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Summary

Some Bacillus sphaericus strains (e.g. IAB59, LP1G and 47-6B) can 
overcome resistance in Culex mosquito larvae, raised against the well characterised 
binary toxin from this bacterium. A common spore protein (P49), of approximately 
49 kDa, produced by these strains has previously been proposed to be responsible for 
this toxicity. Protein fingerprint analysis of sporulated cultures of these strains 
identified a number of candidate toxins. Their N-terminal sequences were determined 
and used to design degenerate oligonucleotide probes. Southern blotting, cloning and 
colony hybridisation allowed the identification of clones containing genes encoding 
the putative toxins Cry49Aal (P49) and Cry48Aal (P135) from IAB59. The 1,395 bp 
cry49Aal gene encodes a protein of 53.3 kDa, showing homology to BinA and BinB 
from B. sphaericus as well as Cry36Aal and the Cry35 binary toxins from 
Bacillus thuringiensis. The 3,534 bp cry48Aal gene encodes a 135.6 kDa protein 
showing homology to the three-domain Cry toxins from B. thuringiensis, including 
the mosquitocidal Cry4Aa and Cry4Ba from B. thuringiensis subsp. israelensis. 
Individual expression of these proteins in an acrystalliferous B. thuringiensis subsp. 
israelensis strain, followed by bioassays against mosquito larvae revealed no toxicity. 
However, a Cry48Aal/Cry49Aal combination was toxic to both Bin-susceptible and 
Bin-resistant Culex quinquefasciatus larvae. Aedes aegypti and Anopheles gambiae 
mosquito larvae were insensitive to the combination, as were a range of other 
dipteran, coleopteran and lepidopteran insects.

The components of this novel binary toxin from B. sphaericus are highly 
conserved among strains able to overcome resistance. Differential processing of 
Cry48Aal by C. quinquefasciatus and A. aegypti larval gut proteinases is not 
responsible for the non-toxicity towards the latter mosquito. Cry49Aal and 
Cry48Aal form bipyramidal and amorphous crystals respectively at sporulation and 
their expression involves RNA polymerase factor ( /  in B. subtilis. Discovery of 
Cry49Aal and Cry48Aal may prove central in the development of strategies to avoid 
resistance development against B. sphaericus in Culex populations.
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1.1 Biological control o f vector mosquitoes

Mosquitoes are a constant threat to health and having moved into the 21st 

century a mosquito-borne disease, malaria, remains one of the major killers in the 

world. There are almost 500 million cases of malaria each year, resulting in nearly 

3 million deaths, caused by parasites such as Plasmodium falciparum  and 

Plasmodium vivax (WHO, 1998). Mosquito transmission of nematodes such as 

Wuchereria bancrofti and Brugia malayi also means that over 120 million people are 

infected with the causative agents of lymphatic filariasis (WHO, 2000a). In addition, 

hundreds of thousands of people each year suffer from the diseases; yellow fever, 

dengue fever, St. Louis encephalitis, Japanese encephalitis and West Nile virus, 

resulting from infection by mosquito-borne viruses. Anopheliae and Culicidae 

mosquitoes are the major vectors of such diseases (Porter et al., 1993) with Anopheles 

mosquitoes, of the former subfamily, transmitting malaria and filarial parasites. 

Members of the Culex genus are vectors of filariasis and Japanese encephalitis while 

Aedes mosquitoes transmit yellow fever, dengue viruses, as well as filarial nematodes. 

Attempts to control mosquito populations using broad range chemical pesticides have 

been successful, but have resulted in increased environmental pollution as well as 

increased populations of resistant mosquitoes. Biological control of mosquitoes 

provides a target-specific, effective and more environmentally friendly approach. 

Bacteria such as Bacillus sphaericus are particularly suited to this role due to their 

ability to survive in many habitats. While some chemical insecticides such as DDT 

exert their toxicity at an adult level, B. sphaericus and similar agents target the larval 

stages of the mosquito life cycle and thus have the advantage of controlling potential 

vectors before they can disperse and transmit diseases (Killeen et al., 2002). The 

specificity of these larvicides results in no damage to non-target organisms, including
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humans, and thus allows for trouble-free application in the field (WHO, 2000b). 

Integration of biological control with chemical control measures such as insecticide 

treated bednets (Lengeler, 2000; Roberts et al., 2000) would allow the targeting of 

multiple stages of the mosquito life cycle. In a recent study (Fillinger et al., 2003), it 

was shown that the minimum doses of commercially available VectoBac®

(B. thuringiensis israelensis) and VectoLex® (B. sphaericus) required to eliminate 

Anopheles gambiae larvae in a habitat were low (200g/ha). A similar study (Brown et 

al., 2004) also showed VectoLex® to be effective in control of Culex quinquefasciatus 

and confirmed no unwanted effects on nearby shrimp and fish species. This provides 

much encouragement for vector control programmes against A. gambiae, a malaria 

vector, and C. quinquefasciatus.

1.2 B. sphaericus

B. sphaericus is a gram positive, spore-forming bacterium distributed in soil 

and aquatic environments. Lacking several biochemical pathways, it cannot 

metabolise sugars and relies on other simple sources of carbon such as acetate, a 

feature that is useful for isolation of B. sphaericus strains from environmental samples 

(White and Lotay, 1980; Massie et al., 1985). Based on percentage of DNA 

homology, B. sphaericus strains are divided into five groups, with group II being 

subdivided into group Ila and lib (Krych et al., 1980). Group Ila contains all the 

mosquitocidal strains and are related by greater than 79% DNA homology. Flagellar 

(H) serotyping (de Barjac et al., 1985) and bacteriophage typing (Yousten, 1984) are 

other methods employed for the classification of B. sphaericus strains. Mosquitocidal 

strains have been divided into the flagellar serotypes: la, 2a2b, 3, 5a5b, 6, 9a9c, 25, 

26a26b, and 48. However, in contrast to early beliefs, there seems little correlation
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between serotype and toxicity, with the exception of serotype 5a5b that harbours only 

high toxicity strains (Priest et a l., 1997).

The first B. sphaericus mosquitocidal strain was discovered in 1964 (strain K) 

but was of low toxicity (Kellen et al., 1965). The search for higher toxicity strains 

continued, with a strain of significantly greater toxicity (SSII-1) being reported by 

Singer in 1973 (Singer, 1973). Its discovery prompted the search for further strains, 

with the isolation of strain 1593, in Indonesia in 1976, representing the discovery of 

the first high-toxicity strain (Singer, 1977). This was followed by the discovery of 

more high toxicity strains such as 2297 from Sri Lanka (Wickremesinghe and Mendis, 

1980), 2362 from Nigeria (Weiser, 1984), strains IAB59, IAB881 and 1AB872 from 

Ghana (de Barjac et al., 1988; Thiery et al., 1992) and LP1G from Singapore (Liu et 

al., 1993). All high toxicity B. sphaericus strains form parasporal crystals at 

sporulation.

B. sphaericus strains show toxicity towards the larval stages of many mosquito 

genra {Culex, Aedes, Anopheles, Mansonia and Psorophora) (Delecluse et al., 2000). 

In general B. sphaericus strains are highly toxic to Anopheles and Culex larvae and 

show low toxicity, or no toxicity, towards Aedes larvae. However, mosquitocidal 

specificity depends on mosquito species and can vary within a genus (Berry et al., 

1993). While B. sphaericus SSII-1 toxicity was found throughout all stages of growth 

and was lost when cells were heated above 80°C for 12 min (Myers and Yousten,

1978; Myers et al., 1979), strain 1593 toxicity was more stable and was found to 

increase at sporulation (Myers et al., 1979). Also, strain 2297 showed about a 1,000- 

fold increase in toxicity during sporulation (Yousten and Davidson, 1982). 

Furthermore, mutants blocked at early stages of sporulation failed to make crystals 

and were poorly mosquitocidal (Charles et al., 1988). The source of the B. sphaericus
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spore associated toxicity was later found to be the binary toxin (Baumann et al., 1987; 

Hindley and Berry, 1987; Baumann et al., 1988), which is composed of two 

polypeptides: BinA (also known as P42, with a molecular weight of 41.9 kDa) and 

BinB (also known as P51, with a molecular weight of 51.4 kDa). Sporulation 

independent toxicity was found to be the result of the vegetatively expressed toxins; 

Mtxl (100 kDa) (Thanabalu et al., 1991), Mtx2 (31.8 kDa) (Thanabalu and Porter, 

1996) and Mtx3 (35.8 kDa) (Liu et al., 1996).

Most high toxicity strains, for example all strains form serotype 5a5b, 2297 

from serotype 25 and IAB59 from serotype 6, produce both the binary toxin and Mtx 

toxins (Liu et al., 1996; Thanabalu and Porter, 1996; Priest et al., 1997). Lower 

toxicity strains such as SSII-1 from serotype 2a2b produce only Mtx toxins, while 

others such as 2173 and 2377 produce none of the currently identified toxins. Strains 

such as 2173 and 2377 of serotype 26a26b provide an opportunity to identify new 

toxins and the prospect of using multiple B. sphaericus strains in the field to reduce 

the development of resistance currently observed.

1.2.1 The Bin toxin o f B. sphaericus

Early work to identify the mosquitocidal toxins of B. sphaericus were 

hampered by the inability to isolate sufficient quantities of crystal to permit 

fractionation or purification of its toxic components. The toxic factor was determined 

to be associated with the bacterial cell since culture supernatants, after centrifugation, 

were inactive, with cells retaining toxicity in the pellet (Myers and Yousten, 1980). 

Breakage of B. sphaericus 1593 spores showed the toxicity to be associated with the 

cell wall fraction and that toxicity was stable to treatment with trypsin, pronase, urea 

(8M, 30 min), heating (80°C, 12 min), sonication, refrigeration, lyophilisation and
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freezing (Myers and Yousten, 1980). An alkaline extraction method, adapted from 

the successful solubilisation of 5-endotoxin from B. thuringiensis, resulted in the 

successful solubilisation of toxin from B. sphaericus 1593 with an apparent molecular 

weight of 35-54 kDa (Davidson, 1983). Concordantly, crystals purified from 

B. sphaericus 2362 by centrifugation through 48% (w/v) NaBr were found to contain 

five proteins with apparent molecular weights of 43, 63, 98, 110 and 125 kDa, with all 

but the 43 kDa and 63 kDa proteins being eliminated by solubilisation under alkaline 

conditions (Baumann et al., 1985). The 43 kDa and 63 kDa proteins were 

subsequently purified and their antigenic determinants detected in the non-toxic 

110 kDa and 125 kDa proteins observed in the purified crystal preparations 

(Broadwell and Baumann, 1986). It was thus initially proposed that the 110 kDa and 

125 kDa proteins were protoxins activated during sporulation to yield the 43 and 

63 kDa proteins, but they were later thought to be surface layer proteins (Bowditch et 

al., 1989). However, much more recent data points to the 110 kDa and 125 kDa 

protein bands observed by SDS-PAGE to be oligomers of BinA and BinB (Smith et 

al., 2005). Purified 43 kDa protein was found to be toxic to Culex pipiens mosquito 

larvae (LQq of 35 ng/ml) whereas the 63 kDa protein was non-toxic (Baumann et a l., 

1985). The 43 and 63 kDa proteins were also found to have different amino acid 

compositions, no immunological cross-reactivity, net opposite charges at pH 7.5 and 

different susceptibility to processing by larval midgut proteinases (Baumann et al., 

1985). The 63 kDa protein was rapidly degraded while the 43 kDa protein appeared 

to be slowly processed to a 40 kDa product. Separate treatment of the 43 kDa protein 

with mosquito gut proteinases, trypsin or a-chymotrypsin confirmed processing to a 

40 kDa product, causing a 54 fold increase in toxicity (to LC50 of 1 //g/ml) to culture- 

grown Culex quinquefasciatus cells (Broadwell and Baumann, 1987; Davidson et al.,
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1987). Proteolytic processing was also shown not to be involved in host specificity, 

with gut extracts from non-susceptible Aedes aegypti larvae being as effective as 

highly sensitive C. quinquefasciatus in toxin activation (Broadwell and Baumann, 

1987; Davidson et al., 1987). N-terminal sequencing of the purified 43 kDa protein 

resulted in determination of the first 40 amino acid residues (Baumann et al., 1985). 

The mode of action of the toxin was proposed to involve ingestion of the crystal-spore 

complex before its solubilisation under alkaline conditions in the larval gut and its 

activation by gut proteinases. Proteins immunologically related to the 43 kDa and 

63 kDa protein were detected in strains 1593, 1691 and 2297 (Baumann et al., 1985). 

Preparation of antibodies against the 1593 larvicidal protein followed by their 

immobilisation for use in immunoaffinity purification of the toxins gave rise to the 

isolation of proteins with molecular weights of 42.6,44.1, 50.7 and 51.3 kDa, with an 

LQo of 8.3 ng/ml against Culex larvae (Narasu and Gopinathan, 1986).

1.2.2 The Biliary toxin (bin) genes

The gene encoding the 41.9 kDa BinA protein was identified in B. sphaericus 

strain 1593 DNA by Southern blot (Hindley and Berry, 1987) using degenerate probes 

designed from the 40 amino acid N-terminal sequence of the 43 kDa protein of strain 

2362 (Baumann et al., 1985). Sequencing of the gene for BinA from other strains was 

quick to follow (Berry and Hindley, 1987; Hindley and Berry, 1988). A 3.5 kb 

HindlU fragment was later cloned from a genomic library of strain 2362 that 

contained two open reading frames for 41.9 kDa and 51.4 kDa proteins arranged in an 

operon (Baumann et al., 1987; Baumann et al., 1988). Sequence analysis (Baumann 

et aLy 1988) confirmed the 41.9 kDa (BinA) and 51.4 kDa (BinB) to correspond to the 

proteins previously purified from B. sphaericus 2362 (Baumann et al., 1985) with
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apparent molecular weights of 43 kDa and 63 kDa respectively. The nucleotide 

sequence of the 3,479 bp operon was found to be highly conserved between 2362, 

1593, 2297, IAB59 and 2317.3 (Berry et al., 1989). Strains from H5a5b (1593, 2362 

and 2317.3) had identical nucleotide sequences for the operon while the sequences 

from 2297 (H25) and IAB59 (H6) differed by 25 and 7 nucleotides, resulting in 8 and 

6 amino acid substitutions respectively. Interestingly, no genes coding for BinA and 

BinB were detected by Southern blot analysis in the low toxicity strains SSII-1 and 

Kellen K (Baumann et al., 1987), suggesting a different source for the toxicity of 

these strains.

The organisation of the bin operon is shown in figure 1.1 and consists of binB 

lying upstream of binA with a 174-176 bp intergenic region and putative 

Shine-Dalgamo sequences lying upstream of the initiating ATG of both genes 

(Hindley and Berry, 1987; Baumann et al., 1988). A G+C rich hairpin loop followed 

by a row of Ts, forming a characteristic transcriptional terminator, is located 

downstream of binA. The lack of a transcriptional terminator in the intergenic region 

suggests co-transcription of binA and binB (Baumann et al., 1988). This is further 

supported by the expression of both BinA and a P-galactosidase-BinB fusion protein 

when their genes were cloned downstream of the lac promoter, regulated by a 

p-galactosidase inducer in Escherichia coli (Baumann et al., 1987).

It has been shown that the binary toxin genes are located on the bacterial 

chromosome (Porter et al., 1993), at least in some strains, where a binary toxin gene 

probe failed to hybridise to purified plasmid DNA while hybridisation to binary toxin 

genes on the chromosome was observed (Liu et al., 1993).

Expression of the binary toxin genes occurs during sporulation in B. subtilis 

(Baumann and Baumann, 1989), while lacZ fusion to the bin promoter have revealed
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that transcription begins immediately before the end of exponential growth in both 

B. sphaericus and B. suhtilis (Ahmed et al., 1995). More recently, experiments using 

mutants of B. sphaericus strain 2362 have emphasised the importance of the early 

sporulation genes, spoOA and spoIIAC, in expression of the binary toxin genes (El- 

Bendary et al., 2005). SpoOA and RNA polymerase factor </, the protein products of 

spoOA and spoIIAC respectively, are known to be essential for the expression of a 

number of sporulation specific genes and either directly or indirectly are required for 

the production of multiple sigma factors in B. subtilis, such as c f y c /, a* and a ” 

(Haldenwang, 1995; El-Bendary et al., 2005). The RNA polymerase sigma factor(s) 

involved in transcription of the bin operon in B. sphaericus have not yet been 

determined.

S-D S-D Ter

■ L .......................... ... .............  I  I

< ----------------

binB < -------- ►
174-176-bp

binA

-------------- ►
3479-bp

Figure 1.1 Schematic representation of the binary toxin genes, binA and binB. 

Putative Shine-Dalgamo (S-D) sequences and transcriptional terminator sites (Ter) 

are shown.
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1.2.3 BinA and BinB variants among B. sphaericus strains

All bin operons sequenced to date encode two proteins of 41.9 kDa 

(370 amino acids) and 51.4 kDa (448 amino acids) respectively. The 3,479-bp toxin 

coding and surrounding regions of strains 1593, 2362 and 2317.3 are identical, while 

the sequences of the IAB59, 2297 and LP1G variants differ by up to 25 nucleotides 

(Berry and Hindley, 1987; Hindley and Berry, 1987; Baumann et al., 1988; Hindley 

and Berry, 1988; Berry et al., 1989; Priest et al., 1997; Humphreys and Berry, 1998). 

At the protein level this corresponds to five and six potentially variant amino acids in 

the sequences of BinA and BinB respectively, giving rise to four bin variants as 

summarised in table 1.1 (Humphreys and Berry, 1998). The change of only a few 

amino acids in BinA or BinB can have a substantial effect on host specificity and 

toxicity levels. For example, by expressing mutant toxins of strain 2297 in E. coli, 

Berry et al. concluded that amino acids within the variable region (position 99 and 

104) of BinA could influence target specificity (Berry et al., 1993). A BinA amino 

acid change of S-»A at 104 (corresponding to 2297-^2362 at this position) resulted in 

a switch of activity of the 2297 toxin towards that of 2362, by becoming more toxic 

against A. aegypti larvae. A change of amino acid at position 99 from F-»V 

(2297-»2362) also resulted in increased overall toxicity towards A. aegypti larvae. It 

was thus predicted that these variable amino acids, focused around position 100, were 

involved in toxin-receptor interaction in the larval gut (Berry et al., 1993). Consistent 

with these results, the BinA4/BinB4 variant seen in strain LP1G bestows on this strain 

a lower level of toxicity towards C. quinquefasciatus compared to all the other Bin 

variants, in having a serine at position 93 instead of a leucine (table 1.1) (Humphreys 

and Berry, 1998). Further mutational studies indicated that this L-»S change in LP1G 

was responsible for the lower toxicity of this strain and that introducing a L-»S
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mutation into BinA2 from strain 1593 also resulted in significant loss of toxicity 

(Yuan et al., 2001).

BinA and BinB share only a low sequence identity except for in the four 

conserved blocks described by Baumann et al. (Baumann et a l., 1988; Baumann et al., 

1991), as shown in figure 1.2. It was thus suggested that these two proteins came 

from a single ancestor by gene duplication followed by sequence divergence and, 

possibly, functional specialization (channel formation for BinA and receptor binding 

for BinB) (Baumann et al., 1991; de Maagd et al., 2003). Until recently, the Bin toxin 

components did not show homology to any other toxins. However the discovery of 

the Cry34/Cry35 binary toxins from B. thuringiensis (Moellenbeck et al., 2001; Ellis 

et al., 2002; Schnepf et al., 2005) has added a homologue of BinA and BinB, the 

Cry35 binary toxin component (de Maagd et al., 2003), to the database. Additionally, 

the Cry36 protein shows homology to BinA and BinB (de Maagd et al., 2003).
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Nucleotide and amino acid in strain
Gene Base

position
Amino

acid
position

IAB59
(Binl)

2362
(Bin2)

2297
(Bin3)

LP1G
(Bin4)

binB 700 69 G Ala T Ser T Ser T Ser
705 70 A Lys C Asn C Asn C Asn
824 110 T lie C Thr C Thr T lie

1206 239 G Ala G Ala G Ala A Ala
1435 314 C His C Leu T Tyr C His
1436 314 A His T Leu A Tyr A His
1446 317 G Leu T Phe G Leu G Leu
1455 320 C Ser T Ser C Ser C Ser
1660 389 T Leu T Leu A Met A Met
1677 394 G Ser G Ser G Ser A Ser

binA 2139 42 C lie C lie T He T He
2169 52 T Asn T Asn C Asn C Asn
2253 80 C Ala C Ala T Ala T Ala
2291 93 T Leu T Leu T Leu C ■
2308 99 G Val G Val T Phe G Val
2323 104 G Glu G Ala T Ser T Ser
2324 104 A Glu C Ala C Ser C Ser
2386 125 C His C His A Asn A Asn
2412 133 T Leu T Leu C Leu C Leu
2417 135 A Tyr A Tyr T Phe T Phe
2490 159 A Ser A Ser T Ser T Ser
2643 210 C Thr C Thr G Thr G Thr
2745 243 C lie C He T He T He
2813 267 G Arg G ......Ai£ _ A Lys A Lys

Table 1.1 Bin toxin sequence comparison between the four variants. Amino 

acid residues differing from the reference type, Bin2, are highlighted yellow with 

those involved in host determination also shown in bold. The L-*S amino acid 

change in BinA, conferring lower toxicity on the Bin4 variant is highlighted green. 

Adapted from Humphreys and Berry (1998).
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BinA2
BinB2

MRNLDFIDSFIPTEGKYIR VMDFYNSEYPFCIHAPSAPNGDI
MCDSKDNSGVSEKCGKKFTNYPLNTTPTSLNYNLPEISKKFYNLKNKYSRNGYGLSKTEF

BinA2 MTEICSRENNQYFIFFPT-------------DDGRVIIANRHNGS VFTGEAT------- S W
BinB2 PSSIENCPSNEYSIMYDNKDPRFLIRFLLDDGRYIIADRDDGEVFDEAPTYLDNNNHPII

BinA2 SDIYTGSPLQFFREVKR------- TMATYYLAIQNPESATDVRALEPHSHELPSRLYYTNN
BinB2 SRHYTGEERQKFEQVGSGDYITGEQFFQFYTQNKTRVLSNCRALDSRTILLSTAKIFPIY

BinA2 — IENNSNILISNKEQIYLTLPSLPENEQYPKTPVLSGIDDIG— PNQSEKSIIGSTLIP
BinB2 PPASETQLTAFVNSSFYAAAIPQLPQTSLLENIPEPTSLDDSGVLPKDAVRAVKGSALLP

BinA2 CIMVSD-FISLGERMKTTPYYYVKHTQYWQSMWSALFPPGSKETKTEKSGITDTSQISMT
BinB2 CIIVHDPNLNNSDKMKFNTYYLLEYKEYWHQLWSQIIPAHQTVKIQERTGISEWQNSMI

BinA2 DGIMVSIGADFGLRFGNKTFGIKGGFTYDTKTQITNTSQLLIETTYTREYTNTENFPVRY
BinB2 EDLNMYIGADFGMLFYFRSSGFKEQITRGLNRPLSQTTTQLGERVEEMEYYNSNDLDVRY

BinA2 TGYVLASEFTLHRSDGTQVNTIPWVALNDNYTTIARY P--------------------------
BinB2 VKYALARE FTLK RVNGEIVKN— WVAVDYRLAGIQSYPNAPITNPLTLTKHTIIRCENSY

BinA2  HFASEPLLGNTKIITDDQN
BinB2 DGHIFKTPLIFKNGEVIVKTNEELIPKINQ

Figure 1.2 Alignment of Bin A and BinB, highlighting the four conserved 

blocks. The BinA2 and BinB2 variants are shown with identical residues highlighted 

yellow, except for the identical residues forming the conserved blocks which are 

highlighted green (block A), blue (block B), magenta (block C) and orange (block D).
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1.2.4 BinA and BinB binary toxins

Early studies indicated that BinA alone, purified from B. sphaericus 2362, was 

toxic to mosquito larvae (LQo of 35 ng/ml) and cultured C. quinquefasciatus cells 

(LG* of l//g/ml) while BinB was not toxic, even at a concentration of 100/*g/ml 

(Baumann et al., 1985; Broadwell and Baumann, 1987). However, the LC^ of 

35 ng/ml for BinA toxicity against C. pipiens larvae in contrast to 6 ng/ml for the 

crystal toxin, suggested a role for BinB in contributing to toxicity. Further 

experiments, where both toxins were cloned and expressed in E. coli and B. subtilis, 

showed that both components were required for toxicity and that cells expressing 

either BinA or BinB alone were non-toxic (Broadwell et al., 1990a; Broadwell et al., 

1990b; Davidson et al., 1990). It was also shown that an equimolar amount of BinA 

and BinB yielded greatest toxicity (LQq of 15.4 ng/ml at 24 h) (Davidson et al., 1990; 

Nicolas et al., 1993). Interestingly, Nicolas et al. found that BinA expressed alone in 

recombinant B. thuringiensis subsp. israelensis, under the control of the cytA 

promoter, was larvicidal (LC^ of 1.9 /ig/ml at 24 h, 300 ng/ml at 48 h), however 

toxicity was greatly enhanced by the addition BinB (Nicolas et al., 1993). Davidson 

et al. proposed that the reason for the toxicity observed for the 43 kDa protein, 

corresponding to BinA, purified by Baumann et al. (Baumann et al., 1985) was due to 

contamination with degradation products of BinB (Davidson et al., 1990). This was 

confirmed by absence of toxicity of the 43 kDa protein when pre-treated with 

antiserum to BinB (Baumann and Baumann, 1991).

Subsequent binding studies confirmed the requirement for both components of 

the toxin to be present for toxicity. Radiolabelled toxins bound at equimolar amounts 

to the gastric caecum and posterior midgut of larvae (Davidson, 1988; Davidson et al., 

1990; Charles et al., 1997). It was also found that BinA does bind to A. gambiae gut
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membrane without BinB, although BinB greatly enhances BinA binding (Charles et 

al., 1997). Further information regarding toxin binding was provided by Oei et al. 

who showed that regional binding of BinA to larval midgut was dependent on BinB, 

and that BinA alone exhibited only weak binding (Oei et al., 1992). Continuing 

experiments using N- and C-terminal deletions of BinA and BinB showed the 

N-terminus of BinB to be involved in an association with the N-terminus and 

C-terminus of BinA (Clark and Baumann, 1990; Oei et al., 1990; Oei et al., 1992). 

Mutational analysis further complemented this work by showing that replacement of 

certain amino acid residues within the N- and C-terminal regions of both toxin 

components abolished toxicity (Shanmugavelu et al., 1998) and that while mutations 

in the N- and C-terminal regions of BinA abolished toxicity, toxin binding was not 

affected (Elangovan et al., 2000). Variants mutated at either the N- or C-termini of 

BinB and BinA were non-toxic when combined with their wild-type binary partner. 

Interestingly, a mixture of both the N-terminal and C-terminal mutants of either Bin 

component, combined with its wild-type partner, was able to complement each other 

functionally to restore toxicity, suggesting that the Bin components form multimeric 

structures allowing functional complementation to occur (Shanmugavelu et al., 1998; 

Delecluse et al., 2000). Mutation of BinA at a C-terminal residue, R312, resulted in 

complete loss of toxicity (Elangovan et al.y 2000). These results may indicate a role 

for the N-terminus of BinB in larval midgut receptor binding and the C-terminus of 

BinA, specifically residue R312, in toxicity. It is predicted that amino acid 93 of BinA 

is positioned in an a-helix and is thus sensitive to modification. Disruption of the 

predicted helix by such a modification as the L-*S modification, seen in the lower 

toxicity Bin4 variant of LP1G, may disturb a BinA-BinB interaction and thus may be 

the cause of the lower toxicity of this variant (Yuan et al., 2001).
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Recombinant expression of BinA and BinB individually in B. subtilis,

B. sphaericus or B. thuringiensis acrystalliferous hosts results in the production of 

amorphous crystals (Charles et al., 1993; Nicolas et al., 1993). However, when BinA 

and BinB are expressed together in B. sphaericus and B. thuringiensis more native 

crystals are produced (Charles et al., 1993; Nicolas et al., 1993).

1.2.5 Proteolytic processing o f the Bin toxin

Clark and Baumann, and Davidson et al. confirmed the proteolytic processing 

of BinA to a 39 kDa protein and BinB to a 43 kDa protein (Clark and Baumann, 1990; 

Davidson et al., 1990) as previously found by Broadwell and Baumann (Broadwell 

and Baumann, 1987) and Davidson et al. (Davidson et al., 1987). Incubation of BinA 

with trypsin, a-chymotrypsin and mosquito gut extract also resulted in processing to a 

39 kDa product (Davidson et al., 1987). While the processed BinA product of 39 kDa 

was toxic to cultured C. quinquefasciatus cells, the 43 kDa processed form of BinB 

was non-toxic (Davidson et al., 1987; Baumann and Baumann, 1991). The possibility 

that the toxic activity of the 39 kDa product was a result of contamination with BinB 

was ruled out by pre-incubation of the 39 kDa protein with antiserum for BinB 

(Baumann and Baumann, 1991; Baumann et al., 1991). The apparent lack of 

contribution of BinB, at the time, raised questions as to its role. The importance of 

BinB for toxicity in the physiological environment of the larval gut was later 

determined through the binding studies (Davidson et al., 1990; Oei et al., 1992) 

described above.

Deletion experiments corresponding to BinB cleavage at potential trypsin and 

chymotrypsin cleavage sites showed that 32 and 53 aa can be removed from the N- 

and C-termini (Clark and Baumann, 1990), and that 10 and 17 aa can be removed
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from the N- and C-termini of BinA (Broadwell e ta l ., 1990c) without loss of toxicity. 

Figure 1.3 summarises the findings of these experiments. Experiments performed by 

Oei et al. provided additional information for these deletion mutants, revealing that 

between 34-39 aa and 52-54 aa can be deleted from the N- and C-termini of BinB and 

no more than 6 aa and at least 17 aa can be removed from the C- and N-termini of 

BinA without loss of the essential cores required for toxicity (Oei et al., 1990).

211 153
BinB 18aa-TNYPLNTTPTSLNYNLPEISKKFYN YRLAGIQSYPNAPITNPLTLTKH-39aa

32 |____________________________ I 53
41 61

1 0 1 17

BinA MRNLDFIDSFIPTEGKYIRVMDFYN DNYTTIARY PHFASEPLLGNTKI-6 aa
rl_______________________________ I 1717‘

24 L J20

Figure 1.3 Summary of N- and C-terminal deletions of BinA and BinB at 

possible proteinase cleavage sites. Blue lines indicate proteins equivalent to the 

predicted products of processing in the larval gut, corresponding to potential 

chymotrypsin sites. Red lines represent the smallest constructed deletions of BinA 

and BinB that retained toxicity. Green lines represent the largest proteins constructed 

that lacked toxicity. Both protein sequences are aligned with identical residues 

highlighted in yellow. Adapted from Baumann etal. (Baumann et al., 1991). 

Numbers correspond to the number of amino acids deleted from the termini.
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1.2.6 Biliary toxin mode of action

The localisation of Bin to the gastric caecum and posterior midgut (Davidson 

et al., 1990), its proteolytic processing (Broadwell and Baumann, 1987; Davidson et 

al., 1987; Clark and Baumann, 1990; Davidson et al., 1990) and its solubilisation 

under alkaline pH (Davidson, 1983; Baumann et al., 1985) indicate early events in the 

mode of action. Larval ingestion of crystal-spore complexes is followed by 

solubilisation in the alkaline larval gut and processing of the solubilised toxin by gut 

proteinases. Binding studies using brush border membrane fractions from Anopheles 

and Culex mosquito showed the interaction of the binary toxin with the larval midgut 

to be mediated by a single class of receptor (Nielsen-Leroux and Charles, 1992; Silva- 

Filha et al., 1997). Affinity binding studies of brush border membrane fractions with 

immobilised Bin toxin on Sepharose beads led to the identification of the Bin 

receptor, in Culex pipiens, as being a 60 kDa a-glucosidase called Cpml belonging to 

the a-amylase family, that is membrane bound via a glycosyl-phosphatidylinositol 

(GP1) anchor (Silva-Filha et al., 1999; Darboux et al., 2001). Studies also showed 

that Bin was able to bind Cpml when expressed in the Sf9 insect cell line (Darboux et 

al., 2002) and in mammalian epithelial cells (Pauchet et al., 2005). It was also 

recently determined that the different Bin toxin variants from strains IAB59 (Binl) 

and 2362 (Bin2) share the same receptor (Silva-Filha et al., 2004). Membrane studies 

(Cokmus et al., 1997; Schwartz et al., 2001) have confirmed earlier theories of Bin’s 

larvicidal activity by pore formation. Schwartz et al. showed that both BinA and 

BinB form pores, with BinA forming larger channels. BinB facilitated the BinA 

channel forming effect, with a 1:1 mixture being more effective and forming pores 

more akin to the large BinA channels than the smaller BinB channels (Schwartz et al., 

2001).
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1.2.7 Mtx toxins

Mtx toxins are expressed at the vegetative stage of cell growth and are widely 

distributed among both high toxicity (bin+) and low toxicity (bin ) B. sphaericus 

strains (Thanabalu et al., 1991; Liu et al., 1996; Thanabalu and Porter, 19%; Priest et 

al., 1997). These toxins were cloned in attempt to understand the larvicidal nature of 

the bin strains, in particular strain SSII-1 (Singer, 1973).

1.2.7.1 Mtx 1

Mtxl was cloned from B. sphaericus strain SSII-1, by screening of cosmid 

clones of SSII-1 total DNA in E. coli, for toxicity towards C. quinquefasciatus 

(Thanabalu et al., 1991). Subcloning of a toxic clone and sequence analysis revealed 

an open reading frame for a 100 kDa toxin designated Mtxl. The C-terminal region 

of Mtxl has internal repeats (Thanabalu et al., 1992) typical of ricin-like beta trefoil 

repeats thought to be involved in carbohydrate binding (Hazes and Read, 1995). The 

N-terminal region has regions of homology to toxins that function by 

ADP-ribosylation of target G proteins, such as pertussis and cholera toxin (Thanabalu 

et al., 1992; de Maagd et al., 2003). Mtxl shows no homology to BinA or BinB. The 

genes encoding Mtxl from strains 2297 and LP1G were also recently cloned (Shi et 

al., 2003; Promdonkoy et al., 2004). Analysis of expression of M txl, by fusion of the 

promoter to lacZ, confirmed expression during vegetative growth (Ahmed et al., 

1995), consistent with the identification of a putative vegetative promoter upstream of 

mtxl (Thanabalu et al., 1991). The contribution of Mtxl to B. sphaericus toxicity is, 

however, limited by two factors: i) levels of transcription from the mtxl promoter 

appear to be low (Ahmed et al., 1995) possibly due to repression at an upstream 

inverted repeat (Thanabalu et al., 1991) and ii) the low levels of Mtxl produced are
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degraded by an endogenous proteinase (Wati et al., 1997). This proteinase, called 

sfericase, is a calcium dependent subtilisin-like serine proteinase and its crystal 

structure was recently solved (Almog et al., 2003). Indeed, expression of Mtxl in 

strains lacking this proteinase results in improved levels of production (Thanabalu and 

Porter, 1995).

A 97 kDa form of M txl, lacking its predicted signal sequence (Thanabalu et 

al., 1991), was expressed in E. coli and purified as a glutathione S-transferase (GST) 

fusion protein (Thanabalu et al., 1992). Another form of the toxin, lacking both the 

putative signal sequence (residues 1-29) and membrane-spanning sequence 

(residues 43-60) was found to be non-toxic (Thanabalu et al., 1992). Mtxl was found 

to have an LQo of 15 ng/ml against C. quinquefasciatus larvae after cleavage of the 

GST fusion tag, similar to that of the Bin toxin. The lower toxicity of the SSII-1 

strain thus suggested that the protein was either expressed at a low level or that the 

protein was unstable (Thanabalu et al., 1992). Incubation of Mtxl with larval gut 

extracts revealed that the protein was processed to a 27 kDa N-terminal peptide and a 

70 kDa C-terminal peptide, with the N-terminal product containing the region 

showing homology to ADP-ribosyltransferase toxins and the C-terminal peptide 

containing the region comprising the ricin-like beta trefoil repeat sequences 

(Thanabalu et al., 1992). ADP-ribosyltransferase toxins are two subunit (AB) toxins 

with an enzymatically active A-moiety and a receptor-binding B-moiety that transfer 

an ADP-ribose from NAD: onto target proteins such as G-proteins, altering their 

function. The 27 kDa N-terminal peptide was shown to be responsible for 

ADP-ribosylation of two proteins of 38 kDa and 42 kDa in C. quinquefasciatus, while 

the C-terminal peptide was able to cause toxicity in cultured C. quinquefasciatus cells 

(Thanabalu et al., 1993). Both regions are required for toxicity to mosquito larvae.
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Kinetic studies identified Glu197 of the N-terminal 27 kDa product (amino acid 

residues 30-264) as the catalytic glutamate that is conserved among 

ADP-ribosyltransferases (Schirmer et al., 2002a). Mutation of this residue to a 

glutamine resulted in loss of ADP-ribosyltransferase activity. The C-terminal 70 kDa 

product of processing was also found to remain non-covalently bound to the 27 kDa 

enzymatic component, inhibiting its activity (Schirmer et al., 2002a; Carpusca et al., 

2004). Production of the 27 kDa unit of Mtxl (residues 30-264) in E. coli results in 

toxicity to the bacterial cell while an enzymatically inactive mutant of the peptide is 

successfully expressed (Schirmer et al., 2002a). Later studies suggested that this 

toxicity was due to ADP-ribosylation of E. coli elongation factor Tu (EF-Tu), 

preventing the formation of an EF-Tu:aminoacyl-tRNA:GTP complex (Schirmer et 

al., 2002b). This may suggest an important role for the 70 kDa region in 

autoinhibition of the ADP-ribosyltransferase activity and thus preventing inhibition of 

protein synthesis in bacterial cells producing Mtxl.

The crystal structure of the catalytic domain of Mtxl was recently solved 

(figure 1.4) (Reinert et al., 2006). As the catalytic domain (residues 30-264) is itself 

toxic to E. coli, the protein was expressed including its inhibitory C-terminal linker 

(shown in red in figure 1.4) that is processed from the catalytic domain when the 

100 kDa toxin is processed to its 27 kDa and 70 kDa moieties. The protein was also 

expressed in two mutant forms which were catalytically inactive, to improve 

expression yield. The folding of the Mtxl domain is typical of the chainfold of all 

known ADP-ribosyltransferases (Reinert et al., 2006). From this structure it can be 

said that Mtxl is cleaved at an exposed activation loop (shown in green in figure 1.4). 

This results in the 70 kDa moiety, including the linker region shown in red in
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figure 1.4, separating from the 27 kDa catalytic unit allowing NAD+ to enter its 

binding site.
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Figure 1.4 Crystal structure of the M txl catalytic domain. The stereo images 
have a-helices shown in blue and p-sheets shown in gold. The C-terminal linker 
which occupies the NAD+ binding site before processing at the activation loop (green) 
by larval gut enzymes is shown in red. NAD+ is shown in black. The loop regions 
coloured in magenta are predicted to contact the target molecule. In (i) the NAD+ has 
been placed approximately in its binding location, as described by Reinert et al. 
(Reinert et al., 2006). ii) A view at approximately 90° to (i), rotated about the 
vertical axis, emphasising the inability of NAD+ to enter its binding location due to 
the inhibitory linker (red). Images were created from the Protein data bank accession 
code 2CB6 for Mtxl and the NAD+ molecule was taken from its binding location in 
cholera toxin (PDB accession 2A5F) using the program DeepView/Swiss-PDB 
Viewer (Guex and Peitsch, 1996; Guex and Peitsch, 1997).

23



1.2.7.2 Mtx2 and Mtx3

The genes encoding Mtx2 and Mtx3 were cloned using a similar strategy to 

that used for the cloning of m txl, by screening size fractionated genomic libraries of

B. sphaericus SSII-1 against C. quinquefasciatus mosquito larvae (Liu et al., 1996; 

Thanabalu and Porter, 19%). Both genes were shown by Southern hybridisation to be 

widely distributed amongst the high toxicity and lower toxicity strains of 

mosquitocidal B. sphaericus and their protein products were found to be highly 

conserved (Liu et al., 19%; Thanabalu and Porter, 19%).

Mtx2 is a protein of 31.8 kDa (Thanabalu and Porter, 19%) while Mtx3 has a 

molecular weight of 35.8 kDa (Liu et al., 19%). Mtx2, lacking it putative 15 residue 

N-terminal signal peptide was found to have an LC^ of 320 ng/ml at 48 hours against

C. quinquefasciatus larvae (Thanabalu and Porter, 19%). While these proteins are 

less well characterised than Bin or M txl, studies have shown that the amino acid at 

position 224 of Mtx2 (a Lys in SSII-1 and Thr in strain 31-2) is a major determinant 

of toxicity and mosquito host range, while amino acids 279 and possibly 37 and 67 

also play an important role (Chan et al., 19%). Mtx2 and Mtx3 are closely related to 

each other and show homology to the cytotoxin of Pseudomonas aeruginosa, the 

e-toxin of Clostridium perfringens, alpha-toxin of Clostridium septicum and aerolysin 

of Aeromonas hydrophila (de Maagd et al., 2003). These toxins function by pore 

formation and aerolysin and e-toxin are known to form heptameric complexes leading 

to pore formation (Lesieur et al., 1999; Miyata et al., 2002). The region of homology 

between these Mtx toxins and aerolysin includes the region involved in 

heptamerisation, and may suggest a multimeric pore forming role for Mtx2 and Mtx3 

(de Maagd et al., 2003).
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1.3 Bacillus thuringiensis

B. thuringiensis was first discovered in 1901 and has been commercially 

available as an insecticide since the late 1950s. Strains have been isolated from many 

habitats worldwide, including soil, ponds, stored-product dust, insects and plant 

leaves (Schnepf et al., 1998) and their ability to survive in multiple habitats makes 

them suitable for their use in the field as biocontrol agents. B. thuringiensis spores 

can survive for several years after application in the field, however, a rapid decline in 

population and toxicity is observed (Schnepf et al., 1998). B. thuringiensis, along 

with B. cereus and B. anthracis, is a member of the B. cereus sensu lato group of 

bacteria and is distinguished from the other members by the production of parasporal 

crystals (Turnbull, 1999; Helgason et al., 2000; Priest et al., 2004).

The first mosquitocidal strain of B. thuringiensis was isolated in Israel in 1976 

from a stagnant pond that provided a typical breeding site for Culex pipiens mosquito 

larvae (Goldberg and Margalit, 1977). This strain was later serotyped as H14 and 

designated B. thuringiensis serovar israelensis (Bti). B. thuringiensis is a gram 

positive, spore forming bacterium that forms parasporal crystals at stage II of 

sporulation. These crystals are responsible for toxicity towards target insects. In the 

case of B. thuringiensis subsp. israelensis activity is against Diptera including the 

Culicidae (mosquito) genera: Culex, Aedes and Anopheles, with higher specificity 

towards the former two (Delecluse et al., 2000). There are also reports of 

B. thuringiensis subsp. israelensis toxicity against lepidopteran and coleopteran 

insects (Vassal et al., 1993; Mendez-Lopez et al., 2003). Importantly, the parasporal 

crystals show no toxicity towards vertebrates and other non-target organisms. The 

B. thuringiensis toxins, collectively called 6-endotoxins, consist of the Cry proteins 

with specific activity, and the Cyt family that have cytolytic and haemolytic activities.

25



In addition to the toxic crystal proteins produced at sporulation, some B. thuringiensis 

strains produce unrelated insecticidal proteins during the vegetative stage of growth, 

the VIP toxins (Estruch et al., 1996). Also recently reported was a novel secreted 

toxin designated SiplA (Donovan et al., 2006).

Since the discovery of B. thuringiensis subsp. israelensis, other mosquitocidal 

strains have been isolated and classed into 3 groups (Charles and Nielsen-LeRoux, 

2000; Delecluse et al., 2000). Strains in class 1 show similar larvicidal, haemolytic 

and crystal polypeptide composition to B. thuringiensis subsp. israelensis; class 2 

strains are nearly as toxic as B. thuringiensis subsp. israelensis but have different 

polypeptide compositions; class 3 strains produce polypeptides different to 

B. thuringiensis subsp. israelensis and are of low toxicity. A summary of the 

classification, crystal composition and toxicity of mosquitocidal strains of 

B. thuringiensis is shown in table 1.2.
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Class Strains Serotype Mosquitocidal activity 

A. aegypti A. stephensi C. pipiens

Crystal proteins kDa

1 israelensis 1884 H14 +++ +++ +++ 135,125,68,28

1 morrisoni PG14 H8a, 8b +++ +++ +++ 144, m  1 2 1 6&,2&
1 kenyae LBIT-52 H4a, 4c +++ ND +++ 135.125.68.28

1 canadensis 11S2-1 H5a, 5c +++ +++ +++

1 entomocidus LBIT-58 H6 ++ ND +++ 135.125. m

1 thompsoni B175 H12 +++ +-H- +++ m ,  m ,  6a, 2&
1 malaysiensis IMR81.1 H36 +-H- +++ +++ m i2 1 ,6 & ,2 8
1 AAT028 K6 +++ +++ +++ m i2 i ,6 & ,2 &
1 AAT021 B51 +++ +++ +++ 135.125.68.28

2 jegathesan 367 H28a, 28c ++ +++ ++ 80,74-70,65, 37, 26, 

16

2 medellin 163-131 H30 ++ +++ -hi- 94,70-68,20,2&

3 kurstaki HD-1 H3a, 3b, 3c +/- + ND 135-130,66

3 fukuokaensis 84-1-1-13 H3a, 3d, 3e +/- ND +/- 90,86,82,72,50,48, 

37,27

3 galleriae 916 H5a, 5b +/- +/- ND 135-130,61

3 canadensis 89-T-5-9 H5a,5c +/- ND ND 65,53,28

3 aizawai ICI H7 +/- ND ND 135-130

3 darmstadiensis 73-El0-2 HlOa, 10b +/- + + 125,83,79,77, 69,50, 

27

3 kyushuensis 74 F6-18 HI la, 11c +/- +/- +/- 140,85,80,70, 66, 50, 

27,15, 14

3 shandongiensis 89-ST-1 -25 H22 +/- ND ND 150,70-60,25

3 higo 92-KU-137-4 H44 ND + +/- 98,91,71,63,59,50, 

44, 27

Table 1.2 Properties of the mosquitocidal strains of B. thuringiensis.

Underlined molecular weights indicate proteins immunologically related to those 

from B. thuringiensis subsp. israelensis. +++, LCgo values similar to those of 

B. thuringiensis subsp. israelensis. ++, + and +/-: LC* values of approx. 2-10, 10-50 

and 50-1,500 fold respectively greater than B. thuringiensis subsp. israelensis.

ND: not determined. Taken from Delecluse et al. (Delecluse et al., 2000)
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1.3.1 B. thuringiensis subsp. israelensis toxins

Crystals produced at sporulation of B. thuringiensis subsp. israelensis consist 

of four major proteins: 135,125, 68 and 28 kDa in size. Based on the nomenclature 

for B. thuringiensis pesticidal crystal proteins (Crickmore et al., 1998), these toxins 

have been designated Cry4Ba (135 kDa), Cry4Aa (125 kDa), Cryl lAa (68 kDa) and 

Cytl Aa (28 kDa). Further analysis confirmed the presence of two additional toxin 

genes carried on pBtoxis; crylOAa, encoding a 58 kDa protein (Thome et al., 1986) 

and cytlBa , encoding a 29.8 kDa protein (Guerchicoff et al., 1997). The gene 

encoding a new putative toxin of 60 kDa, CytlCa, was also recently discovered 

during the sequencing of pBtoxis (Berry et al., 2002). This protein has an N-terminal 

half that shows homology to the Cyt toxin but contains an additional C-terminal 

domain rich in (3-trefoil repeats, similar to those found in other bacterial toxins such 

as Mtxl from B. sphaericus and ricin (Berry et al., 2002; Itsko et al., 2005).

However, recent experiments suggest this protein to be non toxic (Manasherob et al. 

manuscript in preparation).

1.3.2 Cry toxin production

The mosquitocidal toxins of B. thuringiensis subsp. israelensis, unlike the Bin 

toxin from B. sphaericus, are encoded on a large plasmid pBtoxis (127,923 bp) (Berry 

et al., 2002), and not on chromosomal DNA. The cry genes of B. thuringiensis are 

expressed during the stationary phase and their products can account for 20-30% of 

the dry weight of the spore. One manor in which a bacterium can accumulate a large 

amount of protein per cell is for expression to be driven by strong promoters in non­

dividing cells, a method employed by B. thuringiensis during sporulation.
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A number of genes encoding Cry toxins have been shown to be regulated by 

sporulation-specific promoters, including the Cry4Aa (Yoshisue et al., 1993a), 

Cry4Ba (Yoshisue et al., 1993b) and Cry 1 lAa (Dervyn et al., 1995) mosquitocidal 

toxins from B. thuringiensis subsp. israelensis. The genes encoding the RNA 

polymerase a  factors that recognise these promoters, o28 and o35, have been cloned 

(Adams et al., 1991) and are homologues of the sporulation specific factors cr* and 

from B. subtilis (Haldenwang, 1995). Sporulation independent cry gene expression is 

also observed. For example the cry3Aa gene from B. thuringiensis subsp. tenebrionis 

was found to be transcribed at a low level during vegetative growth as well as during 

sporulation and was found to have a promoter similar to those recognised by the 

vegetative cell factor, o* (Agaisse and Lereclus, 1994b). Additionally expression of 

cry3Aa in mutant strains was found not to be dependent on sporulation specific sigma 

factors in B. subtilis (Agaisse and Lereclus, 1994a) or B. thuringiensis (Salamitou et 

al., 1996).

Post-transcriptional factors result in the stability of cry mRNA, which has an 

approximate half-life of 10 min, at least five times greater than the average for 

bacteria] mRNA (Agaisse and Lereclus, 1995; Schnepf et al., 1998). It has been 

demonstrated that the putative stem-loop transcriptional terminator of crylAa  aids in 

the stability of its mRNA (Wong and Chang, 1986) probably by preventing 

3’-5’ exoribonuclease degradation of the mRNA (Agaisse and Lereclus, 1995; 

Schnepf et al., 1998). As well as this 3 ’ stabiliser, STAB-SD sequences have been 

found upstream of some cry genes (Agaisse and Lereclus, 1996). These STAB-SD 

sequences are perfect Shine Dalgamo sequences and while they may not direct the 

initiation of translation, they are predicted to bind to the 16S rRNA of the 30S 

ribosomal subunit, stabilising the transcript. In fact, mutations designed to weaken
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the STAB-SD-16S rRNA interaction result in decreased stability of the transcripts 

(Agaisse and Lereclus, 1996). The STAB-SD sequence has also been shown to 

improve production levels of other Cry toxins and as a result has been incorporated 

into the B. thuringiensis expression vector pSTAB (Park et al., 1998; Park et al.,

1999).

Post-translational factors also contribute to improved protein levels.

B. thuringiensis produces its Cry toxins, as is the case for the B. sphaericus Bin toxin, 

as proteinase resistant crystals. The C-terminal half of the large 125-140 kDa Cry 

toxins, such as the Cryl and Cry4 toxins, are cysteine rich and are thought to be 

involved in formation of disulphide bonds, contributing to the formation of crystals 

(Hofte and Whiteley, 1989; Bietlot et al., 1990). Smaller toxins (<70 kDa) that do not 

posses the conserved C-terminus of the larger toxins are thought to form crystals by 

using accessory proteins such as Orf2 (e.g. for Cry2Aa) and P20 (e.g. for Cry 1 lAa) 

for post-translational stabilisation (Agaisse and Lereclus, 1995). The gene encoding 

Cryl lAa in B. thuringiensis subsp. israelensis is found in an operon with P19 and 

P20 (Dervyn et al., 1995). P20 has been shown to increase levels of Cryl lAa and/or 

CytlAa by post-translational stabilisation in recombinant E. coli (Visick and 

Whiteley, 1991; Wu and Federici, 1995) and acrystalliferous B. thuringiensis (Wu and 

Federici, 1993). Transgenic E. coli are also killed when expressing CytlAa but can 

survive when coexpressed with P20 (Manasherob et al., 2001). Recombinant 

expression of Cry2Aa crystals in acrystalliferous strains of B. thuringiensis subsp. 

kurstaki and B. thuringiensis subsp. israelensis requires co-expression of Orf2, with 

disruption of the orf2 gene resulting in loss of Cry2Aa crystal production (Crickmore 

and Ellar, 1992).
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1.3.3 Structure and sequence similarities among the three-domain Cry toxins

Protein sequence alignment of Cry toxins has revealed five conserved blocks 

of amino acids in the mature N-terminal toxic half, as well as three additional blocks 

in the larger toxins containing the non-toxic C-terminal half removed during 

processing (Hofte and Whiteley, 1989; Schnepf eta l., 1998). Following the 

elucidation of the crystal structure of a number of Cry toxins, the regions 

corresponding to these conserved blocks have been mapped. For example, block 1 

corresponds to the central helix, a5, of domain 1. Block 2 encompasses helix 7 of 

domain I and the first {3-strand of domain II, block 3 includes the last 0-strand of 

domain II and the beginning of domain III while blocks 4  and 5 lie in the buried 

strands of domain III.

To date the crystal structures have been determined for the following three- 

domain Cry toxins; the coleopteran active Cry3Aa (Li et al., 1991) and Cry3Bbl 

(Galitsky et al., 2001), lepidopteran active Cry lAa (Grochulski et al., 1995), the dual­

specific Lepidoptera/Diptera Cry2Aa (Morse et al., 2001) and the Diptera specific 

Cry4Ba (Boonserm et al., 2005) and Cry4Aa (Boonserm et al., 2006). Figure 1.5 

shows the crystal structure of the mosquitocidal Ciy4Ba toxin from B. thuringiensis 

subsp. israelensis. The regions corresponding to the five conserved blocks of amino 

acids found in Cry toxins are also shown. The solved structures of the Cry toxins 

reveal that these proteins have three domains. Domain I consists of antiparallel 

a-helices, of which a5 is the central helix. Domain II consists of antiparallel 0-sheets 

in a “Greek key” topology and domain III comprises antiparallel 0-sheets forming a 

“jelly roll” topology (Schnepf et al., 1998). As the first two helices of Cry4Ba were 

degraded during crystallisation and are hence missing from the determined structure 

(Boonserm et al., 2005), domain I of Cry4Aa is shown in figure 1.6(i). A closer look
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at domain II and domain III of Cry4Ba are also shown in figure 1.6(ii) and (iii) 

respectively.
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i)

Figure 1.5 Crystal structure of Cry4Ba i) Stereo image of Domain I (blue), 

domain II (green) and domain III (gold), ii) Stereo image of Cry4Ba with the regions 

corresponding to the conserved blocks shown: block 1, red; block 2, green; block 3, 

blue; block 4, orange; block 5, magenta.
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i)

Figure 1.6 The three domains of Cry toxins, i) Stereo image of Cry4Aa domain I 

with the individual a-helices coloured: a l ,  red; a2 , green; a3 , blue; a4, orange; a5, 

magenta; a6 , light blue; a7 , yellow, ii) Domain II of Cry4Ba showing the three 

antiparallel P-sheets as described by Boonserm etal. (Boonserm etal., 2005): sheet 1, 

cyan; sheet 2, green; sheet 3, dark blue, iii) The domain III P-sandwich of Cry4Ba as 

described by Boonserm et al. (Boonserm et al., 2005). Inner sheets and outer sheets 

are coloured red and yellow respectively.
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Domain I contains hydrophobic and amphipathic helices. The helices of 

domain I are long enough to traverse a 30A membrane, with the amphipathic 

a4-loop-a5 region predicted to undergo a conformational change and insert into the 

membrane (Boonserm et al., 2005). This hypothesis of membrane pore formation, 

mediated by domain I, is consistent with early work by Knowles and Ellar where 

colloid osmotic lysis of cells was shown to be the result of pore formation (Knowles 

and Ellar, 1987). Pore formation was predicted to result in the influx of ions, and as a 

result, influx of water by osmosis leading to the swelling of cells and eventual cell 

lysis. The solving of Cry toxin structures led to the development of predictions of the 

mechanism of action leading to pore formation (for review of these see Schnepf et al. 

and Aronson and Shai (Schnepf et al., 1998; Aronson and Shai, 2001)). The 

“Umbrella” model put forward by Li et al. (Li et al., 1991) suggests that a pair of 

helices, in the case of Cry4Ba probably a4-a5  (Boonserm et al., 2005), insert into the 

membrane with the remaining helices opening on the membrane surface like an 

umbrella. The “penknife” model suggests that helices a5 and a6, which are joined by 

a loop at the top of the structure, open like a penknife and insert into the membrane. 

For either of these models to be correct, a conformational change is required. Li et al. 

(Li et al., 1991) proposed that this may occur following receptor binding and that the 

change may be transmitted from the receptor binding domain II to domain I via a l  

(Knowles, 1994). Another possibility is that an inter-helical loop cleavage by gut 

proteinases between a5 and a6, as has been observed for Cry4Ba and Cry4Aa 

(Angsuthanasombat et al., 1993), may facilitate this conformational change and allow 

membrane insertion to occur. Similar inter-helical loop cleavages have been observed 

for Cry2Aa (Nicholls et al., 1989) and Cry3Aa (Carroll et al., 1989; Li et al., 1991).
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However, removal of the cleavage site in Cry4Aa and Cry4Ba does not have a 

detrimental effect on toxicity (Angsuthanasombat et al., 1993; Boonserm et al., 2004).

The similarity of the surface exposed loops of domain II to immunoglobulin 

antigen-binding sites (Schnepf et al., 1998), as well as the variability of this region 

among the Cry toxins (Boonserm et al., 2005), suggested that they may be involved in 

receptor binding. Domain II also shows structural similarity to the carbohydrate 

binding proteins, the lectins, in particular jacalin, which is known to bind 

carbohydrates via the exposed loops at the apex of its (3-prism fold (Schnepf et al., 

1998), again suggesting a role in receptor binding for this domain. Indeed, mutations 

in apical loop 3 of Cry4Ba, by introducing residues from the corresponding region of 

Cry4Aa, resulted in increased toxicity towards Culex larvae while mutations in 

loops 1 and 2 resulted in loss of toxicity towards Aedes and Anopheles (Abdullah et 

al., 2003). Recently, experiments were also performed where the loops of Cry4Aa 

were altered to mimic those of Cry4Ba (Boonserm et al., 2006). The loop 2 alteration 

dramatically reduced toxicity while changes in loop 1 and loop 3 yielded Cry4Aa 

mutants that remained toxic. These results suggests that different regions of Cry4Ba 

and Cry4Aa may contribute to host receptor binding (Boonserm et al., 2006). 

Mutations in residues of these loops have also shown changes in binding of the 

Cryl Ac toxin to insect midgut brush border membrane vesicles (BBMV) (Smedley 

and Ellar, 19%) further signifying a role for domain II in receptor binding. Exposed 

loops in domain II of Cryl lAa from B. thuringiensis subsp. israelensis have been 

shown to be involved in receptor binding (Fernandez et al., 2005) and a GPI-anchored 

alkaline phosphatase has been identified as a receptor for Cry 11 Aa in the A. aegypti 

larval gut (Fernandez et al., 2006). Engineering of the lepidopteran active Cry lAa, 

by introducing mutations into the loops of domain II has also resulted in a switch of
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specificity towards C. pipiens mosquito larvae and loss of toxicity towards its natural 

target Manduca sexta (Liu and Dean, 2006).

Domain III is also thought to be involved in receptor binding. It has been 

shown that CrylAa and CrylAb bind tightly to purified aminopeptidase-N (APN) 

found on Manduca sexta epithelial cell membranes (Knight et al., 1994; Masson et 

al., 1995). Domain III may function as a lectin-like domain that binds to N-acetyl 

galactosamine (GalNAc) on APN (Burton et al., 1999). Also a 210 kDa cadherin-like 

receptor has been cloned from Manduca sexta (Vadlamudi et al., 1995). Domain III 

has also been suggested to prevent further degradation of the Cry toxins after 

proteolytic processing (Li et al., 1991; Schnepf eta l., 1998).

1.3.4 Cry toxin mode of action

As is the case for the B. sphaericus Bin toxin, Cry toxins are produced as 

crystals which are ingested and solubilised by target insects before proteolytic 

processing by midgut proteinases. In the case of B. thuringiensis subsp. israelensis 

toxins, Cry4Aa and Cry4Ba are processed initially to 60-68 kDa proteins before 

further processing to 46-48 kDa mature toxins (Angsuthanasombat et al., 1992) and 

Cryl lAa is processed to a 30-35 kDa toxin (Dai and Gill, 1993). The CytlAa toxin, 

which will be discussed shortly, is processed to a 25 kDa protein (Koni and Ellar, 

1994). In general, the Cry toxins are processed by chymotrypsin and trypsin like 

proteinase activity (Rukmini et al., 2000). The large >125 kDa Cry toxins, such as 

the Cryl and Cry4 toxins, are processed at the N-terminus as well as at the 

C-terminus, the latter resulting in removal of the C-terminal half of the pro-toxin 

which is not required for toxicity (Rukmini et al., 2000). Differential processing of
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the same toxin can also result in different target insect specificity (Haider et al.y 1986; 

Haider and Ellar, 1987a; Haider and Ellar, 1987b).

Proteolytic processing of Cry toxins is followed by receptor binding and gut 

membrane pore formation resulting in colloid-osmotic lysis of cells (Knowles and 

Ellar, 1987) and larval death, and is predicted to involve the regions of the toxins 

described in the previous section. Studies involving activated Cry4Ba toxin have 

shown that it is capable of permeabilising liposomes (Puntheeranurak et al., 2001) and 

that ionic channels are formed in planar lipid bilayers (Puntheeranurak et a i ,  2004). 

Also, the ability of Cry4Ba to insert into different lipid monolayers, varying in 

features such as lipid composition and packing density, has been explored 

(Kanintronkul et al.y 2005). More recently atomic force microscopy has provided 

images of the activated Cry4Ba in lipid bilayers and data suggested that pore 

formation results from a tetrameric interaction of the toxin molecules (Puntheeranurak 

et al.y 2005).

1.3.5 Cry34/Cry35 binary toxins

The Cry34 and Cry35 insecticidal proteins have been isolated from 

B. thuringiensis strains toxic to Diabrotica virgifera virgifera (Western Com 

Rootworm) (Moellenbeck et al.y 2001; Ellis et al.y 2002; Baum et al.y 2004; Masson et 

al.y 2004; Schnepf et al.y 2005). Both the 14 kDa Cry34 and the 44 kDa Cry35 

protein components are required for toxicity. Conserved domain searches, using 

Cry35Abl as a query, revealed that the N-terminal 146 residues contains two repeats 

of a beta-trefoil carbohydrate-binding domain (Schnepf et al.y 2005). The Cry35 

proteins show homology to both Bin toxin components from B. sphaericus and the 

coleopteran active Cry36Aal toxin from B. thuringiensis (Ellis et al.y 2002; de Maagd
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et al., 2003; Schnepf et al., 2005). As a result the Cry34/Cry35 pair have been termed 

a B. thuringiensis binary toxin.

1.3.6 Cyt toxins

The Cyt toxins, together with the Cry toxins, form crystals at sporulation but 

differ in that they are able to lyse a wide range of cell types in vitro (Schnepf et al., 

1998). However, in vivo, their toxicity is towards the dipteran larvae (Butko, 2003). 

The Cyt toxins are able to synergise with the Cry toxins, preventing the emergence of 

Cry-resistance (Wirth et al., 1997). Recent data suggests that Cytl Aa from 

B. thuringiensis subsp. israelensis synergises with Cryl lAa by functioning as a 

membrane bound receptor (Perez et al., 2005). Key amino acid residues involved in 

the CytlAa-Cry 1 lAa interaction were also determined in this study. Analysis of Cyt 

toxin protein sequences have revealed four conserved blocks of amino acids (Butko,

2003). Figure 1.7 shows the crystal structure Cyt2Aal as determined by Li et al. (Li 

et al., 1996). The structure contains a central core of (3-sheet surrounded by two 

a-helical hairpins. The regions of Cyt2Aal mapping to the conserved blocks of 

amino acids are shown in figure 1.7(ii). The two proposed mechanisms of action of 

Cyt toxins are described in a review by Butko (Butko, 2003). One model proposes 

that multimers of a Cyt toxin forms pores in the membrane’s lipid bilayer while 

another proposes a detergent-like disruption of the membrane where the Cyt 

aggregates cause defects in the lipid packaging.
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Figure 1.7 X-ray crystallographic structure of Cyt2Aal. i) Stereo image 

showing the central P-sheet core in gold and the surrounding a-helices in blue, ii) 

Cyt2Aal showing the regions corresponding to the four conserved blocks of amino 

acids: block 1, red; block 2, blue; block 3, magenta; block 4, green.
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1.3.7 Other B. thuringiensis toxins

A number of Cry toxins from B. thuringiensis, including the Cry34/Ciy35 

binary toxin and Cry36Aal mentioned above, are not members of the three domain 

family of Cry toxins. These proteins and their relationship to other bacterial toxins 

are described in the review by de Maagd et al. (de Maagd et al., 2003). These toxins 

include the Lepidoptera active Cryl5Aa which shows homology to Mtx2 and Mtx3, 

the Coleoptera active Ciy23Aa/Cry37Aa binary toxin, the Coleoptera active Cry22 

proteins and the Cry6 proteins active against nematodes.

As well as the Cry and Cyt toxins, B. thuringiensis also produces the Vip 

toxins at the vegetative stage of cell growth. These toxins are described in a review 

by de Maagd et al. (de Maagd et al., 2003). Both ViplAa and Vip2Aa toxins from 

B. cereus strain AB78 are required for maximal toxicity against western com 

root worm and northern com rootworms. Both Vipl and Vip2 proteins have 

N-terminal signal sequences for secretion and the membrane-binding 100 kDa Vipl 

multimer is predicted to allow the 52 kDa Vip2 ADP-ribosyltransferase to enter the 

cytoplasm of target cells (de Maagd et al., 2003; Shi et al., 2004). Vipl Ac and 

Vip2Ac from B. thuringiensis have also been cloned and expressed but no toxicity 

was detected, either individually or in combination, against a range of lepidopteran 

and coleopteran larvae (Shi et al., 2004). The genes encoding Vip3Aa and Vip3Ab 

were cloned from B. thuringiensis and the protein products were found to contain 

5 variant amino acids (Estruch et al., 1996). Bioassay of the 88.5 kDa Vip3A proteins 

revealed toxicity to a number of lepidopteran insect larvae (Estruch et al., 1996). 

Immunolocalisation experiments showed that Vip3A binds to the midgut epithelium 

of susceptible larvae (Yu et al.y 1997). The gene encoding Vip3Aal6, also known as 

Vip3LB, was recently cloned and determined to be toxic against the Mediterranean
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Flour Moth, Ephestia kuehniella (Mesrati et al., 2005). The 91 kDa Vip3Bal protein 

from B. thuringiensis has also been expressed in recombinant form and was found to 

be non-toxic against the range of larvae bioassayed (Rang et al., 2005).

Recently a novel B. thuringiensis toxin, active against coleopteran larvae, 

which is secreted into the culture was identified and named SiplA (secreted 

insecticidal protein) (Donovan et al., 2006). The 41 kDa plasmid-encoded protein has 

some sequence similarity with Mtx3 from B. sphaericus and its putative protein 

secretion signal (residues 1-30) has been identified.

1.4 Mosquito resistance to B. sphaericus

While the arsenal of toxins produced by B. thuringiensis subsp. israelensis 

delays any emergence of resistance (Georghiou and Wirth, 1997) the dependence of 

the B. sphaericus spore on a single toxin, Bin, has resulted in the selection of 

Bin-resistant mosquito populations. Field resistance to B. sphaericus has been 

recorded in Brazil (10 fold), India (150 fold), France (10,000 fold), China 

(25,000 fold) and Tunisia (2,000 fold) (for review see Charles and Nielsen-LeRoux 

(Charles and Nielsen-LeRoux, 2000)). Mosquito populations with resistance levels of 

>100,000 fold have also been selected under laboratory conditions (Pei et al., 2002; 

Yuan et al., 2003).

The development of resistance to B. sphaericus is not particularly surprising 

due to the low number of toxins present in the sporulated cultures used in the field. 

General rules of resistance management mean that multiple toxins with different 

modes of action or individual toxins capable of binding multiple receptors are more 

successful, requiring multiple and simultaneous mutations in the target insect for 

resistance development. Although the Bin toxin consists of both BinA and BinB, its
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mechanism of action, with BinB being the receptor-binding component and BinA the 

membrane pore former, functions as a single toxin with one toxin-receptor interaction. 

The lower toxicity Mtx2 and Mtx3 toxins also do not contribute as larvicides in the 

field due to their expression in the vegetative stage of growth and absence from the 

spore stage used in biocontrol programmes. The highly potent Mtxl is also 

vegetatively expressed (Ahmed et al., 1995) and the low level of protein that 

accumulates is degraded by the action of an endogenous proteinase (Thanabalu and 

Porter, 1995; Wati et al., 1997).

In an attempt to understand the mechanism of resistance development to

B. sphaericus, binding studies were performed (Nielsen-Leroux et al., 1995). In the 

case of a highly-resistant laboratory selected colony, no toxin binding was observed 

suggesting a non-functional receptor. For field-resistant colonies from France (high 

level resistance) and Brazil (low level resistance), toxin-receptor binding was 

unchanged (Silva-Filha et al., 1997), and furthermore, gut extracts were capable of 

proteolytically activating the toxin. Therefore, while high selection pressure for 

resistance in the laboratoiy results in receptor modification, this does not seem to be 

the case in field resistant colonies, at least not in receptor binding function, suggesting 

another mechanism for this resistance. Studies into the inheritance of B. sphaericus 

resistance, by mating resistant and susceptible colonies and backcross mating of the Fj 

progeny with the resistant colony, have shown the allele to be recessive (Nielsen- 

Leroux et al., 1997; Wirth et al., 2000a; Nielsen-Leroux et al., 2002; Oliveira et al.,

2004). Following the identification of the larval gut receptor for Bin (Silva-Filha et 

al., 1999; Darboux et al., 2001) further experiments have revealed that the gene 

encoding the receptor, Cpml, in laboratory resistant C. pipiens larvae contained a
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number of mutations, the critical one being a premature stop codon resulting in loss of 

the GPI-anchoring site (Darboux et al., 2002).

Studies have shown that the cytolytic Cytl Aa, although weakly toxic 

individually, may in particular contribute to the ability of B. thuringiensis subsp. 

israelensis to evade the development of resistance thanks to its ability to synergise 

with the Cry toxins (Wu et al., 1994; Crickmore et al., 1995). For example, sublethal 

doses of CytlAa were shown to greatly reduce Cry toxin resistance against the

B. thuringiensis subsp. israelensis toxins Cry4Aa, Cry4Ba and Cryl lAa (Wirth et al., 

1997). Recent work has also shown that while 1,000 fold resistance developed in

C. quinquefasciatus larvae selected with C ryllA , a 3:1 mixture of Cryl lA:CytlA  

resulted in delay of resistance development, with only 8 fold resistance being induced 

(Wirth et al., 2005). With such observations, the introduction of B. thuringiensis 

toxins into B. sphaericus has been investigated in attempt both to improve toxicity 

towards low susceptibility targets such as A. aegypti (Trisrisook et al., 1990; Poncet et 

al.y 1997; Servant et al.y 1999; Wirth et al., 2001; Wirth et al.y 2004) and against 

resistant Culex populations (Poncet et al., 1997; Thiery et al., 1998; Servant et al.y 

1999; Wirth et al.y 2001; Wirth et al.y 2004). Results were promising with studies 

showing not only increased toxicity towards resistant C. quinquefasciatus larvae but 

also against A. aegypti. Studies have also shown that Cytl A synergises with the Bin 

toxin resulting in increased toxicity towards resistant C. quinquefasciatus (Wirth et 

al.y 2000b) larvae as well as greatly suppressing the emergence of resistance (Wirth et 

al.y 2005). The disadvantage of introducing B. thuringiensis toxins into B. sphaericus 

on plasmids or by homologous recombination into the chromosome is their 

classification as recombinant, which is problematic for their development for use in 

the field. As such, a recent study has also introduced the toxin coding plasmid,
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pBtoxis, from B. thuringiensis subsp. israelensis into B. sphaericus by a natural 

mating technique to determine whether a non-recombinant approach may be a viable 

method for preventing resistance development, as well as improving toxicity towards 

A. aegypti larvae (Gammon et al., 2006). Increased toxicity towards both resistant 

Culex larvae and A. aegypti was observed but plasmid maintenance was unstable.

All records of B. sphaericus field resistance to date have been against strains 

2362, 1593 and C3-41 (all serotype H5a5b) and it has been shown that cross­

resistance occurs between different strains (Rodcharoen and Mulla, 1996; Pei et al., 

2002), including strains that produce distinct Bin variants such as 2362 (Bin2) and 

2297 (Bin3) (Wirth et al., 2000a; Yuan et al., 2003). However, studies have 

identified strains such as IAB59, LP1G, 47-6B and LAB872 that have the ability to 

overcome C. quinquefasciatus larval resistance developed after exposure to strains 

2362 and C3-41 (Wirth et al., 2000a; Shi et al., 2001; Pei et al., 2002; Shi et al., 2003; 

Yuan et al., 2003). The binary toxin of strain IAB872, cloned for expression in an 

acrystalliferous B. thuringiensis subsp. israelensis, shows no toxicity against 

Bin-resistant mosquito larvae, suggesting that the strain carries unknown toxins (Shi 

et al., 2001). Similarly it has been shown that the Binl variant of strain IAB59 

recognises the same receptor as the Bin2 toxin from 2362 (Silva-Filha et al., 2004) 

and is not toxic to a resistant C. quinquefasciatus colony raised against strain 2362 

(Pei et al., 2002), again suggesting that unknown toxins are present in strain IAB59. 

The ability of these strains to overcome Bin toxin resistance holds promise for their 

development for use in the field. Other potential approaches would be to use 

recombinant B. sphaericus strains expressing toxins from B. thuringiensis subsp. 

israelensis (Federici et al., 2003), the use of B. sphaericus rather than B. thuringiensis 

being particularly beneficial due to its higher resistance to UV light and ability to
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persist longer in polluted waters (Silapanuntakul et al., 1983; Nicolas et al., 1987; 

Yousten et al., 1992). Other approaches that would avoid the use of recombinant 

bacteria would be to use a rotation strategy of B. sphaericus and B. thuringiensis in 

the field, however, investigations point to a mixture of both bacteria rather than a 

rotation strategy being more effective in delaying resistance (Zahiri and Mulla, 2003).

1.5 Other bacterial toxins

Bacterial toxins have a number of mechanisms by which they exert their 

toxicity, for example: damaging cell membranes, inhibiting protein synthesis, 

activating second messenger pathways, inhibiting neurotransmitter release, or 

activating the host immune response (Schmitt et al., 1999). Some toxins having such 

mechanisms are described below.

Anthrax is a disease caused by inhalation of spores of the bacterium 

Bacillus anthracis. Spores replicate in the blood without an evident immune 

response, leading to death, suggesting that the pathogen impairs the host immune 

system (Abrami et al., 2005). The pXOl plasmid-encoded lethal factor (LF), edema 

factor (EF) and protective antigen (PA) make up the anthrax toxin components. PA 

(83 kDa) is the component responsible for receptor binding to target cells and after LF 

(90 kDa) and EF (89 kDa) promoted heptamerisation of PA, internalisation of the PA 

receptor by endocytocis occurs. PA pore formation of intraluminal vesicles within 

early endosomes allows LF and EF translocation across the pore into the lumen of the 

vesicle where they are predicted to refold. The protection of LF and EF in the 

intraluminal vesicle from proteinases, allows a “Trojan horse” like delivery of LF and 

EF to late endosomes, and finally, the cytoplasm (Abrami et al., 2005). Release of EF 

into the cytoplasm results in increased levels of cAMP and LF is responsible for
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proteolysis of mitogen-activated protein kinase kinases (MAPKKs). Pathogenesis 

involves inhibition of the immune system.

The Botulinum and tetanus neurotoxins are produced by the gram positive 

bacteria Clostridium botulinum and Clostridium tetani respectively. There are seven 

botulinum neurotoxin serotypes (A-G) and together with the tetanus neurotoxin they 

form the clostridial neurotoxin (CNT) family (Turton et al., 2002). The CNTs are 

produced as a 150 kDa single chain polypeptide and are post-translationally cleaved 

to yield active toxins composed of a 50 kDa A subunit (light chain) and a 100 kDa BC 

subunit (heavy chain) linked by a disulphide bond. The CNTs, through their heavy 

chain, bind to the presynaptic membrane of cholinergic motor neurons and are 

internalized by endocytosis. The botulinum toxin, light chain, cleaves proteins 

responsible for release of acetylcholine at the neuromuscular junction causing 

inhibition of neurotransmission. After internalisation, the tetanus neurotoxin migrates 

to the central nervous system by retrograde vesicular transport and enters inhibitory 

intemeurons. Proteolysis of proteins responsible for release of glycine and gama- 

amino-butyric acid results in muscle contraction and hence spastic paralysis (Schmitt 

et al.y 1999; Turton et al., 2002).

Staphylococcus aureus produces the 33 kDa a-toxin which binds to target 

membranes and forms a non-lytic pre-pore heptamer complex which undergoes a 

conformational change allowing insertion into the membrane (Schmitt et al., 1999). 

The a-toxin pore allows small molecules and ions to traverse the membrane, leading 

to swelling of cells and cell death, and osmotic lysis in the case of erythrocytes. 

Aerolysin, from Aeromonas hydrophila, is another toxin that forms a heptamer prior 

to pore formation (Parker et al., 19%).
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As is the case for M txl, many bacterial toxins such as Diphtheria toxin, 

exotoxin A from Pseudomonas, cholera toxin, pertussis toxin, E. coli heat-liable 

toxin, Botulinum C2 and Botulinum C3 toxins function by ADP-ribosylation of target 

proteins (for review see Krueger and Barbieri (Krueger and Barbieri, 1995)). In 

general, these toxins consist of a receptor binding subunit(s) (B subunit) and a 

catalytic subunit (A subunit) which transfers an ADP-ribose from NAD+ onto a target 

protein such as a G-protein (guanine binding protein) or a translational elongation 

factor, inhibiting the GTPase of G-proteins and host-cell protein synthesis 

respectively.

1.6 Project aims

As described above, instances of Bin-resistance have been recorded in 

populations of Culex mosquito larvae and thus threatens the effectiveness of 

B. sphaericus control of Culex larvae. However, more recently strains have been 

discovered (e.g. IAB59, LP1G and 47-6B) that have the ability to overcome this 

resistance (Yuan et al., 2003). While a common protein of approximately 49 kDa was 

suggested as a putative toxin (Nielsen-LeRoux et al., 2001; Pei et al., 2002; Yuan et 

al., 2003; Silva-Filha et al., 2004), attempts to clone the gene for this candidate toxin 

proved unsuccessful (Nielsen-LeRoux personal communication). Therefore, the 

objective of this study was to identify, clone and characterise the toxic factors) from 

the B. sphaericus strains able to overcome Bin-resistance in Culex mosquito larvae. 

Such information may prove invaluable in designing strategies to prevent the 

emergence of resistance to B. sphaericus in the field.
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CHAPTER 2 

Materials and Methods
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2.1 Materials

2.1.1 Cloning and expression vectors

The cloning vectors pGEM-T (Promega Ltd, Southampton, UK) and pUC18 

(Yanisch-Perron et al., 1985) were used for general cloning. The E. coli expression 

vector pGEX-4T-2 was purchased from Amersham Biosciences UK Ltd. (Bucks,

UK). A modified pET22b vector, for expression of N-terminal His-tagged proteins, 

was donated by Mr. Tim Winterbum (Cardiff School of Biosciences, Cardiff 

University). The B. thuringiensis-E. coli shuttle vector, pHT304 (Arantes and 

Lereclus, 1991), was a kind gift from Dr. Didier Lereclus (Institut Pasteur, Paris, 

France). The B. thuringiensis expression vector pSTAB (Park et al., 1998; Park et a l., 

1999) was received from Professor Brian Federici (Department of Entomology, 

University of California Riverside, USA). The cosmid pHC79 (Hohn and Collins, 

1980) was used for construction of genomic libraries. Clones pHT680 and pHT684 

allowing expression of BinA and BinB respectively in B. thuringiensis subsp. 

israelensis 4Q7 were kind gifts from Dr. Christina Nielsen-LeRoux (INRA, Paris, 

France).

2.1.2 E. coli host strains

All genetic manipulations were carried out in the E. coli strain DH5a 

(Invitrogen Ltd., Paisley, UK). Cosmid genomic DNA libraries were prepared in 

E. coli strain LE392 (Promega Ltd, Southampton, UK). Protein expressions were 

carried out in the E. coli strain BL21(DE3)pLysS (Novagen, AMS Biotechnology, 

Milton Keynes, UK). The genotype of these strains can be seen in table 2.1
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E. coU strain Genotype Reference

DH5a F- 4>80/acZAM15 AdacZYA- 

arg¥)\} 169 recA  1 end AX 

hsdR ll(rk\  mk+) phoA supFA4 thi-1 

gyrA96 re I A 1 X-

(Hanahan, 1983)

LE392 F  hsdR574 (rk, mk+) supE44 supF5$ 

lacY  1 galK2 g a R 22 metBl trpR55

(Promega, 1996)

BL21 (DE3)pLy sS F  ompT hsdSB(rB, mB) galdcm  Ion 

X(DE3) laclQ/plac UV5- T7gene 1 

pLysS (CamR)

(Studier and Moffatt, 

1986)

Table 2.1 Genotype of E. coli strains used in this study

2.1.3 Bacillus sphaericus strains

All B. sphaericus strains were obtained from the International 

Entomopathogenic Bacillus Centre (Institut Pasteur, Paris, France), except for strain 

NHA15b which was a kind gift from Dr. Christina Nielsen-LeRoux (Institut Pasteur, 

Paris, France).

2.1.4 Bacillus thuringiensis subsp. israelensis host strain

B. thuringiensis subsp. israelensis strain 4Q7 (also known as 4Q2-81) is a 

plasmid cured host and, therefore, does not carry the genes for insecticidal proteins. 

This strain was obtained from the International Entomopathogenic Bacillus Centre 

(Institut Pasteur, Paris, France).
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2.1.5 Bacillus subtilis strains

B. subtilis mutant strains 1S38 (spoIIIC94 trpC2), 1S60 (leuB8 spollG41 

tal-1) and 1S86 (sigFl trpC2) were acquired from the Bacillus Genetic Stock Centre 

(Department of Biochemistry, The Ohio State University, Columbus, Ohio, USA).

2.1.6 Media

Luria Bertani (LB) nutrient medium was prepared as described by Sambrook 

et al. (Sambrook et al., 1989) and the reagents were purchased from Sigma Chemical 

Ltd. (Poole, Dorset, UK). Culture media were sterilised by autoclaving at 121°C 

(975kPa) for 20 min.

NYSM broth (Myers and Yousten, 1980) consisted of 13g/l nutrient broth 

(Oxoid Ltd., Basingstoke, Hampshire, UK) and 0.5g/l yeast extract (Difco 

Laboratories, Oxford, UK). The medium was autoclaved at 121°C (975kPa) for 

20 min and after cooling, the following reagents were added to the final 

concentrations shown: 0.7mM CaCl2, ImM MgCl2, 50pM MnCl2 from 1,000 fold 

stock solutions previously filter sterilised through 0.22pm nitrocellulose filters 

(Millipore Ltd, Watford, Hertz, UK).

Embrapa sporulation medium contained 8g/990ml nutrient broth (Oxoid Ltd., 

Basingstoke, Hampshire, UK), lg/990ml yeast extract (Difco Laboratories, Oxford, 

UK) and lg/990ml K2HP04 (Fisher Scientific UK Ltd., Loughborough, UK). To this, 

10ml of a salt solution (lOOmM CaC03, 40mM M gS04, 3.6mM FeS04,

3.6mM MnS04, 3.5mM ZnS04) was added and the pH adjusted to 7.0. The medium 

was autoclaved at 121°C (975kPa) for 20 min.
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Antibiotics, when required, were added to media at the final concentrations of: 

ampicillin (100//g/ml), chloramphenicol (34//g/ml), erythromycin (15/ig/ml) and 

streptomycin (150//g/ml). Antibiotics were added to media by dilution of 1,000 fold 

stock solutions, after the temperature of the media had cooled to below 50°C. 

Antibiotic stock solutions were stored at -20°C.

2.1.7 Enzymes

Calf intestinal alkaline phosphatase, T4 DNA ligase and Taq DNA polymerase 

were purchased from Promega Ltd (Southampton, UK). Easy-A®, a proofreading 

DNA polymerase which adds 3’-A overhangs to amplicons, was purchased from 

Stratagene (California, USA). Lysozyme, proteinase K, trypsin and a-chymotrypsin 

were purchased from Sigma Chemical Ltd. (Poole, Dorset, UK). All restriction 

endonucleases were purchased from New England Biolabs (Beverly, MA, USA).

2.1.8 Antisera

The mouse monoclonal Penta-His antibody, specifically recognises a stretch of 

five consecutive histidine residues on His-tagged proteins and was purchased from 

Qiagen Ltd. (Crawley, West Sussex, UK). The goat polyclonal Anti-GST antibody 

specifically recognises glutathione S-transferase (GST) and was used in the detection 

of recombinant GST-fusion proteins. This antibody was purchased from Amersham 

Biosciences UK Ltd. (Bucks, UK).

2.1.9 Molecular weight standards

The X Hindlll and <|>X174 HaeIII DNA markers were purchased from 

Promega Ltd. (Southampton, UK). Prestained broad range molecular weight protein
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standards were purchased from New England BioLabs (Beverly, MA, USA). The 

molecular weights of the protein standards and base pair length of the DNA markers 

can be seen below.

Prestained protein marker, broad range -  New England BioLabs 

Protein Apparent MW (Da)

MBP-P-galactosidase 175,000

MBP-paramyosin 83,000

Glutamic dehydrogenase 62,000

Aldolase 47,500

Triosephosphate isomerase 32,500

(3-Lactoglobulin A 25,000

Lysozyme 16,500

Aprotinin 6,500

DNA markers

X D N A /f/m dlll (bp) +X174 DNA/ZJa<?III (bp)

23,130 1,353

9,416 1,078

6,557 872

4,361 603

2,322 310

2,027 281

564 271

125 234

194

118

54



2.1.10 Other materials

Routine laboratory chemicals were purchased from Sigma Chemicals Ltd. 

(Poole, Dorset, UK) and Fisher Scientific UK Ltd. (Loughborough, UK). Suppliers of 

more specialised chemicals and equipment are shown below or in the appropriate 

sections of the text.

Reagents and Equipment Suppliers

QIAprep® Spin Miniprep Kits Qiagen, Crawley, West Sussex, UK

ProtoGel® (30%(w/v) acrylamide, National Diagnostics, Manville, NJ, USA

0.8%(w/v) bisacrylamide solution)

0.1cm, 0.2cm and 0.4cm Bio-Rad Laboratories, Hertfordshire, UK

electroporation cuvettes

DNeasy® Tissue Kit Qiagen, Crawley, West Sussex, UK

QIAquick® Gel Extraction Kits Qiagen, Crawley, West Sussex, UK

QIAEXI1® Gel Extraction Kit Qiagen, Crawley, West Sussex, UK

QIAGEN® Genomic-Tip 500/G Qiagen, Crawley, West Sussex, UK
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2.2 Molecular biology methods

2.2.1 Preparation of plasmid DNA

Plasmid DNA was purified from 3ml of an overnight culture of a plasmid 

bearing strain of E. coli (incubated at 37°C, 200 rpm) using the QIAprep® Spin 

Miniprep Kit as described in the manufacturer’s protocol. This method is a 

modification of the alkaline lysis method (Bimboim and Doly, 1979) that uses a resin 

purification step for rapid isolation of high quality DNA.

2.2.2 Submarine agarose gel electrophoresis

Agarose gels were used both analytically and for preparative purification of 

DNA fragments (section 2.2.4). Agarose (Bioline Ltd., London, UK) was dissolved, 

by boiling, in TAE buffer (40mM Tris acetate, 2mM EDTA, pH 8.3) to the desired 

final concentration, ranging from 0.5% to 2%, depending on the size of the DNA 

fragments to be separated. The solution was allowed to cool to 50°C before the 

addition of ethidium bromide solution (20mg/ml) to a final concentration of 0.5/^g/ml. 

The gel solution was poured into clean electrophoresis trays and well-forming combs 

were inserted before the gel was allowed to set. Gels were run submerged in TAE 

buffer containing 0.5//g/ml ethidium bromide at 5-10V/cm after sample loading, until 

the desired separation was achieved.

2.2.3 DNA modifying enzymes and restriction endonucleases

DNA modifying enzymes and restriction endonucleases were used in 

accordance with the manufacturer’s instructions. Restriction digests were analysed by 

submarine electrophoresis (section 2.2.2). Digest fragment sizes were estimated by
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comparison of their migration relative to X Hindlll and/or <|)X174 HaeIII DNA 

markers.

2.2.4 Recovery of DNA fragments from agarose gels

DNA fragments to be purified were excised from 1-2% agarose gels, 

depending on fragment sizes, following submarine electrophoresis (section 2.2.2). 

DNA extraction was performed using the QIAquick® Gel Purification Kit (Qiagen 

Ltd., Crawley, West Sussex, UK) in accordance with the manufacturer’s protocol.

DNA fragments of greater than 10 kb were purified using QIAEXII® Gel 

Extraction Kit (Qiagen Ltd., Crawley, West Sussex, UK) according to the 

manufacturer’s protocol.

DNA fragments of 20-40 kb, used for genomic library construction, were 

purified from LMP-agarose. An equal volume of TE buffer was added to the excised 

gel in a microfuge tube and the tube incubated at 65°C until the gel was fully melted. 

The DNA was purified by extracting once with an equal volume of TE saturated 

phenol, followed by two extractions with an equal volume of 

phenol:chloroform:isoamyl alcohol (25:24: l(v:v:v)). The DNA was precipitated by 

addition of sodium acetate buffer, pH 5.2 (0.3M final concentration) and 0.7 volumes 

of isopropanol. The mixture was gently mixed by inversion, the DNA harvested by 

centrifugation (17,000 x g, 15 min) and the pellet rinsed with 70% ethanol. The DNA 

pellet was left to air dry and was finally resuspended in nuclease free water or TE 

buffer (lOmM Tris-HCl, ImM EDTA, pH 8.0) at room temperature, overnight To 

avoid shearing of the large DNA fragments all mixing steps were carried out gently, 

by inversion.
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2.2.5 Precipitation of DNA

DNA was precipitated by addition of sodium acetate buffer, pH 5.2 to a final 

concentration of 0.3M and 0.7 volumes of isopropanol. The sample was mixed by 

vortexing. DNA was harvested by centrifugation (17,000 x g, 15 min) and the pellet 

rinsed with 70% ethanol. The DNA pellet was left to air dry and was finally 

resuspended in the required volume of nuclease-free water or TE buffer 

(lOmM Tris-HCl, ImM EDTA, pH 8.0).

2.2.6 Polymerase chain reaction (PCR) amplification of DNA

2.2.6.1 Basic PCR for cloning and screening

In sterile Thermowell™ PCR tubes (Coming Incorporated, New York, USA) a 

mixture consisting of PCR buffer (lOmM Tris-HCl, 50mM KC1,2mM MgCl2,

0.1% Triton® X-100, pH 9.0), dNTPs (0.2mM of each; dGTP, dTTP, dCTP, dATP), 

the appropriate forward and reverse oligonucleotide primers (0.5//M each) and 

template DNA (typically l-10ng per 50//1 reaction) were mixed with nuclease-free 

water to a final volume of 25//1 or 50//1. Taq Polymerase (Promega, Southampton, 

UK) was added to a concentration of 2.5 units per 50pl reaction mix. Template DNA 

was typically double stranded plasmid DNA but for the screening of large numbers of 

transformant colonies, bacterial cells were added directly to the PCR mixture. Tubes 

were spun briefly in a microfuge, before the PCR was carried out using a Biometra® 

T3 thermocycler (Whatman Biometra®, Goettingen, Gemmany). Denaturation, 

annealing, extension temperatures and numbers of cycles are described in the 

appropriate sections of text PCR products were analysed by submarine gel 

electrophoresis and purified if required (sections 2.2.2 and 2.2.4).
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To avoid the introduction of mutations into amplified PCR products required 

for cloning, the proofreading DNA polymerase Easy-A (Stratagene, California, USA) 

was used according to the manufacturer’s recommendations.

2.1.6.2 Inverse PCR

Inverse PCR was used to amplify DNA of unknown sequence flanking one 

end of a region of known DNA sequence, against which primers were designed. The 

procedure was carried out as described previously (Triglia et al., 1988; Hartl and 

Ochman, 1996). Details of primer design and template DNA digestion with 

restriction endonucleases are described in the appropriate sections of the text.

Template genomic DNA (5pig) was digested with the appropriate restriction 

enzyme (section 2.2.3). The resulting digested DNA was extracted with 

phenol:chloroform:isoamyl alcohol (25:24: l(v:v:v)), followed by precipitation with 

sodium acetate and isopropanol (section 2.2.5), and resuspension of the DNA to a 

final concentration of 100//g/ml. Intramolecular ligations of the cleaved genomic 

DNA to form circularised DNA were prepared using a range of template DNA 

concentrations. Digested DNA (0. l-l//g/m l), DNA ligase buffer (Promega Ltd., 

Southampton, UK) and T4 DNA ligase (3 units) (Promega Ltd., Southampton, UK) 

were added to nuclease-free water in a final reaction volume of 100//1 and the ligation 

mixture was incubated at 16°C for 16 hours. The resulting circularised DNA (l-10ng) 

was used as template in a 50//1 PCR (section 2.2.6.1) using primers designed to anneal 

at the region of known DNA sequence. The PCR products were analysed by agarose 

gel electrophoresis (section 2.2.2) and reactions yielding a single DNA fragment were 

purified (section 2.2.4), cloned (section 2.2.7) and sequenced (section 2.2.10).
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2.2.7 Ligation of DNA into plasmid vectors

DNA inserts and plasmid vectors were digested with the appropriate 

restriction endonucleases. The digest products were separated by gel electrophoresis 

and the required products purified as described in section 2.2.4 before ligation.

Usually a vectoninsert molar ratio of 1:4 was added to lx  DNA ligase buffer 

(Promega Ltd., Southampton, UK) in a lOpl final reaction volume. T4 DNA ligase 

(3 units) (Promega Ltd., Southampton, UK) was added and the resulting mixture 

incubated at 16°C for 16 hours.

PCR products were ligated into the pGEM-T vector using the pGEM-T Vector 

Systems Kit ™ (Promega Ltd., Southampton, UK) according to the manufacturer’s 

instructions. The pGEM-T vector is supplied in linearised form, with overhanging 

3’ thymidines at the insertion point allowing efficient ligation of PCR products 

generated by certain thermostable polymerases that add a single 3’ deoxyadenosine in 

a template independent manner to the end of PCR products (Zhou et al., 1995; Zhou 

and Gomez-Sanchez, 2000).

After incubation of the ligation reactions, generally 1/d of the ligation mixture 

was transformed into E. coli DH5a by electroporation (as described in 

section 2.3.2.2) and where possible blue-white screening (section 2.2.8) of colonies 

was performed to identify positive recombinants.

Preparation and ligation of partially digested genomic DNA into cosmid 

pHC79 was carried out as described by Sambrook et al. (Sambrook et al., 1989) and 

is described in the appropriate section of text.
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2.2.8 Colour screening of transformant bacterial colonies for inserts

Recombinant clones, after transformation of ligation reactions, were identified 

by colour screening using IPTG/X-Gal indicator plates. This method was only used 

when successful ligation of an insert into a cloning vector resulted in the interruption 

of the P galactosidase coding sequence at the MCS (multiple cloning site). IPTG 

(100/d of lOOmM) and X-Gal (20/d of 50mg/ml; Promega Ltd, Southampton, UK) 

were spread onto the surface of LB agar plates containing the appropriate antibiotics 

for selection. The plates were incubated at 37°C for 30 min to allow absorption to 

occur. Cultures containing transformant bacterial clones (section 2.3.2) were spread 

onto the plates and incubated at 37°C overnight. Blue colonies were ignored while 

white colonies indicating successful insert-vector ligation were selected for further 

analysis.

2.2.9 Preparation of E. coli glycerol stocks

Glycerol stocks were prepared of E. coli cosmid and plasmid libraries for long 

term storage at -80°C. An overnight culture of E. coli (0.7ml), grown in LB medium 

containing the appropriate antibiotics, was thoroughly mixed with 0.3ml of sterile 

50% glycerol. E. coli cells stored in 15% glycerol are stable at -80°C for many years 

after flash freezing in liquid nitrogen. Glycerol stocks were used to streak LB agar 

plates when regeneration of a working stock was required. A sterile inoculating loop 

was used to pick fragments of frozen cell-glycerol mixture, avoiding thawing of the 

glycerol stock, and streaked onto LB agar plates containing the appropriate 

antibiotics.
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2.2.10 Double stranded DNA sequencing

Nucleotide sequence of DNA was determined using an automated adaptation 

of the dideoxy method of Sanger et al. (Sanger et al., 1977). Automated sequencing 

of plasmid DNA was carried out by Lark™ (Hope End, Takeley, Essex, UK) using 

high throughput PE Biosystems sequencers. Chromatograms produced by the 

sequencers were analysed using the computer program EditView 1.0.1 ABI 

Automated DNA Sequence Viewer (Applied Biosystems, CA, USA).

2.2.11 Introducing specific mutations into target DNA

2.2.11.1 QuikChange Site-directed mutagenesis

Rapid site directed mutagenesis of target DNA was achieved using the 

QuikChange® Site-Directed Mutagenesis Kit (Stratagene, California, USA) 

according to the manufacturer’s recommendations. This procedure is based on that 

described by Hemsley et al. (Hemsley et al.y 1989), using complementary primers 

carrying the desired mutation to amplify template plasmid DNA by PCR. PCR 

products containing the desired mutation are selected by using the restriction enzyme 

Dpnl, which specifically cleaves at GMe6ATC sequences in methylated and 

hemimethylated DNA generated by dam+ bacteria. The undigested amplified DNA 

containing the desired mutation was transformed into E. coli (section 2.3.2.2), the 

plasmid DNA purified (section 2.2.1) from selected transformant bacterial colonies 

and sequenced (section 2.2.10) to confirm the successful introduction of a desired 

mutation. Primer sequences and PCR cycling parameters are described in the 

appropriate section of text.
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2.2.11.2 Site-specific mutagenesis by Overlap Extension

The introduction of specific mutations into genes using Overlap Extension 

PCR (Ho et al., 1989) was carried out as described in Sambrook and Russell 

(Sambrook and Russell, 2001). The procedure involves using a pair of primers to 

amplify a fragment of DNA containing the desired mutation along with the upstream 

region of DNA. A second PCR is used to amplify a DNA fragment containing the 

same mutation along with the downstream gene sequence. The two PCR products are 

used in a final PCR where the overlapping, mutated regions anneal together and the 

3’ends of both strands are extended by proofreading DNA polymerase activity. 

Subsequent cycles of PCR amplify the extended fragments using primers that anneal 

to the extreme ends of the target gene. The mutated fragment was purified 

(section 2.2.4), cloned into a suitable vector (section 2.2.7) and sequenced 

(section 2.2.10) to confirm the introduction of the desired mutation. Primer sequences 

and PCR conditions are described in the appropriate sections of text.

2.2.12 Isolation of B. sphaericus total DNA

Genomic DNA for cosmid library construction was purified based on the 

method of Ausubel et al. (Ausubel et al., 1987). An overnight 100ml culture was 

harvested by centrifugation (5,000 x g, 10 min) and the pellet resuspended in 9.4ml 

TE buffer (lOmM Tris-HCl, ImM EDTA, pH 8.0). Lysozyme solution (100/d of 

100 mg/ml) was added and incubated at 37°C for 30 min. Complete lysis was 

achieved by addition of 0.5ml of 10%(w/v) SDS solution and 50/d of Proteinase K 

solution (20 mg/ml). The mixture was incubated at 37°C for 1 hour before the 

addition of 1.8ml NaCl solution (5M) and 1.5ml CTAB solution (10%(w/v) CTAB, 

0.7M NaCl). This mixture was incubated at 65°C for 20 min. The mixture was
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extracted with 1 volume of chloroform:isoamyl alcohol (24:l(v/v)) and centrifuged at 

8,000 x g for 10 min. The aqueous layer was retained and the DNA precipitated by 

addition of 0.6 volumes of isopropanol. The precipitate was transferred to a tube 

containing 70% ethanol by spooling the DNA with a glass rod. The pellet was 

harvested by centrifugation at 8,000 x g, the supernatant discarded and the DNA 

resuspended in 4ml TE buffer overnight. The DNA concentration was adjusted to 

100//g/ml before the addition of CsCl ( lg  CsCl per ml of DNA solution) and 100/d of 

ethidium bromide solution (lOmg/ml). The mixture was transferred to QuickSeal 

centrifuge tubes (Beckman Coulter Ltd., Buckinghamshire, UK) and after balancing, 

the tubes were sealed and centrifuged at 390,000 x g for 16 hours at 15°C. The 

genomic DNA band was visualised using a UV lamp and extracted using a 5ml 

syringe and 16-G needle, with a 19-G needle inserted to provide an air inlet at the top 

of the tube. Ethidium bromide was removed from the DNA by extraction with TE 

saturated butan-l-ol and the CsCl removed by dialysis against two changes of 5 litres 

of TE buffer. The concentration of DNA was determined and adjusted by addition of 

TE buffer if required.

Genomic DNA to be used as PCR template or in restriction digests for 

Southern hybridisation and/or cloning was purified using the DNeasy® Tissue Kit or 

QIAGEN® Genomic-Tip 500/G (Qiagen, Crawley, West Sussex, UK) according to 

the manufacturer’s protocol.

2.2.13 Detection of B. sphaericus megaplasmids

Two methods were used for the detection and isolation of large plasmids in 

B. sphaericus. The first method was a modified version of that described by Jensen et 

al. (Jensen et al., 1995), which is based on the method reported by Kado and Liu
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(Kado and Liu, 1981). B. sphaericus strains were grown overnight (30°C, 200rpm) in 

10ml of LB medium. The cells from 2ml of this culture were pelleted by 

centrifugation (10,000 x g, 2 min) and resuspended in 100/d E-buffer 

(40mM Tris-HCl, 2mM EDTA, pH 7.9). Lysozyme was added to a final 

concentration of 5mg/ml and the mixture incubated at 37°C for 30 min followed by 

the addition of 200//1 lysis solution (50mM Tris-HCl, 15%(w/v) sucrose,

3%(w/v) SDS, freshly adjusted to pH 12.5 with 2M NaOH). The solution was heated 

to 60°C for 30 min before the addition of 5 units of Proteinase K and incubation at 

37°C for 1.5 hours. DNA was extracted by addition of 400//1 of 

phenol:chloroform:isoamyl alcohol (25:24: l(v:v:v)) and a white emulsion was formed 

by gentle inversion. The emulsion was broken by centrifugation at 17,000 x g for 

10 min. The upper aqueous layer was removed to a clean microfuge tube and plasmid 

profiles were analysed by electrophoresis at 2-3V/cm overnight on a 0.5% agarose gel 

(section 2.2.2).

The second method involved growing the B. sphaericus strains in 50ml 

Spizizen medium (0.2%(w/v) NH4S 0 4, 1.4%(w/v) K2HP04, 0.6%(w/v) KH2P04, 

0.1%(w/v) Na citrate (2H20 ) , 0.02%(w/v) M gS04:7H20 ,  0.1%(w/v) casamino acids, 

0.01%(w/v) yeast extract) to a of 0.9-1.1. The culture was centrifuged 

(8,000 x g, 15 min, 4°C) and washed in 10ml of TES (30mM Tris-HCl, 50mM NaCl, 

5mM EDTA, pH 8.0) before resuspension in 2ml TES containing 20%(w/v) sucrose, 

2mg/ml lysozyme and 10/zg/ml RNase A. The suspension was incubated at 37°C for

1.5 hours, or until spheroplast formation could be confirmed using a light microscope. 

To this, 3ml of 8%(w/v) SDS in TES buffer was added before incubation at 68°C for 

15 min, followed by addition of 1.5ml of 3M Na acetate (pH 4.8) and incubation at 

-20°C for 30 min. The resulting mixture was centrifuged (20,000 x g, 15 min, 4°C),
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the supernatant retained and DNA precipitated by addition of 2 volumes of absolute 

ethanol and incubation at -20°C overnight. The precipitated DNA was harvested by 

centrifugation (20,000 x g, 20 min, 4°C) and the pellet left to air dry before 

resuspension in 100//1 TE buffer (lOmM Tris-HCl, 0.1 mM EDTA, pH 8.0) by gentle 

mixing and incubation at room temperature for 2-3 hours. Plasmid profiles were 

analysed by electrophoresis at 2-3V/cm, overnight in a 0.5% agarose gel 

(section 2.2.2).

2.3 Transformation of bacterial cells by plasmid DNA

2.3.1 Preparation of competent E. coli cells

2.3.1.1 Calcium chloride method

Chemically competent E. coli cells were prepared using a simplified version of 

that described by Sambrook and Russell (Sambrook and Russell, 2001). A glycerol 

stock of the appropriate E. coli strain was used to inoculate 10ml of LB medium, with 

or without antibiotics as appropriate. The culture was grown for 16 hours with 

shaking at 37°C, 250 rpm. This culture was diluted 200 fold into fresh LB medium 

and grown with shaking at 37°C, 250 rpm until the D ^  reached 0.4. Cells were 

harvested by centrifugation (3,000 x g, 10 min, 4°C) and were resuspended in half of 

the original culture volume of ice-cold CaCl2-glycerol solution (lOOmM CaCl2, 

15%(v/v) glycerol) and incubated on ice for 30 min. The cells were harvested as 

before and resuspended in 0.1 original culture volume of CaCl2-glycerol solution.

Cells were incubated on ice for 30 min, divided into 50pl aliquots and flash frozen in 

liquid nitrogen. Cells were stored at -80°C until use.
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2.3.1.2 Electrocompetent method

Electrocompetent E. coli DH5a (Dower et al., 1988) were prepared when high 

efficiency electroporation was required for transformation of ligation reactions, using 

the method described in Sambrook and Russell (Sambrook and Russell, 2001). An 

overnight culture of E. coli, grown in LB medium (37°C, 250rpm), was diluted 

20 fold into two flasks containing 500ml of prewarmed LB medium. The cultures 

were incubated at 37°C, 300rpm until the reached 0.4. The cultures were cooled 

on ice before harvesting by centrifugation (1,000 x g, 15 min, 4°C) and resuspending 

in 0.5 original culture volumes of ice-cold sterile water. The cells were again 

harvested by centrifugation (1,000 x g, 20 min, 4°C) and resuspended in 0.25 original 

culture volumes of sterile, ice-cold 10%(v/v) glycerol. Cells were harvested again by 

centrifugation (1,000 x g, 20 min, 4°C) and resuspended in 10ml ice-cold 

10%(v/v) glycerol before a final centrifugation (1,000 x g, 20 min, 4°C) and final 

resuspension in 1ml of ice-cold sterile GYT medium (10%(v/v) glycerol, 

0.125%(w/v) yeast extract, 0.25%(w/v) tryptone). The of a 1:100 dilution of the 

cell suspension was measured and the cell suspension was diluted to a concentration 

of 2 x 1010 to 3 x 1010 cells/ml in ice-cold sterile GYT medium (assuming that a 

of 1 equates to approximately 2.5 x 108 cells/ml). Samples (40/d) of cells were stored 

at -80°C in sterile microfuge tubes, after flash freezing in liquid nitrogen.
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2.3.2 Transformation of E. coli by plasmid DNA

2.3.2.1 Calcium chloride method

Samples (50pl) of competent cells (section 2.3.1.1) were thawed on ice before 

the addition of plasmid DNA (l-50ng) and mixing by gentle pipetting. The cells were 

incubated on ice for 30 min, subjected to heat shock at 42°C for 2 min and placed on 

ice for a further 5 min before the addition of LB medium (1ml) and incubation at 37°C 

for 1 hour. Following incubation, cells were pelleted by centrifugation (6,000 x g,

1 min), resuspended in lOOpl of LB medium and spread onto nutrient agar plates 

containing the appropriate antibiotic for selection. The plates were allowed to stand 

for 2 min before overnight incubation at 37°C in an inverted position.

2.3.2.2 Electroporation

Samples (40/d) of electrocompetent cells (section 2.3.1.2) were thawed on ice 

before addition of plasmid DNA (10pg-25ng in a volume of 1-2/d). The cells were 

left on ice for 30-60 seconds before transfer to an ice-cold electroporation cuvette 

(0.2cm-gap). The cuvettes were tapped to ensure that the cells-DNA mix reached the 

bottom of the cuvette and to remove trapped air bubbles. Condensation and moisture 

was wiped from the cuvette’s electrode contacts and an electric pulse was delivered, 

giving a time constant of 4-5ms using a Bio-Rad Gene Pulser electroporation unit 

(Bio-Rad Laboratories Ltd, Herts, UK) set at 2.5kV, 200Q resistance and 20//F 

capacitance. SOC medium (1ml of 20g/l tryptone, 5g/l yeast extract, 0.5g/l NaCl, 

20mM glucose) was immediately added to the cells in the electroporation cuvette 

before transfer to a 15ml polypropylene tube (Coming Inc., Acton, MA, USA) and 

incubation at 37°C, 150rpm for 1 hour. Different volumes (10-200/d) of the
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electroporated cells were spread onto LB agar plates containing the appropriate 

antibiotics for selection. The plates were left at room temperature, until the culture 

liquid was absorbed, and incubated at 37°C overnight in an inverted position.

2.3.3 Packaging of recombinant cosmids into bacteriophage X particles.

Packaging of genomic DNArcosmid hybrids into bacteriophage X particles 

was carried out using the Packagene® Lambda DNA Packaging System (Promega 

Ltd., Southampton, UK). Packagene® extracts were thawed on ice and 10//1 of a 

ligation reaction added as soon as thawing was complete. The mixture was incubated 

at 22°C for 3 hours. After this time, 440 pi 1 of phage buffer (20mM Tris-HCl, 

lOOmM NaCl, lOmM M gS04, pH 7.4) and 25//1 of chloroform were added and the 

samples gently mixed by inversion. The packaged cosmids were stored at 4°C for up 

to a week or at -70°C for longer term storage after the addition of gelatin (0.01%(w/v) 

final concentration) and DMSO (7%(v/v) final concentration).

E. coli LE392 was grown overnight in 10ml of LB medium supplemented with 

0.2%(w/v) maltose and lOmM M gS04 at 37°C, and was used to inoculate (1/100 

dilution) 50ml of LB medium containing 0.2%(w/v) maltose and lOmM M gS04. The 

culture was incubated with shaking at 37°C, 250 rpm to a of 0.6 and the cells 

were then placed on ice. A 1/100 dilution of packaged cosmids (100//1) in phage 

buffer was added to 100//1 of LB containing 0.2%(w/v) maltose and lOmM M gS04 

and 100/ri of the prepared E. coli LE392. The mixture was incubated at 37°C for 

30 min. LB containing 0.2%(w/v) maltose and lOmM M gS04 (1ml) was added and 

the mixture incubated for a further hour before the cells were plated onto LB agar 

plates containing 60 pig/ml ampicillin and incubated at 37°C overnight.
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2.3.4 Electrotransformation of B. thuringiensis by plasmid DNA

Transformation of B. thuringiensis subsp. israelensis 4Q7 was performed from 

an adapted version of the method of Bone and Ellar (Bone and Ellar, 1989). A colony 

of B. thuringiensis subsp. israelensis from an overnight nutrient agar plate was grown 

in LB medium (10ml) in a 50ml sterile polypropylene tube (Coming Inc., Acton, MA, 

USA) at 30°C, 200rpm to a of 0.2-0.3. The culture was placed on ice for 10 min 

before centrifugation (2,000 x g, 5 min, 4°C) and gentle resuspension of pelleted cells 

in ice-cold, filter sterilised 10%(w/v) sucrose (1ml). Cells were harvested and washed 

twice more in ice-cold 10% sucrose, as before. Following washing, the cells were 

harvested again, before the final resuspension in 250pl of ice-cold 10%(w/v) sucrose. 

Cells were kept on ice until electroporation.

Samples (120pl) of cell suspensions were placed in ice-cold 0.4cm 

electroporation cuvettes (Bio-Rad Laboratories Ltd, Hertz, UK) and lp g  of plasmid 

DNA was added and mixed by gentle pipetting. Cells were placed back on ice for 

10 min before the volume of the mix was made up to 800pi by the addition of ice-cold 

10%(w/v) sucrose. An electrical pulse was applied to the cells, giving a time constant 

of approximately 9ms using a Bio-Rad Gene Pulser electroporation unit (Bio-Rad 

Laboratories Ltd, Herts, UK) set at 1.8kV, 400Q resistance and 25 pF capacitance. 

Immediately after electroporation, prewarmed LB medium (1 ml) was added to the 

cuvette and the contents were transferred to a 15ml sterile polypropylene tube 

(Coming Inc., Acton, MA, USA) and incubated at 30°C, 200rpm for 1-2 hours. After 

this time, the cells were harvested (2,000 x g, 5 min), resuspended in lOOpl of LB 

medium (without antibiotic) and plated onto nutrient agar containing the appropriate 

antibiotic for selection. The plates were incubated overnight at 30°C in an inverted 

position.
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2.3.5 Electrotransformation of B. subtilis by plasmid DNA

Transformation of B. subtilis was carried out as described by Xue et al. (Xue 

et al., 1999). An overnight culture of B. subtilis, grown in LB medium containing 

0.5M sorbitol, was diluted 16-fold into fresh, prewarmed LB medium supplemented 

with 0.5M sorbitol. The culture was incubated at 37°C, 250rpm to a of 0.85-0.95. 

Cells were incubated on ice for 10 min before harvesting by centrifugation (4,000 x g, 

5 min, 4°C) and washing four times in ice-cold electroporation medium 

(0.5M sorbitol, 0.5M mannitol, 10%(v/v) glycerol). After washing the cells were 

resuspended in 1/40 of the original culture volume of ice-cold electroporation 

medium. Cells were kept on ice until electroporation.

Plasmid DNA (50ng-0.5pig) was added to 60/d of electrocompetent cells in an 

ice-cold electroporation cuvette (O.lcm-gap) and was incubated on ice for 1-1.5 min. 

An electrical pulse was applied to the cells, giving a time constant of 4.5-5ms using a 

Bio-Rad Gene Pulser electroporation unit (Bio-Rad Laboratories Ltd, Herts, UK) set 

at 1.6kV, 200Q resistance and 25/<F capacitance. Recovery medium (1ml of LB 

medium containing 0.5M sorbitol, 0.38M mannitol) was added to the cells 

immediately after electroporation, the resulting mixture was transferred to 15ml 

sterile polypropylene tubes (Corning Inc., Acton, MA, USA) and incubated at 37°C, 

200rpm for 3 hours. After this time, cells were harvested by centrifugation 

(4,000 x g) and resuspended in 100/d of LB medium before spreading onto LB agar 

plates containing the appropriate antibiotics for selection. The plates were incubated 

at 37°C overnight in an inverted position.
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2.4 DNA-DNA hybridisation methods

2.4.1 Preparation of DIG labelled DNA probes

2.4.1.1 3’ DIG labelling of oligonucleotides

Oligonucleotides for use in Southern hybridisation were labelled with 

digoxigenin-ddUTP at the 3’ end by the action of terminal transferase (Roche 

Diagnostics, Mannheim, Germany) according to the manufacturer’s protocol.

2.4.1.2 PCR generation of DIG labelled probes

DNA probes for use in Southern hybridisation were prepared by incorporation 

of digoxigenin-dUTP (Roche Diagnostics, Mannheim, Germany) into DNA fragments 

generated by PCR (section 2.2.6.1) according to the manufacturer’s 

recommendations. Briefly, PCR was performed (section 2.2.6.1) using genomic DNA 

or plasmid DNA as template and a reaction mixture containing dATP, dCTP, dGTP 

(200//M each), dTTP (130//M) and DIG-dUTP (lOpiM). Incorporation of DIG into 

PCR products was confirmed by analysis using agarose gel electrophoresis 

(section 2.2.2) before continuing with hybridisation.

2.4.2 Transfer of target DNA to membranes for DNA-DNA hybridisation

2.4.2.1 Capillary transfer by Southern blot

Blotting of DNA fragments generated by restriction enzymes and separated by 

agarose gel electrophoresis onto Hybond-N membrane (Amersham International pic, 

Bucks, UK) was based on the method of Southern (Southern, 1975). DNA digested
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with restriction enzymes (section 2.2.3) was resolved on a 1% agarose gel 

(section 2.2.2) and the position of molecular weight markers marked by stabbing the 

gel with a needle dipped in Indian ink. Following electrophoresis, the gel was placed 

in depurination solution (250mM HC1) for 10 min, denatured in denaturation solution 

(0.5M NaOH, 1.5M NaCl) for 2 x 15 min, followed by neutralisation in neutralisation 

buffer (0.5M Tris-HCl, 1.5M NaCl, pH 7.5) for 2 x 15 min. Before blotting by 

capillary transfer, the gel was equilibrated in 20X SSC (0.3M sodium citrate,

3M NaCl, pH 7.0) for 10 min. A piece of Whatman 3MM paper, presoaked in 

20X SSC was placed on top of an overturned gel tray, the ends resting in a reservoir 

of 20X SSC. The gel was placed, face down, on top of the Whatman 3MM paper. A 

gel size piece of Hybond-N was placed on top of the gel and pierced at the molecular 

weight marker positions, followed by two sheets of Whatman 3MM paper and a 

10-15cm stack of paper towels. The construction was compressed by placing a glass 

plate and a 1 kg weight on top of the paper towels and the transfer allowed to proceed 

overnight. Following transfer, the membrane was briefly rinsed in 2X SSC and the 

DNA fixed to the membrane by baking at 80°C for 2 hours.

2.4.2.2 Colony hybridisation

The screening of recombinant bacterial colonies, for plasmids containing 

probe-hybridisable sequence, by colony hybridisation was based on the method of 

Grunstein and Hogness (Grunstein and Hogness, 1975) and performed as described by 

Sambrook & Russell (Sambrook and Russell, 2001).

Hybond-N membranes were placed onto agar plates containing bacterial 

colonies for 3 min and the membrane marked for future re-alignment by stabbing 

through the filter into the agar with a syringe needle dipped in Indian ink. Membranes
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were carefully peeled from the agar and placed colony side up on sheets of Whatman 

3MM paper pre-soaked in denaturing solution (0.5M NaOH, 1.5M NaCl) for 15 min, 

neutralisation buffer (0.5M Tris-HCl, 1.5M NaCl, ImM EDTA, pH 7.5) for 15 min 

and 2X SSC for 10 min with a 1 min drying step between each transfer. Membranes 

were air dried before fixing the DNA by baking at 80°C for 2 hours.

2.4.2.3 Dot blotting of DNA onto membranes

The dot blotting method was used occasionally on genomic DNA samples to 

determine the presence of a probe-hybridisable sequence.

DNA solutions were firstly denatured at 95°C for 5 min and were then 

transferred quickly to ice. DNA solutions containing 100-200ng of DNA were 

allowed to soak slowly onto a Hybond-N membrane in a grid like fashion, keeping 

the spots as small as possible. DNA was fixed to the membrane by baking at 80°C for 

2 hours.

2.4.3 Hybridisation of probes to DNA immobilised on membranes

Hybridisation of DIG labelled probes (Engler-Blum et al., 1993) was carried 

out according to manufacturer’s recommendations (Roche Diagnostics, Mannheim, 

Germany).
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2.4.3.1 3’ DIG labelled oligonucleotide probes

For degenerate oligonucleotide probes, hybridisation incubation temperatures 

(Thyb) were performed at 10°C below minimum Tm for that oligonucleotide, calculated 

using the equation:

Tm (°C) ~  4(G+C) + 2(A+T)

Membranes were placed in pre-hybridisation solution (5X SSC,

0.1%(w/v) N-lauroylsarcosine, 0.2%(w/v) SDS, l%(w/v) dry skimmed milk) for 

1 hour at hybridisation temperature. The pre-hybridisation solution was replaced with 

hybridisation solution (pre-hybridisation solution containing lOpmol/ml probe) and 

incubated overnight at hybridisation temperature. Following hybridisation the 

membrane was washed with low stringency buffer (2X SSC, 0.1%(w/v) SDS) for 

2 x 5  min at 15-25°C and then high stringency buffer (0.5X SSC, 0.1%(w/v) SDS) for 

2 x 1 5  min at hybridisation temperature before equilibration for 5 min in MA buffer 

(0.1M Maleic acid, 0.15M NaCl, pH 7.5) containing 0.3%(v/v) Tween® 20. The 

membrane was placed in blocking solution (l%(w/v) dry skimmed milk in 

MA buffer) for 30 min before addition of alkaline phosphatase conjugated Anti-DIG 

antibody (Roche Diagnostics, Mannheim, Germany) (1:5,000 dilution in blocking 

solution) for 1 hour. After 1 hour the membrane was washed for 2 x 15 min in 

MA buffer with 0.3%(v/v) Tween® 20 and equilibrated in detection solution 

(0.1M Tris-HCl, 0.1M NaCl, pH 9.5). Detection was carried out using CSPD (Roche 

Diagnostics, Mannheim, Germany) by addition of 1ml CSPD solution (1/100 dilution 

of stock 25mM CSPD in detection buffer) to the membrane. The membrane was 

wrapped in Clingfilm, placed in a development folder and incubated for 15 min at
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37°C. An X-ray film was exposed to the membrane for 20 min and developed using 

an AGFA Curix 60 automatic developer.

2.4.3.2 PCR generated DIG labelled probes

Hybridisation of DIG labelled probes generated by PCR, to target DNA was 

performed by a method identical to that described for oligonucleotide probes, with a 

few exceptions. DIG labelled PCR products were first made single stranded by 

heating to 95°C for 5 min and then transferred directly to ice before their addition to 

prewarmed hybridisation solution (2/d PCR labelled DNA per ml). Hybridisation 

was performed at 68°C.

2.5 Biochemistry methods

2.5.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

SDS-PAGE was carried out according to Laemmli (Laemmli, 1970) and gels 

were cast and run using the Bio-Rad Mini-PROTEAN II system according to 

manufacturer’s instructions. Running gels comprised 10%(w/v) acrylamide, 

0.27%(w/v) N-N’ methylene bisacrylamide, 375mM Tris-HCl pH 8.8,

0.1%(w/v) SDS, 0.05%(w/v) ammonium persulphate and 13.2mM TEMED. Stacking 

gels contained 5%(w/v) acrylamide, 0.14%(w/v) N-N’ methylene bisacrylamide, 

65mM Tris-HCl pH 6 .8 ,0.1%(w/v) SDS, 0.1%(w/v) ammonium persulphate and 

13.2mM TEMED. Electrolyte running buffer contained 0.1%(w/v) SDS,

192mM glycine and 25mM Tris-HCl pH 8.3.

Protein sample buffer (20mM Tris-HCl pH 6 .8 ,0.2%(w/v) SDS,

5%(v/v) glycerol, 0.003%(w/v) Bromophenol Blue, 286mM P-mercaptoethanol) was
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added to samples before boiling in a water bath for 5 min and sample loading onto 

gels. Gels were run at 200V and stained using Coomassie Blue R-250 solution 

(0.05%(w/v) in 50%(v/v) methanol and 10%(v/v) acetic acid) for 1-2 hours and 

destained in a wash solution containing methanol (25%(v/v)) and acetic acid 

(7%(v/v». Pre-stained protein markers were subject to simultaneous electrophoresis 

with samples, allowing molecular weight determination of sample proteins.

2.5.2 Immunological detection of recombinant proteins by western blotting

After SDS-PAGE, proteins were transferred to a nitrocellulose membrane 

(Amersham International pic, Bucks, UK) by electroblotting. A gel sized piece of 

Whatman 3MM paper soaked in solution A (300mM Tris base, 20%(v/v) methanol) 

was placed on the anode terminal followed by two pieces of Whatman 3MM paper 

pre-soaked in solution B (20mM Tris, 25%(v/v) methanol). A piece of nitrocellulose 

membrane, pre-soaked in distilled water was placed on top of the Whatman 3MM 

paper followed by the SDS-PAGE gel, two sheets of Whatman 3MM paper 

pre-soaked in solution C (25mM Tris base, 20%(v/v) methanol,

40mM 8-amino-n-caproic acid) and the cathode terminal. Electroblotting was 

preformed at 145mA for 45 min using a semi-dry blotter (Startorius Ltd., Epsom, 

Surrey, UK).

For detection of His-tagged proteins, the membrane was washed 2 x 10 min in 

TBS (lOmM Tris-HCl, 150mM NaCl, pH 7.5) before being blocked in TBS 

containing 3%(w/v) BSA for 1 hour. The membrane was then washed 2 x 1 0  min in 

TTBS (20mM Tris-HCl, 500mM NaCl, 0.05% Tween 20, pH 7.5) and for 10 min in 

TBS. The Penta-His antibody (Qiagen Ltd., Crawley, West Sussex, UK) was applied 

for 1 hour at a 1/1,000 dilution in TBS containing 3%(w/v) BSA. Following this, the
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Penta-His antibody was removed by washing 2 x 10 min in TTBS and for 10 min in 

TBS. A secondary anti-mouse IgG, conjugated to alkaline phosphatase (Sigma 

Chemicals Ltd., Poole, Dorset, UK), was applied for 1 hour at a 1/10,000 dilution in 

TBS containing 3%(w/v) BSA. The membrane was washed 4  x 10 min in TTBS 

before staining with nitro-blue tetrazolium and 5 Bromo-4-chloro-3-indoyl phosphate 

(Bio-Rad Laboratories, Watford, Herts, UK) under continuous shaking until a colour 

reaction was observed. The reaction was stopped by washing in distilled water and 

the membrane was allowed to air dry.

Detection of GST-fusion proteins was performed as described for detection of 

His-tagged proteins above, except that blocking was performed in PBS 

(140mM NaCl, 2.7mM KC1, lOmM Na^PO*, 1.8mM KH2P 04, pH 7.3) containing 

5%(w/v) dry skimmed milk and 0.1%(v/v) Tween 20, and washing was performed in 

PBS containing 0.1%(v/v) Tween 20. The primary antibody was Anti-GST antibody 

(diluted 1/5,000; from Amersham Biosciences UK Ltd., Bucks, UK) and the 

secondary antibody was anti-goat IgG (diluted 1/10,000), conjugated to alkaline 

phosphatase (Sigma Chemicals Ltd., Poole, Dorset UK).

2.5.3 Preparation of protein samples for N-terminal sequencing

Before N-terminal sequencing, all the equipment to be used was washed 

thoroughly and soaked in Milli-Q overnight to remove all traces of glycine. Protein 

samples to be sequenced were first separated by SDS-PAGE (section 2.5.1) as usual 

except that the electrolyte running buffer comprised 0.1%(w/v) SDS, 192mM tricine 

and 25mM Tris-HCl, pH 8.3. Proteins were then transferred onto PVDF membrane 

(Bio-Rad Laboratories Ltd, Herts, UK), which had previously been hydrated by 

soaking in methanol followed by submersion in water for a few seconds, by
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electroblotting in an identical fashion to that described for western blotting 

(section 2.5.2). Following transfer, the membrane was stained with 

0.1%(w/v) Coomassie blue R-250,50%(v/v) methanol for 5 min, destained using 

50%(v/v) methanol, 10%(v/v) acetic acid for 2 min and then with three washes of 

deionised water over a period of 5 min. The membrane was allowed to air dry and the 

required band(s) excised with a sterile scalpel blade. N-terminal sequencing was 

performed by Alta Bioscience, University of Birmingham, Birmingham, UK.

2.5.4 Analytical scale expression in E. coli and sample preparation of 

recombinant protein

Cultures (10ml) of E. coli BL21(DE3)pLysS harbouring expression plasmids 

were established by inoculation with a single colony picked from an overnight plate. 

Cultures were incubated at 37°C, 300rpm overnight in LB containing ampicillin and 

chloramphenicol. A sample (0.5ml) was removed from each culture and added to 

fresh medium (100ml) containing ampicillin and chloramphenicol. The cultures were 

incubated at 37°C, 300rpm until a of 0.4 was reached at which point expression 

was induced by addition of IPTG to ImM. 1ml samples were removed at appropriate 

time intervals and the recorded. The cells of each sample were pelleted by 

centrifugation (14,000 x g, 1 min) and resuspended in 100/d of lx  protein sample 

buffer (with 10%(v/v) P-mercaptoethanol) per unit of attenuance. Samples were 

stored at -20°C prior to analysis by SDS-PAGE and/or western blotting (sections 2.5.1 

and 2.5.2 respectively).

79



2.5.5 Analytical scale expression of soluble and insoluble fractions

A 5ml E. coli BL21(DE3)pLysS protein expression sample (section 2.5.4) to 

be analysed was pelleted by centrifugation (14,000 x g, 3 min) and the medium was 

discarded. The cell pellet was resuspended in TE buffer to give a of 10. The 

cells from each sample were lysed by three freeze-thaw cycles and sonicated on ice 

using a Sonics Vibra-Cell Ultrasonic Processor VCX500 (50% amplitude, 3 x 10 

second pulses). After sonication, each sample was harvested by centrifugation 

(14,000 x g, 3 min) and the supernatant, containing soluble proteins, was retained.

The pellet, containing insoluble proteins, was resuspended in the same volume of TE 

as above. To the supernatant and the insoluble suspension, an appropriate volume of 

5x SDS protein sample buffer (with 10% (w/v) (3-mercaptoethanol) was added. 

Samples were then boiled for 5 min prior to analysis by SDS-PAGE and/or western 

blotting (sections 2.5.1 and 2.5.2 respectively).

2.5.6 Purification of crystal proteins from B. sphaericus and recombinant 

B. thuringiensis subsp. israelensis 4Q7

Crystal proteins were purified from sporulated cultures of wild type 

B. sphaericus strains and recombinant B. thuringiensis subsp. israelensis 4Q7, 

transformed with plasmids carrying crystal protein genes, using the method described 

by Silva-Filha et al. (Silva-Filha et al., 1997). Sporulated cultures, grown in Embrapa 

medium containing antibiotics when necessary, were harvested by centrifugation 

(20,000 x g, 4°C) and washed in ice-cold 1M NaCl containing lOmM EDTA. The 

spore suspension was harvested as before and washed twice in ice-cold lOmM EDTA 

before final resuspension in 1/30 of the original culture volume of ice-cold sterile 

water. The final spore suspension was sonicated using a Sonics Vibra-Cell Ultrasonic
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Processor VCX500 (50% amplitude, 4  x 30 second pulses) before separation by 

centrifugation (110,000 x g, 15°C, 16 hours) on a discontinuous sucrose gradient 

(67/72/79/84%(w/v)) using an SW28 Ultracentrifuge rotor (Beckman Coulter Ltd., 

Buckinghamshire, UK). Purified crystal bands were extracted from the gradient using 

a 16-G needle and syringe by piercing the centrifuge tube. Crystals were thoroughly 

washed in sterile distilled water before analysis by SDS-PAGE (section 2.5.1) and/or 

determination of toxicity by bioassay (section 2.6). Crystal suspensions were stored 

at -20°C.

2.5.7 Quantification of crystal protein concentration

Purified crystal protein (section 2.5.6) was solubilised in 50mM NaOH for 

1 hour at 30°C and any insoluble matter removed by centrifugation. The pH was 

adjusted by addition of 150mM Tris-HCl, pH 8.0 and the concentration of protein 

determined using the Bio-Rad protein assay kit (Bio-Rad Laboratories Ltd, Herts,

UK) according to the manufacturer’s protocol, which is based on the method of 

Bradford (Bradford, 1976). Five dilutions, in triplicate, of the BSA standard were 

prepared ranging from 1.5 to 10/^g/ml and 200/d of the dye reagent concentrate was 

added to 800/d of the BSA standard dilutions. These solutions were mixed and left at 

room temperature for 10 min before measuring the absorbance at 595nm using a 

spectrophotometer. A standard curve was prepared using the known concentration of 

the BSA and the absorbance values obtained. Different dilutions of the solubilised 

crystal protein (800/d) were mixed with 200/d of the dye reagent concentrate and left 

for 10 min at room temperature before the absorbance was measured as before. The 

concentration of the protein in samples were determined using the standard curve of 

the BSA protein. Due to the presence of a small amount of contaminating proteins in
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the purified crystal toxin, the % of crystal protein in the sample was determined by 

densitometry after SDS-PAGE (section 2.5.1) using the program LabWorks™ Image 

Acquisition and Analysis Software (UVP Ltd., Cambridge, UK) for Windows.

The concentration of crystal protein determined above was confirmed by 

running known amounts of BSA (2.0, 1.5,1.25, 1.0, 0 .75 ,0.5pg) with crystal protein 

on an SDS-PAGE gel. The amount of crystal protein was determined by densitometry 

compared with the known BSA standards using the program LabWorks™ Image 

Acquisition and Analysis Software (UVP Ltd., Cambridge, UK).

2.5.8 Electron microscopy of sporulated cultures

Sporulated cultures of B sphaericus and recombinant B. thuringiensis subsp. 

israelensis carrying the genes for B. sphaericus mosquitocidal toxins were analysed in 

a scanning electron microscope at Embrapa Recursos Geneticos e Biotechnologia, 

Brasilia, Brazil. Spore suspensions were deposited onto a metallic support, and 

allowed to dry at room temperature overnight in a microbiological hood. The samples 

were covered with gold for 180 seconds, using a sputter EMITECH model K550 and 

observed in a scanning electron microscope.

2.5.9 Preparation of larval gut extract

A. aegypti and C. quinquefasciatus larval gut extracts were prepared as described by 

Thanabalu et al. (Thanabalu et al.y 1992). Guts were dissected from 20 fourth-instar 

mosquito larvae and placed into ice-cold microfuge tubes containing 200/ri PBS 

(140mM NaCl, 2.7mM KC1, lOmM N a^PO * 1.8mM KH2P 04, pH 7.3) following 

removal of the peritrophic membranes. The guts were homogenised in 1.5ml 

microfuge tubes using a pestle which exactly fits the tube.
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2.5.10 In vitro toxin processing

Crystal toxin (10//g) was solubilised in 50mM NaOH for 1 hour at 30°C and any 

insoluble material removed by centrifugation (17,000 x g, 5 min). The solution was 

adjusted to 20mM Tris-HCl, 150mM NaCl, 2.5mM CaCl2, pH 8.4 in a final volume of 

100/d. Mosquito larva gut extract (10/ri; section 2.5.9) or proteolytic enzyme (1 pig) 

was added to the solubilised toxin and incubated at 30°C for 1 hour. The digest 

products were precipitated by addition of TCA to a 10%(w/v) final concentration and 

incubated on ice for 20 min. The precipitated protein was harvested by centrifugation 

(17,000 x g, 15 min, 4°C) and the pellet washed with acetone, precooled to -20°C.

The samples were centrifuged (17,000 x g, 5 min, 4°C), the supernatant discarded and 

the protein pellets allowed to air-dry before resuspension in SDS-PAGE protein 

sample buffer and analysis of the digest products by SDS-PAGE (section 2.5.1).

2.6 Insect bioassays

Selective bioassays were performed against a range of insects to establish 

whether toxins, singly or in combination, were toxic to the test species. Further 

bioassays were performed on sensitive insects to determine fifty percent lethal 

concentrations (LC^). For lepidopteran and coleopteran bioassays, larvae were fed 

artificial diets, based on black beans, brewer’s yeast, soy protein, wheat germ and 

casein, prepared at Embrapa Recursos Geneticos e Biotechnologia (Brasilia, Brazil) as 

recommended by Shmidt et al. (Shmidt et al., 2001).
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2.6.1 Mosquito larvae

B. sphaericus strains and recombinant B. thuringiensis subsp. israelensis 4Q7, 

carrying the genes encoding putative toxins, were assayed for toxicity against 

Culex quinquefasciatusy Aedes aegypti and Anopheles gambiae mosquito larvae.

Initial selective bioassays, to determine whether toxicity was observed, were 

performed by exposing 10 second- or third-instar larvae to 100//1 of a fully sporulated 

culture of B. sphaericus or recombinant B. thuringiensis subsp. israelensis 4Q7 in 

10ml of distilled water at 28°C. Mortality was assessed after 24 hours by counting the 

number of live larvae. Further bioassays, allowing determination of LQo were 

performed using the method recommended by the World Health Organisation (WHO) 

(WHO, 1985). Serial dilutions of sporulated cultures or crystal proteins were added 

to 100ml of distilled water containing 25 third-instar larvae at 28°C. Mortality was 

assessed after 24 hours and 48 hours by counting the number of living larvae. Two 

control bioassays containing only distilled water and non-transformed B. thuringiensis 

subsp. israelensis 4Q7 were also used. All bioassays were performed in triplicate. 

LCso values were calculated using probit analysis (Finney, 1971) with the software 

SPSS 8.0.

When sporulated cultures were used, serial dilutions of the cultures were 

spread on LB agar plates, after heat treatment (80°C, 20 min) to kill vegetative cells. 

The plates were incubated at 30°C overnight and colonies were counted, allowing 

determination of the number of spores/ml of culture and from this, the calculation of 

LCgo values expressed in spores/ml.

Cosmid genomic DNA libraries, prepared in E. coli LE392, were also 

screened for toxicity against C. quinquefasciatus. In this instance cultures were 

incubated overnight (37°C, 250rpm), each culture containing grouped-pools of ten

84



colonies. The cultures were used in selective bioassays as described above except that 

5 second- or third-instar larvae were assayed in 10ml of distilled water.

2.6.2 Anthonomus grandis

The artificial diet was autoclaved and allowed to cool to ~50°C before 200/d 

of a sporulated culture of B. sphaericus or recombinant B. thuringiensis subsp. 

israelensis 4Q7, carrying the genes encoding putative toxins, was added and mixed. 

The diet was poured into Petri dishes and allowed to solidify before 60 holes were 

made into the surface of the set diet. A second instar larva was placed into each hole 

and the plates incubated at 27°C. Mortality was assessed after 7 days by counting the 

number of living larvae. Two control bioassays were performed using an artificial 

diet containing no spore cultures and with B. thuringiensis subsp. israelensis 4Q7. 

Bioassays were performed in triplicate.

2.6.3 Anticarsia gemmatalis

One cube (approx. 1cm3) of artificial diet was placed into each 50ml plastic 

cup. Bacterial culture (150/d) was added to the artificial diets and 10 second instar 

larvae were placed into each cup. A total of 10 cups were used for each test bioassay 

and an additional 10 cups were prepared containing no bacterial culture treatment as 

control. The cups were covered with lids and the bioassays incubated at 27°C. 

Mortality was assessed at 48 hours, at which time surviving larvae were transferred to 

new cups containing untreated diet and mortality assessed again at day 6.
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2.6.4 Spodoptera frugiperda

Bioassays were performed in 24-well tissue culture plates with wells half 

filled with artificial diet. One half of the plate contained artificial diet treated with 

30/d of a sporulated culture of either B. sphaericus or recombinant B. thuringiensis 

subsp. israelensis 4Q7, carrying the genes encoding putative toxins. The other half of 

the plate contained the control untreated diet. A single second instar larva was placed 

in each well, to prevent cannibalism, and the plates covered with a lid to prevent 

movement of larvae from one well to another. The bioassays were incubated at 27°C 

and the mortality was assessed after 48 hours. Each surviving larva was placed into 

an individual 50ml plastic cup containing untreated diet before the cups were covered 

with lids and incubated at 27°C. Mortality was assessed again at day 6.

2.6.5 Plutella xylostella

Young cabbage leaves, approx. 3cm in diameter, were dipped into a dilution 

of sporulated cultures of B. sphaericus or recombinant B. thuringiensis subsp. 

israelensis 4Q7, carrying the genes for putative toxins, and hung to air-dry for 1 hour 

at 25°C. One treated leaf was then placed into each Petri dish and 10 second-instar 

larvae were placed on each leaf. Control bioassays were prepared by dipping the 

leaves into water containing no bacterial spores. Bioassays were incubated at 25°C.

A fresh untreated cabbage leaf was placed into each Petri dish when treated leaves 

were consumed or after 48 hours, whichever occurred first Mortality was assessed 

after the 48 hour period and again at day 5.
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2.6.6 Chironomus riparius

Ten first- or second-instar larvae were placed into 10ml of distilled water 

containing sediments of homogenised Whatman 3MM paper. A fully sporulated 

culture (100/d) of B. sphaericus or recombinant B. thuringiensis subsp. israelensis 

4Q7, carrying the gene encoding putative toxins, was added and the bioassay 

incubated at 20°C. Mortality was assessed at 24 and 48 hours by counting survivors.
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CHAPTER 3

Discovery and cloning of a putative toxin from B. sphaericus
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3.1 Introduction

The commercial availability of B. sphaericus spore formulations and, 

therefore, its use for biological control of vector mosquitoes, has led to the selection 

of mosquito populations with resistance to the strains currently in use. Levels of 

resistance in Culex mosquito populations have been reported in Brazil (10 fold), India 

(150 fold), France (10,000 fold) and China (25,000 fold) (for review see Charles and 

Nielsen-LeRoux (Charles and Nielsen-LeRoux, 2000)). Mosquito populations with 

resistance levels of >100,000 fold have been selected under laboratory conditions (Pei 

et al., 2002; Yuan et al., 2003).

All records of B. sphaericus field resistance to date have been against strains 

2362, 1593 and C3-41 (all serotype H5a5b) and it has been shown that 

cross-resistance occurs between different strains (Rodcharoen and Mulla, 1996; Pei et 

al., 2002), including strains that produce distinct Bin variants such as 2362 (Bin2) and 

2297 (Bin3) (Wirth et al., 2000a; Yuan et al., 2003). However, studies have 

identified strains (primarily IAB59, LP1G, 47-6B) that have the ability to overcome 

Culex quinquefasciatus larval resistance developed after exposure to strains 2362 and 

C3-41 (Wirth et al., 2000a; Pei et al., 2002; Yuan et al., 2003). The ability of these 

strains to overcome Bin toxin resistance holds promise for their development for use 

in the field. Pei et al., have shown that the toxicity of these strains to resistant Culex 

larvae is independent of amino acid sequence changes between Bin variants, with the 

Binl variant from IAB59 unable to overcome a Bin2-resistant C. quinquefasciatus 

colony raised against 2362 (Pei et al., 2002). This has also been supported by 

receptor binding studies that have shown that Binl and Bin2 recognize the same 

receptor in the C. pipiens larval gut and, that laboratory selected high-level resistance 

is due to loss of the functional receptor (Silva-Filha et al., 2004). The ability of
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strains IAB59, LP1G and 47-6B to overcome binary toxin cross-resistance suggests 

that these strains carry currently unidentified toxin(s). It has also been shown that 

development of resistance to strain IAB59 is much more difficult than strains C3-41 

and 2362, with a much lower level of resistance (<50 fold compared to >140,000) 

being selected for under intense laboratory selection (Pei et al., 2002; Yuan et al.,

2003). Further supporting the new toxin hypothesis is that the Bin4 toxin (from 

LP1G), containing a L93S amino acid change in BinA compared to all other Bin 

variants, shows no toxicity against C. pipiens larvae susceptible to strain 2362, 

suggesting that the low level toxicity observed in this strain may be due to 

unidentified toxin(s) (Yuan et al., 2001). A common spore protein, with an apparent 

molecular weight of -4 9  kDa in strains IAB59, LP1G and 47-6B, has been suggested 

as a candidate toxin (Nielsen-LeRoux et al., 2001; Pei et al., 2002; Yuan et al., 2003; 

Silva-Filha et al., 2004) but previous attempts to clone the gene for this putative toxin 

have proved unsuccessful (Yuan personal communication; Nielsen-LeRoux personal 

communication).

The aim of this study was to identify, clone and characterise the toxin gene(s) 

responsible for the ability of strains LAB59, LP1G and 47-6B to overcome Bin 

cross-resistance. This involved construction and toxicity screening of a genomic 

DNA library, a method that has proven to be successful in the past for the cloning of 

the Mtx toxins (Thanabalu et al., 1991; Liu et al., 1996; Thanabalu and Porter, 1996). 

A second approach compared SDS-PAGE protein profiles of sporulated B. sphaericus 

cultures, followed by N-terminal sequencing of candidate toxins, allowing the design 

of degenerate primers for use in cloning strategies.
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3.2 Construction of a B. sphaericus IAB59 cosmid library

High molecular weight total DNA was purified from B. sphaericus strain 

IAB59 according to the method of Ausubel et al., (Ausubel et al., 1987)

(section 2.2.12). Conditions were optimised for partial digestion of genomic DNA to 

yield 20-40 kb fragments, following recommendations by Sambrook and Russell 

(Sambrook and Russell, 2001). IAB59 DNA was partially digested using the 

restriction enzyme 7sp509I, yielding products suitable for cloning into EcoRl 

linearised vectors. Pilot reactions were prepared on ice, containing varying amounts 

of restriction endonuclease and a constant amount of genomic DNA, before 

incubation at 65°C for 10 min. The reactions were stopped by addition of EDTA and 

the samples subjected to electrophoresis through a 0.5% agarose gel at 1 V/cm, at 4°C 

overnight. The sizes of digest products were compared relative to the mobility of 

uncut X DNA and X Hindlll DNA marker. Fragments of approximately 20-40 kb, 

appropriate for cloning into cosmid vectors, were formed using 0.035U of 7sp509I 

per jig DNA. Preparative digests with 60 jig  of genomic DNA and 2 .1U Tsp509l 

under the same conditions as the pilot reaction were prepared and the samples 

subjected to electrophoresis through a 0.5% LMP-agarose gel at 1 V/cm, at 4°C 

overnight. DNA fragments of approximately 20-40 kb were excised from the gel and 

purified (section 2.2.4) before ligation (section 2.2.7) into linearised and CIP treated 

pHC79 cosmid vector.

The vector pHC79 (figure 3.1) is a 6.4 kb cosmid suitable for the cloning of 

DNA fragments in the range of 40 kb and has unique restriction sites for EcoRl, Clal, 

BarnWl, Sail, Ecal and Pstl (Hohn and Collins, 1980). The cosmid vector was 

linearised with EcoRl and treated with CIP to prevent self ligation, before extraction 

(section 2.2.4) from an agarose gel after electrophoresis (section 2.2.2). The size
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fractionated IAB59 DNA fragments (1.25 fig) were ligated into the linearised pHC79 

(1 fig), using T4 DNA ligase (3U) in a lOjil reaction volume and incubated overnight 

at 15°C. The ligation mix was then packaged into X heads and transfected into E. coli 

LE392 (section 2.3.3), before selection by plating onto LB agar plates containing 

60//g/ml ampicillin. Three hundred colonies, a coverage of approximately three 

genome equivalents, were obtained and glycerol stocks prepared for each individual 

colony (section 2.2.9).
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Figure 3.1 Restriction map of cosmid pHC79 (Hohn and Collins, 1980). Amp

and Tet indicate the positions of the selectable marker genes for ampicillin and 

tetracycline resistance respectively. The position of the cos sequence from X is also 

shown.
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3.3 Screening of IAB59 cosmid library against C. quinquefasciatus larvae

The IAB59 cosmid library was screened for toxicity against second- or 

third-instar C. quinquefasciatus mosquito larvae to determine whether the gene 

responsible for the toxicity of this strain towards resistant Culex larvae had been 

cloned (section 2.6.1). Pooled groups of 10 colonies were grown overnight at 37°C in 

10ml of LB medium containing 60//g/ml ampicillin. The cells were harvested by 

centrifugation, washed in 0.7%(w/v) NaCl and resuspended in 1ml of distilled water. 

The bacterial resuspensions were added to 5 C. quinquefasciatus larvae in a 10ml total 

volume for bioassay, in triplicate. The bioassays were incubated at 28°C and 

mortality was assessed at 24 hours and again at 48 hours, by counting the number of 

living larvae. Five pools showed toxicity, however, bioassay of the individual 

colonies within these pools did not lead to the isolation of any toxic clones. This 

method relies on a number of criteria being met including: (i) a representative library 

with at least one copy of each gene, complete with promoter (ii) that the promoter for 

the toxin is functional in E. coli (iii) a sufficient level of production of the toxin by 

E. coli (iv) the stability of the protein product in E. coli (v) that the activity of the 

toxin does not rely on any B. sphaericus specific processing.

3.4 Discussion

The failure to isolate any toxic clones from the IAB59 cosmid library suggests 

that at least one of the criteria mentioned above was not fulfilled. A representative 

library should not only identify the new gene(s) responsible for toxicity against 

resistant Culex colonies, but also the bin genes from IAB59. The bin gene is readily 

transcribed from its own promoter in E. coli and the corresponding protein produced 

at sufficient levels to cause toxicity to Culex larvae (Baumann et al., 1987). The lack
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of any bin derived toxicity in the cosmid library, together with the failure to isolate 

toxic clone(s) corresponding to previously unidentified toxin(s), suggests that the 

library is not representative. Restriction enzyme digest analysis of random clones 

indicated that successful genomic-DNAxosmid-vector ligations had been 

accomplished, therefore a larger genome coverage could be attained by increasing the 

size of the library beyond 300 colonies. This could easily be achieved by transfection 

of further E. coli LE392 cultures as described in section 2.3.3, using the stored stock 

of packaged cosmid.

Although the vegetatively expressed m txl, mtx2, and mtx3 promoters are 

recognised by E. coli RNA polymerase a  factors (Thanabalu et al., 1991; Liu et al., 

1996; Thanabalu and Porter, 1996) and the bin operon is readily transcribed in E. coli 

(Baumann et al., 1987), this is not the case for many sporulation genes (Losick et al., 

1986). It was therefore possible that the promoter(s) of the new toxin gene(s) from 

B. sphaericus would not be recognised by E. coli o  factors, leading to questionable 

suitability of cosmid library screening as the sole approach towards new toxin 

cloning. As a result, additional methods were undertaken in conjunction with the 

screening of the IAB59 cosmid library, namely, N-terminal sequencing of candidate 

toxins allowing the design of degenerate oligonucleotides for use in cloning strategies.

3.5 Protein fingerprint comparison and light microscope analysis of 

B. sphaericus spore cultures

A spore protein, with an apparent molecular weight of ~49 kDa in strains 

IAB59, LP1G and 47-6B has been proposed as a toxin (Yuan et al., 2003; Silva-Filha 

et al., 2004) following protein profile SDS-PAGE analysis of alkali solubilised spore 

powders. Here, similar analysis was performed by looking at protein profiles of
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sporulated cultures of strains IAB59 and LP1G compared with strains 2362 and 1593, 

that undergo Bin toxin cross-resistance, to determine whether common proteins were 

present in the former strains that were absent in the latter. B. sphaericus strains 2362, 

1593, IAB59 and LP1G were grown to sporulation for 72 hours in NYSM medium 

(30ml; section 2.1.6) at 30°C, 250 rpm, in a 250ml conical flask. Sporulated cultures 

were then harvested by centrifugation and resuspended in 1/10 original volume of 

SDS-PAGE sample buffer (section 2.5.1) before boiling for 5 min. The samples 

(10//1) were analysed by SDS-PAGE (section 2.5.1), through a 10% gel (figure 3.2).
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BinA

Figure 3.2 Protein profiles of B. sphaericus strains. Sporulated cultures of 

B sphaericus strains 2362 (lane 1), 1593 (lane 2), LP1G (lane 3) and IAB59 (lane 4) 

analysed by SDS-PAGE (10% gel) and stained with Coomassie blue R-250. Two 

common protein bands present in strains IAB59 and LP1G, but absent in 2362 and 

1593, are indicated with red arrows. BinA (42 kDa) and BinB (51 kDa) protein bands 

are also indicated. The sizes of molecular weight marker bands are shown.
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Analysis of IAB59 and LP1G protein profiles revealed multiple bands present 

in both strains that are absent in 2362 and 1593. The two major bands can be seen in 

figure 3.2; a high molecular weight band of >83 kDa and a band of slightly lower 

molecular weight than BinB, consistent with the reporting of a -4 9  kDa protein in 

strains able to overcome Bin-toxin resistance (Yuan et al., 2003; Silva-Filha et al.,

2004). The presence of these common proteins at similar levels of production to the 

binary toxin, in spores that are toxic to resistant Culex larvae, resulted in their 

selection as putative toxins for further analysis. The -4 9  kDa and > 83 kDa putative 

toxins were temporarily assigned the names P49 and P83 respectively.

During light microscope analysis of these sporulated cultures, strains IAB59 

and LP1G were found to contain free crystals in the media which were not observed 

in cultures of strains 2362 and 1593.

3.6 Amino terminal sequencing of putative toxins

Putative toxins were prepared for N-terminal sequencing by their 

immobilisation onto PVDF membrane. Sporulated cultures were prepared as 

described in section 3.5 for the preparation of samples for protein profile analysis by 

SDS-PAGE. Samples (10/d) were separated by SDS-PAGE in tricine buffer and 

blotted onto PVDF membrane as described in section 2.5.3. Protein bands 

corresponding to P83 from LP1G and, P49 from both IAB59 and LP1G were excised 

from the PVDF membrane and subjected to sequencing by Edman degradation, which 

was performed by Alta Bioscience. The N-terminal sequence deduced for each of the 

samples can be seen in figure 3.3.
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P83
LP1G

A G K S F P D V P A G H W X E D S I

P49
IAB59

M E N Q I K E E F N K N N H G

P49
LP1G

M E N Q I K E E F N K N N H G I P S D C S C I K E

Figure 3.3 N-terminal sequence of putative toxins. The amino terminal 

sequence of putative toxin proteins P83 (red) from LP1G and P49 (blue) from IAB59 

and LP1G. The length of the sequences reflect the positions where further 

determination of amino acid residues could not be achieved. Failure to assign an 

identity to an amino acid residue at a particular position is indicated by X.

N-terminal sequence analysis of the putative toxins confirmed that the 

-4 9  kDa protein from IAB59 and LP1G correspond to the same protein, with all 15 

N-terminal residues determined before reaction failure being identical. BLAST 

database searches (Altschul et al., 1990) for sequences showing similarity to the 

N-terminal sequences of P49 and P83 were performed. No significant matches were 

found to P49. The N-terminal sequence of P83 shows high sequence identity to the 

N-terminus of the 95 kDa EA1 S-layer protein from B. anthracis (Farchaus et al., 

1995). In addition, the 18 aa sequence from P83 is identical, with exception of 

ambiguous residue X at position 14, to residues 30-47 of the S-layer protein from

99



B. licheniformis, corresponding to the N-terminus of the mature protein following 

cleavage of its signal-sequence (residues 1-29) (Zhu et al., 1996). Additional S-layer 

proteins were also found to show similarity to P84, as shown in figure 3.4.

P83 NT 1
EA1 NT B anthracis 1
B licheniformis M A K T N S Y K K V I A G T M T A A M V 20
B thuringiensis M A K T N S Y K K V 1 A G T M T A A M V 20
B cereus E33L M A K T N S Y K K V 1 A G T M T A A M V 20
B anthracis M A K T N S Y K K V 1 A G T M T A A M V 20

P83 NT A G K S F P D V P A G 11
EA1 NT B anthracis A G K T ] F P D V P A D 11
B licheniformis A G V V S P V A A A G K S F P D V P A G 40
B thuringiensis A G V V S P V A A A G K S F P D V P A G 40
B cereus E33L A G V V S P V A A A G K S F P D V P A G 40
B anthracis A G I V S P V A A A G K S F P D V P A G 40

P83 NT H W X E D S I 1t 18
EA1 NT B anthracis H W G I D s I 18
B licheniformis H W A E D s I 47
B thuringiensis H W A E G s 1 47
B cereus E33L H W A E G s 1 47
B anthracis H W A E G s 1 47

Figure 3.4 Sequence alignment of P83 N-terminal aa residues. The N-terminal 

sequence of P83 is aligned with: the experimentally derived N-terminal sequence of 

EA1 from B. anthracis Delta Sterne-1 and, gene sequencing derived S-layer protein 

sequences from B. licheniformis, B. thuringiensis, B. cereus and B. anthracis strains. 

Residues identical to P83 are highlighted yellow. The known cleavage site of the 

signal peptide in B. licheniformis is indicated by an arrow (Zhu et al., 1996).
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N-terminal sequencing of P83 and protein-homology database searches 

resulted in its designation as a putative S-layer protein, and no further research was 

performed on this protein. Therefore, the design of degenerate oligonucleotides for 

use in cloning of the putative toxin from IAB59 and LP1G focused on the N-terminal 

aa sequence of P49.

3.7 Design of degenerate oligonucleotides based on the N-terminal P49 sequence

Two degenerate oligonucleotides were designed from the 25 aa N-terminal 

sequence of P49 (figure 3.5). Use of degenerate primers in cloning techniques or as 

probes are common and have proved useful in the past with the cloning of the gene 

for BinA (Hindley and Berry, 1987). Primers were designed from the N-terminal aa 

sequence by choosing regions that allowed for design of oligonucleotides with as low 

a degeneracy as possible. The 23-mer DP491 and 25-mer DP492 oligonucleotides 

were designed with degeneracies of 96 and 256 respectively. The two degenerate 

oligonucleotides were used as primers in PCR and as probes in Southern 

hybridisation.
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DP492 (  \
DP491 ( \

P49 N-terminal sequence: MENQIKEEFNKNNHGIP SDC sc IKE

M E N Q I K E E . .
DP491: 5'- AT6 GAR AAY CAR ATH AAR GAR GA -3'

E E F N K N N H  G. .
DP492: 5'- GAR GAR TTY AAY AAR AAY AAY CAY G -3 '

Figure 3.5 Nucleotide sequence of the degenerate oligonucleotides designed 

against the N-terminal aa sequence of P49. Protein sequences (P49) are shown in 

blue while DNA oligonucleotides (DP491 and DP492) are shown in red. Degenerate 

bases are: R = A/G, Y = C/T, H = A/C7T.

Primers DP491 and DP492 were first used in PCR (section 2.2.6.1) to attempt 

amplification of P49 encoding DNA fragments. Boomerang DNA amplification 

(Ahem, 1995), where restriction endonuclease digested IAB59 genomic DNA was 

ligated to synthetic oligonucleotide adapters before PCR, using either DP491 or 

DP492, was performed but no products were obtained (figure 3.6, data not shown). 

Additionally, these primers were used in PCR with M13remoteF or M13remoteR (see 

appendix) vector based primers to attempt amplification of the gene encoding P49 

from plasmid libraries in pUC18. Libraries were created by digesting IAB59 genomic 

DNA separately with the restriction enzymes EcoRl, BamHl and Hindlll
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(section 2.2.2). Individual ligation reactions were prepared (section 2.2.7) of the 

digest reaction products (500ng) and pUC18 (500ng) linearised with the same 

restriction enzymes and treated with CIP. After overnight incubation at 16°C, the 

ligations were used as template in PCR. Multiple reactions, using either primer 

DP491 or DP492 in all combinations with either M13remoteF or M13remoteR, were 

prepared using a range of annealing temperatures from 48°C to 60°C. PCR conditions 

were an initial denaturation at 95°C for 5 min, 30 cycles of 95°C (1 min), annealing 

for 1 min, and primer extension at 72°C (2 min), followed by a final extension at 72°C 

for 10 min. In most reactions, multiple non-specific PCR products were obtained. A 

few reactions yielded single PCR products which, on cloning and sequencing 

(sections 2.2.7 and 2.2.10 respectively), were revealed to be non-specific, presumably 

owing to the degeneracy of the oligonucleotides (data not shown). Attempted 

amplification of p49  using the primers DP492 and DP491C (a degenerate primer the 

reverse complement of DP491) by Inverse PCR (section 2.2.6.2) also yielded no 

products on analysis by agarose gel electrophoresis (section 2.2.2).
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Anneal, PCR
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Figure 3.6 Schematic representation of boomerang DNA amplification.

i) Digested IAB59 DNA was ligated to oligonucleotides containing a stem-loop 

structure and overhanging restriction endonuclease half sites identical to those 

generated by the restriction enzymes used for IAB59 DNA digestion, ii) Primer 

extension to amplify target with a single primer.
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3.8 Detection of p49 by Southern hybridisation

The degenerate primers, DP491 and DP492, were labelled with DIG 

(section 2.4.1.1), allowing their use as probes in Southern hybridisation experiments 

(sections 2.4.2 and 2.4.3). B. sphaericus strain IAB59 total DNA (4//g per reaction) 

was digested individually with the restriction endonucleases; Bell, Cla\, Dral, EcoRl, 

Hindlll and Mbol (section 2.2.3), and the fragments resolved by electrophoresis 

through a 1% agarose gel (section 2.2.2). The resulting DNA fragments were blotted 

onto nylon membrane by Southern transfer (section 2.4.2.1, (Southern, 1975)), before 

hybridisation using DIG labelled DP491 and DP492 probes (section 2.4.3.1). 

Hybridisation was performed at 10°C below the minimum Tm for each probe: DP491 

minimum Tm, 56°C; DP492 minimum Tm, 58°C. Two membranes were prepared after 

separation of IAB59 digest fragments on two agarose gels, with samples loaded in the 

same order. DP491 and DP492 were separately hybridised to the membranes, 

allowing detection of DNA fragments containing the N-terminal encoding sequence 

of P49 by the exposure of X-ray film to a chemiluminescence signal (figure 3.7).
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Figure 3.7 Southern blot analysis of B. sphaericus IAB59 total DNA digests 

with DIG labelled DP491 (a) and DP492 (b) oligonucleotide probes. B. sphaericus 

IAB59 total DNA (4//g per lane) digested with Bell (lane 1), Clal (lane 2),

Dral (lane 3), FcoRI (lane 4), Hindlll (lane 5) and Mbol (lane 6), and hybridised with 

probes corresponding to the N-terminus of P49. The sizes of the digest fragments 

were estimated relative to the migration of X HindUl and cJ)X 174 HaeIII DNA 

markers.

As can be seen from figure 3.7, Southern blot analysis of digested IAB59 total 

DNA with probes DP491 and DP492 resulted in a common hybridisation banding 

pattern, with very little background. In both hybridisation experiments, no signal was 

obtained from IAB59 DNA digested with Dral. After analysis it was concluded that



this was due to the Dral digest not going to completion, resulting in partial digest of 

DNA, and digestion of the DNA carrying probe hybridisable sequence into fragments 

of varying sizes. In such cases, the probe signal is diluted due to its spread over a 

range of fragment sizes rather than a single fragment size giving a strong signal. In 

order to clone DNA fragments containing partial or total p49  gene sequence, LAB59 

DNA was digested with the same restriction enzymes, excluding Dral, allowing the 

cloning of fragments corresponding to positive hybridisation signals into pUC18.

3.9 Cloning of DNA fragments containing p49 sequence

3.9.1 Colony hybridisation

IAB59 total DNA (8//g) was digested in separate reactions with BcR, Clal, 

EcoBl, Hindlll and Mbol and the reaction products separated by agarose gel 

electrophoresis (sections 2.2.3 and 2.2.2). DNA digest products, of sizes 

approximately corresponding to DP491 and DP492 Southern hybridisation signals, 

were recovered from the agarose gels (section 2.2.4) before ligation into linearised 

and phosphatase treated pUC18 vector (section 2.2.7). EcoBl digest products were 

cloned into IscoRI linearised vector, BcR and Mbol fragments were cloned into 

BamHl linearised vector, while Hindlll digested DNA was cloned into Hindlll cut 

pUC18. Clal digest products were stored at -20°C for later use should they be 

required, due to there being no Clal compatible sites in pUC18. After overnight 

incubation of the ligation reactions at 16°C, the products were transformed into E. coli 

DH5a by electroporation (section 2.3.2.2) and colonies containing 

IAB59 DNA-vector ligations were screened for using IPTG/X-Gal indicator plates 

(section 2.2.8). From the resulting plates, plasmid libraries were created by selecting



white colonies and spotting onto LB agar plates in a grid like fashion, and incubating 

at 37°C overnight. Colony hybridisation was performed using probes DP491 and 

DP492 to identify transformants containing N-terminal P49 encoding gene sequence 

(section 2.4.2.2), the grid like pattern of colonies facilitating cross-reference between 

hybridisation signals and positive transformants (figure 3.8). Hybridisation 

conditions differed to those used in the Southern hybridisation in that DP491 

(5pmol/ml) and DP492 (5pmol/ml) were combined in the same hybridisation solution, 

and incubated at 48°C. The cloning strategy for p49 is summarised in figure 3.9.

Figure 3.8 Colony hybridisation of E. coli plasmid libraries. DNA from 

HindlU (a) and £c<?RI (b) E. coli plasmid libraries were fixed to nylon membranes 

before hybridisation at48°C in hybridisation solution containing both DP491 

(5pmol/ml) and DP492 (5pmol/ml).
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Figure 3.9 Schematic diagram showing the cloning strategy for p49

Eleven clones were obtained carrying DP491 and/or DP492 hybridisable DNA 

sequences within a Hindlll fragment of approximately 15 kb. Four clones were 

identified containing DP491 and/or DP492 hybridisable DNA within an 

approximately 800 bp EcoKl fragment. Two pUC18 clones containing Hindlll 

fragments were selected for further analysis and named p49H5 and p49Hl 1. Two 

clones containing an EcoRl fragment were chosen for further analysis and assigned 

the names p49El and p49E2 before double-stranded DNA sequencing (section 2.2.10)
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of the EcoRl inserts using M13F and M13R sequencing primers (see appendix). Both 

plasmids were found to contain identical inserts of 763 bp, cloned in the same 

orientation, and to contain a 477 bp region of DNA encoding the N-terminus of P49 

(figure 3.10). The partial p49 CDS was found to contain the unusual initiation codon 

TTG, which normally codes for a Leu, and as confirmed by the experimentally 

derived N-terminal sequence of P49 is translated as a Met when used as the 

translational initiation codon. The full sequence of p49 is discussed later in 

section 3.11.

l i  E N Q I K E E F N K N N H  
5' TTG GAA AAT CAA ATA AAA GAA GAA TTT AAC AAA AAT AAT CAT

g i p s d c s c i k e I  G D D 
GGT ATT CCT AGT GAT TGC AGT TGT ATA AAA GAA GGA GAT GAT. . 3'

P49: M E N Q I K E E F N K N N H G I P S D C S C I K E

Figure 3.10 5’ sequence of p49. A stretch of DNA encoding the N-terminus of

P49, determined by the sequencing of the EcoRl inserts in p49El and p49E2 is 

shown. The DNA sequence is shown in black, with the initiating TTG underlined. 

The protein sequence deduced from partial p49 sequence is shown in blue, with 

residues matching the experimentally derived N-terminal sequence of P49 shown 

boxed. The Met residue that is incorporated when TTG is used as an initiator codon 

is shown in green. The experimentally derived N-terminal sequence of P49 is shown 

in red.
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3.9.2 Inverse PCR

Due to the failure to clone the Mbol fragment containing complete or partial 

p49  sequence, using the same method as was used for construction p49H5, p49Hl 1, 

p49El and p49E2, inverse PCR amplification (as described in section 2.2.6.2) of this 

fragment was attempted (figure 3.11). Briefly, IAB59 DNA (5pig) was digested to 

completion with Mbol before intramolecular ligations of digested products to form 

circular DNA was achieved using T4 DNA ligase (4U). This circularised DNA was 

used as template in PCR using primers (Int2F and IntlR, see figure 3.11 for primer 

sequences and figure 3.14 for full sequence of p49) designed based on the known p49 

sequence obtained from sequencing of p49El and p49E2. PCR conditions were a 

5 min initial denaturation at 95°C, followed by 30 cycles of 95°C (1 min),

60°C annealing (1 min) and 72°C extension (2.5 min), followed by a final extension at 

72°C for 10 min, using Easy-A proofreading DNA polymerase. A control reaction 

comprising p49El as template DNA was used, the PCR product of expected size 

being 3,415 bp representing amplification of the entire p49El plasmid with exception 

of the 28 bp region between the primer binding sites of Int2F and IntlR. Two further 

control reactions using only Int2F primer, in one case, and IntlR primer in the other 

were also performed using the circularised DNA as template. A single PCR product 

of expected size, in comparison with the Southern hybridisation signal from the Mbol 

digest reaction, was obtained as was a single product of expected size in the control 

reaction using p49El as template DNA (figure 3.12). The inverse PCR product was 

purified (section 2.2.4) and cloned into the vector pGEM-T (section 2.2.7) before 

electrotransformation into E. coli DH5a (section 2.3.2.2) and plating onto 

IPTG/X-Gal indicator plates (section 2.2.8). Two positive colonies were selected and 

plasmids isolated (section 2.2.1). The pGEM-T plasmids, containing an
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approximately 2 kb Mbol fragment, were called p49Ml and p49M2 and were sent for 

DNA sequencing (section 2.2.10) using primers M13F and M13R, and were found to 

contain identical inserts of 2,010 bp.
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IAB59
DNA

Mbol
digest

Intramolecular
ligations

Mbol DNA fragments

°o9
IntlR

Int2F
EcoRl

Int2F:
GGTCAAGGTGTAATAGTATCTAG

PCR reaction
IntlR:
CCATCGTGCCTGTTCGCAATG

FcoRI Mbol

>4

£coRI

49 bp 314 bp 967 bp 680 bp

Figure 3.11 Inverse PCR. Schematic representation of inverse PCR amplification 

of the Mbol DNA fragment containing p49 DNA. Int2F and Inti R priming sites and 

primer sequences are shown as are Mbol and EcoRl restriction sites. The region of 

DNA corresponding to the EcoRl fragment already sequenced is shown in yellow.
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1 2 3 4 5 6

3,415 bp 
2,010 bp

Figure 3.12 Agarose gel electrophoresis of inverse PCR products. Inverse PCR 

product from Mbol digested IAB59 DNA (lane 3). PCR control reactions using; 

p49El template DNA with primers Int2F and IntlR  (lane 4), Mbol digested and 

circularised IAB59 DNA with primer Int2F only (lane 5) and In tlR  only (lane 6).
4

DNA markers \  Hindlll (lane 1) and <$>X174 Haelll (lane 2) are also shown.

3.10 DNA sequencing of the putative toxin gene p49

Double stranded DNA sequencing of the £c<?RI inserts in the plasmids p49El 

and p49E2 resulted in the sequencing of a 477 bp stretch of the p49 CDS as well as 

286 bp upstream of p49 , containing a putative promoter region (see section 3.11). 

Sequencing of the Mbol inserts in clones p49Ml and p49M2 resulted in the 

sequencing of 790 bp of p49, 477 bp of which were already determined from the 

sequencing of the £coRI fragments cloned into p49El and p49E2, and 1,252 bp of

114



upstream DNA. Therefore, neither the EcoRl or the Mbol DNA fragments cloned 

into pUC18 and pGEM-T respectively contained the complete CDS for p49.

For complete sequencing of the gene encoding the putative toxin, primers 

were designed to “walk-out” from the derived sequence. Clones p49H5 and p49Hl 1, 

containing the ~15 kb Hindlll fragment cloned into pUC18 were used as template 

DNA in the sequencing reactions (section 2.2.10) and the resulting chromatograms 

were analysed using the program EditView 1.0.1 ABI Automated DNA Sequence 

Viewer. The complete CDS for P49 was found to be contained within the Hindlll 

inserts of p49H5 and p49Hl 1. Editing of sequences and assembly of sequencing 

reaction data into contigs to determine the gene sequence was performed using 

EditSeq and SeqMan within the Lasergene DNA* software package. The complete 

sequencing strategy, including the primer sequences designed, can be seen in 

figure 3.13.
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IntlR I lnt3F

- //'
h

lnt2F

Mbol EcoRl EcoRl Mbol Mbol

7 /
I I

0 kb 0.5 kb 1.0 kb

IntlR: 5’ - CCATCGTGCCTGTTCGCAATG - 3’ 

lnt2F: 5’ - GGTCAAGGTGTAATAGTATCTAG - 3 ’ 

lnt3F: 5’ - CAGGTTGGAACACCTTGGGTAG - 3’

1.5 kb

Figure 3.13 Strategy for the sequencing of p49. Arrows represent the direction of 

primer extension during sequencing of the p49 gene (yellow). Dashed lines show 

regions previously sequenced from clones p49El, p49E2, p49Ml and p49M2. 

Cleavage sites for the restriction enzymes EcoRl and Mbol are shown, with the sites 

shown in colour indicating cleavage sites used in the construction of p49El, p49E2, 

p49M 1 and p49M2.
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3.11 Analysis of the p49 gene sequence

Figure 3.14 shows the DNA sequence, and the encoded amino acid sequence, 

of p49. A CDS of 1,395 bp, encoding a protein of 464 amino acids, begins with the 

initiation codon (TTG) at nt 287. The predicted P49 protein has a molecular weight 

of 53,280 Da.

Upstream of p49, two possible Shine-Dalgamo sequences, which overlap, are 

found. At 13 nt upstream of the initiation codon an 8 nt sequence (nt 274-281) is 

found, of which 7 nt are complementary to the 3’ end of both B. sphaericus (Berry 

unpublished) and B. subtilis (Moran et al., 1982; Kunst et al., 1997) 16S rRNA. A 

predicted interaction of this sequence with the 3 ’ end of 16S rRNA, with a calculated 

free energy (AG) of -15.8 kcal/mol according to the method of Tinoco et al. (Tinoco 

et al., 1973), is shown in figure 3.15(i). In addition, 17nt upstream of the initiation 

codon, a 14nt sequence is found (nt 270-283), in which 11 out of the 14 nt are 

complementary to the 3’-16S rRNA sequence of B. sphaericus and B. subtilis. A  

proposed interaction of this sequence with 16S rRNA, with a AG of -13 kcal/mol can 

be seen in figure 3.15(ii). The lower AG of the former 8 nt sequence, compared to the 

latter 14 nt sequence, suggests this sequence as a putative Shine-Dalgamo, shown 

boxed in red in figure 3.14.

The sequence upstream of p49  was analysed for possible promoter sequences 

using the predictive database search of the DBTBS (http://dbtbs.hgc.jp) (Makita et al., 

2004) and by carrying out manual analysis of the sequence. Putative promoter 

sequences similar to those found in B. subtilis were identified, most noticeable was 

the similarity of the sequences GTAATAAT (nt 211-218) and CATATATA 

(nt 232-239) to the -35 c f  consensus sequence, G(g/t)(c/a)ATATT, and -10 cj5 

consensus sequence, CATACANT, respectively. The sigma factor, c /, is active in the
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B. subtilis mother cell that has advanced approximately 2 hours into sporulation, after 

processing of the inactive precursor, pro-c/, which is expressed from the spoIIG 

operon at the onset of sporulation (Haldenwang, 1995). The discovery of a (/-like  

promoter upstream of p49  is, therefore, consistent with the presence of P49 in the 

B. sphaericus spore. Also, other mosquitocidal toxins from 

B. thuringiensis subsp. israelensis have been shown to be regulated by RNA 

polymerase associated with sporulation specific o 35 and o28 factors, homologues of c f  

and a* from B. subtilis respectively (Yoshisue et al., 1993a; Yoshisue et al., 1993b; 

Dervyn et al., 1995). A recent study on asporogenic B. sphaericus 2362, containing 

mutations in the spoOA and spoIIAC genes, has also shown the importance of 

sporulation-specific a  factors and promoters in the expression of the Bin toxin in the 

B. sphaericus spore (El-Bendary et al., 2005). Another sequence showing similarity 

to a sporulation specific promoter was also identified. The sequences GCATA 

(nt 126-130) and TACCATATTG (nt 145-154) are similar to the crG consensus 

sequences GHATR (-35) and GGNCATXHTA (-10) respectively. RNA polymerase 

associated with o° is involved in the transcription of genes in the later stages of 

sporulation (Haldenwang, 1995). In addition to the o 6 and a G-like promoter 

sequences identified upstream of p49, a promoter-like sequence overlapping with the 

predicted ( /  promoter showing similarity to the < / consensus recognition sequences 

was also found. Factor < /, a homologue of E. coli a 70, is most abundant in 

vegetatively growing B. subtilis cells, its main role being involved in transcription of 

vegetatively expressed genes. The sequence TTGTAA at nt 209 to 214 is similar to 

the -35 c /  consensus, TTGACA, and the sequence TATATT at nt 236 to 241 is 

identical to the -10 consensus. In deviation from the consensus, the -35 and -10 

(/-lik e  sequences upstream of p49  are separated by 21 nt, rather than the usual
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17-18 nt. However, both spoIIG and spoIIE have -35 and -10 consensus sequences 

separated by 22 and 21 bp respectively, that have been shown to be transcribed under 

the influence of a* during the early stages of sporulation (Kenney et al., 1989; York 

et al., 1992). In addition, the activity of RNA polymerase associated with a* has been 

shown to persist into the early stages of sporulation. The ability of to recognise the 

sporulation-specific spoIIG and spoIIE promoters may suggest a role for cr* in the 

transcription of p49  during sporulation.
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Figure 3.14 DNA sequence of the putative toxin gene p49. The predicted 

Shine-Dalgamo sequence is boxed in red and the putative cP, a 0 and cP promoters are 

shown with green, orange and red lines above the sequence respectively. The 

initiation codon (blue line) and the deduced P49 aa sequence is shown. This DNA 

sequence was later submitted to EMBL GenBank as part of accession no. AJ841948.
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Figure 3.15 Two proposed interactions between the Shine-Dalgarno sequence 

of the p49 transcript and the 3’ end of 16S rRNA. Free energies 

(AG in kcal ± 10%) for the base paired, the interior loops and the bulge loop regions 

are shown below the predicted interaction. Values for AG were calculated according 

to Tinoco et al. (Tinoco et al., 1973). The lower energy of (i) (AG = -15.8 kcal/mol), 

compared to (ii) (AG = -13.0 kcal/mol), favours this interaction between the mRNA 

and 16S rRNA.

3.12 Analysis of the P49 protein sequence

BLAST searches (Altschul et al., 1990) were performed using the deduced 

464 aa sequence of P49. Results indicated that P49 shows homology to a number of 

insecticidal toxins from B. sphaericus and B. thuringiensis. P49 shares 34% identity 

over 441 amino acids with Cry36Aal (also known as ET69), a 58.6 kDa 

coleopteran-active crystal protein from B. thuringiensis. In addition, P49 shows
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similarity to BinA (31% identity over 321 amino acids) and BinB (27% identity over 

469 amino acids) from B. sphaericus, as well as sharing shorter regions of identity 

with the Cry35A family of binary toxins from B. thuringiensis (Moellenbeck et al., 

2001; Ellis et al., 2002; Schnepf et al., 2005). Conserved domain searches (Marchler- 

Bauer and Bryant, 2004; Marchler-Bauer et al., 2005) using the P49 amino acid 

sequence also revealed the sharing of a conserved domain, CDD entry Pfam05431, 

found in Bacillus sp. binary toxins.

Figure 3.16 shows an alignment of the P49 protein sequence against the 

proteins, identified by BLAST searches, to which it shows greatest homology. 

Cry35Aal is used in the alignment as a representative of the Cry35A family. Protein 

sequences were aligned using the ClustalW program, left at the default settings. 

Although BinA and BinB share a low sequence identity, these two proteins have four 

highly conserved blocks (Baumann et al., 1988). As can be seen from the alignment, 

P49 shares many of the aa residues conserved in the four blocks, which are shown 

boxed in figure 3.16. Some of the non identical residues within the blocks also have 

similar properties to those found in either BinA or BinB. The Cry35 family of binary 

toxins from B. thuringiensis also contain conserved blocks which overlap with those 

found in the B. sphaericus Bin toxin (Ellis et al., 2002). As illustrated in figure 3.17, 

P49 also shows a closer phylogenetic relationship to Cry36Aal and the Bin toxin, 

than the Cry35 family of binary toxins from B. thuringiensis. The phylogenetic tree 

was drawn by first aligning the protein sequences using the ClustalW program, left at 

the default settings except that the tree output format was set to PHYLIP distance 

matrix. The NEIGHBOR program within the PHYLIP software package was then 

used to construct a phylogenetic tree from this distance matrix. The program 

TreeViewPPC was used to view the resulting tree in radial format.
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Figure 3.16 Protein alignment of P49, Cry36Aal, BinA2, BinB2 and 
Cry35Aal. The number of identical residues (two, pink or grey; three, green; four, 
blue and all five, yellow) at each position are highlighted. Regions corresponding to 
the conserved blocks (A, B, C and D) of amino acids found in Bin toxins are shown 
boxed.
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Cry36Aa1
P49

Cry34A

BinB2

Cry35A

Cry35B A ► Cry34B
BinA2

Figure 3.17 Phylogenetic tree showing the relationship between P49 and other 

insecticidal toxins. Relationship is shown to BinA and BinB from B. sphaericus 

using the Bin2 variant as an example, Cry36Aal (also known as ET69) from 

B. thuringiensis and members that make up the Cry35 family of B. thuringiensis 

binary toxins. Double headed arrows indicate a relationship between proteins that 

function together as binary toxins.

3.13 Sequencing of the p49 gene from strains LP1G and 47-6B

SDS-PAGE analysis of sporulated cultures of B. sphaericus strains IAB59, 

LP1G and 47-6B, all strains able to overcome Bin toxin resistance, reveals a common 

spore protein band with an apparent molecular weight of ~49 kDa, as previously 

stated in section 3.1 and 3.5. The N-terminal sequencing of this protein from strain 

LP1G (refer back to figure 3.3) has confirmed that it, and P49 from IAB59,
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correspond to the same protein, with the first 15 aa being identical. N-terminal 

sequencing of this protein from 47-6B was not performed at the beginning of this 

study as the strain was not one of the B. sphaericus strains kept at Cardiff University 

at the time. Primers were designed, based on the IAB59 p49 gene sequence 

determined in this study, to attempt amplification of the genes encoding this common 

protein from LP1G and 47-6B. Total DNA was isolated from strains LP1G and 

47-6B (section 2.2.12) and used as template in PCR (section 2.2.6.1) for amplification 

of p49. Primers P49F and P49R (see appendix for sequence) were used to amplify the 

gene encoding P49 from these two strains using Easy-A proofreading DNA 

polymerase. Thermocycling conditions were an initial denaturation step at 95°C for 

5 min, 15 cycles of 95°C (1 min), 60°C (1 min) and 72°C (1.5 min), followed by a 

final extension at 72°C for 10 min. The PCR products were run on a 1% agarose gel 

(section 2.2.2) before purification from the gel (section 2.2.4) and ligation 

(section 2.2.7) into the vector pGEM-T. The ligation reactions were then transformed 

into E. coli DH5a (section 2.3.2.2.) and colonies were screened, for the successful 

cloning of p49, by colony PCR (section 2.2.6.1), using the same conditions as above 

except that 30 cycles were performed. Two clones, containing p49  cloned into 

pGEM-T, from each strain were sent for sequencing with M13F and M13R primers 

(section 2.2.10, see appendix for primer sequences). To ensure that any differences 

that may occur in the p49  gene sequences between these strains was not due to PCR 

introduced mutations, the amplification, cloning and sequencing of p49  from 47-6B 

and LP1G was repeated.

The sequences of the p49  gene inserts in the clones from strain 47-6B were 

found to be both identical to each other and to the p49 gene from strain IAB59. Thus 

there is no aa sequence difference between the putative P49 toxin from IAB59 and
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47-6B. The sequences of the clones containing the p49  gene from LP1G were also 

found to be identical to each other. However, the p49  gene from LP1G is 1,404 bp in 

length, compared to 1,395 bp for the p49  gene from IAB59, encoding a protein of 

467 aa and 53.5 kDa. The variation in gene sequence results in amino acid 

substitutions at 35 positions, one 4  aa insertion and one single aa deletion within the 

LP1G variant relative to P49 from IAB59, as can be seen in figure 3.18. Of these 35 

substitutions, 12 could be considered conservative (K-R, I-L, T-S, D-E, V-I, Y-F) and 

7 semi-conservative (A-G, H-R, N-D, L-F, A-S, V-Y). Only two of these amino acid 

changes are found to occur within the conserved blocks shared with the Bin toxin 

components; an A-»S change at the 3rd aa of block C, and a Y->F at the 3rd aa of 

block D. The cloning and sequencing of the p49  genes from strains LP1G and 47-6B 

confirms that the common spore protein with an apparent MW of 49 kDa identified in 

strains IAB59, LP1G and 47-6B, as discussed in sections 3.1 and 3.5, correspond to 

the same protein, P49. The sequence of p49  from LP1G and its deduced aa sequence 

can be seen in the appendix and has been submitted to the EMBL GenBank database 

under accession AM237202.
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Figure 3.18 Alignment of P49 from IAB59 and LP1G. Amino acid residues in 

the LP1G variant that differ to P49 from 1AB59 are highlighted yellow. Gaps inserted 

into the sequence to maximise the alignment are also highlighted yellow. The regions 

of P49 which align with the conserved blocks of BinA and BinB, as shown in 

figure 3.16, are shown boxed.

127



3.14 Discussion

The p49  gene, encoding a putative mosquitocidal toxin, was cloned from 

B. sphaericus strain IAB59 by using degenerate probes designed against the 

N-terminal aa sequence of P49. Sequencing of the gene revealed it to have a size of 

1,395 bp, encoding a protein of 464 aa and 53.3 kDa, slightly larger than the apparent 

49 kDa, estimated by comparison of mobility relative to molecular weight standards 

by SDS-PAGE. A predicted RBS and three potential promoters: one showing 

similarity to the sporulation specific ( /  consensus, another to a a G promoter and an 

atypical (/-like promoter, have been identified. The presence of ( /  and o G like 

promoter consensus sequences, as well as an unusual (/-lik e  promoter, upstream of 

p49 is consistent with the presence of P49 in the B. sphaericus spore. Protein 

database searches have revealed that P49 shows homology to the Cry36Aal toxin 

from B. thuringiensis as well as the B. sphaericus Bin toxin. Shorter regions of 

similarity are also shared with the Cry35 family of binary toxins from 

B. thuringiensis. The homology shared between P49 and other insecticidal toxins was 

encouraging with regard to its predicted role as a mosquitocidal toxin.

The cloning and sequencing of p49  from strains LP1G and 47-6B has revealed 

that the amino acid sequence of the encoded protein from LP1G differs from that of 

IAB59 and 47-6B, which are identical. The effect of these amino acid changes in the 

LP1G variant is currently unknown. However, the confirmation that P49 is a 

common protein found in the strains able to overcome Bin toxin resistance, was again 

encouraging with regard to its putative role as the unidentified toxic factor within 

these strains.

Light microscope analysis of sporulated cultures revealed the presence of free 

crystals in the media of strains IAB59 and LP1G, which were not observed in cultures
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of strains 2362 and 1593. The small crystals appeared distinct from the spore 

associated Bin toxin crystal and may suggests that the unidentified toxin(s) from 

IAB59 and LP1G are produced as crystal(s) at sporulation. The presence of these 

crystals as well as P49, in both IAB59 and LP1G, may indicate that the putative toxin 

P49 is a crystal protein.

To determine whether, as hypothesised, P49 is a crystal toxin responsible for 

the activity of strains IAB59, LP1G and 47-6B towards resistant Culex mosquito 

larvae, a series of bioassays were performed as described in chapter 4. For this, 

recombinant expression of P49, as described in the following chapter, was performed 

in preparation for the bioassay. Also, in attempt to gain further knowledge regarding 

the ~15 kb Hindlll fragment cloned from IAB59 DNA, in p49H5 and p49Hl 1, it was 

decided to sequence the entire insert, beyond the region encoding P49 determined in 

this chapter. The sequencing and features of these inserts are described in chapter 5.
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CHAPTER 4

Recombinant expression and bioassay of the putative crystal 
toxin, P49, from B. sphaericus IAB59
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4.1 Introduction

The B. sphaericus BinA and BinB toxin proteins have been produced in 

recombinant form in both E. coli (Davidson et al., 1990; Berry et al., 1993) and 

B. thuringiensis (Nicolas et al., 1993). In addition, the vegetative toxins Mtxl, Mtx2 

and Mtx3 have successfully been expressed as GST fusion proteins in E. coli 

(Thanabalu et al., 1992; Liu et al., 1996; Thanabalu and Porter, 1996).

The gene encoding a putative crystal toxin, temporarily named P49, has been 

successfully cloned from B. sphaericus strain IAB59, as described in the previous 

chapter. To determine whether P49 is the toxic factor responsible for the activity of 

B. sphaericus strains IAB59, LP1G and 47-6B against Bin-resistant Culex mosquito 

larvae, bioassay of P49 against C. quinquefasciatus larvae was performed. First, 

bioassay of P49 in the absence of the potent BinA and BinB combination, against 

susceptible C. quinquefasciatus (SLCq) larvae, would establish whether P49 is toxic. 

Further assays against Bin-resistant C. quinquefasciatus (RLCq/C3-41) larvae would 

determine whether P49 is the toxic factor accountable for the activity of strains 

IAB59, LP1G and 47-6B towards resistant Culex mosquito populations. To allow for 

its bioassay in the absence of Bin, recombinant expression of P49 was carried out As 

it was unknown which would be the better host for recombinant P49 production, 

expression was trialled in E. coli and in a non mosquitocidal, plasmid cured 

B. thuringiensis subsp. israelensis host, 4Q7.

4.2 Expression of P49 in E. coli

Over expression of P49 in E. coli was attempted by cloning the p49 gene into 

the expression plasmids pGEX-4T-2 and a modified pET22b. Cloning the gene for 

p49, in the correct reading frame, into the MCS of pGEX-4T-2 results in the
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expression of P49 as a fusion protein with GST. The GST moiety, at the N-terminus 

of the expressed protein, allows affinity purification of the fusion protein using 

glutathione, and the GST tag can be removed subsequently by thrombin cleavage.

The pET22b vector used here has been modified to encode an N-terminal (His)6 tag. 

Cloning the p49 gene, including its stop codon, into the NdeI and Xhol sites of the 

modified pET22b results in the production of an N-terminally His tagged P49, the 

stop codon preventing continued translation into the vector encoded C-terminal His 

tag.

4.2.1 Expression of P49 as a GST fusion

4.2.1.1 Cloning of p49 into a pGEX expression vector

Primers were designed for PCR amplification of the gene encoding P49, that 

would facilitate cloning into the BamHl site in the MCS of pGEX-4T-2. The primer 

pairs, P49F and P49R, were designed from the 5 ’ and 3’ ends of p49  respectively and 

the restriction site for BamHl was added to the 5’ end of both primers. The nucleotide 

sequence of P49F and P49R can be seen in figure 4.1, as well as in the appendix. The 

gene encoding P49 was amplified from p49H5, which contains the ~ 15 kb Hindlll 

fragment cloned from IAB59 DNA containing the p49  gene (section 3.9), by PCR 

(section 2.2.6.1), using primers P49F and P49R and Easy-A proofreading DNA 

polymerase. Thermocycling conditions were an initial denaturation step at 95°C for 

5 min, 15 cycles of 95°C (1 min), 60°C (1 min) and 72°C (1.5 min), followed by a 

final extension at 72°C for 10 min. The PCR product was run on a 1% agarose gel 

(section 2.2.2) before purification from the gel (section 2.2.4) and ligation 

(section 2.2.7) into the pGEM-T vector. The ligation reaction was then transformed
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5’ GGATCCTTGGAAAATCAAATAAAAGAAGAATTTAAC 3’ 
P49F^

p49H5

GGATCC
ACCTAGG

EcoRl
P49RPCR 5’ GGATCCTTAATTATAATATGGCTTTGAATTTTCATG 3’

GGATCCA
CCTAGG

472 bp 923 bp 

LIGATION

pGEM-T

BamHlY*XI PP49 1

BamHl

a C<*c .̂EcoR I BamHIN

I PGEX-4T-2o T- 
\\\\\

Thrombin

A. V P R | g
CTO GTT CCO CGT GOA

BamHl DIGEST 
LIGATION

BamHl

E N K E

BamHl

Figure 4.1 Schematic representation of the cloning of p49 into the pGEX

expression vector. P49F and P49R primer sequences, the p49 gene (orange) and the 

gene encoding the amino terminal GST (green) are shown. The thrombin recognition 

sequence and the BamHl recognition sequence are shown in brackets. The cleavage 

site for removal of the GST tag is indicated by an arrow.
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pGEMP49 1 pGEMP49 2

4 5 6 7 8™^

*

4--------- 1,395 bp
4--------- 933 bp

5.3 kb
4.9 kb

BamH\ EcoRl BamHl EcoR\

p49 Z
< 472 bp 923 bp 10 bp

Figure 4.2 PCR and restriction digest analysis of two clones obtained from 

the ligation of p49 into the MCS of pGEX-4T-2. PCR products (using primers 

P49F and P49R) of 1,395 bp corresponding to the p49 gene (lane 3 and 6) and, 

BamHl digestion (lanes 4 and 7) and EcoRl digestion (lanes 5 and 8) of two 

pGEMP49 clones are shown. X Hindlll (lane 1) and <|)X174 Haelll (lane 2) DNA 

markers were also run. The 1,395 bp fragment in the BamHl digests represents the 

entire p49 gene cut from the pGEX-4T-2 vector (4.9 kb). The 933 bp fragment in the 

EcoRl digest consists of the 923 bp fragment from p49 and 10 bp (including the 

BamHl site) between the p49 stop codon and the EcoRl cleavage site in the MCS. 

The 933 bp fragment, and not a 472 bp (+ an additional 10 bp), in the EcoRl reaction 

would indicate that the p49 gene was cloned into the vector in the correct orientation.
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4.2.1.2 Expression of the P49-GST fusion protein

Before large-scale expression of P49, for affinity purification, a small scale 

analytical expression was performed to confirm that the P49-GST fusion was 

successfully produced in E. coli. The clone pGEXP49 was transformed into 

E. coli strain BL21(DE3)pLysS, as described in section 2.3.2.1, and spread on 

LB agar plates containing ampicillin and chloramphenicol. A single colony was 

selected for analytical scale expression (section 2.5.4) and to monitor whether the 

fusion protein was produced in soluble or insoluble form (section 2.5.5).

Samples (1ml) were removed at hourly time intervals, after induction with 

IPTG (ImM), and analysed for the presence of the P49-GST fusion protein by 

SDS-PAGE (section 2.5.1), and Western blot (section 2.5.2) using the polyclonal 

Anti-GST antibody (Amersham Biosciences UK Ltd., Bucks, UK). An 

immuno-reactive band, with an apparent molecular weight of approx. 79 kDa, was 

detected by Western blotting (figure 4.3), consistent with the expected size of a fusion 

protein comprising a 26 kDa GST moiety and the 53 kDa P49. The fusion protein 

could also be seen by SDS-PAGE analysis, as shown in figure 4.3. Additional 

immuno-reactive bands, presumably owing to detection of degradation products of the 

P49-GST fusion protein, could also be seen on the Western blot. Increasing levels of 

P49-GST could be seen, both by SDS-PAGE analysis and Western blot, from 

t=0 hours to t=4 hours. Further analysis, performed as described in section 2.5.5, 

revealed that the majority of the protein was produced in insoluble form. Figure 4.4 

shows SDS-PAGE analysis of soluble and insoluble fractions from the expression 

culture sample taken at t=4 hours post induction with IPTG. Identical analyses were 

performed for samples taken at t= l, t=2 and t=3 hours, again indicating that the 

majority of P49-GST was produced in insoluble form (data not shown).
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Figure 4.3 SDS-PAGE and Western blot analysis of P49-GST expression.

Analysis of samples following induction of P49-GST in E. coli BL21(DE3)pLysS 

with ImM IPTG. Protein bands corresponding to P49-GST on the SDS-PAGE gel 

and blot are indicated by a red arrow. Gel lanes are loaded with samples taken at t= 1, 

t=2, t=3 and t=4 hours post induction. A sample taken immediately before induction 

is indicated by t=0. The sizes of molecular weight standard proteins are shown.
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Figure 4.4 SDS-PAGE analysis of soluble and insoluble fractions of the E. coli 

P49-GST expression. Lane 1, culture at t=0 hours; lane 2, culture at t=4 hours; lane 

3, soluble fraction of culture at t=4 hours; lane 4, insoluble fraction of culture taken at 

t=4 hours. The sizes of molecular weight protein standards are shown.
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4.2.2 Expression of P49 using the pET vector system

4.2.2.1 Cloning of p49 into a pET22b expression vector

The pET22b vector used in this study, a kind gift from Mr. T. Winterbum, had 

been previously modified to encode an N-terminal (His)6 tag. This was achieved by 

cloning an oligonucleotide cassette, encoding the (His)6 tag into the Xbal and Ndel 

sites of pET22b. The resulting vector is identical to pET22b, with exception of i) the 

DNA sequence encoding the His residues immediately after the ATGAAA coding for 

the initiating Met and the following Lys and ii) a Hindlll site that was introduced 

between the Shine-Dalgamo sequence and the initiating ATG. Due to the original 

pET22b vector encoding a C-terminal (His)6 tag, a 3’ stop codon was included in the 

p49  gene cloned into the modified vector to avoid the translation of this tag.

Primers were designed for the cloning of p49  into the Ndel and Xhol sites of 

the modified pET22b vector. Due to the presence of an internal Ndel recognition 

sequence at bases 1154-1159 from the initiating TTG, a cloning strategy was designed 

for removal of the Ndel site by overlap extension (section 2.2.11.2), thus allowing 

digestion of the gene with Ndel and Xhol for cloning into the modified pET22b 

vector. A mutation of the CATATG Ndel recognition sequence to CCTATG would 

result in removal of the Ndel site, without alteration of the P49 amino acid sequence. 

Site-specific mutagenesis by overlap extension was performed as described in 

section 2.2.11.2, and the resulting gene product was cloned into the modified pET22b 

vector, after digestion of the 5’ Ndel and 3 ’ Xhol sites introduced during the PCR. A 

Gin residue was also encoded by the 5 ’ primer between the Ndel site and the 

beginning of the sequence coding for P49. This would, if desired, allow removal of 

the N-terminal His tag using the Qiagen TAGZyme kit (Qiagen, Crawley, West
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Sussex) which utilizes an exopeptidase that sequentially removes two aa residues 

from the N-terminus. The introduced Gin residue, which is refractory to cleavage by 

this exopeptidase, would prevent continued cleavage into P49. The sequences of the 

primers used below can be found in the appendix and in the cloning strategy that is 

summarised in figure 4.5.

Briefly, the region of p49  containing the undesired Ndel site, together with the 

upstream gene sequence was amplified from p49H5 by PCR (section 2.2.6.1) using 

the primer PETP49F and the mutagenic primer NDESDMR. A second PCR was 

performed, using the same template DNA, with primers NDESDMF (a primer the 

reverse compliment of NDESDMR) and PETP49R to amplify the p49  region 

containing the Ndel site and the downstream DNA sequence. PCR conditions were an 

initial denaturation step at 95°C for 5 min, followed by 15 cycles of 95°C (1 min), 

55°C (1 min), 72°C (1 min), and a final extension at 72°C for 10 min, using Easy-A 

proofreading DNA polymerase. Both PCR products were purified by agarose gel 

electrophoresis (section 2.2.2) followed by extraction from the gel (section 2.2.4).

The purified products (see figure 4.6) were then used as template DNA in a final PCR 

using primers PETP49F and PETP49R, and the same thermocycling conditions as 

described for the previous two reactions. This final PCR product was digested with 

Ndel and Xhol (section 2.2.3), separated by agarose gel electrophoresis, and extracted 

from the gel before ligation (section 2.2.7) into the modified pET22b which had been 

pre-cut with Ndel and Xhol. Following incubation, the ligation mix was transformed 

into E. coli DH5a by electroporation (section 2.3.2.2) and spread onto LB agar plates 

containing ampicillin for selection of transformants. Colonies were screened for the 

presence of the p49  gene by PCR using primers PETP49F and PETP49R and the 

same thermocycling conditions as described above, except that 30 cycles were
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performed rather than 15. A colony yielding a positive PCR product was selected, the 

plasmid isolated (section 2.2.1) and the insert sequenced (section 2.2.10) using the 

vector specific primers SF1 and T7, and the Int2F p49  internal primer (see appendix 

for primer sequences). The sequencing confirmed that the p49  gene, lacking the 

internal Ndel site, had been successfully cloned into the modified pET22b vector, and 

that no PCR introduced mutations had occurred. The resulting clone was named 

pETP49.
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Figure 4.5 Schematic representation of the cloning of p49 into the modified 

pET22b for expression using the pET system. 1. Two PCRs were performed for 

amplification of regions of p49 from p49H5 using the primer combinations 

PETP49F/NDESDMR and NDESDMF/PETP49R. 2. A third PCR reaction was 

performed using the products from the first two PCRs and primers PETP49F and 

PETP49R. 3. The final product was digested at the primer-introduced Ndel and Xhol 

sites and cloned into the modified pET22b, cut with the same restriction enzymes. All 

Ndel sites are shown in red, including the site removed from the wild type p49 gene. 

Xhol sites are shown in green, the p49 stop codon is underlined and the protein 

sequence corresponding to P49 boxed. The primer introduced Gin residue is shown in 

purple and the altered base introduced by the mutagenic primers is shown in brown.

pETP49
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1,194 bp
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1,423 bp

Figure 4.6 Overlap extension PCR removal of the p49 Ndel site. Products of 

the first round PCRs using primers PETP49F and NDESDMR (lane 1) and 

NDESDMF and PETP49R (lane 2) were used as template in the final PCR with 

primers PETP49F and PETP49R (lane 3). The visible <J)X174 HaelII DNA marker 

(lanes M) band sizes are 1,353 bp, 1,078 bp, 872 bp, 603 bp and 310 bp.
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4.2.2.2 Expression of P49 using the pET system

In an identical manner to that performed for P49 expression as a GST fusion 

protein, a small scale pET system expression of P49 was also trialled to determine the 

best approach towards recombinant production of P49 for future experiments. Clone 

pETP49 was transformed into E. coli BL21(DE3)pLysS (section 2.3.2.1) and, from 

the resulting transformants selected for by growth on LB agar containing ampicillin 

and chloramphenicol, a single colony was selected for analytical scale expression 

(section 2.5.4). Samples (1ml), taken immediately before induction by addition of 

IPTG (ImM) and at hourly intervals post-induction, were analysed for the presence of 

P49 by SDS-PAGE (section 2.5.1), and Western blot (section 2.5.2) using the 

monoclonal Penta-His antibody. Figure 4.7a shows the immuno-reactive protein 

bands detected in these samples. A major band of expected size, considering 

expression of P49 complete with a His tag, was detected in all the induced samples. 

Levels of P49 increase from t=0 to t=3 hours, with a slight decrease in P49 seeming to 

occur between t=3 and t=4. A number of immuno-reactive bands of slightly lower 

molecular weight were also detected, suggesting slight degradation of P49. Further 

analysis, performed as described in section 2.5.5, revealed that P49 was produced 

mainly in insoluble form (figure 4.7b).
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Figure 4.7 Western blot analysis of pETP49 expression, (a) Analysis of whole 

cell expression samples taken at time points t=0 (lane 1), t=l (lane 2), t=2 (lane 3), 

t=3 (lane 4) and t=4 (lane 5) hours post induction with IPTG. (b) Examination of 

whole cell and soluble E. coli BL21(DE3)pLysS pETP49 expression sample extracts. 

In agreement with the blot shown in (a), immuno-reactive bands, indicating P49 

expression, are seen in the whole cell samples at t=l (lane 6), t=2 (lane 8), t=3 

(lane 10) and t=4 (lane 12). No immuno-reactive proteins were detected in the 

soluble extracts of samples taken at t=l (lane 7), t=2 (lane 9), t=3 (lane 11) and t=4 

(lane 13) hours post induction. Detection of P49, indicating its presence in insoluble 

form, is seen in the insoluble extract (lane 14) prepared from the sample taken at t=4 

hours post induction.
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4.2.3 Bioassay of E. coli expressing P49 against C. quinquefasciatus larvae

E coli expression cultures of P49 were used in bioassays (section 2.6.1) 

against SLCq larvae to determine whether P49 was toxic. Induced E. coli 

BL21(pLysS) cells carrying pGEXP49 and pETP49, were prepared as described for 

analytical scale expression in section 2.5.4. A sample (10ml) of each expression 

culture was harvested by centrifugation and washed in 0.7%(w/v) NaCl, before final 

resuspension in 1ml of distilled water. The bacterial suspensions were individually 

added to ten SLCq larvae in 10ml final volume bioassays, in triplicate. The bioassays 

were incubated at 28°C, and mortality was assessed at 24 hours and again at 48 hours, 

by counting the number of living larvae. No toxicity was observed against the SLCq 

larvae when P49 was expressed in recombinant form in E. coli, either from the pET 

vector system or as a GST fusion protein.

4.2.4 Discussion

This section has described the cloning of the gene encoding P49 into 

pGEX-4T-2 and a modified pET22b expression vector, yielding clones pGEXP49 and 

pETP49 respectively. Induced E. coli BL21(DE3)pLysS cells carrying the pGEXP49 

clone were found to express P49 as a fusion with GST. The same E. coli strain was 

also found to express an N-terminal His tagged P49, when transformed with pETP49 

and induced with IPTG. Both forms of the recombinant P49 protein were found to be 

produced predominantly in an insoluble form and were not toxic towards 

C. quinquefasciatus larvae.

To determine whether recombinant production of P49 in B. thuringiensis 

subsp. israelensis might yield higher levels of the putative toxin, expression in this 

host was also explored as described in the following section. Light microscope
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analyses of sporulated cultures of B. sphaericus strains IAB59 and LP1G have 

revealed that small crystals are released from the spore following sporulation, and 

these are distinct from the Bin toxin crystals that are found associated with the spore. 

These crystals are not found in strains 2362 and 1593, which do not show toxicity 

against Bin-resistant Culex mosquito larvae and do not contain the genes for the 

putative toxin P49. This has led to the prediction that the putative toxin, P49, is 

produced as a crystal in the B. sphaericus strains showing toxicity to Bin-resistant 

Culex mosquito larvae. If this proved to be the case, a possible advantage of P49 

expression in B. thuringiensis subsp. israelensis could be its production as a more 

native crystal during sporulation, as is observed for the expression of the

B. sphaericus Bin toxin crystal in a B. thuringiensis host (Nicolas et al., 1993). If P49 

is indeed a crystal protein, synthesis of the putative toxin in this form may lead it to 

adopt a more native fold. It is possible that P49 is unable to assume its native fold in 

E. coli, a factor that may be responsible for its lack of toxicity towards

C. quinquefasciatus larvae when produced in this host.

4.3 Expression of P49 in B. thuringiensis subsp. israelensis

Recombinant expression of P49, in an acrystalliferous strain of 

B. thuringiensis subsp. israelensis, was attempted under the regulation of its own 

promoter. The gene encoding P49 and the upstream region predicted to comprise its 

promoter, as described in the previous chapter, was cloned into the 

B. thuringiensis-E. coli shuttle vector pHT304 (Arantes and Lereclus, 1991). Vector 

pHT304 contains origins of replication for propagation in both bacteria, and contains 

genes encoding ampicillin and erythromycin resistance for selection in E. coli and 

B. thuringiensis respectively.
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4.3.1 Cloning of p49 into pHT304

The primers P49PROF and P49R were used to amplify the p49  gene and 

201 bp upstream, from clone p49H5, by PCR (section 2.2.6.1) using Easy-A 

proofreading DNA polymerase. Thermocycling conditions were an initial 

denaturation at 95°C for 5 min, followed by 15 cycles of 95°C (1 min),

60°C (1 min), 72°C (1 min, 30 sec), and a final extension at 72°C for 10 min. The 

resulting PCR product was purified, by agarose gel electrophoresis (section 2.2.2) and 

extraction from the gel (section 2.2.4), before ligation (section 2.2.7) into the cloning 

vector pGEM-T. The ligation mixture was transformed (section 2.3.2.2) into 

E. coli DH5a and the transformants spread onto LB agar containing IPTG/X-Gal 

(section 2.2.8) and ampicillin. A white colony, indicating successful vector-insert 

ligation, was selected and the plasmid isolated. The clone was sequenced 

(section 2.2.10) using vector primers M13F and M13R and the internal p49  primer, 

IntlF, and analysis confirmed that no PCR mutations had occurred. The clone was 

named pP49PRO.

A BamHl digest (section 2.2.3) of pP49PRO was performed and the products 

separated by agarose gel electrophoresis (section 2.2.2), followed by purification 

(section 2.2.4) of the approx. 1.6 kb fragment corresponding to p49  and its putative 

promoter. This fragment was cloned (section 2.2.7) into pHT304, pre-cut with 

BamHl and treated with CIP to prevent self-ligation, and the ligation mix again 

transformed (section 2.3.2.2) into E. coli DH5a. Colonies that formed on LB agar 

containing ampicillin were screened for the presence of an insert by colony PCR 

(section 2.2.6.1). A colony yielding a product of correct size was selected and the 

plasmid isolated, before sequencing (section 2.2.10) with primers M13F, M13R and
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IntlF. The insert was found again to contain no mutations and the clone was named 

pHTP49.

4.3.2 Expression from pHTP49 in B. thuringiensis subsp. israelensis

The clone pHTP49 was used to transform B. thuringiensis subsp. israelensis 

strain 4Q7 by electroporation (section 2.3.4), and the cells spread on LB agar 

containing erythromycin for selection. Successful transformation was confirmed by 

colony PCR (section 2.2.6.1) using primers P49PROF and P49R. A single colony, 

yielding a PCR product of correct size after colony PCR, was selected from the plate 

and used to inoculate 30ml of Embrapa sporulation medium (section 2.1.6), 

containing erythromycin, in a 250ml conical flask. A control culture was also 

prepared by inoculation of 30ml of the same medium, containing no erythromycin, 

with untransformed B. thuringiensis subsp. israelensis 4Q7. Both cultures were 

incubated at 30°C, 250 rpm for 72 hours. Following this time a 1ml sample of each 

sporulated culture was harvested by centrifugation, the supernatants discarded, and 

the pellets resuspended in 100/d of SDS-PAGE sample buffer (section 2.5.1). The 

samples were boiled for 5 min before analysis of 10/d by SDS-PAGE (section 2.5.1), 

through a 10% gel, to establish whether expression of P49 had occurred. The 

resulting gel can be seen in figure 4.8, indicating successful expression of P49 in the 

recombinant B. thuringiensis subsp. israelensis. Additional protein bands can also be 

seen on the gel. A number of protein bands of lower molecular weight than P49, 

which do not appear in the untransformed control, may indicate slight degradation of 

P49 when expressed in recombinant form in B. thuringiensis subsp. israelensis. In 

addition, a protein of much higher molecular weight, appearing above the 83 kDa 

molecular weight marker and absent from the control culture, was also observed.
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Five cycles of N-terminal sequencing of this protein band was performed, as 

described in section 2.5.3, and a strong signal with no background revealed the 

sequence (MENQI) to be identical to that of P49, suggesting this band to be a dimer. 

Analysis of the cultures under a light microscope also revealed the presence of free 

crystals in the recombinant B. thuringiensis subsp. israelensis 4Q7 (pHTP49) 

medium, which were not present in the untransformed control culture. A stock of

B. thuringiensis subsp. israelensis 4Q7 (pHTP49), was prepared by dipping a piece of 

filter paper, sterilised by autoclaving, into the sporulated culture. The filter paper was 

stored at -20°C. For preparation of new cultures, a small piece was cut from the stock 

filter paper, with a sterile scalpel blade, and used either to inoculate culture media 

containing erythromycin, or to streak across the surface of LB agar plates again 

containing erythromycin.
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Figure 4.8 Recombinant expression of P49 in B. thuringiensis subsp. 

israelensis 4Q7. SDS-PAGE analysis of sporulated cultures of B. thuringiensis 

subsp. israelensis 4Q7: untransformed control (lane 1) and transformed with pHTP49 

(lane 2). Sporulated cultures of strain 2362 (lane 3) and IAB59 (lane 4), prepared as 

described for B. thuringiensis subsp. israelensis 4Q7, are also shown for reference. 

The position of P49, present in both the recombinant B. thuringiensis subsp. 

israelensis and IAB59, is indicated by a red arrow. A dimer of P49, confirmed by 

N-terminal sequencing, in the recombinant culture is indicated by a blue arrow.
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4.3.3 Discussion

Recombinant expression of P49 in B. thuringiensis subsp. israelensis yields 

higher levels of P49 than are observed when P49 is expressed in E. coli, either as a 

GST fusion protein or using the pET system. Analysis of the expression culture also 

indicates that free crystals are present in the medium, supporting the hypothesis that 

P49 is a previously unidentified crystal protein from B. sphaericus strains LAB59, 

LP1G and 47-6B. A higher level of expression in B. thuringiensis subsp. israelensis, 

together with its apparent production as a more native crystal protein, as is seen for 

the Bin toxin when expressed in B. thuringiensis (Nicolas et al., 1993), was observed. 

This may allow the protein to adopt a more native fold, which may be important for 

toxicity. Therefore, expression of P49 in this host was chosen as the preferred method 

for further P49 production. Expression of P49 by this method results in a high level 

of P49 synthesis, with few contaminating protein bands, as can be seen in figure 4.8. 

Some of the protein bands of lower MW than P49 may be degradation products of 

P49, rather than contaminants of unrelated proteins. Also, a higher MW protein band, 

present in the sporulated culture of B. thuringiensis subsp. israelensis 4Q7 expressing 

P49, has been confirmed to be a dimer of P49 and not a contaminant.
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4.4 Bioassay of P49

To determine whether P49 shows toxicity against susceptible mosquito larvae, 

the recombinant B. thuringiensis subsp. israelensis 4Q7 (pHTP49) was used in 

bioassays against C. quinquefasciatus larvae. A small piece of filter paper was cut 

from the stock filter paper containing spores of B. thuringiensis subsp. israelensis 

transformed with pHTP49 and was used to inoculate 30ml of Embrapa sporulation 

medium (section 2.1.6), containing erythromycin, in a 250ml conical flask. The 

culture was incubated at 30°C, 250 rpm for 72 hours until sporulation was complete, 

as judged by light microscopy. These sporulated cultures, containing P49 crystals, 

were used in a selective bioassay against second or third instar SLCq larvae, as 

described in section 2.6.1. No toxicity of P49 towards SLCq larvae was observed.

The non-toxicity of P49 could be explained in a number ways: First, that P49 

is not responsible for the toxicity of strains IAB59, LP1G and 47-6B towards resistant 

Culex mosquito colonies raised against strains 2362 and C3-41. Second, that P49 

functions as a binary toxin with another factor, or finally, that P49 synergises with the 

Bin toxin in strains LAB59, LP1G and 47-6B. As discussed in chapter 3, P49 shows 

similarity to other insecticidal toxins, a number of which are binary toxins such as 

BinA and BinB from B. sphaericus and the Cry35 binary toxins from B. thuringiensis. 

The toxicity of strains IAB59, LP1G and 47-6B against Bin-resistant Culex larvae 

could arise from the ability of P49 to complement a non-functional BinA or BinB 

against Bin-resistant larvae. To determine whether this was the case, the sporulated 

culture of B. thuringiensis subsp. israelensis 4Q7 (pHTP49) was assayed in 

combination with spores of B. thuringiensis subsp. israelensis transformed with either 

pHT680 or pHT684. Clones pHT680 and pHT684 contain the genes encoding BinA 

and BinB respectively, under the regulation of the cytlAa  promoter from
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B. thuringiensis subsp. israelensis (Nicolas et al., 1993). Transformation of clones 

pHT680 and pHT684 into the host (as described in section 2.3.4) was followed by 

preparation of sporulated cultures, performed as described above for B. thuringiensis 

subsp. israelensis transformed with pHTP49. Selective bioassays (section 2.6.1) of 

SLCq larvae exposed to a BinA/P49 mix (100/d of each recombinant cultures 

expressing BinA and P49) and BinB/P49 mix (100/d of each recombinant cultures 

expressing BinB and P49), in a 10ml assay volume, also showed no toxicity.

Further bioassays were performed to determine whether the ability of strains 

IAB59, LP1G and 47-6B to overcome Bin-resistance in Culex larvae resulted from a 

synergy between P49 and both components of the Bin toxin. These assays could not 

be performed using the C. quinquefasciatus colony maintained in Cardiff, due to their 

sensitivity to Bin alone. Therefore, these bioassays were performed by Prof. Yuan 

Zhiming at the Wuhan Institute of Virology in China, where a resistant

C. quinquefasciatus colony raised with resistance against B. sphaericus strain C3-41 

(named RLCql/C3-41) is maintained, with a resistance ratio of >140,000-fold to Bin 

(Pei et al., 2002; Yuan et al., 2003). However, bioassay of P49 in combination with 

Bin (expressed in recombinant form in B. thuringiensis subsp. israelensis) showed no 

toxicity against the resistant colony.

4.5 Discussion

This section has described the cloning of p49  into vectors pGEX-4T-2 and a 

modified pET22b for expression in E. coli, and pHT304 for recombinant expression 

in B. thuringiensis subsp. israelensis. While expression studies in 

E. coli BL21(DE3)pLysS proved successful, a higher level of recombinant P49 

production was achieved in B. thuringiensis subsp. israelensis strain 4Q7.
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Sporulated cultures of B. thuringiensis subsp. israelensis 4Q7 (pHTP49) were 

found to contain crystals suggesting, as hypothesised, that P49 is a crystal protein 

from B. sphaericus strains IAB59, LP1G and 47-6B. However, contrary to our 

previous prediction, P49 shows no toxicity, either alone or in combination with either 

BinA or BinB against susceptible C. quinquefasciatus larvae. In addition, P49 does 

not synergise with the combined BinA and BinB to cause toxicity against a resistant

C. quinquefasciatus colony raised against strain C3-41. It seems, therefore, that the 

putative toxin identified in this study, nominated as the factor responsible for the 

toxicity of B. sphaericus strains IAB59, LP1G and 47-6B against Bin-resistant Culex 

larvae, is not accountable, at least when acting alone, for this toxicity. This suggests 

that other toxin(s) are present in these strains, allowing them to overcome 

Bin-resistance. Experiments aimed at the discovery and cloning of further potential 

toxin(s), from the B. sphaericus stains toxic to Bin-resistant mosquito colonies, are 

described in the following chapter.
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CHAPTER 5

Discovery of an additional putative crystal toxin from
B. sphaericus IAB59
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5.1 Introduction

A protein with an approximate molecular weight of 49 kDa has previously 

been suggested to be the toxic factor from B. sphaericus strains IAB59, LP1G and 

47-6B towards Culex mosquito colonies with resistance raised against strains 2362 

and C3-41 (Yuan et al., 2003; Silva-Filha et al., 2004). In this study, the gene 

encoding this putative toxin, temporarily named P49, has been cloned and expressed 

in an acrystalliferous B. thuringiensis subsp. israelensis and determined to be 

non-toxic towards both susceptible and Bin-resistant C. quinquefasciatus larvae. This 

suggests that strains LAB59, LP1G and 47-6B all carry at least one additional toxin.

During this study, a new B. sphaericus strain, named NHA15b (serotype H50), 

was isolated from Vietnam (Nielsen-LeRoux personal communication). This strain 

carries the genes coding for P49 but not those encoding the Bin toxin. Bioassay 

against the RLCq/C3-41 colony as well as SLCq larvae has shown that strain 

NHA15b is toxic to both. These bioassays have proved that the ability of this strain to 

overcome Bin-resistance does not involve the Bin toxin acting in concert with another 

toxic factor, and may suggest a similar situation for strains LAB59, LP1G, 47-6B. 

Also, the presence of P49 in the newly isolated strain may still point to a role for P49 

in overcoming Bin-resistance, and so the toxicity of P49, although non-toxic alone, 

could not yet be ruled out.

This chapter describes the search for the toxic factor(s) in strains IAB59, 

LP1G, 47-6B and NHA15b that allows them to overcome Bin-resistance in Culex 

larvae. As described previously in chapter 3, for the cloning of the p49  gene from 

IAB59, this involved preparation of SDS-PAGE protein profiles of the strains able to 

overcome resistance and their comparison to those strains that undergo resistance.
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5.2 Protein based analysis of B. sphaericus strains

5.2.1 Protein fingerprint comparison of B. sphaericus spore cultures

The approach of looking at SDS-PAGE protein fingerprints of sporulated 

B. sphaericus cultures, and comparison of the profiles of those strains able to 

overcome Bin-resistance with strains 2362 and 1593, two strains against which 

resistance can develop, proved to be very successful for the cloning of the gene 

encoding P49. In view of this, the same approach was undertaken for the discovery of 

further putative toxin(s) from strains LAB59, LP1G, 47-6B and NHA15b. Strains 

IAB59, LP1G, NHA15b and 2362, as well as B. thuringiensis subsp. 

israelensis 4Q7 (pHTP49) for reference, were grown to sporulation for 72 hours in 

Embrapa sporulation medium (30ml; section 2.1.6) at 30°C, 250 rpm, in a 250ml 

conical flask. A sample (1ml) of each culture was harvested by centrifugation, the 

pellet resuspended in 100/d of SDS-PAGE sample buffer (section 2.5.1), and boiled 

for 5 min. The samples (10/d) were analysed by SDS-PAGE (section 2.5.1), through 

a 10% gel. As well as P49 being a common protein band in the strains able to 

overcome resistance, an additional protein, temporarily named P43 according to its 

approximate molecular weight, was also identified as shown in figure 5.1.
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Figure 5.1 SDS-PAGE protein profiles of B. sphaericus strains. Sporulated 

cultures of strains 2362 (lane 2), IAB59 (lane 3), LP1G (lane 4), NHA15b (lane 5) 

analysed by SDS-PAGE (10% gel). B. thuringiensis subsp. israelensis 4Q7 

(pHTP49) is also shown for reference (lane 1). P49, found in all strains except for 

2362, is indicated by a red arrow, with the LP1G variant of LP1G having a slightly 

higher apparent molecular weight compared to the others. BinA (42 kDa) and 

BinB (51 kDa) protein bands, present in strains 2362, IAB59 and LP1G, are also 

indicated. A common protein band in the strains able to overcome resistance, and 

temporarily assigned the name P43 according to its approximate molecular weight, is 

indicated by a blue arrow.

62
BinB ----------

48

BinA w
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5.2.2 Amino terminal sequencing of P43

The N-terminal sequencing of P43 was performed, after its immobilisation 

onto PVDF membrane as described in section 2.5.3, by Alta Biosciences (University 

of Birmingham, Birmingham, UK). A 1ml sample of a sporulated culture of IAB59, 

prepared as described in section 5.2 above, was harvested by centrifugation and 

resuspended in 100/d of SDS-PAGE sample buffer and 10//1 was resolved by 

SDS-PAGE in tricine buffer before blotting onto PVDF membrane (section 2.5.3).

The P43 protein band was excised from the PVDF blot and five cycles of N-terminal 

sequencing were performed on the membrane fragment. Edman degradation revealed 

the N-terminal sequence of P43 to be: NNDPG, consistent with P43 being a 

degradation product of P49 lacking aa residues 1-75 and, providing that no C-terminal 

processing of P49 or P43 occurs, having a predicted molecular weight of 44.7 kDa. 

The finding that P43 was a degradation product of P49 and the presence of a protein 

of the same apparent molecular weight in the B. thuringiensis subsp. 

israelensis 4Q7 (pHTP49) sample, suggested that the same degradation was occurring 

in this recombinant host and resulted in no further analysis being performed on P43.

5.2.3 Crystal protein profile of B. sphaericus NHA15b

The recent discovery of B. sphaericus strain NHA15b, that carries the genes 

for P49 but not the bin genes, and its ability to cause mortality of Bin-resistant Culex 

mosquitoes prompted a focusing of new toxin discovery on strain NHA15b. Protein 

profile analysis of the strains able to overcome resistance (figure 5.1) has resulted in 

analysis of a number of common protein bands, with P49 being selected as a putative 

toxin, which was later found to be non-toxic. After establishing that P43 is a 

degradation product of P49, there were no further common protein bands, detectable
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by SDS-PAGE protein profile analysis, present for selection as putative toxins. This 

resulted in the focus on strain NHA15b to determine whether a level of toxin 

production was present, that was too low for detection by SDS-PAGE, Coomassie 

stained protein profiles. With the insecticidal toxins being found as crystals at 

sporulation, as seems to be the case for P49, crystals were purified from strain 

NHA15b to determine whether further crystal proteins were present. Strain NHAl5b 

was selected, rather than LAB59, to allow bioassay of purified crystals against SLCq 

larvae, ensuring that any larval toxicity derived from newly identified crystal proteins 

would not be due to background contamination with Bin.

Sporulated cultures of B. sphaericus strain NHA15b were prepared by 

inoculation of two 21 baffled flasks containing 200ml of Embrapa sporulation medium 

(section 2.1.6). The flasks were incubated at 30°C, 250 rpm for 72 hours. Complete 

sporulation of the culture was confirmed by light microscope analysis. Crystals were 

separated from spores by ultracentrifugation through a discontinuous sucrose gradient 

as described in section 2.5.6. Briefly, the cultures were washed as described in 

section 2.5.6 before resuspension in 6.7ml of ice-cold, sterile, distilled water. After 

sonication the suspension was layered on top of a discontinuous gradient, comprising 

7.5ml of each of 67/72/79/84%(w/v) sucrose, and centrifuged using an SW28 

Ultracentrifuge rotor (Beckman Coulter Ltd., Buckinghamshire, UK). The three 

crystal protein bands obtained were separately extracted from the gradients, 

thoroughly washed and resuspended in 2ml of sterile distilled water, before analysis 

of 5//1 of each crystal protein fraction by SDS-PAGE (section 2.5.1). Figure 5.2 

shows a 10% SDS-PAGE gel of the three crystal protein fractions extracted from the 

gradients. Although a number of low intensity protein bands were observed, that
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were presumably spore protein contaminants or degradation products of crystal 

proteins, the major protein bands were considered to be crystal proteins.

As can be seen from figure 5.2, as well as containing a protein band 

corresponding to the P49 crystal protein, there is also an additional major protein 

band, migrating between the 83 kDa and 175 kDa molecular weight standards, 

suggesting that NHA15b also produces another crystal protein of higher molecular 

weight than P49. Another protein band, of slightly lower intensity than this high 

molecular weight putative crystal protein, may correlate to a dimer of P49 that is 

observed when P49 is produced in recombinant form in B. thuringiensis subsp. 

israelensis 4Q7 (pHTP49), as discussed previously in section 4.3.2 and figure 4.8. 

Selective bioassays, performed as described in section 2.6.1, of the three crystal 

protein fractions (50/d of each fraction added to a 10ml bioassay containing 5 Culex 

larvae) revealed that all three fractions caused 100% mortality.

The presence of the high molecular weight crystal protein, in all three toxic 

fractions from strain NHA15b, led to its selection as a new candidate toxin. 

N-terminal sequencing of this protein was performed to allow the design of 

degenerate oligonucleotides for use in cloning strategies. In the first case, five cycles 

of N-terminal sequencing were performed on the putative crystal toxin band in both 

fraction 1 and fraction 2. This was carried out to confirm that this protein, present in 

both fractions, was in fact identical, since it was possible that NHA15b produced two 

crystal proteins of similar molecular weight. A 5/d sample of fraction 1 and 

fraction 2 was resolved by SDS-PAGE in tricine buffer before blotting onto PVDF 

membrane (section 2.5.3). Bands corresponding to the protein, which was predicted 

although not confirmed to be the same, were excised from the membrane and sent to 

Alta Bioscience (University of Birmingham, Birmingham, UK) for Edman
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degradation. The N-terminal aa sequence for both samples were found to be identical, 

with an ambiguous residue at position 1 followed by the sequence DINN.

5.2.4 Discussion

A putative, high molecular weight, crystal toxin has been identified by 

analysis of the crystal protein profile of B. sphaericus strain NHA15b. This protein 

was found to be present in the three fractions of ciystal proteins obtained, all of which 

showed toxicity to SLCq larave. To allow for cloning of the gene encoding this 

protein, in a similar strategy used for the cloning of the p49  gene from IAB59 (refer 

back to chapter 3), the N-terminal sequence of at least 15 aa residues was required for 

the design of degenerate oligonucleotides with as low a degeneracy as possible. 

During the preparation of this new putative toxin for N-terminal sequencing, our 

continued efforts in the sequencing of p49H5 and p49Hl 1, the two clones prepared in 

chapter 3 (section 3.9) containing an approximately 15 kb Hindlll fragment from 

strain IAB59, revealed the presence of a 3,534 bp gene downstream of the p49  gene. 

Furthermore, the deduced N-terminal sequence of the protein product of this gene is 

identical to the experimentally derived N-terminus of the new putative crystal toxin 

from strain NHA15b. The following section describes the sequencing of the identical 

clones p49H5 and p49Hl 1, followed by analysis of the CDSs found within their 

approximately 15 kb inserts.
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Figure 5.2 SDS-PAGE analysis of NHA15b crystals. Crystals were purified 

from B. sphaericus NHA15b by discontinuous sucrose density gradients and 

resuspended in water before analysis of 5/d of each band extracted from the gradient 

by SDS-PAGE. A major protein band corresponding to P49 crystal can be seen in 

fraction 3 (lane 3), indicated by a red arrow. A major protein band visible in 

fractions 1, 2 and 3 (lanes 1, 2 and 3 respectively), that may represent a new crystal 

toxin from strain NHA15b is indicated by a blue arrow. Another protein band that 

can be seen in fraction 3, present at intermediate levels to P49 and P I35, that may be 

a dimer of P49 is indicate by a purple arrow.

putative toxin 
P49 doublet

P49 crystal
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5.3 Sequencing of p49H5 and p49H ll

The sequence of a region of p49H5 and p49Hl 1 has been determined during 

the sequencing of the p49  gene using primers IntlR, Int2F and Int3F (section 3.10). 

Also, the sequencing of the 763 bp iscoRI fragment from LAB59, containing partial 

p49  sequence, in clones p49El and p49E2 (section 3.9.1) and the sequencing of 

clones p49Ml and p49M2, containing a 2,010 bp Mbol fragment cloned by inverse 

PCR (section 3.9.2) resulted in the sequencing of additional DNA upstream of p49. 

Further sequencing of clones p49H5 and p49Hl 1 was performed in the hope of 

gaining knowledge on the source of the region of DNA encoding the p49  gene. For 

example, determining whether the gene was located on plasmid DNA, as is the case 

for B. thuringiensis toxins or on genomic DNA as is the case for the Bin and Mtx 

toxin genes from B. sphaericus. The main strategy for sequencing of p49H5 and 

p49Hl 1 was to design primers to “walk-out” from the region of DNA determined 

during the cloning of the gene encoding P49. However, subcloning of the Hindlll 

insert in clone p49H5, and sequencing of these clones, was also performed to 

accelerate the sequencing of the approximately 15 kb insert.

5.3.1 Subcloning of the Hindlll fragment in clone p49H5

A double digest of 1.5//g of p49H5 was performed with restriction enzymes 

EcoRl and Hindlll as well as digestion of the same amount of p49H5 with EcoKl 

alone (section 2.2.3). The resulting digest products were separated by agarose gel 

electrophoresis (section 2.2.2) for analysis. The resulting gel can be seen in 

figure 5.3. A product of 2686 bp, found in the double digest, corresponds to the 

vector pUC18, into which the approx. 15 kb Hindlll fragment was ligated to make 

clone p49H5. This digest product was, therefore, not selected for subcloning. An
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approx. 2 kb fragment present in the double digest but not in the EcoRl digest 

indicated its position at one end of the 15 kb Hindlll insert and, therefore, it was not 

selected for subcloning as this region could easily be sequenced from p49H5 or 

p49Hl 1 using vector specific primers. Four products of the double digest reaction, 

indicted by green arrows in figure 5.3, were selected for subcloning followed by 

sequencing.

A preparative double digest of p49H5 (5pig), with iscoRI and Hindlll, was 

performed and the four fragments, one of ~5 kb, one - 4  kb, one ~ 1.5 kb and another 

~1 kb, were extracted (section 2.2.4) from an agarose gel after electrophoresis 

(section 2.2.2). The fragments were cloned (section 2.2.7) into EcoRI and CIP 

(section 2.2.3) treated pUC18. The ligations were transformed into E. coli DH5a 

(section 2.3.2.2), and positive colonies identified after colony PCR using vector 

specific primers, M13remoteF and M13remoteR (see appendix for primer sequences). 

PCR conditions were an initial denaturation at 95°C for 5 min, followed by 30 cycles 

of 95°C (1 min), 60°C (1 min), 72°C (2.5 min), and a final extension step at 72°C for 

10 min. Colony PCR indicated that the cloning of the - 4  kb and ~1 kb fragments 

were successful, while no products of expected size were obtained by screening of 

colonies transformed with ligations of the ~5 kb and ~ 1.5 kb digest products into 

pUC18. Two positive colonies obtained for each of the - 4  kb and ~1 kb fragments 

cloned into pUC18 were selected, the plasmids isolated (section 2.2.1) and sent for 

sequencing with vector specific primers M13F and M13R (see appendix for primer 

sequences).

Complete sequencing of the approx. 1 kb fragment, named ZscoRI frag IK, 

was achieved with M13F and M13R primers, and both clones were found to contain 

identical inserts, confirming the sequence of a 1,029 bp region of p49H5. To
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complete the sequencing of the approx. 4  kb insert, named EcoRI frag 4K, in the other 

two subclones, the internal primers EC04KF, EC04KR and EC04KInt were 

designed, the sequences of which can be seen in the appendix. Again, both inserts 

were found to be identical allowing an additional 4,238 bp region of the approx. 15 kb 

Hindlll fragment, carrying the gene encoding P49, to be determined. The regions of 

p49H5 sequenced from the subclones can be seen in the complete sequencing strategy 

summarised in figure 5.4.
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£coRI/////idIII EcoRl

2686 bp (pUC18) 

- 2  kb 

-1 .5  kb

Figure 5.3 Restriction enzyme digest analysis of clone p49H5. The restriction 

enzymes used in each reaction are indicated above the gel lanes. A fragment of 

763 bp, found in both reactions, corresponding to the EcoRl DNA fragment in clones 

p49El and p49E2 is indicated by a red arrow. The 2686 bp fragment, in the double 

digest, corresponding to the vector pUC18, used to construct p49H5, is indicated by a 

blue arrow. A band of approx. 2 kb, present in the double digest but not in the ZscoRI 

digest is indicated by a purple arrow. Four fragments, selected for cloning into 

pUC18 for sequencing are indicated by green arrows. The size of the molecular 

weight markers are shown.
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5.3.2 Sequencing of p49H5 and p49H ll by “walking-out”

Primers were designed for use in the sequencing of p49H5 and p49Hl 1, based 

on the regions of the ~15 kb DNA sequenced by subcloning and during the cloning of 

p49. The clones p49H5 and p49Hl 1 were used as template DNA in sequencing 

reactions (section 2.2.10). The resulting chromatograms were analysed using the 

program EditView 1.0.1 ABI Automated DNA Sequence Viewer, and editing of 

sequences and assembly into contigs were performed using EditSeq and SeqMan 

within the DNA* software package. Of the regions sequenced by primer walking, 

clones p49H5 and p49Hl 1 were found be identical. A schematic representation of the 

strategy used for the complete sequencing of the 15,649 bp Hindlll insert can be seen 

in figure 5.4. The primer sequences can also be seen in the appendix.
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Figure 5.4 Sequencing strategy of the 15,649 bp H in dlll insert in clones 

p49H5 and p49H ll. The Hindlll fragment cloned from IAB59 DNA is shown in 

yellow and the pUC18 vector is shown in blue. Black arrows represent the direction 

of primer extension during sequencing of the insert. Double headed blue and red 

arrows represent Mbol and EcoRl fragments respectively. Regions corresponding to 

the inserts cloned in p49Ml and p49M2, and p49El and p49E2 are indicated as are 

the EcoRl fragments subcloned for sequencing: EcoRl frag 4k and EcoRl frag 1K. 

EcoRl (red arrows) and Mbol (blue arrows) cleavage sites within the Hindlll fragment 

are indicated. The position of the p49  gene and the gene coding for a new putative 

crystal toxin, with an N-terminal aa sequence identical to a predicted crystal toxin 

from strain NHA15b, is also shown.



5.4 DNA sequence analysis of the 15.6 kb Hindlll fragment from IAB59

DNA sequence analysis of the Hindlll fragment from B. sphaericus 

strain IAB59 DNA, in clones p49H5 and p49Hl 1, was performed using the program 

Artemis (Rutherford et al., 2000), a DNA sequence visualization and annotation tool 

freely available from; www.sanger.ac.uk/software/artemis. Manual analysis of the 

sequence, together with using the application AMIGene (Bocs et al., 2003) (available 

at www.genoscope.cns.fr/agc/tools/amigene.index.html), identified CDSs contained 

in the sequence. BLAST (Altschul et al., 1990) and conserved domain (Marchler- 

Bauer and Bryant, 2004; Marchler-Bauer et al., 2005) database searches were 

performed and the results used for annotation of the DNA sequence in Artemis. The 

annotated sequence was submitted to the EMBL GenBank under accession number 

AJ841948 (access withheld until publication). Figure 5.5 shows a schematic 

representation of the CDSs identified in this sequence, some of which are described 

below. The properties of all the CDSs are also summarised in table 5.1.

A number of CDSs with transposase like features were identified. A partial 

gene, possibly coding for a transposase, CDS 1, is found at the beginning of the 

sequence, the 3’ end of which lies outside the Hindlll fragment BLAST searches 

with the encoded protein sequence indicates that it shares 33% identity with the 

majority of Transposase IS4 from Alkaliphilus metalliredigenes QYMF. A conserved 

domain search also reveals that a partial alignment (35.8% of 232 aa) is shared with 

the Transposase DDE conserved domain (CDD entry Pfam01619). Three CDSs, 

annotated as CDS 8-9-10, found from nt 10,590 to nt 9,679 in the reverse direction, 

are predicted to represent a pseudogene containing a total of four stop codons, which 

when joined show 53% identity over 216 aa to a transposase from 

Bacillus halodurans. The presence of the stop codons was confirmed by sequencing
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of this region of the Hindlll inserts in both clones p49H5 and p49Hl 1 in both 

directions. The translated products of CDS 11, CDS 12 and CDS 13 also share 

identity with regions of transposases, and may again represent a pseudogene of an 

ancestral transposase containing internal stop codons as well as a frameshift CDS 14, 

which has a putative upstream RBS but an internal stop codon, may once have 

encoded a transposase of 158 aa, showing 80% identity with the majority of the 

IS605/IS200-like transposase from Staphylococcus epidermidis ATCC as well as 79% 

identity over its entire length with a putative IS605/IS200 transposase from 

B. sphaericus. In addition the translated product of this CDS is also predicted, from 

conserved domain database searches, to comprise the IS200 Transposase conserved 

domain (CDD entry Pfam01797). However, although the presence of the internal stop 

codon was confirmed in both clones p49H5 and p49Hl 1, the sequencing of this 

region in both directions was not performed, therefore, the presence of the stop codon 

is not certain. Other CDSs with transposase like features are summarised in table 5.1.

Two CDS were identified, that show similarity to genes encoding lipases, and 

were annotated as a single CDS, CDS 4, containing a frameshift to indicate a 

predicted pseudogene, the translated product of which shows 61% identity to 

aa 31-235 and aa 38-242 of lipases from B. cereus (a 526 aa lipase) and 

B. thuringiensis subsp. israelensis ATCC (a 533 aa lipase) respectively. Sequence 

analysis suggests that a number of mutations in this region have led to the 

introduction of stop codons and frameshifts, and that regions of DNA which may 

previously have encoded the C-terminal region of the lipase are found downstream of 

CDS 4. The region, where a predicted frameshift has occurred in the Hindlll 

fragment, was sequenced in both directions confirming the accuracy of sequencing in 

this region.
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A CDS encoding the protein P49, CDS 3, the features of which are described 

in chapter 3, was found reside within bases 1,828-3,222 of the Hindlll fragment. The 

putative (/-like promoter and the predicted RBS are annotated in the submission. A 

CDS encoding a protein with an identical N-terminal aa sequence to the putative 

crystal toxin from B. sphaericus NHA15b, the discovery of which is described earlier 

in this chapter, was found on the reverse strand, from nt 9,432 to nt 5,899 of the 

insert. The features of this CDS, CDS 7, and its encoded protein of 135.6 kDa, which 

shows homology to the three domain family of Cry toxins, are described in the 

following sections, and in table 5.1. As was the case for P49, this putative crystal 

toxin was assigned the temporary name, PI 35, according to is approximate molecular 

weight.

A predicted pseudogene is found at CDS 15, nt 13,292 to nt 12,843, in the 

reverse direction. The translated product of this CDS shows 50% identity to a 

putative deletion pseudogene product from the 127,923 bp pBtoxis plasmid from 

B. thuringiensis subsp. israelensis (Berry et al., 2002). Like the putative pseudogene 

located on pBtoxis, the product of this CDS also shows short regions of similarity to 

crystal toxin proteins and accessory proteins found downstream of crystal toxins, as 

summarised in table 5.1.

Finally, CDS 16 may encode a possible two-domain protein in which the 

N-terminal domain (aa 1-349), showing similarity to phosphatidyl inositol-specific 

phospholipase C, is followed by C-terminal domain (aa 350-487) containing a 

ricin-like beta-trefoil motif. Ricin-like beta trefoil domains are carbohydrate binding 

motifs and are found in toxins such as ricin, Clostridium botulinum neurotoxin, the 

mosquitocidal toxin Mtxl (Thanabalu et al., 1991), the human cancer-cell killing 

toxins from B. thuringiensis, parasporin-3Aa and parasporin-3Ab (also known as
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Cry41Aal and Cry41Abl respectively) (Yamashita et al., 2005), and the putative two 

domain toxin CytlCa (Itsko et al., 2005) (Manasherob et al., manuscript in 

preparation). Also, phosphatidyl inositol-specific phospholipase C is predicted to be 

a virulence factor that contributes to the role of spore toxicity in B. thuringiensis and 

B. cereus (Salamitou et al., 2000). Expression of the genes encoding these virulence 

factors are usually regulated by the protein, PlcR, that recognises the palindromic 

sequence TATGNAN4TNCATA (Agaisse et al., 1999). However, no binding site for 

the PlcR regulator was found upstream of the CDS but a potential RBS was identified.
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Figure 5.5 Schematic representation of the CDSs identified in the 15,649 bp DNA fragment from IAB59. CDSs having transposase like 

sequences are shown in yellow. The putative toxins discovered in this work are shown in orange. Predicted pseudogenes are shown in green.

An interesting CDS, CDS 16, that may encode a two domain protein is shown in purple.
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TABLE 5.1
CDS:
Genes

Predicted
product

Description and database similarity (accession no.) 
________________ (% aa identity)________________

CDS 1 Putative
transposase

CDS 2

CDS 3: 
cry49Aal

Cry49Aal 
(P49) crystal 
protein

CDS 4 Predicted
pseudogene

CDS 5

CDS 6

CDS 7: 
cry48Aal

Cry48Aal 
(PI 35) crystal 
protein

Partial sequence lacking 3' end of gene, similar to Transposase 
IS4 [Alkaliphilus metalliredigenes QYMF]
(ZP_00802287.1) (262 aa) (33% id in 224 aa)

Conserved domain hit to pfam01609, Transposase_l 1, 
Transposase DDE domain (232 aa, only 35.8% aligned) 

Similar to region of Transposase IS4 [Alkaliphilus 
metalliredigenes QYMF] (ZP_00800669.1) (513 aa) (42% 
id in 94 aa)

Similar to Cry36Aal (ET69) [Bacillus thuringiensis] 
(AAK64558), both binary toxin components BinA and BinB 
[Bacillus sphaericus] and members of Cry35 family of 
binary toxins [Bacillus thuringiensis], as described in 
chapter 3.

Conserved domain hit to pfam05431, Toxin_10 (199 aa,
90.5% aligned) residues 258-437 of Cry49Aal 

Predicted pseudogene containing an apparent frameshift and 
premature stop codon. Similar to Lipase [Bacillus cereus 
ATCC 14579] (AAP09108.1) (526 aa) (61% id in 205 aa) 
and Lipase family [Bacillus thuringiensis serovar 
israelensis ATCC] (ZP_00741507.1) (533 aa) (61% id in 
205 aa)

Conserved domain hit to COG1075, LipA, predicted 
acetyltranferases and hydrolases (336 aa, only 57.4% 
aligned)

Similar to region of N-terminus of Transposase [Bacillus 
thuringiensis serovar israelensis ATCC 35646]
(ZP_00742187.1) (198 aa) (32% id in 75 aa)

Similar to regions of; transposase, C-terminal region [Bacillus 
cereus E33L] (AAY60214.1) (160 aa) (54% id in 52 aa) and 
transposase [Bacillus cereus G9241] (ZP_00236331.1)
(148 aa) (53% id in 62 aa)

Conserved domain hit to pfam00665, rve, Integrase core 
domain (160 aa, only 30% aligned)

Similar to a number of Cry toxins including pesticidal crystal 
protein Cry4Aa [Bacillus thuringiensis serovar israelensis 
(CAD30148.1) (1180 aa) (33% id in 1236 aa), crystal 
protein Cry28Aa [Bacillus thuringiensis serovar finitimus] 
(ABB51653.1) (1128 aa) (34% id in 1158 aa) and pesticidal 
crystal protein Cry4Ba [Bacillus thuringiensis serovar 
israelensis] (CAD30095.1) (1136 aa) (33% id in 1193 aa) 

Conserved domain hit to pfam03945 Endotoxin_N, delta 
endotoxin, N-terminal domain (225 aa, 87.1% aligned) 
residues 92-308 of Cry48Aal; pfam03944 Endotoxin_C, 
delta endotoxin (138 aa, 100% aligned) residues 521-658 of 
Cry48Aal; pfam00555 Endotoxin_M, delta endotoxin 
(203 aa, 100% aligned) residues 318-511 of Cry48Aal_____
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TABLE 5.1 - Continued
CDS: Predicted Description and database similarity (accession no.)
Genes_______  product__________________________ (% aa identity)_____________________
CDS 8-9-10 Three CDSs containing a total four stop codons which when

merged show similarity to transposase B of IS655 [Bacillus 
haldurans] (BAD18201.1) (261 aa) (53% id in 216 aa) and 
transposase [Enterococcus faecium] (AAC97536.1) (387 aa) 
(43% id in 282 aa)

Conserved domain hit to pfam00665, rve, Integrase core 
domain (160 aa, only 68.8% aligned)

CDS 11 Similar to region of Transposase, IS4 [Syntrophomonas wolfei
str. Goettingen] (ZP_00663984.1) (513 aa) (28% id in 
124 aa) and transposase [Methanosarcina acetivorans C2A] 
(AAM07572.1) (497 aa) (25% id in 151 aa)

CDS 12 Similar region of to Transposase, IS4 [Syntrophomonas wolfei
str. Goettingen] (ZP_00663984.1) (513 aa) (37% id in 
62 aa) and Transposase IS4 [Alkaliphilus metalliredigenes 
QYMF] (ZP_00800669.1) (513 aa) (42% id in 57 aa)

CDS 13 Similar to small region of transposase [Streptococcus
agalactiae] (AAR12164.1) (465 aa) (61% id in 36 aa) and 
ISSag8, transposase [Streptococcus agalactiae A909] 
(ABA46182.1) (496 aa) (61% id in 36 aa)

CDS 14 Presence of Contains an internal stop, shows similarity to IS605/IS200-
intemal stop like transposase [Staphylococcus epidermidis ATCC 12228]
uncertain, and (AA004610.1) (199 aa) (80% id in 157 aa), transposase,
therefore, may IS200 family [Staphylococcus aureus subsp. aureus
encode a USA300] (YP_494006.1) (161 aa) (79% id in 157 aa) and
transposase putative IS605/IS200-like transposase [Bacillus sphaericus]

(CAI29283.1) (150 aa) (75% id in 150 aa)
Conserved domain hit to COG 1943, Transposase and 

inactivated derivatives (136 aa, 97.8% aligned)
CDS 15 Predicted Similar to putative deletion pseudogene product [Bacillus

deletion thuringiensis serovar israelensis] (CAD30105.1) (133 aa)
pseudogene (50% id. in 148 aa), C-terminus of Cry390RF2 protein

[Bacillus thuringiensis serovar aizawai] (BAB72017.1)
(558 aa) and Cry40ORF2 protein [Bacillus thuringiensis 
serovar aizawai] (BAB72019.1) (558 aa) (32% id in 95 aa to 
both), and C-terminus of: Cry20Aa (C20AA_BACUF)
(753 aa) (31% id in 91 aa) and Cryl lBb (C11BB_BACTV) 

__________________(750 aa) (37% in 87 aa)___________
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TABLE 5.1 - Continued
CDS: Predicted Description and database similarity (accession no.)
Genes_______  product__________________________ (% aa identity)____________________
CDS 16 Possible two Possible two domain protein; N-terminus is similar to

domain protein 1-phosphatidylinositol phosphodiesterase precursor
[Bacillus thuringiensis serovar israelensis ATCC 35646] 
(ZP_00741074.1) (433 aa) (44% id in 334 aa); C-terminal 
half is similar to several Ricin-like beta trefoil domain- 
containing toxins: Cry protein [Bacillus thuringiensis] 
(BAD35166.1) (810 aa) (39% id in 137 aa), Possible two 
domain toxin (CytlCa) [Bacillus thuringiensis] 
(CAD30104.1) (525 aa) (37% id in 144 aa), cancer cell 
killing Cry protein [Bacillus thuringiensis] (BAD35163.1) 
(829 aa) (33% id in 144 aa) and mosquito larvicidal protein 
(M txl) [Bacillus sphaericus] (BADO1571.1) (870 aa) (29% 
id in 163 aa)

Conserved domain hit to pfam00388, PI-PLC-X, 
Phosphatidylinositol-specific phospholipase X, X domain 
(145 aa, 97.9% aligned) and smart00148 PLCXc, 
Phospholipase C, catalytic domain (part) (145 aa, 97.9% 
aligned) and cd00137, PLCc. Pholpholipase C, catalytic 

_______________________________domain (298 aa, only 49% aligned)_____________________

Table 5.1 Features of the CDSs identified in the 15,649 bp H indlll fragment 

from B. sphaericus IAB59 DNA, in clones p49H5 and p49H ll.
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5.5 Sequence analysis of the gene encoding P135 from IAB59

Figure 5.6 shows the DNA sequence, and the deduced amino acid sequence, of 

p i 35. A CDS of 3,534 bp, encoding a protein of 1177 amino acids begins with the 

initiation codon ATG at nt 253. The encoded protein has a predicted molecular 

weight of 135,567 Da.

Two potential Shine-Dalgamo sequences have been identified upstream of the 

p i 35 gene. At 22 nt upstream of the initiation codon an 8 nt sequence (nt 231-238) is 

found, of which 7 nt are complementary to the 3’ end of both B. sphaericus (Berry 

unpublished) and B. subtilis (Moran et al., 1982; Kunst et al., 1997) 16S rRNA. A 

predicted interaction of this sequence with 3’-16S rRNA, with a calculated free 

energy (AG) of -6.8 kcal/mol according to the method of Tinoco et al. (Tinoco et al., 

1973), is shown in figure 5.7(i). Another potential 8 nt Shine-Dalagamo sequence, 

found at nt 238-245, is entirely complementary to the 3’-16S rRNA of B. sphaericus 

and B. subtilis. A proposed interaction of this sequence with the 3’ end of 16S rRNA, 

with a AG of -19.0 kcal/mol, is shown in figure 5.7(ii). It is also possible that an 

interaction involving both the regions described above occurs with a 3 nt bulge loop 

occurring between the two sequences, having a AG of -20.2 kcal/mol, as shown in 

figure 5.7(iii) and boxed in red in figure 5.6. The lower AG (-19.0 kcal/mol and 

-20.2 kcal/mol) of the latter two proposed interactions, compared to the first (AG of 

-6.8 kcal/mol) puts forward these sequences as the most likely Shine-Dalgamo 

sequence.

Analysis of the DNA sequence upstream of p i 35 for possible promoter 

sequences, using the predictive database search of the DBTBS (http://dbtbs.hgc.jp) 

(Makita et al., 2004) and by carrying out manual analysis, revealed a number of 

potential promoters. The most striking similarity to B. subtilis like promoters were
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the sequences AGTATATT (nt 199-206) and CAT AT ATT (nt 220-227), compared to 

the -35 c /  consensus G(g/t)(c/a)ATATT and -10 < / consensus CATACANT, 

respectively. The sigma factor, </, is active in the B. subtilis mother cell, that has 

advanced approximately 2 hours into sporulation after processing of the precursor 

pro-c/, which is encoded by the spoIIG operon (Haldenwang, 1995). The regulation 

of p i 35 by a c/-like homologue in B. sphaericus would, therefore, be consistent with 

the presence of PI35 as a spore crystal. Also, two genes encoding mosquitocidal 

toxins from B. thuringiensis subsp. israelensis, cry4Aa and cry4Ba, have been shown 

to be regulated by sporulation specific a35 and cr28 factors, homologues of < / and ( /  

from B. subtilis respectively (Yoshisue et al., 1993a; Yoshisue et al., 1993b).

Another two potential promoters, overlapping with the (/-like promoter sequence, 

were also identified using the predictive promoter identification program, DBTBS. 

Analysis revealed these two additional potential promoter sequences to be low 

scoring, and manual comparison of the sequences with their suggested < / and c /  

consensus sequences confirmed a lower identity than that observed for the (/-like  

sequence. As a result, the (/-like sequence was put forward as the most likely 

promoter identified upstream of the gene encoding PI 35.
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Figure 5.6 DNA sequence of the putative crystal toxin gene pl35 . A stretch of 

DNA complementary to 3’ 16S rRNA, excluding an internal 3 nt non base pairing 

sequence, representing a possible Shine-Dalgarno sequence is boxed in red. The 

putative ( /  promoter is shown with a blue line above the sequence, the initiation 

codon is shown with a black line above the sequence and the deduced PI35 amino 

acid sequence is shown in blue. This DNA sequence was submitted to the EMBL 

GenBank as part of the 15,649 bp Hindlll fragment DNA sequence, accession number 

AJ841948.
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Figure 5.7 Proposed interactions between the Shine-Dalgarno of the p l3 5  

transcript and the 3’end of 16S rRNA. Free energies (AG in kcal ± 10%) for the 

base paired and bulge loop regions are shown below the interactions. Values for AG 

were calculated according to Tinoco et al. (Tinoco et al., 1973).
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5.6 Analysis of the P135 protein sequence

BLAST database searches (Altschul et al., 1990) and Conserved domain 

searches (Marchler-Bauer and Bryant, 2004; Marchler-Bauer et al., 2005) were 

performed using the deduced amino acid sequence of PI 35, revealing that it shares the 

three conserved domains (CDD entries: pfam03945, pfam03944 and pfam00555) 

found in the three-domain Cry toxins from B. thuringiensis. In addition, PI 35 shows 

homology to the mosquitocidal toxins Cry4Aa (33% identity over 1,236 aa) (Ward 

and Ellar, 1987) and Cry4Ba (33% identity over 1,193 aa) (Tungpradubkul et al., 

1988) from B. thuringiensis subsp. israelensis, showing promise with regard to its 

predicted role as a new ciystal toxin.

Figure 5.8 shows a protein alignment of PI35 against Cry4Aa and Cry4Ba. 

These sequences were aligned using the Clustal W program, left at the default 

settings. As can be seen from the alignment, PI 35 shares identity throughout its 

sequence with Cry4Aal and Cry4Bal, with greatest identity being found in the five 

conserved blocks of amino acids shared between the three-domain Cry toxins 

(Schnepf et al., 1998). A high sequence identity between PI 35 and both Cry4Aa and 

Cry4Ba is also found in the three conserved blocks found in the C-terminal halves of 

the three-domain Cry toxins, a region that is processed from the toxic N-terminal half 

by insect gut proteinases, and is thought to be important in crystal formation (Hofte 

and Whiteley, 1989; Bietlot et al., 1990).
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YG-VNPAAINSSSVSTALKVAGAILK— F VNPPAGT VtTVLS AV§P ILHPTNTPTPERVW
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SDFITQTKN11KKE IASTYISHANK ILNRSFNVIS T YHNHLKTWENNPNPQ- NTQDVRTQ 
NDFMTNTGNLIDQTVTAYVRTDANAKMTVVKDYLDQYTTKFNTWKREPNNQSYRTAVITQ
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EDKYSSRNDTFAGNSNDYQNLLKSRTITYINHIENTYQNGLNYLWNQPEMT-----
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WTHNSVDFLNEISKDKITQIPAVKAYRLTSNSRVIKGPSHIGGNLVYLSEMS----QMAL
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DLKYEEFRYKDPFDAIVPMRLSSNQLITIAIQPLNMTSNNC VIIDRIEIIPITQSVLDET
EKEKIDMLKNLTDSLFNSPSKDTLKIDSTDYQIDQIAFQIESINEEINPQEKMELLDNIK 
E KQKLET VQQIINTFYANPIKNTLQSELTD YD IDQAANLVECISEELYPKEKMLLLDEVK 
ENQNLESEREWNALFTNDAKDALNIGTTDYDIDQAANLVECISEELYPKEKMLLLDEVK
YAKKLNQLRNLLYSRESQ-AQIDWVTSNDVSIYHGKKPFNDYTLVMSRTSSSLSEITATN
NAKQLSQSRNVLQNGDFESATLGWTTSDNITIQEDDPIFKGHYLHMSGAR DIDGTI
NAKQLSQSRNVLQNGDFESATLGWTTSDNITIQEDDPIFKGHYLBMSQ^ Ixflki

FPTYIFQKIDESKLKPYTRYLVRGFVGSSKDVELVVSRYGEEIDAIMNVPADLNYLYPST 
FPTYIFQKIDESKLKPYTRYLVRGFVGSSKDVELVVSRYGEEIDAIMNVPADLHYLYPST
YQTYIYKKIEESKLKPYTRYLVRGFISNSEDLE IF ISRYENEIHTNMNVHGDDDTLLNSD

 8
IRQNECESKLPIIFDATSQYSLSPSRTSGISNHSYYNNGHQSSCNDTHIFSFSIDTGEVD
FDCEGSN-----kCETSAVPANIGNTSDMLYSCQYDTGKKHWCQDSHQFSFTIDTGALD
FDCEGSN----- IRCETSAVPANIGNTSDMLYSCQYDTGKKHVVCQDSHQFSFTIDTGALD
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 8_____________________
PI 3 5 FNNYPGIEILFKLSNTNGYAS ISNLEVIEERLI^TEBEKRQI IQIENRWKAKKES QRNETE
Cry4Aa TNENIGVWVMFKISSPDGYASLDNLEVIEEGPIDGEALSRVKHMEKKWNDQMEAKRSETQ
Cry4Ba TNENIGVWVMF KISSPDGY AS LDNLE VIE EGPIDGE ALSRVKHMEKKWNDQME AKRSE TQ
P135 KITTQAQQAINSLFTDTQYSNLKFETTKQNITEANTILENIPYVYNALLPTEPGMNFVLF
Cry 4 Aa QAYDVAKQAI DAL F TNVQDEALQFDTTLAQIQYAEYLVQSIP YVYNDWLSDVPGMNYDIY
Cry 4 Ba QAYDVAKQAIDALFTNVQDEALQFDTTLAQIQYAEYLVQS IP Y V YNDWLSDVPGMNYDIY
P135 NSFKDQINKAHALYKMRNLIKNGDFINDTKYWSISTDVKLEKVNKETILVLSSWEAQASQ
Cry4Aa VELDARVAQARYLYDTRNIIKNGDFTQGVMGWHVTGNADVQQIDGVSVLVLSNWSAGVSQ
Cry4Ba VELDARVAQARYLYDTRNI IKNGDFTQGVMGWHVTGNADVQQIDGVSVLVLSNWSAGVSQ
P135 QILVQKQKRYLLRVIAKKEDMGRGNVIISDCLNNIAKIDFTPHDCNMNHIQNSSEFIIKT
C r y 4 Aa NVHLQ HNHG Y VL R VIAK KE GPGNG Y VTLMDC EENQEKLTF T---------SCEEGYITKT
Cry4Ba NVHLQHNHG Y VLR VI AK KE GPGNGY VTLMDC EENQEKLTF T---------SCEEGY ITKT
P135 IHFSPNTEQVRIDIGQSDGVFKVESIELICVNY
Cry4Aa VDVFPDTDRVRIEIGETEGSFYIESIELICMNE
Cry4Ba VDVFPDTDRVRIEIGETEGSFYIESIELICMNE

Figure 5.8 Protein alignment of P135 with Cry4Aa and Cry4Ba, two 

mosquitocidal toxins from R. thuringiensis subsp. israelensis. Residues conserved 

in all three sequences are highlighted yellow, while identical residues present in two 

of the three sequences are highlighted blue. Regions corresponding to the five 

conserved blocks found in the processed forms of the three-domain Cry toxins are 

boxed in black. The three conserved blocks found in the C-terminal part of the 

pro-toxins are boxed in red.

5.7 Sequencing of the p i 35 gene from strains LP1G, 47-6B and NHA15b

Sporulated cultures of B. sphaericus strains 1AB59, LP1G, 47-6B and 

NHA15b show toxicity to resistant C. quinquefasciatus colonies raised against strains 

2362 or C4-31. It has also been confirmed, as described in chapter 3, that P49 is a 

common crystal protein present in the sporulated cultures of 1AB59, LP1G and 47-6B, 

but is not toxic towards either susceptible or Bin-resistant C. quinquefasciatus larvae.
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In this chapter, the cloning of a gene encoding a 135.6 kDa putative crystal toxin from 

IAB59, PI 35, is described. The N-terminal sequencing of a crystal protein of 

approximately the same size also confirms the presence of this protein in strain 

NHA15b, as described in section 5.2.3. Primers were designed to amplify the gene 

encoding PI 35 from strain NHA15b based on the sequence of the gene from IAB59. 

These primers were also used to attempt amplification of the p i 35 gene from strains 

LP1G and 47-6B, to determine whether this new putative toxin is present in all the 

strains reported to overcome Bin-resistance in Culex larvae. The sequences of the 

forward, P135SeqF, and reverse, P135SeqR, PCR primers can be seen in the 

appendix. Total DNA was isolated from strains LP1G, 47-6B and NHA15b 

(section 2.2.12) and used as template in PCR (section 2.2.6.1) to attempt amplification 

of the gene encoding PI35. Thermocycling conditions were an initial denaturation at 

95°C for 5 min, followed by 15 cycles of 95°C (1 min), 60°C (1 min), 72°C (3 min), 

and a final extension at 72°C for 10 min using Easy-A proofreading DNA polymerase. 

Agarose gel electrophoresis (section 2.2.2) confirmed that single PCR products were 

obtained with template DNA from NHA15b and 47-6B, but not LP1G. Efforts to 

optimise PCR conditions for amplification of p i 35 from LP1G did not yield any 

product suggesting that there was no primer annealing site for either or both of 

P135SeqlF and P135SeqR. As a result, PCR was attempted using the same 

conditions as described above, using LP1G total DNA and primers P135SeqF and 

Int9F (see appendix for primer sequences). A single PCR product was obtained 

suggesting that a variation in the p i 35  gene sequence in strain LP1G occurs at the 

primer annealing site of P135SeqR. Substitution of P135SeqR with Int9F primer in 

PCR, therefore, resulted in the product from strain LP1G corresponding to a partial 

gene sequence, lacking a part of the gene encoding the C-terminal end of PI 35.
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Agarose gel electrophoresis (section 2.2.2) and extraction of the PCR products 

(section 2.2.4) for each strain from the gel was followed by their ligation 

(section 2.2.7) into the vector pGEM-T. The ligation reactions were then transformed 

into E. coli DH5a (section 2.3.2.2) and a positive clone for each ligation, comprising 

the p!35  gene from each strain cloned into pGEM-T, was selected after identification 

by colony PCR using primers M13F and M13R, and the same conditions as above 

except that 30 cycles were performed using Taq DNA polymerase. The plasmid DNA 

was isolated (section 2.2.1) from the selected colonies and the clones sent for 

sequencing using the vector primers M13F and M13R, and internal primers Int9F,

Inti OF, Inti IF and Intl2F. The sequencing reaction, using primer Inti OF, for the 

clone containing the partial p l3 5  gene cloned from LP1G failed, due to the LP1G 

variant not having an annealing site for this primer. An additional primer, named 

IntlOLPlGF, was designed based on the known sequence of this gene from the other 

sequencing reactions. To ensure that any variation in p i 35 gene sequence between 

these strains was not due to PCR introduced mutations, this cloning was repeated so 

that two clones, containing p i 35 amplified in different PCRs, for each strain was 

sequenced.

The sequence of the p i 35 gene from strains 47-6B and NHA15b were found 

to be identical to the gene from strain IAB59. As was the case for the gene encoding 

P49, the LP1G strain carries a gene coding for another variant of the putative crystal 

toxin PI 35. Due to the failure to amplify the 3’ end of the LP1G variant of p i 35, only 

a 3,388 bp partial sequence was confirmed. The variation in sequence between the 

partial p i 35 gene from LP1G and the variant found in strains IAB59,47-6B and 

NHA15b results in amino acid substitutions at 139 positions, one single aa deletion 

and one 2 aa deletion in the LP1G variant relative to the other PI 35 aa sequences. Of
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the 139 aa substitutions, 29 could be considered conservative (L-I, I-V, F-Y, E-D, 

S-T, R-K) and 24 semi conservative (T-V, F-L, N-D, N-E, A-S, E-Q, L-V, G-A). 

Twenty five of these amino acid substitutions occur within the conserved blocks 

found in the three-domain Cry toxins. An alignment of the PI 35 protein from LP1G 

and the variant found in the other strains can be seen in figure 5.9. The discovery of 

p i 35, by PCR, followed by its cloning and sequencing from strains LP1G, 47-6B and 

NHA15b, all strains that are toxic to Bin-resistant Culex larvae, was promising with 

regard to its predicted role in the ability of these strains, and LAB59, to overcome 

resistance.

189



IAB59/47-6B/NHA15b 
LP1G
IAB59/47-6B/NHA15b 
LP1G
IAB59/47-6B/HHA15b 
LP1G
IAB59/47-6B/NHA15b 
LP1G
IAB59/47-
LP1G
IAB59/47-
LP1G

IAB59/47-
LP1G
IAB59/47
LP1G

IAB59/47
LP1G
IAB59/47
LP1G
IAB59/47
LP1G
IAB59/47
LP1G
IAB59/47
LP1G

MDINNNNEKEIINSHLLPYSLLKKYPIKSLQSTNYKDWLNLCQDFNKDIESYDLVTAVSS 
MDINNNNEKEIINSHLLPASLLKKHPIKSLQSTNYKDWLNLCQDFNKDIESYDLVTAVSS

GTIWGTMLSAIYAPALIAGPIGIIGAIIISFGTLLPLLWNESENNPKTTWIEFIRMGEQ 
GTIWGTMLSAIYAPAIIAGPIGVIGAIIISFGTLLPLLWSEDENNPKTVWIEFIRMGER
LVDKTISQTVFNILESYLKDLKVNLVDYEKAKQDWIELKKQQLPGSPPSTKLRNAADIAH
LVDKTISQTVLNILESYLKDLKVNLIDYEKAKQDWIELKKQQLPGSPPSINLRNAADIAH

QRLD SLHNKF AELNKF KVEP YETILLPVYAQAANLHLNLLQQGAMFADQW [EDKYSSRND 
QRLDSLHNKFAELNVFKVAS YETILLPVYAQAANLHLNLLQQGAMFADQWEEDKYSPRND

6B/NHA15b

6B/NHA15b

TFAGNSNDYQNLLKSRTITYINHIENTYQNGLNYLWNQPEM1 WDIYNEYRTKMTITALDL 
TFAGNSNDYQDLLKSRTITYINHIENTYKDGLNYLWNQPEM1 WDIYNE Y RTNMTL TALDL
MALFPFYNKELYDPTVGIKSELTREIFINrPVEPHLHRYFKLSETEEKLTNNSDLFKWLT
LPLFPFYNKELYDPRVGIKSELTREVYINrPVDPHLHRYFKLGETEDKLTNNSELFKWLT

IAB59/47-6B/NHA15b 
LP1G

6B/NHA15b

6B/NHA15b

SLKFRTL YQPGF PFLIGNMNSF TNTNGTQLINNQQQLWS F PGTTE NEEKLF PS PANIDQV 
SLKFRTFNQPGFPFLIGNMNYFKKTNGTQLINNQQQLWSFPGTTEIE-KLFPSPANIDKV
TMYIYYGSGWGIPEPISTTINKLIFNHDKHELISEYDAGNTNAPTRSLSLGLPNHYLSCL
TMYIYYGSGWEVPEPISITINKLIFNHHKHGLITEYDAGNTNAPTMGIYVNLPKHYLSCL
NS Y Y PLTATTDGMNKE ELKMYS FGWTHNS VDFLNEIS KDKITQIPAVKA YRLTSNSRVIK 
NSYYPLTATTNGMGKEELKMYSFGWTHESVDFLNEISNDKITQIPAVKAYNLNSNSRVIK

IAB59/47-6B/NHA15b 
LP1G
IAB59/47-6B/NHA15b
LP1G
IAB59/47-6B/NHA15b 
LP1G
IAB59/47-6B/NHA15b 
LP1G

GPSHIGGNLV YLSENSQMALTCRYTNSSFjQEYKIRIRYAS ffRLNMGQLFTTFSSHQFVLP 
GPGHIGGNLV YLSDKSQLSLACRYTNSSfIqDFLIRIRYAS >JKRNMVQLFTPFSTHQFVLP
PTFNHFNIEQAKYEDYAYAEFPESMSIRGNLNSDILLILNILAGGE LLLDKIEFI P|LTQK 
QTFNHLNIEOTKYEDYEYAQLPGSLTINGNVNIDLLFLLNVLDGGE LLLDKIEFIpIlTQK
VKDNLEKEKIDMLKNLTDSLFNSPSKD7LKIDSTDYQIDQIAFQIESINEEINPQEKMEL 
VKDNLEKEKIDMLKNLTDSLFNSPAKD1LKINSTDYQIDQIAFQIESINEEINTQEKMKL
LDNIKYAKKLNQLRNLLYSRESQAQIDWVTSNDVSIYHGKKPFNDYTLVMSRTSSSLSEI 
LDNIKYAKKLNQLRNLLYSRESQAQIDWVTSNDVSIYHGKKPFNEYTLVMS— GSSLSKI

6B/NHA15b

6B/NHA15b

6B/NHA15b

6B/NHA15b

6B/NHA15b

TA^ YQTYIYKKIEESKLKPYTRYLVRGFISNSEDLE 
TSSKYPTYIYKKIEESKLKPYTRYLVRGFISNSDNLE

IFISRYENEIHTNMNVHGDDDTL 
IFISRYENEIHTNMNVHVDDDTL

LNSDIRQNECESKLPIIFDATSQYSLSPSRTSGISNHSYYNNGHQSSCNDTHIFSFSIDT 
LNSYKRQNECESKLPIVFDETSQYPLSPSRTSGISNHSYYNGAQQSSCHDTBIFSFSIDT
GEVDFNNYPGIEILFKLSNTNGYASISNLEVIEERLLTEEEKRQIIQIENRWKAKKESQR 
GDVDFNEYPGIEILFKLSNSNGYASISNLEVIEERLL TEEEKRHIIEIENRWKAKKEIQR

IAB59/47-6B/NHA15b 
LP1G

NETEKITTQAQQAINSLFTDTQYSNLKFETTKQNITEANTILENIPYVYNALLPTEPGMN
NETEKETTQAQQAINNLFTDTQYSKLKFETTKQSISKANAILENIPYVYNSLLPTEPGMN
FVLFNS FKDQINKAHAL Y KMRNLIKNGDFINDTKYWSIS TDVKLEKVNKETIL VLS S WE A 
FELFNSFKDQINKAHTLYKMRNSIKNGDFINGTEYWSISTDVKLEKTNIETILVHSSWSA
QASQQILVQKQKRYLLRVIAKKEDMGRGNVIISDCLNNIAKIDFTPHDCNMNHIQNSSEF 
QSSQQILVQKQNRYLLRVIAKKEDMGSGNVTISDCLNNIAKIEFIPHDCNMN

IAB59/47-6B/NHA15b IIKTIHFSPNTEQVRIDIGQSDGVFKVESIELICVNY 
LP1G

Figure 5.9 Alignment of P135 from LP1G, and the variant found in strains 

IAB59, 47-6B and NHA15b. Amino acid residues of P135 from LP1G, that differ 

from the variant found in other strains are highlighted yellow. The conserved blocks 

found in the three-domain Cry toxins are shown boxed.
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5.8 Discussion

After establishing that P49, a predicted crystal toxin from B. sphaericus strain 

IAB59, was not the toxic factor responsible for the activity of this strain, and strains 

47-6B and LP1G, towards Bin-resistant Culex larvae, focus turned towards strain 

NHA15b. Analysis of the crystal protein profile of this bin B. sphaericus strain led to 

the discovery of a high molecular weight protein, present in all three crystal 

preparation fractions that showed toxicity towards susceptible Culex larvae. 

Subsequently, the experimentally derived N-terminal sequence of this putative crystal 

toxin was found to be identical to the N-terminus of the translated product of a gene 

found downstream of p49 , contained within the 15,649 bp Hindlll fragment cloned 

from IAB59, in clones p49H5 and p49Hl 1. Sequencing of this 3,534 bp gene 

revealed that it encodes a 1,177 aa protein of 135.6 kDa, which shows homology to 

the three domain family of Cry toxins from B. thuringiensis. Analysis of the upstream 

DNA sequence also led to the identification of a putative RBS as well as a predicted 

aMike promoter. The homology shared between this protein, temporarily named 

PI35, and in particular the Cry4Aa and Cry4Ba mosquitocidal toxins from 

B. thuringiensis subsp. israelensis, was encouraging with regard to its predicted role 

as a previously unidentified toxin from the B. sphaericus strains that have the ability 

to overcome Bin-resistance. Also encouraging was the conservation between PI35 

and the regions of Cry4Aa and Cry4Ba corresponding to the conserved blocks of 

amino acids shared between the three-domain Cry toxins. This is the first report of a 

three-domain Cry protein from B. sphaericus.

Cloning and sequencing of the gene encoding PI 35 from strains 47-6B, 

NHA15b and a partial 3,388 bp sequence of the gene from LP1G, revealed the LP1G
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strain to encode a different variant of the putative toxin to the other strains. The 

finding that the gene encoding PI 35 was common to the strains known to be able to 

overcome Bin-resistance in Culex larvae was again promising regarding its predicted 

role as a toxin. The discovery that LP1G encodes a different variant of PI 35 

compared to the other strains, as was the case for P49, may suggest that these proteins 

in strain LP1G have evolved divergently from the variants found in the other 

B. sphaericus strains.

Sequencing and analysis of the HindlW insert in clones p49H5 and p49Hl 1 

also identified another interesting gene, encoding a protein containing a ricin-like 

beta-trefoil motif. These carbohydrate binding motifs are found in B. sphaericus and 

B. thuringiensis toxins such as Mtxl (Thanabalu et al., 1991), the human cancer cell 

specific toxins, parasporin-3Aa (Cry41Aal) and parasporin-3Ab (Cry41abl) 

(Yamashita et al., 2005), and CytlCa (Itsko et al., 2005) (Manasherob et al., 

manuscript in preparation). The protein product of this gene also has an N-terminal 

region showing homology to phospholipase C, a predicted virulence factor that 

contributes to the role of spore toxicity (Salamitou et al., 2000). This gene may prove 

to be interesting for future research, to determine and characterise its contribution, if 

any, to B. sphaericus toxicity.

To establish whether PI35 is the previously unidentified toxin, from strains 

IAB59, LP1G, 47-6B and NHA15b, responsible for toxicity towards Bin-resistant 

Culex larvae, recombinant expression of PI 35 in B. thuringiensis subsp. 

israelensis 4Q7 followed by bioassays against both susceptible and resistant Culex 

larvae were performed, as described in the following chapter.
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CHAPTER 6

Recombinant expression and bioassay of the putative crystal 
toxin, P135, from B. sphaericus IAB59
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6.1 Introduction

The crystal protein P49, from IAB59, has been expressed in recombinant form 

in B. thuringiensis subsp. israelensis for bioassay against both susceptible and 

resistant Culex mosquito larvae, as described in chapter 4. Also, both BinA and BinB 

have previously been produced in recombinant form in B. thuringiensis (Nicolas et 

al.y 1993). To allow for bioassay of PI35, a further putative toxin cloned from 

B. sphaericus IAB59 as described in chapter 5, its expression was again attempted in 

an acrystalliferous strain of B. thuringiensis subsp. israelensis, 4Q7. As was the case 

for P49, bioassay of PI35 against susceptible C. quinquefasciatus (SLCq) larvae 

would determine whether this protein is a mosquitocidal toxin. Further bioassays 

against Bin-resistant C. quinquefasciatus (RLCq/C3-41) larvae would establish 

whether PI35, a common spore protein present in the B. sphaericus strains able to 

overcome Bin-resistance, is the toxic component in these strains responsible for their 

ability to overcome this resistance.

6.2 Expression of P135 in B. thuringiensis subsp. israelensis

The gene encoding PI35, and its upstream putative promoter region, was 

cloned into the B. thuringiensis-E. coli shuttle vector pHT304 (Arantes and Lereclus, 

1991), for expression under the regulation of its own promoter. Clone p49H5, 

containing the 15,649 bp HindlU fragment from LAB59 DNA, was used as template 

DNA for amplification of p i 35.

6.2.1 Cloning of p i35 into pHT304

Primers BamP135F and BamP135R were used to amplify the gene encoding 

PI 35 and 252 bp upstream, from clone p49H5, by PCR (section 2.2.6.1) using Easy-A
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proofreading DNA polymerase. Thermocycling conditions were an initial 

denaturation at 95°C for 5 min, followed by 15 cycles of 95°C (1 min), 60°C (1 min), 

72°C (3 min, 30 s), and a final extension at 72°C for 10 min. The PCR product was 

purified by extraction (section 2.2.4) from an agarose gel after electrophoresis 

(section 2.2.2). A BamYil digest (section 2.2.3) of the purified PCR product was 

performed followed by extraction of the product from an agarose gel after 

electrophoresis, ready for direct ligation into pHT304 linearised with BamYil and 

treated with CIP to prevent self-ligation. The resulting ligation reaction was 

transformed into E. coli DH5a by electroporation (section 2.3.2.2) and plated onto 

LB agar plates containing ampicillin for selection. Colonies were screened for the 

successful cloning of p i 35 into pHT304 by colony PCR (section 2.2.6.1), using the 

same conditions as above except that 30 cycles were performed using Taq 

polymerase. A positive colony was selected and the plasmid isolated (section 2.2.1) 

before confirming the integrity of the clone by sequencing (section 2.2.10) using 

vector specific primers, M13F and M13R, and internal primers Int9F, IntlOF, Inti IF 

and Intl2F (see appendix for primer sequences). The resulting clone was named 

pHTP135.

6.2.2 Expression from pHTP135 in B. thuringiensis subsp. israelensis 

The clone pHTP135 was transformed into B. thuringiensis subsp. 

israelensis 4Q7 by electroporation (section 2.3.4) before plating onto LB agar plates 

containing erythromycin for selection. All colonies were confirmed to contain 

pHTP135 by colony PCR, using primers BamP135F and BamP135R, and the same 

thermocycling conditions as described for colony PCR in section 6.2.1. A colony was 

selected for inoculation of 30ml of Embrapa sporulation medium (section 2.1.6)

195



containing erythromycin, in a 250ml conical flask. A control culture was also 

prepared by inoculation of untransformed B. thuringiensis subsp. israelensis 4Q7 into 

Embrapa sporulation medium without erythromycin. Cultures were incubated at 

30°C, 250 rpm for 72 hours, and sporulation confirmed by analysis of a sample by 

light microscopy. A sample (1ml) of each sporulated culture was harvested by 

centrifugation, the supernatants discarded and the pellets resuspended in 100 /d of 

SDS-PAGE sample buffer (section 2.5.1). The resuspended samples were boiled for 

5 min before SDS-PAGE analysis (section 2.5.1) of 10/d of the samples, through a 

10% acrylamide gel. Expression of PI 35 could not be detected in these samples after 

SDS-PAGE analysis, suggesting either that expression of PI 35 in B. thuringiensis 

subsp. israelensis 4Q7 was not possible or that only low level expression was 

occurring (results not shown).

With detection of PI 35 in strain NHA15b only possible after purification of 

crystals from a sporulated culture of this strain, crystal purification from a sporulated 

culture of B. thuringiensis subsp. israelensis 4Q7 (pHTP135) was also performed.

For this, B. thuringiensis subsp. israelensis 4Q7 (pHTP135) was used to inoculate two 

21 baffled flasks containing 200ml of Embrapa sporulation medium (section 2.1.6), 

containing erythromycin. The flasks were incubated at 30°C, 250 rpm for 72 hours 

and complete sporulation confirmed by analysis of a sample by light microscopy. 

Crystal purification was performed as described in section 2.5.6. A single band was 

observed in the discontinuous sucrose gradient and was extracted before washing and 

resuspension in 2ml o f sterile distilled water. A 5/d sample of the suspension was 

analysed by SDS-PAGE (section 2.5.1). A low intensity band of expected size, 

corresponding to PI 35, was observed and can be seen in figure 6.1. Although use of 

this recombinant B. thuringiensis subsp. israelensis strain was a feasible approach
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towards preparation of PI 35 for bioassay, a higher level of expression was desirable 

for purification of larger quantities of protein. Light microscope analysis of the 

sporulated culture of B. thuringiensis subsp. israelensis 4Q7 (pHTP135) also revealed 

the presence of free crystals in the medium, which are not observed in untransformed 

control cultures of this strain, confirming as predicted the expression of P I35 as a 

crystal protein. A stock of B. thuringiensis subsp. israelensis 4Q7 (pHTP135) was 

prepared by dipping a piece of sterilised filter paper into the sporulated culture. The 

filter paper was stored at -20°C. For preparation of new cultures of this recombinant 

strain, a small piece was cut from the stock filter paper with a sterile scalpel blade and 

used either to inoculate culture media containing erythromycin, or to streak across the 

surface of LB agar plates containing erythromycin.

6.2.3 Expression of P135 using the pSTAB vector

The vector pSTAB (Park et al., 1998; Park et al., 1999), which was a kind gift 

from Prof. Brian Federici, is a B. thuringiensis expression vector. Expression is 

driven by the dual cytlAa  promoters and the transcript is stabilised by the vector 

encoded STAB-SD sequence. The STAB-SD sequence (GAAAGGAGG), sourced 

from upstream of the cry3Aa gene from B. thuringiensis subsp. morrisoni, is a perfect 

Shine-Dalgamo sequence that may stabilise the transcript by associating with the 

16S rRNA of the 30S ribosomal subunit, and thus prevent degradation by 5 ’-3’ 

ribonuclease activity (Agaisse and Lereclus, 1996; Schnepf et al., 1998).

Primers PSTABF and PSTABR were used to amplify the gene encoding PI 35, 

including a 39 bp region upstream containing the predicted Shine-Dalagamo 

sequence, from clone p49H5 by PCR. Thermocycling conditions were an initial 

denaturation at 95°C for 5 min, followed by 15 cycles of 95°C (1 min), 60°C (1 min),
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72°C (3 min 30 s), and a final extension at 72°C for 10 min. The amplified product 

was extracted (section 2.2.4) from an agarose gel after electrophoresis (section 2.2.2). 

The product was digested at its primer introduced Sail and Sphl sites (section 2.2.3) 

and again purified by recovery of the DNA fragment from an agarose gel following 

electrophoresis. The Sail and Sphl digested PCR product was then ligated into the 

pSTAB vector, which had been cut with the same restriction enzymes. 

Electrotransformation of the ligation mixture into E. coli DH5a (section 2.3.2.2) was 

performed and the colonies screened by PCR (section 2.2.6.1), after plating onto 

LB agar plates containing ampicillin. Colony PCR conditions were identical to those 

used for amplification of p i 35 using PSTABF and PSTABR, except that 30 cycles 

were performed using Taq polymerase. A positive colony was selected and the 

plasmid DNA purified (section 2.2.1), before confirming the integrity of the clone by 

sequencing (section 2.2.10) using the vector specific primers M13F and M13R, and 

internal primers Int9F, Inti OF, Inti IF and Intl2F (see appendix for primer 

sequences). The clone was named pSTABP135.

The clone pSTABP135 was transformed into B. thuringiensis subsp. 

israelensis 4Q7 by electroporation (section 2.3.4) and plated onto LB agar containing 

erythromycin for selection of recombinants. All colonies obtained were shown to 

contain pSTABP135, after colony PCR using primers PSTABF and PSTABR and the 

same thermocycling conditions as described above for colony PCR. Embrapa 

sporulation medium (30 ml; section 2.1.6) containing erythromycin was inoculated 

with a single colony of B. thuringiensis subsp. israelensis 4Q7 (pSTABP135), in a 

250 ml conical flask. A control untransformed culture was also prepared in identical 

fashion, except that no erythromycin was added to the sporulation medium. The 

cultures were incubated at 30°C, 250 rpm for 72 hours, and sporulation was confirmed
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by analysis of a sample by light microscopy. Samples (1ml) were harvested by 

centrifugation, the supernatant discarded and the pellet resuspended in 100/d of 

SDS-PAGE sample buffer (section 2.5.1). SDS-PAGE was performed, using 10/d of 

the samples, after boiling for 5 min. As was the case for expression of P135 under the 

regulation of its own promoter, no expression of PI 35 was detected by SDS-PAGE 

analysis of this sporulated culture (results not shown).

For crystal protein purification of this recombinant strain, two 21 baffled flasks 

containing 200ml of Embrapa sporulation medium (section 2.1.6), supplemented with 

erythromycin, were inoculated with recombinant B. thuringiensis subsp. 

israelensis 4Q7 (pSTABP135). The flasks were incubated at 30°C, 250 rpm for 

72 hours until sporulation was complete, as confirmed by light microscopy of a 

sample of each culture. Crystal purification was performed as described in 

section 2.5.6. A single band was extracted from the discontinuous sucrose gradient 

and was washed thoroughly before final resuspension in 2ml of sterile distilled water. 

A 5/d sample of the suspension was analysed by SDS-PAGE (section 2.5.1) and 

indicated an improved yield of P135 crystal protein relative to its expression from 

clone pHTP135. SDS-PAGE analysis of the resulting culture can be seen in 

figure 6.1, along with analysis of the expression from pHTP135 and fraction 3 

obtained by crystal purification from strain NHA15b, as previously shown in 

figure 5.2. Light microscope analysis of the sporulated culture of B. thuringiensis 

subsp. israelensis 4Q7 (pSTABP135), again revealed the presence of free crystals in 

the medium, confirming its production as a crystal protein. A stock of 

B. thuringiensis subsp. israelensis 4Q7 (pSTABP135) was prepared by dipping a 

piece of sterilised filter paper into the sporulated culture. The filter paper was stored 

at -20°C. For preparation of new cultures of this recombinant strain, a small piece
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was cut from the stock filter paper, with a sterile scalpel blade, and used either to 

inoculate culture media containing erythromycin or to streak across the surface of 

LB agar plates containing erythromycin.
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Figure 6.1 Crystal purification of sporulated cultures of B. sphaericus 

strain NHA15b and B. thuringiensis P135 expression cultures. The putative toxin, 

P135, is indicated by a blue arrow, present in B. sphaericus strain NHA15b (lane 1), 

and sporulated cultures of B. thuringiensis subsp. israelensis 4Q7 (pHTP135) (lane 2) 

and B. thuringiensis subsp. israelensis 4Q7 (pSTAB 135) (lane 3). The P49 crystal 

protein, present in the crystal preparation from strain NHA15b, is indicated by a red 

arrow. The molecular weight standard marker sizes are shown.
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6.3 Bioassay of P135

To determine whether PI35 is, as hypothesised, a mosquitocidal crystal toxin 

present in the B. sphaericus strains toxic to Bin-resistant Culex larvae, sporulated 

cultures of B. thuringiensis subsp. israelensis 4Q7 transformed with pHTP49 and 

pSTABP135 were used in bioassays against SLCq larvae. Stock filter papers, carrying 

spores of these strains, were used to inoculate 30ml of Embrapa sporulation medium, 

containing erythromycin, in 250ml conical flasks. The cultures were incubated at 

30°C, 250 rpm for 72 hours until sporulation was complete, as confirmed by light 

microscope analysis of a sample of each culture. These sporulated cultures, 

containing crystals o f PI 35, were used in selective bioassays against second or third 

instar SLCq larvae, as described in section 2.6.1. No toxicity of PI 35 was observed 

against C. quinquefasciatus larvae.

Bioassays o f  the bin B. sphaericus strain, NHA15b, have shown that this 

strain is toxic to RLCq/C3-41 larvae (Nielsen-LeRoux personal communication).

From this, it can be concluded that the ability of this strain to overcome Bin-resistance 

is independent of the Bin toxin itself, and may point to a similar situation for strains 

IAB59, LP1G and 47-6B. However, to ensure that this was the case for strains 

IAB59, LP1G and 47-6B, bioassays of PI35 in combination with BinA and BinB 

were performed. For this, a sporulated culture of B. thuringiensis subsp. 

israelensis 4Q7 (pSTABP135) was assayed in combination with spores of

B. thuringiensis subsp. israelensis 4Q7 transformed with either pHT680 and pHT684. 

Clones pHT680 and pHT684 contain the genes coding for BinA and BinB 

respectively, under the regulation of the cytlAa  promoter from B. thuringiensis subsp. 

israelensis (Nicolas et al., 1993). Selective bioassays (section 2.6.1) of SLCq larvae 

exposed to a BinA/P135 (100/d of each recombinant culture expressing BinA and
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P135) or a BinB/P135 mix (100/d of each recombinant culture expressing BinB and 

PI35) in a 10ml bioassay showed no toxicity.

The lack of toxicity in bioassays of PI 35 towards SLCq larvae suggest that: i) 

P135 is not the toxic agent in strains IAB59, LP1G, 47-6B and NHA15b towards 

Bin-resistant mosquito larvae, or ii) that PI35 functions in combination with another 

toxin component. To determine whether the crystal protein PI 35, which shows 

homology to the three-domain Cry toxins, functions in combination with P49, the 

putative crystal toxin cloned from strain IAB59 as described in chapter 3, bioassays of 

sporulated cultures of recombinant B. thuringiensis subsp. israelensis 4Q7 expressing 

P49 and PI35 were performed. Selective bioassays, performed as described in 

section 2.6.1, of a mixture (100/d of each culture) of B. thuringiensis subsp. 

israelensis 4Q7 (pHTP49) and B. thuringiensis subsp. israelensis 4Q7 (pSTABP135), 

in a 10ml bioassay volume, against SLCq larvae showed 100% mortality. Selective 

bioassays of the same recombinant strains against RLCq/C3-41 larvae, performed at 

the Wuhan Institute of Virology (Wuhan, China) by Prof. Yuan Zhiming, also 

resulted in 100% mortality when P49 and PI 35 were combined.

6.4 Preparation of P49 and P135 crystal stocks for bioassay and characterisation

Stocks of P49 and PI35 crystal toxins were prepared by purification of 

crystals from multiple litres of sporulated cultures of B. thuringiensis subsp. 

israelensis 4Q7 (pHTP49) and B. thuringiensis subsp. israelensis 4Q7 (pSTABP135) 

respectively. The extracted crystal protein bands, from multiple discontinuous 

sucrose gradients of P49 and P135, were separately pooled and the concentrations of 

P49 and PI 35 in the resulting crystal protein suspensions were calculated using the 

Bio-Rad protein assay kit, as described in section 2.5.7. To confirm the accuracy of
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the calculated concentrations, SDS-PAGE analysis of the samples by comparison to 

known BSA concentrations was performed, as described in section 2.5.7. Briefly, this 

involved running different amounts of toxin and known BSA concentrations on the 

same SDS-PAGE gel and comparing protein amounts, after Coomassie staining, by 

densitometry.

6.5 Discussion

Recombinant production of PI 35 was achieved in B. thuringiensis subsp. 

israelensis 4Q7, with higher yields attained when expressed under the regulation of 

the dual cytlAa promoters in the pSTAB vector than under the regulation of its own 

promoter in pHT304. However, production levels of P135 using the pSTAB vector 

were still lower than that of P49 when expressed under the regulation of its own 

promoter in B. thuringiensis subsp. israelensis 4Q7. The reasons for this are currently 

unknown but may involve one or more of the following: i) superior stability of the 

p49  transcript, ii) higher levels of P49 protein translation, iii) superior stability of the 

P49 protein compared to PI35.

Sporulated cultures of B. thuringiensis subsp. israelensis 4Q7 (pSTABP135) 

and B. thuringiensis subsp. israelensis 4Q7 (pHTP135) were found to contain free 

crystals, consistent with the identification of a ~135 kDa crystal protein from strain 

NHA15b, as described in section 5.2.3. Bioassays of sporulated cultures of these 

recombinant strains revealed that PI35 was not toxic to susceptible

C. quinquefasciatus larvae but that 100% mortality was observed when PI 35 was 

combined with recombinant P49. Toxicity towards Bin-resistant C. quinquefasciatus 

larvae was also observed when P49 and PI35 were combined. While three-domain 

Cry toxins have been shown to synergise with other toxins, PI35 is the first report of
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a three-domain Cry toxin that functions as a binary toxin with another component, as 

well as the first report of a three-domain Cry toxin from B. sphaericus.

Following the submission of the sequence of the 15,649 bp Hindlll DNA 

fragment from IAB59, carrying the genes for P49 and P135, to the EMBL GenBank 

and the confirmation that P49 and PI 35 are crystal proteins having a toxic effect to a 

target organism (C. quinquefasciatus mosquito larvae), all the criteria required for 

submission of the protein sequences to the B. thuringiensis Pesticidal Crystal Protein 

Nomenclature Committee were filled. Based on the parameters assigned by the 

Nomenclature Committee (Crickmore et al., 1998), P49 and PI 35 from LAB59 have 

been renamed Cry49Aal and Cry48Aal respectively. The official names of the 

Cry48/Cry49 variants from other B. sphaericus strains can be found in the appendix. 

In the following chapters, these newly discovered toxin components are referred to 

according to their official Cry designations. The full list of Cry and Cyt toxins can be 

seen at www.biols.susx.ac.uk/Home/Neil_Crickmore/Bt/.

Crystal purification from recombinant B. thuringiensis subsp. 

israelensis 4Q7 (pHTP49) and B. thuringiensis subsp. israelensis 4Q7 (pSTABP135) 

was performed, allowing use of crystals of Cry49Aal and Cry48Aal in bioassays 

against both SLCq and RLCq/C3-41 larvae for determination of LQo values. The 

characterisation of Cry49Aal and Cry48Aal are described in the following chapter.
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CHAPTER 7

Characterisation of the Cry48Aal/Cry49Aal binary 
mosquitocidal toxin from B. sphaericus IAB59
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7.1 Distribution of the genes encoding Cry48 and Cry49 proteins

The genes encoding the Cry48 and Cry49 binary mosquitocidal toxin, 

previously referred to as PI 35 and P49 respectively, are found in B. sphaericus strains 

IAB59, LP1G, 47-6B and NHA15b, all strains known to be able to overcome 

Bin-resistance in Culex mosquito larvae, as shown in previous chapters. Another 

strain, IAB872 (serotype H48), has also been reported to show toxicity against 

Bin-resistant Culex larvae (Shi et al., 2001), with recombinant expression and 

bioassay of the Bin toxin from this strain in B. thuringiensis subsp. israelensis 

showing no toxicity towards resistant larvae, confirming the presence of unidentified 

toxin(s) in this strain. Strain 2173 (serotype H26a26b), which lacks the Bin toxin and 

Mtx toxins, is known to be toxic to susceptible and Bin-resistant Culex larvae (Wirth 

et al., 2000a), again pointing to the presence of unidentified toxin(s) in this strain. 

Experiments were, therefore, performed to determine the distribution of the genes 

encoding Cry48/Cry49 binary toxins among the B. sphaericus strains kept at Cardiff 

University.

7.1.1 Detection of cry48 and cry49 genes by dot blot and PCR

Total DNA was isolated from B. sphaericus strains, for use in dot blot 

hybridisation experiments, using the DNeasy® Tissue Kit (Qiagen, Crawley, West 

Sussex, UK) as described in section 2.2.12. Probes were prepared, for use in 

detection of cry48 and cry49 genes, by PCR as described in section 2.4.1.2. The 

338 nt probe for detection of cry48 genes was prepared by PCR using primers 

PSTABF and Intl3F, while the 395 nt probe for detection of cry49 genes was 

prepared using primers P49F and IntlR (see appendix for primer sequences). The 

clone p49H5, containing the 15,649 bp HindlW fragment cloned from IAB59 DNA
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and carrying the genes for cry48Aal and cry49Aal, was used as template DNA. 

Thermocycling conditions were, as recommended by the manufacturer, an initial 

denaturation at 95°C for 2 min, followed by 30 cycles of 95°C (30 s), 60°C (30 s), 

72°C (40 s), and a final extension at 72°C for 7 min, using Taq DNA polymerase. The 

agarose gel prepared to confirm successful incorporation of DIG-dUTP into the 

amplified products can be seen in figure 7.1. The difference in relative mobility of 

the control PCR products, prepared using a dNTP mixture containing dATP, dCTP, 

dGTP and dTTP, compared to the products to be used as probes, prepared using a 

dNTP mix also containing DIG-dUTP, is due to the incorporation of DIG into the 

products used as probes. Incorporation of DIG into amplified products results in their 

slower migration through agarose gels, and thus is an effective way of confirming the 

incorporation of DIG into PCR generated probes. The PCR products, with 

DIG-dUTP incorporated, in lanes 3 and 6 were selected as probes for detection of 

cry49 and cry48 genes respectively.
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Figure 7.1 PCR generation of DIG labelled probes for hybridisation to cry48 

and cry49 genes. PCR products obtained using: primers P49F/IntlR and 140 ng of 

template DNA in the control reaction (lacking DIG-dUTP) (lane 1), primers 

P49F/IntlR and 14 ng of template DNA in a test reaction containing DIG-dUTP 

(lane 2), primers P49F/IntlR and 140 ng of template DNA in a test reaction 

containing DIG-dUTP (lane 3), primers PSTABF/Intl3F and 140 ng of template DNA 

in the control reaction (lacking DIG-dUTP) (lane 4), primers PSTABF/Intl3F and 

14 ng of template DNA in a test reaction containing DIG-dUTP (lane 5) and primers 

PSTABF/lntl3F and 140 ng of template DNA in a test reaction containing DIG-dUTP 

(lane 6). The apparent size difference of the products in the test reactions compared 

to the control reactions is due to the incorporation of DIG into the test products, 

leading to reduced mobility. The products in lane 3 and lane 6 were used as probes 

for detection of cry49 and cry48 genes respectively. The molecular weight marker 

lanes are also shown.
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Immobilisation of total DNA isolated from B. sphaericus (100-200ng per 

spot), onto Hybond-N nylon membrane, was performed as described in 

section 2.4.2.3. Also, a positive control spot of clone p49H5 (lOng) was prepared. 

Briefly, the DNA samples were denatured and spotted onto two Hybond-N 

membranes in a grid like fashion, before fixing the DNA to the membrane by baking. 

The DIG labelled PCR products, prepared as described above, were made single 

stranded by heating to 95°C for 5 min and then used, as described in section 2.4.3.2, 

individually as probes for detection of cry48 and cry49 genes by hybridisation to the 

dot blot membranes. Hybridisations were performed at 68°C and an X-ray film was 

exposed to the chemiluminescent signal to identify DNA spots containing probe 

hybridisable sequence. The resulting X-ray film can be seen in figure 7.2.

Analysis of the dot blots identified the presence of genes for Cry49 proteins in 

B. sphaericus strains IAB59, NHA15b, 47-6B, LP1G, 2173, IAB881, LP14-8, LP18, 

and LB29. The background signal of the dot blot for detection of cry48 genes 

(figure 7.2(ii)) was higher than was obtained for detection of cry49 genes. This 

resulted in it being difficult to differentiate absolutely between background and 

positive signals. However, the most intense signals were observed for strains IAB59, 

NHA15b, 47-6B, LP1G, 2297, 2173, LP14-8, LP18 and LB29, all except 2297 being 

found positive for the presence of cry49 genes also. Interestingly strain 2173, which 

shows toxicity to Culex larvae but does not contain any of the toxins identified to date 

(Thanabalu et al., 1991; Thanabalu and Porter, 1996; Priest et al., 1997), gave 

positive hybridisation signals for both cry48 and cry49 genes, suggesting that these 

toxins may be the source of this toxicity. No signal was obtained for strain IAB872, 

which has the ability to overcome Bin-resistance in Culex larvae. However, a signal 

for the presence of a cry49  gene was obtained for strain IAB881, of the same serotype
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(H3) as LP1G. Also, positive signals were obtained for the presence of both cry48 

and cry49 genes in strains LP14-8, of the same serotype (H3) as LP1G, LB29, of the 

same serotype (H26a26b) as 2173 and LP18 (serotype not determined). Due to the 

high background level obtained in the dot blot for detection of cry48 genes, a PCR 

based detection of the cry48 and cry49 genes was also performed. Primer 

combinations P49F/IntlR and PSTABF/Intl3F were used for PCR detection of cry49 

and cry48 genes respectively, using the thermocycling conditions; 95°C for 5 min, 

followed by 30 cycles of 95°C (1 min), 58°C (1 min), 72°C (30 s), and a final 

extension at 72°C for 5 min, using Taq DNA polymerase and the total DNA purified 

from B. sphaericus strains as template DNA. Clone p49H5 was again used as positive 

control template DNA. The products of PCR were analysed by agarose gel 

electrophoresis (section 2.2.2). The resulting agarose gel is shown in figure 7.3.

As can be seen from figure 7.3, PCR confirms the presence of both cry48 and 

cry49 genes in strains IAB59, NHA15b, 47-6B, LP1G, 2173, LP14-8, LP18 and 

LB29. No PCR product was obtained for the detection of these genes in strain 

IAB881. However, the strong signal obtained for the presence of a cry49 gene in this 

strain by dot blot may suggest that different variants of one, or both, of these genes 

may be present, resulting in no annealing site for the primers used in PCR. Further 

research on this strain as well as strain 2297, which showed a signal for detection of a 

cry48 gene by dot blot, would determine whether genes related to cry48Aa and 

cry49Aa are actually present.
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Figure 7.2 Dot blots of total DNA from B. sphaericus strains hybridised with 

probes to detect cry49 and cry48 genes. Detection of B. sphaericus strains 

containing the newly identified toxin genes, by hybridisation using cry49 (i) and 

cry48 (ii) specific DIG labelled probes. The DNA spot in position A l is the positive 

control, clone p49H5. The DNA spots of total DNA from B. sphaericus strains are: 

IAB59 (A2), NHA15b (A3), 47-6B (A4), LP1G (A5), 2362 (B l), 1593 (B2), 2297 

(B3), 2315 (B4), 2173 (B5), SSII-1 (C l), 2627 (C2), Kellen Q (C3), IAB881 (C4), 

IAB872 (C5), LP14-8 (D l), LP18 (D2), LB29 (D3), PR-1 (D4), 31 (D5).
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Figure 7.3 PCR detection of cry48 and cry49 genes in B. sphaericus strains.

Detection of cry49 (i) and cry48 (ii) genes by PCR was performed using primers pairs 

P49F/lntlR and PSTABF/lntl3F respectively. Clone p49H5 was used as positive 

control template DNA for both PCRs (lane 1). Total DNA from B. sphaericus strains; 

IAB59 (lane 2), NHA15b (lane 3), 47-6B (lane 4), LP1G (lane 5), 2362 (lane 6), 1593 

(lane 7), 2297 (lane 8), 2315 (lane 9), 2173 (lane 10), SSII-1 (lane 11), 2627 (lane 12), 

Kellen Q (lane 13), IAB881 (lane 14), IAB872 (lane 15), LP14-8 (lane 16), LP18 

(lane 17), LB29 (lane 18), PR-1 (lane 19) and 31 (lane 20) was used as template 

DNA. The <|>X174 Haelll DNA markers can also be seen.
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7.1.2 Sequencing of cry49 and cry48 genes from strains NHA15b and 2173

The sequencing of the genes encoding Cry49 and Cry48 proteins from 

B. sphaericus strains IAB59,47-6B and LP1G is described in chapters 3 and 5 

respectively. Only a partial gene sequence for the cry48 gene from LP1G was 

determined, due to a variation in gene sequence leading to the lack of a 3’ binding site 

for the reverse primer. The LP1G strain was found to carry a different variant of both 

cry49 (cry49Abl) and cry48  (cry48Abl) compared to the other strains. The 

sequencing of the gene encoding the Cry48Aa3 toxin from strain NHAlSb, which 

again was found to be identical to the variant found in IAB59, is described in 

chapter 5. However, the sequencing of the gene encoding the Cry49Aa3 toxin from 

B. sphaericus strain NHA15b was not performed at that time, due to this strain 

coming to our attention after the cloning and sequencing of the cry49 genes from 

IAB59,47-6B and LP1G.

Sequencing of the cry49Aa3 gene from NHA15b was thus performed to allow 

comparison of the gene in this strain to the variants sequenced to date. Also, 

sequencing of both cry49Aa4 and cry48Ab2 genes from strain 2173 was performed, as 

prior to this work the toxic factor(s) from this strain were unknown. As for 

sequencing of the cry49 and cry48 genes from the strains already described in 

previous chapters, two clones prepared from independent PCRs of each gene was 

sequenced to confirm that any variation in sequence was authentic and not PCR 

introduced errors.

7.1.2.1 Sequencing of cry49Aa from strains NHA15b and 2173

The sequencing of the cry49Aa gene from strains NHA15b and 2173 was 

performed as described previously, in section 3.13, for the sequencing of the gene
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from strains 47-6B and LP1G. The cry49Aa genes from strains NHA15b and 2173 

were found to be identical to the variant found in IAB59 and 47-6B. The full gene 

sequence of the cry49Aa variants and their protein products can be seen in the 

appendix. Table 7.1 compares the sequences of the cry49 gene variants and their 

protein products in the different B. sphaericus strains.

7.1.2.2 Sequencing of cry48Ab2 from strain 2173

Sequencing of the cry48Ab2 gene from strain 2173 was performed as 

described previously, in section 5.7, for the sequencing of the gene from strains 

47-6B, NHA15b and LP1G. Attempts to amplify the complete cry48 gene from strain 

2173, using primers P135SeqlF and P135SeqlR, were unsuccessful. Therefore, the 

sequencing of a partial cry48 gene from 2173 was performed, as described in 

section 5.7 for the sequencing of the partial cry48Aa gene from LP1G. Analysis of 

the partial cry48 gene sequence from 2173 revealed a variation in gene sequence at 

four bases compared to the partial gene from strain LP1G. This variation results in 

3 aa substitutions in the protein produced in strain 2173 compared to the LP1G 

variant: a N-D change at aa 691 and a E-K at aa 1,051 corresponding to a change in aa 

sequence to the IAB59 variant at these positions, and a conservative substitution of 

Y-F at aa 861, a position where the aa sequence of the IAB59 and LP1G variants are 

identical. The gene sequence of all cry48 variants, including the partial LP1G and 

2173 sequences, and their deduced amino acid products can be seen in the appendix. 

Figure 7.4 compares the sequences of the Cry48 protein variants in the different 

B. sphaericus strains.
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Nucleotide and amino acid in strain

Base Amino acid IAB59,
NHA15b,

47-6B,
2173

LP1G

12 bp insertion 4 aa insertion - ------------- AGT Val
after base 101 after residue 34 ACC

CAG
TGA

Pro
Ser
Glu

188 63 C Ala G Gly
263 88 A Asp C Ala
369 123 T Asn C Asn
467 156 A His G Arg
468 156 T His C Arg
616 206 A Asn G Asp
623 208 A Lys G Arg
633 211 A Ser G Ser
634 212 C Leu T Phe
637 213 C Leu T Leu

3 bp deletion of 1 aa deletion of TAC Thr - ------------

bases 639-641 residue 214
704 235 A Glu G Gly
792 264 T Pro A Pro
809 270 A Asn G Ser
837 279 A Val T Val
865 289 A H e T Leu
884 295 C Thr A Asn
891 297 G Gly A Gly
903 301 A Glu G Glu
928 310 A Asn C His
930 310 T Asn C His
942 314 T Asn C Asn
954 318 G Lys T Asn
976 326 G Ala T Ser
998 333 G Arg T Leu
999 333 T Arg G Leu
1006 336 A Asn C His
1011 337 T Leu G Leu
1039 347 G Asp A Ser

Table continued on following page
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Base Amino acid

Nucleotide and amino acid in strain

IAB59,
NHA15b,

47-6B,
2173

LP1G

1040 347 A Asp G Ser
1065 355 C Phe T Phe
1068 356 A Ala G Ala
1072 358 A Thr T Ser
1081 361 G Gly T Ser
1082 361 G Gly C Ser
1084 362 A Thr T Ser
1092 364 T Thr C Thr
1095 365 T Asp A Glu
1096 366 A lie T Ser
1097 366 T lie C Ser
1099 367 G Val A H e
1103 368 A Asn C Thr
1105 369 G Val T Tyr
1106 369 T Val A Tyr
1110 370 T Phe A Leu
1115 372 G Ser C Thr
1125 375 C His T His
1136 379 A Tyr T Phe
1167 389 A Arg G Arg
1186 396 T Ser A Thr
1190 397 A Gin T Leu
1191 397 G Gin T Leu
1197 399 A Gly C Gly
1244 415 A Tyr T Phe
1245 415 C Tyr T Phe
1258 420 G Ala A Thr
1261 421 A lie C Leu
1263 421 A lie G Leu
1265 422 C Thr A Asn
1266 422 C Thr T Asn
1286 429 A Asp T Val
1315 439 A He G Val
1332 444 A Leu G Leu
1347 449 T Gly G Gly
1359 453 A He T He

Table 7.1 Variant nucleotides and encoded amino acids of the cry49 genes 

from B. sphaericus IAB59, 47-6B, NHA15b, 2173 and LP1G. The numbering is 

based on the IAB59 reference sequence, starting at the initiating TTG.
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IAB59/47-6B/NHA15b MDINNNNEKEI INSHLLPYSLLKKYPIKSLQSTNYKDWLNLCQDFNKDIESYDLVTAVSS 
LP1G MDINNNNEKEI INSHLLPASLLKKHPIKSLQSTNYKDWLNLCQDFNKDIESYDLVTAVSS
2173 MDINNNNEKEI INSHLLPASLLKKHPIKSLQSTNYKDWLNLCQDFNKDIESYDLVTAVSS

IAB59 /47 - 6B/NHA15b GTIWGTMLSAIYAPALIAGPIGIIGAIIISFGTLLPLLWNESENNPKTTWIEFIRMGEQ 
LP1G GTI WGTMLSAI YAPAIIAGPIGVIGAI IISFGTLLPLLWSEDENNPKTVWIEFIRMGER
2173 GTI WGTMLSAI YAPAIIAGPIGVIGAI IISFGTLLPLLWSEDENNPKTVWIEFIRMGER

IAB59/47 -6B/NHA15b LVDKTISQTVFNILESYLKDLKVNLVDYEKAKQDWIELKKQQLPGSPPSTKLRNAADIAH 
LP1G LVDKTISQTVLNILESYLKDLKVNLIDYEKAKQDWIELKKQQLPGSPPSINLRNAADIAH
2173 LVDKTISQTVLNILESYLKDLKVNLIDYEKAKQDWIELKKQQLPGSPPSINLRNAADIAH

IAB59/47-6B/NHAl5b QRLDSLHNKFAELNKFKVEPYETILLPVYAQAANLHLNLLQQGAMFADQWIEDKYSSRND 
LP1G QRLDSLHNKFAELNVFKVASYETILLPVYAQAANLHLNLLQQGAMFADQWIEDKYSPRND
2173 QRLDSLHNKFAELNVFKVASYETILLPVYAQAANLHLNLLQQGAMFADQWIEDKYSPRND

IAB59/47-6B/NHA15b TFAGNSNDYQNLLKSRTITYINHIENTYQNGLNYLWNQPEMTWDIYNEYRTKMTITALDL 
LP1G TFAGNSNDYQDLLKSRTITYINHIENTYKDGLNYLWNQPEMTWDIYNEYRTNMTLTALDL
2173 TFAGNSNDYQDLLKSRTITYINHIENTYKDGLNYLWNQPEMTWDIYNEYRTNMTLTALDL

IAB59/47 -6B/NHA15b MALFPFYNKELYDPTVGIKSELTREIFINTPVEPHLHRYFKLSETEEKLTNNSDLFKWLT 
LP1G LPLFPFYNKELYDPRVGIKSELTREVYINTPVDPHLHRYFKLGETEDKLTNNSELFKWLT
2173 LPLFPFYNKELYDPRVGIKSELTREVYINTPVDPHLHRYFKLGETEDKLTNNSELFKWLT

IAB59/47 -6B/NHA15b SLKFRTLYQPGFPFLIGNMNSFTNTNGTQLINNQQQLWSFPGTTENEEKLFPSPANIDQV 
LP1G SLKFRTFNQPGF PFLIGNMNYFKKTNGTQLINNQQQLWSFPGTTEIE-KLFPSPANIDKV
2173 SLKFRTFNQPGF PFL I GNMN Y FKKTNGTQLI NNQQQLWS F PGTTE IE- KLFPS PAN I DKV

IAB59/47-6B/NHA15b TMYIYYGSGHGIPEPISTTINKLIFNHDKHELISEYDAGNTNAPTRSLSLGLPNHYLSCL 
LP1G TMYIYYGSGWEVPEPISITINKLIFNHHKHGLITEYDAGNTNAPTMGIYVNLPKHYLSCL
2173 TMYIYYGSGWEVPEPISITINKLIFNHHKHGLITEYDAGNTNAPTMGI YVNLPKHYLSCL

IAB59/47 -6B/NHA15b NSYYPLTATTDGMNKEELKMYSFGWTHNSVDFLNEISKDKITQIPAVKAYRLTSNSRVIK 
LP 1G NS Y YPLTATTNOiGKEELKMYSFGWTHES VDFLNEISNDKITQIPAVKAYNLNSNSRVIK
217 3 NSYYPLTATTNOIGKEELKMYSFGWTHESVDFLNEISNDKITQIPAVKAYNLNSNSRVIK

IAB59/ 47-6B/NHAl5b GPSHIGGNLVYLSENSQMALTCRYTNSSPQEYKIRIRYASNRLNMGQLFTTFSSHQFVLP 
LP1G GPGHIGGNLVYLSDKSQLSLACRYTNSSPQDFLIRIRYASNKRNMVQLFTPFSTHQFVLP
2173 GPGHIGGNLVYLSDKSQLSLACRYTNSSPQDFLIRIRYASNKRNMVQLFTPFSTHQFVLP

Alignment continued on following page
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IAB59/47-6B/NHA15b PTFNHFNIEQAKYEDYAYAEFPESMSIRGNLNSDILLILNILAGGELLLDKIEFIPLTQK 
LP1G QTFNHLNIEQTKYEDYEYAQLPGSLTINGNVNIDLLFLLNVLDGGELLLDKIEFIPLTQK
2173 QTFNHLNIEQTKYEDYEYAQLPGSLTIHGNVNIDLLFLLNVLDGGELLLDKIEFIPLTQK

IAB59 / 47 -6B/NHA15b VKDNLEKEKIDMLKNLTDSLFNSPSKDTLKIDSTDYQIDQIAFQIESINEEINPQEKMEL 
LP1G VKDNLEKEKIDMLKNLTDSLFNSPAKDTLKINSTDYQIDQIAFQIESINEEINTQEKMKL
2173 VKDNLEKEKIDMLKNLTDSLFNS PAKDTLKIDSTDYQIDQIAFQIESINEEINTQEKMKL

IAB59/47 -6B/NHAl5b LDNIKYAKKLNQLRNLLYSRESQAQIDWVTSNDVSIYHGKKPFNDYTLVMSRTSSSLSEI 
LP 1G LDNIKYAKKLNQLRNLLYSRESQAQIDWVTSNDVSIYHGKKPFNEYTLVMS— GSSLSKI
2173 LDNIKYAKKLNQLRNLLYSRESQAQIDWVTSNDVSIYHGKKPFNEYTLVMS— GSSLSKI

IAB59/47-6B/NHAl5b TATNYQTYIYKKIEESKLKPYTRYLVRGFISNSEDLEIFISRYENEIHTNMNVHGDDDTL 
LP1G TSSNYPTYIYKKIEESKLKPYTRYLVRGFISNSDNLEIFISRYENEIHTNMNVHVDDDTL
2173 TSSNYPTYIYKKIEESKLKPYTRYLVRGFISNSDNLEIFISRYENEIHTNMNVHVDDDTL

IAB59/47-6B/NHAl5b LNSDIRQNECESKLPIIFDATSQYSLSPSRTSGISNHSYYNNGHQSSCNDTHIFSFSIDT 
LP1G LNSYKRQNECESKLPIVFDETSQYPLSPSRTSGISNHSYYNGAQQSSCHDTQIFSFSIDT
2173 LNSYKRQNECESKLPIVFDETSQFPLSPSRTSGISNHSYYNGAQQSSCHDTQIFSFSIDT

IAB59/47-6B/NHA15b GEVDFNNYPGIEILFKLSNTNGYASISNLEVIEERLLTEEEKRQIIQIENRWKAKKESQR 
LP1G GDVDFNEYPGIEILFKLSNSNGYASISNLEVIEERLLTEEEKRHIIEIENRWKAKKEIQR
2173 GDVDFNEYPGIEILFKLSNSNGYASISNLEVIEERLLTEEEKRHIIEIENRWKAKKEIQR

IAB59/47-6B/NHA15b NETEKITTQAQQAINSLFTDTQYSNLKFETTKQNITEANTILENIPYVYNALLPTEPGMN 
LP1G NETEKETTQAQQAINNLFTDTQYSKLKFETTKQSISKANAILENIPYVYNSLLPTEPGMN
2173 NETEKETTQAQQAINNLFTDTQYSKLKFETTKQSISKANAILENIPYVYNSLLPTEPOOJ

IAB59/47-6B/NHA15b FVLFNSFKDQINKAHALYKMRNLIKNGDFINDTKYWSISTDVKLEKVNKETILVLSSWEA 
LP1G FELFNSFKDQINKAHTLYKMRNSIKNGDFINGTEYWSISTDVKLEKTNIETILVMSSWSA
2173 FELFNSFKDQINKAHTLYKMRNSIKNGDFINGTKYWSISTDVKLEKTNIETILVMSSWSA

IAB59/47-6B/NHA15b QASQQILVQKQKRYLLRVIAKKEDMGRGNVIISDCLNNIAKIDFTPHDCNMNHIQNSSEF 
LP1G QSSQQILVQKQNRYLLRVIAKKEDMGSGNVTISDCLNNIAKIEFIPHDCNMN
2173 QSSQQILVQKQNRYLLRVIAKKEDMGSGNVTISDCLNNIAKIEFIPHDCNMN

IAB59/47-6B/NHA15b IIKTIHFSPNTEQVRIDIGQSDGVFKVESIELICVNY
LP1G
2173

Figure 7.4 Alignment of the different Cry48 protein variants. Residues 

differing from the reference sequence of the variant found in strain IAB59, 47-6B and 

NHA15b are highlighted yellow.
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7.1.3 Discussion

Screening for B. sphaericus strains that carry the genes encoding Cry48 and 

Cry49 proteins, by dot blot and PCR, identified a number of such strains. Of 

particular interest was the discovery that strain 2173, a strain that shows toxicity 

towards both susceptible and Bin-resistant C. quinquefasciatus larvae (Wirth et al., 

2000a) but lacks any of the known toxin genes, carries the genes encoding the newly 

identified binary toxin. Bioassay of the Cry48Ab2/Cry49Aa4 binary toxin variant 

produced by 2173 would confirm whether these proteins are the toxic components of 

this strain. Also interesting was the fact that any strain confirmed by both dot blot 

and PCR to contain a gene encoding either Cry48 or Cry49, was also found to contain 

the gene encoding the other component of the binary toxin. This may suggest an 

evolutionary relationship between the mosquitocidal toxin genes where the two genes 

were co-acquired by B. sphaericus strains.

The failure to detect the genes encoding the new Cry48/Cry49 toxin in 

B. sphaericus strain IAB872, a strain that shows toxicity to Bin-resistant Culex larvae 

(Shi et al., 2001), may point to the presence of unidentified toxin(s) in this strain 

accountable for its ability overcome resistance. SDS-PAGE analysis of sporulated 

cultures of this strain, performed as described previously (section 3.5), confirmed the 

absence of a Cry49 protein (figure 7.5). A protein band for a Cry48 crystal was also 

not observed on the SDS-PAGE gel, however, detection of this crystal toxin in other 

B. sphaericus stains, as well as recombinant B. thuringiensis subsp. israelensis 4Q7 

expressing this protein, required crystal purification by sucrose density gradient.

Anomalous results were obtained for some of the strains screened for the 

presence of cry49 and cry48 genes. For example, the detection of a cry49 gene by dot 

blot in strain IAB881, but not by PCR, suggests that the signal obtained in the dot blot
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may be due to non-specific hybridisation. Further analysis, by performing 

SDS-PAGE of sporulated cultures of this strain as described previously (section 3.5), 

revealed the absence of a Cry49 protein (figure 7.5), suggesting the dot blot signal to 

be non-specific. Another strain yielding a hybridisation signal for detection of a 

cry48 gene, which was not confirmed by PCR, was strain 2297. The high background 

signal on this dot blot requires further PCR based detection of the cry48 and cry49 

genes to be performed to determine whether these genes are present. It would, 

however, be surprising to find the genes encoding for both Cry48 and Cry49 binary 

toxin components in strain 2297, since Culex larvae resistant to strain 2362 also show 

cross resistance to 2297 (Wirth et al., 2000a). SDS-PAGE analysis of a sporulated 

2297 culture, performed as described previously (section 3.5), revealed that no Ciy49 

protein was produced (figure 7.5).

The genes encoding the Cry48/Cry49 binary toxins have been identified in a 

number of B. sphaericus strains of different serotypes. Also, although these strains 

contain both cry48 and cry49 genes, their presence seem to be independent of the Bin 

toxin variant produced by the strain. For example, these new toxin genes are found in 

strain IAB59 (Binl, serotype H6), LP1G (Bin4, serotype H3), NHA15b (bin , 

serotype H50) and 2173 (bin , serotype H26a26b). While the cry48 and cry49 genes 

sequenced to date are highly conserved, being identical in strains IAB59,47-6B, 

NHA15b, different variants of the genes are found in strain LP1G. Strain 2173 also 

has a different variant of cry48 (cry48Ab2\ but carries a cry49Aa (cry49Aa4) gene 

that is identical to the variant found in strains IAB59, 47-6B and NHA15b.
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1593 2173 IAB872 IAB881 2297

BinBCry49Aa

BinA

Figure 7.5 SDS-PAGE analysis of sporulated cultures of B. sphaericus strains. 

Protein bands corresponding to BinA and BinB are indicated. A Cry49Aa band can 

be seen in strain 2173.
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7.2 Regulation of Cry48Aal and Cry49Aal synthesis

Two potential promoters, showing good similarity to the consensus 

recognition sequences of the sporulation specific sigma factors, < / and oG from 

B. subtilis, have been identified upstream of the gene encoding Cry49Aal, as 

described in section 3.11. Also described is another potential promoter upstream of 

cry49Aal, showing similarity to a < /  promoter but having a 21 nt gap between the -35 

and -10 sequences, rather than the usual 17-18 nt Factor c /  is the major sigma factor 

in B. subtilis involved in transcription of genes expressed during the vegetative stage 

of growth. However, a* promoters with unusual 21-22 nt spacing between the -35 

and -10 a* consensus have been identified upstream of both spoIIG and spoIlE, two 

sporulation specific genes known to be transcribed by RNA polymerase associated 

with a* during the early stages of sporulation (Kenney et al., 1989; York et al., 1992). 

Thus, regulation of cry49Aal by RNA polymerase associated with B. sphaericus 

homologues of either </, crG or < / would be consistent with the presence of Cry49Aal 

with the B. sphaericus spore. Also, a sequence showing good identity to the < / 

consensus recognition sequence has been identified upstream of the gene encoding 

Cry48Aal, as described in section 5.5, again being consistent with the presence of 

Cry48Aal with the B. sphaericus spore as a crystal protein. The predictive database 

search of the DBTBS (http://dbtbs.hgc.jp) (Makita et al., 2004) also identified 

possible ( /  and (/-lik e  promoters upstream of cry48Aal. However, the low score 

assigned to these promoters due to the lower sequence identity shared with the c f  and 

cr” consensus recognition sequences, compared to the (/-like sequence, led to their 

exclusion as suggested promoters, with a B. sphaericus homologue of ( /  appearing to 

be the most likely sigma factor involved in cry48Aal transcription.
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Having identified potential promoters upstream of the two newly identified 

toxin genes, analysis of their expression in B. subtilis mutants, devoid of certain sigma 

factors, was explored in attempt to identify the a  factor responsible for their 

regulation. Such an approach has been used in the past for determination of 

B. thuringiensis subsp. israelensis sigma factors involved in the transcriptional 

regulation of the cry4Ba and cry4Aa, which encode two mosquitocidal toxins that 

show homology to Cry48Aa (Yoshisue et al., 1993a; Yoshisue et al., 1993b). The 

B. subtilis strains 1S38, 1S60 and 1S86 contain mutations in the genes encoding the 

sporulation specific a* (sigK  or spoIIIC), (sigE or spoIIG) and c f  {sigF or spoIIA) 

factors respectively, and were obtained from the Bacillus Genetic Stock Centre.

7.2.1 Cry48Aal and Cry49Aal expression in B. subtilis o  factor mutants

Clones pHTP49 and pHTP135, containing the cry49Aal and cry48Aal genes 

respectively, cloned into the vector pHT304 (Arantes and Lereclus, 1991) as 

described in sections 4.3.1 and 6.2.1, were used to transform the B. subtilis strains 

1S38, 1S60 and 1S86. Both clones also contain the putative upstream promoters of 

the crystal toxin genes. Transformations were performed as described in 

section 2.3.5. Briefly, this involved growing the B. subtilis strains in LB medium 

supplemented with 0.5M sorbitol to a of 0.85-0.95. Cells were washed in 

ice-cold electroporation medium (0.5M sorbitol, 0.5M mannitol, 10%(v/v) glycerol) 

before electrotransformation and plating on LB agar plates, containing erythromycin 

for selection of recombinants. The colonies obtained were also screened by colony 

PCR (section 2.2.6.1) to confirm successful transformation of the B. subtilis strains. 

Colony PCR was performed using primer pairs P49PROF/P49R and 

BamP135F/BamP135R, for amplification of regions of pHTP49 and pHTP135
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respectively, and thermocycling conditions of 95°C for 5 min, 30 cycles of 95°C 

(1 min), 60°C (1 min) 72°C (1 min 30 s for pHTP49; 3 min 30 s for pHTP135), and a 

final extension at 72°C for 10 min, using Taq DNA polymerase.

A single colony of each B. subtilis mutant transformed with pHTP49 was 

selected and used to inoculate 30 ml of Embrapa sporulation medium (section 2.1.6) 

containing erythromycin, in a 250 ml conical flask. The cultures were grown to 

sporulation at 30°C, 250 rpm for 72 hours, before analysis of Cry49Aal expression by 

SDS-PAGE. For this analysis, a sample (5ml) of each culture was harvested by 

centrifugation, the supernatant discarded and the pellet resuspended in 100/d of 

SDS-PAGE sample buffer (section 2.5.1). The samples were boiled for 5 min before 

analysis of 10/d by SDS-PAGE (section 2.5.1). The resulting SDS-PAGE gels can be 

seen in figure 7.6(i) and (ii). Cultures of untransformed B. subtilis mutant strains 

were prepared as controls, allowing comparison between the test and control samples 

to identify the appearance of protein bands corresponding to Cry49Aal in the 

transformants. As can be seen in figure 7.6(i), expression of Cry49Aal, indicated by 

a blue arrow, is observed in cultures of B. subtilis strains 1S38 and 1S86, 

corresponding to the a* and o f mutants respectively. Comparison of the test and 

control 1S60 cultures reveal two faint protein bands of the same approximate MW as 

Cry49Aal in the test sample that are not present in the control. However, these two 

protein bands are also present, at similar levels, in the 1S38 and 1S86 transformed 

strains, in which the level of Cry49Aal production is clearly visible. Their presence 

at similar levels in all three of the B. subtilis transformed strains, regardless of the 

level of Cry49Aal production, together with their absence in the untransformed 

control samples suggest that these proteins may somehow be upregulated due the 

presence of the introduced plasmids. Another possibility is that these proteins are
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encoded on the pHT304 plasmid introduced into the B. subtilis mutants, the full 

sequence of which has not been elucidated. The erythromycin resistance rRNA 

methylase (erm) gene from the conjugative plasmid Tnl545  of 

Streptococcus pneumoniae (Trieu-Cuot et al., 1990), used in the construction of 

pHT304 (Arantes and Lereclus, 1991), encodes a protein of 28.8 kDa and, as such, 

does not correspond to one of these protein bands. Therefore, from Coomassie 

stained SDS-PAGE analysis, Cry49Aal does not seem to be produced in the 

B. subtilis mutant devoid of cf.

For the cultures of B. subtilis mutant strains transformed with pHTP135, 

600ml of Embrapa medium (section 2.1.6) per transformant was prepared and divided 

into three cultures of 200ml in 21 baffled flasks, for better aeration. Each culture was 

inoculated with a single colony and the cultures grown to sporulation at 30°C,

250 rpm for 72 hours. Crystal preparations of the cultures were performed by 

ultracentrifugation through discontinuous sucrose density gradients, as described in 

section 2.5.6, followed by SDS-PAGE analysis, to determine whether Cry48Aal 

production had occurred in the B. subtilis mutant strains. Untransformed control 

cultures of the B. subtilis strains yielded no crystal protein bands after 

ultracentrifugation through discontinuous sucrose density gradients. SDS-PAGE 

analysis of the transformed strains yielding crystal protein bands in sucrose gradients 

can be seen in figure 7.6(iii). Crystal protein purification followed by SDS-PAGE 

analysis, confirms Cry48Aal production in the B. subtilis mutants 1S38 and 1S86, 

lacking a* and ( /  respectively. However, the amount of Cry48Aal produced in strain 

1S86 was lower than in strain 1S38. B. subtilis strain 1S60, corresponding to the 

mutant devoid of c f, did not yield a visible crystal protein band after
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ultracentrifugation through sucrose density gradients, suggesting that Cry48Aal is not 

produced, or is produced at a much lower level than usual, in the ( /  mutant.
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i)
1: 4Q7 (pHTP49) 

2: 1S38 control 

3: 1S38 (pHTP49) 

4: 1S86 control 
5: 1S86 (pHTP49)

ii)
1: Cry49Aal crystal 

2: 1S60 control 
3: 1S60 (pHTP49)
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1: Cry48Aal crystal purified 

from4Q7(pHTP135)

2: Cry48Aal crystal purified 

from 1S38 (pHTP135)

3: Cry48Aal crystal purified 
from 1S86 (pHTP135)

P135

Figure 7.6 SDS-PAGE analysis of Cry49Aal and Cry48Aal expression in 

B. subtilis o  factor mutants. Untransformed mutant strains were used as controls. 

No control samples are shown for iii) due to the control cultures not yielding any 

crystal protein bands after sucrose density gradient ultracentrifugation. Cry49Aal 

and Cry48Aal, from B. thuringiensis subsp. israelensis 4Q7 transformed with 

pHTP49 and pHTP135 respectively, are shown for reference.
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7.2.2 Discussion

To determine which type of sigma factor is involved in the regulation of 

cry49Aal and cry48Aal transcription, recombinant expression of the toxins was 

performed in B. subtilis mutants lacking sporulation-dependent sigma factors. Only 

strain 1S60, lacking c /, was found not to produce any detectable levels of Cry49Aal 

or Cry48Aal by Coomassie stained SDS-PAGE analysis, suggesting the major role of 

a (/-like factor in B. sphaericus for regulation of these toxin components. Expression 

of the same constructs in B. subtilis strains having mutations in spoIIA and spoIIE, 

whose protein products are required for the processing of pro-</ to c / ,  would be an 

additional interesting experiment and may further verify the role of a (/-like factor in 

the transcriptional regulation of the two toxin genes. Although production of 

Cry48Aal was clearly detected in the mutant devoid of c /, the amount was lower than 

that produced by strain 1S38. This may point to a role for a (/-like factor, as well as 

a (/-like factor, in the transcriptional regulation of cry48Aal. However a more likely 

explanation for the reduced Cry48Aal production in the ( /  mutant may be its 

downstream effect on c /, since c /  is required for the processing pro-c/ to c /  

(Haldenwang, 1995). The production of both toxin components in the mutant devoid 

of ( / ,  which is required for activation of ( / ,  was surprising and may suggest that 

these toxin-coding genes are regulated by additional factors to only a c/-like factor.

Factor c /  has an important role in regulation of the gene encoding c / ,  which is 

formed by a site-specific recombination event that joins the spoIVCB and spoIJIC 

gene into a single cistron (Haldenwang, 1995). Production of both Cry49Aal and 

Cry48Aal in the B. subtilis mutant 1S38 (lacking c /)  confirms that the lack of these 

proteins in the c /  mutant is not due to a downstream effect of the knockout on c /  

production.
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Transcription of cry4Ba in B. thuringiensis subsp. israelensis is regulated by 

a35, a homologue of c /  from B. subtilis (Yoshisue et al., 1993b). Interestingly a 

mutation in spolIID, which encodes a mother-cell specific DNA-binding protein, has 

been shown to prevent transcription of cry4Ba in B. subtilis (Yoshisue et al., 1993b) 

and may point to the presence of a homologue of this protein in B. thuringiensis 

subsp. israelensis. Given the homology between Cry48Aal and Cry4Ba, as well as 

their apparent regulation by RNA polymerase associated with (/-lik e  factors, a role 

for a SpolIID like protein in B. sphaericus for the transcriptional regulation of 

cry48Aal may also be possible. An interesting experiment that may confirm this 

possibility would be the expression of cry48Aal under the regulation of its own 

promoter in a spolIID mutant of B. subtilis.
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7.3 Cry48Aal and Cry49Aal toxin specificity

Some Cry toxins have a broader insect specificity than others, such as Cry2Aa 

from B. thuringiensis subsp. kurstaki which shows toxicity against two insect orders, 

Lepidoptera and Diptera (Yamamoto and McLaughlin, 1981; Donovan et al., 1988). 

BLAST database searches (Altschul et al.y 1990), as described in previous chapters, 

revealed that Cry48Aal shows homology to Cry4Ba and Cry4Aa (both mosquito 

specific toxins) while Cry49Aal shows homology to Cry36Aal (coleopteran toxin) 

and BinA and BinB. As a result, cultures of recombinant B. thuringiensis subsp. 

israelensis 4Q7 transformed with either pHTP49 or pSTABP135, and thus expressing 

Cry49Aal and Cry48Aal respectively, were used in selective bioassays against a 

range of insects from different orders.

7.3.1 Insect bioassays

Two pieces of stock filter paper, one containing spores of B. thuringiensis 

subsp. israelensis 4Q7 (pHTP49) and the other B. thuringiensis subsp. 

israelensis 4Q7 (pSTABP135) spores, were individually used to inoculate two 250ml 

conical flasks containing 30ml of Embrapa sporulation medium (section 2.1.6) 

supplemented with erythromycin. The cultures were incubated at 30°C, 250 rpm for 

72 hours, until sporulation was complete as confirmed by light microscopy. Also, 

sporulated cultures of B. sphaericus strains IAB59, LP1G, 47-6B and NHA15b were 

prepared for bioassay in an identical fashion, except that no erythromycin was added 

to the sporulation media. All the B. sphaericus strains and recombinant 

B. thuringiensis subsp. israelensis, expressing Cry48Aal and Cry49Aal, were 

individually bioassayed against all targets. Also, due to Cry48Aal and Cry49Aal 

functioning as a binary toxin against C. quinquefasciatus larvae, cultures of
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B. thuringiensis subsp. israelensis 4Q7 (pSTABP135) and B. thuringiensis subsp. 

israelensis 4Q7 (pHTP49) were bioassayed in combination against all targets. All 

bioassays against coleopteran and lepidopteran larvae were performed at Embrapa 

Recursos Geneticos e Biotechnologia (Brasilia, Brazil), during a visit to Dr. Rose 

Monneraf s laboratory.

Bioassays of Anthonomus grandis, a pest which damages stored grain and is 

also known as the Mexican cotton boll weevil, involved the addition of 200//1 of a 

sporulated culture of B. sphaericus or B. thuringiensis subsp. israelensis 4Q7 

containing either pHTP49 or pSTABP135 to an artificial diet, as described in 

section 2.6.2. For bioassays of B. thuringiensis subsp. israelensis 4Q7 transformed 

with pHTP49 and pSTABP135 in combination, 200//1 of each sporulated culture was 

added to the artificial diet

Anticarsia gemmatalis, also known as the velvet-bean caterpillar, is an 

agricultural pest of soybean. Bioassays were performed by adding 150//1 of the 

cultures of each strain to artificial diets, as described in section 2.6.3. Combination 

bioassays of B. thuringiensis subsp. israelensis 4Q7 (pHTP49) and B. thuringiensis 

subsp. israelensis 4Q7 (pSTABP135) involved the addition of 150//1 of each culture 

to the artificial diet

For Spodoptera frugiperda , a pest of plants such as field com and sweet com, 

bioassay of individual larvae was required to prevent cannibalism, and was performed 

as described in section 2.6.4. Either 30//1 o f a sporulated culture of a B. sphaericus 

strain, B. thuringiensis subsp. israelensis 4Q7 (pHTP49) or B. thuringiensis subsp. 

israelensis 4Q7 (pSTABP135), or in the case of the combination bioassay of 

Cry48Aal and Cry49Aal, 30//1 o f each recombinant B. thuringiensis subsp. 

israelensis 4Q7 culture, was added to artificial diets.
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Bioassays of Plutella xy lost el la, also known as the diamondback moth, and a 

pest of plants from the family Cruciferae, such as cabbage and cauliflower, were 

performed as described in section 2.6.5. For this, young cabbage leaves were dipped 

into dilutions (1/100) of sporulated cultures o f the B. sphaericus strains, recombinant

B. thuringiensis subsp. israelensis 4Q7, or a combination of both the B. thuringiensis 

subsp. israelensis 4Q7 cultures expressing Cry48Aal and Cry49Aal.

Bioassays against the midge Chironomus riparius were performed as 

described in section 2.6.6. Individual bioassays of each sporulated culture (100/d) or 

a combination of B. thuringiensis subsp. israelensis 4Q7 (pHTP49) and

B. thuringiensis subsp. israelensis 4Q7 (pSTABP135) (100/d of each culture) were 

carried out.

Bioassays against Tipula paludosa, o f the order Diptera and also known as 

Cranefly or Daddy-long-legs, were performed by Dr. Jesko Oestergaard (Institute for 

Phytopathology, Christian-Albrechts-University Kiel, Germany). The larvae, known 

as leatherjackets, are pests of grass and agricultural crops.

Bioassays against Aedes aegypti and Anopheles gambiae mosquito larvae were 

performed as described in section 2.6.1, as previously performed against

C. quinquefasciatus larvae. Each sporulated culture (100/d) was added to 10 second 

or third instar larvae in a 10ml final bioassay volume. For bioassay of Cry48Aal and 

Cry49Aal in combination, 100/d of a sporulated culture of each recombinant

B. thuringiensis subsp. israelensis 4Q7 carrying the genes encoding these proteins, 

were added to the bioassays.

Following incubation of the bioassays, as described for each insect in 

section 2.6, mortality was assessed by counting the number of surviving larvae. None

233



of the insects exposed to the cultures tested showed mortality, including the 

combination bioassays against Cry48Aal and Cry49Aal.

7.3.2 Discussion

Bioassays of Cry48Aal and Cry49Aal against the range of coleopteran, 

lepidopteran and dipteran insects described in this chapter, revealed that the binary 

toxin, which are active against C. quinquefasciatus larvae, are non-toxic towards all 

the other insects tested. The Cry48Aa 1 /Cry49Aa 1 binary combination must, 

therefore, be designated for the present as specific for only C. quinquefasciatus 

larvae. Most toxins, for example Bin and mosquitocidal Cry toxins such as Cry4Ba, 

Cry4Aa and Cry 1 lAa, are active against more than one species of mosquito, which 

makes the non-toxicity of the Cry48Aal/Cry49Aal combination against A. aegypti 

and A . gambiae particularly interesting. Investigations related to this possible 

specificity are discussed in section 7.6. While the majority of the recently published 

research on B. sphaericus resistance reports the ability of strains such as IAB59, 

LP1G and 47-6B to overcome resistance against C. quinquefasciatus larvae (Wirth et 

al., 2000a; Pei et al., 2002; Yuan et al., 2003), the same phenomenon is also observed 

against C. pipiens larvae (Silva-Filha et al., 2004) (Silva-Filha personal 

communication). The ability of the same B. sphaericus strains to overcome 

Bin-resistance in both C. quinquefasciatus and C. pipiens larvae suggests that the 

Cry48Aal/Cry49Aal combination is also toxic towards C. pipiens larvae. Bioassay 

of these binary toxin components against C. pipiens larvae would confirm whether 

this is the case.
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7.4 Electron microscopic analysis of Cry48Aa and Cry49Aa crystal toxins

As described in previous chapters, light microscope analysis, carried out in 

this project, has revealed the presence of free crystals in sporulated cultures of the

B. sphaericus strains that produce Cry48Aa and Ciy49Aa. These crystals are distinct 

from the Bin toxin crystals produced by some of these strains, which are found 

associated with the spore within the exosporium. However, when the Bin toxin is 

produced in recombinant form in B. thuringiensis, it forms free crystals in the media 

(Nicolas et al., 1993). Production of Cry48Aal and Cry49Aal in recombinant

B. thuringiensis subsp. israelensis 4Q7 also leads to the production of free crystals in 

the medium, as described in chapters 4  and 6.

Electron microscopy was performed on sporulated cultures of B. thuringiensis 

subsp. israelensis 4Q7, transformed with pHTP49 and pSTABP135, and

B. sphaericus strain NHA15b, to observe the Cry49Aal and Cry48Aal crystals 

produced by the recombinant strains and to compare their features with the native 

crystals produced by B. sphaericus. Strain NHA15b was chosen as the reference as 

this strain does not carry the genes for the Bin crystal toxin.

Sporulated cultures of B. sphaericus NHA15b, B. thuringiensis subsp. 

israelensis 4Q7 (pHTP49) and B. thuringiensis subsp. israelensis 4Q7 (pSTABP135) 

were prepared by inoculating 30ml of Embrapa sporulation medium (section 2.1.6) in 

250ml conical flasks. For the recombinant cultures, erythromycin was also added to 

the medium. Cultures were incubated at 30°C, 250 rpm for 72 hours, until sporulation 

was complete as confirmed by light microscopy. Electron microscopy was 

performed, as described in section 2.5.8, during a visit to Embrapa Recursos 

Geneticos e Biotechnologia (Brasilia, Brazil). Figure 7.7 shows the crystal 

morphologies observed.
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i) ii)

Cry48AaCry49Aa

Cry48Aa

Crv49Aa

Figure 7.7 Electron micrographs of Cry49Aa and Cry48Aa crystals from 

recombinant B. thuringiensis subsp. israelensis 4Q7 and B. sphaericus NHA15b.

i) B. thuringiensis subsp. israelensis 4Q7 (pHTP49), ii) B. thuringiensis subsp. 

israelensis 4Q7 (pSTABP135) and iii) B. sphaericus strain NHA15b. Crystals of 

Cry49Aa and Cry48Aa are indicated: the assignment of crystal type in (iii) is based 

on the morphologies seen in (i) and (ii). The Cry49Aa crystal appears to have a 

bipyramidal morphology while the Cry48Aa crystal is amorphous.
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As can be seen from figure 7.7, both Cry49Aa and Cry48Aa toxins are 

produced as crystals when expressed in recombinant form in B. thuringiensis subsp. 

israelensis 4Q7. Cry49Aa appears to have a bipyramidal morphology, while 

Cry48Aa seems to be amorphous. The crystals also seem to be of identical size when 

produced in recombinant form in B. thuringiensis compared to their native production 

in B. sphaericus. However, to confirm such an observation, a number of electron 

micrographs must be taken and crystals lying at 90° to the field of view measured. 

Images of higher resolution would also provide clearer images of the crystals and 

allow confirmation of the production of Cry49Aa and Cry48Aa as bipyramidal and 

amorphous crystals respectively.

7.5 Molecular modelling of Cry48Aal

Crystal structures of the three-domain Cry toxins have been determined for the 

Coleoptera active Cry3Aa (Li et al., 1991) and Cry3Bbl (Galitsky et al., 2001), the 

Lepidoptera active CrylAa (Grochulski et al., 1995), Cry2Aa (Morse et al., 2001) 

which has dual specificity against Lepidoptera and Diptera, and Cry4Ba (Boonserm et 

al., 2005) and Cry4Aa (Boonserm et al., 2006) which are Diptera specific. BLAST 

database searches (Altschul et al., 1990) and amino acid sequence analysis of 

Cry48Aal has revealed that it shows homology to the three-domain Cry toxins, and 

that it shares sequence identity with the N-terminal half associated with toxicity, 

characterised in the above crystal structures. With this in mind the homology- 

modelling server, SWISS-MODEL (Schwede et al., 2003), was used to generate a 

first approximation 3-dimensional model of Cry48Aal. This automated procedure 

involves submission of a primary amino acid sequence to the server, allowing 

selection of templates based on protein homology. An alignment of the submitted
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sequence and the templates is generated, followed by the building of the model 

backbone, side chain modelling and energy minimization.

7.5.1 General features of the Cry48Aal model

Following submission of the Cry48Aal aa sequence, modelling was 

performed using the templates selected by the server. The selected templates, with 

ExPDB codes lji6A, lw99A, Idle and lciy, correspond to Cry3Bbl, Cry4Ba, Cry3Aa 

and CrylAa respectively. Analysis of the general features of the Cry48Aal model 

(figure 7.8), by comparison to Cry toxin crystal structures solved to date, was 

performed in DeepView/Swiss-PDB Viewer (Guex and Peitsch, 1996; Guex and 

Peitsch, 1997), available at www.expasy.org/spdbv.
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Sheet 3 Sheet 1

Sheet 2

Figure 7.8 Three-dimensional model of Cry48Aal. i) Domain I (blue), 

domain II (green) and domain III (orange) are shown, ii) Domains are coloured as for 

(i) except that the helices of the domain I helix bundle are coloured: a l  (red), a2a and 

a2b  (magenta), a3  (yellow), a 4  (dark blue), a5  (black), a6  (light blue) and a l  

(violet), iii) model with regions corresponding to the conserved blocks found in the 

three-domain Cry toxins coloured: block 1 (magenta), block 2 (cyan), block 3 

(yellow), block 4 (green) and block 5 (red), iv) Domain II antiparallel P-sheets; 

sheet 1 (red), 2 (blue) and 3 (yellow) are shown, with the exposed loops coloured in 

magenta.
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As can be seen from figure 7.8, the homology-model of Cry48Aal has a 

typical three-domain Cry toxin structure. Domain I is predicted to contain the seven 

a-helical bundle, thought to be involved in pore formation, that is seen in the 

structures of the other solved Cry toxins. In fact, the structure of Cry4Ba lacks the 

two N-terminal a-helices due to amino terminal degradation of the toxin during 

crystallisation (Boonserm et al., 2005). Figure 7.8(iv) shows the predicted 

antiparallel sheets in domain II, that are found in the other Cry toxin structures, and 

the regions predicted to correspond to the exposed loops thought to be involved in 

receptor binding (Li et al., 1991; Grochulski et al., 1995; Galitsky et al., 2001; Morse 

et al., 2001; Boonserm et al., 2005). The domain II loops of the Cry48Aal model 

align to the region of Cry4Ba containing exposed loops, previously the subject of 

mutagenesis studies by Abdullah et al. where mutations in loop 3 resulted in the 

introduction of toxicity to C. quinquefasciatus and C. pipiens larvae (Abdullah et al., 

2003), towards which Cry4Ba shows no significant natural toxicity (Delecluse et al., 

1993). Mutations in loops 1 and 2 also resulted in loss of toxicity towards Aedes and 

Anopheles, with no increase in toxicity towards Culex, confirming the importance of 

these regions in determination of specificity. The exposed loops of domain II were 

proposed as a receptor binding epitope after solving the structures of Cry3Aa (Li et 

al., 1991) and CrylAa (Grochulski et al., 1995), the loops of which are larger than 

those observed in domain II of Cry4Ba (Boonserm et al., 2005), or the model of 

Cry48Aal. The smaller loops of domain II in Cry4Ba resulted in Boonserm et al. 

suggesting that these loops may not be the receptor binding epitope of Ciy4Ba.

Figure 7.8(iii) shows the regions of the model that correspond to the five 

conserved blocks of amino acids found in the three-domain Cry toxins. Interestingly 

these regions map correctly to those described previously; block 1 encompassing
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helix 5 of domain I, block 2 consisting of helix 7 of domain I and the first (3-strand of 

domain II, block 3 including the last p-strand of domain II and the beginning of 

domain III and blocks 4  and 5 lying in the buried strands of domain III (Hofte and 

Whiteley, 1989; Schnepf et al., 1998). Results from Cry48Aal toxin processing 

experiments, described at the end of the following section, again point to the model 

having features that are conserved in the solved structures of other Cry toxins.

While obvious care must be taken when considering 3-dimensional models, 

the general features of the Cry48Aal model are very typical of Cry toxin structures. 

Prior to the confirmation of Cry48Aal toxicity, in combination with Cry49Aal, and 

in view of the conserved features of the Cry toxin structures solved at the time, the 

Cry48Aal model described here was very encouraging with regard to the predicted 

toxicity of Cry48Aal.

7.6 Cry48Aal and Cry49Aal toxin processing

Cry insecticidal toxins are produced as crystals during sporulation, which are 

solubilised in the insect gut and undergo proteolytic processing before receptor 

binding and membrane pore formation occurs. The major gut proteinases involved in 

Cry toxin processing are trypsin-like and chymotrypsin-like enzymes, while 

thermolysin-like and elastase-like enzymes have also been reported (Dai and Gill, 

1993; Rukmini et al., 2000). Differential processing of the Cry pro-toxins by 

different larvae has also been shown to determine target insect toxicity (Haider et al., 

1986; Haider and Ellar, 1987a; Haider and Ellar, 1987b).

Deletion experiments on Cry4Aa (Pao-intara et al., 1988) and Cry4Ba 

(Yoshida et al., 1989) from B. thuringiensis subsp. israelensis, revealed that aa 

residues 39-677 (72 kDa) and 30-695 (76 kDa) respectively, are required for toxicity
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when produced in recombinant form in E. coli. However, experiments where Cry4Aa 

and Cry4Ba were incubated with mosquito gut extracts, as well as trypsin, revealed 

that the toxins were processed to 46-48 kDa active toxins (Angsuthanasombat et al., 

1992). Processing is thought to involve cleavage to a 60-68 kDa protein before 

further degradation into two fragments o f 46-48 kDa and 16-18 kDa 

(Angsuthanasombat et al., 1991). To determine whether the processing of Cry48Aal 

was similar to that observed for Cry4Aa and Cry4Ba, proteolytic processing reactions 

were performed. Both Cry48Aal and Cry49Aal were incubated in vitro with 

A. aegypti and C. quinquefasciatus larval gut extracts, as well as the enzymes trypsin, 

chymotrypsin and proteinase K. Activation of the Cry48Aal/Cry49Aal binary toxin, 

by A. aegypti and C. quinquefasciatus gut extracts, would determine whether the toxin 

components are differentially processed in the larval gut of these two mosquitoes, a 

factor that may be responsible for the lack of toxicity towards A. aegypti larvae.

7.6.1 SDS-PAGE analysis of Cry48Aal and Cry49Aal processing

In vitro toxin processing was performed as described in section 2.5.10. This 

involved solubilisation of toxin crystals in NaOH, before adjustment of the solution to 

20mM Tris-HCl, 150mM NaCl, 2.5,mM CaCl2, pH 8.4 and addition of either 

A. aegypti or C. quinquefasciatus gut extract according to the method of Thanabalu et 

al. (Thanabalu et al., 1992). Mosquito gut extracts were prepared from fourth instar 

larvae as described in section 2.5.9. Analysis of Cry48Aal and Cry49Aal processed 

with trypsin, a-chymotrypsin or proteinase K was also performed as described in 

section 2.5.10. Following the incubation of solubilised toxins with either gut extracts 

or proteolytic enzymes, the samples were precipitated using TCA and resuspended in 

SDS-PAGE sample buffer prior to analysis by SDS-PAGE (section 2.5.1). Control
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reactions were prepared in an identical manner to the test reactions, except that no gut 

extract or proteolytic enzymes were added prior to the incubation step. The resulting 

gels can be seen in figure 7.9. Some of the products of Cry48Aal and Cry49Aal 

processing with mosquito larvae gut extract were selected for N-terminal sequencing, 

allowing the determination of peptide bond cleavage sites during toxin processing. 

For this, samples were blotted onto PVDF, after SDS-PAGE had been performed in 

tricine buffer, and the selected protein bands were excised with a sterile scalpel and 

sent to Alta Bioscience (University of Birmingham, Birmingham, UK) for Edman 

degradation, as described in section 2.5.3. The N-terminal sequences of the products 

selected for Edman degradation are shown in figure 7.9.
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Figure 7.9 Proteolytic processing of Cry48Aal and Cry49Aal. Processing of 

Cry48Aal (i) and Cry49Aal (ii) by A. aegypti gut extracts (lane 2),

C. quinquefasciatus gut extracts (lane 3), trypsin (lane 4), chymotrypsin (lane 5) and 

proteinase K (lane 6). The control, unprocessed Cry48Aal and Cry49Aal samples 

are also shown (lane 1). The N-terminal aa residues of the products selected for 

sequencing are shown.
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As can be seen in figure 7.9(1), from comparison of the protein products of 

toxin processing by SDS-PAGE, processing of Cry48Aal by A. aegypti gut extract 

looks similar to the processing of the toxin by chymotrypsin (compare lanes 2 and 5) 

while C. quinquefasciatus processing of the toxin resembles that of trypsin (lanes 3 

and 4). N-terminal sequencing of the product of A. aegypti gut extract activated toxin 

identified a cleavage site between Y35 and K36. This cleavage corresponds to a 

chymotrypsin-like cleavage, which occurs on the carboxyl side of aromatic amino 

acids (Y, W, F) and large hydrophobic residues such as methionine, consistent with 

the similar protein bands observed by SDS-PAGE analysis of Cry48Aal processed by 

A. aegypti gut extract and chymotrypsin. Cry48Aal processed by C. quinquefasciatus 

gut extract yields two major products, similar to those observed for the processing of 

the protein by trypsin. Edman degradation of the two Culex gut extract products 

revealed that the higher molecular weight product was a result peptide bond cleavage 

between Y52 and D53, a typical chymotrypsin-like cleavage. The lower molecular 

weight product is a result of proteolysis between R238 and N239, corresponding to a 

trypsin-like cleavage which requires a lysine or arginine on the amino side of the 

scissile bond.

Cry49Aal processing (figure 7.9(H)) appears to show that the toxin 

component is processed in a similar manner in both A. aegypti gut and

C. quinquefasciatus gut. Similar processing of Cry49Aal is also observed when 

incubated with trypsin, chymotrypsin and proteinase K. N-terminal sequencing of the

C. quinquefasciatus gut extract activated protein identified the site of processing to be 

between F48 and N49, a chymotrypsin-like cleavage.
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7.6.2 Bioassay of C. quinquefasciatus gut activated toxin against A. aegypti

The processing of Cry48Aal by A. aegypti and C. quinquefasciatus gut 

extracts was found to be different, with the Culex extract producing smaller products 

than the Aedes extracts. To determine whether differential processing of Cry48Aal 

and Cry49Aal in A. aegypti and C. quinquefasciatus larvae is responsible for the 

toxicity observed against the latter but not the former, bioassays were performed 

against A. aegypti larvae using C. quinquefasciatus gut extract activated 

Cry48Aal/Cry49Aal toxin. Both Cry48Aal and Cry49Aal (20//g of each), prepared 

as described in section 2.5.10 and above in section 7.6.1, were incubated with

C. quinquefasciatus gut extract. Following incubation, both samples were combined 

in a selective bioassay (section 2.6.1) against ten A. aegypti larvae in a 10ml final 

volume. Control bioassays were also prepared containing no toxin, and a 

Cry49Aal/Cry48Aal crystal protein mixture added directly to the bioassay. A 

bioassay using C. quinquefasciatus larvae, exposed to the Cry48Aal/Cry49Aal toxin 

pre-incubated with C. quinquefasciatus gut extract was also prepared, as above, to 

confirm that the processed toxin retained toxicity when fed to susceptible larvae. No 

toxicity was observed against A. aegypti larvae, using either the activated 

Cry48Aal/Cry49Aal toxin or the crystal protein. Bioassay of the activated toxin 

against C. quinquefasciatus larvae resulted in 100% mortality while no mortality was 

observed in the control bioassays containing no toxins.

7.6.3 Discussion

Incubation of the toxin components, Cry48Aal and Cry49Aal, with mosquito 

gut extracts has shown that differential processing of Cry48Aal occurs in A. aegypti 

and C. quinquefasciatus. However, bioassay of C. quinquefasciatus gut extract
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activated toxin against A. aegypti larvae has revealed that this differential processing 

does not account for the non-toxicity of the Cry48Aal/Cry49Aal toxin against 

A. aegypti. This may, therefore, suggest that receptor binding may be the factor 

responsible for the specificity of this toxin towards C. quinquefasciatus, with possibly 

no receptor binding occurring in A. aegypti larval gut.

The processing of Cry48Aal by A. aegypti gut extract results in a 

chymotrypsin-like cleavage of the toxin between Y35 and K36, while processing by

C. quinquefasciatus results in both chymotrypsin- and trypsin-like processing; 

between Y52 and D53, and R238 and N239 respectively. According to the homology 

model of Cry48Aal, described in section 7.5, the trypsin-like cleavage after R238, that 

occurs in this toxin after exposure to C. quinquefasciatus gut extract, occurs within 

domain I. This N-terminal domain, comprising an a-helical bundle, is known to be 

important for toxicity and is predicted to be involved in lysis of midgut epithelial cells 

by formation of pores. Therefore, a cleavage within this domain might be expected to 

be detrimental to toxicity. A proteolytic cleavage which occurs at an inter-helical 

loop in domain I of in Cry4Ba, between helices 5 and 6, has been suggested to assist 

in allowing the toxin to undergo a conformational change, facilitating the insertion of 

domain I into the membrane (Angsuthanasombat et al., 1993; Boonserm et al., 2005). 

Also, a similar inter-helical loop cleavage occurs between helices 3 and 4  of Cry2Aa 

(Nicholls et al., 1989) and Cry3Aa (Carroll et al., 1989; Li et al., 1991), and helices 5 

and 6 of Cry4Aa (Angsuthanasombat et al., 1993). Indeed, based on the model of 

Cry48Aal, the cleavage after R238 also occurs in a predicted inter-helical loop 

between a5 and a6, as shown in figure 7.10 and figure 7.11. However, removal of 

this inter-helical cleavage site in Cry4Ba and Cry4Aa is not detrimental to toxicity, 

suggesting that processing at this site is not essential for the conformational change
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required for pore formation (Angsuthanasombat et al., 1993; Boonserm et al., 2004; 

Boonserm et al., 2006). The two products of C. quinquefasciatus gut extract 

processing of Cry48Aal have estimated molecular weights of 65-70 kDa and 

45-48 kDa. However, for exact determination of these molecular weights, mass 

spectroscopy or C-terminal sequencing of the protein products would be required. 

These approaches were not pursued due to the expense involved with C-terminal 

sequencing and the requirement of pure material for mass spectroscopy.

The processing o f Cry49Aal looks similar, if not identical, when processed 

with A. aegypti and C. quinquefasciatus gut extracts. The cleavage site in Cry49Aal 

is between amino acids F48 and N49, which leaves a mature toxin of 47.8 kDa if no 

C-terminal processing occurs. BinA (42 kDa) and BinB (51 kDa) are processed by 

mosquito gut larvae to 39 kDa and 43 kDa proteins (Broadwell and Baumann, 1987; 

Broadwell et al., 1990a). Deletion experiments also showed that 32 and 53 aa can be 

removed from the N- and C-termini of BinB (Clark and Baumann, 1990) and that 10 

and 17 aa can be removed from the N- and C-termini of BinA (Broadwell et al., 

1990b) without loss of toxicity. Further experiments performed by Oei et al. showed 

that between 34-39 aa and 52-54 aa can be deleted from the N- and C-termini of BinB 

and that no more than 6 aa and at least 17 aa can be removed from the C- and 

N-termini of BinA without loss o f the essential cores required for toxicity (Oei et al., 

1990). The homology shared between Cry49Aal, BinA and BinB, together with the 

N-terminal processing o f Cry49Aal between F48 and N49, would be consistent with the

C. quinquefasciatus gut extract activated toxin component having the minimum 

requirements for toxicity, as shown in the alignment of the N-terminal sequences of 

these toxins in figure 7.12. The ability to delete regions from the C-termini of BinA 

and BinB without loss o f toxicity may point to a similar situation for Cry49Aal.
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Figure 7.10 Cry toxin inter-helical loops that are cleaved during processing in 

the larval gut. Cry48Aal model (i), Cry4Ba (ii), Cry3Aa (iii) and Cry2Aa (iv) are 

shown. The inter-helical loops that are cleaved upon processing are indicated by 

arrows and shown in red. The helices immediately N-terminal and C-terminal to the 

processed loops are shown in green (a5) and blue (a6) for the Cry48Aal model and 

Cry4Ba, and yellow (a3) and purple (a4) for Cry3Aa and Cry2Aa.
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MDINNNNEKEIINSHLLP------- YSLLKKYPIKSLQSTNYKDWLNLCQDFNKDIESYD
MNS------- GYPLANDLQGSMKNTNYKDWLAMCENN----QQYG

MNPNNRSEHDTIKTTENNEVPTNHVQYPLAETPNPTLEDLNYKEFLRMTADN-----NTE
MNNVLNSGRTTICDAYNWAHDPFSFEHKSLDTIQKEWMEWKR--TDHS

LVTAVSSGTIWGTMLSAIYAPALIAGPIGIIGAIIISFGTLLPLLWNESENNPKTTWIE
VNPAAINSSSVSTALKVAGAILKFVNPPA GTVLTVLSAVLPILWPTNTPTPERVWND

DSSTTKDVIQKGISVVGDLLGWGFPFG— GALVSFYTNFLNTIWPSEDP-----WKA
L YVAPWGTVS SFLLKKVGSLIGKR------------- ILSELWGIIFPSGSTN---LMQD

FIRMGEQLVDKTISQTVFNILESYLKDLKVNLVDYEKAKQDWIELKKQQLPGSPPSTKLR
FMTNTGKLIDQTVTAYVRTDANAKMTWKDYLDQYTTKFNTWKRE--------- PNNQSY
FMEQVEALMDQKIADYAKNKALAELQGLQNNVEDYVSALSSWQKN------- PVSSRNPH
ILRETEQFLNQRLNTDTLARVNAELIGLQANIREFNQQVDNFLNP------------TQNP

NAADIAHQRLDSLHNKFAELNKFKVEPYETILLPVYAQAANLHLNLLQQGAMFADQWIED 
RTAVITQFNLTSAKLRETAVY FSNLVGYELLLLPIYAQVANFNLLLIRDGLINAQEWSLA 
SQGRIRELFSQAESHFRNSMPSFAISGYEVLFLTTYAQAANTHLFLLKDAQIYGEEWGYE 
V PLSITSSVNTMQQLFLNRLPQFQIQGYQLLLLPLFAQAANMHLSFIRDVILNADEWGIS

KYSSgDTFAGNSN— — — LWNQPEMTWDIYNEYRTKM
RSAG--------- DQLYNTMVQYTKEYIAHSITWYNKGLDVLRNKSNGQWITFNDYKREM
KEDI---------AEFYKRQLKLTQEYTDHCVKWYNVGLDKLRGSSYESWVNFNRYRREM
AATLR--------- TYRDYLRNYTRDY SNYCI NT YQTAFRGL NTR--- LHDMLEF RT YM

Cry48Aa TITALDLMALFPFYN----- KELYD
Cry4Ba TIQVLDILALFASYDPRRYPADKIDNTKL
Cry3Aa TLTVLDLIALFPLYD--------VRL
Cry2Aa FLNVFEYVSIWSLFK---------- YQSLMVSSG

Figure 7.11 Alignment of domain I from Cry48Aal, Cry4Ba, Cry3Aa and 

Cry2Aa, showing the seven a-helices and the sites processed in the insect gut.

Regions of each protein corresponding to helices a l  (purple), a2a and a2b  (orange), 

a3  (yellow), a 4  (green), a5  (magenta), a 6  (blue) and a l  (grey) are shown. Regions 

corresponding to domain I helices for Cry4Ba, Cry3Aa and Cry2Aa were determined 

from their crystal structures (PDB codes lw99, Idle and li5p respectively). Helical 

regions for Cry48Aal were predicted based on the model prepared using 

SWISS-MODEL (Schwede et al., 2003). Residues shown highlighted in red indicate 

the sites of processing at the inter-helical loops of domain I, while the residues shown 

in blue font represent the regions processed from the N-terminus of the pro-toxins.
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P49
BinB2
BinA2

MENQIKEEFNKNNHGIPSDCSCIKEGDDYNSLTEINAKEFSYCJ NLNLPEQSTRFQ
MCDSKDNSGVSEKCGKKFTNYPLN TTPTSLNYNLPEISKKFY 

MRNLDFIDS FI

P49
BinB2
BinA2

TIASIHSNNCSFEILNNDPGYIYGDSVDGECRIAVAHRELGNGLERTGDDRFLFIFYALD
NLKNKYSRNG-YGLSKTEFPSSIENCPSNEYSIMYDNKDPR-
PTEGKYIRVMDFYNSEYPFCIHAPSAPNGDIMTEICSRENNQ

FLIRFLLD
YFIFFPTD

Figure 7.12 Alignment of the N-termini of Cry49Aal, BinA and BinB. The

amino acid residues shown in red correspond to the region processed from Cry49Aal 

by C. quinquefasciatus gut extract. Residues shown in blue can be deleted from BinA 

and BinB without loss of toxicity, and may correspond to the regions processed from 

the N-terminus by mosquito larvae (Broadwell et a l 1990b; Clark and Baumann,

1990).
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7.7 Chapter summary

This chapter has considered the characterisation of the newly identified toxin 

in this study, comprising Cry48Aal and Cry49Aal. Screening of B. sphaericus 

strains, by dot blot and PCR, for the presence of cry48 and cry49 genes identified a 

number of strains that carry related sequences. Of particular interest was the 

discovery of cry48Ab2 and cry49Aa4 genes in strain 2173, as although the strain has 

long been known to be toxic towards C. quinquefasciatus larvae (Wirth et al., 2000a), 

the toxic components of the strain remained unknown. The sequencing of the 

cry49Aa genes from NHA15b and 2173, and partial sequencing of cry48Ab2 from 

2173 was also performed, the nucleotide sequences of which can be seen in the 

appendix.

Analysis of Cry48Aal and Cry49Aal production in B. subtilis mutant strains 

devoid of certain sporulation specific a  factors, identified c /  to be important in the 

regulation of both toxin genes, with mutants devoid of ( /  showing no, or at least 

greatly reduced, expression of the toxin components. This suggests that a (/-like  

homologue in B. sphaericus might be central in the regulation of these toxin genes. 

Further studies to determine whether transcripts from cry48Aal and cry49Aal can be 

detected in the B. subtilis mutant lacking ( /  may provide further evidence supporting 

the importance of a (/-like factor in the regulation of the cry48Aal/cry49Aal toxin 

genes.

Bioassays of Cry48Aal and Cry49Aal against a range of lepidopteran, 

coleopteran and dipteran larvae showed C. quinquefasciatus to be the only target 

insect identified for these toxins. However, the fact that Bin-resistant C. pipiens 

larvae are sensitive to a number of the B. sphaericus strains that carry the cry48Aa 

and cry49Aa genes (Silva-Filha et al., 2004), may suggest that the Cry48Aa/Cry49Aa
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toxin is also active towards this mosquito. Therefore, further bioassays with 

Cry48Aal and Cry49Aal could determine whether this toxin pair is active against 

other species within the Culex genus. Bioassays against A. aegypti larvae, using 

C. quinquefasciatus gut extract activated Cry48Aal/Cry49Aal, also established that 

differential processing of the toxin between these two mosquito species is not 

responsible for the specificity towards C. quinquefasciatus. This may point to toxin- 

receptor binding as the determinant of target specificity between these strains. 

Analysis of toxin activation using mosquito gut extract also revealed a processing site 

within domain I of Cry48Aal, predicted to occur between helices a5 and a6, 

according to a homology-model of Cry48Aal. Similar processing is observed in 

other three-domain Cry toxins, as described in section 7.6.3, and has been proposed to 

facilitate a conformational change that is required for domain I insertion into larval 

gut cells (Angsuthanasombat et al.y 1993; Boonserm et al., 2005). However, it has 

been determined that processing at this inter-helical loop is not essential for toxicity.

Electron micrographs of the Cry48Aal and Cry49Aal crystals suggest the 

latter to have a bipyramidal morphology, while the former is more amorphous. 

Homology-modelling of the Cry48Aal protein sequence, based on the solved 

structures of Cry3Bbl (Galitsky et al., 2001), Cry4Ba (Boonserm et al., 2005), 

Cry3Aa (Li et al., 1991) and CrylAa (Grochulski et al., 1995) reveals the predicted 

structure of the toxin, modelled by SWISS-MODEL, to contain the general features 

found in the solved crystal structures of other Cry toxins.
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CHAPTER 8

General discussion
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8.1 General discussion

Some strains of B. sphaericus, for example IAB59, LP1G, 47-6B and 2173, 

have long been known to overcome Bin-resistance in Culex mosquito larvae (Wirth et 

al., 2000a; Pei et al., 2002; Shi et al., 2003; Yuan et al., 2003). Additionally, a bin

B. sphaericus strain called NHA15b, the discovery of which has not been published, 

also has the ability to overcome Bin-resistance in Culex larvae (Nielsen-LeRoux 

persona] communication). While a spore protein with an apparent molecular weight 

of 49 kDa, present in IAB59, LP1G and 47-6B, had been put forward as a candidate 

for the toxin responsible for the ability of these strains to overcome resistance (Yuan 

et al., 2003; Silva-Filha et al., 2004), previous attempts to clone the gene encoding 

this protein were unsuccessful (Yuan personal communication; Nielsen-LeRoux 

personal communication). Therefore, prior to this study, little information had been 

gained regarding the source of this toxicity.

Much of the course of this study involved employing different approaches 

towards cloning the gene encoding the toxic factor(s) from these strains, particularly 

strain IAB59. Care was taken to avoid concentrating efforts solely on attempting to 

clone the gene encoding the putative toxin of ~49 kDa, by also employing a genomic 

screening approach similar to those used for the cloning of the Mtx toxins from strain 

SSII-1 (Thanabalu et al., 1991; Liu et al., 1996; Thanabalu and Porter, 1996). 

However, screening of a cosmid library of strain LAB59 proved unsuccessful in 

identification of a clone yielding toxicity to C. quinquefasciatus larvae. It is possible 

that this was owing either to a non-representative library or low levels, or lack, of 

expression of the toxin coding genes in E. coli.

The gene encoding the putative ~49 kDa toxin from strain IAB59 was 

successfully cloned after N-terminal sequencing of the candidate toxin (P49) and use
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of degenerate oligonucleotide probes, designed against the determined protein 

sequence, in Southern blot and colony hybridisation. Partial gene sequence was 

determined by sequencing of the cloned 763 bp EcoRl and 2,010 bp Mbol DNA 

fragments. Complete gene sequence was determined from a 15,649 bp Hindlll 

fragment. Recombinant expression of the putative toxin in an acrystalliferous

B. thuringiensis subsp. israelensis resulted in higher yields than were obtained from 

expression studies in E. coli using the pET expression system or when produced as a 

fusion protein with GST. However, the putative toxin showed no toxicity to

C. quinquefasciatus larvae following bioassay of sporulated cultures of recombinant 

B. thuringiensis subsp. israelensis 4Q7 (pHTP49).

Light microscope analysis of sporulated cultures of strains IAB59, LP1G, 

47-6B and NHA15b revealed the presence of free crystals in the media, which were 

distinct from the Bin toxin crystals that remain associated with the spore within the 

exosporium. Purification of crystals from the bin strain, NHA15b, followed by 

SDS-PAGE analysis identified another candidate toxin of approximately 135 kDa. 

The gene encoding this protein in strain LAB59 was later found also to be contained 

within the 15,649 bp Hindlll DNA fragment. Recombinant expression of this 

putative toxin under the regulation of its own promoter in B. thuringiensis subsp. 

israelensis 4Q7 was low, therefore, higher expression levels were achieved using the 

dual cytlAa  promoters and STAB-SD sequence (Agaisse and Lereclus, 1996) in the 

vector pSTAB (Park et al., 1998; Park et al., 1999). Bioassay of sporulated cultures 

of this recombinant strain against C. quinquefasciatus larvae again revealed that this 

protein was non-toxic. However, a combination of P49 and PI 35 was found to be 

toxic to both Bin-susceptible and Bin-resistant mosquito larvae. Following 

submission of the protein sequences of P49 and PI35 to the Cry toxin nomenclature
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committee (Crickmore et al., 1998), the components of this novel B. sphaericus 

binary toxin were assigned the official names Cry49Aal and Cry48Aal respectively. 

The requirement of both Cry49Aal and Cry48Aal for toxicity, as well as the poor 

production of the latter, may also have been a contributor to the failure to isolate a 

toxic clone by screening of cosmid libraries of strain IAB59.

As described in chapter 3, the 53.3 kDa Cry49Aal protein shows homology to 

a number of other insecticidal toxins such as BinA and BinB, Cry36Aal, and 

members of the Cry35 family of binary toxins from B. thuringiensis. The conserved 

blocks of amino acids shared between BinA and BinB (Baumann et al., 1988) were 

also well conserved in Cry49Aal. The homology shared between Cry49Aal and 

components of other binary toxins may have been an early indicator of its role as a 

binary toxin component. Indeed, although Cry36Aal has weak coleopteran toxicity, 

the homology it shares with the other binaiy toxins, BinA, BinB and the Cry35 

toxins, has led to the suggestion that it too may be part of a yet uncharacterised binary 

toxin (de Maagd et al., 2003). Light microscope analysis of a sporulated culture of an 

acrystalliferous strain of B. thuringiensis subsp. israelensis, expressing Cry49Aal, 

confirmed its production as a free crystal released into the culture medium. Electron 

microscopic analysis revealed a bipyramidal morphology for the Cry49Aal crystal.

The Cry48Aal toxin, of 135.6 kDa, shows homology to the three-domain Cry 

toxin from B. thuringiensis subsp. israelensis. Cry48Aal represents the first report of 

a Cry toxin from B. sphaericus as well as the first report of a three-domain Cry toxin 

that functions as a binary toxin (see below for speculation as to the possible roles of 

each component of the toxin). The five conserved blocks of amino acids shared 

among the three-domain Cry toxins are well conserved in Cry48Aal as are the three 

conserved blocks found in the C-terminal half, which is removed upon gut processing.
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As for Cry49Aal, recombinant expression of Cry48Aal in B. thuringiensis subsp. 

israelensis confirmed its production as free crystals released into the culture medium. 

Electron microscopic analysis showed the crystal to be amorphous.

Screening of B. sphaericus strains for the presence of cry48 and cry49 genes, 

by dot blot and PCR, identified a number of strains yielding positive hybridisation 

signals and PCR products for both genes: IAB59, NHA15b, 47-6B, LP1G, 2173, 

LP14-8, LP18 and LB29. Of particular interest was the discovery of genes encoding 

Cry48Ab2 and Cry49Aa4 proteins in strain 2173, a strain that has long been known to 

show toxicity towards Bin-resistant Culex larvae but produces none of the previously 

identified toxins (Wirth et al., 2000a). The ability of strain LAB872 to overcome 

resistance (Shi et al., 2001), and failure to detect cry48 and cry49 genes in this strain, 

may point to the presence of additional, unidentified toxin(s). However, a conflicting 

study (Nielsen-LeRoux et al., 2001) reports cross-resistance towards strain LAB872. 

Additional work is required to determine whether this strain produces unidentified 

toxins. Future studies to identify new toxins may further contribute to knowledge 

regarding B. sphaericus toxins and aid with strategies to avoid resistance 

development. Both the Cry48 and Cry49 toxins, the genes of which have been 

sequenced from strains IAB59, LP1G, 47-6B, NHA15b and 2173, are well conserved. 

The Cry48Aa and Cry49Aa variants found in strains IAB59,47-6B and NHA15b are 

identical, while different variants of both binary toxin components are found in strain 

LP1G (Cry48Abl and Cry49Abl). Strain 2173 produces a Cry49 protein (Cry49Aa4) 

identical to that found in strains IAB59,47-6B and NHA15b but produces a different 

variant of Cry48 (Cry48Ab2) compared to all the cry48 gene variants sequenced to 

date. The discovery of cry48 and cry49 genes in strains from different serotypes and 

containing different Bin toxin variants, as well as bin strains, suggests that
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B. sphaericus strains have acquired these genes independently of serotype and the 

chromosomally encoded Bin toxin variant that they produce. Also, all strains were 

identified as containing both components of the Ciy48/Cry49 toxin pair and may 

suggest that the genes encoding these proteins were co-acquired. The different cry48 

and cry49 gene variants in LP1G, and cry48 gene in 2173, may also suggest that the 

variants found in these strains have evolved divergently from the those found in the 

other strains.

The discovery of cry48/cry49 genes in B. sphaericus strains, independent of 

serotype and the Bin toxin variant that they produce, may suggest that the genes have 

been acquired on mobile genetic elements such as transposons or plasmids. A number 

of transposase like sequences were discovered within the 15,649 bp Hindlll fragment 

cloned from strain IAB59, and might support the hypothesis of such an event. The 

homology shared between the toxin proteins discovered in this study and the Cry 

toxins of B. thuringiensis, which are encoded on large plasmids, may suggest a similar 

location for the genes encoding the Cry48/Cry49 binary toxin. Preliminary data, 

obtained after performing megaplasmid detection in B. sphaericus strains, as 

described in section 2.2.13, point to the presence of plasmids in many of the strains 

carrying the genes for Cry48 and Cry49 (data not shown). While these data are 

inconclusive, further studies such as megaplasmid curing from these B. sphaericus 

strains, followed by PCR, dot blot or Southern blot based detection of cry48 and 

cry49 genes in the resulting strains, could determine whether these genes are found on 

the genome or on plasmids.

Cloning of the genes encoding Cry48Aal and Cry49Aal, followed by 

sequence analysis, identified a number of potential sporulation specific promoters. 

Expression of these toxins under the regulation of their own promoters in B. subtilis
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mutants devoid of RNA polymerase factors a*, c f  and cf, identified the latter as a key 

regulator of both cry48Aal and cry49Aal expression. This is consistent with the 

regulation of other Cry toxin genes, such as cry4Ba and cry4Aa from B. thuringiensis 

subsp. israelensis, by RNA polymerase associated with the sporulation-specific factor 

a 35, a homologue of c^from B. subtilis (Yoshisue et al., 1993a; Yoshisue et al., 

1993b). Analysis to determine whether any cry48Aal or cry49Aal transcripts can be 

detected in the B. subtilis c f  mutant would further support the hypothesis that these 

genes are regulated by a homologue of c /in  B. sphaericus. Also, expression of 

Cry48Aal in a B. subtilis mutant of spoIIID, which encodes a DNA-binding protein 

important for transcription of cry4Ba in B. subtilis (Yoshisue et al., 1993b), would 

determine whether a homologue of SpoIIID may play a role in expression of this toxin 

in B. sphaericus.

Bioassays of Cry48Aal and Cry49Aal were performed against a range of 

coleopteran, lepidopteran and dipteran insect larvae, with toxicity only being observed 

against C. quinquefasciatus larvae. The sensitivity of Bin-resistant C. pipiens larvae 

towards B. sphaericus strains that produce the Cry48Aa/Cry49Aa combination (Silva- 

Filha et al., 2004) also suggest that this novel binaiy toxin is active against the larvae 

of this species. The apparent specificity of Cry48Aa/Cry49Aa to Culex mosquito 

larvae suggests that these proteins would be suitable for use in the field, with no 

detrimental effect to non-target insects. However, to confirm non-toxicity to insects 

outside the range tested in this study, further bioassays are required. The use of the 

Cry48/Cry49 binary toxin discovered in this study, in combination with the Bin toxin, 

should aid with the prevention of resistance development against B. sphaericus among 

Culex populations in the filed. Of greater advantage would be the use of recombinant 

B. sphaericus or B. thuringiensis subsp. israelensis carrying the genes encoding
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Cry48Aa, Cry49Aa and Bin as well as the Cry and Cyt toxins encoded by the pBtoxis 

plasmid. The synergism between this arsenal of toxins and their specificity towards 

different larval gut receptors would make development of resistance against such a 

recombinant strain very difficult, requiring multiple and simultaneous mutations 

within the host. An additional advantage of such a recombinant strain, over the use 

of only the B. sphaericus toxins, would be the toxicity towards Aedes mosquito 

larvae, provided by the B. thuringiensis subsp. israelensis toxins. Of course, the 

deliberate release of recombinant bacteria into the environment must be considered 

carefully as, once released, the bacteria cannot be withdrawn.

While care must be taken when considering structural homology-models, the 

Cry48Aal model, described in chapter 7, exhibits the general features of the Cry toxin 

structures solved to date and, as such, may point to a similar mode of action.

However, although there are numerous reports of synergy among Cry toxins, this is 

the first report of a three-domain Cry toxin that functions as a binary toxin, which 

individually shows no toxicity to the target insects bioassayed in this study. The 

closer phylogenetic relationship between Cry49Aal and BinB, which is the Bin 

component involved in receptor binding (Oei et al.y 1992; Charles et al., 1997), 

compared to BinA may point to Cry49Aal having evolved a function of receptor 

binding. It is possible that Cry49Aal, having bound to a receptor in the larval gut, 

may function as a receptor for Cry48Aal allowing its domain I helices to insert into 

the membrane. However, since Cry toxins also have the ability to recognise specific 

larval midgut receptors, it is possible that only Cry48Aal, or both Cry48Aal and 

Cry49Aal, are involved in receptor interaction. To determine the components) of the 

binary toxin that interacts specifically with the C. quinquefasciatus larval gut, 

experiments to determine binding patterns of fluorescently labelled Cry48Aal and
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Cry49Aal could be performed. Additionally, binding assays of labelled Cry48Aal 

and Cry49Aal with midgut brush border membrane fractions (BBMF) could identify 

whether one, or both components of the toxin are involved in receptor interaction and 

whether one component can enhance the binding of the other protein. Such studies 

are underway in a collaborating laboratory. Further studies based on these findings 

could also lead to the identification of the Cry48Aal/Cry49Aal binary toxin receptor. 

Additionally, since no toxicity is observed towards A. aegypti larvae, it would be 

interesting to determine whether Cry48Aal and/or Cry49Aal are capable of binding 

to BBMF from A. aegypti. Whatever the case, it is apparent that toxicity requires both 

proteins, indicating an interaction between Cry49Aal and Cry48Aal. An interesting 

experiment, which is being pursued in collaboration with another group, is to 

determine the epitopes of interaction between the two binary components.

Experiments involving incubations of Cry48Aal and Cry49Aal with mosquito 

larvae gut extracts from C. quinquefasciatus and A. aegypti revealed that Cry48Aal 

was differentially processed by the proteinases of these two mosquito species. 

Processing by A. aegypti gut extract appeared to entail a chymotrypsin like activation 

between Y35 and K36, while the C. quinquefasciatus gut extract activation between Y52 

and D53 and R238 and N239 involved both a chymotrypsin- and trypsin-like cleavage. 

However, feeding A. aegypti larvae a Cry48Aal and Cry49Aal combination activated 

by C. quinquefasciatus gut extract confirmed that this differential processing was not 

responsible for the lack of toxicity towards the former mosquito species. This may 

suggest that a toxin-receptor interaction determines target specificity, and this is 

currently under investigation. According to the model of Cry48Aal, cleavage 

between R238 and N239 within domain I is predicted to occur within an inter-helical 

loop, similar to that observed for other Cry toxins; Cry4Ba, Cry4Aa, Cry2Aa and
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Cry3Aa (Carroll et al., 1989; Nicholls et al., 1989; Li et al., 1991; Angsuthanasombat 

et al., 1993; Boonserm et al., 2005). It was proposed that this cleavage might aid the 

conformational changes required for insertion of domain I of these toxins into the gut 

membrane. However, removal o f the inter-helical cleavage site in Cry4Ba and 

Cry4Aa is not detrimental to toxicity, indicating that this cleavage is not essential for 

pore formation (Angsuthanasombat et al., 1993; Boonserm et al., 2004; Boonserm et 

al., 2006). To confirm whether this inter-helical loop processing is required for 

toxicity of the Cry48Aal/Cry49Aal binary combination, recombinant expression of a 

Cry48Aal mutant with a R238Q substitution could be performed followed by 

bioassays against C. quinquefasciatus larvae.

Preliminary bioassays using purified crystals of Cry48Aal and Cry49Aal 

against RLCq/C3-41 larvae, performed by Mr Yang Yankun at the Wuhan Institute of 

Virology (Wuhan, China) as described in section 2.6.1, indicate an approximate LQo 

of 150 ng/ml at 48 hours for a 1:1 ratio of Cry48Aal:Cry49Aal (data not shown). 

This compares to an LQo of 1.8 ng/ml at 48 hours for an equimolar mixture of BinA 

and BinB against SLCq larvae (Nicolas et al., 1993). Therefore, assuming that the 

development of resistance to Bin in RLCq does not adversely affect 

Cry48Aal/Cry49Aal toxicity, these preliminary data indicate that an equimolar 

mixture of the Cry48Aal/Cry49Aal is approximately 80 fold less toxic than the Bin 

toxin.

Bioassays performed by Yuan et al., using powders of sporulated cultures of 

strains IAB59, LP1G and 47-6B, against RLCq/C3-41 larvae (Yuan et al., 2003) 

provide additional data regarding the toxicity of Ciy48/Cry49. The LQo of strain 

2362 against SLCq (0.0051 mg/1) and the LQo of strains IAB59, LP1G and 47-6B 

against RLCq/C3-41 (1.584, 1.066 and 2.303mg/l respectively) (Yuan et al., 2003)
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suggest that the contribution of Bin to toxicity against SLCq may be >200 fold higher 

than that of Cry48/Cry49. This does not take into account any possible synergy 

between Cry48 and/or Cry49 with Bin, as is observed for Cry4Aa and Cry4Ba with 

Bin (Wirth et al., 2004). To relate this contribution directly to the actual toxicity of 

the Cry48/Cry49 toxin, we would have to assume an equimolar production of 

Cry48/Cry49 compared to Bin. While this is not unreasonable with regard to Cry49, 

the low levels of Cry48 production in B. sphaericus results in this assumption being 

flawed. The Cry48 proteins are not visible by SDS-PAGE analysis of sporulated 

cultures of strains IAB59, LP1G, 47-6B and NHA15b and purification of crystals 

from these strains are required for detection of Cry48 protein by SDS-PAGE. Also, 

for recombinant production of Cry48Aal in B. thuringiensis subsp. israelensis, much 

better yields were achieved when the toxin was expressed under the regulation of the 

dual cytlAa  promoters, and STAB-SD sequence, encoded on the pSTAB vector (Park 

et al., 1998; Park et al., 1999) than were observed for expression of the toxin under 

the regulation of its own promoter. The non-equimolar production of Cry48/Cry49 in 

B. sphaericus may explain the difference in potency of this toxin in sporulated 

powders of B. sphaericus (>200 fold less toxic than Bin) compared to purified crystal 

proteins (approximately 80 fold less toxic than Bin). Interestingly, the data of Yuan et 

al. also suggest that the LP1G variant of Cry49/Cry48 is the most toxic. Therefore, 

while preliminary bioassays of Cry48Aal/Cry49Aal are currently being performed 

using equimolar amounts, this does not reflect the true ratio of production of these 

proteins in B. sphaericus. In the near future bioassays will be performed, in 

collaboration with Prof. Yuan Zhiming (Wuhan Institue of Virology, Wuhan, China) 

and Dr. Rose Monnerat (Embrapa Recursos Geneticos e Biotechnologia, Brasilia,
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Brazil), where different ratios of Cry48Aal:Cry49Aal will be tested to determine the 

ratio yielding maximum toxicity against RLCq/C3-41 and SLCq larave.

A number of experiments, in collaboration with other research groups, are 

currently under way to provide a better understanding of the how the Cry48 and 

Cry49 proteins interact and bring about toxicity. Some of these experiments have 

already briefly been mentioned in this chapter such as: i) determining epitopes of 

interaction between Cry48Aal and Cry49Aal ii) investigating which of the novel 

binary toxin components are responsible for receptor binding and whether toxin- 

receptor recognition is responsible for target specificity and iii) determining whether 

Cry48 and Cry49 proteins are plasmid or chromosomally encoded. Additional 

experiments include determining the pore forming abilities of proteolytically activated 

Cry48Aal and Cry49Aal using liposomes as model lipid membranes. Experiments to 

determine whether Cry48Aal and Cry49Aal are able to synergise with Cry4Aa and 

Cry4Ba are also being performed and may provide data supporting the use of 

recombinant strains of B. sphaericus, to prevent the emergence of resistance in Culex 

larvae as well as to improve activity against A. aegypti.

While the aims of this study, to identify the toxic factor(s) in strains such as 

IAB59, LP1G and 47-6B that allow them to overcome Bin-resistance in Culex 

mosquito larvae, were successfully achieved, such discoveries always raise additional 

questions. For example, what is the mode of action of this new Cry48/Cry49 binary 

toxin from B. sphaericus? Also, the failure to detect cry48 and cry49 genes in strain 

IAB872 suggests that this strain produces further unidentified toxin(s) allowing it to 

overcome Bin-resistance in Culex larvae, and thus provides the opportunity to 

discover new toxin(s) that may contribute to the fight against resistance towards

B. sphaericus in Culex populations. The work presented in this thesis has contributed
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to previous knowledge regarding the strains of B. sphaericus able to overcome 

Bin-resistance in Culex mosquito populations, in particular by identifying, cloning 

and characterising the toxic factors from these strains responsible for this toxicity. 

These discoveries should aid in the design of strategies to evade development of 

resistance to B. sphaericus in the future.
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Appendix 1. Primer sequences (all sequences are written 5’-3’)

Degenerate primers
DP491 5’- ATGGARAAYCARATHAARGARGA -3’

DP492 5’- GARGARTTYAAYAARAAYAAYCAYG -3’

DP491C 5’- TCYTCYTTDATYTGRTTYTCCAT -3

Degenerate bases
R = A/G 
Y = C/T 
H = A/C/T 
D = A/G/T

Vector specific primers (all sequences are written 5’ to 3’)
M13remoteF GTTGGGTAACGCCAGGG

M13reomteR G AAATTGTG AGCGG ATAAC

M13F TCCCAGTCACGACGT

M13R AACAGCT ATGACCATG

SF1 GCTAGTTATTGCTCAGCGG

T7 TAATACGACTCACTATAGGG

pGEXF GGGCTGGCAAGCCACGTTTGGTG

pGEXR CCGGGAGCTGCATGTGTCAGAGG

IntlR CCATCGTGCCTGTTCGCAATG

Int2F GGTCAAGGTGT AAT AGTATCTAG

Int3F CAGGTTGGAACACCTTGGGTAG

Int4F TGACAATGCAGATAATAGTTATG

Int6F GATGACTGTAACTTTCCTCC

Int7F CTGAACCTTGAACAGTGGAC

Int8F GTACAAATCCGTATCACCATTTAG

Int9F GGTTCAT ATTACAAT CAT GGGGAG

Inti OF CGTCATCTCCATGAACATTCATG

IntlOLPlGF CCTGAAGTACGACTAGGAGACAG

Inti IF GCATAATCTTCATATTTTGCTTGTTC

Intl2F GATAAGTTGTGTACCGTTTG

Intl3F CATAGAAGAGGTAGAAGAGTTC

HindFl CATAGCAGGTATTATAATGTTAACG

HindF2 GAAGAACAGCACTAGATCGAGG

HindF3 AGAAACCAGACTGTGGTGCT

EcoRIlKIntF CATATCCTCTCTGGTGTGTTTCC

EC04KF GAGTGTATCAAGTTGATAAATCCATG

EC04KR GAAGAGAATCAAGTCTTTGATGAGC

EC04KInt CCTCTAATACTTACTAGTGCTTG
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P49F GGATCCTTGGAAAATCAAATAAAAGAAGAATTTAAC

P49R GGATCCTTAATTATAATATGGCTTTGAATTTTCATG

P49PROF GGATCCGTCGAGTGTAACTTCGGTTGTTTG

PETP49F GGAATTCCATATGCAGTTGGAAAATCAAATAAAAGAAGAATTTAAC 

PETP49R CCGCTCGAGCGGTTAATTATAATATGGCTTTGAATnTCATG

NDESDMF AAGATATGCAAGATTTGTTAAAGCCTATGAATATAGATTAACTCGTGC 

NDESDMR GCACGAGTTAATCTATATTCATAGGCTTTAACAAATCTTGCATATCTT

P135SeqF CACCTGCATATATTAATTTAGG

P135SeqR TTAATAGTTAACGCAAATGAGCTC

BamPl 35F GCAAGTGGATCCCCAGTTTAGTGTTGACATATCAG

BamPl 35R ATCCGAGGATCCTTAATAGTTAACGCAAATGAGCTC

PSTABF AGTGCAGTCGACCACCTGCATATATTAATTTAGG

PSTABR ATGTCAGCATGCTTAATAGTTAACGCAAATGAGCTC
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Appendix 2. Gene sequences, protein sequences and GenBank accession numbers

cry49Aa gene sequence and translated amino acid sequence of the variant from 
strains IAB59 (AJ841948), 47-6B (AM237201), NHAlSb (AM237203) and 2173 
(AM237204)

1 L E N Q I K E E F N K N N H G I P S D C  
1 TTGGAAAATCAAATAAAAGAAGAATTTAACAAAAATAATCATGGTATTCCTAGTGATTGC

21 S C I K E G D D Y N S L T E I N A K E F  
61 AGTTGTATAAAAGAAGGAGATGATTATAACTCTTTAACAGAGATAAATGCTAAAGAGTTT
41 S Y C S P  J J M F N L N L P E Q S T R F Q
121 TCTTATTGTAGTCCAAATATGTTTAATTTAAATTTGCCAGAACAAAGTACTAGATTTCAA
61 T I A S I H S N N C S F E I L N N D P G  
181 ACAATAGCTTCAATACATTCAAACAATTGTAGTTTTGAAATTCTCAATAACGACCCAGGG
81 Y I Y G D S V D G E C R I A V A H R E L  

241 TATATATATGGGGATTCTGTAGATGGAGAATGTAGAATTGCAGTAGCCCACAGAGAACTT
101 G N G L E R T G D D R F L F  I F Y A L D
301 GGCAATGGTTTAGAGCGAACTGGGGACGACAGATTTTTATTTATTTTTTATGCTCTAGAT
121 N N N F I  I A N R H D G F V L Q F L I A
361 AATAATAATTTTATCATTGCGAACAGGCACGATGGTTTTGTTTTGCAATTTTTGATAGCA
141 N G Q G V I V S R E Y Q P N I H Q E F T  
421 AATGGTC AAGGT GT AAT AGT AT CT AGAG AAT ATC AAC C AAAT ATT C ATC AAGAAT TC AC T
161 I Q S I N S D T F R L H S R D T N T F A  
481 ATACAATCAATTAACTCTGACACTTTTAGGTTGCATTCACGTGATACTAATACTTTCGCT
181 T V C W A Q F N S W T K I V S R V D N P  
541 ACTGTCTGCTGGGCACAGTTCAACAGTTGGACAAAAATTGTTTCAAGGGTTGATAATCCT
201 G A P N A N L K H R S L L T D I N M P Q
601 GGTGCACCTAATGCGAACTTGAAACATCGTTCACTTCTTACGGATATAAATATGCCACAA
221 L P S L T P L Q P L P R L T E L E D G G
661 TTACCAAGTTTAACACCATTACAACCATTACCACGATTAACTGAATTAGAAGATGGAGGC
241 L S P A Q A P R A I I G R T L I P C L F
721 CTATCACCTGCTCAAGCACCAAGAGCTATTATAGGAAGAACACTTATTCCATGTTTATTT
261 V N D P V L R L E N R I K Q S P Y Y V L
781 GTAAATGATCCTGTCTTAAGACTTGAAAATAGGATTAAACAAAGTCCATATTATGTATTA
281 E H R Q Y W H R I W T D I F T A G E R R
841 GAACATAGACAATATTGGCACAGAATATGGACAGATATTTTTACTGCTGGGGAGAGAAGA
301 E Y R E V T G I N N N A Q N D M N K M I
901 GAATATCGTGAAGTTACAGGAATAAATAATAATGCTC AAAATGATATGAATAAGATGATA
321 N I T I G A Q G P N R L R F G N L S T P
961 AATATAACAATAGGTGCAGATGGACCAAATCGTTTGCGTTTTGGAAATCTTTCTACACCA
341 F R Q  Q I  I D N S N T L G S F A N T N Y
1021 TTTAGACAACAAATTATAGATAATTCAAATACTTTAGGATCTTTCGCAAATACTAATTAT
361 G T R T D I V N V F N S E F H Q V R Y A
1081 GGAACAAGAACTGATATAGTAAATGTTTTTAATAGTGAATTTCACCAAGTAAGATATGCA
381 R F V K A Y E Y R L T R A D G S Q V G T
1141 AGATTTGTTAAAGCATATGAATATAGATTAACTCGTGCTGATGGATCACAGGTTGGAACA
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401 P W V V L D R K E M D L R T Y P H N M A  
12 01 CCTTGGGTAGTTTTAGACCGTAAGGAAATGGATTTAAGAACATACCCACATAATATGGCA
421 I T L E N V K I D N A D N S Y D L S I W  
1261 ATAACCTTAGAAAATGTGAAAATTGACAATGCAGATAATAGTTATGATTTATCAATATGG
441 K T P L K L K D G K I  I I E N H E N S K  
1321 AAAACCCCACTAAAATTAAAAGATGGTAAAATTATTATAGAGAATCATGAAAATTCAAAG
461 P Y Y N - 
1381 CCATATTATAATTAA

cry49Abl gene sequence and translated amino acid sequence of the variant from  
strain LP1G (AM237202)

1 L E N Q I K E E F N K N N H G I P S D C  
1 TTGG AAAATC AAAT AAAAGAAG AATT T AAC AAAAAT AATCATGGT ATTC CT AGTGAT TGC

21 S C I K E G D D Y N S L T E V P S E I N  
61 AGTT GT AT AAAAGAAGGAGATG AT TAT AAC T C TT T AAC AGAAGT AC C C AGT GAGAT AAAT
41 A K E F S Y C S P N M F N L N L P E Q S  
121 GCTAAAGAGTTTTCTTATTGTAGTCCAAATATGTTTAATTTAAATTTGCCAGAAC AAAGT
61 T R F Q T I G S I H S N N C S F E I L N  
181 ACTAGATTTCAAACAATAGGTTCAATACATTCAAACAATTGTAGTTTTGAAATTCTCAAT
81 N D P G Y I Y  G D S V A G E C R I A V A

241 AACGACCCAGGGTATATATATGGGGATTCTGTAGCTGGAGAATGTAGAATTGCAGTAGCC
101 H R ' E L G N G L E R T G D D R F L F I F  
301 CACAGAGAACTTGGCAATGGTTTAGAGCGAACTGGGGACGACAGATTTTTATTTATTTTT
121 Y A L D N N N F I  I A N R H D G F V L Q
361 TATGCTCTAGATAATAATAACTTTATCATTGCGAACAGGCACGATGGTTTTGTTTTGCAA
141 F L I A N G Q G V I V S R E Y Q P N I R
4 21 TTTTTGATAGCAAATGGTCAAGGTGTAATAGTATCTAGAGAATATCAACCAAATATTCGC
161 Q E F T I Q S I N S D T F R L H S R D T
4 81 CAAGAATTCACTATACAATCAATTAACTCTGACACTTTTAGGTTGCATTCACGTGATACT
181 H T F A T V C  W A Q F N S W T K I V S R
541 AATACTTTCGCTACTGTCTGCTGGGCACAGTTCAACAGTTGGACAAAAATTGTTTCAAGG
201 V D N P G A P N A D L R H R S F L D I N
601 GTTGATAATCCTGGTGCACCTAATGCGGACTTGAGACATCGTTCGTTTTTGGATATAAAT
221 M P Q L P S L T P L Q P L P R L T G L E
6 61 ATGCCACAATTACCAAGTTTAACACCATTACAACCATTACCACGATTAACTGGATTAGAA
241 D G G L S P A Q A P R A I I G R T L I P
721 GATGGAGGCCTATCACCTGCTCAAGCACCAAGAGCTATTATAGGAAGAACACTTATTCCA
261 C L F V N D P V L R L E S R I K Q S P Y
781 TGTTTATTTGTAAATGATCCAGTCTTAAGACTTGAAAGTAGGATTAAACAAAGTCCATAT
281 Y V L E H R Q Y W H R L W T D I F N A G
841 TATGTTTTAGAACATAGACAATATTGGCAC AGATTATGGAC AGATATTTTTAATGCTGGA
301 E R R E Y R E V T G I N H N A Q N D M N
901 GAGAGAAGAGAGTATCGTGAAGTTACAGGAATAAATCAC AATGCTCAAAACGATATGAAT
321 N M I N I T I G S D G P N R L L F G H  L
961 AATATGAT AAATATAACAATAGGTTCAGATGGACCAAATCGTTTGCTGTTTGGACATCTG
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341  S T P F R Q Q I  I  S N S N T L G S F A N  
1 0 2 1  T C T A C A C C A T T T A G A C A A C A A A T T A T A A G T A A T T C A A A T A C T T T A G G A T C T T T T G C G A A T

361 S N Y S S R T E S I T Y L N T E F H Q V  
1081 TCTAATTATTCATCAAGAACCGAATCAATAACTTATTTAAATACTGAATTTCATCAAGTA
381 R F A R F V K A Y  E Y R L T R A D G T L
1141 AGATTTGCAAGATTTGTTAAAGCATATGAATATAGGTTAACTCGTGCTGATGGAACACTT
401 V G T P W V V L D R K E M D L R T F P H  
12 01 GTTGGCACACCTTGGGTAGTTTTAGACCGTAAGGAAATGGATTTAAGAACATTTCCACAT
421 N M T L N L E N V K I V N A D N S Y D L  
12 61 AATATGACACTGAATTTAGAAAATGTGAAAATTGTCAATGCAGATAATAGTTATGATTTA
441 S V W K T P L K L K D G K I  I I E N H E
1321 TCAGTATGGAAAACCCCACTGAAATTAAAAGATGGGAAAATTATTATTGAGAATCATGAA
461 N S K P Y Y N -  
1381 AATTC AAAGC C ATATT AT AATT AA

cry48Aa gene sequence and translated amino acid sequence of the variant found 
in strains IAB59 (AJ841948), 47-6B (AM237205) and NHA15b (AM237206)

1 M D I N N N N E K E I I N S H L L P Y S  
1 ATGGATATCAACAATAATAATGAAAAGGAAATTATTAATTCTCATTTACTACCATATTCA

21 L L K K Y P I K S L Q S T N Y K D W L N  
61 CTTTTAAAAAAATACCCTATTAAGTCTTTACAGAGCACAAATTACAAAGATTGGCTTAAT
41 L C Q D F N K D I E S Y D L V T A V S S  
121 CTGTGTCAAGATTTTAATAAGGATATTGAAAGTTATGATTTGGTAACTGCTGTCTCGAGC
61 G T I V V G T M L S A I Y A P A L I A G  

181 GGAACTATTGTCGTAGGGACAATGTTGAGCGCTATTTATGCACCCGCTCTTATAGCTGGT
81 P I G I I  G A I  I  I S F G T L L P L L W

241 CCTATAGGAATAATAGGCGCTATCATTATATCTTTTGGAACTCTTCTACCTCTTCTATGG
101 N E S E N N P K T T W I E F I R M G E Q  
301 AATGAG AGCGAGAATAAC CC T AAAAC GACATGGATT G AATTT ATT AGAATGGGAGAAC AG
121 L V D K T I  S Q T V F N I L E S Y L K D
3 61 CTTGTTGATAAAACAATATCGCAAACAGTGTTTAATATACTGGAAAGCTATTTAAAAGAT
141 L K V N L V D Y E K A K Q D W I E L K K
4 21 TTAAAGGTAAATTTAGTAGATTATGAAAAAGCGAAACAAGATTGGATTGAATTGAAAAAA
161 Q Q L P G S P P S T K L R N A A D I A H  
4 81 CAGCAACTTCCTGGTTCACCTCCCTCAACTAAATTAAGGAATGCTGCAGATATTGCTCAT
181 Q R L D S L H N K F A E L N K F K V E P  
541 CAAAGACTTGATTCTCTTCATAATAAATTTGCTGAATTGAATAAGTTCAAAGTAGAACCT
201 Y E T I L L P V Y A Q A A N L H L N L L  
601 TATGAAAC AATTTTGCTACCGGTTTATGCACAAGCTGCC AACTTACATTTAAACTTGTTA
221 Q Q G A M F A D Q W I E D K Y S S R N D  
661 C AAC AAGGGGCTATGTTTGCAGATCAATGGATTGAGGAT AAAT ACTCATCGAGAAATGAT
241 T F A G N S N D Y Q N L L K S R T I T Y  
7 21 ACATTTGCTGGAAATTCAAATGATTATCAGAATTTGTTAAAATCTAGAACAATAACCTAT
261 I N H I E N T Y Q N G L N Y L W N Q P E  
7 81 ATAAATCATATTGAAAATACTTATCAAAATGGACTTAATTACTTGTGGAATCAACCGGAA
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281  M T W D I Y N E Y R T K M T I T A L D L  
8 41 ATGACGTGGGATATATATAATGAATACCGAACAAAAATGACCATTACTGCATTAGATCTC
301  M A L F P F Y N K E L Y D P T V G I K S
901 ATGGC ATT ATTCCC CTTTTATAAC AAAG AATT AT ATG AC CC TAC AGT GGGT AT AAAATC A
3 21  E L T R E I F I N T P V E P H L H R Y F
9 61  GAACTTACAAGAGAAATATTTATTAATACACCTGTCGAACCACATTTACACAGGTACTTC
3 4 1  K L S E T E E K L T N N S D L F K W L T  

10 21 AAATTAAGTGAGACAGAAGAAAAACTTACAAATAATAGTGATTTATTTAAATGGCTAAC A
3 61  S L K F R T L Y Q P G F P F L I G N M N  
1081 AGTCTAAAATTTAGAACGTTATATCAACCTGGCTTCCCTTTTTTAATTGGAAATATGAAT

381  S F T N T N G T Q L I N N Q Q Q L W S F  
1141 AGCTTTACAAATACAAACGGTACACAACTTATCAATAACCAACAGCAGCTTTGGTCGTTT

4 01  P G T T E N E E K L F P S P A N I D Q V  
1201 CCTGGAACAACCGAAAATGAAGAAAAATTGTTCCCTTCACCAGCAAATATAGATCAAGTT

4 2 1  T M Y I Y Y G S G W G I P E P I S T T I  
12 61 ACTATGTATATTTATTATGGTAGCGGATGGGGTATTCCTGAGCCTATTAGTACTACTATA

441  N K L I F N H D K H E L I S E Y D A G , N  
1321 AATAAATTAATTTTTAATCATGATAAACATGAGCTAATATCAGAGTATGATGCTGGAAAT

461  T N A P T R S L S L G L P N H Y L S C L  
1381 ACCAATGCCCCTACCAGGAGCTTATCTTTAGGTCTCCCAAATCACTATTTATCTTGCTTA

481  N S Y Y P L T A T T D G M N K E E L K M  
14 41 AATAGCTATTACCCTTTAACTGCT ACTACGGATGGAATGAATAAAGAAGAACTTAAAATG

501  Y S F G W T H N S V D F L N E I  S K D K  
1501  TATTCGTTTGGATGGACACATAATAGTGTTGATTTTTTAAATGAAATTAGCAAAGACAAA

521 I T Q I P A V K A Y R L T S N S R V I K  
1561 ATTACACAAATTCCTGCAGTAAAAGCCTATCGTTTAACCTCGAACTCTAGGGTAATAAAA

541  G P S H I G G N L V Y L S E N S Q M A L  
1621 GGTCCTAGTCATATTGGTGGTAACTTGGTTTATCTTAGCGAGAATAGTCAAATGGCTTTA

561  T C R Y T N S S P Q E Y K I R I R Y A S  
1681  ACTTGCAGGTACACAAATTCTTCTCCCCAGGAATATAAAATAAGAATTCGATATGCTTCA

581  N R L N M G Q L F T T F S S H Q F V L P  
1741 AACAGATTGAACATGGGACAATTATTTACAACATTCAGTTCACACCAGTTTGTGCTTCCA

601 P T F N H F N I E Q A K Y E D Y A Y A E  
1801 CCAACTTTCAATCATTTC AATATAGAAC AAGC AAAAT ATGAAGATTATGCATATGCTGAA

621 F P E S M S I R G N L N S D I L L I L N  
1861 TTTCCAGAAAGTATGTCGATTAGAGGTAATTTAAATTCTGATATATTATTAATACTCAAT

641  I L A G G E L L L D K I E F I P L T Q K  
1921  ATATTAGCTGGGGGTGAATTACTTCTTGATAAAATAGAGTTTATACCATTAACTCAAAAA

661 V K D N L E K E K I D M L K N L T D S L  
1981  GTTAAAGATAACCTAGAAAAGGAAAAAATAGATATGTTAAAAAATTTAACAGATTCATTA

681  F N S P S K D T L K I  D S T D Y Q I D Q  
2041  TTTAATAGTCCTTCAAAAGATACTTTAAAAATTGATAGTAC AGATTATCAAATTGACCAA

701  I A F Q I E S I N E E I N P Q E K M E L  
2101  ATCGCTTTTCAAATAGAGTCTATAAATGAAGAAATTAATCCACAAGAAAAGATGGAATTA

721 L D N I K Y A K K L N Q L R N L L Y S R  
2161  CTAGATAATATAAAATATGCAAAAAAACTAAATCAATTACGAAATCTTTTATATTCTAGA
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741 E S Q A Q I D W V T S N D V S I Y H G K  
2221 GAGTCTCAAGCTCAGATAGATTGGGTAACAAGTAATGATGTTTCTATTTATCATGGT AAA

761 K P F N D Y T L V M S R T S S S L S E I  
2 2 8 1  AAACCATTTAATGACTATACTCTTGTTATGTCAAGAACAAGCTCAAGTTTATCAGAGATT

781  T A T N Y Q T Y I Y K K I E E S K L K P  
2341 ACAGCAACAAACTATCAAACCTATATTTATAAAAAAATTGAAGAGTCTAAACTAAAACCA

801  Y T R Y L V R G F I S N S E D L E I F I  
2401 TATACACGTTACCTGGTAAGAGGTTTCATAAGTAACAGCGAAGATTT AGAAATTTTTATT

821 S R Y E N E I H T N M N V H G D D D T L  
24 61 TCTCGATATGAAAATGAAATTCATACTAACATGAATGTTCATGGAGATGACGATACTCTT

841 L N S D I R Q N E C E S K L P I I F D A  
2521 TTAAATTCAGATATACGACAAAATGAATGTGAATCTAAACTTCCAATTATATTTGATGCA

861 T S Q Y S L S P S R T S G I S N H S Y Y  
2581 ACATCACAATATTCGCTGTCTCCAAGTCGTACTTCAGGTATATCTAATCATTCATATTAC

881 N N G H Q S S C N D T H I F S F S I D T  
2641 AATAATGGAC ATCAGTCATCGTGCAATGACACCC AC ATATTTTCATTTTCTATTGATACA

901 G E V D F N N Y P G I E I L F K L S N T  
2701 GGAGAAGTTGATTTTAATAATTATCCTGGTATTGAAATACTATTCAAACTTTCAAATACA

921 N G Y A S I S N L E V I E E R L L T E E  
2761 AATGGGTACGCTTCAATAAGTAATTTAGAAGTAATAGAAGAGCGATTACTAACCGAAGAA

941 E K R Q I  I Q I E N R W K A K K E S Q R
2821 GAAAAGCGAC AAATTATTCAAATAGAAAATCGATGGAAAGC AAAAAAAGAAAGTC AACGC

961 N E T E K I T T Q A Q Q A I N S L F T D  
2881 AATGAAACTGAAAAAATAACTACGCAAGCCCAACAAGCAATAAATAGTCTATTTACGGAT

981 T Q Y  S N L K F E T T K Q N I T E A N T
2941 ACAC AATATTCAAACTTAAAATTTGAAACAACTAAAC AAAATATTACCGAAGCTAATACT
1001 I L E N I P Y V Y N A L L P T E P G M N  
3001 ATTTTGGAAAACATCCCCTATGTTTACAATGCATTATTACCAACAGAACCAGGTATGAAT
1021 F V L F N S F K D Q I N K A H A L Y K M  
3061 TTTGTTTTATTTAACAGTTTTAAAGATCAAATAAATAAAGCACACGCATTATATAAAATG
1041 R N L I K N G D F I N D T K Y W S I S T  
3121 AGAAACTTAATTAAGAATGGTGATTTCATTAATGATACAAAATATTGGTCTATATCAACA
1061 D V K L E K V N K E T I L V L S S W E A  
3181 GATGTTAAATTGGAAAAAGTCAACAAGGAAACTATTCTTGTTTTGTCGAGTTGGGAAGCA
1081 Q A S Q Q I L V Q K Q K R Y L L R V I A  
3241 CAAGCATCTC AACAAATACTAGTACAAAAACAAAAACGATACCTACTCCGTGTCATAGCA
1101 K K E D M G R G N V I I S D C L N N I A  
3301 AAAAAAGAAGATATGGGTAGAGGAAATGTGATAATCAGTGACTGTTTAAATAATATAGCT
1121 K I D F T P H D C N M N H I Q N S S E F  
3361 AAAATAGATTTTACTCCCCATGATTGTAATATGAACCATATACAAAATTCATCAGAGTTT
1141 I  I K T I  H F  S P N T  E Q V R I  D I  G Q  
3421 ATTATAAAAACAATACACTTTAGCCCAAATACTGAGCAAGTACGTATTGATATTGGCCAA
1161 S D G V F K V E S I E L I C V N Y -  
3481  TCGGATGGTGTATTTAAAGTCGAAAGTATAGAGCTCATTTGCGTTAACTATTAA
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cry48Abl partial gene sequence and translated amino acid sequence of variant 
found in strain LP1G (AM237207)

1 M D I N N N N E K E I  I N S H L L P A S
1 ATGGATATCAACAATAATAATGAAAAGGAAATTATTAATTCTCATTTACTACCGGCTTCA

21 L L K K H P I K S L Q S T N Y K D W L N  
61 CTTTTAAAAAAACATCCTATTAAGTCTTTACAGAGCACAAATTACAAAGATTGGCTTAAT
41 L C Q D F N K D I E S Y D L V T A V S S  
121 CTGTGTCAAGATTTTAATAAGGATATTGAAAGTTATGATTTGGTAACAGCTGTCTCGAGT
61 G T I V V G T M L S A I Y A P A I I A G  
181 GGGACTATTGTCGTAGGTACCATGTTGAGTGCTATTTATGCACCTGCAATTATAGCTGGC
81 P I G V I  G A I  I I S F G T L L P L L W

241 CCTATAGGAGTAATAGGCGCTATCATTATATCTTTTGGCACTCTTCTACCTCTTCTATGG
101 S E D E N N P K T V W I E F I R M G E R  
301 TCTGAGGACGAGAATAACCCTAAAACGGTATGGATTGAATTTATTAGAATGGGAGAGCGC
121 L V D K T I S Q T V L N I L E S Y L K D  
361 CTTGTTGATAAAAC AAT ATCGC AAACAGTGTT AAAT ATACTGGAAAGCTACTTAAAAGAT
141 L K V N L I D Y E K A K Q D W I E L K K  
421 TTAAAGGTAAATTTAATAGATTATGAAAAAGCGAAACAAGATTGGATTGAATTAAAAAAA
161 Q Q L P G S P P S I N L R N A A D I A H  
481 CAGCAACTTCCTGGTTCACCTCCTTCTATTAACTTAAGGAATGCTGCAGATATTGCTCAT
181 Q R L D S L H N K F A E L N V F K V A S  
541 CAAAGACTTGATTCACTTCATAATAAGTTTGCTGAATTGAATGTGTTCAAAGTGGCATCT
201 Y E T I L L P V Y A Q A A N L H L N L L  
601 TATGAAACAATTTTGCTACCAGTTTATGCACAAGCTGCCAACTTACATTTAAACTTGTTA
221 Q Q G A M F A D Q W I E D K Y S P R N D  
661 CAACAAGGGGCTATGTTTGCAGATCAATGGATTGAGGATAAATATTCACCGAGAAATGAT
241 T F A G N S N D Y  Q D L L K S R T I T Y
721 ACATTTGCAGGAAATTCAAATGATTATCAGGATTTGTTAAAATCTAGAACAATAACCTAT
261 I N H I E N T Y K D G L N Y L W N Q P E
781 ATAAATCACATTGAAAATACTTACAAAGATGGACTTAATTACTTATGGAATCAACCGGAA
281 M T W D I  Y N E Y R T N M T L T A L  D L
841 ATGACGTGGGATATATATAATGAATACCGAACAAATATGACCCTTACTGCATTAGATCTC
301 L P L F P F Y N K E L Y D P R V G I K S
901 TTGCCATTATTTCCTTTTTATAACAAAGAATTATATGATCCTAGAGTTGGTATAAAATCA
321 E L T R E V Y I N T P V D P H L H R Y F
961 GAACTTACAAGAGAAGTATATATTAATACACCTGTAGATCCACATTTAC ACAGGTACTTC
341 K L G E T E  D K L T N N S E L F K W L T
1021 AAATTAGGTG AG AC AG AAGAT AAACT TAC AAAT AAT AGT GAGT TATTTAAATGGC T AAC A
361 S L K F R T  F N Q P G F P F L I G N M N
1081 AGTCTAAAATTTAGAACGTTTAATCAACCTGGATTCCCTTTTTTAATTGGAAATATGAAT
381 Y F K K T N G T Q L I N N Q Q Q L W S F
1141 TACTTTAAAAAAACAAACGGTACACAACTTATCAATAACCAACAGCAGCTTTGGTCGTTT
401 P G T T E I E K L F P S P A N I D K V T
1201 CCTGGAACAACCGAAATTGAAAAATTGTTCCCTTCACCGGCAAATATAGATAAAGTTACT
421 M Y I Y Y  G S G W E V P E P I S I T I N
1261 ATGTATATTTATTATGGTAGCGGATGGGAAGTTCCTGAGCCTATTAGTATTACTATAAAT

309



441  K ' L I F N H H K H G L I T E Y D A G N T  
1321 AAATTAATTTTTAATCATCATAAACATGGGCTAATAACAGAGTACGATGCTGGAAATACC

461 N A P T M G I Y V N L P K H Y L S C L N  
1381 AATGCCCCTACCATGGGAATATATGTAAACCTCCCAAAACACTATTTATCTTGCTTAAAT

481 S Y Y P L T A T T N G M G K E E L K M Y  
1441 AGCTATTATCCTTTAACTGCTACTACGAATGGAATGGGTAAAGAAGAACTTAAAATGTAT

501 S F G W T H E S V D F L N E I S N D K I  
1501 TCGTTTGGATGGACACATGAAAGTGTTGATTTTTTAAATGAAATTAGCAATGACAAAATT

521 T Q I P A V K A Y N L N S N S R V I K G  
1561 ACACAAATCCCTGC AGTAAAAGCCTATAATTTAAATTCGAACTCTAGGGTAATTAAAGGC

541 P G H I G G N L V Y L S D K S Q L S L A  
1621 CCTGGTCATATCGGTGGAAACTTGGTTTATCTTAGTGATAAGAGTCAACTATCTTTAGCT

561 C R Y T N S S P Q D F L I R I R Y A S N  
1681 TGCAGGTACACAAATTCTTCTCCTCAGGATTTTTTAATAAGAATTCGATATGCTTCAAAT
581 K R N M V Q L F T P F S T H Q F V L P Q  
1741 AAGCGGAACATGGTACAACTATTTACGCCCTTCAGTACACACCAATTTGTGCTTCCACAA

601 T F N H L N I E Q T K Y E D Y E Y A Q L  
1801 ACTTTC AATCATTTGAATAT AGAACAAACAAAATATGAAGATTACGAATATGCTCAACTT

621 P G S L T I N G N V N I D L L F L L N V  
1861 CCAGGAAGTTTAACGATTAACGGTAATGTAAATATAGATTTATTATTTCTGCTCAATGTA

641 L D G G E L L L D K I E F I P L T Q K V  
1921 TTAGATGGTGGTGAATTACTTCTTGATAAAATAGAGTTTATACCATTAACTCAAAAAGTT

661 K D N L E K E K I D M L K N L T D S L F  
1981 AAAGATAACCTAGAAAAGGAAAAAATAGATATGTTAAAAAATTTAACAGATTCATTATTT

681 N S P A K D T L K I N S T D Y Q I D Q I  
2041 AATAGTCCTGCAAAAGATACTTTAAAAATTAATAGTACAGATTATCAAATTGACCAAATC

701 A F Q I E S I N E E I N T Q E K M K L L  
2101 GCTTTTCAAATAGAGTCTATAAATGAAGAAATTAATACACAAGAAAAGATGAAATTACTA

721 D N I K Y A K K L N Q L R N L L Y S R E  
2161 GATAATATAAAATATGCAAAAAAACTAAATCAATTACGAAATCTTTTATATTCTAGAGAG

741 S Q A Q I D W V T S N D V S I Y H G K K  
2221 TCTCAAGCTCAAATAGATTGGGTAACAAGTAATGATGTTTCTATTTATCATGGTAAAAAA

761 P F N E Y T L V M S G S S L S K I T S S  
2281 CCATTTAATGAATATACTCTTGTTATGTCAGGATCAAGTTTATCGAAGATTACATCTTCA

781 N Y P T Y I Y K K I E E S K L K P Y T R  
2341 AACTATCCAACCTATATTTATAAAAAAATTGAAGAGTCTAAACTAAAACCATATACACGT

801 Y L V R G F I S N S D N L E I F I S R Y  
2401 TACCTGGTGAGGGGTTTTATAAGTAACAGTGACAATTTAGAAATTTTTATATCTCGATAC

821 E N E I H T N M N V H V D D D T L L N S  
2461  GAAAAT GAAATT CAT AC C AAT ATGAATGTT C ATGTAGAC GACG AT AC TC T ATT AAATTC A

841 Y K R Q N E C E S K L P I V F D E T S Q  
2521 TATAAACGAC AAAACGAATGTGAATCTAAACTCCCAATTGTTTTTGATGAAACATCACAA

861 Y P L S P S R T S G I S N H S Y Y N G A  
2581 TATCCACTGTCTCCTAGTCGTACTTCAGGCATATCTAATCATTCATATTATAATGGTGCA

881 Q Q S S C H D T Q I F S F S I D T G D V  
2641 CAGCAGTCATCGTGCCATGACACCCAGATATTTTCATTTTCTATTGATACAGGAGACGTT
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901  D F N E Y P G I E  I L F K L S N S N G Y  
2701 GATTTTAATGAATATCCCGGTATTGAAATTCTATTCAAACTTTCTAATTCAAATGGGTAC

9 21  A S I S N L E V I  E E R L L T E E E K R  
2 7 6 1  GCTTCAATAAGTAATTTAGAAGTAATAGAAGAGCGATTACTAACCGAAGAAGAAAAACGA

9 41  H I I E I E N R W K A K K E I Q R N E T  
2 8 2 1  CATATTATTGAAATAGAAAATCGATGGAAAGCAAAAAAAGAAATTCAACGC AATGAAACT

961  E K E T T Q A Q Q A I N N L F T D T Q Y  
2881 GAAAAAGAAACTACGCAAGCACAACAAGCAATAAATAATTTATTTACGGATACACAATAT

981  S K L K F E T T K Q S I S K A N A I L E  
2941 TCAAAATTAAAATTTGAAACAACTAAAC AAAGTATTAGC AAAGCTAATGCT ATTTTGGAA
1001  N I P Y V Y N S L L P T E P G M N F E L  
3001 AACATCCCCTATGTGTAC AATTCATTATTACCAACAGAACCAGGT ATGAATTTTGAATTA
1021  F N S F  K D Q I N K A H T L Y K M R N S
3061  TTTAATAGTTTTAAAGATCAAATAAATAAAGCACACACATTATATAAAATGAGAAATTCA
10 4 1  I K N G - D F I N G T E Y W S I S T D V K  
3121 ATTAAGAATGGTGATTTCATCAATGGTACAGAATATTGGTCTATTTCAACAGATGTTAAA
1061  L E K T N I E T I L V M S S W S A Q S S  
3181 CTGGAAAAAACGAACATTGAAACTATTCTTGTTATGTCGAGTTGGAGCGCCCAATCATCT
1081  Q Q I L V Q K Q N R Y L L R V I A K K E  
3241  CAACAAATACTAGTACAAAAACAAAATCGATACCTACTCCGTGTCATAGCAAAAAAAGAA
1101  D M G S G N V T I  S D C L N N I A K I E
3301 G AT ATGGGT AGT GG AAAT GT GAC AAT C AGT GACT GT T T AAAT AAT AT AGCT AAAAT AGAG
1121  F I P H D C N M N  
3361  TTTATTCCCCATGATTGTAATATGAACC

cry48Ab2 partial gene sequence and translated amino acid sequence of variant 
found in strain 2173 (AM237208)

1 M D I N N N N E K E I I N S H L L P A S  
1 ATGGATATCAACAATAATAATGAAAAGGAAATTATTAATTCTCATTTACTACCGGCTTCA

21 L L K K H P I K S L Q S T N Y K D W L N  
61 CTTTTAAAAAAACATCCTATTAAGTCTTTACAGAGCACAAATTACAAAGATTGGCTTAAT
41 L C Q D F N K D I E S Y D L V T A V S S  

121 CTGTGTCAAGATTTTAATAAGGATATTGAAAGTTATGATTTGGTAACAGCTGTCTCGAGT
61 G T I V V G T M L S A I Y A P A I I A G  
181 GGGACTATTGTCGTAGGTACCATGTTGAGTGCTATTTATGCACCTGCAATTATAGCTGGC

81 P I G V I G A I  I  I S F G T L L P L L W  
241 CCTATAGGAGTAATAGGCGCTATCATTATATCTTTTGGCACTCTTCTACCTCTTCTATGG
101 S E D E N N P K T V W I E F I R M G E R  
301 TCTGAGGACGAGAATAACCCTAAAACGGTATGGATTGAATTTATTAGAATGGGAGAGCGC
121 L V D K T I ^ S Q T V L N I L E S Y L K D  
361 CTTGTTGATAAAACAATATCGCAAACAGTGTTAAATATACTGGAAAGCTACTTAAAAGAT
141  L K V N L I D Y E K A K Q D W I E L K K  
421 TTAAAGGTAAATTTAATAGATTATGAAAAAGCGAAACAAGATTGGATTGAATTAAAAAAA
161 Q Q L P G S P P S I N L R N A A D I A H  
4 81 CAGCAACTTCCTGGTTCACCTCCTTCTATTAACTTAAGGAATGCTGCAGATATTGCTCAT
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181 Q R L D S L H N K F A E L N V F K V A S  
541 CAAAGACTTGATTC ACTTCATAATAAGTTTGCTGAATTGAATGTGTTCAAAGTGGCATCT
201  Y E T I L L P V Y A Q A A N L H L N L L  
601 TATGAAACAATTTTGCTACCAGTTTATGCACAAGCTGCCAACTTACATTTAAACTTGTTA
221  Q Q G A M F A D Q W I E D K Y S P R N D  
661 C AAC AAGGGGCTATGTTTGCAGATCAATGGATTGAGGAT AAAT ATTCACCGAGAAATGAT
241  T F A G N S N D Y  Q D L L K S R T I T Y
721 ACATTTGCAGGAAATTCAAATGATTATCAGGATTTGTTAAAATCTAGAACAATAACCTAT
261  I N H I E N T Y K D G L N Y L W N Q P E  
781 ATAAATCACATTGAAAATACTTACAAAGATGGACTTAATTACTTATGGAATCAACCGGAA
281 M T W D I Y N E Y R T N M T L T A L D L  
841 ATGACGTGGGATATATATAATGAATACCGAACAAATATGACCCTTACTGCATTAGATCTC
301 L P L F .  P F Y N K E L Y D P R V G I K S
901 TTGCCATTATTTCCTTTTTATAAC AAAGAATTAT ATGATCCTAGAGTTGGTATAAAATCA
321 E L T R E V Y  I N T P V D P H L H R Y F
9 61 GAACTTACAAGAGAAGTATATATTAATACACCTGTAGATCCACATTTACACAGGTACTTC
341 K L G E T E D K L T N N S E L F K W L T  
1021 AAATTAGGTGAGACAGAAGATAAACTTACAAATAATAGTGAGTTATTTAAATGGCTAACA
361 S L K F R T F N Q P G F P F L I G N M N  
1081 AGTCTAAAATTTAGAACGTTTAATCAACCTGGATTCCCTTTTTTAATTGGAAATATGAAT

381  Y F K K T N G T Q L I N N Q Q Q L W S F  
1141 TACTTTAAAAAAACAAACGGTACACAACTTATCAATAACCAACAGCAGCTTTGGTCGTTT

401  P G T T E I E K L F P S P A N I D K V T  
12 01 CCTGGAACAACCGAAATTGAAAAATTGTTCCCTTCACCGGCAAATATAGATAAAGTTACT

4 21  M Y I Y Y G S G W E V P E P I S I T I N
12 61 ATGTATATTTATTATGGTAGCGGATGGGAAGTTCCTGAGCCTATTAGTATTACTATAAAT

4 41  K L I F N H H K H G L I T E Y D A G N T
1321 AAATTAATTTTTAATCATCATAAACATGGGCTAATAACAGAGTACGATGCTGGAAATACC

4 61  N A P T M G I Y V N L P K H Y L S C L N
1381 AATGCCCCTACCATGGGAATATATGTAAACCTCCCAAAACACTATTTATCTTGCTTAAAT

4 81  S Y Y P L T A T T N G M G K E E L K M Y
14 41 AGCTATTATCCTTTAACTGCTACTACGAATGGAATGGGTAAAGAAGAACTTAAAATGTAT

501  S F G W T H v E S V D F L N E I S N  D K I
1501 TCGTTTGGATGGACACATGAAAGTGTTGATTTTTTAAATGAAATTAGCAATGACAAAATT

5 2 1  T Q I P A V K A Y N L N S N S R V I K G
1561 ACACAAATCCCTGCAGTAAAAGCCTATAATTTAAATTCGAACTCTAGGGTAATTAAAGGC

5 4 1  P G H I G G N L V Y L S D K S Q L S L A
1621 CCTGGTCATATCGGTGGAAACTTGGTTTATCTTAGTGATAAGAGTCAACTATCTTTAGCT

5 61  C R Y T N S S P Q D F L I R I R Y A S N
1681 TGCAGGTACACAAATTCTTCTCCTCAGGATTTTTTAATAAGAATTCGATATGCTTCAAAT

581 K R N M V Q L F T P F S T H Q F V L P Q
1741 AAGCGGAACATGGTACAACTATTTACGCCCTTCAGTACACACCAATTTGTGCTTCCACAA

601  T F N H L N I E Q T K Y E D Y E Y A Q L
1801 ACTTTCAATCATTTGAATATAGAACAAACAAAATATGAAGATTACGAATATGCTCAACTT

621 P G S L T I N G N V N I  D L L F L L N V
18 61 CCAGGAAGTTTAACGATTAACGGTAATGTAAATATAGATTTATTATTTCTGCTCAATGTA
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641
1921
661
1981
681

2041
701

2101

721
2161
741

2221

761
2281
781

2341
801

2401
821

2461
841

2521
861

2581
881

2641
901

2701
921

2761
941

2821
961

2881
981

2941
1001
3001
1021
3061
1041
3121
1061
3181
1081
3241

L D G G E L L L D K I E F I P L T Q K V
TTAGATGGTGGTGAATTACTTCTTGATAAAATAGAGTTTATACCATTAACTCAAAAAGTT

K D N L E K E K I  D M L K N L T D S L F  
AAAGATAACCTAGAAAAGGAAAAAATAGATATGTTAAAAAATTTAACAGATTCATTATTT

N S P A K D T L K I D S T D Y Q I D Q I
AATAGTCCTGCAAAAGATACTTTAAAAATTGATAGTACAGATTATCAAATTGACCAAATC

A F Q I E S I N E E I N T Q E K M K L L
GCTTTTCAAATAGAGTCTATAAATGAAGAAATTAATACACAAGAAAAGATGAAATTACTA

D N I K Y A K K L N Q L R N L L Y S R E
GATAATATAAAATATGCAAAAAAACTAAATCAATTACGAAATCTTTTATATTCTAGAGAG

S Q A Q I D W V T S N D V S  I Y H G K K  
TCTCAAGCTCAAATAGATTGGGTAACAAGTAATGATGTTTCTATTTATCATGGTAAAAAA

P F N E Y T L V M S G S S L S K I T S S
CCATTTAATGAATATACTCTTGTTATGTCAGGATCAAGTTTATCGAAGATTACATCTTCA

N Y P T Y I Y K K I E E S K L K P Y T R  
AACT ATCC AAC C TAT ATT T AT AAAAAAATTGAAGAGT CT AAAC TAAAAC C ATAT AC ACGT

Y L V R G F I S N S D N L E I F I S R Y
TACCTGGTGAGGGGTTTTATAAGTAACAGTGACAATTTAGAAATTTTTATATCTCGATAC

E N E I H T N M N V H V D D D T L L N S
GAAAATGAAATTCATACCAATATGAATGTTCATGTAGACGACGATACTCTATTAAATTCA

Y K R Q N E C E S K L P I V F D E T S Q
TATAAACGACAAAACGAATGTGAATCTAAACTCCCAATTGTTTTTGATGAAACATCACAA

F P L S P S R T S G I S N H S Y Y N G A
TTTCCACTGTCTCCTAGTCGTACTTCAGGCATATCTAATCATTCATATTATAATGGTGCA

Q Q S S C H D T Q I F S F S I D T G D V
CAGCAGTCATCGTGCCATGACACCCAGATATTTTCATTTTCTATTGATACAGGAGACGTT

D F N E Y P G I E I L F K L S N S N G Y
GATTTTAATGAATATCCCGGTATTGAAATTCTATTCAAACTTTCTAATTCAAATGGGTAC

A S I S N L E V I E E R L L T E E E K R
GCTTCAATAAGTAATTTAGAAGTAATAGAAGAGCGATTACTAACCGAAGAAGAAAAACGA

H I I E I E N R W K A K K E I Q R N E T
CATATTATTGAAATAGAAAATCGATGGAAAGCAAAAAAAGAAATTCAACGCAATGAAACT

E K E T T Q A Q Q A I N N L F T D T Q Y
GAAAAAGAAACTACGCAAGCCCAACAAGCAATAAATAATTTATTTACGGATACACAATAT

S K L K F E T T K Q S I  S K A N A I L E  
TCAAAATTAAAATTTGAAACAACTAAACAAAGTATTAGCAAAGCTAATGCTATTTTGGAA

N I P Y V Y N S L L P T E P G M N F E L
AACATCCCCTATGTGTACAATTCATTATTACCAACAGAACCAGGTATGAATTTTGAATTA

F N S F K D Q I N K A H T L Y K M R N S
TTTAATAGTTTTAAAGATCAAATAAATAAAGCACACACATTATATAAAATGAGAAATTCA

I K N G D F I N G T K Y W S I S T D V K
ATTAAGAATGGTGATTTCATCAATGGTACAAAATATTGGTCTATTTCAACAGATGTTAAA

L E K T N I E T I L V M S S W S A Q S S
CTGGAAAAAACGAACATTGAAACTATTCTTGTTATGTCGAGTTGGAGCGCCCAATCATCT

Q Q I L V Q K Q N R Y L L R V I A K K E  
CAAC AAAT AC TAGT AC AAAAAC AAAATC GATACC TACTCCGTGTC AT AGC AAAAAAAGAA
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1101 D M G S G N V T I  S D C L N N I A K I E  
3301 GATATGGGT AGT GG AAAT GT GAC AAT C AGT GAC T GT T T AAAT AAT AT AGC T AAAAT AGAG
1121  F I P H D C N M N  
3361 TTTATTCCCCATGATTGTAATATGAACC

Appendix 3. Maps of commercially available vectors used in this study
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In Bacillus thuringiensis subsp. israelensis all of the insecticidal toxins are encoded on a single, large plasmid, 
pBtoxis. Sequencing of this plasmid revealed 125 potential coding sequences, many of which have predicted 
functions in gene regulation and physiological processes, such as germination. As a first step in understanding 
the possible role of pBtoxis in its host bacterium, a survey of the transcription of genes with predicted functions 
was carried out. Whereas many coding sequences, including those previously identified as probable pseudo­
genes, were not transcribed, mRNA was detected for 29 of the 40 sequences surveyed. Several of these 
sequences, including eight with similarities to the sequences of known transcriptional regulators, may influence 
wider gene regulation and thus may alter the phenotype of the host bacterium.

Bacillus thuringiensis subsp. israelensis is widely used for con­
trol of dipteran pest insects and vectors of human disease, such 
as mosquitoes and blackflies. This bacterium has an excellent 
safety record, and there have been no reports of insect resis­
tance in the field. An important factor in this lack of resistance 
is the complex arsenal of toxins produced by this organism (5), 
all of which are encoded by a single, large plasmid, pBtoxis. 
Sequencing of this plasmid (3) revealed 125 coding sequences 
(CDSs), including the sequences of the previously identified 
toxin genes (cry4Aa, cry4Ba, cryllAa, crylOAa, cytlAa, and 
cyt2Ba)\ a new, putative toxin gene, cytlCa, encoding a previ­
ously undescribed fusion toxin; several CDSs corresponding to 
fragments of toxin-encoding sequences; and numerous trans­
position-associated CDSs. Whereas such sequences accounted 
for 30% of the CDSs, it is likely that other plasmid CDSs may 
also have an effect on the host cell phenotype. Several of the 
CDSs appeared to be related to genes encoding transcriptional 
regulators in other organisms. Production of such regulators 
might alter the transcription of genes located both on the 
plasmid and on the chromosome and thereby have significant 
effects on the phenotype and, perhaps, on virulence.

As a first step in analyzing the possible roles of such plasmid 
genes, we performed a transcriptional survey of the pBtoxis 
genes using previously identified orthologs in other organisms. 
Clearly, effects on the phenotype can be exerted only through 
expression of the plasmid CDSs. Thus, we identified poten­
tially important genes that could be investigated further to 
increase our understanding of the molecular biology of B. 
thuringiensis subsp. israelensis.

MATERIALS AND METHODS

B a c t e r i a l  s t r a i n s .  F o r  t h i s  s u r v e y ,  w e  u t i l i z e d  B. thuringiensis s u b s p .  israelensis 
s t r a i n  4 Q 7  ( a l s o  k n o w n  a s  4 Q 2 - 8 1 ) ,  a  p l a s m i d l e s s  s t r a i n ,  i n  o r d e r  t o  p r e s c r e e n  
C D S - s p e d f i c  p r i m e r s  t o  e n s u r e  t h a t  t h e r e  w e r e  n o  g e n o m i c  c o p i e s  o f  t h e  g e n e s  t h a t  
m i g h t  p r o d u c e  f a l s e - p o s i t i v e  r e s u l t s  f o r  p B t o x i s - d e  r i v e d  g e n e  e x p r e s s i o n .  B. thurin­

giensis s u b s p .  israelensis s t r a i n  4 Q 5  ( a l s o  k n o w n  a s  4 Q 2 - 7 2 )  h a s  b e e n  c u r e d  o f  a l l  
p l a s m i d s  e x c e p t  p B t o x i s  a n d  w a s  u s e d  t o  d e t e r m i n e  w h e t h e r  t r a n s c r i p t s  w e r e  p r o ­
d u c e d  f r o m  C D S s  o n  t h i s  p l a s m i d  ( s i n c e  f u l l  s e q u e n c e s  h a v e  n o t  b e e n  d e t e r m i n e d  
f o r  a l l  B. thuringiensis s u b s p .  israelensis p l a s m i d s ,  t h e  u s e  o f  s t r a i n  4 Q 5  e l i m i n a t e d  
f a l s e - p o s i t i v e  r e s u l t s  i f  r e l a t e d  C D S s  w e r e  p r e s e n t  o n  o t h e r  p l a s m i d s ) .

C D S s  u s e d .  T a b l e  1  s h o w s  t h e  s u b s e t  o f  p B t o x i s  C D S s  s u r v e y e d  i n  t h i s  s t u d y  
a n d  t h e i r  r e l a t e d n e s s  t o  p r e v i o u s l y  r e p o r t e d  g e n e s ,  a s  i d e n t i f i e d  d u r i n g  s e q u e n c ­
i n g  o f  t h e  p l a s m i d  ( 3 ) .  A s  a  p o s i t i v e  c o n t r o l ,  t h e  g e n e  e n c o d i n g  t h e  C i y l  l A a  t o x i n  
( p B t 0 2 3 )  w a s  c h o s e n  s i n c e  p r o d u c t i o n  o f  t h i s  p r o t e i n ,  l i k e  p r o d u c t i o n  o f  C r y 4 A a ,  
C r y 4 B a ,  a n d  C y t l A a ,  i s  k n o w n  t o  b e  s i g n i f i c a n t  ( 1 3 ) .

Detection strategy. F o r  e a c h  C D S  s u r v e y e d ,  a  p a i r  o f  o l i g o n u c l e o t i d e  p r i m e r s  w a s  
d e s i g n e d  s o  t h a t  t h e y  h a d  a n n e a l i n g  t e m p e r a t u r e s  i n  t h e  a p p r o x i m a t e  r a n g e  f r o m  5 8  
t o  6 6 ° C  a n d  p r o d u c e d  1 2 8 -  t o  7 0 3 - b p  a m p l i c o n s  f r o m  t h e  t a r g e t  s e q u e n c e s  ( T a b l e  2 ) .  
T h e  a b i l i t i e s  o f  t h e  p r i m e r  p a i r s  t o  p r o d u c e  t h e  d e s i r e d  a m p l i c o n s  w e r e  c o n f i r m e d  b y  
c o l o n y  P C R  u s i n g  v e g e t a t i v e  c e l l s  o f  s t r a i n  4 Q 5  a s  t h e  t e m p l a t e ;  t h e  P C R  c o n d i t i o n s  
w e r e  9 5 ° C  f o r  5  m i n ,  f o l l o w e d  b y  3 0  c y c l e s  o f  9 5 ° C  f o r  1  m i n ,  5 5 ° C  f o r  1  m i n ,  a n d  
7 2 ° C  f o r  1  m i n  a n d  t h e n  a  f i n a l  e x t e n s i o n  a t  7 2 ° C  f o r  1 0  m i n .  E a c h  p r i m e r  p a i r  w a s  
t h e n  u s e d  i n  a  s i m i l a r  c o l o n y  P C R  u s i n g  s t r a i n  4 Q 7  t o  t e s t  f o r  t h e  p r e s e n c e  o f  r e l a t e d  
C D S s  i n  t h e  h o s t  g e n o m i c  D N A  A s  a  f u r t h e r  c o n t r o l ,  P C R s  w e r e  c a r r i e d  o u t  w i t h  
p r i m e r  p a i r s  i n  t h e  a b s e n c e  o f  a n y  t e m p l a t e .

T o  d e t e c t  t r a n s c r i p t i o n ,  R N A  w a s  i s o l a t e d  f r o m  B. thuringiensis s u b s p .  israelen­
sis 4 Q 5  c u l t u r e s  g r o w n  a t  3 0 ° C  w i t h  s h a k i n g  i n  N Y S M  m e d i u m  ( 1 1 ) ,  u s i n g  a n  
R N e a s y  m i n i  k i t  ( Q I A G E N )  a c c o r d i n g  t o  t h e  m a n u f a c t u r e r ’s  i n s t r u c t i o n s .  S a m ­
p l e s  ( 1  m l )  w e r e  r e m o v e d  f o r  R N A  i s o l a t i o n  a t  a p p r o x i m a t e l y  1 2 ,  2 4 ,  a n d  3 6  h  
a f t e r  i n o c u l a t i o n  o f  3 0  m l  o f  m e d i u m  w i t h  o n e  c o l o n y  f r o m  a  p l a t e  t h a t  w a s  
i n c u b a t e d  o v e r n i g h t  T h e s e  t i m e s  w e r e  c h o s e n  s i n c e  t h e y  c o r r e s p o n d e d  t o  t i m e s  
w h e n  t h e r e  w e r e  r a p i d l y  d i v i d i n g  v e g e t a t i v e  c e l l s  a t  t h e  e a r l y  t i m e s  a n d  w h e n  
t h e r e  w e r e  c e l l s  i n  d i f f e r e n t  p h a s e s  o f  t h e  s p o r u l a t i o n  p r o c e s s  l a t e r .  R N A s  f r o m  
t h e s e  d i f f e r e n t  t i m e s  w e r e  t h e n  p o o l e d  f o r  r e v e r s e  t r a n s c r i p t i o n  s i n c e  i t  w a s  
c o n c l u d e d  t h a t  t h e  r e v e r s e  t r a n s c r i p t i o n - P C R  t e c h n i q u e  i s  s o  s e n s i t i v e  t h a t  
i n f o r m a t i o n  c o n c e r n i n g  t h e  s t a g e  s p e c i f i c i t y  o f  t r a n s c r i p t i o n  c o u l d  n o t  b e  d e r i v e d  
r e l i a b l y .  F o r  r e v e r s e  t r a n s c r i p t i o n ,  S u p e r s c r i p t  R N a s e  H ~  r e v e r s e  t r a n s c r i p t a s e  
( I n v i t r o g e n )  w a s  u s e d  t o  o b t a i n  c D N A  f r o m  a p p r o x i m a t e l y  2 0 0  n g  o f  i s o l a t e d  
R N A  w i t h  1 2 . 5  p - g / p l  r a n d o m  h e x a m e r  p r i m e r s  i n  a  2 0 - p J  ( f i n a l  v o l u m e )  m i x t u r e  
a c c o r d i n g  t o  t h e  m a n u f a c t u r e r ’s  i n s t r u c t i o n s .  I n  e a c h  c a s e ,  a  d u p l i c a t e  s a m p l e  t o  
w h i c h  n o  r e v e r s e  t r a n s c r i p t a s e  w a s  a d d e d  w a s  p r e p a r e d  a s  a  n e g a t i v e  c o n t r o l .  
T h i s  s a m p l e  w a s  u s e d  i n  s u b s e q u e n t  P C R s  i n  p a r a l l e l  w i t h  t h e  r e v e r s e - t r a n ­
s c r i b e d  R N A  t o  e n s u r e  t h a t  t h e r e  w a s  n o  b a c t e r i a l  D N A  c o n t a m i n a t i o n  o f  t h e  
R N A  s a m p l e s  t h a t  w o u l d  l e a d  t o  f a l s e - p o s i t i v e  r e s u l t s .  P C R  w a s  c a r r i e d  o u t  
u n d e r  t h e  c o n d i t i o n s  d e s c r i b e d  a b o v e  f o r  t h e  c o l o n y  P C R  e x c e p t  t h a t  t h e  i n i t i a l  
s t e p  c o n s i s t i n g  o f  9 5 ° C  f o r  5  m i n  w a s  o m i t t e d .  A m p l i f i e d  p r o d u c t s  w e r e  v i s u a l i z e d  
i n  1 . 5 %  a g a r o s e  g e l s  ( > 2 0 0 - b p  a m p l i c o n s )  o r  2 %  a g a r o s e  g e l s  ( < 2 0 0 - b p  a m p l i ­
c o n s )  t h a t  w e r e  s t a i n e d  w i t h  e t h i d i u m  b r o m i d e .

* Corresponding author. Mailing address: Cardiff School o f Bio­
sciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, 
United Kingdom. Phone: 44-29-20874508. Fax: 44-29-20874116. E-mail: 
Berry@cf.ac.uk.

RESULTS AND DISCUSSION
Genomic homologs. No CDS-specific primer pairs produced 

amplicons in template-free controls, indicating that artifactual
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TABLE 1. CDSs included in the transcriptional survey

C D S " P r e d i c t e d  p r o d u c t
T r a n s c r i p t i o n a l

a c t i v i t y

p B t O l l P u t a t i v e  D N A - b i n d i n g  p r o t e i n Y e s
p B t 0 1 4 P r o b a b l e  t r a n s c r i p t i o n a l  r e g u l a t o r Y e s
p B t 0 2 0 H y p o t h e t i c a l  p r o t e i n N o
p B t 0 2 1 C y t l A a  t o x i n Y e s
p B t 0 2 3 C r y l l A a  c r y s t a l  t o x i n Y e s
p B t 0 2 9 P u t a t i v e  D N A - b i n d i n g  p r o t e i n N o
p B t 0 3 1 P u t a t i v e  A - a c e t y l m u r a m o y l - L - a l a n i n e  a m i d a s e  

( p e p t i d o g l y c a n  h y d r o l a s e )
Y e s

p B t 0 3 6 C y t 2 B a  c y t o l y t i c  d e l t a - e n d o t o x i n Y e s
p B t 0 5 4 C y t l C a  p o s s i b l e  t w o - d o m a i n  t o x i n Y e s
p B t 0 5 6 H y p o t h e t i c a l  p r o t e i n  ( p o t e n t i a l  p s e u d o g e n e ;  

m a t c h e s  p B t l 5 2  w i t h  t w o  f r a m e s h i f t s  a n d  a n  
i n - f r a m e  s t o p )

N o

p B t 0 6 0 P u t a t i v e  s p o r e  g e r m i n a t i o n  p r o t e i n  
( p s e u d o g e n e ;  c o n t a i n s  t w o  p o t e n t i a l  
f r a m e s h i f t s )

N o

p B t 0 6 3 P u t a t i v e  s p o r e  g e r m i n a t i o n  p r o t e i n  
( p s e u d o g e n e ;  t r u n c a t e d  b y  I S 2 4 0  i n s e r t i o n )

N o

p B t 0 7 5 H y p o t h e t i c a l  p r o t e i n ;  w e a k l y  s i m i l a r  t o  a  
Yersinia pestis p l a s m i d  h y p o t h e t i c a l  p r o t e i n

Y e s

p B t 0 8 4 P u t a t i v e  s p o r e  g e r m i n a t i o n  p r o t e i n ;  s i m i l a r  t o  
B. subtilis G e r A C

Y e s

p B t 0 8 5 P u t a t i v e  s p o r e  g e r m i n a t i o n  p r o t e i n ;  s i m i l a r  t o  
B. subtilis G e r B B

Y e s

p B t 0 8 6 P u t a t i v e  s p o r e  g e r m i n a t i o n  p r o t e i n ;  s i m i l a r  t o  
B. subtilis G e r K A

Y e s

p B t 0 8 7 P u t a t i v e  1 - p h o s p h a t i d y l i n o s i t o l  
p h o s p h o d i e s t e r a s e  p r e c u r s o r ;  c o n t a i n s  a n  
i n - f r a m e  T G A  s t o p  a f t e r  a m i n o  a c i d  8 6

N o

p B t 0 9 1 P u t a t i v e  t r a n s c r i p t i o n a l  r e g u l a t o r ,  A r s R  f a m i l y Y e s
p B t 0 9 2 S m a l l  D N A - b i n d i n g  p r o t e i n  ( b a c t e r i a l  h i s t o n e -  

l i k e  f a m i l y )
Y e s

p B t 0 9 3 H f Q  p r o t e i n  ( R N A - b i n d i n g  p r o t e i n ) N o
p B t 0 9 4 P u t a t i v e  t r a n s c r i p t i o n a l  r e g u l a t o r ;  s i m i l a r  t o  

B. subtilis t r a n s i t i o n  s t a t e  r e g u l a t o r s
Y e s

p B t 9 7 P u t a t i v e  d a s s  I I  a m i n o t r a n s f e r a s e Y e s
p B t 9 8 P y r i d o x a l  p h o s p h a t e - d e p e n d e n t  e n z y m e Y e s
p B t l O O t R N A  s y n t h e t a s e - r e l a t e d  p r o t e i n Y e s
p B t l O l P o s s i b l e  k i n a s e Y e s
p B t l 0 2 G n t R  f a m i l y  t r a n s c r i p t i o n a l  r e g u l a t o r  

c o n t a i n i n g  a m i n o t r a n s f e r a s e  d o m a i n
N / D *

p B t l 0 8 P u t a t i v e  s i g m a  f a c t o r ,  E C F  f a m i l y Y e s
p B t l 2 0 P u t a t i v e  D N A - b i n d i n g  p r o t e i n Y e s
p B t l 3 1 P u t a t i v e  A B C  t r a n s p o r t e r  p e r m e a s e  p r o t e i n N o
p B t l 3 2 P u t a t i v e  A B C  t r a n s p o r t e r  A T P - b i n d i n g  p r o t e i n N / D
p B t l 3 3 P u t a t i v e  A B C  t r a n s p o r t e r  e x p o r t e d  s o l u t e -  

b i n d i n g  p r o t e i n
N / D

p B t l 3 6 P o s s i b l e  p e p t i d e  a n t i b i o t i c  p r e c u r s o r Y e s
p B t l 3 7 I n t e g r a l  m e m b r a n e  p r o t e i n  ( p o s s i b l e  p e p t i d e  

a n t i b i o t i c  m a t u r a t i o n  a n d  b i o s y n t h e s i s  
p r o t e i n )

Y e s

p B t l 3 8 I n t e g r a l  m e m b r a n e  p r o t e i n  ( p o s s i b l e  a c c e s s o r y  
f a c t o r  i n  p e p t i d e  a n t i b i o t i c  s e c r e t i o n )

Y e s

p B t l 3 9 P u t a t i v e  A B C  t r a n s p o r t e r  A T P - b i n d i n g  p r o t e i n N o
p B t l 4 5 P u t a t i v e  s p o r e  c o a t - a s s o c i a t e d  p r o t e i n ;  s i m i l a r  

t o  B. subtilis s p o r e  c o a t - a s s o c i a t e d  p r o t e i n  
N  C o t N

Y e s

p B t l 4 7 H f Q  p r o t e i n  ( R N A - b i n d i n g  p r o t e i n ) N o
p B t l 4 8 P u t a t i v e  t r a n s c r i p t i o n a l  r e g u l a t o r ,  s i m i l a r  t o  

B. subtilis t r a n s i t i o n  s t a t e  r e g u l a t o r s
Y e s

p B t l 4 9 P u t a t i v e  t r a n s c r i p t i o n a l  r e g u l a t o r ,  A r s R  f a m i l y Y e s
p B t l 5 2 H e m a g g ) u t i n i n - r e l a t e d  p r o t e i n Y e s
p B t l 5 6 F t s Z / t u b u l i n - r e l a t e d  p r o t e i n Y e s
p B t l 5 7 P u t a t i v e  D N A - b i n d i n g  p r o t e i n ;  c o n t a i n s  

p r e d i c t e d  h e l i x - t u m - h e l i x  m o t i f
Y e s

p B t ! 5 8 P u t a t i v e  t r a n s c r i p t i o n a l  r e g u l a t o r ,  M e r R  f a m i l y N o

“  T h e  C D S  d e s i g n a t i o n s  a r e  t h o s e  d e s c r i b e d  b y  B e r r y  e t  a l .  ( 3 ) ,  w h o  d e s c r i b e  
e a c h  C D S  a n d  i t s  d a t a b a s e  h o m o l o g s  i n  m o r e  d e t a i l .  T h e  t r a n s c r i p t i o n a l  a c t i v i t y  
d e t e r m i n e d  i n  t h i s  s t u d y  i s  i n d i c a t e d .

*  N / D ,  n o t  d e t e r m i n e d  ( a c t i v i t y  o f  t h e  g e n e  w a s  n o t  a s s e s s e d  d u e  t o  t h e  
p r e s e n c e  o f  c l o s e l y  r e l a t e d  g e n o m i c  c o p i e s  o f  t h e  g e n e ) .

A ppl . E n v ir o n . M icrobiol .

products from primers alone were not generated. Prescreening 
of primer pairs with plasmidless B. thuringiensis subsp. israelensis 
strain 4Q7 resulted in production of amplicons with the 
pBtl02, pBtl32, and pBtl33 oligonucleotide pairs. The result­
ing fragments were cloned into the vector pGEM-T (Promega) 
and subjected to DNA sequencing. Analysis of these sequences 
revealed very closely related genomic homologs of the plasmid 
target genes (and also homologs in the complete B. thuringiensis 
subsp. konkukian genome [accession number AE017355]). As a 
result, analysis of the expression of the corresponding plasmid 
CDSs could not be performed reliably. No other primer pairs 
produced amplicons from strain 4Q7 cells, whereas all other 
primer pairs produced fragments of the expected sizes when 
strain 4Q5 cells (containing the pBtoxis plasmid) provided the 
template. Products of the expected sizes were also generated 
by reverse transcription-PCR from some but not all CDSs 
(data not shown), and the amplicons were taken to indicate the 
transcriptional activities of the genes. In the case of four genes 
(pBT036, pBt084, pBtl08, and pBtl38), the amplicon was also 
cloned and sequenced to verify that the products were derived 
from the intended genes. In each case, the sequence corre­
sponded to the expected amplicon from pBtoxis. Table 1 shows 
the results of the transcriptional survey. It should be noted that 
in our experiments several CDSs were transcriptionally inac­
tive. However, we cannot completely rule out the possibility 
that these genes are transcribed (for instance, under other 
growth conditions or under the influence of unknown induc­
ers). Nonetheless, our survey did indicate that there was 
mRNA production from many of the plasmid genes assessed, 
as discussed below.

Toxin-related CDSs. As expected, transcripts for the cryllAa 
(pBt023) and cytlAa (pBt021) genes were detected, which is con­
sistent with the fact that the corresponding proteins are produced 
abundantly by B. thuringiensis subsp. israelensis during sporula- 
tion. In addition, transcripts were also detected for the cytlCa 
(pBt054) and cytTBa (pBt036) genes, for which spore-associated 
proteins have not been found in strain 4Q5 (although possible 
detection of Cyt2Ba was observed by Western blotting in B. 
thuringiensis subsp. israelensis strain 1884 [6]). The reason for 
the apparently low levels of these Cyt proteins may include 
instability of the transcript and/or the resultant protein, failure 
in translation of the message, and, in the case of Cyt2Ba, 
possible masking of the product on protein gels by CytlAa, 
which is more abundant but a similar size.

CDS pBt020 encodes a hypothetical protein with no known 
homologues in the NCBI nonredundant database. We decided 
to analyze this CDS because of its location in the pBtoxis 
plasmid, in which it is immediately downstream of the cytlAa 
gene, and because it and cytlAa are convergently transcribed 
and there are only 2  nucleotides (nt) between their stop 
codons. As a result, transcriptional read-through from both 
genes to produce antisense RNA with respect to the other gene 
is a theoretical possibility. In our experiments, an amplicon was 
produced using the pBt020 primers; however, our method of 
cDNA production using random hexamers would have pro­
duced an amplicon from this CDS whether RNA was produced 
as sense RNA (from a putative pBt020 promoter) or as anti­
sense RNA (from the cytlAa promoter). As a result, further 
experiments were performed with this pair of CDSs to determine 
the nature of the transcripts detected in the initial experiment
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TABLE 2. Oligonucleotide primer sequences based on the CDS of pBtoxis

C D S Orientation Oligonucleotide primer (5'-3') t„ ( ° c y Amplicon 
size (bp)

pBtOll Forward GACAATTATCGAAGTTGAAAAGG 62 430
Reverse ACTATTGAATCCTTCCGTTTCC 62

pBt014 Forward ACAGTAATCTATCTAAAATTGAGC 62 278
Reverse TCTAAAGTTTCACGTAGCTTCC 62

pBt020 Forward GAAGAACAAATTTTAG AGAAAGG 60 128
Reverse TAGTAGCTATATTTATTAAATATGG 60

pBt021 Forward CTGGGGCAAGGAAACTGCTA 62 270
Reverse TTAGAGGGTTCCATTAATAGCG 62

pBt023 Forward AGATAGTTCTTTAGATACnTAAG 60 314
Reverse CATCACTAACCTCAATAATCC 60

pBt029 Forward TATTAGGTTCAGAAAAGAATCCG 62 223
Reverse CAACAGAACTTATATTTCTTTCC 60

pBt031 Forward GGTGCACATGATTCAGGTGC 62 679
Reverse CGATGTGCATTACCTTCAAGG 62

pBt036 Forward AGGCATATTGCATTAACAGTTCC 64 411
Reverse TGTTTGAGTAGCTGATAAATTACG 64

pBt054 Forward GCACTAGTACCTACTACATCC 62 703
Reverse GGTTTTGAATACTGTAAGCACG 62

pBt056 Forward GATGATTTGTTTAATCCTGAATGG 64 323
Reverse TTCATTGTGGGGAAACTTTGC 60

pBt060 Forward GAATGAAAATATTGAAACCATCC 60 391
Reverse AGAAATAGGTTCCTGAATCG 60

pBt063 Forward TTATTCATTCGCTACAACTTGC 60 192
Reverse CAAAATAACTCGTTAGAATCTGG 62

pBt075 Forward AGGAGATAGTCTAAGATATGTACG 66 324
Reverse GTATTACCATTTAGATCTGTGACG 66

pBt084 Forward TAATTGCCTTAGATAGAACACC 60 541
Reverse GAGATTTTGGTTAAGTACTTTCC 62

pBt085 Forward TATTCACTCACTGCAACTGGC 62 623
Reverse CTGTATTCGCTATCAGTATTCC 62

pBt086 Forward GAATGAGATTGTTGAAACTATCC 62 641
Reverse AGTTAGATAATTCTCCTATGCC 60

pBt087 Forward GACTTGTGTAACATTAGTAGGC 62 598
Reverse TATACCGTATTCTTGGGATGC 62

pBt091 Forward CGATCTTAATTATGAACTCGAGC 64 244
Reverse CACTTGTTTATCGTCCACTCG 62

pBt092 Forward TCAGAATTAATCAAACAAGTCGC 62 257
Reverse ACAGCirCTTTTAATGCTTTTCC 62

pBt093 Forward TCTTTGCAGGAACAATTGTTGC 62 180
Reverse GAATCGAATCGTCGAGATTGC 62

pBt094 Forward GAAAGC AACCGGTATT GTACG 62 270
Reverse ACTTTGTATTGTTCTAATTCTTCC 62

pBt097 Forward GGCT G AAG AGAAGGCATGGC 64 343
Reverse CACAGTGCTCCTAGTCTCTCC 66

pBt098 Forward TGCCTATGAGTCATTGGCGG 62 356
Reverse CTGCATATGATGCCGCTGAGC 66

Continued on following page
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TABLE 2—Continued

C D S O r i e n t a t i o n O l i g o n u c l e o t i d e  p r i m e r  ( 5 ' - 3 ' ) Tm (°cr A m p l i c o n  
s i z e  ( b p )

pBtlOO Forward CGAAAATTATATCTCCAAGATCC 62 582
Reverse GCATGGAATATGCATATCACC 60

pBtlOl Forward CTATATGCTAGTGCTGAAGCC 62 403
Reverse CATTATCAACGATAACCAATCGC 64

PBtl02 Forward AGAGGTACACGTGTTAGTACAC 64 358
Reverse GTTGTGCGCCTGATGTAATCATA 66

PBtl08 Forward ACGTTGTGAAACAAATTCTATGG 62 303
Reverse GTTGATTCAT ATTACTAAGTACG 60

PBtl20 Forward CTATTAGGTTCAGAAAATAATCC 60 246
Reverse TAACTCTATTTCTTTGCTCATGC 62

pBtl31 Forward CCATGCTTGGGATTATTATCG 60 683
Reverse AGTTGCATCACTTGGCTTGCG 64

pBtl32 Forward CGTATTATCAAGGAAAATTGGC 60 455
Reverse CGTTGGATTATTCGCAATCGC 62

pBtl33 Forward CACTAATTGTTATTGTGGCAGC 62 686
Reverse TTGGATTTGTGACTTCTGAAGC 62

PBtl36 Forward TGTTCGAGATTATGGGTTATTTTG 64 218
Reverse CCATGCAACAGCITGTGCmTA 66

pBtl37 Forward CCTTATTATTTGAGGGTATTACG 62 652
Reverse GCTGAAATTATGTATAAAATTAGG 60

pBtl38 Forward GACATAAGTTTGAAATATATATGG 60 425
Reverse GTATATTGAATTTTACGAAGCCG 62

pBtl39 Forward CTACATAATATCTCATTTTCTGC 60 377
Reverse GACCAATACAATTTGTGACGC 60

pBtl45 Forward GAAATTAGGTGCTGGAGTGG 60 446
Reverse ATTTTAATCCACCTGTTTCTGC 60

pBtl47 Forward CGAAATTACAATCATTTCAAAAGG 62 225
Reverse AGAATCGAATCGTAGAGATTGC 62

pBtl48 Forward TGAAAGCAACAGGTATTGTACG 62 252
Reverse CAGCTAACAGTTGTTTTAGACC 62

pBtl49 Forward TCTATATGGATATTGAGTATTACG 62 273
Reverse CCTCTATTCTCTTCATGCrCTC 64

pBtl52 Forward GGAGATTTGACrGCCTTTGG 60 675
Reverse CCAATCATTACAATTAAGAGCG 60

pBtl56 Forward AAGAGGCTGATTTATTCGCAGG 64 425
Reverse GTTAATTTCATCAGGATCACCG 62

pBtl57 Forward TGAATAGGGATCACmTATACG 62 279
Reverse AACACTCTACTATTTCTACACC 60

pBtl58 Forward TCTGAACTTACTGGGCTTTCG 62 397
Reverse TAAGATCCTGATTTCTACGTGC 62

*  A p p r o x i m a t e  d e n a t u r a t i o n  t e m p e r a t u r e s  (Tm) ( b a s e d  o n  a p p r o x i m a t i o n s  f o r  s h o r t  s e q u e n c e s )  w e r e  d e t e r m i n e d  a s  f o l l o w s :  Tm — 4 ( G  +  C )  +  2 ( A  +  T ) .

described above. Using the same RNA sample, separate reverse 
transcriptase reactions in which the random hexamer primers 
were replaced by the following primers were carried out: pBt0 2 0  
forward or pBt021 reverse (for subsequent detection of a tran­

script from cytlAa) or pBt020 reverse or pBt021 forward (for 
subsequent detection of a transcript from pBt020). Reactions 
primed with the latter primers produced no product during 
PCR with the pBt020 forward and pBt020 reverse primers, in­
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dicating that there was no transcription from the pBt020 CDS. 
In contrast, PCR performed with the pBt021 forward and 
pBt021 reverse primers produced amplicons of the expected 
size following reverse transcription with either pBt020 forward 
or pBt021 reverse. This indicated not only that a transcript was 
produced from cytlAa (as expected) but that there was significant 
read-through into the pBt020 region since pBt020 forward must 
have primed reverse transcription in this region. Thus, it appears 
that termination of the cytlAa transcript does not occur at the 
stem-loop structure that begins 27 nt downstream of the cytlAa 
gene and within the pBt020 CDS (GGTAATATCACAAGT 
ATAAATACITGTGGTATTACC; A G = -20.8 keal/mol [17]). 
This sequence lacks the T tract of a classical factor-indepen­
dent transcriptional termination sequence, although not all 
such terminators require the T tract (18). In this case, however, 
it appears that the feature described above is not sufficient to 
cause transcript termination. The lack of pBt020 transcription 
means that this CDS is unable to interfere with production of 
CytlAa from its gene. Analysis of the region upstream of the 
pBt020 CDS revealed a region with some similarity to a crG-like 
promoter sequence (-35 GTATA-14 nt-CATATTA, 200 nt 
upstream of the pBt020 ATG initiation codon; compared to 
the <rG consensus G[A/C]AT[A/G]-18 nt-CAT[A/T][A/C]TA [8]) 
that might permit this gene to be transcribed during sporula- 
tion, the period during which the cytlAa gene would be con- 
vergently transcribed. The suboptimal spacing of the features 
identified may explain the apparent lack of pBt020 transcrip­
tion in our experiments.

Like pBt020, pBt075 encodes a hypothetical protein. How­
ever, protein derived from this gene has been identified in 
association with spores of a transconjugant Bacillus sphaericus 
strain to which an erythromycin-resistant variant of pBtoxis 
was transferred (4a). Our experiments also indicated that there 
was production of transcript from this gene in B. thuringiensis, 
although the function of the protein product remains un­
known. The CDS apparently encoding a sigma factor (pBtl08, 
sigma E-like) is transcriptionally active, which supports the 
suggestion (3) that the pBtoxis plasmid may contribute a sup­
plementary sigma factor of a type involved in toxin gene tran­
scription (4, 19-21) that may aid in the production of its own 
toxins.

Sporulatkm-, germination-, and cell division-related CDSs.
Several CDSs that might have direct effects on the host pheno­
type were identified during the sequencing of pBtoxis (3). The 
present study showed that several such CDSs are transcription­
ally active. Two CDSs that may be associated with sporulation, 
pBtl45 (related to cotN, which produces a secreted protein 
incorporated into the spore of Bacillus subtilis and may be 
involved in its production [15, 16]) and pBt031 (which pro­
duces a protein that has similarities to cell wall hydrolases), are 
transcribed from pBtoxis. The plasmid also appears to encode 
proteins with possible germination functions (pBt084, pBt085, 
and pBt086). Transcript was detected for each CDS in this 
group, implying that the CDSs are organized as an operon. To 
analyze this further, PCRs between CDSs were performed 
using primers pBt084 reverse and pBt085 forward and, sepa­
rately, primers pBt085 reverse and pBt086 forward. Amplicons 
of the expected sizes were produced with each of these primer 
pairs, indicating that there was cotranscription of the genes 
and confirming that the CDSs are organized in a single operon.

No transcript was produced from the pBt060 and pBt063 
CDSs, which are related to ger and were postulated to be 
pseudogenes (3). The effect of the plasmid ger genes on the 
host bacterium will be the subject of a separate report (K. 
Gammon, C. Berry, and B. N. Dancer, unpublished data). 
Plasmid-directed production of peptide antibiotic factors may 
be encoded by pBtl36, pBtl37, and pBtl38. In this study we 
detected mRNA for each of these CDSs, implying that they 
may be active in directing antibiotic peptide production. To 
determine the possible operon organization of these genes, 
PCRs were performed using primers pBtl36 forward and 
pBtl37 reverse and, separately, primers pBtl37 forward and 
pBtl38 reverse. A product of the predicted size was obtained 
with the pBtl36 forward and pBtl37 reverse primers, indicat­
ing that pBtl36 and pBtl37 are cotranscribed. No product was 
detected in the PCR performed with primers pBtl37 forward 
and pBtl38 reverse, suggesting that pBtl38 does not form part 
of the operon with pBtl36 and pBtl37. It is possible that this 
two-gene operon may be regulated by PlcR, the pleiotropic 
regulator of transcription of several extracellular virulence fac­
tors in B. thuringiensis (1), since it is preceded by a possible 
-10 sequence (TATAAT; nt 111884 to 111889) and die con­
served palindromic sequence TATGNAN4TNCATA (pBtoxis 
nt 111835 to 111850) associated with PlcR regulation. PlcR- 
regulated genes are usually turned on at the end of the vege­
tative phase in cells grown in rich media, such as NYSM (10). 
The putative ABC transporter genes (pBtl31 to pBtl33) are 
orientated divergently with respect to the peptide antibiotic 
genes described above and encode proteins with low levels of 
similarity to Bac components involved in bacteriodn produc­
tion and secretion. We surveyed the transcription of only 
pBtl31 (since genomic homologs of pBtl32 and pBtl33 were 
identified [see above]) and found that this CDS appeared to 
remain untranscribed (similarly, pBtl39, the gene encoding the 
other predicted ABC-type protein on pBtoxis, was transcrip­
tionally silent). Another CDS, pBtl52, encodes a protein re­
lated to hemagglutinin, and our results indicated that this gene 
is transcribed, although the significance of this in B. thuringien­
sis remains to be determined. The putative deletion pseudo­
gene pBt056, which matches pBtl52 with two frameshifts and 
an in-frame stop codon, is not transcribed. The plasmid also 
contains a gene encoding a protein with similarity to the cell 
division protein FtsZ (pBtl56). This gene appears to be tran­
scriptionally active, and this suggests a possible influence of the 
plasmid on cell division.

Enzyme-encoding CDSs. CDSs encoding putative enzymatic 
products were also identified in pBtoxis. Phosphatidylinositol- 
specific phospholipase C is known to have roles in virulence in 
Bacillus cereus (14). The pBtoxis homolog pBt087, however, con­
tains an in-frame stop codon and appeared in this study to be 
transcriptionally inactive. The genome of B. thuringiensis subsp. 
israelensis, however, contains a distinct but related phosphati- 
dylinositol-specific phospholipase C gene (7) that may be tran­
scribed. CDSs encoding other putative enzymes, including pBt097, 
pBt098, pBtlOO, and pBtlOl, all appear to be transcribed.

R e g u l a t o r  CDSs. The pBtoxis plasmid contains 14 CDSs that 
may have functions in the regulation of other genes based on their 
similarity to genes encoding DNA-binding proteins, RNA-bind­
ing proteins, or known transcriptional regulators. Many of these 
14 CDSs (pBt029, pBt093, pBtl20, pBtl47, and pBtl58) were not
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transcribed in our experiments (pBtl02 was not examined due to 
the presence of a genomic homolog). However, pBtOll, pBt014, 
pBt091, pBt092, pBt094, pBtl48, pBtl49, and pBtl57 did pro­
duce transcripts and therefore may produce regulatory pro­
teins. Some of these active CDSs have homologues with known 
roles in bacilli; for instance, pBtl49 encodes a protein similar 
to the PagR protein of the anthrax plasmid pXOl, which is 
known to regulate other genes in bacilli (9), and pBt094 and 
pBtl48 are related to the gene encoding the Bacillus subtilis 
transition state regulator AbrB, a regulator of other regulator 
proteins (12). Transcription of the genes encoding the putative 
regulators described above may have great significance for the 
phenotype and behavior of B. thuringiensis strains. Such effects 
could parallel the recent report (2 ) of a plasmid-encoded regula­
tor that alters extracellular proteinase production in Bacillus an- 
thracis, which, like B. thuringiensis, is a member of the B. cereus 
sensu lato group. Of course, genomic regulators would be ex­
pected to influence transcription of plasmid genes, but our results 
may indicate that there is production of plasmid-encoded reg­
ulators that may be able to participate in plasmid-genome 
“cross talk” to influence expression of both plasmid and 
genomic loci. B. thuringiensis subsp. israelensis is by no means 
unique in B. thuringiensis, in which the toxins are encoded on 
large extrachromosomal elements in most strains. We expect 
that these plasmids, like pBtoxis, encode not only the toxins 
that are directly responsible for insect pathogenicity but also a 
variety of other proteins that may affect the phenotype and 
behavior of the host organism. In this study, we established 
that many of the pBtoxis genes with putative functions other 
than toxicity are transcribed. The production of the corre­
sponding proteins and their roles in host processes and their 
possible contributions to virulence remain to be established, 
but in this study we took the first step in the investigation of the 
molecular role of the toxin-coding plasmid in the host cell.
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Both Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis produce mosquitocidal toxins during 
sporulation and are extensively used in the field for control of mosquito populations. All the known toxins of 
the latter organism are known to be encoded on a large plasmid, pBtoxis. In an attempt to combine the best 
properties of the two bacteria, an erythromycin resistance-marked pBtoxis plasmid was transferred to B. sphaericus by a mating technique. The resulting transcoqjugant bacteria were significantly more toxic to Aedes aegypti mosquitoes and were able to overcome resistance to B. sphaericus in a resistant colony of Culex quinquefasciatus, apparently due to the production of CiyllA but not Cry4A or Cry4B. The stability of the 
plasmid in the B. sphaericus host was moderate during vegetative growth, but segregational instability was 
observed, which led to substantial rates of plasmid loss during sporulation.

Mosquitoes are the vectors of many deadly and debilitating 
human diseases, such as malaria, filariasis, and arbovirus in­
fections, including yellow fever and dengue fever. Control of 
vector mosquito populations often involves the use of insect- 
pathogenic bacteria which produce highly potent toxins that 
act specifically against mosquitoes and simulids and which have 
no effect on nontarget species. At present, only two types of 
mosquito-pathogenic bacteria are used in control programs in 
the field, Bacillus sphaericus and Bacillus thuringiensis subsp. 
israelensis. Both of these bacteria produce parasporal crystal­
line inclusion bodies composed of potent mosquito-toxic pro­
teins. The two Bacillus species have different properties. 
B. thuringiensis subsp. israelensis is toxic as a result of the 
presence of a 128-kb plasmid, pBtoxis, that carries four cry 
(cry4Aa, cry4Ba, crylOAa, and cryllAa) and three cyt (cytlAa, 
cyt2Ba, and cytlCa) toxin genes. The resulting production of an 
arsenal of toxins appears to be sufficient to prevent the emer­
gence of insect resistance (13). However, B. thuringiensis subsp. 
israelensis is more sensitive to UV radiation than B. sphaericus, 
and the duration of effective control is shorter, especially in 
polluted water (30). In contrast, B. sphaericus is less UV sen­
sitive, survives well in polluted water (30, 42), recycles in the 
environment (11), and is toxic largely by virtue of a chromo- 
somally encoded binary gut toxin (Bin) (4). However, B. spha­
ericus performs poorly against one major vector mosquito, 
Aedes aegypti, and although it is highly active against other 
important vectors, resistance has been reported in some mos­
quito species (31). It has been shown that the CytlAa toxin 
from B. thuringiensis subsp. israelensis is highly synergistic with 
the Bin toxin of B. sphaericus (37, 38), and introduction of a

* Corresponding author. Mailing address: Cardiff School o f Bio­
sciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, United 
Kingdom. Phone: 44-29-2087-4508. Fax: 44-29-2087-4116. E-mail: Berry 
@cf.ac.uk.

cytlA gene from another mosquitocidal B. thuringiensis strain 
has been shown to help overcome resistance to B. sphaericus 
(32). Thus, there is significant potential for strain improvement 
by combination of the additional toxins of B. thuringiensis 
subsp. israelensis with the better environmental performance 
(and extra crystal toxin) of B. sphaericus. Several groups have 
reported success in moving B. thuringiensis subsp. israelensis 
toxin genes, one or two at a time, into B. sphaericus and thereby 
enhancing its toxicity (3,26,27,34). However, the use of single 
genes, while resulting in improved activity, may result in only a 
slight delay in the development of insect resistance, since 
Georghiou and Wirth (13) have shown that to prevent resis­
tance to B. thuringiensis subsp. israelensis toxins, both Cry and 
Cyt toxins must be expressed. In addition, the strains produced 
in the previous studies are considered to be both genetically 
modified and recombinant by virtue of the methods by which 
the toxin genes were transferred to the B. sphaericus host. 
Optimum toxicity in B. thuringiensis subsp. israelensis arises 
from the presence of all of its toxins and is enhanced by the 
presence of at least two “helper proteins,” P19 and P20, which 
may stabilize the toxins or aid in crystal formation (40). Since 
all the B. thuringiensis subsp. israelensis toxins and the two 
helper proteins are encoded on a single 128-kb plasmid (5), 
major enhancement of the mosquito-toxic properties of 
B. sphaericus might be attainable by transfer of this plasmid, 
which would combine the best properties of the two species in 
a single organism. Transfer of pBtoxis by the classical micro­
biological mating method could yield transconjugants that 
would not be considered genetically modified or recombinant. 
Conjugal transfer of pAM£l both within B. sphaericus species 
(7) and between species (23) has been accomplished using 
filter mating methods. Similarly, conjugation methods for both 
B. thuringiensis subsp. israelensis (15, 33) and B. sphaericus (7) 
in liquid media have also been reported, and transfer of a 
plasmid from B. thuringiensis to B. sphaericus using such a
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protocol has been achieved (36). In the case of B. thuringiensis, 
it has been demonstrated that in some subspecies the toxin- 
encoding plasmids themselves are able to conjugate between 
B. thuringiensis strains (14,35). In this study we obtained proof 
of the mating transfer strategy concept using a “marked” de­
rivative of pBtoxis, and the results indicated that plasmid trans­
fer to B. sphaericus is possible and enhances the toxicity of the 
resulting transconjugants.

MATERIALS AND METHODS

Bacterial strains. B. thuringiensis s u b s p .  israelensis w a s  o b t a i n e d  f r o m  t h e  
c o m m e r c i a l  p r o d u c t  V e c t o B a c  1 2 A S  ( V a l e n t  B i o s c i e n c e s  C o r p o r a t i o n ) ,  B. thu­
ringiensis s u b s p .  israelensis 4 Q 7  ( a l s o  k n o w n  a s  4 0 2 - 8 1 )  i s  a  s t r a i n  c u r e d  o f  a l l  
p l a s m i d s ,  a n d  B. thuringiensis s u b s p .  israelensis 4 Q 5  ( a l s o  k n o w n  a s  4 Q 2 - 7 2 )  i s  a  
s t r a i n  c u r e d  o f  a l l  p l a s m i d s  e x c e p t  p B t o x i s .  B. thuringiensis s u b s p .  israelensis 
4 Q 5 : : e r m  i s  a  d e r i v a t i v e  o f  4 Q 5  i n  w h i c h  t h e  cytlAa  g e n e  o n  p B t o x i s  w a s  k n o c k e d  
o u t  b y  i n  v i v o  r e c o m b i n a t i o n  i n  o r d e r  t o  i n s e r t  t h e  g e n e  e n c o d i n g  e r y t h r o m y c i n  
r e s i s t a n c e  ( 8 ) ,  a n d  i t  w a s  k i n d l y  s u p p l i e d  b y  A .  D e l l d u s e  o f  t h e  I n s t i t u t  P a s t e u r ,  
P a r i s ,  F r a n c e .  B. sphaericus s t r a i n s  1 5 9 3 R  a n d  2 3 6 2 R -  w e r e  k i n d l y  s u p p l i e d  b y  
W .  B u r k e ,  A r i z o n a  S t a t e  U n i v e r s i t y ,  a n d  a r e  r e s t r i c t i o n - n e g a t i v e  v a r i a n t s  o f  
B. sphaericus 1 5 9 3  a n d  2 3 6 2 ,  r e s p e c t i v e l y ,  w h i c h  w e r e  c h o s e n  f o r  u s e  s o  t h a t  
t r a n s f e r r e d  p l a s m i d  D N A  w o u l d  n o t  b e  d i g e s t e d  i n  t h e  n e w  B. sphaericus h o s t s .  
T h e s e  s t r a i n s  a r e  n a t u r a l l y  r e s i s t a n t  t o  c h l o r a m p h e n i c o l  ( 1 ) .

Transfer of p B t a o d s n e n L  T h e  t r a n s f e r  s t r a t e g y  w h i c h  w e  u s e d  r e l i e s  o n  m i ­
c r o b i o l o g i c a l  m e t h o d s  o f  m a t i n g  r a t h e r  t h a n  g e n e t i c  e n g i n e e r i n g  t e c h n i q u e s  a n d  
e x p l o i t s  t h e  a b i l i t y  o f  t h e  n a t u r a l  B. thuringiensis s u b s p .  israelensis c o n j u g a t i v e  
p l a s m i d  p X 0 1 6  t o  a s s i s t  i n  t h e  m o b i l i z a t i o n  o f  o t h e r  p l a s m i d s  ( 1 7 ) .  T r i p a r e n t a l  
m a t i n g  w a s  c a r r i e d  o u t  u s i n g  t h e  w i l d - t y p e  V e c t o B a c  s t r a i n  o f  B. thuringiensis 
s u b s p .  israelensis t h a t  c o n t a i n s  p X 0 1 6  t o  m o b i l i z e  t h e  p B t o x i s : : e r m  p l a s m i d  f r o m  
s t r a i n  4 Q 5 : : e n n .  F r e s h  b r o t h  c u l t u r e s  o f  a l l  s t r a i n s  w e r e  i n c u b a t e d  a t  3 0 ° C  f o r  4  
t o  6  h .  F o r  m a t i n g ,  1 0 0  p i  o f  B. thuringiensis s u b s p .  israelensis w a s  s p r e a d  o n t o  
L B  a g a r  p l a t e s ,  f o l l o w e d  b y  1 0 0  p i  o f  t h e  p l a s m i d  h o s t  B. thuringiensis s u b s p .  
israelensis 4 Q 5 : : e r m  a n d  t h e n  1 0 0  p i  o f  t h e  r e c i p i e n t  B. sphaericus 1 5 9 3 R ~  o r  
B. sphaericus 2 3 6 2 R  .  T h e  { d a t e s  w e r e  i n c u b a t e d  o v e r n i g h t  a t  3 0 ° C ,  a n d  t h e  
g r o w t h  w a s  h a r v e s t e d  i n t o  2  m l  o f  q u a r t e r - s t r e n g t h  R i n g e r ’s  s o l u t i o n .  T h e  s u s ­
p e n s i o n  w a s  s e r i a l l y  d i l u t e d  i n  q u a r t e r -  s t r e n g t h  R i n g e r ’s  s o l u t i o n ,  a n d  1 0 0  p i  w a s  
s p r e a d  o n t o  L B  a g a r  containing c h l o r a m p h e n i c o l  ( 5  p g / m l )  a n d  e r y t h r o m y c i n  
( 5  p ^ / m l )  t o  s e l e c t  f o r  B. sphaericus t h a t  h a d  a c q u i r e d  p B t o x i s : : e r m  a n d  t h e n  
i n c u b a t e d  a t  3 0 “ C  f o r  2 4  t o  4 8  h .  C o n t r o l s  c o n s i s t i n g  o f  d o n o r s  a n d  r e c i p i e n t s  
w e r e  p l a t e d  s e p a r a t e l y .

PCR with pBtoxis and 16S rRNA genes. T o  s c r e e n  f o r  t h e  p r e s e n c e  o f  
p B t o x i s  i n  p o t e n t i a l l y  t r a n s c o n j u g a n t  B. sphaericus s t r a i n s ,  P C R  s c r e e n i n g  f o r  
a  n u m b e r  o f  p l a s m i d  g e n e s  w a s  c a r r i e d  o u t .  D N A  f o r  u s e  i n  P C R s  w a s  
i s o l a t e d  u s i n g  a  P U R E G E N E  D N A  p u r i f i c a t i o n  k i t  f o r  y e a s t  a n d  g r a m -  
p o s i t i v e  b a c t e r i a  ( G E N T R A  S y s t e m s ,  M i n n e a p o l i s ,  M i n n . ) .  P r i m e r s  f o r  p B t o x i s  
c o d i n g  s e q u e n c e s ,  d i s t r i b u t e d  a r o u n d  t h e  p l a s m i d ,  w e r e  u s e d .  P r i m e r s  D i p l A  
a n d  D i p l B  ( C A A G C C G C A A A T C T T G T G G  a n d  A T G G C T T G T T T C G C T  
A C A T C ,  r e s p e c t i v e l y )  a n d  p r i m e r s  D i p 2 A  a n d  D i p 2 B  ( G G T G C  I T  C C T A T  
T C T T T G G C  a n d  T G A C C A G G T C C C T T G A T T A C ,  r e s p e c t i v e l y ) ,  d e s i g n e d  
b y  C a r o z z i  e t  a l .  ( 6 ) ,  w e r e  u s e d  t o  d e t e c t  t h e  p r e s e n c e  o f  t h e  C i y 4 A  a n d  
C r y 4 B  g e n e s ,  r e s p e c t i v e l y .  I n  a d d i t i o n ,  t h e  f o l l o w i n g  p r i m e r s  w e r e  u s e d :  f o r  
p B t 0 2 0 ,  p r i m e r s  G  A A G A A C A A A T T T T  A G  A G  A A A G G  a n d  T A G T A G C T A  
T A T T T A T T A A A T A T G G ;  f o r  P B t 0 5 4 ,  G C A C T A G T A C C T A C T A C A T C C  
a n d  G G T T T T G A A T A C T G T A A G C A C G ;  f o r  p B t 0 8 4 ,  T A A T T G C C T T A G  
A T A G A A C A C C  a n d  G A G A T T T T G G T T A A G T A C T T T C Q  f o r  p B t l 3 6 ,  T G T  
T C G A G A T T A T G G G T T A T T T T G  a n d  C C A T G C A A C A G C T T G T G C T T T T A ;  
a n d  f o r  p B t l 5 6 , A A G A G G C T G A T T T A T T C G C A G G  a n d  G T T A A T T T C A T C  
A G G A T C A C C G .  T h e  P C R s  w e r e  p e r f o r m e d  w i t h  a n  i n i t i a l  s t e p  c o n s i s t i n g  o f  
9 4 ° C  f o r  5  m i n ,  f o l l o w e d  b y  3 5  c y c l e s  o f  1  m i n  o f  d e n a t u r a t i o n  a t  9 4 ° C ,  1  m i n  o f  
p r i m e r  a n n e a l i n g  a t  5 5 ° C ,  a n d  1  m i n  o f  e x t e n s i o n  a t  7 2 ° C  a n d  t h e n  a  f i n a l  1 0 - m i n  
s t e p  a t  7 2 ° C .  P r o d u c t s  w e r e  a n a l y z e d  b y  g e l  e l e c t r o p h o r e s i s  o n  a  1 %  a g a r o s e  g e l  
a n d  v i s u a l i z e d  u n d e r  U V  l i g h t  F r a g m e n t s  o f  1 6 S  r R N A  g e n e s  w e r e  a m p l i f i e d  
u s i n g  p r i m e r s  6 3 f  ( C A G G C C T A A C A C A T G C A A G T C )  a n d  1 3 8 7 r  ( G G G C G G  
A G T G T A C A A G G C ) ,  w h i c h  w e r e  d e s i g n e d  b y  M a r c h e s i  e t  a l .  ( 2 0 ) .  T h e  P C R  
w a s  p e r f o r m e d  u s i n g  t h e  f o l l o w i n g  c o n d i t i o n s :  9 5 ° C  f o r  5  m i n ,  f o l l o w e d  b y  3 0  
c y c l e s  o f  9 5 ° C  f o r  1 m i n ,  5 5 ° C  f o r  1  m i n ,  a n d  7 2 ° C  f o r  1  m i n  a n d  t h e n  a  f i n a l  
1 0 - m i n  e x t e n s i o n  a t  7 2 ° G  T h e  r e s u l t i n g  a m p l i c o n  w a s  s u b j e c t e d  t o  d i r e c t  s e ­
q u e n c i n g  u s i n g  t h e  s a m e  p r i m e r s  i n  o r d e r  t o  e l u c i d a t e  t h e  a m p l i f i e d  s e q u e n c e .  
T h e  o r i g i n  o f  t h e  s e q u e n c e  w a s  v e r i f i e d  b y  B L A S T  a n a l y s i s  ( 2 )  a n d  b y  d i r e c t  
c o m p a r i s o n  t o  t h e  e q u i v a l e n t  s e q u e n c e s  f r o m  B. sphaericus a n d  B. thuringiensis.

Protein fingerprinting and W eston blotting. T r a n s c o n j u g a n t s  a n d  p a r e n t a l  
s t r a i n s  w e r e  a n a l y z e d  b y  s o d i u m  d o d e c y l  s u l f a t e - p o l y a c r y l a m i d e  g e l  e l e c t r o ­
p h o r e s i s  ( S D S - P A G E )  a n d  W e s t e r n  b l o t t i n g .  B. thuringiensis s u b s p .  israelensis 
s t r a i n s  w e r e  g r o w n  i n  a  s p o r u l a t i o n  m e d i u m  ( n u t r i e n t  b r o t h ,  8  g / l i t e r ;  y e a s t  
e x t r a c t ,  1  g / l i t e r ,  K 2 H P 0 4 , 1  g / l i t e r ;  C a C 0 3 , 0 . 1  g / l i t e r ,  M g S 0 4  • 7 H 2 0 , 0 . 1  g / l i t e r ;  
F e S 0 4  • 7 H 2 0 ,  0 . 0 1  g / l i t e r ;  M n S 0 4  • 7 H 2 0 ,  0 . 0 1  g / l i t e r ,  Z n S 0 4  • 7 H 2 0 ,  0 . 0 1  
g / l i t e r ;  p H  7 . 0 ) .

C u l t u r e s  w e r e  g r o w n  f o r  7 2  h  ( w i t h  > 9 8 %  s p o r u l a t i o n )  a n d  h a r v e s t e d ,  a n d  
s a m p l e s  w e r e  r e s u s p e n d e d  i n  S D S - P A G E  l o a d i n g  b u f f e r .  P r o t e i n s  w e r e  s e p a ­
r a t e d  u s i n g  t h e  m e t h o d  o f  L a e m m l i  ( 1 8 )  a n d  a  1 2 %  a c i y l  a m i d e  r e s o l v i n g  g e l  a t  
2 0 0  V  f o r  4 0  m i n .

P r o t e i n s  f r o m  g e l s  w e r e  t r a n s f e r r e d  e l e c t r o p h o r e t i c a l l y  o n t o  n i t r o c e l l u l o s e  
m e m b r a n e s  u s i n g  a  m i n i  P r o t e a n  I I  e l e c t r o p h o r e s i s  c e l l  a n d  a  m i n i  t r a n s b l o t  
m o d u l e  ( B i o - R a d ) .  W e s t e r n  b l o t t i n g  w a s  c a r r i e d  o u t  a s  d e s c r i b e d  b y  M a n i a t i s  e t  
a L  ( 1 9 ) .  C r y  p r o t e i n s  w e r e  d e t e c t e d  w i t h  r a b b i t  a n t i s e r a  a g a i n s t  C r y 4 A  a n d  C r y 4 B  
c r y s t a l  t o x i n s  ( k i n d l y  p r o v i d e d  b y  A .  D e l 6 c l u s e ,  I n s t i t u t  P a s t e u r ,  P a r i s ,  F r a n c e )  
t o g e t h e r  w i t h  a n  a l k a l i n e  p h o s p h a t a s e - l i n k e d ,  a n t i - r a b b i t  s e c o n d a r y  a n t i b o d y ,  
f o l l o w e d  b y  c o l o r  d e v e l o p m e n t  u s i n g  a  B i o - R a d  A P  c o n j u g a t e  s u b s t r a t e  k i t .  
P r o t e i n  b a n d s  o f  i n t e r e s t  t h a t  w e r e  i d e n t i f i e d  i n  S D S - P A G E  g e l s  w e r e  b l o t t e d  
o n t o  a  p o l y v i n y l i d e n e  d i f l u o r i d e  m e m b r a n e  f r o m  e q u i v a l e n t  S D S - P A G E  g e l s  
p r e p a r e d  w i t h  T r i c i n e  i n  p l a c e  o f  g l y c i n e .  F o l l o w i n g  r a p i d  s t a i n i n g  a n d  d e s t a i n i n g  
o f  t h e  m e m b r a n e ,  b a n d s  o f  i n t e r e s t  w e r e  e x c i s e d  f o r  N - t e r m i n a l  p r o t e i n  s e q u e n c ­
i n g  ( A l t a  B i o s d e n c e ,  B i r m i n g h a m ,  U n i t e d  K i n g d o m ) .

Mosquito colonies. T h e  f o l l o w i n g  Culex quinquefasciatus a n d  A  aegypti c o l o ­
n i e s  u s e d  i n  t h i s  w o r k  w e r e  m a i n t a i n e d  i n  t h e  i n s e c t a r i u m  o f  t h e  C e n t r o  d e  
P e s q u i s a s  A g g e u  M a g a l h a e s - F I O C R U Z ,  B r a z i l :  ( i )  C q S F ,  a  s u s c e p t i b l e  C. quin­
quefasciatus c o l o n y ,  ( i i )  C q R L l / 2 3 6 2 ,  a  c o l o n y  d e r i v e d  f r o m  C q S F  a n d  s e l e c t e d  
w i t h  B. sphaericus s t r a i n  2 3 6 2  u n d e r  l a b o r a t o r y  c o n d i t i o n s ,  w h i c h  h a d  a  s t a b l e  
a n d  h i g h  l e v e l  ( r e s i s t a n c e  r a t i o ,  > 1 6 2 , 0 0 0 - f o l d )  o f  r e s i s t a n c e  ( 2 2 ,  2 4 ) ;  a n d  ( i i i )  
A e L a b ,  a  s u s c e p t i b l e  A  aegypti c o l o n y .  T h e  i n s e c t s  f r o m  a l l  c o l o n i e s  w e r e  r e a r e d  
a t  2 6  ±  2 ° C  w i t h  7 0 %  r e l a t i v e  h u m i d i t y  a n d  w i t h  a  p h o t o p e r i o d  c o n s i s t i n g  o f  1 2  h  
o f  l i g h t  a n d  1 2  h  o f  d a r k n e s s .  L a r v a e  w e r e  r e a r e d  i n  t a p  w a t e r  a n d  f e d  g r o u n d  c a t  
b i s c u i t s .  T h e  a d u l t s  w e r e  maintained w i t h  a  1 0 %  s u g a r  s o l u t i o n ,  a n d  f e m a l e s  
w e r e  a l l o w e d  t o  f e e d  o n  c h i c k e n s .

Bioassays. T r a n s c o n j u g a n t  s t r a i n s  w e r e  t e s t e d  f o r  t o x i c i t y  t o  A  aegypti l a r v a e  
a n d  l a r v a e  f r o m  t h e  b i n a r y  t o x i n - s e n s i t i v e  a n d  - r e s i s t a n t  c o l o n i e s  o f  C  quinque­
fasciatus d e s c r i b e d  a b o v e .  B i o a s s a y s  w e r e  p e r f o r m e d  w i t h  e a r l y  f o u r t h - i n s t a r  
l a r v a e  b y  u s i n g  a  s t a n d a r d  m e t h o d  r e c o m m e n d e d  b y  t h e  W o r l d  H e a l t h  O r g a n i ­
z a t i o n  ( 3 9 ) .  F o r  a l l  b i o a s s a y s ,  l a r v a e  w e r e  e x p o s e d  t o  s e r i a l  d i l u t i o n s  o f  l y o p h i -  
l i z e d  s p o r e - c r y s t a l  p o w d e r s  o f  s t r a i n s  b y  p l a c i n g  g r o u p s  o f  2 0  l a r v a e  i n  1 0 0  m l  o f  
d i s t i l l e d  w a t e r  i n  1 2 5 - m l  p l a s t i c  c u p s  a t  2 6  ±  2 ° C  w i t h  t h e  d e s i r e d  c o n c e n t r a t i o n  
o f  B. sphaericus s p o r e  p o w d e r  ( f r o m  c u l t u r e s  g r o w n  i n  N Y S M  m e d i u m  [ 2 1 ] ) .  A t  
l e a s t  f i v e  c o n c e n t r a t i o n s  t h a t  r e s u l t e d  i n  l e v e l s  o f  m o r t a l i t y  b e t w e e n  2  a n d  9 8 %  
w e r e  t e s t e d ,  a n d  m o r t a l i t y  w a s  r e c o r d e d  a f t e r  4 8  h  o f  e x p o s u r e .  A  c o n t r o l  g r o u p  
t e s t e d  w i t h  o n l y  w a t e r  w a s  i n c l u d e d  i n  e a c h  e x p e r i m e n t ,  a n d  t h e  b i o a s s a y  w a s  
r e p e a t e d  t w o  o r  t h r e e  t i m e s  o n  d i f f e r e n t  d a y s .  O n e  d r o p  o f  l a r v a l  f o o d  w a s  a d d e d  
t o  e a c h  c u p .  T h e  5 0 %  l e t h a l  c o n c e n t r a t i o n ,  e x p r e s s e d  i n  m g  p e r  l i t e r ,  w a s  
d e t e r m i n e d  u s i n g  p r o b i t  a n a l y s i s  ( 1 2 )  w i t h  t h e  s o f t w a r e  S P S S  8 . 0 .

Plasmid stability. T o  d e t e r m i n e  t h e  s t a b i l i t y  o f  p B t o x i s : : e r m  i n  B. sphaericus 
v e g e t a t i v e  t r a n s c o n j u g a n t s ,  c u l t u r e s  w e r e  g r o w n  i n  N Y S M  b r o t h  w i t h o u t  a n t i ­
b i o t i c s  f o r  1 8  h  a t  3 0 ° C .  A  s a m p l e  w a s  t a k e n  a n d  s e r i a l l y  d i l u t e d  u p  t o  a  d i l u t i o n  
o f  1 0 ~ 5 i n  q u a r t e r - s t r e n g t h  R i n g e r ’s  s o l u t i o n ,  a n d  2 0 - p i  d r o p s  w e r e  p l a t e d  o n t o  
b o t h  N Y S M  a g a r  s u p p l e m e n t e d  w i t h  c h l o r a m p h e n i c o l  ( 1 0  p - g / m l )  t o  e n u m e r a t e  
a l l  B. sphaericus c e l l s  a n d  N Y S M  a g a r  s u p p l e m e n t e d  w i t h  c h l o r a m p h e n i c o l  ( 1 0  
j jL g /m l)  a n d  e r y t h r o m y c i n  ( 1  p . g / m l )  t o  e n u m e r a t e  t r a n s c o n j u g a n t s .  T h e  p l a t e s  
w e r e  i n c u b a t e d  a t  3 0 ° C  o v e r n i g h t ,  a n d  t h e n  c o l o n i e s  w e r e  c o u n t e d .  P r i o r  t o  
p l a t i n g  c u l t u r e s  w e r e  c h e c k e d  b y  p h a s e - c o n t r a s t  m i c r o s c o p y  f o r  t h e  a b s e n c e  o f  
s p o r e s .  F r e s h  N Y S M  b r o t h  w a s  i n o c u l a t e d  u s i n g  t h e  p r e v i o u s  c u l t u r e ,  a n d  t h e  
p r o c e s s  w a s  r e p e a t e d .

T o  d e t e r m i n e  t h e  s t a b i l i t y  o f  p B t o x i s : : e r m  i n  B. sphaericus t r a n s c o n j u g a n t s  
t h r o u g h  s p o r u l a t i o n ,  t r a n s c o n j u g a n t  s t r a i n s  w e r e  g r o w n  u n t i l  t h e  l e v e l  o f  s p o r u ­
l a t i o n  w a s  a t  l e a s t  9 0 %  ( 4  d a y s )  i n  L B  b r o t h  a n d  h e a t e d  a t  7 0 ° C  f o r  3 0  m i n  t o  
i n a c t i v a t e  a n y  v e g e t a t i v e  c e l l s .  T h e  c e l l s  a n d  s p o r e s  ( 1  m l )  w e r e  c e n t r i f u g e d  a t  
1 4 , 0 0 0  X  g  f o r  4  m i n  a n d  r e s u s p e n d e d  i n  1  m l  o f  q u a r t e r - s t r e n g t h  R i n g e r ’s  
s o l u t i o n .  T h e  s u s p e n s i o n s  w e r e  t h e n  s e r i a l l y  d i l u t e d  u p  t o  a  d i l u t i o n  o f  1 0 ' 5 i n  
q u a r t e r - s t r e n g t h  R i n g e r ’s  s o l u t i o n ,  a n d  2 0 - p J  d r o p s  w e r e  p l a t e d  a s  d e s c r i b e d  
a b o v e  f o r  a n a l y s i s  o f  t o t a l  a n d  t r a n s c o n j u g a n t  B. sphaericus S u c c e s s i v e  s u b c u l ­
t u r e s  w e r e  d e r i v e d  f r o m  c o l o n i e s  g r o w n  i n  t h e  a b s e n c e  o f  a n t i b i o t i c s .  C o u n t s  
w e r e  o b t a i n e d  a f t e r  2 4  h  o f  i n c u b a t i o n  a t  3 0 ° C .  F r e s h  L B  b r o t h  w a s  i n o c u l a t e d  
w i t h  5 0  p J  o f  a n  u n d i l u t e d  c u l t u r e  a n d  i n c u b a t e d  a t  3 0 ° C ,  a n d  t h e  p r o c e s s  w a s  
r e p e a t e d  s e r i a l l y .
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FIG. 1. Protein profiles of lysed sporulated cultures of transconju­
gant strains. Proteins from B. thuringiensis subsp. israelensis strains 4Q7 
(lane 1), 405 (lane 2), and 4Q5::erm (lane 3), B. sphaericus strains 
1593R (lane 4) and 2362R- (lane 5), and transconjugants 1593.1 
(lane 6) and 2362.5 (lane 7) were examined. The positions of bands for 
Cry4A and Cry4B (Ciy4), CryllA , CytlA, Bin A, and Bin B are 
indicated, as are the positions of bands that were chosen for N-termi- 
nal sequencing, bands a to d; the positions of the molecular weight 
standards (in kDa) are indicated on the left.

RESULTS AND DISCUSSION

Transconjugant production. Following the on-plate mating 
described above, a number of colonies were selected on plates 
containing chloramphenicol (to select for B. sphaericus since 
the parental B. sphaericus 1593R- and 2362R- strains were 
chloramphenicol resistant) and erythromycin (to select for the 
presence of pBtoxis: :erm). Two such colonies were selected for 
further study, and they were designated transconjugant strains
1593.1 and 2362.5. The presence of plasmids in these transcon­
jugants was confirmed by PCR. All pBtoxis primer pairs de­
scribed above produced amplicons of the expected sizes (re­
sults not shown), confirming not only the identity of the 
plasmid but also, due to the distribution of the primers, that it 
was likely to be substantially intact. The host bacteria were 
confirmed to be B. sphaericus by their ability to germinate on 
LB agar plates containing 0.25 M sodium acetate, by their 
binary toxin production, as judged by SDS-PAGE (see below), 
and by amplification and sequencing of a portion of the 16S 
rRNA gene.

Toxin production. Production of the B. sphaericus binary 
toxin and production of the B. thuringiensis subsp. israelensis 
Cry toxins were analyzed by SDS-PAGE. Figure 1 shows the 
protein profiles of lysed sporulated cultures of B. thuringiensis 
subsp. israelensis 4Q7,4Q5, and 4Q::erm, the parental B. sphaeri­
cus strains, and transconjugants. There are several protein 
bands in the profiles of the transconjugant strains that are 
absent from the profiles of the parental B. sphaericus strains 
and appear to match bands in the profile of the B. thuringiensis 
subsp. israelensis 4Q5::erm donor. Bands a, b, c, and d in the 
strain 1593.1 profile (Fig. 1) were chosen for N-terminal se­
quencing. Band a was present in the profiles of the parental 
B. sphaericus strains but, in Tricine gels used for sequencing, 
resolved as a doublet with sizes consistent with the sizes of the 
Cry4Aa and Cry4B toxins (125 kDa and 135 kDa, respectively). 
However, both bands yielded the same N-terminal sequence, 
AQLND. No such sequence is encoded by pBtoxis, and the 
presence of equivalent bands in the parental B. sphaericus 
strains confirmed that this molecule was a host protein. Thus, 
it appeared that no Cry4 toxins were produced by the transcon­

jugant strains. Band b produced the sequence MEDSS, corre­
sponding to the N terminus of the CryllAa toxin, while the 
faint band c had an ambiguous N-terminal residue that may 
have been Ala, Met, or Lys, followed by the sequence QEID. 
The sequence IQEID occurs in the CrylOA sequence encoded 
by pBtoxis, and Q is residue 128 in this protein. Given the 
ambiguous first residue of our N-terminal sequence, band c 
may correspond to a proteolytic product of CrylOA or may be 
a B. sphaericus protein produced under the influence of 
pBtoxis. This plasmid encodes putative transcriptional regulators 
(5), some of which have been shown to be transcribed in B. 
thuringiensis subsp. israelensis (31a). Band d was another faint 
band and produced the sequence ALNAQ, corresponding to the 
sequence encoded by coding sequence Bt075 in the pBtoxis se­
quence (5) but lacking its initiator methionine residue. This se­
quence was annotated as a hypothetical protein (with a low level 
of similarity to a hypothetical protein from Yersinia pestis), and 
this is the first demonstration that this or any other pBtoxis pro­
tein not linked to toxicity (Le., toxin proteins or the P19 and P20 
accessory proteins) is actually produced. As indicated above, pro­
tein bands (e.g., band a in Fig. 1) in transconjugant strains whose 
sizes were consistent with the sizes of Ciy4A and Ciy4B were 
actually unrelated to these proteins. Western blotting using anti­
sera raised against these proteins also failed to detect Ciy4 toxins 
in transconjugant strains (results not shown). This apparent fail­
ure of the transconjugants to express the Cry4A toxin reflects the 
poor synthesis of this protein when it is encoded on a low-copy- 
number plasmid in a crystal-minus strain of B. thuringiensis subsp. 
israelensis (9). In their study, Delecluse et al. demonstrated that 
this was not due to low levels of transcription from the Cry4A 
promoter. In the same system, however, Cry4B did accumulate in 
B. thuringiensis subsp. israelensis to high levels (9), in contrast to 
the results presented here for the B. sphaericus transconjugants. 
Previous studies in which recombinant approaches were used to 
transfer the cry4B or cryllA gene to B. sphaericus showed that 
there was expression of both proteins in the recombinant strains 
(27, 34). However, Ciy4B was reported to account for less than 
2% of the total protein, while the production of Ciyl 1A could not 
be assessed since it was reported only from Western blotting 
experiments (27). CiyllA production was significant, however, 
when the gene was integrated into the B. sphaericus genome by 
homologous recombination (26). The toxicity of CryllA is inter­
mediate between the toxicity of Cry4A and the toxicity of Cry4B 
against both A  aegypti and Anopheles stephensi (28), but a cryllA 
knockout strain seemed to indicate that it has a particular role in 
increasing the toxicity of B. thuringiensis subsp. israelensis against 
Culex pipiens and A  stephensi (25). The cry4A, cry4B, and cryllA 
genes are all transcriptionally controlled by o^, while cry4A and 
cryllA  are additionally controlled by a*1 and o* respectively (10, 
41). Perhaps the availability of related transcription factors in
B. sphaericus influences the different levels of transcription of 
these genes in B. sphaericus compared to B. thuringiensis subsp. 
israelensis. Plasmid pBtoxis itself carries a coding sequence 
(Btl08) that appears to be related to (5), but its role, if any, in 
toxin production is still unclear. While the level of production of 
the Ciy toxins appears to be substantially lower in the transcon­
jugants than in B. thuringiensis subsp. israelensis, the presence of 
pBtoxis apparently does not decrease the levels of Bin toxin that 
accumulate in the transconjugants.
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TABLE 1. Larvicidal activity of B. sphaericus strains against 
C. quinquefasciatus larvae from a susceptible colony (CqSF) 

and from a colony resistant to B. sphaericus 2362 
(CqRLl/2362) and against larvae from an A. aegypti 

colony (AeLab) after 48 h of exposure

Colony Expt
50% lethal concn (mg/liter)0

B. sphaericus 2362R B. sphaericus 23625

CqSF 1
2
3
Mean

0.013 (0.0045-0.019)* 
0.011 (0.0041-0.031) 
0.009 (0.0039-0.016) 
0.011 (0.0042-0.022)

0.012 (0.006-0.022) 
0.014 (0.011-0.019)

0.013 (0.008-0.021)

CqRLl/2362 1
2
Mean

>270 0.49 (0.36-0.75) 
0.41 (0.27-0.65) 
0.45 (0.32-0.70)

AeLab 1
2
3
Mean

>10 1.3 (1.1—1.6) 
0.70 (0.51-0.90) 
0.47 (0.32-0.61) 
0.83 (0.63-1.1)

8 The 50% lethal concentrations were calculated using the software SPSS 8.0 
for Windows. 

b The values in parentheses are limits.

Toxicity. Transconjugant strain 2362.5 and its parent strain, 
2362R, were bioassayed with susceptible (CqSF) and resis­
tant (CqRLl/2362) laboratory colonies of C. quinquefasciatus 
and with A. aegypti (Table 1). There was not a significant 
difference in toxicity for the susceptible C. quinquefasciatus 
strain, but this could have been expected since B. sphaericus 
2362R-  is highly toxic to this strain, through the activity of the 
Bin toxin. Previous studies in which the cryllA gene was in­
troduced into the chromosome of B. sphaericus strain 2297 
showed that there were no (29) or slight (26) increases in 
toxicity. In both studies, the 2297(::cryllA) strains exhibited 
greatly enhanced toxicity (> 100-fold) for A. aegypti (which 
naturally has a low level of susceptibility to B. sphaericus). For 
transconjugant 2362.5 there was also a clear increase in toxicity 
for this insect This effect was probably due to the production 
of CryllA by the transconjugant since in B. thuringiensis subsp. 
israelensis this protein is known to contribute significant mosqui­
tocidal activity against both A. aegypti and C. quinquefasciatus 
(25). This effect against C. quinquefasciatus was seen most 
clearly with the Bin-resistant colony, which was much more 
sensitive to transconjugant 2362.5 than to the parental strain 
2362R- , confirming previous studies (29) and indicating that

expression of CryllA in B. sphaericus is a viable strategy for 
combating mosquito resistance.

Plasmid maintenance. Transconjugants of strains 1593R- 
and 2362R" containing pBtoxis::erm were tested to determine 
the stability of the introduced plasmid by growing them in the 
presence and absence of selective antibiotics. When strain
2362.5 was used, the pBtoxis plasmid seemed to be relatively 
stably maintained in vegetative culture without selection (Ta­
ble 2). However, in spores the plasmid was apparently substan­
tially lost during the initial subculture but appeared to be 
retained in later rounds (Table 2); thus, with some strain de­
velopment it might be possible to select strains with more 
stable maintenance of the plasmid.

Further investigation of plasmid stability in the other 
transconjugant (1593.1) during successive rounds of subculture 
overnight with no antibiotic selection showed that there was a 
general trend toward rapid loss of erythromycin resistance, 
presumably indicating that there was a loss of pBtoxis in veg­
etative cells. Overnight cultures grown in the presence of anti­
biotics to select for pBtoxis: :erm generally behaved as expected; 
i.e., they retained a high level of antibiotic resistance, although 
for strain 1593.1 less than 1% of the cells seemed to retain 
erythromycin resistance compared to the total counts.

The variability of the retention of antibiotic resistance and, 
by implication, plasmid stability suggests that pBtoxis is not 
just segregationally unstable but also genetically unstable. A 
further study of genetic changes that may have occurred in 
pBtoxis in various transconjugants may be required. At a prac­
tical level, if such strains are to be used for mosquito control in 
jurisdictions where genetically manipulated organisms are ac­
cepted, it would be best if relatively stable strains could be used 
and if antibiotic selection could be retained for all stages prior 
to inoculation of the production culture. With wild-type, un­
marked plasmids, monitoring for the presence of plasmids at 
all stages may be necessary.

B. thuringiensis subsp. israelensis plasmid pX016 has been 
shown previously to be capable of mobilizing small plasmids 
that lack both the mob gene and the oriT site (16). In this work, 
we showed for the first time that very large plasmids, such as 
pBtoxis::erm (128 kb), can be mobilized for transfer to dis­
tantly related bacteria by using this system. Despite plasmid 
stability issues, this work provides the first demonstration that 
toxin-coding plasmids are able to replicate and can be sus­
tained for any period outside the Bacillus cereus group of

TABLE 2. Vegetative and spore counts obtained as described in Materials and Methods using B. sphaericus transconjugant strain 2362.5

Cells Subculture Total cell count 
(CFU m l-1)8

Transconjugant cell 
count (CFU ml-1)8

% Cells retaining 
pBtoxis

Vegetative First 2.9 X  108 ± 3.1 X  107 3.2 X  108 ± 2.0 X  107 111.4
Second 5.9 X  109 ± 5.0 X  108 5.9 X  109 ± 4.1 X  108 100
Third 2.3 X  108 ± 3.1 X  107 2.5 X  108 ± 2.7 X  107 106.9
Fourth 3.0 x 108 ±  2.1 x 107 3.1 x 108 ± 2.9 X 107 103.0

Spores First 1.7 x 108 ±  2 5  x 107 8.3 x 107 ± 23  x 106 48.6
Second 1.4 x 108 ±  13 x 107 9.7 x 107 ± 13 x 107 71.1
Third 2.1 x 108 ± 2.2 x 107 1.2 x 108 ± 1.0 x 107 50.1
Fourth 8.5 x 107 ±  1.9 x 107 1.4 x 108 ± 2.8 X 107 16.2
Fifth 1.4 x 108 ±  1.8 x 107 2.8 x 106 ± 7.6 X 10s 2.0

8 The values are means ± standard deviations (n = 6).
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bacteria (which includes B. thuringiensis). This offers the po­
tential to transfer the toxin-coding plasmids to other species 
that may have useful environmental properties for enhanced 
insect control. The existence of Ciy toxins in non -Bacillus 
hosts, such as Clostridium bifermentans subsp. malaysia (25), 
could perhaps be linked to the natural transfer of such a plas­
mid during the evolution of the strain. The production of the B. 
sphaericus transconjugants without in vitro intervention using 
only microbiological mating techniques means that resulting 
strains that were not marked with antibiotic resistance genes 
would not be classified as “genetically modified” or “recombi­
nant.” This is likely to be very important in regulatory terms in 
many countries, if a commercializable strain is developed.
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diarrhoea-induced rats were reduced by 54% and 44%, re­
spectively, compared with normal rats. The difference in the 
Cmax was determined to be statistically significant. In con­
clusion, the concomitant administration of loperamide had 
no effect on the PK of celgosivir in normal rats and could 
be considered a viable treatment option for reducing gastro­
intestinal effects that may be associated with celgosivir treat­
ment Since induced-induced rats showed a reduction in cas- 
tanospermine Cmax and AUC, treatment with loperamide 
might prevent lowered systemic drug exposure in patients 
experiencing diarrhea.
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In Vitro Characterization of Celgosivir, a Clinical Stage 
Compound for the Treatment of Hepatitis C Viral Infec­
tions
Dominique Dugourd, Jeremy Fenn, Raymond Siu, Jacob J 
Clement Richard Coulson1

MIGENIX Inc., Vancouver, BC, Canada

Celgosivir (MX-3253), a compound in phase II clinical trials 
for the treatment of chronic Hepatitis C viral (HCV) infec­
tions, targets intracellular a-glucosidase I, an endoplasmic 
reticulum (ER) enzyme that plays a critical role in viral mat­
uration by initiating the processing of N-linked oligosaccha­
rides of viral envelope glycoproteins. The inhibitory activi­
ties of celgosivir and its metabolite, castanospermine, were 
tested against the HCV-surrogate virus, bovine viral diarrhea 
virus (BVDV), maintained in Madin-Darby bovine kidney 
(MDBK) cells at various multiplicities of infection (MOI). 
Celgosivir and castanospermine had EC50 values of 2.1 and 
13.0 p,M, respectively, for blocking virus release in a single 
cycle assay at an MOI of ~1. In a multiple cycle assay, cel­
gosivir blocked BVDV’s cytopathic effect with EC50 values 
of 7.2 and 17.2 p,M at MOIs of 0.01 and 0.1, respectively. 
Similarly, castanospermine blocked BVDV’s cytopathic ef­
fect, with EC50 values of 75 pM and 185 pM at MOIs of 
0.01 and 0.1, respectively. When BVDV-infected cells were 
pretreated for 24 h, viral re-growth times (time for 1 x log 10 

viral growth) were 4,4, and 8  h post-treatment for 11,33 and 
100 pM of celgosivir, respectively. With 11, 33 and 100 pM 
of ribavirin, re-growth times were 4, 8 , and 16 h, respec­
tively, compared with 2 h for untreated BVDV-infected cells. 
This suggests that celgosivir targets the late viral replication 
stage whereas ribavirin targets early replication. Celgosivir 
and castanospermine showed minimal cytotoxicity (CC50 
>1000 pM) when tested against non-infected human hepato- 
cytes. Celgosivir and its metabolite castanospermine exhibit 
potent anti-BVDV efficacy and low host cell toxicity. These

findings confirm the potential of celgosivir as a Hepatitis C 
viral therapy in humans.
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An Assay for the Biological Testing of Potential Inhibitors 
for the HCV Helicase, Dengue Virus Helicase and Dengue 
Virus Helicase/Protease Complex (NS3 Domain)
Dimitrios P. Vlachakis1, Colin Berry2, Gareth Jones2, An­
drea Brancale1

1 Medicinal Chemistry, Welsh School of Pharmacy, Cardiff 
University, Wales, UK; 2Cardiff School of Biosciences, 
Cardiff University, Wales, UK

Hepatitis C and dengue are enveloped n positive-sense RNA 
viruses. Hepatitis C virus is the major etiological agent of 
post-transfusion hepatitis worldwide. An estimated 3% of 
the world’s population is infected with HCV according to the 
World Health Organization. Infection with HCV will most 
regularly result in chronic hepatitis, which leads to liver cir­
rhosis, hepatocellular carcinoma and liver failure. Dengue 
is currently the most important viral disease, transmitted by 
mosquitoes and afflicting humans worldwide. Clinical symp­
toms range from mild fevers to a severe hemorrhagic disease. 
To date, no specific antiviral treatments exist nor are there any 
vaccines available for either infections. Thus there is an ur­
gent need for new therapies.

The aim of this project is to design and establish an enzy­
matic assay that will be used to screen for potential inhibitors 
of the Helicases of the HCV and dengue viruses as well as 
the Helicase/protease complex of the dengue virus. Helicases 
are interesting targets for drug design, firstly for their vi­
tal function in the viral cell cycle and secondly for the fact 
that human cells lack helicases capable of unwinding positive 
sense double stranded RNA. The genes of the HCV Helicase, 
the dengue virus Helicase and the dengue virus NS3 domain 
(Helicase and Protease) were incorporated into a pET system 
expression vector. The vectors carrying the genes were then 
transformed into E. coli cells and the genes were expressed 
(BL21-pLysS strain). It was determined that both Helicases 
are produced in the cell without the need for induction. This 
was confirmed by an expression test with variable concentra­
tions of inducer (0-1 mM IPTG). It was found that the protein 
was present under all expression systems. However the one 
induced at 1 mM showed max yield. After induction, the cell 
suspensions were harvested. SDS-PAGE and His-Tag West­
ern blotting confirmed the existence of the various proteins. 
Protein isolation was based on the 6 (His)-Tags of the three 
proteins. The proteins were tested for their functionality using 
specific enzymatic assays.
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Abstract: In this work, 246 Bacillus sphaericus strains were evaluated against Aedes aegypti and Culex quinquefasciatus 
larvae to select the most effective ones to be used as the basis of a national product. All strains were isolated from different 
regions of Brazil and they are stored in a Bacillus spp. collection at Embrapa Genetic Resources and Biotechnology. The 
selected strains were characterized by biochemical and molecular methods. Based on selective bioassays, 87 strains were 
identified as toxic to one or both target species. All of these strains contain genes that encode the 42,51 kDa proteins that 
constitute the binary toxin and the 100 kDa Mtxl toxin. All toxic strains presented a very high LC50 against A. aegypti, so, 
a product based on any of these B. sphaericus strains would not be recommended for use in programmes to control
A. aegypti. S201 had highest activity against C. quinquefasciatus, presenting the lowest LC50 and LC90 in bioassays.

Key words: Aedes aegypti, Bacillus sphaericus, Culex quinquefasciatus, bioassay, biological control, mosquito, vector disease

1 Introduction
Bacillus sphaericus Neide is a bacterial species found 
commonly in soil and aquatic habitats (Davidson, 1985) 
and characterized by the production of spherical 
terminal or subterminal spores in the sporangium. 
Although most strains of B. sphaericus are not patho­
genic for insects, the mosquitocidal strains are import­
ant tools in mosquito control programs. The first 
pathogenic strains were isolated from Culiseta incidens 
(Dipt.: Culicidae) larvae and were called strains K  and 
Q (Kellen et al., 1965). Currently many toxic strains 
are known and many studies have been performed on 
strains 1593 and 2362 isolated respectively in Indonesia 
(Singer, 1973) and Nigeria (W eiser, 1984). This organ­
ism does not infect non-target invertebrates (including 
bees) or cold-blooded vertebrates and it is also 
innocuous to mammals in laboratory tests (Davidson, 
1985). The World Health Organization (WHO) recom­
mends the utilization o f this bacterium in public health 
programs (World Health Organisation, 1985).

Almost all mosquito species from the genus Culex 
(Dipt.: Culicidae), some of them vectors o f filariasis, 
are susceptible to B. sphaericus, as are members of the 
genera Anopheles, Psorophora and Mansonia. The 
activity of this bacterium against mosquitoes from 
the genera Aedes and Ochlerotatus (representing species 
that used to be defined as Aedes), is variable. Some 
mosquito species are very susceptible and others, par­
ticularly Aedes aegypti, a major vector of dengue and 
yellow fever, show low sensitivity. Bacillus sphaericus is

very effective when used in polluted water, making it a 
good option to control Culex quinquefasciatus and other 
Culex, breeding in polluted water in cities located in 
tropical and sub-tropical areas. The B. sphaericus 
activity is because of a presence of different kinds of 
protein toxins that differ both in their composition and 
time of synthesis. The parasporal crystal of B. sphaer­
icus, which is produced during the sporulation phase is a 
binary toxin composed of two components designated 
as P51 and P42 on the basis of their molecular masses 
(Baumann et al., 1987), and now termed BinB and BinA, 
respectively. The different Mtx toxins, which have 
molecular masses of 100 kDa (M txl) and 32 and 
36 kDa (Mtx2 and Mtx3) are expressed during the 
vegetative growth phase, but low levels of production 
and instability mean that their toxicity is of minor 
significance, particularly in the spores that are applied in 
mosquito control programmes (Thanabalu et al., 1991; 
C han et al., 1996; Liu et al., 1996).

Bacillus sphaericus is a very promising microorgan­
ism and several laboratories around the world are 
looking for new strains that may be able to produce 
novel toxins or which may be more adapted to local 
environmental conditions, in order to have better effect 
in the field and which could be used in resistance 
management (Monnerat and B ravo, 2000).

Embrapa Genetic Resources and Biotechnology has a 
culture collection of entomopathogenic Bacillus spp. in 
which around 300 B. sphaericus strains are stored 
(Monnerat et al., 2001a). The aim of this work was the
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characterization of the most toxic B. sphaericus strains 
for the control of A. aegypti and C. quinquefasciatus 
among the Embrapa culture collection to identify strains 
that could be used as a basis for a Brazilian product.

2 Materials and Methods
2.1 Bacillus sphaericus strains
A total of 246 B. sphaericus strains were used in this work. 
They are stored at Embrapa’s Culture Collection of Ento- 
mopathogenic Bacillus spp. and were isolated from soil and 
water samples collected in different regions of Brazil 
(M onner at  et al., 2001a).

2.2 Preliminary bioassay
All strains were grown in NYSM (a medium composed of 
nutrient broth, yeast extract, Mncl2, MgC12 and Ca C12) 
medium ( Y o u ste n , 1984) for 48 h at 28°C and 200 r.p.m. and 
tested against third-instar larvae of C. quinquefasciatus and
A. aegypti. One millilitre of total culture of each strain was 
added to 2 0 0  ml cups in triplicate with 100 ml of distilled 
water and 25 larvae of C. quinquefasciatus or A. aegypti. One 
cup without bacteria was used as the control. Forty-eight 
hours later, the numbers of dead larvae were evaluated. The 
strains that killed more than 50% of the larvae were 
considered pathogenic (M o nnerat et al., 2001b).

2.3 Quantified bioassay
2.3.1 Final whole culture
In order to determine the LC50, the quantified bioassay was 
performed according to the method recommended by WHO 
(WHO, 1985), several dilutions of the final culture prepared as 
described above were used. One millilitre of these dilutions was 
added into 2 0 0  ml cups in triplicate, as for the procedure used 
in selective bioassays. Forty-eight hours later the numbers of 
dead larvae were recorded and the LC50 was calculated by 
Probit analysis (F in n ey , 1971). Bacillus sphaericus 2362 (SPH- 
8 8 , from the Pasteur Institute) was used as standard.

2.3.2 Lyophilized culture
The most toxic strains against C. quinquefasciatus were also 
tested as above, except that lyophilized culture, prepared as 
described previously (WHO, 1985), was added in place of 
diluted whole cell cultures. These bioassays were repeated 
three times.

2.4 Analysis of protein profile
The spore-crystal mixtures of the B. sphaericus strains were 
prepared according to S chenk el  et al. (1992). The protein 
composition of the spore-crystal mixtures was determined by 
sodium dodecyl sulphate-polyacrylamide gel electrophoresis 
(SDS-PAGE) in 10% polyacrylamide gels.

2.5 Analysis of the presence of B. sphaericus toxin genes 
by polymerase chain reaction (PCR)
The method used was described by O tsuk i et al. (1997). 
Bacillus sphaericus strains were grown on NYSM agar for 
16 h, at 25°C. Cells were resuspended in MilliQ water and

frozen at -80°C for 1 h and then transferred to boiling water 
for 10 min to lyse the cells.

Primers designed for detection of the binary toxin operon, 
and the individual bin genes, BSN1/BSN2 and BS1/BS2 
(ibinB), BSN3/BSN4 and BS3/BS4 (binA) and 100.1/100.2 
(mtxl) toxin were used (O tsuki et al., 1997). Fifteen micro­
litre of supernatant obtained from cell lysates of the
B. sphaericus strains were transferred to a 200-/xl reaction 
tube (Bio-Products) containing 0.5 / im  of each primer, 
0.2 iu m  of each dNTP, lx Taq polymerase buffer, 1.5 mM 
MgCl2 and 2.5 U of Taq DNA polymerase (Gibco BRL, Life 
Technologies, Grand Island, NY, USA) in a final volume of 
50 p\. PCR amplification was performed with a Program­
mable Thermal Controller (MJ Research model PTC-100, 
MJ Research, Inp», Waltham, MA, USA). The conditions 
used for the PCRs were those described by O tsuki et al. 
(1997). After amplification, a 15-pi sample of the product 
from each PCR reaction was subjected to electrophoresis in a 
2% (w/v) agarose gel in Tris-borate buffer at 100 V for 1 h 
and stained with ethidium bromide.

2.6 Sequencing of a bin operon
To determine the sequence of the bin genes from a sample 
strain, the operon was amplified by PCR using the primers 
BinF (CAATGATAAGGAGATGAAGA) and BinR (CAT- 
CTATTAGTTCAAGAATATTG) at an annealing tempera­
ture of 60°C. The amplified fragment was cloned into the 
Escherichia coli vector pGEM-T (Promega, Madison, WI 
USA) for subsequent sequencing using an ABI Prism 3100 
capillary sequencer.

3 Results and Discussion
3.1 Toxicities of B. sphaericus strains against
C. quinquefasciatus and Aedes aegypti larvae
Single point bioassays were performed on all 246 
strains of B. sphaericus in the Embrapa collection. Of 
these strains, 87 strains were considered toxic, killing 
more than 50% of insect larvae: 69 were toxic only to
C. quinquefasciatus and 18 to both C. quinquefasciatus 
and A. aegypti.

LC50 and LC90  values, using a final whole culture 
against the two target species, were subsequently 
determined only for the 18 strains that presented dual 
activity (tables 1 and 2 ).

Against C. quinquefasciatus, the LC50 values showed 
a range between 0.38 and 14.5 x 10- 6  fed (final culture 
dilution), the LC90 values showed a range between 1.52 
and 72.9 x 10- 6  (table 1). The most effective strains 
were S201 and SI62, having respectively LC50 of 0.38 
and 0.55 x 1 0 - 6  fed and LC90  ° f  1-52 and 
2.20 x 10-6 fed. This result shows that both strains 
are at least twice as active against this insect than the 
standard strain B. sphaericus 2362 that had an LC50 of
2.1 x 10-6 fed and LC90 ° f  5.4 x 10-6 fed in our assays 
(table 1).

Against A. aegypti, the LC50 values ranged between 
0.003 and 0.35 fed and the LC90 between 0.012 and 
2.67 fed (table 2). The most effective strains were S242, 
S233 and S260, having LC50 of 0.003, 0.004 and 
0.004 fed and LC90 of 0.012, 0.018 0.019 fed respect­
ively. Strains 2362 and S201 were the least toxic
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Table 1. Toxicities o f  B. sphaericus strains against 
C. quinquefasciatus larvae

Strains
LC50

(fiducial limits 95%)
LQ>o

(fiducial limits 95%)

S201 0.38 (0.28-0.52) 1.52 (1.02-2.74)
S162 0.55 (0.41-0.76) 2.20(1.46-4.18)
2362 2.12 (1.65-2.87) 5.40 (3.80-9.30)
S242 2.20(1.70-2.98) 5.47 (3.87-9.40)
S200 2.28 (1.77-3.09) 5.56 (3.94-9.43)
S295 2.28 (1.77-3.09) 5.56 (3.94-9.43)
S260 2.47(1.91-3.35) 5.74 (4.10-9.46)
S516 2.69 (2.06-3.57) 6.73 (4.89-10.6)
S524 2.69 (2.06-3.57) 6.73 (4.89-10.6)
S15 2.86 (2.19-3.77) 7.58 (5.53-11.7)
S16 3.16(2.39-4.16) 9.19 (6.67-14.3)
S233 3.16 (2.39-4.18) 7.07 (5.25-10.5)
S444 3.16 (2.39-4.18) 7.07 (5.25-10.5)
S662 3.16(2.39-4.18) 7.07 (5.25-10.5)
S438 3.54 (2.67-4.62) 8.59 (6.46-12.5)
S64 3.85 (2.84-5.01) 8.70 (6.64-12.2)
S558 4.84 (3.62-6.35) 14.6 (10.6-23.3)
SI 13.7 (9.30-27.7) 66.0 (31.1-428)
S131 14.5 (9.73-31.7) 72.9 (32.9-556)

The unit used was final culture dilution (fed) x KT6.

Table 2. Toxicities o f  B. sphaericus strains against 
A. aegypti larvae

Strains
LC50

(fiducial limits 95%)
LC90

(fiducial limits 95%)

S242 0.003 (0.002-0.005) 0.012 (0.008-0.022)
S233 0.004 (0.002-0.006) 0.018 (0.011-0.033)
S260 0.004 (0.002-0.006) 0.019 (0.012-0.035)
S295 0.005 (0.003-0.007) 0.025 (0.015-0.049)
S516 0.005 (0.003-0.007) 0.025 (0.015-0.049)
S558 0.005 (0.003-0.008) 0.029 (0.017-0.059)
S200 0.006 (0.004-0.010) 0.037 (0.021-0.082)
S444 0.006 (0.004-0.010) 0.037 (0.021-0.082)
S662 0.006 (0.004-0.010) 0.037 (0.021-0.082)
S438 0.007 (0.004-0.010) 0.040 (0.023-0.090)
S524 0.007 (0.004-0.010) 0.040 (0.023-0.090)
S131 0.009 (0.006-0.015) 0.061 (0.031-0.168)
S15 0.020 (0.013-0.029) 0.140(0.080-0.310)
S64 0.024 (0.017-0.035) 0.160 (0.096-0.0351)
S16 0.047 (0.033-0.069) 0.230 (0.141-0.450)
SI 0.044 (0.032-0.065) 0.220 (0.130-0.411)
S162 0.062 (0.043-0.095) 0.034 (0.205-0.740)
S201 0.233 (0.165-0.330) 1.30 (0.811-2.66)
2362 0.355 (0.243-0.541) 2.67 (1.47-7.07)

The unit used was final culture dilution (fed).

Table 3. Toxicities o f  B. sphaericus strains against 
C. quinquefasciatus larvae. Results are expressed in 
nanogram o f  lyophilized bacteria/ml

LC50 LC9o
Strains (fiducial limits 95%) (fiducial limits 95%)

S201 1.24 (0.92-1.67) 4.52 (3.12-7.87)
S242 1.35 (0.95-1.90) 7.16 (4.53-14.9)
S162 2.97 (1.92-4.36) 26.8 (16.6-52.2)
2362 4.15 (2.74-6.04) 35.1 (21.7-69.7)

These results confirm B. sphaericus S201 and S242 as 
promising strains and indicates that for strain S201, 
better growth characteristics as well as higher toxicity 
per spore may contribute to the higher activity 
observed.

3.2 Analysis of protein profile by SDS-PAGE

Spore crystal complexes from 87 mosquitocidal
B. sphaericus strains and the standard strain 2362 were 
used. All o f them presented the same protein profile, 
showing two major proteins of 51 and 42 kDa (fig. 1). 
This protein profile is typical o f the binary toxin 
produced by B. sphaericus ( B a u m a n n  et al., 1987).

3.3 Analysis of the presence of B. sphaericus toxin genes 
by polymerase chain reaction

All 87 B. sphaericus pathogenic strains produced the 
expected PCR amplicons of 0.523, 0.720 and 
0.700 kb, indicating the presence o f genes encoding 
BinA, BinB and M txl, respectively (fig. 2). These 
results are consistent with the protein profiles for 
these strains where the presence o f 51 and 42 kDa 
bands, corresponding to the sizes of BinB and BinA 
respectively, were observed. The presence of 100 kDa

kDa

presenting LC50 values o f 0.35 and 0.24 fed and LC90 
of 2.67 and 1.30 fed (table 2).

To check whether higher apparent toxicities were 
because of a greater toxicity per cell or a higher cell 
density in the final cultures, LC 5 0  and LC^values were 
also determined for the four most toxic strains against
C. quinquefasciatus using a lyophilized final whole 
culture (table 3). In this case, S201 and S242 were the 
most toxic strains, showing LC 5 0  o f 1.24 and 1.35 
ng/ml and LC 9 0  o f 4.52 and 7.16 ng/ml o f lyophilized 
material, respectively whilst strain S I62 showed similar 
toxicities to that of 2362 with values o f  2.97 and 
4.15 ng/ml (LC50) and 26.8 and 35.1 ng/ml (LC 9 0 ).
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113.7 —

80.9 — 
63.8 —
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.
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51

42

1 2 3 4 5 6

Fig. 1. Representative SDS-PAGE o f  spore-crystal 
from  B. sphaericus strains. 1, molecular marker Gibco 
BRL; 2, 2362; 3. S242; 4, S233; 5. S260 and 6. S295. 
All other toxic strains exhibited the same profile (not 
shown)
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Fig. 2. Representative agarose gel o f  PC R  products 
obtained with primers BS1/BS2 (a ) , BSN3/BSN4 (b) 
and 100.1/100.2 (c ) . 1, molecular marker 1 kb Phar­
macia; 2, negative control; 3, 2362; 4, S200; 5, S233; 6, 
S242; 7, S260; 8, S295 and 9, S516. A ll other toxic 
strains exhibited the same profile (not shown)

bands corresponding to the M txl toxin were not 
observed on SDS-PAGE and would not be expected 
in spore crystal mixes due the fact that this is a 
vegetative protein produced in low am ounts with low 
stability that has not been observed previously in 
spores ( T h a n a b a l u  et al., 1992; T h a n a b a l u  and P o r t e r ,  

1995).

3.4 Sequencing of a bin operon

To assess whether this toxicity was because o f a new 
variant o f the bin operon, the bin genes from S242 
were amplified and sequenced. The results showed 
that the bin operon in this strain was identical to bin 
type 2 as found in B. sphaericus strains such as 2362 
(H u m p h r e y s  and B e r r y ,  1998). This indicates that the 
greater toxicity to A. aegypti may be because of higher 
levels of toxin production or to the presence o f an 
extra, unidentified toxin active against this species.

The assays performed in this work demonstrated 
that the toxic B. sphaericus strains isolated from 
different regions of Brazil all appear to be typical of 
highly toxic strains of this bacterium as they encode 
Bin toxins, along with the M txl protein although 
they present a range virulence levels towards the two 
mosquito species studied. It is also im portant to 
emphasize that the LC 5 0  obtained against C. quin­
quefasciatus is not indicative o f the relative toxicity 
against A. aegypti. Although many strains are more 
toxic than 2362 against A. aegypti, the LC 5 0  are still 
very high when compared with Bacillus thuringiensis 
israelensis ( G o l d b e r g  and M a r g a l i t ,  1997) and 
B. thuringiensis’ medellin ( O r d u z  et al., 1994) so, a 
product based on any of these B. sphaericus strains 
would not be recommended for use in programmes 
to control A. aegypti. The compilation o f the results 
shows that S201 is the best strain to be used as a 
basis of a product against C. quinquefasciatus, as this 
strain presented the lowest LC 5 0  and L C 9 0  in both 
kinds o f bioassays with a significantly better activity 
against this mosquito.
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