characterisation
Single-tone characterisation is a typical place to begin when investigating any PA and this 

is no different in the case of the Doherty. The following analysis utilises the single-tone 

measurement system introduced earlier in this chapter to firstly identify Doherty behaviour 

in early prototypes, and later to explore sensitivity and optimisation possibilities through 

perturbation of key parameters, specifically, relative input phase, relative input magnitude 

and relative bias profile.

Although the approach is common to all device technologies discussed in this thesis, this 

chapter aims to demonstrate the single-tone measurement system and characterisation 

approach through the measurement of the Doherty measurement prototype employing 

CF015-11 GaAs MESFET devices (see appendix-4). It is not the intention to present an 

exhaustive analysis of the different device technologies used within Doherty as this would 

be too lengthy an exercise, and is outside the intended scope of this thesis. Details of 

Doherty design using two different device technologies and their suitability to the Doherty 

application are presented in chapter 6.

4.2.1 Simple comparative measurements
The following set of measurements is important as it illustrates the presence of Doherty 

behaviour in early adaptive-bias and input-attenuation Doherty realisations and how these 

compare with two reference cases: a single-device mounted in a 50Q evaluation board 

and a single device mounted in the main device position of the 25Q Doherty measurement 

prototype.

4.2.1.1 CELERITEK MESFET tesUboard benchmark
The first experiment involved mounting a single CF015-11 GaAs MESFET device into a 

well-behaved and purpose built 50Q test board in order to obtain base-line or reference 

data against which future Doherty structure data could be compared. The device was 

established in the same shallow class-B bias condition that was planned for the devices 

within the prototype Doherty structure, specifically VD= 5.5V and VG = -1.25 resulting in an 

I d q  of approximately 20 mA. For the power sweep measurement the input drive power was 

increased up to and past the point of compression, whilst fundamental power, harmonic 

power and DC current behaviour were observed and measured. The data collected 

provided a behavioural benchmark against which future measurements employing the 

same devices could be gauged. Importantly, this data shows the natural spectral 

behaviour before harmonic suppression is attempted, and is summarised in Figure 65 

below.
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Figure 65 - CELER1TEK H EM T in evaluation board

4.2.1.2 Single device in prototype structure

The next stage involved inserting a single, main device into the 25Q prototype Doherty
y

structure, the harmonic trap of which had been tuned as described in chapter 3. A 

comparative set of measurement results collected during a similar power sweep are 

presented in Figure 66 and clearly show the expected behaviour with significant 

suppression of even-order harmonic component. Specifically, second harmonic power is 

reduced by over 20 dB in comparison to that of Figure 65. The magnitude of the 

fundamental component at compression can be seen to be slightly reduced due to some 

unintentional loading of the fundamental component, and the efficiency can be seen to be 

slightly increased. Although the loading of the fundamental could be minimised by 

positional adjustment of the capacitive harmonic short, it was found that tuning resulted in 

a trade-off between second order harmonic suppression and fundamental gain, thus 

suggesting non-ideal behaviour of the harmonic trap.
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Figure 66 - main device alone in Doherty structure

4.2.1.3 Both devices in prototype structure with auxiliary device biased ‘off’

The second, auxiliary device was then inserted into the prototype Doherty structure, and 

biased hard-off such that it was inactive throughout the power sweep. Further power 

sweep measurements were conducted that clearly showed that the presence of the 

auxiliary device presented no detrimental effect on previously established main device 

behaviour. This made sense as the off-state output parasitic capacitance of these devices 

was known to be relatively small11. It also indicated that the mounting of the auxiliary 

device and the physical presence of pads and bonding wires introduced no problematical 

reflective effects, at least at the fundamental frequency.

During the power sweep, the input power at the onset of saturation was noted, and this 

important value of Pin would be used to identify the transition power (PTJ that would be 

used in later Doherty measurements. At this stage, it was concluded that with both 

devices inserted and biased appropriately, the measurement structure behaved as 

expected and according to simulation in the low power region of operation.

4.2.2 Looking for D oherty behaviour -  input-attenuation approach

The input-attenuation Doherty approach was chosen for initial investigations as it was 

considered to be the least complex in terms of harmonic generation with the conduction

11 This is not always the case. LD M O S for example has an associated large, lossy output capacitance which 
can mean that the output w ill present a finite impedance which is frequency dependent.
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angle for both devices remaining constant throughout the operational dynamic range. The 

devices were biased in the same shallow class-B condition identified earlier in this 

chapter. Adjustments were made to take account of any input phase and magnitude 

differences, and the magnitude of the applied input power swept between OdBm and 20 

dBm. Throughout the power sweep, the magnitude of the input drive delivered to the 

auxiliary device was carefully modified to obtain the desired auxiliary fundamental output 

current profile, according to ideal Doherty theory[21, 22, 44] and as discussed in chapter 

2. In other words, input-attenuation control was established that ensured the auxiliary 

device started to contribute fundamental output current at the point where the main device 

would normally begin to saturate (PT). The auxiliary device then goes on to supply device 

current at the required level until the maximum power point (Pmax) is reached, where both 

devices contribute the same fundamental current and hence power to the load. The graph 

in Figure 67 shows the measured fundamental output power and drain efficiency plotted 

against input power for the input-attenuation Doherty approach discussed above.

Pout and Efficiency
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Figure 67 - measured P J P out and efficiency for input-attenuation approach

Although far from optimal, Doherty behaviour is considered to be present. This conclusion 

was based on a number of observations: firstly, the combined fundamental power goes on 

to increase, although somewhat expansively from the transition point (PT) for a further 6 

dB of dynamic range, with no obvious sign of compression. Secondly, the average 

efficiency in the upper 6dB or high-power region (PT< Pjn < Pmax) is 50% compared to 22% 

in the lower 6dB power region {Pt-6  < Pjn < Pt) below the transition point. This compares 

to efficiencies of 39% compared to 16% respectively for the test-board reference amplifier
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over a comparative dynamic range, as presented in Figure 65, and demonstrates an 

approximate 10% efficiency enhancement over 6 dB of dynamic range.

4.2.3 Looking for Doherty behaviour -  adaptive-bias approach

The notable disadvantage of the input-attenuation approach is the reduced efficiency in 

the low power region of input drive, which is a consequence of the small but ever-present 

auxiliary device quiescent current. In an attempt to improve the efficiency at the transition 

point, and for the entire region of input drive where only the main device is active, it is 

possible to bias the auxiliary device ’hard-off’, such that it only becomes active when the 

transition point is reached. Using this approach, identical power can be delivered to both 

main and auxiliary devices through a simple symmetrical power splitter, and all the 

necessary conduction control implemented through appropriate adjustments of the 

auxiliary bias voltage.

The optimal relationship that relates auxiliary device bias voltage to main device input 

power is non-trivial however due to the non-linear growth of fundamental device current, 

which is further complicated by the varying conduction angles associated with changing 

bias conditions. For this measurement however, a simplified approach was adopted and a 

simple, first order approximation used to derive the required auxiliary bias voltages (See 

chapter 2 ).

The results shown in Figure 6 8  present the measured output power and drain efficiency 

vs. input drive power for the adaptive-bias approach.
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Figure 68 - measured P J P ou1 and efficiency fo r the adaptive-bias approach
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As with the previous approach, Doherty behaviour is clearly present with a further 

improved average drain efficiency in the upper 6 dB region (PT < Pin < Pt+6) of 56% 

compared to a now much improved 36% in the lower power region below the transition 

point (P7 - 6  < < Pt), thus demonstrating a 16% efficiency enhancement over 6 dB of

dynamic range in comparison to the test-board reference amplifier.
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Figure 69 -  ADS Simulated P JP oui and efficiency for the adaptive-bias approach

Using measured DC data, a polynomial representation of the device trans-conductance 

curve was extracted and used to generate a simple non-linear model in the form of a 

Symbolically Defined Device (SDD) component within the ADS simulation environment. 

Although this model was only capable of accurately describing the DC behaviour, the 

intrinsic and extrinsic parasitic parameters associated with this device and the leadless 

package were known to be small (see Appendix-6 ). This fact coupled with the relatively 

low RF frequency used (1.8 GHz) led to the conclusion that this simple model would be 

effective, at least initially in describing the key device behaviour required for first phases of 

Doherty design and analysis. This model was used in the simulation of an adaptive-bias 

Doherty with results shown in Figure 69 which can be seen to correlate very well with 

measured results. The significant difference however is the relatively smooth efficiency 

profile of simulated results when compared to the measured equivalent. It is now known 

that this was due to bias dependent s21 phase behaviour of the GaAs MESFET devices 

used and is an effect that would not be generated by the simple non-linear model used.
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Figure 70 -  measured efficiency and gain for Input-attenuation and adaptive-bias Doherty implementations,
together with reference cases

As a final step in this comparison exercise, it was considered constructive to view the 

comparative efficiency and gain of the two Doherty approaches together with the two 

reference cases, i.e. the single device test board, and the Doherty structure containing 

only a single main device. For this comparison shown in Figure 70 the output power of the 

single device test board has been doubled to represent the case for an ideally coupled 

double device amplifier, thus allowing a meaningful comparison with the two-device 

Doherty realisations considered here.

The first observation is the low power region similarity between the efficiency profiles of 

adaptive-bias and main-in-isolation cases. This is of course expected as these structures 

are essentially identical in this region with the only difference being the presence of an 

inactive auxiliary device.

If the high power region is considered however, it is clear that the gain of the main-in- 

isolation case compresses at an input power of 23 dBm (point A), whilst the gain of the 

adaptive-bias does not start to compress until at least point B, some 5 to 6  dB further in 

the power sweep. The main-in-isolation case exhibits high efficiency in the high power 

region, but this is due to deep compression and saturation of the device, which is evident 

from the gain characteristic. The adaptive-bias case on the other hand exhibits a clear 

plateau of efficiency in the presence of non-compressive gain, and provides the most 

convincing Doherty behaviour.

The efficiency advantage of the Doherty over a conventional, similar periphery amplifier is 

clear from comparing the Celeritek test board case with both Doherty cases, although this 

is more pronounced for the adaptive-bias approach.
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4.2.4 Optimisation through Parameter Perturbation

4.2.4.1 Varying relative input phase
It is well known that achieving the correct relative phase between main and auxiliary input 

drive signals is critical in achieving good Doherty operation [21, 44, 54]. This is intuitive, 

as to generate maximum useful power the voltages of main and auxiliary devices must 

sum in-phase at the load. What is less clear however is whether the relative phase must 

remain constant over the entire active dynamic range, or will need to vary, possibly due to 

a device’s drive or bias dependent behaviour.

The initial approach in investigating this issue involved using algorithms within the 

measurement software to identify and track the optimum phase that existed during the 

power sweep measurement. This approach was limited however as it was difficult to 

detect maximum combined power at low auxiliary drive levels, and although it was 

possible to identify the presence of an optimum phase relationship, the technique did not 

provide an intuitive feel for the structure’s behaviour.

An alternative approach was adopted where instead of attempting to locate the optimum 

relative phase at measurement time, a large number of power sweep measurements were 

made for a wide range of relative phases. The resulting three-dimensional dataset could 

then be analysed and post-processed in order to extract optimum phase relationships, 

and to construct descriptive surface plots that provided both the required analytical data, 

as well as the desired intuitive interpretation.

The following collection of figures shows output power, drain efficiency, gain and gain- 

phase of the GaAs MESFET Doherty structure using adaptive-bias control, plotted as 

functions of main-device input power between 5 dBm, and 20 dBm and relative input 

phase over ±120°.

By exploring the data and searching for maximum values, it is possible to identify the 

relative input phase that results in the maximum output power or efficiency for a given 

value of input power. This optimum phase is represented as a single contour 

superimposed on the surface plot.

Whereas Figure 71 suggests the optimum phase for maximum power is constant and 

unchanging with increasing drive, the optimum phase for maximum efficiency tells us a 

different story, and changes by approximately 30 degrees in the high-power region 

between 14 dBm and 20 dBm of input drive. This dependency of efficiency on relative 

input phase is a significant observation and is most noticeable in Figure 73, which when
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rotated to reveal the side-view plot shown in Figure 72 illustrates the presence of a 

Doherty efficiency plateau whose profile compares very well with the earlier simulation 

results shown in Figure 69.

V»v»VA\\*\\V

Relative Input 
phase (deg)

Input Power 
(dBm)

contour of 
maximum 
OIP power

Figure 71 -  swept input phase and output power Figure 72 -  swept input phase and drain efficiency

The plots of Figure 74 and Figure 75 show gain and gain-phase respectively as functions 

of both relative input phase and input power.
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Figure 73 -  rotated view o f drain efficiency Figure 74 -  swept input phase and gain

By studying these surface profiles, it is immediately apparent that the results reveal some 

quite complex non-ideal behaviour due to device interaction. On the other hand, the 

observation raises the interesting possibility that the Doherty structure can be optimised
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and possibly linearised through the identification of constant gain and output phase 

contours, and the dynamic application of these contours to the relative input phase of the 

applied stimuli.

Following the collection of data, post-processing software was written to identify the value 

of relative input phase that results in a specified, constant gain or gain-phase. In other 

words, relative input phase profiles were defined that related specific constant gain or 

constant output phase profiles to the applied input power. In the following analysis, post­

processing software has been used to identify a phase profile that results in a constant 

gain of 8  dB and a constant output phase of -52  degrees. The identified profiles are 

shown as distinct lines on the surfaces shown in Figure 74 and Figure 75.

The motivation behind this analysis was that optimisation through adjustment of input 

phase could prove extremely useful when attempting to design Doherty structures for 

linearity, efficiency or a compromise of the two. One other aspect that becomes clear 

when examining the various profiles is that when optimising for one parameter, there are 

likely to be significant negative impacts on other parameters. For example, it is important 

to consider the effect that optimising gain has on efficiency and output phase, the effect 

that optimising efficiency has on gain and output phase and finally the effect that 

optimising output phase has on gain and efficiency.

Only specific cases are considered in this analysis, for instance optimising efficiency by 

seeking the phase that results in absolute maximum efficiency for all values of Pjn. This 

approach is only so useful however as realising such a specific goal may result in poor
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overall performance when in fact an acceptable compromise may exist. The analysis does 

serve however to highlight the trade-offs’ that exist if such an optimisation scheme were 

pursued.

The following figures show a set of graphs that allow the direct comparison of the key 

parameters of gain, efficiency and gain-phase for the three cases of optimum efficiency, 

constant gain and constant gain-phase. For example, the consequences of achieving the 

flat gain profile identified in Figure 76 results in the acceptable efficiency profile shown in 

Figure 77, but significant AM-PM behaviour, in the form of a 10° phase variation, shown in 

Figure 78.
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8 .5 -

gain for optimum efficiency
optimum flat gain
gain for optimum OP phase8 .4 - 5 0 -

8 .3 -

4 0 -8.2-

optimum efficiency 
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efficiency for optimum OP phase
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14 16 186 16 18 206 8 10 12 14
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Figure 76 -  AM -AM for different optimisations using Figure 77 -  efficiency variation for different
relative input phase optimisations using relative input phase

Similarly, the consequences of optimising for constant output phase are a flat phase 

profile in Figure 78 with again an acceptable efficiency profile shown in Figure 77, but 

significant AM-AM behaviour in the form of a 0.5 dB gain expansion, shown in Figure 76.
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Figure 78 -  AM -PM  fo r different optimisations using 
relative input phase

When searching for constant gain or constant gain-phase solutions, care needs to be 

exercised when multiple solutions exist. As an example, consider the gain profile shown in
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Figure 74 where there are clearly two different routes a contour of constant gain could 

follow around the raised area of gain expansion. When the surfaces are considered 

together, it is clear that one path will lead to the high efficiency shown in Figure 77, and 

the other to a very different and degraded efficiency profile.

4.2.4.2 Varying the auxiliary bias point
In an adaptive-bias Doherty structure such as the one used for the measurements 

detailed in this section, conduction control of the auxiliary device is achieved by 

synthesising an auxiliary bias voltage as a function of input drive power. Main device bias 

is held at a pre-defined value and relative input drive magnitude and phase are also held 

constant throughout the power sweep. As has been stated elsewhere in this thesis, in 

order to generate the necessary auxiliary current, the auxiliary device needs to begin 

conducting at the transition point and be contributing the same fundamental output current 

as the main device at the point of PEP, which for the purpose of this discussion has been 

normalized to unity, as shown in Figure 79. The simple approximation of the bias profile 

that is used to cause the required auxiliary conduction behaviour is shown as the centre 

trace in Figure 80.

By shifting the auxiliary bias profile, it is possible to sweep the auxiliary bias voltage about 

its normal profile, and in the same way as was used in the previous section, power 

sweeps were conducted for a set of auxiliary bias profiles as shown in Figure 80, allowing 

three dimensional surface plots to be generated.
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auxiliary device gate bias
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Figure 79 -  ideal fundamental current fo r classical Figure 80 -  ideal and swept gate bias profiles
Doherty structure
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The following set of graphs describe the structure behaviour for an auxiliary bias offset 

sweep over +0.6V of the nominal auxiliary bias voltage profile, and for values of Pin swept 

between 5 dBm and 20 dBm.
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Figure 81 -  swept auxiliary bias offset and output power Figure 82 -  swept auxiliary bias offset and drain
efficiency
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Figure 83 -  swept auxiliary bias offset and gain Figure 84 -  swept auxiliary bias offset and output
phase

As was the case for relative input phase, the gain and phase profiles indicate that similar 

optimisation is possible through the dynamic adjustment of the usual auxiliary bias voltage 

profile. The surfaces shown in Figure 83 and Figure 84 present the identified optimum
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bias offset as a single contour, for a constant gain of 8.0 dB and constant output phase of 

-52  degrees respectively. As in the previous section, the consequences of using such 

optimum auxiliary bias profiles are shown in the following set of comparison graphs.
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Figure 85 -  AM -AMfor different optimisations using 
auxiliary bias offset

6 0 -

5 0 -

4 0 -

UJ 3 0 - optimum efficiency 
efficiency for optimum flat gain 
efficiency for optimum OP pha:20-

6 8 10 12 16 18 2014
Input Power (dBm)

Figure 86 -  efficiency variation for different 
optimisations using auxiliary bias offset
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Figure 87- A M -PM for different optimisations using auxiliary bias offset

A.2.4.3 Varying the auxiliary input power magnitude
As discussed in detail in Chapter 2, adaptive-bias control of the Doherty structure involves 

maintaining a constant relative power between main and auxiliary inputs. Based on an 

assumption that the devices and input structures are identical, all previous measurements 

have ensured that the power delivered to both main and auxiliary devices is the same. In 

reality small differences in device gain and changes in input reflection coefficient lead to 

non-ideal behaviour. In order to explore these possibilities further and identify optimum 

behaviour, the usually symmetric power ratio between main and auxiliary input power was 

varied by ±1 dB during power sweeps.
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Figure 88 -  swept auxiliary bias offset and output power Figure 89 -  swept auxiliary bias offset and drain 
efficiency
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Figure 90 -  swept auxiliary bias offset and gain Figure 91 -  swept auxiliary bias offset and output phase

The graphs in Figure 88 to Figure 91 show the structure behaviour when the auxiliary 

input power is varied by 2 dBm either side of its normal value during power sweeps 

between 0 dBm and 20 dBm. As in the previous sections, the gain profile and to a lesser 

degree, the gain-phase profile indicates that optimisation is possible. Figure 90 and Figure 

91 show the identified optimum auxiliary input power magnitude offset as a distinct trace, 

for a constant gain of 8.5 dB and constant output phase of -52  degrees respectively.

The consequences to other parameters when employing this optimum auxiliary input drive 

profile are illustrated in the following graphs.
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Figure 92 -  AM-AMfor different optimisations using 
auxiliary input power offset
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Figure 93 -  efficiency variation for different 
optimisations using auxiliary input power offset
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Figure 94 -  AM-PM for different optimisations using auxiliary input power offset

4.2.5 Bandwidth considerations

By introducing the operating frequency as an additional sweep variable, it is possible to 

explore the behaviour of the Doherty structure over a given bandwidth.
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Figure 95 -  swept operating frequency and output power Figure 96 -  swept operating frequency and drain efficiency
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Figure 97 -  swept operating frequency and gain Figure 98 -  swept operating frequency and output phase

The above graphs show the behaviour of the structure when the fundamental operating 

frequency is varied by 40 MHz between 1.79 and 1.83 GHz. Although reasonable 

performance is maintained over the given bandwidth, AM-AM and AM-PM behaviour 

changes significantly with frequency.
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Chapter 5 Multi-tone Measurement and 
Characterisation

5.1 Multi-tone Doherty measurement systems
5.1.1 Motivation and overview
The approach adopted in the development and use of the single-tone measurement 

system, and specifically the analysis involving perturbation of key parameters identified a 

number of ways in which the Doherty could be optimised. It was demonstrated for 

instance that by dynamically adjusting the relative input phase, efficiency could be 

maximised, and gain and gain-phase could be held at constant values throughout 6dB of 

dynamic range where both main and auxiliary devices were active [31]. It was also shown 

that similar optimisation was possible through the dynamic adjustment of other 

parameters, specifically the relative input magnitude and relative bias profile.

It is clear that the single-tone measurement system and subsequent single-tone 

characterisations were effective in identifying some interesting Doherty behaviour and a 

number of promising approaches to optimise behaviour. Having said this, one key 

assumption remained untested, which was that optimising the Doherty structure for 

constant gain and constant gain-phase would lead to improvements in linearity [32]. There 

was a need therefore to be able to measure Doherty performance under modulated 

conditions and specifically to measure linearity in more conventional and widely accepted 

ways, whilst at the same time, demonstrating the Doherty continued to offer enhanced 

efficiency performance under modulated conditions.

5.1.2 Choices of modulated excitation in more detail

5.1.2.1 Modulation overview
In order to fully explore and characterise the Doherty PA, it is clearly necessary to 

measure the response not only to a single-tone stimulus but also a modulated excitation. 

The obvious choice would be to opt for real-life modulation schemes such as GSM-EDGE 

and W-CDMA with linearity being measured using established methods such as Error 

Vector Magnitude (EVM) and Adjacent Channel Power Ratio (ACPR). Although possible, 

this approach does not present a complete solution for Doherty characterisation for a 

number of reasons. Firstly, the complexity of the modulation envelopes associated with 

these continuous modulation schemes means that comparison between single-tone and 

modulated behaviour becomes difficult due to envelope averaging effects. Secondly, the 

base-band control signals that are necessary in implementing some Doherty approaches 

such as adaptive-bias and input-attenuation are functions of the instantaneous envelope
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magnitude, and therefore themselves become complex, harmonically rich and difficult to 

synthesise. Because of the complexity and non-repetitive nature of continuous 

modulation, the synthesis of base-band signals that are phase coherent with the 

modulation envelope becomes highly problematical.

Although traditional two-tone excitation is easier to synthesise and control in comparison 

to continuous modulated excitation, it has one significant disadvantage when used for 

characterising Doherty amplifiers: measured key parameters will be averaged over the 

two-tone modulation envelope, and as a result do not compare well to single-tone 

equivalents. An alternative approach has been developed that allows the meaningful 

comparison of key performance data to single tone equivalents, as well as the 

measurement and characterisation of Doherty linearity.

An engineered form of three-tone excitation has been implemented that allows a 

characterisation approach where the depth of modulation can be varied whilst the Peak 

Envelope Power (PEP) remains at some static, pre-determined level. This property offers 

an advantage over the traditional two-tone approach in that specific areas of an amplifier’s 

dynamic range and transfer characteristic can be excited. Although this feature may be 

advantageous in many PA applications, it is particularly useful in the case of the Doherty 

PA as there is a specific interest in characterising the 6dB area of dynamic range 

extending from the maximum power point (Pmax) to the notional Doherty transition point 

(Pt), over which both devices are active and interacting with each other.

5.1.2.2 Single-tone excitation
Single-tone excitation is extremely important as a measurement tool and allows many 

aspects of Doherty behaviour to be explored and characterised. Whilst harmonic 

behaviour and key performance parameters such as gain, efficiency, and drain current are 

effective in describing the degree and quality of efficiency enhancing behaviour observed, 

linearity indicators are restricted to measures of gain and gain phase over dynamic range, 

both of which are ideally constant in a linear PA. This approach is only of limited use 

however as ultimately any optimisation approach based on single-tone measurements will 

need to be validated using some form of modulated excitation.

A single-tone excitation with peak voltage amplitude , frequency f x and phase ^ can be 

described by (i7) and the resulting PA current described by the Taylor series in (is).

Vt (/) = a.cos(2^/ + <fi) 07)
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I 0(t) = A}Vt (/) + A2V,2(it) + A3Vt3(/) + •• W  (0 (18)

The general non-linear process of amplification will generate spectral components, here 

limited to the third order, described the by the equations, in Table 2.

A2a 1
DC term

1 +
3A3 a 2 Y

a cos#

( A „ 2 ^A2a
cos 26

Fundamental term

Second order term

( A ^  ^A ,a
cos 30 Third order term

Table 2 -  spectral generation due to single-tone excitation, limited to third order

5.1.2.3 Two-tone excitation
For many years, two-tone modulation was the excitation of choice in characterising PA 

linearity. Nowadays however, the use of two-tone modulation as a stimulus is generally 

being replaced by more relevant and application focused measurement techniques such 

as EVM and ACPR. Whereas EVM is a direct measure of the accuracy of the amplification 

process, ACPR is the direct measurement of the frequency components generated in 

close proximity to the main carriers, which results from spectral spreading. Two-tone 

excitation offers a way of quantifying PA linearity through the measurement of inter­

modulation distortion products that occur due to the mixing processes described in [55], 

and that appear in proximity to the carrier frequencies. The advantage of two-tone over 

other, more complex modulation schemes is that mixing products are easily measured, 

limited in number and appear at very specific frequency locations, which can prove useful 

in both the measurement and analysis of modulated behaviour.

Consider for example the transfer function for a PA described by the Taylor series 

described in (is) which is excited by the two-tone modulation described in 0 9 )

Vt (/) = a cos(2;r • f }t ) + a cos(2;r • f 2t) (19)
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In this case, the non-linear properties of the transfer function will generate an output 

spectrum of increased complexity, described to the third order by the equations in Table 3 

where 0n -  2n  • f nt .

A2a ‘

Axa 1 + 9 A ,a 2

M  ,

/  , ■> \  .La
(cos 2 0X +  cos 202)

A2a J
cos 30, + cos 302

3 A2a

(cos0, +  cos02)

+ A2a 2 (cos(0, + 02) +  cos(0, -  02))  

[cos(20, +  0 2)+  cos(20, -  02 )]• • •

DC term

Fundamental term

Second order terms

Third order terms
3 A a3

+ — (cos(202 + Gx) + cos(202 -  Gx))

Table 3 - spectral generation due to single-tone excitation, limited to third order

Observation of the magnitude and phase of specific inter-modulation products under 

different modulation rates can provide an insight into other important behaviour [56], and 

specifically the memory effects that are inherent in most PA structures. These effects are 

typically analysed by considering specific behaviour such as the asymmetry that may exist 

between pairs of inter-modulation terms, usually the 3rd order products either side of the 

carrier components [57].

The graph in Figure 99 shows a simulated two-tone modulation envelope, where a high 

modulation frequency of approximately 1 /7th of the carrier frequency has been used to 

allow visibility of both RF and modulation envelope. The I and Q component base-band 

signals that describe this modulation are shown in Figure 100.

2-tone envelope 2-tone I & Q
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Figure 99 -  hvo-tone envelope showing the 
instantaneous magnitude o f the base-band 

component

Figure 100 - 1 and Q base-band waveforms 
describing the two-tone envelope
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From these plots, it is clear that for the two-tone modulation scheme, the instantaneous 

RF magnitude will be zero each time the l-component crosses the zero axis, at which 

point a phase inversion occurs. In order to obtain a modulation envelope possessing a 

desired PEP, two tones © 1  and ©2 of magnitude PEP - 6dB will be required and the 

modulation rate will be o)1-co2 where there are two ‘pulses’ of RF per cycle of modulation.

The Peak-to-Average Ratio (PAR) of this modulation is 3 dB, and its Probability Density 

Function (PDF) in relation to a classical Doherty efficiency characteristic is shown in 

Figure 101.
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Figure 101 -  PDF o f two-tone modulation with ideal Doherty efficiency characteristic

During development of the measurement system and the introduction of different types of 

excitation, it was considered important to retain the ability to verify correct and explainable 

Doherty behaviour, regardless of the modulated excitation used, as well as to be able to 

show consistency when comparing results using these different excitations. For example, 

following the very first simulations and measurements using modulated signals, there was 

an obvious need to compare the single-tone and two-tone efficiency of the simulated and 

measured PA structures in order to gain confidence and show that the approach was 

effective in both cases.

When this comparison is attempted through simulation of an ideal Doherty structure, a 

problem is immediately observed relating to the comparison of key results. This is 

illustrated in Figure 102 and Figure 103 which show the simulated single-tone and two- 

tone efficiency and gain of an ideal Doherty structure. These parameters are plotted as 

functions of Vin, where Vin is defined as the peak excitation voltage for the single-tone 

case, and the peak excitation voltage at PEP for the modulated cases.
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Figure 102 -  ideal single-tone and two-tone 
Doherty efficiency

Figure 103 -  ideal single-tone and two-tone 
Doherty gain

The ideal nature of the Doherty design used in this simulation is evident from the single­

tone efficiency curve which exhibits the classical twin-peak plateau profile in the presence 

of non-compressive gain [21]. The equivalent two-tone efficiency curve looks quite 

different however and on first examination seems to demonstrate poor Doherty 

performance. The overall reduction in efficiency is due to an averaging effect where the 

modulated envelope excites both high and low efficiency regions of the Doherty 

characteristic. The overall efficiency is therefore the average of the instantaneous

efficiencies over the entire modulation cycle, and will therefore always be lower and

featureless’ in comparison to the single-tone case.

If single-tone and two-tone gain are considered in the same way, as shown in Figure 103, 

a much more favourable comparison is observed, especially over the dynamic range of 

interest which exists between Vm max and Vm max/2 .  This is due to the gain being a more

constant function of input drive than efficiency over dynamic range, which is an

observation that demonstrates the problem: whereas some single-tone and two-tone 

Doherty performance parameters compare favourable, the critical parameter of efficiency 

does not.

Figure 104 illustrates this problem in the time domain, and shows a classical two-tone 

envelope for the two cases of PEP: the first causes the ideal Doherty to develop a peak 

output power of Pmax/4  corresponding to input voltage of Vm max/2 ,  whilst the second

causes a peak output power of Pmax corresponding to an input voltage of Vm max. Figure

105 shows an envelope domain representation of Doherty efficiency for the two cases of 

PEP.
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Viewed in this way, it becomes clear how averaging can cause a problem when using 

efficiency as a performance indicator.

So, although both single-tone and two-tone results are completely valid and effective in 

accurately describing the Doherty’s efficiency response to a two-tone power sweep, the 

results require some interpretation and an appreciation of the averaging problem. At first 

glance, they may convey poor performance due to the absence of the classical Doherty 

indicator of an efficiency plateau in the presence of non-compressive gain, which is in 

contrast clearly visible in the single-tone case.

From both data presentation and data validation perspectives, it would clearly be 

advantageous to use an excitation that allows both meaningful modulated analysis and 

yields performance results that are easily comparable with the single-tone case.

5.1.2.4 Three-tone
Other problems relating to two-tone excitation stem from the fact that the two signals 

comprising the modulation will have opposite phase, and will completely cancel twice 

every modulation cycle resulting in a modulation envelope with infinite dynamic range. 

This property can sometimes be problematical, for example when there is no interest in 

how a DUT responds to very low envelope power levels, as is the case with the Doherty

Another way to synthesise a suitable modulated excitation is to use a symmetrical three- 

tone approach and the addition of a carrier component to the classical two-tone 

modulation. By careful manipulation of the relative and absolute tone magnitudes, the 

PEP can be fixed whilst the modulation depth can be varied, thus providing complete 

flexibility of the excitation envelope. Although it is possible to achieve variable modulation 

depth using asymmetrical 2-tone, the resulting RF envelope will contain both phase and 

magnitude information, and from a measurement perspective, this complicates matters
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considerably as two baseband components (I and Q) are needed to describe the 

excitation instead of just one (I).

The approach is illustrated in Figure 106 where the PDF in relation to a classical Doherty 

efficiency characteristic is shown for two modulation depths of 33% and 100%, where the 

Peak-to-Average power Ratio (PAR) is 2 dB and 4.2 dB respectively. This PDF is different 

to that of two-tone, and shows that for 100% modulation depth, the probability of very low 

instantaneous power is relatively high and equal to that of PEP. This means for instance 

that if 100% three-tone modulation is used in place of two-tone to excite an amplifier, the 

observed average efficiency will be slightly lower. The important difference between two 

and three-tone as an excitation however is that the PDF profile of three-tone can be 

moved and located anywhere in a PA’s dynamic range, as shown in Figure 106.

PDF for 3-tone 3-tone (33.3% mod)

9 10 11 12 13 14 15 15 17 18 19 20

0 06—

3-tone (100% mod)

Figure 106 -  PDF characteristics o f three-tone modulation

This approach is very attractive from a Doherty perspective as it allows specific areas of 

the transfer characteristic to be excited. More specifically, this type of modulation has the 

ability to explore Doherty behaviour over the dynamic range of interest, which typically 

exists between the point of maximum power and the transition point. The advantage is 

further illustrated in Figure 107, where three modulation envelopes have been generated 

possessing modulation depths of 0%, 33.3% and 100%. If PEP, which is the same in all 

cases, is selected to correspond to the maximum input power to be delivered to the 

Doherty, then the 33.3% modulation would excite the area of dynamic range between 

PEP and the transition point (PEP-6dB); whereas 100% modulation would excite the 

complete Doherty characteristic.

When comparative efficiency and gain is considered for both single-tone and three-tone 

as shown in Figure 108 and Figure 110, it is clear that maintaining a constant PEP and
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sweeping modulation depth will result in a much improved and meaningful comparison to 

the single-tone efficiency, in the high power region between Vm max and the transition point

(Pt).
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Figure 107 -  three-tone envelope for three Figure 108 -  ideal single-tone and three-tone
different cases o f 0% (green), 33.3% (blue) and Doherty efficiency

100% (red) modulation depth

This is of course the area of interest in Doherty characterisation where the efficiency 

plateau is known to exist, as has been shown through single-tone analysis. The 

advantage of using three-tone is especially noticeable in Figure 109 where it is clear that 

for a modulation depth of 33.3%, which equates to an excitation magnitude between 

Kn maxand Kn max/2 or 6dB of dynamic range, the envelope efficiency waveform is

contained between 55% and 65%. This equates to an average efficiency of approximately 

60% over 6dB of dynamic range.
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Figure 109 -  efficiency waveforms fo r two cases of Figure 110 -  ideal single-tone and three-tone Doherty 
33.3% and 100% modulation depth. gain

It is interesting to note that when the modulation depth approaches 100%, the resulting 

envelope physically resembles that of two-tone at maximum power. As the envelopes will
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be very similar at this point, the measured Doherty performance can be expected to be 

similar. This is apparent when comparing point-B in Figure 102 with point-C in Figure 108, 

where the resulting efficiencies are 58.4% and 55% respectively.

Another advantage of this approach is the flexibility it offers in the ability to easily 

synthesise both single-tone and two-tone excitations by simply taking the three-tone 

modulation to its two extremes; the first when only the carrier is present for single-tone 

stimulus, and the second when only the side band tones are present, producing a two- 

tone stimulus

5.1.2.5 Synthesising three-tone modulation
Unfortunately, modulation depth can lead to ambiguity when specifying the required, 

specific Doherty modulation conditions. For example, a modulation envelope that will 

excite the characteristic between Vin max and Vm max /2  will require a modulation depth of

33%, which is not completely obvious. For reasons of clarity an additional parameter is 

introduced which expresses the degree of modulation in terms of Peak-to-Minimum 

Voltage Ratio (PMVR). This is a more meaningful measure for use in specifying Doherty 

measurements as it is effectively the ratio of the maximum and minimum envelope voltage 

magnitudes. For example, the above modulation envelope that is designed to excite the 

PA’s characteristic between Vm maxand Vm max/2  will be defined by a PMVR value of

50%, and not the usual 33.3% used when specifying modulation depth.

From a measurement system perspective, an important relationship is defined between 

the required value of PEP, modulation depth or PMVR and the absolute magnitude of the 

three tones used to synthesise the modulation, which is then used directly by the 

measurement software.

The instrument used to synthesise the modulation was an Agilent D-series base-band 

capable ESG with n-tone capability [58]. There are two steps involved in configuring this 

instrument; firstly specifying the required number of tones, tone-spacing and relative tone 

magnitude, and secondly specifying the absolute or total power of the excitation, which in 

the case of the ESG refers to the average power of the modulation and is effectively the 

sum of the individual tone powers. This process is summarised in Figure 111 and Figure 

112.

Page 103 o f 201



Doherty Amplifier Structures for Modern Microwave Communication Systems -  J Lees

2-tone envelope

0 5

> o.o-

-0 .5 -

- 1.0
0 20 40 60 80 100 120 140 160 180 200

FC

t  T ki

Os
ML
Co

I  LSB 1 I SB

4  1 4
: ----------- ---------- ►

time nsec

Figure 111 -  simple three-tone envelope at 100% 
modulation with PEP

Frequency

Figure 1 1 2 -  spectral equivalent of modulation 
envelope

It is known that the Peak Envelope Power (PEP) occurs when all the tone vectors sum in- 

phase, so a notional variable VPEP can be defined in terms of spectral voltages, which 

represents the peak envelope voltage. This is further explained in Appendix 6.

Vpep ~ Vpc + K/sb + Vlsb (20)

Vpep can also be defined in terms of PEP in a 50 Q environment, as shown in (21).

Vnp PEP(Walls) 'M00 

Classically, modulation depth as defined in (22).

(21)

Modulation _ Depth =
v  mod * 100 (22)

Given a required value of PEP, it is possible to calculate the voltage components for each 

tone. Firstly, the modulation index is defined in (23).

m index =
Modulation _ Depth 

100
(23)

It is then possible to derive the individual voltage components, as shown in (24)

v  Vpep t/  _ m _ index • VPEP r/ _ m_ index -VPEP
[1 + w _ index] USB [2 + (2 • m _ index)] LSB [2 + (2 • /w _ index)\
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From these values it is possible to calculate a relative power difference between the 

carrier and the sidebands, which is the power offset required in establishing the required 

modulation in the ESG. This is shown in (25)

PwrOffset = 10- lo g ^ ,2 j - 10 • lo g ^ (,„2 J (25)

The next stage is to calculate the average power needed in order to establish the required 

PEP at the modulation depth used. This power will be the sum of the powers due to the 

voltage components in (24) into 50 Q, and is given by (26) This is the value used to set 

the ESG “front panel’ power.

P ESG = 10 log
100 100 100

(26)

5.1.3 A multiple port, multiple stimulus Doherty measurement system

5.1.3.1 Analysing the requirements
A range of new measurement requirements had emerged from extensive single-tone 

analysis and characterisation, which had significant hardware and software implications 

for the evolving Doherty measurement system. The most significant of these concerned 

the synthesis of independent RF input excitations, and the control of their relative phase 

and magnitude, along with main and auxiliary bias voltages. It has been shown in [31] how 

establishing these parameters as custom functions of input drive can provide an 

optimisation approach for the Doherty PA. It was shown for instance that efficiency can be 

maximized by dynamically adjusting the relative input phase in response to the magnitude 

of the input drive. The consequence of integrating this approach in to the modulated 

measurement system was that any synthesised control of the auxiliary or main device 

needed to be in direct and immediate response to the instantaneous magnitude of the 

applied modulation.

5.1.3.2 Aligning phase
The single-tone phase synchronization and alignment problem discussed earlier in this 

chapter had now expanded to include not only synthesised RF components, but critically 

the various base-band components that would need to be generated in order to support 

the different variations of the Doherty that were planned. These included dynamic bias 

signals for the adaptive-bias Doherty realisations, some form of dynamic amplitude control 

for the input-attenuation Doherty, as well as dynamic phase control for perturbation and 

optimisation of relative input phase.
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The correct phase-alignment and synchronisation of the various synthesised RF and 

base-band signals was essential, both relative to each other and to the applied modulation 

envelope. This became the significant and underlying technical challenge in this phase of 

work.

Coupler

Channel-B

Coupler

Detector

ESG-1
(Main)

Arbitrary
Waveform
Generator

ESG-2
(Aux)

MTA
(RF Pheae alignment)

Figure 113 -  envelope alignment using detected envelope

Initially, a simple approach was adopted and is shown in Figure 113, where before 

applying modulation, the two RF signals were aligned using the MTA and the approach 

discussed in Chapter 4. The required two-tone modulation was then established using the 

AM functionality of the main signal source (ESG-1) and the instantaneous envelope 

magnitude was monitored using a simple coupled power detector. A low frequency 

Arbitrary Waveform Generator (AWG) was used to synthesise a modulation signal 

possessing the necessary frequency, amplitude and DC offset, which was then applied to 

the Low Frequency (LF) modulation input of the auxiliary signal source (ESG-2) as AM 

modulation. Envelope alignment involved using a digital storage oscilloscope to capture 

and download both the detected and synthesised base-band waveforms, and using simple 

FFT processing, which was implemented as part of the IGOR control software, comparing 

the fundamental phase of these waveforms. The phase of the AWG was then adjusted 

such that main and auxiliary envelopes were phase coherent.

Although the simple diode detector is very effective in the detection of RF amplitude, it 

cannot measure RF phase. This leads to a limitation in this approach when used with two- 

tone excitation as the output voltage of the diode detector will resemble a full-wave 

rectified waveform, whilst the modulation is a zero-centred sine wave. There is therefore 

an ambiguity that exists as the fundamental component of the detected signal will be twice

Page 106 of 201



Chapter 5 -  Multi-Tone Measurement and Characterisation

the frequency of the applied modulation. It therefore becomes impossible to determine 

which half of the full-wave rectified detector output corresponds to the positive half of the 

modulation, and which corresponds to the negative half.

Another problem with this approach is the unavoidable non-linearity that is introduced into 

the modulated excitation due to the analogue AM mixer within the auxiliary ESG. Although 

this is a high quality instrumentation based mixer, any non-linear behaviour introduced at 

this stage is clearly non-ideal and will negatively impact the accuracy of any future 

linearity measurements.

The first of these problems can only be avoided by moving away from the use of 

traditional two-tone excitation and removing the associated ambiguity. Figure 116 shows a 

pure 2-tone modulation envelope together with its representative base-band modulation 

signals. On examination of the spectral composition of the RF envelope, it is clear that 

there will be very little or no energy at the modulation frequency.
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This is to be expected as two-tone modulation is a form of Double Side-Band, 

Suppressed Carrier (DSB-SC) modulation that has sidebands at frequencies Fc-Fm and 

Fc+Fm, thus giving a tone spacing of 2Fm, which is reflected in the observed base-band 

signal. The lack of Fm component in the base-band detected envelope signal makes 

reliable alignment with the original modulation impossible. Figure 117 shows the case 

where a small amount of carrier is introduced to the modulation, effectively synthesising 

three-tone excitation. This addition establishes a tone spacing equal to Fm, which in turn 

generates a small amount of Fm component in the base-band detected envelope 

waveform. This small additional frequency component was effective in allowing the 

auxiliary base-band modulation to be aligned with the main modulated carrier.

An additional problem in using the detected envelope for synchronization includes delay 

and frequency dependent attenuation. The delay is introduced into the detector output 

waveform due to the frequency dependent behaviour of the element, which is essentially 

an RF diode coupled with a low-pass filter. The consequence of these limitations was that 

the approach was only suitable for low modulation frequencies up to approximately 100 

kHz.

Although meaningful measurements were conducted in this way, there were some other 

significant limitations that needed to be addressed; the most significant of which was the 

inability of the approach to dynamically adjust relative RF phase, as had been identified as 

a requirement following the single-tone analysis. A different approach was needed that 

would overcome these problems, and allow unrestricted characterisation of multiple input 

Doherty structures.

Whilst analysing these problems together with the direction the research was taking, it 

was clear that most of the observed issues could be resolved by moving to a base-band 

modulation approach discussed in [45]. For instance, by employing two D-series base­

band capable ESGs, the direct synthesis and manipulation of I and Q component signals 

could be used to dynamically adjust both the relative magnitude and phase of the input 

stimuli. These base-band signals could be synthesised, synchronized and aligned before 

being used within the modulation process within the source instruments. The additional 

advantage of this approach is that it bears similarities to real-life communication systems, 

where access to such base-band elements of the modulation process may well be an 

option.

Instead of detecting the modulation only after it has occurred, the base-band I and Q 

component signals produced by the main ESG could be used directly to describe the
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instantaneous magnitude and relative phase of the modulation envelope delivered to the 

input of the Doherty’s main device. Through careful choice of modulation, the phase or 

quadrature components can be minimised. For example, using three symmetrical tones to 

synthesise pure, classical AM allows the l-component alone to be used as a reference 

and to fully describe the magnitude of the modulation envelope delivered to the main 

device. The advantages of this approach over the previous AM based approach are 

numerous, and include a much higher modulation bandwidth, allowing modulation 

frequencies up to tens of MHz to be used, as well as providing a signal with improved 

spectral purity due to the use of l-Q modulation as opposed to the earlier AM modulator 

approach. The additional and significant advantage that must be stressed is the ability to 

employ I & Q component signals to dynamically control both the relative input magnitude 

and the relative input phase of the modulated excitation delivered to the Doherty.
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Figure 118 -  measurement system with full base-band control

5.1.3.3 Using I & Q component signals to synthesise co-phased modulation
In this approach, the 'main' signal source (ESG-1) is equipped with real-time base-band

functionality, and is used as a ‘master’ instrument, establishing the required modulation, 

and generating I and Q component signals describing the modulated RF signal delivered 

to the main device. The 'auxiliary signal source (ESG-2) is effectively a ‘slave’ instrument 

that accepts I and Q signals and uses them to create auxiliary modulation of the required 

magnitude and base-band phase. Both sources are linked using the standard 10 MHz 

synchronisation signal, with RF phase alignment being achieved using the approach 

discussed in chapter 4.
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A number of different Doherty realisations needed to be supported that included adaptive- 

bias and input-attenuation. Adaptive-bias, as its name suggests relies upon dynamically 

adapting the auxiliary bias voltage in response to the instantaneous modulation envelope 

magnitude applied to the main device. As full control is achieved through bias, the 

auxiliary and main modulated stimuli can be identical. This is convenient from a base­

band excitation perspective as it can be achieved by directly connecting I and Q 

component outputs from ESG-1 to I and Q inputs of ESG-2.

In realising the input-attenuation Doherty however, it is the auxiliary I and Q component 

signals that need to be synthesised, with bias for both main and auxiliary devices 

remaining static. As conduction is controlled through dynamic variations in the relative 

magnitude of main and auxiliary modulated input signals, the I and Q component signals 

that need to be delivered to the auxiliary ESG are no longer identical to those generated 

by the main ESG, but in fact will be non-linear functions of the instantaneous magnitude of 

RF applied to the input of the main device.

Although this approach is relatively straight-forward, there are some issues relating to its 

implementation using the Agilent D-series ESG signal generators discussed, and 

specifically, the calibration of the l-Q environment that is responsible for translating the 

applied I and Q component signals into instantaneous magnitude and phase of carrier 

output power.

5.1.3.4 Automatic Levelling Control
The Automatic Levelling Control (ALC) is a powerful and critical function of the ESG, 

ensuring that the power delivered to the output agrees with the demanded value. When 

enabling base-band functionality with these instruments, the default ALC state is active 

and can cause a potential problem when using low modulation frequencies. When using 

external I and Q modulation, the ALC acts to hold the signal generators average output 

power at a constant level, regardless of variations in I and Q component signal inputs. 

Although rapid variations (>1kHz) in I and Q will cause the required modulation, slower 

variations will be considered as drift by the ALC and removed. The ALC can be thought of 

as possessing a high pass filter response with a comer frequency of 1 kHz.

5.1.3.5 Power-search
For modulation rates below 1 kHz and for the reason stated above, the ALC must be 

switched off and replaced by another means of maintaining output power accuracy. 

Power-search is an internal calibration routine that can be used by the ESG when ALC is 

disabled. Whereas ALC continually monitors and corrects the output power, power-search 

is a ‘one-shot’ process, executed when required. When using external l-Q modulation,
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power-search will scale the RF vector magnitude described by I and Q component signals 

against either an internal or external voltage reference. This is described in (27) which 

simply states that the magnitude of the applied modulation will be scaled according to the 

chosen voltage reference. Under normal circumstances, the ESG is configured to use a 

precise, internally generated 0.5V as the reference. In some circumstances however, it 

may be beneficial to use some other reference between 0 and 2V. This is made possible 

by using the ‘external reference’ option which causes the ESG to perform a power search 

calibration based upon a reference that is calculated using the input I and Q component 

signals \,P and QiP, as described by (28).

As an example, consider the case with no applied modulation and an applied l-component 

of +0.5V DC. Performing a power search using the internal reference will cause the ESG 

to accurately deliver the demanded power, set via the front panel. Any change in I- 

component DC value will cause a linear change in output voltage magnitude. This is 

illustrated in Figure 119 which illustrates how the ESG responds to a range of positive and 

negative l-component DC levels when using three different reference voltages. The 

internal reference was used for the 0.5V case, with external reference being used for the 

other two cases.

Figure 1 1 9 - 1  and Q scaling using ESG Power-Search calibration with both internal and external reference

If the ESG is now modulated by replacing the l-component DC value with a sinusoid 

voltage ranging between 0V and 0.5 V, a power search conducted in the same way using

-Jl2 + Q 2 = Vref

(28)

Using different 
externa l references

l-cormonenl v m ;l-component Wn (V)
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the internal reference will cause the ESG to deliver a Peak Envelope Power (PEP) that is 

equal to the power set or front-panel power. It is important to note that the average power 

will be significantly lower.

In both of these examples, the output voltage will scale linearly with the voltage applied to 

the l-component input. It is important to note that if this same experiment was conducted 

with ALC on, the average output power would always agree with the set or demanded 

power, and would not respond as required to the applied I component drive.

Main
Excitation

Main
Excitation

ALC'otr

ESG-1
(Main)

Arbitrary
Waveform
Generator

ALC 'on'
ESG-2
(Aux)

ALC XJrT
ESG-2
(Aux)

ESG-1
(Main)

Arbitrary
Wawfonn
Generator

Figure 120 -  adaptive-bias arrangement Figure 121 -  input-attenuation arrangement

5.1.3.6 Using the l&Q approach to Implementing Adaptive-bias Doherty
With reference to Figure 120, the ALC on both main and auxiliary ESGs should be

enabled. For a given average or ‘set’ ESG power, the value of PEP will increase as 

modulation depth increases. This increase will be according to the Peak to Average Ratio 

(PAR) characteristic of the modulation. Therefore, in order to achieve the required variable 

depth of modulation with a constant PEP, the average power of both ESGs must be 

decreased as the modulation depth increases. For example at 0% modulation, the 

average power will be equal to the PEP. At 33% modulation however, the average power 

will need to be decreased by 3dB in order to maintain constant PEP. The rate of 

modulation must be above 1 kHz in order to avoid ALC related problems.

5.1.3.7 Using the l&Q approach to Implementing Input-attenuation Doherty
With reference to Figure 121, ALC is enabled on the main ESG and disabled on the

auxiliary ESG. As above, when establishing modulation, the PAR must be taken into 

account when realising a specific PEP for the main ESG modulation. As ALC is disabled 

on the auxiliary ESG and replaced with a power search method using the internal 

reference, the value of PEP will equal the power value ‘set’ via the front panel. Because of 

this, there is no need to reduce the average or ‘set’ power as described above, as the 

auxiliary modulation is scaled directly by the synthesised auxiliary l-component signal.
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5.1.3.8 Controlling base-band impedance
Earlier developments resulted in a measurement system that allowed investigations into 

the single-tone and modulated behaviour of classical, input-attenuation and adaptive-bias 

Doherty structures. During the linearity measurements significant asymmetry was 

observed in the side-band carrier components. Following further investigation of this 

asymmetrical behaviour, it was found that ill-defined impedances presented to the low 

frequency IF components were the major contributing factor.

Doherty StructureBase-band Section HF Section

_  Digital 
Oscilloscope

M ain

ESG-1 Main

bias

Aux

Switchl

IF  R e fe ren ce  
M in eMTA

Spectrum

IF Impedance Control
___________ If  D irec tio n a l

Coupler |F _  
   ►]
re f inc

ESG-3
DC

DC
Supply

Figure 122 -  complete multi-port measurement system

This was quickly remedied with the addition of a large decoupling capacitor to ground on 

the drain bias network, designed to present a short circuit condition to the low frequency 

IF component. This has previously been demonstrated, in traditional PA designs to be the 

optimum IF load condition for linearity [56],

Considering the observed effects, the possibility arose that the Doherty structure was 

particularly sensitive to the impedance of the low frequency bias network used. It was 

thought that this sensitivity was due to the main device output voltage remaining in close 

proximity to the main device knee-region, throughout the upper portion of dynamic range. 

Whilst in this state, any excursions or ‘wobble’ of the dynamic load-line, for instance due 

to DC supply re-modulation or electrical memory effects [57] would be more likely to 

cause the output voltage to interact with the knee region and linearity to degrade. Initial 

investigations and supporting simulations suggested that this was indeed the case, and
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reinforced the argument that the linearity of the Doherty structure may be more sensitive 

to variations in base-band impedance than an equivalent ‘conventional’ amplifier.

In order to further investigate this idea through measurement, a further enhancement of 

the measurement system was necessary, which was to include IF load-pull and 

measurement capability similar to that used in [56]. This comprised a second, low 

frequency oscilloscope, a low frequency signal source, IF bias network and IF directional 

couplers and is shown in Figure 122. Following a single-port calibration step (see 

Appendix-1), the IF impedance could be measured and controlled such that perturbation 

of IF impedance was possible.

Functionality was added to the existing measurement system software to allow the 

presentation of a specific IF load (TA) to the ‘significant’ base-band IF component. This is 

an important distinction as for three-tone excitation it was observed that the measured 

base-band IF voltage waveform was non-sinusoidal. In order to perform true IF load-pull, 

all of the spectral components comprising the IF component waveform would need 

termination. Although this system did not provide this level of functionality, it was effective 

in terminating the most significant IF component which was considered sufficient for 

linearity investigations to continue.

5.1.3.9 IF calibration
This calibration is used to error correct the frequency components measured using the low 

frequency bias network arrangement shown in Figure 122, which is described in detail in 

Appendix-1.

Figure 123 -  signal flow graph representation o f simplified IF  arrangement

In summary, by using a simple one port, Short, Open and Load (SOL) calibration 

procedure the e00, e 0no and e n  error terms can be computed. These terms can then be 

used in to calculate the actual IF load measured at the output port of the Doherty 

structure.
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The calibration procedure used was verified by measuring s-parameters using an Agilent 

8753 Vector Network Analyser (VNA). The VNA was calibrated to a known reference 

plane using the industry standard SLOT calibration and then one port connected to the 

system at the IF reference plane identified in Figure 122, and used to measure the 

impedance of a load synthesised by the developed measurement system.

5.1.4 Verification

5.1.4.1 System calibration requirements
In terms of calibration, the significant difference between modulated and single-tone 

systems is the additional complexity due to the introduction of base-band control.

It is important for instance that changes in synthesised I and Q components cause 

appropriate and expected changes in the relative and absolute instantaneous magnitude 

of the main and auxiliary modulation. For this reason, it is essential that the base-band 

calibration techniques discussed in section 5.1.3.3 be used, i.e. either ALC or power- 

search.

As well as employing the instruments own calibration capabilities, it is also important to 

validate correct behaviour of excitation prior to performing a measurement. This involved 

observing the main and auxiliary RF envelopes, and comparing to the ideal case. The 

adopted method was to initially use Agilent’s ADS to simulate ideal excitations. This 

involved conducting a modulation depth sweep and observing both main and auxiliary 

envelopes both in the time and frequency domain.

Figure 124 shows the simulated base-band, envelope and spectral response of main and 

auxiliary excitation used in the input-attenuation approach at 52% modulation depth. One 

possible validation approach is to directly compare simulated and measured spectral 

behaviour of the modulated waveforms at each point in the modulation depth sweep.
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Figure 124 -  RF envelope, base-band I  component and spectral response of main and auxiliary 
excitation used in the input-attenuation approach at 52% modulation depth

Although this is possible in the case of the input-attenuation Doherty, the auxiliary 

excitation becomes ‘pulse-like’ at reduced input drive below the transition point. This is 

illustrated in Figure 124, where it can be seen that the auxiliary excitation can contain 

significant spectral complexity, making this type of measurement difficult and time 

consuming.

Another, more practical validation involves using a calibrated power meter to directly 

measure the combined spectral power or average envelope power of the modulated 

carrier, which will have very specific profiles when plotted as a function of modulation 

depth.
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Figure 125 -  simulated, combined spectral power for main and auxiliary* excitations for adaptive-bias and input-
attenuation approaches

Figure 125 shows the simulated, combined spectral power for main and auxiliary 

excitations, for both the adaptive-bias and input-attenuation approach. These curves 

provide a valid comparison, and a reliable and rapid means of checking the validity of the 

main and auxiliary excitation prior to a measurement being performed.

5.2 Multi-tone Doherty Analysis and Characterisation

It should be stated that the aim of the multi-tone phase of work covered in this chapter 

was to establish a foundation on which a further, detailed analysis and characterisation of 

measured Doherty linearity could be based, and not the analysis itself. This specifically 

involved the development of a multi-tone measurement system and measurement 

approach, the use of which in more completely characterising Doherty linearity will form 

part of the future work definition. Having said this, some theoretical and model-based 

analysis work has been conducted together with some modulated measurements to 

validate the functionality of the measurement system, and is presented here.

This chapter is written in two parts: the first section aims to explore, develop and analyse 

Doherty linearity by building upon basic Doherty principles, the use of simple simulation 

and in particular, through the visualisation of modulated interaction within the structure in 

the envelope domain. The second part aims to illustrate through more realistic simulation 

and measurement how the issues of linearity and limited bandwidth are closely coupled 

and together, conspire to limit the linearity performance of the Doherty structure.
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5.2.1 A practical analysis of ideal classical Doherty linearity

The fact that the Doherty is theoretically a linear structure [22] is often overlooked. In 

addition, because of the single-tone focus employed in typical published Doherty material, 

the structure’s true linearity performance and behaviour under modulated signal excitation 

remains relatively unexplored. Where linearity has been considered [8, 32, 33, 37, 42, 45, 

59, 60], a common observation emerges: although it is possible to develop Doherty PAs 

that exhibit significant efficiency improvement over a wide dynamic range, the resulting 

linearity is relatively poor.

In the first part of this analysis, the IGOR software environment [26] has been used as a 

simulation tool for ideal analysis. This approach was considered sensible as it allowed 

Doherty behaviour to be explored at the most fundamental level, using highly idealised 

device models.

5.2.2 Creation o f 3-tone modulation

The first step in this analysis involved synthesising pure, 100% Amplitude Modulation 

(AM) as a suitable modulated excitation. A simple IGOR function was written that 

produced an envelope of specific Peak-to-Min Voltage Ratio (PMVR) with a maximum 

magnitude normalised to unity, as shown in Figure 126 and Figure 127.
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Figure 126 -  modulation and carrier Figure 127 -  envelope following multiplication

This pure AM can be considered as identical to that which is used in the multi-tone 

measurement system and other ADS simulations, where it is synthesised using three- 

tones of specific frequency spacing and relative magnitude. For this ideal analysis a 

carrier frequency (Fc) of 1.8GHz has been used, together with a high modulation 

frequency (Fm) of 100 MHz in order to allow good visibility of both carrier and envelope 

components in the time domain.

Page 118 o f 201



Chapter 5 -  Multi-Tone Measurement and Characterisation

5.2.3 Achieving Doherty behaviour
For this analysis, the conventional classical Doherty schematic is presented in a slightly 

different form as shown in Figure 128 and comprises a single modulated source, which is 

used to drive both main and auxiliary branches of the Doherty structure.

IdeaRy 
transconductive 

Main Device

Ideaty 
transconductive 

Aux Device
3-tone
Votage
Source

/V4 transformer a.M transformer

■RLoad

Figure 128 - alternative Doherty schematic

When considering modulated Doherty behaviour, an intuitive starting point is to focus on 

the impedance environment that needs to exist at the output of the main device. This is a 

function of the instantaneous envelope magnitude and must cause a constant voltage, 

high efficiency state to exist over the entire high-power region of operation. Synthesising 

the necessary dynamic impedance environment is the primary role of the auxiliary device 

and is typically achieved using relative static bias as is the case in the classical Doherty, 

or through dynamic modification of relative bias or input magnitude. Irrespective of the 

method used, it is constructive to consider the modulated behaviour of the Doherty from 

two, subtly different perspectives:

In terms of impedance and of dynamic load: The auxiliary device needs to synthesise 

and present a dynamic impedance to the output of the main device that changes in 

sympathy with the magnitude of the modulation envelope, thus maintaining a constant 

voltage swing in the high-power region of operation.

In terms of voltage, current and active load-pull: The auxiliary device needs to 

generate an output RF current envelope with specific phase and magnitude properties 

such that when transformed to a voltage through the main )J4 combining element (T1), it 

partly cancels the main device voltage waveform, thus maintaining a constant main 

voltage envelope throughout the high power region of operation.
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Figure 129 and Figure 130 show the normalised base-band auxiliary current and dynamic 

load waveforms that must exist, and that are ideal functions of the original 100% AM 

modulation signal magnitude shown in Figure 127.
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Figure 129 -  auxiliary current profile Figure 130 -  dynamic load (normalised to Ropt)

By plotting these base-band waveforms against the voltage magnitude of the original 

modulation signal, the envelope transfer characteristics can be obtained and are 

presented in Figure 131 and Figure 132.

Although the dynamic load approach is useful in the simulation domain where the direct 

synthesis of dynamic impedance is straight-forward, in terms of practical
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realisation of Doherty structures and Doherty measurement systems, it is more 

appropriate to consider the active load-pull approach however and the concept of 

synthesising auxiliary device envelopes containing RF current waveforms of the correct 

phase and amplitude prescribed by the dynamic transfer function in Figure 131 above.
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5.2.4 Envelope analysis

5.2.4.1 Doherty interaction in the envelope domain

To fully appreciate the modulated activity within the Doherty structure, it is constructive to 

use the envelope domain where the magnitude and phase of the interacting waveforms 

can be easily visualised. Firstly, it is assumed that the devices used within the Doherty 

structure are ideally trans-conductive, being essentially voltage to current converters. For 

simplicity in the IGOR based analysis that follows, these devices are also assumed to 

have unity gain and have no phase delay.

With reference to Figure 128, modulated voltage excitation as shown earlier in Figure 127 

is generated by the source and following injection into the structure, is delayed by the A/4 

delay-line (T2) before passing on to the input of the auxiliary device. Here it is effectively 

converted to a current according to the auxiliary device transfer characteristic described in 

Figure 131, resulting in a pulse’ of auxiliary RF current of the required profile. This current 

waveform then passes on to the output of the main device through the main A/4 line (T1). 

A total of 180 degrees of phase shift is imparted on the fundamental component of the 

‘current-pulse’ modulation, which ensures that the RF arrives at the output of the main 

device 180 degrees out of phase with the waveform generated by the main device 

effectively arriving from the other direction. Figure 133 shows the ‘collision’ and part- 

cancellation of these two waveforms, and demonstrates the active load-pull behaviour 

within the Doherty structure. This results in a constant main device voltage magnitude in 

the upper 6dB region of dynamic range, as prescribed by classical Doherty theory.

It is important to realise that as the devices are modelled with unity gain, the modulated 

carrier and the main input stimulus are represented by the same trace shown in dotted 

blue in Figure 133. This trace depicts the output voltage waveform the main device would 

assume if it were not limited by available supply voltage. Of course, this is intentional with 

the main device operating into a load of 2Ropt and achieving maximum-voltage and hence 

its high-efficiency state prematurely.
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Figure 133 - envelope interaction at the Figure 1 3 4 - main voltage and auxiliary current spectral
main device output components (100% AM)

5.2.4.2 Spectral Behaviour

In order to better understand how the combination of the various signals within the 

modulated Doherty structure relates to overall linearity, the main device voltage and 

auxiliary device current time-domain waveforms that are present on opposite sides of the 

main combining transformer (T1) are calculated and shown in Figure 135 and Figure 136. 

These are then converted into the frequency domain and shown in Figure 134. Note that 

in the time domain plots, the dotted modulated carrier trace is added for reference only.

The immediate observation from Figure 134 is the main and auxiliary RF envelopes result 

in rich voltage and current spectra with components located at Fc ± wFm, where n is a 

positive integer. It is important to note that these spectra correspond to the inter­

modulation frequencies for the modulation used. The significant observation however is 

the magnitude of the normalised main and auxiliary spectral components, which are 

identical with the exception of Fc, which differs in this case of 100% modulation by 6.6 dB.

Figure 135 - main device output voltage envelope Figure 136- auxiliary device output current
envelope

If the phases of the auxiliary current components are compared to their main device 

equivalents, it is possible to appreciate how load-pull is employed within the Doherty in the 

frequency domain: the activity of the auxiliary device effectively shorts or cancels all out- 

of-band frequency components, whilst presenting the necessary impedances to the in 

band components. This action results in reconstruction of the original 100% AM 

modulation. This may be more obvious in Figure 133, where it is possible to visualise
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summation of the two time domain envelopes, resulting in a reconstructed AM envelope, 

which by definition will not contain any out of band frequency components.

In summary to this section, it is important to understand how the main voltage and 

auxiliary current waveforms combine at the output of the main device, resulting in a 

constant voltage, high efficiency state in the upper 6dB region of operation. It should also 

be clear that the main and auxiliary waveforms are spectrally rich with frequency 

components that are co-located with the inter-modulation frequencies. It follows that 

correct Doherty operation relies on the precise vectoral addition and subtraction of these 

components at the load, allowing the original modulation envelope to be accurately 

recovered. It is reasonable therefore to be concerned about this summing process and the 

implications to linearity if, for whatever reason, the various spectral current components 

are not correctly terminated and are allowed to develop voltage components at the load.

5.2.5 Bandwidth limitation of the Doherty
There are two distinct and equally valid design goals that exist for the Doherty structure 

that apply to both single-tone and modulated operation: the first is to achieve the correct 

phasing of main and auxiliary signals when they combine at the load, and the second is to 

achieve a constant main device output voltage magnitude in the upper 6dB of dynamic 

range. Unfortunately, it appears that these two goals are to some extent incompatible due 

to the frequency dependence of the transforming and delay components used.

With reference to the first point, consider once more the classical Doherty structure shown 

previously in Figure 128. In order to achieve phase-coherent combination of main and 

auxiliary signal components, it is clear that main and auxiliary spectra need to undergo 

identical group delay prior to summation at the load. In the time domain, this requirement 

translates to both main and auxiliary envelopes needing to be delayed equally, and the 

two A/4 transformers T1 and T2 are effective in achieving this12.

A different perspective is gained however if the activity at the output of the main device is 

considered more closely. Firstly, all frequency components of the modulated source signal 

entering T2 will be exposed to two A/4 delays before emerging to load-pull the main device 

at point-A. This results in the carrier component being delayed by exactly 180 degrees 

and emerging with opposite phase to the fundamental component generated by the main 

device, which is exactly what is required to present the necessary impedance for correct 

Doherty behaviour. If the modulation around the carrier is considered separately however,

12 Note - if the auxiliary drive is being synthesised independently of main, then care has to be taken to ensure that both RF  
and modulation are delayed by the correct amount, i.e., 90 and (Fm/Fc)*90 degrees respectively.
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it is clear that the envelope will be delayed by (Fm/Fc)*180°, which in this example results 

in a 5° misalignment between the auxiliary and main RF envelopes at the output of main 

device.

It can be shown that the misalignment of main and auxiliary RF envelopes at the main 

device output results in ‘miss-timing’ of the auxiliary load pull effect, and as a 

consequence distortion of the expected constant magnitude main device voltage 

envelope. The magnitude of this distortion can be seen to increase with modulation 

frequency.
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Figure 137 -main voltage envelope of classical Doherty 
structure

Figure 138 -main voltage envelope of following pre­
distortion of auxiliary current pulse

The effect is illustrated in Figure 137 where in the first instance the delayed envelope 

arriving at the main device can be seen to produce significant distortion of the main output 

voltage envelope. This distorted voltage must ultimately propagate to the load and has a 

number of consequences and implications, including the worrying potential of increased 

proximity of the main device’s load-line to its own knee region, risking increased and 

asymmetrical inter-modulation distortion.

In order to explore ways of countering this effect, the auxiliary envelope was 

experimentally pre-distorted by introducing a phase shift of -(Fm/Fc)*90° to take account 

of the transformer delay, whilst the RF was left unchanged. It can be seen from Figure 

138 that the constant voltage behaviour can be easily restored.

At first glance, it appears that the problem has been cured through phase pre-distortion. 

Unfortunately however, this was found not to be the case as the phase offset introduced 

into the auxiliary envelope resulted in another phase misalignment, this time at the load. 

When considering both extremes, no change in the overall linearity is observed in terms of 

the magnitude of residual13 frequency components. Pre-distorting the auxiliary current

13 The term ‘residual’ is used here to describe voltage spectra that remain following the non-ideal vectoral 
cancellation process described earlier in this chapter.
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pulse can therefore be considered as shifting the problem from one side of transformer T 1 

to the other, and not as improving the overall linearity. In other words, the problem either 

exists at the main device, or at the load, or at both.

One possible advantage of engineering the constant voltage at the main device however 

is it reduces the risk of the main device output voltage interacting with the knee region, 

and hence may offer an improved linearity / efficiency trade-off.
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Looking more closely at the summing of these components at the load, the distortion 

caused by the misaligned envelopes becomes more obvious, and can be seen in Figure 

139 as a ‘kink’ in both sides of the load voltage envelope caused by the asymmetrical 

main voltage envelope, which is clearly visible through the comparison of the original 

modulation with the output voltage envelope Figure 140.

1 .0 - 1
Dynamic
Transfer Characteristic0.8 -

0.6-o
c

■Dro
o
>

0.4 -

0.2 -

0.0 -I
0.0 0.2 0.4 0.6 0.8 1.0

Modulation (norm)

Figure 141 -Doherty transfer characteristic showing distortion

By taking this one step further, and extracting the envelopes for both the original 

modulation waveform and the output envelope, it is possible to illustrate the distortion by 

plotting the dynamic transfer characteristic.

Page 125 o f 201



Doherty Amplifier Structures for Modern Microwave Communication Systems -  J Lees

Output Power Spectrum 
at 100% mod depth-10-

1st tone ripht of side bend

3rd tone right of side bend-3 0 -

I

-7 0 -

-8 0 -

2.0 2408 10 1.2 14 16 1.6
GHz

22 26 28

-30 —| 1st tone left of LSB

-40 -

- 5 0 -

-60 -

- 7 0 -
  Fm=100 MHz
  Fm=5 MHz

-80 -

- 9 0 -

-100

40 50 60 70 80 90 100

Figure 142 -  effect o f varying Fm and residual distortion Figure 143 -  magnitude of 1st tone to le ft o f lower
sideband

Figure 142 shows that by maintaining a PMVR of 100% and sweeping the modulation 

frequency between 5 and 100 MHz, it is possible to observe the impact of this problem 

and to obtain an appreciation of the Doherty’s sensitivity to modulation frequency. What 

emerges is interesting, and shows patterns of behaviour in the residual tones, which can 

be seen to increase in magnitude with modulation frequency. By sweeping both PMVR 

and modulation frequency, it is also possible to gain an idea of the growth of residual 

tones for different values of modulation frequency. Figure 143 to Figure 145 for instance 

show the response to modulation frequencies ranging between 5 MHz and 100 MHz for 

values of PMVR ranging between 40% and 100%.
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Figure 144 -  magnitude o f 2nd tone to le ft o f lower Figure 145 -  magnitude of 3rd tone to le ft o f lower
sideband sideband

5.2.6 Corroboration o f theory through ideal ADS simulation

So far in this analysis, all simulation of Doherty behaviour has been conducted through 

ideal concepts, implemented using the IGOR programming language. In order to bring this 

ideal analysis one step closer to reality, a more realistic Doherty structure was simulated 

using ADS and relatively ideal device models.
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Chapter 5 -  Multi-Tone Measurement and Characterisation

5.2.6.1 Simulation Approach

The initial task was to demonstrate some parity between the simple IGOR experimental 

results, and those generated by a more realistic but still relatively ideal ADS simulation 

employing an input-attenuation Doherty approach. Using a pure AM excitation with a 

modulation frequency of 10 MHz in both ADS and IGOR simulations, modulation depth 

was swept between 0 and 100 % and spectral re-growth around the carrier and side-band 

tones observed14.

ADS Simulation Results
Spectral Behaviour - Intermods dBc

IGOR Simulation Results
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Figure 146 -  tones around carrier (ADS simulation) Figure 147 -  tones around carrier ( IGOR simulation)
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Figure 148 -  output envelope (ADS simulation) Figure 149 -  output envelope ( IGOR simulation)

The similarity between ADS and IGOR approaches is clear in both the frequency domain 

representations of Figure 146 and Figure 147, as well as in the time domain envelope 

representations of Figure 148 and Figure 149. Specifically the distortion is clearly visible in 

both instances of the RF envelope.

14 For this analysis, spectral re-growth is defined in terms o f tones either side o f the carrier. For example, 
tone-1 refers to the first pair o f tones closest to the side-bands, i.e. at Fc±2Fm, tone-2 to Fc±3Fm, and so on. 
This is the approach used in Figure 142.
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5.2.7 Comparison of simulation and measured results

The final comparison presented here is between a further ADS simulation of the same 

adaptive-bias Doherty approach, but this time employing a vendor supplied models of a 

Fujitsu FLK-102XV FET device used for both main and auxiliary devices, which were both 

biased in class-B. The structure was excited by a 10 MHz modulation envelope of fixed 

PEP synthesised using the three-tone approach discussed earlier in this chapter, and with 

a modulation depth varying between 0 and 100%.

tones-3

Inter modulation Products due to 
pure three tone (dBc)_______

ttnes-1 
tones-2 

  tones-3
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- 7 0 - i -----------r
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Modulation Depth (%)

Spectral Behaviour -

tor*es-1

intermods - dBc
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Figure 150 -  tones around carrier (ADS simulation using Figure 151 -  tones around carrier (measured)
vendor supplied model)

The exact same conditions were used to establish a series of measurements using the 

GaAs Doherty structure discussed in Chapter 2, whilst the IF load-pull functionality of the 

developed measurement system was used to present different impedances to the 

significant IF component. The comparative measurements when presenting an IF short 

are presented in Figure 144 and Figure 145, where it is again interesting to see that the 

similarities between simulated and measured results are reasonably good.

Now that the measurement approach had been validated through a comparison of ideal 

simulation, realistic simulation and actual measurement, a more detailed analysis could 

begin looking at the sensitivity of Doherty linearity to modulation frequency, testing the 

assertions made earlier in this chapter.
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There are a number of possibilities when considering potential device technologies for use 

within Doherty PA structures. For base-station applications, silicon LDMOS is a 

technology that continues to evolve and offer excellent performance and value for money, 

and tends to be the device technology of choice in commercial Doherty PA developments 

[36, 61, 62]. The ability of LDMOS to continue in its dominant role is debatable however in 

light of the power, speed, efficiency and linearity requirements of future-generation mobile 

telecommunications systems [63].

GaAs is another well established and evolving device technology that has recently 

emerged as a serious contender in the medium-to-high power microwave transistor 

market, and promises to offer superior performance to silicon based technology [64]. 

There are a number of disadvantages associated with GaAs technology however, and 

these include relatively high cost, limited power density and relatively poor thermal 

dissipation properties.

GaN based device technologies have for some time been generating significant interest in 

the microwave PA community due to a number of attractive characteristics that are highly 

relevant to efficient and linear PA design [65]. The high breakdown voltages associated 

with GaN technology leads directly to theoretically high linear efficiency and high output 

impedance. Other advantages include high power density, high maximum frequency, 

excellent thermal conductivity as well as impressive theoretical linearity [29, 66, 67]. 

These properties have perhaps unsurprisingly led to continued and intensifying interest in 

the development of high-voltage, high-power, high efficiency and high impedance 

microwave transistors offering theoretically at least four times the theoretical maximum 

output power density of GaAs and six times that of LDMOS [65, 68].

For a given required output power, the optimum output impedance (Ropt) differs for each 

device technology, and is an important design consideration. In Doherty design, this 

especially true as Ropt has large implications when realising the very specific output 

matching networks that are required. Table 4 illustrates how the different device 

technologies considered in this chapter compare in terms of typical optimum output 

impedance for comparable maximum output powers. This simple analysis is useful as a 

comparison, yet is approximate as it is based on ideal devices with little or no output 

capacitance and that exhibit little or no RF-DC dispersion15.

15 RF-DC dispersion describes those differences that are observed between measured DC and RF device 
behaviour.
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GaAs devices for instance operate at low supply voltages below 15 Volts, and the large 

periphery power devices tend to demand high currents and hence generally possess 

relatively low optimum output impedance. It is shown for instance that the devices used 

within 10W and 100W GaAs Doherty realisations will typically have optimum output 

impedances of 6Q. and 1Q respectively. This is in contrast to similar power GaN Doherty 

realisations where the devices would possess optimum output impedances of 100Q and 

10Q respectively.

Device Used within Doherty

pmax m 1W
LDMOS
10W 100W 1W

GaAs
10W 100W 1W

GaN
10W 100W

Vd(V) 28 28 28 10 10 10 40 40 40

Vknee (V) 5 5 5 2 2 2 10 10 10

•max (A) 0.08 0.90 8.70 0.25 2.50 25.00 0.06 0.60 6.00

Ropt (D) 575 51 5 64 6 1 1000 100 10

Table 4 -  Doherty and device technologies

Devices with very low optimum output impedance can prove highly problematical when 

designing Doherty output matching structures, especially when using distributed 

topologies, where \ /4  transformers with similarly low characteristic impedances typically 

equal to Ropt will are required.

This chapter examines a number of different device technologies and their suitability to 

the Doherty application, and focuses on the design, fabrication, testing and initial 

characterisation of medium power (<2 Watt) GaAs and GaN structures. Other devices that 

have been considered in less detail include a MGF0951P Mitsubishi GaAs FET, an early 

generation Motorola MRF281 LDMOS FET and a Celeritek InGaP HBT.

A number of different measurement techniques are employed in the design and 

characterisation of the Doherty structures discussed. The use of load-pull and waveform 

measurement systems to synthesise ‘Doherty-like’ dynamic impedance environments 

around single devices is particularly interesting and relevant however, and is discussed in 

detail. This ‘emulation’ approach allows for device characterisation and optimisation under 

expected, operational conditions, and importantly provides extensive insight into device 

interaction within the Doherty.
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6.1 GaAs MESFET Doherty

The CF015-11 medium-power GaAs devices that were used for this design were kindly 

supplied by Celeritek, UK. The MESFET devices have a 1200pm gate width and 0.25 pm 

gate length and are capable of delivering a maximum output power of 26 dBm. They 

employ Silicon Nitride passivation and are fabricated on ion-implanted wafers, and for 

these experiments were mounted in low-profile, low-parasitic Kyocera LCC-8 10-lead 

surface mount leadless ceramic packages. More detail on both the device and the 

packages is supplied in appendix-E.

6.1.1 Bias considerations

Whilst the design of the initial passive Doherty structure is initially discussed in Chapter 3, 

it was important to understand something about the active devices themselves. From 

pulsed DC measurements, these devices were found to pinch off at Vg = -1.5 V, have a 

knee voltage (^) of approximately Vd = 1 V and a maximum saturated current in excess of

400 mA at Vg = 0.5V. Pulsed measurements were conducted using a DIVA 250 system 

[69, 70], using a drain voltage of 5.5V, gate pulse width of 1 ps and an interval of 5 ms. 

The results of this measurement are shown in Figure 7.

From the manufacturer supplied information in Appendix-E and measured s-parameter 

data, the devices were known to possess significant low frequency gain with measured s2i 

at least 16dB at 2GHz. As a result, the devices had a tendency to oscillate, with stability 

analysis indicating that it was necessary to include a 10 Q series resistance in the DC and 

RF path close to the input of the device.
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Figure 152 - CFO 15-11 MESFET -  pulsed D C -IV  
characteristic (Vd=5.5V)

Figure 153 - CFO 15-11 MESFET transfer and trans­
conductance characteristics at Vd=5.5 V
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Although this improved matters considerably, unpredictable behaviour, possibly due to the 

Gunn effect was still a problem at higher bias currents, which is evident from the small 

collapse observed in ld at the top of the DC-IV curves show in Figure 7. This was found 

not to pose a problem under operational conditions however, when the devices were sited 

in the Doherty prototype structure. Conservative approximations of the Vg-Id transfer 

characteristic and trans-conductance curves in Figure 153 were generated using a 

combination of measured DC data and imposed boundary conditions (for example, 

causing Imax to compress at 350mA). Curve-fitting functionality within the IGOR software 

environment [26] was then used to extract a 10 coefficient polynomial function, which was 

in turn used as the basis of a simple model in order to explore device linearity, efficiency 

and gain under varying bias and drive conditions.

The general aim of this initial simulation and analysis was to quickly gain an idea of how 

the devices would respond to excitation, and to decide upon appropriate bias conditions. 

The approach also allowed initial ‘off-line’ investigations to be conducted, whilst avoiding 

the risk of damage. This was particularly important due to the limited number of available 

devices, which had been specifically assembled for this project.

By linearly increasing the magnitude of the excitation applied to the model whilst 

decreasing the gate bias voltage, it was possible to generate output current waveforms 

with varying conduction-angle and constant maximum peak amplitude, as shown in Figure 

154. This is similar to the ideal analysis presented by Cripps in [52] where an ideal 

‘strongly non-linear" asymptotic transfer function is used in place of the actual measured 

device transfer function employed here.
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Figure 154 -  time-domain current waveforms for Vg Figure 155 -  fundamental and DC current and
bias between -1.6V and -0.4 V efficiency as a function of Vg

By analysing the current waveforms of Figure 154 in the frequency domain, it is possible 

to determine the expected harmonic behaviour of the device. Some useful results of this 

analysis are presented in Figure 155, Figure 156 and Figure 157 where it can be seen
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that a gate voltage of Vg=-1.25V results in a class-B bias point that yields a current 

waveform giving a good compromise between unwanted harmonic generation, gain 

flatness, as well as reasonable maximum output power and efficiency.
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6.1.2 Using Load-pull and waveform measurement systems

Load-pull measurement systems are becoming increasingly popular tools in modern 

microwave PA design as they allow the optimisation and characterisation of device 

performance whilst operating into realistic harmonic load conditions. This is achieved 

through the synthesis of specific fundamental and harmonic termination impedances [46, 

47, 71], with typical applications including measurements under constant load conditions 

such as power sweeps into optimum load impedance, measurements under varying load 

conditions such as those needed to generate contours of constant power, gain and 

efficiency, as well as measurements used to explore certain ‘exotic’ PA modes of 

operation such as class-E, class-F and inverted class-F, where very specific harmonic 

terminations are required in order to achieve the required device behaviour. As well as 

controlling the harmonic load, these systems crucially offer the ability to measure the 

absolute current and voltage waveforms that exist at the device or device package plane. 

This ‘complete visibility’ allows for ‘waveform engineering' [47, 71] and the ability to 

observe dynamic load-lines and dynamic transfer characteristics. In other words, it is 

possible to observe the various trajectories of the RF current and voltage at both the 

device input and output. The combination of harmonic load-pull and waveform 

measurement capabilities results in a powerful design approach that is particularly suited 

to Doherty design and optimisation.

It has been discussed in previous chapters how load-pull measurement systems can be 

employed to synthesise the drive dependent harmonic impedances and excitation 

conditions that exist within a specific Doherty structure, around either the ‘main' or single
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‘auxiliary devices. Using this ‘emulation’ approach in combination with measured time- 

domain current and voltage waveforms, it is possible to optimise aspects of the Doherty 

design. More specifically, by understanding the ideal and realistic dynamic impedance 

environments that exist around both main and auxiliary devices within the Doherty, it is 

possible to perturbate, explore and to ultimately identify the characteristics of the output 

matching network that are required to deliver optimum performance.

6.1.2.1 Power sweep at Ropt (25 ty

The first stage of load-pull analysis involved varying the fundamental load in order to 

establish and maintain the previously calculated optimum output impedance throughout a 

power sweep. This was conducted using the calibrated fixture shown in Figure 37 with the 

device biased in the shallow class-B condition identified in Figure 155 and Figure 157. 

The resulting performance is shown in Figure 158 and Figure 159 and shows a 

reasonable agreement to the earlier analysis using the simple polynomial model. This 

simple power sweep into the assumed optimum load was necessary as a starting point, as 

well as to allow determination of the maximum drive conditions that would form the basis 

of a more detailed load-pull analysis involving automated measurements.

2 5 - |

£
20-5

32OS
1 5 -

& Gain
Pout10-

-10 •5 0 5

1 2 0  - i

100 - r 100
8 0 -

12
-  80

r- 60

40 - -  40

20- - 20
efficiency

0 - L 0
-10 -5 0 5

Pin (dBm) Pin (dBm)

Figure 158 Pout and Gain at optimum Figure 1 59 - efficiency and DC drain current at 
optimum

6.1.2.2 Synthesising Doherty conditions around a single ’main’ device 

As has been stated, one of the major advantages of using time-domain harmonic load-pull 

measurement systems for Doherty design is the access to measured voltage and current 

waveforms at the calibrated reference planes [72, 73], Plotting the time-domain output 

voltage vs. output current waveforms allows the analysis of device behaviour through 

observation of dynamic load-lines. These are usually plotted relative to the devices 

boundary conditions or measured DC-IV behaviour, and are advantageous for a number 

of reasons: as has been seen, Doherty understanding is best developed through load-line
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analysis, and specifically how the main and auxiliary device load-lines behave and 

influence each other.

In order to understand how to synthesise the impedance and excitation environments that 

exist within a Doherty structure, it is necessary to revisit and focus upon certain aspects of 

fundamental Doherty theory. In the Doherty’s low-power region of operation where the 

auxiliary device is inactive, the main device load-line or output voltage swing expands 

normally with increasing drive towards the knee region. As the transition point is reached 

however and the high-power region is entered, the main device load-line is ‘restrained’ 

and prevented from entering the knee region, and instead, diverted upwards by the load- 

pulling action of the auxiliary device. In this region of operation and under ideal conditions, 

the main device expects to see a linearly decreasing load with increasing input drive 

voltage magnitude.

From this analysis, it follows that one way to synthesise the required dynamic impedance 

is to manually observe the main device dynamic load-line, and adjust the fundamental 

load such that the output voltage swing is maintained at a constant and pre-defined 

maximum, which approaches, but does not interact with the knee region. Such a 

measurement was conducted during the characterisation of the GaAs MESFET device, 

where the input power was swept over 6dB of dynamic range between 9dBm and 15 dBm, 

whilst the real load impedance was adjusted at each point to maintain a constant voltage 

swing. As Ropt for this device was known to be 25Q, the dynamic Doherty load was 

expected to vary between 50Q an 25Q.
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Figure 160 -drain voltage measured at each point in Figure 161 -drain current waveforms measured at
the power sweep between 9 and 15 dBm. each point in the power sweep between 9 and 15

dBm.

Interestingly however, although the optimum impedance was known to be 25Q, the load 

required ranged between 75Q and 20Q, and is presented graphically as a function of input 

power in Figure 163, along with the resulting output power, gain and efficiency.
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The measured voltage and current waveforms are shown in Figure 160 and Figure 161. 

Although the voltage waveforms are distorted due to non-optimal harmonic termination, it 

can be seen how the magnitude of the voltage waveform remains fairly constant whilst the 

class-B, ‘half-wave’ rectified current waveforms, although containing a significant 

displacement current contribution due to output capacitance, can be seen to increase in 

magnitude as prescribed by classical Doherty theory [21].

By plotting these waveforms as dynamic load-lines on the l-V plane along with the DC 

measurement data, it is possible to observe key performance related behaviour, including 

the proximity of the load-line to the knee-region boundary, as well as any evidence of RF- 

DC dispersion. This is illustrated in Figure 162 where it is clear for instance that the 

dynamic load-lines are where they are expected to be, in relation to the IV plane, and 

there is generally a good agreement between the boundary conditions revealed by the 

dynamic RF load-lines and those defined by the measured DC characteristics.
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Figure 162 -  Celiretik MESFET measured dynamic Figure 163 -  measured performance parameters
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The measured performance over 5dB of dynamic range at the input is presented in Figure 

163. This data has been extracted from the measured voltage and current waveforms and 

demonstrates how it is possible to develop a good idea of how a single device would 

behave when employed as the main device within a Doherty structure. It is clear for 

instance that an efficiency plateau of between 40% and 50% is maintained over the entire 

dynamic range, whilst the output power exhibits the classical compression in the presence 

of non-compressive gain, which is another characteristic of Doherty /7?a/>?-device 

behaviour. It should be remembered that once embedded within the Doherty structure, 

this compressive power characteristic would combine with the expansive power 

characteristic of the auxiliary device, and theoretically result in overall linear behaviour.
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One observation is that over an input dynamic range of 5dB, the load required to maintain 

a constant voltage swing ranges between 75Q to 18Q, which is far greater than the 

expected 2 Ropt to Ropt variation expected over 6dB. This is due to expansive gain of the 

device, and is an important design consideration that is discussed in more detail in 

chapter 3.

If the net parasitic capacitance and inductance associated with the package and bonding 

arrangement is small, and the calibrated reference planes can be defined physically close 

to the active device, as is the case with the packages used here, then it is possible, 

although not ideal to use the measured waveforms with no de-embedding, as is 

demonstrated in Figure 162.

In this case however, it is possible to recover the classical half-wave rectified current 

waveforms that are characteristic of ideal simulations, by accounting for the effects of 

displacement current due to device output capacitance. Equation (30) represents a time- 

domain process where the device output voltage (vc) excites an output capacitance (Q  

which in turn causes a displacement current (7C) to flow and distort the devices ‘normal’ 

trans-conductive current.

j dQ j dvAt)
/ = —  /  =  C  c—  (30)

dt dt

Employing an experimentally derived output capacitance of 4pF, it was possible to remove 

this effect, returning the distorted current waveforms of Figure 161 to the familiar half 

wave rectified waveforms shown in Figure 165.

For these measurements, second and third harmonic impedances have been passively 

tuned to near to 50 Cl. This has resulted in harmonic voltages being developed that 

combine with the fundamental voltage resulting in a waveform that tends to mirror the 

current waveform. Conditions are different in the Doherty measurement prototype 

however with even order harmonics terminated into low impedances by the harmonic trap, 

while odd harmonic components are naturally suppressed through choice of bias point 

[52].

The load-pull measurement system used is capable of synthesising a wide range of 

harmonic impedances at a calibrated reference plane, so presenting very low second and 

third harmonic impedances in order to mimic the impedances presented by the Doherty 

output structure is the obvious approach. Achieving this with packaged devices presents a 

specific challenge however as the effective calibrated reference plane needs to be
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extended from the package-lead plane, through the package to the device plane itself. In 

other words, the effects of package parasitics as well as any associated delay need to be 

considered and de-embedded from measurement results before harmonic impedances 

can be accurately presented at the device plane. This is especially true for the harmonic 

components as the parasitic effects have an increasing effect with frequency.

In the absence of detailed package information or the necessary time required to conduct 

a thorough de-embedding process, one way of gaining an approximate idea of the 

fundamental voltage behaviour is to consider only the measured fundamental voltage 

component.
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Figure 164 -  Celeritek MESFET Vd (fl) (V) Figure 165 -  Celeritek MESFET de-embedded
Id(mA)

The measured fundamental voltage and output-capacitance corrected current waveforms 

are shown in Figure 164 and Figure 165. These align much more closely to ideal 

counterparts and give a good indication of what would actually happen at the device plane 

if the harmonic components were to be shorted. It is also assumed that shorting the 

harmonics will have little effect on the measured current waveforms due to spectral 

currents insensitivity to harmonic impedance.

6.1.3 Results

Detailed measurements of the GaAs MESFET Doherty structure discussed here are 

presented in chapter 4, where the structure is used as a vehicle to demonstrate the 

functionality of the single-tone Doherty measurement system. These measurements are 

extensive and include both input-attenuation and adaptive-bias Doherty realisations, as 

well as showing how it is possible to optimise the GaAs MESFET Doherty structure 

through dynamic adjustment of relative input phase and other parameters. The following 

measurement is not included in chapter 5 and is considered as an excellent way of 

demonstrating the presence of Doherty behaviour as well as highlighting some interesting 

design issues that exist. Specifically, this is the compromise between gain and efficiency 

in relation to the choice of auxiliary gate bias point for an lA-Doherty realisation.
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Figure 166 and Figure 167 show the single-tone lA-Doherty gain and efficiency as a 

function of Pjn and for different static values of auxiliary device gate bias, ranging between 

Vg=-2.2V and Vg=-1.25V.

The results reveal much about Doherty behaviour of this structure: The traces in Figure 

167 show that in the low-power region below the transition point (PT), as the auxiliary gate 

bias is increased above pinch-off (approx. Vg=-1.6V) the efficiency degrades rapidly 

loosing all signs of plateau behaviour, whilst the gain can be seen to increase uniformly. 

Turning attention to the high power region above the transition point, if the auxiliary device 

is biased too positively, significant overall gain expansion is observed alongside a poor 

efficiency profile. If the auxiliary bias is however too negative, a good efficiency plateau is 

observed, but this is in the presence of significant overall gain compression, indicating that 

the main-device load-line has expanded into the knee region. The real advantage of this 

measurement is that the optimum auxiliary bias condition is exposed. In this case it can be 

seen for instance that a choice of Vg=-1.8V results in a reasonably flat overall gain 

together with what is recognisable as an almost classical Doherty efficiency plateau.

I
J

[MESFET Doherty structural 
1 8 GHz

Vfl_aux*-22V 
- v -  Vg_aux*-2 OV 

* Vfl_»ux*-18V 
Vjl»ux**1 6V -tr- Vn_***-1.4V 
Vg_aux»-1 25V

Pin (dBm)

Pin (dBm)

Figure 166 -  input attenuation Doherty gain Figure 167 -  input attenuation Doherty efficiency

Page 139 o f 201



Doherty Amplifier Structures for Modem Microwave Communication Systems -  J Lees

6.2 GaN HFET Doherty
The realisation of a GaN Doherty PA structure was significant milestone as it involved the 

combination of a promising, potentially highly-efficient device technology with a relatively 

well-established high-efficiency PA structure. This represented an important phase of 

work, the validity of which is evident from both conference and journal publications [32, 

33] that attracted a significant amount of industrial interest, along with a completely new 

research activity concentrating on the realisation of higher power GaN Doherty PAs.

Experimental AIGaN/GaN HFETs [74, 75] were used for both main and auxiliary devices 

of the Doherty structure. These devices were designed for S-band operation and have 

four 0.8pm long, 250pm wide NiAu gates. The HFET layer structure was grown by 

MOVPE and consisting of 30nm un-doped AIGaN (25%), a 1nm AIN layer to improve 

mobility and linearity [76] and silicon nitride passivation has been used to reduce the 

effects of current slump [28, 77] which is a documented problem with GaN transistor 

technology [29].

Two dies, each comprising five 1mm GaN devices were mounted into two Kyocera LCC-8 

10-lead surface mount leadless packages. Two of the five devices within each package 

were bonded to the package leads in such a way as to allow either the connection of a 

single 1 mm device, or the parallel connection of two devices creating a larger 2mm 

device.

6.2.1 Design considerations
The GaN Doherty structure was designed using a similar approach to the proven GaAs 

MESFET experimental structure discussed earlier in this chapter, but with an impedance 

environment suited to devices with a Ropt of 50Q. The strategy was to use an identical 

structure to implement two different power GaN Doherty realisations, using initially 1 mm 

and then 2mm devices. As the impedance environment was fixed, the only way to achieve 

this whilst maintaining the optimum output impedance of 500 was to use two different 

drain bias voltage conditions of 17V to 34V for the 1mm and 2mm realisations 

respectively. This can be considered as a somewhat unorthodox approach, but is possible 

in the case of GaN technology devices due to the high breakdown voltages in comparison 

to other technologies. The maximum output power for the Doherty realisation using 2mm 

devices was expected to be more than four times that of the same structure using 1mm 

devices. This was based on the early assumption that the knee voltage would remain the 

same for both devices and both cases of drain bias. As will be seen, this was not to be the
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case due to the now well documented GaN associated problems of knee-creep and 

current slump [28, 77].

The devices were mounted in the same chip carriers as used in the GaAs MESFET 

design and were soldered into the experimental Doherty structure, which is described in 

more detail in chapter 3.

73

>./4
25n

Zt = Ropt = 50 Ohm
100n

72

^ 5 0  Ohm

Figure 1 6 8 -  Doherty structure and impedance environment

The experimental structure is represented in the Doherty schematic of Figure 168. The 

main and auxiliary devices are connected via the central A/4 transformer (T1) possessing 

a characteristic impedance equal to Ropt, which in this case is 50Q. According to classical 

Doherty theory, in the low-power region of operation an impedance of Ropt/2 or 25Q must 

exist at the output of the auxiliary device, which will in turn be transformed to an 

impedance of 2Ropt at the output of the main device. In this case, the 25Q is realised 

through the transformation of the 50Q system load via a second A/4 transformer (T2) 

possessing a characteristic impedance of 33.3Q, as calculated using (31).

Zt = ->J (Ropt /  2)-50 (3 i)
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6.2.1.1 DC m easurem ents

Static and pulsed DC measurements were conducted on the 1mm GaN device using a 

DIVA 250 system [69, 70]. For the pulsed measurements, a gate pulse width of 1 (iS and 

an interval of 5 ms were used, and the results are shown below in Figure 169 and Figure 

170.

600 -

500 -

f  m '
H 3 0 0 -

200 -

1 0 0 -

0 2 4 6 8 10 12 16 1614
Vd (V) Vd<v>

Figure 169 - 1mm GaN static DC-1V characteristic Figure 1 7 0 - 1mm GaN pulsed DC-1V
characteristic

Both static and pulsed DC measurement results indicated a degree of non-ideal behaviour 

in the form reduced drain current ‘kinks’ for drain voltages below 10V, which are most 

likely attributable to charge related effects as no oscillations were observed. As was the 

case for the GaAs MESFET design, an initial model was extracted from the measured DC 

data by fitting a 10 coefficient polynomial function to an extracted Vg-ld transfer function. 

The polynomial coefficients were stored using the discrete MDIF file format [78], and 

made available as a model within in the ADS simulation environment using a Data 

Accesses Component (DAC) and a Symbolically Defined Devices (SDD) component [78].

The use of this relatively simple modelling approach was considered valid as it was 

assumed at this stage that device parasitics would be minimal. This is especially true in 

the case of GaN technology as the output capacitance is observed to be smaller than that 

observed for similar power GaAs MESFET devices. This assumption would be tested and 

later confirmed through load-pull measurements.

6.2.1.2 Initial design and simulation

From the measured DC-IV characteristics of a single 1mm device, pinch-off was observed 

to be at approximately Vg=-6V. A fundamental load-line was assumed for a drain voltage 

of 17V and maximum useful DC current (l max) of 500 mA. This allowed a maximum 

fundamental power of where Vpeak and 1 ^  are the peak fundamental RF voltage

and current components respectively. For the initial design and in terms of DC conditions, 

it was assumed that and that Assuming the DC measurement-
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suggested knee voltage (^) of 5V, it could be deduced that the optimum impedance for 

the 1mm GaN devices for the given drain voltage was 50Q, as described in (32).

' ( V d - V k ) *  2 ( 1 7 - 5 ) * 2
Imax 0.5

Both main and auxiliary devices were designed to operate into a load of Ropt, and under 

maximum drive conditions, would be expected to deliver the same maximum power to the 

load. This would result in a combined maximum power of 3 Watts, as described in (15) 

and (33). If the 1mm devices are replaced with the larger, 2mm devices and the supply 

voltage increased from 17V to 34V accordingly, then the maximum power would be 

expected to increase by 6dB. This translates to an increased maximum output power of 

12 Watts or 40.6 dBm.

It is important to note however that this initial design was based on DC measurements 

alone, and assumed no dispersion between DC and RF behaviour.

The design was aided by ADS simulations using a simple modelling approach and 

involved implementing an input attenuation Doherty approach employing two, identically 

sized and identically biased devices. Some of the simulation results are presented here.

One approach that was employed in bringing about Doherty behaviour within a simulation 

is to make use of the simulators optimisation capabilities to identify the required auxiliary 

device behaviour. More specifically, the optimiser is used to identify the auxiliary drive 

magnitude required to maintain a constant main device output voltage swing, such that 

the main device load-line is held close to, and prevented from interacting with the knee 

region. This optimisation was performed for both 1 mm and 2mm designs over at least 6dB 

of dynamic range. Figure 171 and Figure 172 shows the identified, ‘optimised’ auxiliary 

device input voltages, Vin (Aux), that gives rise to almost constant main device output 

voltage magnitude, and can be seen to be an almost linear functions of the main input 

voltage Vin (main).
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Figure 171 -  I mm main device Vd and auxiliary I/P  
drive

Figure 1 72 - 2mm main device Vd and Auxiliary I/P 
drive

This near ideal main device behaviour is as a result of the almost ideal auxiliary and main 

device load-line behaviour shown in Figure 173 through Figure 176.

1mm Mam Device - load-line 1 mm Aux Device - load-line

| P m  n t » *  M 8

i

0 5 -

0 4 -

£ 0 3 — 

2  0 2 -  

0 1 -

0.0

Vd

Figure 173 -  1mm device main load-line 

2 x 1mm Main Device - Load-line

Figure 174 -  1mm device auxiliary load-line 

2x 1mm Aux device - Load-line

1 o - 10-

;  0 6 -

2  0 4 -

0 2 -

-02
70

Vd Vd

Figure 175 -  2mm device main load-line Figure 1 76 - 2mm device auxiliary load-line

The near ideal Doherty load-lines show how the main device voltage swing is being 

maintained close to, but not too close to the device’s knee-region. This translates perhaps 

unsurprisingly into near ideal Doherty performance, which is evident from the efficiency 

plateau and nearly constant gain over the entire dynamic range shown in Figure 177 and 

Figure 178.
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1mm GaN Gain and Efficiency 2mm GaN Gain and Efficiency
60 10 0 62 160

50

55

5 0 — m  i | i m  i | m  i i | i i m  | i i i i | i i i i | m  i i — 14 0
19 20 21 22 23 24 25 26

Pin_main (dBm)
19 20 21 22 23 24 25 26

Pin(dBm)

Figure 177 -  1mm device Gain and Efficiency Figure 1 78 - 2mm device Pin-Pou, characteristics

It is worth noting that the gain of the Doherty employing the larger, 2mm devices is 6dB 

more than the same structure employing the 1mm devices. This is as predicted and 

simply because the available device current and available voltage have doubled. It is also 

worth noting that the 6dB dynamic range specified by classical Doherty theory is not quite 

achieved in the optimisations. This is because the main device voltage magnitudes that 

are specified as optimiser goals are slightly conservative and less than that used in the 

initial design. This could be corrected by a small increase in the value of Ropt and would in 

turn allow the main device to achieve maximum voltage swing and maximum efficiency at 

a slightly lower input drive, slightly extending the dynamic range. This is in fact the basic 

principle behind extended dynamic range Doherty structures, as is described in detail in

[9], where it is shown how the dynamic range can be easily extended from the classical 

6dB by adjusting the characteristic impedance of the main inverting transformer and 

providing more available auxiliary current.

The above simulations, as well as allowing observation of the dynamic load-line 

behaviour, also provide access to the time domain current and voltage waveforms. The 

ideal behaviour gives an important reference against which the actual measured 

behaviour presented later in this chapter can be compared. Figure 179 and Figure 180 

show the nearly ideal RF voltage and current waveforms that are used to construct the 

load-lines shown in Figure 173, and are another way of observing the near constant main 

voltage swing together with a linearly increasing current magnitude.
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Figure 179- simulated 1mm main-device O/P voltage Figure 180 -  simulated 1mm main-device O/P current 
waveforms over 6dB dynamic range waveforms over 6dB dynamic range

Figure 181 and Figure 182 show the resulting, simulated output power for both 1mm and 

2mm Doherty realisations and confirm that the expected maximum output power is both 

linear, and agrees with the previously calculated values of 3 and 12 Watts.

1mm GaN Doherty - Pout
3.5

-3 .0
3 4 -

- 2 5

- 2 0

-1 .5

- 1.0

-0.5
20 2119 22 23 24 25 26

Pin m

2 x 1mm GaN Doherty - Pout

4 0 -

- 1 0Em
T3

saQ.

22 23 2724 25 26 28 29

Pin m

Figure 181 -  1mm device Pin-P0ui characteristics Figure 182 -  2mm device P,„-Pou, characteristics

6.2.2 Initial load-pull measurements at Vd = 17V

As was the case for the GaAs MESFET, a time-domain load-pull measurement system 

was used to sweep a real, fundamental load presented to a single 1mm GaN HFET 

device biased in class-B (Vg=-6V), over at least 6dB of dynamic range. The required 

impedance was determined experimentally, such that a constant maximum output voltage 

swing was maintained close to the knee-region, in much the same way as the simulated 

optimisation approach discussed in the previous section. The resulting current and voltage 

waveforms are shown in Figure 183, which at first glance compare quite well to simulated 

results, and look similar in profile to those observed for the GaAs MESFET device.
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Figure 183 -  1mm Qinetiq GaN drain voltage at 
Vd=17V

Figure 184 -  1mm Qinetiq GaN drain current at
Vd=17V

Although the voltage magnitude remains relatively constant and the magnitude of the half­

wave rectified current waveform increase as expected with increasing input drive, on 

closer inspection there is some current compression evident at higher drive levels, and the 

maximum magnitude of both voltage and current are lower than expected. This is more 

noticeable when the waveforms are viewed as dynamic load-lines, where the GaN related 

effects of knee-creep and current-slump become clear. These problems have a significant 

effect at elevated drain bias voltages and result in a significant dispersion between the 

measured DC and RF characteristics [28, 77],

Figure 185 illustrates how the use of a drain bias voltage of 17V has resulted in a 

significant collapse in maximum achievable drain current together with a severe limitation 

on the maximum drain voltage swing. When device performance under these conditions is 

considered, Figure 186 reveals a plateau of relatively low efficiency between 30% and 

40% over 8 dB of dynamic range together with a maximum output power of 28 dBm, 

which is almost 3dB lower than simulations and initial designs suggested was possible.
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Figure 185 -  GaN HFET measured dynamic load-lines for 
Vd= 17 V, with overlaid pulsed DC1V data

Figure 186 -  Qinetiq GaN measured 
performance for Vd=17V
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6.2.3 Load-pull measurements at reduced Vd of 12V
The above analysis, as well as showing Doherty behaviour around a single, main device, 

illustrates how the device’s knee voltage has ‘crept’ from 3V to 6V and the available RF 

current has collapsed from approximately 500 mA to 300 mA. Compounding these 

problems the resulting sub-optimal impedance that is presented to the device results in 

disappointing output power and efficiency. In order to optimise the Doherty structure such 

that the effects of knee voltage ‘walk-out’ are reduced, further large-signal measurements 

were conducted and an optimum drain voltage of Vd=12V was identified that allowed for a 

maximum ‘slumped’ current of 350mA and the reduced knee voltage of 3V. Using this 

approach, the value of Ropt was conveniently maintained at 50Q, allowing the same 

structure to be used.

The re-measured current and voltage waveforms are shown in Figure 187 and Figure 188, 

and show current waveform behaviour that relatively unchanged in comparison to the 

Vd=17V case, and a voltage swing that is somewhat reduced .

S 12- 
5 io-

0.0 0.5 1.0 1.5 2.0

300-1
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2

10 0 -
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0.0 0.5 1.0 1.5 iO

Figure 187 -  1mm Qinetiq GaN drain voltage at Figure 188 -  1mm Qinetiq GaN drain current at
Vd=12V Vd=12V

The new dynamic load-line is presented in Figure 189, and clearly shows that the collapse 

in knee-voltage is not as significant and has receded to somewhere in the region of 3V, for 

a similar maximum current of 300 mA. When device performance is re-considered, In 

comparison to the Vd=17V case, Figure 190 reveals a plateau of improved efficiency 

between 40% and 50% over 8 dB of dynamic range, representing an approximate 10% 

improvement. This is alongside a maximum output power of 27.5 dBm, which is only 

marginally lower than the Vd=17V case.
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Figure 1 9 0 - Qinetiq GaN measured 
performance for Vd=12V

6.2.3.1 Contour Plots
In order to test the assumptions made regarding the optimum device impedance, output 

power, etc, a measurement was conducted where the device was biased in class-B, the 

drain voltage set at 12V, and the available input power fixed at a point that caused 1dB 

compression into a load of 50Q. The fundamental load was then varied over a region of 

the Smith chart centred at 50Q, whilst output power, efficiency and gain were measured. 

The results are presented as contour plots in Figure 191, Figure 192 and Figure 193 

respectively, and show that in terms of output power, the optimum impedance is actually 

15Q higher than the assumed value at 65Q.

Close

Figure 191 -G a N  H F E T  P,wl contours at ldB  compression point (Vg:- Figure 192 -  MESFET Efficiency contours at ldB compression 
6.00V, Vd:12V) point (Vg:-6.00V, Vd:12V)

Load=(-0.16,-0.01), Pou<=28.5 dBm, Efficiency=52.1%> Load=(0.42,0.38), Pou,=27.1 dBm, Efficiency=63.2%
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Figure 193 -M E S FE T Gain contours at ldB  compression point (Vg:- 
6.00V, Vd:12V)

Load=(-0.25,0.37), Pou,=28dBm. Efficiency=42.7%
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6.2.4 Fabrication

Figure 1 9 4 - layout o f GaN Doherty Figure 195 -fabricated GaN Doherty

The GaN Doherty can be seen to be very similar in structure to the original GaAs 

MESFET Doherty, with three series A/4 transmission lines and two devices situated at the 

interfaces of these lines. The structure was fabricated using Rogers TMM3, possessing 

the following major properties: £r: 3.25, Laminate thickness: 30 mil, conductor thickness: 

17.5 qm,

As the GaN devices were in very short supply, the intention was to conduct as much of 

the initial testing and tuning as possible passively and in advance of mounting the devices 

themselves. This involved tuning, and the inclusion of low frequency decoupling 

capacitors that would be necessary for planned modulated measurements. This approach 

is in contrast to the GaAs Doherty design where it was found convenient to perform most 

of the tuning with the devices in place. Tuning is discussed in detail in Chapter 3.
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6.2.5 Testing

6.2.5.1 Main device in isolation
ihe first stage of testing involved mounting the ma/n-device in isolation, i.e. with no 
Auxiliary device present and examining the Doherty structure behaviour in the low-power 
region of operation. Using this approach, it was possible to compare measured and 
expected behaviour in the region of operation, where the auxiliary device is intended to be 
inactive, whilst being absolutely sure that the physical presence of the auxiliary device 
does not affect measured behaviour. Biasing the device at a drain voltage of 17V and with 
Vg jnain  = Vg_aux = -6V, single-tone excitation was then applied to the main device and 
the input power swept over a dynamic range between OdBm and 25dBm. The first 
observation from the measured results was that there was an obvious and gradual 
collapse in gain, well before the point of compression predicted by DC characterisation. It 
was also observed that although the gain profile could be modified by adjusting the gate 
bias, the premature compression could not be avoided. Under such conditions, it was 
difficult to select an optimum gate bias condition. However, following some 
experimentation, Vg=-6.5V was chosen as the bias point to offer the optimum in terms of 
efficiency and gain flatness.

6.2.5.2 Main device with auxiliary device present and biased-off
The auxiliary device was then inserted into the structure, biased off at Vg=-9V, and the 
measurements repeated, in order to confirm the physical presence of the inactive auxiliary 

device had no significant effect on the previously measure results.

It is worth stressing the importance of this stage of testing as it was known that any 
significant device output capacitance could have a profound effect on the device’s off- 
state output impedance, and for this Doherty structure with its devices mounted directly on 
the combining transformer, this would have a disastrous effect on the overall performance. 
This problem stems from the inability to effectively ‘disable’ devices such that they present 
high RF impedance in their non-conductive state. When designing Doherty’s using 
devices with high output capacitance, specific measures must be taken such that low off- 
state output impedances at the output of the auxiliary device are transformed to much 
high impedances using techniques such as those proposed in [42, 60, 79].

Figure 196 and Figure 197 show the behaviour of the main device whilst the auxiliary 

device is biased hard-off at -9V, and the main device gate bias is swept between -6V and 
-6.8V, whilst the drain voltage was maintained at 17V.
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Figure 1 9 6 - main device in isolation (gain) Figure 197 -  main device in isolation (Efficiency)

The graphs show that although variations in gate bias have a significant effect on gain, 

especially at lower drive levels, the impact on efficiency is relatively small. What is also 

worth noting is the low maximum drain efficiency achieved for a device technology that 

promises high linear efficiency.

6.2.5.3 Improving performance by reducing the drain voltage
Although somewhat disappointing, some performance degradation was anticipated due to 

the known effects of the current-slump and knee voltage walk-out problems associated 

with these devices, as discussed in 6.2.2. In an attempt to reduce these effects and 

improve performance, the same measurement was conducted using a lower drain voltage 

of 10V, the results of which are shown in Figure 198 and Figure 199, where it can be seen 

that the efficiency has improved.

From these improved results, it was possible to select the maximum Doherty drive power 

(PPEP) and the transition point drive power (PT) corresponding to 23 dBm and 17 dBm 

respectively.
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Figure 1 9 8 - main device in isolation (gain) Figure 199 - main device in isolation (Efficiency)

6.2.5.4 Testing for Doherty behaviour using the adaptive-bias approach
An adaptive-bias Doherty approach was used to test the structure. Figure 200 and Figure 

201 show the GaN Doherty gain and efficiency for power sweeps where bias_off is varied 

between -8V and -9.5V. The parameter ‘bias_off’ is the fixed gate-bias voltage that is used
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to prevent the auxiliary device from conducting in the low power region of dynamic range. 

This is a critical parameter: if it is set too high the auxiliary device will begin to conduct 

prematurely resulting in poor efficiency and reduced maximum power. If on the other hand 

it is set too low, the auxiliary device does not conduct soon enough, and the main device 

load-line is allowed to expand into the knee-region, severely degrading linearity 

performance.
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Figure 200 -  GaN Doherty -  effect o f value o f bias- Figure 201 -  GaN Doherty -  effect o f value of
off on gain bias-off on efficiency

A good compromise between main device compression and auxiliary turn-on can be 

achieved by setting bias_off to -8.5V. It must be noted however that the rapid decrease in 

both gain and efficiency at the high-power end of the sweep is not completely due to 

normal device compression, but instead a consequence of bias dependent gain-phase, 

which, as was the case for the GaAs devices in the previous section, is significant. This 

effect can be appreciated when viewing the efficiency as a function of both Pin and relative 

input phase, as shown in the following section and presented as a surface in Figure 204.

6.2.5.5 Effect of bias dependent gain-phase

Through experimentation, it was quickly realised that the optimum relative input phase for 

maximum efficiency varied by approximately 25 degrees over the high power region of 

dynamic range, i.e. between the transition point and the point of maximum drive. A simple 

experiment was conducted where power sweeps were conducted for fixed values of 

relative input phase. Figure 202 and Figure 203 show Doherty gain and efficiency for the 

case of Vd=12V and bias_off=-8.5V, and illustrate how both efficiency and gain are 

heavily dependent on relative input phase, at least for the adaptive-bias approach used.
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Figure 202 -  GaN Doherty -  effect o f relative input Figure 203 -  GaN Doherty -  effect o f relative 
phase on gain input phase on efficiency

6.2.5.6 Surface measurements

To obtain a clearer picture of what was happening, the relative input phase was set to the 

optimum phase measured at the transition point, and then swept by ±70 degrees in 4 

degree steps. For each phase value, the input power was swept between 0 dBm and 23 

dBm. The main device gate bias was set to equal the final value of the auxiliary device 

gate bias at -6.5V, whilst the drain voltage was set to 10V. Using a carrier frequency of 

1.8GHz and a value of bias_off = -8.5V, the adaptive-bias gain and efficiency were 

measured and are shown in Figure 204 to Figure 207.
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Figure 204 -  efficiency from above Figure 205 -  efficiency from side

The first two plots show the measured drain efficiency viewed from two different 

perspectives. Whereas Figure 204 clearly shows the bias dependent gain-phase 

behaviour, Figure 205 clearly shows the existence of the efficiency plateau.
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Figure 206 -  gain surface from side Figure 207 -  gain surface from above

Of course, when interpreting Doherty results, it is important to consider gain as well as 

efficiency. Figure 206 and Figure 207 present the corresponding gain surfaces, which 

although non-optimal due to the devices used, show that the efficiency plateau exists in 

the presence of non-compressive gain. These results are summarised in the efficiency 

and gain plot of Figure 208, which identifies the maximum measured efficiency at each 

point in the power sweep, along with the corresponding gain. Also shown is the relative 

input phase profile, which has been employed in achieving the optimised efficiency, as a 

function of output power. The interesting observation here is that the required relative 

input phase in degrees is almost a linear function of output power in dBm.
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Figure 208 -  single-tone gain and efficiency and relative input
phase
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6.2.5.7 Modulated behaviour
The structure’s modulated performance was explored using the multi-tone measurement 

system employing three-tone excitation with swept-depth and constant Peak Envelope 

Power (PEP). Although possible to present surfaces describing linearity in terms of the 

various mixing products, for reasons of simplicity this is achieved here using a single, 

fixed relative input phase corresponding to the measured optimum relative input phase at 

the transition point. Using where possible the same conditions to those used in single-tone 

measurements, i.e. Fm = 10 MHz, PEP = 23 dBm, Vg_/7?a/n=Vg_aux = -6.5 and Vd =12V, 

the modulation depth was swept between 0% and 100%. The measured linearity 

performance is then presented as a function of modulation depth, and shown in Figure 

209 and Figure 210. It is worth noting that the measured linearity behaviour for the GaN 

Doherty structure is very similar to that of the GaAs Doherty structure, and both agree well 

with the simulated predictions presented in chapter 5.
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Figure 209 -  2-tone linearity performance (1-P 
atten)

Figure 2 1 0 -  3-tone linearity (dBc) performance (I- 
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Chapter 7 Conclusions

Although the Doherty is renowned for its elegant simplicity, its realisation using modern 

microwave devices is problematical, far from simple and reveals many hidden 

complexities which are brought about by the complex harmonic interaction between two 

active devices, and conspire to cause a variety of performance related problems.

This thesis considers both fundamental and harmonic behaviour of the Doherty PA and 

concentrates initially on identifying the various design trade-offs that exist between 

linearity and efficiency. Using extensive single-tone and modulated analysis, a novel 

measurement approach has been developed that involves replacing the classical 

Doherty’s symmetrical input power division arrangement with independent, phase- 

coherent excitation. Using this approach, a number of optimisation approaches have been 

identified that involve the dynamic adjustment of relative input magnitude and relative 

input phase of main and auxiliary device excitations, as well as relative device bias. One 

key observation is shown in Figure 72 where it is clear that for the GAaS MESFET used, it 

is necessary to adjust relative input phase by as much as 30° throughout the dynamic 

range in order to achieve optimum efficiency.

Other work includes the development of measurement systems and specialised 

excitations that allow the meaningful comparison between measured single-tone and 

modulated performance, as well as allowing investigations into Doherty linearity. The 

extensive use of harmonic load-pull measurement systems and the direct synthesis of the 

impedance environments that exist within the Doherty have allowed a number of device 

technologies to be considered. This has resulted in the realisation of GaAs and GaN 

Doherty prototypes which have been extensively characterised and form the basis of a 

number of significant publications.

Following an introduction which places the research activity into context, Chapter 2 

introduces some essential theory of the Doherty PA, as well as additional detail that is 

relevant to this thesis and not general available in published literature. It is considered 

constructive for instance to evaluate Doherty operation, not only in terms of transformed 

impedances, but also in terms of terminal voltages and currents that are present at the 

Doherty’s main and auxiliary device outputs, and specifically how these map onto the l-V 

plane of a device. This discussion is extended to characterising device behaviour whilst 

exposed to Doherty impedance environment. This novel emulation approach involves 

employing fundamental load manipulation to maintain a constant device output voltage,
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over a wide dynamic range. Even when working with relatively ideal device models, this 
analysis leads to key observations including the drive related non-constant device gain 
seen in Figure 20, and behaviour that has significant consequences in terms of Doherty 
design. It is clear from Figure 19 for example that even using a device with small parasitic 
properties and low output capacitance, the dynamic range of the Doherty will be limited to 
due to the constant output voltage leading to significant displacement current relative to 
the fundamental output current. This analysis was valuable and formed the basis of the 
harmonic load-pull measurements conducted towards the end of the research and 
described in Chapter 6, where real devices from different device technology families are 
characterised within synthesised Doherty environments. Classical, input-attenuation and 
adaptive-bias Doherty implementations are discussed in some detail, together with the 
importance of harmonic generation and termination within the Doherty PA

The Doherty PA is without doubt an elegant and simple structure; however, its successful 
realisation using modem microwave devices tends to be problematical. Chapter 3 

considers this problem, which is in essence due to a number of subtle complexities that 
exist at both fundamental and harmonic levels, and that are in general brought about by 
the complex interaction between the two active devices, and their passive environments. 
Whereas observing device behaviour within static, well-behaved impedance environments 
is relatively straight forward, achieving the same visibility within the highly complex and 
dynamic impedance environments within the Doherty structure is, in comparison 
extremely difficult. This problem is further aggravated by the fact that that in some Doherty 
realisations considered, both the bias and excitation delivered to the main and auxiliary 

devices will be dynamic functions of the applied drive magnitude [31, 42, 43].

Two Doherty characterisation approaches have been considered. The harmonic approach 
involves using harmonic load-pull measurement systems to develop understanding of 
Doherty behaviour through the synthesis and presentation of ‘Doherty’ harmonic 
impedance environments to a single device. Although considered to be the ‘ideal’ 
approach, it was also deemed high risk and was at the time, considered not to be the best 
or most appropriate option.

The alternative fundamental characterisation approach that was ultimately adopted 
involved developing specific Doherty measurement structures and biasing arrangements 
that were effective in suppressing harmonic generation, thus allowing research to focus 
upon fundamental Doherty behaviour and optimisation without the added complexity of 
harmonic interaction. Two Doherty measurement structures are discussed that have been 
designed for devices with optimum impedances of 250 and 500, for GaAs and GaN
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Doherty realisations respectively. These structures contain all of the necessary elements 
to support Doherty behaviour, such as output impedance transformation networks, 
harmonic suppression mechanisms, stabilisation mechanisms, bias circuits, etc, and are 
in effect complete, functional Doherty amplifiers. The tuning of these structures ensures 
that even order harmonics are suppressed, which is critical to the success of this 
approach.

Chapter 4 considers the evolution of the measurement systems developed for Doherty 
characterisation. This includes the synthesis of main and auxiliary excitation signals, 
provision of the required bias environment, the measurement of the resulting power 
spectrum and the implementation of a suitable software environment to support 
calibration, measurement control and data presentation. Through the use of independent, 
phase-coherent microwave signal generators, a measurement system was developed that 
allowed the automated, systematic perturbation of relative input phase, relative input 
magnitude and relative bias profile, together with the ability to measure the effects of 
these perturbations in terms of key performance parameters. Although measured single­
tone results are conclusive in demonstrating the presence of Doherty behaviour in the 
realisations that have been considered, they are also indicative of the hidden complexities 
that exist within the simple Doherty structure. Investigation into these complexities has led 
to a number of optimisation possibilities involving the dynamic variation of relative input 
phase, relative input magnitude and bias profile. From early analysis and Figure 81 
through to Figure 98, it is clear however that improving one parameter generally leads to 
degradation of others.

The most effective way of presenting the resulting large amounts of measurement data 
was found to be graphically, through the use of 3-dimensional surface plots, through 
which it was clear for example that gain and efficiency of the GaAs MESFET structure 
were very much functions of relative input phase. In summary, the simple Doherty 
structure is far more complex than simple theory suggests is the case.

One key assumption made during single tone analysis was that optimising the Doherty 
structure for constant gain and constant gain-phase would lead to improvements in overall 
linearity. This theory was untested however and it was essential to be able to measure 
Doherty performance under modulated excitation. In Chapter 5, it is discussed how the 
conventional linearity measurement approaches were found to be problematical when 
applied to the Doherty measurement prototypes, and how a new three-tone 
characterisation approach was developed that allowed excitation of specific areas of the
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Doherty’s output characteristic, and produced results that were comparable to single-tone 
equivalents.

The need to perform modulated measurements on the Doherty structure introduced 
significant measurement hardware and software related problems however. The most 
significant of these was the synthesis of independent, modulated main and auxiliary RF 
input excitations, the control of their relative phase and magnitudes, along with main and 
auxiliary bias voltages. A base-band modulation approach was eventually adopted that 
involved direct manipulation of I and Q modulation component signals, and provided the 
required dynamic adjustments in both relative magnitude and phase of the input stimuli. 
Additional functionality was added in the form of an IF load-pull and measurement 
capability that was effective in allowing the presentation of specific impedances to the 
significant IF component. This functionality would be needed to allow investigations into 
the assertion that the Doherty structure was especially sensitive to variations in base-band 
impedance.

The overall aim of this phase of work was to establish a foundation on which a detailed 
analysis and characterisation of measured Doherty linearity could be based. Some 
theoretical and model-based analysis work has been conducted however and is 
presented, together with some modulated measurements, in order to validate both the 
functionality of the measurement system and the analysis approach taken.

It was important to consider the suitability of different device technologies for use within 
Doherty PA structures for base-station applications. Chapter 6 addresses this issue and 
concludes that although LDMOS is currently the device technology of choice, there is 
some serious debate over how long this will continue to be the case, and raises a pointed 
question: can LDMOS, as an incremental technology can continue to evolve rapidly 
enough to continue to meet the frequency, power, linearity and efficiency needs of modern 
mobile communication systems, in the presence of increasingly competitive alternative 
technologies and more challenging applications?

GaAs and GaN are two such alternative, evolving device technologies that are considered 
through their use as the active devices technologies within two, specially designed 
Doherty measurement prototypes. These structures, in combination with specific biasing 
arrangements are effective in suppressing harmonic generation and allowing fundamental 
Doherty behaviour to be explored and characterised.

Harmonic load-pull and waveform measurement techniques have been extensively 
employed, and are introduced as a valuable and novel means of characterising devices
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whilst operating in realistic, operational conditions, achieved through the ‘emulation’ of 
dynamic excitation and impedance environments that are known to exist with Doherty 
architectures. This approach, when applied to the design of the GaN Doherty revealed 
some significant problems associated with the GaN device technology related problems of 
current-slump and knee-creep. The use of waveform measurement in the design also 
presented a solution to this problem allowing performance to be quickly re-evaluated at 
reduced drain voltage.
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Chapter 8 Future Work
8.1 General

At the start of the research activity, two possible Doherty characterisation approaches 
were identified that involved considering behaviour from both fundamental and harmonic 

perspectives. This thesis has dealt primarily with the fundamental analysis of Doherty, 
identifying a number of issues and problems that needed to be addressed, along with a 
number of optimisation approaches that now need to be developed further. Modulated 
Doherty behaviour has been considered and measured, and has resulted in the realisation 
of a modulated measurement system and an approach that puts in place the foundations 
that are necessary for a more complete, measurement-based linearity characterisation to 
be undertaken. This needs to include investigation of the possibility that the Doherty is 
more sensitive to base-band impedance than other, conventional PAs, which is made 
possible by the inclusion of an IF load-pull capability in the measurement system’s 
capabilities.

Whereas the fundamental Doherty characterisation approach has been concerned 
primarily with observing different device technology behaviour whilst embedded within 
various measurement prototypes, the harmonic approach is more concerned with the 
observation of waveforms and the emulation of impedance environments that surround a 
device whilst it is operating in a Doherty structure. Although this approach has been 
developed from a fundamental perspective, and has proved extremely useful in the design 
of the GaN Doherty for example, it needs to be taken further. Specifically, the harmonic 
environments that surround both main and auxiliary devices within the Doherty need to be 
considered, synthesised and perturbated in order to understand the sensitivities that exist.

In addition to the above, the activities looking at GaN and other device technology based 
Doherty measurement structures needs to continue, such as new generation LDMOS, 
with an aim of utilising improved performance devices, operating at higher drain voltage 
and power levels.

Other areas that are worth pursuing are detailed in the following sections.

8.1.1 Measurement-based Modelling
As part of the harmonic characterisation approach, it was anticipated that focused 
measurement data could be collected and used ‘off-line’ within a CAD environment, 
allowing accurate, detailed investigation and optimisation exercises based on actual 
measured data.
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The off-line measurement-based behavioural model approach is particularly interesting as 

it allows complex, active devices to be represented using actual, focused measured data, 

whilst other passive circuit elements such as transmission lines can be represented using 

reliable and well established CAD-based components. In using the ‘off-line’ model 

approach, the importance of anticipating the drive, bias and impedance environments 

within the Doherty cannot be overstated, as this allows the measurement scope for such a 

model to be limited to a manageable subset of bias, drive and impedance conditions, thus 

allowing the measurement time to conduct the necessary measurements to remain 

reasonable. As an example, consider a FET measurement based model that responds to 

input voltage, gate bias, drain bias and output reflection coefficient. If the eventual 

environments for the model are unknown, then measurements for all combinations of 

these independent variables will be required, making this an unrealistic option. If the 

application is known to be the Doherty PA however, a good idea of these operational 

conditions can generally be developed, and the number of necessary measurements 

dramatically reduced. Using this ideal approach, it is clear that a large degree of 

characterisation and optimisation could be achieved within the simulation environment. 

The additional advantage of employing the measurement based ‘off-line’ behavioural 

models is that the process is device independent, so could be applied equally effectively 

for example to Doherty structures employing GaAs pHEMT, LDMOS or GaN device 

technologies.

Both the ability to develop measurement based non-linear models and the ability to 

conduct the required, focused measurements needs to be further developed. The models 

themselves need to respond to a number of stimuli, specifically and most importantly input 

voltage, and load.

8.1.2 Consideration of Harmonic termination in the Doherty
In the existing, fundamental characterisation approach, special measurement structures 

are employed that terminate odd-order harmonics into short circuits and prevent the 

generation of corresponding voltage spectra. A natural progression of this approach is to 

replace the harmonic short with an additional port through which harmonic load-pull 

signals can be injected. Once calibrated, this port could be used as an extension of the 

harmonic load-pull measurement system, through which any harmonic impedance could 

be presented to the output of the main device.

Such a structure has already been realised and is shown in Figure 211. As well as the 

load-pull port, this structure has a coupled line that has been matched to 50Q, and that 

can be used as a directional coupler. The idea here is that the structure could be effective
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in measuring the harmonic impedance at both main and auxiliary device outputs during 

normal Doherty operation.

Figure 211 -  Doherty structure with coupled line and load-pull
port

To improve directivity of such an approach, another idea is to use two couplers, one either 

side of the combining line. If the devices were located at either end of the line, this 

approach would, using a calibration technique that would require some thought, allow 

calibration of reference planes at the devise insertion points. This idea needs to be further 

developed.

8.1.3 A Doherty employing EER
Envelope Elimination and Restoration (EER) and Doherty techniques are both very 

effective in enhancing PA efficiency over dynamic range. Both have limitations however, 

and one interesting idea is to develop a structure that combines these two approaches, 

benefiting from the advantages of each.

One possibility is to employ EER on the auxiliary device whilst maintaining the main 

device in a class-B or even class-AB state. The benefit of this approach becomes 

apparent when considering extended or so called asymmetrical Doherty structures that 

operate over wide or extended dynamic range. Usually, such Doherty structures suffer 

from an efficiency ‘dip’ between the transition point and PEP, which deepens with 

increasing dynamic range to the point where the overall value becomes limited. This 

deleterious ‘dip’ is due combined device efficiency and in an ideal structure is completely 

attributable to the relatively poor efficiency of the auxiliary device. If EER is applied to the
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auxiliary device however, simulations show that it is possible to completely remove this 

‘dip’, and establish a high efficiency plateau over the entire dynamic range.

One important advantage is that as EER is only being employed in the auxiliary device 

which is active only in the upper portion of dynamic range, the usual EER disadvantage of 

limited dynamic range is avoided. Another advantage lies in the realisation that the 

Doherty linearity is mostly a function of the main device trans-conductance characteristic, 

and is largely insensitive to the behaviour of the auxiliary device [22]. This may mean that 

large degrees of non-ideal EER behaviour, possibly due to non-linearity of the modulator 

used can be tolerated. It may also mean that the modulator requirements can be relaxed 

from the usual EER case where it is responsible for imparting all of the amplitude variation 

on the carrier.

8.1.4 A Base-band in -  RF out Doherty PA
Within this thesis, there are a number of indications that suggest it may not be possible to 

achieve ideal Doherty behaviour using a simple, passive power division such as is used in 

the classical approach, the optimisation of such a structure being difficult if not impossible 

due to the closed nature of the structure and the internal device interaction. By employing 

a Doherty structure with independent inputs, it has been shown that the dynamic 

adjustment of the relative input phase and magnitude, along with the auxiliary bias profile 

can be used to optimise the Doherty for efficiency and linearity. This can be achieved in a 

number of different ways, one of which is through the use of hardware such as IQ 

modulators that are controlled by base-band signals that are functions derived from the 

instantaneous magnitude of the input signal.

When considering continuous, rapidly changing modulated excitation such as WCDMA, 

derivation of these signals using envelope detection becomes problematical due to the 

inherent delays associated with simple detectors and the processing involved.

One way to overcome this problem is to consider the Doherty as a transmitter and not a 

PA architecture. Viewed from this perspective, it is possible to envisage a Doherty 

structure that accepts base-band I and Q modulation, and produces modulated RF. The 

advantage is that the necessary base-band signals are available and can be used to 

generate the necessary base-band control signals ‘up-front’ before modulation and 

amplification occur, thus overcoming any delay issues. In fact, such a structure would 

tolerate significant base-band processing delays as the problem becomes one of aligning 

the base-band signals, such that they are applied to the modulating structure in a phase- 

coherent manner.
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8.1.5 Optimisation o f output matching networks

In the ideal passive Doherty impedance environment, all odd harmonic impedances are 

the same (shorts) and all even harmonic impedances are the same (2Ropt). In reality 

however, line behaviour, and the usually unavoidable delay associated with the 

transmission path between both main and auxiliary devices, and the central A74 

transformer cause non ideal behaviour in the output structure. This is evident in Figure 

212 and Figure 213 where an ideal Doherty output structure and a realistic structure are 

compared.

Input Reflection Coefficient

freq (1.000GHz to 9.000GHz)

Forward Transmission, dB
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E £
40-

20 -

freq, GHz

Figure 212 -  ideal and realistic O/P matching 
network behaviour - Smith Chart

Figure 213 -  ideal and realistic O/P matching 
network behaviour -  magnitude

The additional offset between the package plane and device plane has significant 

consequences -  Firstly, the shorted stub must be tuned to accommodate this additional 

length and to ensure the correct impedances are presented to the main device at different 

frequencies. In the case of the simulation, the line length has been reduced to 0.22A. Even 

following tuning, the offset length causes the quality of the shorts presented to even-order 

harmonics gets progressively worse with frequency. For example, whereas the short 

presented at 3.6 GHz is good (3Q), the short presented to the fourth harmonic has 

degraded to 15Q.

What is clear, from the simple simulations shown is that even small additional lengths 

introduced by offsetting the device plane from the combining line interface cause 

significant problems. One way to address this is through the introduction of offset lines, 

that when combined with the existing delays, cause the correct phase properties to exist 

at both main and auxiliary device planes. The disadvantage of this approach is of course
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that these will be physically large and will introduce additional loss. For this reason, it is 
considered a much better idea to locate devices very close to line in the first place, and 
maybe dispense with the package all together, adopting a hybrid style approach.

It has been shown how the normal behaviour of this transformer limits the bandwidth of 
the Doherty, and another activity that could form part of this work is the consideration of 
alternative output matching architectures that allow the necessary impedance inversion to 
take place, but offer constant group-delay over a specified bandwidth. It is considered that 
this approach, if possible could significantly improve the linearity of the Doherty.

8.2 Measurement system

8.2.1 Inclusion of directional couplers at each input
Directional couplers at each input will allow one-port calibration and the measurement 
insertion loss over dynamic range. Such an arrangement will also allow measurement of 
absorbed power, i.e. will be able to measure and therefore sweep voltage at each device 
input. Currently, it is only possible to sweep incident power as s11 is unknown. Drive 
dependent s11 is considered to be a potential factor in the observed bias dependent 
phase behaviour.

8.2.2 Enhanced IF load-pull
The multi-tone measurement system’s IF load-pull capability can currently only cater for 
the most significant IF component. When using even simple modulated excitations with 
the Doherty, there are a number of IF components generated, and it is necessary to load- 
pull each of these. Ideally, a non-sinusoidal load-pull approach needs to be developed.

8.2.3 Alternative phase alignment approaches
The Microwave Transition Analyser is clearly under-utilised when used only for the task of 
simple phase alignment in the Doherty measurement systems. One other approach 
identified was to use a commercially available integrated circuit: Analog Devices’ AD8302. 
This is a fully integrated RF IC for measuring amplitude and the phase between two 
independent input signals. The device can be used from low frequencies up to 2.7GHz 
and generates two voltages that are linear functions of the relative phase and magnitude 
of the two input channels. Originally designed for RF/IF PA Linearization and precise RF 
power control applications, this device could be used here to mimic the role of the MTA in 
monitoring the relative input phase and magnitude of the stimulus applied to the Doherty. 
This circuit has already been fabricated, but has not yet been implemented and integrated 
into the measurement system capability.
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8.3 Doherty Optimisation Approaches

8.3.1 Linearisation through dynamic adjustment of Relative Input Phase and 
Magnitude

Although exhibiting high efficiency, measurements have shown how Doherty 
measurement structures can exhibit significant gain and gain-phase variation in the high 
power region of operation. As has been demonstrated, by varying the relative phase of the 
RF stimulus applied to main and auxiliary devices of the Doherty structure, it is possible to 
generate three dimensional gain and gain-phase surfaces that clearly illustrate the 
dynamic phase conditions that can lead to flat gain and constant gain phase. By 
introducing additional measurement variables in the form of relative input magnitude or 
auxiliary device bias profile, it is possible to generate collections of ‘stacked’ surfaces, and 
therefore multiple, constant gain and gain-phase contours that effectively ‘expand’ the 
optimisation space. When considered over active dynamic range as shown in Figure 214, 
Figure 215 and Figure 216, it is possible to understand how choosing specific, relative 
input phase and relative input magnitude combinations for each value of Pin can lead to 
‘best choice’ or optimum linearity and efficiency.

Figure 217 illustrates cross sections through the collections of gain-phase and gain 
surfaces of Figure 216 and Figure 214 respectively at a value of input power 
corresponding to approximately PEP-3dB. The markers show the constant gain-phase 
and constant gain contours, for all surfaces, and effectively represent the choices an 
optimiser would have if trying to reach the best gain/gain phase compromise.

This is considered a very interesting and promising optimisation approach that has fallen 
outside the main scope of the research, and that could be pursued using single-tone 
analysis and corroborated using modulated analysis.
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■

Figure 214 - I / P  power vs. gain vs. relative input phase Figure 215 - I/P  power vs. gain vs. relative input
phase (zoomed). Each surface represents one case of 
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Figure 216 - I/P  power vs. gain-phase vs. relative input Figure 217 gain-phase vs relative input phase 
phase for various Auxiliary device Pm offset
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Glossary of Terms and Acronyms
Term Description Notes

CDF Cumulative Density 
Function

In terms of a modulation envelope, CDF describes 
the probability that a particular envelope 
magnitude will be reached.

CW Constant Wave
GaAs Gallium Arsenide
GaN Gallium Nitride
GMSK Gaussian Minimum Shift 

Keying
HBT Hetro-junction Bi-polar 

Transistor
HEMT High Electron Mobility 

Transistor
HFET Hetro-junction FET
InGaP Indium Gallium 

Phosphide
InP Indium Phosphide
LF Low Frequency
MESFET
MF Medium Frequency
PAR Peak to Average 

power Ratio
PDA Personal Digital Assistant
PDF Probability Density 

Function
pHEMT Pseudo-morphic HEMT
PSK Phase Shift Keying
PUF Power Utilisation Factor This is defined as the ratio of the achievable RF 

power in comparison to the max possible DC 
power. For class-A this equates to 1/8.

SiC Silicon Carbide
EER Envelope Elimination and 

Restoration

ET Envelope Tracking
LDMOS Laterally Diffused Metal 

Oxide Semi-conductor
ADS Advanced Design 

System
Agilent simulation software

PEP Peak Envelope Power
CAD Computer Aided Design
ACPR Adjacent Channel Power 

Ratio
EVM Error Vector Magnitude
TRL Through-Reflect-Line Calibration technique
AM-PM Amplitude Modulation to 

Phase Modulation 
conversion

ESG E-series Signal 
Generator

GPIB General Purpose 
Instrumentation Bus

SD Standard Deviation
GSM Global System for
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Mobile communication
W-CDMA Wide-band Code Division 

Multiple Access
PDF Probability Density 

Function
SLOT Short-Load-Open-

Through
Calibration technique
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Appendix 1. IF Load-Pull and Calibration
Consider the signal flow  graph fo r the s im plified  IF load-pull system  consisting of RF and 

IF bias networks a long w ith the d irectional coupler, as shown in Figure 99.

coupled
Port-1

Directional
Coupler

b2

Spectrum
Analyser

DC
supply

Doherty
PA

34 b4 

coupled 
Port-1

Figure 218 -  Signal flow representation of directional coupler along with other components that
comprise the IF load-pull capability.

If we assum e that the directional coup le r is ideal and perfectly  m atched, the flow  diagram  

can be sim plified such that tha t energy only flow s out o f the coupled ports and is 

com plete ly absorbed in ideal te rm ina tions at its outputs, as shown in Figure 219.

coupled
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DC
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Doherty
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Figure 219 -  simplified Signal flow representation assuming ideal coupler.

This can be fu rthe r s im plified by assum ing ideal coup ler directivity, and that other 

com ponen ts  in the IF signal path can be considered as a single, com bined network.
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Di recti onai 
Coupler

b4
coupled

Figure 220 -  Further simplification of coupler and combination of bias networks

The flow diagram can now be treated as a simple one-port allowing the use of a one port 

calibration. By measuring b3 and b4 using a digital storage oscilloscope, we can obtain 

the measured reflection coefficient, (rM):

r_ = b3
M

(34)

The one-port error formula that relates the actual reflection coefficient apparent at the 

reference plane (rA) to the measured reflection coefficient at the oscilloscope (rM), using

the four error terms: directivity error (e00), reflection tracking errors (e10 & £oi) and source 

match error («en) is given in (35.

e00

e •e T
10 01 A

1- en ' r A
(35)

The signal flow graph for the simplified one port network can be presented as follows. 

Note that a0, b0, a1 and by are not related to the above signal flow graphs, but represent 

the incident and reflected waves apparent at the scope inputs and at the calibrated 

reference plane respectively.

bo «*io bi

Figure 221 -  Signal flow graph representation of simplified IF arrangement
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Note that rA represents the reflection coefficient at the calibrated reference plane, and for 

the one-port SOL calibration process will take on ideal values of the calibration standards. 

Note that imperfections and delays associated with the calibration standards used are 

ignored due to the low calibration frequencies used.

r  =(o,o)
Load

r  = (i,o )
Open

r  =(-i,o)
Short

(36)

Substituting each of these, in turn, into (35) yields three equations with three unknowns, 

where p  is the measured reflection coefficient r  with a load standard attached to the1 M M

reference plane, y°m is the measured reflection coefficient with an open standard 

attached to the reference plane, and so on.

Load

Open

Short

M oo
c  r

Y° =e + 10 01 Qpen M ~ oo \ - e  Y
11 Open

C 'C Y
Ys =e + 10 01 short oo i - e  r

11 Short
M

Substituting (37) into (38) yields

and

6  '€  r
Y° — Y L +  ^  Open

m ~ m  \ _ p  . r
11 Open

( p - p f i - e  - r
M \  11 Opene e = 

10 01
Open

Subtracting (39) from into (38) gives

(37)

(38)

(39)

(40)

(41)

M r °  =M

e e • r  
10 01 Short

1 -  e r 
1J Short

And

e e
10 01 Open

1 -  e r 
11 Open

(42)
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T s - T °  =e eM  M  c ioe oi

Substituting (41) into (43) yields

Short Open

l - e  r  l - e  r
11 Short 11 Open

P -PM  M
v M M \  11 Open

Open

Short
l - e  r 

11 Short

(43)

Open

l - e  r 
11 Open

Simplifying

(44)

M P =A M
Open

Short
l - e  r 

11 Open1 1 u p c u  J

L .  - r  f ,
' 11 Short \

- r  (,-e -r
Open' 11 Short

11 -e T \ l - e  r 
11 Short \  11 Open

fP -P )V s -V°  M 'M M r-
Open

Short
l - e  r 

11 Open
- r

Open
(,-e r I1
' 11 Short'

l - e  r 
11 Short

P -PM  M

P -PM  M Open

F 1 Short'
i - e  • r - r  i - e - r  )

V 11 Open J Open' 11 Short ’

l - e  r 
11 Short

P -PM  M

P -PM M Open

r - r
Short Open

l - e  r  
11 Short

r - r
Short OpenP  - PM M

P  - P
M  M  Open

and
p  _ r°1 _ M M

l - e  r p  _P  
11 Short M

Now, let

l - e  r 
11 Short

(45)

Open

r - r
Short Open

T s - T °
V  -  M  M

Y ° -PM  M

 Open
r - r

Short Open

, hence K = (46)
Short
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Such that

£ - 1  1
eu = - — -~------------------------- (47)

*  Short

So, it is now possible to find coefficients eOO, e01e10 and e11 from (37), (41) and (47) 
respectively. By rearranging (35), it is possible to obtain an expression for rA in terms of 
the error coefficients and the measured reflection coefficient

r  - e
r  = --------------^ ^ ------------  (48)

a e e + r  e - e  e
1 0  01  M  11 0 0  11

So using the above approach, it is possible to measure the IF load being presented to the 
Doherty. In addition to this, if an active signal source is used to inject energy into the IF 
load-pull port as defined in Figure 99, then the IF load can be controlled.

By using software to control this process, the system firstly measures the IF reflection 
coefficient, and then calculates and applies the required phase and magnitude of IF load 
pull in order to achieve the required load.
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Appendix 2. Harmonics and the Doherty
Analysis approach

The following approach uses the ADS simulation environment and a relatively ideal device 

model to identify the harmonic behaviour of classical, adaptive-bias and input-attenuation 

Doherty approaches. Behaviour is initially summarised in terms of device output current 

spectra as for a purely trans-conductive device, this quantity is largely insensitive to 

harmonic impedance. With this knowledge, it is possible to identify the harmonic 

terminations required in achieving ideal performance in each Doherty implementation, to 

discuss the difficulties in achieving these conditions and to analyse the consequences of 

non-ideal harmonic termination.

Spectral current behaviour for the different approaches

Figure-222 and Figure-223 show the harmonic spectral current produced by main and 

auxiliary devices when configured in the input-attenuation Doherty approach, where both 

devices are biased near pinch-off (class-B).

One of the advantages of this approach is that the significant odd-order harmonics are 

naturally suppressed through the use of optimal class-B static biasing, which is evident 

from the spectral current plots shown in Figure-223. Ideal Doherty behaviour would 

generally then be recovered by terminating the dominant even-order harmonics using a 

shorted quarter-wave line.

Main Deuce Harmonic Cirrenl Auxiliary Device Haimonic Cunent

Fin'.dBm I Pin (dBm)

Odd
ord*»

Figure-222 harmonic current behaviour o f input- Figure-223 harmonic current behaviour o f input- 
attenuation Doherty - Main device attenuation Doherty -  Auxiliary device

Figure-224 and Figure-225 show the harmonic behaviour of the classical Doherty 

approach, where the main device biased near pinch-off, and the auxiliary device is biased 

in the required depth of class-C.
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Main Device Harmonic Current Auxiliary Device Harmonic Current

<

|ft

5 e 7 I 9 10 11

<
X3

Figure-224 harmonic current behaviour o f classical 
Doherty - Main device

Figure-225 harmonic current behaviour of classical 
Doherty - Auxiliary device

Similarly, Figure-227 and Figure-226 show the harmonic behaviour for the adaptive-bias 

approach, where as in all cases here, the main device is biased in class-B near pinch-off, 

but now the auxiliary device is dynamically biased between deep class-C and optimal 

class-B.

Main Device Haimonc Curent Aualiary Device Harmonic Curent

7 125 8 i 10 11

significant odd-drder

<olT?

Figure-226 harmonic current behaviour of an 
adaptive-bias Doherty - Main device

Figure-227 harmonic current behaviour of adaptive- 
bias Doherty - Auxiliary device

It is clear from these results that the input-attenuation Doherty offers the most favorable 

harmonic behaviour, with the lowest level of odd order harmonic generation. The other 

two approaches result in more complex behaviour and significant levels of both even and 

odd order harmonics, which is expected as the conduction angle of the auxiliary device is 

changing throughout the entire 6dB of the high power region of operation. The most 

significant observation can be made from the classical Doherty results presented in 

Figure-225, where although the second harmonic is dominant, the third harmonic is the 

second largest component throughout the entire 6dB of dynamic range. This situation is 

slightly different for the adaptive bias approach where the auxiliary device’s third harmonic 

magnitude peaks at approximately PEP-3dB, before diminishing significantly as PEP is
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approached, only to increase once more as compression occurs. This is shown in Figure- 
227.

The impact of harmonic behaviour on general Doherty performance
For the classical and adaptive-bias Doherty implementations discussed, it has been 
shown that significant odd-order harmonic current spectra will be generated by the 
auxiliary device. When compared to the main device which is typically biased in optimal 
class-B, this leads to harmonic behaviour which is generally quite complex and possibly 
difficult to remove. Although a simple, shorted % wave line is effective in suppressing the 
significant even-order harmonics generated by both devices. Due to the unavoidable 
loading of the fundamental, the approach cannot easily be used in the same way to 
suppress odd-order harmonics. As a consequence, there are a number of questions that 
arise regarding the effect of unavoidable and significant odd-order harmonic current 
spectra. Specifically, how the behaviour of both devices is affected, and how this in turn 
impacts the device voltage and current waveforms and overall performance.
It is clear from Figure-228 that in terms of gain and output power, all ideal topologies offer 
near identical performance. When the efficiency for each approach is considered 
however, significant differences arise, and Figure-229 shows that the most obvious outlier 
being the input-attenuation approach, which offers a lower efficiency in comparison to the 
other two approaches, mainly due to the presence of auxiliary quiescent current. This is 
especially noticeable around the transition point, but also has a significant impact in the 
low power region below the transition point. Adaptive-bias and classical approaches offer 
near identical efficiency up to and approaching the transition point, but then begin to 
diverge as input drive is further increased. The adaptive-bias efficiency eventually 
converges with that of the adaptive-bias approach at PEP, and this is no surprise as the 
bias conditions are identical at this drive level. The interesting observation from Figure- 

229 is the classical Doherty efficiency shows an approximate 5% improvement over the 
adaptive-bias Doherty in the high-power region between PEP and PEP-6dB, and 
approximately 10% better than the input-attenuation Doherty throughout the entire 
dynamic range. Through further analysis, it will become clear that the enhanced efficiency 
offered by the classical approach is mainly due to the presence of odd-order harmonics 
and their influence in shaping the main device voltage waveform.
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Linearity is another important performance metric and is probed here when using CW 

excitation by examining harmonic voltage developed in the load as a function of Pini for 

the different approaches. Figure-231 shows the suppressed even-order harmonics and 

the effectiveness of the capacitor-shorted A/4 line. As expected, the magnitude of the odd- 

order harmonic power components are larger, but the remarkable observation from 

Figure-230 is the similarity in terms of odd harmonic behaviour. This is especially so when 

considered in contrast to the large odd-order harmonic dissimilarity between approaches 

that is evident in Figure-223 and Figure-226 earlier in this chapter.

odd-order power spectra at load
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Figure-230 odd-order spectral power at the load Figure-231 even-order spectral power at the load

The impact o f harmonic behaviour on voltage and current waveforms

So far in this chapter, harmonic analysis has been explored in terms of the frequency 

domain. It is constructive however to extend this analysis to include observations in the 

time domain. The following collection of graphs shows the time domain voltage and 

current waveforms for all three Doherty approaches. This is presented at two different
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drive levels: Peak Envelope Power (PEP) and PEP-3dB which corresponds to a point mid­

way through the dynamic range where both devices are active.

Consider firstly the main device output voltage waveforms at PEP-3dB, shown in Figure- 

232. As the main device bias is fixed in class-B for all implementations, and the ideal 

harmonic trap is suppressing even harmonic voltages, the distortion of the main device 

voltage waveform can only be due to odd-order harmonic current spectra generated by 

the auxiliary device. This assertion is reinforced by the observation that the only approach 

to offer a sinusoidal output voltage is that of input-attenuation, where odd-order harmonic 

generation is naturally suppressed through the use of optimal class-B biasing for both 

devices.

Main device voltage
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Figure-232 output voltage waveforms - main device Figure-233 Output current waveforms - main device

As long as the device model used is ideally trans-conductive, the current spectra will be 

insensitive to harmonic impedance. This explains why the main device current waveforms 

presented in Figure-233 take-on an identical, classical class-B profile for all Doherty 

approaches. These waveforms already tell us something about the expected Doherty 

performance, as it is the main device current that is transformed to a voltage at the load. 

In other words, a well behaved, linear current at the output of the main device will ideally 

lead to a well behaved, linear voltage at the load.

Turning attention to the auxiliary device, from Figure-234 it can be seen that the current 

waveforms are different for each approach, both in terms of conduction angle and peak 

amplitude. Figure-235 shows the auxiliary output voltage for all approaches, and for both 

drive conditions of PEP and PEP-3dB. From this plot it is clear that the output voltage 

waveforms are nearly identical for all implementations, for both power levels.
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Auxiliary device current
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Figure-234 output current waveforms - auxiliary Figure-235 output voltage waveforms - auxiliary device (at 
device PEP and PEP-3dB)

Figure-236 shows the magnitude of the main device third harmonic component for the 

three approaches. In the case of adaptive-bias, this component peaks at PEP-3dB, and 

eventually comes to equal that of the input-attenuation approach at PEP, Where the 

devices are biased in an identical class-B state. In the classical approach, the auxiliary 

device is always operating at some reduced conduction angle, and as a result exhibits an 

ever-present and increasing third harmonic component.

As it is known that ideally; the main device current is transformed to an auxiliary device 

voltage, Figure-237 is particularly interesting and shows that a linear relationship exists 

between input voltage and output current, resulting in overall linear behaviour for all 

implementations.

Main device - 3rd Harmonic voltage component

10-

-20
T>

-60 10
Pin (dBm) PEP

Main device - fundamental current for different approaches
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0.2-
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Vin (V)

Figure-236 3rd harmonic voltage spectra as a Figure-237 fundamental current component as a
function of Pin -  main device function o f Pm -  main device

It has been mentioned several times in this chapter how one of the basic requirements for 

Doherty behaviour is the correct control over fundamental auxiliary current growth, as 

illustrated earlier in Figure 12 and Figure 26. Figure-239 shows the fundamental current
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magnitude as a function of input voltage for all approaches. The only approach to offer 

ideal ‘text-book’ behaviour is that of input-attenuation, with the other two approaches 

offering rather non-linear current growth with applied input voltage, due to a somewhat 

‘sluggish’ but typical turn-on characteristic of the device.

When these auxiliary fundamental current characteristics are combined with the other 

fundamental voltage and current characteristics, the revealing graph of Figure 238 

emerges. The upper-most group of traces in this graph show the main device voltage 

magnitude. Only the input-attenuation approach exhibits the ideal, flat constant main 

device voltage characteristic, with the other approaches showing an expansion followed 

by a compression, which is characteristic of when reduced conduction angle modes are 

used within the Doherty.

main
voltage

main
current

aux
voltage

fundamental voltage and current behaviour

current

Vm (V)

Figure 238 - main and auxiliary fundamental voltage and currents as a function of Vin

It is important to remember that the voltage plots in Figure 238 are that of fundamental 

components only, and are not representative of the peak amplitude of the voltage 

waveforms that would be used in constructing a dynamic load-line for example, which 

would typically contain multiple harmonics. This point is particularly important as it would 

be easy to assume that the expanding voltages would cause the load-line to interact with 

the knee-region. This is not the case however and the presence of significant third 

harmonic effectively ‘pulls’ the load-line away from the knee region. The expanding 

fundamental voltage is in fact the cause of the improved efficiency of the classical 

approach.

Figure 238 also shows how the main device fundamental current, and auxiliary device 

fundamental voltage are linear functions of input voltage, further illustrating the point that
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the linearity of the Doherty is fundamentally a function of the linearity of the main device, 

and is much less a function of the linearity of the auxiliary device, which can be seen here 

to be highly non-linear in two of the three approaches.

Auxiliary device - fundamental current for different approaches

IQ ­

S ' 0 8 -

!
06-

0l3

0.1 02 03! 04 05 06  0.7 08 09 1.0 11 12
TP Vln(V)

Main device voltage

Input
1 5 -

> 10-

5

0.0 0.2 0 4 0.6 0 8 1.0 1.2
time, nsec

Figure-239 auxiliary fundamental output current as a „. ~ .n . , . „ . ^*  r  : r - Figure-240 main device output voltage at PEPfunction of input voltage

Re-examining the main device output voltage waveforms at PEP, the impact of the 

auxiliary current spectra is more evident. Whereas the main device voltage waveforms 

produced by the input-attenuation and adaptive-bias approaches are near sinusoidal, the 

classical equivalent is, in comparison highly distorted due to the significant third harmonic 

voltage component. It is quite remarkable that such a heavily distorted voltage waveform 

can exist in what is essentially a linear amplifier. Finally, the auxiliary current waveforms at 

PEP are presented in Figure 241.

Auxiliary device current

classical
adaptive-bias

2

input attenuation< 1-

0.8 1.0 1.20.2 0.4 0.60.0
time, nsec

Figure 241 - auxiliary device output current at PEP

As expected, both the input-attenuation and adaptive-bias approaches produce identical 

waveforms, as they are biased identically at PEP, whilst the classical approach produces
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a narrower but ‘taller’ current pulse. The important point is that all current waveforms 

contain the same fundamental energy at PEP. It is also important to note the additional 

auxiliary maximum current required by the classical approach, which in this case can be 

seen to be approximately 1.3 times that of the other approaches.

The impact o f harmonic behaviour on dynamic load-lines

Now that a comprehensive understanding of the harmonic behaviour of the various 

Doherty topologies has been developed, it can be understood how the main and auxiliary 

device time-domain waveforms are constructed, and how these waveforms influence the 

load-line trajectories which are shown below in the following figures.

Main LoadLine
2.5

2.0-

1 .5 -

2 1.0-
0 .5 -

-0.5
5 250 10 15 20

Vd

Aux LoadLine

6-

f

1—i—|—i—i—i—i—|—
5 10 20 25

Vd

Figure 242 -  main device load-line (classical) Figure 243 -  auxiliary device load-line (classical)

Main LoadLine Aux LoadLine
2.5

2.0-
1 .5 -

Figure 244 -  main device load-line (adaptive-bias) Figure 245 -  auxiliary device load-line (adaptive-bias)
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Main LoadLine
Aux LoadLine2.5
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1 .5 -
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0.5 0 .5 -  '
0.0 0.0
-0.5 -0.5
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Figure 246 -  main device load-line (input- 
attenuation)

Figure 247 -  auxiliary device load-line (input- 
attenuation)
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Appendix 3. The Recent Evolution of Mobile Comms. 
Systems
Today, many different mobile communication standards exist for many different 

applications worldwide. As these systems are diverse, and have evolved separately, it is 

no surprise that many are incompatible. The term ‘generation’ is typically used to describe 

a significant jump in technology. When used in terms of modern mobile communications 

however, it is a term more associated with a collection of standards to which adopted 

systems must comply. GSM is a good example of such a standard within the second 

generation (2G) category.

The classification of standards is illustrated in fig nn below.

Application Examples of standards

Paging
System s Eurasstsai Erom
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f t
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f t
Second
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f t
Third
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Mobile wireless based upon analogue communication systems have been around since 

the 1950s. The early ‘pre-first’ generation systems operated on a single channel basis 

where a single base station serviced an entire urban area. These systems had some 

major disadvantages including limited mobility, low capacity and poor speech quality. The 

equipment was heavy, bulky, expensive and prone to interference, with less than 1 million 

users were registered world-wide by the early 1980's.

First generation (1G)

Technology was improving rapidly, and single-point mobile communication systems were 

quickly being replaced with so called first generation (1G) cellular communication 

networks. This new approach, although still analogue allowed for significantly increased 

capacity and mobility, and coupled with smaller, lighter and more sophisticated handsets 

represented a technology that was much more attractive and accessible to the masses.



Appendix 3 -  The recent evolution of mobile communications systems

The most significant 1G systems world-wide were the UK based Total Access 
Communication System (TACS), Nordic Mobile Telephone (NMT) and the American 
Advanced Mobile Phone System (AMPS).

Second generation (2G)
The significant development of digital technologies over the latter part of the 1980's meant 
that radical improvements to analogue mobile communications systems were possible. 
The mass adoption of digital techniques allowed improvements in quality of service, 
system capacity and system coverage. Transmission and reception of digital media, e.g., 
fax, SMS and internet connection became a reality, and demand for such services began 
to grow rapidly. Digital techniques also allowed networks to be more secure due to 
encryption and other security features. Due to these evolutions, the topology of mobile 
communication systems began to change and look much more like fixed data networks.
As the technologies developed and the number of users grew rapidly, compatibility of 
systems became an issue world-wide. This led to the introduction of systems that 
attempted to introduce standardisation of services. One of the most significant second 
generation systems is GSM (Global System for Mobile communication). GSM is better 
described as a family of standards including GSM900, GSM-R, GSM1800, GSM1900 and 
GSM400. "GSM is used in approximately 183 countries and 549 networks by nearly 1.5 
billion subscribers". (Source: GSM Association, February 2004 and Nokia Horizons, 
Q3.2004).
The mid 1990’s saw significant enhancements to 2G services, most notably GPRS 
(General Packet Radio Service) bringing IP-based services to mobile networks. GPRS 
provided higher throughput capacity, Internet-based content, and packet-based data 
services, enabling Internet browsing, email, powerful visual communications and 
multimedia messaging. GPRS has quickly become an established technology for 
delivering advanced data services over GSM networks worldwide.

Mid generation (2.5G)
There are a number of so called mid-generation technologies sitting between 2G and 3G 
systems. These include EDGE and TETRA. EDGE (Enhanced Data Rates for Global 
Evolution) is built on the existing GSM/GPRS networkand on average triples the current 
GPRS data rates. TETRA (TErrestrial Trunked RAdio) is a purpose built technology that 
offers public safety and security organisations major advantages over conventional radio 
systems.
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Third generation (3G)
Third generation mobile communication systems are known collectively as IMT-2000. 
IMT-2000 is an internationally recognised collection of standards that apply to all mobile 
applications, offering high data rates up to 2MBit/s and high spectral efficiency. The most 
important IMT-2000 proposals are UMTS, otherwise known as W-CDMA, as the 
successor to GSM and CDMA-2000 as the successor to IS-95. In W-CDMA, user data is 
spread over a bandwidth of circa 5 MHz. The wide bandwidth supports high user data 
rates and also provides performance benefits due to frequency diversity.
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1. Celeritek F I 5-11 M E S F E T  and LCC-8 chip carrier, bonding diagrams and data sheet
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g  = = = C g lg g O T If CF015-11
Produot Specifications  
December 1995 ( i  of 1)

Features
□ PldB Power: +26 dBm
□ High Gain (@12 GHz): 8 dB
□ Broadband: Usable to 18 GHz
□ Wafer Qualification Procedure
J  Customer Wafer Selection Available

Cderitek Broadband Power Chip
Celcritck's CF015-11 Medium Power Chip is a GaAs 

MESI-ET device with a 1200 pm gate width, 1/4 micron gate 
length, Celeritek’s proprietary Silicon Nitride passivation, and 
is fabricated on ion implanted wafers.

Celeritek’s Wafer Qualification Procedure for this 
device consists of D C  RF and reliability testing of both indi­
vidual die in 6 to 18 GHz amplifier modules.

Celeritek’s broadband power chips make up a family 
of GaAs FET devices which have high broadband gain and

Absolute Maximum Ratings
ParanwtM’ Raima Pammatar Ratine Parameter RaMnq 1
Dnin-Source Voltage (Vd*) +10 V Drain Current (Ids) Idss Channel Temperature 175°C j
Gate-Souroe Voltage (Vgs) -5 V Continious Dissipation (Pt) 3.0 W Storage Temperature -65‘C co +150"C |

Specifications (T^ ■ 25°C)

Symbol Parameters end Conditions
Frequency

(GHz) Units Min Typ Max

g L Linear Power Gain (V^g = 6.0 V, = 160 mA) 12.0 dB 7.0 8.0

pldB Power Output ® 1 dB GC (Vjjj ** 6.0 V, Ipg — 160 mA) 12.0 dBm 25.0 26.0

8m Tianscooductancc (Vjjg = 3.0 V. Vq j *  0 V) mS 240

toss Drain Current (VDS = 3.0 V, VGS = 0 V) mA 180 310 380

VP Pincboflf Voltage (Vq j ■ 3.0 V, Ipg ■ 1 mA) Volts -1.2 -2.1 -3.0

b v g d Breakdown Voltage, Gale-Drain Og d  = MA) \blts -12 -18

«th Thermal Resistance O T 40

Typical Scattering Parameters, Common Source (S-Parameters Include Bonding Wire Parasitics) 
CF015-11 (TA= 25°C, Yds = 6V, Ids «  80mA)_____________________________________________________

Frequmcy
(GHz)

*11
(Mag) (Ang) (dB)

S2I
(Wag) (Ang) (dB)

*12
(Mag) (Ang)

s 22
(M«9) (Ang)

K MSG
(dB)

2.0 0.91 -93 165 6.67 123 -259 005 44 0.26 -131 0.21 21.2
4.0 0 86 -136 125 4.19 96 -24.1 0.06 28 0.34 -148 0.37 1 S.3
6.0 0.83 -157 9.4 2.95 78 -23.8 0.06 20 0.41 -155 0.54 16.6
8.0 0.82 -171 7.0 2.24 66 -24.3 0.06 18 0.43 -156 0.82 35 7

10.0 0.84 179 5.1 1.80 56 -24.8 0.06 20 0.45 -154 097 14,9
12.0 0.85 171 3.5 1.49 46 -25.1 0.06 22 0.48 -154 1.03 14.2
14.0 0.86 164 2.0 1.26 36 -24.9 0.06 21 0.52 -157 1.11 13.5
16.0 0.87 157 0.7 1.09 26 -25.1 0.06 19 0.54 -161 1.07 12.9
!8.0 0.89 150 -0.4 0.96 16 •24.5 0.06 13 0.57 -169 0.95 12.1

Broadband Power GaAs 
MESFET Chip

4X SO

230

2X SO 4X SO

NOIC5:(VNLESS OTHERWISE SP£CH=1£D)
1. MJL 0U EN90NS ARE IN IOCRONS.
2. 1MO04ESS- UO  UKRONS.

provide up to 1 Wan in balanced 6 to 18 GHz amplifier cir 
cuits. These devices are also suitable for high power oscilla­
tors. In narrow hand applications they offer superior associated 
gain.

These devices are available in chip form and arc suit­
able for airborne, shipboard and ground-based equipment 
Screening includes M IL -S iU  750 Class B. Clasts S and com­
mercial screening.

3238 Scott Boulevard Santa Clara, California 95034 ( 1 6 9  } Phone: (408) 986-5060 Fax: (408) 986-5095
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Appendix 5. Extending the Doherty’s Dynamic Range
One of the defining properties of the classical Doherty is a 6dB dynamic range that 

extends between PEP and the transition point. Modern communication systems posess 

peak-to-average power ratios typically extend over 10 dB however, and this results in a 

problem: the Doherty’s high efficiency plateau does not capture the majority of the 

dynamics of the modulation envelope. In other words, the region of high efficiency exists 

where the modulation envelope spends relatively little of its time. It is clear then that for 

the Doherty to be effective in its role of efficiency enhancement, the dynamics of the 

modulation envelope need to be largely contained by the Doherty’s efficiency plateau.

In order to extend the dynamic range of the Doherty, it is necessary to arrange for the 

main device to achieve its maximum voltage, high-efficiency state ‘earlier’ in the dynamic 

range, at a reduced input drive power. Consequentially, the auxiliary device needs to 

conduct at a transition point that exists at a lower input drive level. This can be done by 

simply adjusting the characteristic impedance of the main combining transformer such that 

the usual, classical load of Ropt/2 is transformed to something higher than 2Ropt at the 

output of the main device. Although the role of the auxiliary device is unchanged: to 

prevent the main device load-line from expanding into the knee region, the auxiliary 

current necessary to bring this effect about is very different to that of the classical case.

The extended or asymmetric Doherty arrangement is discussed at length in [9] where it is 

clear that the advantage of extended dynamic range is limited due to the fact that the 

characteristic efficiency ‘dip’ between the transition point and PEP deepens with 

increasing dynamic range. The approach is still a very important aspect of Doherty 

operation however, and is further discussed here for completeness.
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Figure 248 -  Ideal Doherty characteristics (classical) Figure 249 -  Ideal Doherty characteristics 
(asymmetrical)

This analysis begins by defining a parameter r  that describes the dynamic range of the 

Doherty.

Vin max y- Im max
(49)r=

VT
or

Im t

Whereas V is usually defined in terms of input voltage, there is a good reason to describe 

it in terms output current (which is the same for an ideally trans-conductive device) as it 

allows concise definition of the auxiliary device current.

Ia u x  ~  I  * - m a n̂
|  r ( I_ m a in -  Im _ t), I m ain >  Im _ t (50)

In other words, below the transition point there is no auxiliary fundamental current. Above 

the transition point however, the auxiliary current needs to expand from zero to lm_max at 

a rate proportional to r. In the classical Doherty, T =2.

The scaling factor T can be used to define key parameters:

D y n a m ic  R an g e  (D R ) = 20 lo g (T )  (51)

r =10
(52)

In terms of circuit design, the characteristic impedance of the main combining transformer 

and the required load are also linked to the scaling factor, such that

R l  =  R o p t /T  and Z, =  T R ,  (53)
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This property begins to have a large impact where device finite output impedances need 
to be considered, as illustrated in (54) which shows how the low-power region load 
impedance (Zi) seen by the main device has a square relationship to r.

Z. = PRl (54)

This becomes particularly important when the finite load presented by the off-state of the 
auxiliary device becomes comparable to the magnitude of the transformed load.

Another key parameter is the maximum current requirement for the auxiliary device, which 
is simply:

Iauxm ax = (T -1 )I_main_max (55)

The other way to understand what is going on in the asymmetrical Doherty is to consider 
Figure 249 and what the auxiliary current is ‘trying’ to do. If the main device saturates 
early in the dynamic range, we can think of it as ‘trying’ to achieve higher voltages than 
are possible. The role of the auxiliary device can similarly be considered as to counteract 
this expanding voltage, limiting it to Vmax. Thus laux rises in tandem with and parallel to 
the notional trace of unrestricted Vmain (green trace in Figure 249)

Consider the example case where r=4.
The dynamic range DR=20log(4)=12 dB
The impedance of the main combining transformer is ZT= TRL= 4(Ropt/2) = 2Ropt 
The low-power impedance seen by main is Zi= r 2RL= 16RL= 8Ropt 
laux__max = (r-1)lmax_main = 3lmax_main.
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Appendix 6. Three-tone modulation calculations
In terms of classical Double Side-Band Amplitude Modulation, the modulation index 

(Index) is given as:

Index =
Vfh,

"Vfc”
(56)

Spectrally, these components mix to give voltage spectra located at Fc, Fc-Fm and

Fc+Fm. The magnitude of the modulation component can be expressed as:

Vtm = Index • Vfc (57)

The peak envelope voltage occurs when modulation and carrier components add in 

phase, and is given by:

V p e p  = V f h ,  +  V f c  (58)

Substituting from (57:

Vpep = [index • Vfc] + Vfc 

Vpep = VfC[l + Index]

(59)

(60)

So,

V f c  =
V p e p

1 + Index
(61)

Normalising to PEP

V f c  =
1

1 + Index and V USb=Visb=
V p e p - V f c (62)

And

V u s b  =  — [ l  —  V f c ]  or V u s t>  -  — 1 -
1

Index
(63)
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