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Summary

Within this thesis is an investigation and appraisal o f alternative automotive fuels, 

internal combustion engine technology and emission reduction techniques.

A review o f the developments in engine technology, with specific focus on 

improvements in engine efficiency and emission reductions was undertaken. Tighter 

emission legislation imposed after the Kyoto agreement has resulted in technological 

advances in the field o f  internal combustion engines; improving the economy o f modem 

motor vehicles while reducing their emissions o f C 0 2  and particulate matter.

As part o f  an EU funded project entitled “Magnetic M ovement Valve for Miller Cycle 

operation o f engines”, the application o f  a novel secondary valve apparatus to an 

internal combustion engine was investigated through the use o f computer modelling. It 

was shown that the secondary valve concept is capable o f  controlling the output o f  an 

internal combustion engine, while increasing the operating efficiency and reducing the 

emission o f NOx through the use o f Miller cycle operation and throttle free load control.

A development programme o f  the engine and the secondary valve apparatus, carried out 

in conjunction with EU project partners, resulted in a marketable engine incorporating 

the new technology which is now in production within Europe and the Far East.

An engine test-bed facility was commissioned to investigate the emissions and 

performance o f  a diesel engine fuelled by a variety o f biodiesel /  diesel fuel blends. It 

was found that incremental addition o f  biodiesel to a low sulphur diesel fuel resulted in 

a decrease in engine power and an increase in fuel consumption, CO2 and NOx 

emissions. The particulates levels o f  pure biodiesel emissions were found to be much 

lower (by mass and number concentration) than that o f the low sulphur diesel fuel. 

From analysis o f  the exhaust gases it was found that the average size o f the particulates 

is larger for biodiesel fuel than for the low sulphur diesel fuel.
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Nomenclature

Symbol Unit Definition

A m2 cross sectional area

c m/s instantaneous speed o f sound

Cd, Cd - discharge coefficient

Ft Nm body force

G J/s turbulent energy generation rate

H, h J/kg absolute enthalpy

K, k m2/s2 turbulence kinetic energy

/ - length scale

m kg mass

P Nm measured engine power

P0 Nm corrected engine power

ps Pa dry atmospheric pressure

Pr - Prandtl number

Q m3/s volumetric flow rate

q ^  J energy contribution from radiation

qw W/m2 heat flux through the wall

r - expansion/compression coefficient

Sj - source term

t s time

T k temperature

u m/s velocity

u' - velocity scale

Ut m/s local mass-averaged velocity

v m/s instantaneous gas velocity

x m sub volume length

Y - mass fraction o f a given species

v



Symbol Unit

AP Pa

At s

m2/s

O -

Od -

y -

£ J

n -

M l kg/ms

M , kg/ms

V m2/s

P kg/m3

-

V . m2/s

10 mol/s

Superscripts / Subscripts

Symbol Unit

C -

Cl -

E -

ext -

H J/kg

m kg

SI -

U kgm/s

Definition

applied pressure difference 

time step size, 

molecular diffusivity

scalar variable

power correction factor

heat capacity ratio

turbulent energy dissipation rate

efficiency

molecular dynamic viscosity

turbulent viscosity

kinematic viscosity 

density

turbulent Schmidt number

effective diffusivity

species production rate / addition

Definition

compression

compression ignition

expansion

external

enthalpy

mass

spark ignition 

momentum
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Introduction

1 Introduction

For a broad variety o f  reasons, national (and global) energy consumption has been the 

focus o f much recent political attention. A range o f  policy documents and energy 

consumption targets have been set, which have increasingly put under scrutiny the 

sectors o f industry which rely either directly or indirectly upon high energy 

consumption. The transport sector is clearly one such example.

The introduction to the thesis describes the general background to the field o f Internal 

Combustion (IC) engines, with emphasis on the technical areas pertinent to the focus o f 

this thesis. A general review o f international legislation that has affected and continues 

to affect engine research is summarised. Areas o f  particular interest are highlighted for 

further investigation throughout the course o f  this study.

1.1 Internal Combustion Engine

The IC engine is one o f the few inventions that, since its inception, has affected 

virtually the entire population o f  the globe. An internal combustion engine is a heat 

engine, in which an exothermic reaction is made to occur by the controlled ignition o f  a 

fuel with an oxidizer, leading to the formation o f gases o f  high temperature and 

pressure. In an internal combustion engine the gaseous combustion products are 

permitted to expand, and in doing so carry out useful work by acting directly to cause 

movement (usually the movement o f a piston within an enclosed cylinder).

The majority o f  fuels used in internal combustion engines are basic hydrocarbons o f  the 

form CxHy, and the formula for the complete combustion o f  a hydrocarbon fuel in 

oxygen is shown in equation 1 - 1.

CxHy + (X + Y/4) 0 2 — X C 0 2 + (Y/2)H20  (1 - 1)
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When there is precisely enough air in a fuel/air mixture for complete combustion to 

occur the mixture is said to be stoichiometric. If  there is too much air the mixture is 

described as fuel “lean” and conversely if  there is insufficient air the mixture is 

described as fuel “rich” . In the case where there is insufficient oxygen for complete 

combustion o f a hydrocarbon to occur, the gaseous products may include carbon 

monoxide (CO) and particulate matter (PM) such as soot. Other pollutants, such as 

nitrogen oxides (NOx), can also be generated during the combustion process which are 

damaging to the environment.

1.1.1 Basic Engine Cycles

Internal combustion engines (or more specifically internal intermittent continuous 

combustion engines, excluding turbine machinery) can be broadly split up into two 

groups;

Spark Ignition (SI) Engines in which a compressed air-fuel charge within the

engine cylinder is ignited by a suitable energy source 

(typically a spark plug).

Compression Ignition (Cl) Engines in which the fuel ignites inside the engine

cylinder due to the effects on the chemical kinetics o f an 

increase in pressure and temperature caused by a tight 

fitting piston compressing the air-fuel charge within the 

cylinder.

The SI genre o f engines almost entirely follows the four-stroke combustion cycle to 

convert the chemical energy contained in the fuel into kinetic energy. The basic four- 

stroke combustion cycle is known as the Otto cycle after Nikolaus Otto (1832-1891), 

who first described the cycles’ operation in 1876. The patent held by Otto for the four-

stroke cycle was invalidated in 1886 when it was discovered that another inventor,

Alphonse Beau de Rochas, had already described the principle o f the cycle in a 

privately published paper. The basic Otto cycle as well as an actual four-stroke SI

1 - 2
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engine cycle is shown in Figure 1.1. As can be seen in Figure 1.1, the basic engine 

operation described by the Otto cycle is difficult to obtain in reality.

Each o f the four-strokes o f the SI combustion cycle can be described as follows. The 

induction stroke (points A-B in Figure 1.1) is the drawing in of the fresh air/fuel 

mixture into the engine cylinder; the compression stroke is the compression o f the 

confined air/fuel mixture (points B-C), after which combustion is initiated in the 

cylinder by the spark plug; the expansion stroke (points C-D) is where the formation o f 

the hot combustion gases carries out work on the piston; and finally the exhaust stroke 

(points D-A) is where the combustion products are evacuated from the engine cylinder.

P Ideal Otto Cycle

V

P Actual SI Cycle

V

v
A

V
Induction (A-B) Compression (B-C) Expansion (C-D)

Figure 1.1 -  Otto cycle and actual SI cycle comparison

Exhaust (D-A)
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The efficiency o f the ideal Otto cycle is given by equation 1-2:

d-2)

From equation 1-2 it can be seen that the efficiency o f a spark ignition engine is 

therefore related to the compression ratio o f the engine.

The Cl genre o f engines differs slightly in operation to their SI counterparts, in that 

typically a higher compression ratio is used to initiate combustion instead o f using a 

spark plug to ignite the air-fuel charge. The basic principles behind the Cl genre o f 

engines are attributed to Rudolph Diesel (1858-1913) who first demonstrated his engine 

at the ‘Exhibition Fair’ in Paris (1898).

Figure 1.2 describes the operation o f the Diesel cycle as well as an actual Cl cycle.

Ideal DieselP
Cycle

V

P Actual Cl Cycle

V

4 2  = M 2  2 f t ir t l2

o
c

9 1

n C> 0
1 v 7in i l I r l l  Tnil

Induction (A-B) Compression (B-C) Expansion (C-D) Exhaust (D-A)

Figure 1.2 -  Diesel cycle and actual Cl cycle comparison

1 - 4



Introduction

Each o f the four-strokes o f the diesel combustion cycle can be described as follows. The 

induction stroke (points A-B in Figure 1.2) is the drawing o f the fresh air into the engine

temperature and pressure caused by the compression; the expansion stroke (points C-D) 

is where the formation o f the hot combustion gases carries out work on the piston; and 

finally the exhaust stroke (points D-A) is where the combustion products are evacuated 

from the engine cylinder.

The efficiency o f the ideal diesel cycle is given by equation 1-3:

It can be seen from equation 1-3 that the efficiency o f a diesel engine is related to both 

the effective expansion ratio and compression ratio o f the engine.

1.1.2 IC Engine Design

cylinder; the compression stroke is the compression o f the confined air (points B-C), 

after which fuel is injected into the cylinder which then auto-ignites due to the high

(1-3)

Figure 1.3 displays a schematic o f a modem internal combustion engine, with labels

p o in tin g  n ,,t pnm nnnpnts n f  infprpQt

P u lle r '
Cambel

Inlet Camshaft

Exhaust
Camshaft
Exhaust Port

Cylinder
Block

Exhaust Valve 
Piston 
Crankshaft 
Con. Rod

Figure 1.3 -  Internal combustion engine schematic
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1.2 Fuels

The abundance o f crude oil reserves throughout the world, together with the suitable 

characteristics o f some o f its derivatives, led to it becoming the major fuel source for 

the Internal Combustion engine. The origin o f crude oil is from the remains o f plant life 

from 100 to 600 million years, with the hydrocarbons and other compounds present in 

the crude oil being linked to the fossil remains o f the leaf waxes and other plant 

molecules (both marine and terrestrial) believed to exist throughout that era.

Early automotive fuels were the lighter fractions from the distillation o f crude oil. It is 

now accepted that the natural products o f crude oil distillation do not meet the required 

standards for modem engines, and because o f this various chemicals are mixed with the 

crude oil distillates to improve their liquid and combustion properties. Four main types 

o f automotive fuel are sold throughout the UK, these are:

•  95 octane unleaded petrol

•  97 octane unleaded petrol (known as super-unleaded)

• Lead replacement petrol (LRP, demand rapidly decreasing)

• Diesel fuel (DERV)

The three petrol (or gasoline) fuels are used in spark ignition engines, while the diesel 

fuel is used in compression ignition engines.

1.2.1 Petrol (Gasoline) Fuels

Petrol fuels typically consist o f hydrocarbon molecules with between five and twelve 

carbon atoms. Modem petrol is predominantly a mixture o f paraffins (alkanes), 

naphthenes (cycloalkanes), aromatics and olefins (alkenes). The exact ratio o f  the 

constituents o f petrol depends on the location from which the raw crude is obtained, the 

refinery which processes the oil and the grade o f the petrol (summer / winter grade and 

octane rating).
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The most important characteristic o f petrol fuels is the octane rating, which is the 

measure o f how resistant a spark-ignition fuel is to premature detonation (known as 

knocking). Knocking is the premature ignition o f the unbumed air/fuel charge due to 

auto-ignition. The octane rating system was developed by the chemist Russel Marker 

and is measured relative to a mixture o f 2,2,4-trimethylpentane (an octane isomer) and 

n-heptane. A fuel classed as ‘95 octane’ has the same resistance to knock as a mixture 

o f 95% iso-octane and 5% n-heptane. The most common octane rating system employed 

worldwide is the Research Octane Number (RON), which is determined by running the 

fuel through a specific test engine with a variable compression ratio under controlled 

conditions. The results are then compared with that o f iso-octane and n-heptane.

Higher octane fuels allow for the use o f higher compression ratios which results in 

higher peak cylinder pressures and greater efficiency, even though the higher octane 

fuels may contain less energy per litre. In practice however, the octane rating o f the fuel 

has no relationship with its energy content.

The characteristics for petrol sold in the UK are stated in European directives 98/70/EC 

and 1999/32/EC and in UK law by the Motor Fuel (Composition and Content) 

regulations 1999 (The specifications for 95 and 97 octane unleaded petrol are also stated 

in British Standards BS EN 228:2004 and BS 7800:2004 respectively). From these rules 

the minimum Research Octane Number for UK petrol is 95, the maximum sulphur 

content is 50 ppm and the maximum aromatic content is 35% by volume.

1.2.2 Diesel Fuels

Diesel fuel typically consists o f hydrocarbon molecules with between ten and fifteen 

carbon atoms and has a density typically 18% higher than petrol. Diesel fuel also has an 

energy content per unit volume about 18% greater than petrol, which along with the 

greater efficiency o f diesel engines contributes to an increase in fuel economy. Standard 

diesel fuel contains much higher quantities o f sulphur than the petrol equivalent, but 

through legislation and preferential taxation oil companies have been forced to lower 

the final sulphur content o f their fuels.
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The Cetane number o f a diesel fuel is equivalent to the octane rating o f a petrol fuel 

and is a measure o f  the quality o f the fuel’s combustion. Cetane is a hydrocarbon 

molecule that ignites very easy under compression, and was therefore assigned a Cetane 

number o f 100. All the hydrocarbons in diesel fuel are indexed to Cetane by their ability 

to ignite under compression; therefore the Cetane number measures how quickly the 

fuel auto-ignites under diesel engine conditions. The overall Cetane number assigned to 

a fuel is thus the weighted average Cetane number o f each o f the hundreds o f individual 

components that make up the diesel fuel. Fuels with high Cetane numbers will start to 

bum shortly after their injection into an engine cylinder (because o f the high pressure 

and temperatures obtained during the compression stroke) due to their very short 

ignition delay. Fuels with low Cetane numbers resist auto-ignition and therefore have 

longer ignition delays. The Cetane number o f most fuels is calculated using the density 

and distillation range o f the constituent oils; the Cetane number can also be measured 

experimentally using a Cooperative Fuel Research engine under standard test 

conditions. In practice there is very little increase in performance or emissions once the 

Cetane number o f a fuel is raised past 50.

The characteristics for diesel fuel sold in the UK are also covered by the European 

directives 98/70/EC and 1999/32/EC and in UK law by the Motor Fuel (Composition 

and Content) regulations 1999; and the British Standard for diesel fuel is BS EN 

590:2004. The minimum Cetane number for UK diesel is 51, the maximum sulphur 

content is 50 ppm, and the maximum polycyclic aromatics content is 11% by volume. 

The maximum sulphur content o f diesel fuel is set to change to 10 ppm by the 1st 

January 2008.
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1.3 Emissions

Since the industrial revolution air pollution has been a concern for many countries; with 

airborne pollutants such as gases, chemicals and smoke particles reducing the ability for 

enjoyment or causing significant health and environmental problems.

1.3.1 Pollutants from Internal Combustion Engines

The combustion o f petrol and diesel fuels is a known source o f airborne pollutants such 

as:

•  Carbon monoxide

• Carbon dioxide

• Nitrogen oxides

• Sulphur dioxide

• Particulate Matter

•  Benzene

• Polycyclic Aromatic Hydrocarbons

Carbon monoxide (CO) is a colourless, odourless poisonous gas that is a product o f the 

incomplete combustion o f hydrocarbon based fuels. The method by which CO is formed 

is shown in equation l -4.

C \H y + Insufficient O 2 —► CO 2 + CO + H 2O (1-4)

CO binds to the haemoglobin contained in blood over two hundred times more avidly 

than oxygen; thus prevents the release o f any remaining oxygen to the body tissues, 

effectively poisoning by suffocation. CO has also been observed to intensify 

cardiovascular disease in humans. Low levels o f CO exposure cause headaches, 

disorientation and fatigue.
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Carbon dioxide, although viewed as a product o f perfect combustion, is now considered 

a pollutant due to its classification as a “greenhouse gas” and its contribution to global 

warming.

Nitrogen oxides (NOx) is the generic term for a group o f highly reactive colourless and 

odourless gases that contain varying amounts o f nitrogen and oxygen. Many fossil fuels 

contain a small amount o f nitrogen in their molecular structure, which on combustion is 

converted into NOx. However, the main mechanism for the formation o f NOx involves 

the oxidation o f atmospheric nitrogen under the high pressure and temperature 

conditions that occur in an internal combustion engine. NOx as well as causing the 

formation o f acid rain are linked to the formation o f ground level ozone (O3 ), which is 

known to be an eye irritant and cause breathing difficulties.

Sulphur dioxide is formed from the combustion o f fossil fuels. Sulphur dioxide like 

NOx leads to the formation o f acid rain as well as contributing to ground level ozone. 

The sulphur content o f fossil fuels is also known to increase the level of particulate 

matter in the exhaust gases.

Particulate Matter (PM) refers to a complex mixture o f different small particles and 

liquid droplets and can be broadly split up into four distinct groups:

•  Aqueous soluble

• Organic soluble

• Carbonaceous

• Inorganic insoluble

O f these groups the organic soluble and carbonaceous are the predominant forms o f PM 

in automotive exhaust, with the organic soluble comprising mainly unbumed 

hydrocarbons, the carbonaceous being mainly composed o f soot/carbon black.

The particle size is the key characteristic that relates to the toxicity o f airborne 

particulate matter, since it is particle size that determines the distance an airborne 

particle can be deposited within the respiratory tract. Coarse particles have little effect 

to health, whereas fine particles are deposited in the smallest passages (Bronchioles)
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within the lungs. These fine particles cause inflammation within the lungs which 

impairs lung operation. There are many issues regarding the manner in which legislation 

controls the levels o f PM by imposing mass limits, which do not take into account the 

size distribution o f the PM. A new method o f classifying PM is to state the total mass 

produced as well as that for PMio, particles having an aerodynamic diameter less than 

ten micrometers (aerodynamic diameter is the diameter o f a particle o f unit density 

possessing the same aerodynamic properties). In this manner both the number and mass 

o f the emitted PM can be assessed.

Benzene occurs naturally in small quantities in both petrol and diesel fuel and is emitted 

from vehicles as both unbumed fuel in the exhaust as well as through evaporation 

within the fuel system. Benzene is both toxic and carcinogenic with long term exposure 

being linked with leukaemia. Benzene is classed as a volatile organic compound (VOC) 

and is also a product o f decomposition o f more complicated aromatic compounds 

during combustion.

Polycyclic Aromatic Hydrocarbons (PAHs) are a group o f chemicals found naturally in 

crude oil as well as being formed during the incomplete combustion o f hydrocarbon 

fuels. Many PAHs have been classified as possible carcinogens and have been linked to 

fertility and birth defects. PAHs are most easily absorbed into the body when they are 

present in oily mixtures or aerosols, and once absorbed into the body they are stored 

primarily within the kidneys, liver and fat tissue.
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1.3.2 Emission Legislation

In the early 1990’s the EU, the US government and Japan established separate emission 

targets for new vehicles. A comparison o f these targets up to the year 2001 was made by 

Powers and Nicastri (2000) and is shown in Figure 1.4. It can be seen from Figure 1.4 

that the emission targets set by the US were similar to that set for Europe, with the 

Japanese targets being less stringent.
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Figure 1.4 -  US, Japanese and European emission targets for new vehicles

Tables 1.1 and 1.2 give the emission levels defined by the European Commission 

(Directive 70/220/EEC 2003) for passenger cars and heavy duty (HD) vehicles being 

currently produced, as well as the agreed levels which come into effect in 2008. The 

emission levels set by the standards are strictly enforced with severe penalties for any 

engine manufacturers that fail to attain these levels. The emission standard levels 

provide a series o f goals that the vehicle manufacturers must meet in order for the 

vehicles to be given certificates o f conformity to enable them to be sold throughout the 

European Union.

Table 1.2 also includes proposed HD diesel and gas engine levels for EURO VI 

(European Federation for Transport and Environment notes), the EURO VI levels have 

not been ratified as yet but are included for comparison.
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Table 1.1 -  European emission levels for passenger cars

Comparison o f  

Standards

CO

g/km

HC

g/km

HC + NOx 

g/km

NOx

g/km

PM

g/km

Diesel

EURO 1 (1992) 2.72 . 0.97 . 0.14

EURO II (1996) 1 . 0 - 0.7 . 0.08

EURO III (2000) 0.64 . 0.56 0.50 0.05

EURO IV (2005) 0.50 - 0.30 0.25 0.025

EURO V (2008) 0.50 - 0.25 0 . 2 0 0.005

Petrol

EURO I (1992) 2.72 - 0.97 - -

EURO II (1996) 2 . 2 0 - 0.5 - -

EURO III (2000) 2.30 0 . 2 0 - 0.15 -

EURO IV (2005) 1 . 0 0 . 1 0 - 0.08 -

EURO V (2008) 1 . 0 0.075 - 0.06 0.005

Table 1.2 -  European transient emission levels for HD diesel and gas engines

Comparison o f CO THC CH4 NOx PM

Standards g/kWh g/kWh g/kWh g/kWh g/kWh

EURO III (2000) 5.45 0.78 1.6 5.00 0.16

EURO IV (2005) 4.0 0.55 1.1 3.5 0.03

EURO V (2008) 4.0 0.55 1.1 2.0 0.03

EURO VI (2010 proposed) 4.0 0.55 1.1 0.5 0.003

EEV - Enhanced 
environmentally friendly 

engine (2005)
3.00 0.40 0.65 2.00 0.02
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The proposed emission levels for EURO VI, although largely similar to the currently 

enforced limits, have severely clamped down on particulate and NOx emissions. The 

reasoning behind this is that the recent developments in particulate traps and catalytic 

converters have made such targets feasible, although costly. For heavy duty vehicles the 

estimated added production expense to meet the EURO VI targets could be as much as 

£ 2 0 0 0  per vehicle, although it is expected that improvements in engine design would 

improve fuel consumption and allow the end-user to recover their added costs.

Based upon trends in legislated emission targets it can be expected that future emissions 

o f CO, CO2 , NOx and PM will have to continue to decline in the emissions o f internal 

combustion engines. The implementation o f emission targets will significantly affect the 

future emissions produced by road transport. New technologies will have to be 

developed and new fuels/fuel additives investigated. However, in addition to the 

reduction in emissions o f each vehicle, other measures will continue to be used to alter 

people’s driving habits.

1.4 Aims and Objectives

It is the aim o f this thesis to investigate and develop scientific knowledge in the field o f 

efficient internal combustion engine technology and emission reduction techniques.

The objectives that must be fulfilled in order to reach this aims are:-

• Thoroughly review previous work and developments in internal engine 

technology and trends. Discuss current and likely future trends and highlight 

areas open to further research.

•  Appraise and analyse the claimed improvements in efficiency offered by 

Electro-Magnetically Operated load Control Valve technology through 

modelling techniques. Offer optimised designs for EOCV technology through 

modelling and analysis, comparing predictions with available measured data.

•  Use modelling and engine test-bed facilities, analyse the performance o f a heavy 

duty Cl engine fuelled on biodiesel and diesel blends.
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1.5 Structure of Thesis

The work required for the completion o f this thesis is discussed throughout a number o f 

different chapters. Chapter 1 is a general introduction to the thesis describing the 

background technology and international legislation that form the reasons for the 

undertaking o f this research. Chapter 2, reviews the literature o f relevant previous 

research and technological developments in the field o f internal combustion engines, 

and highlights areas requiring further research and development; which are then pursued 

in the remainder o f the thesis.

Chapter 3 details the work carried out at Cardiff University, in conjunction with its 

European project partners, in constructing a detailed computational model o f a natural 

gas powered engine incorporating a novel secondary valve apparatus. Throughout 

Chapter 4 designs o f the aforementioned secondary valve apparatus are evaluated using 

a commercially available 3-dimensional computational fluid dynamics code. The 

development work that was carried out by Cardiff University on the secondary valve 

apparatus and its associated engine is detailed and discussed in Chapter 5. The effect o f 

the secondary valve apparatus on the engines operating cycle is examined in Chapter 6 .

The development o f the internal combustion engine testing facilities at Cardiff 

University, specifically in the area o f diesel emission studies, is detailed in Chapter 7. In 

Chapter 8  the use o f renewable fuels as an alternative to diesel fuel is examined; the 

effect o f using fuels o f this nature on engine operation is investigated and discussed.

Chapter 9 summarises and discusses all the conclusions from preceding chapters. The 

main findings and outcomes o f the work are listed and areas o f possible research 

discussed.
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2 Literature Review

The aim o f this chapter is to review the relevant published literature in the field of 

alternative automotive fuels, internal combustion engine technology and emission 

reduction techniques. It is hoped from this review that areas open for further research 

and development will be highlighted, which can then be pursued in the remainder o f the 

thesis.

2.1 Emission Control

The development o f the internal combustion engine has gone through several key stages 

since its inception. Initially reliability was the overriding concern in engine design, with 

power and then fuel economy being the next most important considerations. However in

recent years due to legislation and customer perception, a major concern for engine

designers has been the emissions generated by the engine’s operation.

Both the SI and Cl engine strategies have been constantly developed throughout the 20th 

century, with each engine gaining control over different market sectors. The Cl engine 

strategy tended to be used in much larger vehicles, where its high torque and low 

relative speed characteristics were most suitable. The SI engine strategy tended to be 

used predominately in passenger vehicles, where their larger speed range and quieter 

operation were preferred.

2.1.1 Kyoto Protocol

For a long time environmental groups have expressed concerns over the effect o f fossil 

fuel burning on the environment. Various claims have been made concerning the effect 

o f burning fuel for power generation and transportation. The most popular and widely 

accepted theories are the greenhouse effect and global warming.
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Figure 2.1 describes the so-called greenhouse effect and the role that “Greenhouse 

Gases” play in the global warming process.

The Greenhouse effect

Sam* of :fc» irrfrarad 
rs* rton  posow Brough 

atmooprwo «nd !•

Figure 2.1 -  The greenhouse effect 

United Nations Framework Convention on Climate Change

Greenhouse Gases are a layer o f gases in the upper atmosphere that delay the escape of 

reflected solar radiation from the earth’s surface. Human activities are enhancing the 

greenhouse effect by increasing the thickness o f the greenhouse gas layer; identified 

gases that supplement the greenhouse gas layer are Carbon Dioxide (CO2), Methane 

(CH4), Nitrous Oxide (N2O), Hydrofluorocarbons, Perfluorocarbons, Sulphur 

Hexafluoride and to a certain extent Hydrogen.

In response to international concerns over such environmental issues as the greenhouse 

effect an international group was founded, the United Nations Framework Convention 

on Climate Change (UNFCCC). The UNFCCC acknowledged that a change in the 

Earth’s climate and any adverse affects are a common concern o f humankind. In 

addition to the UNFCCC agreement, a series o f more detailed legally binding 

commitments for the reduction o f greenhouse-gas emissions were established and are 

detailed in the 1997 Kyoto Protocol. The countries that have signed up to the Kyoto 

Protocol (adopted 11th December 1997) have pledged to reduce their greenhouse-gas 

emissions by at least 5% from their 1990 levels in the commitment period 2008-2012.
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Table 2.1 details the emissions targets set out in Annex B o f the Kyoto Protocol. The 

Kyoto Protocol entered into force on 16th February 2005. In an unpopular move the 

United States indicated its intention not to ratify the Kyoto Protocol. Together with 

rules brought in such as emissions trading, this has made the overall effectiveness o f the 

agreement questionable to environmentalist groups.

Table 2.1 -  Countries included in Kyoto Protocol and their emission targets

COUNTRY TARGET (1990* - 2008-2012)

EU-15, Bulgaria, Czech Republic, Estonia, Latvia, 
Liechtenstein, Lithuania, Monaco, Romania, Slovakia, 

Slovenia, Switzerland
-8%

US -7%

Canada, Hungary, Japan, Poland -6%

Croatia -5%

New Zealand, Russian federation, Ukraine 0

Norway +1%

Australia +8%

Iceland +10%

2800 1950
Rank Rank

(1) USA (1)
(2) China (9)
(3) Russia (FSt>2)
(4) Japan (8)
(6) India (12)
(6) Germany (3)
(7) UK (4)
(8) Canada (6)
(9) Italy (16)
(10) South Korea (67)
(11) Mexico (19)
(12) Saudi Arabia (47)
(13) France (6)
(14) Australia (14)
(16) Ukraine (FSLH2)
(16) South Africa (13)
(17) Iran (28)
(18) Brazil (24)
(19) Poland (7)
(20) Spdn (18)

■ 2000 
□ 1950

0 10 20 30 40 50
Percentage of World 

Emissions

0 1 2 3 4 5 6
Per Capita Metric Tons of 

Carbon

Figure 2.2 -  Top 20 countries by total CO2 emissions (2000)
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Figure 2.2 displays the top 20 countries by CO2 emissions as summarised by Marland 

and Boden (2001). It can be seen that the USA produces a significant proportion o f the 

total CO2 that is emitted world wide. Countries that can be described as “developing” 

(such as China and India) are rapidly themselves becoming large scale polluters, and it 

is predicted that by the year 2 0 1 0  that China will become the largest emitter o f CO2 

(CDIAC 2006).

Figure 2.3 displays the growth in total CO2 emissions, in thousands o f tons o f carbon, 

for the top twenty producing countries. It can be seen that the industrialised countries 

have been producing significant amounts o f CO2 since the early parts of the 2 0  

century, with the USA being the major producer since 1880. It is also worthwhile noting 

that many European countries have substantially slowed the growth in their CO2 

production; whereas the developing countries and the USA are still rapidly increasing 

the amount o f CO2 they produce each year.
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Figure 2.3 -  Total CO2 emissions for top 20 producing countries 
[CDIAC, Marland et al (2005)]

A closer examination o f the growth o f CO2 emissions in the UK by source is shown in 

Figure 2.4; with the CO2 emissions being separated out into that produced by solid, 

liquid and gaseous fuels.
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Figure 2.4 -  Total UK CO2 emissions by fuel type 
[CDIAC, Marland et al (2005)]

It can be seen that up until the year 1900, the majority o f the UK’s CO2 emissions were 

due to the combustion o f solid fuels, primarily coal. After 1910 liquid fuels, mainly 

derived from crude oil, began to have an increasingly important contribution to the total 

CO2  emission levels. From 1970 onwards it can be seen that solid fuels had been 

superseded by the combination o f liquid and gaseous fuels.

The Kyoto Protocol defined key emission targets for the European Union as a whole, 

and in turn for each of its member states. In order to meet the levels specified by the 

Kyoto Protocol, the European Union specified emission targets for each o f its member 

states. These emission targets are so stringent that widespread changes are required in 

all areas o f energy utilization. Each o f the countries that signed up to the Kyoto Protocol 

has had to decide upon their own legislation in order to achieve their specified emission 

levels. To achieve this each o f the sources o f the emissions must be separately 

controlled.
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Figure 2.5 -  Total UK CO2 emissions by source 1970-2004 
Department for Environment Food and Rural Affairs

It can be seen from Figure 2.5 that even though there has been a reduction in total CO2 

emissions since 1970, the proportion o f the total CO2 emissions caused by road 

transport has increased. This can easily be explained when it is considered that data on 

transport trends (Department o f Transport 2005) state that between 1980 and 2004 the 

total traffic on British roads grew by 81% and in the same period the total number o f 

licensed vehicles grew by 68%.

In order to reduce the CO2 emissions from the European vehicle population several 

measures have been undertaken by both the European Union as a whole and by its 

member states. The most significant o f these measures has been the imposition o f 

emission targets for new vehicles.

As a result o f the Kyoto protocol agreement the UK government pledged to reduce the 

emissions o f greenhouse gases to 80% o f the 1990 levels. This is an ambitious target, 

which is 12% lower than that required by the Kyoto protocol. In order to accomplish 

this reduction the UK governments strategy was to encourage both companies and 

individuals to “think greener” by adopting a policy of taxing the polluter.
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2.1.2 Fuel Taxation

Virtually all transport methods in use today still rely heavily on the petrochemical 

industry to provide them with fuel derived from crude oil; because o f this the trading 

price o f crude oil has a substantial affect on the everyday lives o f people in 

economically developed nations.

Figure 2.6 illustrates how the price o f oil has fluctuated since 1970 in $2005 per barrel.
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Figure 2.6 -  Major events and real world oil prices 1970 -  2005 

Energy Information Administration, DOE

It can be seen from Figure 2.6 that the price o f oil is heavily dependent on world events. 

The high oil prices between 1974 and 1986 caused a substantial investment by engine 

manufacturers in order to improve the fuel economy of their product. The advent o f 

technologies such as the electronic Engine Control Unit (ECU) and the replacement o f 

carburettors with injectors as the means o f delivering fuel were all driven by the goal o f 

improving fuel economy.

The taxation o f fuel has proven itself to be a controversial method of controlling the 

populations driving habits. Figures 2.7 and 2.8 show data published by Smith (2000)
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and also by Leicester (2005), in which the average UK pump price o f unleaded petrol 

and diesel fuel is broken-down into the pre-tax price, fuel duty and Value Added Tax 

(VAT). Current UK duties on road fuels are 48.32 pence per litre for low sulphur petrol 

and diesel, 20.0 pence per litre for biodiesel and bioethanol, 12.7 pence per litre for 

liquefied petroleum gas, 10.8 pence per litre for natural gas derived road fuels and 6.44 

pence per litre for red diesel. In the 2006 UK budget (Her Majesty’s Treasury 2006), the 

Chancellor o f the Exchequer announced that the annual inline with inflation rises in fuel 

duty would be postponed to 1st September 2006 because o f continuing volatility in 

worldwide oil prices.
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Figure 2.7 -  Components o f the pump price o f unleaded petrol
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Figure 2.8 -  Components o f  the pump price o f diesel fuel

Reports from the Institute for Fiscal Studies (Smith 2000 and Leicester 2005) compared 

the combined tax rate o f unleaded and diesel fuel to that o f other EU member states. For 

unleaded petrol the UK has the highest combined tax rate o f any EU member state. The
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combined VAT and fuel duty for the period at the beginning o f 2006 corresponds to 

about 70% o f the total pump price; this is substantially lower than the period during

1999 when the VAT and fuel duty represented over 85% o f the total pump price (See 

Figure 2.9 which shows the total tax as a percentage o f fuel price).
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Figure 2.9 -  Total tax (Fuel duty and VAT) as a percentage o f pump prices

Whereas fuel taxation is the surest method o f taxing the polluter, its increasing impact 

on the poorer sectors o f the population has caused unrest. The fuel protests at the end of

2000 highlighted how increased taxation levels are an unpopular method of modifying 

peoples driving habits.

Diesel
Unleaded
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2.1.3 Other Methods of Controlling Vehicle Emissions

The British government has introduced several policies intended to alter the publics 

driving habits and persuade them to use alternate transport methods to their cars. Recent 

changes announced in the UK 2006 Budget (Her Majesty’s Treasury 2006) have 

reassessed the Vehicle Excise Duty (VED) rates for cars and light goods vehicles, in an 

effort to persuade new car buyers to purchase vehicles producing lower levels o f CO2 . 

Table 2.2 lists the new VED rates for cars registered after 1st March 2001.

The VED rates listed in Table 2.2 include a new band for vehicles produced after 23rd o f 

March 2006 that produce greater than 226 grams per kilometre o f CO2 . Prior to the 

2006 budget the highest VED rate was £170 per year. In addition to increasing the cost 

for owners o f the more polluting vehicles the 2006 Budget reduced the VED rate for 

cars that produce less than 120 grams per kilometre o f CO2 , in order to persuade new 

car buyers to consider smaller, less polluting vehicles.

Table 2.2 -  VED bands anc rates for cars registered after 1st March 2001

VED Band CO2 Emissions 

(g/km)

VED Rate (£ per year)

Alternate Fuels Petrol Diesel

A 100 and below 0 0 0

B 101 to 120 30 40 50

C 121 to 150 90 100 110

D 151 to 165 115 125 135

E 166 to 185 140 150 160

F 186 and above1 180 190 195

G 226 and above2 200 210 215

1 Cars registered before 23rd March 2006 2 Cars registered after 23rd March 2006.
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In addition to fuel taxation and vehicle taxation, various other schemes and initiatives 

have been introduced in order to reduce vehicle pollution in urban centres. One o f the 

most controversial was the introduction o f the London Congestion Charge in February 

o f 2003 (Transport for London, 2004).

The London congestion charge zone is a large area o f central London (see Figure 2.10) 

which prior to 2003 was a notorious area o f traffic congestion and disruption. 

Throughout the area in which the congestion charges are enforced are number plate 

recognition cameras, which automatically record the registration number o f any vehicle 

which enters the zone. Drivers o f vehicles which are not exempt from the congestion 

charge can pay the £5 fee by a number o f methods including telephone, the internet or 

over the counter at certain retailers within the zone. Drivers that have been proven to 

have entered the zone and have not paid the charge are issued with a fixed penalty 

notice and prosecuted.
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Figure 2.10 -  London congestion charge area and effect on vehicle traffic

Although many opposed the implementation of the London congestion charge, data 

published by Transport for London (2005) has shown remarkable changes in commuter 

behaviour (see Figure 2.10). Car traffic into and out o f the zone has seen a reduction o f 

over 33%, while the amount o f private hire vehicles and coach traffic has increased by 

17% and 22% respectively. The introduction o f the London congestion charge, has in a 

short period of time, reduced the pollution levels caused by vehicle traffic in the central 

London area while having no marked detrimental effect on local economy.
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2.2 Engine Technology Development

There have been many advances made in the last century to the Internal Combustion 

engine. While the majority o f these developments have been applicable to all engines, 

some are specific to either the SI petrol engines or the Cl Diesel engines.

2.2.1 General Improvements

Many o f the advances made in Internal Combustion engine design are through 

improvements in manufacturing techniques and the understanding o f the basic 

principles in engine operation. In addition to this, the increased understanding o f 

material technology and friction has also improved engine reliability.

Engine designers today have not only a greater understanding o f  the processes that 

occur within an engine, but also have access to advanced design tools such as 

Computational Fluid Dynamics and Finite Element Analysis computer packages. The 

analysis capabilities o f  fluid dynamics computer packages has allowed designers to 

significantly improve the “breathing” ability o f  the engine (the ability o f the engine to 

draw in fresh air and expel the exhaust gases), and the mixing o f the fuel and air inside 

the engine cylinders. Modem engine designers have the advantage o f being able to 

accurately predict the behaviour o f an engine and model the effect o f any changes. The 

component o f  an engine that has the greatest effect on its “breathing” ability is the 

valve-train. The first multi-valve engine (more than one inlet and exhaust valve per 

cylinder) is believed to be that o f a Peugeot GP racing car in 1912, however the earliest 

production car to use a multi-valve engine was the Honda s600 introduced in the 

1960’s. By the 1990’s multi-valve engines had become mainstream.

Using basic CFD packages modem engines can be optimised for their operating 

conditions, this involves the “tuning” o f  the valves’ opening and closing times as well 

as the choosing o f optimum dimensions o f inlet plenums, runners and exhaust 

manifolds. More complex CFD packages are used in the design o f the combustion 

chamber; by precisely shaping the piston crown and the area around the valves a more
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controlled and complete combustion process can be obtained, increasing the efficiency 

o f the engine.

More advanced materials are now routinely used in modem engine manufacturing. Most 

modem engines utilise aluminium cylinder heads, mainly for its better cooling 

properties over steel/cast iron but also for its weight reduction. Many modem engines 

are now constructed with all aluminium cylinder blocks to reduce weight even further, 

helping to increase the fuel economy o f the vehicle by weight reduction (also improving 

vehicle handling due to a more even weight distribution. Other more exotic materials 

such as titanium are now becoming popular for their high strength to weight ratio.

2.2.2. Petrol Specific Technology Advances

There are several key areas where technological advances have improved the efficiency 

and reduced the emissions o f SI internal combustion engines.

Variable Valve Timing

Variable Valve Timing (VVT) in conjunction with Electronic Fuel Injection (EFI), all 

controlled by sophisticated Engine Control Units (ECUs) allows the accurate control 

and variation o f engine fuelling and breathing at all engine speeds. To optimise the 

breathing, engines require different valve timings at different engine speeds and loads. 

There are several different VVT strategies employed by modem manufactures, ranging 

from the simple cam-changing VVT to the more complex Variable Valve Control 

system.

Honda was the first vehicle manufacturer to produce engines incorporating a VVT 

system in the late 1980’s. The Honda VTEC (Valve Timing Electronic Control) first 

appeared in the Honda Civic and then became standard in most Honda vehicle models. 

The Honda VTEC system incorporates either two or three sets o f cam lobes o f different 

shapes, enabling different valve timings and lifts. Basic cam-changing VVT systems o f 

this type that do not allow continuous adjustment o f valve timings are said to be discrete
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in nature. The changing over between cam profiles is noticeable to the driver and some 

perceive this as the weakness o f discrete cam-changing VVT systems, although their 

simplicity compared to most other VVT systems provides a benefit o f remarkable 

reliability.

The VVT system introduced by Rover in its MGF in 1995 is regarded by many as the 

most advanced form o f variable valve control used in a production vehicle to date. The 

Rover Variable Valve Control (VVC) unlike most other VVT systems allows for 

continual variation in valve open/closure timing, as well as a continual variation in the 

duration o f the time the valves are open. The VVC system drives the camshaft operating 

two adjacent cylinders by a pulley connected with a varying degree o f eccentricity, 

allowing a controlled amount o f non-linear rotation o f  the camshaft which changes its 

duration and phase. The VVC system is likely to eventually be taken up by other 

vehicle manufacturers as an alternative to cam-changing VVT systems.

VVT systems have a proven ability to improve fuel economy, increase peak torque and 

power while reducing NOx emissions when compared to conventional engines. The 

development o f  W T  systems is continuing with much current research being in the 

area o f electronic control such as that demonstrated by Nagaya et al (2006). The future 

o f variable valve timing however is more likely to involve electromagnetic valve 

systems such as that developed by Lotus for the Hotfire project (Stansfield 2005).

Variable Intake / Exhaust Manifold

Many automotive vehicle manufacturers have developed variable intake or exhaust 

manifold systems in order to improve the performance o f their engines at higher engine 

speeds; while also improving the fuel economy, the driveability and reducing the 

emissions at lower engine speeds. Variable intake and exhaust systems are likely to 

become more common in the medium to high end automotive market sectors, such as 

executive saloons and sports cars. It is unlikely that such systems will become common 

place in family cars due to cost issues, but there is some potential for variable intake and 

exhaust systems to be used in heavy duty diesel applications.
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Variable Compression Ratio

Even though single cylinder Variable Compression Ratio engines are widely available 

for use in research from manufacturers such as Ricardo, there has been very little 

development work done to produce a suitable commercial engine for mass automotive 

use. The car manufacturer Saab presented details o f  its Saab Variable Compression 

(SVC) concept at the 2000 Geneva motor show.

The SVC concept uses a combined cylinder head and engine block which can be moved 

relative to the crank position by the use o f  a hydraulic actuator, thus altering the 

compressed volume o f  the combustion chamber and therefore compression ratio o f  the 

engine. The SVC engine utilises an ultra high boost supercharger (2.8 bar) and can vary 

its compression ratio between 8:1 and 14:1. Prototype SVC engines have returned 

powers o f  150hp per litre while having 30% lower fuel consumptions when compared to 

conventional engine designs. The SVC series o f engines are expected to meet all 

foreseeable emission regulations while also being suitable for many grades o f fuel, with 

the engine management system always selecting the most appropriate compression 

ratio.

Variable Compression Ratio engines have huge potential, but like many new 

technologies the cost o f such systems prohibits the extent to which they can penetrate 

the market.

Direct Injection Petrol Engines

Direct injection petrol engines have been developed by many modem engine 

manufacturers to take advantage o f the increase in engine efficiency and the reduction 

in emissions that a lean bum engine provides. The current leader in direct injection 

engine technology is Mitsubishi, with their Gasoline Direct Injection (GDI) concept. 

Mitsubishi claim that their GDI engines develop 10% more power than conventional 

engines while consuming 20% less fuel and generating 20% less CO2 emissions. Direct 

fuel injection is a recent development in petrol engines, but has been used in diesel
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engines for many years. The main advantage o f direct fuel injection ts that the injection 

o f the fuel at high pressure directly into the combustion chamber moments before the 

spark plugs fire, allows the precise control o f  the stratified charge required for engines 

to operate with lean air / fuel mixtures. In addition to the utilisation o f the lean-bum 

concept, direct injection engines do not require a throttle system and therefore benefit 

from a reduction in pumping losses.

Zhao et al (1999) contrasted the Mitsubishi GDI concept with that o f other 

manufacturers; several problems were highlighted with the Mitsubishi concept, 

including that o f reliability due to the increased complexity o f GDI systems. One o f the 

more significant factors affecting the performance o f  direct injection systems is the 

characteristics o f  the fuels. Unleaded petrol in Japan has a significantly lower sulphur 

content than that presently used in Europe, which allows for the use o f a special catalyst 

to clean the excessive NOx generated under ultra-lean combustion conditions. The 

direct injection petrol engine developed by Renault utilises high levels o f Exhaust Gas 

Recirculation (EGR) instead o f ultra lean air /  fuel mixtures at part load conditions, 

which has been shown to reduce the particulate and NOx emissions without the use o f  a 

special catalyst (Sasaki et al 1998).

The optimisation o f the GDI concept is continuing, with much current research 

concerning the analysis and simulation (Lee et al. 2004 and Rotondi & Bella 2006) o f 

the mixture preparation within the engine cylinder prior to combustion. Drake et al. 

(2005) have shown that even though a certain amount o f air-flow swirl within the 

cylinder is required, too much swirl leads to undesirable mixture preparation and 

combustion characteristics, causing areas o f  localised rich combustion. Kano et al. 

(1999) also found that the control o f swirl within the cylinder is important to ensure the 

air-fuel mixture is correctly directed towards the spark plug, with the interval between 

injection and ignition being a crucial parameter for controlled combustion. It has also 

been found by Stojkovic et al. (2005) that the actual act o f injecting directly onto the 

piston surface is the principle cause o f  PM emissions from GDI engines, due to the thin 

fuel films developing into pool fires. The future use o f GDI systems is expected to 

increase due to their many benefits for only a small additional cost.
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Miller Cycle Engine

The Miller cycle is a concept patented by the American Ralph Miller in the 1940’s and 

has been used in many different engines since its creation. The only engine in 

widespread production that employs the Miller cycle today is manufactured by Mazda. 

In the Mazda Miller cycle engine the inlet valves close 47 degrees after BDC, which 

means the inlet valves stay open for approximately 20% o f the compression stroke. The 

late closure o f the inlet valves effectively reduces the compression ratio o f the engine, 

reducing the energy loss in compressing the air and reducing the peak cylinder 

temperature. The use o f a supercharger compensates for the reduction in compression o f 

the engine. Hatamura et al. (1997) proved that the use o f  a supercharger allows for an 

increase in power output o f an engine operating under the Miller cycle without 

sacrificing reliability.

The Miller cycle engine developed by Mazda bums 13% less fuel than the 3 litre V6 

engine it is based upon, while also generating slightly more power. However, while the 

engine is marketed as a 2.3 litre it effectively costs more and is larger than the 3 litre 

engine, due to the added costs o f superchargers and intercoolers. A study into Miller 

cycle operation carried out by Wu et al. (2003) concluded that the Miller cycle has no 

inherent potential for improving efficiency, but its use in conjunction with a 

supercharger can be used to increase the power output o f an engine while reducing the 

risk o f  pre-ignition, and reducing emissions. By contrast a numerical study carried out 

by Ge et al. (2005) concluded that the Miller cycle effect allowed for the use o f a higher 

compression ratio while providing an increase in efficiency and power.

The use o f advanced engine cycles such as the Miller cycle is an area with huge 

potential for future engine development. Current Miller cycle engine systems have 

suffered from additional weight penalties and inflexibility. I f  these drawbacks can be 

overcome whilst minimising cost, the use o f  advanced engine cycles could be exploited 

across all automotive market sectors, particularly in heavy duty applications.
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Exhaust Gas Treatment

The treatment o f  an engines exhaust gases to reduce the emission content is an 

increasingly important method used by engine manufacturers to meet the stringent 

legislation. The recirculation o f exhaust gas back into the combustion chamber is a 

proven method o f  reducing an engine’s fuel consumption and emission’s. EGR works 

by recirculating up to 10% o f the exhaust gas back into the cylinder via a recirculation 

valve controlled by the ECU; which effectively reduces the engine’s displacement and 

pumping losses.

The focus o f current emission legislation is the reduction in the Non-Methane Volatile 

Organic Compounds (NMVOCs) content o f exhaust gases, which include organic 

compounds such as aldehydes, alcohols, alkanes, aromatics and esters. Honda is leading 

the way in the reduction o f NMVOC by developing multi-catalyst arrangements which 

include a high temperature high-efficiency catalyst close to the exhaust port as well as 

an electrically pre-heated hydro-carbon absorbing catalyst further along the exhaust 

system.

Heck and Farrauto (2001) reviewed the development o f exhaust catalyst systems; 

highlighting the developments that have been made in the 30 years since their 

introduction. The main problems encountered in developing advanced catalyst systems 

are coping with the many diverse operating regimes that modem engines encounter in 

day-to-day operation. Modem developments in exhaust gas treatment are concerned 

with multiple catalytic converters systems with three-way honeycomb catalysts being 

used in conjunction with NOx reduction techniques and regenerative particulate traps. A 

major problem in exhaust gas treatment development is improving the tolerance o f  the 

catalyst metals to the sulphur content o f  the exhaust gases. This has been shown by 

Matsumoto et al. (2000) to be relatively straightforward to control for the ultra low 

sulphur fuels used in Japan, but more difficult for the fuels o f other countries. The use 

o f catalytic converters in modem vehicle design is no longer an option but a necessity, 

and the continued development o f such systems is a priority in order to attain future 

emission targets.
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2.2.3 Diesel Specific Technology Advances

Within Europe the share o f the new car market taken up by diesels has been increasing, 

as consumers take advantage o f the improvement in fuel economy diesel vehicles offer 

over petrol. One possible reason why even more diesel vehicles are not sold is the 

perception o f diesel vehicles being “dirty” due to the excessive amount o f particulate 

matter in their exhausts.

Diesel Fuel Systems

As Diesel engines operate under compression ignition, with combustion occurring under 

a certain pressure and temperature combination during the compression stoke, Diesel 

engines inherently use much higher compression ratios than spark ignition petrol 

engines (in the region o f 22:1 if  naturally aspirated). The absence o f  any ignition system 

in addition to the absence o f a throttle system means that a Diesel engine is controlled 

only by the amount o f  fuel injected, therefore the design o f  the injection system is 

critical to the efficient operation o f a Diesel engine.

Indirect injection fuel systems refer to that where the fuel is not injected into the 

cylinder o f the engine. Instead fuel in an indirect injection diesel engine is injected into 

a small chamber (known as a pre-chamber), which is separate from the main 

combustion chamber. Combustion begins in the pre-chamber and spreads into the main 

chamber assisted by turbulence. Nearly all indirect injection diesel engines require the 

use o f a glow plug to act as a cold start device. Indirect injection engines are cheap and 

comparatively easy to build, providing smooth quiet running. Indirect injection diesel 

engines are still common in applications with less stringent emission controls and are 

still also used in some road-going vehicles.

In direct injection fuel systems the fuel is injected directly into the cylinder o f  the 

engine at a relatively high pressure when compared to indirect injection systems.
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European car manufacturers have invested heavily in the development o f diesel 

injection technology. Common rail fuel systems are the latest innovation in diesel fuel 

injection systems and were developed during the 1990’s, improving both the fuel 

economy and the emissions o f diesel powered vehicles. Common rail direct injection 

fuel systems involve the use o f a high pressure fuel pump to pressurize a common rigid 

pipe connected to the injector o f each engine cylinder; with the diesel fuel being 

pressurized to over 1800 bar within the fuel rail. Solenoid or piezo type valve injectors 

are used then to inject the fuel into the cylinder, with the high fuel pressure 

guaranteeing good atomisation and mixing.

The benefit o f  the ultra high injection pressures used in common rail diesel engines is 

that the injection durations are much lower, and the atomisation o f the diesel fuel is 

significantly improved. Common rail diesel engines utilise ECU’s to control the 

injectors, monitoring the injection duration and injection timing precisely. In order to 

reduce engine noise, common rail engines often utilise a small pilot injection prior to 

the main injection to reduce the severity o f the main combustion event. Some o f the 

more advanced common rail fuel systems can perform as many as five injections per 

stroke.

Nearly all European and many Japanese manufacturers now utilise common rail direct 

injection techniques in their diesel engines. The injection technology used in common 

rail systems is continuing to develop, with injection pressures being increased further to 

improve fuel atomisation, producing finer fuel sprays allowing for more complete 

combustion and a reduction in PM generation.
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Diesel Particulate Filters

If  the recent trends in emission legislation carry-on at their present rate, Particulate 

Filters will become a necessity in all new diesel vehicles to reduce the emission o f 

particulates to satisfactory levels.

Duran et al. (2004) investigated the simulation o f diesel particulate matter while Figler 

et al. (1996), Kim et al. (2005) and Harris et al. (2001) have all carried out experimental 

analysis o f  diesel particulates. The researchers found that diesel particulates are mainly 

composed o f volatile and non-volatile particles, and that the formation o f the volatile 

particulates (generally less than 50nm in size) is attributed to the cooling o f 

hydrocarbon and sulphur compounds in the exhaust, while the non-volatile particulates 

(normally between 50nm and lOOnm in size) are formed during the early stages o f 

combustion. The sizes o f the particulates depend on the processes involved in the 

particulate formation and the location from which they are sampled.

Particulate traps have been successfully applied to a number o f diesel engine equipped 

applications such as city buses and fork lift trucks, but due to large size and power 

requirements no system has as yet been applied to light commercial vehicles or cars. 

Particulate traps work by collecting the particulate matter in the exhaust gases and then 

regenerating by oxidizing (burning off) the collected particulate. The most common 

problems with particulate trap systems are:

•  The increase in exhaust back pressure as the trap becomes clogged, prior to the 

regeneration cycle, reduces the efficiency o f the engine.

•  During the particulate trap regeneration the fuel consumption o f the engine 

increases, this is due to most particulate traps requiring exhaust gas temperatures 

in excess o f 500°C (normally only achieved at higher engine loads) to oxidize 

the soot.

Stamatelos (1997) predicted that the installation o f a particulate trap increases the fuel 

consumption o f the vehicle by up to 5%. However, Durbin et al. (2003) showed that the
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use o f a particulate trap in conjunction with an ultra low sulphur diesel can reduce the 

PM generated by up to 98%. Currently, more advanced particulate filters are being 

developed which include internal heater systems. The benefit o f such systems is that 

fuel consumption would not increase as the special regeneration cycles would not be 

required. Such self-regenerative systems have shown trapping efficiencies greater than 

80% (Kojima et al. 1999).

Diesel Oxidation Catalysts

Oxidation catalytic converters work by oxidizing the hydrocarbons (both the soluble 

organic fraction {SOF} due to unbumed fuel and lubricating oil and the carbon/soot 

{HC} combustion products) and the carbon monoxide content o f  the exhaust gases.

Oxidation catalysts normally consist o f a ceramic monolith covered in a precious metal

catalyst material. As the exhaust gases pass by the catalyst the following reactions take 

place:

SOF + 0 2 — C 0 2 + H20  (2-1)

HC + 0 2 -► C 0 2 + H20  (2-2)

CO + 0 2 -*  C 0 2 (2-3)

Diesel engines operate under lean combustion conditions and therefore have a much 

lower exhaust gas temperature than modem gasoline engines. Hence the catalyst 

material chosen must operate at lower temperatures than its gasoline equivalent, and be 

capable o f oxidizing condensed hydrocarbon liquids as well as gaseous combustion 

products. The traditionally high sulphur content o f diesel fuels throughout Europe has 

caused problems with selecting suitable catalyst materials due to the reaction shown in 

equation 2-4, which leads to the formation o f sulphuric acid which poisons traditional 

catalyst materials.

S02 + 0 2 S03 (2-4)
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A review o f the effectiveness o f oxidation catalysts as well as their effect on engine 

operation was carried out by the Cummins engine company (Clerc 1996); the 

conclusions o f  which highlighted the difficultly in catalyst selection and sizing for the 

wide range o f operating conditions required.

2.3 Fuel Technology

The fuels used in internal combustion engines continue to change and develop as new 

legislation is announced, and new fuel treatments are discovered. Although some 

alternative fuels can be used without any modifications to the standard petrol or diesel 

engine, other alternative fuels do require modifications to both a vehicle’s engine and 

fuel system, and this can prove to be costly.

When considering alternative fuels for internal combustion engines, many factors must 

be considered including the actual fuel cost, the extra costs involved in equipping the 

vehicles for use o f that fuel and the costs to the environment through pollution (e.g. 

CO2, VOCs, PM and NOx)- Johansson (1999) found that alternative fuels can be 

competitive with petrol and diesel when the impact on the environment o f emissions is 

considered. In cities with an established natural gas network for example, natural gas 

has cost benefits over both diesel and petrol as a fuel. Masumoto et al. (1997) carried 

out a study o f  alternative fuels for passenger cars by CO2 fixation, which involved the 

appraisal o f vehicles powered by methanol, compressed natural gas, electricity, 

hydrogen, and hybrid technology. This study concluded that compressed natural gas 

offered the potential for lowest CO2 emissions.

2.3.1 Petrol and Diesel Fuels

Section 1.2 describes the current specifications o f diesel and petrol fuels available in the 

UK. Both petrol and diesel fuels are obtained by the fractional distillation o f crude oil 

and can differ substantially batch-to-batch due to changes in the source o f the crude oil, 

the refinery equipment used and the grade o f  fuel that is being made.
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Fossil fuel derived fuels such as petrol and diesel are seen as one o f the largest 

contributors to the increase in atmospheric CO2, as the combustion o f such fuels 

releases into the atmosphere carbon that has been “locked away” for millions o f years. It 

is likely that to reduce this effect the use o f  “carbon neutral” substitutes such as bio

ethanol and biodiesel will increase over time.

For diesel fuel the use o f higher pressure multiple injection techniques as well as the 

addition o f oxygenates such as long chain esters and ethers, has shown to substantially 

reduce soot emissions with little effect on NOx formation at high engine loads (Ali et al. 

1995, Choi and Reitz 1999). Lin and Wang (2004) investigated the use o f two and three 

stage diesel emulsions as an alternative to regular diesel fuel. Diesel emulsions were 

shown to have significantly lower NOx and smoke emissions, but had the drawback in 

increasing the emissions o f CO and CO2. Many other fuel additives have been 

developed which can substantially reduce the PM emissions o f  diesel powered vehicles. 

Burtscher et al. (1999) investigated the effect o f  Cerium compound additives in diesel 

fuel, showing that only a small concentration were required to substantially reduce the 

PM emissions.

Common petrol additives used today include ethanol and methyl tert-butyl ether 

(MTBE). Song et al. (2006) compared the effects o f both additives on the exhaust 

emissions, showing that the use o f the MTBE additive reduces the emission o f benzene 

and improves the efficiency o f an exhaust catalyst. The effects o f the addition o f ethanol 

to petrol are well documented; with Hsieh et al. (2002) and Topgul et al. (in press, 

2006) both demonstrating the reduction in CO and hydrocarbon emissions induced by 

the blending o f  ethanol with petrol.

Both petrol and diesel fuel will carry on being the main transport fuels in the short to 

medium term. However, future emission legislation will force the petrochemical 

companies to improve the fuels; this is likely to be done by using more complex 

refining techniques (such as that used to lower the concentration o f sulphur) as well as 

the use o f fuel additives.
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2.3.2 Bioethanol

Bioethanol is ethanol obtained from the fermentation o f carbohydrates in the form o f 

starches, sugars and cellulose derived from harvested plant material. Ethanol (C2H5OH) 

is a proven fuel for spark ignition engines; even before the oil crises o f the 1970’s, 

many vehicles were being manufactured that could be configured to run on alcohols (the 

Ford model T was designed by Henry Ford so that it could be fuelled by petrol, ethanol 

or any mixture o f  the two). However, after the rapid price rises o f crude petroleum 

throughout the 1970’s many countries began to take more seriously the possibilities o f 

biomass derived fuels as an alternative. The most publicised biomass project is the 

“Proalcohol” project o f Brazil, which now produces billions o f gallons o f ethanol 

annually for use as a transport fuel (Lee 1996).

Ethanol has been heavily researched as an additive to petrol with Jia et al. (2005), Wu et 

al. (2004), and Ceviz et al. (2005), all presenting the benefits o f  ethanol and petrol 

blends. The use o f ethanol-petrol blends as a fuel leads to significant reductions in both 

hydrocarbon and CO emissions, but at the same time an increase in CO2 has been 

reported. The increase in the volume o f  CO2 emissions however is counteracted by the 

fact that the CO2 per unit horsepower is less for the ethanol-petrol blends than for the 

pure petrol fuel. However it was shown that there is little difference in the emissions o f 

NOx and aromatics between the ethanol-petrol blends and 100% petrol. It was also 

shown that a 10% ethanol blend with 90% unleaded petrol had the optimum overall 

performance and emission characteristics.

As well as biomass-derived oils and their derivatives showing improvements in 

emissions when used in compression emission engines, the addition o f ethanol to 

standard diesel fuel has been shown (Lu et al. 2005) to have beneficial effects on NOx, 

CO and smoke emissions. Hansen et al. (2005) reviewed the blend properties o f 

ethanol-diesel mixtures, showing that with increasing concentrations o f ethanol in 

diesel, the specific fuel consumption increases due to a reduction in energy content. 

Substantial reductions in particulate matter have been observed with ethanol-diesel 

blends, but potential safety and durability concerns were also noted due to the changes
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in fuel properties associated with the addition o f  ethanol. A reduction in particulate 

matter emissions was also observed in experiments carried out by Shi et al. (2006) in 

which a blend o f  ethanol, diesel and biodiesel was tested, although in this case no 

similar reduction in CO emissions were observed.

The use o f biomass-derived ethanol as an additive for both traditional petrol and diesel 

is expected to increase in the future. The increased CO2 associated with the addition o f 

ethanol is offset by its “carbon neutral” properties; while the reduction in other 

pollutants will help future vehicles meet ever new stringent emission targets.

2.3.3 Biodiesel

Rudolph Diesel saw biomass derived fuels as the future o f his engine and as such chose 

to run his demonstration engine on peanut oil. He was also quoted between 1911 and 

1912 as saying “The use o f vegetable oils for engine fuels may seem insignificant today. 

But such oils may become in course o f time as important as petroleum and the coal tar 

products o f the present time”, and “The diesel engine can be fed with vegetable oils and 

would help considerably in the development o f the agriculture o f the countries which 

use it.”

Vegetable oil based fuels have been shown to have very promising benefits as an 

alternative to crude oil-derived diesel fuels. Vegetable oils such as sunflower, 

cottonseed, soybean and rapeseed oil have all shown reductions in power output, CO2 

and NOx emissions compared to diesel fuel, whilst also showing an increase in CO, 

smoke and fuel consumption. The high fuel density and viscosity, as well as factors 

such as chemical stability and lower cetane numbers currently make raw vegetable oils 

unsuitable for widespread use in internal combustion engines, although with some 

modifications to the engine and optimization o f fuel delivery systems their performance 

can be substantially improved. However, it has been shown by Kumar et al. (2003) that 

the performance o f  a compression ignition engine can be improved and its emissions o f 

hydrocarbons and carbon monoxide reduced when the vegetable oil fuel is 

supplemented with a small proportion o f  hydrogen. The reported improvements were
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attributed to an enhanced combustion rate with the presence o f hydrogen, but due to the 

increased cylinder temperatures an increase in NOx emissions was recorded. Labeckas 

and Slavinskas (2006a) also demonstrated that the pre-heating o f the vegetable oil to 

60°C substantially improved the liquid properties o f  the fuel, reducing the specific fuel 

consumption when compared to tests with unheated oil.

A proven alternative to the use o f raw vegetable oils themselves is the processing o f the 

oils into more suitable fuels. Currently the most suitable vegetable oil derived fuel for 

use in compression ignition engines is biodiesel. Biodiesels are the methyl esters o f 

vegetable oils, the two most commonly available being rapeseed methyl ester and 

sunflower seed methyl ester. Biodiesel has significantly better fuel properties than the 

raw vegetable oils due to reductions in viscosity and density, and improved fuel 

stability.

Williamson and Badr (1998) carried out an in-depth study into the feasibility o f using 

the Rapeseed Methyl Ester (RME) biodiesel as a major transportation fuel in the UK; 

with their findings concluding that a 5% replacement o f  mineral diesel with biodiesel is 

a feasible short term target. Labeckas and Slavinskas (2006b) also found that using 

RME biodiesel reduced the CO, hydrocarbon and smoke content o f  the exhaust, but 

increased the specific fuel consumption and emissions o f CO2 and NOx.

Lin and Lin (2006) carried out comparative tests between a selection o f biodiesels and a 

conventional ASTM No. 2D diesel fuel. Their fmdings indicated that the use o f 

biodiesel increases the fuel consumption and thermal efficiency o f the engine whilst 

lowering the emissions o f CO and CO2 compared to the diesel fuel.

Carraretto et al. (2004) investigated the combustion o f biodiesel in internal combustion 

engines with varying injection timing. It was found that the comparative performance o f 

biodiesel to normal diesel fuel was reduced along with the CO2 emissions, while the 

specific fuel consumption and emissions o f  NOx increased. It was also found that the 

optimization o f the injection timing when using biodiesel improves performance 

without affecting emission levels. Lapuerta et al. (2005) investigated the use o f
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sunflower methyl ester as an alternate to diesel fuel. From their studies a reduction in 

PM was recorded for all engine operating conditions, although no corresponding 

increase in NOx was recorded.

It is anticipated that biodiesel will become an increasingly important fuel resource 

throughout Europe in the next decade. At present biodiesel is only available as a 5% 

blend with diesel in a limited number o f  filling stations throughout the UK, but this 

number is expected to grow over time as the tax incentives for biomass derived fuels 

continue.

2.3.4 Natural Gas

Natural gas is a combustible mixture o f  hydrocarbon gases, and in its purest form is 

colourless and odourless. Natural gas is primarily composed o f  methane, but does also 

usually contain some ethane and small trace amounts o f  propane and butane. 

Compressed Natural Gas (CNG) is a suitable fuel for use in spark ignition engines, with 

only fairly simple modifications required to the engine and fuelling system.

Hekkert et al. (2005) carried out an analysis o f utilising natural gas as an automotive 

fuel as a transition strategy between the current petrol/diesel infrastructure and that o f 

the potential future hydrogen infrastructure. The findings o f the investigation concluded 

that a natural gas engine allows for the development o f a gaseous automotive fuel 

supply network while also providing a significant reduction in CO2 emissions in the 

short term. This corresponds to several manufacturers such as Nissan (Kato et al. 2001) 

developing CNG powered vehicles based upon standard petrol equivalents. Aslam et al. 

(2006) demonstrated that the retrofitting o f  a petrol engine to run on CNG can reduce 

the emissions o f  CO, CO2 and hydrocarbons while reducing the specific fuel 

consumption, although overall power was reduced and NOx emissions increased.

Zeng et al. (2006) investigated the combustion characteristics o f natural gas in a direct- 

injection compression ignition internal combustion engine. It was found that the fuel 

injection timing had a significant effect on engine performance and emissions due to the
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effect o f air fuel mixing on combustion speed. Ristovski et al. (2000) studied the PM 

and gaseous emissions from spark ignition heavy duty natural gas engines. Their 

investigation found that even though the CO and NOx emissions o f the natural gas 

engines were very low (below the standards for low emission vehicles), the PM 

emissions from the natural gas engines were comparable to that for heavy duty diesel 

engines, with similar size distributions and number concentrations.

The future o f CNG vehicles depends not only on the market price o f natural gas, but 

also on the taxation applied to CNG, which is at present 10.8 pence per litre in the UK. 

Hekkert et al. (2005) compared the vehicle efficiency and fuel chain well-to-wheel 

efficiency o f a number o f different internal combustion fuels. From this study the 

quoted average vehicle efficiency o f diesel was 22%, CNG 19% and petrol 18%. The 

average well-to-wheel fuel chain efficiency o f diesel was 19.4%, CNG 16.5% and petrol 

14.8%. CNG has much better anti-knocking characteristics than petrol due to its 

comparatively high octane rating, and therefore could be perfectly suited for use in 

either engines with a high compression ratio or engines operating with high inlet 

pressures, such as that found with Miller cycle operation. For CNG to be competitive 

with both diesel and petrol fuels, further investigation is required into improving the 

operating efficiency o f  CNG engines.

2.3.5 Hydrogen

Investigations into the development o f  the hydrogen infrastructure for widespread 

deployment o f  fuel cell powered vehicles have been continuing for sometime. However, 

for the most part, the use o f hydrogen as a fuel for automotive applications is seen as the 

medium to long term solution for energy and environmental problems. Hydrogen has 

huge potential for use as a transport fuel, with the possibility o f  eliminating most o f the 

hazardous emissions from automotive applications. It must also be considered that the 

development o f a completely new infrastructure may also have unforeseen negative 

consequences, as discussed by Cherry (2004). Some potential drawbacks o f future 

hydrogen usage include the reliance on exotic metals in fuel cell catalysts causing an
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increase in vehicle costs, and the effect o f  the reshaping o f the petrochemical industry 

causing unknown employment shifts.

Within Europe it is expected that the use o f renewable energy resources will have to 

significantly increase in the long term to provide the required energy for hydrogen to 

have even a small impact on the automotive market. In the short term natural gas is 

regarded as an important raw material for hydrogen usage to be feasible, and for 

hydrogen to be competitive with conventional internal combustion fuels the cost o f fuel 

cells needs to substantially decrease (Wietschel et al. 2006). However with the price o f 

natural gas continuing to rise, renewable energy resources such as wind energy become 

more attractive, and the use o f wind power to produce hydrogen via electrolysis 

generates the lowest greenhouse gas emissions o f all hydrogen manufacturing methods 

(Granovskii et al. 2006).

Hydrogen fuel cells are seen as the long term goal for the use o f  hydrogen in vehicle 

applications, and a project testing the feasibility o f hydrogen fuel cells in buses in 

Stockholm (Haraldsson et al.2005) has shown that fuel cells vehicles even in prototype 

stages are remarkably reliable. Hohlein et al. (2000) concluded that the use o f hydrogen 

as the principle fuel in fuel cell vehicles has many intrinsic benefits, including zero 

emissions, but at best they are a long term option. It can therefore be concluded that in 

the short-to-medium term the hydrogen infrastructure should be allowed to develop, but 

the use o f hydrogen in spark ignition engines must be encouraged until the production 

costs o f fuel cells make them economically viable.

The benefits as well as the drawbacks o f  using hydrogen as a spark ignition fuel have 

been discussed by Karim (2003) and White et al. (in press, 2006) The benefits o f using 

hydrogen in internal combustions engines include its only emissions being water and a 

small amount o f NOx, its high combustion rates over wide pressure and temperature 

ranges, its ability to combust at very lean mixtures with air facilitating high 

compression ratios, excellent cold starting ability and its fast burning characteristics 

allowing for stable operation at high engine speeds. Some detrimental properties o f 

hydrogen for its use as a spark ignition fuel include its low energy density, it’s very low
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heating value means engines develop less power, its high burning rates produce high 

cylinder pressures and temperatures which lead to the formation o f NOx and its low 

ignition energy can lead to the onset o f knock.

There has been a great deal o f research into the practical use o f hydrogen as a fuel in a 

spark ignition internal combustion engine. Vandenborre and Sierens (1996) 

demonstrated the low emission potential o f  hydrogen using a converted diesel engine 

bus; with the emissions o f CO2, CO, PM and H2 from the vehicle being below the 

resolution o f their measuring devices. The effect o f compression and equivalence ratio 

on the performance and the emissions o f a hydrogen fuelled spark ignition engine were 

investigated by Maher et al. (2003) and Maher and Sadiq (2004), whose results showed 

that supercharging or high compression ratios and lean fuel air mixtures can be used to 

increase engine efficiency. Verhelst and Sierens (2001) found in their investigation that 

injection and ignition timing had strong influence on the efficiency o f a hydrogen 

fuelled engine; similar results were found in a numerical study carried out by Yamin et 

al. (2000). From the results o f published research it can be seen that a great deal o f 

further work is required to optimise hydrogen IC engine technology.

2.3.6 Hybrid Systems

Hybrid vehicles are vehicles with more than one power source; usually a combination o f 

an electrochemical battery and an internal combustion engine. The internal combustion 

engine and an electric motor provide the propulsion, with the battery being continuously 

charged during braking and low load driving conditions. There are many hybrid 

vehicles currently available on the market with Toyota pioneering the technology.

The main drawbacks with hybrid vehicles include the added weight o f additional power 

train components limiting the potential increase in fuel economy, and the limited 

driving cycle over which the hybrid vehicle concept is effective. The chosen engine and 

battery size o f a hybrid vehicle is a compromise, usually best suited for mixed driving 

cycles. When driving though an urban environment in a rush hour situation; the 

repetitive acceleration events will discharge the battery o f the vehicle, with the driver
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usually then having to rely on an undersized internal combustion engine. The 

development o f  more powerful battery systems continues, with the management o f the 

battery resources being an important area for research (Corson 2002).

2.4 Summary

This chapter provides a review o f the various drivers currently influencing 

developments in engine technology, with specific focus on improvements in engine 

efficiency and emission reductions. This covers fiscal-influence, electro-mechanical 

engine developments and fuel technology.

The signing o f the Kyoto Protocol by many countries has proven to be a watershed 

moment in the global technological development o f the internal combustion engine, 

with all major motor manufacturers investing in the development o f cleaner 

transportation. To this end, advances in the understanding o f the concepts behind 

internal combustion engines together with developments such as variable valve timing, 

direct injection and exhaust gas treatment have improved the economy o f modem motor 

vehicles while reducing their emissions o f  CO2 and particulate matter.

Alternative internal combustion engine fuels are expected in the short to medium term 

future to partially replace petrol and diesel, and together with developments in 

technology will further reduce the pollutants emitted by the transport sector. It is 

expected that the use o f biomass derived fuels, which are already being used to 

supplement both petrol and diesel, will increase. Both CNG and hydrogen will become 

increasingly important as transportation fuels, but do require developments in engine 

technology and global infrastructure before use on a significant scale becomes possible.

The following chapters will utilise this background knowledge to advance 

understanding in several contemporary areas o f research, and contribute towards the 

continued development o f efficient ‘cleaner’ engines o f the future.
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3 Miller Cycle Engine Simulation

The investigation undertaken in Chapter 2 showed that advanced engine cycles, such as 

the Miller cycle, have considerable potential for future engine development. The 

realisation o f this potential is explored in the context o f  natural gas powered IC engines, 

through an EU funded project under the “Competitive and Sustainable Growth” 

Programme (1998-2002) entitled “Magnetic Movement Valve for Miller Cycle 

operation o f engines -  reducing NOx, C 02  and particulate emission” (Acronym: 

MagMove, project No. G3RD-CT-2002-00845).

3.1 The MagMove Miller Cycle

The MagMove project involved Cardiff University, in conjunction with its European 

project partners, working on the development o f  a natural gas powered engine 

incorporating a novel secondary valve apparatus. The project partners for the MagMove 

project are:

Project Leader - NoNOx bv. (Netherlands)

Modelling / CFD - Cardiff University (United Kingdom)

Materials - Aachen University (Germany)

European Coordinator - Europus Ltd (United Kingdom)

Cardiff University’s responsibilities within the MagMove project included the 

development o f  computer models o f the Electronically Operated load Control Valve 

(EOC V), and the integration o f this valve into a computer model o f the engine.

The EOCV technology allows an engine to operate under Miller cycle conditions, whilst 

also utilizing throttle free load control. This is achieved through the use o f an electro- 

magnetically actuated secondary inlet valve, which operates independently o f  the 

crankshaft rotation. This valve replaces the continuously variable throttle plate, which is 

a primary cause o f pumping losses.
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The EOCV apparatus allows accurate metering o f the charge allowed into each engine 

cylinder by effectively advancing the inlet valve closing time. If  a turbocharger is used 

in conjunction with the EOCV apparatus, early EOCV closure allows the use o f higher 

compression ratios / boost pressures.

Figure 3.1 - EOCV apparatus

Currently the EOCV valve apparatus (pictured in Figure 3.1) is in its third incarnation. 

The work represented here forms part o f a program o f development for the EOCV 

concept, with the ultimate aim being a technology suitable for mass production. The 

role o f Cardiff University involved the modelling and development o f the valve design 

and the validation / development o f the engine operation. The mark 3 version o f the 

EOCV technology had been proven at low engine operating speeds (<2000 rpm) on a 

natural gas test engine, meeting emission standards set by EURO V with specific fuel 

consumption comparable to that o f heavy duty Diesel engines.

The principles by which the EOCV apparatus operates is essentially that proposed by 

Ralph Miller; early closing o f the inlet valves reducing the compression stroke o f the 

engine, while still retaining a full length expansion stroke. Essentially adding a fifth 

stage to the standard four-stroke Otto cycle.

The five stages o f the EOCV induced Miller cycle are as follows: The shortened 

induction stroke (points A-B in Figure 3.2) is the drawing in o f the fresh air/fuel
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mixture into the engine cylinder; the Miller effect then occurs with the expansion and 

compression o f the confined charge (points B-B*-B); the compression stroke is the 

compression o f the confined air/fuel mixture (points B-C), after which combustion is 

initiated in the cylinder by the spark plug; the expansion stroke (points C-D) is where 

the formation o f the hot combustion gases carries out work on the piston; and finally the 

exhaust stroke (points D-A) is the where the combustion products are evacuated from 

the engine cylinder.

Induction (A-B)

Miller Effect (B-B*-B)

P

A --------
B*

V

O

Compression (B-C)
rm

Expansion (C-D)
V

Exhaust (D-A)

Figure 3.2 -  EOCV Miller cycle principles
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The EOCV apparatus operates completely independently to the main inlet and exhaust 

valves o f the engine; with completely variable opening and closing times. The standard 

procedure by which the EOCV system operated is as follows:

•  The individual secondary valves for each cylinder open shortly before the main 

inlet valves. The precise duration between the opening o f the secondary and 

main inlet valves can be varied depending upon engine speed and other 

conditions.

•  The induction stroke o f the cylinder draws the fresh air/fuel mixture through the 

secondary and main inlet valves.

•  Under Miller cycle operation, the secondary valves close before the main inlet 

valves preventing any more air/fuel mixture into the cylinder. The closing point 

o f the EOCV is used to precisely meter the air/fuel charge, depending upon the 

load requirements o f the engine.

•  The trapped air/fuel charge in the cylinder expands until the induction stroke is 

complete; the charge is then compressed as normal with the peak cylinder 

pressure depending upon the extent to which the Miller effect was utilized.

In addition to being used to induce the Miller cycle operation o f an engine, the EOCV 

apparatus can also be used as a conventional throttle system, where it is held at the 

appropriate opening position to allow the required air into the engine cylinders. The 

EOCV technology makes use o f electromagnetic actuators to rapidly open and close a 

secondary valve, but for engines operating at high speeds the actuators may be too slow 

to apply Miller cycle operation. At higher engine speeds the EOCV apparatus could 

switch over to a conventional ‘throttle’ mode, however this should be avoided as the 

EOCV apparatus will cause pumping losses when used in this manner.

This PhD project involves the construction o f a computer model o f the test-engine 

located at the NoNOx facility. This engine model will then be modified to incorporate 

the Mark 3 EOCV design, and the effect on engine operation will be examined. The 

completed EOCV equipped engine model will then be tested using a series o f validation 

cases taken from the actual test engine, providing an indication o f the models suitability 

for investigative studies.
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3.2 Ricardo Wave

Wave is an engineering code developed by Ricardo Software to analyse and predict the 

pressure waves, mass flows and energy losses associated with flow through pipes, 

plenums, and components o f inlet and exhaust systems. Wave provides a fully 

integrated treatment o f time-dependent fluid dynamics and thermodynamics by means 

o f a one-dimensional fmite-difference formulation, incorporating a general 

thermodynamic treatment o f working fluids such as air, air-hydrocarbon mixtures, 

liquid fuels and combustion products. An additional property o f Wave is that it can be 

coupled to “higher-level” CFD codes enabling more detailed studies o f individual 

system components.

Wave models a network o f pipes, volumes and junctions in terms o f a set o f building 

blocks, which include:

•  Constant area or conical pipes / ducts.

•  Passages with abrupt changes o f area.

•  Junctions o f multiple ducts.

•  Elbows, orifices and plenums.

• Terminations such as infinite plenums (ambients) and anechoic (no 

reverberation, absorbs all pressure waves) boundaries.

The Wave software also includes a library o f machinery components such as engine 

cylinders, fuel injectors, piston compressors, turbocharger compressors and turbines, 

pumps and catalytic converters. These components can be attached to a pipe network to 

serve as sources or absorbers o f  pulsating flows.

The basic methodology incorporated in Wave has been extensively tested against a set 

o f reference test cases, including shock wave propagation in a duct, pressure wave 

reflection from closed and open ends o f  a duct, steady state flow through a duct with an 

abrupt change in cross-sectional area, flow through an orifice, pipe flow with friction, 

pipe flow with heat transfer, and flow through a junction o f three ducts.
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The method by which Wave produces a simulation o f  the flow through a duct system is 

to solve the compressible flow equations governing the conservation o f mass, 

momentum and energy. The duct system is subdivided, or discretized, into a series o f 

smaller volumes. The quasi-one dimensional governing equations are then produced for 

each o f these elementary volumes in a finite difference form. The equations for mass 

and energy are solved for each volume, and the momentum equation is solved for each 

boundary between volumes.

The main governing equations, written in an explicitly conservative form, are as 

follows:

Mass = = Y m
dt (3-1)

Energy = ^me = 'Y] mh + sources
dt (3-2)

Momentum = = A —  dx + J '  m u -  losses
d t d x  (3-3)

The thermodynamic properties o f the fluids used are based on the appropriate governing 

relationships, for the thermo-chemistry o f  hydrocarbon/air mixtures (i.e. general C, H, 

O, N type fuels) the perfect gas equations are utilised.

The application o f  a fmite-volume technique is used in order to solve the governing 

partial differential equations. The explicit technique is used for time differencing with 

the time-step being governed by the Courant condition. This condition can be written 

as:

. CFLAx
A /  = --------- j r

c + \v\ (3-4)
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3.2.1 Wave Build

In order to create a Wave simulation o f a duct network, it is first necessary to obtain all 

available data detailing the geometry, and all physical parameters and operating 

conditions. A model o f  the network can then be built up from a collection o f junctions 

using the Wave Build Graphical User Interface (GUI). The Wave Build GUI allows a 

user to simplify the complex geometry o f engines and pipe-networks into a series o f 

ducts and junctions. The Wave Build GUI is shown in Figure 3.3.

M
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Figure 3.3 - The Wave Build environment.

The Wave Build GUI uses the standardized Window format, incorporating a series o f 

pull-down menu options to define the model parameters and operating conditions. A 

model is constructed from a network o f ducts connected together by suitable junction 

types chosen from the junction palette (see Figure 3.4), such as engine cylinders, duct 

junctions and turbocharger machinery. The junctions are positioned onto the work 

canvas first and are connected together by simple dragging a duct from one junction to 

another.
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Figure 3.4 - The Wave Build junction palette

“Junctions” are either used to connect one duct to another, or are used to represent 

physical sub-systems such as engine cylinders. The most basic o f the junctions is the 

orifice junction, allowing two ducts o f different cross-sections to be connected together.

When the connection between ducts is o f a more complex nature, simple Y-junctions or 

complex Y-junctions can be used. A simple Y-junction is treated as being spherical in 

nature, and allows the modelling o f simpler systems where multiple pipes join at a 

single point, i.e. an exhaust manifold. Complex Y-junctions are o f a much more flexible 

nature; they can be elongated or non-uniform in shape and can be joined together with 

“mass-less” ducts to model inlet plenums, filters, silencers, heat exchangers and 

catalysts.

An example o f a completed Wave model is shown in Figure 3.5. This particular model 

is o f a heavy-duty diesel engine. Once a model has been completed it is necessary to 

carry out an “ input check”. This feature checks the form o f the input file, ensuring 

continuity between ducts and checking that all the necessary modules are present. Once 

the input check has been completed the solver component o f the Wave software can 

then be run.
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Inlet Ambient

Compressor

Exhaust

Inlet Plenum
Turbine

Engine Cylinder

Figure 3.5 - Example Wave model

Upon completion o f  the simulation, several output files are generated. The results o f the 

simulation can either be imported into standard spreadsheet type packages; or be viewed 

using Ricardo’s own post-processing software Wave Post and RPlot.

3.2.2 Supporting Codes

There are several different support codes embedded into the Wave software. The two 

that are o f  most use are PROPTY and TCMAP.

PRO PTY  - PROPTY is used by Wave to calculate the thermodynamic properties o f the 

mixture o f  air, fuel and combustion products as a function o f temperature, pressure and 

composition. PROPTY generates property maps for each specific fuel from which 

accurate values can be interpolated. PROPTY calculates the properties over a wide 

range o f parameters using a comprehensive equilibrium program, which is applicable to 

any general CCHHOONN fuel. The information is passed to Wave in the form o f an 

auxiliary input file created by the PROPTY code.

TCM A P produces a model o f  a turbocharger that may be linked with a Wave engine 

model to simulate turbocharged engines. The TCMAP code produces performance maps 

for turbine and compressor components at the pre-processing stage, and then rates the 

efficiency o f the system in post-processing.
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3.2.3 Wave Mesher

Wave Mesher is a new addition to the Wave software package allowing the imputation 

o f 3D geometry in a CAD file format. This greatly improves the practicality o f the 

Wave package, as prior to the inclusion o f Wave Mesher the production o f a Wave 

model relied heavily upon the modeller’s interpretation o f  the system geometry.

A CAD file in the .stl (stereo lithography) format can be imported directly into the 

Wave Mesher program. The contents o f the CAD file cannot be a 3D solid model o f the 

component, but must represent the inner surface o f  the component. Figure 3.6 illustrates 

the form o f an imported file.

Figure 3.6 - Imported geometry in .stl format

The first stage o f Wave Mesher is to ensure that the model geometry is fully stitched 

(has no holes other than the inlets and outlets) and to manually remove any geometry 

imperfections using the options available for geometry manipulation.

The next stage o f the Wave Mesher program is to upgrade the model by entering the 

body mode. This part o f the process controls the division o f the geometry into sub

volumes. Once the geometry has been split up as required by the ‘modeller’, the model 

is then transferred to the element mode where the properties o f the volumes are decided. 

The user decides which o f the Wave junctions/ducts would best represent the geometry; 

at this stage the dimensions that have been calculated by Wave Mesher for the 

individual volumes can be viewed and altered if  required. The geometry created by the 

Wave Mesher program can then be imported directly into wave through the component 

browser option panel.
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3.3 Deutz V6 Engine Model

This section describes the model building process used to construct the simulation o f the 

engine that will incorporate the EOCV technology. In order to construct a computer 

simulation o f an engine a great deal o f  information is required. Like all computer 

simulations, the accuracy o f the results is dependent upon detailed information.

3.3.1 Wave Engine Model

3.3.1.1 Engine Specifications

An overview o f the engine specifications that are required by the Wave software to 

produce an engine model is now outlined. The engine to be modelled in the early stages 

o f this project is the EOCV test engine; which is based upon a Deutz 1015, 12.0 litre V6 

marine diesel engine, shown in Figure 3.7 (for further engine details see Appendix A).

Figure 3.7 - The EOCV test engine

The Deutz 1015 marine diesel engine to be used for the EOCV work is a modem water- 

cooled four stroke 6 cylinder turbocharged engine. The main characteristics o f the 

Deutz engine are listed in Table 3.1.
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Table 3.1 -  Deutz 1015 engine specifications

VARIABLE TEST ENGINE

Cylinder Bore (mm) 132.0

Piston Stroke (mm) 145.0

Total Displacement (litres) 11.91

Connecting Rod Length, centre to centre (mm) 261.733

Piston Pin Offset {+ve towards major thrust side} (mm) 0

TDC Combustion Chamber Volume (cm3) 158.74

Compression Ratio 17.0

Number o f Cylinders 6

Firing Order 1-6-3-5-2-4

Firing Interval 120°

Power Rating for continuous operation at 1800 rpm
at 1900 rpm 
at 2100 rpm

272 kW 
287 kW 
287 kW

The basic engine operating details are entered into the Wave engine panel (shown in 

Figure 3.8). The details entered into the engine panel are used by Wave to control the 

combustion process. Some o f the parameters entered here must be customized for the 

engine being modelled; including friction, combustion and conduction parameters.

The information entered into the panel shown in Figure 3.9 allow the customisation o f 

the combustion and emission aspects o f  the Wave simulation. The Wave simulation is 

then able to predict hydrocarbon formation and other pollutant emissions.
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Figure 3.8 - Wave engine panel
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Figure 3.9 - Combustion and emission modelling

The combustion modelling process used in Wave is another set o f variables that must be 

configured and validated. The heat release model used is time-based and must therefore 

be carefully configured for the engine and as it is RPM dependent will vary throughout 

the engine’s speed range.
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3.3.1.2 Valve-gear

Details o f the timing and lift values for the intake and exhaust valves are shown in 

Table 3.2 and Figure 3.10. These values must be specified in the Valves panel o f the 

Wave simulation.

Table 3.2 - Conventional valve-gear details

Cycle
Anchor Duration Max Lift 

[mm]
Dv

[mm]
Di

[mm]
b [mm] 

(valve seat length)
Intake Valve 338° 248° 10.48 46 40.7 2.3

Exhaust
Valve 126° 259° 11.40 42 36.7 2.3

12 
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E

I  6
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>
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♦ exhaust ■ intake Deg. Crank Angle

Figure 3.10 - Valve timing and lifts

The timing and lift for the intake and exhaust valves is an area where there is potential 

for improvements to be made to the engine. Detailed parametric studies can be used to 

find the optimum cam profiles. However, it is unlikely that the engines cams will be 

altered due to the added expense.

The discharge coefficients for the intake and exhaust side o f the cylinder head were 

measured using a flow bench. The values obtained for all the flow directions are shown 

in Figure 3.11.

Valve Lift

l
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Figure 3.11 - Intake and exhaust discharge coefficients
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The flow coefficients shown in Figure 3.11 are entered into the Valve panel o f the 

Wave simulation. These coefficients allow the Wave software to correctly predict the 

valve flow, an important characteristic in correctly modelling engine behaviour.

3.3.1.3 Geometry Input

Accurately modelling the geometry o f a physical engine (i.e. the inlet and exhaust 

system) is an important consideration. The flow characteristics o f the inlet air stream 

and the exhaust gases can have a large effect on engine efficiency. This process is made 

substantially easier by the availability o f  detailed drawings for both the inlet and 

exhaust system o f the EOCV test engine. Figure 3.12 shows pictures o f the EOCV test 

engine’s inlet and exhaust systems.

Figure 3.12 -  Deutz test engine inlet and exhaust system

The majority o f a Wave model consists o f  simple ducts and junctions; the only 

information required to produce these is duct diameters, lengths and angles/positions o f 

any bends.
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One component o f the inlet system that can have a large effect on engine efficiency is 

the plenum. Because o f the complex nature o f plenum geometry it is necessary to use 

the Wave Mesher software to model the actual plenum design used on the test engine. 

Figure 3.13 shows the CAD file once it has been imported into the Wave Mesher 

software in the stereo-lithography format (*.stl).

Figure 3.13 - Imported CAD geometry

The plenum geometry is interpreted by the Wave Mesher software, and is saved in a 

format that can be directly imported into the Wave Build environment. Figure 3.14 

shows the plenum geometry constructed in Wave Build format.

y j u n 2  y j u n 3  y j u « 4  y j u n B  y j u r > 6  y j u n l

Figure 3.14 - Plenum model in Wave Build

The plenum model is directly imported into the Wave Build environment and 

incorporated in to the Deutz engine model.
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3.3.1.4 Turbo Modelling

The modelling o f the two variable geometry turbochargers used by the Deutz test engine 

is carried out using the TCMAP supporting code within the Wave Build environment. 

The turbochargers installed on the Deutz test engine at the NoNOx facility are 

manufactured by IHI; the data supplied by IHI detailing the turbochargers operating 

parameters is shown included in Appendix B.

The turbochargers used on the test engine incorporate both ‘waste gate’ and variable 

geometry systems. The waste gate allows the exhaust gases to bypass the turbine, 

reducing the speed at which the turbocharger operates thus reducing the ‘boost’ pressure 

provided by the compressor wheel. The variable geometry system also controls the 

speed o f the turbine (and therefore compressor boost) by controlling the exhaust gas 

pressure entering the turbine housing. The exhaust gases that enter the turbine housing 

pass through a series o f vanes, which can be closed to increase exhaust gas pressure and 

opened to reduce exhaust gas pressure. At low engine speeds when exhaust flow is low, 

the vanes are partially closed to increase the pressure in the exhaust before the turbine, 

increasing the turbochargers speed and providing more boost.

The operating point o f the variable geometry turbochargers (VGT’s) is controlled by a 

pair o f linear actuators whose position can be independently altered by the test-bed 

technicians while the engine is running, as such the VGT’s are infinitely variable.

Data obtained from the IHI supplied operating maps for the turbine and compressor is 

used to build up a simulation o f the behaviour o f  these components. The information 

that is required is the relationship between volumetric flow rate, pressure ratio and 

operating efficiency for varying turbine and compressor speeds. The TCMAP code then 

produces its own behavioural maps for the compressor and turbine, which is accessed 

by the main Wave code during a simulation. The turbine modelling is a great deal more 

complex than that o f the compressor because o f its varying geometry, because o f this a 

number o f turbine maps are required for set actuator positions. The compressor map 

generated by the TCMAP code for the Deutz test engine is shown in Figure 3.15.
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Figure 3.15 - TCMAP compressor data

From the turbocharger data provided by IHI, initial turbine maps were created and 

tested. A sample o f  a TCMAP generated turbine map is shown in Figure 3.16.
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Figure 3.16 -TCM A P turbine data

The completed Turbocharger model is incorporated into the Wave Build model o f the 

Deutz test engine. For the initial set o f engine simulations only one o f the turbine maps 

generated for the VGT is used. The map chosen for these simulations was that for the 

fully open VGT setting -  corresponding to the zero setting on the VGT actuators.
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3.3.1.5 Deutz Wave Build Engine Model

Figure 3.17 below is the complete geometry model for the basic diesel fuelled Deutz 

test engine. The model progresses from the two inlets (left), through the two separate 

inlet tracks, including the compressors and intercoolers, to the plenums (centre) and 

then to the combustion chambers. The combustion products then proceed through the 

exhaust manifolds to the two turbines, and then exit through the common exhaust pipe.

11

Inlet Ducting Exhaust System

i •

Intercooler
Exhaust Manifold

Inlet Ambients <

Engine Cylinder
Inlet Plenums

Turbocharger

Figure 3.17 - Wave model o f EOCV test engine

Many o f the dimensions and model parameters used in the Deutz diesel model were 

obtained during the validation o f the EOCV equipped engine model (reported in section 

3.5) against experimental data. The refined model o f the compressed natural gas EOCV 

test engine obtained from the validation process has been reverse engineered to model 

the standard diesel powered Deutz base engine; this will allow comparisons o f power 

and operating efficiency to be made.
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3.3.2 Deutz Simulation Results

The Wave computer model o f the Deutz 1015 marine diesel engine shown in Figure 

3.17 was used to simulate the behaviour o f  the engine throughout its operational speed 

range. An example o f the results predicted by Wave is shown in the sample output file 

in Appendix C. Figure 3.18 shows the predicted variation o f  engine power with engine 

speed and equivalence ratio, where the equivalence ratio is defined by equation 3-5.

E q u iv a le n c e  R a t io  = S to ic h io m e t r ic  A i r  to  F u e l  R a t io
A c t u a l  A i r  to  F u e l  R a t io (3-5)

From equation 3-5 it can be seen that an equivalence ratio less than one describes lean 

air fuel mixtures, and equivalence ratios greater than one describe rich air fuel mixtures. 

Diesel engines inherently operate with lean air fuel mixtures.
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Figure 3.18 -  Deutz 1015 predicted BHP
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From an examination o f Figure 3.18 it can be seen that, as expected, the predicted BHP 

o f the Deutz 1015 diesel engine varies both with the operating speed o f the engine and 

the equivalence ratio o f the trapped charge. Also indicated in Figure 3.18 by the red dots 

are the maximum power ratings for the Deutz 1015 engine according to the 

specifications provided by the manufacturer (Appendix A).
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Figure 3.19 illustrates the predicted Brake Efficiency o f the Deutz 1015 diesel engine 

throughout its operating speed range and for varying equivalence ratios.
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Figure 3.19 -  Deutz 1015 predicted efficiency

i o

The predicted thermal efficiencies o f the Deutz engine shown in Figure 3.19 indicate 

that for each operating speed the maximum efficiencies occur for equivalence ratios 

between 0.3 and 0.4. The peak predicted efficiency for the Deutz 1015 diesel engine is 

approximately 49% and occurs at 1100 RPM with an equivalency ratio o f 

approximately 0.33.

Based upon the results shown in Figures 3.18 and 3.19 and the additional results shown 

in Appendix D, a series o f approximate maximum power operating conditions can be 

established. The operational speed range over which the Deutz 1015 engine is to be 

simulated is 700 to 2300 RPM with the rated maximum power o f the engine being 442 

BHP at 1900 to 2100 RPM. The results o f  the Wave simulations to determine the Deutz 

1015 diesel engine’s operating parameters are shown in Table 3.3.
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Table 3.3 -  Deutz 1015 predicted operating parameters

Speed
RPM

Power
BHP

Torque
Nm

Brake
Efficiency

BSFC
Kg/KWhr

Equiv.
Ratio

NOx
ppm

H C g/hr

100% Load (Maximum Throittle)
700 150 1527 43.07 0.1953 0.7926 956 11.14
900 210 1662 43.77 0.1922 0.7733 1005 15.27
1100 265 1715 43.90 0.1916 0.7534 1056 19.12
1300 320 1753 43.37 0.1940 0.7499 1041 23.27
1500 370 1757 42.74 0.1968 0.7456 1044 27.21
1700 410 1712 42.07 0.1999 0.7330 1087 30.29
1900 442 1657 40.85 0.2059 0.7394 1043 33.30
2100 442 1499 40.35 0.2084 0.7220 1051 32.83
2300 420 1300 40.81 0.2061 0.6290 1425 30.49

50% Load
700 75 76 47.05 0.1788 0.4098 1720 5.13
900 105 831 48.68 0.1728 0.3971 1631 6.92
1100 133 861 49.32 0.1706 0.3794 1532 8.60
1300 160 876 49.17 0.1711 0.3670 1449 10.32
1500 185 878 48.59 0.1731 0.3604 1412 11.98
1700 205 859 47.35 0.1776 0.3572 1404 13.43
1900 211 828 46.03 0.1828 0.3547 1374 14.67
2100 211 749 44.73 0.1881 0.3468 1284 14.65
2300 210 650 42.21 0.1993 0.3168 1167 14.60

From an examination o f the results shown in Table 3.3 it can be seen that while 

operating at the simulated 100% load conditions the predicted brake thermal efficiency 

o f the Deutz engine is between 40 and 44 %, with an average brake specific fuel 

consumption o f 0.199 kilogram per kilowatt hour.

Through the majority o f the operational speed range the Wave computer software 

predicts that the Deutz engine operates at an equivalence ratio between 0.7 and 0.8 

while under full load conditions, and between 0.3 and 0.4 while under half load 

conditions. The average predicted brake efficiency o f the Deutz engine operating under 

half load conditions is 47 %. From the examination o f the results it can be seen that the 

engine produces higher emissions o f NOx under part load conditions, but emits more 

unbumed hydrocarbons under full load conditions.
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3.4 EOCV Engine Model

For the application o f the EOCV technology the Deutz test engine was converted to run 

on either LPG or CNG. There have been many other modifications made to the engine 

to accommodate the EOCV system including a change in compression ratio, the 

installation o f sparkplugs, as well as the construction o f new fuel, inlet and exhaust 

systems. Table 3.4 lists the main specifications o f  the EOCV test engine (standard 

engine specifications - Table 3.1).

Table 3.4 - Test engine specifications

VARIABLE TEST ENGINE

Cylinder Bore (mm) 132.0

Piston Stroke (mm) 145.0

Connecting Rod Length, centre to centre (mm) 261.733

Piston Pin Offset {+ve towards major thrust side} (mm) 0

TDC Combustion Chamber Volume (cm3) 158.74

Compression Ratio 13.5

Number o f Cylinders 6

Firing Order 1-6-3-5-2-4

Firing Interval 120°

Clearance Height -  Top o f Piston and Top o f Cylinder (mm) 3.0

Figure 3.20 shows the complete geometry model for the EOCV test engine. The model 

progresses from the two inlets (left), through the two separate inlet tracks, including the 

compressors and intercoolers, to the plenums (centre) and then through the EOCV’s to 

the combustion chambers. The combustion products then proceed through the exhaust 

manifolds to the two turbines, and then exit through the common exhaust pipe.
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Inlet

Figure 3.20 - Wave model o f Deutz test engine incorporating EOCVs

The dimensions used in this initial model have been checked against the test engine set

up during the validation stage. All o f the major components and ductwork are included.

3.4.1 EOCV Modelling

The modelling o f the EOCV valve will form an important part o f the engine model. In 

the early stages o f the project the engine modelling will be based upon empirical data 

obtained from the test engine.

The next stage o f the project involves the development o f a 3-Dimensional computer 

model for the EOCV apparatus. Once this has been completed potential improvements

System

EOCV Apparatus

Exhaust System
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in design can be quickly evaluated in terms o f engine performance and efficiency gains. 

Details o f the current valve actuation times and displacements are shown in Table 3.5 

and Figure 3.21.

Table 3.5 - EOCV lift times

Time (s) Valve Lift 

(mm)

Associated Crank Angle Duration (Degrees)

500 RPM 1000 RPM 1500 RPM 2000 RPM 2500 RPM 3000 RPM

0.0000 0.00000 0.0 0.0 0.0 0.0 0.0 0.0

0.0005 0.04028 1.5 3.0 4.5 6.0 7.5 9.0

0.0010 0.11292 3.0 6.0 9.0 12.0 15.0 18.0

0.0015 0.29554 4.5 9.0 13.5 18.0 22.5 27.0

0.0020 0.62421 6.0 12.0 18.0 24.0 30.0 36.0

0.0025 1.10356 7.5 15.0 22.5 30.0 37.5 45.0

0.0030 1.71584 9.0 18.0 27.0 36.0 45.0 54.0

0.0035 2.42879 10.5 21.0 31.5 42.0 52.5 63.0

0.0040 3.20242 12.0 24.0 36.0 48.0 60.0 72.0

0.0045 3.99462 13.5 27.0 40.5 54.0 67.5 81.0

0.0050 4.76575 15.0 30.0 45.0 60.0 75.0 90.0

0.0055 5.48198 16.5 33.0 49.5 66.0 82.5 99.0

0.0060 6.11761 18.0 36.0 54.0 72.0 90.0 108.0

0.0065 6.65616 19.5 39.0 58.5 78.0 97.5 117.0

0.0070 7.09050 21.0 42.0 63.0 84.0 105.0 126.0

0.0075 7.42163 22.5 45.0 67.5 90.0 112.5 135.0

0.0080 7.65658 24.0 48.0 72.0 96.0 120.0 144.0

0.0085 7.80499 25.5 51.0 76.5 102.0 127.5 153.0

0.0090 7.87468 27.0 54.0 81.0 108.0 135.0 162.0

0.0095 7.86604 28.5 57.0 85.5 114.0 142.5 171.0

0.0100 7.76535 30.0 60.0 90.0 120.0 150.0 180.0
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Figure 3.21 - Valve lift curve

The discharge coefficients for the EOCV apparatus were measured using a flow bench 

and are shown in Table 3.6 and Figure 3.22.

Table 3.6 - EOCV discharge coefficients

Measured 
Stroke (mm)

Actual 
Stroke (mm)

Flow
( L s )

Cd Stroke / 
Diameter

- 0.0000 0.00 0.0000 0.0000
0.00 0.7653 0.40 0.0025 0.0001
0.25 1.0153 4.70 0.0288 0.0014
0.50 1.2653 15.60 0.0957 0.0048
0.75 1.5153 26.10 0.1601 0.0080
1.00 1.7653 34.00 0.2085 0.0104
1.25 2.0153 42.50 0.2606 0.0130
1.50 2.2653 49.10 0.3011 0.0150
2.00 2.7653 58.70 0.3600 0.0180
2.50 3.2653 65.10 0.3992 0.0200
3.00 3.7653 70.90 0.4348 0.0217
3.50 4.2653 75.00 0.4600 0.0230
4.00 4.7653 77.40 0.4747 0.0237
4.50 5.2653 79.00 0.4845 0.0242
5.00 5.7653 80.10 0.4912 0.0245
5.50 6.2653 80.70 0.4949 0.0247
6.00 6.7653 81.20 0.4980 0.0249
6.50 7.2653 81.30 0.4986 0.0249
7.00 7.7653 81.30 0.4986 0.0249
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Figure 3.22 -  Measured EOCV discharge coefficient

The flow bench data was then used to validate the 3-Dimensional CFD model o f the 

EOCV apparatus in the next stage o f the project. The limitation with the method in 

which the flow-bench has been used to measure the flow through the EOCV apparatus 

is that it required the EOCV to be fitted to a cylinder head. The values quoted in Table 

3.5 are for flows through the EOCV apparatus at various lift positions, and through the 

normal inlet valves o f the cylinder head; thus the discharge coefficients and flow values 

are lower because o f the extra pressure losses incurred. The true values o f discharge 

coefficient for the EOCV apparatus will be higher than that seen in Figure 3.22. The 

results o f the CFD simulation o f the EOCV apparatus described in Chapter 4 will be 

used for this purpose, and are shown in Figure 3.23.
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Figure 3.23 -  Simulated EOCV discharge coefficient
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3.4.2 EOCV Simulation Parameters

The initial series o f Wave simulations are designed to prove that the software is capable 

o f modelling the effect o f the EOCV apparatus; by proving that the power output o f the 

engine can be sufficiently controlled through the EOCV timing (for these initial results 

an EOCV opening time o f 200° after TDC firing, and closing times o f 300° - 580° are 

investigated).

2300

2)00

1900

|  1700 

]
$ 1500
•t
? 1300 u

1100 

900 

700
3 0 0  3 4 0  3 80  4?0 460 SCO 9 40  880

Ml J |* r

Figure 3.24 -  Miller timing effect on predicted BHP

The results o f the Wave simulation shown in Figure 3.24 show that through the use o f 

the EOCV apparatus, the power output o f  an engine can be controlled. It can be also 

seen from the graphical results that the EOCV closure timing must be earlier than 500° 

after TDC firing to have any effect in reducing the power developed by the engine.

However, it must be considered that the power developed by an engine equipped with 

the EOCV apparatus can be controlled by the control o f the fuelling characteristics, as 

well as the EOCV closure timing. Once it had been established that the EOCV 

technology can control the power output o f  the Deutz diesel engine (modified to run on 

compressed natural gas), the most efficient operating parameters for the engine must be 

established. The effect o f varying the equivalence ratio on the power developed by the 

engine, for a fixed EOCV closure timing (580° after TDC firing), is shown in Figure 

3.25.
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Figure 3.25 -  Equivalence ratio effect on predicted engine efficiency

From the results shown in Figure 3.25 it can be seen that for each engine speed the 

predicted highest brake efficiency occurs at a different equivalence ratio; i.e. for low 

engine speeds (700-900 RPM) the highest brake efficiency occurs with an equivalence 

ratio o f 0.2, at higher engine speeds an equivalence ratio o f  0.45 to 0.5 is predicted to 

have the highest brake efficiency.

An important operating parameter o f a spark ignition engine, such as the converted 

Deutz / EOCV engine, is the ignition timing. A variation in the ignition timing alters the 

point at which combustion o f the compressed cylinder charge is initiated, which can 

affect the peak cylinder temperatures and pressures, which in turn affect the power and 

emissions o f the engine.

In order for a complete engine model o f  the EOCV equipped engine to be constructed, 

an understanding o f the effects o f varying the ignition timing is required. It was decided 

that an investigation into ignition timing would be carried out for equivalence ratios o f 

0.4 and 0.8 for all operational engine speeds. The predicted variation o f the brake 

efficiency and torque o f the EOCV equipped engine for varying ignition timing is 

shown in Figure 3.26.
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Figure 3.26 -  The effect o f ignition timing on engine torque and efficiency

From an examination o f the results shown in Figure 3.26 it can be seen that different 

equivalence ratios require different ignition timings if  peak efficiency and torque values 

are to be obtained. For an equivalence ratio o f  0.4, an injection timing o f +8° provides 

the highest torque and efficiency for all engine speeds; for an equivalence ratio o f 0.8 an 

injection timing o f +10° is the optimum.

It can also be seen from the results discussed here that there are several variables that 

must be controlled independently if  the optimum setting for engine operating efficiency 

are to be obtained. For each required engine speed and load output there are many 

different combinations o f EOCV closure timings, fuel equivalence ratios, ignition 

timings and turbocharger waste gate / variable geometry actuator settings that can be 

used. For these initial investigations the effect o f different combinations o f EOCV 

timing, equivalence ratios and ignition timings are explored.
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3.4.3 EOCV Model Results

The model o f the NoNOx test engine was used to simulate the maximum load 

conditions determined for the Deutz 1015 diesel engine. Table 3.7 displays the 

predicted efficiencies and emissions.

Table 3.7 -  NoNOx predicted 100% load results

Speed
RPM

Power
BHP

Torque
Nm

Brake
Efficiency

BSFC
kg/kWhr

Equiv.
Ratio

NOx
ppm

H Cg/hr

© o%  Load (Maximum Throttle)
700 150 1526 29.24 0.2462 0.9898 2927 7022
900 205.6 1627 31.57 0.2280 1.024 2496 7203
1100 265 1715 33.57 0.2144 0.9867 3408 7113
1300 320 1752 34.69 0.2075 0.9666 3907 7096
1500 370 1757 36.25 0.1986 0.9423 4475 5917
1700 410 1717 37.64 0.1912 0.9122 4968 4397
1900 442 1657 38.85 0.1853 0.8895 4957 2701
2100 442 1499 39.38 0.1828 0.8454 4023 1793
2300 420 1301 39.19 0.1837 0.7831 2974 1927

Comparing the results shown in Table 3.7 to that shown in Table 3.3, it can be seen that 

in order for the EOCV equipped NoNOx engine to develop the required torque for the 

100% load conditions, much higher equivalence ratios are required (and even then the 

NoNOx engine fails to produce the required power at 900 RPM).

For all engine speeds at the 100% load operating conditions, the NoNOx engine 

produces higher emissions o f NOx and unbumed hydrocarbons. The unbumed 

hydrocarbons are likely to be composed entirely o f methane, which is classified as a 

greenhouse gas. The higher emissions o f NOx however could be a problem if the 

NoNOx engine is to be considered as a replacement in heavy duty diesel engine 

applications (such as that of the Deutz 1015 base engine).

The inclusion o f the EOCV technology in the NoNOx engine produces a secondary 

method o f controlling the power output o f the engine, with the primary method being 

the equivalence ratio.
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Table 3.8 compares the predicted emissions and fuel consumption for three different 

50% load operating criterion.

Table 3.8 -  NoNOx predicted 50% load results comparison

Speed
RPM

Power
BHP

Torque
Nm

EOCV 
Closure 0

Brake
Efficiency

BSFC
kg/kWhr

Equiv.
Ratio

NOx
ppm

HC
g/hr

50% Load (L igh Equivalence Ratio)
700 75 763 457 26.15 0.2753 0.9922 2596 4928
900 105 831 466 29.44 0.2446 1.026 2434 4690
1100 133 861 468 31.67 0.2273 0.989 3049 4640
1300 160 876 471 32.38 0.2224 0.9673 3245 5169
1500 185 879 473 33.18 0.2170 0.9443 3386 5351
1700 205 859 478 34.03 0.2116 0.9140 3470 5155
1900 211 828 483 35.18 0.2046 0.8912 3322 4373
2100 211 749 484 35.60 0.2023 0.8467 2743 3850
2300 210 650 486 36.00 0.2000 0.7840 1950 3099

50% Load (Medium Equivalence Ratio)
700 75 763 467 31.39 0.2293 0.6507 883 3260
900 105 831 504 34.33 0.2097 0.6506 887 3263
1100 133 861 502 35.60 0.2022 0.6507 843 3485
1300 160 877 502 36.17 0.1990 0.6508 788 3853
1500 185 878 504 37.01 0.1945 0.6508 759 3706
1700 205 859 505 37.64 0.1912 0.6508 703 3488
1900 211 828 507 38.11 0.1890 0.6510 678 3055
2100 211 749 503 38.11 0.1889 0.6512 585 2752
2300 210 650 499 37.59 0.1917 0.6512 585 2341

5•0% Load (Low Equivalence Ratio)
700 75 763 540 34.22 0.2104 0.4999 93 2516
900 105 831 556 36.11 0.1993 0.5200 130 2761
1100 133 861 556 37.38 0.1926 0.5000 88 2958
1300 .160 877 544 38.25 0.1881 0.5001 85 3021
1500 185 878 540 39.14 0.1839 0.5001 82 2791
1700 205 859 539 39.84 0.1807 0.5002 78 2381
1900 211 828 537 40.22 0.1790 0.5003 74 2000
2100 211 749 532 40.25 0.1789 0.5048 66 1617
2300 210 650 524 39.68 0.1814 0.5008 60 1411

The results shown in Table 3.8 show that the EOCV apparatus can have a large effect 

on overall engine efficiency. When a lower equivalence ratio is used in conjunction 

with a later EOCV closure time, the brake efficiency o f the engine can increase by up to
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It can also be seen from Table 3.8 that the use o f a later EOCV closure time with a 

lower equivalence ratio has a large effect on the reduction in the emissions o f unbumed 

hydrocarbons. This is possibly because the use o f  a lower equivalence ratio reduces the 

mass o f fuel contained in each charge, reducing the amount o f fuel that can potentially 

remained unbumed due to incomplete combustion.

The total emissions o f NOx are substantially reduced when the late EOCV closure, low 

equivalence ratio are used. I f  the NOx emissions in Table 3.8 are compared to that o f 

the Deutz 1015 engine shown in Table 3.3, it can be seen that the late EOCV closure, 

low equivalence ratio emissions o f NOx are substantially lower than that predicted for 

the diesel engine.

From the results shown in Table 3.8 it can be seen that a combination o f varying the 

EOCV timing and equivalence ratio must be used to obtain the high efficiencies and 

low emissions that are desired throughout the speed and power range o f the engine. 

Using this philosophy a potential predicted power distribution for the EOCV equipped 

engine (with the final design inlet geometry) is shown in Figure 3.27, additional results 

are shown in Appendix E.
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Figure 3.27 -  Predicted power output for NoNOx engine.
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3.5 EOCV Engine Model Validation

In order to evaluate the computer engine models performance, a series of validation 

cases were established. Details of the validation cases are shown in the following table.

Table 3.9 -  Expanded validation case details

CASE

NO

NONOX

REF

ENGINE 

SPEED (RPM)
LAMBDA

EOCV

SETTING1

VGT

POSITION2

BMEP

(BAR)

EFFICIENCY

%

TURBINE 

SPEED (RPM)

1 12901 1800 1.85 200/580 285 14.6 141000
2 13506 1800 1.80 200/560 220 12.7
3 12407 1800 1.72 200/560 50 10.4 120000
4 17601 1800 1.65 220/504 100 9.54 104000
5 14710 1800 1.59 200/489 0 6.38 78000
6 14701 1800 1.53 200/458 0 3.76 56000
7 12516 1200 1.59 200/580 635 16.0 135500
8 12001 1200 1.66 200/540 590 12.0 113000
9 12701 1200 1.59 200/481 0 6.0 57000
10 12402 1300 1.69 200/540 610 162 140000
11 12807 1500 1.74 200/580 590 16.3 152000
12 125 01 801 1.64 200/580 1000 10.53 0.390 92370
13 125_02 1004 1.61 200/580 875 14.00 0.389 120159
14 130_01 1605 1.44 200/4% 350 10.13 0.390 99106
15 130 02 1605 1.55 200/503 350 9.97 0.390 100141
16 140 01 900 1.60 200/473 350 6.58 0.386 38631
17 152 799 1.545 200/458 0 4.79 0.360 27884
18 153 902 1.424 200/462 0 5.62 0.378 31720
19 154 1003 1.521 200/462 0 5.05 0.369 34443
20 155 1113 1.439 200/462 0 5.00 0.370 36626
21 156 11% 1.485 200/462 0 4.74 0.360 40543
22 157 1301 1.431 200/462 0 5.02 0.366 46247
23 158 808 1.531 200/475 0 5.% 0.380 33082
24 159 898 1.501 200/475 0 6.03 0.381 36043
25 160 1001 1.512 200/480 0 6.18 0.380 41202

1 EOCV setting CA after TDC Open/Close 2 Estimated VGT actuator position (mV readout)

Figures 3.28 and 3.29 compare the actual pressures measured at locations in the inlet 

and exhaust system of the test engine with the predicted pressures of the Wave engine 

model for two o f the test cases. There is good agreement between the simulated and 

measured pressures within the inlet system, with the simulated results being in phase 

with the measured values and having similar amplitudes. It can also be seen that the 

simulated and measured exhaust pressures display a very good agreement.
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Figure 3.28 -  Inlet system pressure comparison

Sample Pressure Comparison

35

2.5

05

300 450 540 630 7200 90 180 270
Crank Angle (Deg]

Figure 3.29 -  Exhaust pressure comparisons

The results o f the validation case simulations are shown in the following series o f 

graphs; where the computer predictions are compared (where available) to empirical 

data obtained from the testing o f the actual engine at the NoNOx facility.
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Figure 3.32 -  Fuelling results comparison
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It can be seen from the results shown in Figures 3.30 -  3.34 that the engine model 

simulates the behaviour o f the NoNOx test engine throughout a range of engine speeds 

and loads. There are slight variations present between the engine model predictions and 

the test engine data; which can be attributed to problems with both the turbine and 

compressor maps used by the model. The improvement o f these maps is an ongoing 

process, which will further improve the accuracy o f  the engine model. Even with this 

inaccuracy, the engine model in its present form can be used to test changes in order to 

optimise the engine geometry.
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3.5 Summary

As part o f an EU funded project entitled “Magnetic Movement Valve for Miller Cycle 

operation o f engines”, the application o f  a novel secondary valve apparatus to an 

internal combustion engine was investigated. The secondary valve apparatus utilises 

electromagnetically operated actuators to control the air/fuel mixture that enters an 

engine, allowing Miller cycle operation and throttle free load control.

The software package Ricardo Wave was used to construct computer models o f a 

marine diesel engine both before, and after, modifications were made to allow the use o f 

gaseous fuels and to incorporate the secondary valve apparatus. It was shown that the 

secondary valve concept is capable o f controlling the output o f  an internal combustion 

engine, and is capable o f increasing the operating efficiency o f an engine while 

reducing the emission o f NOx.

The capability o f the computer engine model was tested by comparing its predictions to 

measured values obtained from an actual test engine incorporating the secondary valves. 

It was shown that the computer model closely simulated the behaviour o f the physical 

test engine, and that the computer model was suitable for use in the further development 

o f the secondary valve apparatus.
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4 EOCV Simulation

In Chapter 2 o f this report an investigation into the economic factors, the developments 

in engine technology and research into alternative fuels is described. This investigation 

reveals that there is considerable potential for the utilisation o f  natural gas derived fuels 

in conjunction with advanced engine cycles. An initial exploration o f this potential, 

through an EU funded project under the entitled “Magnetic Movement Valve for Miller 

Cycle operation o f  engines -  reducing NOx, C 0 2  and particulate emission”, is 

described in Chapter 3. The results o f computer engine modelling described in Chapter 

3 show that the Mag-Move secondary valve concept is capable o f controlling the output 

o f  an internal combustion engine, while increasing the operating efficiency and 

reducing the emission o f NOx-

The work described in this section involves the construction o f  a Computational Fluid 

Dynamics (CFD) simulation o f the Electromagnetically Operated-load Control Valve 

(EOCV) apparatus. Allowing the flow through the valve to be visualized for both 

steady-state conditions (flow through the valve at set opening positions) and for 

simulations o f an actual opening event o f  the valve. The results for the Mark 3 EOCV 

simulation are compared to that o f preliminary designs for the Mark 4 EOCV design.

4.1 Computational Fluid Dynamics

In recent years the widespread availability o f  sufficient computational power, together 

with the continuing development o f the software codes has meant that CFD has become 

a cost effective alternative to practical testing.

Ricardo Vectis is a commercial three-dimensional CFD software package developed by 

Ricardo Software. The Vectis program solves the main flow equations (conservation o f 

mass, momentum and energy) and is capable o f  solving problems involving 

incompressible and compressible flows using a laminar or turbulent modelling 

approach.

4-1



EOCV Simulation

4.1.1 Ricardo Vectis

This section outlines the basic principles and equations used by the CFD software

Manual available from Ricardo (2004).

In the following subsections the governing equations used by the Vectis software 

package are described, and the background theory behind the turbulence modelling is 

explained.

Conservation Equations

This section presents the basic conservation equations used by the Vectis software, 

governing turbulent flow, motion, energy and mass transfer. The standard field 

variables are replaced by the sum o f mass mean values and a small fluctuation; the 

resulting equations are averaged:

package Vectis; a more detailed analysis o f  the theory is explained in the Vectis Theory

(4-1)

The averaged equations for any general scalar variable O  can be expressed as:

(4-2)

where: p is the local density

U , is the local mass-averaged velocity;

S j  is the source term,

and = T^_L Vd> where V^_L is the molecular diffusivity.
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During the averaging process, extra unknown terms appear in the equations,

specifically -  p u $ . Eddy viscosity turbulence models are used by Vectis to determine

the variation o f these terms (see later section on Turbulence Modelling). The use o f 

these models allows equation 4-2 to be written as:

d t  d x , d x , (4_3j

where r,_, represents the effective diffusivity (including molecular and turbulence 

contributions). The individual conservation equations solved in Vectis are as follows:

Continuity Equation

^ - + 4 r ( f }U> s "
S t  d x , (4-4)

where S ” represents the mass contribution due to evaporation from any liquid phase 

(not utilized in this programme o f work (=0)).

Momentum Equation

)=±
d t  d x ,  d x ,

,  I d U , d U j  2  d U t  ,  
I dX j o x t 3 o x k

\

y
J

S ( p ± J * )  +  f i + s u
l a

o x i

(4-5)

where f i L and //, are the molecular dynamic viscosity and turbulent viscosity 

respectively. F t is the body force, such as buoyancy, giving F t = ~ p g , . k  is the 

turbulence kinetic energy; S%  is the momentum contribution from the liquid phase.
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Energy Equation

+  ~ ^ 7  +  S d  +  4 V  + 0 ) e x tH ext + < lr a d
d x t ^ Pr a H J  d x i d t

(4-6)

where H  is the absolute enthalpy (including thermal enthalpy, kinetic energy and heat

o f formation), q w and are the heat flux through the wall and energy contribution 

from radiation, Pr and crH are the Prandtl and turbulent Schmidt numbers, coext is the

contribution from the liquid phase.

Species Transport

Transport equations are solved for the different chemical species that make up the 

working fluid:

where Y  is the mass fraction o f a given species, and co is the rate o f production o f that 

species due to chemical reaction (and for the fuel mass fraction, also due to evaporation 

from the liquid phase).

Passive Scalar Transport

A transport equation can be solved for a passive scalar concentration (which effectively 

acts as a marker or “dye” in the flow):

Nspecies mass rate added from outside o f  the CFD domain and S d is the energy

(4-7)
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The transport equations contain unknown Reynolds stresses -  p u tUj and turbulent

scalar fluxes -  p u $  after averaging. This necessitates the use o f a turbulence model to

provide a set o f approximate equations that govern the distribution o f the second order 

fluctuation within the flow.

Turbulence Modelling

The turbulent stresses and turbulent scalar fluxes physically represent the diffusive 

transport o f momentum and scalar properties due to turbulence. Turbulent viscosity 

models are based on Boussinesq’s assumption, which assumes that turbulent stresses are 

linearly related to the rate o f mean flow strain, with a proportionality factor - the 

turbulent viscosity. This is the same stress-strain relation as a Newtonian fluid in 

laminar flow:

-  p u tu  = p t
3 U ,  d U j

- +  J
d x j  d x ,

- d , j k
3 '

(4-9)

Similarly, the turbulent scalar fluxes are given through

-  pu,<S> P t  dfr
d x , (4-10)

Thus, the turbulent viscosity p t is taken as an isotropic property o f the flow, which

changes with time and position. Different models provide different formulae for p t .

Vectis uses the standard k - e  turbulence model and the RNG (Renormalization Group) 

k - e  turbulence model.

The turbulent viscosity is obtained from the velocity scale u ' and a length scale / that is 

characteristic o f the turbulent fluctuations.
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In the k - e  model, the length scale is defined by

/  =

3

k 1

(4-12)

w,m d u  d u
where: k  = — -  and e  = v— ---- -  represent the turbulent kinetic energy and its

2 dX j d x t

dissipation rate.

The characteristic velocity u ' is given by u ' = k l / 2 . Thus the turbulent viscosity is 

obtained from

M i  = P v t = c u P
(4-13)

where c  is nearly constant for high Reynolds number flows.

The transport equations for k  and s  are as follows:

d t  d x , d x ,
M l  +

M, d k

j d x ,
+  G -  p e

(4-14)

+  =
d t  d x , ' } d x .

M l  +
P t d e

\  e-t / d x .

e  
+  —  

k

, d u ,c xG  -  c 2p e  + c z p k -----
d x , j

(4-15)

d U
where G  = - p u iu . — L, the generation rate o f turbulence energy. The coefficients

d x .

appearing in the turbulence modelling equations take the standard values:
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Table 4.1 -  Vectis turbulence modelling coefficients (Vectis Theory Manual)

<7* °V- 1 C M c 2 C 3

Standard 1.0 1.22 0.9 0.9 0.09 1.44 1.92 0.373

RNG 0.719 0.719 0.9 0.9 0.0845 1.42 * * 0.373

In the RNG model (Renormalization Group) the coefficient-of-dissipation term in the s  

equation is not a constant as in the standard model. It is the sum o f a constant and a term 

modified by the ratio o f the turbulence time scale and the mean flow time scale:

cun
c \  =1.68 +

1 - i
%̂  (4' 16) 

1 + / V

where % - 4 J 8 ,  £  = 0.012, 7 = i s ^ - ,  = ( 2 and
mean- flow ^

o d U t d U j

•  d x  J

The overall performance of the two k - e  variants is quite similar. However, for flows 

with high strain rates, the RNG model tends to reduce the turbulence through increased 

dissipation.
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4.1.2 A Vectis Simulation

A Vectis simulation is split up into stages (or Phases), each o f which will now be 

explained (more detailed information is in the Vectis Users Manual).

Phase 1 -  Geometry Input and Preparation

Phase 1 is the pre-processing stage o f a Vectis simulation in which the geometry / 

boundaries are defined. The geometry is imported into the Phase 1 Graphical User 

Interface (GUI) using the Stereolithography (.STL) file format; this is a 3D file format 

that is compatible with die majority o f engineering CAD systems.

The integrity o f the geometry file must be checked and any ‘holes’ that may be present 

stitched. Boundaries can then be assigned to the geometry, whereby boundary numbers 

are created for each separate model surface which can be later defined as either a ‘Wall’ 

or an ‘Inlet/Outlet’.

The global mesh parameters are specified for the entire geometry; areas o f the geometry 

where a more detailed analysis is desired can be refined using ‘IJK’ blocks, whereby the 

mesh resolution is increased within the specified local volume.

Phase 2 -  Mesh Generation

This stage is an automatic process that produces a locally refined Cartesian mesh 

suitable for a fluid flow analysis; the meshing process is non-interactive and is 

controlled by the mesh input file generated during Phase 1.

The mesh generation process automatically refines the mesh near the geometry 

boundaries; the refined cells are then truncated to conform to the geometry. The degree 

to which the mesh is refined close to the boundaries is specified during the mesh set-up 

procedure in Phase 1.
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Phase 4 -  Cell Connectivity

This process also occurs automatically, and forms the last stage o f  the geometry pre

processing. The cell data generated by the Phase 2 meshing process is examined, the 

connectivity information between adjacent cells is established and a geometry data file 

suitable for the solving stage is created.

Phase 5 -  VECTIS Solver

Phase 5 is the solution stage o f  a Vectis simulation. The geometric and connectivity data 

contained in the Phase 4 output files is used together with a controlling input file (see 

Appendix F for sample Vectis input file) to carry out the fluid dynamics calculations.

The controlling input file is created using the Phase 5 GUI. Simulation parameters 

specified in this file include: the equations to be solved; numerical schemes to be used 

in solution; time step and global convergence criteria; mesh and boundary motion 

specifications; boundary conditions; initial conditions; fluid property data as well as 

data on combustion or spray simulations.

Phase 6 -  Post-processing

The results produced by Phase 5, the main CFD solver, are displayed in the Phase 6 

GUI. Output plots can be created from the results or flow data exported.
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4.2 Model Building

This section describes the model building process used to construct the simulation o f  the 

EOCV technology. In order to construct a computer simulation o f  the EOCV apparatus, 

detailed geometrical and operational data is required.

4.2.1 EOCV Geometry

A 3D model o f  the EOCV apparatus fitted to the test-engine is shown below in Figure 

4.1. This geometry was created using the Unigraphics solid modelling CAD package. 

This solid model o f  the EOCV apparatus is not suitable for direct importation into the 

Vectis pre-processor, as only the geometry o f  the surfaces to which the fluid flow is 

exposed is required.

EO CV ’s

Cylinder Heads

Intake

Figure 4.1 -  EOCV CAD model.

A ‘negative print’ o f  the valve model must be created; this can then be exported to 

Vectis using the Stereolithography file format.
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4.2.2 Geometry Creation

Using the CAD model o f  the EOCV apparatus, a solid model that represents the flow 

volume can be created. It is necessary to create a model o f  the flow volume for every 

valve lift that is to be simulated by Vectis; this can be done by creating a solid model 

representing the enclosed volume within the valve body, and then subtracting the 

volume representing the valve head for each valve lift position. Figure 4.2 shows an 

example o f  a solid model representing the flow boundaries created for the Mark 3 

EOCV simulation. The air flows into the model through the inlet surface (left surface in 

Figure 4.2), through the three separate inlet paths into the main section o f the valve 

where the ‘valve spindle* is situated (with a valve lift o f  6mm in this case), the air flows 

around the spindle though the two exits paths and into a volume representing the inlet 

port o f  the engine.

The computer model o f  the Mark 3 EOCV design will be used to simulate and visualize 

the flow through the valve at steady-state conditions (flow through the valve at set valve 

lift positions) and for a simulation o f  an actual opening event o f  the valve. The results 

for the Mark 3 EOCV simulation will be compared to that o f  preliminary designs for the 

Mark 4 EOCV design.

Figure 4.2 -  Example flow volume geometry.
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4.2.3 Vectis Phase 1

The Vectis Phase 1 GUI with the imported geometry o f the EOCV apparatus for the 

6mm lift case is shown in Figure 4.3. The main viewing window displays the geometry 

which can be modified using the various ‘stitching’, ‘slicing’ and ‘marking’ options, the 

valve spindle can also clearly be seen positioned within the main body o f the valve.

I V D B B B I I D Q E D H H iH H

^IISS «£l£Al J ^ J Bj 
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-£+i +i.Ai 
i y _ J o J - U

UUfel_J
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M  t l  -  U i l  < u  ■bib • • HNN 

rmxm •  •  1M M 1 mi • • mtM
•  0 U 4 « M  - • IIIIM
• •  M itM

Figure 4.3 - Vectis Phase 1 GUI

-ioiwi

The geometry o f  the valve-body and valve-head arrangement is quite complicated, and 

therefore a great deal o f  time must be spent carrying out the required ‘stitching’ 

operation. Also, due to the complexity o f  the geometry it is commonplace for a number 

o f mistakes to occur when the geometry is imported. Hence, every surface that was 

created must be closely examined to ensure the boundaries used in the CFD simulation 

accurately reflect that o f  the actual components.

Once the geometry has been carefully checked, the boundaries can then be established 

and the global mesh constructed.
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4.2.4 Boundary / Mesh Specification

The specification o f the different boundaries for these simplified simulations is 

straightforward. The triangles that define the geometry must be grouped together, i.e. 

the triangles that represent the wall must be in one group, and the inlet and outlet 

triangles in additional separate groups. The boundary IDs assigned to these groups are 

then referred to in the main input file, where the surface conditions o f  the wall are 

defined as well as the conditions for the inlet and outlet flow / pressures.

The setup o f  the global mesh is also straightforward; the number o f  sub-divisions is 

specified for each o f the Cartesian planes. Where necessary, IJK local refinement blocks 

can be used to increase the resolution o f the mesh in areas o f  importance; in the case o f  

the EOCV models the mesh should be more detailed in the area surrounding the valve- 

head. Figure 4.4 shows the 3-dimensional mesh spacing used for the 6mm lift valve 

model.

Figure 4.4 -  Mesh set-up
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4.2.5 EOCV Lift Parameters

Actual flow measurements for the EOCV apparatus have been obtained using a flow- 

bench - see Table 4.2. However, these values were obtained when the EOCV apparatus 

was attached to an engine cylinder head. In order for the results o f the EOCV 

simulations to be compared with that o f past and future flow-bench measurements, the 

actual pressure differential that is applied across the valve-head must be estimated.

Table 4.2 -  Flow-bench data

MEASURED 
STROKE (mm)

ACTUAL 
STROKE (mm)

FLOW
(L/s)

Cd STROKE / 
DIAMETER

- 0.0000 0.00 0.0000 0.0000

0.00 0.7653 0.40 0.0014 0.0324

0.25 1.0153 4.70 0.0170 0.0430

0.50 1.2653 15.60 0.0564 0.0536

0.75 1.5153 26.10 0.0944 0.0642

1.00 1.7653 34.00 0.1230 0.0748

1.25 2.0153 42.50 0.1537 0.0854

1.50 2.2653 49.10 0.1776 0.0960

2.00 2.7653 58.70 0.2123 0.1172

2.50 3.2653 65.10 0.2354 0.1384

3.00 3.7653 70.90 0.2564 0.1595

3.50 4.2653 75.00 0.2712 0.1807

4.00 4.7653 77.40 0.2799 0.2019

4.50 5.2653 79.00 0.2857 0.2231

5.00 5.7653 80.10 0.2897 0.2443

5.50 6.2653 80.70 0.2919 0.2655

6.00 6.7653 81.20 0.2937 0.2867

6.50 7.2653 81.30 0.2940 0.3079

7.00 7.7653 81.30 0.2940 0.3290
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4.2.6 Flow Bench Measurement Conditions

The flow bench apparatus, with the EOCV installed on the cylinder head, is shown in 

Figure 4.5. The flow data that was obtained for this setup (Table 4.2) together with the 

calculated discharge coefficients are actually measurements o f  the inlet flow into an 

engine cylinder. These measurements are the total flow through the two EOCV 

openings, the cylinder inlet ports and the two standard valves.

Figure 4.5 -  Flow-bench set-up

A series o f  simulations were carried out to estimate the required pressure differential to 

be applied across the EOCV model, this value can then be used in the CFD simulations 

o f the Mark 3 and subsequent EOCV designs. Figure 4.6 displays the flow convergence 

for a selection o f  pressure differentials that are applied across the 6mm open valve.

From the results displayed in Figure 4.6 it can be seen that for the 6mm open EOCV 

apparatus, the simulated flow through the valve matches the flow recorded using the 

flow bench when a pressure difference o f  approximately 18 mbar is applied. The 

pressure difference that was applied during the flow bench testing o f the EOCV was 

37.32 mbar.
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Figure 4.6 - Pressure differential results

During the flow bench testing, the pressure was applied across the EOCV apparatus 

while it was attached to the inlet side o f  a cylinder head from the NoNOx V6 engine. It 

can therefore be concluded that the applied pressure used in the CFD simulations must 

be less than that applied during the flow bench testing, as the inlet ports and valves o f 

the engine (which are not modelled in this section) cause additional pressure losses 

which affect the flow.

For the simulation o f  the Mark 3 EOCV design the total pressure difference between the 

inlet and outlet boundaries is to be set to 18 mbar, which will allow a direct comparison 

to be made between the model predictions and the flow-bench results. The same 

pressure differential will be applied to the simulations o f the proposed Mark 4 EOCV 

design and any further proposed designs. Once a final design for the Mark 4 EOCV has 

been decided upon, the results o f the CFD simulations can then be validated by the 

flow-bench testing o f  a physical prototype.
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4.2.7 CFD Simulation Conditions

Steady-state models o f  the Mark 3 and proposed Marie 4 EOCV design for sample valve 

lifts o f  2mm, 4mm and 6mm are to be compared. Details o f  the setup o f  the EOCV CFD 

models are as follows:

Iteration Properties

The models will be run using the Pressure Correction Solver equation scheme with the 

PISO solution algorithm. The coefficients o f  the pressure-velocity equations are set to 

be updated after each o f  the iterations; this is to speed up convergence.

Global convergence criterion : le-008

Model start time: 0.0000s

Model end time: 0.0075s

Time step length: 5e-005s

Post-pro. Spacing: 0.0005s

Models

Only the species data and physical parameter models are needed, as the simulation does 

not require the complex modelling schemes for combustion, sprays etc. These initial

EOCV models do not require any boundary, line or patch motion, as the valve head is

stationary throughout each simulation.

Solving

All the momentum equations as well as pressure, turbulence and the passive scalar 

equations are to be solved in the EOCV simulations.
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Boundary Conditions

The inlet boundary specification is to be set to ‘Default Norm al’, and the inlet boundary 

conditions are to be as follows:

Pressure: 102237 Pa

Temperature: 293.5 K

The outlet boundary specification is to be set to ‘Uniform ’, and the outlet boundary 

conditions are to be as follows:

Pressure: 100413 Pa

Temperature: 293.5 K

The wall roughness setting is: 0.00005 m.

Initial Conditions

The initial conditions o f  the EOCV model are specified as follows:

Pressure: 100415 Pa

Temperature: 293.5 K

Turbulence length scale: 0.0005m (Default setting)

Turbulence u ’: 0.1 m/s (Default setting)

Turbulence Modelling

Simulations were run to investigate the suitability o f  the two turbulence models used in 

the Vectis software (the standard k - e  model and the RNG model); it was decided that 

as the numerical results from both models were nearly identical that the standard k - e  

model should be used for all subsequent simulations.
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4.3 Steady-state EOCV Simulations

The results o f  a comparison between the flow-rates predicted by the CFD software and 

that measured using the flow bench for the Mark 3 EOCV design are shown in Figure 

4.7. It can be seen that the two curves are very similar throughout the stroke o f the 

valve.
TatrfFtow

4SM

----- 1----

Figure 4.7 -  Flow rate comparison

These results can be used to calculate the discharge coefficient ( C D) predicted by the 

CFD model. The equation relating the flow rate Q  to the C D value is as follows:

Q  =  c d a
[ 2 A P

\ (4-17)

where A  is the cross sectional area (0.00177 m2 for a single EOCV valve). 

AP  is the applied pressure difference (18 mbar, see Section 2.2.1) 

p  is the density o f  the fluid used.

A comparison can be made between the discharge-coefficient calculated using the flow 

bench results and that obtained from the CFD predictions; this is shown in Figure 4.8.
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Figure 4.8 -  Discharge coefficient comparison

It is clear from Figure 4.8 that the discharge coefficient calculated from the flow bench 

data is significantly lower than that calculated using the CFD predictions. This is as 

expected when it is considered that the flow bench data is an evaluation o f the flow not 

only through the ECOV apparatus, but also through the inlet ports o f the engine’s 

cylinder head.

The values obtained for the discharge coefficient vary depending upon the stroke o f the 

valve-head. From an examination o f the graph it can be seen that when the EOCV is 

fully open (valve-head stroke »  7.0mm) the discharge coefficient reaches its maximum 

value o f  approximately 0.45. The values for the discharge coefficient calculated from 

the CFD model reflect the degree o f turbulence that is present within the flow through 

the valve.. During the evaluation / design o f  subsequent EOCV apparatus, a reduction in 

these losses should be sought in order to improve the overall valve performance.

The values o f the discharge coefficients that are obtained from the CFD analysis o f  the 

Mark 3 and subsequent valve designs will be used for the modelling o f the EOCV 

apparatus within a general engine model. This will allow any improvements in the 

EOCV technology to be instantly evaluated and any increase in engine efficiency 

predicted. Care must be taken when interpreting the discharge coefficient value, as the

>— o ——c^—o — ©

/ /
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calculated value depends on the characteristic diameter used; the values shown in Table 

4.2 are with respect to the inlet port average diameter and not the valve orifice diameter.

Figure 4.9 shows for each o f the valve lifts, the percentage o f flow that passes through 

the separate inlet orifices within the valve body. Figure 4.10 represents the flow through 

the exit orifices in the same manner.
RoaHmtu
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Figure 4.9 -  Inlet flow behaviour.
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Figure 4.10 -  Outlet flow behaviour.

It can be seen from Figure 4.10 that similar volumes o f  air flow through each valve exit 

orifice for all opening positions - the maximum flow difference between the two orifices 

is o f  the order o f 8% o f  the total flow when the valve is wide open.

From Figure 4.9 it can be seen that the flow through the middle inlet orifice is 

approximately the sum o f the flow through the other two inlet orifices. This is as
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expected as the middle orifice is not only larger in size, but is located such that its flow 

can be shared between both exit orifices. The top inlet orifice has the lowest flow rate o f  

the three inlet orifices, due to the fact that it is the smallest o f  the three. Subsequent 

valve designs with top and bottom orifices o f  equal size may result in an increase in the 

overall valve performance, as the flow into the valve and the pressures within the valve 

would be more evenly distributed.

One design modification that could potentially result in an increase in valve 

performance is the reshaping o f the passageway where the flow from the two exit 

orifices recombines. After the valve there is evidence o f  the main flow separating from 

the wall o f  the port and the formation o f  vortices. Figure 4.11 shows one possible design 

that may improve the flow in this area. However because o f  the close proximity o f the 

EOCV outlet to the inlet valves o f  the engine and the complex geometry o f the inlet 

port, physical flow-bench testing o f several outlet configurations would be simpler than 

CFD modelling.

Current Design Possible Design

Figure 4.11 -  Possible design improvement
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4.3.1 Mark 3 EOCV Simulation Results

An example o f  a Mark 3 EOCV mesh constructed is shown in Figure 4.12 below. The 

local refinement in the area o f the main valve body and spindle can be seen as well as 

the separate inlet boundary.

Figure 4.12 -  Mark 3 CFD mesh.

Figures 4 .1 3 -4 .1 5  show the pressure, turbulence intensity and velocity vectors for the 

Mark 3 EOCV apparatus with a 2mm valve lift. Examining the figures for the 2mm 

valve lift position, it can be seen that there is a relatively large difference in pressure 

between the inlet and outlet sides o f the valve spindle. However, the levels o f  

turbulence intensity appear to be localised within the main valve body and the valve 

outlets. The velocity vector plot shown in Figure 4.15 also indicates that for the 2mm 

valve lift position the highest velocities occur in the area directly surrounding the valve 

spindle.

Figures 4 .1 6 -4 .1 8  show the pressure, turbulence intensity and velocity vectors for the 

Mark 3 EOCV apparatus with a 4mm valve lift. Comparing the results for the 4mm and 

the 2mm valve lifts it can be seen that the pressure difference across the valve spindle is 

smaller for the 4mm valve lift. With the 4mm lift there is also a much larger area with 

high levels o f turbulence intensity within the outlets o f  the EOCV. It is also noticeable 

that the velocity vectors are distributed more evenly throughout the valve body than was 

seen with a 2mm lift.
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Figure 4.13 -  Mark 3 Design, 2mm lift Pressure Field Results (T=0.006s)
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Figure 4.14 -  Mark 3 Design, 2mm lift Turbulence Field Results (T=0.006s)

-----------

Figure 4.15 -  Mark 3 Design, 2mm lift Velocity vector Results (T=0.006s)

Figures 4 .1 9 -4 .2 1  show the pressure, turbulence intensity and velocity vectors for the 

Mark 3 EOCV apparatus with a 6mm valve lift. Comparing the results for the 6mm 

valve lift to that for the 4mm and the 2mm valve lifts it can be seen that the pressure 

difference across the valve spindle with a 6mm valve lift is more evenly distributed.
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Figure 4.16 -  Mark 3 Design, 4mm lift Pressure Field Results (T=0.006s)
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Figure 4.17 -  Mark 3 Design, 4mm lift Turbulence Field Results (T=0.006s)

Figure 4.18 -  Mark 3 Design, 4mm lift Velocity vector Results (T=0.006s)
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Examining Figures 4.20 and 4.21, it can be seen that the areas o f  high turbulence 

intensity have spread from the valve body outlets into the engine inlet ports. The 

velocity vectors also indicate definite areas o f  recirculation within the valve and outlets.

98500 PLANE AfrwM » prvssura PM 1 02SE-005

Figure 4.19 -  Mark 3 Design, 6mm lift Pressure Field Results (T=0.006s)

•  PLANE K |m2*2) 50

Figure 4.20 -  Mark 3 Design, 6mm lift Turbulence Field Results (T=0.006s)

 —

Figure 4.21 -  Mark 3 Design, 6mm lift Velocity vector Results (T=0.006s)
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4.3.2 Mark 4 EOCV Simulation Results

A CFD simulation o f an initial design o f the Mark 4 EOCV apparatus was constructed 

following the same procedure and boundary conditions as that used for the Mark 3 

simulations described previously. An example o f  a Mark 4 EOCV mesh is shown in 

Figure 4.22 below.

Figure 4.22 -  Mark 4 CFD mesh.

Comparing the geometry o f  the proposed Mark 4 EOCV geometry shown in Figure 4.22 

to that o f  the Mark 3 design seen in Figure 4.12, it can be seen that to accommodate the 

larger diameter valve spindle the inlet to the EOCV valve has been offset to one side. 

This offset it required for the application o f  EOCV apparatus to the V6 NoNOx engine, 

but may not be required if  the EOCV technology is applied to a different engine while 

retaining the same actuator and control components.

Figures 4.23 -  4.31 show the pressure, turbulence intensity and velocity vectors for the 

Mark 4 EOCV apparatus at the 2mm, 4mm and 6mm valve lift positions. Comparing 

the results for the Mark 4 EOCV apparatus to that o f  the Mark 3 design shown in 

Figures 4 .1 3 -4 .2 1  it can be seen that the two designs exhibit similar behaviour. As the 

valve lift increases the pressure difference across the valve spindle decreases. The 

turbulence intensity and the recirculation zones shown by the velocity vectors within the 

valve outlets increase as the valve lift increases.
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Figure 4.23 -  Mark 4 Design, 2mm lift Pressure Field Results (T=0.006s)
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Figure 4.24 -  Mark 4 Design, 2mm lift Turbulence Field Results (T=0.006s)
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Figure 4.25 -  Mark 4 Design, 2mm lift Velocity vector Results (T=0.006s)
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Figure 4.26 -  Mark 4 Design, 4mm lift Pressure Field Results (T=0.006s)
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Figure 4.27 -  Mark 4 Design, 4mm lift Turbulence Field Results (T=0.006s)

Figure 4.28 -  Mark 4 Design, 4mm lift Velocity vector Results (T=0.006s)

______________________
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Figure 4.29 -  Mark 4 Design, 6mm lift Pressure Field Results (T=0.006s)
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Figure 4.30 -  Mark 4 Design, 6mm lift Turbulence Field Results (T=0.006s)

Figure 4.31 -  Mark 4 Design, 6mm lift Velocity vector Results (T-0.006s)
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4.3.3 Steady-State Results Discussion
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Figure 4.32 -  Mark 3 EOCV flow proportion
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Figure 4.32 shows the distribution o f the flow within the Mark 3 valve at 6mm lift. It 

can clearly be seen that the flow is evenly distributed between the two valve exit 

orifices. However, the majority o f the flow that enters the valve does so through the 

middle entrance orifice.
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Figure 4.33 -  Mark 4 EOCV flow proportion

4-31



EOCV Simulation

Figure 4.33 shows how the flow is distributed within the proposed Mark 4 valve design 

at 6mm lift. The flow is evenly distributed between both valve exits. As with the Mark 3 

valve the middle entrance orifice o f  the Mark 4 valve has a larger proportion of the flow 

than either o f  the other valve entrances. From a comparison o f the two flow 

distributions shown in Figure 4.32 and 4.33 it can be seen that the flow is more evenly 

distributed in the Mark 4 valve than the Mark 3 valve. An area that merits further 

investigation is the decrease in flow-rate after t=0.005s, which could be due to the 

increase in turbulence / recirculation within the valve outlet area.
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Figure 4.34 -  Mark 3 and Mark 4 discharge coefficient comparison

Figure 4.34 compares the discharge coefficients calculated from the Mark 3 and Mark 4 

valve simulations with that from the measured flow-bench data for the Mark 3 valve. It 

is clear that the discharge coefficient calculated from the flow bench data is 

significantly lower than that calculated using the CFD predictions. This is as expected 

when it is considered that the flow bench data is an evaluation o f the flow not only 

through the ECOV apparatus, but also through the inlet ports o f  the engine’s cylinder 

head. It can also be seen from Figure 4.34 that the simulations predict that the Mark 4 

valve has higher discharge coefficient values than the Mark 3 design at all valve lifts.
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Figure 4.35 -M ark 3 and Mark 4 volumetric flow comparison

Figure 4.35 shows the results o f  a comparison between the flow-rates predicted by the 

CFD software and that measured using the flow bench (flow rate results from the flow 

bench have been halved as the flow was measured through two EOCV ports). It can be 

seen that the predicted flow for the Mark 3 valve agrees with that measured by the flow- 

bench, it can also be seen that a higher flow is predicted at all lift positions for the Mark 

4 valve.

The results o f  the steady-state CFD simulations o f  the EOCV apparatus provides us 

with information similar to that which can be obtained by flow-bench testing, from 

these results the discharge coefficients for the EOCV designs at different valve lift 

positions can be determined. In reality however, the EOCV apparatus rapidly switches 

from a fully closed to a fully open position. This means that a transient simulation is 

required in order to obtain the actual discharge coefficients for the valve while opening, 

which are then to be included in the Wave engine simulation.
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4.4 Transient Valve Model

A time-based analysis o f  both the third and fourth generation EOCV designs will be 

created; allowing the flow development through the opening valves to be assessed. For 

these simulations a series o f  geometries for each o f  the two valve designs will be 

created.

4.4.1 Transient Simulation Conditions

The majority o f  the simulation conditions used for the transient analysis are the same as 

that in the steady-state simulations.

Iteration Properties

The increased complexity o f  a 

instability in the results.

Global convergence criterion:

Model start time:

Model end time:

Time step length:

Post-pro. Spacing:

Boundary Motion Properties

To simulate the opening o f  the EOCV apparatus, the surfaces that represent the valve 

head are defined as a separate ‘boundary’, this allows the valve-head to be moved (or 

distorted) such that it reflects the actual valve-heads motion when operating.

Figure 4.36 compares the measured valve-lift time profile with that used in the transient 

valve simulation. The valve lift data that is used for the CFD modelling is based upon 

the measured performance o f  the Mark 3 EOCV actuator.

transient analysis requires smaller time-steps to avoid

le-008

0.0000s

0.0120s

2.5e-005s

0.0002s
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Figure 4.36 -  Actual valve-Iift and model valve-lift comparison

In order to model the opening o f the EOCV apparatus, a series o f  different geometries 

must be created. At the beginning o f the simulation the initial mesh is loaded, this mesh 

is then distorted to model the movement o f  the valve. The extent to which the mesh can 

be distorted is limited, as each o f the individual cells must have dimensions o f similar 

magnitudes. Therefore, at preset points throughout the valve opening procedure the 

simulation switches to a new mesh. A ‘cross-linking’ procedure is carried out in which 

the initial variable values for the new mesh are determined from the final values o f the 

previous mesh based upon the Cartesian locations o f  the individual cells.

From the actuator timings o f  the Mark 3 EOCV apparatus shown in Figure 4.36 it can 

be seen that from the start o f  the simulation the EOCV reaches it’s fully open position 

after only 7ms. The full motion o f  the actuator actually takes around 10ms, but for the 

first 3ms the EOCV is still effectively closed, as the valve spindle is moving within the 

valve body.
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4.4.2 EOCV Mark 3 Transient Simulation Results

Sample results from the transient simulations o f  the EOCV designs are shown over the

each o f  the valve designs at t=0.004s, t=0.008s and t=0.012s. The actual results 

generated by Vectis are for time intervals o f  0.0002s (the Post-pro setting). The results 

shown here are intended to illustrate the differences between the flow formation in the 

Mark 3 and Mark 4 valves during and after the valve opening event, as such they are 

‘snapshots’ o f  the flow within each o f the valves at the specified times.

Figure 4.37 shows the location o f the side and top cross-sections through the Mark 3 

EOCV model. These are the sectional views that the following results depict.

Figures 4.38 -  4.43 show the side and top sectional views through the Mark 3 valve 

design for each o f the specified times, the turbulence intensity scalar k  is illustrated on 

these plots. From Figures 4.38 -  4.43 it can be seen that the areas o f  largest turbulence 

intensity are the two outlets from the EOCV apparatus. It can also be seen that the 

distribution o f  the turbulence intensity within the Mark 3 EOCV design is nearly 

symmetrical, both in the vertical and horizontal plain.

following pages. The results shown are the turbulence intensity and velocity profiles for

Figure 4.37 -  Mark 3 EOCV side and top section locations
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Figure 4.38 -  T=0.004s, Mark 3 design, turbulence intensity side view

Figure 4.39 -  T=0.008s, Mark 3 design, turbulence intensity side view

Figure 4.40 -  T=0.012s, Mark 3 design, turbulence intensity side view

0 PLANE K(m2/s2] SO
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Figure 4.41 -  T=0.004s, Mark 3 design, turbulence intensity top view

Figure 4.42 -  T=0.008s, Mark 3 design, turbulence intensity top view

Figure 4.43 -  T=0.012s, Mark 3 design, turbulence intensity top view

PLANE K(m2ft2) SO

Figures 4.44 -  4.49 show the side and top sectional views through the Mark 3 valve 

design for each o f the specified times, the velocity profiles are illustrated on these plots.

4-38



EOCV Simulation

- — - —  -----------------------------------------------------

Figure 4.44 -  T=0.004s, Mark 3 design, velocity profile side view

Figure 4.45 -  T=0.008s, Mark 3 design, velocity profile side view

Figure 4.46 -  T=0.012s, Mark 3 design, velocity profile side view

Velocity (m/s) 60

From Figures 4.44 -  4.49 it can be seen that the velocity distribution within the Mark 3 

EOCV design is nearly symmetrical, both in the vertical and horizontal plain. It can also
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be seen that there are well established areas o f recirculation within the main valve body 

as well as in the outlet from the valve.

n t n i r r i  u n i r a  vfrri

I t i i

Figure 4.47 -  T=0.004s, Mark 3 design, velocity profile top view

i  n ! • j i  * ■ ^

Figure 4.48 -  T=0.008s, Mark 3 design, velocity profile top view

Figure 4.49 -  T=0.012s, Mark 3 design, velocity profile top view

0 Velocity |m/s] 60
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4.4.3 Mark 4 EOCV Transient Simulation Results

Figure 4.50 shows the location o f the side and top cross-sections through the Mark 4 

EOCV model. These are the sectional views that the following results depict.

Figure 4.50 -  Mark 4 EOCV side and top section locations

Figures 4.51 -  4.56 show the side and top sectional views through the Mark 4 valve 

design for each o f the specified times, the turbulence intensity scalar k  is illustrated on 

these plots. From Figures 4.51 -  4.56 it can be seen that as with the Mark 3 design, the 

areas o f  largest turbulence intensity are the two outlets from the EOCV apparatus. It can 

also be seen that the distribution o f the turbulence intensity within the Mark 4 EOCV 

design is nearly symmetrical in the vertical plain, but in the horizontal plain there is a 

definite uneven distribution o f turbulence. The offset design o f the Mark 4 EOCV 

apparatus has caused one side o f  the outlet to be much more turbulent in nature than the 

other.

Figures 4.57 -  4.62 show the side and top sectional views through the Mark 4 valve 

design for each o f  the specified times, the velocity profiles are illustrated on these plots. 

Here it can be seen that the offset design o f  the Mark 4 EOCV apparatus has caused a 

large area o f  recirculation (in the horizontal plain) in the outlet port, this is in addition to 

the recirculation zones within the main valve body that were also seen with the Mark 3 

EOCV design.
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Figure 4.51 -  T=0.004s, Mark 4 design, turbulence intensity side view

I
< r

Figure 4.52 -  T=0.008s, Mark 4 design, turbulence intensity side view

Figure 4.53 -  T=0.012s, Mark 4 design, turbulence intensity side view

PLANE K(m2/32] 50
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Figure 4.54 -  T=0.004s, Mark 4 design, turbulence intensity top view

O
Figure 4.55 -  T=0.008s, Mark 4 design, turbulence intensity top view

O
Figure 4.56 -  T=0.012s, Mark 4 design, turbulence intensity top view
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Figure 4.57 -  T=0.004s, Mark 4 design, velocity profile side view

-------------------------------

Figure 4.58 -  T=0.008s, Mark 4 design, velocity profile side view

-----------
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Figure 4.59 -  T=0.012s, Mark 4 design, velocity profile side view
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Figure 4.60 -  T=0.004s, Mark 4 design, velocity profile top view

f e  ':  -

t r
\  % » • v  v  v  v v . v  ■- '  \ \ \ v ;  w...................  V » vv  „ » \ \ \ v .  . .  ■»

• '  • ................................................ v v  v S  V v v . .» '   ................* • - ; • - n V v - v ' . ^ . v . - j y
^ -------  , r ? *

Figure 4.61 -  T=0.008s, Mark 4 design, velocity profile top view
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Figure 4.62 -  T=0.012s, Mark 4 design, velocity profile top view
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4.4.4 Transient Results Comparison

Comparing the graphical results for the Mark 3 valve (Figures 4.38 to 4.49) to that for 

the Mark 4 valve (Figures 4.51 to 4.62), it can be seen that there is a higher degree o f 

turbulence in the port after the valve exit o f  the Mark 4 valve. The effect o f the 

turbulence growth that occurs in the Mark 4 valve can be seen in the mass flow against 

time plot shown in Figure 4.63.
Mass Flow-Tim *  04 — 63
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Figure 4.63 -  Mark 3 and Mark 4 mass flow comparison

The Mark 4 valve outperforms the Mark 3 during the valve-opening period, but once the 

valve is fully open its performance deteriorates, eventually reaching a steady-state mass 

flow value slightly higher than that o f  the Mark 3 valve. The reason for this decrease in 

performance can be seen by the examination o f  the turbulence scalar k  against time plot 

for the valve exit port shown in Figure 4.64. It can be seen from Figure 4.64 that once 

the Mark 4 valve has completed the valve opening movement, and the flow begins to 

stabilise, the turbulence intensity begins to grow at a rate significantly higher than is 

experienced by the Mark 3 valve design.
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Figure 4.64 -  Mark 3 and Mark 4 turbulence intensity comparison

Figure 4.65 shows a plot o f total mass flow against valve lift for the Mark 3 and Mark 4 

valve designs during the valve opening procedure. When a comparison is made between 

Figure 4.65 and Figure 4.35, it can be seen that the results from the transient simulation 

for the flow through the valve differs to that predicted from the steady-state simulations.
Masi Flow - Lift  G4  S3

00 1.0 20 10 40 5.0 60 70 80
Vitw* LMt (mm)

Figure 4.65 -  Mark 3 and Mark 4 mass flow vs. valve-1 ift
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4.5 Summary

CFD models o f  the Mark 3 Electromagnetic Operated-Load Control Valve (EOCV) and 

a proposed Mark 4 design were constructed using the CFD software package Ricardo 

Vectis. CFD simulations o f  the valve provide information on pressure, velocity and 

temperature fluctuations within the valve for several valve opening positions. Visual 

Images o f  the flow within the valve were produced as well as information such as flow 

rates and velocities at key locations within the valve. The results o f the Mark 3 valve 

simulation were compared with measurements from the testing o f an EOCV valve on a 

flow-bench in order to obtain accurate simulation conditions. This resulted in a close 

agreement (less than 5% difference throughout valve stroke) between the CFD results 

and the practical flow-bench tests. For all valve lifts the steady-state CFD simulations 

predicted that the M ark 4 EOCV design would outperform the Mark 3 design.

Transient CFD models were created based upon data provided for the EOCV valve lift 

timings; the CFD simulations provide an insight into the flow development within the 

valve during the valve opening procedure. These valve motion simulations allow for a 

more accurate comparison between the two EOCV designs, as the transient simulation 

results are a better indicator o f  how the designs will perform under actual operating 

conditions.

The results o f  the CFD simulations highlighted several areas where the design o f the 

Mark 4 EOCV had improved upon that o f  the Mark 3. However, areas were also 

discovered were the design o f  the Mark 3 EOCV was superior to that o f the proposed 

Mark 4 design; further investigations therefore need to be carried out to improve the 

performance o f  the Mark 4 valve design in the areas where weaknesses have been 

discovered.
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5 EOCV Development

A computer model o f  a natural gas fuelled engine featuring a novel secondary valve 

apparatus to allow M iller cycle operation was created in Chapter 3 o f this work. It is 

anticipated that the combination o f  fuelling with CNG and adoption o f the Miller cycle 

will allow an engine to operate with diesel equivalent power and economy while 

substantially reducing the emission o f  Carbon Monoxide, Carbon Dioxide and NOx-

Using a commercially available three dimensional CFD code a computer model o f the 

flow through the secondary Electronically Operated-load Control Valve (EOCV) was 

constructed in Chapter 4. The initial model was validated against flow-bench 

measurements before the simulation and evaluation o f  a potential future design. The 

simulation o f  an actual ‘real-tim e’ EOCV opening event was carried out in order to 

obtain discharge coefficients for the engine model.

The development o f  the EOCV design and its application to an operating engine is 

described within this chapter. Before the NoNOx engine is suitable for production, the 

dimensions o f the inlet system, and the overall ‘packaging’ o f  the engine must be 

optimised. In addition to this, the design o f  the M ark 4 EOCV apparatus (specific to the 

NoNOx V6 engine) must be finalised. The discovery o f  a design problem, with 

prolonged use o f  the EOCV causing significant wear o f  the valve spindle and main 

valve body, which led to an increase in leakage, required a complete redesign o f the 

valve spindle and bearings.

As a final requirement o f  the EU funded M ag-Move project, a preliminary investigation 

into the application o f  the EOCV apparatus to an engine running at speeds o f up to 6000 

RPM was required. A Cagiva Navigator / Suzuki TL-1000s motorcycle engine was 

chosen as the base engine for the 6000 RPM design. A computer model o f the 6000 

RPM engine as well as the results o f  a preliminary design o f  the EOCV apparatus is 

described.
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During the investigation into alternative fuels carried out in Chapter 2, the possibility o f 

the use o f  small amounts o f  hydrogen with natural gas is discussed. Karim et al. (1996) 

compared the combustion properties o f  a pure methane fuel with that o f a 10% 

hydrogen -  90% methane mixture. For all equivalence ratios the 10% hydrogen -  90% 

methane mixture has a quicker flame propagation rate, higher apparent flame initiation 

speeds and therefore lower combustion durations. It is notable however, that the average 

mabcimum cylinder pressure increases with the addition o f  hydrogen, which may lead to 

an increase in NOx formation.

Akansu et al. (2004) summarised the results o f  many different research papers on the 

use o f natural gas-hydrogen mixtures in internal combustion engines. It was found that 

under certain conditions the addition o f  hydrogen can cause an increase in engine 

efficiency, whereas the emissions o f  hydrocarbons, CO 2 and CO generally decrease 

with an increasing hydrogen percentage. It was also found that the emission o f NOx 

increases with the addition o f  hydrogen. Mixtures o f  10% and 20% hydrogen by volume 

with natural gas were found to on average increase the cost o f  the fuel by 8% and 15% 

respectively.

As an appraisal o f  hydrogen -  methane mixtures, the final version o f  the NoNOx engine 

model is used to assess the effect o f  the addition o f  a small amount o f hydrogen to the 

CNG fuel. A comparison o f  the computer models predictions o f  engine output and 

efficiency for CNG and a 10% hydrogen - 90% CNG mixture is made. The software 

predictions o f  NOx formation and hydrocarbon and CO emissions are contrasted for 

both fuels.

5.1 Wave Engine Model

The one-dimensional computational fluid dynamics package Ricardo Wave, developed 

by Ricardo Software, was previously used to construct a working model o f the NoNOx 

test engine incorporating the EOCV technology.
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5.1.1 Model Development

5.1.1.1 Intake System

The inlet pipe network used on the NoNOx test engine includes a long length o f pipe 

between the exit from each o f  the intercoolers and the inlet to the plenum servicing each 

bank o f the engine. The effect o f  the length o f  these inlet pipes on the performance of 

the engine was investigated by a series o f  Wave simulations in which this length was 

varied between 400 and 5800 mm (the current design has a length o f approximately 

2000mm).

Figures 5.1 -  5.3 show how the predicted BMEP, overall engine efficiency and the 

volumetric efficiency o f  the engine vary with the length o f  the intercooler-plenum 

ducting for three engine operating speeds.

 1200 RPM  1500 RPM  1800 RPM
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50002000 3000 40000 1000
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Figure 5.1 -  Variation o f  BMEP with inlet duct length
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Figure 5.2 -  Variation o f  indicated engine efficiency with inlet duct length
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Figure 5.3 -  Variation o f  volumetric efficiency with inlet duct length

The results shown in Figures 5.1 to 5.3 illustrate the effect o f  varying the length o f 

intake ducting between the intercoolers and inlet plenums. It can be seen from Figure 

5.1 that for higher engine speeds the BMEP produced by the engine reduces as the 

intake length increases. The results shown in Figure 5.2 predict that the optimum intake 

ducting length for high indicated efficiency o f  the engine is 4000 mm at 1200 RPM and 

5000 mm at 1500 RPM. At 1800 RPM it appears that having the shortest possible 

length o f intake ducting returns the higher indicated engine efficiency.

Figure 5.3 shows the predicted variation o f  the volumetric efficiency for the NoNOx 

test engine; this effectively provides an indicator as to how efficiently the engine can 

draw in a fresh air/fuel charge. It can be seen that for the 1200 RPM and 1800 RPM 

cases that the general trend is that the shorter the intake length, the higher the 

volumetric efficiency is for the engine. At 1500 RPM however there is a localised 

maximum in addition to the same general trend that occurs at other engine speeds. The 

highest volumetric efficiency for the test engine operating at 1500 RPM occurs with an 

intake length between the intercoolers and intake plenums o f  approximately 1600 mm.

The production version o f  the NoNOx engine is intended to be installed into large 

heavy-duty vehicles such as buses. For ease o f  installation it is likely that the 

intercoolers will be placed close to the engine, and this would suit the operating speed 

range o f the engine o f  1000-2000 RPM.
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5.1.1.2 Inlet Runners

The results discussed in section 5.1.1.3 are a comparison between potential new inlet 

plenum designs and the current inlet plenum design. The current inlet plenum does not 

utilise any ducting between the inlet plenums and the EOCV apparatus, therefore it was 

decided that investigations should be carried out to model the effect o f these inlet 

‘runners^ on the engine’s operation.

Simulations were carried out at three likely engine operating speeds in which the inlet 

runner length was varied between 5 and 600 mm. Figures 5.4 -  5.6 illustrate how the 

predicted BMEP, engine operating efficiency and volumetric efficiency varied with 

inlet runner length.

BMEP Comparison 
—• —1200 RPM —• —1500 RPM —♦—1800 RPM

1750

1700

£  1800

1550

1500

14 00
500 550 600250 300 350 400 4500 100 150 20050

Case No

Figure 5.4 -  Variation o f  BMEP with inlet runner length

Indicated Efficiency Comparison 

—• —1200 RPM —*—1500 RPM —#-1800 RPM
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4; 20C
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41 000

40 800
40 600
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Figure 5.5 -  Variation of indicated efficiency with inlet runner length
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Volumetric Efficiency Comparison 
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Figure 5.6 -  Variation o f volumetric efficiency with inlet runner length

A close examination o f the results shown in Figures 5.4 -  5.6 reveals that there is no 

ideal inlet runner length, with individual engine speeds performing better with different 

length inlet runners.

The inlet runner lengths which produce the highest BMEP and volumetric efficiency 

vary with engine speeds. In general it can be seen from Figure 5.4 and 5.6 that at higher 

engine speeds longer inlet runners appear to perform better, as the engine speeds 

reduces the required runner length for peak power also reduces. However the difference 

in performance varies only slightly with inlet runner length.

From Figure 5.5, a general trend can be seen in which the indicated efficiency o f the 

engine is higher with long inlet runners at low speeds and short inlet runners at high 

speeds. It is hard to determine an optimum inlet runner length from these results; at 

1200 RPM for example the performance o f  the engine is improved with inlet runners 

either o f 75 mm or 550 mm lengths. At all engine speeds it appears that very short inlet 

runners (of the order o f 50 mm) are predicted to provide highest engine indicated 

efficiencies.

In order to provide the best overall packaging o f the engine it was decided that the 

optimum location o f the inlet plenums is between the two separate ‘banks’ o f the V6 

NoNOx engine, because o f this the inlet runners are likely to be around 300 mm in 

length.
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5.1.1.3 Plenum Design Simulation

The previous (for the Mark 3 EOCV) plenum design (shown below in figure 5.7) is o f a 

very simplistic and basic design; the two plenums are o f a very small total volume and 

are directly attached to the EOCV apparatus servicing each bank o f the V6 test engine.

Figure 5.7 -  Previous plenum design

The sample pressure trace diagrams shown in Figure 5.8 illustrate precisely a 

phenomenon that has been observed during operation o f the NoNOx test engine. It can 

be seen that the pumping losses at higher engine speeds are substantially higher than 

that at lower speeds, and this is reducing the operating efficiency o f the engine at the 

higher speeds. It is believed that these pumping losses are primarily due to the design o f 

the inlet system installed on the engine, and that the engine’s efficiency can be 

increased by improving the design o f these components. However, other possible causes 

o f  these pumping losses include the current compressor specification as well as the 

design o f the engine’s cylinder head / inlet valves.

At this stage o f the project NoNOx proposed three new plenum designs, which were to 

be modelled using the Wave computer software. All o f the new plenum designs utilise 

inlet runners approximately 300mm in length between the plenum and the EOCV inlets.
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Figure 5.8 -  Pumping loss pressure traces

5-8



EOCV Development

The three plenum designs are shown in Figure 5.9. All o f the new designs are o f a much 

larger volume than that of the current design and also utilize longer inlet runners 

between the plenum and each EOCV apparatus.

Design A -  Large Single Volume Plenum Design B -  Vertical Split Twin Volume Plenum

Design C -  Horizontal Split Twin Volume Plenum

Figure 5.9 -  New plenum designs

The new plenum geometries were imported into the Wave program using the 

Wavemesher software; for designs B and C this involved separating out the plenum into
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two separate volumes and importing them separately. Simulations were then carried out 

for each plenum design at three engine operating speeds (Cases 1, 7 and 11 in Table 

3.8). Comparisons o f  the new Wave simulation results are shown in Figures 5 .1 0 -5 .1 2 .
4

I ”

l  25

5 ,

15
0 05 1 15 2 2.5

Cyflnder Displacement (Kras)

PV Diagram New Plenum Design A -  1200 RPM
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35  
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Cylinder Displacement (Kras)

PV Diagram New Plenum Design A -  1500 RPM
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2

0 05 1 1.5 2 25
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PV Diagram New Plenum Design A -  1*00 RPM

Figure 5.10 -  Wave simulation pressure traces plenum Design A.
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Figure 5.11 -  Wave simulation pressure traces plenum Design B.
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Figure 5.12 -  Wave simulation pressure traces plenum Design C.
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Examining the PV pressure traces predicted by the Wave simulations in Figures 5.10 - 

5.12, it can be seen that all o f the new plenum designs have similar predicted pumping

losses.

Figures 5 . 1 3 - 5 . 1 7  compare the predicted values o f BMEP, Indicated Efficiency, Fresh 

Air consumption, Volumetric Efficiency and Air/Fuel ratios for all o f the plenum 

designs tested (see Tabfe 3.8 for operating conditions for each case) .
Previous Plenum New Senple Plenum -*-N ew H onz Plenum New Vertical Plenum

1 2 -

1 ,0 
o.
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Figure 5.13 -  BMEP prediction comparison
-e -P rev io u s Plentm  -**- New Strr%*c Plenum -et— New Horn Plenum New Vertical Plenum
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0 36 -
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Figure 5.14 -  Indicated efficiency prediction comparison
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Figure 5 .15- Fresh Air-in prediction comparison
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Figure 5.16 -  Delivered volumetric deficiency prediction comparison
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Figure 5.17 -  Air / Fuel ratio prediction comparison
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An examination o f the results shown in Figures 5.13 reveals that there is very little 

difference between the predicted performances o f each o f the plenums, as there are only 

very small differences between the BMEP values produced. However, Figure 5.14 

shows that there is a large variation in predicted overall Indicated Efficiency between 

the plenum designs (even though figures 5.15 and 5.17 show that there is very little 

variation in air and fuel consumption). In general it can be seen that the new plenum 

designs A and C have the best performance when all o f  the cases are considered. In 

order to investigate in more detail what is occurring within each o f the plenum designs, 

the pressures within the plenums for sample cases will be compared.

Case 1 Plenum Pressure Comparison
 Previous Plenum  New Smpte Plenum New Horizontal Plenum  New Vertical Plenum

2.45

2.4

2.35

2.3

2.25

2.2

2.15
180 270 360 450 540 630 7200 90

Degree Crank Angle

Figure 5.18- Case 1 plenum pressure comparison

Examining Figure 5.18 it can be seen that for Case 1, the previous plenum design has 

the smallest fluctuation in Plenum Pressure and the highest mean pressure. The new 

vertically split and horizontally split plenums (Designs B and C) have very similar 

pressure curves with similar amplitudes and mean values. The new simple plenum 

design (Design A) has the largest amplitude and lowest mean pressure value, but also 

has the smoothest curve.
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Case 9 Plenum Pressure Comparison
 Pr**ous Plenum  New Simpte Ptonun  New Honzortal Ptenun  New Vertical Plenum
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1 14
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Figure 5.19 -  Case 9 plenum pressure comparison

Figure 5.19 compares the plenum pressures for the Case 9 engine operating parameters 

(see Table 3.8) for the previous and proposed plenum designs. It can be seen that for 

these operating conditions the previous plenum design produced erratic pressure 

fluctuations, whereas all o f the new plenum designs (all having a larger volume) exhibit 

similar characteristics. For each o f the new plenum designs the drops in plenum 

pressure coincide with an induction stroke for each o f  the three engine cylinders 

connected to the plenum.

The simulations o f the different plenum designs show that two o f the new plenums 

(Design A and Design B) are predicted to increase the NoNOx engines average 

indicated efficiency over the range o f operating conditions tested. Based upon the 

results o f  this simulation a new inlet plenum design was constructed by NoNOx in 

conjunction with a manufacturer. The new plenum design was tested and the results are 

shown in the following section.
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5.1.1.4 Final Design Simulations

In conjunction with NoNOx a final design for the V6 EOCV engine’s intake system was 

devised, shown in Figure 5.20 below. The final design for the intake system utilises 

much shorter ducts between the turbochargers and the intercoolers and the intercoolers 

and the intake plenum. New intercoolers have also been selected specifically to suit the 

V6 engine, allowing the overall"intake system to be much more compact,

Turbocharger
EOCVs

Intercoolers'

Inlet PlenumInlet Runners

Figure 5.20 -  Final design intake system

Figure 5.20 displays the complex new intake plenum design, which consists o f two 

separate chambers, each supplied by one o f the two turbochargers. The two separate 

plenum chambers either supply the “main” or “swirl” ports o f each engine cylinder.

The Ricardo Wave model o f the V6 NoNOx engine was altered using the new intake 

system geometry. The Ricardo Wave model o f the NoNOx V6 test engine incorporating 

the final design intake plenum, intercooler etc. is shown in Figure 5.21. This model has 

been compared with some initial readings taken from the NoNOx test engine with a 

prototype version o f the new inlet system as a final test o f the Wave engine model.
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New Plenums

New Intercoolers

Inlet System

Figure 5.21 -  Final EOCV V6 Wave engine model

Two data sets obtained from testing the NoNOx V6 engine, with the final design intake 

system, are to be compared to the Wave engine model predictions for the same engine 

operating conditions. Table 5.1 describes the operating conditions for each case and 

compares the predicted powers and efficiencies to that measured on the engine test-bed.

Table 5.1 -  Final V6 engine validation

OPERATING CONDITIONS

Casel Case2

Engine Speed 1800 1500

Lambda 1.588 1.680

Ignition Timing 24° BTDC 24° BTDC

EOCV Open/Close 180° / 500°ATDC 180° / 540°ATDC

VTG Position 23 mV 185 mV

Measured

Values

Wave

Prediction

Measured

Values

Wave

Prediction

BMEP 9.905 bar 9.905 bar 12.30 bar 12.30

Indicated Efficiency - 40 .10% - 41.27%
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Pressures traces obtained from measurements taken from the NoNOx V6 engine test

bed are compared to that predicted by the Wave software in Figures 5.22 and 5.23.
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Figure 5.22 -  Case 1 pressure trace comparison

The pressure traces shown in Figures 5.22 and 5.23 illustrate that the pressures 

predicted by Wave are very similar to the pressures measured on the test engine.

5-19



EOCV Development

 P a t e  CoRvramw  Ww» P 4 *  Comp

— p rt* l  minted

 P a t e  EOCV Smri  Waw P a t e  EOCV Man
2

1 M
IJ

11S

IJ
1.75

1 ts
I J

130 72010000
f e * M |C J|

— P baton Tutbaw  W an P baton Tub

20

I  “

It

720
U

ItO0 I t 100

!> •* ••  (C*

Figure 5.23 -  Case 2 pressure trace comparison

The Ricardo Wave software has thus been proven capable o f modelling the application 

o f the EOCV technology to the V6 NoNOx test engine. After the construction o f an 

initial model o f the engine, various design alternatives and investigations were carried 

out. Reviewing the results o f the Wave simulations and practical testing, a final design 

for the NoNOx V6 engine system was constructed. A model representing the final 

production geometry for the NoNOx V6 engine was created, which can be used in 

further investigations.
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5.1.2 6000 RPM Development Engine

The final stage o f the Mag-Move EOCV program includes the development o f the valve 

design for higher engine operational speeds. A target o f 6000 RPM was chosen as it will 

mean that the EOCV concept will be suitable for usage in the vast majority o f passenger 

vehicles.

5.1.2.1 Engine Details

The engine chosen by NoNOx for the next stage o f the Mag-Move project is that from 

the Cagiva Navigator motorcycle; the engine is a lOOOcc V-twin motorcycle engine 

manufactured by Suzuki. The specifications o f the engine are detailed in Table 5.2.

Table 5 .2 - 6000 RPM engine specifications

CAGIVA NAVIGATOR SUZUKI TL-I000S

Engine Type
Four Stroke, Liquid Cooled, Four Stroke, Liquid Cooled,

DOHC 90 Deg V-twin DOHC 90 Deg V-twin
Displacement (cc) 996 996
Cylinder Bore (mm) 98 98
Stroke (mm) 66 66
Compression Ratio 11.3:1 11.3:1
Inlet Valve Diameter (mm) 40 40
Inlet Cam Duration / Max Lift =270° / 9.45mm - / -
Exhaust Valve Diameter (mm) 33 33
Exhaust Cam Duration / Max Lift ^260° / 8.57mm - / -
Fuel System Electronic Fuel Injection Fuel Injection
Lubrication System Wet Sump Wet Sump

Detailed geometric information for the Cagiva Navigator engine is not easily 

obtainable, mainly due to the rarity o f the engine. However, the Cagiva Navigator 

engine is almost identical to the engine used in the Suzuki TL- 1000s motorcycle for 

which information is readily available. Therefore, a working model o f the TL-1000s 

engine is be constructed in Wave and compared to published performance data. This 

model can then be modified to incorporate the EOCV apparatus.
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5.1.2.2 Model Construction 

Inlet System

The standard inlet system fitted to the Suzuki TL-1000s is shown in Figure 5.24. The air 

flow enters through two separate inlets positioned either side at the front o f the bike. 

The passage o f the flow from the two separate inlets into the air filter is controlled by an 

inlet control valve; which partially closes at low-medium engine speeds. The air then 

passes through the air filter into the main body o f the inlet plenum and into the inlet 

runners. The flow into the engine is then controlled by two individual throttles 52mm in 

size.

Figure 5.24 -  Suzuki TL-1000s intake system

Exhaust System

The exhaust system used on the Suzuki TL-1000s is shown in Figure 5.25. The exhaust 

gases from each engine cylinder exit through two separate exhaust pipes, with a single 

connection between the two pipes allowing some o f the exhaust gases to flow between 

the two exhaust “headers” . The exhaust for the rear engine cylinder also has a short link 

pipe, connecting together a section o f  the exhaust before and after a sharp bend to act as 

an alternate route for the exhaust gases.
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Figure 5.25 -  Suzuki TL-lOOOs exhaust system

Valve T im ing

Data was obtained for both the Inlet and Exhaust camshafts by NoNOx for the Cagiva 

Navigator engine. It can be seen from Table 5.2 that the duration and maximum lift o f  

the cams are the same as the published information for the TL-1000s engine, details o f 

the valve lifts are shown in Figure 5.26 below.
TL-10OO* Valve LM Profiles 

 Intake  Exhaust
1

5
?f>

720460 630180 270 3600 80
Crank Angle Attar TOC (Dag)

Figure 5.26 -  Cagiva Navigator valve-lifts
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Engine Fuelling

Figure 5.27 shows details o f  the fuelling strategy used for the Suzuki TL-1000s engine. 

From the details shown in the injection maps an equivalent fuelling strategy for the 

Wave engine model based upon air/fuel ratios can be approximated. A series o f 

simulations will be required in order to determine the appropriate values at each engine 

speed.
FRONT CYLINDER

LIGHT LOAD HEAVY LOAD

INTAKE X  
AW
PRESSURE

ENGINE i/m in

LIGHT LOAD HEAVY LOAD

THROTTLE
OPENING

ENGINE rAnin

Figure 5.27 -  Suzuki TL-lOOOs injection maps

Ignition Timing

The ignition map for the TL-lOOOs engine is shown below in Figure 5.28. For each 

engine speed and throttle position the appropriate 10-90% combustion duration and 

50% bum point must be determined for the Wave engine model.

Figure 5.28 -  Suzuki TL-lOOOs ignition map
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Figure 5.29 shows the completed WaveBuild engine model for the Suzuki TL-lOOOs 

engine. The different engine operational values that have been determined to be 

appropriate for the initial TL-lOOOs engine simulations are listed in Table 5.3.

Inlet System Engine Cylinders Exhaust System Exhaust Muffler

Figure 5.29 -  Wave TL-lOOOs engine model

Table 5.3 -  Wave TL-lOOOs engine settings

ENGINE SPEED 
(RPM) 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Air/Fuel Mass Ratio 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8 15.0 16.0

10-90% Bum 
Duration (Deg) 20 20 20 20 20 20 25 25 25 25

50% Bum Location 
(Deg ATDC) 16 16 12 8 4 0 1 1 1 1

The values listed in Table 5.3 are the fuelling values and combustion description 

parameters used by the Wave software to calculate the energy release and gas expansion 

within the engine cylinder. It is anticipated that these values may change when more 

detailed information is obtained from in-cylinder pressure sensors placed in the 6000 

RPM test engine.

5.1.2.3 Model Results

Figure 5.30 compares the performance for the TL-lOOOs engine calculated by Wave to 

published values obtained by testing using a dynamometer. It can be seen that there is a 

reasonable agreement throughout the RPM range between the Dyno horsepower values 

and the brake horsepower (bhp) values calculated by the Wave model.
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Figure 5.30 -  TL-lOOOs Wave simulation results

The main difference between the values predicted by Wave for the Tl-1000s engine and 

the published values occur in the 5000-8000 RPM range, where the published torque 

and power values are higher than the Wave predictions. One possible reason for this 

performance difference is that the camshaft profiles used in the computer engine model 

were obtained by measurements o f the Cagiva Navigator engine, and it is unknown 

whether the Suzuki TL-lOOOs engine uses exactly the same camshafts (the published 

performance figures for the Cagiva Navigator engine are lower than that for the Suzuki 

TL-lOOOs engine, and this may be in part due to a “milder” cam profile).

The next stage o f  the 6000 RPM model development is the modification o f the model to 

include the EOCV apparatus. A new inlet system must be designed to incorporate two 

single EOCV’s and the exhaust system must be replaced with that already constructed 

for the engine testing. See section 5.2.2 for the initial CFD analysis o f a proposed 6000 

RPM EOCV design.
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5.1.2.4 Model Development

A computer model o f  the proposed 6000 RPM test-bed engine was constructed using 

the basic engine geometry from the computer model o f the TL-lOOOs engine. A new 

exhaust system was constructed with the same geometry as that to be used on the actual 

test-bed.

New Inlet System
Engine Cylinders New Exhaust System

EOCV Apparatus

Figure 5.31 -  6000 RPM EOCV engine model

The design o f  the inlet system for the 6000 RPM engine is again investigated using the 

Wave software. The schematic view o f  the Wave engine model is shown in Figure 5.31 

It was decided that a very simple inlet system would suffice for the 6000 RPM EOCV 

engine; with the air supply being drawn into a single plenum chamber. “Inlet-runners” 

then connect this plenum to an EOCV attached to each o f  the engine cylinders.

Initially, the 6000 RPM engine model will utilise the lift-flow characteristics predicted 

for the final Mark 4 EOCV design (see Figure 4.34). However, as the 6000 RPM engine 

has only a single inlet port for each engine cylinder a new design will ultimately be 

required. Measured actuator times for the Mark 4 actuator are significantly quicker than 

previous designs, and are almost suitable for an engine operating at speeds o f up to 

6000 RPM (see Figure 5.32). Figure 5.32 displays the possible EOCV opening and 

closing timings at different engine speeds. It can be seen that at speeds of up to 5000 

RPM the EOCV can successfully open and close in the period when the main inlet 

valves are closed. At 6000 RPM however the EOCV must either open later or close 

earlier in order to complete its cycle.
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Figure 5.32 -  Possible Mark 4 EOCV actuator operating cycles

It was decided that as the application o f the EOCV technology to the Suzuki/Cagiva 

engine effectively reduces the operational rev limit down to around 6000 RPM, the inlet 

system should be optimised for speeds o f 3000 - 4000 RPM. Using the fuelling and 

ignition specifications determined from the validation o f the Suzuki model, a series o f 

simulations were carried out to determine the effect o f different inlet runner lengths on 

the engine’s operation, the results of which are shown in Figure 5.33.
Indicated hp foe Met runner length

•  XOGipm -» 4000 r»*n
4U.S

37»

150 250 300 350 400 4500 50 100
Figure 5.33 -  Inlet runner length tuning
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Figure 5.33 illustrates the dramatic effect altering duct lengths can have on the 

operation o f a naturally aspirated engine. It can be clearly seen for the two engine 

speeds investigated (3000 and 4000 RPM), that for each engine speed the runner lengths 

that provide the highest indicated horse powers are different. From the Wave 

predictions it can be determined that for satisfactory performance at both 3000 and 4000 

RPM, runner lengths o f either 280 or 160 mm should be chosen (280 mm is the 

optimum length but may be too long for practical installation).

»■

M l

Figure 5.34 -  Inlet plenum volume tuning

Several different shape and size plenum chambers were then tested using the Wave 

engine model (see Table 5.4 for the dimensions o f the plenums). From the results shown 

in Figure 5.34 it can be determined that a plenum volume o f 5 litres has the best 

combined efficiency and performance figures.

Table 5.4 -  Inlet plenum dimensions

plenum volume (L) height (mm) depth (mm) width (mm)
1 5 150 150 285
2 5 120 120 450
3 3 115 115 285
4 3 92 92 450
5 2 92 92 300
6 8 150 150 450

A series o f simulations were setup in order to compare the performance o f the Wave 

model incorporating the EOCV technology to measured and predicted values for the 

standard Suzuki TL-lOOOs engine, the results o f this comparison can be seen in Figure 

5.35.

5-29



EOCV Development

-e-D yno  hp  Cal bhp  Brake hp test bed
140

I
!Q.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Cm J  (mint

Figure 5.35 -  Comparison standard engine and EOCV engine

From the comparison seen in Figure 5.35 it can be seen that there are small differences 

between the measured “Dyno hp” for the Suzuki TL-lOOOs engine and the “Brake hp” 

predicted by the Wave software, this may be because the cam profiles used in the model 

are from the Cagiva Navigator specification o f the engine which may be different to the 

TL-lOOOs version.

The predicted “Brake hp” for the test bed engine shows an improved performance over 

much o f its (shorter) speed range when compared to the predictions for the TL-lOOOs 

engine, this may be because the plenum and inlet runner configuration used in the 

EOCV model is more suitable for the lower engine speeds.

There is the possibility that the EOCV technology can be adapted such that it is suitable 

for much higher engine operating speeds, as the EOCV valve can also be used as a 

conventional throttle. This type o f mixed-mode operation should be further investigated 

as it has the potential to allow the EOCV technology to be used on any type of internal 

combustion engine.

5-30



EOCV Development

5.1.3 CNG-Hydrogen Blend Simulations

The computer model o f  the final design NoNOx V6 test engine described in section 

5.1.1.4 was utilised to investigate the effect o f the addition o f 10 % hydrogen to the 

methane fuel.

A 10 % hydrogen, 90 % methane mixture fuel file was created using the Propty code 

within the Ricardo Wave software package. This blend percentage was chosen as it is a 

feasible mixture o f  the two fuels for use in the UK mains gas supply as well for use as 

an automotive fuel.
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Figure 5.36 - Predicted power output for NoNOx engine (10% H2 , 90% CH4)

If  the predicted power output o f the NoNOX test engine for the hydrogen / methane 

blend shown in Figure 5.36 is compared to the previous results for methane (see Figure 

3.27), it can be seen that for equivalence ratios between 0.2 and 0.8 the hydrogen / 

methane fuel blend develops approximately 10 %  more power at all engine speeds. This 

can be attributed to the addition o f  hydrogen increasing the combustion flame speed, 

which in turn increases the cylinder pressures.
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Figure 5.37 - Predicted engine efficiency for N oN O x engine (10% H2 , 90% CH4)

The predicted engine efficiency for the hydrogen / methane blend is shown in Figure 

5.37. When this is compared to that predicted for the methane fuel (see Appendix E for 

methane fuel results) it can be seen that for all engine speeds and equivalence ratios the 

efficiency obtained with the hydrogen /  methane mixture is lower. This is due to the fact 

that the increase in flame speed leads to a shorter combustion duration o f the hydrogen / 

methane mixture, which requires a later ignition tim ing for optimum efficiency.
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Figure 5.38 - Predicted hydrocarbon emissions for NoNOx engine (10% H2 , 90% CH4 )
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Figure 5.39 - Predicted NOx emissions for NoNOx engine (10% H2 , 90% CH4 )

If the predicted emission o f unbumed hydrocarbons for the hydrogen / methane mixture 

shown in Figure 5.38 is compared to that for the methane fuel shown in Appendix E, it 

can be seen that the predicted hydrocarbons increase with the addition o f hydrogen to 

the fuel. I f  the additional results for the hydrogen / methane mixture in Appendix G are 

compared to the methane results in Appendix E, it can also be seen that the emissions o f 

CO are also predicted to increase with the addition o f hydrogen. These results contradict 

that reported in literature, in which the addition o f hydrogen to methane reduces the 

emissions o f hydrocarbons and CO.

The predicted emissions o f NOx for the hydrogen / methane fuel mixture shown in 

Figure 5.39 are significantly greater than that previously predicted for the methane fuel 

(Appendix E). This is likely to be due to the increase in cylinder temperatures predicted 

with the addition o f  hydrogen. From the results o f the Wave simulations it can be 

concluded that addition o f a small percentage o f  hydrogen to the methane fuel o f a spark 

ignition engine increases the power output, while having only a small detrimental effect 

on engine efficiency. However, with the addition o f hydrogen there is a substantial 

increase in the predicted NOx emissions.
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5.2 Vectis EOCV Valve Model

3-Dimensional computer models were previously developed to simulate the air flow 

through the electromagnetically operated-load control valve (EOCV). Details o f the 

EOCV model construction can be seen in chapter 4.

5.2.1 Mark 4 Development (V6 NoNOx Engine EOCV)

5.2.1.1 EOCV Inlet Design

In conjunction with the new plenum designs discussed in section 5.1, a new design for 

the inlet side o f the EOCV apparatus was developed. Figure 5.40 below compares the 

previous EOCV intake “splitter” to the proposed new design. The function of the intake 

splitter is to efficiently split up the intake charge as it enters the EOCV apparatus.

Current Splitter Design Proposed Splitter Design

Figure 5.40 -  EOCV intake splitter comparison

In order to test the effect o f this new intake splitter, simulations were carried out using 

the Mark 4 EOCV geometry. The simulations are time-based simulations in which a 

pressure gradient is applied across the EOCV equipment, simulating the steady-state 

conditions that would occur on a flow-bench. By comparing the volumetric flow-rate 

values the performance o f any design modifications can be assessed.
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Figure 5.41 compares the previous steady-state flow results for the Mark 3 and Mark 4 

EOCV designs with the results o f the new simulations incorporating the new flow 

splitter.
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Figure 5.41 -  Flow splitter EOCV design results

It can be seen from the results shown in Figure 5.41 that there is a marginal decrease in 

the flow-rate through the Mark 4 design when the new splitter is used. Figure 5.42 

shows the turbulence intensity distribution for a cross-section through the Mark 4 

EOCV model with the current flow splitter design and for the new flow splitter design.

0 PLANE:K (m2/s2) 15

Figure 5.42 -Turbulence intensity distribution with old and new flow splitters
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A comparison o f the results shown in Figure 5.42 shows that the new flow splitter, 

which was designed to precisely split up the inlet flow, produces higher levels of 

turbulence than that seen with the current splitter design. This turbulence could be the 

reason behind the decrease in flow-rate shown in Figure 5.41. One possible cause for 

the increase in turbulence is the increase in the surface area the flow is exposed to. 

Further simulations should be undertaken to investigate new flow splitter designs, 

possibly a combination o f the two designs shown inVigure 5.40.

5.2.1.2 EOCV Outlet Design

The flow merger is the component used to reunite the flow as it exits the EOCV 

apparatus. The Mark 4 EOCV design utilises a much shorter flow merger between the 

two exit orifices, and the area directly after this flow merger is shown in Figure 5.43 

(which compares the Mark 3 and Mark 4 EOCV designs). As can be seen from Figure 

5.43, this is an area with highly disrupted flow. The Mark 3 EOCV incorporated a much 

longer flow merger, which is seen to produce a much more even flow after the valve 

exit than that seen with the Mark 4 design.

Velocity (m/s)

y* Generation Merger 4* Generation Merger

Figure 5.43 -  Mark 3 and Mark 4 EOCV flow merger designs
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As a consequence o f the increased turbulence after the Mark 4 EOCV design reducing 

the potential flow, a series o f simulations were carried out using several alternate flow 

merger designs, including the design o f the flow merger used in the Mark 3 EOCV.

The graph shown in Figure 5.44 displays the predicted volumetric flow-rate result for

the Mark 4 EOCV design modified to include the flow merger from the Mark 3 design.
\

 G* — G4 ■ G3 merger  0 3

5 OOE-02

---
4 006-02

S 3 006-02

1 006-02

000000 0 00000 0 01000 0 01200 001400 0.016000 00000 0 00400
Time I ■

Figure 5.44 -  Flow merger EOCV design results

The results shown in Figure 5.44 indicate that the inclusion o f the Mark 3 flow merger 

has not improved the overall performance of the Mark 4 EOCV design. A closer 

examination of the results reveals that the Mark 4 EOCV exhibits different flow 

characteristics to the Mark 3 design. From the instant the simulation is started the 

improved design o f the Mark 4 EOCV is apparent, with the flow-rate through the valve 

rising much more quickly than with the previous design. At T=0.0045s the flow-rate 

through the Mark 4 design peaks at a value which is 16% higher than that through the 

Mark 3 design.
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After T=0.0045s the flow-rate through the Mark 4 EOCV design decreases, this is 

believed to be because o f the onset of turbulence within the valve. The effect o f the 

turbulence within the Mark 4 EOCV design is dramatic, with a much larger decrease in 

flow-rate than is seen in the predictions for the Mark 3 design.

5.2.1.3 Mark 3 / Mark 4 Design Comparison
/

The results of the simulations carried out during section 5.2.1.2 (the development o f the 

flow merger) highlighted that the potential performance o f the Mark 4 EOCV design is 

substantially reduced by the effect o f turbulence. It was decided that an in depth 

investigation should be carried out to understand what aspects o f the design of the Mark 

4 EOCV could be causing the performance loss.

Figures 5.45 and 5.46 compare the results obtained for the Mark 3 and Mark 4 EOCV 

designs (both using similar designs inlet splitters and flow mergers). Figure 5.45 

compares the predicted velocity distributions for vertical cross-sections through the 

valve, whereas Figure 5.46 compares two separate horizontal cross-sections.

-rr-sr

Figure 5.45 -  Vertical cross-section EOCV velocity distribution
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.. . ..... i. ■

Figure 5.46 -  Horizontal cross-section EOCV velocity distributions

Examining the velocity distributions shown in Figures 5.45 and 5.46 it can be seen that 

there are many similarities as well as differences between the flow predictions for both 

the Mark 3 and Mark 4 EOCV designs. For both designs the highest velocities occur 

within the two exit orifices from the valve and are of the order o f 55 m/s. The Mark 4 

EOCV design however has much lower velocities within the inlet orifices; this is 

probably due to the larger cross-sectional area o f these inlet orifices in the Mark 4 

design.
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When the velocity distributions for the Mark 3 and Mark 4 valve designs are compared 

in can be seen that the Mark 4 design is far superior in most aspects; having a much 

more evenly distributed flow entering and within the valve itself. However ,the flow as 

it exits the Mark 3 valve has a much more evenly distributed flow after the valve than 

that seen with the newer design. The offset seen between the inlet and outlet channels o f 

the Mark 4 EOCV design seems to cause the flow exiting the valve to be unevenly 

distributed, lacking the symmetry seen in the Mark 3TDCV outlet channel.

A modified model o f the Mark 4 EOCV design was constructed with the inlet and exit 

orifices inline, such as is seen with the Mark 3 design. The results o f the simulation as 

well as the geometry o f this new design can be seen in Figure 5.47.

I
A quick examination o f the results shown in Figure 5.47 reveals an overall 

improvement in flow distribution when compared to the results for previous designs. 

The flow exiting the valve has an symmetrical flow similar to that seen with the Mark 3 

EOCV design, which is an improvement on the results predicted for the Mark 4 

geometry.

Figure 5.47 -  CFD results for modified EOCV design
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If  the flow exiting the valve in Figure 5.47 is compared to that seen in Figures 5.45 and 

5.46, it can be seen that the local velocities are much higher with the new design than 

with either o f the previous designs. This indicates that the flow-rate through the new 

design is higher.

Figure 5.48 below compares the flow rate predictions for the new design to that for 

previous designs and their variants.
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Figure 5.48 -  New EOCV design results

It can be seen from Figure 5.48 that there is a marked improvement in flow through the 

new EOCV design, which is a “straightened” version o f the Mark 4 EOCV design. The 

flow rate through the basic version o f the new design settles to a value 12% higher than 

that seen with the similar Mark 4 design. If, as seen in Figure 5.48, the flow merger 

from the Mark 3 EOCV is used a 16% increase in flow rate is predicted.

The new “straightened” version of the Mark 4 EOCV valve has a proven improvement 

in both overall flow rate and flow distribution, producing less turbulence than is seen in 

previous designs. It is believed that further improvement of the EOCV design is still 

possible, with the shaping o f the outlets from the valve and the flow merger being the 

area where largest gains may be achieved.
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5.2.1.4 Final EOCV Design Simulation

The final design for the Mark 4 EOCV is shown below in Figure 5.49. There are several 

small changes to the shape o f the valve, but it is very similar to the previous Mark 4 

design. The offset that is present between the valve inlets and exits is required due to the 

design of the inlet ports o f the NoNOx engine. However, subsequent EOCV designs 

may not require this offset and therefore could be based upon the modified design

detailed in section 5.2.1.3.

Figure 5.49 -  Final EOCV design for NoNOx V6 engine

A simulation of the final Mark 4 EOCV opening was carried out using the new valve 

geometry and the new actuator times shown in Figure 5.50. It can be seen from Figure 

5.50 that the new actuator is significantly quicker than the previous design.
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Figure 5.50 -  Comparison of EOCV actuator performance
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A comparison o f the Final Mark 4 design performance to that of previous designs is 

shown in Figure 5.51. The velocity and turbulence intensity distributions are shown in 

Figures 5.52 and 5.53 respectively. It can be seen from the results for the Final Mark 4 

design that the new actuator has not only improved the flow through the valve while it 

is opening, but the small changes that have been made to the design (particularly the 

recess areas around the valve spindle) have improved the overall performance of the 

valve (7.2% increase in flow).
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Figure 5.51 -  Final design Mark 4 EOCV flow performance

Comparing the velocity distribution shown in Figure 5.52 to that seen in Figures 5.45 

and 5.46 it can be seen that the flow through the Final Mark 4 EOCV design is more 

“ordered” in nature, as definite flow paths through the valve can be distinguished. The 

distribution o f the turbulence intensity shown in Figure 5.53 also highlights the 

organized flow structure, with areas o f comparatively high turbulence intensity 

corresponding to distinct vortices in Figure 5.52.

The final Mark 4 EOCV design is a significant improvement over the previous Mark 4 

design, with much improved flow characteristics and performance.
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Velocity [m/s] 75

Figure 5.52 -  Final design Mark 4 EOCV velocity distribution (Fully open)
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PLANE K|m2/s2] 100

Figure 5.53 -  Final design Mark 4 EOCV turbulence intensity distribution (Fully Open)
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5.2.2 6000 RPM Engine EOCV Design

The development o f an engine model for the 6000 RPM test engine was described in 

section 5.1.2. It was decided that for the initial Wave modelling work a hypothetical 

EOCV design for the Cagiva Navigator 6000 RPM test engine should be developed in 

order to obtain suitable flow coefficients for the engine model.

5.2.2.1 Initial Model Development

Based upon actual measurements of the 6000 RPM test engine’s cylinder head, a 

modified version of the Final Mark 4 EOCV design was constructed. Figure 5.54 below 

shows the geometry for the initial 6000 RPM EOCV model.

Figure 5.54 -  Initial 6000 RPM EOCV geometry

The hypothetical design of the 6000 RPM EOCV shown in Figure 5.54 is based upon 

the Final Mark 4 EOCV geometry. It is expected however that this design will change 

when NoNOx begin work on a suitable actuator design. It is also unknown if this design 

will have a sufficient operational lifespan, due to a possible increase in bearing wear 

with the valve spindle motion being horizontal instead o f vertical.
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5.2.2.2 6000 RPM EOCV Results

Figure 5.55 shows the predicted velocity distribution for the 6000 RPM EOCV design. 

A comparison with Figure 5.55 reveals that flow through the 6000 RPM EOCV is 

similar in nature to that through the Final Mark 4 EOCV design, with defined vortices 

within the valve and a distinctive flow path through the valve.

a a

Figure 5.55 -  6000 RPM EOCV velocity distribution (Fully Open)
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A comparison o f the predicted volumetric flow-rate growth for the 6000 RPM EOCV 

design at three different valve lift positions is shown in Figure 5.56 (18.0 millibar 

pressure difference applied across the valve model).
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Figure 5.56 -  Predicted volumetric flow rate for 6000 RPM EOCV design

It can be seen from Figure 5.56 that the final flow through this hypothetical 6000 RPM 

EOCV design is 47% higher than the final flow value for the Mark 4 EOCV design seen 

in Figure 5.51. The predicted flow coefficients for the 6000 RPM EOCV design based 

upon the final volumetric flow values is shown in Figure 5.57. These values can be used 

in the next generation Wave model o f the 6000 RPM test engine which will incorporate 

the EOCV apparatus.
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Figure 5.57 -  Predicted 6000 RPM EOCV flow coefficients
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5.3 Summary

The optimum designs o f key engine components o f  a heavy-duty natural gas engine 

were established through the use o f  the computer engine model, whose construction is 

described in Chapter 3. In parallel to this, the design o f the EOCV itself was subjected 

to a rigorous CFD testing procedure, in which the flow through the valve was evaluated 

and improved in an iterative process. The final production design o f the EOCV 

apparatus and its incorporation into the NoNOx V6 engine was developed through a 

program o f modelling and practical engine testing, carried out in conjunction with EU 

project partners. The final engine is now in production within Europe and the Far East, 

the specification o f the engine is included in Appendix H.

In addition to the development o f the commercially available heavy-duty V6 NoNOx 

engine, a design program was undertaken to develop the EOCV technology for a 

smaller higher speed engine, analogous to that used in modem passenger vehicles. A 

modified version o f the EOCV design for the heavy-duty V6 engine was developed 

(which in simulations outperformed the design o f the V6 EOCV apparatus) and was 

incorporated in a computer model o f the test engine under construction at the NoNOx 

facility.

The effect o f hydrogen addition to the CNG fuel o f  the NoNOx V6 engine was 

investigated using the V6 computer model. The simulations predicted an increase in 

power output as well as a small decrease in engine efficiency. The increase in NOx 

content in the exhaust gas emissions, a commonly reported side effect in literature, was 

also predicted.
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6 Miller Cycle Effect

The work described in Chapter 3 describes the initial construction o f a CFD engine 

model o f the NoNOx test engine, incorporating the Electromagnetically Operated-load 

Control Valve (EOCV). The purpose o f  the EOCV technology is to allow an engine to 

operate with throttle free load control and with various degrees o f Miller cycle 

operation. The benefits are the ability to operate with high inlet boost pressures, while 

improving the operating efficiency and emissions o f  the engine.

A computer simulation o f the airflow through an individual EOCV geometry has been 

carried out in Chapter 4. Within this Chapter present and future EOCV designs are 

evaluated and compared, with areas o f possible improvement highlighted. The results o f 

the simulations proved invaluable when materials problems required the EOCV 

apparatus to be redesigned, and in the development o f  the final design for use on the V6 

NoNOx engine.

In order to investigate in detail the “Miller Cycle” effect o f  the EOCV apparatus on the 

flow into the engine cylinder, and to examine the design o f  the combustion chamber / 

piston crown, a detailed three dimensional CFD model was constructed using the 

Ricardo Vectis software. The Ricardo Vectis software package is widely used in 

industry for the simulation o f the airflow and combustion within engines, and there are a 

number o f research publications (e.g. Ryu et al. 2005 and Dekanski et al. 1996) in 

which fuel spray structure and changes in engine geometry are investigated. A precise 

recreation o f the cylinder head geometry and the EOCV apparatus is created using the 

Ricardo Vectis software. Data obtained from the simulations o f  the NoNOx engine is 

used as the boundary conditions for the EOCV / cylinder head model, the results o f 

which are compared with data for the NoNOx engine.
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Miller Cycle Effect

6.1 Simulation Parameters

It was decided that in total, three separate engine load settings will be simulated, the 

engine load being controlled through use o f three different EOCV opening and closing 

timings. Thd settings for the three simulations are shown in Table 6.1 below. The 

computer simulation represents cylinder number 1 o f the V6 NoNOx engine and will 

therefore use the corresponding boundary conditions.

Table 6.1 - Combustion model settings

ENGINE
SPEED

EOCV TIMING 
OPEN/CLOSE

LAMBDA
VALUE

IGNITION
TIMING

EOCV Simulation 1 1200 RPM 200/580 (°CA after TDC IGN) 1.59 17 (°CA before TDC)

EOCV Simulation 2 1200 RPM 200/540 (°C A after TDC IGN) 1.66 24 (°CA before TDC)

EOCV Simulation 3 1200 RPM 200/480 (°C A after TDC IGN) 1.59 27 (°CA before TDC)

Figure 6.1 shows the parameters that are used for the engine cylinder / valve simulation. 

The three separate EOCV opening and closing timings investigated are shown in Figure 

6.1. The engine’s standard valve lifts and the total cylinder volume are also shown for a 

comparison, it can be seen that the EOCV timings used for the first two computer 

simulations will partially limit the air into the engines cylinder. It is this charge limiting 

which induces the Miller cycle effect.
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Figure 6.1 -  Engine model parameters
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Measurements were taken o f the V6 NoNOx test engine’s inlet and exhaust ports in 

order to generate an accurate CAD model o f the flow geometry. The completed CAD 

model includes all o f the required geometry to model a single engine cylinder, including 

the flow splitters, a pair o f EOCVs, the inlet ports, the cylinder and the exhaust port. An 

example o f a completed geometry is shown in Figure 6.2.

Figure 6.2 -  Sample cylinder model geometry

Due to the moving boundaries required to model the motion o f the piston and valves, a 

range of geometries are required. The simulation then switches between the geometries 

at prescribed points during the calculation process. It was decided that a separate 

geometry should be created for every 5 degrees crank angle in order to minimise the 

mesh distortion. Additional geometries were created for time periods with larger or 

more complex valve movements. The size o f the geometries range from 250,000 cells 

(top dead centre positions) to 320,000 cells (bottom dead centre positions), each being 

approximately 130 MByte in size. The time period which the simulations cover 

encompass the full induction and compression strokes of the NoNOx engine.
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The engine cylinder simulations are carried out using the following simulation 

parameters:

Simulation Duration - 392.5 Degrees

Start Time , - 327.5 Degrees

End Time - 720 Degrees

Time-step Size -0.1 Degrees

Post-pro Spacing - 1.0 Degrees 1

Equation Coupling Scheme - Pressure Solver 

Solution Algorithm - P1SO

Iterations per Time-step - 1

Convergence Criteria - 1.0 x 10e-6

The broad simulation conditions listed above are used for all three o f the 3D CFD 

EOCV simulations. In addition to these broad simulation parameters, the individual 

boundaries o f  the geometry constructed are assigned prescribed displacements to 

simulate the motion o f  each o f the valves and the piston. The computational mesh then 

distorts according to the amount o f movement for each o f  the boundaries in that time 

region.

In addition to specifying the movements o f  the boundaries that form the valves and the 

piston o f the engine model, the boundaries that represent the inlet and outlet to the 

model need to be specified. The boundary conditions for the surfaces representing the 

inlets and outlets o f the computer model are obtained from the Wave software, and are 

made up o f defined absolute pressures and temperatures from which the flow into and 

out o f the simulated geometry is calculated. For each o f  the separate closing times the 

inlet and outlet temperatures and pressures are shown in Figures 6.3 -  6.6.

Figures 6.3 and 6.4 show the predicted inlet boundary pressures and temperatures that 

are used for the Vectis simulations o f the NoNOx engine geometry.
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 EOCV CJosui* 580 “EOCV Closur# 5*0 Depress — EOCV Closure 480 D*gr««s

580 450

Crank Angle (Degrees)

Figure 6.3 -  Model inlet pressures

It can be seen from the Figures that the simulation with the earliest EOCV closure 

(480°), has a significantly lower range o f inlet temperatures and pressures compared to 

the other two simulations. The reason for this is that the earliest EOCV closure 

corresponds to the case in which the engine produces the lowest load, i.e. the 

compressor speeds and therefore the flow rate into the engine is lower. The two 

simulations with later EOCV closure (540° and 580°) have very similar predicted inlet 

pressures and temperatures, indicating that the EOCV apparatus must restrict a 

significant proportion o f the possible flow into the engine to have a measured effect on 

engine performance.

 EOCV C k»ue 580 Degrae* •EOCV Closure 540 Degrees — EOCV Closure 480 Cvgr

530

518

517

515
380 4500 90 180 270 540 720

Crank Angle (Degrees)

Figure 6.4 -  Model inlet temperatures
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Figure 6.5 shows the exhaust boundary pressures that are used for the Vectis 

simulations of the NoNOx engine geometry. It can be seen from Figure 6.5 that even 

though all the exhaust gas pressures exhibit similar fluctuations, the exhaust pressure 

variation for the 480° EOCV closure simulation is significantly lower than that o f the 

other two simulations (which again have very similar boundary conditions). The reason 

for this is likely to be that the earlier valve closure produces a significant “Miller cycle” 

effect, this in conjunction with the reduced volume o f charge leads to lower peak
s

cylinder temperatures and pressures. The lower cylinder pressures and temperatures 

lead to an average lower exhaust gas pressure and temperature.
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Figure 6.5 -  Model exhaust pressures

Figure 6.6 displays the variation in exhaust outlet temperatures over the engine cycle 

that is used as the boundary conditions for the three EOCV / cylinder models. It can be 

seen that again the values for the 540° and the 580° EOCV closure are almost identical, 

while that o f the 480° closure are on average much lower. It can be seen from the results 

shown in Figure 6.6 that the values used for the exhaust boundary conditions for the 

480° EOCV closure show a much higher temperature between 150° and 360° CA, which 

corresponds to the period in which the exhaust valve of cylinder number 1 is open. The 

wide variation in the pressures and temperature of the boundaries shown here 

emphasize the importance of the accuracy o f the boundary conditions, as it is these
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conditions that are used by the software to calculate the flow into and out o f the 

computer created geometry.
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Figure 6.6 -  Model exhaust temperatures

If the temperatures for the inlet and outlet boundaries (Figures 6.4 and 6.6) are 

examined, it can be seen that there are distinct temperature changes that occur during 

certain periods o f the engine cycle. During the induction stroke there is a well-defined 

drop in inlet temperature for all o f the simulations boundary conditions, and throughout 

the rest o f the engine cycle the temperature fluctuations correspond to fluctuations in the 

inlet pressure. The variation in the exhaust temperature during the engine cycle has a 

much larger amplitude than that used for the inlet boundaries, with the peak 

temperatures corresponding to the exhaust valve opening o f the three engine cylinders 

connected together by the exhaust manifold system o f the V6 NoNOx engine. For all of 

the simulations the highest exhaust boundary temperature corresponds to the period in 

which the exhaust valves will be open in the model.

Once the basic specifications for the model were decided and incorporated into the input 

files for each o f the simulations, the Vectis solver program was started. During the 

solving procedure possible errors and key calculation parameters are recorded into an 

output file; refinements to the model were then made through the adjustment o f the 

simulation parameters and the creation o f new geometries where needed.
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6.2 CFD Predictions

The three simulations o f the flow through the EOCV apparatus into the engine cylinder 

of the NoNOx V6 engine were run concurrently. On average, each simulation took 

approximately 96 hours to run to completion.

Figure 6.7 displays the cylinder pressures over the duration o f the Vectis simulations 

predicted by the Wave software. It can be seen that the Wave engine model (which 

accurately simulates the behaviour o f the V6 NoNOx engine) predicts that closing the 

EOCV’s at 580° and 540° after top dead centre, has a very similar effect on the 

predicted cylinder pressures. However, when the EOCV’s are closed at 480° after top 

dead centre, the predicted cylinder pressures for the NoNOx engine are substantial 

lower (illustrating the effect of the Miller cycle).
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Figure 6.7 -  Wave predicted cylinder pressures

Figure 6.8 displays the predicted engine inlet port pressures for the three different 

EOCV closure times. It can be seen that the closing o f the EOCV at 480° after top dead 

centre is predicted to cause substantially lower port pressures than either the 540° or 

580° EOCV closure times.
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 EOCV Closure 580 Degress  EOCV Closure 540 Degrees  EOCV Closure 480 Degrees
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Figure 6.8 -  Wave predicted port pressures

The cylinder pressures and port pressures for the three EOCV closure times predicted 

by Wave are the basis of comparison for the Vectis CFD simulations. However, the 

main purpose of a CFD simulation such as this is to allow a visualisation of the flow, in 

order to obtain a greater understanding o f the processes that occur.

The effect of operating an engine with the EOCV apparatus has an unknown effect on 

the flow into an engine cylinder. In an attempt to evaluate the effect of the EOCV 

apparatus, velocity and turbulence intensity plots for the engine’s inlet port and the 

engine cylinder will be compared for the three different closing times.
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6.3 Results Comparison

Figure 6.9 displays a sectional view through an EOCV valve, one of the two inlet ports 

to the engine, the engine cylinder and an inlet and exhaust valve. The velocity plot 

shown in Figure 6.9 is that predicted by the Vectis simulation at 450° after top dead 

centre for the EOCV closure timings o f 480°. From an examination of the velocity 

vectors it can be seen that the air flows into the cylinder through the EOCV apparatus 

with only minor recirculation zones within the valve body. The outlets from the EOCV 

apparatus exhibit predicted high local velocities, which are expected due to the size o f 

the exit ports causing a flow restriction. Within the inlet port there is a smooth flow 

towards the main inlet valve, with only a small area o f recirculation immediately after 

the merger o f the two EOCV outlets. The flow into the engine cylinder around the main 

inlet valve exhibits local high velocities, again due to the flow restriction. Within the 

engine cylinder itself there are many recirculation zones, these are desirable in a spark 

ignition engine as they promote air and fuel mixing leading to a homogenous charge 

and improved combustion.
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Figure 6.9 -  480° EOCV closure velocity plot for inlet port and cylinder, 450°
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The contents of Appendix I include a comparison between the velocity vector plots for 

the three separate EOCV closure timings. An examination of the three velocity plots for 

450° show that at this particular moment in the cycle (i.e. the EOCV apparatus are open 

in all three cases), the predicted flow pattern is nearly identical for the three separate 

simulations.

CRANKANQLE = 540 00

velocity [m/s] 50

Figure 6.10 -  480° EOCV closure velocity plot for inlet port and cylinder, 540°

Figure 6.10 displays the velocity vectors predicted by the Vectis simulation at 540° after 

top dead centre for the 480° EOCV closure time model. It can be seen in the diagram 

that the EOCV apparatus has closed, and the main inlet valve is nearly closed. In this 

particular simulation the EOCV apparatus has been closed for 60°, and the effect o f the 

valve closure can be seen within the inlet port. The flow within the inlet port is clearly 

less orderly than was seen at 450°. Comparing the velocities shown in the figure to that 

seen for the other two EOCV closure timings in Appendix I; it can be seen that in the 

480° EOCV closure case the movement o f the piston to its bottom dead centre and the 

resultant expansion of the trapped charge, has reduced the in cylinder air motion.
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The velocity vectors predicted by the Vectis simulation at 630° after top dead centre for 

the 480° EOCV closure timing model are displayed in Figure 6.11. It can be seen from 

the velocities in Figure 6.11 that the flow within the port seems to be almost random in 

nature, with the closure of both the EOCV and the main inlet valve having isolating the 

air that remains. The diagrams for the other two EOCV closure timings in Appendix I 

exhibit a similar pattern, but reduced in intensity. The earlier EOCV closure in the 480° 

simulation is likely to have reduced the total mass o f trapped air within the inlet port, 

which may have increased the speed of oscillation o f any pressure waves resulting from 

the closure o f the main inlet valve.
CRANKANQLE = 630 00

0

Figure 6.11 -  480° EOCV closure velocity plot for inlet port, 630°

Figure 6.12 displays the turbulence intensity plot for the 480° EOCV closure simulation 

case at 630° after top dead centre. It can be seen that there is a large area of turbulence 

located in the centre of the inlet port, which is significantly more intense than that for 

the other two EOCV closure timings displayed in Appendix I. From this it can be 

determined that the early closure of the EOCV apparatus, while also allowing Miller 

cycle operation, increases the turbulent kinetic energy o f the trapped air within the inlet 

port. This trapped energy could explain a problem reported by NoNOx during testing, in 

which with EOCV induced miller cycle operation, there was a measurable increase in 

temperature of the EOCV apparatus.
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Figure 6.12 -  480° EOCV closure turbulence plot for inlet port, 630°

Figures 6.13 and 6.14 display the velocity vector plots and turbulence intensity plots for 

sectional views o f the engine cylinder. The plots are results from the 480° EOCV 

closure simulation and are taken at 630° after top dead centre, which corresponds to 

halfway through the compression stroke o f  the engine cycle.

The sectional views on the left o f Figures 6.13 and 6.14 correspond to a vertical section 

through the centre o f the engine cylinder, at the top o f which the spark plug is located. 

The sections on the right o f Figures 6.13 and 6.14 correspond to a horizontal section 

through the cylinder, located approximately 2cm from the top o f the engine cylinder.

Comparing the results shown in Figure 6.13 and 6.14 to that o f the other EOCV closure 

timings in Appendix I, it can be seen that there is very little difference between the 

predicted in cylinder conditions. For all EOCV closure timings the air motion circulates 

within the engine cylinder in a similar manner, with the area o f largest turbulence 

energy being in the centre o f the cylinder volume. From this it can be determined that 

any differences that may have existed between the simulations at the completion o f the 

induction stroke, are reduced by the compression o f the air / fuel charge within the 

engine cylinder.
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Figure 6.13 -  480° EOCV closure velocity plot for engine cylinder, 630c
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Figure 6.14 -  480° EOCV closure turbulence plot for engine cylinder, 630c

Figure 6.15 displays the predicted absolute pressure for a point located centrally near 

the top o f the engine cylinder. It can be seen that the Vectis simulations predict similar 

cylinder pressures for all EOCV closure timings, even though the simulations with later 

EOCV closures should have higher pressures. Comparing the results in Figure 6.15 to 

that in Figure 6.7, it can be seen that the peak cylinder pressures (which occur at 720°, 

top dead centre) predicted by Vectis are approximately half the value of that predicted 

by Wave. With the Vectis simulations predicting a peak cylinder pressure o f 

approximately 35 bar for the three EOCV closure timings.
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 EOCV Closure 580 Degrees EOCV Closure 540 Degrees EOCV Closure 480 Degrees

3006*06

330 360 390 420 480 510 570450 540 600 630 660 690 720
Crank Angle

Figure 6 .1 5 -  Vectis CFD cylinder pressure predictions

A closure examination o f the cylinder pressures for the duration o f the induction stroke 

is shown in Figure 6.16. It can be seen from Figure 6.16 that there is only a small 

predicted difference in cylinder pressures for the three separate EOCV closure timings. 

The curve representing the earliest EOCV closure time (480°), does exhibit a noticeable 

drop in cylinder pressure following the closure o f the EOCV. The 540° and 580° EOCV 

closure pressure traces do not exhibit any noticeable change in pressure after the EOCV 

closes. The explanation for this may be that the restriction in flow leading up to the 

closure o f main inlet valve, which occurs at approximately 560°, has a larger effect on 

the flow into the cylinder than the EOCV apparatus. It is therefore evident that in order 

for a measurable Miller cycle effect to occur, the EOCV apparatus must limit a 

significant proportion of the normal flow into the cylinder, i.e. the closure of the EOCV 

apparatus must occur well before the closure o f the main inlet valves.

The inability o f the Vectis CFD simulations to produce similar in cylinder pressures to 

that of the Wave simulations (which are near to that actually measured at the NoNOx 

facility) could be due to the geometry used by the Vectis software. Examining the 

velocity vectors plotted in Figure 6.10, it can be seen that there are areas surrounding
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the spindle within the EOCV valve with predicted local velocities between 20 and 30 

m/s. This is evidence that even though the EOCV apparatus is in its closed position, the 

geometry used by the simulation has sufficient gaps for a small leakage to occur; this 

leakage may be larger than any actual leakage that occurs when the EOCV apparatus is 

fitted to an actual engine.

 EOCV Closure 580 Degrees EOCV Closure 540 D egress EOCV Closure 540 Degrees

2 30E«05

400 420 440 480 480 500 520 540 560 580
C ia *  Angie

Figure 6.16 -  Vectis CFD cylinder pressures (Induction stroke)

An examination of the velocity plots in Appendix I for the three EOCV closure times 

reveals evidence of leakage through the EOCV apparatus and possibly the main inlet 

valves of the engine. In the velocity results at 540° there is clear evidence of a small 

flow rate occurring though the EOCV apparatus for the 480° and 540° simulations, even 

though at this time the EOCV should be fully closed. There is also visible evidence o f a 

small flow back into the inlet ports from the cylinder in the 630° velocity plots. The in

cylinder pressures that are created during the compression stroke are much greater than 

the pressures within the inlet and exhaust ports o f the engine, therefore any small gaps 

in the geometry representing the inlet and exhaust valves could cause a “lack of 

compression”, leading to a substantially lower predicted peak cylinder pressure.
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6.4 Summary

In order to examine the effect o f the EOCV induced Miller cycle on conditions within 

the engine cylinder and inlet ports o f  the V6 NoNOx engine, a three-dimensional CFD 

model o f an engine cylinder was created. The geometry o f the model included the 

engine cylinder, piston, main inlet and exhaust valves, inlet ports, exhaust ports and an 

EOCV apparatus. The boundary conditions used for the cylinder model were predicted 

by a previously constructed engine model, which had been validated against actual 

engine tests with the EOCV devices.

The results o f the engine cylinder simulations showed evidence o f  larger valve leakages 

than actually would occur in a well maintained engine. To correct this problem, 

geometries with much greater local refinement around the valves would be required. 

These geometries would have a much high cell count, which would significantly 

increase the duration o f the simulation and the size o f  the generated files.

The results showing the predicted flow through the EOCV apparatus and into the engine 

cylinder provides answers to several questions that have arisen with the use o f the 

EOCV apparatus. The early EOCV valve closure required to produce Miller cycle 

operation causes a significant increase in turbulent kinetic energy o f the trapped air 

within the inlet port, which may explain the measured increase in temperature o f the 

EOCV apparatus during prolonged engine operation. From the results o f the CFD 

simulations it can be seen that the conditions within the cylinder prior to combustion are 

unaffected by the use o f the EOCV technology. The adoption o f an EOCV induced 

Miller cycle does show evidence o f  a reduction in cylinder pressure, but the 

characteristics o f  the air / fuel charge prior to combustion remain similar to that for 

normal engine operation.
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7 Diesel Test Engine Facility

Diesel powered vehicles on the market today have benefited, and will continue to 

benefit, from a great deal o f research investment. However, from the trends in 

legislation and current research discussed in Chapter 2 it is clear that the emissions from 

diesel engines will have to significantly reduce in coming years. In order for new diesel 

engines to pass the future emission standards, developments must be made in particle 

filter/trap technology and NOx absorbing catalysts.

Environmental engineering researchers at Cardiff University offer facilities capable of 

analysing exhaust gases and exhaust particulate matter (PM). In this chapter, a 

commercial heavy-duty diesel engine is considered with a view to concurrent appraisal 

o f mechanical output and emission performance (with emphasis on PM) for 

commercially available diesel fuels. Both modelling (using Ricardo Wave) and 

experimental studies have been undertaken to offer a broader, integrated approach to the 

understanding o f performance characteristics. The experimental test-bed facility 

described in this chapter was commissioned for the first time during this research 

programme, and this facility and data obtained will also serve as a bench mark for 

biodiesel analysis in Chapter 8

7.1 Diesel Engine Emissions

Modem diesel engines operate by injecting the fuel directly into the cylinder during the 

compression stroke. As the air/fuel mixture contained in the cylinder is compressed, the 

pressures and temperature conditions are eventually such as to initiate combustion. The 

initial combustion occurs rapidly due to the air/fuel charge being well mixed and the 

cylinder still compressing the ignited charge, which causes a rapid rise in cylinder 

temperature which promotes the formation o f  NOx- At high engine loads, as the 

diffusion flame continues to bum the remaining fuel in the cylinder, the injector 

continues to inject fuel. The fuel that is injected late in the combustion process is 

exposed to the hot products o f the premixed combustion and is cut off from the
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remaining air in the cylinder, leading to incomplete combustion and the potential 

formation o f soot. During the expansion stroke the majority o f the soot formed is 

oxidized by the excess air in the cylinder, with less than 20% of the soot that is formed 

actual remaining in the exhausted gases. Figure 7.1 illustrates the process involved in 

the formation o f soot particles.
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Figure 7.1 -  Formation o f soot particles in diesel combustion

Weingartner et al. (1997) and Funasaka et al. (1998) have shown that diesel powered 

vehicles are one o f the primary sources o f particulate matter (by mass) and NOx 

emissions. Recent work carried out by El-Fadel et al. (2004) in which diesel powered 

vehicles were banned in the Greater Beirut area showed average reductions in airborne 

particulate matter o f 44.9%. Severe health implications have been linked to diesel 

exhaust particles and it is because o f this that future emission legislation requires the 

reduction o f PM emissions.

The use o f cooled EGR is an effective method o f reducing the NOx emissions o f a 

diesel engine as it causes a decrease in peak cylinder temperatures. However, research 

carried out by Abu-Hamdeh (2003) showed that as a consequence the PM in the exhaust
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gases increased. While Zheng et al (2004) highlighted that the sulphuric salts, abrasives 

and corrosive substances in the re-circulated exhaust gases could cause increased 

piston-cylinder wear.

In order for new diesel powered vehicles to meet future emission targets, the use of 

advanced catalytic converters and particulate traps will be required. Currently oxidation 

catalysts are the accepted method o f reducing exhaust emissions. However, Zelenka et 

al. (1996) state that a combination o f a de-NOx catalyst and particulate trap offers the 

best solution to reducing emissions without sacrificing engine power output.

The chemical makeup o f the fuel used in diesel engines has been found to have a 

significant effect on particulate formation. Duran et al. (2003) directly linked sulphate 

oxidation and absorption by soot particles to the mass o f  retained hydrocarbons in the 

exhaust gases. Meanwhile, Durbin et al. (2003) linked the aromatic and sulphur content 

o f diesel fuel to the total hydrocarbon and PM emissions. Changes made to the British 

Standards for diesel and fuel oils (BS EN 590:2004 and BS 2869:2006) reflect the link 

between sulphur content and particulates. Current ultra low sulphur diesel can have a 

sulphur content o f up to 50 ppm, but this will be reduced to 10 ppm towards the end o f 

2009. The current sulphur content limit for Class A2 fuel oils (Agricultural and off- 

highway fuel commonly known as red diesel) is 2000 ppm, but will be reduced to 1000 

ppm from the beginning o f 2008. The polycyclic aromatic hydrocarbon (PAH) content 

o f commercial diesel fuel is limited to 11% by mass, whereas at present there is no PAH 

limit imposed for the agricultural red diesel. An interesting modification to the British 

Standards for diesel and fuel oils is the allowance o f  up to 5% by volume fatty acid 

methyl ester content, the common terminology for biodiesels.

As the sale o f diesel powered vehicles throughout Europe continues to increase, 

automotive manufacturers are spending more on new innovative technology to make 

sure their vehicles can pass future emission legislation. The relative immaturity in the 

understanding o f the impact upon health and the environment o f PM emissions, together 

with the difficulties in sampling and measurement mean that it is likely to receive 

further attention in the future.
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7.2 Test Engine Facility

The engine test-bed facility, although basic, will allow studies into engine performance, 

fuel economy and emissions testing. The test-bed facility will also be used for the 

testing o f other engines (e.g. undergraduate projects such as the ‘Formula Student’ 

competition), and so needs to be able to accommodate differing engine specifications 

and measurement requirements.

7.2.1 Turbo-Diesel Test Engine

A diesel powered engine was purchased by Cardiff University to allow research 

orientated work to be undertaken. Details o f  the engine are listed in table 7.1.

Table 7.1 -  Diesel test-engine specifications

Engine Model Perkins 1000 Series 1004-4T

Number o f Cylinders 4 in-line

Engine Displacement (Bore x Stroke) 4.0 litres (100mm x 127mm)

Rated Power Output (Speed) 83 kW - 111 bhp (2600 rev/min)

Rated Peak torque (Speed) 368 Nm -  271 lb f ft (1600 rev/min)

Compression Ratio 16:1

Firing Order 1-3-4-2

The 1004-4T Perkins engine is marketed as a 4-cylinder turbocharged diesel for 

agricultural and construction equipment. The official power and torque curves as well as 

a picture o f the engine mounted on the test-bed can be seen in Figure 7.2. Further details 

o f the engine can be seen in the specification sheet included in Appendix J.
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Figure 7.2 -  Perkins 1004-4T output curves and installation picture

The initial set o f experiments for the diesel test engine will concentrate on 

characterizing its emissions and performance, followed by the construction o f a 

computer model o f the engine in order to allow theoretical studies o f the engine’s 

operation.

The Perkins 1004-4T diesel engine is designed primarily as an engine for use in 

agricultural and construction equipment, both predominantly used off-highways. 

Therefore it is expected that the engine has been designed to run on fuel o f the red 

diesel (Class A2 fuel oil) type. Red diesel can have vastly different chemical and 

physical properties to the most common road diesel fuel - ultra low sulphur diesel fuel. 

It should therefore be expected that the characteristics o f the Perkins engine will be 

more suited to the lower Cetane rated red diesel fuel, and this can be confirmed by 

testing.
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7.2.2 Dynamometer and Control System

The dynamometer and control system components of the engine test facility were 

assembled by Ricardo Test Automation (RTA) and are designed to offer a wide range o f 

engine control options suitable for engine analysis, engine tuning and research. The 

throttle actuator was purchased from Dynamometer Services Group and when used in 

conjunction with the RTA control unit, allows precise control and monitoring o f the 

engines throttle position.

7.2.2.1 Engine Dynamometer

The Engine Dynamometer to be used in the engine test facility at Cardiff University is 

an eddy-current dynamometer manufactured by Borghi and Saved. An eddy-current 

dynamometer works using the principles o f magnetic interaction between magnetic 

coils in the stator and the rotor, which is connected to the engine via a driveshaft. The 

torque produced by the engine is measured using a load cell mounted between the stator 

and the dynamometer body. The rotational speed o f the engine is measured using an 

optical pickup and toothed gear arrangement mounted on the input shaft from the 

engine. The magnetic coils contained in the dynamometer produce a great deal o f heat 

when the engine is operating, because o f this a water cooling system is incorporated into 

the dynamometer which requires a constant supply o f fresh water. Table 7.2 shows the 

specifications o f the dynamometer whereas a picture o f the dynamometer is shown in 

Figure 7.3.

Table 7.2 -  Eddy-current dynamometer specifications

Dynamometer
Type

Shaft / Rotor 
Diameter

Max. Torque 
/ Power

Max.
Speed

Moment of 
Inertia

Torsional
Stiffness

Borghi & 
Saveri 

FE 260-s

50 mm / 
380 mm

610 Nm / 
260 HP 

(191.17 KW)

12000
RPM 0.176 kgm2 239.11 

N m/rad
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Figure 7.3 -  Picture o f dynamometer on test-bed 

7.2.2.2 Dynamometer Controller

In order for studies into engine performance and emissions to be carried out using the 

dynamometer, a control system is required that can operate both the eddy-current 

dynamometer and the engine itself. For this purpose a Series 3000 Controller 

manufactured by Ricardo Test Automation was purchased. The Series 3000 Controller 

unit contains power modules for the dynamometer and throttle actuator as well as the 

control circuitry. A picture o f the front panel o f  the Series 3000 controller is shown in 

Figure 7.4.

Figure 7.4 -  Control panel of Series 3000 controller
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The Series 3000 control system allows for the complete control o f an engines speed and 

load condition. The operating conditions o f  an engine dynamometer are characterised 

by torque and speed. At the selected speed there exists a stable condition, providing the 

dynamometer is more powerful than the engine at that selected speed. This is shown in 

graphically in Figure 7.5.

Dynamometer

Engine

Speed RPM

Figure 7.5 -  Dynamometer/engine torque/speed characteristics

From Figure 7.5 it can be seen that for every engine setting (throttle position) and 

dynamometer control setting, there is a clearly defined point o f  intersection where the 

torque/speed characteristics match. The control system’s electronics (through the 

dynamometer power module’s amplifier) control the coil current o f the dynamometer, 

providing a load for the engine.

The control cabinet allows for the complete control o f  the engine’s operating conditions. 

The engine’s running speed and load conditions are selected using the two controls 

shown in Figure 7.4. The engine’s throttle position is selected as well as the desired 

engine’s running speed, the control system then attempts to apply the correct load 

through the dynamometer such that the required speed is attained. Full details o f the 

Series 3000 controller operation and calibration can be found in the Series 3000 User 

Manual available from Ricardo Test Automation (Schenk).
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7.2.3 Emission Testing

The emission testing facilities within the engineering department at Cardiff University 

are comprehensive; with dedicated facilities for environmental sampling and large scale 

combustion tests. However, not all these facilities are suitable for sampling the 

emissions from an internal combustion engine. For the initial diesel engine tests, the 

exhaust emissions measurements taken will be compared against that stated in literature 

in order to evaluate the suitability o f the selected equipment.

7.2.3.1 Exhaust Gas Analyser

To analyse the content o f exhaust gases, a Testo 350 XL portable combustion analyzer 

will be used. The Testo exhaust gas analyzer is a portable unit designed for taking 

measurements in furnaces and combustors, and as such may not be entirely suitable for 

analysing the wide range and rapidly changing emissions o f  an internal combustion 

engine.

Figure 7.6 -  Testo 350 XL unit and probe

The Testo 350 XL gas analyser, its control unit and sampling probe is pictured in Figure 

7.6 and its specifications are listed in Table 7.3.
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Table 7.3 -  Testo 350 XL specifications

Gas
\

Properties
O2 CO NO n o 2 S02 Cx Hy

Range 0-25%
Vol.

0-10000
ppm 0-3000 ppm 0-500 ppm 0-5000 ppm 0-4%

Accuracy <0.8%
F.V.

< 5  ppm 
( 0 -9 9 )

< 5 % m.v. 
(100 - 2000)
< 10 % m.v. 

(2001 - 10000)

< 5 ppm 
( 0 - 9 9 )

< 5 % m.v. 
(100 - 2000)
< 10 % m.v. 

(2001 -  3000)

< 5 ppm 
(0 -9 9 )

< 5 % m.v. 
(500)

< 5  ppm 
(0 -9 9 )

< 5 % m.v. 
(100 - 2000)
< 10 % m.v. 

(2001 - 5000)

<0.04%  
(0 - 0.4 %) 

< 10% 
(0.41 -4 % )

Resolution 0.1 Vol. 
%

1 ppm 1 ppm 0.1 ppm 1 ppm 0.01 Vol. %

Response
Time 20s 40s 30s 40s 30s 40s

Although the Testo 350 XL analyzer purchased by the combustion department is 

capable o f measuring SO2 and CxHy, this unit was unavailable during the testing period. 

The rental unit used was not capable o f testing for these gases. Examining the accuracy 

and resolution o f the Testo 350 XL instrument listed in Table 7.3 it can be seen that the 

unit is capable o f detecting the required gases for diesel engine emission tests, namely 

CO (and therefore CO2), NOx, SOx and gaseous hydrocarbons.

The main drawback with using the Testo 350 XL instrument to analyse the exhaust 

gases from a diesel engine is the response time. For O2 detection the response time of 

the unit is twenty seconds, but for NOx detection the response time is doubled. For 

measuring the emissions during transient engine studies a response time of less than a 

second is desirable.

The Testo 350 XL unit was chosen as it is capable o f measuring the emissions from the 

diesel exhaust to a satisfactory degree o f accuracy, without the need o f sample 

preparation or the use o f a dilution tunnel facility. However for future research projects, 

instruments with quicker response times would be desirable as they would allow for the 

accurate measurement o f exhaust gas emissions during changes in engine loads and 

speed conditions.
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7.2.3.2 Mass Concentration and Particulate Sizes

There are two methods by which the particulate matter emitted from the engine is to be 

measured and quantified.

The first method is a simple mass analysis, where a calibrated pump is used to sample 

the exhaust gases. A filter paper consisting o f a three-dimensional fibre matrix acts as a 

particulate barrier, and the particulate aerosol within the exhaust gas is deposited on the 

filter through impaction, interception and diffusion. Through the correct choice o f filters 

total deposition may be achieved allowing for bulk particulate analysis to be carried out. 

The sampling pipe, filter enclosure and pump used for the bulk particulate sampling are 

shown in Figure 7.7.

Figure 7.7 -  Particulate sampling equipment

Prior to the sampling o f the exhaust particulates, each filter paper is weighed using a 

precision balance with a lOpg resolution. After the particulates are sampled over a 

predefined sampling period the filter papers are reweighed, allowing the mass o f PM 

retained by the filters to be calculated. As the flow-rate o f the sampling pump is known, 

the mass o f particulates as a function o f volumetric exhaust gas flow can be derived. 

The flow to the pump can be shut off through the use o f the valve within the sampling 

pipe, preventing the particulate matter from being sucked from the filter by the exhaust 

gas flow.
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The second method used to measure the exhaust particulates is the characterisation o f 

the particulate aerosol though the use o f  a Transmission Electron Microscope. The 

sampling tube, filter enclosure and pump shown in Figure 7.7 are again used, but this 

time with a nucleus pore filter which allows for single particle analysis. Nucleus pore 

filters consist o f  a thin polycarbonate film with a smooth surface, across which uniform 

sized holes are spaced. The holes are etched into the film through the irradiation o f the 

surface with neutrons, and any particulates larger than the holes in the nucleus pore 

filter are deposited by the exhaust gas flow.

The nucleus pore filter particulate samples must be processed following collection to 

present the particles in a suitable condition for analysis. The particulates trapped on the 

surface o f the nucleus pore filter are transferred onto a thin carbon film; the carbon film 

is only a few nanometres thick and is supported by a fine grid or mesh o f a non-reactive 

metal. In this case the prepared samples used gold mesh grids o f  5mm overall diameter. 

The carbon film is electron transparent, allowing the particles deposited to be viewed by 

an electron microscope. An alternate thermophoretic method (developed at Cardiff 

University) for sampling exhaust PM for analysis by an electron microscope is 

described by Jones (2003). For these studies it was decided that the simpler nucleus 

pore filter sampling method would be used.

The size distribution o f the PM contained on each o f  the samples studied using the 

electron microscope can be assumed to be uniform. The sizes o f the individual particles 

are often very difficult to determine, not only due to their small physical size (majority 

o f the particulates in diesel exhaust are smaller than P M jo, i.e. less than 10pm in size) 

but also their irregular aggregated shape. The term “aerodynamic diameter” is often 

used to represent the particulates size, due to the difficulty o f stating direct 

measurements. The aerodynamic diameter o f  an individual particle is the diameter o f a 

particle o f unit density possessing the same aerodynamic properties.

Through the use o f  these two particulate sampling methods it is hoped that the 

particulates contained in the exhaust from the Perkins diesel engine can be measured 

and characterised.
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7.3 Diesel Engine Testing

For the initial diesel engine tests it was decided that the emissions and performance of 

the Perkins 1004-4T diesel engine would be characterised using a Class A2 fuel oil (an 

industrial/agricultural rebated heavy oil) hereafter known as red diesel, and a widely 

available ultra low sulphur No. 2 diesel fuel. The main physical and fuel properties o f 

the two fuels used are listed in Table 7.4.

Table 7.4 -  Fuel properties

Low Sulphur Diesel Fuel Red Diesel

Density kg/m3 820-845 >820

Sulphur Content < 50 ppm < 2000 ppm

Viscosity @ 40°C g/ms 1o

2 .0 -5 .5

Flash Point °C >55 >56

Cetane Number 51 45

Examining the fuel properties listed in Table 7.4 it can be seen that the low sulphur 

diesel fuel has significantly lower sulphur content than the red diesel. However, the 

density, viscosity and flash point o f  both the fuels are similar. It is also worthwhile 

noting that the Cetane number o f  the red diesel is lower than that o f the regular diesel 

fuel; this should have a substantial effect on the combustion timing of the fuel and 

therefore the emissions that are produced. With the lower Cetane number o f the red 

diesel delaying combustion, affecting cylinder temperatures and the amount o f NOx in 

the exhaust gases.

The initial diesel engine tests were carried out with the intention o f characterising the 

performance o f the Perkins diesel engine, by comparing the measurements taken to the 

official power ratings and computational predictions. The most important comparison is 

that between the measured torque curves for the two fuels, the computer predictions and 

that provided by Perkins.
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7.3.1 Testing Procedure

For each o f the two fuels tested a series o f load-speed curves were obtained for different 

throttle (fuel pump) settings. In addition to obtaining the load/speed characteristics o f 

the engine for both fuels, seven operating points were chosen to measure the fuel 

consumption and emissions o f the engine. For the point corresponding to case 3 (80% 

throttle, 2100 RPM) particulate matter mass measurements were made and samples 

taken for examination by an electron microscope. Details o f the seven tested operating 

points are shown in Table 7.5.

Table 7.5 -  Engine operating test positions

Case
Number 1 2 3 4 5 6 7

Throttle
Position 70% 80% 80% 90% 90% 100% 100%

Engine
Speed

2000
RPM

2100
RPM

2400
RPM

2200
RPM

2500
RPM

2300
RPM

2600
RPM

The engine tests were carried out in accordance with the EEC standard 80/1269 with the 

reference atmospheric conditions o f 298 K and 99kPa (dry pressure). At all times during 

the testing, the actual atmospheric conditions during the tests were between the required 

limits, 283 K < T < 313 K and 80 kPa < ps < 110 kPa.

The power correction factor (ctd) for compression-ignition engines running at constant 

fuel rate is obtained by applying the formula 7-1.

« , = (  f a Y m (7-1)

where
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and f m is equal to 1.2 for all operating points o f the Perkins engine. Therefore the actual 

corrected power (i.e. the equivalent power when operating under reference atmospheric 

conditions) is given by equation 7-3.

P0 = a . P  (7-3)

where:

a I O VO

0.84

If  J  >

\ P s  J ^298 J

1.8

(7-4)

During each testing period, the temperature o f  the laboratory was carefully monitored 

and recorded. This, along with the published meteorological data for Cardiff during the 

testing times, allowed correction factors to be calculated for each batch o f tests. 

Throughout the month in which the tests were carried out the correction factor varied 

from 0.9057 to 0.9525.

In order for approximate fuel flow-rates to be calculated, a digital scale is used to 

measure the fuel usage by mass over a prolonged period o f  time for each o f the 

individual engine operating positions.

The exhaust gases from the diesel engine flow into a sampling cabinet o f 0.38 cubic 

metres volume before they are extracted to the buildings exterior. An opening in the 

cabinet allowed the sampling probe o f  the Testo instrument to protrude into the 

sampling volume for the gaseous emission readings to be taken. The same cabinet 

opening is used for the sampling tube for the particulate measurements.
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7.3.2 Dynamometer Results

The measured torque curves at 70%, 80%, 90% and 100% fuel pump settings for both 

diesel test fuels are shown in Figure 7.8. It can be seen that from the raw measured 

values, the low sulphur commercial diesel fuel produces slightly less power than the 

less refined red diesel rebated fuel oil.
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Figure 7.8 -  Comparison o f torque / speed relationship for both diesel fuels

From Figure 7.8 it can clearly be seen that for all o f the separate engine throttle 

positions, the engine appeared to produce higher torque figures when it was run on the 

red diesel fuel. However, the laboratory temperature was slightly colder on the day 

when the red diesel readings were taken. In addition to the slight difference in 

temperature between tests, the ambient air pressure in the laboratory was also 

significantly higher on the day o f the red diesel tests to that o f the low sulphur diesel 

tests.

In order for a fair comparison to be made between the two fuels, dynamometer 

correction factors were applied in accordance with the EEC 80/1269 directive relating 

to the engine power o f motor vehicles. The corrected torque and BHP values for the two 

test fuels are compared for the seven test cases in Figures 7.9.
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Figure 7.9 -  Corrected diesel performance comparison

From Figure 7.9 it can be seen that once the differences in ambient laboratory 

conditions are taken into account, the torque produced by the engine is much higher for 

many o f the test cases when the engine is fuelled by the commercial low sulphur diesel 

fuel. This can be explained by the fact that commercial low sulphur diesel fuels tend to 

have higher heating values than that used for agricultural purposes.

The results shown in Figure 7.10 compare the measured fuel flow rate for the seven 

engine operating points described in Table 7.5. From the fuel flow rate values and the 

calculated corrected power values, approximate values for the fuel energy content can 

be obtained for each fuel over the seven test cases.

7-17



Diesel Test Engine Facility

-a-L o w  SUphir Diesel - b-  Red Diesel

2

2

iM
I
I

is

ra

5
J 31 4 S 6 7

45

4J)

0
1 31
2

30 1 3 3 5 6 7

Figure 7.10 -  Fuel flow rate and attributed energy value comparison

It can be seen from the comparisons shown in Figure 7.10, that in the majority o f the 

cases the measured fuel flow rate values are higher for the red diesel fuel than for the 

commercial low sulphur diesel fuel. From the fuel energy content values that have been 

attributed to the two fuels for each o f the test cases, it can be seen that in all cases 

except case number 1, the commercial low sulphur diesel fuel produced higher power 

values (per kilogram o f fuel used by the engine).

Examining Figure 7.10 reveals that there is a large variation between test cases in the 

values obtained for the fuel energy content for each o f the diesel fuels. This can be 

explained by the fact that each o f the engine operating points represented by the test 

cases will have vastly different air to fuel ratios. The values obtained for the fuel energy 

content are higher for the commercial low sulphur diesel fuel than for the agricultural 

red diesel fuel, this again can be attributed to the higher heating values o f the 

commercial diesel fuel.
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7.3.3 Exhaust Gas Results

Figure 7.11 compares the values obtained from measuring the CO2 and NOx emissions 

for each o f the two diesel fuels at the seven operating points.
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Figure 7.11 -  Exhaust emission comparison

From the graphical comparison made in Figure 7.11 between the emissions measured 

for the commercial diesel and agricultural diesel fuel, it can be seen that in general the 

agricultural red diesel fuel produces higher levels o f CO2 and NOx- The higher CO2 

levels could possibly indicate a higher percentage o f carbon in the agricultural red diesel 

fuel, although this contradicts Lapuerta et al. (2003) who found that agricultural diesel 

contained 0.5% less carbon by weight than commercial diesel. The higher NOx values 

recorded with the agricultural diesel fuel can be explained by the higher cetane number 

o f  the commercial diesel fuel, which reduces the fuel’s ignition delay. This delay may 

reduce the NOx formation by lowering the peak cylinder temperatures.
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7.3.4 Exhaust Particulate Results

Using the equipment shown in Figure 7.7, particulate samples were taken from the 

exhaust gases when the engine was running at 2100 RPM with an 80% throttle setting. 

From the measurements taken, approximate values could be determined for the 

particulate mass concentrations. The particulate concentration in the exhaust o f the 

agricultural red diesel was 0.0536 ±0.0040 mg/litre, while the value for the commercial 

low sulphur diesel fuel was 0.0502 ±0.0037 mg/litre. It can therefore be determined that 

an engine will produce more particulate matter when running on the red agricultural red 

diesel fuel than would be produced on commercial low sulphur diesel fuel.

The mechanisms o f  soot formation and the reactions in which the soot particles are 

oxidized in the exhaust gases o f  internal combustion engines are made more 

complicated by the presence o f  gaseous pollutants. The comparatively large sulphur 

content o f the red diesel (class A2 fuel oil), when compared to the commercial low 

sulphur diesel, causes a significantly higher concentration o f  SOx in the exhaust gases. 

As commented on by Duran et al. (2003) and Chughtai et al. (1998), the presence o f 

sulphur species during and after combustion leads to reactions in which SO2 is absorbed 

by the soot particles, reducing the available surface area on the soot particles for 

oxidation to occur. Therefore, a link can be made between the sulphur content o f the 

fuel, and the proportion o f  the soot particles that remain in the exhaust gases. With 

higher sulphur content fuels producing more particulate matter by mass.

Figure 7.12 compares electron microscopy images o f  the particulate matter samples 

obtained from the exhaust o f the diesel engine for both o f the fuels. The images are 

taken at 26,000 and 235,000 times magnification, and show not only the large soot 

agglomerates but also the individual soot particles contained within the exhaust gases 

(see Figure 7.1 for mechanism o f  soot particle formation). It can be seen from Figure

7.12 (and the additional images in Appendices K and L), that the individual soot 

particles that make up a proportion o f  the particulate matter for both o f the fuels tested 

are similar in nature, with the individual particles while only being 20 nm in magnitude 

joining together in the hundreds to form much larger soot particles.
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Low Sulphur Diesel Red Diesel

Figure 7.12 -  Electron microscopy images o f soot particles

Assuming that the particles seen in the images in Figure 7.12 are a fair representation o f 

the PM contained in the exhaust gases, it can be concluded that the particulates emitted 

have similar size distributions. Studies such as that carried out by Duran et al. (2004) 

found that an increase in sulphur concentration in

a fuel is linked to an increase in the size o f PM in the exhaust gases. The exact size 

distribution can only be accurately measured through the use o f particle sizing 

equipment that can measure a suitably large number o f particles so as to be statistically 

robust - no such equipment was available at Cardiff University at the time o f this 

section o f study.
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7.4 Diesel Engine Model

From the results discussed in section 7.3, it can be seen that the engine testing facility 

constructed by C ardiff University can be used to carry out investigations into engine 

operation, fuel effects and emission studies. In addition to carrying out introductory 

investigations into the operation o f a turbocharged Perkins diesel engine, it was decided 

that a computer model o f  the engine should be constructed to allow further detailed 

investigations into its operation.

7.4.1 Diesel Engine Model Construction

The Ricardo Wave software used to construct a model o f the Deutz 1015 marine engine 

for the MagMove project was used to construct a detailed model o f the Perkins 1004-4T 

turbo diesel engine.

Using detailed engine geometry provided by Perkins, the engine model shown in Figure

7.13 was constructed. It can be seen from Figure 7.13 that the geometry of the Perkins 

engine is fairly simple; with the fresh air being forced by the compressor o f the 

turbocharger into a large plenum chamber which feeds each o f the four engine 

cylinders. A simple 4-2-1 manifold is used to collect the exhaust gases, which then pass 

through the turbine before being vented to atmosphere through a simple exhaust. All the 

required information for valve-lifts and flow coefficients for the engine were provided 

by Perkins and incorporated into the model.
Exhaust Manifold

Inlet Plenum

TurbineInlet Ambient

Engine Cylinder

" Compressor 
Figure 7.13 -  Wave Perkins engine model
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Using information provided by Perkins and Garrett, the turbine and compressor maps 

were constructed for the TA3123 turbocharger unit installed on the Perkins 1004-4T 

engine. The compressor and turbine maps generated by the TCMAP software are shown 

in Figure 7.14.

i - P.»*

Figure 7.14 -  Perkins turbocharger maps

The completed Perkins engine model is capable o f predicting the performance o f the 

actual test engine, therefore allowing changes in geometry o f  future exhaust and inlet 

modifications to be tested without the need for time consuming dynamometer testing.

The results o f computer models such as Wave can be very helpful when investigations 

into the effect o f  significant engine modifications are to be carried out. However, the 

method by which Wave models the combustion of diesel fuels (while allowing for 

predictions o f NOx and CO emissions) does not take into account the effects o f fuel 

impurities such as sulphur on gaseous and particulate emissions, and therefore the use 

o f the computer model is limited when fuel effects are to be investigated. Due to the fact 

that the sulphur content o f  a diesel fuel is not a factor taken into account by Wave, it is 

only possible to carry out a generalised diesel fuel analysis, using a generic diesel fuel.

7-23



Diesel Test Engine Facility

7.4.2 Diesel Engine Results

Figure 7.15 displays the predicted variation in power output o f the Perkins 1004-4T 

diesel engine with equivalence ratio and engine speed. It can be seen from Figure 7.15 

that the predicted maximum power occurs with an approximate speed o f 2350 RPM, 

and with an equivalence ratio o f  about 0.72. In reality however, the Perkins engine 

probably operates with much lower equivalence ratios (leaner air to fuel mixtures). This 

therefore explains how the rated power o f  the engine is lower than the Wave predicted 

maximum.
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Figure 7.15 -  Predicted BHP variation

Appendix M contains the predicted variation in brake efficiency, torque, fuel 

consumption, carbon monoxide emission, hydrocarbon emission and NOx emission 

with equivalence ratio and engine speed. Using the output values from the Wave 

simulation a comparison can be made between the measured values for both the ultra 

low sulphur commercial diesel fuel, the agricultural red diesel (class A2 fuel oil) and the 

predicted values from the Wave software for a generic diesel fuel simulation. Table 7.6 

displays a comparison o f  the measured values from dynamometer testing and the 

predicted values from the Wave computer model.
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Table 7.6 -  Dyno test and Wave software comparison

Case Number 1 2 3 4 5 6 7

Dyno Test Fuel Commercial Ultra Low Sulphur Diesel Fuel
Power (BHP) 35.58 99.27 97.27 101.29 104.37 101.50 105.90
Torque (Nm) 126.68 336.61 288.61 327.85 297.28 314.23 290.04
Fuel Flow rate (kg/hr) 8.43 17.95 18.85 18.63 20.07 18.81 20.27
NOx Emissions (PPM) 275 1537 1146 1408 1066 1449 1058
PM Mass (mg/litre) - 0.0502 - - - - -

Dyno Test Fuel Agricu tural Rec Diesel (class A2 fuel oil)
Power (BHP) 33.07 97.49 91.27 97.94 104.30 100.63 106.15
Torque (Nm) 117.74 330.58 270.80 317.00 297.07 311.56 290.74
Fuel Flow rate (kg/hr) 7.18 18.21 18.27 19.05 21.64 19.78 22.36
NOx Emissions (PPM) 346 1646 1023 1818 1572 1411 1510
PM Mass (mg/litre) - 0.0536 - - - - -

Wave Simulation Results
Power (BHP) 33.71 97.64 94.37 98.84 104.25 100.76 105.92

Torque (Nm) 120.0 331.0 280.0 320.0 297.0 312.0 290.0

Brake Efficiency (%) 31.38 37.03 34.67 36.35 34.00 35.65 33.13

Fuel Flow rate (kg/hr) 6.72 16.50 17.04 17.00 19.21 17.67 20.03

NOx Emissions (PPM) 1192 2072 1967 2050 2065 2055 2076

HC Emission (kg/hr) 3.23 7.80 8.04 8.04 9.06 8.35 9.43

From the results shown in Table 7.6 it can be seen that the predicted fuel flow rates to 

achieve comparable torque and power figures are lower than the values measured 

during the testing o f the engine for both diesel fuels. In addition to this, it can be seen 

that the predicted levels o f  NOx are far higher than the measured values; this indicates 

that the method in which the combustion process is initiated and simulated in the engine 

model is possibly causing higher cylinder temperatures than actually occur in the 

engine.

It can be seen from the results obtained from the Wave engine model o f the Perkins 

diesel engine, that computer simulations can provide an alternative method to practical 

testing to investigate the changes that occur in engine behaviour. However, physical
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engine testing is required to validate engine model results and provide detailed 

information to allow model improvements to be made for future investigations.

7.5 Summary

An engine test-bed facility was commissioned and used to investigate the emissions and 

performance o f  a 4-cylinder turbocharged diesel engine manufactured by Perkins. The 

gaseous and particulate emissions o f  the engine were measured for both a commercially 

available low sulphur diesel fuel and a Class A2 rebated heavy oil (red diesel).

It was found that the corrected torque values were higher when the engine was fuelled 

with the low sulphur diesel fuel; this was attributed to the low sulphur diesel fuel having 

a higher heating value than the red diesel fuel. From comparing the measurements made 

o f the exhaust gases for both o f  the fuels, it was found that the red diesel fuel produced 

higher values o f  CO 2 and NOx as well as producing a higher mass concentration o f 

exhaust particulates.

A computer model o f  the Perkins diesel engine was constructed, the predictions o f 

which were compared to the measured values obtained from the test-bed investigation. 

The computer model simulated the behaviour o f the Perkins diesel engine with a 

reasonable degree o f  accuracy. However, the limitations o f the Wave software with 

regards to simulating combustion were highlighted, primarily due to the software’s 

inability to take into account the effect o f  fuel sulphur content on emissions.
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8 Biodiesel Engine Performance

The use o f biomass derived liquid fuels in internal combustion engines is not a new 

notion. Indeed, many o f  the first internal combustion engines were capable o f running 

on a wide variety o f liquid fuels. The use o f biomass derived alcohols as an alternative 

to petrol is a fairly common occurrence world wide, and a great deal o f research is being 

carried out searching for the diesel equivalent.

Biomass derived fuels for compression ignition engines vary widely in chemical 

properties, manufacture and performance. However, it is the methyl esters o f vegetable 

oils that have shown the greatest compatibility with modem compression ignition 

engines. Here, a range o f  biodiesel blends is assessed in terms o f mechanical 

performance and emissions. Both simulation and new data are presented and compared 

for the Perkins engine described in Chapter 7, with particular attention being paid to 

measurement and characterisation o f particulate matter. From the combined set o f 

results, conclusions are drawn concerning the potential o f biodiesel utilisation

8.1 Performance and Emissions of Biodiesel

The phrase ‘Biodiesel’ refers to the methyl esters o f many different vegetable oils, the 

most common being rapeseed methyl ester and sunflower seed methyl ester. Methyl 

esters have significantly better fuel properties than the raw (biomass derived) oils due to 

reductions in viscosity and density and improved stability. Altin et al. (2001) showed 

that the esterification o f vegetable oils such as sunflower and soybean improved the 

torque and reduced fuel consumption compared to the raw oils; however emissions o f 

CO2 and NOx increased with esterification while CO and smoke emissions were 

reduced.

Lapuerta et al. (2003) showed that for increasing concentrations o f sunflower seed 

methyl ester and cardoon methyl ester a decrease in brake mean effective pressure and 

insoluble particulates emission occurred. The reduction in emissions was attributed to
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the additional oxygen content o f  the biodiesel as well as the reduction in aromatic and 

sulphur content.

From the research carried out by Monyem et al. (2001) and Carraretto et al. (2004) it 

was concluded that an increasing content o f  biodiesel in No. 2 diesel fuel reduced the 

particulate matter, total hydrocarbon and CO emissions while increasing the NOx 

emissions. The work by Monyem et al. (2001) also showed that the oxidization of 

biodiesel had no detrimental effects on performance or emissions. Schumacher et al. 

(1996) while finding similar results also found that a delay in the injection timing when 

using biodiesel was beneficial, as it reduced the NOx emissions while still retaining the 

reductions in other emissions (this was shown to be due to a reduction in peak cylinder 

pressures). Kalligeros et al. (2003) found that for a large single cylinder diesel engine 

the substitution o f diesel fuel with sunflower oil methyl ester or olive oil methyl ester 

decreased the particulate matter, CO, NOx and hydrocarbon emissions, the only 

drawback was a slight increase in fuel consumption.

(^etinkaya et al. (2005) compared the performance o f used cooking oil derived biodiesel 

to that o f No. 2 diesel fuel. The comparison showed a significant reduction in torque 

(compared to that for diesel fuel) throughout the speed range o f the engine when the 

engine was fuelled with biodiesel. The fuel consumption per engine stroke was 

comparable between the two fuels while the exhaust gas temperature was significantly 

lower with biodiesel. The work carried out by (^etinkaya et al. (2005) also highlighted 

possible problems with injector carbonization and clogging o f the catalytic converter 

when biodiesel is used.

It can be seen from the changes made to the standards for diesel fuel (BS EN 590:2004) 

and agricultural/industrial fuel oils (BS 2869:2006) that biomass derived fuel for diesel 

engines are set to become an increasingly important resource in the future. At present up 

to 5% by volume o f  Fatty Acid Methyl Ester (FAME) conforming to the appropriate 

standard (BS EN 14214:2003) is allowed in both commercial diesel fuel and non

highway fuel oils. However, in the future, it is reasonable to assume that this proportion 

will increase as vehicle manufacturers approve the use o f higher percentage mixtures.
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8.2 Biodiesel Manufacture

The base catalyzed transesterification method o f biodiesel production is the most widely 

used today, due to high relative yields and the good economics o f the process. The 

transesterification process involves the reaction o f triglycerides (vegetable or animal 

fats and oils) with an alcohol in the presence o f a catalyst (usually a strong alkaline) to 

form esters (biodiesel) and glycerol. The process for the conversion o f vegetable oils 

into biodiesel is illustrated in Figure 8.1.

Vegetable oils

Methanol 
and KOH

>  Crude Glycerin
Crude Biodiesel

Refining

T ransesterification

Methanol
Recovery

Glycerin Refining

Biodiesel Glycerin

Figure 8.1 - Biodiesel production

Further details o f  biodiesel production methods are described by Demirba§ (2003), 

Alcantara et al. (2000), Bozbas (in print, 2006), CvengroS and Povaianec (1996) and 

CvengroS and CvengroSova (2004). The basic method o f  biodiesel production involves 

several separate stages, the first stage being the preparation o f the oil through filtration, 

washing and drying. The cleaned and filtered oil is then added to a mixture o f alcohol 

and catalyst (typically methanol and potassium hydroxide). The mixture is then heated 

to speed up the transesterification reaction. The crude glycerine (which is o f much 

higher density than the biodiesel) is separated out, and then refined to remove un

reacted alcohol and unused catalyst. The biodiesel fraction is also refined to remove 

excess alcohol and is then sometimes washed and dried before being stored.
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8.3 Engine Model Predictions

The construction o f  the Wave engine model o f the Perkins 1004-4T Cardiff diesel test is 

described in section 7.4. Various blends o f a widely available ultra low sulphur diesel 

fuel and used cooking oil originated biodiesel are to be tested to characterize the 

performance variations and emissions. The biodiesel to be used is manufactured by 

Sundance Renewables, and meets the ASTM B100 and BS EN 14214:2003 biodiesel 

standards. The fuel’s exact chemical makeup is unknown but the used oils from which it 

is produced are mainly o f  the sunflower seed and rapeseed type.

8.3.1 Fuel Properties

The Wave engine model requires detailed chemical and physical information o f the 

fuels to be used. Table 8.1 compares the properties of the ultra low sulphur diesel fuel to 

values for a B100 FAME biodiesel.

Table 8.1 -  No. 2 Diesel and Biodiesel fuel properties

No. 2 Diesel Fuel Biodiesel Fuel

Density at 15°C kg/m3 820 - 845 860 - 900

Specific heat J/kg/K 1675 2030

Viscosity at 40°C mm2/s © 1 l/i 3 .5 -5 .0

Heat o f Vaporization J/kg -220000 -197000

Lower Heat Value MJ/kg 42.80 37.39

Composition C 15.0 19.5

H 25.05 36.4

O 0 2.35

Sulphur Content PPM < 5 0 < 1 0

Cetane Number >51 >51
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Examinations o f the properties o f diesel and biodiesel shown in Table 8.1 show that the 

two fuels have similar heating values and liquid properties. There is a significant 

difference in chemical composition, with the biodiesel on average being made up o f 

larger hydrocarbon molecules containing some oxygen. From the references in 

literature, the values o f  the Cetane number for both commercial diesel fuels and 

biodiesel fuels vary considerably, probably due to global differences in manufacturing 

However, in general the Cetane numbers for the two fuels are very similar.

From data presented by Yuan et al (2003) and Maxwell (1951) the variation o f specific 

heat capacity, vapour pressure, viscosity and surface tension with temperature are 

shown in Figure 8.2 for both the commercial low sulphur diesel fuel and the B100 

biodiesel - these values are also required by the Wave software.
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Figure 8.2 -  Variation o f  physical properties o f No. 2 Diesel and B100 Biodiesel fuels

From Figure 8.2, the variation in the specific heat capacity o f diesel and biodiesel with 

temperature can be seen to be very similar. However, the viscosity o f the biodiesel fuel 

at low temperatures is significantly higher than that for diesel fuel. There also seems to
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be marked differences in the variation o f vapour pressure and surface tension with 

temperature for the two fuels.

Figure 8.3 illustrates the variation in fuel properties o f different blends o f biodiesel in 

low sulphur diesel fuel.
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Figure 8.3 -  Biodiesel blend properties

The effect o f the oxygen content in the biodiesel becomes apparent when the change in 

stoichiometric air / fuel ratio with percentage biodiesel by mass (shown in Figure 8.3) is 

examined. As the percentage o f biodiesel in the fuel mixture increases the air required
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for combustion decreases; pure low sulphur diesel fuel requires an air / fuel ratio of 

14.22:1, while pure biodiesel only requires an air / fuel ratio o f 12.21:1.

Figure 8.3 also shows how the molecular weight o f  the fuel increases and the lower heat 

value decreases as the percentage by mass o f biodiesel increases. As the biodiesel 

percentage o f the fuel mixture increases, the percentage by mass o f the fuel that is 

carbon decreases, even though the average fuel molecule contains a higher number of 

carbon atoms. However, if  a stoichiometric mixture o f fuel and air is considered; as the 

percentage o f biodiesel in the fuel increases, the total percentage o f carbon in the 

air/fuel mixture increases from 29 %  (for a pure diesel and air mixture) to 35% (for a 

pure biodiesel and air mixture).
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8.3.2 Engine Model Results

Using fuel files generated for mixtures o f  the low sulphur diesel and biodiesel fuels, 

simulations were carried out with engine speeds ranging from 1500 -  2600 RPM, and 

equivalence ratios between 0.1 and 0.8.

Figures 8.4 -  8.7 show how the brake torque, fuel economy, CO and NOx vary with 

biodiesel percentage and equivalence ratios at an engine speed o f 2600 RPM. As 

expected for the Perkins diesel engine, Figure 8.4 shows that the torque values increase 

as the equivalence ratios near 0.8. It can also be seen from the Wave predictions that for 

the same equivalence ratio, the torque values are slightly higher for diesel / biodiesel 

fuel mixtures containing between 25 % and 50 %  biodiesel. There are however some 

anomalous results for diesel / biodiesel fuel mixtures containing around 7 5  %  biodiesel 

by volume, with the torque predicted at high equivalence ratios being lower than that for 

fuel mixtures with both more and less biodiesel content. This may be due to the inlet or 

exhaust system o f  the engine not being ‘tuned’ for the precise flow rates and velocities 

o f the inlet air / exhaust gases that occur at these operating points.

What can be determined from the results shown in Figure 8.4 is that torque is only 

marginally affected by biodiesel content, as long as the overall equivalence ratio 

remains constant. This reveals that the total energy content o f  the diesel and biodiesel 

fuel charges (i.e. mixture o f fuel and air within engine cylinder prior to ignition) are 

similar even though the energy content o f  the biodiesel fuel is significantly lower than 

that o f the diesel fuel.

An examination o f the results shown in Figure 8.5 reveals that in order to keep the same 

equivalence ratios (and therefore similar power outputs), a higher fuel flow rate is 

required as the biodiesel content increases. From this it can be determined for the use o f 

biodiesel in an actual running engine, unless modifications are made to the fuel pump 

settings to increase fuel flow rate, the power developed is likely to decrease.
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Figure 8.5 -  Variation o f  fuel economy with biodiesel percentage

The variation in the predicted emission o f  CO with the equivalence ratio and biodiesel 

content is shown in Figure 8.6. There is very little variation in the amount o f  CO 

emitted with the percentage o f  biodiesel in the fuel mixture. Even though there is a 

much higher percentage carbon in the air fuel mixture for the biodiesel fuel than the 

diesel fuel, this has not caused an increase in the amount o f carbon emitted as carbon
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monoxide. For air-fuel mixtures closer to stoichiometric conditions, the emission o f 

carbon monoxide may be higher for the biodiesel fuel than the diesel fuel, but as diesel 

engines predominantly operate with large amounts o f excess air this is unlikely to be 

seen in an actual running engine.
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Figure 8.6 -  Variation o f  CO emissions with biodiesel percentage

Figure 8.7 displays the predicted emission o f NOx with increasing content o f biodiesel. 

It can be seen from Figure 8.7 that for higher percentage diesel fuel mixtures are 

predicted to produce more NOx than the fuel mixtures composed mainly o f biodiesel. 

However, it should be noted that the simulated injection timing in the computer model 

is not varied for increasing biodiesel fuel content, whereas the different fuel properties 

o f biodiesel fuel to diesel fuel can lead to significantly different injection characteristics. 

In an actual engine this affects the injection timing and thus the combustion o f the fuel. 

As the production o f  NOx is directly linked to combustion timing, further computer 

model refinements are required if  investigations into NOx emissions are to be carried 

out.
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Figure 8.8 -  Variation o f predicted HC with biodiesel percentage

The variation in emission o f unbumed hydrocarbon with biodiesel content and 

equivalence ratio is shown in Figure 8.8. It can be seen that as the percentage of 

biodiesel increases, the predicted amount o f  unbumed hydrocarbons in the exhaust 

increases. This is likely to be due to the reduction in the stoichiometric air/fuel ratio for 

mixtures o f increasing biodiesel content.
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8.4 Engine Testing

After the promising results o f the computer simulations, the Perkins 1004-4T engine 

testing facility described in Chapter 7 has been utilised to consolidate the appraisal o f 

the benefits o f  using biodiesel fuel blends. The fuels and fuel blends to be tested are a 

pure commercial ultra low sulphur diesel fuel, blends o f 10%, 30% and 50% B 100 by 

mass with No. 2 low sulphur diesel fuel and the pure B100 biodiesel fuel. Figure 8.9 

shows samples o f each o f the fuels and fuel blends.

No. 2 Diesel Fuel 10% Biodiesel 30% Biodiesel 50% Biodiesel B100 Biodiesel 

Figure 8.9 -  Biodiesel and diesel fuels and blends

Figure 8.9 shows the dramatic difference in colour and transparency between the pure 

commercial ultra low sulphur diesel fuel, various blends o f low sulphur diesel fuel and 

B100 biodiesel and the pure B100 biodiesel fuel.

As the percentage o f biodiesel in the low sulphur diesel fuel increases, in addition to the 

predicted change in properties shown in Figures 8.2 and 8.3, there are other noticeable 

changes in the viscosity (when it is being poured) and odour o f the fuel. The biodiesel 

has a noticeably sweet odour compared to the distinctive sharpness o f the low sulphur 

diesel fuel.

Each o f the fuels were mixed immediately prior to being used, and were thoroughly 

shaken to prevent separation.
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8.4.1 Dynamometer Results

The same testing procedure that was used for the diesel engine tests (Chapter 7) was 

used to test the three blends o f  low-sulphur-diesel / biodiesel and the pure B100 

biodiesel fuel. For each o f  the fuels a series o f load-speed curves were obtained for 

different throttle (fuel pump) settings. The seven operating test points previously used 

were again chosen to measure the fuel consumption and emissions o f the engine. For the 

point corresponding to case 3 (80% throttle, 2100 RPM), the particulate matter mass 

measurements were again made and samples taken for examination by electron 

microscope - details o f  the seven tested operating points are shown in Table 7.5. In 

addition, a Cambustion DM S500 particle sizer was used to analyse the particulate 

aerosol for the low sulphur diesel fuel and B100 biodiesel at the operating conditions 

specified by case 3. The results obtained from the testing o f the exhaust gases using 

contemporary on-line PM analysis methodology can be compared with that obtained 

from the arguably more rigorous -  though more time intensive -  offline analysis 

technique.

All engine tests were again carried out in accordance to the EEC standard 80/1269 with 

the reference atmospheric conditions o f  298 K and 99kPa (dry pressure). During the 

testing period, the actual atmospheric conditions were between the required limits, 283 

K < T < 3 1 3  K and 80 kPa < ps < 110 kPa. The temperature o f the laboratory was 

carefully monitored and recorded during each testing period, allowing correction factors 

to be calculated for each batch o f  tests. Approximate fuel flow-rates were calculated 

using a digital scale by m easuring the mass o f  fuel used over a prolonged period of 

time, for each o f  the individual engine operating positions.

A Testo 350 XL portable gas analyser was used to monitor the exhaust gases from the 

diesel engine flow, sampling the exhaust gases from a cabinet o f 0.38 cubic metres 

volume. Particulate measurements were taken for each o f the fuel blends from the same 

cabinet using the sampling equipment shown in Figure 7.7. The DMS500 equipment 

sampled the exhaust gases from an orifice placed directly after the turbocharger exit, 

with the exhaust gases being diluted to appropriate levels within the instrument.
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Figure 8.10 -  Measured torque outputs for Diesel / Biodiesel blends

Figure 8.10 shows the corrected torque produced by the Perkins diesel engine at the 

seven operating test points for each o f the fuels being compared. It can quite clearly be 

seen that the low sulphur diesel fuel produces the most torque, and the pure B100 

biodiesel fuel produces the least torque. A general trend can also be seen in which there 

is a gradual decrease in corrected torque developed by the engine as the percentage o f 

biodiesel in the fuel mixture increases.
-m - Low Sulphur Diesel -* -10%  Bio - * —3014 Bio 50% Bn - — 100% Bio

400

Comparing the sets o f  results displayed in Figure 8.11 (results published by Carraretto 

et al. (2004) and results obtained from tests at Cardiff), it can be seen that in both cases 

the torque developed by an engine decreases with the increase in concentration o f 

biodiesel in the commercial diesel fuel. The Cardiff results shown in Figure 8.11 are for 

an 80% throttle setting, but as for all the results obtained using the Perkins engine, a 

very flat torque curve can be seen between 1800 and 2300 RPM. This is likely to be 

caused by the use o f  a turbocharger with no waste gate. The results shown for the 

investigation carried out by Carraretto et al. (2004) exhibit the typical characteristics o f 

a naturally aspirated engine, with the torque curve exhibiting a definite peak torque 

value. The results shown in Figures 8.10 and 8.11 indicate that the addition o f the waste 

vegetable oil derived biodiesel to diesel fuel reduces the resultant torque produced by an 

engine. These results agree with a large proportion o f results in published literature.
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Figure 8.11 -  Torque curve comparison

The measured fuel flow rate for the Perkins engine operating at the seven different 

operating points for each o f  the aforementioned fuel blends in shown in Figure 8.12. It 

is shown that as an increasing concentration o f  biodiesel is used in the fuel mixture, the 

total amount o f fuel used by the engine increases, even though (as can be seen from 

Figure 8.10) the torque produced by the engine decreases. The increase in overall fuel 

consumption with the percentage o f  biodiesel in the fuel seen here agrees with the 

trends reported in the literature.

- b - L ow Sulphur Diesel 10% Bio -* -3 0 %  Bio -«~50%Bio 100% Bio
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Figure 8.12 -  Measured fuel flow rate comparison
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8.4.2 Exhaust Gas Results

The results shown in Figure 8.13 and 8.14 were obtained through monitoring the 

exhaust gases from the diesel engine utilising the Testo 350 XL portable gas analyser. 

Figure 8.13 displays the variation in the CO 2 concentration in the exhaust gases for the 

seven tested operating points. I f  a comparison is made between the CO2 concentration 

curves seen in Figure 8.13 and the corrected torque curves seen in Figure 8.10, a clear
V *

pattern emerges. The operating points with higher load conditions (cases 2, 4 and 6) 

produce the highest concentration o f  CO 2 in the exhaust gases, indicating that when 

running at these settings the engine may be using a higher equivalence ratio (richer 

air/fuel mixture).

It can also be seen that the increase in biodiesel concentration, while reducing torque, 

increases the amount o f  CO 2 produced. The most likely reason for this increase in 

exhaust CO2 concentration can be seen from Figure 8.3, in which the percentage carbon 

in the air/fuel mixture increases significantly as the percentage o f biodiesel in the fuel 

increases; this leads to an increase in production o f exhaust CO2 , even if ‘perfect’ 

combustion is achieved. However, when interpreting the exhaust CO2 results, it must be 

considered that the biomass derived biodiesel fuel is regarded as carbon neutral.

- a -  Low Sulphur Diese) 10% Bo -* -3 0 %  Bio 50% Bio — 100% Bio
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8
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Figure 8.13 -  Measured exhaust CO2 concentration
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Figure 8 .1 4 -  NOx exhaust gas concentration

The measured exhaust gas NOx concentration for the seven test cases is shown in 

Figure 8.14. It can again be seen that at the higher loaded operating points, the 

concentration o f the pollutant in the exhaust gases increases. The production o f NOx is 

predominantly linked to high cylinder temperatures, and at high load conditions more 

fuel is required, which releases more energy during the combustion process. An 

examination o f the effect o f  biodiesel concentration on the production o f NOx reveals 

that higher concentrations o f  NOx are present in the exhaust gases o f fuels containing a 

higher biodiesel percentage.

A majority o f  the related publications also found that the addition o f biodiesel to diesel 

fuel causes an increase in the concentration of exhaust gas NOx- It is believed that the 

explanation for this increase in NOx formation is the difference in injection properties 

o f biodiesel to standard commercial diesel. Biodiesel, while having a similar density to 

commercial diesel fuel, has noticeably higher viscosity and surface tension values (see 

Figure 8.2). The difference in the fuel properties of biodiesel to standard diesel fuel 

effectively causes earlier ignition timing, which increases the peak cylinder 

temperatures, in turn increasing the production of thermal NOx-

8-17



Biodiesel Engine Performance

8.4.3 Exhaust Particulate Measurement

Using the equipment shown in Figure 7.7, particulate samples for each fuel mixture 

were taken from the exhaust gases when the engine was running at 2100 RPM with an 

80% throttle setting. When the samples were taken from the exhaust gases o f  the 

biodiesel blends, the PM trapped by the filter papers was noticeably of a much higher 

liquid fraction than that for the low sulphur diesel fuel, and due to this the samples were 

left for 24 hours before mass measurements were taken. From the measurements taken, 

approximate values could be determined for the particulate mass concentrations and 

these are tabulated in Table 8.2.

Table 8.2 -  PM mass measurement comparison

Fuel Blend
Low

Sulphur
Diesel

10%
Biodiesel

30%
Biodiesel

50%
Biodiesel

100%
Biodiesel

Exhaust PM 
Concentration 

mg/litre

0.1169
± 0.0086

0.0836
± 0.0062

0.0902 
± 0.0067

0.0902
±0.0067

0.0636 
± 0.0047

From the data presented in Table 8.2 it can be determined that an engine will produce a 

greater global m a s s  o f  particulate matter when running commercial low sulphur diesel 

fuel than would be produced if  a pure biodiesel fuel were used. It can also be seen that 

adding biodiesel fuel to a commercial low sulphur diesel can significantly reduce the 

mass concentration o f particulate matter in the exhaust gases.

In Figure 8.15 a display o f  the PM filter paper samples can be seen for the ultra low 

sulphur diesel fuel, the pure biodiesel and each of the biodiesel / diesel blends tested. It 

can be seen from a comparison o f the filter paper samples that whereas the low sulphur 

diesel fuel mass PM samples mainly contains black carbonaceous material, the sample 

taken from the exhaust o f  the pure biodiesel fuel is composed mainly o f a liquid aerosol. 

As the proportion o f  the biodiesel in the fuel mixture increase the PM samples also
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noticeably lighten in colour, indicating that the PM samples contain a lower percentage 

o f soot.

Figure 8.15 -  Biodiesel and Diesel blends PM samples

In a series o f studies carried out by Lapuerta et al. (2003 and 2004) and Duran et al. 

(2004) links were made between the sulphur content and aromatic content of fuels and 

the tendency o f soot particles to agglomerate to form larger particles. Since biodiesel 

has a very low sulphur and aromatic content, a larger percentage o f the soot particles 

formed during combustion are oxidized by the excess air reducing the number of 

particles emitted.

Figure 8.16 compares electron microscopy images o f the particulate matter samples 

obtained from the exhaust o f the Perkins diesel engine for the pure ultra low sulphur 

diesel and biodiesel fuels. The images are taken at 26,000 and 235,000 times 

magnification. If  a comparison is made between Figures 8.16 and 7.12 it can be seen 

that the soot particle content for the biodiesel fuel is o f a similar nature to that o f both 

the commercial low sulphur and the agricultural red diesel - the individual soot particles 

(of magnitude 20 nm) again joining together randomly to form much larger complex 

soot agglomerates. Additional images o f  the low sulphur diesel and the biodiesel 

particulate samples are included in Appendices K and N.
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Low Sulphur Diesel Biodiesel

Figure 8.16 -  Electron microscopy images of soot particles

A comparison o f the electron microscopy images of the PM for both the commercial 

ultra low sulphur diesel fuel and the biodiesel fuel reveals no evidence of the difference 

in the characteristics that are evident in Figure 8.15. In order to reveal the differences 

between the particulate aerosols in the exhaust from both fuels it was decided that size 

distributions should be obtained.

A Cambustion DMS500 differential mobility spectrometer was selected to obtain size 

distributions for the particulate content o f the exhaust gases. The DMS500 unit obtains 

the size distribution o f  a particulate sample by measuring the electrical mobility o f the 

individual particles. The ease to which a charged particle is deflected by an electric field 

is a function o f the charge on the particle and its aerodynamic drag, and is termed its
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electrical mobility. As the charge on the particle and its aerodynamic drag are functions 

o f the diameter o f the particle, the size o f  a particle can be calculated from knowing its 

electrical mobility.
Grounded electrode rings (11 of  22 shown|

High voltage 
electrodeAerosol charger

Sheath air flow

Charged particle trajectories

Space
guard

Figure 8.17 -  DMS500 classification column

The DMS500 unit incorporates a two stage dilution system in which the exhaust gases 

are diluted by fresh clean air to a ratio o f  up to 2000:1. The diluted particulate aerosol 

sample from an engine exhaust is electrically charged through collisions with air ions. 

The charged particles then enter the low pressure classification column (shown in 

Figure 8.17) and are carried along by an additional fresh air supply. The central high 

voltage electrode produces a radial electric field which repels the charged particles, 

pushing them towards the grounded electrode ring forming the outside o f the column. 

Particles o f low electrical mobility are repelled to the outside slower than particles with 

higher mobility, and therefore travel further down the classification column before 

impinging upon one o f  the electrometer rings along the length o f the column.

The DMS500 calculates the particle size spectrum o f a aerosol sample from the 

electrometer currents through the use o f  a computer modelled transfer function. This 

transfer function takes into account the amount o f charge given to particles o f each size 

and geometry combination. The calibration o f the DMS500 instrument is carried out 

through the use o f  NIST traceable solid nanospheres o f known size, and a comparison 

with a calibrated Scanning Mobility Particle Sizer (SMPS).
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Figure 8.18 -  Diesel and biodiesel PM size distribution comparison

Figure 8.18 displays the average size distribution and cumulative concentration 

comparison obtained, over a prolonged period o f sampling, from the exhaust gases of 

the Perkins diesel engine when it was fuelled by ultra low sulphur diesel and pure 

biodiesel. The results shown in Figure 8.18 agree with those published by Lapuerta et 

al. (2005), in that the number o f  particles in the exhaust emissions from biodiesel is 

significantly less when compared to that from a low sulphur diesel fuel. It is also o f note 

that the average size o f  the particulates in the biodiesel sample is larger than that in the 

low sulphur diesel sample. If  the trend in current medical concerns regarding the 

number counts o f  ultra-fine particulates being o f more importance than the mass 

undersize continues, then this evidence indicates another potential benefit o f biodiesel.
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8.5 Summary

A waste vegetable oil derived biodiesel fuel provided by Sundance Renewables was 

mixed with a commercially available low sulphur diesel fuel to ratios o f 10:90, 30:70 

and 50:50. A diesel engine was used to test the performance and emissions o f the pure 

biodiesel fuel and the biodiesel/diesel fuel mixtures, the results were compared to that 

previously obtained for the low sulphur diesel fuel.

It was found that with incremental addition o f  biodiesel to a low sulphur diesel fuel the 

power developed by the diesel engine decreases, while the fuel consumption increases. 

These results agree with the majority o f  the published literature. It was also found that 

the addition o f  biodiesel causes an increase in CO 2 and NOx emission. The particulates 

emitted by the diesel engine when fuelled by pure biodiesel were compared to that for a 

low sulphur diesel fuel, it was found that the low sulphur diesel fuel produces a larger 

amount o f PM (by mass and num ber concentration), than the biodiesel. From analysis o f 

the exhaust gases it was found that the average size o f  the particulates is larger for 

biodiesel than for the low sulphur diesel fuel.
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9 Conclusions and Suggestions for Further Work

A number o f conclusions have been drawn as a result of this study, which has allowed 

the achievement o f each o f the aims and objectives described in Chapter 1. An overview 

of these conclusions is given below, as well as suggestions for further work.

9.1 Main Achievements of Work

A review of the various drivers currently influencing developments in engine 

technology, with specific focus on improvements in engine efficiency and emission 

reductions was carried out. It was found that the signing of the Kyoto Protocol proved 

to be a watershed moment in the global technological development of the internal 

combustion engine. Tighter emission legislation imposed after the Kyoto agreement 

resulted in advances in the understanding o f the concepts behind internal combustion 

engines; this together with developments such as variable valve timing, direct injection 

and exhaust gas treatment has improved the economy o f modem motor vehicles while 

reducing their emissions o f CO2 and particulate matter.

Current trends indicate that alternative internal combustion engine fuels will, in the 

short to medium term future, partially replace petrol and diesel. This together with 

developments in technology will further reduce the pollutants emitted by the transport 

sector. There is evidence that the use o f biomass derived fuels will increase through the 

increased supplementation o f both petrol and diesel, and as separate transport fuels. In 

the long term future, developments in engine technology and global infrastructure will 

make CNG and hydrogen based fuels increasingly important.

As part o f an EU funded project entitled “Magnetic Movement Valve for Miller Cycle 

operation o f engines”, the application o f a novel secondary valve apparatus to an 

internal combustion engine was investigated. The software package Ricardo Wave was 

used to construct computer models o f a marine diesel engine both before, and after, 

modifications were made to allow the use o f gaseous fuels and to incorporate the
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secondary valve apparatus. It was shown that the secondary valve concept is capable of 

controlling the output o f  an internal combustion engine, while increasing the operating 

efficiency and reducing the emission o f NOx through the use of Miller cycle operation 

and throttle free load control.

Through a series o f comparisons the computer engine model was tested against 

measurements obtained from a test engine incorporating the secondary valves, it was 

shown that the computer model closely simulated the behaviour of the physical test 

engine. The optimum designs o f key engine components were established through the 

use of the computer model. In addition, the design o f the EOCV apparatus was 

improved though a CFD testing procedure, in which the flow through the valve was 

evaluated and improved in an iterative process, carried out in conjunction with testing 

by EU project partners. This development program resulted in a marketable engine 

incorporating the EOCV technology, which has now gone into production within 

Europe and the Far East.

The effect o f the EOCV induced Miller cycle on conditions within the engine cylinder 

and inlet ports o f the V6 NoNOx engine was examined through the use o f a three- 

dimensional CFD model. The simulation results showed that the early EOCV valve 

closure required to produce Miller cycle operation caused a significant increase in 

turbulent kinetic energy o f the trapped air within the inlet port. Over a prolonged period 

of operation, this could possibly lead to an increase in temperature of the EOCV 

apparatus.

An engine test-bed facility was commissioned and used to investigate the emissions and 

performance of a 4-cylinder turbocharged diesel engine manufactured by Perkins. The 

gaseous and particulate emissions o f the engine were measured for both a commercially 

available low sulphur diesel fuel, a Class A2 rebated heavy oil (red diesel) and a variety 

of biodiesel / diesel fuel blends. A comparison o f the low sulphur diesel fuel and the red 

diesel fuel showed that the red diesel fuel produced less power and significantly higher 

emissions o f CO2 and NOx, as well as producing a higher mass concentration o f exhaust 

particulates.
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It was found that with incremental addition o f Biodiesel to a low sulphur diesel fuel the 

power developed by the diesel engine decreases, while the fuel consumption increases -  

these results agree with the majority o f the published literature. It was also found that 

the addition o f Biodiesel causes an increase in CO2 and NOx emission. The particulates 

emitted by the diesel engine when fuelled by pure biodiesel were compared to that for a 

low sulphur diesel fuel; it was found that the low sulphur diesel fuel produced higher 

levels of particulate matter in the exhaust gases (by mass and number concentration), 

than the biodiesel. From analysis o f  the exhaust gases it was also found that the average 

size of the particulates is larger for the biodiesel fuel than for the low sulphur diesel 

fuel.

9.2 Further Work

This study has illustrated that the use o f technological developments such as the EOCV, 

and alternative fuels such as CNG and biodiesel, can substantially reduce the emissions 

from an internal combustion engine. However a number o f further studies would be of 

use to supplement these findings.

It has been shown that through the use o f Miller cycle operation and throttle free load 

control, the emissions o f a CNG powered engine can be reduced without any associated 

decrease in power or efficiency. A preliminary investigation was carried with a 

hydrogen / methane fuel blend, but the application o f this technology to engines 

utilising different fuels should be investigated further.

During the development and investigation o f the EOCV’s effect on the in-cylinder 

properties of an engine prior to combustion, it was discovered that the outlet design of 

the EOCV apparatus has a large effect on overall flow through the valve and the inlet 

port of an engine. In the case o f the V6 NoNOx engine, the outlet design of the EOCV 

caused turbulence within the inlet port o f the engine which reduced the total flow-rate 

into the cylinder as well as causing undesired pressure oscillations. The design o f the 

EOCV outlet should be investigated further, with emphasis on ensuring a smooth flow 

into the engine cylinder.
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Conclusions

The investigation carried out into the emissions and performance o f a diesel engine 

fuelled with biodiesel /  diesel blends highlighted several areas o f possible future study. 

The difference in the liquid properties o f  the biodiesel to normal diesel fuel affected the 

injection timing o f  the engine, ultimately leading to an increase in NOx formation. The 

pre-heating o f  the biodiesel fuel prior to injections may reduce this effect, and should be 

investigated for a variety o f  biodiesel blends. In addition to this, injection studies of 

biodiesel / diesel fuel blends should be carried out in order to characterize the effect o f 

the differing liquid properties on injection timing and atomisation.

Further work is required in developing the understanding o f the mechanisms o f 

particulate matter form ation for biodiesel / diesel fuel blends. Analysis o f the products 

o f combustion (carried out under controlled conditions) should be carried out to 

investigate the effect o f  equivalence ratio and biodiesel percentage on particulate size 

and quantity.
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• The marine engine.
195-440 kW (261 - 590 BHP) at 1500-2100 xpm

■w ■■»

These are the characteristics of the 1015:
Modern water cooled four stroke 6 and 8 cylinder V engines 
Water cooled turbocharger and exhaust manifolds 
PTOs gear driven.
Modem Injection system with mechanical governor. 
Electronical governor for gen set application 

Charge air cooled by engine cooling liquid.
Innovative DEUTZ Multi Parallel Cooling System 
Compact design

Your benefits:
►  High return on investment due to high fuel economy and low oil consumption.

►  Plate type sea water heat exchanger guarantees low maintenance costs
►  The innovative cooling system reduces fuel consumption and Is a further example 

of the outstanding reliability and durability
►  Low opetating noise level eliminates the need for elaborate and costly noise abatement 

measures

►  Designed according to m aritime classification rules.
►  Integrated piping works for additional operating safety.

Standard specification

Types of cooiing.

Crankcase

Crankcase breather

Cylinder head:

Valve arrangement / 
tim ing

Piston:

Piston cooling: 

Connecting fod: 

Crankshaft:

Tuibocharglng:

Exhaust manifolds:

Topsional vibration 
dampen

Lubrication system

Injection system 

fuel injection pipes: 

Fuel system 

Alternatot:

Starting system: 

Heating system: 

Options:

Classification:

Single circuit mixed cooling as indirect cooling (DEUTZ Multi Parallel Cooling system) 
raw w ite i cooled version w ith engine mounted plate type heat exchanger, coolant circulating 
pump, expansion tank, therm ostat and raw watei pump As keel cooling w tth coolant cucula 
ting pump and integrated therm ostat Integrated expansion tank optional

Crankcase of grey cast iron with wet liners

Closedctrcuit system, vacuum controlled

Individual cylinder heads of grey cast iron of crossflow design

Overhead valves in cylinder head, four valve technology, actuated via tappets, 
pushrods and rocker arms, driven by gears and central camshaft

Three ring aluminium piston with cooling channel and ring carrier for top 
ring groove

Oil cooled with spray nozzles 

Drop forged steel rod

Drop forged steel crankshaft w tth screwed on counterweights 
V6 w tth }o‘ offset crankptns (split pm).

Two liquid cooled turbochargers and possible intercooler mounted at flywheel end 

Liquid cooled exhaust manifolds

Viscous-fluid damper

Forced feed circulation lubrication w ith gear pumps, integrated engine oil cooler, paper type 
mlcrofilter as replaceable cartridge, integrated in main oil circuit, double filter as option

In-line injection pump w ith mechanical (propulsion engine) or electronic (gen set) governor

High pressure fuel injection pipes double walled a t option

Mechanical reciprocating pump, replaceable cartrige type for fuel filter, double filter as option

Three phase alternator. 28 V, «  or 80 A

2 4 V,54kW

Optional connection for heating or warm water boiler to engine cooling circuit

Hydraulic pumps, flywheels, adapter housings SAE1. oil pans, air cleaners, elastic engine 
m ounting feet, starters, alternators, engine monitor mg system, m arine gears

By all major classification societies
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► Technical data

f 1 B> CM 10 ISM y w n tm irn r BF8M1016MC

S m r w t  o( c y tn k n 6 6 8
f e e m m on 132/32 132/82 132/82
SMM» mnvZi 14 v a n 14V 6/1 14V 8/1
O apw corne 1 cu.v> 1191/7 21 119172 / 1 8 8 / 9 6 8
C o n iM u o irz n V V 17

P w ew  ra tw g s  tw  i m iW« prOpuitMvi UAHS

arc. 10 poori cakK“ T A M 1600 rpm kW/BHP 2 03 /2 /2 2 /2 /366 364/488
6  1900 rpm kW/BMP 214/28/ 2 8 /3 8 6 38V 613
« 2 1 0 0 rp m kW/BMP 214/28/ 2 8 /3 8 0 383/613

JCC to prim.. category B a  1600 nm kW/BMP 2 2 8 3 0 6 3131/420 418/660
a  1900 /pm kW/BMP 240/322 330/442 440/660
a  2100 rpm kW/BHP 240/322 330/442 440/690

|£f]

a  isoo<pm kW/BHP 210/282 28V 382 380/609
a 1600/pm kW/BHP 228/306 310/416 413/684

ur> era houl e a M r^ a  k g 10*0/2361 1180/2602 13803043
McWOUhnHcooav hft-tm 1020/22SO 1110/2448 1310/2890

► Dimensions

► Standard specification

A • C • I

BS6M1018M mm 1191 1316 1136 443 696
V) 4* j hlA 446 VA 274

H 6U1016MC mm MW 1316 1136 44.1 696
n SAJ hl6 446 VA 274

IK8M1016MC mm 1661 1333 1136 443 69¥>
n 664 636 446 VA 2! A

Definitions of power ratings

Power category A Net brake fuel stop power for
continuous operation unlimited 
time, SCPN or 1CPN to ISO 3046

Power category 9 Net brake fuel stop power for
continuous operation. SCPN or 
ICPN to ISO 3046

Power for on board
generating sets Continuous power, overloadable

by 10X for one hour within an 
operating period of u  hours. SCXN 
or (CXN to ISO 3046

DEUTZ AO
DEUTZ MOTOR 

Deutz Mulheimer Str. 147 149 
D 31063 Koln 
Phone >49 {o) 2 218 22 0  
Pair .4 9 (0 )1 2 1 I a n  34 
Internet w ww deutz de 

We move your world. eMail m arine salesV deuttde

I

A
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Appendices

Appendix B -  IHI Turbocharger Details

IHI RHF5V -V G STurbo- 
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Appendices

Appendix C -  Sample Wave Output

F I N A L  0 U T P U T O F  J U N C T II O N S

J u n c t i o n TWALL TAV PAV PMAX PMIN HTKW
K K BAR BAR BAR KW

e ru n O l 9 0 0 . 0 1 0 0 5 . 6 2 . 2 2 0 3 . 4 3 9 1 .5 2 2 0 . 0 7 6
e r u n 0 4 9 0 0 . 0 1 0 0 1 . 9 2 . 2 2 5 3 . 4 5 3 1 .5 1 4 0 .0 7 4
e r u n 0 7 9 0 0 . 0 9 91  .8 2 . 2 3 4 3 . 4 8 7 1 .5 1 9 0 .0 6 4
e r u n lO 9 0 0 .0 1 0 0 0 .7 2 . 2 2 4 3 . 4 3 3 1 .5 2 0 0 . 0 7 2
e r u n l 3 9 0 0 .0 1 0 1 7 .6 2 . 2 6 5 3 . 8 8 4 1 .5 3 7 0 . 0 8 6
e r u n l 6 9 0 0 .0 1 0 0 8 .9 2 . 2 7 1 3 . 9 4 5 1 .5 4 7 0 . 0 7 8
i c o o l 1 3 0 0 .0 3 5 3 . 9 1 .8 2 0 1 .9 8 1 1 . 7 0 3 0 . 1 3 7
i c o o 12 3 0 0 .0 3 0 0 . 9 1 .7 2 3 1 .8 8 0 1 .6 0 4 0 . 0 0 6
i c o o l 3 3 0 0 .0 3 5 4 .1 1 .8 2 2 1 .9 8 6 1 .7 0 4 0 . 1 3 7

' i c o o l 4 3 0 0 .0 3 0 0 . 9 1 .7 2 5 1 .8 8 7 1 . 6 0 6 0 . 0 0 6
m an l 9 0 0 . 0 1 0 1 9 .1 2 . 1 6 8 2 . 9 4 0 1 .5 8 5 0 . 4 5 5
n a n  2 9 0 0 .0 1 0 2 0 .8 2 .  173 2 . 9 5 0 1 . 5 8 8 0 . 3 5 5
n a n  3 9 0 0 .0 1 0 0 8 .1 2 . 1 8 3 2 . 9 6 4 1 . 5 7 9 0 .1 5 8

man 04 9 0 0 .0 1 0 2 2 .3 2 . 1 7 1 2 . 8 9 2 1 . 5 8 5 0 . 4 6 5
manOS 9 0 0 .0 1 0 2 5 .8 2 . 1 8 4 2 . 9 2 6 1 . 5 9 7 0 . 3 6 6

, m an06 9 0 0 .0 1 0 1 2 .4 2 . 1 9 3 2 . 9 3 8 1 .5 8 9 0 .1 6 1
outO O 9 0 0 .0 9 3 9 . 4 1 .0 4 9 1 .1 1 4 0 . 9 7 4 0 .1 9 7

p le n O l 3 0 0 .0 2 9 9 .  3 1 . 7 1 5 1 . 8 6 7 1 .5 7 8 - 0 .0 0 1
p le n 0 2 3 0 0 .0 2 9 9 . 2 1 . 7 1 6 1 .8 7 8 1 . 5 7 9 - 0 . 0 0 1
p le n 0 3 3 0 0 .0 2 9 9 . 2 1 . 7 1 6 1 . 8 8 7 1 .5 7 4 0 . 0 0 0
p le n 0 4 3 0 0 .0 2 9 9 .  1 1 .  71 7 1 . 8 9 8 1 .5 7 0 0 . 0 0 0
p l e n 0 5 3 0 0 .0 2 9 9 . 1 1 .7 1 7 1 . 9 0 5 1 . 5 7 1 0 . 0 0 0
p l e n 0 6 3 0 0 .0 2 9 8 . 9 1 .7 1 7 1 .9 1 2 1 . 5 6 4 0 . 0 0 0
p le n 0 7 3 0 0 .0 2 9 9 . 3 1 .7 1 7 1 . 8 7 5 1 . 5 8 0 - 0 . 0 0 1
p le n 0 8 3 0 0 .0 2 9 9 . 2 1 .7 1 8 1 . 8 8 6 1 . 5 8 0 - 0 .0 0 1
p l e n 0 9 3 0 0 .0 2 9 9 . 2 1 . 7 1 9 1 .8 9 5 1 . 5 7 6 0 . 0 0 0
p l e n l O 3 0 0 .0 2 9 9 . 2 1 . 7 1 9 1 .  9 07 1 .5 7 1 0 . 0 0 0
p l e n l 1 3 0 0 .0 2 9 9 .  3 1 . 7 1 9 1 . 9 1 5 1 . 5 70 0 . 0 0 0
p l e n l 2 3 0 0 .0 2 9 9 . 0 1 . 7 2 0 1 . 9 2 3 1 . 564 0 . 0 0 0

C O M P R E S S O R S U M M A R Y T U R B I N E

I  INLET TEMP (K) = 2 9 5 . 1 I  COMPRESSOR: c o m p l I  INLET TEMP (K) = 1 0 0 8 .  I
I  (TOTAL ) (F) = 71 .4 2 I  T U R B I N E : tu r b l I  (TOTAL ) (F ) = 1 3 5 5 .  I
I  OUTLET TEMP (K) * 3 6 2 . 3 I  RPM 1 1 6 7 1 5 . I  OUTLET TEMP (K) = 9 5 7 .3  I
I (TOTAL ) (F ) ■ 1 9 2 . 5 I CONTROL MECHANISM = NONE I (TOTAL ) (F ) = 1 2 6 3 .  I
I  INLET PRESS. (BAR) = 0 .9 9 0 1 I  CONTROL VARIABLE = NONE I  INLET PR E SS. (BAR) = 2 . 1 4 5  I
I  (TOTAL ) (P S D *= 1 4 . 3 6 I  WASTEGATE AREA (CM2) = 0 . 0 0 0 I  (TOTAL ) (P S I) - 3 1 .1 2  I
I OUTLET PR ESS. (BAR) 1 .8 4 2 I  TURBINE RACK PO SITIO N = 0 .0 0 0 I  OUTLET PR ESS. (BAR) 1 .1 3 6  I
I  (TOTAL ) (P S I) = 2 6 . 7 2 I COMPRESSOR VANE PO SITIO N 0 .0 0 0 I  (TOTAL ) (P S I) = 1 6 .4 8  I
I  PRESSURE RATIO * 1 .8 6 1 I  PRESSURE RATIO 1 .8 8 8  I
I MASS FLOW (KG/HR) * 6 0 2 .  1 I SHAFT TORQUE (N-M) = 0 .9 2 5 8 I  MASS FLOW (KG/HR) - 6 5 1 .4  I
I  (LB/HR) 1 3 2 7 . I (FT -L B ) = 0 . 6 8 2 9 I  (LB/HR) = 1 4 3 6 .  I
I  POWER (KW) 1 1 .  38 I SHAFT POWER (KW) = 1 1 .3 2 I  POWER (KW) = 1 1 .2 5  I
I  (HP) * 1 5 . 2 6 I (HP) * 1 5 .1 7 I  (HP) = 1 5 .0 9  I
I  EFFECTIVE DIAMETER (M) * 0 . 5 0 3 0 E - 0 1 I  EXTERNAL POWER (kW] « 0 .0 0 0 I  EFFECTIVE DIAMETER (M) = 0 . 5 0 6 6 E -0 1  I
I  ISE N . E F F . ( IN S T . D 84 . 17 I  IS E N . E F F . ( IN S T . %> 3 5 .6 8  I
I (AVG. %) « 8 4 . 9 0 I  (AVG. %) 3 6 .4 3  I
I BLADE SPEED R A T IO (IN ST) - 0 . 9 1 0 8 I  BLADE SPEED R A T IO (IN ST) - 0 .5 3 4 5  I
I (AVG) * 0 . 9 0 4 5 I  (AVG) 0 . 5 2 9 9  I
I  MECH. EFFICIENCY (%) * 1 0 0 . 0 I  MECH. EFFICIEN CY  (%> 1 0 0 .0  I

I INLET TEMP (K) = 2 9 5 .  1 I  COMPRESSOR: com p2 I  INLET TQ4P (K) = 1 0 1 1 .  I
I  (TOTAL ) (F) - 71 .4 4 I  T U R B IN E :tu rb 2 I  (TOTAL ) (F) * 1 3 6 0 .  I
I OUTLET TEMP (K) * 3 6 2 . 5 I  RPM = 1 1 6 5 4 4 . I OUTLET TEMP (K) = 9 6 0 .0  I
I (TOTAL ) (F) 1 9 2 .9 I  CONTROL MECHANISM - NONE I  (TOTAL ) (F) 1 2 6 8 .  I
I  INLET PRESS. (BAR) * 0 . 9 9 0 2 I CONTROL VARIABLE * NONE I INLET PR ESS. (BAR) = 2 . 1 4 0  I
I  (TOTAL ) (P S I) 1 4 .3 6 I  WASTEGATE AREA (CM2) 0 . 0 0 0 I  (TOTAL ) (P S D = 3 1 .0 4  I
I OUTLET PR ESS. (BAR) 1 .8 4 3 I  TURBINE RACK PO SITIO N = 0 . 0 0 0 I  OUTLET PR ESS. (BAR) = 1 .1 3 5  I
I (TOTAL ) (P S I) 2 6 .7 4 I  COMPRESSOR VANE PO SITIO N * 0 . 0 0 0 I  (TOTAL ) (P S D = 1 6 . 4 6  I
I  PRESSURE RATIO = 1 .8 6 2 I  PRESSURE RATIO 1 .8 8 5  I
I  MASS FLOW (KG/HR) = 5 9 8 . 6 I SHAFT TORQUE (N-M) = 0 .9 2 4 4 I  MASS FLOW (KG/HR) = 6 4 8 . 5  I
I  (LB/HR) - 1 3 2 0 . I (F T -L B ) 0 .6 8 1 8 I  (LB/HR) * 1 4 3 0 .  I
I POWER (KW) 1 1 . 3 5 I SHAFT POWER (KW) = 1 1 .2 8 I  POWER (KW) 1 1 .2 2  I
I  (HP) = 1 5 .2 2 I  (HP) = 1 5 .1 3 I  (HP) = 1 5 .0 4  I
I EFFECTIVE DIAMETER (M) 0 . 5 0 3 0 E -0 1 I EXTERNAL POWER (kW) 0 . 0 0 0 I  EFFECTIVE DIAMETER (M) = 0 . 5 0 6 6 E -0 1  I
I  ISE N . E F F . (IN S T . %) 8 3 . 9 7 I  IS E N . E F F . ( IN S T . %) = 3 5 .6 9  I
I (AVG. %) 8 4 . 7 2 I (AVG. %) - 3 6 .4 5  I
I BLADE SPEED R A T IO (IN ST ) = 0 . 9 0 9 8 I BLADE SPEED RA TIO (IN ST) = 0 .5 3 4 0  I
I (AVG) 0 . 9 0 2 7 I  (AVG) = 0 .5 2 8 9  I
I MECH. EFFICIEN CY  (*.) = 1 0 0 .0 I  MECH. EFFICIEN CY  (%) 1 0 0 .0  I

E N G I N E  SUMMARY

NC MASS IN 
KG/HR

V O L .E F F . TRA P.RA TIO IMEP
BAR

PMEP
BAR

PMAX
BAR KW

2 0 5 .4  
2 0 6 .  6
2 0 9 .9  
2 0 6 .  6 
2 0 4 .7
2 0 7 .9

1 .6 0 6  
1 .6 1 5  
1 .6 4 1  
1 .6 1 5  
1 .6 0 1  
1 .6 2 6

0 . 9 9 5 7
0 . 9 9 6 6
0 .9 9 5 6
0 . 9 9 4 3
0 . 9 9 9 0
0 . 9 9 9 2

1 5 .4 2
1 5 .4 6  
1 5 .5 5  
1 5 .4 8  
1 5 . 3 9
1 5 .4 7

- 0 . 6 0 5 3  
- 0 . 6 2 1 5  
- 0 . 6 3 7 5  
- 0 . 5 9 2 6  
- 0 .6 8 0 8  
- 0 .7 0 5 4

6 1 .5 7  
6 1 .7 2  
6 2 . 0 6  
61 .7 8  
6 1 .4 3  
6 1 . 7 6

1 0 3 1 .
1 0 2 8 .
1 0 1 7 .
1 0 2 7 .
1 0 3 6 .
1 0 2 5 .

1 .7 3 7  
1 .8 2 4  
1 .7 1 2  
1 . 610  
2 . 2 3 9  
2 .1 6 5

0 . 0 0 0  0 .6 2 2 0  
0 . 0 0 0  0 .6 1 5 5

0 . 1 1 5 7 E -0 1  0 .6 0 7 6  
0 . 0 0 0  0 .6 1 9 8
0 . 0 0 0  0 .6 2 0 1  

0 . 1 2 8 7 E -0 1  0 .6 1 1 5

9 2 .4 5
9 2 .8 3
9 4 .3 6
9 2 .8 2
9 2 .6 1
9 4 .3 9

1 0 .7 6
1 0 .8 0
1 0 .7 8
1 0 .7 3
1 0 .9 5
1 0 .9 5

B R E A T H  I NGj  Q U A N T I T I E S :

AMB.VOL.EFF (A IR  IN  /  AMB. R E F .)  -  1 .6 1 7
D E L .E F F . (FRESH IN  /  PLEN . R E F .)  -  0 . 9 6 3
CHARG.EFF. (FRESH T R . /  PLEN . R E F .)  = 0 . 9 6 0
TO T .D E L .E FF  (GAS IN  /  PLEN. R E F .)  -  0 . 9 6 3
EGR FR. (R ESID  IN  /  GAS IN  ) * 0 . 0 0 0

TRA P.RA T. (FRESH T R . /  FRESH IN  ) -  0 .9 9 7
SCAV.RAT. (GAS IN  /  GAS TR. ) «  0 .9 8 4
SC A V .E FF . (FRESH T R . /  GAS TR . ) = 0 .9 8 1
R E S ID .F R . (R ESID  T R . /  GAS TR. ) *  0 . 0 1 9
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E N G I N E  G E O M E T R Y

I D IS P L ./C Y L ( L I T .) = 1 .9 8 4 I  NUMBER OF CYLINDERS * 6 .0 0 0
( IN 3) = 1 2 1 . I COMPRESSION RATIO * 1 7 .0 0 EFFECTIVE CR (VC-TDC) 1 5 .4 9  I

I  BORE (MM) * 1 3 2 . 0 I BORE/STROKE =» 0 . 9 1 0 3
(IN ) * 5 .1 9 7 I  CON. ROD LENGTH(MM) 2 6 1 .7

I STROKE (MM) = 1 4 5 . 0 I  WRIST P IN  OFFSET(MM) * 0 . 0 0 0
(IN ) « 5 . 7 0 9 I  CLEARANCE VOL. (M3) = 0 . 1 2 4 0 E -0 3 ENGINE TYPE -  D IESEL I

I  IN T . VALVE DIA.(M M ) = 4 0 . 7 0 I  EXH. VALVE DIA.(M M ) 3 6 .7 0 #1 EVO 1 3 0 .8  I
I  MAX. L IF T  (MM) a 1 0 . 2 3 I  MAX. L IF T  (MM) = 1 1 .1 0 #1 EVC 3 7 9 .4  I

#1 I  VO 3 4 2 .4  I
I NO. INTAKE VALVES * 2 . 0 0 0 I NO. EXHAUST VALVES = 2 . 0 0 0 #1 IVC 5 8 1 .3  I

O P E R A T I N G  C O N D I T I O N S

RPM a 1 8 0 0 .
AMB. PRESSURE (BAR) * 1 .0 0 4

( IN .H G ) a 2 9 . 7 3
AMB. TEMP. (K) - 2 9 1 . 9

(F) * 6 5 . 7 5
FUEL TYPE (C :H :0 )  C a 1 5 .0 0

H = 2 5 . 0 5
O * 0 . 0 0 0

FUEL LHV (M J/KG) « 4 2 . 8 0
(BTU/LBM) 0 .1 8 4 0 1

(A /F ) STOICH * 1 4 .2 2
FUEL MOLEC . WEIGHT * 2 0 5 . 4
CETANE NUMBER * 6 0 . 0 0

#1 IN T .P O R T PR(BAR) = 1 .7 1 1
(IN .H G ) = 5 0 .6 8

#1 IN T .P O R T TEMP(K) - 2 9 6 . 3
(F ) * 7 3 .6 1

#1 EXH.PORT PR (BAR) = 2 . 2 1 2
(IN .H G ) = 6 5 . 4 9

PISTO N  V EL. (M /S) a 8 . 7 0 0
(F T /M IN ) = 1 7 1 3 .

#1 IGN DELAY (CA) a 2 .3 2 6
#1 COMB. START (CA) = - 0 .1 7 4 3
IN J.T IM IN G  (ATDC) = - 2 .5 0 0
M ID .IN J .P R E S S .(B A R ) * 5 0 0 .0

(P S I) a 7 2 5 2 .
I N J .  DURATION (CA) = 1 5 .0 0
FUEL RATE (KG/HR) « 5 3 .5 8

(MULTI) (LBM/HR) = 1 1 8 .2
#1 FUEL /  SHOT (KG) = 0 .1 6 5 6 E *
CYL. FUEL TEMP. (K) = 3 5 0 .0
1% FUEL PWR/CYL (W) = 1 0 6 2 .

PREMIXED BURN FR. = 0 . 1005E -

P R E D I C T E D  P E R F O R M A N C E

I IN D IC . POWER (HP) = 3 7 0 . 3 I  BRAKE POWER (HP) a 3 5 6 .8 I  PMEP (BAR) = - 0 .6 4 0 5  I
I  IN D .EFFIC IEN C Y  (%) = 4 3 . 3 5 I  BRAKE E F F IC IE N C Y (%) a 4 1 .7 7 (P S I) a - 9 . 2 9 0  I
I  IMEP (NET) (BAR) * 1 5 . 4 6 I  BMEP (BAR) = 1 4 .9 0 I  FMEP (BAR) = 0 . 5 6 4 5  I
I  (P S I) a 2 2 4 . 3 (P S I ) a 2 1 6 .1 (P S I) = 8 .1 8 8  I
I  IS  FC (KG/KWH) = 0 . 1 9 4 0 I  BSFC (KG/KWH) = 0 .2 0 1 4 I  IMEP(GROSS) (BAR) = 1 6 .1 0  I
I  (LBM/BHP-HR) * 0 .3 1 9 0 (LBM /BHP-HR) a 0 .3 3 1 1 (P S I) = 2 3 3 . 6  I
I  IN D . TORQUE (N-M) 1 4 6 5 . I  BRAKE TORQUE (N-M) = 1 4 1 2 . I  F R IC T . TORQUE (N-M) = 5 3 .4 8  I
I  (FT -L B ) = 1 0 8 0 . (F T -L B ) a 1 0 4 1 . I  PUMP. TORQUE (N-M) = - 6 0 . 6 9  I
I  AUXILIARY POWER [h p ] = 0 . 0 0 0 I  #1 EXHAUST TEMP (K) = 1 0 3 1 .  I
I  AUXILIARY POWER [kW] * 0 . 0 0 0 (F) a 1 3 9 7 .  I
I  IND. ENERGY BALANCE:(M ULTI) I  FRESH A IR  IN  (KG/H) = 1 2 4 1 . I  #1 PMAX (BAR) = 9 2 .4 5  I
I  NET PISTON WORK (%) a 4 3 .  35 I  (WET) (LBM/HR) 2 7 3 6 . (P S I) a 1 3 4 1 .  I
I  AVAIL.EXH.ENTH. {%) * 9 9 9 9 . I  TRAPPING RATIO = 0 .9 9 6 7 I  #1 CA AT PMAX a 1 1 .1 5  I
I  DEBIT IN T K .E N T H .(t) a 9 9 9 9 . I  V O L .E F F .(D E L IV E R E D ) a 1 . 6 1 7 I  #1 MAX DP/DTH (BAR) a 2 . 6 7 0  I
I  H. TR A N .( IN -C Y L )(%) = 1 0 .2 0 I  #1  V O L .E FF .(PL E N U M ) a 0 .9 5 6 1 (PER DEG) (P S I) = 3 8 .7 3  I
I BLOWBY AT RING1 (%) a 9 9 9 9 . I  A /F  TRAPPED = 2 3 .0 8 I  #1 CA AT MAX DP/DTH = - 1 3 .0 1  I
I IMBALANCE <%) a 9 9 9 9 . I  PH I TRAPPED = 0 .6 1 6 1 I  #1 MAX AVG.GAS T (K) = 1 8 1 8 .  I
I PUMPING WORK {*) a - 1 . 7 9 6 I  RESIDUAL FRAC. (%) a 1 .8 8 2 (F) = 2 8 1 3 .  I

I  BRAKE POWER (KW) 2 6 6 .1 I  F R IC . (%FUEL E N E R .) 
I  H .T R A N .(IN -C Y L )(K W )

1 .5 8 3  I  
6 4 . 9 6  I

E N G I N E  O U T  E M I S S I O N S

I NOx (PPM) * 1 2 4 1 .  I  HC EM ISSIO N S (PPMC1) *  4 2 . 9 7  I  CO EMISSIONS (PPM) * 3 9 5 .1  I
I  NOx AS N02 ( g / h r )  «  2 5 6 3 .  I  ( g / h r )  = 2 6 .4 1  I  ( g / h r )  = 4 9 6 .7  I
I ( g /b k W - h r )  = 9 . 6 3 3  I  ( g /b k W - h r )  = 0 . 9 9 2 8 E - 0 1  I  (g /b k W -h r )  = 1 .8 6 7  I

ENGINE CYLINDER BACKFLOW

BEFORE EVC 
AMOUNT(KG) I  % OF TOTAL

AFTER EVC 
AMOUNT (KG) I  % OF TOTAL

0 . 9 7 6 4 E -0 6  
0 . 1 5 0 8 E -0 5  
0 . 9 1 3 6 E -0 8  
0 . 1 5 9 5 E -0 6  
0 . 4 2 8  3 E -0 5  
0 . 8 9 8  I E - 0 6

0 . 2 5 6 8 E -0 1  
0 . 3 9 4 2 E -0 1  
0 . 2 3 5 1 E - 0 3  
0 . 4 1 6 9 E -0 2  
0 . 1 1 3 0  
0 . 2 3 3 2 E -0 1

0 . 2 0 0 1 E - 0 3  
0 . 2 1 4 9 E - 0 3  
0 . 2 1 0 7 E - 0 3  
0 . 1 9 7 4 E - 0 3  
0 . 2 1 6 7 E -0 3  
0 . 2 1 2 1 E -0 3

5 . 2 6 2
5 . 6 1 7
5 .4 2 1
5 . 1 6 0
5 . 7 1 7
5 . 5 0 7

ENGINE INTAKE VALVE BACKFLOW

BEFORE EVC 
CYL VAL I AMOUNT (KG) I  * OF TOTAL

AFTER EVC 
AMOUNT(KG) I  % OF TOTAL REVERSE ANGLE

0 . 1 6 0 7 E -0 6  
0 . 8 1 5 7 E -0 6  
0 . 4 1 0 2 E -0 8  
0 . 1 5 0 4 E -0 5  
0 . 4 4 9 3 E -0 8  
0 . 4 6 4 3 E -0 8  
0 . 1 4 9 8 E -0 6  
0 .9 6 7 0 E - 0 8  
0 . 3 1 2 4 E - 0 5  
0 . 1 1 5 9 E -0 5  
0 .4 1 0 5 E - 0 7  
0 . 8 5 7 1 E -0 6

0 . 8 7 2 9 E -0 2  
0 . 4 1 5 9 E -0 1
0 . 2 2 1 5 E -0 3  
0 . 7 6 2 1 E -0 1  
0 . 2  3 7 4 E -0 3  
0 . 2 3 2 9 E - 0 3  
0 . 7 5 9 0 E -0 2  
0 . 5 2 2 3 E - 0 3  
0 . 1 5 9 8  
0 . 6 3 1 6 E -0 1  
0 . 2 0 8 0 E - 0 2  
0 . 4  5 6 5 E - 01

0 . 1 3 9 4 E -0 3  
0 . 6 0 6 8 E -0 4  
0 . 1 3 9 6 E -0 3  
0 . 7 5 2 9 E -0 4  
0 . 1 3 9 2 E -0 3  
0 . 7 1 4 9 E -0 4  
0 . 5 9 4 1 E -0 4  
0 . 1 3 8 0 E -0 3  
0 . 7 6 6 2 E -0 4  
0 . 1 4 0 1 E -0 3  
0 .7 5 0 8 E - 0 4  
0 .1 3 7 0 E - 0 3

7 . 5 7 2  
3 . 0 9 3  
7 . 5 3 6  
3 . 8 1 6  
7 .  35 5  
3 .  5 8 6  
3 .0 1 0  
7 . 4 5 2  
3 . 9 1 9  
7 .6 3 1  
3 .8 0 4  
7 . 2 9 8

5 3 9 .4
5 5 1 .3
5 4 0 .4  
5 4 9 .1
5 4 1 .3
5 4 9 .5
5 5 2 .0
5 3 9 .3
5 4 9 .0  
541 .0
5 5 0 .4
5 4 3 .5

CYCLE AVERAGED ENGINE CYLINDER EXHAUST INDICATED S P E C IF IC  EMISSIONS

I CYL I
NO

( g /k W /h r )  I ( g / h p / h r ) (g /k W /h r )
N02

I ( g / h p / h r ) (g /k W /h r )
CO

( g / h p / h r )
I  HC 
I  ( g /k W /h r )  I ( g / h p / h r )  I

I 1 I 5 .9 7 8  I 4 . 4 5 8 0 . 0 0 0 I 0 . 0 0 0 1 .9 0 1 1 .4 1 8 I  0 . 9 5 7 8 E -0 1  I 0 . 7 1 4 2 E -0 1  I
4 . 4 8 8 0 . 0 0 0 I  0 . 0 0 0 1 .8 3 7 1 .3 7 0 I  0 . 9 5 6 5 E -0 1  I 0 . 7 1 3 2 E -0 1  I

6 .2 1 3  I 4 . 63 3 0 . 0 0 0 I  0 . 0 0 0 1 .6 2 0 1 .2 0 8 I  0 . 9 5 4 4 E -0 1  I 0 . 7 1 1 7 E -0 1  I

I 4 I 5 . 9 8 3  I 4 . 4 6 1 0 . 0 0 0 I 0 . 0 0 0 1 .8 5 4 1 .3 8 3 I  0 . 9 5 6 6 E -0 1  I 0 . 7 1 3 4 E -0 1  I
4 . 4 4 7 0 . 0 0 0 I 0 . 0 0 0 1 .9 1 5 1 .4 2 8 I  0 . 9 5 8 1 E -0 1  I 0 . 7 1 4 5 E -0 1  I

I 6 I 6 .T 6 4  I 4 . 597 0 . 0 0 0 I 0 . 0 0 0 1 .6 6 7 1 .2 4 3 I  0 . 9 5 5 8 E -0 1  I 0 . 7 1 2 7 E -0 1  I

CYCLE AVERAGED AMBIENT EMISSIONS

I  I  NO I  N02 I  CO I  HC I
I  AMBIENT I  ( g / h r )  I  ( g / h r )  I  ( g / h r )  I  ( g / h r )  I

I  am b l I  0 . 0 0 0  I  0 . 0 0 0  I  0 . 0 0 0  I  0 . 0 0 0  I
I  amb2 I  0 . 0 0 0  I  0 . 0 0 0  I  0 . 0 0 0  I  0 . 0 0 0  I
I  am b3 I  1 6 6 6 .  I  0 . 0 0 0  I  4 9 7 .7  I  2 6 . 3 9  I
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Appendix D -  Deutz Wave Simulation Results
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Appendix E -  NoNOx Wave Simulation Results
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Appendix F -  Sample Vectis Input File

!VECTIS_MAIN_IKPUT MODULAR VERSION 3 .4 0 0  
OUTPUTDIRECTORY 
H :\G 3  c o m p a r i s o n

INPUTDIRECTORY 
H :\G 3  c o m p a r i s o n

EQUATIONS
EQN_U_MOKENTUM
EQNVHOHENTUM
EQN_*_MCHENTUM
EQNPRESSURE
EQNTURBULENCEENERGY
EQN_TURBULENCE_DISSIPATION
EQNPASSIVE_SCALAR

UMOMENTUM <
5 2 0 2 - 6
1 . 0 0 0 0 e -0 0 1  1 .0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0  1 . 0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0  l.OOOOe+QOO 1 . 0 0 0 0 e + 0 0 0

VMOKENTUM 
5 2 0 2 - 6
1 . 0 0 0 0 e -0 0 1  1 .0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0  1 . 0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0  1 . 0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0

W_MOHENTUM
5 2 0 2 - 6
1 .0 0 0 0 e - 0 0 1  1 .0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0  1 . 0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0

PRESSURE 
10 1 3 2 -8
1 . 0 0 0 0 e -0 0 1  1 .0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0  1 . 0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0  1 . 0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0

TURBULENCE_ENERGY 
10  1 0 2 - 6
1 . 0 0 0 0 e -0 0 1  1 .0 0 0 0 e + 0 0 0  1 . 0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0  1 . 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0

TURBCJLENCE_DISSIPATION 
10  1 0 2  - 6
1 .0 0 0 0 e - 0 0 1  1 .0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0  1 . 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0

PASSIVE_SCALAR 
10  1 0 2 - 6
1 .0 0 0 0 e - 0 0 1  1 . 0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0  1 . 0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0  1 .0 0 0 0 e + 0 0 0

SOLUTION_CONTROL_2 F
-1 1.000000e-008
0 . 0 0 0 0 0 0 e + 0 0 0  1 . 2 0 0 0 0 0 e - 0 0 2  1 . 0 0 0 0 0 0 e + 0 0 0  
2 5 . OOOOOOe-OOS 1 . 0 0 0 0 0 0 e - 0 0 4

ALGORITHM
PISO

SOLVER SCHEME

CORRECTION STEP NUMBER

RE FERENCE_POINT 
1 9  41 15

M ONITORING_POINT_IJK
17 21 21
MON

CHECKPOINT 
F F F 10 F F 
T

LIN K _FILE 
0 1 0 0 . d a t
CROS S_LINK_TIMEREGION

1 0 .0 0 0 0 0 0 e + 0 0 0#
LIN K _FILE 
0 5 0 0 . d a t
CROSS_LINK_TIMEREGION

2 1 . 7 0 0 0 0 0 e -0 0 4•
LIN K _FILE
0 7 5 0 . d a t
CROSS_LINK_TIMEREGION

3 4 . 1 0 0 0 0 0 e -0 0 4»
LIN K _FILE 
1 0 0 0 .d a t
CROSS__LINK_TIMEREGION

4 6 . 0 0 0 0 0 0 e -0 0 4•
LIN K _FILE
1 5 0 0 . d a t
CROS S_LINK_TIMEREGION

5 7 . 9 0 0 0 0 0 e -0 0 4#
LIN K _FILE 
1 9 0 3 .d a t
CROSS_LINK_TIMEREGION

6 1 .1 1 0 0 0 0 e - 0 0 3«
LIN K _FILE
2 0 0 0 . d a t
CROSS_LINK_TIMEREGION

7 1 .2 6 0 0 0 0 e - 0 0 3»
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LIN K _FILE
2 5 0 0 . d a t
CROSS_ LINK_TIMEREGION

8 1 . 4 3 0 0 0 0 e -0 0 3*
L IK K F IL E
3 0 0 0 . d a t
CROSS_LINKTIM EREGION

9 1 .7 5 0 0 0 0 e - 0 0 3*
LIN K _FILE
3 5 0 0 . d a t
C R O SSLIN K _T IMEREGION

10 2 . 0 9 0 0 0 0 e -0 0 3#
LIN K _FILE
4 0 0 0 . d a t
CROSSLINK_TIM EREGION

11 2 . 4 6 0 0 0 0 e -0 0 3I
L IN K F IL E  
4 2 3 5 . d a t
CROSS_LINKTIM EREGION

12 2 . 7 8 0 0 0 0 e - 0 0 )#
LIN K _FILE
4 5 0 0 . d a t
CROSS LINK_TIMEREGION

13 2 .9 5 0 0 0 0 6 -0 0 3*
LIN K _FILE
5 0 0 0 . d a t
CROSS_LINK_TIMEREGION

14 3 . 3 4 0 0 0 0 e -0 0 3*
LINK__FILE 
5 5 0 0 . d a t
CROSS_LINK_TIMEREGION

15 3 . 9 4 0 0 0 0 e -0 0 3«
LIN K _FILE
6 0 0 0 . d a t
CROSS_LINK_TIMEREGION

16 5 .2 7 0 0 0 0 e - 0 0 3

CROSSLINK DROPLET RELOCATION

BOUNDARYMOTION 
4 1 3  1 1
0 . 0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 0 0 e + 0 0 0  
0 . 0 0 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 0 0 e -0 0 4  
7 . 0 0 0 0 0 0 e -0 0 5  0 . 0 0 0 0 0 0 e + 0 0 0  
1 .7 0 0 0 0 0 e - 0 0 4  - 1 .4 3 2 3 0 0 e - 0 0 4  

BOUNDARY J40T IO N  
4 1 4  2 2
0 . 0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 0 0 e + 0 0 0  
1 . 6 9 9 9 9 9 e -0 0 4  2 . 5 6 7 7 0 0 e -0 0 4  
2 . 5 0 0 0 0 0 e -0 0 4  1 . 4 2 9 5 0 0 e -0 0 4  
3 . 4 0 0 0 0 0 e -0 0 4  4 . 2 0 0 0 0 0 e - 0 0 7  
4 .1 0 0 0 0 0 e - 0 0 4  - 9 .9 8 3 0 0 0 e - 0 0 5  

BOUNDARYMOTION 
4 1 3  3 3
0 . 0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 0 0 e + 0 0 0  
4 . 0 9 9 9 9 0 e -0 0 4  1 . 5 0 1 7 0 0 e -0 0 4  
5 . 1 0 0 0 0 0 e -0 0 4  - 3 . 0 0 0 0 0 0 e - 0 0 7  
6 . 0 0 0 0 0 0 e -0 0 4  - 1 . 4 9 3 C 0 0 e -0 0 4  

BOUNDARYJ40TION 
4 1 3  4 4
0 . 0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 0 0 e + 0 00  
5 . 9 9 9 9 9 0 e -0 0 4  1 . 0 0 7 0 0 0 e - 0 0 4  
6 . 7 0 0 0 0 0 e -0 0 4  6 . 4 0 0 0 0 0 e - 0 0 7  
7 . 9 0 0 0 0 0 e -0 0 4  - 2 . 0 0 8 4 0 0 e - 0 0 4  

BOUNDARY^MOTION 
4 1 4  5 5
0 . 0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 0 0 e + 0 0 0  
7 . 8 9 9 9 9 9 e -0 0 4  2 . 9 9 1 6 0 0 e - 0 0 4  
9 .  8 0 0 0 0 0 e -0 0 4  1 . 2 6 0 0 0 0 e - 0 0 6  
1 .0 5 0 0 0 0 e - 0 0 3  - 1 .0 0 3 6 0 0 e - 0 0 4  
1 . 1 1 0 0 0 0 e -0 0 3  - 1 .9 8 7 7 0 0 e - 0 0 4  

BOUNDARY_MOTION 
4 1 2  6 6
0 . 000000e+000 0.0 0 0 0 0 0 6 + 0 0 0  1 . 0 0 0 0 0 0 e + 0 0 0  
1 . 1 0 9 9 9 9 e -0 0 3  2 . 0 4 2 3 0 0 e - 0 0 4
1 .2 4 0 0 0 0 e - 0 0 3  1 . 4 9 0 0 0 0 e - 0 0 6  

BOUNDARY MOTION
4 1 3  7~7
0 .0 0 0 0 0 0 e + 0 0 0 0 . 0 0 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 0 0 e + 0 0 0  
1 .2 3 9 9 9 9 e - 0 0 3  9 . 8 0 0 0 0 0 e - 0 0 5  
1 . 3 0 0 0 0 0 e -0 0 3  6 . 6 5 0 0 0 0 e - 0 0 7  
1 . 4 3 0 0 0 0 e -0 0 3  - 2 . 0 0 1 9 0 0 e - 0 0 4  

BOUNDARYMOTION 
4 1 3  8 8
0 .0 0 0 0 0 0 6 + 0 0 0  0 .0 0 0 0 0 0 6 + 0 0 0  1 .0 0 0 0 0 0 e + 0 0 0  
1 . 4 3 0 0 0 0 e -0 0 3  2 . 9 9 8 1 0 0 e -0 0 4  
1 .6 2 0 0 0 0 e - 0 0 3  - 5 . 2 0 0 0 0 0 e - 0 0 7  
1 . 7 5 0 0 0 0 e -0 0 3  - 2 . 0 1 1 6 0 0 e - 0 0 4  

BOUNDARY_MOTION 
4 1 3  9 9
0 .  0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 0 0 e + 0 0 0  
1 . 7 4 9 9 9 9 e -0 0 3  2 . 9 8 8 4 0 0 e - 0 0 4  
1 .9 5 0 0 0 0 e - 0 0 3  - 8 . 7 0 p 0 0 0 e - 0 0 7  
2 . 0 9 0 0 0 0 e -0 0 3  - 1 .9 9 6 6 0 0 e - 0 0 4  

BOUNDARY_MOTION 
4 1 3 10 10
0 . 0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 0 0 e + 0 0 0
2 . 0 8 9 9 9 0 e -0 0 3  3 . 0 0 3 4 0 0 e - 0 0 4  
2 . 3 1 0 0 0 0 6 -0 0 3  3 . 8 0 0 0 0 0 e - 0 0 7  
2 . 4 6 0 0 0 0 e -0 0 3  - 1 . 9 9 0 4 0 0 e - 0 0 4

BOUNDARY_MOTION 
4 1 2 11 11
0 . 0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 0 0 e + 0 0 0  
2 .4 5 9 9 9 9 e - 0 0 3  3 . 0 0 9 6 0 0 e - 0 0 4  
2 . 7 0 0 0 0 0 e -0 0 3  9 . 3 0 0 0 0 0 6 - 0 0 6
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BOUNDAR Y_MOT I  ON 
4 1 3 12 12
0 . 0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 0 0 e + 0 0 0  
2 . 6 9 9 9 9 9 e -0 0 3  2 . 3 5 9 3 0 0 e - 0 0 4  
2 . 9 0 0 0 0 0 e -0 0 3  4 . 2 0 0 0 0 0 e - 0 0 7  
2 . 9 5 0 0 0 0 e - 0 0 3  - 6 . 4 9 2 0 0 0 e - 0 0 5  

BOUNDARYMOTION 
4 1 3 13 13
0 . 0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 0 0 e + 0 0 0  
2 . 9 4 9 9 9 9 e -0 0 3  2 . 0 0 0 8 0 0 e - 0 0 4  
3 . 1 4 0 0 0 0 e -0 0 3  - 2 . 0 0 0 0 0 0 e - 0 0 7  
3 . 3 4 0 0 0 0 e -0 0 3  - 1 . 9 9 5 6 0 0 e - 0 0 4  

BOUNDARYMOTION 
4 1 3 14 14
0 .  0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 0 0 e + 0 0 0  
3 . 3 4 0 0 0 0 e -0 G 3  3 . 0 0 4 4 0 0 e - 0 0 4  
3 . 6 9 0 0 0 0 e -0 0 3  1 . 1 0 0 0 0 0 e - 0 0 7  
3 . 9 4 0 0 0 0 e -0 0 3  - 1 . 9 9 7 4 0 0 e - 0 0 4  

BOUNDARYMOTION 
4 1 3 15 15
0 .0 0 0 0 0 0 e + 0 0 0  0 . OOOOOOe+QOO 1 . 0 0 0 0 0 0 e + 00 0  
3 . 9 3 9 9 9 9 e -0 0 3  3 . 0 0 2 6 0 0 e - 0 0 4  
4 . 4 4 0 0 0 0 e -0 0 3  - 2 . 7 0 0 0 0 0 e - 0 0 7  
5 .2 7 0 0 0 0 e - 0 0 3  * 2 . 9 9 6 7 0 0 e - 0 0 4  

BOUNDARYMOTION 
4 1 4 16 16
0 .0 0 0 Q 0 0 e + 0 0 0  0 .0 0 0 0 0 0 e + 0 0 0  1 . 0 0 0 0 0 0 e + 0 0 0  
5 . 2 6 9 9 9 9 e -0 0 3  6 . 0 0 0 0 0 0 e - 0 0 5  
6 . 2 5 0 0 0 0 e -0 0 3  1 . 3 0 0 9 0 0 e -0 0 4  
6 . 7 9 0 0 0 0 e -0 0 3  2 . 3 4 3 4 0 0 e -0 0 4  
1 . 2 0 0 0 0 0 e -0 0 2  2 . 3 4 3 4 0 0 e -0 0 4

INLET_OUTLET_BOUNDARY 
2 0 114 

INLET OUTLET BOUNDARY

ZERO_DIMENSIONALDATA 11 5
0 . OOOe+OOO 5 . 0 0 0 e - 0 0 2  1 . OOOe+OOO 2 . 9 3 5 e + 0 0 2  1 . 0 2 2 3 7 0 e + 0 0 5  1 . 0 0 0 e - 0 0 1  5 . 0 0 0 e - 0 0 4  0 .0 0 0 e + 0 0 0  
0 . 0 0 0 0 0 0 e + 0 0 0  1 .0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0  
Z ERO_ DIMEN SIONAL_DATA2
1 5
0 . OOOe+OOO - 5 .0 0 0 € - 0 0 2  1 . OOOe+OOO 2 . 9 3 5 e + 0 0 2  1 . 0 0 4 1 3 0 e + 0 0 5  1 . 0 0 0 e - 0 0 1  5 .0 0 0 e - 0 0 4  0 .0 0 0 e + 0 0 0  
0 .0 0 0 0 0 0 e + 0 0 0  1 .  0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0

MALLBOUNDARY 
1
3 . 0 0 0 0 0 0 e + 0 0 2  5 .0 0 0 0 0 0 e - 0 0 5  

WALLBOUNDARY 
4
3 .0 0 0 0 0 0 e + 0 0 2  5 . 0 0 0 0 0 0 e - 0 0 5

IN IT IA L C Q N D IT IO N
0 .0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 0 0 0  0 . 0 0 0 0 0 0 e + 00 0
1 . 0 0 0 e + 0 0 0  0 . OOOe+OOO 0 .0 0 0 e + 0 0 0  0 . 0 0 0 e + 0 0 0  0 .0 0 0 e + 0 0 0  0 . 0 0 0 e + 0 0 0  0 . 0 0 0 e + 0 0 0  
1 .0 0 0 e - 0 0 1  5 . 0 0 0 e - 0 0 4  1 . 0 0 4 1 5 0 e + 0 0 5  2 . 9 3 5 e + 0 0 2 0 . OOOe+OOO 
0 . OOOe+OOO 1 . OOOe+OOO 0 . OOOe+OOO 0 . OOOe+OOO

P RANDT L_NUMBER 
7 . 0 0 0 e -0 0 1

S PECIES_DATA 
1 . 60 4 e+ 0 0 1
1 .7 4 5 0 e + 0 0 3  1 .5 9 0 0 e - 0 0 1  0 .0 0 0 0 e + 0 0 0  0 . 0 0 0 0 e + 0 0 0  0 .0 0 0 0 e + 0 0 0  
6 . 7 0 5 5 e - 0 0 6  4 .5 2 9 7 e - 0 0 8  - 1 .2 0 6 4 e - 0 1 1  1 . 6 0 9 2 e ~ 0 1 5  O.OOOOe+OOO

SPECIES_DATA
2 .8 9 7 e + 0 0 1
1 .0 4 7 0 e + 0 0 3  - 1 . 3 4 1 7 e -0 0 1  2 . 7 5 7 8 e - 0 0 4  - 1 . 5 3 0 4 e - 0 0 7  3 .8 2 1 0 e - 0 1 1  
6 . 7 0 5 5 e - 0 0 6  4 . 5 2 9 7 e - 0 0 8  - 1 .2 0 6 4 e - 0 1 1  1 . 6 0 9 2 e - 0 1 5  O.OOOOe+OOO

5 PECIES_DATA 
2 . 9 1 8 e+ 0 0 1
1 . 0 4 7 0 e+  003  - 1 .3 4 1 7 e - 0 0 1  2 . 7 5 7 8 e - 0 0 4  - 1 .5 3 0 4 e ~ 0 0 7  3 . 8 2 1 0 e - 0 1 1  
6 . 7 0 5 5 e - 0 0 6  4 .5 2 9 7 e - 0 0 8  - 1 . 2 0 6 4 e - 0 1 1 1 .6 0 9 2 e - 0 1 S  O.OOOOe+OOO

S PE C IESD A TA
2 .8 0 0 e + 0 0 1
1 . 0 4 7 0 e + 0 0 3  - 1 .3 4 1 7 e - 0 0 1  2 . 7 5 7 8 e - 0 0 4  - 1 . 5 3 0 4 e - 0 0 7  3 . 8 2 1 0 e - 0 1 1  
6 . 7 0 S 5 e -0 0 6  4 . 5 2 9 7 e - 0 0 8  - 1 .2 0 6 4 e - 0 1 1  1 . 6 0 9 2 e - 0 1 5  O.OOOOe+OOO

SPRAY CALCULATION

TURBULENCE MODEL

SCALE__RESTAAT 
1 .0 0 0 e + 0 0 0
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Appendix G - NoNOx Wave Simulation Results (10% H2, 90% CH4)

2)00 I t  .  1460.0663 
1? -  1291.6171

13 .  1107 1(21 
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U N . 776 6291
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700
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2100

)900

70 1111 
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700
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NoNOx engine fuel flow predictions
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900

700

6 004 8 04 4 0
Tmlng

NoNOx engine CO emission predictions

A-13



>I
£

m ,
' T i "  H  /  J  . t  t -  ■ '• x '  ' S  /V ~ v  -> f

■ i  ±  <* '  ~ " -?\
’ 4 y - J  y  o. / r t r  S t i  V* * vJW  % V  fê .Ai L l -Jl — :.l—l t^ j
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TIM developm ent o( the NON' ■
—— i'*>o with the formation ol the NONOX company

th e  com pany developed and burlt its own engine 
_£Z teal bem h facility and s ttu-ref -« independent to
0  develop and  adap t new technologies NONOX

employs a pow edul team  ol highly skilled and 

>■> ‘ ’
engm e nut micro oiet home technology

One ol the innovative NONOX-developed It 
> h  to
>  Valve |EOCV| system  a  system  which substantial-
0  ly improves the efficiency ol SI Natural G as engi-

nes up to dm sei hke values

t The EOCV system  w as first applied and tos’ed  on
Q  a  single cylinder test bench where the concept pro

v*— ved its validity Following those  results a  second
( /)  and  third generation  ol the valve was developed
0  and finally applied to a 300 kW DEuTZ V(4 engine
C

’ Z Z  The EOCV system  replaces the  throttle piate ol a
f— conventional SI Natural G as engine it avoids pum

11~| ping losses and it enab les the application of signi-
licant higher com pression ratios

co
fQ  A very important feature Of the EOCV valve as

C r \  u sed  In the NONOX engine >s that it opera tes  com 
pletely electronically controlled without mechanical 

(▼j drive from the engine. The EOCV valve u ses  its
L_

3  ■ P o w er range 12.000 ccm  NONOX engine

own artuato i which «  controlled by ds own valve 
control sys 'em  This m eans that the operation of 
the  valve -an be controlled independently No 
Structural m echanical redesign of the original engr 
ne  is rxi- uss.vry

Of course  the NONOX engine also h a s  Its own 
engine m arngem nnt system  in which total control 
of an engine functions a re  co-ordinated The valve 
control eler trortir-s a te  intrwtacwl with the overall 
engine m anagem ent system  by m eans of a CAN 
J1939 based  interface

T h e  a d v a n ta g e s  of th e  NONOX e n g in e

- Fuel cost benefits com pared to HDDE 

Sam e power a s  HDDE

Specific fuel consumption within sca tte r  of 

0-5‘k com pared to HDDE over entire map 

Reduction In C 0 2  em ission of 25% 
com pared to HDDE 

Emission legislation level EURO 4 and 

E U R 0 5 / EEV

- Air-Fuel-ratio control

• Anti knock control

* Misfke detection control

NONOX NG 230 - A

Engine specifications

Ni» of cylinders 

rtiav torque [Nm|

Cylinder hum (mm) 

Piston stroke |mm)

NONOX NG 270 - A

E ngine  sp e c if ic a tio n s

m ilk to rq u e  (Nmj

Cylinder bore [mrnj 

Piston stroke |iiini) 

Displacement (I)

£ m ission levels

NONOX NG 300 - A

Engine speclocations

N o  o f  ryi»nfl<*%

•tMX Tonjuo |*4»n]

CytifHJef bore jmm] 

P iston slrofce [mm) 

Displacement |i]
>
■o
~o
CD
3
a
o 'o
u>

Appendix 
H 

- 
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x 
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T h e  N O N O X  N G  a p p lic a tio n

i he NoN O x NG engine has been developed using 
a 1010 DEUTZ b a s e  engine

The NONOX engine t« a dedicated Natural G as 
F ngtne A l PG version ran  he m ade available on 
dem and

This NONOX'DEU”  engine has been  fully tested  
and qualified and is now ready for s e r e s  production

Although the NONOX technology has been  develo
ped on a  DEUTZ engine the technology a s  such can
be app  ied a s  an add-on system  to any se n es  pro
duction engine

O  2 003  by  NONOX BV

NONOX NG 300 A 300kW

n o d  1300 1700 1900 3100

fcog up* *<J [rpr-,)

Diesel like specific fuel cosump
tion even at low loads due to 
throttle free load control valve

NONOX BV 
Economi*<straa! 39  
Nl M 3 t  KC Hoensbrcek

Tnl * II (0) 40 56 M  584 Fa. .31 in 45 50 HI M  
E-mail info^noncx-bv c o m  

Internet www nonox hv com

Your contact persons

Paul Uitenbmek
Tuttmrcai Ovarior

Ja n  Olierook 
s«v»* M**v*v*r
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Appendix I -  Miller Cycle CFD Results
CRANKANGLE = 450 00

450° Velocity 
profile for 480° 
EOCV Closure

450° Velocity 
profile for 540° 
EOCV Closure

450° Velocity 
profile for 580° 
EOCV Closure

100Velocity (m/s)0
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CRANKANGLE =

540° Velocity 
profile for 480° 
EOCV Closure

540° Velocity 
profile for 540° 
EOCV Closure

A-17

540° VelQcity 
profile for 580° 
EOCV Closure
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CRANKANGLE = 630 00

630° Velocity 
profile for 480° 
EOCV Closure

630° Velocity 
profile for 540° 
EOCV Closure

630° Velocity 
profile for 580° 
EOCV Closure

Velocity (m/s]
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CRANKANGLE = 630 00

630° Turbulence 
profile for 480° 
EOCV Closure

630° Turbulence 
profile for 540° 
EOCV Closure

630° Turbulence 
profile for 580° 
EOCV Closure
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CRANMNOLE * 630 00

/HI
'/ / / .•

M IH  M '
630° Cylinder Velocity profile for 480° EOCV Closure

; Ml

f  t  /II 
f  f  m

630° Cylinder 

Velocity profile for
IS

580° EOCV Closure

r
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CRANKANGLE = 630 00

1

4

__________________ f

630° Cylinder Turbulence profile for 480° EOCV Closure

630° Cylinder Turbulence profile for 540° EOCV Closure

I

630° Cylinder 

Turbulence profile for 

580° EOCV Closure

PLANE :K |m2/s2]
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8S Perkins
1000 S eries

Agricultural/Industrial 
Power Units

1004-4T
83 kW/111 bhp

Atough 4 cytaxtar ttxbochargvd 
dese l tar compressors. 
W H copk handlerv backhue 
badw s lakH I trucks 
ag^ufcaat and eonwucbon 
e q u p m en t

Based on Partem GO yean 
expwience n  the <k?veiopm«m 
and producbon oI dreset ongnes 
this quaky product w« qwe 
irotddr bee apaa tn n  and tigh 
iw tormancc m  a  long engne

Reliable power
Pordm high manufacturing standards are approved to 150 9000 
Mm  mum contra] efccioncy r> provided by the gear driven watar pump and 
independent Ian (taw teak  *«• operaton h  ensued  by W on cunksickt seals and 
snphhtfcsrad cordrofcd swat Joints qktig  prgtectxm in the toughest candtaons

Durable power
Along trouble (tee He Is .issued by lira use ol the highest quaky com ponent 
Ittoughout the erxyne hom Ihe deep skrted cytnder [dock designed w th tire aid ol 
compuw technology to premkim q u a ty  3 ring controfcd expansion pistons

High performance, productive power
Good power lo weight rvkh ttgn tuque and 22% torque back u p  made pnsslke by 
the Quad am dked injection combustion system matched to a high •pccfcabon 
lubocharger

Economical power
t  rccdonl kjei economy - ad tcc t result ol the unquo Quedram combustion system.

Easy low cost maintenance
Service Marvels ol 400 hours for o i end (Iters
Orach. easy m anenance is made poskbie by the converters posAkxvng ol sendee 
ponds (or easy accesstWy.
Improved pahs avadablty and reduced arventory costs are achieved by the true famly 
concept at the 1000 Series, qrang parts commonalty across the engne range.

Quiet, clean power
Ckwalcv and envronmehtaly Ithwky wth low none taprt stanaMty low ranrssuns 
achuved wan the Guerkam. and high speefcabon fuel reaction oqupmcrt Al 06 1BA 
the 1004 41 «  probably the quatesl engine in I s  class.

Performance Date Grow tntermMenc* Speed
rev/nun

Net intern*!** Speed
rev/mn

Power Ourpur kW) S3 2600 74.5 2600
Power Output fchpl 111 2600 90 2600
Peak Torque (Nrr) 368 1600 333 1600
Peak Torque (W t!J m 1600 245 1600

mauR.'

• v a n n e e n n v l

1000 Series 
1004-4T

Engine Specification
Cast ion engine tikic*
I IfWbcel and flywheel houstaq 
Roury fuel Injection pump 
I ud * «  and profiler 
Ai spend mnchanral governor 
Low inertia Injectors 
lubochargar 
Inlet manfbid
Cast Ion eahaust manloid -  contra outlet 
Lob. oil sump
Spm on o l War and od cooler 
12V/24V startiv and altwnalor 
Choke oI cooling Ions be* driven 
Gear (khan cocdsnt pump 
Lab. a) pressure switch 
Cc4d start aid

88 Perkins
Perkins Engines Company Limned
Potabuough P 11 SNA 
UHted Kingdom 
Mnpnane >44 1011 733 483000 
fa* .441011733 582240 
www parkins com

A selection ol apbonai Hems is avakabta to cnabta tt»  
customer lo make up a  spocHc.Won precisely matched to Iks 
needs these hdude nfcanadw ratings Met mvVutds 
exhauu oudets a  range ol Rywhorls and flywheel housaigs to 
suavarkxbductw s and transmissions and a  selection ol 
pownr b h e  oils

General Data
Bore and stroke 
Number ol cyknders 
Cubic capacity 
Cycle 
Aspiration 
Combustion system  
Compression ratio 
Iking order 
Rotation

Cooling
Length

Height 
Dry weight

lOOtunx 127nsn 13937 nt&OOM 
4 b  ine
4,0 Wes 12430 cu.ln>
4 stroke 
lurbocttagad 
Ouadram droct ryocbon 
16.1 
1 .3 4 2
Am clockwise viewed on
flywheel
Liquid
651 5 mm (24 65 n)
612 mm 124 1 nr 
779 8 mm (30 7 in)
279 Kg

OrarW dmemans and vmghl • *  uqmvl on Ink tpecOcaSun

>
■O
■O
CD
ZJ
Q.
X
c_

" 0
CD”3X-
d ’
</>

o
o

k
H
m
ZJ

(Q
Z3
(D
<7>

~o
<D
O.
"HK

S '
o’
D

Option Groups

I
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Appendices

Appendix K -  Low Sulphur Diesel TEM Images
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Appendix L -  Red Diesel TEM Images
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Appendix M -  Perkins Wave Simulation Results

i 2000

C q lo g l # « e •  R o t i  c

l '  0637
34 3084
31 «3 fc:t 'm
n  m
13 .'39?
70 93M17 773b

I? -  IS 0248 
II -  1? 7?00 
io _ b s is ;  
9 -  S 7600 
8 .  t  OCSS
7 _ i ;so8

I : :J:I25S
t  _ -7.0136 
3 . - 9  7384 
7 -  -1 ?  S73? 
I -  -13 7780 

HAX 38 440b 
WN -16 6666

Perkins diesel efficiency predictions

70 -  313 3073 
19 -  491 3138 
IB -  463 .776?  
17 .  436 9366 
13 .  408 1449 
1 3 - 3 8 0  354?

2500
2400

13 _ 3?4 77?9 
I? -  286 "”
II -  7 69 ...........
10 -  741 4010 
9 -  713 3103

2300

7 _  138 0790 
6 -  130 7383 
6 -  10? 4477 
4 .  74 .3370

I _  -8  7149

s t  m m& 1900 
1800

1700

3500 4 — 
0. I 0 . 7 0 80 .3 0  40.2

Equi>«l*n(4 R»Uo

Perkins diesel torque predictions

19 -  31 1689

16 .  76 3393
13 -  74 7793
M -  73 1196
1 3 - 7 1  3098

10 -  13 3802

8 -  13 4303

6  -  10 7408

7 071 1
3 4117& 2000 3 8014
7 1913

U*X 33 5337
I 3866

f  l o h r o t #

0 .7  0 .3  0 4 0 .5  0 .6  0 .7
[ q l v o l o n c *  B o t l c

Perkins diesel fuel flow predictions i s
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2300

2200 

^ 2 1 0 0  

I  2000
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1800

1S00
0 80. 1 0 7 0 . 3 O S 0 .7

Cqjvo)«nc» R e t ie

Perkins diesel CO emission predictions
2600

2500

2 4 0 0

2300

2200
■o

i?iw 
? 2000

1900

1800

1700
kCNi 0 5450.10'

1500
O S 0 5 0 80 40 3

C q i v s l t n c t  R e t i e

Perkins diesel HC emission predictions

2 4 0 0

5 2000

0 2 0  3  0 4  0  5  0 . 6  0 .7

Cqlvolence  Roti c

Perkins diesel NOx emission predictions

70 - 7188 SCSI
IS . 7053 4639
18 . 1357 9618
17 . 190? 4587
IS . 1806 9676
15 - 1711 4665
|4  - ISIS 9635
13 . 1670 46)4
1? - 14?4 9453
11 . 1379 4473
10 - 1733 9457
f  - 1138 4431
1 . 104? 9410
7 _ 947 4390
6 - 851 3365
I  _ 765 4348
4 _ 560 9377
3 . 565 4306
7 - 469 9785
1 . 374 4766

IUY, 7736 7170
MIN, 3?6 6764

ppm N0>

r
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Appendix N -  Biodiesel TEM Images
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