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S u m m a r y

Major limitations of the short tandem repeat (STR) loci that form the basis of 
criminal DNA databases are the ‘partial’ profiles that result from degradation of 
the longer repeat sequences. In contrast, Single Nucleotide Polymorphisms 
(SNPs) can be encompassed in smaller amplicons increasing the chance of 
amplification in degraded and limited samples.

To aid SNP analysis a range of studies were performed including creation of the 
ASGOTH (Automated SNP Genotype Handler) software for rapid and accurate 
sample genotyping on microarrays. A multiplex assay for simultaneous detection 
of 20 SNPs plus a sex-determining locus by single-tube PCR amplification and 
electrophoretic detection was also developed. All loci conformed to Hardy- 
Weinberg equilibrium and showed independent inheritance. Computer 
simulations characterised the effects of inbreeding and supported the use of 
current STR Fst correction factors. Both paternity testing and kinship analysis 
were compared to STR DNA profiling results.

Interpretation criteria were formulated for correct genotyping of the 21-SNP 
multiplex to control for stochastic variation at low DNA inputs. Each locus was 
individually characterised for allele dropout, homozygous thresholds and 
heterozygous balance.

The performance of the 21-SNP multiplex on degraded samples was compared 
with the AMPF/STR® SGMplus™ (SGM+) STR method currently used for the 
UK National DNA Database®and other DNA profiling techniques used across 
Europe. Applying the 21-SNP multiplex to casework samples previously profiled 
using low copy number (LCN) SGM+ amplification indicated that partial SNP 
profiles could be generated in samples that had given partial LCN SGM+ profiles, 
but samples failing to amplify using LCN PCR parameters would also fail with 
SNPs.

This study demonstrated the use of SNPs for human forensic identification 
purposes as an adjunct to current STR methods and has formed the basis of further 
work on degraded DNA and the design of the next generation of DNA profiling 
systems.
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1.1 Human DNA Polymorphisms

1.1.1 Mutations in the human genome

DNA polymorphisms are present throughout the human genome and have been 

well studied and documented over the last forty years. In the 1990s the Human 

Genome Project set out to determine the entire human DNA sequence, and 

revealed the presence, and location, of millions of these DNA sequence variants 

throughout the genome (Chakravarti 1999; Kruglyak and Nickerson 2001; Kwok 

2001; Venter et. al. 2001). Variations consist of insertions and deletions of a few 

to many nucleotides, variation in the repeat number of a motif (mini- and micro

satellites) or single nucleotide polymorphisms (SNPs) and, on a larger scale, 

chromosomal mutations such as inversions and translocations.

The process that produces heritable variations in DNA is driven by mutation. A 

mutation appearing in the germline can be transmitted to subsequent generations, 

whereas mutations in somatic cells are not inherited. If a mutation event occurs in 

an important region of the genome (especially in a coding region) then it is 

possible that a genetic disease may be the result. The process of mutation can be 

linked to events during chromosome segregation at meiosis, DNA replication and 

repair (Jeffreys et. al. 1988a), and spontaneous changes resulting from exposure to 

chemicals (Strachan and Read 1998).

According to the Mendelian Law of Segregation, an individual inherits two copies 

of the genome, one from the mother and one from the father. At each specific 

location on the chromosome, known as a locus, an individual may have a different 

genetic sequence. Alternative forms of a genetic locus are known as alleles and 

can be characterised by measuring their frequencies within a given population. If 

an allelic variant occurs at a frequency greater than 0.01 within a population then 

it is classified as a polymorphism, as the probability of it resulting from a chance 

recurrent mutation is low hence it is more likely to have been inherited (Strachan 

and Read 1998). Polymorphisms are of interest for forensic purposes as they can 

be used to distinguish individuals.
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Variation within a coding DNA sequence can cause an alteration in the function 

of a particular protein (Strachan and Read 1998; Venter et. al. 2001). Mutations 

found in coding regions take on a number of different forms including nonsense 

mutations, where a difference in one base will cause a STOP codon leading to a 

shortened protein structure; missense mutations, causing one amino acid in a 

chain to be replaced by another; and silent mutations, a base change having no 

effect on the resulting amino acid encoded. These are all forms of base 

substitutions, also known as point mutations. There are two types of point 

mutation, depending on the nature of the base change (Lewin 1998): a transition, 

when a pyrimidine is changed to a pyrimidine or a purine to a purine (e.g. G or C 

base is exchanged with an A or T base respectively); or a transversion, when a 

purine changes to a pyrimidine or a pyrimidine to a purine (e.g. an A/T becomes a 

C/G). Transitions are the most common form of polymorphism as they produce 

the least marked change to the DNA sequence. Coding regions can also be 

affected by base insertions, where a number of bases are added to a sequence; 

base deletions, where a number of bases are deleted from a sequence; and large- 

scale chromosomal abnormalities.

Mutation provides the raw material for evolution to occur. In particular, 

mutations in coding regions may be deleterious to the affected individual, for 

example, causing a protein to become dysfunctional with lethal consequences. 

Selective pressure consequently reduces the levels of genes that are deleterious in 

populations. Sometimes a mutation might benefit an individual resulting in 

increased breeding success e.g. sickle cell anaemia in malaria-infested regions 

(Wood et. al. 1976; Hill et. al. 1991; Modiano et. al. 1996). Consequently, genes 

that increase fitness tend to be preserved and passed on to successive generations.

Evolutionary pressure does not work in the same way within the non-coding 

(“junk”) regions of DNA that constitutes more than 95% of the total human 

genome (Ono 1972; Zuckerkandl 1992; Nowak 1994; Wong et. al. 2000). Recent 

developments in non-coding DNA research have shown that certain regions of 

non-coding DNA have higher levels of conservation than predicted, suggesting 

regulatory elements connected to genes may make up a large percentage of the 

“junk” DNA region (http://www.psrast.org/junkdna.htm). The rest of the non

http://www.psrast.org/junkdna.htm
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coding DNA can demonstrate large numbers of polymorphisms, because there is 

less selective pressure over time. Polymorphisms mainly take the form of base 

substitutions and tandem repeat regions (see sections 1.1.2-1.1.5) and can be used 

for forensic identification purposes.

1.1.2 Tandemlv repeated DNA sequences

Over 50% of the human nuclear genome contains highly repeated DNA sequences 

(DNA ‘motifs’) that appear to be largely inactive (http://www.euchromatin.org/; 

Wyman and White 1980). Some of these sequences are known as “tandemly 

repeated DNA” and vary in their size and composition to give three main 

subclasses of repeats: satellite DNA; minisatellite DNA (section 1.1.3); and 

microsatellite DNA (section 1.1.4). These motif regions are replicated with low 

fidelity because of a slippage that occurs between the template and the newly 

synthesised DNA strands during replication (Bell, Selby et al. 1982; Capon, Chen 

et al. 1983; Goodboum, Higgs et al. 1983; Weller, Jeffreys et al. 1984; Stoker, 

Cheah et al. 1985; Tautz 1989). This slippage leads to a varying number of repeat 

motifs between individuals.

http://www.euchromatin.org/
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A) Normal replication
Newly replicating DNA strand

^^rg:
■ GTC -  GTC ■

-  CAG

GTC

Template DNA strand

B) Backward slippage causes insertion

CAG CAG

GTC -  GTCGTC

-  CAG

GTC

C) Forward slippage causes deletion

CAG -  CAG

n i j
GTC -  GTC

•  • •

CAG -  CAG

GTC GTC

Figure 1.1 Slipped strand mispairing (replication slippage) during DNA replication can 
cause insertions or deletions. A) Normal replication leads to all three CAG repeat motifs 
being incorporated into the newly synthesised DNA chain. B) If all three motifs are 
synthesised before backward slippage occurs, a fourth motif can be added to the new strand. 
C) Forward slippage causes one or more repeats to be skipped giving a lower number of 
repeat motifs. Taken from T. Strachan & A. P. Read (1998) “Human Molecular Genetics ”. 
BIOS Scientific Publishers Ltd, Oxford. Chapter 10 p254.
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The number of microsatellite repeats present in a DNA molecule changes by a 

mutation rate of between 10’3 and 10’4 per locus per gamete per generation 

(Weissenbach et. al. 1992; Weber and Wong 1993; Xu et. al. 2000; Huang et. al. 

2002). This can increase up to 5 x 10‘2 per gamete, as an extreme, in 

micro satellite loci (Jeffreys et. al. 1988a), although loci used in routine forensic
'y  _____

analysis show rates lower than 10'“ (Jeffreys et. al. 1997). These mutation rates 

are low enough for most parent-child transmissions to propagate the same number 

of DNA motifs, but also allow sufficient mutation to maintain a high level of 

heterozygosity within a population, countering the opposing effect of genetic drift 

that tends to increase homozygosity (Jeffreys et. al. 1985a). Individually, 

microsatellites have a relatively low discrimination power of around 1 in 100, 

therefore analysis of several loci is required for a highly discriminating test 

(Sullivan 1994).

Table 1.1 gives an overview of the differences between the three subclasses of 

tandem repeats. Satellite DNA regions are large, spanning hundreds of bases, 

making them unsuitable for forensic analysis. In humans, minisatellite regions are 

found with greater frequency either within the telomeric regions of chromosomes 

or close to them. The hypervariable VNTRs (Variable Number Tandem Repeats) 

have been utilised for forensic identification but were superseded by microsatellite 

loci in the 1990s (see section 1.2). Microsatellite DNA is found across all 

chromosomes and is used in current DNA profiling techniques.
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Class Size of repeat unit 
(base pairs) Major chromosomal location (s)

Satellite DNA (blocks often from lOOkb to 
several Mb in length)

Satellites 2 & 3 5 Most, possibly all, chromosomes

Satellite 1 (AT rich) 25-48 Centromeric heterochromatin

a  (alphoid DNA) 171 Centromeric heterochromatin

(3 (Sau3A family) 68 Centromeric heterochromatin of 1, 9, 
13, 14, 21,22 & Y

Minisatellite DNA
(blocks often within 0.1-20kb range)

Telomeric family 6 All telomeres

Hypervariable family (VNTRs) 9-24 All chromosomes, often near telomeres

Microsatellite DNA (STRs) 
(blocks often less than 150bp) 1-4 All chromosomes

Table 1.1 The major classes of tandemly repeated human DNA. Taken from T. Strachan & 
A.P. Read (1998) “Human Molecular Ge ne t i c s BI OS  Scientific Publishers Ltd, Oxford. Table 
8.3.

1.1.3 Variable Number of Tandem Repeats (VNTRs)

Also known as hypervariable minisatellite loci, VNTRs were the first type of 

DNA polymorphism described for forensic identification (Gill et. al. 1985a; Gill 

et. al. 1985b; Jeffreys et. al. 1985b; Jeffreys et. al. 1985c). A VNTR locus is 

comprised of tandemly repeated sequences, usually 9 to 80 bases in length per 

repeat unit, with a core sequence of GNNNNTGGG (where N can equal any 

nucleotide) (Bell et. al. 1982; Jeffreys et. al. 1985a; Baird et. al. 1986; Jarman et. 

al. 1986; Evett et. al. 1989). These loci can be thousands of bases in length, due 

to the number of repeat units, making them amenable to detection by restriction 

endonuclease methods (see section 1.1.3.1) (Jeffreys et. al. 1985a; Nakamura et. 

al. 1987). Jeffreys et al. demonstrated that probes designed for tandem repeats of 

the myoglobin locus can detect multiple hypervariable loci producing 

“fingerprints” when hybridisations are carried out under low stringency conditions
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-  using high salt concentrations in hybridisation and wash solutions (e.g. washes 

using lx saline sodium citrate, SSC) (Jeffreys et. al. 1985b). They showed that 

“variant (core)n probes can detect sets o f hypervariable minisatellites to produce 

somatically stable DNA ‘fingerprints ’ which are completely specific to an 

individual (or to his or her identical twin) and can be applied directly to problems 

o f human identification, including parenthood testing ". The bands produced by 

these multi-locus probes were shown to be randomly dispersed throughout the 

genome and can be considered to be independently inherited. Several 

hypervariable VNTR loci were discovered in the early 1980s and include sites 

within the insulin gene (Bell et. a l 1982), the Harvey ras oncogene (Capon et. al. 

1983) and the alpha globin genes (Jarman et. al. 1986).

1.1.3.1 Method for forensic typing o f VNTRs

Genomic DNA samples were digested using restriction endonucleases such as 

HinfI, Alul or HaeIII that recognise well-conserved 4 base pair restriction sites 

flanking a specific VNTR locus. The technique was based on restriction length 

fragment polymorphism (RFLP) analysis methods for 3’ alpha-globin (Gill et. al. 

1985a; Jeffreys et. al. 1985a; Jeffreys et. al. 1985b; Fowler et. al. 1988). The 

VNTR locus does not contain the restriction site and therefore remains intact. 

Resulting restriction fragments were separated according to size by 

electrophoresis through an agarose gel, transferred to a nylon membrane 

(Southern blotting) and hybridised with probes labelled with a radioactive isotope.

Multi locus probes were superceded by single locus probes (SLP) because the 

former were difficult to reproduce for database purposes. SLPs were hybridised 

under high stringency (low salt concentrations). Each SLP used detected a unique 

sequence from the corresponding locus, and would only bind at this specific site 

(Jarman et. al. 1986; Wong et. al. 1986; Nakamura et. al. 1987; Wong et. al. 

1987). The fragments were then visualised using autoradiography (Figure 1.2). 

Differences in sizes of the restriction fragments represented integral numbers of 

the tandemly repeated unit. The number of repeat sequences varied significantly 

between non-related individuals allowing a unique “fingerprint” to be visualised.
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Figure 1.2 An autoradiograph example of how VNTR loci may be visualised using RFLP 
analysis. In this case the three offspring have alleles in common with each other and share 
the same alleles as either the mother or the father. The alternate size products appear due to 
the varying number of tandem repeats present (photograph courtesy o f Dr. J. Wetton, The 
Forensic Science Service™, UK).

Most VNTR loci used for human identification exhibited more than 100 alleles 

within a population, meaning the typing of four markers was sufficient to 

differentiate between unrelated individuals with a discrimination power of 1 in 10 
million (Gill et. al. 1991).

1.1.4 Short Tandem Repeats (STRs)

STRs, also known as microsatellites, are repetitive regions of DNA widely 
distributed throughout the genome, particularly found in non-coding regions of 

DNA (Beckman and Weber 1992). The repetitive sequences are between 1 -  6 
bases in length and the number of repeats at any given locus varies, giving rise to 

different size loci and different allele lengths within an individual locus.

Mononucleotide repeats of A or T are very common in the human genome and 
make up approximately 10Mb, or 0.3% of the nuclear genome (Huang et. al. 
2002). In the case of dinucleotide repeats, arrays of CA repeats are very common
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and are often highly polymorphic. CT/AG repeats are also common but CG/GC 

repeats are rare, due to the propensity of C residues to be methylated and 

deaminated into T residues when flanked by a G residue at their 3’ end (Strachan 

and Read 1998). Trinucleotide and tetranucleotide repeats are comparatively rare 

but highly polymorphic and can be exploited for forensic purposes (Budowle

1999). The number of alleles at a single tetranucleotide STR locus usually ranges 

from 5 to 20, making the resulting target region 20 to 100 bases in length.

The use of the Polymerase Chain Reaction (PCR) (Saiki et. al. 1985; Mullis and 

Faloona 1987) for amplification of STR loci makes the amplified products larger 

than the target region due to the inclusion of sequences that flank the repeat region 

(Figure 1.3).

Locus A

STR sequence: 

PCR product:

; -CATC-CATC-CATC-CATC-CATC-CATC-CATC-CATC—

Locus B

STR sequence: 

PCR product:

— CATC-CATC-CATC-CATC--------

Figure 1.3 The short tandem repeat (STR) sequence of CATC in the above example varies in 
the number of its repeats between locus A and locus B. By amplifying the target region using 
flanking primers, PCR products of varying sizes are produced. These PCR products can be 
visualised when run on an acrylamide gel (Figure 1.5).

PCR was first described in 1985 and enabled DNA molecules to be exponentially 

amplified by a series of heating and cooling reactions in the presence of dNTPs 

and a DNA polymerase enzyme (Saiki et. al. 1985; Mullis and Faloona 1987). In 

1994 Sullivan explained that the development of PCR methods had allowed 

multiplex analysis of several loci giving a highly discriminating test, stating: “/>? 

this regard, STRs are preferable to VNTRs because the former are more amenable 

to co-amplification and have narrow allelic size ranges which enable several loci
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to be chosen for co-analysis that are non-overlapping in their size ranges" 

(Sullivan 1994). STRs were also preferable as a fluorescence detection system 

could be used for analysis of the PCR products.

The current DNA profiling system used in the United Kingdom for forensic 

identification utilises tetranucleotide repeat STR loci (Cotton et. al. 2000). An 

account of the development of the forensic typing systems used in the UK is given 

in section 1.2.

1.1.5 Single Nucleotide Polymorphisms (SNPs)

A SNP can be defined as “a position within a DNA molecule where one base can 

be substituted by another" (Strachan and Read 1998), as well as other types of 

DNA variations such as insertions or deletions at single positions throughout the 

genome (Budowle et. al. 2004a). SNPs occur approximately once every 1000 

bases in humans (Cooper et. al. 1985; Kruglyak and Nickerson 2001; Venter et. 

al. 2001), making them the most abundant form of DNA variation. Like other 

DNA polymorphisms, SNPs can be linked back to mutations occurring from 

spontaneous errors in chromosome segregation at meiosis, DNA replication and 

repair, and spontaneous changes resulting from exposure to chemicals (Strachan 

and Read 1998). The use of SNPs as genetic markers is well-documented for 

many different applications from human and animal identification, population 

studies, disease associations and phylogeny (Gray et. al. 2000; Riley et. al. 2000; 

Schork et. al. 2000; Shastry 2002; Emara and Kim 2003; Schmith et. al. 2003).

Sections 1.5 and 1.6 describe the use of SNPs for forensic identification and the 

methods that can be used for their detection.

- 11 -
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1.2 Forensic DNA Profiling

During the early 1990’s DNA forensic science experienced considerable growth, 

instigated by the introduction of molecular techniques allowing the development 

of highly discriminating DNA profiling methods (Kimpton et. al. 1994; Lygo et. 

al. 1994; Sullivan 1994; Gill et. al. 1995b; Gill et. al. 1997; Cotton et. al. 2000; 

Grimes et. al. 2001; Lowe et. al. 2001; Lowe et. al. 2002; Hussain et. al. 2003).

The DNA profiling technique described by Jeffreys et al., using specific tandem 

repeat (VNTR) regions of DNA (Jeffreys et. al. 1985a), was the first to enable a 

‘genetic fingerprint’ of an individual to be generated. The term genetic fingerprint 

is no longer used and has been replaced by ‘DNA profiling’ as the comparison 

with fingerprints was not particularly helpful -  forensic scientists do not use terms 

such as uniqueness, preferring to use match probabilities and likelihood ratios. 

VNTR polymorphisms are outlined in section 1.1.3. It is the variation within each 

locus that is exploited for use in forensic identification.

The introduction of PCR (Saiki et. al. 1985; Mullis and Faloona 1987) allowed 

new improved molecular biology methods to be used in forensic typing. PCR 

revolutionised many areas of DNA research and accelerated the growth of DNA 

analysis. This occurred primarily by use of semi-automated methods which 

dramatically decreased turn-round time and costs resulting in increased 

throughput of samples. PCR could be used to amplify much smaller quantities of 

DNA starting material meaning the types of cases that could be analysed 

expanded considerably (Hagelberg et. al. 1991; Jeffreys et. al. 1992). The VNTR 

method outlined by Jeffreys in 1985 required 0.5-5 pg of high molecular weight 

DNA to gain a significant result. The amount of offender DNA found at a crime 

scene was often much lower so the method was deemed unsuitable for many 

crime scene investigations. The introduction of PCR allowed the amount of 

starting DNA to be reduced to lng (0.001 pg) as template could be exponentially 

amplified to a level that was easily detected. Currently, approximately 1 ng 

quantity of starting DNA material is used in standard profiling methods (Cotton 

et. al. 2000).

- 12-
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PCR methods using VNTRs were developed (Jeffreys et. al. 1988b) but were 

considered to be too time-consuming, too subjective in the interpretation of results 

and c.100 ng of DNA was still required to perform the SLP analysis. PCR is not 

as efficient at amplifying large DNA fragments (Sullivan 1994). Large VNTR 

products were also unsuitable for typing degraded samples, which generally have 

much smaller DNA fragments present (Majno and Joris 1995; Johnson and Ferris 

2002) (see section 1.4).

In 1994 the first DNA profiling system used by the criminal justice system was 

introduced, involving four polymorphic STR loci (Kimpton et. al. 1994; Lygo et. 

al. 1994). This system was superseded in 1996 by a more discriminating STR 

system using PCR, known as the Second Generation Multiplex (SGM) (Gill et. al. 

1995b; Gill et. al. 1997). This consisted of six polymorphic loci plus a non-STR 

sex-determining locus -  the X-Y homologous amelogenin genes. Amelogenin 

primers flank a 6 base pair (bp) deletion within intron 1 of the X homologue, 

resulting in 106 bp and 112 bp PCR products from the X and Y chromosomes 

respectively (Sullivan et. al. 1993; Mannucci et. al. 1994). The introduction of 

the Applied Biosystems (AB) AMPF/STR® SGM plus™ system (SGM+) in 1999, 

with an additional 4 STR loci added to the original 6 used in SGM (Cotton et. al.

2000), increased the discrimination power from approximately 1 in 50 million 

(SGM) to 1 in 1,000 million. DNA profiling for the UK National DNA Database 

(NDNAD®) is carried out using SGM+.

1.2.1 Method for forensic typing of STRs

SGM+ PCR amplifies 10 hypervariable STR loci (Table 1.2) and Amelogenin (for 

X/Y chromosome sex discrimination) using dye-labelled locus-specific primers, 

allowing fragments to be detected by the use of polyacrylamide gel 

electrophoresis (PAGE) (Figure 1.5) or, more recently, capillary gel 

electrophoresis (CE). The use of three fluorescent dyes (JOE, FAM & NED) 

enables loci with overlapping allele sizes to be labelled with different colours so 

they are easily distinguishable from each other.
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Locus ID Repeat motif Approx. size range 
(base pairs)

Dye label used 
for analysis

Chromosome
location

Amelogenin N/A X = 106; Y = 112 JOE X/Y

D3S1358 (D3) [TCTG][TCTA] 114-142 FAM 3q21.31

HUMVWF31/A
(vWA) TCTR* 157-209 FAM 12pl 3.31

D16S539 (D16) GATA 234-274 FAM 16q24.1

D2S1338 (D2) TRCC* 289-341 FAM 2q35

D8S1179 (D8) TCTR* 128-172 JOE 8q24.13

D21S11 (D21) [TCTA][TCTG] 187-243 JOE 21q21.1

D18S51 (D18) AGAA 265-345 JOE 1821.33

D19S433 (D19) AAGG 106-140 NED 19ql2

HUMTHOl (THOl) TCAT 165-204 NED 1 lpl 5.5

HUMFIBRA (FGA) CYKY* 215-353 NED 4q31.3

* R = A or G; Y = C or T; K = G or T

Table 1.2 The 10 STR loci used in the current AMPF7STR® SGM plus™ DNA profiling 
system, plus Amelogenin (Butler e t a l 2004). Each locus has a different repeat motif and a 
variable number of repeats. Some loci give a better discrimination than others but, 
multiplexed, the system has a discrimination power of approximately 1 in 1,000 million, 
between non-related individuals.

The fluorescent dye labels present on one of the pair of flanking primers are 

incorporated into the newly synthesised DNA products during the PCR process, 

allowing them to be visualised when run on a polyacrylamide gel or CE 

instrument (Figure 1.4).

- 14-
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\
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i

Primer extension
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Primer sequence complementary to flanking sequence 

Flanking sequence for primer binding

----------------------- ► Direction o f primer extension

I I 1 I I I I I  Hypervariable STR locus

Figure 1.4 Diagrammatical representation of the PCR process used to incorporate 
fluorescent labels into the targeted STR loci. A) primers are designed complementary to the 
STR flanking regions and are able to bind to the DNA template during the annealing stage of 
PCR. B) the primers extend the new DNA strand making it complementary to the target 
DNA region, exponentially creating new double stranded DNA molecules. C) the resulting 
DNA product has fluorescent dye labels incorporated into its 5’ ends, allowing it to be 
detected by PAGE.

Data collection generates an SGM+ DNA profile (Figure 1.5). The number of 

repeat sequences within each locus is directly proportional to the size of the PCR 

product. STR fragments are given a numerical designation by comparison against 

a control allelic ladder run on the same gel (Figure 1.6).

- 15-
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Figure 1.5 SGM+ DNA profile showing either one or two bands of differing size at each 
locus. The yellow dye NED is visualised as a black peak. For each dye one band indicates 
homozygosity at that locus, i.e. the individual has the same number of repeats at each allele. 
Two bands indicate heterozygosity, i.e. the individual has a different number of repeats at 
each allele. Locus identity and allele positions are characterised using a separate software 
program allowing correct genotyping of each allelic peak, by comparison with an allelic 
ladder (figure 1.6) run in conjunction with the samples on an acrylamide gel.

C ttJtU E U C .U ttO E R .p6 .fM  6

Figure 1.6 Allelic ladder profiles used to correctly score each sample using an automated 
process. Each peak for each locus represents an STR with a different number of repeat 
motifs.
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1.3 The Use of Statistics in DNA Profiling

Statistics are used in DNA forensic analysis as a method of interpreting the results 

gained from a sample and assessing the value of the evidence in such a way as to 

convey it accurately to a court of law. If DNA evidence shows a match between a 

suspect and a crime stain (for example) then an assessment of the probability of 

such a match occurring between the stain and any other individual must be made.

The match probability (Pm) is the probability of two random, unrelated 

individuals in the general population having an identical DNA profile. Pm can be 

calculated using the values of the allele frequencies of each locus in the 

population converted into relative genotype proportions, based on Hardy- 

Weinberg equilibrium, multiplied together to give the chance of seeing this DNA 

profile within the population. This is known as the product rule (Balding and 

Nichols 1994; Evett and Weir 1998). The product rule calculation assumes 

independence both within and between loci and relies on each locus conforming 

to Hardy-Weinberg proportions (section 1.8).

Locus ID Allele Allele frequency 
(P)

Relative genotype frequencies
pAA pBB pAB

LDLR A 0.437 0.19 0.49
B 0.563 0.32

GYPA A 0.539 0.29 0.50B 0.461 0.21
D7S8 A 0.544 0.30 0.49B 0.456 0.21

Table 1.3 Allele and genotype frequencies calculated for three biallelic loci, based on Hardy- 
Weinberg proportions. The relative genotype frequencies are calculated using the equation 
p2 + 2pq + q2 = 1. Adapted from B. Weir (1996) “Genetic Data Analysis H ” Sinauer Associates, 
Inc. Massachusetts.

Using the genotype frequencies in table 1.3, the Pm for a suspect can be 

calculated based on the DNA profile found. For example, if a crime stain found at 

a scene had the profile LDLR A/A; GYPA A/B; D7S8 B/B, Pm would be 

calculated as:
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Product rule 

pBB)

= 0.19 (LDLR pAA) x 0.50 (GYPA pAB) x 0.21 (D7S8

= 0.01995

this is the probability of a chance match of the profile with another random, 

unrelated sample.

This ‘simple’ Pm calculation makes assumptions of independence of loci and 

doesn’t take into account effects from sampling error, related individuals, or 

population sub-structures i.e. it assumes random mating. The population genetics 

imposing correction factors upon the calculations are explained and examined in 

more detail in section 1.8.

For more complex situations a likelihood ratio can be calculated. “A likelihood 

ratio (LR) involves a comparison o f the probabilities o f  the evidence under two 

alternative propositions ” (Butler 2005b). The two alternative hypotheses seen in 

forensic situations are:

Hp = “the DNA profile at the crime scene came from the suspect” i.e. the 

prosecution hypothesis;

Hd = “the DNA profile at the crime scene came from another, unknown 

individual” i.e. the defence hypothesis.

The LR is calculated from the following equation:

Where Pr(E|//p) is calculated from the probability of the crime sample and the 

suspect sample matching given that the prosecution hypothesis is true, i.e. in 

simple scenarios this is equal to 1. Pr(E|//^) is the match probability calculation, 

i.e. the probability of the profile given that the defence hypothesis is true. This is 

the same as the probability of observing the profile in the general population.

LR

- 18-
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The difference between the two calculations can be explained as:

“What is the probability of observing a particular profile?” [the match 

probability]

and

“Given that I have observed this profile, what is the probability that 

another (unprofiled) individual will also have it?” [the likelihood ratio] 

(Balding 2005).

- 19-
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1.4 DNA Packaging & Degradation

1.4.1 DNA packaging in the nucleosome

In the nucleus of mammalian cells, chromatin is organised into subunits that 

consist of lengths of DNA wrapped around a histone octamer (Komberg 1974; 

Bina-Stein and Simpson 1977; Finch et. al. 1977; Moss et. al. 1977; Richards et. 

al. 1977) (Figure 1.7). The octamer consists of two copies of each of the core 

histone proteins H2A, H2B, H3 and H4 encapsulated by a 146 base pair length of 

double-stranded DNA, giving rise to a nucleosome (Komberg 1974; van Holde et. 

al. 1975; Bina-Stein and Simpson 1977; Noll and Komberg 1977; Noll 1978; 
Read et. al. 1985a).

Figure 1.7 Picture of the organisation of DNA around a histone core, forming a nucleosome. 
The nucleosome comprises two copies of core histone proteins H2A, H2B, H3 & H4, 
combined with a 146 base pair length of DNA. Taken from “An Introduction to Genetic 
Analysis”. W.H. Freeman & Co. New York. (Griffiths et al. 1998).

Extensive bonding exists between histones and nucleosomal DNA via hydrogen 

bonding with DNA phosphates, hydrophobic interactions and salt linkages, 

protecting the core length of DNA (Luger et. al. 1997; Komberg and Lorch 1999). 

No interactions are seen between the histones and DNA bases, allowing the 

histones to package any length of DNA regardless of sequence specificity. 

Nucleosomes are connected to each other by linker DNA (Spadafora et. al. 1976; 

Richards et. al. 1977; Read et. al. 1985a; Komberg and Lorch 1999) forming 

“beads on a string” -  the first level of chromosome packing. Linker DNA varies 

in length, an important feature for gene regulation (Spadafora et. al. 1976),

H1 h is to n e  v Histone
octamer

H1 histone 
Nucleosome

-20-



Introduction

allowing the nucleosomes to coil and fold into a chromatin fibre. Nucleosomes 

are more confined to location by physical barriers such as DNA-binding proteins 

along the length of the DNA and sequence-specific bending characteristics (Luger 

et. al. 1997). As a consequence of this physical limitation, nucleosomes are often 

found close to promoter regions and regulatory elements (Simpson 1991; Thoma 

1992). The organisation of DNA around a octameric histone core confers some 

protection onto the nucleosomal DNA, making it less susceptible to attack from 

cellular nucleases (van Holde et. al. 1975; Noll and Komberg 1977).

1.4.2 DNA degradation

DNA degradation occurs in vivo by a number of different mechanisms including 

cellular enzymic activity (Bar et. al. 1988; Suck 1992; Robertson et. al. 2000; Wu 

et. al. 2002; Poinar 2003), microbial enzymic activity (Bradley 1938; Hughes et. 

al. 1986; Madisen et. al. 1987; Poinar 2003) and endogenous chemical 

degradation by hydrolysis and oxidation (Lindahl 1993).

1.4.2.1 Enzyme activity

During cell death by apoptosis or necrosis, the nucleus undergoes chromatin 

condensation and DNA fragmentation, executed by a group of enzymes known as 

caspases (Wu et. al. 2002). DNA fragmentation during apoptosis is mediated by 

CAD1 (caspase-activated DNase) / DFF-40 (DNA fragmentation factor) (Rudel 

and Bokoch 1997; Sakahira et. al. 1998), although other enzymes, specifically 

nucleases, are required for complete histone release (Robertson et. al. 2000; 

Hengartner 2001; Li et. al. 2001; Parrish et. al. 2001). Endonucleases function by 

hydrolysing the phosphodiester bond in the phosphate-ribose backbone structure 

(Suck 1992), causing fragmentation of the DNA molecules. The endonucleases 

first target the unprotected linker DNA, leaving monomeric nucleosomes 

comprising 146 base pairs of protected DNA. Exonucleases detach single 

nucleotides from the terminal end of the DNA strand, gradually shortening the 

molecule (Bar et. al. 1988).
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1.4.2.2 Microbial enzyme activity

DNA can be further degraded by bacterial, fungal and insect interaction 

(Eglington and Logan 1991), an effective but often incomplete process.

1.4.2.3 Chemical degradation

Hydrolysis and oxidation of bonds within the DNA structure occurs in vivo and is 

counteracted by DNA repair mechanisms using endogenous cellular enzymes 

(Lindahl 1993; Friedberg et. al. 1995). The glycosidic base -  sugar bond is the 

main target of direct hydrolytic attack and leads to loss of the base (Figure 1.8). 

The abasic site is then vulnerable to single-strand cleavage of the phosphodiester 

bond and the strand is sheared, unless repaired by endogenous endonucleases, 

phosphodiesterases, DNA polymerase and DNA ligase (Lindahl 1976; Friedberg 

et. al. 1995).

Figure 1.8 Target sites for intracellular decay. A section of one strand of the DNA double 
helix is shown with the four bases (from top: guanine, cytosine, thymine, adenine). Blue 
arrows indicate sites susceptible to hydrolytic attack and orange arrows indicate oxidative 
damage. The magnitude of the arrows reflects the potential for activity at each site (not to 
scale). Adapted from T. Lindahl (1993) “Instability and decay o f the primary structure o f  
DNA n Nature 362: page 713.

o Sites susceptible to 
Hydrolytic attack
Oxidative dam age
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Exposure to active oxygen can also damage the DNA by oxidative attack across 

the 3’-4’ carbon bond of the deoxyribose leading to ring fragmentation and strand 

scission (Friedberg et. al. 1995; Poinar 2003). Oxidation can also occur in the 

ring structure of the bases (Figure 1.8). Lindahl postulates that “deprived o f the 

[DNA] repair mechanisms provided in living cells, fully hydrated DNA is 

spontaneously degraded to short fragments over a time period
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1.5 Single Nucleotide Polymorphisms (SNPs)

1.5.1 The history of SNPs for forensic purposes

The use of single nucleotide polymorphisms (SNPs) for forensic identification 
purposes was first described in 1993 (Syvanen et. al. 1993). The group used a 

method known as ‘solid-phase minisequencing’ (Syvanen et. al. 1990) to amplify 

(using PCR), and detect, twelve SNP loci located on different chromosomes. 

Analysis of two paternity cases and one murder case suggested “in all three cases 

the result was consistent with that obtained by routine methods, which include 

typing o f three VNTR loci”. Biallelic SNPs only consist of two variant bases 

(Figure 1.9), allowing detection of either base by a range of different techniques 

(Kostrikis et. al. 1998; Tyagi et. al. 1998; Berlin and Gut 1999; Howell et. al. 
1999; Li et. al. 1999; Hall et. al. 2000; Mei et. al. 2000; Petkovski et. al. 2003; 

Inagaki et. al. 2004; Budowle et. al. 2004a).

Allele 1 

Allele 2

A-C-T-G-G-G-C-A-C-T-C-T-A-C-G-T-A-C-C

A-C-T-G-G-G-C-A-T-T-C-T-A-C-G-T-A-C-C

Individual A 

(homozygote C)

A-C-T-G-G-G-C-A-C-T-C-T-A-C-G-T-A-C-C

A-C-T-G-G-G-C-A-C-T-C-T-A-C-G-T-A-C-C

Individual B 

(homozygote T)

A-C-T-G-G-G-C-A-T-T-C-T-A-C-G-T-A-C-C

A-C-T-G-G-G-C-A-T-T-C-T-A-C-G-T-A-C-C

Individual C 

(heterozygote C/T)

A-C-T-G-G-G-C-A-C-T-C-T-A-C-G-T-A-C-C

A-C-T-G-G-G-C-A-T-T-C-T-A-C-G-T-A-C-C

Figure 1.9 This diagram illustrates that one biallelic SNP site can give three possible 
genotypes. An individual may have one of the two possible alleles, making them a 
homozygote for that particular locus (as shown with individuals A & B), or an individual 
may have both alleles, making them a heterozygote at that locus (individual C).
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STRs are currently the preferred method of DNA profiling used in forensic 

biology as these proved to be a discriminating form of polymorphism in lower 

numbers, and early methods of detection were more reliable and more amenable 

to high-throughput techniques (sections 1.1.4 & 1.2). The use of SNPs as a 

forensic tool continued to be researched during the 1990s and in 1996 Delahunty 

reported on the feasibility of typing SNPs using a semi-automated PCR method 

(Delahunty et. al. 1996). Although less informative than STRs, Delahunty 

outlined the advantages of using SNPs for identification purposes - including the 

frequency of the polymorphisms throughout the genome; the ease of calculating 

allelic frequencies due to the biallelic nature of the SNPs; the reliability of PCR 

amplification and the ability to automate the process. By this time, automation 

techniques had become increasingly more sophisticated and new methods such as 

microarray analysis were paving the way for new detection strategies.

The advent of the Human Genome Project (Kruglyak and Nickerson 2001; 

Sachidanandam et. al. 2001; Venter et. al. 2001) allowed the sequences flanking 

each SNP to be identified, making the process of SNP selection and primer design 

much simpler. These sequences became available to the public domain via 

Internet websites (section 1.5.2) during the late 1990s (http://snp.cshl.org; 

Thorisson and Stein 2003). The Human Genome Project also highlighted the 

sheer volume of these polymorphisms throughout the genome in both coding 

regions (designated cSNPs) and non-coding regions. The SNPs occurring in non

coding regions are those readily selected for forensic identification purposes, 

although some cSNPs may be used for intelligence work involving physical 

characteristics (Grimes et. al. 2001).

In 1999 SNPs were assessed for their power of discrimination against traditionally 

used STRs (Chakraborty et. al. 1999). Chakraborty et al. asked the question -  

“how many SNP loci would equal the power o f the [sic] combined 13 STR loci?

It was determined that 25-45 biallelic SNP loci would be required to give a 

likelihood ratio (LR) (the reciprocal of the Pm) equalling that of an STR system 

using 13 STR loci (CSF1PO, TH01, TPOX, FGA, D3S1358, D5S818, D7S820, 

D8S1179, D13S317, D16S539, D18S51, D21S11 and vWA), assuming an allelic 

frequency distribution of 0.3, 0.7 for the SNPs. A “more asymmetric allele
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frequency distribution ”, i.e. SNP loci ranging in frequency from 0.1 to 0.9, would 

require more loci to give a similar LR as the power of each locus increases with a 

frequency closer to 0.5. The ease of automation and miniaturisation of detection 

techniques had brought SNPs back into the research domain. Chakraborty 

concluded that SNPs could only be used as a supplement to STRs and would not 

be able to resolve more complex cases, as the number of SNPs required to equal 

the efficiency of the 13 STR loci was a lot higher. He noted “SNP loci had to be 

selected very carefully for intra- and inter-locus independence o f alleles and all 

SNP loci must be co-amplifiable to remove any systematic bias ”.

In 2001, Gill described the use of SNPs for forensic identification purposes, 

particularly with respect to mixture interpretation (Gill 2001a). He determined an 

array of 50 SNPs would give the same, or better, discrimination as approximately 

[sic] twelve STRs, using a basic assumption that allelic frequency is constant 

across the set (i.e. 0.2-0.8) allowing match probabilities to be easily calculated. 

Figure 1.10 shows plots using LRs calculated across the allelic frequency range of 

0.1 to 0.9 for 50 SNPs, 100 SNPs and 150 SNPs respectively. Each point is based 

on all loci being at a constant frequency across the array. An approximate LR of 

1.0E+12 is given for STRs based on calculations using SGM+ loci.
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Estimates of LR from arrays of n loci, assuming fa is constant across
the set

1.0E+70
1.0E+65
1.0E+60
1.0E+55
1.0E+50
1.0E+45
1.0E+40
1.0E+35
1.0E+30
1.0E+25
1.0E+20
1.0E+15
1.0E+10
1.0E+05
1.0E+00

-  n -  50
-  n -  100

n *  150
SGM+

0.1 0.2 0.3 0.4 0.5 0.6
allele frequency (fa)

0.7 0.8 0.9

Figure 1.10 A line graph showing estimated likelihood ratios from arrays of n loci, assuming 
the allelic frequency is constant across the set. The approximate LR for SGM+ is shown as 1 
x 1012 across the set. Adapted from P.Gill ‘An assessment o f the utility o f single nucleotide 
polymorphisms (SNPs) for forensic purposes* Int J  Legal Med (2001) 114:204-210.

Gill demonstrated that it would be possible to detect mixtures by use of simple 

algorithms, assuming that accurate quantitative detection methods had been 

developed. He also showed that relatively small biallelic arrays could be used to 

distinguish between closely related individuals such as brothers, using relatedness 

formulae devised by Weir et al. (Weir et. a l 1997). The different alternatives; C 

= the DNA profile originated from the suspect against C = the DNA profile 

originated from a relative of the suspect; were tested.

Using SGM+ DNA profiling, high molecular weight STRs can fail to amplify in 

degraded samples -  typically affecting any locus greater than 200 nucleotides in 

length (Golenberg et. a l 1996). As nucleases preferentially target linker DNA, 

the amount of DNA bound to the histone protein core may be closely linked to the 

size of the DNA fragments left after degradation (-146 nucleotides plus some 

linker DNA nucleotides) (Finch et. a l 1977; Richards et. a l 1977; Trifonov 1978; 

Read et. al. 1985a; Wu et. al. 2002). The single-base nature of SNPs allows small
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fragments of DNA to be targeted for analysis, giving a higher likelihood of 

detection in samples containing fragmented degraded DNA.

In August 2002, Orchid Biosciences Inc. issued a press release detailing the use of 

a SNP multiplex system, SNPstream™ Ultra High Throughput System (Orchid- 

Gene Screen, Dallas, US), in the identification of World Trade Centre terrorism 

victims. The company had been awarded a contract to help determine the identity 

of remains that had failed to give a full DNA profile by current STR detection 

methods. This was the first instance of SNPs being used as a forensic tool, in 

conjunction with STR methods.

SNPstream™ is a multiplex assay carried out in a flat-bottom microplate in which 

each well contains a total of 16 individual anti-tag sequences for 12 SNPs and 

four controls in a gridded array (Budowle 2004b). The system combines solid- 

phase chip array technology with a primer extension assay and universal tags. 

Each PCR primer comprises a 25bp segment complementary to the region 

immediately upstream from the SNP site plus a 20bp ‘tag’ sequence 

complementary to the anti-tag sequence attached to the bottom of the well. After 

PCR and primer extension, the SNP extension product is transferred to a well and 

allowed to hybridise to its complementary anti-tag. Typing of the two possible 

SNP alleles is achieved by detection of a fluorescent dye attached to the 

incorporated ddNTP terminator. The SNP assay used in the identification of 

World Trade Centre victims used 70 autosomal SNPs in five wells of the 

microplate.

1.5.2 The SNP Consortium (TSC) and SNP multiplex design

The SNP Consortium (TSC) was established in 1999 as a website collaboration 

between several companies to produce a public resource of SNPs in the human 

genome (Thorisson and Stein 2003). By the end of 2001, data for 1.4 million 

SNPs had been released into the public domain. Data on SNPs has been 

submitted to the TSC Data Co-ordinating Centre (http://snp.cshl.org) by 

participating laboratories including flanking sequences, contigs used in the SNP 

discovery, submitting laboratory references and other information about the

- 28-

http://snp.cshl.org


Introduction

alleles. More recently, results can be found pertaining to allele frequencies in 

several different population groups. All data is backed up and checked by the Co

ordinating Centre before being released into the public domain.

The Forensic Science Service Ltd. has developed SNP multiplexes containing up 

to 26 SNPs plus an amelogenin sex-determining locus as detailed in chapters 3-7 

(Hussain et. al. 2003; Dixon et. al. 2005a). The SNP consortium website 

(http://snp.cshl.org) was used to select SNP loci for use in this multiplex system. 

SNPs were selected based on the G-C content of the flanking regions, the biallelic 

bases present [later selections utilised A-T polymorphisms as these were thought 

to cause less primer-dimer interactions] and the position of the SNP on the 

chromosome away from the telomeres.
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1.6 Methods for Genotyping SNPs

In 2001 Kwok reviewed some of the many techniques available for SNP 

genotyping (Kwok 2001), a summary of which is given below. He described an 

ideal genotyping method as possessing the following attributes: (a) The assay 

must be easily and quickly developed from sequence information; (b) the cost of 

the assay development must be low; (c) the reaction must be robust, such that 

even sub-optimal DNA samples will yield results; (d) the assay must be easily 

automated; (e) the data analysis must be simple with automated, accurate 

genotype calling; and (f) the reaction format must be flexible and scalable, 

capable of performing a few hundred to a million assays per day.

1.6.1 Allele-specific hybridisation

The hybridisation approach uses two allele-specific probes designed to hybridise 

to a target sequence. Each probe is identical in sequence, except for one base 

difference at the SNP site (Figure 1.11). Under optimised conditions, this one 

base mismatch will be enough to sufficiently destabilise the non-complementary 

target probe allowing only the correct probe to hybridise. Different assays use 

different methods of reporting the hybridisation event. These include the use of 

fluorescent probes or fluorescent DNA target sequences, allowing the hybridised 

DNA to be visualised (Kostrikis et. al. 1998; Howell et. al. 1999; Jobs et. al. 

2003; Hosking et. al. 2004).

match 1 mismatch

hybridisation no hybridisation

Figure 1.11 Allele-specific hybridisation. Probes are designed to hybridise to a target 
sequence, each probe being identical in sequence except for a one base difference at the SNP 
target site. Only the probe complementary to the target sequence present will hybridise.
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1.6.2 Primer extension

Primer extension assays are based on the ability of DNA polymerase to 

incorporate specific deoxyribonucleotides complementary to the DNA template 

sequence. These assays either use a sequencing approach, whereby the identity of 

the polymorphic base in the DNA is determined and detected by a further analysis 

method (such as mass spectrometry or fluorescence resonance energy transfer 

(FRET)) (Kostrikis et. al. 1998; Berlin and Gut 1999; Carey and Mitnik 2002), or 

an allele-specific PCR approach (Syvanen et. al. 1993; Pastinen et. al. 1997; 

Grimes et. al. 2001; Bell et. al. 2002; Inagaki et. al. 2004; Quintans et. al. 2004). 

In this instance the DNA polymerase will only amplify the target DNA if the PCR 

primers are perfectly complementary to the DNA sequence, or the PCR product is 

used as a template and a primer extension probe is used which will only extend if 

the 3’ base complements the SNP allele present in the target sequence (Figure 

1. 12).

c c

G -------------------------    A--------------------------

^  match ^  mismatch

G
c -------------
G -------------------------    A -----------------------

I primer extension I no primer
extension

c---------- ■> -----------
G -------------------------    A--------------------------

Figure 1.12 Allele-specific primer extension. A primer is designed complementary to the 
sequence directly upstream from the target SNP site. Only by incorporation of a 
complementary deoxyribonucleotide will primer extension be successful (adapted from 
Kwok, 2001).

1.6.3 DNA ligation

When two adjacent oligonucleotides are annealed to a DNA template can only be 

efficiently ligated together by a DNA ligase enzyme if they perfectly match the 

template at the junction (Figure 1.13). Allele-specific oligonucleotides can be 

used to infer the allele present in the target DNA by determining whether ligation 

has occurred (Lizardi et. al. 1998). Ligation is a highly specific technique but has
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a slow reaction time and requires a large number of modified probes in most 

instances.

p-
c

c -------------
G --------------------------   A

perfect match I mismatch

c
C --------------
G -------------------------    A

oligos ligated o ligosnot ligated

Figure 1.13 Allele-specific oligonucleotide ligation. Primers bind to the target template DNA 
both 3* and 5’ to the SNP locus. Only if the primers match at the SNP site will ligation 
occur. Ligation has the potential to genotype without previously amplifying the target DNA 
by PCR.

1.6.4 Invasive cleavage

Structure-specific enzymes cleave a complex formed by the hybridisation of 

overlapping oligonucleotide probes. Probes can be designed to have the 

polymorphic SNP site at the point of overlap, meaning the correct overlapping 

structure is only formed when the allele-specific probe but not the probe with a 

one base mismatch is present (Lyamichev and Neri 2003). This method of 

genotyping has advantages as it uses an isothermal reaction to cleave the 

molecules and gives the potential for genotyping without PCR amplification. At 

present there are technical issues involved with the method that need refining to 

make the procedure more suitable for SNP genotyping in multiplexes.

Many SNP multiplexing strategies have been developed for use in a clinical or 

research setting, but these methods cannot be transferred to a forensic setting due 

to the large amount of DNA starting material required, often in excess of 100 ng. 

Forensic research has to develop techniques that can be adapted to the low 

amounts of starting DNA often found at crime scenes, these samples often give 

DNA quantification values of under 1 ng/pL (Lygo et. al. 1994; Sullivan 1994; 

Gill 2001a; Gill 2001b; Butler et. al. 2003).
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1.7 The Universal Reporter Primer (URP) Principle

In the late 1990s a method of PCR amplification was developed by the Forensic 

Science Service® which allowed design of biallelic SNP multiplex assays (Gill et. 

al. 2000a; Hussain et. al. 2003). This method of amplification has become known 

as The Universal Reporter Primer Principle (URP principle) and has enabled 

simultaneous detection of up to 26 autosomal SNP loci plus the amelogenin sex- 

determination locus. PCR amplification exploits the Amplification Refractory 

Mutation System (ARMS) (Newton et. al. 1989) and the URP principle to amplify 

DNA fragments ranging from 57 to 211 base pairs in length. During 

amplification, two 20bp Universal reporter primer sequences are incorporated 

onto the ends of the DNA strand giving PCR products 40 bases longer than the 

original genome target size (Figure 1.14). The ARMS principle was developed in 

1989 (Newton et. al. 1989) based on the observation that “oligonucleotides with a 

mis-matched 3 ’-residue will not function as primers in the PCR under appropriate 

conditions”. URP biochemistry comprises two phases, within a single-tube 

reaction (Figure 1.14).

There are two locus-specific primers (~40mer) for each SNP targeted, each 

carrying a different base (complementary to the biallelic SNP) at its 3 ’ end and a 

different 5’ Universal tail, dependent on the base present. The allele-specific 

reverse primer also carries a Universal tail, to balance the system. All three 

Universal tails are identical for each SNP. The multimix also comprises two 

fluorescently labelled Universal primers (20mer) complementary to the two 

Universal tails of the locus-specific primers. This allows the PCR to be driven by 

only two primers in the second phase. The first phase uses low concentrations of 

the locus-specific Universal primers to amplify targets to equivalent levels, whilst 

simultaneously incorporating universal tags. This is carried out by a two-phase 

cycling regime.
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Phase la
R ay o n  o f  Locus 

specific sequence 
w ithin pn mars

Locus specific section of the primer binds to 
the sample DNA as template

Universal sequence 1 - 

Universal sequence 2
(O at U ) n = : . S'c^unc*  nut ccmpUmvnUry no DNA v U iw o n

Reverse pnmer\ l t a l 3

Sam ple  1

Product formed

1 95 °C for 11:00
2 94°C for 0:30
3 60° C for 0:15
4 72°C for 0:15
5 60°C for 0:15
6 72°C for 0:15
7 60°C for 0:15
8 72°C for 0:15
9 Go to 2, 5 times

Phase lb Full length primers (locus specific and universal 
sequences) are used to prime the template formed 
in Phase 1. Full length primers bind, Tm
increases, therefore annealing & extension

Tutti 11 r« l temperature can be increased to 76°C to
specifically promote binding of full length 
primers

D N A  E x t.n a a r .
10. 94°C for 0:30
11. 76°C for 1:45
12. Go to 10, 28

1 fro duct formed times
^  (Jo** of)

Phase 2 F'AM labelled Pnmer. 
pnm er sequence 

complimentary to  Unit 1
DNA Extension

fro duct formed is fluorW-CSnSly labelled and can be detected 
Using gel or capillary electrophoresis

Labelling of product by universal 
reporter primers

13.94°Cfor 1:00
14. 60°C for 0:30
15. 76°C for 1:00
16. Go to 13, 2 times

Figure 1.14 Diagrammatical representation of the Universal Reporter Primer / ARMS 
Principle. The amplification technique has two distinct phases: phase la  uses the locus- 
specific portion of the -40-mer primers to provide sufficient template with Universal tails for 
amplification in phase 2. The increase in Tm seen in phase lb  allows the whole length of the 
long primers to bind to the template, dependent on the Universal tail present. By phase 2 all 
long primers have been exhausted and the annealing temperature is reduced to allow the 20- 
mer fluorescently labelled Universal primers to anneal and extend.

Firstly, annealing temperatures are low (60°C) (Phase la, Figure 1.14) to allow 

the locus-specific portion of the primers to attach to the target template, regardless 

of the Universal tail. This allows Universal tails to be incorporated into the 

extending DNA chain, creating new DNA template for the second part of phase 1.
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After three cycles the annealing temperature is increased to 76°C (Phase lb, 

Figure 1.14) so only the full-length primers (locus-specific primer + Universal 

primer) can anneal and extend. The second phase of the reaction employs the two 

20 base Universal primers to fluorescently label the products of the amplification 

reaction with either a JOE™ (green) or FAM™ (blue) dye label. The reaction is 

driven by these primers regardless of the number of loci incorporated into the 

multiplex greatly enhancing the reproducibility of multimix production (Gill et. 

al. 2000a; Hussain et. al. 2003). After amplification the PCR products for each 

SNP are tagged with either dye label dependent on the base present at the locus 

(Figure 1.15), i.e. green = homozygous for allele A; blue = homozygous for allele 

B; green/blue = heterozygous A/B.

M 02 06 too 104 100

tooo J I 
1200 2

1 ,400 1 | 1 A 1

0 4 . .. _ . -a.- k*_.

1

-

k i jlil I
L  A  M l .  J[ i l l

i i . i  i  II id ill IL ii Jii> /it j
[

L J i

Figure 1.15 A typical electropherogram seen with a 21-SNP multiplex, using Applied 
Biosystems Genescan Analysis™ software. Green peaks represent PCR products labelled 
with a JOE™ dye label, blue peaks indicate FAM™-labelled PCR products. Products range 
in size from left (97 bases) to right (186 bases).

Individual SNPs are designated with a ‘TSC’ identifier (appendix I) that can be 

traced back to the SNP Consortium identifier.

- 3 5 -



Introduction

1.8 Populations and Statistical Genetics

The study of population genetics follows a model incorporating a series of basic 

assumptions. These assumptions generally suggest that the starting population 

from which data is subsequently derived is of infinite size and has undergone 

random mating. Random mating means that any individual could choose a mate 

from any other individual within the population without bias. Migration within 

such a population is assumed to be negligible, mutation is ignored and natural 

selection does not affect the alleles under consideration.

1.8.1 Hardy-Weinberg Equilibrium (HWE)

The ‘ideal population’ model can be used for the calculation of Hardy-Weinberg 

equilibrium (HWE) within a population. If a population conforms to HWE, the 

frequency of a genotype can be calculated from the frequencies (pa, pb) of the 

alleles (a, b) present, using the formula given in equation 1-1.

p a + 2 p ap b + p b = 1 Equation 1-1

For a heterozygote (AB), the frequency of the genotype is given by 2papb, whereas
9  9for the homozygotes, AA or BB, the frequency is given by pa or pb respectively. 

The sum of the allele frequencies is equal to 1.

HWE can be investigated using the Goodness-of-Fit Chi-Squared (%2) statistical 

test (equation 1-2). This test examines the relationship between the expected 

genotypes against the observed genotypes (based on the allele frequency) using 

the value of % as an indication of the probability of the data conforming to the 

ideal population rules.

2 (observed -  exp ected )2
X  = 9  ------------------------------------ Equation 1-2

exp ected

A null hypothesis is used as the basis of the % test. In the case of HWE, the null 

hypothesis suggests that there is no significant difference between the observed 

and expected genotypes derived from the allele frequencies. This would indicate 

that the locus conforms to HWE.
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The value of % is compared to a probability table based on the number of degrees 

of freedom (df) associated with the data, d f  is equal to the number of classes of 

data minus the number of parameters estimated from the data minus 1. For SNP 

loci, d f  = 1 as there are three genotype possibilities and one parameter (p) 

therefore 3 -  1 -  1 = 1 d f  A 95% confidence level is used for HWE calculations, 

therefore for 1 d f  a % value greater than 3.84 would occur with a probability of 

less than 0.05 if the null hypothesis were true.

•y

The probability value associated with a particular % test has the following 

interpretation: “it is the probability that chance alone could produce a deviation 

between the expected and observed values at least as great as the deviation 

actually realised. Thus, i f  the probability is large, it means that chance alone 

could account for the deviation, and it strengthens our confidence in the validity 

o f the model used” (Hartl and Clark 1997).

Deviations from HWE suggest the alleles present at the locus under investigation 

are influenced by factors outside of the ideal characteristics of a random mating, 

infinite population, such as mutation, natural selection and migration. The 

identification of loci showing deviations from HWE is important in forensic 

research, loci behaving differently to expectations must be investigated as they 

can adversely influence the calculation of match probabilities.

1.8.2 Exact tests

Conventional statistical tests such as Chi-squared are useful for identifying loci 

that do not conform to HWE, however they are not sensitive enough to highlight 

small deviations in genotype frequencies that may arise especially when the allele 

counts available for analysis are small.

A method of avoiding spurious results calculated by less powerful statistical 

techniques is to use an Exact test (also known as a Probability test) (Fisher 1935). 

Exact tests “assume the hypothesis is true and calculate the probability o f the 

observed outcome or a more extreme (less probable) outcome " (Evett and Weir 

1998). Low values of this probability suggest that the null hypothesis is not true.
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The tests work by using a cumulative probability based on a number of tests 

giving a multinomial distribution. The probability value (P-value) of the observed 

data is calculated and the null hypothesis can be rejected if the probability belongs 

to the smallest (5%) of possible values.

1.8.2.1 Exact tests fo r Hardy-  Weinberg Equilibrium

The use of Exact tests in statistical analysis has been made more amenable by the 

availability of genetic analysis software, such as Genetic Data Analysis (GDA) 

(Weir 1996; Lewis and Zaykin 2001) and GENEPOP (Raymond and Rousset 

1995). HWE can be calculated using Exact tests, allowing a more thorough 

investigation of the data to be undertaken. The Exact test for HWE looks at all 

“possible sets o f genotypic frequencies for the observed set o f allele frequencies 

and rejects the hypothesis o f  HWE i f  the observed genotypic frequencies turn out 

to be unusual under HWE” (Weir 1996).

The formulae for the calculation of Exact tests for HWE is derived from the 

probability of the observed genotypic frequencies (aa, ab, bb), assuming HWE, 

conditional on the observed allele frequencies (a, b) to give:

n\n 12"“*
."at, . ! « . . « * )  = , ,---- : Equation 1-3(2 n y .n J .n J .n J

The expression given in equation 1-3 (adapted from Evett & Weir 1998) is used to 

perform an Exact test for HWE, giving a probability value (P-value) that relates to 

the significance level of the test.

1.8.2.2 Exact tests for linkage disequilibrium

As well as a study into the associations between alleles at a single locus, it is also 

necessary to test for associations between the frequencies of alleles at different 

loci. An association between alleles could be detrimental towards the calculation 

of match probabilities using the product rule (section 1.3). Any associations 

found between alleles are referred to as linkage disequilibrium, although the loci 

being investigated are not necessarily physically linked.
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Linkage disequilibrium is calculated by looking at the frequencies of the alleles at 

all the loci under investigation, using genotypic data (Weir 1996) to assess the 

Chi-squared statistic. Calculations are cumbersome and time-consuming and have 

been made more amenable by the use of software again, such as GDA (Lewis and 

Zaykin 2001) and GENEPOP (Raymond and Rousset 1995). Exact tests can be 

performed by comparing the observed two-locus genotypic counts with the values 

expected under various hypotheses (Zaykin et. al. 1995). This gives the 

significance of the association as a probability value (p-value) that can be used to 

assess the linkage disequilibrium seen between the two loci under investigation, 

using the assumption of 95% (0.05) significance.

Associations between alleles at different loci can be indicative of a population not 

conforming to the assumptions of an ideal population, i.e. there is non-random 

mating and the population is of a finite size. Sub-population effects may cause 

significant associations and these need to be further defined in order to properly 

calculate match probabilities.
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1.8.3 The effects of genetic drift within a population

The population genetics statistics discussed so far have focused on an ‘ideal 

population’ scenario, where a population is infinite and mating is random. In 

reality, populations cannot be infinite, due to geographical location and random 

mating cannot occur due to the physical distance between individuals. The 

evolutionary processes of mutation, migration and selection have an effect on the 

resulting genetic make-up of a population and it is impossible to study complete 

populations due to limitations of size and sampling methods. Observations are 

made on n individuals who have been randomly sampled from within a 

population. Due to the inferences and assumptions made regarding a sampled 

population, a method of defining the limitations of the data is necessary. An 

estimate of genetic drift and/or inbreeding within a population is essential to be 

able to apply a probability to the data obtained from forensic DNA analysis.

“Individuals with common ancestors are said to be related, and their children are 

inbred. I f  no further qualifications are made then all humans are both inbred and 

related to everyone else simply because the population is finite ” (Evett and Weir 

1998). The genetic consequences of inbreeding follow Mendelian principles, 

whereby an individual receives one allele from each parent and thereby transmits 

one of the two alleles to their subsequent offspring. As related individuals share 

ancestors, there is a chance that the two alleles received from an individual’s 

parents are copies from the same common ancestor (Figure 1.16). In this case, an 

allele is known as identical by descent (ibd).

It becomes necessary with forensic genetics to give a probability value to the 

likelihood of an allele within a DNA profile being identical by descent. These 

calculations are worked out using F  statistics. F  is the probability that (using the 

notation in figure 1.16) A = A, given that A and A are the two alleles of a person 

chosen at random from a population. Expanding from this is the calculation for 

Fst, also known as 0. Fst is the probability that two alleles are IBD in one sub

population compared to the population as a whole.
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AAaa aa

Aa Aa

AA

Figure 1.16 A simple depiction of alleles inherited within an inbred population. Each copy of 
allele A within the third generation becomes ‘identical by descent9 as each allele is inherited 
from the same common ancestor.

Fst is a measure of the average progress of sub-populations towards fixation, and 

is also known as a ‘fixation index’ (Wright 1951; Balding 2005). 0 = 1 implies 

that all sub-populations have reached fixation at a locus, i.e. in figure 1.16 all 

individuals would have an AA genotype, conversely 0 = 0 implies that allele 

proportions are the same in all sub-populations, and so the population is 

homogenous, i.e. there are no alleles that are IBD. An Fst correction factor is 

used when calculating statistical data for STR loci (Nichols and Balding 1991; 

Balding et. al. 1996; Gill et. a l 2003), to allow for deviations in the expected data 

set. This means likelihood ratio statistics are biased towards the defence, as the 

calculation decreases the relative allele frequencies used for calculations.

An assessment of Fst for SNPs was performed, to allow correction factors to be 

applied to the data obtained from the SNP multiplex used in this study.
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1.8.4 Kinship analysis for body identification

The SNP multiplex was developed as a forensic intelligence tool, to give 

information about samples that may have been subjected to high levels of 

fragmentation. The use of a SNP multiplex using 20 SNPs plus Amelogenin gives 

an LR of approximately 1 in 4.5 million, i.e. there is a one in 4.5 million chance of 

seeing the same SNP profile in a randomly selected, unrelated individual. 

Samples are compared to a reference sample obtained from personal items 

belonging to an individual. Items that can be submitted as a reference sample 

include: toothbrushes, razors and hairbrushes, along with saliva samples from 

bedding, cigarette butts and handkerchiefs. Reference samples can give varying 

levels of DNA dependent on the source of the sample; a razor is more likely to 

give a good yield of DNA compared to saliva from a pillowcase.

In cases of mass disaster, or old cases that have been re-opened, there may not be 

a suitable reference sample for the deceased individual. In these cases, kinship 

analysis (also referred to as pedigree analysis) can be used to ascertain the identity 

of the individual, using a modified formulae for calculating a likelihood ratio (LR) 

(Weir 1996; Leclair et. al. 2004; Buckleton et. a l  2005).

The scenarios considered in this study were one parent and two parent pedigrees. 

The formulae are derived using two basic hypotheses:

Hp  =  The body is the biological child o f M  and/or F  

Hd = The body is an unknown, unrelated individual

To give the following equation:

In both scenarios, the allele frequencies of the SNP loci are used to calculate the 

likelihood of the two hypotheses based on Hardy-Weinberg expectations. The 

formulae derived for both two parent and one parent scenarios are shown Table

Equation 1-4

1.4.
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Parent 1 Parent 2 Body Likelihood ratio calculation
aa aa aa l/a*
aa aa aF l/(ax 1) = 1/a
aa ab aa l/2a*
aa ab aF l/(2a x 1)= l/2a
aa ab ab l/4ab
ab ab ab l/4ab
ab ab aF l/(4ax 1) = l/4a
ab ab Fb 1/(1 x 4b) = l/4b
ab ab aa l/4az
ab ab bb l/4b*
ab ab bF l/(4b x 1)= l/4b
aa ab Fb

r-H11/—
s

X
aa bb ab l/2ab
aa bb aF l/(2a x 1) = l/2a
aa bb Fb 1/(1 x 2b) = l/2b
ab bb ab l/4ab
ab bb aF l/(4ax 1) = l/4a
ab bb Fb 1/(1 x 4b) = l/4b
ab bb bb l/2bz
bb bb bb 1/b*
bb bb bF l/(b x 1) = 1/b
aa - aa 1/a
aa - ab l/2a
aa - aF l/2a
aa - Fb 1

ab - aa l/2a
ab - ab (a + b)/4ab
ab - bb l/2b
ab - aF l/4a
ab - Fb l/4b
bb - ab l/2b
bb - bb 1/b
bb - aF 1

Table 1.4 Formulae for the likelihood ratio in situations where genotypes of either both 
parents or one parent of the deceased individual are available as reference samples. Alleles 
have been simplified to a and b, where a = allele 1 (green peak) and b = allele 2 (blue peak). 
Adapted from J. Buckleton (2005) uForensic DNA Interpretation ” CRC Press, Florida, tables 
11.1 & 11.2.
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1.8.5 Paternity testing using SNPs

In cases of disputed paternity it is possible to use DNA profiling to calculate a 

probability of an alleged father being the biological parent of a questioned child. 

Calculations assume the DNA profile of the mother and child are known and the 

DNA profile of the alleged father is compared to these. Calculations can be 

carried out using two methods: probability of parentage (the paternity index PI); 

and paternity exclusion (the exclusion probability).

“The determination o f parentage is made based on whether or not alleles are 

shared between a child and an alleged father when a number o f genetic markers 

are examined” (Butler 2005b). Paternity can be assessed by inclusion or 

exclusion of alleles at a locus, based on Mendelian inheritance, which assumes 

one allele is inherited from the mother and the other from the father.

PI is calculated using a likelihood ratio LR = — i—,——r based on the following

it is to see the evidence under the first hypothesis compared to the second 

hypothesis. PI is calculated for each locus and each individual PI value is 

multiplied together for all loci to give a combined PI for the entire set of genetic 

loci examined. For inclusion of paternity, a minimum value of 100 is required. A 

PI of 100 correlates to the probability that the alleged father has a 99 to 1 better 

chance of being the father than a random male in the population.

The exclusion probability is calculated from allele frequencies within a population 

and does not depend on the genotypes seen in any particular case. It is calculated 

from the combined frequencies of all the genotypes that would be excluded if the

hypotheses:

Hp = the alleged father is the father o f the child

Hd — another unknown individual is the father o f  the child.

The likelihood ratio then provides a value indicating how many times more likely
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pedigree relationships were true assuming Hardy-Weinberg equilibrium (Weir 

1996; Evett and Weir 1998; Ayres 2005; Butler 2005b).

By using allele frequency data for the SNPs selected for use in this study, an 

assessment of the utility of these SNPs for paternity testing could be carried out.
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1.9 Aims

The overall aim of this study was to investigate the use of single nucleotide 

polymorphisms (SNPs) for forensic identification purposes. In addition, the 

chosen technique would need to be validated for use in a casework environment 

by studying population genetics, comparison with existing techniques and 

effective DNA profiling of true casework samples. The aims were:

1) To identify and develop a technique for genotyping selected SNP loci;

2) To develop a computer program for rapid analysis of SNP data, dependent 

on the technique selected for detection;

3) Construction of SNP loci population databases for the major ethnic 

classifications of the United Kingdom, namely White Caucasian, British 

Affo-Caribbean and Indian sub-continent;

4) To study the population genetics of SNP loci, including an assessment of 

Hardy-Weinberg equilibrium, linkage disequilibrium, physical linkage and 

the effects of population structure;

5) An evaluation of SNPs compared to current forensic DNA profiling 

techniques for genotyping of low copy number and degraded sample 

types, including mock samples and true casework samples;

6) To determine the most effective method for amplification and analysis of 

degraded sample types through casework studies and collaboration with 

European forensic laboratories.
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2.1 Introduction

Methods of genotyping SNPs have been widely reviewed in the last few years 

(Syvanen 1999; Kwok 2001; Heller 2002). Most systems use fluorescent 

detection methods in order to correctly genotype samples (Delahunty et. al. 1996; 

Bell et. al. 2002; Ye et. al. 2002; Jobs et. al. 2003; Lyamichev and Neri 2003; 

Martinez-Garcia et. al. 2004; Quintans et. al. 2004; Budowle 2004b) but whereas 

much research has been carried out to develop such systems, there has been far 

less progress to automate the genotyping of the samples. In part this may be 

because of the variability between different samples and analytical runs, which in 

itself varies depending on the technology used. Computer algorithms must make 

allowance for variability between different analyses. The assay method used is 

standard across all systems using fluorescence detection for biallelic SNP 

genotyping - one of the dyes will fluoresce for homozygous alleles and both will 

fluoresce for heterozygotes (Heil et. al. 2002); this information is used to 

determine the genotype of the sample.

Many of the major companies interested in SNP detection have developed 

genotyping software to complement the technology they provide. Applied 

Biosystems™ developed a SNPlex™ Genotyping System which uses an 

oligonucleotide ligation assay (OLA) to analyse SNP genotypes using capillary 

electrophoresis (Delahunty et. al. 1996; Wenz et. al. 2005). In conjunction with 

this technology, Genemapper software was also developed to automatically 

genotype samples. This software creates a genotype plot for each SNP (based on 

the peak height data) and uses a clustering algorithm (unpublished) to assign 

genotypes. The algorithm calculates a genotype based on the peak height data and 

the user can manually set a threshold level above which genotypes can be reliably 

designated. Genemapper displays data as both a Cartesian plot and a Polar plot, 

allowing each locus to be manually viewed. The Cartesian plot measures the 

intensity of both peaks relative to each other by plotting the relative fluorescence 

data on both the x and y axis whilst the Polar plot measures the intensity of the 

peaks on the x axis and the ratio of both peak heights on the y axis.
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SNPstream® instrumentation supplied by Beckman Coulter, Inc. (Bell et. al. 2002; 

Budowle 2004b) allows genotyping of up to 1,000,000 SNP genotypes per day, 

using a high throughput primer extension assay. Associated software, 

GetGenos™, was developed to allow automated genotyping of the samples using 

a set of algorithms where the parameters can be manually altered by the user 

(Huang et. a l 2004). The software uses cluster geometry to genotype a sample by 

analysis of fluorescent signal data into three clusters, according to the ratio of 

intensities from two fluorescent colours in the SNP spot.

Microarray technology was developed to carry out DNA analysis using high- 

throughput processing (Southern 1995; Southern 1996b; Southern 2001). A 

variety of DNA microarray systems have been developed and commercialised, 

allowing “DNA and/or RNA hybridisation analysis to be carried out in 

microminiaturized highly parallel formats ” (Heller 2002). Thousands of DNA 

samples can be processed at one time and, by being automated, there is minimum 

scope for both operator and sampling error. DNA microarrays are mainly used for 

gene expression profiling in biological samples (Schena 1996; Watson et. al 

1998; Golub et. al. 1999; Granjeaud et. al. 1999; Alizadeh et. al. 2000; Jain et. al.

2002), although there are many other applications including pharmacogenetics 

(Service 1998; Debouck and Goodfellow 1999), infectious & genetic disease 

diagnostics and mutation analysis (Ravine 1999).

The use of microarray technology predominantly for gene expression profiling has 

led to the development of automated software capable of estimating gene 

expression levels. Software is available both commercially and as ‘freeware’ 

from the Internet1. Most software options use hierarchical clustering to give 

information on gene clusters and gene expression levels in the test samples. Data 

is first standardised relative to background levels of fluorescence calculated from 

the amount of fluorescence in negative control samples. The conversion of 

normalised data into ratios varies between the different programs, with some 

deriving a simple ratio from the fluorescence of one allele compared to another

1 GeneMaths XT; http://research.nhgri.nih.gov/microarray/main.html; 
http://www.bio.davidson.edu/projects/GCAT/GCATprotocols.html;
http://www.bio.davidson.edu/projects/magic/magic.html; http://www.tigr.org/software/; ImaGene
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allele, whilst others use the data from one allele divided by the total fluorescent 

data for the gene being interrogated. Jain et. al. 2002 described one such 

microarray analysis program known as ‘UCSF Spot’, available as freeware to 

academic research bodies via the internet (Jain et. al. 2002). This program was 

developed as there were “a number o f methods available for the quantification o f  

images, [however] many o f the software systems in wide use either encourage or 

require extensive human interaction at the level o f  individual spots on arrays 

‘UCSF Spot’ automatically locates and segments microarray spots and estimates 

ratios based on either two or three-colour fluorescent images. These data can then 

be carried through for more in-depth analyses of expression profiling and DNA 

copy number profiling (Jain et. al. 2002).

The availability of software for gene expression profiling has maximised the 

effectiveness of microarray technology in the research environment, however 

there was a lack of available software for simple SNP genotype calling based on 

microarray fluorescence data. For forensic purposes it was necessary to develop a 

software program capable of accurately genotyping samples for a number of SNP 

loci, whilst maintaining a set of interpretation criteria allowing any anomalous 

samples to be identified. Whereas most existing SNP genotyping programs attain 

99% accuracy, it was imperative that any software used in the forensic context 

had a better accuracy rate to reduce the chance of false positive or false negative 

results. In this study a new automated genotyping method was developed that was 

suitable for forensic genotyping. This was achieved by producing a population of 

negative controls, positive controls and a set of unknown samples (of the same 

origin). This strategy enabled a more robust assessment of genotypes than had 

been previously been achieved.
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2.2 Materials and Methods

2.2.1 The Generation III Microarray System (Amersham Biosciences)

The Generation III Microarray System comprised the Array Spotter, the Array 

Scanner and the Analysis Workstation. The adaptability of the system using 

automated spotting, detection and analysis of samples made it ideal for use with 

SNP technology for gene mapping and gene discovery, as massive parallel 

analyses could be carried out simultaneously. Whereas genome studies have the 

benefit of virtually unlimited amounts of DNA to analyse, in forensic applications 

the amount is limited, hence a different strategy is required.

2.2.1.1 Array spotter

The spotter facilitated the deposition of minute quantities of amplified DNA 

(200pL) onto glass slides (Figure 2.1). The instrument used 12 spotting pens to 

deposit the PCR product and could be programmed to spot a maximum of 12 

microplates, each with 384 wells, onto 36 glass slides. The glass slides were 

coated with a layer of epoxysilane that allowed binding and attachment of the 

DNA to the slide. Before spotting, each sample was mixed 50:50 with 

dimethylsulphoxide (DMSO) to minimise evaporation and ensure an even spot 

morphology. The slides were subsequently hybridised with labelled probes that 

attached to the DNA spots on the glass surface, via specific target sites. The 

SNPs used were biallelic therefore two slides were needed for each individual 

locus, in order to target each allele separately.

2.2.1.2 Array scanner

The Array Scanner detected fluorescently labelled probes using two lasers (green 

532nm and red 633nm) to scan the slides and Array Scanner Control software to 

collect the data. The two fluorescent labels used were Cy™3 and Cy™5 which 

fluoresce at the 575nm and 675nm respectively. The Cy3 label was attached to 

locus-specific probes and would only be detected if that locus was present on the 

microarray slide. The Cy5 label was attached to allele-specific probes and was 

detected if a sample had the specific allele for the SNP being tested.
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Figure 2.1 Cy3 fluorescent images of a post-spotted, hybridised glass slide derived from 
ImageQuant™. (A) = duplicated spots (L & R) in 12 separate blocks, each block being 
spotted by a different pen from the 12-pen set. (B) = one block enlarged to show the 
individual spots, each one indicating a single PCR product.

The presence of a Cy3 signal was indicative of PCR product for the targeted SNP 

locus being present. A Cy5 signal would only be present if the specific allele was 

present on the microarray slide.

2.2.1.3 Analysis workstation

The Analysis Workstation was connected to the Array Scanner computer enabling 

data to be transferred between them. ImageQuant™ software was used initially to 

assess slide and spot quality. The Cy3 and Cy5 images for each slide were 

created in separate files and Figure 2.1 shows a typical Cy3 slide image seen.

The image files were transferred into Array Vision™ software that used set criteria 

to locate spots, quantify fluorescence and generate numerical data for each Cy- 

dye. This data was exported into an Excel spreadsheet as Cy-ARVOL-RFU (total
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fluorescence), Bkgrd (background signal) and Cy-sARVOL (corrected 

fluorescence) [total fluorescence -  background]. These definitions were

automatically created by the software within ArrayVision™ and merely relate to 

the different fluorescent values that data could be derived from.

2.2.1.4 Analysis o f results

Analysis was carried out by converting the corrected fluorescence data (Cy- 

sARVOL) for each allele of a SNP locus into logio values using the following 

equation:

log 10

V v Cy5B
(Equation 2-1)

J)

Where: A -  allele A and B = allele B

A number of spots were deposited on the microarray slide for each sample, 

meaning a population of data points was present for analysis. Data was plotted on 

a scattergraph, in clusters for each sample, to visually characterise the sample 

genotype (Figure 2.2). Data points lay around +1 for samples homozygous for 

allele A, -1 for samples homozygous for allele B and zero for heterozygous 

samples. Genotyping was manually performed by designation of the clusters 

depending on where they lay on the graph.
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[ ♦  Log 10 Cy5(A)/Cy5(B) Scatterplot ]
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Figure 2.2 Scattergraph showing clusters of 20 spots for 10 samples using the 
log10(Cy5A/Cy5B) values. In this example the samples 1 to 10 would be genotyped as: HOM 
B, HET, HOM B, HET, HET, HET, HOM A, HET, HET, HET.
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2.2.2 The computer program -  ASGOTH

Manual genotyping analysis of microarray data was subject to operator 

interpretation, and therefore the interpretation of some results could vary 

depending on the individual performing the analysis. Some samples could show 

variation away from the standard patterns seen in figure 2.2, therefore a more 

definitive way of genotyping samples was needed. I wrote a computer program 

(Automated SNP Genotype Handler -  “ASGOTH”) to automate analysis so that it 

remained independent of operator subjectivity.

The program was written using Visual Basic for Applications (VBA) in Microsoft

Excel, to allow simulation of microarray experimental data derived from replicate
0  .analysis of known genotypes . This data was used to define the requirements of 

the process, especially to include: the ability to recognise failed samples; 

assessment of negative controls; and the ability to correctly genotype unknown 

samples.

The most accurate way to measure any parameter in an experimental protocol is 

by using a population and calculating the median or mean of the data. In 

microarray technology, three parameters are important: the negative threshold (T), 

control sample data (Q  and unknown sample data (U). Populations were 

obtained by spotting each sample type onto a microarray slide numerous times 

and analysing the data obtained from this. One of the important questions to be 

answered by validation of the program was -  how many spots are needed for each 

parameter in order to correctly genotype samples.

The design of the program allowed ASGOTH to genotype unknown samples 

analysed by the microarray by comparison to a negative threshold and control 

samples (see appendix II). The program used the Logio (Cy5A/CyB) values, 

calculated from corrected fluorescent data, to indicate sample genotype based on 

the values observed in the control samples.

2 European and US patent pending: P208010WO
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ASGOTH was divided into three main sections (Figure 2.3):

- Calculation of the negative threshold (7)

- Utilising positive controls to calculate control bins

- Determination of genotypes for the unknown samples

Calculation of Negative Threshold (T)

Collection of Data

Generation of Control Bins for each Genotype

Comparison of Samples to Control Bins 
(see figure 2.5)

Select unknown samples 
If Cy3 < T then disregard in analysis

Select a number of control samples for each genotype 
If Cy3 < T then reselect

Figure 2.3 Flow diagram illustrating the path ASGOTH follows in order to correctly 
genotype samples.
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2.3 Microarray Computer Program Validation

2.3.1 Calculation of the negative threshold (D

It was important to calculate a negative threshold value (7) to allow identification 

of spots where hybridisation had failed or where DNA levels were too low to give 

a reliable result. Negative controls consisting of sterile water in place of sample 

DNA were run with each batch of samples taken through the microarray process, 

in order to obtain data values from which T could be calculated.

The average Cy3-sARVOL (x ) and standard deviation (SD) of the 24 negative 

controls were used to calculate T as:

T = X + (6 x SD) (Equation 2-2)

6 SDs were used in the calculation as experimentation had shown that fluorescent 

values from the 24 negative controls were always less than this (section 2.4.1.2). 

6 SDs approximates to about 99.7% of the range of a normal distribution.

Successful amplification of a locus was characterised by a Cy3 signal for each 

allele. If the Cy3 value for a specific spot fell below T it suggested there had been 

insufficient hybridisation of probe to that spot. Reasons for spot failure included 

failure of samples to amplify by PCR, failure of specific alleles to amplify by 

PCR, poor spot morphology, poor slide quality and lack of deposition of the 

sample onto the slide.

Cy3-sARVOL was used to calculate T and after subtraction of background 

fluorescence, some Cy3 fluorescence commonly remained in the negative control 

sample (Figure 2.1). Fluorescence varied depending on the SNP locus being 

investigated. A probable cause was non-specific binding of the Cy3 probe to

SD: ----------
V n - 1

where: n — number o f observations
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primer-dimer formations, alternatively a small quantity of probe may have 

become bound to the slide surface during hybridisation.

2.3.2 Utilising positive controls to calculate control bins

Control samples of known genotype were used to define control bins 

encompassed by Cmin and Cmax where:

Cmin = median logior C y 5 A ^

= median log 10

Cy5B

CySA
Cy5B

- (n)SDs and

+ (n)SDs

where A = allele A and B = allele B and n = the optimal number of SDs (defined 

by experimentation) for each control bin. Three different positive controls were 

required for each locus:

1 -  C Aa  (Homozygote - AA)

2  -  C a b  (Heterozygote -AB)

3 -  C b b  (Homozygote -  BB)

The control sample data were subject to two filters to ensure that all of the data 

used to create the control bins were of appropriate quality. Firstly, for each 

fluorescent spot, the program compared the Cy3 fluorescence to T (Figure 2.3). If 

the Cy3 value for a specific spot fell below T then it was not selected as it could 

not be distinguished from the negative controls. Secondly, C was evaluated, using 

the logio calculation set out in equation 3.1. The hybridisation efficiency of Cy5A 

and Cy5B could never be absolutely the same, therefore C * 0. Consequently, if a 

result was obtained where C = 0, this was used as an indicator of hybridisation 

failure as a zero value was indicative of no signal. This allowed the assumption 

that there was no product at that spot position and that specific spot would not be 

used in the calculation of the control bins.

The control bins were established using the following equations, with optimum 

SDs derived from experimental data outlined in section 2.4.1.1:
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Type 1: [C A A ra n g e ] C m in 3 SD
Cmax > median C

Type 2: [C A B ra n g e] C m in — 4 SD

Cmax "*■ 4 SD

Type 3 : [ C B Brange] C m in  < median C

Cmax = median C + 3 SD

Figure 2.4 indicates the positioning of these control bin ranges on a Logio graph.

AArange

BBrange

Figure 2.4 Diagrammatical representation of control bins produced from logio Cy5A/Cy5B 
data
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2.3.3 Determination of genotypes for the unknown samples

Data for unknown samples was obtained from the relative fluorescence of allele A

and allele B and was given an identifier of U, where:

U value = ( . (  C y S A ^
logio

J)Cy5B

Umed = median of U for each unknown sample.

for each spot for unknown samples and

For each unknown sample U was calculated and compared to CAArange, CABrange 

and CsBrange generated by the first part of the program (Figure 2.5). To be 

genotyped correctly, each sample must fall into one of the three control bins.

On most occasions the control bins overlapped. Any Umed value falling within the 

overlapping region was classified as ‘inconclusive’, i.e. it could have been either 

one of two genotypes. On other occasions there was a gap between the control 

bins, giving an unclassified region. If the Umed value fell between two C bins, 

then it ‘failed’. The unknown samples were subject to the same two filters as the 

control data: comparison of Cy3 sARVOL to T and U ^ 0. Samples failed if none 

of the spots within the data set were viable. Any samples giving an incorrect 

genotype were scored as ‘wrong’ answers.

A correctly scored sample was defined as either:

a correct genotype (type 1, 2 or 3); or

a failure to score the sample (total Cy3: sARVOL < T, U = 0); or 

an inconclusive result (C A A range ^ U CA Brange, C A Brange ^  U CjjBrange)*



Type 1 Type 2 Type 3 No typeTypes 1 and 2 Types 2 and 3

FailHomozygote BHomozygote A InconclusiveHeterozygote A/B Inconclusive

med within C]BBrangeUmed within ĈAArange me<1 within C,ABrange Umed within CAArange

AND ĈABrange
med within C, 

AND Cggrmge
-ABrange

Comparison of" Umed values to CAArange* CABrange *tnd CBBrange

Figure 2.5 Flow diagram depicting allocation of genotypes to unknown samples based on comparison to C (expanded from figure 2.3)
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2.4 ASGOTH -  A Simulation Program

31 samples of known genotype, plus one negative control, were taken through the 

microarray process to generate data that could be used to determine the following 

factors, to ensure correct genotyping of unknown samples:

How many standard deviations were required for both T and the control bins?

How many control samples were needed to define the control bins?

How many spots were needed per sample for both controls and unknowns?

Bootstrapping, with replacement, was used to select a series of data sets that 

contained values for known samples for the SNP TSCO Z2. Mock “unknown” 

samples were generated from the same data sets to make sure the generated 

genotypes were correct before running true unknown samples.

The program was designed to simulate 1000 experiments, using randomly chosen 

samples (with replacement) from the same data set each time. Each stage of the 

program is outlined in Figure 2.6, from calculation of T to analysis of simulated 

data.
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Analysis of Data

Collection of Data

Calculation of Negative Threshold (T)

Comparison of Samples to Control Bins 
(Figure 2 A)

Generation o f Control Bins for each Genotype 
(as described in section 2.3.2)

Randomly select unknown samples 
If Cy3 < T then disregard in analysis

Randomly select a number o f control samples for each genotype 
If Cy3 < T then reselect

Figure 2.6 Flow diagram depicting the path of the validation bootstrapping program. Samples are randomly selected (with replacement) and the 
program was repeated 1000 times.
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2.4.1 How many standard deviations?

2.4.1.1 Calculation o f control bins

The number of standard deviations used to create the ASGOTH control bins was 

based on the assumption of a normal data distribution (data not shown). The 

median data value ± 3 SDs was used for [ C AArange] and [ C BBrange]> to incorporate 

99.73% of the expected data range. 4 SDs were used for [ C ABrange] to allow the 

extremities of the bins to overlap, minimising the number of failures (or wrong 

results) but increasing the number of inconclusive results.

2.4.1.2 Calculation o f T

The ASGOTH simulation was set to randomly select 6 spots for 16 control 

samples to produce the control bins. These were then used to genotype 24 spots 

for 32 unknown samples. Bootstrap, with replacement, was repeated 1000 times, 

randomly choosing 6 spots for each control sample each time, thus mimicking 

1000 different experiments. A set number of standard deviations (SDs) were used 

to calculate T. The total number of correct answers, inconclusive results 

(including failures) and wrong answers were collected for all 1000 simulations 

before the program was re-set, altering the number of SDs. A total of seven 

different SDs were examined, ranging from 1 to 10. Table 2.1 shows the 

percentage results for each SD for each of the three specifications looked at, with 

Figure 2.7 showing the same results in graphical form.

Number of SDs Correct Genotypes (%) Wrong Answers (%) Inconclusive Results (%)

1 85.4 8.6 6.0

2 91.7 4.8 3.5

4 91.8 0.8 7.3

5 88.4 0.0 11.6

6 87.7 0.0 12.3

8 84.4 0.0 15.6

10 81.3 0.0 18.7

Table 2.1 Results from ASGOTH simulation using varying numbers of standard deviations 
for the calculation of 7, using randomised data for 16 control samples, 6 spots for each and 
32 unknown samples, 24 spots for each. Sample size = 32,000.
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Varing number of standard deviations against simulated results

100

Correct Genotypes (%) 

Wrong Answers (%) 

Inconclusive Results (%)

60  -

40  -

30  -

standard deviations

Figure 2.7 Graphical representation of the data shown in table 2.1. No wrong answers were 
seen when a standard deviation above 5 was used to calculate T. However, as the number of 
SDs was increased from 5 to 10, the number of correct genotypes scored declined and the 
number of inconclusive results rose. Sample size = 32,000.

Results from these preliminary simulations suggested that (T + >5 SDs) would be 

sufficient to eliminate all ambiguous data resulting from spot failure. Using an 

SD of 5 or over gave no wrong answers on the ASGOTH simulation. However, 

as the SD was increased above 5 the number of correctly genotyped samples fell 

and the number of inconclusive results rose (Figure 2.7). This phenomenon 

would have been a consequence o f samples failing as Cy-sARVOL-RFU values 

fell below T. A decision was made to use 6 SDs in all further validation studies, 

to maximise the number of correctly genotyped samples whilst minimising the 

number of inconclusive results.
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2.4.2 Defining the control bins

Simulations were set up to calculate the number of control samples needed to 

define [ C AArange], [C A B range] and [ C BBrange]. Table 2.2 shows the results using 

different numbers of control samples, with the spot number remaining constant at 

two. In a microarray run, each spot is deposited in duplicate on the same slide, so 

the minimum number of spots for each sample is two. By aiming to perfect the 

method using the minimum number of spots, the use of more spots in true runs 

should give a more accurate result. All simulations used bootstrapping, with 

replacement, to select two spot data sets for both controls and unknown samples.

Number of Control Samples 
(AA, AB, BB)

Correct Genotypes (%) Wrong Answers (%) Inconclusive Results (%)

1AA, 1AB, IBB 69.5 1.1 29.4

2AA, 2AB, 2BB 79.4 0.7 20.0

4AA, 4AB, 4BB 81.6 0.3 18.2

6AA, 6AB, 6BB 81.8 0.3 17.9

8 A A, 8AB, 8BB 81.9 0.3 17.9

Table 2.2 Results of ASGOTH simulation using varying numbers of control samples. All 
simulations were carried out using 2 random spots from each control AND each unknown 
sample. All results are shown as percentages of actual data. Sample size = 1000 simulations 
of 32 samples.

The number of samples scored correctly and the number of wrong answers 

observed reached a plateau as the number of control samples was increased above 

four, suggesting little variation in data between control samples of the same 

genotype (Figure 2.8). This indicated that it was the number of spots used in a 

data set as opposed to the number of different samples that defined the scope of 

the control bins. By using two random spots for each simulation the number of 

wrong answers had steadily declined to 0.3% but never fell to zero.
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G enotypes seen with varying num ber o f control sam ples

100

5 40 -
S 30 -Pm

1AA, 1AB, 2AA, 2AB, 4AA, 4AB, 6AA, 6AB, 8AA, 8AB,
IBB 2BB 4BB 6BB 8BB

no. of control sam ples (AA:AB:BB)

Figure 2.8 Graphical representation of the data shown in table 2.2. AA = control sample 
with a homozygous A genotype; AB = heterozygous control; BB = homozygous B control.

It was important to show that ASGOTH could fully genotype samples without 

giving any false results, therefore another set o f simulations were set up using four 

control samples per genotype and increasing the number o f spot data sets used. 

By increasing the numbers o f spots used per sample, it was hoped that the control 

bins would become more defined leading to improved scoring o f each unknown 

sample. The results o f these simulations are shown in table 2.3, along with results 

for simulations using six control samples per genotype.
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Number of Control 
Samples (AA, AB, BB)

Number of Spot Data 
Sets Used

Correct Genotypes (%)
Wrong Answers 

(%)

Inconclusive 
Results (%)

4AA, 4AB, 4BB 2 81.55 0.281 18.17
4AA, 4AB, 4BB 4 85.76 0.144 14.09
4AA, 4AB, 4BB 6 86.98 0.053 12.97
4AA, 4AB, 4BB 8 87.09 0.063 12.85
4AA, 4AB, 4BB 10 87.31 0.022 12.67
4AA, 4AB, 4BB 12 87.40 0.013 12.59
4AA, 4AB, 4BB 14 87.46 0.013 12.53
4AA, 4AB, 4BB 20 87.52 0.003 12.48
4AA, 4AB, 4BB 22 87.50 0.003 12.50
4AA, 4AB, 4BB 24 87.50 0.000 12.50

6AA, 6ABB, 6BB 2 81.83 0.288 17.88
6AA, 6ABB, 6BB 6 86.97 0.050 12.98
6AA, 6ABB, 6BB 10 87.47 0.022 12.51
6AA, 6ABB, 6BB 12 87.43 0.013 12.56

6AA, 6ABB, 6BB 14 87.48 0.000 12.52

Table 2.3 Results of ASGOTH simulations using increasing numbers of spot data sets for 
both 4 control samples per genotype and 6 control samples per genotype. All results are 
shown as percentages of actual data. Sample size = 1000 simulations of 32 samples.

After performing the first set of simulations using four control samples per 

genotype, the data illustrated the need to use a total of 24 spot data sets per sample 

in order to get no wrong answers. More simulations were carried out using an 

increased number of control samples per genotype to see if fewer spots would be 

required. Table 2.3 and Figure 2.9 show the number of wrong answers falling to 

zero with 14 spot data sets, as opposed to 24, using six control samples per 

genotype. This demonstrates the benefit of using a larger number of control 

samples to further define the control bins.
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The number of wrong answers seen for an increasing 
number of spot sets for different numbers of control samples

0.35

4 control samples 

6 control samplese  0.25 -
4>
it a te«
OX)ses.*
£

0.05 -

  i ♦
14 20 22 242 4 8 10 126

no. of spots (n)

Figure 2.9 Graphical representation of the percentage of wrong answers seen when using a 
different number of control samples per genotype and varying numbers of spot data sets. 
Sample size = 32,000.

The results of these simulations also showed little variation in the number of 

inconclusive results gained when using six or more spot data sets. The 

‘inconclusive results’ group consisted of both samples falling within two control 

bins and sample failures. The lack of variation within this group as the number of 

spots increased suggested the group to be mainly composed of failing samples. 

As the control bins became more defined with increasing numbers of data sets, the 

samples originally falling within two control bins would have been shifted into 

one bin or the other, increasing the number of correct answers.
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2.5 How Representative Is The Data Set?

2.5.1 Same controls, different unknowns

A simulation was set up to test whether the parameters designed for one 

experiment could be used to genotype samples from a different experiment. The 

same control samples were used as those described in section 2.3 but a different 

unknown sample data set was used, consisting of 16 samples plus one negative 

control. Both sets of data were randomised, using 6 control samples per genotype 

and 14 spots for both controls and unknown samples. 1000 simulations gave a 

sample size of 17,000.

82% of samples were scored with the correct genotype, a further 18% gave an 

inconclusive result and no wrong answers were seen with these parameters. The 

increased percentage of inconclusive results seen suggested that the control bins 

were not well enough defined for this different data set, causing an increased 

number of samples to fall with two control bins or to fail completely. Also, the T 

value may not have been high enough to guarantee all outliers to be taken out of 

the data set, again increasing the number of inconclusive results.

This brief experiment highlighted the need to run control samples on each 

separate microarray run. Variations in different experiments could occur during 

PCR amplification, during microarray spotting, through slide quality, probe 

hybridisation and operator differences. By using control samples on each run, 

these variations would be translated into the control bins and samples could be 

genotyped accordingly.

2.5.2 Using the same parameters for a different SNP -  TSCQ D

A simulation was set up using the same control parameters on an entirely different 

data set using a different SNP -  TSCO D, to test the limitations of the ASGOTH 

system. Only five control samples per genotype were available to create the 

control bins for TSCO D and 14 spot data sets were used for both controls and 

unknowns. All data were randomised using a random number generator, giving a 

sample size of 16,000.
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The same parameters as in section 2.4, but with 15 control samples, generated the 

following results when using TSCO D:

Correct results = 93.73%

Inconclusive results = 6.25%

Wrong answers = 0.02%

Only 2 out of 1000 simulations generated the three wrong answers seen with this 

SNP. It is most likely the wrong answers were generated by outlier samples that 

had managed to pass the negative threshold filter. The amount of fluorescence 

seen for each individual SNP varied greatly due to the presence of primer-dimer 

formations. Hybridisation probes could bind to the negative control spots if 

primer-dimer was present, giving an enhanced fluorescence reading. This 

emphasised the need to optimise the system for each separate SNP used on the 

microarray system. Optimisation would involve the parameter testing used in 

section 2.4 however, the ability to type almost 94% of samples without 

optimisation showed the robustness of the ASGOTH automated system.
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2.6 Discussion

The use of microarrays in the research environment has increased significantly in 

the last decade as arrays have become more miniaturised and biochemistry has 

developed to enable millions of SNPs to be accurately genotyped with very high- 

throughput and low error (Southern 1995; Schena 1996; Bowtell 1999; Brown and 

Botstein 1999; Southern 2001; Heller 2002; Holloway et. al. 2002; Simon et. al.

2003). Analysis of microarray data uses the same methods as other fluorescent 

detection systems, based on relative fluorescence data obtained from samples 

compared to controls, however most of the specialised software, such as 

ImageQuant™ and ArrayVision™ (Amersham Biosciences), was unsuitable for 

automated genotyping of SNPs.

Due to the increased use of microarray technology within gene expression 

research, a number of analysis programs were developed to cope with the massive 

amounts of data obtained from gene expression experiments. Bowtell (1999) 

reviewed the main microarray platforms and software available for data analysis, 

with a further, updated, review carried out three years later (Bowtell 1999; 

Holloway et. al. 2002). All software programs developed have focussed on 

methods to improve the sensitivity and classification of samples in gene 

expression experiments, highlighting a need for a simpler method of microarray 

analysis that could be translated to the biallelic genotyping required for forensic 

use. The main difference between the needs of the different systems being that 

gene expression microarrays use pairwise comparisons to assess the amount of 

gene expression present in a given gene against a housekeeping control gene; for 

forensic purposes there was a requirement to compare a single allele in a biallelic 

SNP locus to a single allele in a control sample.

Methods used for gene expression analysis of microarray data could be translated 

into a format for use with the data derived from our low-throughput genotyping 

work, for example; normalisation of data (Chen et. al. 2002; Park et. al. 2003; 

Suzuki et. al. 2003; Munir et. al. 2004), use of reference samples and genotyping 

based on fluorescence data (Schena 1996; Watson et. al. 1998; Granjeaud et. al. 

1999; Syvanen 1999; Jain et. al. 2002).
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Normalisation of data is defined as “the process o f removing some sources o f  

variation which affect the measured [gene expression levels] ” (Park et. al. 2003),

i.e. any fluorescent data collated from a microarray analysis is subject to variation 

due to background levels of fluorescence, different affinities of the various dyes 

used, differences in samples and differences in operators. Normalisation was 

carried out prior to use with ASGOTH software by subtraction of background 

fluorescence (Bkgrd) from total fluorescence (Cy-ARVOL-RFU) to give a 

corrected fluorescence value (Cy-sARVOL), a calculation automatically 

performed by Array Vision™ software. There have been a number of articles 

reviewing the benefits and drawbacks of using such a calculation in gene 

expression analyses as the subtraction of background fluorescence can vary due to 

the algorithms used in different software programs (Brown et. a l 2001; Simon et. 

al. 2003; Scharpf et. al. 2005). Background can arise from a number of sources, 

including incomplete washing of the slide after hybridisation, features of the slide 

that bind dye (such as the epoxysilane layer) and imprecision of the spot grid 

during image acquisition (Schuchhardt et. al. 2000). Due to these factors it was 

decided that for our purposes it would be better to err on the side of caution and 

use background fluorescence subtractions rather than risk gaining false positive 

results from inaccurate background readings. A second normalisation procedure -  

converting data into log ratios - was performed on the data before importing into 

ASGOTH.

Logio ratios were used to standardise the data obtained using our system, as 

fluorescence for each allele was obtained from two separate slides spotted with 

the same PCR products. Each of the two slides was investigated using a different 

probe labelled with the same fluorophore, so hybridisation would only occur if the 

sequence complementary to the probe sequence was present within the DNA 

sample. Variations in slide quality and hybridisation affinities meant that it was 

necessary to normalise the data to directly compare one allele to the other. By 

carrying out a log transformation, the data obtained could be standardised across 

the set, regardless of slide or hybridisation variability (Thygesen and Zwinderman

2004).
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Positive control samples were essential to provide a basis for defining control bins 

by which to analyse data from unknown samples. In gene expression analysis, 

housekeeping genes (for which expression levels are known) are used as 

references and patterns of expression are compared to them (Schena 1996; 

Bowtell 1999; Alizadeh et. al. 2000; Southern 2001; Holloway et. al. 2002; Jain 

et. al. 2002; Suzuki et. al. 2003). Statistical analyses are carried out by 

hierarchical clustering, using software written for gene expression profiling. 

Clustering analysis was not applicable to the samples used in our study, as sample 

sizes were small and information needed to be derived from a single sample for a 

single SNP being interrogated, therefore a more precise method of analysis was 

required. Negative controls, using sterile distilled water samples taken through 

the whole microarray process, were used to assess the amount of fluorescence 

seen in a sample without DNA. This fluorescence data (7) formed the basis of the 

primary interrogation of data for each spot in the experiments.

The initial ASGOTH program was developed to assess how many microarray 

features would be required per sample, for both controls and experimental 

samples, in order to allow automated genotyping of samples with little operator 

intervention. These guidelines could then be used as the basis for all microarray 

experimentation, minimising errors and increasing the throughput of the system. 

An error rate of up to 1% is seen in microarray technology used for gene 

expression experiments, due to the ultra-high throughput of the system and the 

less stringent guidelines in place for determining the level of gene expression 

(Heil et. al. 2002; Huang et. al. 2004; Wenz et. al. 2005). For forensic purposes a 

system needs to be close to 100% efficient, therefore the rules governing the 

calling of alleles needs to be infallible. A method of achieving this was developed 

by using populations of spots on a microarray, as opposed to single spots. This 

allowed median analysis (±SD) to be used to create both control bins and medians 

for unknown samples, and the two could then be further compared.

A lack of available data for further SNPs limited the amount of validation that 

could be performed using the ASGOTH program. Nevertheless a comprehensive 

framework was developed that could be used to evaluate any SNP system. Initial 

studies suggested the use of Cy3 fluorescence in negative control spots could be
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used to filter any ambiguous results resulting from experimental variations in slide 

quality, spotting and probe hybridisation.

Random number generator simulations (Monte-Carlo simulations) were used to 

test the limits of the ASGOTH system by imitating 1000 different experimental 

results. Monte-Carlo simulations have been used in many different research areas 

to generate datasets when only a minimal amount of data is initially present 

(Triggs and Curran 1995; Chen et. al. 2002; Kimbrough 2004; Gill and Kirkham 

2004b; Gill et. al. 2005b). This type of simulation randomly generates values for 

uncertain variables over and over to simulate a model and, by defining the 

characteristics required for the simulation, any number of experiments can be 

performed using a sub-optimal size dataset. For use with the ASGOTH program, 

simulations were performed to repeat the experimental outcomes without the need 

for re-running the laboratory work, giving a dataset that could be easily 

interpreted for validation purposes.

Control bins generated using median data and SD values allowed correct 

genotyping of 27994 out of 32000 samples (over 87%) with an unknown 

genotype, in an optimised system. No wrong answers were seen when using an 

increased number of spots and samples to generate the control bins. Inconclusive 

results consisted of samples which either fell into two control bins or which had 

failed. Spots not passing the negative threshold, for reasons such as low PCR 

amplification or poor spotting quality, would have caused failures. The program 

was therefore shown to be 100% efficient in calling alleles, either with a genotype 

or with an inconclusive / fail marker.

The ASGOTH system could be adapted for use with other platforms (e.g. 

Luminex™, capillary electrophoresis) as well as other biochemical methods on 

the microarray, such as reverse dot-blot whereby specific probes are spotted onto 

the microarray slide and PCR products are added to the slide for hybridisation. 

Further experimental work using SNPs on the microarray was ceased, due to the 

inability to produce large multiplexes easily on such a platform. Future work 

looked at developing the SNP multiplex for use on a capillary electrophoresis
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platform, where products could be separated by size, thereby minimising the 

effects of primer-dimer formations.
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3.1 Introduction

DNA damage, arising from enzymatic activity and errors encountered during 

replication, is a relatively common event in metabolically active cells (Lindahl 

1993). DNA repair mechanisms are in place that can reverse the vast majority of 

changes made to the DNA molecule allowing little irreversible damage to the 

cells. In inactive cells (i.e. dead or dormant cells), the mechanisms of DNA 

damage persist but the repair mechanisms have been disabled, leading to DNA 

degradation (Paabo 1989; Lindahl 1993; Hofreiter et. al. 2001; Willerslev and 

Cooper 2005). Spontaneous hydrolysis and oxidation of DNA leads to single

strand breaks, baseless sites (depurination), miscoding lesions and cross-links, all 

of which decrease the chance of successfully amplifying the DNA molecules 

(Lindahl 1993; Willerslev and Cooper 2005). The mechanisms of DNA 

degradation are described in more detail in chapter 1.

The ancient DNA research community has carried out a great deal of work on the 

degradation of DNA. As described by Willerslev & Cooper (2005), "the post

mortem instability o f nucleic acids is central to the methodological problems 

inherent to ancient DNA research ”, and the same can be said when analysing 

degraded DNA for forensic purposes. The hydrolytic and oxidative damage seen 

in ancient DNA samples has been shown to correlate with the temperature of the 

recovery site as opposed to the age of the samples, “thus, while forensic samples 

are much younger than ancient samples, these will presumably contain similar 

types o f [DNA] damage” (Poinar 2003). Bar et. al. (1988) observed the post

mortem stability of DNA in various human organs and tissues, using both direct 

agarose gel analysis and RFLP analysis with minisatellite probe 33.15. The rate 

of DNA fragmentation was found to be variable between the different sample 

types, with total degradation of the high molecular weight fragments (15-23 kb) 

appearing between five days and three weeks.

With the introduction of the PCR amplification method, a smaller quantity of 

initial starting DNA template was needed for forensic analysis, as outlined in 

chapter 1. The fragmentation of DNA following degradation reduces the 

efficiency of the PCR reaction, in particular it is expected that “(i) PCR o f ancient
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or degraded DNA should only amplify small fragments; (ii) the amount o f  

amplified product should be small compared with similar reactions with (modern) 

DNA ” (Golenberg et. al. 1996). Paabo (1989) used PCR techniques for analysis 

of several ancient DNA samples ranging in age from four years to 13,000 years. 

He found that amplification of a 121bp mitochondrial DNA sequence was 

possible from aged samples but when the size of the DNA target was increased, 

the amount of product generated rapidly diminished, with no amplification of 

ancient DNA sequences longer than 140bp (Paabo 1989).

In the early 1990s, the introduction of STR systems for forensic DNA profiling 

increased the success of gaining a result over the previous RFLP methods. The 

STR systems amplified shorter target sequences (<500bp) so increased success 

rates in fragmented samples (Kimpton et. al. 1994; Lygo et. al. 1994; Gill et. al. 

1995b; Wiegand and Kleiber 2001; Tsukada et. al. 2002). As the sensitivity of 

the DNA profiling techniques increased, it was observed that the higher molecular 

weight STRs would fail to amplify when DNA was degraded or starting DNA 

template was sub-optimal (Whitaker et. al. 1995; Gill et. al. 2000b; Whitaker et. 

al. 2001; Butler et. al. 2003; Chung et. al. 2004). It was hypothesised that this 

was primarily due to fragmentation of the DNA molecule, leaving only small 

fragments of DNA that had been protected at the primary level of chromosome 

packing, the nucleosome, as outlined in chapter 1.

Forensic DNA samples are subject to varying levels of both DNA degradation and 

copy number. Amplification of sub-optimal amounts of DNA can result in partial 

profiles, allele dropout, unbalanced loci and failure to generate any profile 

(Whitaker et. al. 2001; Gill 2001b; Gill 2002). In the UK, low copy number 

(LCN) DNA analysis may be carried out on samples containing sub-optimal 

quantities of DNA (generally <100 ng template) to try and increase the likelihood 

of gaining a reportable profile. The LCN technique uses SGM+ profiling 34 as 

opposed to the standard 28 amplification cycles (Gill et. al. 2000b).

Some sample types, such as bone, teeth and hair shafts, naturally have little 

nuclear DNA. For this reason, analysis of these sample types is generally carried 

out using mitochondrial DNA (mtDNA) sequencing. MtDNA profiling is also
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carried out when the sample is suspected to contain little or no DNA, due to the 

circumstances surrounding the acquirement of the sample, e.g. the biological 

sample may have come from a skeleton or a sample from a high temperature mass 

disaster (Budowle et. al. 2005; Graham 2005). MtDNA analysis is routinely 

carried out in the United States, as opposed to LCN STR analysis, as it is thought 

to be less subject to issues surrounding LCN analysis, i.e. contamination through 

secondary transfer (Lowe et. al. 2002), presence of mixtures, allele dropout and 

allele drop-in, as well as the reliability of the DNA source 

(http://www.ncjrs.gov/pdffilesl/nij/grants/203971.pdf). The main drawback of 

mtDNA analysis is the linear inheritance of the DNA material through the 

maternal line. This decreases the discrimination power of the test to 

approximately 1 in 100, as it cannot distinguish between mothers, siblings and 

further progeny. However, in cases where maternal relatives are the only source 

of reference, an analysis of the mtDNA sequence can be advantageous 

(http://www.forensic.gov.uk/forensic/foi/foi_docs/Mito.pdf; Crespillo et. al. 2000; 

Just et. al. 2004).

The nucleosome unit was defined in the 1970s as eight histone molecules 

interacting with approximately 200bp DNA (Komberg 1974). The nucleosome 

units were attached to each other by lengths of linker DNA, forming a ‘beads on a 

string’ effect. Further research used micrococcal nuclease digestion methods to 

determine the exact length of the DNA interacting with the histone octamer. The 

micrococcal nucleases preferentially targeted the unprotected linker DNA, leaving 

146bp of DNA attached to the nucleosome core particle (van Holde et. al. 1975; 

Noll and Komberg 1977). A further ten base pairs protmding from each end of 

the nucleosome were shown to be more readily digestible than those protected 

within the histone octamer, leaving approximately 125bp lengths of DNA 

protected by the nucleosome structure (Read and Crane-Robinson 1985b).

To assess the DNA profiling techniques used in forensic laboratories it was 

necessary to artificially degrade a set of samples that could be used for analysis of 

fragmentation. A number of different methods have been proposed that degrade 

DNA in situ, including the use of enzymes such as DNase I & II or micrococcal 

nuclease (Wilcox and Smith 1976; Golenberg et. al. 1996; Wu et. al. 2000;
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Cousins et. al. 2004); boiling (Stroop and Schaefer 1989); subjecting DNA to UV 

light or microwaves (Stroop and Schaefer 1989); storing samples for periods of 

time at room temperature (Tsukada et. al. 2002; Butler et. al. 2003); and storing 

samples in a humid environment (Dixon et. al. 2005a). Other studies on DNA 

degradation have used samples from animal tissue post-mortem (Johnson and 

Ferris 2002); ancient DNA samples (Paabo 1989; Burger et. al. 1999; von 

Wurmb-Schwark et. al. 2003; Willerslev and Cooper 2005); and boiled bones 

(von Wurmb-Schwark et. al. 2003).

A comparison study was set up, using DNA artificially degraded by two different 

methods, to test the hypothesis that the nucleosome was protecting the small 

fragments of DNA. One set of samples was degraded by boiling extracted DNA 

in solution in a waterbath for a set time course of five hours. The DNA extraction 

process would have removed all proteins, including the nucleosome, and enzymes 

from the samples prior to boiling. The other set of samples was obtained from a 

previous project whereby blood, semen and saliva samples had been deposited on 

cotton squares and left in a humid environment at 37°C (to mimic the optimal 

temperature for enzyme and bacterial activity) for a period of up to 243 days, with 

samples being taken out and stored at -20°C at set periods. DNA was extracted 

from the body fluid samples after degradation therefore enzymes and proteins 

would still have been present in the samples during the degradation period. By 

comparing these two degradation methods, the nucleosome degradation theory 

and the pattern of DNA fragmentation could be assessed. Both sets of samples 

were DNA profiled using SGM+ STR analysis and the SNP 27-plex method to a) 

assess the size of the fragments surviving in the degraded samples and b) assess 

the efficiency of the two techniques to amplify degraded DNA.

Initial studies suggested an increased amplification efficiency of samples when 

smaller amplicons were used for DNA profiling. As a consequence of this work 

the SNP 27-plex was redesigned to only include amplicons less than 186 bases in 

length. This allowed fragment sizes of 146 base pairs and lower to be targeted, 

incorporating an extra 20 bases at each end of the amplicon in the form of 

universal tails. The number of loci that could be detected within the smaller size 

range had to be reduced to twenty SNPs plus Amelogenin. This new 21-SNP
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multiplex allowed products from 96 bases to 186 bases to be amplified and 

detected in a single-tube reaction. Work was carried out to validate the technique 

for casework situations and to assess the suitability of SNPs for use in 

circumstances where limited DNA or DNA of poor quality was available.
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3.2 Materials and Methods

3.2.1 Boiling DNA samples 

S. 2.1.1 DNA extraction

DNA from five reference samples (CAS, DRJ, HER, SHM, ST) was extracted 

from 1 mL of liquid blood using the Qiagen™ Genomic-Tip system (Cat no. 

10223, 20/G tips) according to the manufacturer’s protocol to obtain between 5-15 

ng/pL DNA suspended in 2 mL 1 x TE Buffer (ABD). Liquid blood had been 

stored frozen at -20°C and was defrosted at 37°C in a shaking incubator, prior to 

DNA extraction. Samples were quantified using a UV spectrophotometer 

according to the manufacturer’s protocol (Ultrospec 3100 pro UV/Visible 

spectrophotometer, Biochrom Ltd, UK).

3.2.1.2 Boiling o f DNA extract

1 mL of each stock DNA solution was aliquoted into Nunc™ tubes and placed in 

a boiling waterbath. DNA extracts were boiled for 5 hours to provide 14 aliquots 

per control sample, each 50 pL aliquot taken from the water-bath at different time 

intervals (15m, 30m, 45m, lh, lhl5m, lh30m, lh45m, 2h, 2h30m, 3h, 3h30m, 4h, 

5h). Aliquots were left to cool to room temperature before being stored in a 

refrigerator at 4°C, ready for PCR amplification.

3.2.2 Artificially degraded body fluid samples

3.2.2.1 Preparation o f artificially degraded samples

Blood, saliva and semen samples had been previously degraded for other research 

projects. Degradation was carried out by spotting the samples onto cotton squares 

before placing in a pipette tip box partly filled with water. This ‘humidity box’ 

was stored in an incubator at 37°C (normal body temperature) for a period of 

approximately 8 months (243 days). At specific time intervals, a number of 

cotton squares for each sample were removed from the incubator and stored in the 

freezer until the degradation period was complete for all samples. The water level 

in the pipette box was kept filled to maintain humidity levels.
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3.2.2.2 DNA extraction o f artificially degraded samples

Degraded DNA from the cotton squares was extracted using the Qiagen™ 

QiaAmp Mini-Kit (Cat no. 51306). Samples had been stored frozen at -20°C and 

were defrosted at room temperature prior to DNA extraction. The manufacturer’s 

protocol for each sample type was used to obtain 0-2 ng/pL DNA, suspended in 

150 pL 1 x TE Buffer (ABD). Samples were quantified using Picogreen 

methodology (Ahn et. al. 1996) (Table 3.1).

Days in humidifier Picogreen quant (ng/|aL)
0 0.60

42 0.06
> 62 0.05
OS 84 0.04

147 0.04
243 0.03

0 2.20
42 2.00

s
62 1.70

<UCA 84 0.70
147 0.50
243 0.50

0 0.50
42 0.50

-oo 62 0.40

s 84 0.30
147 0.03
243 0.02

Table 3.1 Picogreen DNA quantification values for artificially degraded saliva, semen and 
blood samples.

3.2.2.3 Dilution series o f control DNA samples

A dilution series of five control samples (CAS, DRJ, HER, SHM, ST) was set up 

to give a series of DNA extracts with concentrations ranging from 1 ng/pL down 

to 16 pg/pL. These dilution series were used for amplification of the 21-SNP 

multiplex.

3.2.3 DNA amplification

The amount of DNA sample added to each PCR reaction varied depending on the 

sample type and the length of degradation.

Boiled samples were diluted to 1 ng/pL using DNA quant values given for the 

stock DNA solution of each control sample. Samples from time intervals between 

0 minutes and 90 minutes were added to both the SNP 27-plex and SGM+
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multimixes in 1 jlxL volumes, as these were shown to over-amplify if higher 

volumes of DNA were added (data not shown). Samples boiled for >90 minutes 

were added at maximum volumes (14 jllL for SNP 27-plex; 20 pL for SGM+).

Artificially degraded sample DNA was added to the multimixes at a concentration 

of 1 ng/pL, using data obtained from Picogreen quantification. Samples that had 

DNA concentrations of <0.1 ng/pL were added at maximum volumes (14 pL for 

the SNP 27-plex; 12 pL for the SNP 21-plex; 20 pL for SGM+).

For the dilution series experiments using the SNP 21-plex, DNA was added at 1 

pL per PCR reaction.

3.2.3.1 SNP multiplex amplification

Both the SNP 27-plex and the SNP 21-plex were used for degradation 

experiments. The amplification multimixes consisted of oligonucleotide primers 

(synthesised by IBA, Germany) at varying concentrations, 0.4 pg bovine serum 

albumin (Boehringer Manheim, Germany), 225 pM dNTPs (dATP, dCTP, dTTP, 

dGTP; Boehringer Mannheim, Germany), 1 x PCR Buffer II containing 1.5mM 

MgCl2 (Applied Biosystems™, UK) and 5 units Amplitaq Gold® (Applied 

Biosystems, UK). Primer sequences and concentrations per reaction are outlined 

in appendix III and IV.

Samples were amplified in strips of eight 0.2 mL tubes, without mineral oil, on a 

thermal cycler (Applied Biosystems™ GeneAmp PCR system 9600) using the 

conditions given in appendix V.

3.2.3.2 SGM+ amplification

SGM+ amplification kits (Cat. No. 4307133) were used, following the 

manufacturer’s protocol. Samples were amplified in strips of eight 0.2 mL tubes, 

without mineral oil, on a thermal cycler (Applied Biosystems™ GeneAmp PCR 

system 9600) using the parameters given in appendix V for low copy number 

conditions, i.e. 34 cycles amplification.
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3.2.4 Capillary electrophoresis detection

1.1 pL of each PCR product (SNPs/SGM+) + 10 pL GS-HD400 ROX (Applied 

Biosystems™ Part no. 402985):HI-DI Formamide (Applied Biosystems™) [ratio 

1:37] was added to a 96-well micro-titre plate and heat-denatured at 95°C for 2 

minutes before running on a capillary electrophoresis (CE) sequencer (AB model 

3100) using ABI Collection software vl.l . SGM+ PCR products were run at a 

single injection time of 22 seconds whilst SNP 27-plex products were injected for 

20 seconds. The SNP 21-plex was injected for 12 seconds.

3.2.5 Analysis of results

Sample data were analysed using ABI Prism™ Genescan Analysis v3.7.1 and 

ABI Prism™ Genotyper software v3.7 NT. SGM+ data were interpreted using 

STRIPE™ (in-house computer program) to gain likelihood ratios for each sample. 

SNP data extracted from Genotyper™ (peak height, peak area, scan number, size 

in bases) were transformed into *.csv format and analysed by Celestial™ (chapter 

4) to give profile data and likelihood ratios. SGM+ data for each sample were 

extracted from Genotyper™ (peak height, peak area, allele designation) and 

tabulated.
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3.3 Results

For all three profiling techniques (SNPs and SGM+), over-amplification of loci 

was seen with the less degraded samples, i.e. samples boiled for less than 30 

minutes or kept for less than 42 days in the incubator. An excess of pull-up peaks 

and split peaks made genotyping difficult, however full sequencing of each SNP 

had been carried out previously for reference samples and the correct SGM+ 

profiles for all five individuals were known. Comparison of all results to these 

control results verified the profiles that were obtained in these experiments.

The SNP 27-plex failed to give a full profile, even when using optimal amounts of 

DNA (i.e. 1 ng). It is possible that degradation of the multiplex occurred whilst in 

storage, as the aliquot volumes were small enough (10 pL) to allow freeze- 

thawing when subjected to an increase in temperature for a matter of seconds. 

The presence of 27 sets of three primers, plus Universal primers, would have 

further decreased the efficiency of the multiplex.

For all analyses results were divided into full profiles, low molecular weight 

(LMW) profiles and high molecular weight (HMW) profiles, to ascertain whether 

there was a significant difference in the amplification efficiency of these loci. The 

process of DNA fragmentation by nucleases indicates that linker DNA is targeted 

first, leaving fragments of approximately 146 bases in length. During PCR 

amplification using the SNP 27-plex, 20 base ‘Universal’ primers were added to 

the 3’ and 5’ ends of each SNP locus, making each SNP amplicon 40 bases longer 

than its original base pair sequence, i.e. a locus sequence of 120 bases would give 

a product of 160 bases in length, therefore LMW SNPs were deemed to be loci 

less than 186 bases in length, as opposed to less than 146bp.

The 21-SNP multiplex was designed as a consequence of the initial boiling and 

degradation experiments. A comparison of the 21-SNP multiplex is given for the 

artificially degraded samples.
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3.3.1 Boiled DNA samples (SNP 27-plex vs. SGM+1

Amplification of boiled DNA samples was performed using 1 pL dilutions for the 

first seven samples (reference samples -  90 minutes boiling); followed by 

maximum volumes for the remaining samples (105 minutes -  300 minutes). 

These volumes were determined from previous results obtained that showed over

amplification of samples boiled for 90 minutes or less when using increased 

amounts of DNA. Using 1 pL of these DNA dilutions was sufficient to produce a 

full profile. Evaporation of some samples during the boiling process meant that 

there was insufficient volume of extract left to assess degradation after 5 hours. 

In these instances, any remaining extract was amplified using the SNP 27-plex 

instead of SGM+.

SNP profiles were generated by Celestial™, using a set of interpretation rules for 

the designation of each SNP, based on a 20-second injection time (Table 3.2 & 

Table 3.3). The SNP profiles demonstrated allele dropout in the HMW loci over 

190 bases in length at earlier time intervals to the LMW loci.

The SGM+ profiles, generated using Genotyper™ software showed the same 

pattern of high molecular weight dropout as the SNP 27-plex (Table 3.4 & Table 

3.5).
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SNP (size 
in bp) Amelo D B6 N4 Y3 A4 0 6 Z2 K3 J2 1 Y6 J8 | X p G L2 W3 H8 L6 ! K4 X7 1 U6 W5 U5 | V4 P7 PS

FileName Time boiled 
(m)

(97) (103) (109) (113) (117) (124) (129) |(133) (137) (141)1(146) (153)|(157) (164) (171) (174) (180) (186) (190)|(195)|(200)|(204)|(212)|(215)|(221) (226)|(231)

CAS REF 0 X T/C A/T A/T G C/G A T G/C c [ A 1 A 1 C/A C T C c T A/ 1 1 G/C A A/T F/A ! A/T A/T T T/F

CAS 1 15 X T/C A/T A/T G C/G A T G/C ĉ A A |C/A c T C c T A/T G/C A/F F/T F/A | a/T 1 A/T [ T T/F

CAS 2 30 X T/C A/T A/T G C/G A T G/C C A : A ,C/A c T C c T A/T G/C A/F F/T F/A , A/T A/T F T T /F

CAS 3 45 X T/C A/T A/T G C/G A T G/C C A A C/A c T C c T A/T G/C A/F F/T F/A ; A/T A/T I t T/F

CAS 4 60 X T/C- A/T A/T G C/G A T G/C c A A jC/A c T C c r A/T C/c A/F ■F/T F/A | A/T A/T T T /F

CAS 5 75 X T/C A/T A/T G C/G A T G/C c A a ; g A c T c c T A/T C/C A/F f / T F/A

f/ a

[ A/T A/T

A/T A/T T

T/F

T/FCAS 6 90 X T/C I A/T A/T G C/G A T G/C c A | A ,C/A c T c c T A/T G/C A/F |_F/T

CAS 7 105 X T/C A/T A/T G C/G A T G/C c A A M a . c T c c T F/T G/C F/T F/A A/F | F/T T , T/F

CAS 8 120 X T/C A/T A/T G C/G A T G/C c A A , QA |1 c T c c : F/T G/C F/T 1 F/A t / f , t / f

CAS 9 150 X T/C A/T A/T G C/G A T G/C I A [ A  | C/A T c _c| : F/T C/C [ F /T F/A T /F

CAS 10 180 X T/C A/T A/T G C/G A T G/C C/F A A F/A [  c T c c T F/A

CAS 11 210 X T/C A/T A/T G C/G A T G/C C/F A A j / A Lc| T J c c I T F/A

CAS 12 240 X T /r A/T A/T G C/G A T G/C C/F A a  r 1 c 11 T~1 cl ' F/A

CAS 13 300 X T/C A/T 1 A/T G C/G
--------

G/C C/F A 1 A 1 c 1 T

DR3_REF 0 X/Y T A/T | A/T G _cl A n C C/T T | C/A c T c g g l T T G A/T A/T T /F  T T T/A j

DRJ_1 15 X/Y T A/T A/T G c A
i ic c C/T T F T  Q A lLc T c g e l T T G A/T A/T T/F s T T/A T

DRJ_2 50 X/Y T A/T A/T G c A c c C/T f ] T , C/A ! C T c gc T T G A/T A/T T /F  j; t T T/A T

DRJ_3 45
—*—— 
X/Y T A/T A/T G c A 1 C ! c C/T; T

1 S
 

1- T c C/g | T T G A/T A/T T/F L t T T/A T

DRJ_4 60 X/Y T A/T A/T G c A c c C/T T 1 T T c /a ] c T c g G | : T G A/T A/T ; T / F T T T/A T /F

DRJ_5 75 X/Y T A/T A/T G j cl A cl c C/T; T T | C/A ! c T c g c ] : T G A/T. A/T, T/F IT T T/A , T/F

DRJ_6 90 X/Y IT A/T ;A/T G cl A c c C/T T Lc T c C/G T T G 1A£L A/T T/F T T T/A T /F

DR1 7 105 X/Y T A/T A/T G
-- jc A __c c QT T T C/a | c T c g o  t T G j F /T T /F T T/A IT /F

DRJ_8 120 X/Y T A/T A/T G c A
1 c

c C/T T T C/A c T _ c C/G r T G I ML, T/F T T T/A T/F

DR]_9 150 x/ yJ T A/T J / I . f G
------ 1
c A i c c C/T T T g A c T c ggl T G F/T T/F m T T/F T /F

DRJ 10 180 x/ y | T A/T i A/T i G c A_J c 1 ? C/T T t  g A c T _c g c , T C/F F/T F/T T

DRJ 11 210 T AH’ ! A/T G c A j c c C/T T T C/A c T c gel T T gp F/T F/T 1 F/T

DRJ_12 240 X/Y , T A/TJ A/T G C A c c C/T T  I T I C/A 1 C 1 T c C/G i T F/T F/T

DRJ 13 300 X/Y 1 T A/T A/T
-------

G
1c I A c c

-- ‘
C/T T  I T  ■ ■ i i T c c/ g ] T t 1

HER_REF 0 X T A/T A/T G C/G ! A/T c c C T/A A C/A A T c c T T HH A/T F/A T A F/A

HER_1 15 X T _A/T A/T G C/G , A/T c c C T/A I A I C/A A CT] c c T T G A/T F/A T hri A F/A

HER 2 30 X T A/T A/T G C/G I A/T c _ C  1 c T/A A _ g A . A T; c C
1

1 T I ! g  ! A/T F/A T T A F/A

HER_3 4 5 X T A/T A/T G I C/G [a/F c c 1 c M /a " A C/A A T c c —5—  
T T G I A/T F/A F/T . T J A F/A

HER 4 60 X T A/T A/T G I C/G_ A/T c c C/F T/A A . C/A A . T lc c T T ! G A/T F/A T T F/A F/A

HER_5 75 X T A/T A/T G C/G jA/T c c C/F t / A A J C/A A T Lc c T t J G A/T F/A F/T T I F/A F/A

HER 6 90 X T A/T A/T G C/G A/T c c S a | A C/A A T 1 C c T T r g A/T F/A F/T F/T J /A J
HER 7 105 X T A/T A/T G C/G A/T c c Ft/ a A C/A A 1 T c c | T T \G~ A/T F/A T A T/A

HER_8 120 X T A/T A/T G I C/G A/T c c c T/A A C/A r r [ t c c T T j [ g _ ! A/T F/A T A ] T /A

HER^9 150 X T A/T A/T G 'C/G A/T c c c T/A A C/A A T c 1 c T T | g | A/T F/A T F/A T/A

HER_10 180 X "Tl"a/ t " A/T G C/G A/T c c c T/A A I C/A A T c \~c~ T 7 g/ f A/T F/A T F/A F/A

HER_11 210 x  J . . I A/T A/T G C/G | A/T c c c T/A A C/A A | T
c c T T G/F F/T F/A T

HER_12 240
— 5 

X 1M i La/ t A/T G ; c/ g A/T c c c •
T/A ! A [ C/A

— — 
A

r ■
T ! c 1------- 1

c T T  J G/F F /T . F/T

HER 13 300 X
-------- 1

T I A/T A/T i G i C/G ATT c c c T/A A F/A A T/F 1c , c 1T F/T G/F

Table 3.2 SNP 27-plex profiles obtained for three reference control samples (CAS, DRJ, 
HER) using 1 pL of diluted DNA for the first seven time intervals followed by 14 pL for the 
remaining time intervals. Grey boxes represent alleles that are absent from the profile. SNP 
loci are shown in size (bp) order from the smallest amplicon (Amelo) to the largest (P5).
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SNP (size 
...... .

Anu-lc D B6 N4 Y3 A4 0 6 Z2 K3 J2 Y6 J8 X F G L2
1—

W3 H8 L6 K4 X7 U6 W5 1 U5 1 v 4 P7 P5

FileName
Time boiled

(m) (97) (103) (109) (U 3)|(117) (124) (129) (133) (137) (141) (146) (153) (157) (164) (171) (174) (180) (186) (190) (195)

I

(204) (212)|(215) |(221)i (226) (231)

SHM REF 0 X T/C A/T A/T G q c A C/T G/C C T/A A C q A T/C c c T A/T g c A/T T T/A A Lj l T/A T
SHM 1 15 X T/C A/T A/T G q c A C/T q c C T/A A c C/A I /C C _C T ' : G/C A/T T T/A A T T/A T

SHM 2 30 X T/C A/T A/T G q G A q r G/C C T/A A c _qA_.T/C c c I A/T G/C. A/T T T/A A T T/A T

SHM 3 45 X T/C A/T A/T G q G A C/T q c C T/A A c C/A T/C c c T A/T G/C A/T T T/A A T T/A L e_
SHM 4 60 X T/C A/T A/T G q c A C/T G/C C T/A A c q A T/C c c I A/T G/C A/T T T/A A . T T/A T/F
SHM 5 75 X T/C A/T A/T G q c A C/T G/C C T/A A 1 c C/A T/C c c T A/T q d A/T T 1 T/A A T T/A T/F
SHM 6 90 X T/C A/T A/T G qG A C/T G/C C T/A A c C/A T/C c c T ■ G/C .A/T T j T/A A T T/A T/F
SHM_7 105 X T/C A/T A/T G qG A C/T q c . c T/A A c C/A T/C c c T A/T G/c| F/T T F/A A T T/A T/F
SHM 8 120 X T/C A/T A/T G q c A C/T q c c T/A A c qA T/C c c 1 A/T g/ c ; T T/A A , T T/A t / f

SHM_9 150 X T/C A/T A/T G q c A q T G/C c T/A A C q A T/C c c T A/T G/C;52 T , f/ a A T T/F
SHM 10 180 X T/C A/T A/T G qG A C/T G/C c T/A A qF .q A ,T/C c c i A/F !..qcjT T T F/A A T I
SHM_11 210 X T/C A/T A/T] G qG A q r q c j c T/A A qF h / d C C T F/T q c T [ a J

SHM_12 240 X T/C A/T 1 G C/G, A/F ML G/F | c T/A A q F I F/C C/F C/F A/F
SHM_13 300 X T/C A/T 1 G q G FF

qF \ C ~ T/A A T

ST REF 0 X T/C A/T A/T G/C c  1 A L c q c c T/A A | c/ a c T c G T T G A/T t / a A/T T

ST_1 15 X T/C A /L Ia/ t G/C c A c ,G/c c I /A A C/A c T c G ; l ~g | \NL T/A A/T T

s r _2 30 X T/C A/T [ a/ t G/C c ] ~ a ~1 cl G/C c [ T/A A C/A c T c T T G ,
'
A/T T/A A/T T t

sr_ 3 45 X T/C A/T |A /L G/C c A i [q c C J& A q A c T c G T T j EJ A/T T/A A/T T

ST_4 60 X J T/C .A/T .A/T .G/C c A c G/C C ' T/A [_A q A c T c G T T G A/T T/A A/T I  .
ST_5 75 X T/C A/T A/T G/C c A _ c q c c T/A A q A . C T c G T T G A/T T/A A/J j F/T
s r .6 90 X T/C A/T A/T G/C c A c .G/C c T/F A q A c T c 6 T T G A/T T/A A/F
ST_7 105 X T/C A/T,| a/ t G/C c f A c q c c t t a I A q A c T c

. . .
G T T G A/J I/A A/T T/F

sr_8 120 X T/C A/T A/T G/C c | a c q c c t/a A q A c T c G T T g | A/T T/A I A/T, T /f

ST_9 150 X T/C A/T! A/T G/C
....... 1c [ 1 

A c G/C c T/Aj A q A C I T c G T 6 A/T T/A 1A/T T/F
ST_10 180 X T/C A/T A/T G/C c JLa.; c G/C c T/A , A 1 q A c T c G1 T T qF A/T ?1L, A/T T/F

ST_11 210 X T/C A/T A/T G/C c ] a c q c c T/A A q A c T c ; G TJ G/F F/T A/T

ST 12 240 X T/C A/T A/T G/C — Ic A c q c c T/A A q A c pr~ c l G JT F/T G/F A/T

ST 13 300 X T/C A/T V T T1 A c .G^cl
----- -2L T/A A q A  i T c g I T F/T

Table 3.3 SNP 27-plex profiles obtained for two reference control samples (SHM, ST) using 1 
pL of diluted DNA for the first 7 time intervals followed by 14 pL for the remaining time 
intervals. Grey boxes represent alleles that are absent from the profile. SNP loci are shown 
in size (bp) order from the smallest amplicon (Amelo) to the largest (P5).
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FileName
Time boiled 

(m )
Amelo D19 D3

r r —
D8 VWA Thto d ;21 FG D 16 d :18 C•2

CAS_REF 0 X X 14 14 17 18 13 14 15 18 9 9 30 31 21 24 13 14 13 14 24 24

CAS_1 15 X X 14 14 17 18 13 14 15 18 9 9 30 31 21 24 13 14 13 14 24 24

CAS_2 30 X X 14 14 17 18 13 14 15 18 9 9 30 31 21 24 13 14 13 14 24 24

CAS_3 45 X X 14 14 17 18 13 14 15 18 9 9 30 31 21 24 13 14 13 14 24 24

CAS_4 60 X X 14 14 17 18 13 14 15 18 9 9 30 31 21 24 13 14 13 14 24 24

CAS_5 75 X X 14 14 17 18 13 14 15 18 9 9 30 31 21 24 13 14 13 14 24 24

CAS_6 90 X X 14 14 17 18 13 14 15 18 9 9 30 31 21 24 13 14 13 14 24 24

CAS_7 105 X X 14 14 17 18 13 14 15 18 9 9 30 31 21 24 13 14 13 14 24 24

CAS_8 120 X X 14 14 17 18 13 14 15 18 9 9 30 31 21 24 13 14 13 14 24 24

CAS_9 150 X X 14 14 17 18 13 14 15 18 9 9 30 31 21 24 13 14 13 14 24 24

CAS_10 180 X X 14 14 17 18 13 14 15 18 9 9 30 31 21 24 13 14 13 14 24 24

CAS_11 210 X X 14 14 17 18 13 14 15 18 9 9 30 31 21 24 13 13 14 24 24

CAS_12 240 X X 14 14 17 18 13 14 15 18 9 9 30 31 21 24 14 13 14

DRJ_REF 0 X Y 14 14 15 17 13 15 16 16 8 9 30 30 23 25 10 12 13 15 23 23

DRJ_1 15 X Y 14 14 15 17 13 15 16 16 8 9 30 30 23 25 10 12 13 15 23 23

DRJ_2 30 X Y 14 14 15 17 13 15 16 16 8 9 30 30 23 25 10 12 13 15 23 23

DRJ_3 45 X Y 14 14 15 17 13 15 16 16 8 9 30 30 23 25 10 12 13 15 23 23

DRJ_4 60 X Y 14 14 15 17 13 15 16 16 8 9 30 30 23 25 10 12 13 15 23 23

DRJ_5 75 X Y 14 14 15 17 13 15 16 16 8 9 30 30 23 25 10 12 13 15 23 23

DRJ_6 90 X Y 14 14 15 17 13 15 16 16 8 9 30 30 23 25 10 12 13 15 23 23

DRJ_7 105 X Y 14 14 15 17 13 15 16 16 8 9 30 30 23 25 10 12 13 15 23 23

DRJ_8 120 X Y 14 14 15 17 13 15 16 16 8 9 30 30 23 25 10 12 13 15 23 23

DRJ_9 150 X Y 14 14 15 17 13 15 16 16 8 9 30 30 23 25 10 12 13 15 23 23

DRJ_10 180 X Y 14 14 15 17 13 15 16 16 8 9 30 30 23 25 10 12 13 15

DRJ_11 240 X Y 14 14 15 17 13 15 16 16 8 9 30 30 23 25 12

HER_REF 0 X X 14 16 13 16 12 12 14 18 7 9 .3 30 31 22 23 9 12 17 19 23 24

HER_1 15 X X 14 16 13 16 12 12 14 18 7 9 .3 30 31 22 23 9 12 17 19 23 24

HER_2 30 X X 14 16 13 16 12 12 14 18 7 9 .3 30 31 22 23 9 12 17 19 23 24

HER_3 45 X X 14 16 13 16 12 12 14 18 7 9 .3 30 31 22 23 9 12 17 19 23 24

HER_4 60 X X 14 16 13 16 12 12 14 18 7 9 .3 30 31 22 23 9 12 17 19 23 24

HER_5 75 X X 14 16 13 16 12 12 14 18 7 9 .3 30 31 22 23 9 12 17 19 23 24

HER_6 90 X X 14 16 13 16 12 12 14 18 7 9 .3 30 31 22 23 9 12 17 19 23 24

HER_7 105 X X 14 16 13 16 12 12 14 18 7 9 .3 30 31 22 23 9 12 17 19 24

HER_8 120 X X 14 16 13 16 12 12 14 18 7 9 .3 30 31 22 23 9 12 17 19

HER_9 150 X X 14 16 13 16 12 12 14 18 7 9 .3 30 31 22 23 9 12 17 19

HER_10 180 X X 14 16 13 16 12 12 14 18 7 9 .3 30 31 22 23 9 12 17 19

HER_11 210 X X 14 16 13 16 12 12 14 18 7 9 .3 30 31 22 23 9
'—

19

HER_12 240 X X 14 16 13 16 12 12 14 18 7 9 .3 30 31
'

22 23 9

HER_13 300 X X 14 16 13 16 12 12 14 18 7 9 .3 30 31 22 9

Table 3.4 SGM+ profiles obtained for three reference control samples (CAS, DRJ, HER) 
using lpL  of diluted DNA for the first 7 time intervals followed by 20pL for the remaining 
time intervals. Grey boxes represent alleles that are absent from the profile. STR loci are 
shown in size (bp) order from the smallest amplicon (Amelo) to the largest (D2).
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FileName
Time boiled 

(m)
Amelo D19 D3 D8 W VA TPt o d ;21 FG 0 1 6 d ;18 D2

SHM_REF 0 X X 13 15 15 15 14 15 16 18 9 9 28 28 21 24 11 11 16 16 17 20

SHM_1 15 X X 13 15 15 15 14 15 16 18 9 9 28 28 21 24 11 11 16 16 17 20

SHM_2 30 X X 13 15 15 15 14 15 16 18 9 9 28 28 21 24 11 11 16 16 17 20

SHM_3 45 X X 13 15 15 15 14 15 16 18 9 9 28 28 21 24 11 11 16 16 17 20

SHM_4 60 X X 13 15 15 15 14 15 16 18 9 9 28 28 21 24 11 11 16 16 17 20

SHM_5 75 X X 13 15 15 15 14 15 16 18 9 9 28 28 21 24 11 11 16 16 17 20

SHM_6 90 X X 13 15 15 15 14 15 16 18 9 9 28 28 21 24 11 11 16 16 17 20

SHM_7 105 X X 13 15 15 15 14 15 16 18 9 9 28 28 21 24 11 11 16 16 17 20

SHM_8 120 X X 13 15 15 15 14 15 16 18 9 9 28 28 21 24 11 11 16 16 17 20

SHM_9 150 X X 13 15 15 15 14 15 16 18 9 9 28 28 21 24 11 11 16 16

SHM_10 180 X X 13 15 15 15 14 15 16 18 28 28 11 11 16 16

SHM_11 210 X X 13 15 15 15 14 15 18

SHM_12 240 X X 13 15 18

ST_REF 0 X X 13 13 15 17 12 13 17 18 6 9.3 30 31.2 19 22 12 14 12 20 24 25

ST_1 15 X X 13 13 15 17 12 13 17 18 6 9.3 30 31.2 19 22 12 14 12 20 24 25

ST_2 30 X X 13 13 15 17 12 13 17 18 6 9.3 30 31.2 19 22 12 14 12 20 24 25

ST_3 45 X X 13 13 15 17 12 13 17 18 6 9.3 30 31.2 19 22 12 14 12 20 24 25

ST_4 60 X X 13 13 15 17 12 13 17 18 6 9.3 30 31.2 19 22 12 14 12 20 24 25

ST_5 75 X X 13 13 15 17 12 13 17 18 6 9.3 30 31.2 19 22 12 14 12 20 24 25

ST_6 90 X X 13 13 15 17 12 13 17 18 6 9.3 30 31.2 19 22 12 14 12 20 24 25

ST_7 105 X X 13 13 15 17 12 13 17 18 6 9.3 30 31.2 19 22 12 14 12 20 24 25

ST_8 120 X X 13 13 15 17 12 13 17 18 6 9.3 30 31.2 19 22 12 14 12 20 24 25

ST_9 150 X X 13 13 15 17 12 13 17 18 6 9.3 30 31.2 19 22 12 14 12 24

ST_10 180 X X 13 13 15 17 12 13 17 18 6 9.3 30 31.2 19 22 12 14 12 20

ST_11 210 X X 13 13 15 17 12 13 17 18 6 9.3 30 31.2 19 22 12 14

ST_12 240 X X 13 13 15 17 12 13 17 18 6 9.3 30 31.2 19 12

ST_13 300 X X 13 13 15 17 12 13 17 18 6

Table 3.5 SGM+ profiles obtained for two reference control samples (SHM, ST) using lpL of 
diluted DNA for the first 7 time intervals followed by 20pL for the remaining time intervals. 
Grey boxes represent alleles that are absent from the profile. STR loci are shown in size (bp) 
order from the smallest amplicon (Amelo) to the largest (D2).
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3.3.1.1 Analysis o f variance (ANOVA) calculations3

Percentage profiles for both SNPs and STRs were calculated from the numbers of 

allele dropouts for each sample at each time interval (appendix VI) using the 

equation:

\
- x l O O (Equation 3-1)

V «  J

Where a = the number of surviving alleles and n = total number of possible 

alleles.

An ANOVA general linear model was performed on the percentage profile data 

and results were tabulated (Table 3.6). An ANOVA allows simple analysis of 

variance tests to be performed to test the hypothesis that means from two or more 

samples are equal. By using a general linear model, more than one sample for 

more than one group of data can be tested for variance by generating statistics for 

each pairwise comparison.

The results indicated a significant difference between the percentage profiles 

obtained for each sample, using both profiling techniques, compared to the 

amount of time boiled (P<0.002) (Variant 1. Table 3.6). This suggested that the 

DNA had been fragmented in solution causing varying percentage profiles to be 

obtained. No significant differences were seen in the percentage profiles obtained 

for different individuals for full SGM+ profiles (P=0.339), LMW SGM+ profiles 

(P=0.096) or HMW SGM+ profiles (P=0.518), indicating no preferential 

amplification of the low molecular weight loci (Variant 2. Table 3.6). There was 

a significant difference between individual samples for full SNP profiles 

(P=0.010) and HMW SNPs (P=0.001) but not for LMW SNPs (P=0.533) (Variant

2. Table 3.6), suggesting that DNA may have been less efficiently amplified in 

some individuals.

A two-factor crossed ANOVA model compared different individuals to the time 

boiled (Variant 3. Table 3.6) suggested no significant differences for the SNP 27- 

plex and the LMW SNPs (P>0.060), indicating all samples performed with the

3 All statistical analyses were carried out using Minitab Release 14™ software
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same efficiency with these profiling techniques. There was a significant 

difference between the different percentage profiles for each sample for the 

different boiling times for HMW SNPs and all SGM+ profiling analyses 

(P<0.017), suggesting a possible variation between different individuals as well as 

between the different DNA profiling methods. This is discussed further in section 

3.3.1.2.

Variant
considered

Analysis of variance tests 
(ANOVA) R-sq % DF SS F P

SN P  2 7 -p le x 7 2 .2 9 1 3 8 2 5 .8 0 109 .98 < 0 .0 0 1

LM W  S N P s 3 1 .5 5 1 16 4 .4 2 13.11 0 .0 0 1

1)
H M W  S N P s 8 0 .7 7 1 2 8 7 5 2 .7 0 177 .4 7 < 0 .0 0 1

Time boiled
SG M + 6 0 .4 0 1 5 2 9 3 .3 2 4 9 .4 0 < 0 .0 0 1

L M W  SG M + 5 3 .2 3 1 3 5 1 .1 2 11.00 0 .0 0 2

H M W  SG M + 6 2 .4 2 1 18 9 4 7 .8 0 6 1 .2 0 < 0 .0 0 1

S N P  2 7 -p le x 7 2 .2 9 4 6 3 9 .5 9 3.71 0 .0 1 0

L M W  S N P s 3 1 .5 5 4 3 2 .1 3 0 .8 0 0 .5 3 3

2)
H M W  S N P s 8 0 .7 7 4 5 7 4 2 .8 0 5.81 0 .0 0 1

Sample ID
SG M + 6 0 .4 0 4 10 0 8 .6 0 1.16 0 .3 3 9

LM W  SG M + 53 .2 3 4 6 1 1 .4 9 2 .0 8 0 .0 9 6

H M W  SG M + 6 2 .4 2 4 2 2 1 0 .3 0 0 .8 2 0 .5 1 8

SN P  2 7 -p le x 7 2 .2 9 4 3 1 4 .7 3 2 .4 0 0 .0 6 0

L M W  S N P s 3 1 .5 5 4 10 6 .9 0 2 .2 7 0 .0 7 3

3)
Sample ID x 
Time boiled

H M W  S N P s 80 .77 4 2 0 4 4 .6 0 3 .2 9 0.017

SG M + 6 0 .4 0 4 1 9 9 4 .6 6 5 .13 0 .0 0 1

L M W  SG M + 5 3 .2 3 4 1254 .48 9.01 < 0 .0 0 1

H M W  SG M + 6 2 .4 2 4 4 1 0 0 .1 0 3 .78 0.009

Table 3.6 ANOVA results (P values, R-Sq %, Sum of Squares (SS) and F statistics) 
calculated for the SNP 27-plex and SGM+ for boiled samples.
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3.3.1.2 Chi-Squared analysis using contingency tables

Chi-squared tests were carried out on the percentage profile data (appendix VI) to 

highlight any variation between techniques and between the different individuals. 

Each technique was divided into full profiles, LMW loci only and HMW loci only 

and all percentage profiles were compared. One out of the five control samples 

(SHM) showed a significant difference in the percentage data obtained for the 

SNP 27-plex compared to SGM+ (P=0.022) (Table 3.7 comparison 1). The SNP 

27-plex gave an increased percentage profile, compared to SGM+, at longer 

boiling times (78% SNP profile after 3h30m : 32% SGM+ profile; 48% SNP 

profile after 4h : 23% SGM+ profile). All other samples showed no variation 

between the efficiency of the two techniques.

The most significant differences were seen between LMW and HMW loci for 

both SNPs and SGM+. All five individuals showed variation between results for 

the LMW and HMW SNPs (Table 3.7 comparison 3) and three out of five 

individuals showed variation between LMW and HMW SGM+ profiles (Table 3.7 

comparison 5). This suggested an association between percentage profiles and the 

size of the target DNA sequence. This is discussed further in section 3.3.1.3.

Two-way CAS DRJ HER SHM ST
Goodness 
o f  Fit x2 
Analysis

d f X 2 P d f X 2 P d f X2 P d f X2 P df X2 P

1
SNP 27- 

plex * 
SGM+

12 7.33 0.835 11 0.74 1.000 13 1.62 1.000 12 23.72 0.022 13 4.37 0.987

2

SNP 27- 
plex * 
LMW 
SNPs

12 7.21 0.844 11 2.75 0.994 13 3.68 0.994 12 4.74 0.966 13 2.57 0.999

3

LMW 
SNPs * 
HMW  
SNPs

12 158.34 <0.001 11 42.48 <0.001 13 67.41 <0.001 12 73.65 <0.001 13 66.64 <0.001

4
SGM+ * 

LMW 
SGM+

12 1.04 1.000 11 2.98 0.991 13 6.69 0.917 12 14.37 0.278 13 15.17 0.297

5

LMW 
SGM+ * 

HMW  
SGM+

12 5.19 0.951 11 16.80 0.114 13 41.11 <0.001 12 112.07 <0.001 13 111.99 <0.001

6

LMW 
SNPs * 
LMW 
SGM+

12 0.55 1.000 11 0.00 1.000 13 0.35 1.000 12 11.29 0.504 13 0.22 1.000

Table 3.7 Chi-squared Goodness-of-Fit contingency table test results.
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3.3.1.3 Allelic dropout compared to fragment length

The proportion o f allelic dropout seen at different amplicon sizes for SNPs and 

SGM+ was calculated by amalgamating results for all individual samples, 

disregarding the time boiled. These dropout proportions are shown graphically, 

compared to the fragment size, in Figure 3.1.

Proportions o f allele dropout se en  at d ifferent fragm ent lengths for 
both SGM+ and SNP 27-plex, using data from boiling experim ents

0.8

0.7

♦  SGM+ allele dropout 

■ SNP allele dropout

*  0.6

8*0.5

0.4

0.3

02

0.1

0.0
0 20 40 60 80 DO 120 140 DO D0| 200 220 240 260 280 300 320 340 360

F ra g m e n t s ize

Figure 3.1 Scattergraph showing proportion of allelic dropout seen compared to fragment 
length size for both the SNP 27-plex and SGM+, obtained using data from boiling 
experiments.

The vertical line intersecting the graph at 186 bases indicates the visual boundary 

between high and low molecular weight loci, as discussed in section 3.3. The 

proportion o f dropout appears to increase above 186 bases in length for both SNPs 

and SGM+ and there is a distinct difference between the LMW and HMW 

‘populations’ (PO.OOl; df = 65; X2 = 297.9 (SGM+) and 471.7 (SNP 27-plex)).

Profiles obtained in these experiments showed typical signs o f HMW degradation, 

using both SNPs and STRs, with over-amplification or better amplification o f the 

LMW products less than 200bp in size.
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3.3.2 Artificially degraded body fluid samples

Body fluids were degraded at 37°C (body temperature) and 100% humidity, in 

situ - the optimal temperature for enzyme and bacterial activity. Enzymes and 

proteins would still have been present in the samples during the degradation 

period as DNA was extracted from the body fluid samples after degradation. 

Samples were amplified using the SNP 27-plex (Table 3.8) and SGM+ (Table 

3.9).

N4 I Y3 A4 06 Y6Am B6 L2 W3 H8 K4 X7 ' U6 W5 US | V4Sample

type

days in 

humidifier 103 109 113 117 124 129 133 137 141 146 153 157 164 171 174 180 186 190 195 200 204 212 215 221 226 231

C/G C/T T/A C/T C/G A/T A/T F/A A/T T/F T/F

C/G C/T T/A O F F/A F/T T/F T/F

C/GA/T F/T T/A C/F C/T i C/G A  I A/T F/A T/F T/F

F/T C/G C/T C/FT/A o r C/G F/A A/F T/F

147 A/T A/T C/G T/A C/F C/T C/G AT F T  F T  F/A A/F

243 C/F GTA T FT T/F T/F C T  C/G F T  G/F A/F

C/F AT C/F T/C G/F F T  FT F/A

AT C/F F/C G/F F T

A T OF F/C A T F/C G/F FT

X/Y A T OF F/C T/F A T T/F G/F FT

147 X/Y OF T/F AT T/C G/F F T

243 A/F A/F G/FF/Y T/F O F

G 'O G T/A AT C/F T/C A T T/A FT

A T G OG T/A A T O F T/C A T T/A F T F/A

X/Y OG T/A A T O F T/C A T  T/A FT F/A

OG T/A AT O F T/C FT F/A

147 X/Y A T OG T/A AT T/C FT F/A

243 A T OG T/A AT O F T/C G/F F T  FT F T F/A F/A

Table 3.8 SNP 27-plex profiles obtained for each sample type at each stage of the 
degradation experiment. The black line at H8 divides the plex into LMW (<186 bases) and 
HMW SNPs to illustrate the increased locus dropout at longer fragment lengths.
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SGM+
profiles

Size range 
ofST R  

loci (bp)
102-136 111 -140 124-170 155-207 163-202 185-240 212-353 229-270 262-346 291-345

Days in 
humidifier D19 D3 D8 VWA THOl D21 FGA D16 D18 D2

0 12 14 15 17 11 15 16 17 6 6 30 30.2 18 23 11 13 15 16 23 F

42 12 14 15 17 11 15 16 17 6 F

cO
>

62 12 14 15 17 11 15 16 17 6 F
73
C/3 84 12 14 15 17 11 15 16 17 6 F

147 15 F 11 F

243

0 12 14 15 17 11 15 16 17 6 6 30 30.2 18 23 11 13 15 16 23 23

42 12 14 15 17 11 15 16 17 6 6 30 30.2 18 23 11 13 15 16 23 23

C 62 12 14 15 17 11 15 16 17 6 6 30 30.2 18 23 11 13 15 16 23 23
C
Q

CA 84 12 14 15 17 11 15 16 17 6 6 30 30.2 18 23 11 13 15 16 23 23

147 12 14 15 17 11 15 16 17 6 6 30 30.2 18 23 11 13 15 16 23 23

243 12 14 15 17 11 15 16 17 6 6 30 30.2 18 23 11 13 15 16 23 F

0 13 15 16 18 12 13 16 17 6 6 28 32.2 20 21 11 12 12 13 25 25

42 13 15 16 18 12 13 16 17 6 6 28 32.2 20 21 11 12 12 F 25 F

| 62 13 15 16 18 12 13 16 17 6 6 28 32.2 20 21 11 12 12 13 25 25

5 84 13 15 16 18 12 13 16 17 6 6 28 32.2 20 21 11 12 25 F

147 13 15 16 18 12 13 16 17 6 6 11 F

243 13 F F 18

Table 3.9 SGM+ profiles obtained for the artificially degraded samples for saliva, blood and 
semen. Grey boxes indicate alleles that have failed to amplify. Homozygous loci are 
designated with one allele or two dependent on the size of the peak present, i.e. the peak 
height must be >150rfu to be called as a true homozygote. Homozygous peaks falling below 
this have the second allele designated with an ‘F \

The different sample types showed varying levels o f  allele dropout, suggesting a 

variable degradation rate dependent on the sample. Saliva showed the highest 

level o f degradation, with semen showing very little dropout, even after prolonged 

periods in the incubator.

The amount o f  allele dropout and the percentage profile data was calculated for 

each sample, for both SGM+ and the SNP 27-plex, as well as likelihood ratios for 

both full profiles and LMW profiles (Table 3.10).
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days in humidifier (BLOOO)
BLOOO - SNP 27-plex 

No. of alleles % profile LR

BLOOO-LMWSNPs: <186BASES 

No of ateles % profile LR No. of alleles

BLOOO 

% profile

SOM*

LR

BLOOD- 

No. of stales

SOM* <1 XBASES 

% profile LR

0 48 89 23,200,000 36 1X 68,300 22 1X 16S,0X ,0X ,0X 10 100 113.X0

42 49 91 27,800,000 35 97 25,200 20 91 20,500,000,000 10 100 113,OX

62 47 87 16,700,000 34 94 51,300 22 1 X 165,OX,OX,OX 10 1X 113,OX

84 45 83 6,620,000 34 94 51,300 19 86 20,500,000,000 10 100 113,OX

147 44 81 6,190,000 34 94 25,200 13 59 17.6X .0X 10 1 X 113,OX

243 30 56 13,300 27 75 5,510 4 18 7 2 20 5

days in humidifier (SAUVA)
SAUVA - SNP 27-plex 

No. of alleles % profile LR

SAUVA - LMW SNPs <188 BASES 

No of aleies % profile LR No . of alleles

SAUVA 

% profile

-SOM*

LR

SAUVA 

No. of aisles

SGM*<1 XBASES 

% profile LR

0 39 72 65,200,000 31 86 877,OX 21 95 9,010,OX X 0 ,O X 10 100 X 7 .0 X

42 35 65 899,000 31 86 196,OX 11 SO 67.6X 9 X 67.6X

62 35 65 1,980,000 31 86 823,OX 12 55 125,OX 9 X 67.6X

64 32 59 40,200 26 78 8,770 11 SO 67.6X 9 X 67.6X

147 37 69 7,110,000 33 92 1550,0X 4 18 10 2 20 10

243 6 15 5 8 22 5 2 9 10 1

days In humidifier (SEMEN)
SEMEN -SNP 27-plex 

No. of alleles % profile LR

SEMBf-LMW SNPs: <186 BASES 

No. of stales % profile LR No. of alleles

SEMEN 

% profile

SOM*

LR

SEMEN - 

No. of stales

SOM* <1X  BASES 

% profile LR

0 51 94 1,490,000,000 36 1 X 1,570,OX 22 1 X 9,010,OX,OX,OX 10 1 X X 7 .0 X

42 51 94 826,000,000 34 94 962,OX 22 100 9,010,OX,OX,OX 10 1 X 367, OX

62 49 91 97200,000 35 97 964,0X 22 100 9,010,OX,OX,OX 10 100 X 7 .0 X

84 48 89 27,700,000 35 97 964,0X 22 1X 9,010.0X .0X  ,0X 10 1X 367.0X

147 47 87 20.1X.000 36 1X 1,570, OX 22 100 9,010,OX,OX,OX 10 100 X 7 .0 X

243 43 80 2,480,000 35 97 128, OX 21 95 9,010,OX,OX,OX 10 1 X 367, OX

Table 3.10 Percentage profiles and likelihood ratios (LRs) calculated for artificially degraded 
samples. The table includes results for full SNP 27-plex profiles (all 26 loci plus 
Amelogenin), 27-plex SNPs under 186 bases in length, full SGM+ profiles and STRs under 
146 bases in length.

3.3.2.1 Semen samples

The semen samples showed very little degradation in these experiments and a full 

SGM+ profile was obtained at all time points, except for one case of STR allele 

dropout at 243 days (Table 3.9). The SNP 27-plex did not perform as well as 

SGM+.

Within a sperm cell, DNA is associated with protamines and exists in a highly 

condensed state, allowing it to be packaged into a very small volume (Ward and 

Coffey 1991). This packaging makes it less susceptible to nuclear attack by 

enzymes or bacteria, an evolutionary requirement originating from the function of 

the mammalian sperm. In these instances, SGM+ can be used to obtain a full 

profile with a higher discrimination power than that gained when using SNPs.

5.3.2.2 Blood samples

The SNP 27-plex gave higher percentage profiles for degraded blood samples 

compared to SGM+, using both the full 27-plex results and LMW SNP results.
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SGM+ dropped from a 100% profile down to only 18%, whereas SNPs still gave 

a 56% profile after the 8 month degradation period (Table 3.10).

The STR profiles showed a distinct degradation pattern for SGM+, with the high 

molecular weight loci dropping out of the profile first (Table 3.9). The SNP 

profile showed less dropout, although the peak heights for each allele decreased 

significantly with time (data not shown). The presence of ‘split’ peaks in the SNP 

profile after 8 months degradation was indicative of very low amounts of DNA 

starting material, i.e. LCN DNA. Split peaks consisted of two peaks with only 

one base pair difference in size, giving the impression of a ‘split’ peak. This 

action occurs due to the activity of the Taq polymerase enzyme used during PCR, 

preferentially adding an extra base to the PCR product. The presence of split 

peaks indicated two populations of PCR products whereby some were the 

expected size (n) and some had an extra base added (n+1). This should have been 

eliminated by the 45 minute final extension of the PCR amplification, however 

the phenomenon of split peaks in LCN DNA samples had been observed during 

development of the SNP multiplex methodology (pers. comm. P. Gill).

3.3.2.3 Saliva samples

Saliva is well known to degrade rapidly once outside of the body, both under 

room temperature conditions and within a humid environment. This is probably 

due to the presence of large numbers of bacteria and digestive enzymes that break 

down the proteins and cellular matter found in saliva (Benedek-Spat 1973a; 

Benedek-Spat 1973b). The reference sample failed to give a full profile with 

either SGM+ or the SNP 27-plex, suggesting that the DNA may have already been 

fragmented before the experiment began.

The ability to obtain a profile from an individual’s saliva is dependent upon 

factors such as food intake, smoking preferences, alcohol consumption and 

caffeine intake. The amount of enzymes and bacteria present in saliva make the 

DNA highly susceptible to degradation and this is variable within and between 

individuals due to their lifestyles. For these reasons, some saliva samples may
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give full profiles using SNPs or SGM+ whereas others will always give sub- 

optimal results.

3.3.2.4 Analysis o f allelic dropout fragment length

Table 3.8 & Table 3.9 illustrate the pattern of allele dropout seen for the 

artificially degraded samples for SGM+ and the SNP 27-plex. The LMW SNPs 

were described as those being less than 186 bases in length, highlighted by the 

black line dividing H8 (fragment length 186 bases) and L6 (fragment length 190 

bases). The size of the amplicon was compared to the proportion of allelic 

dropout seen using both techniques (Figure 3.2).

Allele dropout vs amplicon size in artificially degraded samples

1.00

■ SNPs deg samples 

♦  SGM+ deg samples

 Linear (SNPs deg samples)

 Linear (SGM+ deg samples)

0.90 -

0.80 -

s  0.70 -
oe.
£ 0.60 - R2 = 0.7589

0.50 ♦  ♦

0.40 -

fr. 0.30

0.20 -

0.10  -

0.00

amplicon size

Figure 3.2 Scattergraph indicating the number of alleles that fail to amplify using both 
SGM+ and the SNP 27-plex compared to the size of the allele fragment. This data is based 
on the allelic dropout seen in tables 3.8 & 3.9 for all three degraded sample types. The 
dotted line indicates the division between LMW SNPs and HMW SNPs.

A positive regression was observed between the number of alleles failing to 

amplify and the size of the amplicon length (Figure 3.2). This suggested the 

nucleosome may be protecting the DNA molecule from further degradation, 

leaving only small fragments of DNA available for amplification, although it is 

possible this linear pattern would be observed even if there was random 

fragmentation of the DNA molecules. Bacterial and enzymatic activity brought
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about by the 37°C temperature and optimal humidity would have sheared the 

DNA to only 146 base pairs in length. The addition of universal primers to the 

ends of each amplicon increased the locus size to 186 bases and anything above 

this showed decreased amplification efficiency. The observations seen here were 

used in the development of a 21-SNP multiplex and have been used as an 

illustration of degradation patterns in low molecular weight DNA.

3.3.3 Comparison of likelihood ratios (LRs)

Likelihood ratios (LRs) were calculated for each DNA profiling technique for 

each sample using STRipe™ for SGM+ and Celestial™ for SNPs (Table 3.10). 

The SGM+ profiling method gave a higher LR than the SNP system on most 

samples. SNPs were shown to be more discriminating for the most degraded 

blood and saliva samples, when the percentage profile for SNPs was significantly 

better than for SGM+ (Table 3.10).

The SGM+ system amplifies 10 STR loci to give a ‘DNA profile’ of an individual 

(Cotton et. al. 2000). The STRs selected are highly polymorphic in nature and 

vary significantly in the number of repeats between unrelated individuals. This 

characteristic makes them highly discriminating, so that the likelihood ratio (LR) 

of a full SGM+ profile is conservatively estimated at 1 in 1000 million for 

randomly selected unrelated individuals. By contrast, the SNPs used in the 

multiplex system are biallelic in nature, making them individually much less 

discriminating. It was calculated that approximately 50 SNPs, with allelic 

frequencies between 0.2 and 0.8, would be needed to give a comparable LR of 

SGM+ (Gill 2001a). Using a population database of white Caucasian individuals 

(200 unrelated individuals), an LR of approximately 1 in 500 million was 

calculated for the SNP 27-plex. The LRs for both systems were highly variable 

depending on the alleles present in the profiles obtained.
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3.3.4 Dilution series experiments (21-SNP multiplex)

Initial studies suggested the SNP multiplex system could be improved by the use 

o f SNPs less likely to fail amplification. This could be done by designing a new 

multiplex using smaller amplicon sizes, altering the sizes o f some o f the primers 

in the current multiplex or by the addition o f different loci. Further work was 

carried out developing a SNP multiplex using these criteria. The 21-SNP 

multiplex was designed with products less than 186 base pairs in length, to allow 

amplification o f the small DNA fragments found in degraded samples.

The data generated from the dilution series experiments, using the 21-SNP 

multiplex, were used to estimate the limit o f detection o f the system. 

Electropherograms allowed profiles to be visualised before the data was run 

through further analysis programs (Figure 3.3).

500pg

250pg

125pg

62pg

31pg

16pg

Figure 3.3 Electropherograms showing SNP profiles obtained for the dilution series of ST 
control DNA.

Full profiles were observed for all samples using 1 ng o f DNA template and six 

out o f seven samples gave full profiles at 500 pg DNA template (Table 3.11), 

although some homozygote peaks gave a peak height (rfu) less than the 

homozygote threshold level set in Celestial™ and were subsequently labelled with 

an ‘F’ designation (chapter 4). The control samples HER and ST showed full
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profiles down to 250 pg starting DNA template and Cambio™ male and female 

samples were correctly genotyped using 125 pg DNA template. All seven 

samples gave partial DNA profiles down to the lowest template level o f  16 pg.

FileN am e Lane A m e b D U6 B6 N4 Y3 P5 A4 0 6 22 K3 J2 Y6 P7 J8 X F G L2 W 3 H8

CAS re fe re n c e A01 G G/B G/B G/B G/B G G G B G G B G B G B G G G B G G G G B

CAS 500pg A02 G/F G/B G/B G/B ■ H G G G B G G B G B  G /F F B G G G B G G G G B

CAS 250pg A 03 G G fa G/B G/B G/F G G G B G G B G B  G /F B G G G B G G G G B

CAS 125pg A 04 G/F G/B G G C/F G B G B G B  G B F B G B G B G B
CAS 62pg A 05 G/F G/B G G G B G B G B  G B F B GB G B G B
CAS 31pg A06 G /F G/F F B G B G B G B G B G B
CAS 16pq A 07 G/F G/B G/F G B G B G B

DRJ re fe re n c e B01 G/B G G/B G/B G/B G G G G G B G B G G B B G B G G G gb B

DRJ 500pg B02 G/B G G/B G/B G/B G G G G G B G B G G B B G B G G G gb B

DRJ 250pg B03 G/B G/F G /F G/B G G G G G B F B  G B  G B B G B G G G G B B

DRJ 125pg B04 G/F G/B G G G/F G/F G B F B  G B  G B B F B G G B G B B

DRJ 62pg B05 G/B G/F G/B G G G/F G/F G /F B F B  G B  G B B G gb B

DRJ 31pg B06 G/F G/B G j G /F F B G B G B F B G B
DRJ 16pq B07 G/F e  g/b F B G B B G B

HER re fe re n c e C01 G G G/B G/B G/B G G B G B G B G B G G B B G G B G B G G G B

HER 500pg C02 G G G/B G/B G/B G G/B G B  G B G B G G B B G G B  G B G G G B

HER 250pg C03 G G G/B G/B G/B G G/B G B G B G B G G B B G G B G B G G G B

HER 125pg C04 G G/F G/B G/F G G/B G B G B G B G G B B G G B G B G G G B
HER 62pg C05 G C £ G/F G/B G G B G B G/F G B G B  G B F B G gb G B G G G B

HER 31pg C06 G /F G/B G/F G/F G/B G/F G/F G B G B F B G F B F B G G B

HER 16pq C07 G/F F/B G/F G B G B F B G G B B

SHM re fe re n c e D01 G G/B B G/B G/B G G G B G G B G B G G B G B G G G B G B G G B

SHM 500pg D02 G G/B F/B  G/B G/F G G G B G G B G B G G B G B G G gb G B G G B
SHM 250pg D03 G G/B G G F B G G B G B G B  G B G G G B G B G B
SHVl 125pg D04 G/F G/F G/B G G G B G G B G B  G /F G B  G B G G G B G G B
SHM 62pg D05 G G/B G G F B G B G /F G /F G/F G/F G G G B G B G B
SHM 31pg D06 G /F G/B G/F G G B G /F G B  G B G B G B
SHM 16pq D07 G/F 1 G/B G/F F B G B F B G B

ST re fe re n ce E01 G G/B G/B G/B G/B G/B G G G G G B G G B G G G B G G G B B

S T 500pg E02 G G/B G/B G/B G/B G/B G G G G G B G G B G G G B G G G B B
S T 250pg E03 G G/F G/F G/B G/F G/B G G G G G B G G B G G G B G G G B B
S T 125pg E04 G G/F G/B G/F G/B G G G G G B G G B G G gb G G G B B
S T  62pg EOS G/F G/B G/B G G/F G G G B  G B  G B G G G B G B G G B B B
S T 3 1 p g E06 G/F G/B G/F G | G G B G B G F B G B F B
ST Ib p q E07 G/F F/B G/F F B G B G B F B

C am bio  M re fe re n c e F01 G/B G/B B G G G G/B G/B G G B  G B G B G G G G G G B G B

C am bio  M  SOOpg F02 G/B G/B B G G G G B G B G G B G B G B G G G G G G B G B
C am bio  M  250pg F03 G/B G/B F/B  G G/F G G B G B G G B G B  G B  F B G G G G G gb G B
C a m b b  M  125pg F04 G/B G/B F/B  G G/F G G B G B G G B G B  G B  F B G G G G G g b G B

C a m b b  M  62pg F05 G ^ G G/F G G/F G B G B F B G G G G F B G B
C a m b b  M  31pg F06 G /F 1  G G/F F B G B G B G G B G B G B
C a m b b  M  16pq F07 G/F G B G B  G B G B F B G B

C am bio  F re fe re n c e G01 G G G/B G/B G/B G G B G B G G B B G G G G B gb G G G G B B
C a m b b  F 500pg G02 G G G/B G/B G/B G G B  G B  G G B B G G G G B G B G G G G B B
C a m b b  F 250pg G03 G G G/B G/B G/B G G B G B G G B B G G G G B G B G G G G B B
C a m b b  F 125pg G04 G G G/B G/B G/F G G B G B G G B B G G G G B G B G G G B G B B
C am b io  F 62pg G05 G/F G/F G/B G/F G G B G/F G/F G B B G B  G B G G B G B G G G B gb B
C a m b b  F 31pg G06 G/F G/F G/B B G B  G B G G B F B G gb B
C a m b b  F 16pq G07 G/F G/B F B G B  G B G B G B

Table 3.11 Genotypes generated for control samples using varying amounts of starting DNA 
template. The limit of detection appears to be sample dependent. SHM DNA could be fully 
genotyped down to 62.5pg DNA whereas Cambio™ Female control DNA showed dropout at 
250pg.

A total o f  seven individual DNA samples at seven different DNA starting 

concentrations (n=49) were tested using the 21-SNP multiplex. From these results 

it was demonstrated that all samples provided a full, and correct, SNP profile at an 

optimal DNA amount o f 1 ng and partial DNA profiles were obtained at a 

template level between 500 pg and 16 pg, lower levels were not tested. SGM+
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amplification routinely gives a full profile above 100 pg starting DNA material 

(Gill et. al. 1997; Cotton et. al. 2000; Gill 2002) and LCN SGM+ is used to 

provide full or partial profiles at sub-optimal DNA concentrations <100 pg using 

LCN amplification conditions (Gill et. al. 2000b).

3.3.5 Testing artificially degraded DNA samples

Artificially degraded blood, saliva and semen samples (section 3.3.2) were re

amplified and analysed using the 21-SNP multiplex (Table 3.12).

Size of genome 
target (bp) 57 63 67 69 74 77 82 85 90 94 97 101 107 110 114 118 125 132 135 140 146

Days in 
humidifier Amelo D U6 B6 N4 Y3 P5 A4 06 22 K3 J2 Y6 P7 J8 X F G L2 W3 H8

Sa
liv

a

0 X/Y T A/T A T A G A C/G A C C c T/A T/A A/T c C/A T/C C C T
42 X/Y T F T AT A G A OG A C C c T/A T/A A/T c C/A T/C C c T

62 X/Y T FT AT A G A C/G A C C c T/A T/A A/T c C/A T/C c c T

84 X/Y T A T A G A C/G A C F C c T/A T/A AT ( C/A T/C c c T
147 X/Y T A T A/F G/F A C/G A c F/C c T/A T/A FT C/F C/A T/C c c T

243 F/Y T/F F/A A/F O F

Se
m

en

0 X/Y T A T A T A G A C/G A c C c T/A T/A A T c C/A T/C c c T
42 X/Y T A T A T A G A C/G A c c c T/A T/A A T c C/A T/C c c T

62 X/Y T A T A T A G A C/G A c c c T/A T/A A T c C/A T/C c c T
84 X/Y T A T A T A G A C/G A c c c T/A T/A A T c C/A T/C c c T
147 X/Y T AT AT A G A C/G A c c c T/A T/A AT c C/A T/C c c T

243 X/Y T AT AT A G A C/G A c c c T/A T/A A T c C/A T/C c c T

Bl
oo

d

0 x/x T A T A T T G T C/G A C T c c T/A T A c C T C T C/G T
42 x/x T A T AT T G T C/G A C T £ c T/A T A c C T C T C/G T

62 x/x T A T A T T G T C/G A C T c c T/A T A c C T C T C/G T
84 x/x T AT A T T G T C/G A C T c c T/A T A c C T C T C/G T
147 x/x T A T A T T G T C/G A C T c c T/A T A c C T CT C/G T
243 x/x T A T A T T G T C/G A C T c c T/A T A c C T CT C/G T

Table 3.12 SNP profiles obtained from artificially degraded DNA samples. Grey boxes 
indicate complete locus dropout. F designations indicate single peaks falling below the 
homozygous threshold (Ht). Heterozygous genotypes are standardised as green peak base / 
blue peak base.

The percentage profile data for each sample was calculated, based on the number 

o f alleles present. This data was compared to the results for the SNP 27-plex and 

the SGM+ results (Table 3.13).

The 21-SNP multiplex gave comparable results to SGM+ for the semen samples, 

showing a full profile at all time points. This indicated the multimix may be more 

optimised than the SNP 27-plex, which showed allele dropout at all time points, 

including the reference sample. The likelihood ratio (LR) for the semen samples 

was calculated to be 9 x 10'12 for SGM+ (i.e. it would be >9,000 million times 

more likely that this profile belonged to the suspect as opposed to another
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unrelated individual from the population), compared to 1.5 x 10'7 for the 21-SNP  

multiplex. In these instances it was suggested that SGM+ should be used in 

preference to SNPs, due to the higher match probabilities that can be gained. The 

LR values for SNP profiles varied when the percentage profile remained the same, 

due to different SNP loci being present in the resulting genotype, for example, 

SNP 27-plex data for saliva 42 days and 62 days (Table 3.13).

Days in humidifier
SNP 27-plex SGM+ 21-SNP multiplex

No. o f  alleles % profile LR No. o f  alleles % profile LR No. o f  alleles % profile LR

Sa
liv

a

0 39 72 6.52E+07 21 95 9.01E+12 42 100 1.48E+07

42 35 65 8.99E+05 11 50 6.76E+04 42 100 1.48E+07

62 35 65 1.98E+06 12 55 1.25E+05 39 93 2.40E+06

84 32 59 4.02E+04 11 50 6.76E+04 38 90 1.04E+06

147 37 69 7 .1 1E+06 4 18 1.01E+01 36 85 4.62E+05

243 8 15 5.30 2 9 10 6 10 7.50

Se
m

en

0 51 94 1.49E+09 22 100 9.01E+12 40 100 1.48E+07

42 51 94 8.26E+08 22 100 9.01 E+l 2 40 100 1.48E+07

62 49 91 9.72E+07 22 100 9.01E+12 40 100 1.48E+07

84 48 89 2.77E+07 22 100 9.01E+12 40 100 1.48E+07

147 47 87 2.01E+07 22 100 9.01E+12 40 100 1.48E+07

243 43 80 2.48E+06 21 95 4.60E +11 40 100 1.48E-K17

B
lo

od

0 48 89 2.32E+07 22 100 1.65E+11 42 100 1.37E+06

42 49 91 2.78E+07 20 91 3.22E+09 42 100 1.37E+06

62 47 87 1.67E+07 22 100 1.65E+11 42 100 1.37E+06

84 45 83 6.62E+06 19 86 1.09E+09 42 100 1.37E+06

147 44 81 6.19E+06 13 59 1.76E+07 42 100 1.37E+06

243 30 56 1.33E+04 4 18 7.19 42 100 1.37E+06

Table 3.13 Percentage profile data and LR data for the SNP 27-plex, SGM+ 28 cycles and the 
21-SNP multiplex. Data for the SNP 27-plex and SGM+ were obtained from earlier 
experiments on the artificially degraded samples (section 3.3.2).

The results for the artificially degraded saliva and blood samples were plotted on 

scattergraphs (Figure 3.4). The 21-SNP multiplex performed better than both the 

SNP 27-plex and SGM+ on these sample types. The artificially degraded blood 

samples gave a full profile at all time points, whereas SGM+ dropped to only an 

18% profile after 243 days and the SNP 27-plex gave a 56% profile. This 

suggested that the smaller amplicon sizes used with the 21-SNP multiplex were 

allowing amplification o f  small fragments o f  DNA left in the blood samples after
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the longer degradation periods. Loci failing to amplify with SGM+ tended to be 

the higher molecular weight STRs (>125bp).

Percentage profile da ta  for artificially degraded saliva 
samples

Percentage profile data  for artificially degraded blood 
samples

100100 ■ S N P  27-plex 

•SG M +28 cycles 
• 21-SNP multiplex

■ SN P  27-plex 

•SG M +28 cycles 

•21-SNP multiplex

4■

#
20 
10 •

0 25 50 75 100 125 150 175 200 225 250 275
Days in humidifier Days in humidifier

Figure 3.4 Scattergraphs of percentage profile data for artificially degraded saliva and blood 
samples. Graphsshow data obtained for the SNP 27-plex, SGM+ (28 cycles) and the 21-SNP 
multiplex.

All three profiling systems failed to successfully amplify the degraded saliva 

samples at the final time point o f 243 days, with the maximum percentage profile 

gained for the SNP 27-plex (15%). The DNA in these samples would be 

subjected to more enzymatic activity than other sample types due to the increased 

number o f enzymes present in saliva. The 21-SNP multiplex demonstrated better 

amplification o f the saliva DNA at earlier time points, suggesting successful 

amplification o f smaller DNA fragments still present in the samples.
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3.4 Discussion

Forensic DNA samples are subject to varying rates of degradation. Criminal 

justice samples, obtained from suspects on their arrest, are not subjected to the 

degradation processes that are imposed on other forensic DNA samples, as they 

are collected fresh and stored appropriately for further analysis. Conversely, 

crime scene samples will have undergone varying rates of degradation dependent 

on the sample type and the surrounding environment (Poinar 2003). Bodies not 

discovered until weeks, months or even years after death show increasing levels 

of decomposition and degradation of the DNA is often apparent. In these cases it 

is increasingly difficult to obtain a viable STR DNA profile and specialised 

profiling techniques, such as mitochondrial DNA (mtDNA) analysis are carried 

out (Hagelberg et. al. 1991; Gill et. al. 1994; von Wurmb-Schwark et. al. 2003). 

Mitochondrial DNA persists for a longer time period in post-mortem samples as 

there is a greater number of mitochondria per cell, increasing the time it takes for 

degradation to occur (Butler and Levin 1998). Sequence analysis of mtDNA 

hypervariable regions may be undertaken, providing a profiling result where other 

methods fail (Hagelberg et. al. 1991; Holland et. al. 1993; Gill et. al. 1994; 

Holland and Parsons 1999; Budowle et. al. 2004a). Although this method 

partially overcomes the problem of identification, mtDNA is maternally inherited 

and its sequence is identical throughout the maternal lineage, meaning mothers 

and siblings and further progeny all share the same sequence. This factor reduces 

the discrimination power of mtDNA and decreases its usefulness as a tool for 

identification purposes (Butler and Levin 1998). Body fluid stains from crime 

scenes are also subject to DNA degradation, although they tend to have a lower 

rate of degradation as these sample types quickly dehydrate and restrict the 

oxidative DNA degradation process (Lindahl 1993).

The effect of DNA degradation in forensic DNA profiling is most apparent in 

mass disaster situations. Dependent on the type of disaster, victims will have 

been subjected to a wide range of extreme conditions including ultra-high 

temperatures and high levels of humidity, causing degradation of the DNA 

molecules. This makes it increasingly difficult to obtain a DNA profile that can 

be used for identification purposes. Examples of mass disaster situations include
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fires (Clayton et. al. 1995a), air crashes (Ballantyne 1997; Olaisen et. a l 1997; 

Leclair et. al. 2004), terrorist attacks (OrchidBiosciences 2002; Cash et. al. 2003; 

Holland et. al. 2003), tsunamis and earthquakes (Alonso et. al. 2005; Morgan and 

de Ville de Goyet 2005). In some of these cases, DNA profiling has proved the 

most effective method of body identification due to lack of any other forensic 

evidence (Clayton et. al. 1995a; OrchidBiosciences 2002; Leclair et. al. 2004). 

Other cases have relied more heavily on traditional methods of identification; 

victims of the Asian tsunami in December 2004 were identified predominantly by 

dental records and fingerprints with only 1% of the bodies being identified by 

DNA profiling (http://www.newscientist.com/channel/opinion/mgl 8725163.900).

DNA degradation begins with apoptosis (programmed cell death) and necrosis in 

post-mortem samples (Johnson and Ferris 2002). After this activity by enzymes 

such as micrococcal nuclease, DNase I and DNase II causes DNA fragmentation 

through single-stranded breaks and depurination of bases (Bar et. al. 1988; 

Lindahl 1993; Willerslev and Cooper 2005). As a consequence of this, current 

methods of DNA profiling using STR analysis may only provide a partial DNA 

profile resulting in a lower discriminating power than would otherwise be 

obtained (Whitaker et. al. 1995; Wiegand and Kleiber 2001; Tsukada et. al. 2002; 

Chung et. al. 2004). By defining the process of DNA degradation, new DNA 

profiling methods could be developed that take factors such as fragmentation into 

account, increasing the chance of amplifying the limited amount of DNA 

available.

In order to assess the ability of DNA profiling methods to amplify degraded DNA 

in the laboratory, artificially degraded DNA is required. By artificially degrading 

DNA using a robust method, sets of samples can be produced that are both 

quantitative and reproducible. A number of different methods have been used to 

artificially degrade DNA. Enzymes such as DNase I & II are routinely used to 

provide DNA in solution with varying fragment sizes (Wilcox and Smith 1976; 

Szopa and Rose 1986; Golenberg et. al. 1996; Wu et. al. 2000). DNase I favours 

purine-pyrimidine sequences (Staynov 2000) and DNase II is an enzyme found in 

lysozymes associated with cell apoptosis (Yasuda et. al. 1998). Although 

providing a range of DNA fragments in solution, this method of degrading DNA
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is not consistent with the degradation occurring in situ and so cannot be used as a 

direct comparison of the DNA found in such conditions. This is also true for 

boiled DNA samples, used in this study as a method of fragmenting DNA 

irrespective of the protection of the nucleosome. Some studies have used actual 

post-mortem samples in their work, such as animal tissue taken from a newly 

slaughtered animal (Johnson and Ferris 2002), ancient DNA samples from a 

variety of mummified or fossilised samples (Paabo 1989) or post-mortem human 

samples (Akane et. al 1993). Forensically directed research studies have used 

body fluid stains kept at room temperature for a number of years (Tsukada et. al 

2002; Butler et. al 2003). Although viable for a small number of the forensic 

samples submitted for forensic DNA profiling, these stains are limited in the 

amount of degradation present as DNA has been shown to persist for many years 

in a dessicated form (Lindahl 1993; Willerslev and Cooper 2005). By introducing 

stains to a humid environment, the hydrolytic and oxidative processes of 

degradation are permitted to continue for prolonged periods of time (Lindahl 

1993). For this study, artificially degraded samples were obtained from previous 

project work. Blood, semen and saliva samples had been spotted onto cotton 

squares and left in a humid environment at 37°C for a period of eight months.

Boiling DNA extracts allowed the DNA strands to be rapidly fragmented for use 

in this study. The DNA was extracted from cells prior to boiling, leaving it 

without nucleosome protection. The results showed the DNA became fragmented 

with increased periods of boiling, leaving the lower molecular weight amplicons 

relatively more amenable to amplification. The artificially degraded DNA 

samples showed a similar pattern of DNA fragmentation, with low molecular 

weight loci giving increased amplification efficiency after longer periods of 

degradation. Both methods are suggestive of DNA fragmenting with increased 

periods of degradation processes. The unprotected DNA in boiled samples would 

have undergone random shearing of the DNA molecule, leaving smaller and 

smaller lengths of DNA with time. Longer periods of boiling may have produced 

DNA fragments too small to be amplified with even the lowest molecular weight 

loci. The DNA in the artificially degraded samples may have been gradually 

fragmented as linker DNA joining the nucleosomes to each other was cleaved, 

leaving only the DNA fragments protected by each nucleosome. It is possible that
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after a longer period of boiling DNA amplification would not have been 

successful whereas the nucleosome would have continued to protect the DNA 

associated with it, causing the amplification efficiency to reach a plateau.

The work carried out in this study suggested that SNPs could have a number of 

advantages over STRs for degraded samples. Most sample types gave an 

increased percentage profile with SNPs and, although the discrimination power 

was lower than for STRs, this may be used as an adjunct to the SGM+ system. 

The SNP multiplex system was envisaged as an identification tool predominantly 

for use in circumstances where most DNA matter would be highly degraded, for 

example in mass disasters. In these circumstances SGM+ profiling could fail 

whereas SNPs may give a profile, even if only partial. Reference profiles of 

victims could be obtained from personal effects, rendering the discrimination 

power less relevant in these instances. The combination of a weak / partial SGM+ 

profile and a weak / partial SNP profile would also increase the discrimination 

power over a weak SGM+ profile alone.

Profiling of artificially degraded samples appeared to show a relationship between 

the size of the amplicon and the allele dropout seen. An increased fragment 

length above 186 bases was associated with a lower likelihood of amplification in 

samples that were artificially degraded. Protection of DNA by the nucleosome 

may be responsible for the small fragment sizes seen although other factors, such 

as the coiling of the DNA around the chromosome or the effects of secondary and 

tertiary protein structure, may have be involved. Five out of the ten STR 

amplicons used in SGM+ DNA profiling had lengths above 146 bases and these 

readily dropped out of the DNA profile in degraded samples.

The dilution series experiments indicated the 21-SNP multiplex was capable of 

amplifying DNA in low copy number conditions. A full SNP profile was 

obtained from sub-optimal (<500 pg) DNA template levels, and partial SNP 

profiles were seen at levels as low as 15 pg (the equivalent of approximately two 

cells). At low template levels, SNP interpretation would be subject to the same 

problems as STR profiling, i.e. there would be more chance of contamination 

being seen, stochastic variation could give heterozygous imbalance, allele dropout
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and preferentially amplification of loci. Interpretation criteria needed to be set for 

the 21-SNP multiplex, as outlined in chapter 4, using the dilution series data as a 

basis for low copy number genotypes.

The 21-SNP multiplex was designed to target smaller DNA fragments thought to 

be present when DNA becomes fragmented. The primary structure of 

nucleosomes confers protection onto 146 base pairs of the DNA strand, with the 

linker DNA joining two nucleosomes together being targeted for fragmentation 

first (Read et. al. 1985a; Read and Crane-Robinson 1985b). The results of the 

degradation experiments suggested that the 21-SNP multiplex was capable of 

amplification when traditional DNA profiling methods failed. Low copy number 

(LCN) SGM+ genotyping was not assessed as part of this study due to insufficient 

amounts of sample extract. In order to interpret LCN SGM+ profiles, two 

duplicate amplifications need to be performed and a consensus profile generated 

from the resulting genotypes (Gill 2001b). As part of the validation of the 21- 

SNP multiplex, casework samples profiled using LCN SGM+ were re-amplified 

and profiled for SNPs (chapter 7). In the artificially degraded samples analysed in 

this study, semen was shown to resist DNA degradation in situ probably as a 

result of the tight packaging of the DNA molecule within the sperm head. In 

these instances an increased LR could be gained by using SGM+ profiling, as 

STRs collectively give higher discrimination between non-related individuals 

within a population. Saliva and blood samples showed varying degrees of DNA 

degradation, with the 21-SNP multiplex more likely to successfully amplify after 

longer periods of degradation in both sample types.



4 The 21-SNP Multiplex Interpretation Criteria



Interpretation Criteria

4.1 Introduction

The increased use of DNA profiling in forensic casework led to a greater need for 

automated programs capable of accurately genotyping DNA samples that had 

been processed using STR DNA profiling systems (Perlin et. al. 1994; Perlin 

2001). The SGM+ STR profiling system currently used in forensic casework in 

the UK is an optimised system that is both quantitative and well balanced within 

and between loci, allowing algorithms to be developed that can be used to 

automatically genotype profiles (Cotton et. al. 2000; Perlin 2001). Several STR 

automated genotyping systems for forensic use currently exist, and are used for 

different aspects of DNA profiling.

STRess™ (STR expert system suite), developed by The Forensic Science 

Service® in 1998 (Werrett et. al. 1998), was a program that "accepts raw data 

[from Genotyper™ software], generates a file o f allele designations and then 

compares this file to one generated by a human operator”. At that time, DNA 

profiles analysed for the National DNA Database® were independently analysed 

by two separate operators before being compared by a third individual, to 

eliminate the possibility of operator differences. This analysis stage caused a 

bottleneck to the entire DNA profiling process and therefore automation was 

necessary. The optimised SGM+ system is a quantitative system and this allowed 

rule sets to be developed that could assess STR peak height and area data and 

accurately genotype them. For example, alleles had to be above a defined peak 

height to distinguish them from baseline noise and peak area ratios were 

calculated to assess the presence of a mixture (Werrett et. al. 1998).

The STRess™ program was complemented with an additional automated 

genotyping system known as TrueAllele™ (Perlin 2001). TrueAllele™ allowed 

peak data to be analysed and assessed for stutters, artefact peaks and preferential 

amplification, before generating genotype data for inputted samples. Both of 

these programs were developed to enable high throughput analysis of DNA 

profiles used for the National DNA Database® and as a consequence of this, 

neither were capable of analysing the more complex DNA mixtures or low copy 

number (LCN) profiles that required expert interpretation.
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A recently developed program, LoComatioN, is “a hypothesis driven expert 

system that enables LRs [likelihood ratios] for any number o f different LCN 

scenarios to be evaluated” (Gill et. al 2005c). It remains necessary to manually 

genotype the data, but interpretation of resulting profiles is carried out using a set 

of algorithms allowing factors such as contamination and allele dropout to be 

included in the likelihood ratio calculation.

For SNP genotyping it was necessary to produce a system similar to those 

developed for STR DNA profiling. SNP genotyping programs for technologies 

such as microarrays and primer extension assays have been developed (chapter 2) 

but no program existed to analyse the data format generated by the SNP multiplex 

technique developed using the universal reporter primer assay (Hussain et. al. 

2003; Dixon et. al. 2005a). A computer program for analysis of SNP data was 

developed to quantitatively analyse the peak data present, allowing accurate 

genotyping of samples independent of operator variability.
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4.2 Materials & Methods

4.2.1 Celestial™ automated analysis program

In order for the SNP multiplex to be successfully implemented into a casework 

unit, the technique was tested against a number of set validation criteria. An 

important part of the validation was the ability to confidently assign genotypes to 

the sample data collected. This was carried out effectively by the use of an in- 

house program Celestial™, written in Visual Basic, to enable genotyping of the 

SNP 27-plex. The purpose of the validation was to define the interpretation 

criteria required for correct genotyping of the 21-SNP multiplex.

The program utilised the following data exported from Genotyper™ for each SNP 

locus for each sample: scan number, peak height (relative fluorescent units (rfu)), 

peak area (rfu) and size in base pairs. Each SNP locus was identified by 

Celestial™ according to its size in base pairs. The peak data were used to 

genotype SNP loci as homozygous or heterozygous and a SNP profile was 

generated for each sample analysed.

In forensic casework it is essential to keep error rates to a minimum. For this 

reason, the rules set for Celestial were more conservative than would be found in 

a non-caseworking environment.

4.2.2 Interpretation criteria

4.2.2.1 Heterozygote balance (Hb%)

In order to correctly interpret results from each SNP locus, three separate criteria 

were characterised (Figure 4.1). Firstly, the relationship of peak heights of each 

allele within a locus was established. This was given the term ‘heterozygous 

balance’ or Hb% (section 4.3.2). Hb% was calculated from analysis of a dilution 

series of control DNA samples (chapter 3) using the equation:

Hb(%) = xlOO (Equation 4-1)

[^S,=smallest peak height (rfu); $>largest peak height (rfu)]
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Hb% for each SNP were calculated independently of each other as each SNP 

locus behaved differently within the multimix.

4.2.2.2 Homozygous thresholds (Htmax)

The homozygote threshold (Htmax) of a SNP locus was defined as the maximum 

peak height of either allele A or allele B (<jiA or (/>B) when only one allele is 

present in a known heterozygous sample, plus 20% to allow for unobserved 

extreme variation, i.e.

Ht*A=0= ^ + 0 . 2 ^ )

(Equation 4-2)

o r / / ^ - ° = ^ + 0 . 2 ( ^ )

This observation can be seen when low levels of DNA are present and stochastic 

variation causes only one allele to be amplified. If a homozygous allele from an 

experimental sample fell below Htmax, the locus was given an ‘F’ designation 

indicating that allele dropout may have occurred and the locus might be 

heterozygous. Allele dropout is occasionally seen with the 21-SNP multiplex in 

samples with optimal DNA amounts (0.5-1 ng) due to the sensitivity of the system 

preferentially amplifying alleles at some loci more than others.

4.2.2.3 Baseline threshold (Bt)

Lastly, the negative baseline (Bt) was set, according to observed allele drop-in 

peaks in negative control samples, to minimise the chance of genotyping false 

positives (section 4.3.4). Allele drop-in is a consequence of contaminant alleles 

and occurs predominantly as a consequence of the high sensitivity of the 

amplification method. Allele drop-in peaks are usually low level and can be 

distinguished from true allele peaks by their size in comparison to the rest of the 

profile.
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Ht„

Bt A
(f>A <f>B

Figure 4.1 Diagrammatical representation of the interpretation criteria used in SNP analysis. 
Htmax indicates the homozygous threshold, below which single peaks are given an ‘F’ 
designation to indicate possible allele dropout. Bt denotes the baseline threshold used to 
minimise the possibility of drop-in peaks being labelled as allelic peaks. Hb% characterises 
the heterozygous balance of the peak height of allele A ($4) compared to the peak height of 
allele B (<f>B). In this example <fA is also the largest peak (<f>L) and 2̂? is the smallest peak 
(<AS).

4.2.3 Experimental procedures

To calculate interpretation rule sets, data were collected from the dilution series 

experiments carried out in chapter 3.

Samples were amplified with the 21-SNP multiplex using varying amounts of 

starting DNA template as follows; 0 pg, 16 pg, 32 pg, 62 pg, 125 pg, 250 pg, 500 

pg, 1 ng, to give a range of data from optimal DNA starting template to LCN 

amounts (sub-125 pg).

Amplified products were then analysed using the AB 3100CE sequencer with two 

injection times of 12 and 20 seconds. Genotyper™ software was used to provide 

data in the necessary format - peak height and peak area data, allele size (bp) and 

genotype -for interpretation in Celestial™, in the form of *csv file.



Interpretation Criteria

4.3 Results

4.3.1 Celestial preliminary genotyping results

The preliminary rule sets for Celestial™ were relaxed to allow all data to be 

designated without ambiguity within Celestial™, i.e. Hb% was set to a base level 

threshold o f 5% for all SNP loci, all Htmax thresholds were set to lOOrfu and the Bt 

was set to 50rfu, i.e. if  Hb%>5% then the locus was recorded as a heterozygote, 

only single peaks with //f<100rfu would be labelled with an ‘F’ designation and 

only peaks <50rfu were ignored from the interpretation as they fell below the 

baseline threshold. This allowed all data to appear without F designations and/or 

questioned heterozygotes (Table 4.1).

Amelo 1 D 1 U6 | B6 | N4 | Y3 | P5 1 A4 1 06  1 Z2 1 K3 1 
CAS reference G G/B G B G B G B G G GB G G/B GB

CAS 500pg G G B  G/B G/B G G G/B G G/B G/B
CAS 250pg G G/B G/B G/B G G G G/B G G/B G/B
CAS 125pg G G/B I  G
CAS 62pg G . G / B j |  , G
CAS 31pg G G

G G/B
DR: reference 

DRJ 500pg
G B
G B

G GB 
G G B

G/B
GB

GB
GB

G G 
G G

G G G 
G G G

B
B

G B
G B

G
G

G B  B i 
G B  B i

DRJ 250pg GB G G G B G G G G G B B G G B  B i
DRJ 125pg G H I G B G G G G G B B G G B  B
DRJ 62pg 
DRJ 31pg 
DRJ 16pq

GB
G
G

G G B
GB
GB

Cl u  u  u
G G

B
B

a  u 
G

G B B 
G B  

G B

G/B

HER reference 
HER 500pg 
HER 250pg 
HER 125pg 
HER 62pg 
HER 31pg 
HER ;

SHM reference 
SHM 500pg 
SHM 250pg 
SHM 125pg 
SHM 62pg 
SHM31pg 
SHM 16pq 

ST reference 
ST 500pg 
ST 250pg 
ST 125pg 
ST 62pg 
ST 31pg

.ST “E9
Cambio M reference 

Cambio M 500pg 
Cambio M 250pg 
Cambio M 125pg 
Cambio M 62pg 
Cambio M 31pg 
Cambio M 16pq

G G/B 
G G/B 
G G/B

G/B B 
G/B B

■■■
G

G/B G/B 
G/B G/B 
G/B G/B 
G B  G 
G B
G B G 
_B_

G B G B  G 
G B  G G
G B { G G B G G B GB
G B 1 G G GB G G B  GB
G B  I  G G B G B G
G B G G G B  G
G B I  G B

G/B G/B G/B 
G/B GyS G/B 
G/B Gy^ G/B 
G/B G/B G/B 
G/B G/B G 
G/B G G

______
G G B G G B  GB 
G G B G G B  G B

G B GB 
G B GB 
G B G B 
G B G B 
G B G B 
B B

G/B GB
G B GB

G G B  G 
G G B G 
G G B G 
G G B  G 
G G G

:

G B G 
G B G 
G B G 
G B G 
GB G 

8

G B G B  B 
G B  G B B

G G B G B G 
G G B G B G 
G G B  G B G 
G GB GB G 
G G

G

G B  GB 
G B GB 
G B G B 
G B G B 
G B  GB 
B G B

Cambio F reference 
Cambio F 500pg 
Cambio F 250pg 
Cambio F 125pg 
Cambio F 62pg 
Cambio F 31pg 
Cambic^l6|Dc^

G B G B 
G B  G B 
G B  G B 
G B  G B 
G B G

G B  B 
G B  B 
G B  B 
G B  B 
G B  B

i G B G G G G B B
i G B G 
1 G B G

G
G

G GB 
G G B

B
B

1 G B G 
i G B  G

G
G

G G B 
G G B

B
B

G G Bi .
B

Table 4.1 Genotypes from a dilution series of each control sample. Celestial™ rule sets were 
set to allow all data to be captured within the program, without highlighting allele dropout 
or heterozygous imbalances. Results in BOLD type indicate heterozygotes / below threshold 
homozygotes.

- 119-



Interpretation Criteria

4.3.2 Heterozygous balance (Hb%)

Data for all individual samples were collated for Hb% for all SNPs at each PCR 

template level. The data were tabulated and the lowest Hb% for each SNP at each 

PCR template level was noted, regardless of the individual (Table 4.2). At 

optimal DNA template levels (0.5-1.0ng) the lowest Hb% (Hb%min) exhibited was 

with Y3, at approximately 25%, for both the 12 and 20 second injection times 

from the same PCR amplification, i.e. the smaller peak was only 25% of the 

height of the larger peak (Table 4.2 bold type). The most balanced heterozygous 

SNPs at optimal PCR conditions were G and J2 at both the 12 and 20 second 

injection times with Hb%min>68%, comparable to existing STR multiplex systems 

(Gill et. al 1997) (Table 4.2 bold type).

12 second injection (</>S/<(L) x 100 (Hb%) 20 second injection (<tS/<fiL) x 100 (Hb%)
SNP
locus

Sub
125pg 125pg 250pg 500pg-

lng
Sub

125pg
125pg 250pg 500pg-

lng
Amelo # a 23.5 31.0 # # 25.9 35.7

D 25.0 39.2 48.0 47.8 # 41.3 55.2 49.7
U6 # # 31.5 45.0 # # 36.0 39.4
B6 # # 23.6 44.2 # # 23.6 45.1
N4 # 11.2 37.5 40.3 # 13.0 34.7 41.6
Y3 # # 68.4 25.1 # 63.4 67.3 24.4
P5 34.3 # 55.1 54.1 32.3 # 34.6 47.8
A4 # 24.8 41.3 41.6 # 23.1 36.8 39.6
06 16.2 50.0 57.8 40.2 15.6 52.3 61.1 41.3
Z2 25.7 29.7 36.3 38.6 25.2 29.8 37.9 39.9
K3 16.5 29.7 29.9 33.2 13.6 28.9 29.3 32.0
J2 ti # 22.6 69.3 # # 24.2 68.4
Y6 l l  A # 50.2 35.1 30.0 # 51.2 35.9
P7 # 15.4 24.8 32.0 # 14.6 22.1 27.7
J8 # # 40.7 34.5 # # 40.9 58.7
X # # 41.7 56.5 # # 39.8 62.0
F 32.7 # 46.1 36.9 33.0 # 52.9 38.4
G 31.6 # 69.5 67.5 35.0 # 69.3 71.5
L2 # # 51.8 53.0 53.0 # # 53.6
W3 # # 13.3 52.7 # 18.3 42.1 53.9
H8 # # 61.1 79.7 # # 57.7 81.7

Table 4.2 Hb% collected from two runs of the AB 3100 instrument at 12 and 20 seconds. 
Heterozygote balance was exported from Celestial™ to Excel for collation and tabulation. # 
indicates loci with either allele dropout or total dropout, hence no heterozygous balance 
calculation.

As DNA template level decreased, Hb% decreased, indicating a larger imbalance 

between the two peak heights. This was due to stochastic variation at low levels, 

consistent with low copy number (LCN) SGM+ profiling. Using SGM+ an 

optimal DNA template would give Hb% > 0.6 but at LCN levels the distribution
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of Hb% can be almost random as a consequence of stochastic effects (Gill et. al 

2000b; Gill 2001a). This was an unavoidable consequence of low copy number 

DNA templates and special interpretation methods were therefore required for 

SNPs, as the multiplex had been designed for LCN and degraded templates. The 

most extreme Hb%mm were seen at 11.2% (12s) for N4 and 15.4% (12s) for P7 at 

a DNA template level of 125pg, closely followed by 06 (15.6% (12s) and 16.2% 

(20s)) and K3 (16.5% and 13.6% for 12s and 20s respectively) at the sub-125pg 

PCR template level. The lowest Hb%min, irrespective of DNA template level, was 

used for the rule sets in Celestial™ (appendix VII).

4.3.3 Homozygote thresholds (Htmn̂

Htmax for the known reference samples was estimated from the dilution series 

experiments. Data were tabulated, disregarding individual samples, to show Htmax 

for each SNP allele for each instrument injection parameter (Table 4.3).

12 second injection (H tmax) 20 second injection (Htmax)
SNP
locus

Sub
125pg 125pg 250pg 500-

lOOOpg
Sub

125pg 125pg 250pg 500-
lOOOpg

Amelo 403 # # # 560 # # 527
D 615 # # # 859 # # #

U6 311 198 141 249 559 464 211 520
B6 328 207 # # 450 439 # #
N4 422 # # # 613 412 # #
Y3 155 # # # 213 # # #
P5 424 # # # 617 # # #
A4 486 # # # 746 274 # #
06 152 # # # 615 # # #
Z2 380 # # # 795 # 372 #
K3 586 # # # 828 # # #
J2 170 # # # # 449 # #
Y6 454 # # # 526 # # #
P7 191 # # # 274 # # #
J8 160 # # 334 # 372 # 850
X 390 191 # # 546 334 # 221
F 717 # # # 1068 # # #
G # # # # 478 # # #
L2 230 # # # 329 # # #
W3 # 242 # # # 534 # #
H8 134 # # # # 377 # #

Table 4.3 Observed homozygote peak heights (rfu) where allele dropout has occurred 
(Htnax). Allele dropout was identified from known control sample heterozygotes and peaks 
heights for these collated within Excel. # indicates heterozygous loci giving no allele dropout.
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At optimal DNA template amounts (0.5-1.0 ng), the maximum Htmax (i.e. the 

maximum single peak height observed at a known heterozygous locus) was 

observed for J8 at both the 12-second injection time (334rfu) and the 20-second 

injection time (850rfu). At sub-125 pg template amounts the largest Htmax was 

observed at locus F, at a height of 717rfu (12-sec) and 1068rfu (20-sec). This was 

at a template level below 125 pg and no allele dropout was observed for this SNP 

at the higher template concentrations.

Allele dropout was not observed at locus G at either optimal DNA amounts or the 

sub-125 pg level, for a 12 second injection time. Consequently an approximate 

theoretical dropout level for G was estimated from the observed Hb%mm and the 

negative baseline (Bt) (section 4.3.4), using the equation:

Ht(theoretical) = ------------    r  (Equation 4-3)
0H b% ^  /100)

This equation allowed the theoretical maximum peak height (Htmax) to be 

calculated based on the observed Hb% by comparing the minimum peak height of 

the largest peak that would cause the smaller peak height to drop below Bt (Figure 

4.2). For example, if Bt was set to lOOrfu, the smallest peak height would need to 

be <lOOrfu to ‘drop out’ of the profile. If the Hb%mm was calculated to 50%, both 

values could be substituted into the equation to give an estimated value for Ht 

(Figure 4.2).

99rfu

Bt=100

Ht(theoretical)=? Ht(theoretical)=(100-1)/(50/l 00) 

=.99/0.5 

=198rfu

Figure 4.2 Example of the theoretical calculation for Ht based on the value of HbVomin and Bt. 
In this example Hb%min is set to 50% and Bt is lOOrfu.

To allow for unobserved extremes (potential outlier data), Htmax was adjusted 

upwards by 20% within the Celestial™ rule set, in order to be conservative 

(appendix VII). Again these guidelines were built upon principles already
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established for STRs (Gill et. al. 1997; Gill et. al. 2000b). With STRs, Htmax is set 

to 150 rfu (peak height), signifying potential allele dropout across all multiplexed 

loci, whereas the SNP multiplex used a different guideline per locus programmed 

into Celestial™.

4.3.4 Negative control thresholds (Bt)

LCN is characterised by allele dropout and drop-in (laboratory contamination by 

single alleles measured by reference to negative controls) (Gill et. al. 2000b). A 

96-well microtitre plate was prepared for SNP amplification using water controls 

as negatives instead of DNA samples. The plate was processed through the 

system and any drop-in peaks were identified, for both a 12 second injection time 

and a 20 second injection time (Table 4.4). For a 12 second injection time the 

largest drop-in peak seen was at D (blue) at 81 rfu peak height. For 20 seconds, 

the largest peak was 150rfu at G (green). The baseline level Bt was set according 

to the greatest drop-in peak seen plus an arbitrary -25% to capture unobserved 

outliers. Consequently the thresholds were set at lOOrfu and 200rfu for 12 

seconds and 20 seconds respectively, and these were programmed into Celestial™ 

(appendix VII).
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12 second injection (peak 
height rfu)

20 second injection (peak 
height rfu)

SNP locus Green peak Blue peak Green peak Blue peak
Amelo 53(1) 76(1) 77(1)

D 58(1) 81(1) 118(6) 130 (3)
U6
B6 57(1) 73 (1)
N4 92 (2) 56(1)
Y3
P5 91(1) 75(1)
A4 51(1) 79 (2) 72 (2)
06 56(1)
Z2 133 (2)
K3 52(1) 76(1)
J2
Y6 66(1)
P7
J8 60(1)
X
F 119(1)
G 150 (2)
L2 87 (2)
W3
H8 56(1)

Table 4.4 Peak height data for allele drop-in peaks seen on a 96-well negative (deionised 
water) control plate. Brackets indicate the number of peaks seen. Data is for both a 12 
second and 20 second injection time.
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4.3.5 Analysis of dilution series data

Once the rule sets for heterozygous balance (Hb%), homozygote thresholds 

(Htm(lx) and the negative baseline (Bt) had been calculated (as described in sections 

4.3.2-4.3.4) and programmed into Celestial™, data from the dilution series 

experiments were re-analysed to ensure all incidences of allele dropout were 

highlighted by the program (Table 4.5).

FileName Lane Amelo D U6 B6 N4 Y3 P5 A4 0 6 22 K3 J2 Y6 P7 J8 X F G L2 W 3 H8

CAS re ference A01 G G/B G/B G/B G/B G G G/B G G/B
r- jO

G/B G B G 
G/B G/F F/B G 
G/B G/F B G

G G/B
G/B
GjB

G
G
G

G
G
G

G
G
G

G
G
G

B
□

CAS 500pg 
CAS 250pg

A02
A03

G/F
G

G/B
G/B

G/B G/B 
G/B G/B G/F

1 G
G

G
G

G/3
G/B

G
G

Ca/b
G/B

b
G

D
B

CAS 125pg A04 G/F G/B V G G 1 G/F G/B G/B G/F G/F F/B G/F G/F G/F

CAS 62pg A05 G/F G/B K G G | G/B G/B G/F G/F F/B G/F G/F G/F

CAS 31pg A06 G/F G/F F/B G/B G/F
G/F

G/F G/F G/F

CAS 16pq A07 G/F G/B G/F G/B G B

DRJ re ference 
DRJ 500pg

B01
B02

G/F
G/F

G
G

G/B G/B 
G/B G/B

G/B
G/B

G
G

G
G

G
G

G
€

G
G

B
B

G/B G G/B 
G/B G G/B

B
B

G ^l
G/B

G
G

G
G

G
G

G/B
G/B

B
B

DRJ 250pg 
DRJ 125pg 
DRJ 62pg

B03 G/B G/F G/F G/B j  G G G G G B F/B G/F G/B B G/B G G G G/B B

B04 G/F G/B '  G G G/F G/F G B F/B G/F G/B B F/B G G/F G/F B

B05 G/B G/F G/B 1 G G G F G/F G/F B F/B G/F G/B B | G G/B B

DRJ 31pg B06 G/F G/B G J | G/F F/B G/F G/B F/B G/F

DRJ 16pq B07 G/F G/B F/B G/F B I G/F

HER reference 
HER 500pg

C01
COS

G
G

G
G

G/B G/B 
G/B G/B

G/B
G/B

G
G

G/B
G/B

G/B
G/B

G/B
G/B

G
G

B
B

G G/B B 
G G/B B

G
G

G/B
G/B

G/B
G/B

G
G

G
G

G
G

B
B

HER 250pg 
HER 125pg 
HER 62pg

C03
C04
C05

G
G
G

G G/B G/B 
G/F G/B 
G/F G/F G/B

G/B
G/F

G 
G 

1 G

G/B
G/B
G/B

G/B
G/B
G/B

G/B
G/B
G/F

G
G
G

B
B
B

G G/B B 
G G/B B 

G/F G/F F/B

G
G
G

G/B
G/B
G/B

G,B
G/B
GjB

G
G
G

G
G
G

G
G
G

B
B
B

HER 31pg C06 G/F G/B G/F G/F G/B G/F G/F G B G/F  F/B G F/B F/B G G B

HER 16pq C07 G/F ■  ■  F * G/F G B G/F F/B G G/F B

SHM reference D01 G G/B
G/B

B G/B 
F/B G/B

G/B G G G/B G G/B G/B G G/B G/B G G G/B G^J G G B

SHM 500pg D02 G G/F G G G/B G G/B G/B G G/B G/B G G G/B G/B G G B

SHM 250pg D03 G G/B 1 G G F/B G G/B G/B G/F G/B G G G/B G/F G B

SHM 125pg D04 G/F G/F G/B u G G G/B G G/B G/B G/F G/B G/B G G G/B G G B

SHM 62pg DOS G G/B £ G G F/B G/B G/F G/F G/F G/F _ G_ G G/B G/F G B

SHM 31pg D06 G/F G/B G/F G | G/B G/F G/F G/B G/B G/F

SHM 16pq 
ST re ference

D07
E01

G/F
G G/B

G/B 
G/B G/B G/B G/B G G G

G/F

G

F/B
G/B

G/B

G G/B G G G/B G

F/B
G G

G/F
B B

ST 500pg 
ST 250pg

E02
E03

G
G

G/B
G/F

G/B G/B 
G/F G/B

G/B
G/F

G/B
G/B

G
G

G
G

G
G

G
G

G/B
G/B

G G/B G 
G G/B G

G
G

G/B
G/B

G
G

G
G

G
G

B
B

B
B

ST 125pg E04 G G/F G/B GA= G/B G G G G G/B G G/B G G G/B G G G B B

ST 62pg E05 G/F G/B G/B G G/F G G G/B G/F G/F G G G/B G/F G G/F B B

S T 3 1 p g E06 G/F G/B G/F
G J G G/F G/F G F/B G/F F/B

ST 16pq E07 G/F F/B G/F F/B G/F G/F F/B

Cambio M re ference F01 G/B G/B B G G G G/B G/B G G/B G/B G B G G G G G G/B G B

Cambio M 500pg F02 G/B G/B B G G G G/B G/B G G/B G/B G B G G G G G G/B G B

Cambio M 250pg F03 G/B G/B F/B G G/F G G/B G/B G G/B G/B G/F F/B G G G G G G/B G &

Cambio M 125pg F04 G/B G/B F/B G G,F G G/B G/B G G/B G/B G/F F/B G G G G G G/B G B

Cambio M 62pg F05 G/F B  G G/F G G/F G/B G/B F/B G G G G F/B G B

Cambio M 31pg - I d G/F i |  G G/F F/B G/B G/F G G/F G/F G B

Cambio M 16pq F07 G/F G/B G/F G/F G/F F/B G/F

Cambio F re ference 
Cambio F 5G0pg

G01
G02

G
G

G
G

G/B G/B 
G/B G/B

G/B
G/B

G
G

G/B
G/B

G/B
G/B

G
G

G/B
G/B

B
B

G G G 
G G G

G/B
G/B

G/B
G/B

G
G

G
G

G
G

G/B
G/B

B
B

Cambio F 250pg 
Cambio F 125pg

G03
G04

G
G

G
G

G/B G/B 
G/B G/B

G/B
G/F

G
G

G/B
G/B

G/B
G/B

G
G

G/B
G/B

B
B

G G G 
G G G

G ^
G/B

G/B
G/B

G
G

G
G

G
G/F

G/B
G/B

B
B

Cambio F 62pg 
Cambio F 31pg

G05 G/F G/F G/B G/F G G/B G/F G/F G/B B G/F G/F G G/B G/B G G G/F G/B B
G06 G/F G/F G/B

- L G/B

B G/F G/F G G/F F/B G G/B B

Cambio F 16pq G07 G/F F/B G/F G/F G/F G/F

Table 4.5 Dilution series genotype data generated using the validated rule-sets for 
homozygote thresholds and heterozygous balance.

All heterozygous loci were genotyped correctly by Celestial™ with no questioned 

heterozygotes observed. Single peaks falling below Htmax were given an ‘F* 

designation. Some homozygous loci became designated with an ‘F’, indicating 

possible allele dropout; these were mostly seen at the sub-optimal template levels 

for all samples.
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4.4 Discussion

Identifying the interpretation criteria was as a crucial part of the validation of the 

21-SNP multiplex. Due to factors affecting the amplification of DNA templates 

at low levels, it was necessary to devise a set of criteria that could readily 

highlight any anomalies in data collected. Allele dropout is a common feature of 

LCN templates, with one allele being preferentially amplified over the other due 

to the low levels of DNA present (Whitaker et. al. 2001; Gill 2001b). It was 

important to construct a system capable of analysing data and automatically 

generating genotypes based on a standard rule set.

By preparing a dilution series of control samples, the system was tested against 

parameters where dropout was known to occur. The low levels of DNA present 

would ‘force’ allele dropout and allow it to be characterised. By amplifying low 

template levels of DNA, background levels of allele ‘drop in’ could also be 

assessed and a baseline threshold was set above which peaks could be genotyped 

with greater accuracy.

Heterozygous balance (Hb%) was shown to be variable between all SNP loci used 

in the multiplex. Due to the large number of primers used, some preferential 

amplification of loci was already known to occur, even at optimal template levels. 

The URP-ARMS method of amplification was developed to minimise the amount 

of variation seen between loci by standardising the melting temperature of the 

primers used in the second phase of amplification (Hussain et. al. 2003). The use 

of three Universal tails, one for each forward primer and one reverse primer, 

allowed each SNP amplicon to be tagged with either forward Universal plus the 

one reverse Universal tail. The 3’ forward Universal tails were targeted for 

amplification in phase three of the PCR process, allowing each product containing 

a tail to be fluorescently labelled. Sequence variation caused some primers to be 

more efficient than others. Although not completely balanced, the 21-SNP 

multiplex could still be characterised by examining each locus individually and 

using an interpretation rule for each one. Unlike automated STR genotyping 

systems, this program used locus-specific rule sets and characterised each peak 

according to the rules laid out for that particular SNP. STR programs interpret
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peak characteristics based on criteria relevant to the whole data set (Werrett et. a l 

1998; Perlin 2001).

Allele dropout leading to false positive homozygotes was defined from the 

dilution series of control samples. The amount of dropout seen was, again, 

variable between the different SNP loci with some showing dropout with a large 

single peak and others showing no dropout, even at sub-optimal DNA template 

levels. By characterising each SNP locus individually, the program was able to 

accurately determine genotypes for samples showing variable template levels of 

DNA.

Celestial™ was shown to genotype all control samples correctly, even at sub- 

optimal levels. By using an automated program, genotyping of SNP data became 

independent of operator variation. This allowed all data generated during the 

validation to be analysed using the same set of interpretation criteria, regardless of 

operator and allowed confidence in the genotyping method.
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5 The 21-SNP Multiplex Population Studies



SNP population studies

5.1 Introduction

Population genetics is the application of statistical analysis of allele frequencies 

and allele frequency spectra to populations of organisms. It includes the study of 

genetic variation and attempts to understand the processes involved in 

evolutionary and adaptive changes within species through time. Genetic variation 

is a natural phenomenon modulated by mutation, population size, genetic drift and 

selection, passed through the population over time through biological, 

demographic and historical processes (Chakravarti 1999). Variation becomes 

divergent in different sub-populations through genetic drift, natural selection, 

demographic history and gene flow.

The advent of the Human Genome Project and subsequent availability of large 

amounts of sequence data, further highlighted the amount of variability between 

individuals at certain genetic sites. SNPs have been found to occur approximately 

once in every lkb of DNA (Chakravarti 1999; Stoneking 2001) and have been 

identified for use in many different areas of population genetics. “Most human 

variation influenced by genes can be traced to SNPs, especially in medically 

important traits indicating disease susceptibility” (Stoneking 2001). If SNPs are 

not directly responsible for disease susceptibility they can still be used in gene 

mapping to identify such traits (Riley et. al 2000; Schork et. al. 2000; Shastry 

2002; Clark 2003; Schmith et. al. 2003; Kuno et. al. 2004; Powell et. al. 2004). 

SNPs can also be used to provide patterns of molecular genetic variation which 

can subsequently be used to reconstruct the evolutionary history of human 

populations (Collins 2000; Collins et. al. 2001; Reich et. al. 2001; Smith et. al. 

2001; Stoneking 2001; Kaessmann et. al. 2002).

Most identified SNPs have been made available within the public domain via 

websites such as the International HapMap Consortium (http://www.hapmap.org) 

and the SNP Consortium (http://snp.cshl.org). At an early stage in human 

forensic population studies SNPs should be characterised and assessed for Hardy- 

Weinberg equilibrium (HWE). This allows loci to be assessed for their use in 

forensic identification as the frequency of a particular genotype can be calculated 

from the frequencies of the alleles present. This is done by screening a number of
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individuals from a population and analysing the allele frequencies of selected 

SNPs within this population. From the observed allele frequencies, the expected 

genotype frequencies can be calculated. If the observed genotype frequencies are 

close to the expected frequencies then the population is said to be in HWE for that 

locus (Norton and Neel 1965; Hosking et. al. 2004; Butler 2005b). All SNPs 

selected for publication on public domain websites undergo testing with different 

population samples, including European, African and Asian databases (Reich et. 

al. 2003; Hinds et. al. 2005). Selection of appropriate SNPs for forensic 

identification purposes requires loci to be in Hardy-Weinberg equilibrium and to 

have allele frequencies that vary within different populations, preferably with 

frequencies between 0.2 and 0.8 (Delahunty et. al. 1996; Chakraborty et. al. 1999; 

Gill 2001a; Petkovski et. al. 2003; Inagaki et. al. 2004; Lee et. al. 2005; Dixon et. 

al. 2005a).

SNPs must also be tested for independence between the various loci selected. 

Independence indicates that recombination events occur freely and randomly 

between loci and there are no factors influencing the inheritance of one allele with 

another or increasing the likelihood of their co-occurrence within individuals 

(Weir 1996; Butler 2005b). If loci demonstrate independence from each other the 

product rule can be used for match probability and likelihood ratio calculations, 

increasing the usefulness of the loci under investigation (section 1.3). 

Independence testing can be carried out using computer programs available on the 

internet, such as GDA (Genetic Data Analysis) (Lewis and Zaykin 2001), 

GENEPOP (http://wbiomed.curtin.edu.au/genepop/index.html; Raymond and 

Rousset 1995), and TFPGA (Tools for Population Genetic Analyses) 

(http://www.marksgeneticsoftware.net/). Each program can perform a variety of 

genetic tests such as HWE, linkage equilibrium testing, Exact tests and tests for F- 

statistics (Butler 2005b).

Typical human sub-populations are predominantly defined by geographical 

separation (e.g. islands) or by clines (where the extremities of a population are 

separated by considerable distance). Cosmopolitan human populations are not 

defined by geographical boundaries due to the ability to travel worldwide. 

Consequently, the boundaries that maintain sub-populations are defined largely by
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constraints to mating preferences imposed mainly by tradition, religion, 

geopolitical boundaries and language. Typically, the white Caucasian population 

is virtually unconstrained by marriage traditions whereas in contrast, some recent 

immigrant groups established in the UK in the 1950s exhibit strong 

consanguineous mating preferences. For example, differentiation between eight 

Indian Hindu castes has been estimated to reflect high levels of inbreeding within 

the founder population from the Indian sub-continent (Bittles 2001). The British 

Asian population is sub-structured in terms of caste and within castes there are 

extended family networks, especially within Pakistani Moslem societies. The 

population is not constrained geographically, since marriages are relatively 

common between extended family members of the local immigrant group and the 

original Indian sub-continental population. This means that the concept of the 

sub-population is not straightforward since simple identifiable subdivisions cannot 

be identified. There is considerable overlap, making population sub-structure 

difficult to identify (Overall et. al. 2003). Furthermore, the fact that census 

information divides people into broad categories, e.g. White Caucasian; Pakistani; 

Bangladeshi and other Asian gives us no clues about the complex ethnic diversity 

within these groups, hence any attempt to define the sizes of sub-populations 

within the UK, or any other post-industrial society would be nothing more than 

guess-work.

Due to the presence of sub-structuring within the population, it becomes necessary 

to apply a correction factor to the allele frequency data, in order to allow an 

assessment of match probabilities and likelihood ratios, given that alleles may be 

identical by descent (IBD). The inheritance of alleles is not completely random as 

most parents share some common ancestry. In highly inbred populations this will 

be indicated by a decrease in the number of expected heterozygotes for a locus 

and a subsequent increase in the number of observed homozygotes. For STR 

databases this population substructure can be adjusted for by using Weir & 

Cockerham’s theta (6) calculation (Weir and Cockerham 1984; Nichols and 

Balding 1991; Balding and Nichols 1994; Balding et. al. 1996; Weir 1996; Evett 

and Weir 1998; Curran et. al. 2003; Gill et. al. 2003; Buckleton et. al. 2005; 

Butler 2005b). As outlined by the National Research Council Committee on 

DNA Forensic Science recommendations (NRCII), the value for 0 is an
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empirically determined measure of population substructure and is set to a value of 

0.01 for general populations and 0.03 for smaller, isolated populations (NRCII 

1996). Calculations are carried out using 0 to give a corrected allele frequency 

value for each locus analysed.

As well as identification involving non-related unknown individuals, SNPs can be 

used for paternity testing, for determination of parentage; and kinship cases, 

where relatives are available for genetic comparison with remains from, for 

example, mass disaster situations or unidentified bodies. Traditionally STRs have 

been used for such cases with great success (Jamieson 1994; Whitaker et. al. 

1995; Clayton et. al. 1995a; Clayton et. al. 1995b; Cash et. al. 2003; Holland et. 

al. 2003; Leclair et. al. 2004; Alonso et. al. 2005; Budowle et. al. 2005), however 

the availability of a SNP multiplex for such analyses could prove useful in 

situations where the quality and quantity of DNA is limited (Amorim and Pereira 

2005).

In cases of disputed paternity it is possible to calculate a probability of an alleged 

father being the biological parent of a questioned child. Calculations assume the 

DNA profile of the mother and child are known and the DNA profile of the 

alleged father is compared to these. Calculations can be carried out using two 

methods: probability of parentage (the paternity index PI) and paternity exclusion 

(the exclusion probability Pe).

PI is calculated using a likelihood ratio:

It is based on the following hypotheses:

Hp : the alleged father is the father o f the child

Hd : another unknown individual is the father o f the child.

The likelihood ratio compares the strength of the evidence of the two 

propositions. The exclusion probability is calculated from allele frequencies 

within a population and does not depend on the genotypes in any particular case.

LR =
P AE\Hd)

- 132-



SNP population studies

It is calculated from the combined frequencies of all the genotypes that would be 

excluded if the pedigree relationships were true assuming Hardy-Weinberg 

equilibrium (Weir 1996; Jamieson and Taylor 1997; Evett and Weir 1998; Ayres 

2005; Butler 2005b).
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5.2 Materials & Methods

5.2.1 DNA extraction and quantification

DNA was extracted from a variety of samples (Table 5.1) using Qiagen™ 

QiaAmp Mini-Kits (Cat. No. 51306). Samples had been stored frozen at -20°C 

and were thawed at room temperature prior to DNA extraction. The 

manufacturer’s protocol for each sample type was used to obtain up to 2ng/pL 

DNA suspended in 1 x TE Buffer (lOOmM Tris, ImM EDTA disodium). 

Samples were quantified using PicoGreen (Ahn et. al. 1996) and/or a UV 

spectrophotometer (Biochrom Ltd, UK), according to the manufacturers’ 

protocols.

Sample reference Sample type Number o f  samples

Population database -  White Caucasians Buccal swab 201

Population database -  Afro-Caribbeans Buccal swab 71

Population database -  Indian Sub-continent Buccal swab 86

Kuwaiti family samples Liquid blood 104

Table 5.1 Sample types used for SNP multiplex validation experiments. All samples were 
extracted using Qiagen™ extraction kits to give quant values of up to 2ng/pL.

5.2.2 SNP multiplex amplification

The SNP multimix for each amplification reaction consisted of oligonucleotide 

primers (synthesised by IBA, Germany) at varying concentrations (primer 

sequences are listed in appendix IV), 0.4 pg bovine serum albumin (Boehringer 

Mannheim, Germany), 225pM dNTPs (dATP, dCTP, dTTP, dGTP; Boehringer 

Mannheim, Germany), 1 x PCR Buffer II containing 1.5mM MgCl2 (Applied 

Biosystems™, UK) and 5 units AmpliTaq Gold® (Applied Biosystems™, UK). 

DNA was added up to a maximum amount of 1 ng per reaction.

DNA extracts were amplified in a total reaction volume of 25 pL in 0.2 mL tubes, 

without mineral oil, on a thermal cycler (Applied Biosystems GeneAmp PCR 

system 9600) using the parameters set out in appendix V.
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5.2.3 Detection of PCR products using capillary electrophoresis

1.1 pL of each PCR product and 10 pL GS-HD400 ROX size standard (Applied 

Biosystems, UK Part no. 402985):HI-DI Formamide (Applied Biosystems) [ratio 

1:37] was added to each well in a 96-well micro-titre plate. Samples were run on 

a capillary electrophoresis (CE) sequencer (ABI model 3100) using Collection 

software v l.l (ABI) according to the manufacturer’s protocol, using a 12 second 

injection time.

5.2.4 Analysis and interpretation of results

Sample data from the 3100CE instrument was analysed using ABI Prism™ 

Genescan™ Analysis v3.7.1 and ABI Prism™ Genotyper™ software v3.7 NT. 

SNP data extracted from Genotyper™ (peak height, peak area, scan number, size 

in bases) were transformed into *.csv format and analysed by Celestial™ (chapter 

4).

5.2.5 Statistical analyses

Chi-squared analysis and likelihood ratio calculations were carried out by 

generating the appropriate formulae within Microsoft® Excel. The following 

software programs were used for analysis of the population data:

5.2.5.1 Genetic Data Analysis (GDA) software

GDA software was downloaded from the following Internet site - 

http://hydrodictvon.eeb.uconn.edu/people/plewis/software.php. The software was 

used for calculation of HWE and linkage disequilibrium using Exact tests.

5.2.52 CERVUS software

CERVUS software was downloaded from the following Internet site - 

http://helios.bto.ed.ac.uk/evolgen/cervus/cervus.html. The program was designed 

for large-scale parentage analysis. For this study it was used to assess the validity 

of paternity testing using SNP loci. Genotype data in text file format was used to 

analyse allele frequencies, run appropriate simulations and carry out likelihood- 

based parentage analysis.

http://hydrodictvon.eeb.uconn.edu/people/plewis/software.php
http://helios.bto.ed.ac.uk/evolgen/cervus/cervus.html
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5.3 SNP Allele Frequencies

Genotype data was generated for 201 White Caucasian, 71 British Afro-Caribbean 

and 86 Indian sub-continent DNA samples. These data were used to assess the 

viability of the SNPs used in the multiplex for forensic purposes. It was essential 

that all SNPs followed Hardy-Weinberg equilibrium (HWE), to allow the data to 

be used in the calculation of likelihood ratios. HWE was initially tested using a 

traditional Goodness-of-fit test, based on Chi-squared (x2) analysis of the expected 

and observed genotypes (Table 5.2) (section 1.8).

Population size 201
Frequency

Allele A 308 0.76617
Allele B 94 0.23383

No of alleles 402

« 2 Pa 0.58702

^PaPb 0.35831

0.05468

Expected Horn A 117.99005
Het AB 72.01990
Horn B 10.99005

Observed Horn A 119
Het AB 70
Horn B 12

Chi-squared Horn A 0.00864
HetAB 0.05665
Horn B 0.09281

X2 total 0.15811
95% confidence 3.841
1 degree freedom

Conforms to HWE? TRUE
Match Probability 0.47596

Likelihood ratio 2.10101

Table 5.2 An example of a Goodness-of-Fit test for Hardy-Weinberg equilibrium.

The allele frequencies of each SNP were tabulated (Table 5.3) and HWE was re

calculated and assessed by Exact tests, using GDA software (section 1.8.2) (Table 

5.4).
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Pr( 4 h p )Likelihood ratios were calculated using the formula LR = — j—.---- r . Where:
p r ( £ | / /  d )

Hp : the profile came from the suspect

Hd : the profile came from an unknown unrelated individual. (Buckleton et. al. 

2005; Butler 2005b)

White Caucasian British Afro-Caribbean Indian Sub-Continent
SNP
locus

Allele 1 (green) / 
Allele 2 (blue)

Allele 1 Allele 2 Allele 1 Allele 2 Allele 1 Allele 2

D T /C 0.52 0.48 0.27 0.73 0.49 0.51
U6 A / T 0.37 0.63 0.10 0.90 0.32 0.68
B6 A /T 0.64 0.36 0.77 0.23 0.57 0.43
N4 A /T 0.57 0.43 0.51 0.49 0.53 0.47
Y3 G /C 0.92 0.08 0.96 0.04 0.94 0.06
P5 T / A 0.72 0.28 0.59 0.41 0.80 0.20
A4 C /G 0.71 0.29 0.51 0.49 0.66 0.34
0 6 A /T 0.75 0.25 0.82 0.18 0.77 0.23
22 C /T 0.56 0.44 0.45 0.55 0.45 0.55
K3 G /C 0.31 0.69 0.25 0.75 0.39 0.61
J2 C /T 0.92 0.08 0.94 0.06 0.94 0.06
Y6 T / A 0.63 0.37 0.57 0.43 0.53 0.47
P7 T / A 0.62 0.38 0.73 0.27 0.79 0.21
J8 A /T 0.77 0.23 0.86 0.14 0.72 0.28
X C /A 0.79 0.21 0.89 0.11 0.78 0.22
F C /A 0.78 0.22 0.85 0.15 0.80 0.20
G T /C 0.75 0.25 0.64 0.36 0.59 0.41
12 C /T 0.79 0.21 0.94 0.06 0.90 0.10
W3 C /G 0.77 0.23 0.87 0.13 0.77 0.23
H8 A / T 0.11 0.89 0.10 0.90 0.15 0.85

Multiplex likelihood ratio (LR) 4,460,764 364,761 3,173,898

Table 5.3 Allele frequencies for each of the 20 SNP loci used in the multiplex for each ethnic 
group studied and overall likelihood ratios for each group.

The allele frequencies for each ethnic group exhibited divergence from each other 

(Figure 5.1). The British Afro-Caribbean ethnic group demonstrated the most 

deviation from the other two ethnic groups tested.
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Allele frequencies across three different ethnic groups

White Caucasian 

British Afro-Caribbean 

Indian sub-continent
H8

B6W3

N4

A4

0 6

72

K3

Figure 5.1 Radar graph showing the spread of allele frequencies for each ethnic group for 
each of the 20 SNP loci used in the multiplex.

Using both statistical tests, HWE demonstrated no significant deviation from 

expectation (p>0.05) for all 20 SNPs in the white Caucasian population, 19 out o f  

20 SNPs for the Afro-Caribbean population (locus 0 6 , p < 0.03) and 18 out o f 20 

SNPs for the Indian sub-continent population (locus K3, p < 0.02; locus 0 6 , p = 

0.036) (Table 5.4). Using Exact tests, locus 0 6  in the Indian sub-continent 

population was not significantly different (p = 0.059).
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SNP locus W hite Caucasian database (n=201) Afro-Caribbean database (n=71) Indian Sub-continent database (n=86)

Chi-squared test Exact test Chi-squared test Exact test Chi-squared test Exact test

D 0.282 0.339 0.115 0.140 0.522 0.674

U6 0.908 1.000 0.222 0.288 0.166 0.070

B6 0.284 0.361 0.681 1.000 0.489 0.505

N4 0.051 0.062 0.904 1.000 0.807 1.000
Y3 0.236 0.600 0.758 1.000 0.233 0.284

P5 0.255 0.272 0.994 1.000 0.655 1.000
A4 0.625 0.717 0.285 0.353 0.914 1.000
06 0.286 0.354 0.022 0.029 0.036 0.059

Z2 0.330 0.401 0.782 0.821 0.725 0.838

K3 0.694 0.744 0.661 0.748 0.008 0.011

J2 0.842 1.000 0.153 0.231 0.238 0.276

Y6 0.626 0.749 0.855 1.000 0.347 0.538

P7 0.342 0.328 0.327 0.360 0.354 0.343

J8 0.691 0.684 0.497 0.595 0.992 1.000
X 0.094 0.114 0.135 0.161 0.057 0.105

F 0.205 0.217 0.603 1.000 0.729 1.000
G 0.943 1.000 0.664 0.810 0.170 0.190

L2 0.269 0.390 0.615 1.000 0.773 0.567

W3 0.172 0.152 0.880 1.000 0.092 0.120

H8 0.341 0.290 0.070 0.109 0.952 1.000

Table 5.4 Hardy-Weinberg equilibrium probability values for each SNP within the three 
main ethnic code populations, calculated using Goodness-of-fit Chi-squared analysis and 
Exact tests. (n=number of individuals sampled)

The use of multiple loci within the SNP multiplex meant that simultaneously 

applying 60 significance tests (p>0.05) would naturally result in 5% of them 

giving p<0.05 (Weir 1996). To make a distinction between “comparison-wise” 

and “experiment-wise” significance levels, a Bonferroni correction was used 

(Tarone 1990; Bland and Altman 1995; Weir 1996; Tanner et. al. 1997; Evett and 

Weir 1998) which gave a revised significance test level of p=0.01. Re

examination of the data indicated that only locus K3 (Indian sub-continent) gave a

p<0.01.

On close inspection, the raw data for K3 (data not shown) had an excess of 

heterozygotes within the population set suggesting the deviation was probably 

sampling error (Pudovkin et. al. 1996), rather than a genetic or biochemical 

abnormality such as primer binding site mutation or population sub-structuring 

effect -  both of which would increase the levels of homozygosity (Devlin et. al. 

1990; Steinberger et. al. 1993).
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5.4 Linkage Disequilibrium

Exact tests for linkage disequilibrium were carried out on the population data 

using Genetic Data Analysis (GDA) software (Weir 1996; Lewis and Zaykin 

2001) to detect associations between alleles at different loci (section 1.8.2).

Linkage disequilibrium was calculated by looking at the frequencies of the alleles 

at all the loci under investigation, using genotypic data (Weir 1996) to assess the 

Chi-squared statistic. Exact tests were performed by comparing the observed two- 

locus genotypic counts with the values expected under various hypotheses 

(Zaykin et. al. 1995). This gave the significance of the association as a 

probability value (p-value) that was used to assess the linkage disequilibrium seen 

between the two loci under investigation, using the assumption of 95% (0.05) 

significance.

To create probability (P-P) plots for visualisation of the generated data, a random 

number matrix was simulated using statistical programming software, MatLab®6 

(The MathWorks, Inc.). The matrix was generated by firstly selecting 210 

random numbers (the same number of associations observed for each locus-locus 

comparison) a thousand different times. The data was then sorted within each 

group of 210 and across each set of 1000. A matrix was plotted using the median 

set of values, plus the maximum & minimum and the 5th, 25th, 75th and 95th 

percentiles, generating bins within which the experimental data should lie, given a 

randomly mating population.

Probability data (p-values), calculated from each locus-locus association for each 

of the three populations tested, ranged from 0.0 -  1.0, with little deviation from 

the 95% confidence level imposed (Figure 5.2). P-values were plotted against the 

random number matrix as a probability (P-P) plot (Curran et. al. 2003; Buckleton 

et. al. 2005) (Figure 5.2a-c). All data fitted within the random number bins for 

each ethnic group indicating that the SNP loci were behaving as would be 

expected within a randomly-mating population with little or no linkage 

disequilibrium (Zaykin et. al. 1995; Collins 2000; Ayres and Balding 2001; 

Collins et. al. 2001).
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Figure 5.2 Exact test P-P plots for all three population databases and an artificially mixed 
population. Single ethnic group plots (a-c). The artificially mixed population (d). x values = 
expected p-values; y values = observed values.

To demonstrate the effectiveness o f the test, a random sample generator4 was used 

to artificially create a population o f 100 individuals from the White Caucasian and 

Indian sub-continent SNP genotype data. Fifty individuals from each o f the two 

ethnic groups were randomly selected (without replacement) from the population 

database and amalgamated to produce a new population. Allele data was analysed 

using GDA software (Weir 1996; Lewis and Zaykin 2001) generating /^-values 

deviating from expected values, as would be expected in a sub-structured 

population (Figure 5.2d). Separately, the two populations used to make up the 

artificial population were shown to be in Hardy-Weinberg equilibrium but when 

combined, the data did not conform. This was because the artificial population 

was effectively sub-structured resulting in a demonstrable increased 

homozygosity, known as the Wahlund effect (Wahlund 1928).

4 A random sample generator was written using Visual Basic for Applications in M icrosoft Excel.
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5.5 Calculation of genetic drift

Due to a lack of available sub-population samples, a computer program was 

written to simulate the effect of inbreeding within a population. By simulating the 

genetic drift of SNPs of given allele frequencies over time; an estimate of the 

effect of sub-structuring within the population could be given.

To combat the effect of sub-populations on match probability (Pm) and likelihood 

ratio (LR) calculations for STRs, an Fst correction factor (0) is used (Weir and 

Cockerham 1984; Balding and Nichols 1994):

f° rh o m ° z y g o t e s ( a a )

(Equation 5-1)

2[6+ { i - e ) p ^ + { \ - e ) P j \ r  _
 (l + dix + w )   for heterozygotes (A,A;)

Where 6 = 0.01 or 0.03 depending on the sub-population the sample has been 

derived from; and p  = the allele frequency of i or j  within the population.

Curran et al (2003) simulated the effect of population sub-division and 

subsequent LR calculations using the product rule calculation compared to a 

simulated ‘true’ product rule calculation (Curran et. al 2003). The method 

devised by Curran et al was used as a basis for the computer simulations 

designed to assess the effect of population sub-division in biallelic SNPs. 

Simulated data could be used to ascertain whether the Balding-Nichols correction 

factor for STRs could also be applied to SNPs. Genotypes for one thousand sub

populations were generated from an ancestral population and were simulated to 

randomly breed amongst themselves for a set number of generations. The number 

of generations varied depending on the size of the sub-population and the value 

given for 9. All sub-populations were then converged to produce a new 

population from which the effects of genetic drift could be measured (Figure 5.3).
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Figure 5.3 Evolutionary model used in the simulation of a sub-divided population. Taken 
from J. Curran et. a l (2003) “ What is the magnitude o f the subpopulation effect?” Foren. Scl 
Ink 13 5(1): 1-8.

One thousand sub-populations of size n (where n = 200 or 1000) were created 

using a random number generator5. The genotypes for each SNP locus were 

randomly generated from an ‘ancestral’ gene pool, based on the mean allele 

frequencies of the twenty SNP loci used in the 21-SNP multiplex system (Table 

5.3). The allele frequencies were calculated from the white Caucasian database, 

giving eleven frequencies in total rounded to the nearest 0.1, for computational 

ease. These frequencies formed the basis of the ancestral population (Figure 5.3). 

To achieve a desired level of drift within the separate sub-populations, random 

breeding was simulated (within each sub-population, with no migration or 

mutation) for a fixed number of generations (/), dependent on the size of the sub

population (Ns) and 6 (0 = 0.01 or 0.03), where:

5 All simulations were carried out using MatLab®6 (MathWorks, Inc.)
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/ = ln (l -  0)

In 1 —
(Equation 5-2 taken from Curran et. al. (2003))

One thousand individuals were then chosen randomly across all sub-populations 

to generate a new allele frequency database. For each individual within the 

database, two likelihood ratios were calculated: the first was a ‘gold standard’ 

estimate based on the allele frequencies of the sub-population from which the 

sample was chosen; the second estimate was derived from the new allele 

frequency values of the total combined population, adjusted for 6 using the 

Balding and Nichols (BN) correction (Balding and Nichols 1994).

Simulations were generated for sub-populations of 200 and 1000 individuals using 

values of 0.01 and 0.03 for 0. Figure 5.4 illustrates the results obtained for a 

simulation with a sub-population size of 200 individuals using a 6 value of 0.03.

 i i i i i : i
4 5 6 7 8 9 10 11

Fst corrected LR

Figure 5.4 Plot of BN corrected LR vs. gold standard LR, 0 =0.03, sample size =200. Samples 
below the solid black line are non-conservative and those below the dashed line are non
conservative by an order of magnitude or more.
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For all simulations, application of the BN correction was generally conservative. 

For the example given, only nine individual samples out of 1000 deviated from 

the ‘gold standard’ LR by more than one order of magnitude (Figure 5.4). None 

of the results were greater than two orders of magnitude, for any of the simulated 

populations generated.

As well as directly comparing the gold standard LR and the BN corrected LR, 

log 10 ratios of the two values were calculated for each individual sample (d0bs\  
using the following equation:

= l°gi
LRg o ld

LR,
(Equation 5-3)

s t  y

If the LRgoid < LRfst then d0bS was negative and vice-versa. These results were 

plotted on a graph using the logio gold standard LR compared to the calculated 

d0bs ratio (Figure 5.5).
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Figure 5.5 Plot of log10 gold standard vs. the calculated ratio dobs where 9 = 0.03, sample size 
=  200.
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The data (d0bs) were also ranked in ascending order to illustrate the proportion of 

data that were typically under or over-estimated relative to the gold standard LR 

(Figure 5.6). Values of 6 from 0.05 down to the lowest possible value, dependent 

on population size, were used to create a set of simulations with varying amounts 

of genetic drift within the sub-populations.

>=0.0025
>=o.oi

>=0.02

>=0.03
>=0.05

-0.5 -

100 200 300 400 500 600 700 800 900 1000

rank

Figure 5.6 Graphical depiction of the calculated do5s values calculated for a sub-population of 
size 200; 0 values ranged from 0.0025 to 0.05.
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Figure 5.7 Graphical depiction of the calculated dobs values calculated for a sub-population 
size of 1000; 0 values ranged from 0.005 to 0.05.

The graphs illustrate that the application of the BN correction to SNP data is 

relatively conservative and LRs are more likely to be under rather than over

estimated. At a low 6 value, the data (d0bS) only deviated slightly from zero, 

indicating that there is a minimal effect of sub-population drift and it is readily 

corrected using the BN correction.

From a forensic perspective, the aim of DNA profiling interpretation is to report a 

conservative figure. These simulations confirm that the BN correction method is 

unlikely to under-estimate the true LR value by more than an order of magnitude, 

and consequently appears to be a robust estimator for SNP LR calculations.



SNP population studies

5.6 Linkage mapping

Using the data from the SNP consortium (http://snp.cshl.org; Holden 2002), each 

SNP was mapped to the chromosome on which it is located to assess the 

likelihood of physical linkage. SNPs on different chromosomes were disregarded, 

as there would be no linkage between them. Table 5.5 indicates the mapped 

location of each SNP lying on the same chromosome.

SNP locus TSC code Band Distance from p telomere 
(kb)

Distance from closest SNP 
used in multiplex (kb)

D 252540 3p25 9,092 33,572
J8 709016 3p21 42,664 36,437
B6 1342445 3pl3 79,101
06 1588825 5pl5 8,346 44,489
Y6 627632 5qll 52,835
U6 746324 5q35 170,140 117,305
P7 897904 6p23 14,070 153,973
Z2 86795 6q27 168,043
X 31988 8p23 238 91,431

A4 421768 8q21 91,669

Table 5.5 SNP loci that lie on the same chromosome. SNPs were selected based on a 
maximised distance away from other SNPs on the same chromosome to negate the effects of 
physical linkage.

On chromosomes 6 and 8, one SNP lay on the short arm (P7 = 6p23; X = 8p23) 

and one on the long arm (Z2 = 6q27; A4 = 8q21). Linkage disequilibrium can 

typically extend up to a few megabases (Collins et. al. 2001) and is frequently 

used for disease mapping studies (Terwilliger and Weiss 1998; Clark 2003; Kuno 

et. al. 2004). The shortest distance between any two SNPs in this study was more 

than 33Mb (D and J8 on chromosome 3). This was sufficient distance to ensure 

that multiple chromosomal recombination events would result in linkage 

equilibrium between any pair of loci (Petes 2001). The SNPs used in another 

multiplex system for parentage analysis (Orchid Biosciences Inc.) are often less 

than half this distance (http://www.cstl.nist.gov/biotech/strbase/SNP.htm). 

Consequently, the assumption of independence was reasonable with regard to 

physical linkage.
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5.7 Paternity Testing

The DNA from blood samples obtained from members of thirteen Kuwaiti 

families was extracted and amplified using the 21-SNP multiplex. The samples 

had been obtained from the Wetherby Casework Unit where paternity testing had 

already been performed in relation to immigration regulations. Full SNP 

genotyping results are shown in appendix VIII.

Exclusion probabilities (PE) and the probability of parentage (PI) were calculated 

for each DNA profile analysed from each child within a family. Following STR 

analysis, the maternal parentage for each child was known and analysis of the 

SNP genotypes was employed to test the paternity within each family. Statistical 

calculations for PE and PI were carried out using the computer program CERVUS 

(http://helios.bto.ed.ac.uk/evolgen/cervus/cervus.html; Marshall et. al. 1998; Slate 

et. al. 2000).

CERVUS was designed for large-scale parentage analysis. Using genotype data in 

text file format, the program analysed the allele frequencies of each SNP locus 

before carrying out likelihood-based parentage analysis. Each sample was 

analysed by assessing the genotype of the known parent (in the Kuwaiti samples 

this was always the mother) against the genotype of the child. The likelihood of 

the alleged father being the true father was then assessed against all possible allele 

combinations. This value was represented as a paternity index (PI) (Table 5.6). 

The PI value is interpreted as the likelihood of observing the paternal component 

of the putative offspring’s DNA profile in the alleged father compared to a 

random man from the general population, i.e. “it is X  (PI value) times more likely 

that the alleged father is the true biological father o f the child compared to a 

random, non-related male”.

The exclusion probability (PE) for each child was also calculated. This value 

represents the probability of a random man in the general population being 

excluded as the father of the child (Buckleton et. al. 2005; Butler 2005b). It is 

based on the allele frequencies of the SNP loci, rather than the genotypes of the 

individuals involved.
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In each case, the number of loci compared was noted (Table 5.6). Some DNA 

samples failed to give a full profile and only results for SNP loci present in both 

samples were compared. The PI values obtained varied depending on the allele 

frequencies of the genotypes. A PI value of over one hundred is an internationally 

accepted minimum at which paternity can be verified using STR markers 

(http://www.dnasupport.co.uk; Panke et. al 2001; Butler 2005b). This value was 

used as a basis for the assessment of the use of the 21-SNP multiplex for paternity 

testing. The value for Pe was used as a comparison against other studies 

investigating the use of both SNPs and STRs for paternity testing. The 

determination of exclusion probabilities can be done without having the DNA 

profile of the alleged father, as Pe is calculated from the allelic frequency within 

the population and can be conditioned depending on the genotypes of the child 

and mother (Chakraborty et. al. 1999).

http://www.dnasupport.co.uk


Offspring (O) Oloci Candidate CP loci O-CP loci O-CP loci Exclusion Paternity
ID typed parent (CP) ID typed compared mismatching probability (PK) Index (PI)

CHILD1A 21 FATHER 1 21 21 0 0.997 44134
CHILD1B 21 FATHER1 21 21 0 0.998 15304
CHILD1C 21 FATHER 1 21 21 0 0.984 46
CH1LD1D 21 FATHER 1 21 21 0 0.996 6153
CHILD1E 21 FATHER1 21 21 0 0.967 46
CHILD2A 21 FATHER2 21 21 0 0.931 27
CHILD2B 21 FATHER2 21 21 0 0.987 6871
CHILD2C 21 FATHER2 21 21 0 0.944 82
CHILD2E 21 FATHER2 21 21 0 0.972 650
CHILD2F 20 FATHER2 21 20 0 0.977 9514
CHILD3A 21 FATHER3 21 21 0 0.994 719123
CHILD3B 21 FATHER3 21 21 0 0.995 853473
CHILD3C 21 FATHER3 21 21 0 0.998 13052467
CHILD3D 21 FATHER3 21 21 0 0.997 2633158
CHILD3E 21 FATHER3 21 21 0 0.983 10873
CHILD4A 21 FATHER4 20 20 0 0.975 299
CHILD4B 21 FATHER4 20 20 0 0.999 4009747
CHILD4C 21 FATHER4 20 20 0 0.993 18893
CHILD4D 21 FATHER4 20 20 0 0.975 396
CHILD4E 21 FATHER4 20 20 0 0.998 339598
CHILD4F 21 FATHER4 20 20 0 0.991 7274
CHILD5A 21 FATHERS 21 21 0 0.992 84240
CHILD5B 21 FATHER5 21 21 0 0.993 182546
CHILD5C 21 FATHER5 21 21 0 0.998 9732812
CHILD5D 21 FATHER5 21 21 0 0.994 1312157
CHILD5E 20 FATHER5 21 20 0 0.997 16059442
CHIILD5F 21 FATHER5 21 21 0 0.996 683173
CHILD6A 21 FATHER6 21 21 0 0.981 396846
CHILD6B 20 FATHER6 21 20 0 0.951 19558
CHILD6C 21 FATHER6 21 21 0 0.978 392509
CHILD6D 21 FATHER6 21 21 0 0.962 41205
CHILD6E 21 FATHER6 21 21 0 0.958 67196
CHILD6F 21 FATHER6 21 21 0 0.929 5693
CIIILD6G 21 FATHER6 21 21 3 0.992 0
CHILD7A 21 FATHER7 21 21 0 0.833 2
CHILD7B 21 FATHER7 21 21 0 0.999 96966
CHILD7C 21 FATHER7 21 21 0 0.920 17
CHILD7D 21 FATHER7 21 21 0 0.929 27
CHILD7E 21 FATHER7 21 21 0 0.990 5270
CHILD7F 21 FATHER7 21 21 0 0.988 482

Offspring (O) 
ID O loci typed Candidate parent 

(CP) ID
CP loci 
typed

O-CP loci 
compared

O-CP loci 
mismatching

Exclusion 
probability (PE)

Paternity 
Index (PI)

CHILD8A 21 FATHER8 20 20 4 0.990 0
CHILD8B 21 FATHER8 20 20 0 0.994 4048344
CHILD8C 21 FATHER8 20 20 0 0.997 352730
CHILD8D 21 FATIIER8 20 20 3 0.970 0
CHILD8E 21 FATHER8 20 20 2 0.962 0
CHILD9A 21 FATHER9 18 18 0 0.953 25610
CHILD9B 21 FATHER9 18 18 0 0.937 46439
CHILD9C 21 FATHER9 18 18 0 0.966 215344
CHILD9D 21 FATHER9 18 18 0 0.973 199073
CHILD9E 21 FATHER9 18 18 0 0.968 479765

CHILD10A 21 FATHER10 20 20 0 0.994 333166
CHILD10B 21 FATHER10 20 20 0 0.998 20361388
CHILD10C 21 FATHER10 20 20 0 0.994 454165
CHILD10D 21 FATHER 10 20 20 0 0.997 1202324
CHILD10E 21 FATHER10 20 20 0 0.932 1237
CHILD10F 21 FATHER 10 20 20 0 0.998 3563158
CHILD 10G 21 FATHER10 20 20 0 0.999 40788973
CHILD11A 21 FATHER11 20 20 0 0.997 808731
CH1LD11B 21 FATHER 11 20 20 0 0.994 232885
CHILD11C 21 FATHER11 20 20 0 0.981 10095
CHILD1 ID 21 FATHER11 20 20 0 0.977 8127
CHILD1 IE 21 FATHER11 20 20 0 0.940 2030
CHILD1 IF 21 FATHER 11 20 20 0 0.922 291
CHILD11G 20 FATHER11 20 19 0 0.997 131563
CHILD12A 21 FATHER 12 20 20 0 0.968 4915
CHILD12B 21 FATHER12 20 20 0 0.952 2659
CH1LD12C 21 FATHER12 20 20 0 0.974 5550
CH1LD12D 21 FATHER12 20 20 0 0.968 16006
CHILD12E 21 FATHER12 20 20 0 0.921 324
CHILD12F 21 FATHER12 20 20 0 0.892 137
CHILD12G 21 FATHER12 20 20 0 0.859 39
CHILD12H 21 FATHER12 20 20 0 0.958 2070
CHILD13A 21 FATHER13 21 21 0 0.983 68375
CHILD13B 21 FATHER 13 21 21 0 0.996 3621034
CHILD13C 21 FATHER13 21 21 0 0.982 39088
CHILD13D 21 FATHER13 21 21 0 0.937 1192
CHILD13E 21 FATHER 13 21 21 0 0.996 7997532

Table 5.6 Exclusion probability (PE) and paternity index (PI) values for Kuwaiti family samples. Tables indicate how' many loci for each individual were genotyped 
and cross-compared for parentage analysis. Samples in BOLD indicate excluded fathers. See appendix VIII for full genotype data.
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The Pe and PI values were ranked and displayed graphically, to assess the range 

of values observed for each statistical test. P e values ranged from 0.833 — 0.999 

for the 77 relationships tested, with a mean value of 0.972 (standard deviation = 

0.032) (Figure 5.8).

Rank values for probability of exclusion from Kuwaiti family database
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Figure 5.8 A scattergraph of the values observed for the probability of exclusion (PE) within 
the Kuwaiti family database.

Chakraborty et. al. (1999) assessed the use of SNPs for paternity analysis. 

Computational data indicated that a core set of approximately 40 SNP loci, with 

an allele frequency of 0.4-0.5, would be required to give a Pe of 0.999 when both 

mother and child data were available. Petkovski et. al. (2005) reported paternity 

testing of a set of 36 autosomal SNPs with an average Pe of 0.9999. This set has 

subsequently been increased to 51 loci, giving a Pe of 0.99999999 (Petkovski et. 

al. 2005). A 39-SNP multiplex system was shown to give a Pe of 0.9999995 

when tested for a known mother-child relationship, however data was only 

available for one case study (Inagaki et. al. 2004). An assessment of 24 SNP loci 

for paternity analysis in Koreans gave an average Pe of 0.989 (Lee et. al. 2005).

In comparison, STR multiplex kits available on the commercial market have a Pe 

value of more than 0.9999, making them much more discriminating than the 21-
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SNP multiplex used in this study. SGM Plus™ (Cotton et. al. 2000; Steinlechner 

et. al. 2001; Soltyszewski et. al. 2005), Identifier™ 

(http://docs.appliedbiosystems.com/pebiodocs/04323291 .pdf) and Powerplex®-16 

(Okamoto et. al. 2003; Greenspoon et. al. 2004; Konjhodzic et. al. 2004) have Pe 

values significantly higher than 0.9999, due to the increased number of STR loci 

used in each kit.

PI values ranged from lxlO'12 -  4.1xl07 (Figure 5.9), with 79% of the non

excluded data having a value >1000 and 89% higher than 100. The negative PI 

values were calculated in families where the man was excluded from being the 

biological father by more than two mismatched loci. True exclusion assesses each 

locus individually and allows a person to be excluded if one loci mismatches. In 

practice, mutation can occur leading to a mismatch at one or two loci, and this is 

compensated for in statistical calculations (Chakraborty et. al. 1999; Amorim and 

Pereira 2005). In STRs, two loci must mismatch in order for a man to be 

excluded from being the alleged father (http://dna-view.com/mudisc.htm; Ayres 

2005).
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Figure 5.9 A scattergraph of values observed for the paternity index (PI), calculated for each 
child-alleged father relationship in the Kuwaiti family samples.
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PI values o f less than zero were tabulated as zero as the probability o f  the alleged 

father being the true father became insignificant due to exclusion at more than one 

locus (Table 5.1). A PI o f zero was evident in two different families. Child 6G in 

family 6 had three mismatched loci when compared to the candidate father (father 

6), leading to a PI value o f zero. STR profiling and further family investigation 

indicated that this man was unrelated to child 6G (Figure 5.10). In family 8, three 

offspring had loci mismatching with the alleged father (father 8), giving PI values 

o f zero (Table 5.6). Child 8A had five loci with no match to the alleged father, 

child 8D had four mismatches and child 8E had three mismatching loci. Again, 

STR profiling and family investigations found this man to be unrelated to the 

three offspring (Figure 5.11).

Father 6 
8485

UnknownMother
male

Child 6G 
8493 
PI=0

Child 6B  
8488 

PI=19558

Child 6F 
8492 

PI=5693

Child 6A 
8487 

PI=396846

Child6C
8489

PI=392509

Child 6D 
8490 

PI=41205

Child 6E  
8491 

PI=67196

Figure 5.10 Family tree for family 6 depicting the relationships between the seven offspring 
genotyped and the parents.

Father 8 UnknownMother 8
8830 male8831

Child 8B 
8834 

PI=4048344

Child 8C 
8835 

PI=352730

Child 8D 
8836 
PI=0

Child IE  
8837 
PI=0

Child 8A  
8833 
PI=0

Figure 5.11 Family tree for family 8 depicting the relationships between the Five offspring 
and the parents.
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All offspring in families 3, 4, 5, 8, 9, 10, 11 and 13 had PI values >100, 

supporting the case for paternity against the alleged father. The values ranged 

from 137 to >40,000,000, dependent on the genotypes of the offspring, the known 

mother and the alleged father. The samples with the highest PI values were 

shown to have rare alleles at certain SNP loci, greatly increasing the significance 

of the result (see appendix VIII for frill SNP genotypes). Some PI values were 

less than the threshold value of 100, although paternity was confirmed using STR 

analysis. In these cases, all loci matched the alleged father but the allelic 

frequencies, once the mother’s alleles had been removed, were too high to give a 

significant result compared to an unrelated man from the general population. This 

is most likely due to the biallelic nature of the SNPs tested.

These results confirm the use of the 21-SNP multiplex for exclusion of paternity, 

using mismatched loci as confirmation that an alleged father cannot be the 

biological father of a questioned child. However the low PI values observed in 

some cases suggest that STR analysis would be more beneficial, due to the 

increased likelihood ratios that can be calculated as a result of more alleles present 

at each locus.
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5.8 Discussion

It is important to fully recognise the attributes of the DNA profiling system in use 

for forensic identification. Factors such as sub-structuring of populations, as well 

as sampling error and linkage distances can affect the strength of the evidence 

obtained. The population studies carried out on the 21-SNP multiplex 

incorporated an analysis of the main types of irregularities, including linkage 

disequilibrium, Hardy-Weinberg proportions and a calculation of Fst to allow 

correction factors to be used when calculating match probabilities. All SNP loci 

demonstrated Hardy-Weinberg equilibrium and no linkage disequilibrium 

between SNPs (including those on the same chromosome). The minimum 

distance between SNPs on the same chromosome was over 33Mb, sufficient 

distance to ensure that multiple recombination events would result in linkage 

equilibrium between any pair of loci (Petes 2001).

Many studies on the population genetics of STR loci have been carried out as a 

consequence of these loci being routinely used in forensic casework across the 

world (Devlin et. al. 1990; Gill et. al. 1991; Nichols and Balding 1991; 

Steinberger et. al. 1993; Balding and Nichols 1994; Budowle 1995; Deka et. al. 

1995; Gill and Evett 1995a; Balding et. al. 1996; Evett et. al. 1997; Foreman et. 

al. 1998; Foreman and Lambert 2000; Foreman and Evett 2001; Ayres et. al. 

2002a; Curran et. al. 2003; Overall et. al. 2003). The National Institute of 

Standards and Technology (NIST) currently holds references for over 750 STR 

population studies on its STRbase™ website (Ruitberg et. al. 2001). The criteria 

for selection of STR loci can be applied to the selection of SNP loci as traditional 

population genetics analyses holds for both types of DNA polymorphism. Hardy- 

Weinberg equilibrium (HWE) is essential for the calculation of match 

probabilities and subsequent likelihood ratio calculations. Any deviation from 

HWE is suggestive of population sub-structure and / or sampling errors (Evett et. 

al. 1996; Weir 1996; Buckleton et. al. 2005) and is likely to give a non

conservative likelihood ratio. A sample size greater than one hundred is sufficient 

to provide enough genotype information to project the frequency of alleles in a 

larger population (http://www.promega.eom/geneticidproc/ussymp8proc/l 3.html; 

Chakraborty 1992). In this study less than 100 individuals were available for the
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African-Caribbean and Indian sub-continent databases, meaning the true allele 

frequencies may deviate slightly from those calculated here.

The allele frequencies at a particular locus are not fixed within the population and 

change over time as a consequence of mutation and genetic drift, however in any 

particular population, allele frequencies should maintain HWE. Admixing 

between different populations can cause deviation from HWE and leads to 

phenomena such as the Wahlund effect (Wahlund 1928), where excess 

homozygosity is observed within a population due to the presence of sub

populations with different allele frequencies. In reality, the presence of sub

structuring within a population is minimal and has a much less severe affect. In 

spite of this, it is important to include an estimate of sub-population bias in all 

calculations for forensic purposes (Balding and Nichols 1994). As members of 

the same sub-population are more likely to share common alleles, i.e. alleles 

identical by descent, the allele frequencies within that sub-population will give a 

lower likelihood ratio than would be found in the general population (Budowle 

1995; Foreman et. al. 1998; Foreman and Lambert 2000). For calculation of 

DNA profiles present on the UK National DNA Database®, three broad allele 

frequency databases are used: Caucasian, African-Caribbean and Indian sub

continent and the BN correction (Equation 5-1) is applied to all LR calculations. 

The value for 9 is routinely set to 0.01 for Caucasians and 0.03 for all other ethnic 

groups, based on analyses of STR population databases in the 1990s and the 

recommendations of the National Research Council in 1994 (Budowle 1995; Gill 

and Evett 1995a; Balding et. al. 1996; NRCII 1996; Foreman et. al. 1998). Both 

of these estimates are highly conservative and represent extreme values of 

inbreeding and/or genetic drift for all populations.

A real population of forensic interest will contain several sub-populations that will 

not be completely separate, and may exist as several levels of geographical and 

social structure. There are a large number of studies which report estimated 

values for 6 for different populations and sub-populations (Bowcock et. al. 1991; 

Kidd et. al. 1991; Morris et. al. 1991; Lin et. al. 1994; Weir 1994; Foreman and 

Lambert 2000; Zarrabeitia et. al. 2003). Values are highly variable dependent on 

the population under consideration, but all are significantly lower than 0.03, with
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Caucasian populations having 6 < 0.01 in most instances. The populations found 

to have the highest values of 6 are the same cultures with the highest levels of 

consanguinity. Globally, the most common form of consanguineous union is 

between first cousins, in which spouses share 1/8 of their genes inherited from a 

common ancestor, making their progeny homozygous at 1/16 of all loci (Bittles 

1998). The level of consanguineous unions is directly related to the religious, 

ethnic and / or tribal traditions of a population. For example, in Christianity, the 

Orthodox churches prohibit consanguineous marriage, the Roman Catholic church 

currently requires Diocesan permission for marriages between first cousins, and 

the Protestant denominations permit marriages up to and including first cousin 

unions (Bittles 1998). Within the Islamic and Buddhist communities, first cousin 

marriages are permitted, but are forbidden by the Sikh religion. The increasing 

diversity of religious factions within Western countries, due to immigration and 

across-country marriages, is leading to an increasing number of individuals 

sharing a common ancestor. Migrant communities permanently gaining residence 

in Western countries demonstrate an increased level of within-community 

marriage, further sub-dividing the population. It is due to these sub-populations 

that allele frequencies for whole populations need to be corrected for, to allow for 

higher levels of inbreeding within some sub-populations (Zhivotovsky et. al. 

2001).

Due to a lack of available sub-population data, simulations were carried out using 

0 = 0.01 and 0.03, to assess the effect of inbreeding on SNP allele frequencies, 

over a number of generations. The method was derived from simulations for STR 

loci carried out by Curran et. al. (2003). The resulting genotype frequencies were 

then used to calculate LR values for each sub-population and these values were 

compared to LR values for the whole population, calculated using the BN 

correction for Fst (Balding and Nichols 1994). The BN correction was found to 

be conservative compared to the simulated sub-populations, suggesting the BN 

correction was sufficient for SNP LR calculations.

The Exact Test data for linkage disequilibrium (LD) (Weir 1996; Lewis and 

Zaykin 2001) indicated that there was no deviation from what would be expected 

within a randomly-mating population, for all three populations tested -white
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Caucasian, British afro-Caribbean and Indian sub-continent. LD occurs when 

alleles at two loci occur together in gametes more frequently than expected given 

the known allele frequencies and recombination fraction between the two loci. 

Evidence for linkage disequilibrium can be helpful in mapping disease genes 

since it suggests that the two loci may be very close to one another in the genome. 

The Wahlund effect was demonstrated on an artificially created population based 

on white Caucasian and Indian sub-continent data. The Exact Test p-values 

deviated significantly from that expected from the random number matrix and 

indicated the variation expected if the populations under study were effectively 

sub-structured. This simulation also demonstrated the ability of the 21-SNP 

multiplex to effectively illustrate the presence of sub-structuring within a 

population. All SNPs were shown to be in linkage equilibrium, i.e. all loci are 

independently inherited. As a consequence of this, all loci can be multiplied 

together using the product rule for match probability, and subsequent LR, 

calculations. LD studies using SNP loci are increasingly used for disease 

mapping in the human genome (Terwilliger and Weiss 1998; Kruglyak 1999; 

Collins 2000; Collins et. al. 2001; Ennis et. al. 2001; Saunders et. al. 2001; 

Halldorsson et. al. 2004; Kuno et. al. 2004). LD can also be used as an indicator 

of population admixture, as demonstrated by the artificially-created population in 

this study (Lin et. al. 1994; Zaykin et. al. 1995; Smith et. al. 2001; Gu and Rao

2003).

The independent inheritance of alleles is also important when it comes to paternity 

testing using SNP loci. It is essential that each locus is independently inherited in 

order to maximise the evidential value of the test. The paternity index (PI) is the 

most commonly used form of statistical evidence in the case of paternity analysis 

(Butler 2005b). PI is calculated using a likelihood ratio examining the chance of 

seeing the genotypes of each locus in a random unrelated individual compared to 

the suspected father. PI values for thirteen different families were calculated from 

SNP genotype data using the computer program CERVUS 

(http://helios.bto.ed.ac.uk/evolgen/cervus/cervus.html; Marshall et. al. 1998; Slate 

et. al. 2000). 89% of the PI values were higher than the accepted minimum value 

of 100 and two men were excluded as biological fathers of four offspring, using 

the observation of over two mismatched loci as a guideline.
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SNPs have been investigated as a potential alternative to STRs in paternity 

analysis. SNPs have a lower mutation rate compared to STRs, due to their 

biallelic nature, and the chance of positively excluding a potential male through 

mutation at some loci is decreased (Amorim and Pereira 2005; Ayres 2005). 

However STR calculations have been derived which incorporate the chance of a 

mutational event having occurred, thus allowing a more stringent approach to 

paternity analysis using STR loci (Dawid et. al. 2001; Ayres 2002b).

Many studies on paternity analysis using SNPs employ an assessment of the 

probability of exclusion (P e). This approach is known as the ‘frequentist 

approach’ as it considers the probability of the evidence under one hypothesis 

(Buckleton et. al. 2005). In the case of paternity analysis, the frequentist 

approach uses the value of Pe as a method of excluding a non-related random man 

from the general population, however it makes no inference to the data supplied 

from the alleged father. From the data generated for the Kuwaiti families, the PI 

value was found to be more informative than the Pe value. For child 6G and 8A 

(Table 5.6) a Pe value >0.99 was observed yet the PI values for both offspring was 

less than zero, due to mismatched loci. This suggests that Pe is only useful if the 

alleged father is a potential parent as it gives the probability of a random person 

being excluded as a potential parent.

Computer simulations assessing the utility of SNPs for paternity analysis suggest 

that SNPs with an allele frequency of 0.5 are the most discriminating and a set of 

40-50 loci would be capable of giving a PI and Pe value similar to STRs 

(Chakraborty et. al. 1999; Amorim and Pereira 2005; Ayres 2005). The 21-SNP 

multiplex assessed in this study incorporated loci with allele frequencies between 

0.1 and 0.9 (Table 5.3). This led to decreased values for PI except in families 

where loci with low allele frequencies were present. In cases with rare genotypes 

the PI was increased to greater than one million. The 21-SNP multiplex was 

capable of excluding an alleged father as the biological father by assessing the 

number of mismatched loci present, however some PI values fell below the 

accepted minimum of 100. This suggests that this multiplex does not contain 

sufficient loci to be as discriminating as current STR methods of parentage 

analysis.
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6.1 Introduction

Chapters 3, 4 and 5 outlined the development and validation of a SNP multiplex 

system for use as an alternative forensic DNA profiling method (Dixon et. al. 

2005a). The discrimination power of the 21-SNP multiplex (approximately one in 

five million) is lower than that gained if a full profile were obtained from STRs 

(approximately one in a thousand million), therefore its use is limited to situations 

where routine DNA profiling is not possible.

A discussion held by the joint European Network of Forensic Science Institutes 

(ENFSI), European DNA Profiling Group (EDNAP) and Scientific Working 

Group on DNA Analysis Methods (SWGDAM) made recommendations on the 

development of DNA profiling for degraded samples within the forensic 

community (Gill et. al. 2004a). Existing Short Tandem Repeat (STR) systems 

used in European national DNA databases (NDNADBs) include seven core STR 

loci recommended by ENFSI. The core loci6 are included in commercially 

available multiplexes (Cotton et. al. 2000; Collins et. al. 2004; Greenspoon et. al.

2004). However, all current markers are relatively high in molecular weight 

(between 150 -  450 bp) (Gill 2002).

It has been demonstrated that smaller amplicons are much more likely to be 

amplified in samples containing degraded DNA (Hellmann et. al. 2001; Wiegand 

and Kleiber 2001; Krenke et. al. 2002; Ohtaki et. al. 2002; Butler et. al. 2003; 

Chung et. al. 2004; Schumm et. al. 2004; Coble and Butler 2005; Butler 2005b). 

There are two kinds of markers that can bring the size of the amplicon 

substantially below 150 bp: ‘mini-STRs’ that have short flanking regions to the 

tandem repeat sequence and SNPs.

A small number of validated SNP assays are used in casework and these include 

mini-sequencing assays for mitochondrial DNA (mtDNA) (Tully et. al. 1996; 

Coble et. al. 2004; Just et. al. 2004; Vallone et. al. 2004), Y chromosome 

(Sanchez et. al. 2005), a red hair marker assay (Grimes et. al. 2001) and 

autosomal multiplexes (Dixon et. al. 2005a).

6 Core European STR loci - THOl, VWA, D21S11, FGA, D3S1358, D8S1179, D18S51.
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To achieve the ultimate lower limit of small amplicons, SNPs are preferable, but 

the downside is that a panel of 45-50 loci would be needed to achieve match 

probabilities comparable with existing STR multiplexes (Chakraborty et. al. 1999; 

Gill 2001a). Furthermore, the larger the multiplex, the more difficult it is to 

reliably and to reproducibly construct (Budowle 2004b); loss of amplification 

efficiency may ensue, effectively defeating the object of the exercise. To 

circumvent this problem, several SNP multiplexes of a dozen loci each can be 

used in concurrent multi-tube reactions, however the sample size needs to be 

sufficient to allow this option (Bell et. al. 2002; Inagaki et. al. 2004). Large 

amounts of DNA from, e.g. bones, can be analysed in this way, but the study of 

many small forensic stains is precluded, as the amount of DNA extract available is 

limited. In addition, the binary nature of SNPs means that their statistical 

characteristics are not amenable to the interpretation of complex samples such as 

mixtures. A robust, highly quantitative SNP assay would be required to allow 

determination of mixtures using an interpretation strategy based on heterozygous 

balance and homozygous thresholds (Gill 2001a).

Mini-STR multiplex systems have been developed as an alternative method of 

DNA profiling using traditional STR genetic markers (Butler et. al. 2003; Chung 

et. al. 2004; Drabek et. al. 2004). Primers are designed closer to the STR locus, 

sometimes overlapping the repeat region. This approach has the benefit of 

shortening the length of the amplicon whilst maintaining the higher discrimination 

powers seen with STRs as opposed to SNPs. The resulting profiles are also 

consistent with STR profiles currently used in national DNA databases, meaning a 

direct comparison can be made. Problems can be encountered due to the 

polymorphic nature of STRs, making the primer binding sites more prone to 

primer-binding site variants. This can increase the number of null alleles seen and 

can lead to a higher number of imbalanced peaks within a profile.

It was agreed that markers such as SNPs have the potential to usefully 

complement existing STR systems, but there was no published data comparing the 

performance of STRs against SNPs at the time. Furthermore, there was no 

comparative data published on the performance of other DNA profiling
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techniques, such as low copy number (LCN) DNA profiling using SGM+ or mini- 

STR multiplex systems, when looking at degraded DNA samples.

I set up a collaborative study to assess the different DNA profiling techniques 

available throughout Europe and the United States for their usefulness in 

genotyping artificially degraded samples. The study was designed to assess the 

extraction method employed, the current DNA profiling technique used and the 

effectiveness of new profiling techniques (SNPs and mini-STRs). Experimental 

work and sample genotyping was carried out by each individual laboratory and 

results were sent to myself electronically for data analysis and interpretation 

(Dixon et. al 2005b).
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6.2 Materials & Methods

6.2.1 Production of degraded DNA samples

A new set of artificially degraded samples was created, to supply enough samples 

for each laboratory involved in the collaboration (Pulker 2004). Liquid blood and 

saliva samples were collected from two unrelated, white Caucasian volunteers 

(one male, one female), whose SNP loci had been fully sequenced as part of the 

21-SNP multiplex validation. For artificial degradation, samples were set up in

0.2 ml PCR tubes containing a 4mm2 cotton square saturated with 25 pL sterile 

deionised water. 5 pL of whole blood or 10 pL of saliva was added directly to 

each cotton square.

Samples were placed in an incubator at 37°C, to accelerate enzymatic degradation. 

The individual tubes allowed each sample to be contained within a “micro

environment” and prevented any loss of material by leeching and, because the 

tubes were manufactured for PCR, there would be no loss of moisture by 

evaporation. As the cotton remained saturated the environment immediately 

associated with the sample maintained 100% humidity. The stains were sampled 

at specific time intervals and then frozen at -20°C to suspend the degradation 

process; 44 samples of each type were frozen at each time interval to provide a 

store for the collaborative study.

6.2.2 Exercise design

Each laboratory was supplied with one ‘Foren-SNPs’ multiplex kit7 (The Forensic 

Science Service®, UK), one mini-SGM miniplex kit and one NC01 mini-STR kit 

(National Institute of Standards and Technology (NIST) laboratory, US), as well 

as sets of artificially degraded DNA stains as follows:

Reference 1 (3 or 4 stains for each time point):

Blood samples -  0,2,8,16 weeks degradation 

Saliva samples -  0,2,8,12 weeks degradation

7 Trademark name given to the 21-SNP multiplex system outlined in chapters 4-6.
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Reference 2 (3 or 4 stains for each time point):
Blood samples -  0,2,8,16 weeks degradation 

Saliva samples -  0,2,8,12 weeks degradation

Each laboratory was asked to perform the following procedures:

• Extract the DNA stains using standard laboratory protocols;

• Pool each extract for each individual at each time point (Figure 6.1);

• Perform standard DNA profiling techniques on all samples (standard 

being defined as the DNA profiling technique routinely used for 

analysis of samples in the laboratory carrying out the work);

• Amplify the samples using the SNP multiplex kit provided (each lab 

was provided with one Foren-SNPs™ kit comprising primer mix, 

reaction mix and Amplitaq Gold®);

• Amplify the samples using the mini-STR kits provided (each kit 

contained primer mix and protocol; labs provided their own Amplitaq 

Gold® and PCR buffer);

• Record all results on the spreadsheets provided, to allow easy collation 

of all data.

e.g. blood, sample 1, 1 week degradation

EXTRACT

W POOL

Final pooled extract for genotyping

Figure 6.1 Preparation of artificially degraded DNA extracts. Separate extractions from the 
same degradation period were pooled together to minimise the likelihood of stochastic 
variation from the cotton stains.
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6.2.3 Experimental protocols

DNA extractions were carried out using either QIAamp mini-kits (Cat. No. 

51306) or QIAshredder (Cat. No. 79656) supplied by Qiagen™ (Scherczinger et. 

al. 1997; Sinclair and McKechnie 2000), Chelex-100 (Walsh et. al. 1991), or by 

phenol chloroform methods (Dimo-Simonin and Brandt-Casadevall 1996).

Samples were quantified using Picogreen (Ahn et. al. 1996), Quantifier™ Human 

DNA Quantification kit (Cat. No. 4343895) or Slot-blot methodology (Waye et. 

al. 1991). One laboratory performed quantification using a real-time quantitative 

PCR assay with a fluorogenic Taqman probe, targeting the human Alu repetitive 

sequence, with PCR primers adopted from Nicklas and Buel (Nicklas and Buel 

2003).

Each laboratory used STR multiplex kits according to the manufacturer’s 

protocol. The following STR kits were used in the study: Either AMPF/STR® 

SGM Plus™ (Applied Biosystems) (Cotton et. al. 2000), AMPF/STR® Identifier 

(Applied Biosystems) (Collins et. al. 2004) or Powerplex®16 system (Promega) 

(Greenspoon et. al. 2004); plus mini-SGM and miniNCOl (National Institute of 

Standards and Technology (NIST), US) (Butler et. al. 2003). SNP analysis was 

carried out by all labs using the Foren-SNPs™ multiplex kit (The Forensic 

Science Service®, UK) (Dixon et. al. 2005a).

All PCR products were run on 3100 capillary electrophoresis (CE) sequencers 

(Applied Biosystems) with either POP-4 or POP-6 polymer. Results were 

analysed using Genescan™ and Genotyper™ analysis software (Applied 

Biosystems).
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6.2.4 Data analysis

Each laboratory was given an identifier number and genotyping results for each 

DNA profiling system for each laboratory were collated on Microsoft® Excel 

spreadsheets.

Genotypes were analysed as percentages -  e.g. for SGM+ a full genotype 

comprised 22 alleles; thus a profile with 11 alleles was 50% of a full profile. 

Converting into percentages allowed direct comparisons between the different 

multiplex systems. Data were analysed with Minitab™ Release 14 software using 

analysis of variance (ANOVA), box-whisker plots and median polish analysis 

(Tukey 1977).

Median polish analysis was carried out in order to standardise the data, allowing 

data sets from all laboratories to be compared regardless of variability in 

laboratory techniques, operator differences and sampling limitations (Tukey 

1977).

Identifier® and Powerplex®-16 were omitted from the final results analysis, 

except for the inter-laboratory comparison, because only one laboratory used each 

multiplex. Low copy number (LCN) SGM+ results were also disregarded from 

intra-laboratory analyses, because only two laboratories submitted data.
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6.3 Results

Results were received from nine laboratories from six European countries and the 

United States. All laboratories provided data from one standard STR multiplex 

kit plus the Foren-SNPs™ kit and mini-STR kits (Figure 6.2).

DN A  profiling kits

SGM+ Powerplex-16 Identifier Foren-SNPs mini-SGM NC01

Figure 6.2 DNA profiling kits used for the collaborative study. NB. One lab did not submit 
data for the Foren-SNPs™ kit.

6.3.1 Extraction methods

Details o f extraction techniques and corresponding quant values were submitted 

from six laboratories (Table 6.1). Quant values ranged from 0 ng/pL for heavily 

degraded samples to 33 ng/pL for a reference sample stain, with the range of  

values varying greatly from laboratory to laboratory, especially for the reference 

samples (Figure 6.3).
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Quant values (ng/^L)
Ref 1 blood Ref 1 saliva Ref 2 blood Ref 2 saliva

Lab
ID

Extraction
protocol Quant Owk 2wk 8wk 16wk Owk 2wk 8wk 12wk Owk 2wk 8wk 16wk Owk 2wk 8wk 12wk

1 Qiagen
(manual)

Picogr
een 1.91 0.22 0.22 0.03 1.03 0.07 0.01 0.01 2.13 0.23 0.23 0.02 0.36 0.03 0.03 0.01

2 Qiagen
(robot)

Quanti
filer 0.63 0.01 0.00 0.00 0.82 0.00 0.00 0.00 0.72 0.01 0.01 0.00 0.36 0.00 0.00 0.00

3 Phenol
chloroform

Quanti
filer 2.31 0.22 0.06 0.02 6.59 0.00 0.00 0.00 5.16 0.92 0.25 0.46 8.95 0.06 0.01 0.03

4 Phenol
chloroform

Quanti
filer 2.18 1.29 0.00 0.00 UND 0.00 0.00 0.00 3.65 2.35 0.96 0.00 8.31 0.00 0.00 0.00

5 Phenol
chloroform

Quanti
filer 9.67 0.93 0.53 0.12 19.00 0.10 0.03 0.03 10.29 1.64 1.97 1.58 15.8

4 0.06 0.15 0.06

6 Chelex None

7

8 Phenol
chloroform

Slot-
blot

11.7
9 0.57 1.00 1.68 33.46 0.12 0.03 0.05 10.15 2.33 4.13 0.80 14.8

8 0.36 0.23 0.05

9 Qiagen
(manual) None

Table 6.1 Extraction and quant methods and results, as provided by each laboratory. Grey 
boxes indicate information was not provided from that laboratory. UND = undetermined 
DNA quantification result.

Boxplot of quant values obtained from 6 labs for degraded samples

25

Figure 6.3 Box and whisker plot showing the range of quant values received for each 
reference individual for each sample type. Calculations are based on data submitted from 
six out of the nine participating laboratories.

The range o f values seen for the degraded samples (i.e. samples >2 wks 

incubation) was smaller for saliva samples compared to blood samples. The inter

quartile (IQ) range for degraded saliva samples varied from 0.03 ng/pL to 0.17 

ng/pL, compared to 0.5 ng/pL to 2.3 ng/pL for blood samples. All results gained 

showed a DNA concentration o f <2.5 ng/pL.



European collaborative study

In comparison, undegraded control (time zero) reference samples showed 

considerable variation in the amount of DNA recovered between laboratories. 

More DNA was recovered with phenol-chloroform compared to Qiagen™ but the 

variation was much greater in the former (IQ range = 27 ng/pL and 1.4 ng/pL 

respectively) (Figure 6.3). The method of quantification may have affected the 

DNA quantification values gained. Both laboratories using phenol chloroform 

extraction followed by Quantifier™ quantification (labs 3 & 4) gave similar 

values, whereas quantification with qPCR (lab 5) and slot-blot (lab 8) produced 

much greater values (Table 6.1). However, all phenol chloroform values (for 

control samples) were greater than those gained with Qiagen™, regardless of the 

quantification method.

The variation seen between different extraction techniques was less marked as the 

DNA samples became more degraded (Figure 6.3), most likely as a consequence 

of having little or no DNA available to extract. Phenol chloroform extraction 

showed the most variation in quant values between the different labs (data not 

shown). Organic extraction techniques are routinely difficult to standardise and 

the methodology used can vary between different labs, leading to variation in 

success rates of the technique. However, quantification results suggest that 

phenol chloroform extraction methods can give increased yields of DNA template 

compared to other extraction methods and should be used when there is known to 

be limited availability of a sample. This may help to maximise the amount of 

DNA that can be extracted, subsequently increasing the likelihood of gaining a 

DNA profile.
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6.3.2 Analysis of Variance f AN OVA) calculations

Sample data was run through Minitab™ Release 14 software to give ANOVA 

calculations (Table 6.2). Assuming a 95% confidence level, there was no 

significant difference found between the percentage profiles gained using the 

different multiplex kits (p=0.061), suggesting each kit gave comparable results for 

each sample and sample type. A significant difference was seen between results 

gained from different labs (p<0.001); from different individuals (p=0.006); 

different sample types -  blood and saliva (p<0.001); and from the different 

degradation times. There was also a difference between the percentage profiles 

gained for the different individuals when looking at each sample type (p=0.044), 

i.e. there was no relationship between the results obtained for each blood sample 

or each saliva sample, independent of reference individual.

Analysis of variance (ANOVA) tests DF SS F P
Multiplex 3 11705 2.49 0.061

lab ID 7 96328 8.78 0.000
ref ID 1 11829 7.55 0.006

sample type 1 177422 118.4 0.000
degradation time 3 280931 59.78 0.000
Multiplex * lab ID 21 20122 0.61 0.909
Multiplex * ref ID 3 553 0.12 0.950

Multiplex * sample type 3 2293 0.51 0.676
Multiplex * degradation time 9 2949 0.21 0.993

lab ID* ref ID 7 5841 0.53 0.809
lab ID * sample type 7 15431 1.47 0.176
ref ID * sample type 1 6126 4.09 0.044

lab ID * degradation time 21 47521 1.44 0.098
ref ID * degradation time 3 2867 0.61 0.609

Multiplex * lab ID * ref ID 21 3545 0.11 1.000
Multiplex * lab ID * degradation time 63 20937 0.21 1.000
Multiplex * ref ID * degradation time 9 2765 0.2 0.994

lab ID * ref ID * degradation time 21 30254 0.92 0.566
Multiplex * lab ID * ref * degradation time 63 13408 0.14 1.000

Multiplex * lab ID * sample type 21 8114 0.26 1.000
Multiplex * ref ID * sample type 3 262 0.06 0.981

lab ID * ref ID * sample type 7 14042 1.34 0.231
Multiplex * lab ID * ref ID * sample type 21 3571 0.11 1.000

Table 6.2 ANOVA results for percentage profile data for each laboratory for each sample 
type using each multiplex kit.

There was no significance found in the results gained for the different multiplexes 

compared to any other factor. This suggested each multiplex could be used
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independently by any lab and it would be other factors that affected the result, i.e. 

sample type, individual sample or degree of degradation, as opposed to the 

multiplex used. There was also no intra-laboratory effect seen, i.e. if a lab 

performed well with one multiplex then it would also perform well with another, 

and vice versa.

There was no correlation found between the results gained for matching sample 

types for different individuals, i.e. the two saliva samples and two blood samples 

degraded at different rates to each other. More work would need to be carried out 

on different individuals to assess the degradation rates more fully.
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6.3.3 Box and whisker plot analysis

ANOVA had indicated a significant difference between the results gained for each 

laboratory (section 6.3.2). Percentage profiles were calculated for each sample 

from each laboratory and the intra-laboratory variation was compared using box 

and whisker plots (Figure 6.4-6.7). Variation between labs would indicate the 

need for further statistical testing to allow a direct comparison of samples from 

the whole data set, otherwise data would appear skewed.

Variation was seen between the different labs for both individuals and sample 

types. Reference samples and the most highly degraded samples gave the least 

amount of variation between the data sets. Reference DNA samples generally had 

higher quant values, allowing an optimal amount of DNA (~1 ng) to be added to 

each amplification reaction. The addition of optimal DNA to each multiplex 

reaction would decrease the variability seen.

The most consistent multiplex across all laboratories was the mini-STR NC01 kit 

(Figure 6.7), with both reference blood samples and reference 2 saliva sample 

giving 100% profiles across all nine laboratories. This multiplex consisted of 

only three STR loci, DIO, D14 and D22, not found in other commercially 

available STR kits.

It is important to take into account the relative number of loci present in each kit 

when assessing the results obtained. SGM+ contained 10 STR loci, plus 

Amelogenin; Powerplex-16 and Identifiler™ contained 15 STR loci, plus 

Amelogenin; Foren-SNPs™ contained 20 SNP loci plus Amelogenin; mini-SGM 

contained five STR loci plus Amelogenin and NC01 contained three STR loci. It 

is well-documented that an increase in the number of loci (and therefore an 

increase in the number of primer pairs used) within a multiplex makes 

amplification much less consistent as primers can interact with each other (Shuber 

et. al. 1995; Butler 2005a). As well as this, some primer pairs may be more 

efficient than others, giving an imbalance in the resulting profiles.
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Figure 6.4 Box and whisker plot showing the variation in successful amplification per sample 
between the participating laboratories, using standard STR multiplex DNA profiling kits

Percentage success with STR multiplex kits
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Figure 6.5 Box and whisker plot showing the variation in successful amplification per sample 
between the participating laboratories, using the Foren-SNP™ multiplex DNA profiling kit
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Percentage success with mini-SGM multiplex kits
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Figure 6.6 Box and whisker plot showing the variation in successful amplification per sample 
between the participating laboratories, using the mini-SGM DNA profiling kit
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Figure 6.7 Box and whisker plot showing the variation in successful amplification per sample 
between the participating laboratories, using the NC01 mini-STR DNA profiling kit
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6.3.4 Sample -  sample variation

Due to variations between the different laboratories, results needed to be 

standardised before all data could be used independently of lab effect. This was 

carried out using Median polish analysis (Tukey 1977). Median polish analysis 

used the residuals of the data to allow a normalised data set to be used for analysis 

(Table 6.3), by transforming the data into residuals, analysis of variance became 

applicable.

Reference Weeks Median polish values across laboratories (% profiles)
ID degradation SGM+ Foren-SNPs Mini-SGM NC01 LCN SGM+

0 100 92 100 100 100
^  T 3  

2 2 82 80 100 100 100
o

d  3 8 80 67 83 100 100
16 2 19 56 50 91
0 100 93 100 100 100
2 2 19 42 17 100

<u •—
d  3 8 0 4 0 0 45

12 0 9 0 0 18
0 100 94 100 100 100

<N "O 
<+* 2 2 86 84 92 100 100
<U O
pi 3 8 82 66 85 100 82

16 59 57 58 100 73
0 100 95 100 100 100

<n
t i—i . £ 2 9 19 33 33 100
<D —
d  3 8 0 28 67 67 100

12 0 19 0 0 91

Table 6.3 Percentage profiles obtained for each sample using data from all labs analysed by 
Median polish calculations.

The data for each sample type and individual is shown graphically (Figure 6.8). 

As indicated by ANOVA tests (section 6.3.2), there was a significant difference in 

the profiles gained for each sample type (p = <0.001). This would be expected 

due to the different physiological characteristics of saliva and blood. DNA is 

much more prone to degradation in saliva due to the presence of bacteria and 

enzymes that can readily break down the DNA molecules.
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Figure 6.8 Percentage profiles obtained across all labs for all samples and sample types. A) 
reference 1 blood B) reference 1 saliva C) reference 2 blood D) reference 2 saliva. Values 
were calculated using median polish analysis to standardise the data obtained from all 
laboratories.

The four degradation series demonstrated different levels of degradation over the 

incubation period. The least degradation was seen in the reference 2 blood sample 

which still gave >50% profile, using all four profiling techniques, after 16 weeks 

degradation (Table 6.3). Reference 1 saliva showed the highest level of 

degradation, with the percentage profile obtained for each system (excluding LCN 

SGM+) dropping significantly after 2 weeks. LCN SGM+ continued to give a full 

profile until 8 weeks degradation.

All multiplexes showed similar degradation patterns with a particular reference 

and sample type but this pattern was not replicated between samples (Figure 6.8). 

LCN SGM+ worked significantly better in three out of four samples, compared to 

any other profiling method. The SGM+ profiling technique appeared to be the 

least efficient method, with Foren-SNPs™ working less efficiently than the two 
mini-STR systems.
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6.3.5 Lab -  to -  Lab variation

Median polish analysis was also used to give an average percentage profile across 

all samples for each lab, to give a direct comparison of how each lab performed 

overall (Table 6.4).

Lab ID SGM+ (%) Foren-SNPs (%) Mini-SGM (%) NC01 (%)
1* 69.5 69.3 75 .0 100

2 69.5 58 .2 7 5 .0 100

3 69.5 * 7 5 .0 100
4 69.5 43 .5 75 .0 100

5 89.5 6 0 .0 89.6 100
6 69.5 6 4 .4 7 5 .0 100
7 6 7 .2 56.5 35 .4 9 1 .5
8 7 7 .4 68.3 75 .0 100
9 69.5 63.1 75 .0 100

Median across labs 69.5 61.6 75 100

Table 6.4 Average percentage profiles gained across all samples for each lab. Values were 
calculated using Median polish analysis. * Results from The Forensic Science Service®.

The NC01 mini-STR multiplex kit performed the best overall, giving a median 

value of 100%. SNPs showed the most variation between the different labs 

(Figure 6.9) whereas the mini-STR multiplexes showed the greatest consistency.

Median polish % profile values for each multiplex across all labs

100 -

9 0 -

8 0 -

6 0 -

5 0 -

4 0 -

SGM+ (%) Foren-SNPs (%) NC01 (%)

Figure 6.9 Box and whisker plot showing the variation seen in median percentage profiles 
across labs. Values were calculated using Median polish analysis.
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6.3.6 Degradation patterns (allele dropout vs. amplicon size)

6.3.6.1 Total allele dropout in reference samples

Allele dropout was measured for each reference sample. Initial studies looked at 

total dropout for each reference sample, regardless of degradation time (Figure 

6.10 & 6.11). Regression analysis was used to assess the relationship between 

amplicon size and the proportion of dropout seen.

Allele dropou t - r e f  1 blood sam p le s , all labs com bined

y - -0 0001* -*-0.2123

Allele dropout - re f  1 saliva samples, all labs combined

05

0.7

0.6

0.4

03

1000 50 150 200 250 300 400

y = 0.0002* ♦ 0.7059 y -0.0007x4-0.6617 amplicon • Lee 0.0017* ■ o.4«7o y 0.0004* - 0.6640
r  -  0.3377 .  0.0493 *  &S224 **»0.1313

Figure 6.10 Allele dropout compared to amplicon size for reference 1 degraded blood and 
saliva samples. Proportion of allele dropout was calculated across the degradation set, 
regardless of incubation time.
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R2 = 0.6333 R2 * 0.0273
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Figure 6.11 Allele dropout compared to amplicon size for reference 2 degraded blood and 
saliva samples. Proportion of allele dropout was calculated across the degradation set, 
regardless of incubation time.

Regression analysis displayed no relationship between the proportion of allele 

dropout and amplicon size for any of the samples used, when looking at SNPs (R- 

squared = 0.0005-0.0493). STRs and mini-STRs were evaluated both separately 

and as a combined set. Initial studies using computer simulations (data not 

shown) suggested a linear relationship between degradation and amplicon size, 

but these were carried out regardless of the protection factor conferred by the
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nucleosome. The R-squared values for STRs varied between 0.1215 and 0.6181 

compared to 0.4087 -  0.6333 for mini-STRs.

For each sample, all observed dropout for each multiplex was combined together 

to observe whether all data followed the same regression. This data is indicated 

by the red regression line in figures 6.10 & 6.11. The data became skewed due to 

the SNP allele dropout data, which showed a random array of scatter points.

Figure 6.10 & 6.11 indicate a positive regression between amplicon size and 

proportion of allele dropout, i.e. the proportion of alleles dropping out of the DNA 

profile increases as the size of the amplicon increases. This is indicative of the 

higher molecular weight amplicons degrading first.
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6.3.6.2 Total allele dropout across degradation periods

Allele dropout was measured for each sample at each stage of degradation. The 

regression scatters seen for reference 1 blood for each multiplex are shown 

(Figure 6.12), data for other samples followed a similar pattern. All multiplexes 

showed increasing dropout seen with degradation times with the exception of the 

SNP data which appeared to be random and independent of amplicon size and was 

the only multiplex that showed allele dropout in control samples (i.e. samples that 

had not been subject to any degradation time). The slope of the regressions for 

SGM+ appeared to decrease as the samples became more degraded. This 

suggested more alleles at the low molecular weight end of the profile were 

starting to drop out as the sample became more highly degraded, decreasing the 

significance of the regression. The mini-STR systems appeared to show random 

dropout with the less degraded samples. A positive regression was observed after 

eight weeks degradation and this began to plateau at 16 weeks degradation, 

similar to the SGM+ results.

- 182-



European collaborative study

Ref 1 SGM+ Blood time series

|  06 ‘ |
§ 0.4 -

l o , -

A A

250 300150 200
-0.2

amplicon size (bp)

♦  0 weeks 

■  2 weeks 

A 8 weeks

•  16 weeks

 Linear (0 weeks)

“ “ Linear (8 weeks) 

Linear (2 weeks) 

^ “ Linear (16 weeks)

1
0.9 -

0.8 -

S  0.7

| 0.6

g 0.5

g. 0.4 
2
“■ 0.3 

0.2 

0.1 

0

Ref 1 SNPs Blood time series

■  A •
•  •  A

A *
A  •  ■

A  ■  •

«A 41___1

50 100 150 200 250 300

amplicon size (bp)

♦  0 weeks 

■  2 weeks 

A 8 weeks

•  16 weeks

 Linear (0 weeks)

“ “ Linear (8 weeks) 

Linear (2 weeks) 

“ “ Linear (16 weeks)

350

Ref 1 Mini-STRs Blood time series

0.9  -

0.8 -

3  0 .7  j
2
2 06  1•o •inouo

•
1 , 0 .4 -

2 A , •
O. 0.3 - •

0.2 - A A

0.1 - 

0 -

♦  0 w eeks 

■  2 weeks 

A 8 w eeks

•  16 weeks 

— L inear (0 w eeks) 

“ “ L inear (8 w eeks)

L inear (2  w eeks) 

^ “ L inear (16 w eeks)

50 100 150 200

amplicon size (bp)

250 300 350

Figure 6.12 Degradation time series plots for each multiplex. Graphs indicate the proportion 
of allele dropout seen compared to amplicon size for reference 1 blood samples. A) SGM+ 
profiles B) SNP multiplex profiles C) mini-STR profiles. NB. Mini-STR multiplexes (mini- 
SGM & NC01) were combined for the mini-STR analysis.



European collaborative study

6.4 Discussion

6.4.1 Sample degradation

Saliva samples showed the highest levels of degradation, with DNA percentage 

profiles rapidly decreasing after just two weeks incubation. Saliva contains 

numerous enzymes such as lysozymes, amylases, peroxidases and histatins; each 

used for a different purpose such as the digestion of food, elimination of bacteria, 

viruses and fungi, and the mineralisation of proteins (Benedek-Spat 1973a; 

Benedek-Spat 1973b). These enzymes may have a knock-on effect of degrading 

salivary DNA more rapidly than DNA found from other sample types. Saliva also 

contains numerous bacteria that can have a detrimental effect on the amount of 

DNA, as some bacteria are capable of engulfing DNA fragments present in 

solution. Degradation of these samples was carried out at 37°C in 100% 

humidity, an optimum temperature for many bacterial species. Due to these 

factors it is not surprising that the DNA from the saliva showed rapid levels of 

DNA degradation in this study.

The reference 2 12 weeks saliva sample was amplified successfully using LCN 

SGM+ DNA profiling compared to the reference 1 12 weeks saliva sample that 

failed to amplify by any method. This suggested that any DNA present in the 

reference 1 DNA was either too degraded [fragmented] to be amplified using the 

systems in this study or the DNA had been completely eliminated by bacterial and 

enzyme activity. The DNA present in the reference 2 12 weeks saliva sample 

must have been in low copy numbers and could only be amplified by the 

additional amplification cycles given with LCN SGM+ profiling.

The two reference blood samples showed similar rates of degradation up to 8 

weeks (SGM+ gave an 80% and 82% profile for reference 1 and 2 respectively, 

using median polish analysis (Table 6.3)). After 8 weeks the reference 1 

bloodstain degraded more rapidly, giving a variable success rate with the different 

systems after 16 weeks (Figure 6.8A). The reference 2 bloodstain showed the 

least degradation out of all four samples (Figure 6.8C).
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Blood is made up of three main cell types -  red blood cells (erythrocytes), white 

blood cells (leukocytes) and platelets (thrombocytes). Both the erythrocytes and 

thrombocytes are anucleate in nature, therefore the DNA present in blood is 

derived only from the leukocytes or free DNA in solution (Poste 1973). The 

number of leukocytes present in an individual varies greatly, with the normal 

range lying somewhere between 4,500 and 11,000 per cubic millimetre. The 

number of cells can decrease during resting periods and increase during periods of 

exercise (Nieman and Pedersen 1999) and, as leukocytes are involved in the 

immune response, the number also increases if an individual has an infection or 

suffers from allergies.

The number of cells present in the reference samples used in this study could 

explain the variable degradation rates seen. The reference 2 individual may have 

had a higher white blood cell count, meaning more cells were present in the stains 

to begin with. The DNA degradation rate may have been the same for both sets of 

stains, accounting for the similar results seen in the samples up to 8 weeks 

degradation. After this point, the number of cells present in reference 1 would 

have decreased to a low copy number level, decreasing the success rate of all 

DNA profiling methods except for LCN SGM+ (Figure 6.8A). The number of 

cells present in the reference 2 stains allowed standard DNA profiling techniques 

to still attain >50% success rates after 16 weeks degradation.

6.4.2 Low copy number amplification

Using PCR simulations, it has been shown that a minimum of 25 molecules are 

required to give a full SGM+ DNA profile using 28-cycle PCR (P Gill, per 

comms). This number can be decreased to just one molecule by increasing the 

number of amplification cycles from 28 to 34, i.e. performing low copy number 

amplification parameters.

Further work simulating degradation of DNA fragments has shown that once 

DNA starts to degrade, the number of molecules present decreases below the 25 

molecules required for standard SGM+ profiling (Figure 6.13). These simulations 

help understand why LCN SGM+ is more successful than any other method that
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uses 28 cycle PCR. Both mini-STR kits were amplified using 32 cycle PCR, 

according to protocol, allowing both of these DNA profiling methods to work 

routinely better than SGM+.

34 cycle sensitivity

5 10
No. of surviving m olecules

300 base fragment 
P degradation =0 95 
1r»g total DNA or 167 
copies

28 cycle sensitivity

20

”

Figure 6.13 Graphical representation of the number of molecules seen when simulating the 
degradation of DNA.

The decrease in percentage profile seen with LCN SGM+ profiling after longer 

periods of degradation indicate that the DNA in these instances had become 

fragmented and the higher molecular weight STR loci failed to amplify.

6.4.3 Size of amplicons

All samples showed a pattern of proportion dropout similar to that shown for each 

multiplex (Figure 6.12). The SNP loci showed a random dropout pattern, 

indicating that success rates were independent of the amplicon length. The SNP 

multiplex was designed with all PCR products below 146bp in length, to allow 

amplification of degraded DNA. Dropout is most likely to have occurred as a 

consequence of the multimix not being optimised, due to the number of loci 

amplified in one reaction (Dixon et. al. 2005a), as opposed to the size of the 

amplicons.
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Both mini-SGM and NC01 STR loci were analysed collectively as ‘mini-STRs’, 

with a maximum amplicon size of 170bp. The SGM+ and mini-STR dropout 

results showed a similar pattern whereby the higher molecular weight amplicons 

were the first to drop out of the profile, giving a positive regression. The lower 

molecular weight amplicons showed less dropout, until the samples became 

highly degraded.
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6.5 Conclusion

A previous EDNAP study using DNA degraded by sonication and DNase I 

(Schneider et. al. 2004), and other studies using degraded body fluid stains 

(Wiegand and Kleiber 2001; Krenke et. al. 2002; Ohtaki et. al. 2002; Butler et. al. 

2003; Chung et. al. 2004; Schumm et. al. 2004; Coble and Butler 2005; Butler 

2005b) and telogen hair roots (Hellmann et. al. 2001), have demonstrated the 

efficacy of low molecular weight amplicons to analyse degraded DNA. The 

experiment described in this paper followed a different design to those previously 

described, as it simulated a time-course series of stains degraded by in situ 

enzymatic processes. This was achieved by incubating material spotted with 

saliva and blood in 100% humidity at 37°C. Under these conditions, degradation 

was greatly accelerated compared to the dried-state process and total degradation 

was achieved within a short time-period of 12-16 weeks. By taking samples at 

regular intervals, a complete time-course was produced and a point reached which 

corresponded to the time where little or no amplifiable DNA remained. We 

showed that saliva degraded faster than blood, but this is not surprising as this 

body fluid contains enzymes such as lysozymes, amylases, peroxidases and 

histatins, as well as numerous bacteria, which contribute nucleases, e.g. 

Micrococcus sp. contribute micrococcal nuclease. Micrococcal nuclease is a non

specific endonuclease, that cuts adjacent to any base, with the rate of cleavage 

reported to be 30 times greater at the 5’ side of A or T rather than G or C 

(fortunately most STR sequences tend to be GC-rich). Mammalian cells contain 

two additional DNases that cleave non-specifically; DNase I, which slightly 

favours purine-pyrimidine sequences (Staynov 2000) and DNase II, an enzyme 

found in lysozomes associated with cell apoptosis (Yasuda et. al. 1998).

Median polish analysis was carried out in order to standardise the data, allowing 

data sets from all laboratories to be compared regardless of variability in 

laboratory techniques, operator differences and sampling limitations (Tukey 

1977). Transformed data was analysed to investigate degradation rates, allele 

dropout and performance of the four assays used in this study. The artificially 

degraded samples gave similar results across all laboratories, showing the method 

produced samples with consistent levels of degradation across all sets.
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The mini-STR assays tested gave the best results overall, when compared with 

standard SGM+ profiling and the Foren-SNPs™ kit (Dixon et. al. 2005b). Low 

copy number (LCN) DNA profiling proved to be the most successful method of 

amplification, although this technique was only carried out by three laboratories; 

one using Powerplex®16 and two using SGM+. LCN profiling only differs from 

standard DNA profiling by the number of cycles used for PCR amplification 

(Whitaker et. al. 2001). By increasing the number from 28 cycles to 34 cycles, 

the chance of amplifying the few molecules present in the DNA extract is 

improved. The mini-STR assays tested in this study used 32 cycles in PCR 

amplification, making the method more consistent with LCN profiling (Butler et. 

al. 2003; Drabek et. al. 2004; Coble and Butler 2005). As well as increased 

cycles for amplification, the reduced amplicon size targeted with mini-STRs 

allowed the more degraded (and therefore more fragmented) DNA samples to be 

amplified with greater success. The mini-STR assays were also the most robust in 

this study as the number of loci targeted was lower than the other DNA profiling 

methods tested. NC01, giving the highest percentage profiles overall, only 

contained three STR loci and therefore would generally have been easier to 

optimise than the Foren-SNP™ multiplex containing 21 loci.

The Foren-SNP™ kit performed poorest out of the four assays tested in this study. 

This particular kit was used as it was the only fully-validated forensic SNP 

multiplex available (Dixon et. al. 2005a). Other SNP multiplexes have been 

developed, but lack the quantitative and qualitative properties for forensic use 

(Kwok 2001; Inagaki et. al. 2004; Budowle 2004b). SNP assays based on primer 

extension biochemistry, such as GenomeLab™ SNP Stream® (Beckman Coulter) 

and SNaPshot™ multiplex system (Applied Biosystems™), are capable of 

genotyping thousands of SNPs in a single run but require an increased volume of 

either initial DNA template or PCR product, both of which are limited in crime 

scene samples. They also have the disadvantage of being multi-stage procedures, 

with sample tubes needing to be opened at various stages within the process. The 

Foren-SNPs™ kit allowed amplification of all 21 loci in a single tube reaction, 

which were then analysed on an electrophoresis instrument. A more highly 

optimised SNP multiplex system could give better results on degraded samples as 

SNP loci do benefit from being single base sites allowing targeting of much
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smaller amplicons (Chakraborty et. al. 1999; Gill et. al. 2000a; Gill 2001a). The 

ability to obtain a result using SNPs would be beneficial with discrete forensic 

sample types, especially if the sample failed to give a profile using standard STR 

DNA profiling, however the biallelic nature of SNPs makes it difficult to interpret 

mixtures and a perfectly balanced assay would be required to make this feasible 

(Gill 2001a). For these reasons, and to be consistent with current national DNA 

databases, it would be preferable to use STRs for forensic identification as they 

are more amenable to mixture interpretation and a high discrimination power can 

be gained from fewer loci (Gill et. al. 2004a).

Degraded samples continue to be the most problematic for current forensic 

profiling methods, in part because while it is ideal to maximize the amount of 

information gleaned from the extracted DNA, it is imperative that any system be 

robust for forensic application. The observed degradation pattern of high 

molecular weight loci failing to amplify with increased levels of degradation has 

been an enduring feature of this study, providing the incentive to produce a 

system targeting the low molecular weight loci most likely to remain in higher 

copy number in degraded samples. It is therefore proposed that any further 

research into DNA profiling focuses on reducing the size of STR amplicons, such 

that they can be more successfully amplified in degraded samples, as well as 

supporting amplification under low copy number conditions (Dixon et. al. 2005b; 

Gill et. al. 2006).
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7.1 Introduction

The first criminal case using DNA profiling for identification occurred in the UK 

(http://www.forensic.gov.uk/forensic_t/inside/news/list_casefiles.php?case= 1). In 

1983, a 15 year old schoolgirl, Lynda Mann, was found raped and murdered. A 

semen sample taken from the body was found to belong to a person with type A 

blood group and an enzyme profile matching 10% of the male population. With 

no other forensic evidence available at the time, the murder enquiry was 

suspended. Three years later another 15 year old, Dawn Ashworth, was found 

strangled and sexually assaulted in the same area. Semen samples again showed a 

suspect with type A blood and the same enzyme profile as the murderer of Lynda 

Mann. In 1985, Jeffreys published a method of identification using DNA 

‘fingerprints’ (Jeffreys et. al. 1985a; Jeffreys et. al. 1985b). Gill et. al. further 

developed this work to allow DNA profiling of material for forensic use (Gill et. 

al. 1985b). DNA profiling proved conclusively that the same person had killed 

both girls and that the suspect who had admitted both of the murders could not 

have been the murderer.

For the first time in criminal history “this suspect became the first person in the 

world to be exonerated o f murder through the use o f DNA profiling>'> 

(http://www.forensic.gov.uk/forensic_t/inside/news/list_casefiles.php?case=l).

The first DNA ‘mass screen’ was then carried out, to profile men in the local area 

in the hope of finding the murderer. In 1988 Colin Pitchfork was sentenced to life 

imprisonment after confessing to the murders of both girls.

Since these early cases of DNA being used as evidence, the technology and 

sensitivity of the systems used for DNA profiling has rapidly evolved. The 

current SGM+ system used for the National DNA Database® has a discrimination 

power of one in 1000 million for unrelated individuals (Cotton et. al. 2000) and 

can help prove beyond reasonable doubt that an individual is either guilty or 

innocent of a crime (Gill 2002). The discrimination power of SGM+ is no more 

than that found with earlier methods of VNTR DNA profiling. The technique has 

proved more successful due to the increased sensitivity achieved by PCR 

amplification, along with the ability to compare profiles within a database as the 

precise size and locus of origin can be determined. In identification cases, DNA

http://www.forensic.gov.uk/forensic_t/inside/news/list_casefiles.php?case=
http://www.forensic.gov.uk/forensic_t/inside/news/list_casefiles.php?case=l
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profiling can be used to ascertain the likelihood of a sample belonging to the 

individual in question, either through reference samples or through samples from 

relatives (Jeffreys et. al. 1992; Gill et. al. 1994; Olaisen et. al. 1997; Crespillo et. 

al. 2000; Holland et. al. 2003; Leclair et. al. 2004; Budowle et. al. 2005; Butler 

2005b).

The 21-SNP multiplex was developed to use in situations where current DNA 

profiling methods fail to produce a result, or only produce partial profiles due to 

the degradation of the DNA. The current profiling method of choice with difficult 

sample types is LCN SGM+ (Gill et. al. 2000b; Whitaker et. al. 2001; Gill 2001b; 

Gill 2002), however the amplification of the high molecular weight loci >200bp in 

length is hindered in highly degraded samples increasing the likelihood of gaining 

a partial profile. LCN SGM+ profiling is also used routinely in casework samples 

thought to contain minimal DNA due to the nature of the sample. The biological 

make-up of the sample type may mean it contains very little DNA, for example, 

bones and hair shafts; or there may only be a minimal amount of sample available 

for testing (such as minute blood stains found at a crime scene).

As a final assessment of the 21-SNP multiplex, a number of casework samples 

were profiled using the technique. These samples had previously been analysed 

using LCN SGM+ DNA profiling methods and had either failed to amplify or had 

only produced a partial STR profile.

The likelihood ratio (LR) is based on a comparison of two hypotheses -  ‘what is 

the probability that the suspect left the crime stain (Hp) against the probability that 

the crime stain was left by a random, unrelated, individual (Hd)V. It is defined by 

the following equation:

Where Pr(E|//p) is calculated from the probability of the crime sample and the 

suspect sample matching given that the prosecution hypothesis is true, i.e. in 

simple scenarios this is equal to 1. Pr(E|Hd) is the match probability calculation,

LR
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i.e. the probability of the profile given that the defence hypothesis is true. This is 

the same as the probability of observing the profile in the general population.

All crime scene samples were compared to reference samples to assess the 

likelihood of a sample coming from a suspected individual. Reference samples 

were obtained from various sources such as a toothbrush head and saliva residue 

of a pillow. Kinship analysis was used in some cases due to the lack of a 

reference sample from the individual in question. Kinship analysis was carried 

out using DNA from one or both parents. The LR values obtained in these cases 

were lower than those gained when a reference sample from the suspected 

individual was available but nonetheless allowed a value to be assigned to the 

data.
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7.2 Materials & Methods

7.2.1 Casework DNA sample data

Sample DNA extracts from six different closed8 cases were supplied from The 

Forensic Science Service® low copy number DNA profiling laboratory in 

Wetherby (Table 7.1). DNA extracts consisted of both reference samples, taken 

from items belonging to the deceased individual or buccal swabs from parents of 

the deceased; and crime scene samples.

Case ID Casefile number Sample ID Sample type Sample origin

1 300205756 85933300 toothbrush head deceased individual

QE03.5043.1 blood crime scene

2 300100756 85298665 buccal mother o f  deceased

85298678 buccal father o f  deceased

QE03.3529.1 bone crime scene

3 300091460 84477900 buccal father o f  deceased

85284421 buccal mother o f  deceased

QE03.3074.1 bone crime scene

4 300110837 85287616 buccal father o f  deceased

85287661 muscle crime scene

5 300065124 85276633 buccal mother o f  deceased

85376643 blood crime scene

6 300227014 85160851 buccal mother

85160860 buccal father

85370230 saliva deceased individual

85369994 blood from hatchback car light crime scene

85407677 blood from towel crime scene

85407691 blood from circular saw crime scene

Table 7.1 Casework DNA sample data.

All DNA samples had been extracted using Chelex® methods (Walsh et. al. 1991) 

and reference samples were quantified using Quantiblot® Human DNA 

Quantitation kits (Cat. No. N808-0114) according to the manufacturer’s protocol. 

Crime scene samples were assumed to be at low copy number levels and were 

therefore not quantified.

8 A ‘closed’ case is one that has been taken through the criminal justice system and a verdict has 
been reached.
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An SGM+ DNA profile had been obtained for each sample collected. Reference 

samples from parents had been amplified using standard 28 cycle SGM+ 

parameters. Reference samples from the deceased individuals’ belongings and 

crime scene samples had been amplified using 34 cycles LCN SGM+ DNA 

profiling. Genotype data was supplied from the reporting officer casefiles. LCN 

SGM+ results were run in duplicate and the resulting profile comprised a 

consensus of the two amplifications. Only alleles appearing in both amplification 

reactions were considered to be true alleles (Gill et. al. 2000b).

7.2.2 21-SNP multiplex DNA profiling

PCR amplification was carried out as described in chapter 3. All crime scene 

DNA extracts were added at a maximum volume of 12 pL. Quant values were 

used to estimate the amount of extract to add for the reference samples (Table

7.2).

PCR products were run on a capillary electrophoresis sequencer as described in 

chapter 3. Results were analysed using AB Genescan™ and Genotyper™ 

software before being interpreted using Celestial™ software (chapter 4).

All genotype results for LCN SGM+ and the 21-SNP multiplex were analysed and 

compared.
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Sample ID DNA quant value (ng/pL) Amount added to PCR reaction (max. 12pL)

85933300 0.04 12.0

QE03.5043.1 - 12.0

85298665 0.12 10.0

85298678 0.14 12.0

QE03.3529.1 - 12.0

84477900 0.50 2.0

85284421 0.90 1.0

QE03.3074.1 - 12.0

85287616 2.50 1.0

85287661 - 12.0

85276633 0.90 1.0

85376643 - 12.0

85160851 4.40 1.0 [ 1:4 dilution]

85160860 1.40 1.0

85370230 0.08 12.0

85369994 - 12.0

85407677 - 12.0

85407691 - 12.0

Table 7.2 DNA quantification values (ng/fiL) and PCR volumes for crime scene and 
reference samples.

7.2.3 Likelihood ratio calculations

Likelihood ratios (LRs) for crime scene samples compared to reference samples 

for the deceased individuals were calculated using STRipe™ (in-house computer 

program) for SGM+ profiles and Celestial™ for SNP profiles. Kinship analysis 

was used for LR calculations where the reference samples were derived from the 

parent/s of the deceased individual. LR values for SGM+ data were obtained 

from the casefiles. These had been calculated using a commercially available 

software package “Kinship” developed by Charles Brenner (Brenner 1997; Leclair 

et. al 2004). The allele frequency arrays used for SNP kinship analyses are given 

in appendices IX and X.
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7.3 Results

7.3.1 Case 1 -  300205756

The reference sample in this case (85933300) came from DNA extracted from the 

head of a toothbrush found in the bathroom of the deceased’s living 

accommodation. A low quantification value of 0.04ng/pL was obtained from the 

DNA extract and a maximum volume of 20jiL had been added to the SGM+ PCR 

reaction. PCR amplification was carried out at standard 28 cycle parameters and 

was analysed accordingly (Table 7.3). A speck of blood found at the crime scene 

was extracted (QE03.5043.1) and amplified using LCN SGM+ parameters.

Sample ID D3 VWA D16 D2 AM ELO D8 D21 D18 D19 THO FG A

REF 85933300 h r 14 16 18 12 13 17 22 X Y 12 15 29 30 13 15 14 14 9.3 9.3 20 21

QE03.5043.1a h r 14 16 18 12 13 17 22 X Y 12 15 29 30 (13) (15) (14) - 9.3 9.3 20 21

QE03.5043.1b U R 14 16 18 12 13 17 22 X Y 12 15 29 30 13 15 (14) - 9.3 9.3 20 21

QE03.5043.1 consensus h r 14 16 18 12 13 17 22 X Y 12 15 29 30 13 15 14 F 9.3 9.3 20 21

Table 7.3 SGM+ DNA profiling results for case 1 -  300205756. Designations in (brackets) 
indicate peaks with heights falling below 50rfu. An ‘F’ designation indicates a locus where 
only one peak was seen but allele dropout may have occurred due to the low peak height. 
‘R’ designation indicates a rare allele.

Both extracts provided were amplified at maximum volumes with the 21-SNP 

multiplex and genotyping results were run through Celestial™ to produce a SNP 

profile (Table 7.4).

Sample ID Amelo D U6 B6 N4 Y3 P5 A4 0 6 Z2 K3 J2 Y6 P7 J8 X F G L2 W3 H8

REF 85933300 X/Y T/T T/T A/A T T G/G T T C/G A/F C/C C/C C/C F/A T/A A/A C/F C/F T/C T/F C/C T T

QE03.5043.1a X /Y T/T T/T A/A T/T G/G T/T C/G A/A C/C C/C C/C A/A T/A A/A C/C C/C T/C C/T C/C T/T

QE03.5043.1b X/Y T/T A/T? A/A T/T G/G T/T C/G A/A C/C C/C C/C A/A T/A A/A C/C C/C T/C C/T C/C T/T

QE03.5043.1 consensus X /Y T/T T/F A/A T T G/G T T C/G A/A C/C C/C C/C A/A T/A A/A C/C C/C T/C C T C/C T T

Table 7.4 21-SNP multiplex genotyping results for case 1 -  300205756. ‘F’ designations 
indicate peaks falling below the homozygote threshold calculated for that locus.

The resulting LRs for the two DNA profiling methods, calculated from

Pr(£|#JLR = —j—:---- r were 2.7E+11 (using STRipe™) and 1.25E+08 (using
PrlE \H d )

Celestial™) for SGM+ and SNPs respectively.
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The reference sample gave 100% profile using SGM+ but this was decreased to 

only 79% for the SNP profile. SGM+ amplification of the crime scene sample in 

this case had generated a full profile except for one locus (D19), which showed a 

peak below the homozygote threshold set for LCN interpretation. As well as this, 

the individual demonstrated a rare allele at locus D3, greatly increasing the result 

of the LR calculation. The 21-SNP multiplex also gave a full profile except for 

one locus (U6) that had shown a minor heterozygous peak in one of the duplicate 

PCR reactions, necessitating the use of an ‘F’ designation.
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7.3.2 Case 2-300100756

The reference samples in this case were buccal scrapes provided by the parents of 

the deceased individual (8598665 / 85298678). A DNA extract was provided 

from a bone sample found at the crime scene. SGM+ was carried out using 

standard amplification (28 cycles) for the reference samples and LCN conditions 

(34 cycles) for the bone sample (Table 7.5).

Sample ID D3 VWA D16 D2S AM ELO D8 D21 D18 D19 THO FGA

85298665 17 17 18 19 12 12 17 22 X X 14 15 31.2 32.2 12 12 15 15 6 9.3 20 25

85298678 15 15 16 16 12 12 24 25 X Y 12 14 29 29 15 16 14 14 8 9.3 20 25

QE03.3529.1a 15 17 16 18 (12) - 17 25 X Y 12 14 29 31.2 12 15 14 15 6 9.3 (20) -

QE03.3529.1b 15 17 16 18 (12) - 17 25 X Y 12 14 29 31.2 12 15 14 15 6 9.3 (20) -

30?

QE03.3529.1 consensus 15 17 16 18 12 F 17 25 X Y 12 14 29 31.2 12 15 14 15 6 9.3 20 F

Table 7.5 SGM+ DNA profiling results for case 2 -  300100756.

Table 7.6 shows the 21-SNP multiplex DNA profiling results gained for these 

samples.

Sample ID Amelo D U6 B6 N4 Y3 P5 A4 0 6 Z2 K3 J2 Y6 P7 J8 X F G L2 W3 H8

85298665 X/X T/C T/T ATT FT- G/G T/A C/G A C/T C/C C/C T/T A/A A T C/C C/C T/T T/T C/C T/T

85298678 X/Y C/C T/T A A/F G/G T/A G/G A/T C/C G/C C/C T/A T/T AJA C/C C/C T/T C/C C/G T/T

QE04.3529. la X/Y T/F T/T A/T - G/G A/A G/G A/A T/F G/C - T/F T/F A/T C/F C/C T/T C/T C/C T/t

QE04.3529.1b X/Y T/F T/T A/T - G/G A/A G/G AJA T/F G/C - T/F T/F A/T C/F C/C T/T C/T C/C T/T

QE04.3529.1 consensus X/Y T/F T/T M l - G/G A/A G/G A/A T/F G/C - T/F T/F ATT C/F C/C T/T C/T C/C T/T

Table 7.6 21-SNP multiplex genotyping results for case 2 -  300100756.

Using kinship analysis calculations for two parent analyses, the LR of the SNP 

profile was determined to be 185, i.e. it was 185 times more likely that the sample 

QE04.3 529.1 was from the offspring of the reference parents than from a random, 

unrelated individual.
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7.3.3 Case 3-300091460

As with case 2, case 3 reference samples were derived from the parents of the 

deceased (84477900 / 85284421) and the crime scene sample had been extracted 

from a piece of bone (QE03.3074.1). Results for SGM+ profiling were obtained 

from the casefile (Table 7.7), using 28 cycles for reference samples and 34 cycle 

amplification for the crime sample.

Sam ple ID D3 VW A D16 D2S AM ELO D8 D 2I D18 D19 THO F<;a

85294421 15 16 15 15 12 12 17 23 X X 13 13 30 30 12 14 14 15.2 7 9 20 23

84477900 15 17 15 19 9 12 20 25 X Y 10 14 30 30 15 20 15 15 7 9.3 22 23

QE03.3074.1a 15 17 15 15 12 12 23 25 X Y 10 13 30 30 14 15 15 15.2 7 9.3 22 23

QE03.3074.1b 15 17 15 15 12 12 23 25 X Y 10 13 30 30 14 15 15 15.2 7 9.3 22 23

31

QE03.3074.1 consensus 15 17 15 15 12 12 23 25 X Y 10 13 30 30 14 15 15 15.2 7 9.3 22 23

Table 7.7 SGM+ DNA profiling results for case 3 -  300091460.

All three DNA extracts were amplified using the 21-SNP multiplex (Table 7.8).

Sample ID Amelo D U6 B6 N4 Y3 P5 A4 0 6 Z2 K3 J2 Y6 P7 J8 X F G L2 W3 H8

84477900 X/Y T/C A/T A/T - G/G T/A C/C A T C T C/C T T T/A T T A/A C/C C/C T T C/C C/G T T

85284421 X/F T/C T/T A/T - G/C T/T C/C A/A T T G/C - T T T T A/A C/C C/A T T C/C G/G T T

QE04.3074.1a X /Y T/C T/T T/F - G/C T/T C/C A/T T/T C/C - T/A T/F A/A - - T/T C/C G/F T/T

QE04.3074.1b X/Y T/C T/T T/T - G/C T/T C/C A /T T/T C /C - T/A T/T A/A - - T/F C/F G/G T/T

QE04.3074.1 consensus X/Y T/C T/T T/F - G/C T T C/C A T T T C/C - T/A T/F A/A - - T/F C/F G/F T T

Table 7.8 21-SNP multiplex genotyping results for case 3 -  300091460.

Using kinship analysis calculations, the LR of the SNP profile was determined to 

be 42, i.e. it was 42 times more likely that the sample QE04.3074.1 was from the 

offspring of the reference parents than from a random, unrelated individual.
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7.3.4 Case 4 -300110837

The father of the deceased individual had provided a single reference sample in 

this case (85287616). The crime scene DNA extract was submitted from a section 

of deep muscle (85287661). SGM+ DNA profiles (28 cycles for the reference and 

34 cycles for the crime sample) were provided from the casefile (Table 7.9) and 

21-SNP multiplex results were collated (Table 7.10). Only one LCN SGM+ 

profile was obtained for the muscle sample, rather than the customary duplicate 

profiles.

Sample ID D3 VW A D16 D2 AM ELO D8 D 21 D 18 D 19 T l IO FC;a

REF 85287616 15 15 18 18 11 13 17 19 X Y 14 14 31 32.2 13 18 13 15 7 9.3 22 23

85287661 15 19 X Y 8? 13 14 7 (9.3) - -

Table 7.9 SGM+ DNA profiling results for case 4 - 300110837.

Sample ID Amelo D U6 B6 N4 Y3 P5 A4 0 6 Z2 K3 J2 Y6 P7 J8 X F G L2 W3 H8

REF 85287616 X/Y C/C A/A T/F A/F G/C T/A C/C T/T C/T G/G C/F T/T T/T A/T C/C C/C T/T C/C C/C T/T

85287661. la X /Y T/C A/A - - G/C T/T C/F - C/C G /C C/C T/F T/F - C/C C/C T/T C/C - T/T

85287661.1b X /Y T/C A/A - - G/C T/T C/C - C/C G/C C/F T/T T/T - C/C C/C T/T C/C - T/T

85287661 consensus X /Y T/C A/A - - G/C T/T C/F - C/C G/C C/F T/F T/F - C/C C/C T/T C/C - T/T

Table 7.10 21-SNP multiplex genotyping results for case 4 -  300110837.

Using kinship analysis for a single parent comparison, the LR of the SNP profile 

was determined to be 719, i.e. it was 719 times more likely that the sample 

85287661 was from the offspring of the reference parents than from a random, 

unrelated individual.
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7.3.5 Case 5-300065124

The mother of the deceased individual provided the reference sample in this case 

(85276633). The questioned DNA extract came from a bloodstain found at the 

suspected crime scene (85376643). SGM+ DNA profiling results were given in 

the casefile (Table 7.11), using 28 cycles amplification for the reference sample 

and 34 cycles for the crime sample.

Sample ID D3 VW A D16 D2S AM ELO D8 D21 D18 D19 TH O FGA

REF 85276633 15 16 17 18 11 12 19 20 X X 10 13 30 30 13 14 15 15 6 8 22.2 24

85276643.1a 15 15 18 18 12 13 19 19 X Y 10 14 30 30 13 14 13 15 8 9.3 24 25

85276643.1b 15 15 18 18 12 13 19 19 X Y 10 14 30 30 13 14 13 15 8 9.3 24 25

85276643 consensus 15 15 18 18 12 13 19 19 X Y 10 14 30 30 13 14 13 15 8 9.3 24 25

Table 7.11 SGM+ DNA profiling results for case 5 -  300065124.

Both DNA extracts were genotyped using the 21-SNP multiplex, the crime scene 

extract being run in duplicate (Table 7.12).

Sample ID Amelo D U6 B6 N4 Y3 P5 A4 06 Z2 K3 J2 Y6 P7 J8 X F G L2 W3 H8

85276633 X/F C/C A/T - - G/G T/T C/C A/A e r r C/C C/C T/A T/A A/T C/C C/A T/C C/C C/C ATT

85376643.1a X /Y C/C A/A A/A - G/G T/T - A/A T/T - C/C - A/A T/T C/C C/A T/C C/C C/C T/T

85376643.1b X /Y C/C A/A A/A A/A G/G T/T C/G A/A T/T G/C C /C T/A A/A T/T C/C C/A T/C C/C C/C T/T

85376643 consensus XJY C/C A/A A/A - G/G T/T - A/A T/T - C/C - A/A T/T C/C C/A T/C C/C C/C T/T

Table 7.12 21-SNP multiplex genotyping results for case 5 -  300065124.

Kinship analysis, using formulae for one parent, was carried out on the consensus 

SNP profile and an LR of 82 was calculated, i.e. it was 82 times more likely that 

the sample 85376643 was from the offspring of the reference parent than from a 

random, unrelated individual.
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7.3.6 Case 6-300227014

Reference samples were obtained from both parents of the deceased individual 

(85160851 / 85160860) as well as a saliva sample taken from a pillowcase in the 

deceased individuals’ house. DNA had been extracted from bloodstains acquired 

from three individual crime scenes. These had been found on a hatchback light 

(85369994), a towel (85407677) and a circular saw (85407691). Only one LCN 

SGM+ DNA profile was submitted from each crime scene sample, instead of the 

standard duplicate profiles (Table 7.13). All six DNA extracts were amplified 

using the 21-SNP multiplex, crime scene samples being run in duplicate (Table 

7.14).

Sample ID D3 VW A D16 D2S AM ELO D8 D21 D18 D19 THO FGA

REF 85160851 16 16 16 20 10 13 19 25 X X 10 14 31.2 31.2 16 16 14 15 7 9 20 23

REF 85160860 15 16 14 18 8 8 25 25 X Y 13 16 32.2 32.2 16 18 13 16 6 9 22 23

REF 85370230 15 16 18 20 8 10 19 25 X Y 14 16 31.2 32.2 16 18 13 14 9 9 22 23

85369994 15 16 18 20 8 10 - - X Y 14 16 - - - - 13 14 9 F - -

85407677 15 16 18 20 8 10 - - X Y 14 16 - - - - 13 14 9 9 - -

85407691 15 16 18 20 8 10 - - X Y 14 16 31.2 F - - 13 14 9 F 22 23

Table 7.13 SGM+ DNA profiling results for case 6 -  300227014.

Sample ID Amelo D U6 6 6 N4 Y3 P5 A4 0 6 Z2 K3 J2 Y6 P7 J8 X F G L2 W3 H8

REF 85160851 X/F C T T - G T C A C G/C C/T T/A T A A C T C C/G T

REF 85160860 X /Y T/C A/T A/A - G T C/G A/T C/T C T T/A T/A A/T C/A C T C C T

REF 85370230 X /Y C A/T A/T - G T C A/T C/T G/C T T/A T A/T A c T c C/G T

85369994.1a X /Y - A/F - - G T C/F - C/T G/C F/T T/F T A/T A - T/F C/F - -

85369994.1b X/Y - A/F - - G T C/F - C/T G/C F/T T/F T A/T A - T/F C/F - -

85369994 consensus X/Y - A/F - - G T C/F - C/T G/C F/T T/F T A/T A - T/F C/F - -

85407677.1a X/Y c A/T T/F A/F G T C A/T C/T G/C F/T T/A T A/T A c T C C/G T

85407677.1b X/Y c A/T T/F A/F G T c A/T C/T G/C F/T T/A T A/T A c T c C/G T

85407677 consensus X/Y c A/T T/F A/F G T c ATT C/T G/C F/T T/A T A/T A c T c C/G T

85407691.1a

85407691.1b

85407691 consensus

Table 7.14 21-SNP multiplex genotyping results for case 6 -  300227014.
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STRipe™ was used to calculate an LR for the SGM+ crime scene profiles 

compared to the reference saliva sample, using the formula:

The samples gave LRs of 2.9E+07, 2.15E+08 and 2.03E+09 for the bloodstain off 

the car light, the blood from the towel and the blood from the circular saw 

respectively. An LR was calculated in Celestial™ for each SNP consensus profile 

compared to the reference saliva sample obtained in this case. The bloodstain 

from the hatchback light gave an LR of 1.21E+05 and the bloodstain from the 

towel gave an LR of 4.29E+07. The stain collected from the circular saw failed to 

produce a profile in either of the duplicate SNP amplifications.

Kinship analysis was used for evaluating the strength of the evidence given the 

SNP parental data. An LR of 131,579 was obtained from the hatchback light. 

This LR had been greatly increased by the presence of a rare homozygous T/T 

genotype at locus J2. The sample from the hatchback light gave an LR of 28 and 

the towel sample gave an LR of 3333. The rare allele in these cases had fallen 

below the homozygous threshold and was subsequently labelled with an ‘F’ 

designation, greatly decreasing the LR for that locus.

LR
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7.3.7 Comparison of percentage profiles and match probabilities

The percentage profiles and LR data for each crime scene sample was calculated 

using either kinship analysis (Table 7.15a) or allele frequency data (Table 7.15b). 

This allowed all profiles to be compared to each other, regardless of statistical 

calculations relating to identity. These results are shown graphically (Figure 7.1).

Case ID Sample ID Sample type SGM + % 
profile LR (SGM +) SNPs % profile LR (SNPs)

300100756 QE03.3529 cons Bone 91 3.00E+08 79 185
300091460 QE03.3074 cons Bone 100 1.00E+09 69 41.7
300110837 85287661 cons Muscle 36 4.00 67 714
300065124 85276643 cons Blood stain 100 6670 81 83.3
300227014 85369994 Blood stain 59 8.00E+06 52* 27.8

“ 85407677 Blood stain 64 5.32E+07 93* 3330
“ 85407691 Blood stain 73 2.03E+09 - -

Table 7.15a Percentage profiles and LR data for casework crime scene samples, using 
kinship analysis. * indicates SNP profiles obtained from two duplicate amplifications when 
SGM+ was only obtained from one amplification.

Case ID Sam ple ID Sample type SGM + % 
profile

LR (SGM +) SNPs % profile LR (SNPs)

300205756 QE03.5043 cons Blood stain 95 2.70E +11 98 1.25E+08
300227014 85369994 Blood stain 59 2.90E+07 52* 1.21E+05

85407677 Blood stain 64 2.15E+08 93* 4.29E-+07
85407691 Blood stain 73 2.03E+09 - -

Table 7.15b Percentage profiles and LR data for casework crime scene samples, based on 
allele frequency data. * indicates SNP profiles obtained from two duplicate amplifications 
when SGM+ was only obtained from one amplification.

Three out of eight crime scene samples gave an increased percentage profile when 

amplified using the 21-SNP multiplex. One sample (85407691) failed to amplify 

using SNPs, in either of the duplicate PCR reactions; therefore five samples gave 

increased percentage profiles using LCN SGM+ amplification.

The interpretation criteria used for SNPs were very stringent due to the high 

sensitivity of the technique (chapter 4). The percentage profiles obtained were 

lower for SNPs due to the presence of more ‘F’ designations in the genotypes. 

The ‘F’ designations were also detrimental to the calculation of the LR as an ‘F’ 

could have indicated either a homozygous or heterozygous locus, decreasing the 

power of the result.
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Percentage profile data obtained for crime scene samples
SGM+ %  profile 

SNPs % profile

Blood stain 

QE03.5043

Bone Bone Muscle Blood stain Blood stain Blood stain

QE03.3529 QE03.3074 85287661 85276643 8536994 i 85407677

Blood stain 

85407691

Figure 7.1 Percentage profile data obtained for crime scene casework samples using LCN 
SGM+ DNA profiling and the 21-SNP multiplex.

The amount of DNA extract added to the 21-SNP multiplex PCR reactions was 

12pL. LCN SGM+ profiling routinely uses a maximum volume of 20pL. At 

LCN levels the amount of stochastic variation seen within a DNA extract is high 

and it is essential to add as much extract as possible to the PCR reaction to 

increase the likelihood of amplifying the few molecules that are present. The 

decreased amount of extract added for SNP amplification could have contributed 

to the lower success rate seen with the technique.

LR data was shown to be highly variable across the set of casework samples 

(Figure 7.2). An increased likelihood ratio was seen in cases where reference 

DNA samples were provided, as opposed to parent DNA samples. The use of 

kinship analysis allowed an LR to be gained in the absence of a reference DNA 

profile (Balding and Nichols 1994; Brenner 1997; Leclair et. al. 2004). LR values 

from kinship analysis varied from 42 to more than 130,000, dependent on the 

percentage profiles seen and the genotype data obtained.
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L ik e lih o o d  ra tio  (LR) data o b ta in e d  for cr im e sc e n e  sa m p le s
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■  LR (SNPs)

Bone Muscle B loodsta in B loodsta in B loodsta in B loodsta in Blood s ta in B loodsta in Blood stain
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( p a r e n t s )

sa m p le  ID

Figure 7.2 LR data obtained from a comparison of the genotype data gained for each crime 
scene sample.

In case 300227014, LR values were 10-fold higher using reference sample DNA 

profiles for comparison to the crime scene sample, as opposed to parent profiles. 

The 21-SNP multiplex LR values in this case were higher than that generally 

estimated for SNP analysis (4.5 million) due to the presence of a rare allele at 

locus TSCO J8. This increased the LR to 1 in 43 million, even though the profile 

obtained was incomplete (93%).

Overall, only one crime scene sample (85287661) showed an increased LR value 

when using the 21-SNP multiplex compared to LCN SGM+ profiling. The DNA 

extract in this case was obtained from muscle and was the only example of this 

sample type tested. Muscle is known to degrade at a faster rate than other body 

tissues after death has occurred due to the enzymes and chemicals present in 

muscle cells (Johnson and Ferris 2002). The increased success at profiling this 

sample type (67% SNP profile compared to 36% LCN SGM+ profile) using SNPs 

was suggestive of an increased amplification efficiency using the smaller target 

sites. A much larger sample set would need to be tested to clarify this 

observation.
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7.3.8 Allele dropout compared to amplicon size

All crime scene samples were analysed to give an indication of the size of the 

amplicons failing to amplify, using both SNPs and SGM+. Not all STR allele 

designations were known due to reference samples coming from parents, and 

therefore an assumption had to be made concerning the size of the amplicons 

failing amplification. An average size was used for each STR locus to allow 

analysis across the set of samples9.

Proportion of allele dropout against size of the amplicon for SNPs and
STRs

♦  SNPs dropout 

■  SGM+ average dropout 

Linear (SNPs dropout)

Linear (SGM+ average dropout)♦

fi. 0.1

R2 = 2E-05 R2 = 0.7712

0.2 -

Amplicon size (bp)

Figure 7.3 Scattergraph showing the proportion of allele dropout seen relative to the size of 
the target amplicon, using both the 21-SNP multiplex and LCN SGM+ DNA profiling.

The 21-SNP multiplex showed no relationship between the proportion of allele 

dropout compared to amplicon size (R2 = 2.0E-05), an observation also seen in the 

artificially degraded samples previously genotyped using the technique (chapter 

3). R-squared analysis indicated a positive regression when looking at STR allele 

dropout against amplicon size (R2=0.7712). The graph clearly shows an increase 

in the amount of dropout seen with the higher molecular weight STR loci (Figure

7.3).

9 A verage STR locus size: Am elo 105bp; D19 118bp; D3 126bp; D8 146bp; vW A  180bp; THO 
183bp; D21 212bp; FGA 240bp; D 16 249bp; D18 300bp; D2 318bp.
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The pattern of dropout observed for the crime scene LCN samples ties in with the 

observations seen for artificially degraded samples. This has a two-fold effect in 

that it strengthens the use of artificially degraded samples as a validation of DNA 

profiling techniques in the research environment, as well as allowing a study of 

the process of DNA degradation in general.
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7.4 Discussion

Six sets of casework samples were received from The Forensic Science Service® 

laboratory in Wetherby. DNA extracts from reference samples and crime scene 

samples were provided for amplification using the 21-SNP multiplex, to supply 

enough information for a comparative study using SNPs and LCN SGM+ 

profiling.

Reference samples were obtained from either articles pertaining to the deceased 

individual, from both parents of the deceased, or from an individual parent. Each 

of these reference samples could be used as a comparison to the crime scene 

sample(s) obtained, yielding an LR value. Individually STRs are more 

discriminating than SNPs, due to their polymorphic nature; therefore a partial 

SGM+ profile would give a higher LR than a full or partial SNP profile. This 

study proved this observation with LCN SGM+ giving higher match probabilities 

for all samples bar one, even when only two or three STR loci were successfully 

amplified.

The 21-SNP multiplex gave a higher percentage profile and LR value for one 

sample tested. This DNA extract came from a muscle sample and indicated the 

need to define the degradation process within different sample types in more 

detail to give a more educated rationale behind the choice of DNA profiling 

technique to use to gain the best result.

DNA profiling using STRs is highly discriminating and is highly successful in 

identifying individuals from biological samples. The National DNA Database® 

currently holds over three million samples from both crime scenes and from 

individuals arrested for crimes. In 2004 individual samples on the database 

provided matches with more than 41,000 crime scenes and linked a further 4,500. 

Problems are encountered when the biological samples from which the DNA is 

obtained for profiling are compromised in some way, either by degradation or by 

the nature of the sample type. Bones, teeth and hair shaft contain limited amounts 

of nuclear DNA, making STR profiling difficult. Degraded DNA is fragmented,

-211 -



Casework samples

meaning the larger STR loci may fail to amplify in the PCR reaction, leading to 

partial DNA profiles being obtained.

Current methods for obtaining DNA profiles from compromised sample types 

include low copy number DNA profiling, whereby the number of amplification 

cycles is increased to target the smaller number of molecules available (Gill et. al. 

2000b); and mitochondrial DNA profiling, targeting the increased number of 

mitochondria present in remaining cells (Butler and Levin 1998; Holland and 

Parsons 1999). Both of these methods require specialised techniques for analysis 

and suffer from sensitivity issues, meaning there is an increased chance of 

contamination being encountered. Mitochondrial DNA has a decreased 

discrimination power due to the maternal lineage of the DNA and is incompatible 

with current DNA databases, however it can be used for intelligence purposes 

with a high degree of success. LCN DNA profiling has become the preferred 

method of amplification for compromised samples with strict guidelines for 

interpretation of profiles, including duplicate amplifications and the generation of 

consensus profiles, allowing a result to be gained in samples which would 

previously have failed to amplify (Gill et. al. 2000b). Although routinely used in 

casework in the UK, LCN SGM+ profiling has not been readily accepted by the 

European and US community. Problems with contamination and the ability to 

profile trace amounts of DNA has led to the possibility of innocent transfer 

events, e.g. primary and secondary transfer from holding hands or objects, giving 

a false positive result (Gill 2002; Lowe et. al. 2002; Butler 2005b).

The results of the casework comparative study suggested that LCN DNA profiling 

was more successful than SNPs, mainly due to the higher discrimination power 

gained from fewer STR loci. The 21-SNP multiplex failed to give a result for 

some casework samples and only gave partial profiles for others. Samples had 

previously been stored frozen and there was a variable time lapse between the 

LCN DNA profiling and the 21-SNP multiplex amplification. This may have 

made a difference to the integrity of the sample and periods of freeze-thawing and 

transit of the samples via the mail system may have caused further degradation of 

the DNA. The samples had been extracted using Chelex® (Walsh et. al. 1991) 

and this may have caused inhibition of the PCR amplification as it is known to
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interact with the Taq polymerase, causing a decrease in amplification efficiency. 

The complexity of the 21-SNP multiplex may have made it more sensitive to PCR 

inhibition by the Chelex® particles.

Analysis of allele dropout for both SNPs and STRs indicated that SNPs showed a 

random pattern of dropout consistent with amplification inefficiency as opposed 

to the size of the amplicon. The STR loci showed a positive regression with the 

higher molecular weight loci. This result is consistent with the other studies on 

amplicon size carried out in this thesis and suggests that targeting smaller size 

DNA molecules could result in a greater chance of amplifying degraded DNA 

molecules, given an optimised multiplex system.
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DNA profiling was first used in criminology in 1986 and, once accepted in court, 

quickly became established worldwide as a technique for human identification. 

Today, DNA profiling systems used for national DNA databases utilise 

polymorphic short tandem repeat (STR) sequences to gain a DNA profile of an 

individual. The most significant problem facing the forensic analyst in general 

casework is that approximately 50% of crime scene samples yield a partial DNA 

profile or no profile at all (P. Gill, per comms). This is often the result of the 

material being highly degraded and limited in quantity; consequently insufficient 

intact DNA molecules are available for profiling using the current multiplex 

systems. The resulting discriminating power of a partial profile may only be of 

the order of one in thousands to one in a million and when such profiles are used 

to interrogate national DNA databases, multiple matches may be found (Butler 

2005b).

The effect of DNA degradation in forensic DNA profiling is most apparent in 

mass disaster situations, such as fires (Clayton et. al. 1995a), air crashes 

(Ballantyne 1997), terrorist attacks (Holland et. al. 2003), tsunamis and 

earthquakes (Alonso et. al. 2005). Dependent on the type of disaster, victims will 

have been subjected to a wide range of extreme conditions including ultra-high 

temperatures and high levels of humidity, causing degradation of the DNA 

molecules. Partial profiles obtained from degraded DNA samples consist mainly 

of the STR loci with lower amplicon sizes (Golenberg et. al. 1996; Wiegand and 

Kleiber 2001; Butler et. al. 2003; Gill et. al. 2006) making it increasingly difficult 

to obtain a DNA profile that can be successfully used for identification purposes.

Research was carried out into the use of single nucleotide polymorphisms (SNPs) 

as a possible adjunct to current DNA profiling systems. Autosomal SNP analysis 

had been dismissed from high-throughput DNA profiling in the early 1990s in 

favour of STRs, as STR loci were more amenable (at that time) to automated 

techniques (P. Gill, per comms). Specialist techniques were developed for some 

specific SNP applications, including mitochondrial (Hagelberg et. al. 1991; 

Holland et. al. 1993; Gill et. al. 1994; Butler and Levin 1998; Holland and 

Parsons 1999), Y-chromosome (Di Gaetano et. al. 2004; Hammer et. al. 2005; 

Lessig et. al. 2005; Brion 2005a; Brion et. al. 2005b) and red hair SNP analysis
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(Grimes et. al. 2001). Before the introduction of low copy number (LCN) STR 

profiling, mitochondrial DNA (mtDNA) analysis was routinely used for 

genotyping degraded samples and samples containing little DNA, such as bone, 

hair and teeth. Mitochondria are present within cells in high copy number 

(approximately 500-2000 per cell (Parsons and Coble 2001)), hence mtDNA is 

more likely to survive intact for longer periods. This has made mtDNA analysis 

the primary method of genotyping ancient DNA samples (Cooper et. al. 2001; von 

Wurmb-Schwark et. al. 2003; Willerslev and Cooper 2005), although the 

technique is highly sensitive and results are not always distinguishable from 

contamination. MtDNA is maternally inherited; therefore all offspring of a 

female will have the same mtDNA sequence, making it less discriminating than 

STRs for forensic DNA analysis. Current mtDNA analysis involves complete 

sequence determination of two hypervariable regions (HV1 and HV2) within the 

mitochondrial control region. The control region is the only significant portion of 

mtDNA that doesn’t encode for genes (Parsons and Coble 2001) and, as such, 

shows high variation within the population. Full sequencing of mtDNA is labour- 

intensive and attempts have been made to develop techniques that are less time- 

consuming such as mini-sequencing (Tully et. al. 1996; Quintans et. al. 2004) and 

other primer extension assays (Vallone et. al. 2004; Divne and Allen 2005). 

Mini-sequencing was also used to develop an analysis method for identification of 

hair colour, targeting twelve known SNP loci within the melanocortin 1 receptor 

gene (MC1R) (Grimes et. al. 2001). Homozygosity at a locus, or compound 

heterozygosity at two loci, was used as an indicator that an individual would have 

red hair. Although it is difficult to identify any individual gene for a physical 

characteristic, further research is ongoing into the use of SNPs for other physical 

traits, such as iris colour (Frudakis et. al. 2003) and skin colour (Bonilla et. al. 

2005). Y-chromosome SNPs have been used for determination of ethnicity, using 

allele-hybridisation biochemistry in a commercially available kit, “Signet™ Y- 

SNP” (Marligen Biosciences Inc.). PCR products are detected by hybridisation to 

colour-coded beads using the Luminex®100™ System (Taylor et. al. 2001; 

Wetton et. al. 2005). The Y-chromosome is particularly useful as an indicator of 

ancestral origin due to the lack of recombination along the majority of the 

chromosome. This has resulted in “an accumulation o f mutations in slowly 

evolving SNP haplogroups that reflect the progressive diversification o f Y
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chromosome lineages during the expansion o f human populations” (Wetton et. al. 

2005). As with autosomal loci, STR sequences within the Y-chromosome have an 

increased discrimination power to SNPs, and these have been more widely 

researched and developed for forensic use in recent years (Corach et. al. 2001; 

Hall and Ballantyne 2003; Daniels et. al. 2004; Hanson and Ballantyne 2004; 

Mulero et. al. 2006).

The development of microarray technology re-introduced autosomal non-coding 

SNPs into the forensic field, as the possibility of high-throughput genotyping was 

realised (Southern 1996a; Southern 1996b). This development coincided with the 

introduction of the National DNA Database® in 1995. Not all samples 

successfully amplified by standard DNA profiling methods, due to degradation 

and/or low DNA copy number. SNP loci comprise one base, therefore it was 

suggested that the size of PCR amplicons could be reduced, increasing the chance 

of amplifying the smaller fragments of DNA found in degraded samples. 

Microarray technology was utilised, using fluorescent detection methods, for 

detection of SNP loci. Microarrays were originally developed for gene expression 

profiling due to the ability to analyse thousands of different samples and / or 

different genes in a single run (Southern 1995; Southern 1996b; Bowtell 1999; 

Vente et. al. 1999; Southern 2001). It was envisaged that the development of 

high-throughput automated microarray technology, in conjunction with the 

smaller amplicon size generated from SNP loci, would enable SNPs to be targeted 

for forensic DNA profiling. A computer program (ASGOTH) was developed for 

automated SNP genotyping. This allowed a precise measurement of the number 

of control samples and negative samples needed to allow accurate genotyping of 

each SNP locus. ASGOTH proved to be efficient to genotype SNP loci correctly, 

however a decision was made to continue the development of a SNP multiplex 

system that utilised the Universal Reporter Primer principle to amplify all loci in 

one large multiplex for detection using capillary electrophoresis (Hussain et. al. 

2003; Dixon et. al. 2005a). The main drive behind this decision was the inability 

to produce large multiplexes for detection using fluorescent probes. Due to the 

presence of primer-dimer formations, probes were found to bind to the negative 

control spots on a microarray glass slide, causing high levels of background 

fluorescence. A multiplex of five SNP loci was developed that enabled accurate
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genotyping, but larger multiplexes exhibited high levels of background 

fluorescence in the negative controls (Long 2005). Detection using capillary 

electrophoresis separated the SNP amplicons according to size, allowing primer- 

dimer peaks to be easily separated from the genuine SNP loci. A recent study has 

demonstrated the feasibility of using of Microarrays for forensic SNP analysis 

(Divne and Allen 2005), however the technique requires large amounts of DNA 

(10-50ng) to be successful and it remains difficult to quantify because of the use 

of a primer extension reaction. More work is required to increase the robustness 

of the system to allow a smaller quantity of DNA to be successfully amplified and 

detected.

An assessment of the STR system used on the UK National DNA Database® 

(AMPF/STR® SGMplus™ (SGM+)) compared to SNP multiplexes (detected 

using capillary electrophoresis) indicated an advantage of targeting smaller 

amplicons, leading to the development of a 21-SNP multiplex with amplicon sizes 

below 150 bp in length. The discrimination power of the 21-SNP multiplex was 

approximately one in four million, although this varied according to the genotypes 

gained for an individual sample. This discrimination power was lower than that 

obtained from a full STR multiplex result (circa one in a thousand million) 

(Cotton et. al. 2000); therefore its use would be limited to selected evidence types 

that failed to give an informative STR profile. In relation to parentage analysis 

and family reconstruction, STRs have proven to be highly successful in the past, 

e.g. the Waco and World Trade Centre disasters (Whitaker et. al. 1995; Clayton 

et. al. 1995a; Clayton et. al. 1995b; Holland et. al. 2003); however, a second 

system such as a SNP multiplex could prove advantageous in some sample types 

where only partial profiles may be obtained due to the degraded state of the 

samples.

Studies were performed on blood and saliva samples degraded in situ using 

multiplexes that targeted STRs, SNPs or mini-STRs. Degradation was achieved 

by maintaining samples at 100% humidity in a 37°C environment (Pulker 2004) 

allowing biochemical degradation by both cellular and microbial enzymes 

(Lindahl 1993; Poinar 2003). It was hypothesised that the length of DNA 

available for amplification could be related to the primary level of DNA coiling
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around a nucleosome complex10. The work carried out in this study suggested 

that smaller amplicon sizes increased the likelihood of gaining a DNA profile 

using SNP loci, but there was no direct comparison between this and the 

nucleosome theory. The interaction between histones and the DNA molecule is 

confined to the phophodiester backbone of the double helix and it is generally 

considered that no sequence-specificity exists for the regions of the DNA 

protected within the core particle (Suck 1992). If the coiling of DNA around the 

histones is random, then the sequences found within the linker DNA will also be 

random, and SNPs cannot be selected due to their positioning within the 

nucleosome structure. However other work has been carried out suggesting that 

there may be obligate sites within the DNA for nucleosome positioning (Sewack 

and Hansen 1997; Attema et. al. 2002). Thastrom et. al. (2004) suggested the 

physical characteristics of particular DNA sequences, rather than the sequences 

themselves, were responsible for improved binding to the nucleosome complex 

(Thastrom et. al. 2004a; Thastrom et. al. 2004b) and assigned these as 

‘nucleosome positioning sequences’. Levitsky et. al. (2005) are compiling data 

through the ‘Nucleosome Positioning Region Database’, to identify sites within 

the DNA that may have higher affinity for nucleosome binding (Levitsky et. al. 

2005). Although research is, as yet, unsubstantiated, further work will be carried 

out to identify SNPs that may lie in these regions, allowing a new multiplex to be 

developed with loci more resistant to DNA degradation. A panel of SNPs with 

known resistance to degradation could greatly increase the chance of successful 

amplification with degraded DNA samples, if the nucleosomal protection theory 

proves to be correct.

In order to accurately calculate match probabilities and likelihood ratios, it was 

necessary to assess the effect of genetic drift on SNP loci. The allele frequencies

10 The nucleosome unit was defined in the 1970s as eight histone molecules interacting with 
approximately 200 bp DNA (Komberg 1974). The nucleosome units were attached to each other 
by lengths of linker DNA, forming a ‘beads on a string’ effect. Micrococcal nucleases 
preferentially targeted the unprotected linker DNA, leaving 146bp of DNA attached to the 
nucleosome core particle (van Holde et. al. 1975; Noll and Komberg 1977). A further ten base 
pairs protruding from each end of the nucleosome were shown to be more readily digestible than 
those protected within the histone octamer, leaving approximately 125 bp lengths of DNA 
protected by the nucleosome structure (Read and Crane-Robinson 1985b). The inability of the 
enzymes to digest the nucleosome/DNA complex suggested that in vivo cellular enzymes may also 
preferentially target the linker DNA leaving only 125 bp fragments of DNA after a prolonged 
period of degradation.
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of loci within sub-populations vary due to different levels of drift and inbreeding 

within ethnic groups. Allele frequency data from three main ethnic groups (White 

Caucasian, British Afro-Caribbean and Indian sub-continent) are used for match 

probability calculations on the National DNA Database® and corrections must be 

made to compensate for the sub-structuring that occurs within these large 

population sets (Nichols and Balding 1991; Gill and Evett 1995a). The Balding- 

Nichols (BN) equation is used in casework to calculate match probabilities and 

likelihood ratios for STR DNA profiles (Balding and Nichols 1994; Balding and 

Nichols 1995; NRCII 1996; Gill et. al. 2003) and a large number of population 

studies have been carried out across the forensic community to assess STR allele 

frequencies within different populations (Balding et. al. 1996; Goodwin et. al. 

2001; Ruitberg et. al. 2001; Shimada et. al. 2002; Gill et. al. 2003; Okamoto et. 

al. 2003; Overall et. al. 2003; Yoshida et. al. 2003; Konjhodzic et. al. 2004; 

Soltyszewski et. al. 2005). A database of DNA samples of sufficient size was 

unavailable for testing population sub-structure for the 21-SNP multiplex and so 

computer simulations were run to demonstrate the effectiveness of using the BN 

equation compared to true allele frequencies found in the simulated sub-structured 

population. Ideally it would be better to use a real database of samples from 

isolated populations so the true effect of genetic drift could be characterised, 

however these samples are difficult to obtain, and large data sets were unavailable 

for this study. The simulations demonstrated the applicability of the BN equation 

to SNPs as well as STRs, with minimal reduction in discrimination power. This 

equation could therefore be used in calculations of match probabilities and 

likelihood ratios for the 21-SNP multiplex.

A brief search on the Internet demonstrates the large number of government 

agencies and private companies across the world using STR multiplex systems for 

parentage analysis. Only accredited companies can provide a service that is 

acceptable in a court of law, but all companies can legitimately provide DNA 

information from a sample. This study demonstrated that SNPs could be used for 

exclusion of an individual as the true father of a child by analysis of the number of 

mismatched loci present between the alleged father and offspring. However, 

current STR methods of paternity testing are more discriminating than the 21-SNP 

multiplex, due to the higher PI values and probability of exclusion that can be
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calculated. The use of SNPs for paternity testing should not be discouraged as 

these loci generally have a lower mutation rate than the STR loci used for forensic 

identification (Chakraborty et. al. 1999; Amorim and Pereira 2005; Ayres 2005). 

This means calculations of exclusion can be based solely on the genotypes 

identified in each individual, without correction for mutation. To produce a set of 

SNP loci for paternity testing, each locus selected should have an allele frequency 

close to 0.5 and approximately 50 SNPs would be needed to match the 

discrimination of current STR systems (Chakraborty et. al. 1999; Gill 2001a). 

The 21-SNP multiplex developed for this study was not originally designed for 

paternity analysis, therefore not all of the selected SNPs conformed to the criteria 

required for a maximised discrimination power. With an increased amount of 

data now available in the public domain, the opportunity exists to rapidly create 

SNP multiplexes with loci of known allele frequency. In cases of disputed 

paternity, DNA can be obtained directly from the individual via blood donation or 

buccal scrape; therefore optimal amounts can be used for PCR amplification. 

This means primer extension detection methods, such as SNaPshot™ or UHT 

SNP Stream™, could be used for a multiplex SNP paternity kit without 

compromising the accuracy of genotyping. Both methods have been used to 

successfully develop SNP multiplexes comprising up to 39 loci (Bell et. al. 2002; 

Inagaki et. al. 2004; Brion et. al. 2005b). The main drawback of any primer 

extension assay is the secondary extension step, which can be variable in 

efficiency, causing disparity between the peak balance of the amplified alleles. 

This is less pronounced in samples containing optimal amounts of DNA; therefore 

an assay for paternity analysis could be more easily developed than one for 

compromised forensic samples. As STR evidence is already readily accepted in 

court, it may not be beneficial to alter the system to one that does not give 

significantly better results. Nevertheless SNPs could be used as an adjunct to 

STR methods, providing further evidence in cases demonstrating mismatched 

STR loci between a child and alleged father.

The URP amplification method was developed to be quantitative but the addition 

of more loci to the multiplex decreased the robustness of the system as the number 

of primers within the multiplex increased. This meant the amplification efficiency 

of each locus was different and highly variable for heterozygous balance and
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homozygous threshold levels, even when using an optimal amount of DNA 

template. The low level DNA templates would have suffered from competition 

between the target DNA and the high number of primers present in the 

amplification reaction. The initial idea of the autosomal SNP project was to 

develop a multiplex containing 50 loci, allowing the system to maintain the 

discrimination power of current STR multiplexes (Gill et. al. 2000a). The URP 

biochemistry was used to simplify the design of the multiplex whilst decreasing 

the likelihood of non-specific binding of the primer sets (Hussain et. al. 2003), 

nevertheless the presence of multiple primers in the reaction decreased the 

efficiency of the method. It may prove impossible to create a multiplex with 

larger numbers of loci using the URP method of amplification, due to interaction 

between the primer sets used. Primer extension assays, such as SNaPshot™, do 

allow identification of high numbers of SNP loci in one amplification (Inagaki et. 

al. 2004; Quintans et. al. 2004; Divne and Allen 2005) and should be considered 

for further study. Strict interpretation guidelines would be necessary for accurate 

genotyping, but this is true for any DNA profiling method targeting LCN samples.

To minimise operator variability an in-house computer program, Celestial™, was 

used to genotype the data obtained from the 21-SNP multiplex, based on a set of 

rules formulated from dilution series experiments. The interpretation criteria were 

unique in that each peak was characterised according to the rules laid out for each 

particular SNP locus. Other DNA profiling systems use interpretation criteria 

generated from data for all loci to genotype sample data (Gill et. al. 1997; Cotton 

et. al. 2000; Gill et. al. 2000b). Celestial™ was used for genotyping all the 

sample data generated in this study. The criteria were set by assessing a range of 

DNA samples of varying dilutions, more or less forcing alleles to ‘drop out’ of the 

DNA profile. For optimal DNA templates, the variation between heterozygous 

balance and the thresholds for homozygous peaks were a lot lower and a much 

less stringent rule-set could have been used with equal success. The URP 

multiplex system could be used for non-forensic purposes, such as medical 

diagnostics, with relative success as optimal amounts of DNA are readily 

available. These diagnostic tests are much more amenable to high throughput 

primer extension techniques, due to increased DNA template levels, and are well-
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established in the gene expression community (Wang et. al. 1998; Heller 2002; 

Pusch et. al. 2003; Dudbridge and Koeleman 2004).

LCN casework samples were amplified with variable success using the 21-SNP 

multiplex. A comparison of LCN STR and SNP percentage profiles and 

likelihood ratios indicated that LCN DNA profiling had a greater chance of 

gaining a result, even though the DNA in the samples was degraded. The 

discrimination power gained from one STR locus is much higher than that gained 

from one SNP locus, due to the presence of many alleles at each STR site 

(Chakraborty et. al. 1999; Gill 2001a; Ayres 2005), and a partial STR profile will 

give an increased likelihood ratio compared to a partial SNP profile. Validation 

of the multiplex indicated that if LCN STR DNA profiling failed then the 21-SNP 

multiplex would also fail to amplify. This is most likely due to the amount of 

template DNA being too low to exponentially amplify, or there may not have been 

any DNA present in the sample collected. As a consequence of this observation, 

implementation of the technique into casework was carried out with direction to 

only use the technique in situations where a partial LCN DNA profile had been 

obtained.

Validation of the 21-SNP multiplex demonstrated the problems associated with 

targeting SNP loci as opposed to STRs. The SNP loci selected for use in the 

multiplex were biallelic, meaning there were only two alleles per locus. Some 

identified SNP loci are triallelic and it may be more beneficial to target these in 

future multiplexes (Phillips et. al. 2004). The match probability of each biallelic 

SNP locus is much reduced compared to the multi-allelic STR loci, so more loci 

need analysing to gain an increased discrimination power (Chakraborty et. al. 

1999; Gill 2001a; Phillips et. al. 2004). The biallelic nature of the selected SNPs 

also makes it difficult to determine the presence of a mixture in a DNA sample. 

By developing a technique that is highly quantitative, mixture analysis would be 

feasible by observing the heterozygous balance of a locus, however no technique 

currently exists that is quantitative enough to assess mixtures (Gill et. al. 2004a; 

Dixon et. al. 2005a; Dixon et. al. 2005b). Mixture analysis can be determined by 

examination of the number of heterozygous loci in a single profile. An excess of 

heterozygotes can be indicative of a mixed DNA profile; however it is impossible
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to separate the two genotypes into single profiles due to the presence of only two 

alleles, and the profile could feasibly have come from one individual. 

Consequently, another recommendation for the implementation of the system into 

casework was to only submit discrete sample types, i.e. sample types that were 

unlikely to contain a mixture, such as deep muscle and bone. The 21-SNP 

multiplex was found to be of a similar sensitivity to the current method of LCN 

STR DNA profiling. Due to the problems associated with SNP analysis, along 

with the average performance of the 21-SNP multiplex (Dixon et. al. 2005b), a 

decision was made to research other methods for analysis of degraded DNA.

A recent extensive collaborative research study by the ENFSI DNA Working 

Group and EDNAP demonstrated that the success rate for analysis of degraded 

samples can be substantially improved by testing shorter (“mini”) STRs (Dixon et. 

al. 2005b). Current STR loci can be redesigned to produce shorter amplicons, 

allowing a new mini-STR system to be compatible with current national DNA 

databases (Butler et. al. 2003; Chung et. al. 2004; Drabek et. al. 2004). The 

smaller mini-STR sequences benefit from being able to target smaller, more 

fragmented DNA molecules, whilst maintaining a discrimination power equal to 

that already gained from conventional STR systems. Research carried out by the 

National Institute of Standards and Technology (NIST) has considerably furthered 

the field of mini-STR multiplex development over the last few years (Ruitberg et. 

al. 2001; Butler et. al. 2003; Chung et. al. 2004; Drabek et. al. 2004). STR primer 

sets used in current multiplex systems are designed up and downstream of the 

STR locus, a suitable distance away from the polymorphic region. This method 

had the advantage of being able to design highly efficient primers, as well as 

making the amplicon sizes such that they could be easily separated using gel (and 

later capillary) electrophoresis. Mini-STR primers are simply targeted closer to 

the polymorphic region. This has the advantage of decreasing the length of 

amplified DNA but can be problematic as the region immediately up and 

downstream of the STR is highly polymorphic and primer-binding site mutations 

can be present in some individuals. The presence of primer-binding site 

mutations and, in some cases, deletions can cause discordance between mini-STR 

genotypes compared to STR genotypes derived from current profiling methods 

(Drabek et. al. 2004). Full sequencing of STR loci is used to identify any
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polymorphisms within these regions that could be detrimental to amplification. 

Primers can be designed with alternative bases, such as inosines, to allow binding 

within a known polymorphic region.

All existing studies confirm that there are substantial advantages to be obtained by 

converting current STR systems to low molecular weight mini-STRs (Butler et. 

al. 2003; Chung et. al. 2004; Drabek et. al. 2004; Graham 2005; Dixon et. al. 

2005b; Gill et. al. 2006). The discriminating power of current systems would be 

maintained and mixture analysis remains feasible, an essential element when 

considering highly sensitive DNA profiling techniques which are more likely to 

yield low level DNA mixtures. The idea is to construct a “mini” STR multiplex, 

based on a set of core loci identified by analysis of all the systems currently in use 

across Europe. This mini-STR multiplex could be easily incorporated into the 

current DNA profiling systems used, and would be compatible with existing STR 

national DNA databases (Gill et. al. 2006). It would also be designed to follow 

the recommendations of the House of Commons Science and Technology 

Committee, as outlined in a Home Office response note from Gill et. al. in 2005 

(http://www.publications.parliament.uk/pa/cm200506/cmselect/cmsctech/427/427 

.pdf; Gill et. al. 2005a). As the number of profiles loaded onto the National DNA 

Database® increases, the Committee recommends the introduction of a sixteen- 

locus STR system. Heeding the advice of Sir Alec Jeffreys: “the consequences o f 

even one false match leading to a conviction that was subsequently overturned 

could be severe for the DNA database and its public acceptability”; more loci 

could be used to decrease the chances of an adventitious match. Gill (2005) 

outlines the development of a mini-STR system that will increase the likelihood of 

successful amplification on degraded samples, whilst increasing the 

discriminating power and improving the comparability to European databases 

(Gill et. al. 2005a; Gill et. al. 2006).

This study highlighted the benefits and drawbacks of using a SNP multiplex for 

forensic identification. The limited amount of research conducted on the forensic 

use of SNPs suggests it is unlikely that SNPs will replace STRs as the DNA 

profiling method of choice in the near future, due to incompatibility with current

http://www.publications.parliament.uk/pa/cm200506/cmselect/cmsctech/427/427
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national DNA databases and difficulties in mixture analysis (Gill et. al. 2004a). 

The cost of upgrading a database to SNP DNA profiles far outweighs the benefits 

of such a system. Although disregarded from widespread use, there is still a 

requirement for a validated SNP multiplex system in the forensic community, to 

act as an adjunct to current methods. The ability to design small amplicons allows 

fragmented DNA to be targeted, however a more robust system is required to cope 

with the stochastic variation recognised at low DNA template levels. Research is 

ongoing into primer extension methods of detection but, to date, the 21-SNP 

multiplex is the only validated SNP multiplex in the forensic community.
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A ppendix  I -  21-SNP m ultiplex  data

(Amelogenin is omitted from the data)

SNP internal ID TSC identifier Chromosome Polymorphism Amplicon size (bp)

TSCOD 0252540 3 C/T 103

TSCO U6 0746324 5 A/T 107

TSCO B6 1342445 3 A/T 110

TSCO N4 1156239 18 AJT 114

TSCO Y3 0846740 7 C/G 117

TSCO P5 0176551 1 A /T 122

TSCO A4 0421768 8 C/G 125

TSCO 0 6 1588825 5 A /T 129

TSCO Z2 0086795 6 C/T 134

TSCOK3 0078283 21 C/G 137

TSCO J2 0156245 19 C/T 141

TSCO Y6 0627632 5 A /T 147

TSCO P7 0897904 6 A /T 151

TSCO J8 0709016 3 A /T 154

TSCO X 0031988 8 A/C 158

TSCO F 0155410 10 A/C 164

TSCO G 0154197 11 C/T 170

TSCO L2 00384808 17 C/T 174

TSCO W3 0820041 9 C/G 180

TSCO H8 0131214 14 A /T 186
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A ppendix  II -  The com puter  program  ASGOTH

Dim intUnknownSamples As Integer 
Dim intUnknownSpots As Integer 
Dim RowstoSelect As Integer 
Dim SamplesUsed As Integer 
Dim intControlSpots As Variant 
Dim UnknownsUsed As Integer

Sub ASGQTH20020

Application.StatusBar= "ASGOTH running Please wait..."
Application. ScreenUpdating = False 

Worksheets(" col lection"). Select 
Range("Al ").Select

SamplesUsed = Application.InputBox("how many control samples have been used?", "specify numbers", 0 ,, 
, , , 1)
UnknownsUsed = Application.InputBox("how many unknown samples are there?", "specify unknown sample 
number", 0 , , , , ,  1)
RowstoSelect = Application.InputBox("how many spots do you want to use in the validation?", "select 
number of spots", 0 , , , , ,  1)

controls
unknowns

For theloop = 1 To 1000

forbootstrappingcontrols
forbootstrappingunknowns
comparison
collectionofdata
resetforms

Next

Application.StatusBar = False 

End Sub

Sub controlsf)

Worksheets("controls").Select 
Range("F2"). Select

intControl Samples = SamplesUsed

Er2: intControl Spots = Application.InputBox("how many replicate spots are there per control sample?",
"control spots", 0 , , , , ,  1 + 2)
If intControl Spots = False Then Exit Sub 

If intControlSpots = "" Then 
MsgBox "You must enter a valid number of spots", vbOKOnly + vbExclamation 

GoTo Er2
End If

Err: txtGenotype = Application.InputBox("what is the genotype of the first sample?" & (Chr(13) &
Chr(10)) & (Chr(13) & Chr(10)) & " type '1' for Homozygote 1" & (Chr(13) & Chr(10)) & " type '2' for 
Heterozygote" & (Chr(13) & Chr(10)) & " type '3' for Homozygote 2", "genotypes",, , , , ,  1)

If txtGenotype = False Then Exit Sub 
If txtGenotype = 1 Then

For Cellinuse = 1 To intControlSpots 
ActiveCell. Value = 1 
ActiveCell.Offset(l, 0).Select

Next
Elself txtGenotype = 2 Then
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For Cellinuse = 1 To intControlSpots 
ActiveCell.Value = 2 
ActiveCell.Offset(l, 0).Select

Next
Elself txtGenotype = 3 Then

For Cellinuse = 1 To intControlSpots 
ActiveCell.Value = 3 
ActiveCell.Offset(l, 0).Select

Next
Else

MsgBox "You must enter a genotype 1, 2 or 3", vbOKOnly + vbExclamation, Attention
GoTo Err

End If 

counting = 1

For intSample = 1 To ((intControlSpots * intControl Samples) - (intControlSpots)) Step intControlSpots 

counting = counting + 1

Err2: txtGenotype = Application.InputBox("what is the genotype of the next sample?" & (Chr(13) &
Chr(10)) & " "" " & (Chr(13) & Chr(10)) & " type 1 for Homozygote 1" & (Chr(13) & Chr(10)) & " type 2 
for Heterozygote" & (Chr(13) & Chr(lO)) & " type 3 for Homozygote 2", "genotypes",, , , ,  1)

If txtGenotype = False Then Exit Sub
If txtGenotype = 1 Then

For Cellinuse = 1 To intControlSpots 
ActiveCell.Value = 1

ActiveCell.Offset( 1,0). Select 
Next

Elself txtGenotype = 2 Then
For Cellinuse = 1 To intControlSpots 

ActiveCell.Value = 2 
ActiveCell.Offset( 1, 0).Select

Next
Elself txtGenotype = 3 Then

For Cellinuse = 1 To intControlSpots 
ActiveCell.Value = 3 
ActiveCell.Offset(l, 0).Select

Next
Else

MsgBox "You must enter a genotype 1, 2 or 3", vbOKOnly + vbExclamation, Attention 'if any other value is 
added this box comes up

GoTo Err2 
End If

Next

Range("E2"). Select

For intSample = 1 To (intControlSpots * intControl Samples)

If ActiveCell.Offset(0, -4).Value >= Range("K18").Value And ActiveCell.Offset(0, -2).Value >= 
Range("L18").Value Then
If ActiveCell.Offset(0, -1).Value = 0 Or ActiveCell.Offset(0, -3).Value = 0 Then 
ActiveCell.Value = ""

ActiveCell.Offset(0, 1). Value = ""
ActiveCell.Offset(l, 0).Select 

Else
Acti veCell. F ormul a = "=LOG10(RC[-3]/RC[-l])"

ActiveCell.Offset(l, 0).Select 
End If

Else
ActiveCell.Value = ""

ActiveCell.Offset(0, 1). Value = ""
ActiveCell.Offset(l, 0).Select 
End If 
Next 
End Sub
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Sub unknownsO

W orksheets(" unknowns"). Select 
Range("A2").Select

intUnknownSamples = UnknownsUsed

intUnknownSpots = Application.InputBox ("how many replicate spots are there per unknown sample?", 
"control spots", 0 , , , , ,  1)

If intUnknownSpots = False Then Exit Sub

Range("E2"). Select

For intSample = 1 To (intUnknownSpots * intUnknownSamples)
If ActiveCell.Offset(0, -1).Value = 0 Or ActiveCell.Offset(0, -3).Value = 0 Then 

ActiveCell.Value = ""
ActiveCell.Offset(l, 0).Select

Else
Acti veCell. F ormula = "=LOG10(RC[-3]/RC[-l])"

ActiveCell.Offset(l, 0).Select 
End If

Next 

End Sub

Sub forbootstrappingunknownsO

Worksheets("bootstrapunknowns").Select 
Range("A2"). Select

Worksheets("unknowns").Select

sample = RowstoSelect

Randomize

For intRow = 2 To ((UnknownsUsed * intUnknownSpots) + 1) Step intUnknownSpots

For intSpot = 1 To RowstoSelect

intRowstoPick = Int(24 * Rnd + intRow)

Cells(intRowstoPick, 1). Select
strStartcell = ActiveCell.Address(False, False)
strEndcell = ActiveCell.Offset(0, 5).Address(False, False)
strSelection = strStartcell & & strEndcell
Range(strSelection). Select
Selection. Copy

Worksheets("bootstrapunknowns").Select 
ActiveCell. Select
Selection.PasteSpecial Paste^xlValues 
ActiveCell.Offset(l, 0).Select 
Worksheets("unknowns"). Select

Next
Next

Worksheets( "bootstrapunknowns"). Select

Range("A:A").Select 
Selection.Copy
Worksheets("compare").Select 
Range("Al"). Select 
Selection.PasteSpecial Paste:=xlValues
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Worksheets("bootstrapunknowns"). Select
Range("C:C").Select
Selection.Copy
Worksheets("compare"). Select 
Range("B 1"). Select 
Selection.PasteSpecial Paste:=xlValues

Worksheets("bootstrapunknowns").Select
Range("E:E").Select
Selection.Copy
Worksheets(" compare" )• S el ect 
Range("Cl"). Select 
Selection.PasteSpecial Paste:=xl Values

End Sub

Sub forbootstrappingcontrolsO

Worksheets("bootstrapcontrols").Select 
Range("A2"). Select

Worksheets("controls"). Select

sample = RowstoSelect

Randomize

For intRows = 2 To ((SamplesUsed * intControlSpots) + 1) Step intControlSpots 

For intSpots = 1 To RowstoSelect 

Again:

intRowtoPick = Int(24 * Rnd + intRows)

If Cells(intRowtoPick, 5).Value = "" Then GoTo Again

Cells(intRowtoPick, l).Select
strStartcell = ActiveCell.Address(False, False)
strEndcell = ActiveCell.Offset(0, 5).Address(False, False)
strSelection = strStartcell & & strEndcell
Range(strSelection). Select
Selection.Copy

Worksheets( "bootstrapcontrols"). Select 
ActiveCell. Select
Selection.PasteSpecial Paste:=xlValues 
ActiveCell.Offset(l, 0).Select 
Worksheets(" controls"). Select

Next
Next

Worksheets( "bootstrapcontrol s"). S elect
Columns("E:F").Select
Selection.Copy
Sheets("bins"). Select
Range("Al"). Select
Selection.PasteSpecial Paste:=xl Values

intHoml = 0 
intHet = 0 
intHom2 = 0

Range("A2"). Select

For intsamples = 1 To (SamplesUsed * RowstoSelect)
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If ActiveCell.Offset(0, l).Value = 1 Then 
intHoml -  intHoml + 1 
Cells(intHoml, 4).Value = ActiveCell.Value 
Elself ActiveCell.Offset(0, 1).Value = 2 Then 
intHet = intHet + 1
Cells(intHet, 5).Value = ActiveCell. Value
Elself ActiveCell.Offset(0, 1).Value = 3 Then
intHom2 = intHom2 + 1
Cells(intHom2, 6).Value = ActiveCell.Value
Else
End If

ActiveCell.Offset(l, 0).Select 

Next

Range("H 1: S4"). Select 
Selection.Copy 
Sheets("compare"). Select 
Range("G8"). Select 
Selection.PasteSpecial Paste:=xlValues

End Sub

Sub comparisonO

Worksheets("table").Select 
Range("Al"). Select 
Worksheets("compare"). Select 
RangeC’Cl"). Select

For inttotal Samples = 0 To ((RowstoSelect * UnknownsUsed) - RowstoSelect) Step RowstoSelect 

ActiveCell.Offset(inttotalSamples + 1, 0).Select 

counter -1
counter2 = counter2 + 1

For intSample = 1 To RowstoSelect

If ActiveCell. Offset(0, -2).Value > Range("117"). Value And ActiveCell. Offset(0, -1).Value > 
Range("J17").Value Then

counter = counter + 1
Cells(counter, 5).Value = ActiveCell.Value

Else 
End If

ActiveCell.Offset(l, 0).Select

Next

If Range("I2").Text= "#NUM!" Then 
Range("S2"). Value = "FAIL"
GoTo nextl

Elself Range("I2").Value >= Range("M9") Then 
Range("S2").Value = 1

Elself Range("I2").Value >= Range("M10") And Range("I2").Value <= Range("N10") Then 
Range("S2"). Value = 2 

ElselfRange("I2").Value<= Range("Nll") Then 
Range("S2"). Value = 3

End If

If Range("I2").Value <= Range("M9") And Range("I2").Value >= Range("N10") Then 
Range("S2"). Value = "POSSIBLE TYPE 1 OR 2"

End If

If Range("I2").Value <= Range("M10") And Range("I2").Value >= Range("Nl 1") Then
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Range("S2"). Value -  "POSSIBLE TYPE 2 OR 3"
End If

nex tl: Range("G2"). Value = counter2

Range("G2:S2").Select 
Selection.Copy 
Worksheets("table").Select 
ActiveCell.Offset(l, 0).Select 
Selection.PasteSpecial Paste:=xlValues

Worksheets("compare").Select 
Range("E:E"). Select 
Selection.ClearContents 

RangeC'Cl").Select

Next

Worksheets("table").Select 
Range("Al"). Value = "Sample Number"

Range("02"). Select

For samples = 1 To intUnknownSamples

If ActiveCell. Offset(0, -1).Value = ActiveCell. Offset(0, -2).Value Then 
ActiveCell. Value = 1 
ActiveCell.Offset(l, 0).Select
Elself ActiveCell.Offset(0, -2). Value = "POSSIBLE TYPE 1 OR 2" Then 
ActiveCell.Offset(0, 2).Value = 1 
ActiveCell.Offset(l, 0).Select
Elself ActiveCell.Offset(0, -2).Value = "POSSIBLE TYPE 2 OR 3" Then
ActiveCell.Offset(0, 2).Value= 1
ActiveCell.Offset(l, 0).Select
Elself ActiveCell.Offset(0, -2). Value = "FAIL" Then
ActiveCell.Offset(0, 2).Value = 1
ActiveCell.Offset(l, 0).Select
Else
ActiveCell. Offset(0, 1). Value = 1 
ActiveCell.Offset(l, 0).Select 
End If 
Next

End Sub

Sub collectionofdataO

Worksheets(" collection"). Select 
Worksheets("table").Select 
Range("0915: Q915"). Select 
Selection.Copy
Worksheets("collection").Select 
ActiveCell.Offset(l, 0).Select 
Selection.PasteSpecial Paste:=xlValues

End Sub

Sub resetformsf)

Worksheets("table"). Select 
Range("A2:M4000").Select 
Selection.ClearContents 
Range("02:Q900"). Select 
Selection.ClearContents

End Sub
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APPENDIX III -  SNP 27-pl ex  p r im e r  se q u e n c e s

9, 11 or 13 denotes the Universal sequence found at the 5’ end of the primer sequences.
Within the multimix, the locus-specific primers are found at concentrations varying from 50nM to 
200nM. Universal primers with fluorescent labels are used at 2pM.

Forward primers Universal 9 tail (CGACGTGGTGGATGTGCTAT)

Amelo X UNI9-CCAGATGTTTCTCAAGTGGTCCTG 44 mer
TSCO D/9 UN I9-GGG AA ACT GCT GGGT CT GT 39 mer
TSCO B6/9 UNI9-GGGAGACAGGCCCATGCA 38 mer
TSCO N4/9 UNI9-CAGAAAAGGCAGGAACCTGGACA 43 mer
TSCO Y3/9 UNI9-ACCAACCCCACAAAGCAGG 39 mer
TSCO A4/9 UNI9-GATGCCTCTTGCATTGTGAACG 42 mer
TSCO 06/9 UNI9-GAGCCAAGAATCGCAGGGAA 40 mer
TSCO Z2/9 UNI9-CATTGTGTTTCAAACGCGTGCC 42 mer
TSCO K3/9 UNI9-T GCC ACTCT G AC ACT GAT GCTT G 43 mer
TSCO J2/9 UNI9-CTGCCTTGGCTCCCAGCC 38 mer
TSCO Y6/9 UNI9-CAAGATTCCTGGCCCCTGGTAA 42 mer
TSCO J8/9 UNI9-C AGGG AATGAC AGGG AACC ACT A 43 mer
TSCO X/9 UNI9-CTGTGCATCCACTGCGCC 38 mer
TSCO F/9 UNI9-CCTGGAGCATGXGCTGACCAC 41 mer
TSCO G/9 UNI9-CCATGCCTCACCTCCTGCATT 41 mer
TSCO L2/9 UNI9-GCATGCCATTGCCAAATTCC 40 mer
TSCO W3/9 UNI9-GCCAACCAGACCTCCCAGG 39 mer
TSCO H8/9 UNI9-CTCAGTTGGGTGCTTACGTGCA 42 mer
TSCO L6/9 UNI9-TGTGCATGTTCCCTGGTGTTCA 42 mer
TSCO K4/9 UN19-GCGGGAGGAAGGAAGGGAGG 40 mer
TSCO X7/9 UNI9-TTTACCATTTGCTCCACAGGGAA 43 mer
TSCO U6/9 UNI9-GCAAGGCCCAAAGCAAAGAA 40 mer
TSCO W5/9 UNI9-AGGACAGTGGCTTCTGTACTGCTA 44 mer
TSCO U5/9 UNI9-CTGGAAGGGCTTTGTTTGCCAA 42 mer
TSCO V4/9 UNI9-CTGGGGAGGAAGGCTGGAGA 40 mer
TSCO P7/9 UNI9-CTCTTCCAGCAGGCACCATGA 41 mer
TSCO P5/9 UNI9-GGGGGTACTGGGGAGACCAA 40 mer

Forward primers Universal 11 tail (TGACGTGGCTGACCTGAGAC)

Amelo Y UNI11 -AAAGTGGTTTCTC AAGTGGTCCC A 44 mer
TSCO D/11 UNI11 -GGG AAACT GCT GGGT CT GC 39 mer
TSCO B6/11 UNI11 -GGGAGACAGGCCC ATGCT 38 mer
TSCO N4/11 UNI11-CAGAAAAGGCAGGAACCTGGACT 43 mer
TSCO Y3/11 UNI 11 -ACCAACCCCAC AAAGCAGC 39 mer
TSCO A4/11 UNI 11 -GATGCCTCTTGC ATTGTG AACC 42 mer
TSCO 06/11 UNI11 -GAGCC AAGAATCGCAGGGAT 40 mer
TSCO Z2/11 UNI11 -CATTGTGTTTCAAACGCGTGCT 42 mer
TSCO K3/11 UNI11 -TGCC ACTCTG AC ACTGATGCTTC 43 mer
TSCO J2/11 UNI11 -CTGCCTTGGCTCCCAGCT 38 mer
TSCO Y6/11 UNI11 -CAAGATTCCTGGCCCCTGGTAT 42 mer
TSCO J8/11 UNI11-C AGGG AATGAC AGGG AACC ACTT 43 mer
TSCO X/l 1 UNI 11 -CTGTGC ATCCACTGCGC A 38 mer
TSCO F/l 1 UNI11 -CCTGGAGC ATGXGCTG ACC AA 41 mer
TSCO G/l 1 UNI 11 -CCATGCCTCACCTCCTGCATC 41 mer
TSCO L2/11 UNI11 -GCATGCCATTGCCAAATTCT 40 mer
TSCO W3/11 UNI11 -GCC AACC AG ACCTCCC AGC 39 mer
TSCO H8/11 UNI11 -CTCAGTTGGGTGCTTACGTGCT 42 mer
TSCO L6/11 UNI11 -TGTGCATGTTCCCTGGTGTTCT 42 mer
TSCO K4/11 UNI11 -GCGGGAGG AAGG AAGGGAGC 40 mer
TSCO X7/11 UNI11 -TTTACCATTTGCTCCACAGGGAT 43 mer
TSCO U6/11 UNI11-GCAAGGCCCAAAGCAAAGAT 40 mer
TSCO W5/11 UNI11 -AGGAC AGTGGCTTCTGT ACTGCTT 44 mer
TSCO U5/11 UNI11 -CTGGAAGGGCTTTGTTTGCC AT 42 mer
TSCO V4/11 UNI11 -CTGGGGAGGAAGGCTGGAGT 40 mer
TSCO P7/11 UNI11-CTCTTCCAGCAGGCACCATGT 41 mer
TSCO P5/11 UNI11 -GGGGGTACTGGGGAGACCAT 40 mer



Appendices

Reverse primers Universal 13 tail (CAAGCTGGTGGCTGTGCAAG)

Amelo/rev 
TSCO D/rev 
TSCO B6/rev 
TSCO N4/rev 
TSCO Y3/rev 
TSCO A4/rev 
TSCO 06/rev 
TSCO Z2/rev 
TSCO K3/rev 
TSCO J2/rev 
TSCO Y6/rev 
TSCO J8/rev 
TSCO X/rev 
TSCO F/rev 
TSCO G/rev 
TSCO L2/rev 
TSCO W3/rev 
TSCO H8/rev 
TSCO L6/rev 
TSCO K4/rev 
TSCO X7/rev 
TSCO U6/rev 
TSCO W5/rev 
TSCO U5/rev 
TSCO V4/rev 
TSCO P7/rev 
TSCO P5/rev

UNI 13- TGCTT A A ACT GGG A AGCT GXT GGT 
UNI 13- AATGACCTGCCCCACAGGAG 
UNI 13- GCCATTCAGAACTAACTAGTCTGGGA 
UNI 13- CGACGGGGGTTGAGTGGTTCAG 
UNI 13- ATTAGAGCAGCCAAGTCCTGACCA 
UNI 13- GCTCAACAGCACAACTCTGCTACAGC 
UNI 13- GCTAAAGCAGCTCTGAAACCCA 
UNI 13- GG ATC AG AG A A AGT GC AGCT GGT 
UNI 13- AAT GGGG AG ATT GGCTTGG AC 
UNI 13- CCTGAACATCCCTGAAGGTATTTCG 
UNI 13- GATTTGGGAXTTTAGTGACATCTGCA 
UNI 13- CTGTACATCTTTTAAGACCAACTCCTT 
UNI 13- TCT AGGCT GGT GCC AGCCC 
UNI 13- GGCTCT G AAG AAC AAT GGGG AG 
UNI 13- CAATCCTGTTTGCAGAGTTCCAG 
UNI 13- TG AGCC AAGGT GT GGGG A 
UNI 13- TT ACACAGGTCTCCAGCTTG AGC AA 
UNI 13- AAG AGGG AGC ACT GT GGG ACT G 
UNI 13- AACGGCCTTGCTTCGCTGA 
UNI 13- GGGC AGGTC AGG AT GG AGC AG 
UNI 13- CACCTTGCTGCATCCTGCTG 
UNI 13- TGGATAGATGATCAGTCTGCGTTC 
UNI 13- GGCCAGCAGAGATTCACACTGT 
UNI 13- GATGGAATCACTGTCCTTGCCCT 
UNI 13- AGCCAAGATCGCACCACTGTA 
UNI 13- AGTGGTTTGCTGCATGAGTCCA 
UNI 13- CGGAGGAGATTTTGCCCTGCA

44 mer
40 mer
46 mer
42 mer
44 mer
46 mer
42 mer
43 mer
41 mer
45 mer
46 mer
47 mer
39 mer
42 mer
43 mer
38 mer
45 mer
42 mer
39 mer
41 mer
40 mer
44 mer
42 mer
43 mer
41 mer
42 mer
41 mer

Universal 9 CGACGTGGTGGATGTGCTAT 20 mer
Universal 11 T G ACGT GGCT G ACCT GAG AC 20 mer

5’-JOE-6 dye label 
5’-FAM-6 dye label

X = Inosine
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A ppendix  IV - SNP 21-plex  prim er  sequences

9, 11 or 13 denotes the Universal sequence found at the 5’ end of the primer sequences.

Within the multimix, the locus-specific primers are found at concentrations varying from 50nM to 200nM. 

Universal primers with fluorescent labels are used at 2pM.

Forward primers Universal 9 tail (CGACGTGGTGGATGTGCTAT)

Amelo X UNI9-CCAGATGTTTCTCAAGTGGTCCTG 44mer
TSCO D/9 UNI9-GGG A AACT GCT GGGTCT GT 39mer
TSCO U6/9 UNI9-GCAAGGCCCAAAGCAAAGAA 40mer
TSCO B6/9 UNI9-GGG AG AC AGGCCC AT GC A 38mer
TSCO N4/9 UNI9-CAGAAAAGGCAGGAACCTGGACA 43 mer
TSCO Y3/9 UNI9-ACCAACCCCACAAAGCAGG 39mer
TSCO P5/9 UNI9-GGGGGT ACTGGGGAG ACC AA 40mer
TSCO A4/9 UNI9-GATGCCTCTTGCATTGTGAACG 42mer
TSCO 06/9 UNI9-G AGCC AAG AAT CGC AGGG AA 40mer
TSCO Z2/9 UNI9-CATTGTGTTTCAAACGCGTGCC 42mer
TSCO K3/9 UNI9-TGCCACTCTGACACTGATGCTTG 43mer
TSCO J2/9 UNI9-CTGCCTTGGCTCCCAGCC 38mer
TSCO Y6/9 UNI9-CAAGATTCCTGGCCCCTGGTAA 42mer
TSCO P7/9 UNI9-CTCTTCCAGCAGGCACCATGA 41 mer
TSCO J8/9 UNI9-CAGGGAATGACAGGGAACCACTA 43mer
TSCO X/9 UNI9-CTGTGCATCCACTGCGCC 38mer
TSCO F/9 UNI9-CCTGGAGCATGXGCTGACCAC 41 mer
TSCO G/9 UNI9-CCATGCCTCACCTCCTGCATT 41 mer
TSCO L2/9 UNI9-GCATGCCATTGCCAAATTCC 40mer
TSCO W3/9 UNI9-GCCAACCAGACCTCCCAGG 39mer
TSCO H8/9 UNI9-CTCAGTTGGGTGCTTACGTGCA 42mer

Forward primers Universal 11 tail (TGACGTGGCTGACCTGAGAC)

Amelo Y UNI11 -AAAGTGGTTTCTCAAGTGGTCCC A 44mer
TSCO D/11 UNI11-GGGAAACTGCTGGGTCTGC 39mer
TSCO U6/11 UNI11 -GC AAGGCCC AAAGC AAAG AT 40mer
TSCO B6/11 UNI11-GGGAGAC AGGCCC ATGCT 38mer
TSCO N4/11 UNI11 -CAGAAAAGGCAGGAACCTGGACT 43 mer
TSCO Y3/11 UNI11-ACC AACCCC AC AAAGC AGC 39mer
TSCO P5/11 UNI11 -GGGGGT ACTGGGGAG ACC AT 40mer
TSCO A4/11 UNI11 -GATGCCTCTTGCATTGTGAACC 42mer
TSCO 06/11 UNI11 -GAGCC AAGAATCGC AGGGAT 40mer
TSCO Z2/11 UNI11 -CATTGTGTTTCAAACGCGTGCT 42mer
TSCO K3/11 UNI11 -TGCCACTCTGACACTGATGCTTC 43mer
TSCO J2/11 UNI11 -CTGCCTTGGCTCCCAGCT 38mer
TSCO Y6/11 UNI11 -CAAGATTCCTGGCCCCTGGTAT 42mer
TSCO P7/11 UNI11 -CTCTTCCAGCAGGCACCATGT 41 mer
TSCO J8/11 UNI11 -CAGGGAATGACAGGGAACCACTT 43mer
TSCO X/l 1 UNI11 -CTGTGCATCCACTGCGCA 38mer
TSCO F/l 1 UNI11-CCTGGAGCATGXGCTGACCAA 41 mer
TSCO G/l 1 UNI11-CCATGCCTCACCTCCTGCATC 41 mer
TSCO L2/11 UNI 11 -GCATGCCATTGCCAAATTCT 40mer
TSCO W3/11 UNI 11 -GCCAACCAGACCTCCCAGC 39mer
TSCO H8/11 UNI11-CTCAGTTGGGTGCTTACGTGCT 42mer
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Amelo/13 
TSCO D/13 
TSCO U6/13 
TSCO B6/13 
TSCO N4/13 
TSCO Y3/13 
TSCO P5/13 
TSCO A4/13 
TSCO 06/13 
TSCO Z2/13 
TSCO K.3/13 
TSCO J2/13 
TSCO Y6/13 
TSCO P7/13 
TSCO J8/13 
TSCO X /13 
TSCOF/13 
TSCO G/13 
TSCO L2/13 
TSCO W3/13 
TSCO H8/13

UNI 13-TGCTT AAACTGGGAAGCTGXTGGT 44mer
UNI 13-AATGACXTGCCCCAC AGGAG 40mer
UNI 13-ACAAAGCCCCAAGGCAGAG 39mer
UNI 13 -GCC ATTC AG A ACT AACT AGTCT GGG A 46mer
UNI 13-CGACGGGGGTTGAGTGGTTCAG 42mer
UNI 13-ATT AGAGC AGCC AAGTCCT G ACC A 44mer
UNI 13-AGGCGGATCCTGGAGGG 37mer
UNI 13-GCTC AAC AGC AC AACTCTGCTAC AGC 46mer
UNI 13-GCT AAAGCAGCTCTGAAACCC A 42mer
UNI 13-GGATCAGAGAAAGTGCAGCTGGT 43mer
UNI 13-AATGGGGAG ATTGGCTTGGAC 41 mer
UNI13-CCTGAACATCCCTGAAGGTATTTCG 45mer
UNI 13 -T AGCCTT AGG AC AT GGT GATT AC AG A 46mer
UNI 13-GATTTGGGAXTTT AGTGAC ATCTGCA 46mer
UNI 13-CTGT AC ATCTTTT AAG ACC AACTCCTT 47mer
UNI 13-TCTAGGCTGGTGCC AGCCC 39mer
UNI 13-GGCTCTGAAGAACAATGGGGAG 42mer
UNI13-CAATCCTGTTTGCAGAGTTCC AG 43mer
UNI 13-TGAGCCAAGGTGTGGGGA 38mer
UNI13-TTACACAGGTCTCCAGCTTGAGCAA 45mer
UNI 13-AAGAGGGAGC ACTGTGGG ACTG 42mer

Universal 9 CGACGTGGTGGATGTGCTAT 20 mer
Universal 11 T G ACGT GGCTG ACCT GAG AC 20 mer

5’-JOE-6 dye label 
5’-FAM-6 dye label

X = Inosine
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APPENDIX V -  PCR AMPLIFICATION PARAMETERS 

SNP multiplex amplification

Temperature Time

95°C 11 min

94°C 30 sec

60°C 15 sec

72°C 15 sec

& 60°C 15 sec
’'O 72°C 15 sec

60°C 15 sec

72°C 30 sec

O s - ~
94°C 30 sec

<n y
o ' 76°C 105 sec

3 94°C 60 sec

& 60°C 30 sec
76°C 60 sec

60°C 45 min

4°C Hold

SGM+ amplification

Temperature Time

95°C 11 min

2<5 
cy

cl
es

 
(st

an
da

rd
) 

/ 3
4 

cy
cle

s 
(lo

w
 

co
py

 
nu

m
be

r) 94°C 60 sec

59°C 60 sec

72°C 60 sec

60°C 45 min

4°C Hold
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A p pe n d ix  V I -  Pe r c e n t a g e  pr o file s  f o r  b o il e d  D N A  e x t r a c t s

SNPs % SGM+ %

time of boiling (min) Sample ID full 27-plex LMW SNPs HMW SNPs full SGM+ LMW SGM+ HMW SGM+
profile only only profile STRs STRs

0 CAS 96 100 89 100 100 100
15 CAS 94 100 83 100 100 100
30 CAS 94 100 83 100 100 100
45 CAS 94 100 83 100 100 100
60 CAS 94 100 83 100 100 100
75 CAS 94 100 83 100 100 100
90 CAS 94 100 83 100 100 100
105 CAS 87 100 56 100 100 100
120 CAS 81 100 39 100 100 100
150 CAS 80 100 33 100 100 100
180 CAS 69 94 11 100 100 100
210 CAS 69 94 11 95 100 90
240 CAS 63 92 6 86 100 70

0 DRJ 98 100 94 100 100 100
15 DRJ 98 100 94 100 100 100
30 DRJ 98 100 94 100 100 100
45 DRJ 98 100 94 100 100 100
60 DRJ 96 100 89 100 100 100
75 DRJ 96 100 89 100 100 100
90 DRJ 96 100 89 100 100 100
105 DRJ 91 100 67 100 100 100
120 DRJ 93 100 72 100 100 100
150 DRJ 89 100 61 100 100 100
180 DRJ 83 100 44 91 100 80
240 DRJ 78 100 33 77 100 50

0 SHM 100 100 100 100 100 100
15 SHM 100 100 100 100 100 100
30 SHM 100 100 100 100 100 100
45 SHM 100 100 100 100 100 100
60 SHM 98 100 94 100 100 100
75 SHM 98 100 94 100 100 100
90 SHM 98 100 94 100 100 100
105 SHM 96 100 83 100 100 100
120 SHM 94 100 83 100 100 100
150 SHM 91 100 72 91 100 80
180 SHM 89 97 67 73 83 60
210 SHM 80 97 39 41 75 0
240 SHM 52 75 6 23 42 0

0 HER 93 100 78 100 100 100
15 HER 93 100 78 100 100 100
30 HER 93 100 78 100 100 100
45 HER 91 100 72 100 100 100
60 HER 89 97 72 100 100 100
75 HER 87 97 67 100 100 100
90 HER 81 94 56 100 100 100
105 HER 89 100 72 95 100 90
120 HER 89 100 72 91 100 80
150 HER 89 100 67 91 100 80
180 HER 85 100 56 91 100 80
210 HER 80 100 39 82 100 60
240 HER 76 100 28 77 100 50
300 HER 67 94 11 73 100 40

0 ST 89 100 67 100 100 100
15 ST 89 100 67 100 100 100
30 ST 89 100 67 100 100 100
45 ST 89 100 67 100 100 100
60 ST 89 100 67 100 100 100
75 ST 87 100 61 100 100 100
90 ST 83 97 50 100 100 100
105 ST 87 100 61 100 100 100
120 ST 87 100 61 100 100 100
150 ST 87 100 61 91 100 80
180 ST 83 100 50 91 100 80
210 ST 78 100 33 82 100 60
240 ST 74 100 22 73 100 40
300 ST 63 86 6 50 92 0
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A ppe n d ix  V II - C ele st ia l™  In t e r pr e t a t io n  C r it e r ia

(12 second data / 20 second data)

SNPID
Heterozygous balance

(Hb%min)

Homozygote threshold (Htmax) 
(rfu)

Amelo 24/26 484/672

D 25/41 738/1031

U6 32/36 373/671

B6 24/24 394/540

N4 11/13 506/736

Y3 25/26 186/256

P5 34/32 509/740
A4 25/23 583/895

06 16/16 182/738
Z2 26/25 456/954

K3 17/14 703/994
J2 23/24 204/539
Y6 27/30 545/631
P7 15/15 229/329
J8 35/41 401/1020
X 42/40 468/655
F 33/33 860/1282
G 32/35 320/574
L2 50/50 276/395
W3 13/18 290/641
H8 50/50 156/452

Heterozygous balance (Hb%) data were calculated using dilution series data. Where the 
lowest Hb% was greater than 50% the Celestial™ criteria was set at 50% to allow for 
sample variation. Homozygous threshold (Htmax) criteria were the maximum observed 
value plus an additional 20% to allow for outliers. The negative baseline (Bt) was set at 
lOOrfu and 200rfu for 12 and 20 second data respectively.



A p p e n d ix  V l l l  - F u l l  2 1 -S N P  m u l t ip l e x  g e n o t y p in g  r e s u l t s  f o r  K u w a it i  f a m il y  s a m p l e s

Genotypes in bold indicate rare alleles (allele frequency <0.1).
Genotypes in red indicate parent SNP profiles.
Genotypes in blue indicate offspring unrelated to the alleged father with mismatched loci highlighted in italics. 
Genotypes in grey indicate the locus is uninformative due to the father being heterozygous.

Sample ID Am D U6 B6 N4 Y3 P5 A4 0 6 Z2 K3 J2 Y6 P7 J8 X F G L2 W3 H8
10094 Father 1 X/Y C/C A T A A A T G/C T/A C/G A A C T G/C C/C T/A T/A A A C/C C/A T/C C/C C/C T T Parent
10095 Mother 1 X/X TIT A T A T A A g /g T T C/G A A C/C C/C T T T T T/A A A C/C C/C T T C/C C/G T T Parent
10096 Child 1A X/Y T/C T T A A A A G/C T/A C/G A A C T G/C C T T T T/A A A C/C C/C T/C C/C C/G T T
10097 Child IB X/X T/C A T A T A A G/C T T C/C A A C T G/C C T T/A T/A A A C/C C/A T/C C/C C/C T T

U* 10098 Child 1C X/Y T/C A T A A A T G/C T T C/C A A C/C C/C C T T T T/A A A C/C C/C T T C/C C/G T T
10099 Child ID X/Y T/C T T A A A A G/G T/A C/C A A C T G/C C T T/A T/A A A C/C C/A T/C C/C C/G T T
10100 Child IE X/Y T/C A T A A A A G/G T/A C/G A A C T G/C C T T T T T A A C/C C/C T T C/C C/C T T
in: is Father 2 X/Y C/C A T A T A A G/G T/A C/C A T C/C G/C C/C T/A T T A T C/C C/C T T C/C C/C T T Parent
10219 Mother 2 X/X T/C T T T T A T G/G A A C/G T T C T C/C C/C T/A T/A A A C/C C/C T/C C/C C/C T T Parent
10212 Child 2A X/Y T/C T T T T A A G/G T/A C/G A T C T C/C C/C T T T/A A T C/C C/C T/C C/C C/C T T
10213 Child 2B X/Y C/C A T A T A T G/G A A C/C T T C T G/C C/C A A T/A A A C/C C/C T/C C/C C/C T T

1 10214 Child 2C X/Y T/C T T A T A T G/G T/A C/C A T C T G/C C/C T T T T A T C/C C/C T T C/C C/C T T
10215 Child 2D X/X C/C A T T T A A G/G T/A C/C T T C/C G/C C/C T/A T/A A A C/C C/C T/C C/C C/C T T
10216 Child 2E X/X C/C T T A T A T G/G T/A C/G T T C T C/C C/C A A T/A A T C/C C/C T T C/C C/C T T
10217 Child 2F X/X C/C A T T T A T G/G T/A C/C T T C T G/C C/C T T A A C/C C/C T T C/C C/C T T
10244 Father 3 X/Y C/C A T A T A A G/G T T C/G T T C/C G/C C T T/A T T A A C/C C/A T T C/C C/C T T Parent
10245 Mother 3 X/X C/C T T A T A T G/C A A C/C A T C T G/C C/C T/A T T C/C C/C T/C C/C C/C T T Parent
10246 Child 3A X/Y C/C A T A T A T G/C T/A C/G A T C/C G/G C T T/A T T A A C/C C/C T T C/C C/C T T
10247 Child 3B X/Y C/C T T A T A A G/G T/A C/G T T C/C C/C C T T T T T A A C/C C/C T/C C/C C/C T T

tit 10248 Child 3C X/X C/C T T T T A A G/C T/A C/G T T C/C G/G C T T/A T T A A C/C C/C T/C C/C C/C T T
10249 Child 3D X/Y C/C A T T T A A G/G T/A C/C A T C T G/C C T A A T T A A C/C C/A T T C/C C/C T T
10250 Child 3E X/Y C/C A T T T A T G/C T/A C/C A T C T G/C C T T/A T T A A C/C C/C T/C C/C C/C T T
10466 Father 4 X/Y T/C T T A T A T G/C T T C/C A A C/C C/C C/C T/A T/A A T C/A T T C/C C/C A T Parent
10467 Mother 4 X/X t t T T A A A T G/G T/A C/G A T C/C G/C C/C T/A T T A T C/C C/C T/C C/C C/C T T Parent
10468 Child 4A X/Y TAT T T A A A T G/G T/A C/C A T C/C C/C C/C T/A T T A T C/C C/C T/C C/C C/C A T
10469 Child 4B X/Y T/T T T A T A T G/C T T C/C A T C/C G/C C/C T/A T T T T C/C C/A T/C C/C C/C A T

i 10470 Child 4C X/Y T/C T T A T A T G/G T T C/G A T C/C C/C C/C A A T T A T C/C C/A T/C C/C C/C A T
10471 Child 4D X/Y T/T T T A T A T G/G T T C/G A T C/C C/C C/C T/A T T A A C/C C/C T T C/C C/C A T
10472 Child 4E X/X T/T T T A T A A G/C T/A C/G A A C/C C/C C/C T/A T/A A T C/C C/C T T C/C C/C A T
10473 Child 4F X/X T/T T T A A A T G/C T T C/C A A C/C C/C C/C T T T T T T C/C C/C T T C/C C/C T T



Sample ID Amelo D U6 B6 N4 Y3 P5 A4 0 6 Z2 K3 J2 Y6 P7 J8 X F G L2 VV3 H8
8290 Mother 5 X/X T/C T T A T AT G/C TT C/C A/A C/C C/C C/C T/A T/A A/A C/C C/C TT C/C C/G T T Parent
8291 Father 5 X/Y T/T A/A A/A AT G/G T/A C/G T T C/C G/C C/C T/A T T A/A C/A C/C T/C C/C C/C T T Parent
8292 Child 5A X/Y T/C A T A T A/A G/G T/A C/C A T C/C G/C C/C T/A T/A A/A C/A C/C T T C/C C/C T T
8293 Child 5B X/Y T/C A T A/A AT G/C T/A C/G A T C/C C/C C/C TT T/A A/A C/A C/C TT C/C C/C T T

1 8294 Child 5C X/X T/T A T A T AT G/C T/A C/G A T C/C C/C C/C A/A T/A A/A C/A C/C T/C C/C C/C T T
8295 Child 5D X/Y T/C A T A/A AT G/G T/A C/G A T C/C G/C C/C T/A T/A A/A C/C C/C T/C C/C C/C T T
8296 Child 5E X/Y T T A T A/A TT G/C T/A C/G A T C/C C/C C/C A/A T T A/A C/C T/C C/C C/C T T
8297 Child 5F X/Y T T A T A T A/A G/C T/A C/G A T C/C G/C C/C T/A T/A A/A C/C C/C T/C C/C C/G T T
8485 Father 6 X/Y T T T T A/A A/A G/G T T C/G A/A CT G/C C/C T/A T T AT C/C A/A T T C/C C/C T T Parent
8486 Mother 6 X/X T/C A T T T A/A G/G T/A C/G A/A TT C/C C T A/A T/A AT C/C C/C T T T T C/C A T Parent
8487 Child 6A X/Y T T T T A T A/A G/G T T C/C A/A TT G/C C T A/A T/A AT C/C C/A T T C T C/C T T

SO 8488 Child 6B X/X T/C A T A/A G/G T/A C/G A/A CT G/C C T T/A T T A T C/C C/A T T C T C/C T T
8489 Child 6C X/Y T T A T A T A/A G/G T/A C/G A/A TT G/C C/C A/A T T A T C/C C/A T T C T C/C A T

Uh 8490 Child 6D X/Y T T T T A T A/A G/G T T C/C A/A CT C/C C T A/A T/A AT C/C C/A T T C T C/C T T
8491 Child 6E X/X T T T T A T A/A G/G T T C/G A/A CT C/C C T A/A T/A AT C/C C/A T T C T C/C A T
8492 Child 6F X/X T/C A T A T A/A G/G T/A C/G A/A TT C/C C T T/A T T AT C/C C/A T T C T C/C T T
8493 Child 6G X/Y T/C T T T/T ;*/T G/G T/A C/G A/A CT C/C C/C A/A A/A A/A C/C C/A T T T/T C/C A T Different father
8755 Father 7 X/Y T/C AT A/A A/A G/C T T C/G AT C T G/C C/C T T T T AT C/A C/C T/C CT C/C T T Parent
8756 Mother 7 X/X T/C TT A/A A T G/G T/A G/G A T TT G/C C/C T/A T T AT C/C C/C C/C CT C/C A/A Parent

r- 8757 Child 7 A X/X T/C A T A/A A T G/G T/A C/G A T TT G/C C/C T/A T T AT C/C C/C T/C CT C/C A T
8758 Child 7B X/X T/C AT A/A A T G/C T/A C/G T T TT G/G C/C T/A T T A/A C/C C/C C/C TT C/C A T

§ 8759 Child 7C X/X T/C TT A/A A/A G/G T T C/G A T TT G/C C/C T/A T T AT C/C C/C C/C C/C C/C A T
bu 8760 Child 7D X/Y T/C TT A/A A T G/G T T C/G A T TT G/C C/C T T T T A/A C/A C/C T/C CT C/C A T

8761 Child 7E X/X T/C TT A/A A/A G/C T T C/G A T T T G/C C/C T/A T T AT C/A C/C T/C C/C C/C A T
8762 Child 7F X/Y C/C TT A/A A T G/G T/A C/G T T C T G/C C/C T T T T T T C/A C/C T/C CT C/C A T
8830 Father 8 X/Y T T A/A T T AT G/G T/A C/G A T C/C G/C CT T T T T C/C C/A T/C C/C G/G T T Parent
8831 Mother 8 XX C/C T T A T A/A G/C T/A C/G T T C T C/C C/C T/A T/A C/C C/A T T C/C C/C T T Parent

00 8833 Child 8A X X C/C T/T T T AT G/G T/A C/C AT T T C/C C/C T T T/A A/A C/C A/A TT C/T C/C T T Different father
8834 Child 8B X/Y T/C A T T T A T G/G T/A C/G T T C/C C/C C T T T T/A A/A C/C C/A T/C C/C C/G T T

tu 8835 Child 8C X T T/C A T T T A/A G/G A/A C/C T T C/C C/C C/C T/A T T A/A C/C C/C T/C C/C C/G T T
8836 Child 8D X/Y T/C A T A T A/A G/G T/A C/G A T C T G/C C/C ,4/4 T T A/A C/4 C/A T T C/C C/C T T Different father
8837 Child 8E X/Y T/C T/T A T A/A G/C TT C/G T T C T C/C C/C T T T/A A/A C/4 C/A TT C/C C/C T T Different father



Sample ID Amelo D U6 B6 N4 Y3 P5 A4 0 6 Z2 K3 J2 Y6 P7 J8 X F G L2 VV3 H8
9234 Father 9 X/Y T/C A/A T T T T C/C A/A T T G/G C/C T T T T C/C C/C T/C C/C C/C T T Parent
9235 Mother 9 X/X T/T T T A/A A/A G/G T T C/C A/A C T C/C C/C A/A T T A T C/A C/C T T C/C C/G T T Parent

ON 9236 Child 9A X/Y T/C A T A/A A T G/G T T C/C A/A C T G/C C/C T/A T T A/A C/A C/C T T C/C C/G T T
9237 Child 9B X/X T/C T T A/A A T G/G T T C/C A/A C T G/C C/C T/A T T A/A C/A C/C T T C/C C/C T T

Ui 9238 Child 9C X/X T/T A T A/A A T G/G T T C/C A/A T T G/C C/C T/A T T A T C/C C/C T T C/C C/G T T
9239 Child 9D X/X T/T A T A/A A T G/G T T C/C A/A C T G/C C/C T T T T A/A C/A C/C T/C C/C C/G T T
9240 Child 9E X/Y T/C T T A/A A T G/G T T C/C A/A C T G/C C/C T/A T T A T C/C C/C T/C C/C C/G T T
9516 Father 10 X/Y T/C A T A/A A/A G/G T T C/C A T C/C C/C C T T T T/A C/A C/A T T C/C C/C T T Parent
9517 Mother 10 X/X T/T A T A/A A/A G/G T T G/G A/A C/C C/C C/C T T T/A C/C C/C C/C C/C C/C A T Parent
9518 Child 10A X/X T/C A T A/A A/A G/G T T C/G A T C/C C/C C T T T A/A A/A C/C C/C T/C C/C C/C A T

o 9519 Child 10B X/X T/T A/A A/A A/A G/G T T C/G A/A C/C C/C C T T T A/A A/A C/A C/A T/C C/C C/C T T
r*~~i 9520 Child 10C X/Y T T A T A/A A/A G/G T T C/G A/A C/C C/C C T T T A/A A/A C/A C/C T/C C/C C/C A T

Uh
9521 Child 10D X/Y T/C A/A A/A A/A G/G T T C/G A/A C/C C/C C T T T A/A A/A C/C C/A T/C C/C C/C T T
9522 Child 10E X/Y T T A T A/A A/A G/G T T C/G A T C/C C/C C/C T T T/A A/A C/C C/C T/C C/C C/C T T
9523 Child 10F X/X T/C T T A/A A/A G/G T T C/G A T C/C C/C C T T T A/A A/A C/A C/C T/C C/C C/C A T
9524 Child 10G X/X T/C T T A/A A/A G/G T T C/G A T C/C C/C C T T T T/A A/A C/A C/A T/C C/C C/C T T
9613 Father 11 X/Y T T A T A/A A/A G/C T/A C/C A T C T G/C C/C A/A T/A C/C C/C T/C C/C C/C T T Parent
9614 Mother 11 X/X T/C T T A/A A/A G/C T/A C/C A/A T T G/C C/C T/A T/A T T C/C C/C T/C C/C C/G A T Parent
9615 Child 11A X/Y T/C A T A/A A/A C/C A/A C/C A T T T G/C C/C T/A A/A A T C/C C/C T/C C/C C/C T T
9616 Child 1 IB X/X T/C A T A/A A/A C/C T/A C/C A/A T T G/C C/C A/A T/A A T C/C C/C C/C C/C C/G T T
9617 Child 11C X/Y T T A T A/A A/A C/C T T C/C A/A C T G/C C/C T/A T/A A T C/C C/C T/C C/C C/C A T

U-, 9618 Child 1 ID X/Y T/C T T A/A A/A G/C A/A C/C A/A T T G/C C/C A/A T T A T C/C C/C C/C C/C C/C T T
9619 Child HE X/Y T T A T A/A A/A G/C T/A C/C A/A C T G/C C/C T/A T/A A T C/C C/C C/C C/C C/G T T
9620 Child 1 IF X/Y T/C T T A/A A/A G/C T/A C/C A/A T T G/C C/C T/A T T A T C/C C/C C/C C/C C/C T T
9621 Child 11G X/X T/C T T A/A A/A C/C T/A C/C A/A T T G/C C/C A/A A/A C/C C/C C/C C/C C/G T T
9645 Father 12 X/Y T/C T T T T T T G/G T T G/G A/A T T G/C C/C T T T/A C/A C/C T T C/C C/C T T Parent
9646 Mother 12 X/X T T T T A T A T G/C T/A C/G A T C T G/C C T T T T T C/C C/A T/C C T C/C T T Parent
9647 Child 12A X/X T/C T T A T A T G/G T T C/G A/A T T G/G C/C T T T T A/A C/A C/C T/C C/C C/C T T
9648 Child 12B X/X T T A T A T T T G/G T/A C/G A/A C T G/C C/C T T T T A/A C/A C/C T T C T C/C T T
9649 Child 12C X/X T T T T A T T T G/G T/A C/G A/A T T G/G C T T T T T A/A C/A C/A T/C C/C C/C T T

1 9650 Child 12D X/Y T T T T A T T T G/G T T C/G A/A T T G/G C/C T T T T A/A C/A C/A T T C T C/C T T
b u 9651 Child 12E X/Y T/C T T A T T T G/C T/A C/G A/A C T C/C C T T T T T A/A C/A C/C T T C T C/C T T

9652 Child 12F X/Y T/C T T A T A T G/G T/A G/G A/A T T C/C C/T T T T T A/A C/C C/A T/C C/C C/C T T
9653 Child 12G X/X T/C T T A T A T G/C T T C/G A/A C T C/C C/C T T T/A A/A C/C C/C T T C/C C/C T T
9654 Child 12H X/X T/C T T A T T T G/C T T C/G A/A T T G/G C T T T T/A A/A C/C C/A T T C T C/C T T



Sample ID Am D U6 B6 N4 Y3 P5 A4 0 6 Z2 K3 J2 Y6 P7 J8 X F G L2 W3 H8
9234 Father 13 X/X TA A/T A A A A G/G T A C/C A A C A C/C C/C A A T/A C/A C/C TA C/C C/C T A Parent
9235 Mother 13 X/Y T/C A A T A TA G/G T A C/G A A C A C/C C/C T A TA A A C/A C/C T A C/C C/C A A Parent
9236 Child 13A X/X T/T A A A A A A G/G TA C/G A A C A C/C C/C T/A TA A A C/C C/C T A C/C C/C A A
9237 Child 13B X/X T/C A A A A A A G/G T A C/G A A C/C C/C C/C T/A TA A A C/A C/C T A C/C C/C AA

U-, 9238 Child 13C X/X TA TA A A A A G/G T A C/G A A C A C/C C/C T/A T/A A A C/A C/C TA C/C C/C A A
9239 Child 13D X/Y T/C A A A A A A G/G TA C/G A A TA C/C C/C T/A T/A A A C/A C/C T A C/C C/C TA
9240 Child 13E X/Y T/T A A T A A A G/G T A C/G A A TA C/C C/C T/A T/A A A C/A C/C TA C/C C/C A A



Appendices

A p pe n d ix  IX - L ik elih o o d  r a t io  c a l c u l a t io n s  f o r  k in sh ip  a n a l y sis

Parent 1 Parent 2 Body Likelihood ratio calculation
aa aa aa 1/a2
aa aa aF l/(a x 1) = 1/a
aa ab aa l/2a2
aa ab aF l/(2a x 1) = l/2a
aa ab ab l/4ab
ab ab ab l/4ab
ab ab aF l/(4a x 1) = l/4a
ab ab Fb 1/(1 x 4b) = l/4b
ab ab aa l/4a2
ab ab bb l/4b2
ab ab bF l/(4b x 1) = l/4b
aa ab Fb l/(4b x 1) = l/4b
aa bb ab l/2ab
aa bb aF l/(2a x 1) = l/2a
aa bb Fb 1/(1 x 2b) = l/2b
ab bb ab l/4ab
ab bb aF l/(4a x 1) = l/4a
ab bb Fb 1/(1 x 4b) = l/4b
ab bb bb l/2b2
bb bb bb 1/b2
bb bb bF l/(b x 1)= 1/b
aa - aa 1/a
aa - ab l/2a
aa - aF l/2a
aa - Fb 1
ab - aa l/2a
ab - ab (a + b)/4ab
ab - bb l/2b
ab - aF l/4a
ab - Fb l/4b
bb - ab l/2b
bb - bb 1/b
bb - aF 1

?t(e \H D) 
Where L R = —) ± .±{ 

P r(4

Hp = The body is the biological child o f M  and/or F  

Hd = The body is an unknown, unrelated individual



A p p e n d ix  X  - L ik e l ih o o d  r a t io  a r r a y  f o r  k in s h ip  a n a l y s is

White Caucasian allele 
frequencies Likelihood ratios based on parent genotype data [parent 1 + parent 2 = body]

SNP
locus

Allele 1/ 
Allele 2

Allele 1
(a)

Allele 2 
(b)

aa+aa=aa aa+aa=aF aa+ab=aa aa+ab=aF aa+ab=ab ab+ab=ab ab+ab=aF ab+ab=Fb ab+ab=aa ab+ab=bb ab+ab=bF aa+ab=Fb aa+bb=ab aa+bb=aF aa+bb=Fb ab+bb=ab ab+bb=aF ab+bb=Fb ab+bb=bb bb+bb=bb ab+bb=bF

D T /C 0.52 0.48 3.6982 1.9231 1.8491 0.9615 1.0016 1.0016 0.4808 0.5208 0.9246 1.0851 0.5208 0.5208 2.0032 0.9615 1.0417 1.0016 0.4808 0.5208 2.1701 4.3403 2.0833

U6 A /T 0.37 0.63 7.3046 2.7027 3.6523 1.3514 1.0725 1.0725 0.6757 0.3968 1.8262 0.6299 0.3968 0.3968 2.1450 1.3514 0.7937 1.0725 0.6757 0.3968 1.2598 2.5195 1.5873

B6 A /T 0.64 0.36 2.4414 1.5625 1.2207 0.7813 1.0851 1.0851 0.3906 0.6944 0.6104 1.9290 0.6944 0.6944 2.1701 0.7813 1.3889 1.0851 0.3906 0.6944 3.8580 7.7160 2.7778

N4 A /T 0.57 0.43 3.0779 1.7544 1.5389 0.8772 1.0200 1.0200 0.4386 0.5814 0.7695 1.3521 0.5814 0.5814 2.0400 0.8772 1.1628 1.0200 0.4386 0.5814 2.7042 5.4083 2.3256

Y3 G /C 0.92 0.08 1.1815 1.0870 0.5907 0.5435 3.3967 3.3967 0.2717 3.1250 0.2954 39.0625 3.1250 3.1250 6.7935 0.5435 6.2500 3.3967 0.2717 3.1250 78.1250 156.2500 12.5000

P5 T /A 0.72 0.28 1.9290 1.3889 0.9645 0.6944 1.2401 1.2401 0.3472 0.8929 0.4823 3.1888 0.8929 0.8929 2.4802 0.6944 1.7857 1.2401 0.3472 0.8929 6.3776 12.7551 3.5714

A4 C /G 0.71 0.29 1.9837 1.4085 0.9919 0.7042 1.2142 1.2142 0.3521 0.8621 0.4959 2.9727 0.8621 0.8621 2.4284 0.7042 1.7241 1.2142 0.3521 0.8621 5.9453 11.8906 3.4483

06 A /T 0.75 0.25 1.7778 1.3333 0.8889 0.6667 1.3333 1.3333 0.3333 1.0000 0.4444 4.0000 1.0000 2.0000 2.6667 0.6667 2.0000 1.3333 0.3333 1.0000 8.0000 16.0000 4.0000

Z2 C /T 0.56 0.44 3.1888 1.7857 1.5944 0.8929 1.0146 1.0146 0.4464 0.5682 0.7972 1.2913 0.5682 1.1364 2.0292 0.8929 1.1364 1.0146 0.4464 0.5682 2.5826 5.1653 2.2727

K3 G /C 0.31 0.69 10.4058 3.2258 5.2029 1.6129 1.1688 1.1688 0.8065 0.3623 2.6015 0.5251 0.3623 0.7246 2.3375 1.6129 0.7246 1.1688 0.8065 0.3623 1.0502 2.1004 1.4493

J2 C /T 0.92 0.08 1.1815 1.0870 0.5907 0.5435 3.3967 3.3967 0.2717 3.1250 0.2954 39.0625 3.1250 6.2500 6.7935 0.5435 6.2500 3.3967 0.2717 3.1250 78.1250 156.2500 12.5000

Y6 T /A 0.63 0.37 2.5195 1.5873 1.2598 0.7937 1.0725 1.0725 0.3968 0.6757 0.6299 1.8262 0.6757 1.3514 2.1450 0.7937 1.3514 1.0725 0.3968 0.6757 3.6523 7.3046 2.7027

P7 T /A 0.62 0.38 2.6015 1.6129 1.3007 0.8065 1.0611 1.0611 0.4032 0.6579 0.6504 1.7313 0.6579 1.3158 2.1222 0.8065 1.3158 1.0611 0.4032 0.6579 3.4626 6.9252 2.6316

J8 A /T 0.77 0.23 1.6866 1.2987 0.8433 0.6494 1.4116 1.4116 0.3247 1.0870 0.4217 4.7259 1.0870 2.1739 2.8233 0.6494 2.1739 1.4116 0.3247 1.0870 9.4518 18.9036 4.3478

X C /A 0.79 0.21 1.6023 1.2658 0.8012 0.6329 1.5069 1.5069 0.3165 1.1905 0.4006 5.6689 1.1905 2.3810 3.0139 0.6329 2.3810 1.5069 0.3165 1.1905 11.3379 22.6757 4.7619

F C /A 0.78 0.22 1.6437 1.2821 0.8218 0.6410 1.4569 1.4569 0.3205 1.1364 0.4109 5.1653 1.1364 2.2727 2.9138 0.6410 2.2727 1.4569 0.3205 1.1364 10.3306 20.6612 4.5455

G T /C 0.75 0.25 1.7778 1.3333 0.8889 0.6667 1.3333 1.3333 0.3333 1.0000 0.4444 4.0000 1.0000 2.0000 2.6667 0.6667 2.0000 1.3333 0.3333 1.0000 8.0000 16.0000 4.0000

L2 C /T 0.79 0.21 1.6023 1.2658 0.8012 0.6329 1.5069 1.5069 0.3165 1.1905 0.4006 5.6689 1.1905 2.3810 3.0139 0.6329 2.3810 1.5069 0.3165 1.1905 11.3379 22.6757 4.7619

W3 C /G 0.77 0.23 1.6866 1.2987 0.8433 0.6494 1.4116 1.4116 0.3247 1.0870 0.4217 4.7259 1.0870 2.1739 2.8233 0.6494 2.1739 1.4116 0.3247 1.0870 9.4518 18.9036 4.3478

H8 A /T 0.11 0.89 82.6446 9.0909 41.3223 4.5455 2.5536 2.5536 2.2727 0.2809 20.6612 0.3156 0.2809 0.5618 5.1073 4.5455 0.5618 2.5536 2.2727 0.2809 0.6312 1.2625 1.1236

Likelihood ratio array for all possibilities of parent -  parent -  child genotype combinations. Data is based on the formulae outlined in 

appendix IX. Only data for White Caucasian allele frequencies has been used as all casework samples were obtained from this ethnic group.
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Abstract

A single nucleotide polymorphism (SNP) multiplex has been developed to analyse highly degraded and low copy number 
(LCN) DNA template, i.e. < 100 pg, for scenarios including mass disaster identification. The multiplex consists of 20 autosomal 
non-coding loci plus Amelogenin for sex determination, amplified in a single tube PCR reaction and visualised on the Applied 
Biosystems 3100 capillary electrophoresis (CE) system. Allele-specific primers tailed with shared universal tag sequences were 
designed to speed multiplex design and balance the amplification efficiencies of all loci through the use of a single reverse and 
two differentially labelled allele denoting forward universal primers. As the multiplex is intended for use with samples too 
degraded for conventional profiling, a computer program was specifically developed to aid interpretation. Critical factors taken 
into account by the software include empirically determined extremes of heterozygous imbalance (Hb) and the drop-out 
threshold (Hi) defined as the maximum peak height of a surviving heterozygous allele, where its partner may have dropped out. 
The discrimination power of the system is estimated at 1 in 4.5 million, using a White Caucasian population database. 
Comparisons using artificially degraded samples profiled with both the SNP multiplex and AMPF/STR® SGM plus™ (Applied 
Biosystems) demonstrated a greater likelihood of obtaining a profile using SNPs for certain sample types. Saliva stains degraded 
for 147 days generated an 81% complete SNP profile whilst short tandem repeats (STRs) were only 18% complete; similarly 
blood degraded for 243 days produced full SNP profiles but only 9% with STRs. Reproducibility studies showed concordance 
between SNP profiles for different sample types, such as blood, saliva, semen and hairs, for the same individual, both within and 
between different DNA extracts.
© 2004 Elsevier Ireland Ltd. All rights reserved.

Keywords: Single nucleotide polymorphisms; Degraded DNA; Low copy number; Interpretation criteria

1. Introduction

The current method of DNA profiling used for the 
National DNA Database® (AMPF/STR® SGM plus™ ) 
exploits the polymorphic nature of short tandem repeat
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fax: +44 121 622 2051.
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(STR) sequences to discriminate between both related and 
unrelated individuals [1]. The technique is highly discrimi
nating but is limited by the size of the DNA fragments 
produced for detection (ranging from 100-360 bases in 
length). As DNA becomes degraded, the higher molecular 
weight STR loci fail to amplify [2] giving a ‘partial’ DNA 
profile that has a lower discrimination power.

During cell death by apoptosis or necrosis, endonu
cleases initially target unprotected linker DNA to leave 
monomeric nucleosomes with 146 base pairs of protected
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DNA [3]. As a consequence of this observation, it may be 
preferable to develop DNA profiling techniques that can 
target smaller lengths of DNA, to ensure an improved 
success rate with degraded samples.

We have developed a multiplex system using biallelic 
SNPs, selected from The SNP Consortium database [4]. By 
designing closer to the single polymorphic base, the likelihood 
of obtaining a result when STRs fail is increased. The dis
crimination power of SNPs increases with the number of loci 
multiplexed [5]. There are many different assays available for 
SNP genotyping [6-11], although these are generally used 
when there is ample DNA available, something not often 
encountered with forensic DNA profiling. To achieve a large 
stable multiplex we have used the Amplification Refractory 
Mutation System (ARMS) [12] combined with Universal 
reporter primers (URP) [13] in a two-phase PCR reaction 
(Fig. 1), to amplify DNA fragments ranging from 57 to 146 
base pairs in length. During amplification, two 20 bp Universal 
reporter primer sequences are incorporated onto the ends of the 
DNA strand giving PCR products 40 bases longer than the 
original genome target size. The first phase amplifies indivi
dual loci using low concentrations of locus-specific primers to 
amplify all targets to equivalent levels, whilst simultaneously 
incorporating URP tags. The second phase of the reaction 
employs two different Universal primers (Uni-9 5'-JOE-6 dye 
label (green); Uni-11 5'-FAM-6 dye label (blue)) to fluores- 
cently label the PCR products. Each product is detected on a 
capillary electrophoresis (CE) instrument and is visualised as 
either a green or blue peak for homozygous loci or both a green 
and blue peak for heterozygous loci.

To validate the SNP multiplex system we investigated 
segregation patterns, detection limitations, sample-to-sam- 
ple reproducibility, species specificity and mock casework 
samples.

2. Materials and methods

2.1. DNA extraction and quantification

DNA was extracted from a variety of samples using 
Qiagen™ QiaAmp Mini-Kits (Cat. no. 51306) or Qiagen™ 
Genomic-Tip system (Cat. no. 10223, 20/G tips). Samples 
had been stored frozen at —20 °C and were thawed at room 
temperature prior to DNA extraction. The manufacturer’s 
protocol for each sample type was used to obtain up to 2 ng/ 
\LL DNA (Mini-Kits) or 5-15 ng/|xL DNA (Genomic-Tips), 
suspended in lx  TE Buffer (100 mM Tris, 1 mM EDTA 
disodium). Samples were quantified using PicoGreen [14] 
and/or a UV spectrophotometer (Biochrom Ltd., UK), 
according to the manufacturers’ protocols.

2.2. SNP multiplex amplification

The SNP multimix for each amplification reaction 
consisted of oligonucleotide primers (synthesised by IBA,

Germany) at varying concentrations (primer sequences 
are listed in Appendix A and on the NIST website [15]), 
0.4 fig/p,L bovine serum albumin (Boehringer Mannheim, 
Germany), 225 jjlM dNTPs (dATP, dCTP, dTTP, dGTP; 
Boehringer Mannheim, Germany), 1 x PCR Buffer II 
containing 1.5 mM MgCl2 (Applied Biosystems, UK) 
and 5 units of AmpliTaq Gold® (Applied Biosystems, 
UK). DNA was added up to maximum of 1 ng DNA tem
plate.

DNA extracts were amplified in a total reaction volume 
of 25 |aL in 0.2 mL tubes, without mineral oil, on a thermal 
cycler (Applied Biosystems GeneAmp PCR system 9600) 
using the following conditions: 95 °C Taq activation for 
llmins; 6 cycles of 94°C/30s, 60°C/15s, 72°C/15s, 
60 °C/15 s, 72 °C/15 s, 60 °C/15 s, 72 °C/30 s; 29 cycles 
of 94 °C/30 s, 76 °C/105 s; 3 cycles of 94 °C/60 s, 60 °C/ 
30 s, 76 °C/60 s; 60 °C extension for 45 min followed by a 
4 °C hold.

2.3. SGM plus™  PCR amplification

AMPF/STR® SGM plus™ kit (Applied Biosystems, 
UK) containing reaction mix, primer mix (for components 
see Applied Biosystems user manual), AmpliTaq Gold® 
DNA polymerase at 5 U/p.L and AMPF/STR® control 
DNA heterozygous for all loci, in 0.05% sodium azide 
and buffer was used for amplification of STR loci. DNA 
extract was amplified in a total reaction volume of 
50 jaL without mineral oil on a 9600 thermal cycler 
(Applied Biosystems GeneAmp PCR system 9600) 
using the following conditions: 95 °C for 11 min, 28 cycles 
(or 34 cycles for LCN amplification) of 94 °C/60 s, 59 °C/ 
60 s, 72 °C/60 s; 60 °C extension for 45 min; holding at 
4 °C.

2.4. Detection o f PCR products using capillary 
electrophoresis

A 1.1 |xL of each PCR product and 10 |xL GS-HD400 
ROX size standard (Applied Biosystems, UK, Part no. 
402985):HI-DI Formamide (Applied Biosystems) (ratio 
1:37) was added to each well in a 96-well micro-titre plate. 
Samples were run on a CE sequencer (ABI model 3100) 
using Collection software vl.l (ABI) according to the 
manufacturer’s protocol. SNP amplification products were 
run with two alternative injection times—12 and 20 s. A 12-s 
injection was sufficient for samples with optimal DNA 
amplification, samples with lower amounts of starting 
DNA material (<0.5 ng) were injected for a longer time 
period (20 s) which increased peak heights but also raised 
the baseline noise.

2.5. Analysis and Interpretation o f results

Sample data from the 3100CE instrument was analysed 
using ABI Prism™ Genescan™ Analysis v3.7.1 and ABI
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Phase la Region of I a k u s  
specific sequence 
within primers

Locus specific section o f the primer binds to 
the sample DN A  as template

Universal sequence I x 
(Uni 9) \
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(Uni II)

C Sequence not complementary no DNA extension
__________________ ^ Sequence complimentary

y  DNA extension occurs
Sample DNA

Reverse p r im e r \  Uni 13

Product formed

95°C for 11:00 
94°C for 0:30  
60°C for 0:15 
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60°C for 0:15 
72°C for 0:15 
60°C for 0:15 
72°C for 0:15 
Goto 2 , 5times

Phase lb

Uni 9 tail . 

Uni 11 ta il.

■ C Sequence not complementary no DNA extension

• A ------------------------ ► DNA Extension
- T ------------------------------------------

Full length primers (locus specific and universal 
sequences) are used to prime the template formed 
in Phase 1. Full length primers bind, Tm 
increases, therefore annealing & extension 
temperature can be increased to 76°C to 
specifically promote binding o f  full length 
primers

DNA Extension

Product formed 
(lots of )

10. 94°C for 0:30
11. 76°C for 1:45
12. Goto 10, 
28times

Labelling o f  product by universal 
d n a  Extension reporter primers

13. 94°C for 1:00
^  Product formed is fluoresccntly labelled and can be detected 14. 60°C for 0:30  
”  Using gel or capillary electrophoresis 7 6 °C fo r L 0 0

______________________  16. Goto 13, 2 times

Fig. 1. Diagrammatical representation o f the URP/ARMS Principle. The amplification technique has two distinct phases: phase la  uses the 
locus-specific portion o f  the ~40-m er primers to provide sufficient template with Universal tails for amplification in phase 2. The increase in Tm 
observed in phase lb  allows the whole length o f  the long primers to bind to the template, dependent on the Universal tail present. By phase 2, all 
long primers have been exhausted and the annealing temperature is reduced to allow the 20-mer fluorescently labelled Universal primers to 
anneal and extend.

Phase 2 FAM labelled Primer, 
primer sequence 

complimentary to Uni 11

Prism™ Genotyper™ software v3.7 NT. The ROX size 
standard peaks were used to determine the size (bp) of peaks 
present. Data extracted from Genotyper™ (peak height, 
peak area, scan number, size in bases) were transformed 
into *.csv format and analysed by Celestial™ (The Forensic 
Science Service^ proprietary software used to designate 
alleles). Based on a number of predetermined interpretation 
criteria (Appendix B) for each SNP locus, genotypes were 
allocated for each sample.

SNP loci are identified by an arbitrary internal ID 
reference. The SNP Consortium (TSC) [4] identification 
numbers are given in Appendix A.

3. Results

3.1. Population studies

Sub-populations, comprising 201 White Caucasian, 71 
British Afro-Caribbean and 86 Indian sub-continent DNA 
samples were genotyped using the SNP multiplex. Allele 
frequencies were derived from the data (Table 1) and a 
number of tests were carried out for SNP characterisation 
including Hardy-Weinberg equilibrium tests, Exact tests for 
linkage disequilibrium and Monte-Carlo simulations on 
Exact test data [ 16,17J. Approximate discrimination powers
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Table 1
Allele frequencies for each o f the 20 SNP loci used in the multiplex for each race group studied and combined likelihood ratios for each group. 

SNP locus Allele 1 (green)/allele 2 (blue) White Caucasian British Afro-Caribbean Indian sub-continent

Allele 1 Allele 2 A llele 1 Allele 2 Allele 1 A llele 2

D T/C 0.52 0.48 0.27 0.73 0.49 0.51
U6 ATT 0.37 0.63 0.10 0.90 0.32 0.68
B6 ATT 0.64 0.36 0.77 0.23 0.57 0.43
N4 ATT 0.57 0.43 0.51 0.49 0.53 0.47
Y3 G/C 0.92 0.08 0.96 0.04 0.94 0.06
P5 T/A 0.72 0.28 0.59 0.41 0.80 0.20
A4 C/G 0.71 0.29 0.51 0.49 0.66 0.34
0 6 A/T 0.75 0.25 0.82 0.18 0.77 0.23
Z2 C/T 0.56 0.44 0.45 0.55 0.45 0.55
K3 G/C 0.31 0.69 0.25 0.75 0.39 0.61
J2 C/T 0.92 0.08 0.94 0.06 0.94 0.06
Y6 T/A 0.63 0.37 0.57 0.43 0.53 0.47
P7 T/A 0.62 0.38 0.73 0.27 0.79 0.21
J8 A/T 0.77 0.23 0.86 0.14 0.72 0.28
X C/A 0.79 0.21 0.89 0.11 0.78 0.22
F C/A 0.78 0.22 0.85 0.15 0.80 0.20
G T/C 0.75 0.25 0.64 0.36 0.59 0.41
L2 C/T 0.79 0.21 0.94 0.06 0.90 0.10
W3 C/G 0.77 0.23 0.87 0.13 0.77 0.23
H8 A/T 0.11 0.89 0.10 0.90 0.15 0.85
Multiplex likelihood ratio 4,460,764 364,761 3,173,898

for each population group were calculated using the method 
outlined by Jones (1972) [18].

Hardy-Weinberg equilibrium tests demonstrated no 
significant deviation from expectation (p > 0.05) for all 
20 SNPs in the White Caucasian and Afro-Caribbean 
populations and for 19 out of 20 for the Indian sub-continent 
population, with Bonferroni correction [19] only locus 
K3 (Indian sub-continent) gave a p  <  0.05. K3 data showed 
an excess of heterozygotes within the population set sug
gesting that the deviation may be due to sampling error, 
rather than a genetic or biochemical abnormality, such as 
primer binding site mutation or population sub-structuring 
effect—both of which would appear to increase the homo
zygosity.

Exact tests for linkage disequilibrium were carried 
out on the population data using genetic data analysis 
(GDA) software [19,20] to detect associations between 
alleles at different loci. Probability data (p-values), calcu
lated from each locus-Iocus association, were plotted 
against a random number matrix, as a probability (P-P) 
plot (Fig. 2a-c). All data fitted within the random 
number bins for each race group indicating that the SNP 
loci were behaving as expected within a randomly- 
mating population with little or no linkage disequilibrium 
[21,22]. To demonstrate the effectiveness of the test an 
artificial sub-structured population was created using data 
from the White Caucasian and Indian sub-continent popula
tions. This generated p-values deviating from expected 
values as would be expected due to the Wahlund Effect
[23] (Fig. 2d).

3.2. Linkage mapping

Using mapping data from The SNP Consortium [4] 
(Table 2), each pair of SNPs lying on the same chromosome 
was assessed for the likelihood of linkage. On chromosomes 
6 and 8, one SNP lay on the short arm (P7 = 6p23; X  = 8p23) 
and one on the long arm (Z2 = 6q27; A4 = 8q21). Linkage 
disequilibrium can typically extend up to a few megabases
[24]; however, the shortest distance between any two multi
plexed SNPs in this study was more than 33 Mb (D and J8 on 
chromosome 3). This was sufficient distance to ensure that 
multiple chromosomal recombination events would result in 
linkage equilibrium between any pair of loci [25]. Conse
quently, the assumption of independence was reasonable 
with regard to physical linkage.

3.3. BigDye™ terminator cycle sequencing

A control panel was constructed from five individuals, 
plus Cambio™ foetal placental male and female DNA, to 
ensure there was a heterozygous individual represented at 
every SNP locus. Sequencing of each SNP allele and its 
flanking region was carried out using Applied Biosystems 
BigDye™ terminator cycle sequencing according to the 
manufacturer’s protocol. Each locus was sequenced in 
duplicate using primers complementary to both the forward 
and reverse strand, giving a total of four read sequences for 
each individual for each SNP. Sequenced SNPs were shown 
to be fully concordant with the electrophoretic results 
(n = 28 for each of the 20 loci).
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Fig. 2. Exact test linkage disequilibrium P -P  plots for all three population databases (a -c) and an artificially mixed population (d) (x 
values = expected />-values, y  values = observed values). Single race group plots (a-c) show all p-values amalgamate within the random 
distribution bins, i.e. there is no bias or deviation in the data from that expected in a randomly mating population. The artificially mixed 
population (d) shows deviation away from a random distribution indicating the influence o f the Wahlund effect.

Table 2
SNP loci that lie on the same chromosome

SNP locus TSC code Band Distance from p- telomere (kb) Distance from closest SNP 
used in multiplex (kb)

D 252540 3p25 9,092 33,572
J8 709016 3p21 42,664 36,437
B6 1342445 3p l3 79,101 36,437
0 6 1588825 5p 15 8,346 44,489
Y6 627632 5q 11 52,835 44,489
U6 746324 5q35 170,140 117,305
P7 897904 6p23 14,070 153,973
Z2 86795 6q27 168,043 153,973
X 31988 8p23 238 91,431
A4 421768 8q21 91,669 91,431

SNPs were selected based on a maximised distance away from other SNPs on the same chromosome to minimise the effects o f linkage.
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Comparison of sequencing results to The SNP Consor
tium [4] data revealed additional SNPs within the B6, A4 (C 
deletion) and J2 sequences that were not present in the 
Consortium sequences. Two additional SNPs were found 
within primer-binding regions for locus F and Y6 hence the 
primers were re-designed to include inosine bases at these 
positions as inosine is complementary to any A, G, C or T 
base.

The five control individuals, plus the Cambio™ male and 
female DNA controls, were used as reference samples for all 
validation experiments.

3.4. 3100 CE instrument comparison

Control sample data was obtained from two different 
3100 CE machines used during the validation experiments. 
Sizing data (base pairs) for each SNP was collated from 
Celestial™ and examined for sequencer variation and var
iation between different samples. The maximum standard 
deviation seen between samples on each instrument was
0.08 bp (P5-green, n = 90) and 0.13 bp (P5-green, n = 90) 
and between instruments for all samples was 0.23 bp (W3- 
blue, n = 28). The SNP multiplex was designed with an 
average gap of four base pairs between each SNP locus, with 
a minimum spacing of 2.7 base pairs between the P5 product 
(~  122.7 bases) and the A4 product (~  125.4 bases). P5 
showed the maximum standard deviation on both instru
ments but the 2.7 base pair separation between P5 and A4 
enabled the locus bin to be set to one base pair (i.e. 0.5 bases 
either side of an average value), without compromising the 
accuracy to designate alleles.

3.5. Interpretation criteria

Every biallelic SNP locus with alleles A and B was 
characterised in terms of heterozygous balance (.Hb) relative 
to peak height (Section 3.5.1), where Hb (%) = (0s/ 
0 l )  x 100 (0s = smallest peak height; 0 l  = largest peak 
height), determined experimentally from analysis of control 
reference samples (Section 3.3) (Table 3). Samples were 
amplified using varying amounts of starting DNA template 
as follows: 0, 16, 31, 62, 125, 250, 500 pg, 1 ng. Hb data 
were combined with known allele drop-out data, where 0A 
or 4>B falls below a threshold level (Ht), determined by the 
DNA control dilutions (peak height) for each SNP (Section 
3.5.2) (Table 4). The minimum value of Hb (Hbmjn) and the 
maximum value of Ht (Htmax) was recorded for each locus. 
Hbmin and Htmax were encoded into Celestial™ (Sections 
3.5.1 and 3.5.2) for interpretation purposes. If a calculated 
Hb was less than Hbm\n in an experimental sample for a 
given SNP, i.e. showed signs of severe imbalance, it was 
used as an indication of contamination or PCR artefacts 
(Sections 3.7 and 3.13). If a homozygous allele fell below 
//fmax, the locus was given an ‘F’ designation [26] indicating 
that allele drop-out may have occurred and the locus might 
be heterozygous.

3.5.1. Heterozygous balance (Hb)
Data were collated for Hb for all SNPs at all PCR 

template levels. The data were tabulated and the greatest 
imbalance for each SNP at each PCR template concentration 
was noted (Table 3). At optimal DNA template levels 
(0.5-1.0ng) the lowest balance exhibited was with Y3, 
at approximately 25%, for both the 12 and 20 s injection 
times from the same PCR amplification. The most 
balanced heterozygous SNPs at optimal PCR conditions 
were G and J2 at both the 12 and 20 s injection times with 
Hbmm >  68%, comparable to existing STR multiplex sys
tems [27], As DNA template level decreases, Hb decreases, 
due to stochastic variation seen at low levels. This is 
consistent with low copy number (LCN) STRs using 
systems such as SGM plus™ where optimal DNA template 
gives Hb > 0.6 but at LCN levels the distribution of Hb is 
almost random as a consequence of stochastic effects [26]. 
SNP heterozygous imbalance was most markedly seen with 
Hbmin at 11.2% (12 s) for N4 and 15.4% (12 s) for P7 at a 
DNA template level of 125 pg, closely followed by 06  
(15.6% (12 s) and 16.2% (20 s)) and K3 (16.5 and 13.6% 
for 12 and 20 s, respectively) at the sub-125 pg PCR tem
plate level. The most extreme Hbmjn, irrespective of DNA 
template level, was used for analysis in Celestial™ 
(Appendix B).

3.5.2. Homozygous thresholds (Ht)
If a locus is heterozygous with alleles A and B and either 

allele is missing because of drop-out then Ht is defined as the 
experimentally observed maximum peak height of the 
remaining allele plus 20% to allow for unobserved extreme 
variation:

Ht<t>A=o _  0 # max _)_ O.2(0Bmax) 

or

Ht*B=° =  0Amax+O.2(0Amax)

Ht for the known reference samples was estimated from the 
dilution series experiment. Data were tabulated to show Ht 
for each SNP allele for each instrument injection parameter 
(Table 4). At optimal DNA template amounts (0.5-1.0 ng), 
///max was observed for J8 at both the 12-s injection time 
(334 rfu) and the 20-s injection time (850 rfu). At sub- 
125 pg template amounts the largest Htmax was observed 
at locus F, at a height of 717 rfu (12 s) and 1068 rfu (20 s). 
This was at a template level below 125 pg and no allele drop
out was observed for this SNP at the higher template 
concentrations. Drop-out was not observed at G at the 
sub-125pg level. Consequently the theoretical drop-out 
level for G was calculated based on the observed Hbmin. 
An understanding of the behaviour of Ht is crucial for 
interpretation purposes and the most extreme data, plus 
20% to allow for unobserved extremes, was used for Ht 
analysis in Celestial™.
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Table 3
Heterozygous balance data [Hb„^n = (<pS/<pL) x 100 (%)] collected from two runs o f the AB 3100 capillary electrophoresis instrument at 12 and 
20 s

SNP locus Hbmin 12 s injection x 100 (%) Hbm[n 20 s injection x 100 (%)

Sub 125 pg 125 pg 250 pg 500-1000 pg Sub 125 pg 125 pg 250 pg 500-1000  pg
Amelo # # 23.5 31.0 # # 25.9 35.7
D 25.0 39.2 48.0 47.8 # 41.3 55.2 49.7
U6 # # 31.5 45.0 # # 36.0 39.4
B6 # # 23.6 44.2 # # 23.6 45.1
N4 # 11.2 37.5 40.3 # 13.0 34.7 41.6
Y3 # # 68.4 25.1 # 63.4 67.3 24.4
P5 34.3 # 55.1 54.1 32.3 # 34.6 47.8
A4 # 24.8 41.3 41.6 # 23.1 36.8 39.6
0 6 16.2 50.0 57.8 40.2 15.6 52.3 61.1 41.3
Z2 25.7 29.7 36.3 38.6 25.2 29.8 37.9 39.9
K3 16.5 29.7 29.9 33.2 13.6 28.9 29.3 32.0
J2 # # 22.6 69.3 # # 24.2 68.4
Y6 27.4 # 50.2 35.1 30.0 # 51.2 35.9
P7 # 15.4 24.8 32.0 # 14.6 22.1 27.7
J8 # # 40.7 34.5 # # 40.9 58.7
X # # 41.7 56.5 # # 39.8 62.0
F 32.7 # 46.1 36.9 33.0 # 52.9 38.4
G 31.6 # 69.5 67.5 35.0 # 69.3 71.5
L2 # # 51.8 53.0 53.0 # # 53.6
W3 # # 13.3 52.7 # 18.3 42.1 53.9
H8 # # 61.1 79.7 # # 57.7 81.7

(#) Indicates loci with either allele drop-out or total drop-out across all samples used, hence no heterozygous balance calculation.

Table 4
Observed homozygote peak heights (rfu) where allele drop-out has occurred

SNP locus 12 s injection (//r) 20 s injection (///)

Sub 125pg 125 pg 250 pg 500-1000 pg Sub 125 pg 125 pg 250 pg 500-1000  pg

Amelo 403 # # # 560 # # 527
D 615 # # # 859 # # #
U6 311 198 141 249 559 464 211 520
B6 328 207 # # 450 439 # #
N4 422 # # # 613 412 # #
Y3 155 # # # 213 # # #
P5 424 # # # 617 # # #
A4 486 # # # 746 274 # #
0 6 152 # # # 615 # # #
Z2 380 # # # 795 # 372 #
K3 586 # # # 828 # # #
J2 170 # # # # 449 # #
Y6 454 # # # 526 # # #
P7 191 # # # 274 # # #
J8 160 # # 334 # 372 # 850
X 390 191 # # 546 334 # 221
F 717 # # # 1068 # # #
G # # # # 478 # # #
L2 230 # # # 329 # # #
W3 # 242 # # # 534 # #
H8 134 # # # # 377 # #

Allele drop-out was identified from known control sample heterozygotes, from the same dataset used to generate heterozygous balance data 
(Table 3). (#) indicates heterozygous loci giving no allele drop-out, or complete locus drop-out, across all samples used.
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3.6. Validation of new batches o f multimix

One of the difficulties in preparing new multimix batches 
is the inevitability that no two batches will be identical 
because individual manufactured primer sets vary in con
sistency, making it important to balance new batches of 
multimix. This is not trivial, normally requiring successive 
rounds of altering primer concentrations in order to optimise 
the inter/intra locus balance. The problem becomes greater 
as more loci are added to the reaction, however the con
struction of multiplexes is greatly simplified by the use of 
URP biochemistry [13]. Nevertheless differences are still 
observed between multimixes and each one requires separate 
validation. Performance is dictated by the two parameters 
previously defined, Hb and Ht, since these are critical to the 
interpretation strategy. The aim of multimix validation is to 
ensure that these parameters (a) fall within defined criteria, 
and, because no two multimixes are the same, (b) to encode 
the parameters into Celestial™ so that they are effectively 
multimix specific.

3.7. Negative control thresholds

LCN is characterised by unavoidable allele drop-out and 
drop-in (laboratory contamination measured by reference to 
negative controls) [26]. A 96-well microtitre plate was 
prepared for SNP amplification using water controls as 
negatives instead of DNA samples. Drop-in peaks could 
be characterised as environmental contamination due to the 
lack of any positive DNA controls. The plate was processed 
through the system and any drop-in peaks were identified, 
for both a 12-s injection time and a 20-s injection time 
(Table 5). For a 12-s injection time the largest drop-in peak 
seen was at D (blue) at 81 rfu peak height. For 20 s, the 
largest peak was 150 rfu at G (green). The baseline level (Bt) 
was set according to the greatest experimental drop-in peak 
observed across loci plus ~25% to take account of batch 
variations.

=  ' "+0.25(S<ln”S ‘l ")

Consequently the thresholds for Celestial™ were set at 100 
and 200 rfu for 12 and 20 s, respectively.

3.8. Reporting guidelines

Once Hb and Ht are known then match probability (Pm) 
calculations are carried out using the following algorithm

Table 5
Maximum peak height data (rfu) for allele drop-in peaks seen on a 
96-well negative (deionised water) control plate for both 12 and 20 s 
injection times

SNP locus 12 s injection 20 s injection
(peak height rfu) (peak height rfu)

Green peak Blue peak Green peak Blue peak

Amelo 5 3 (1 ) 7 6 (1 ) 7 7 (1 )
D 5 8 (1 )  8 1 (1 ) 118 (6) 130 (3)
U6
B6 5 7 (1 ) 7 3 (1 )
N4 92 (2) 5 6 (1 )
Y3
P5 91 (1) 7 5 (1 )
A4 51 (1) 79 (2) 72 (2)
0 6 5 6 (1 )
Z2 133 (2)
K3 5 2 (1 ) 7 6 (1 )
J2
Y6 6 6 (1 )
P7
J8 6 0 (1 )
X
F 1 1 9 (1 )
G 150 (2)
L2 87 (2)
W3
H8 5 6 (1 )

Numbers in brackets indicate total number o f observations for each 
locus across all 96 wells.

that encompasses all possible scenarios. This algorithm is 
encoded into Celestial™ and is therefore automated (Fig. 3):

If <f>A > Ht and <pB <  Bt then Pmiocus = f ip 2A) (allele A 
exceeds Ht and locus is homozygous), 
else If (f>B >  Ht and <j>A <  Bt then Pm]sxm -  flpj)) (allele B 
exceeds Ht and locus is homozygous), 
else If 4>A > Ht and <pB >  Bt then Pmiocus = K ^P a P b )  (allele A 
exceeds Ht and allele B exceeds Bt; locus is heterozygous), 
else if <f>B >  Ht and <f>A >  Bt then Pmiocus = fi2pAp B) (allele B 
exceeds Ht and allele A exceeds Bt; locus is heterozygous), 
else If tpA <  Ht and <f>A >  Bt and <j>B > Bt then 
>̂miocus - K ^ P a P b )  (both alleles exceed Bt; locus is hetero

zygous),
else If <j>B <  Ht and <pB >  Bt and 4>A >  Bt then 
Pmioaa -A ^ -P a P b )  (both alleles exceed Bt; locus is hetero
zygous),

Fig. 3. An example o f a SNP profile compared to thresholds Htmax and Bt, respectively. In this example, allele A exceeds Htmax -  the low level B 
allele is below Bt and could be explained by background noise or by minor contamination. Consequently, the locus is reported as homozygous A.
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Table 6
Genotypes generated in Celestial1M, using interpretation guidelines indicated in Appendix B, for control DNA samples using varying amounts of 
starting template from 16 pg to 1 ng (reference profile)

F ileN am e 

CAS r e f e r e n c e  
CAS 5 0 0 p g  
CAS 2 5 0 p g  
CAS 1 25pg  
CAS 6 2 p g  
CAS 3 1 p q  
CAS 16pq  

DRJ r e f e r e n c e  
DRJ 5 0 0 p g  
DRJ 2 5 0 p g  
DRJ 1 2 5 p g  
DRJ 6 2 p g  
DRJ 3 1 p q  
DRJ 16pq  

HER r e f e r e n c e  
HER 5 0 0 p g  
HER 2 S 0 p g  
HER 1 2 5 p g  
HER 6 2 p g  
HER 3 1 p g  
HER 16pq  

SHM r e f e r e n c e  
SHM  5 0 0 p g  
SHM  2 5 0 p g  
SHM  1 2 5 p g  
SHM 6 2 p g _  
S H M 3 1 p g  
SHM 16pq 

S T  r e f e r e n c e  
S T  5 0 0 p g  
S T  2 5 0 p g  
S T  1 2 5 p q  
S T 6 2 p g  
S T  3 1 p g  
S T  1 6pq  

C am b io  M r e f e r e n c e  
C a m b b  M 5 0 0 p g  
C am b io  M 2 5 0 p g  
C a m b b  M 12 5 p g  
C a m b b  M 6 2 p g  
C am b io  M 3 1 p g  
C a m b b  M 16pq 

C am b io  F re f e r e n c e  
C a m b b  F  5 0 0 p q  
C a m b b  F 2 5 0 p g  
C a m b b  F 1 25pg  
C am bio  F 6 2 p g  
C am bio  F 3 1 p g  

_̂ ambioF_16£ĉ
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‘F’ designations indicate single peaks falling below the homozygote threshold, suggesting that allele drop-out may have occurred and the locus 
might be heterozygous. Grey boxes indicate complete locus drop-out. Heterozygous genotypes are standardised with green peak base/blue peak 
base.

else If (pA <  Ht and <pA >  Bt and (pB <  Bt then 
Pmiocrn = A p I) +J[2paPb) (allele B may have dropped out), 
else If <pA <  Bt and (pB <  Ht and (pB >  Bt then 
Pmiocus =f(P 2B>) + A 2PaP b) (allele A may have dropped out), 
elself <pA <  Bt and (pB <  Bt then = • (complete locus
drop-out),

then/>«nGenolype= II P">locuS
lo c u s= I

3.9. Limit o f  detection

Using interpretation guidelines based on the Hb and Ht 
data, a set of dilution series samples peak data were analysed
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Fig. 4. Electropherograms showing SNP profiles obtained for the dilution series o f  ST control DNA template.

through Celestial™  to generate genotypes for each sample. 
The SNP data were collated (Table 6) and an example of the 
SNP profile electropherograms is presented in Fig. 4.

Full profiles were observed for all samples using l ng of 
DNA template and six out of seven samples gave full profiles 
with 500 pg DNA template, although some homozygous 
peaks were <Ht and were subsequently labelled with an ‘F’ 
designation (Section 3.5). HER and ST gave full profiles 
down to 250 pg DNA template and Cam biorM male and 
female samples were correctly genotyped using 125 pg DNA 
template. All seven samples gave partial DNA profiles down 
to the lowest DNA template level of 16 pg.

We tested a total of seven individual DNA samples at 
seven different DNA starting concentrations (n = 49). From 
these results it was demonstrated that all samples provided a 
full and correct, SNP profile at optimal DNA amounts (0.5- 
1.0 ng) and partial DNA profiles were obtained with a DNA 
template between 500 pg and 16 pg, lower levels were not 
tested. SGM plusIM amplification routinely gives a full 
profile above UK) pg starting DNA material [1] and LCN 
SGM plus[M is used to provide full or partial profiles at 
sub-125pg DNA concentrations using LCN amplification 
conditions [26].

3.10. Testing the robustness and sensitivity o f the SNP 
multiplex (artificially degraded samples)

Blood, saliva and semen samples were pipetted onto 
cotton squares and kept at 37 °C for a period of 243 days. 
At specific time intervals, a number of cotton squares for 
each sample were collected and stored at —20 °C. The DNA

was extracted using the Qiagen™  QiaAmp Mini-Kit, using 
the manufacturer’s protocols for the different sample 
types. The degraded DNA samples were genotyped using 
both the SNP multiplex system and SGM plus™  DNA 
profiling (28 cycles). Standard SGM plus™  amplification 
methods were used as the sample concentrations exceeded 
300 pg/p-L using Picogreen quantification [14], suggesting 
plentiful DNA template, albeit in degraded form. The 
results for both SGM plus™ and SNPs are tabulated in 
Tables 7a and 7b. Partial profiles were classed as those 
samples exhibiting either allele drop-out, i.e. ‘F’ designa
tions due to peaks falling below Ht, or complete locus 
drop-out.

The saliva samples exhibited the highest level of DNA 
degradation using both profiling techniques. SGM plus™  
showed a lower amplification efficiency than the SNP multi
plex, most noticeably after 147 days of degradation when 
SNP profiling still gave an 81 % partial profile, whereas SGM 
plus™  had decreased to only 18%. Similarly, the blood 
samples gave a full SNP profile at all degradation time 
intervals whereas SGM plus1M gave only a 9% partial profile 
by 243 days. The semen samples showed little degradation in 
these experiments and a full SGM plus™  profile and SNP 
profile was obtained at all time intervals except for one allele 
drop-out in SGM plus™ .

The experiments performed using artificially degraded 
DNA suggested that the SNP multiplex is capable of giving 
results where SGM plus™  DNA profiling failed. This may 
be because the genome target size is much smaller (the SNP 
multiplex ranges from 56-146 bases compared to 103-359 
bases using SGM plus™ ).
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Table 7a
SGM plusIM (28 cycles) DNA profiles obtained from artificially degraded DNA samples

SGM Size range 

o f  S I R 

loci(bp)

102-136 111-140 124-170

profiles

Days in 

humidifier

155-207

VWA

17

17

163-202

THOl

185-240

D21

30 30.2

212-353

FGA

18 23

229-270

D16

11 13

262-346

D18

15 16

291-345

D2

23

VTVj BVVH

17

17

17

17

17

17

30

30

30

30

30

30

28

28

28

30.2

30.2

30.2

30.2

30.2

30.2

32.2

32.2

32.2

18

18

18

18

18

18

20

20

20

23

23

23

23

23

23

21

21

21

1 1

11

11
11

11

13

13

13

13

13

13

12
12
12

15

15

15

15

15

15

12

12

12

16

16

16

16

16

16

13

13

23

23

23

23

23

23

25

25

25

23

23

23

23

23

25

25

Grey boxes indicate com plete locus drop-out. ‘F’ designations indicate single peaks falling below Ht, suggesting that allele drop-out may have 
occurred and the locus might be heterozygous.

3.11. Reproducibility studies

Various biological samples, including fresh blood and 
saliva, fingerprints, hairs, semen and post-coital vaginal 
swabs, from different individuals were used to assess the 
reproducibility of the SNP multiplex system. PCR was 
performed (in duplicate for LCN samples) and compared 
to results from SGM plus™  profiling.

Blood, semen and post-coital extracts gave full profiles 
using the SNP multiplex. Saliva extracts showed variable 
allele drop-out (8% mean drop-out) between individuals but

this is also seen for STRs [28J. LCN sample types (hair roots, 
hair shafts, latent fingerprints) gave variable results for 
SNPs, both within and between different samples. Each 
extract was amplified in duplicate following LCN metho
dology described for STRs (26] and, as expected, stochastic 
variation was seen between amplifications of the same 
extract. The results showed that samples with optimal 
DNA template available (0.5-1.0 ng) would routinely give 
a full SNP profile and different sample types and different 
extracts had no effect on the results gained for each indi
vidual (data not shown).



Table 7b
SNP profiles obtained from artificially degraded DNA samples

SNP

profiles

Size of 

genome 

target (bp)

57 63 67 69 74 77 82 85 90 94 97 101 107 110 114 118 125 132 135 140 146

Days in 

humidifier
Amelo D U6 B6 N4 Y3 P5 A4 0 6 Z2 K3 J2 Y6 P7 J8 X F G L2 W3 H8

Sa
liv

a

0 X/Y T A/T A/T A G A C/G A C C c T/A T/A A T C C/A T/C C C T

42 X/Y T F/T A T A G A C/G A C C c T/A T/A A/T c C/A T/C c C T

62 X/Y T F T A T A G A C/G A C c c T/A T/A A/T c C/A T/C c C T

84 X/Y T A T A G A C/G A C F/C c T/A T/A A T C/F C/A T/C c C T

147 X/Y
T A T AT G/F A C/G A C F/C c T/A T/A F T C/F C/A T/C c C T

243 X/Y T/F F/A .AT CT ...........

Se
m

en

0 X/Y T A/T A T A G A C/G A C C c T/A T/A A/T c C/A T/C c C T

42 X 'Y T A/T A T A G A C/G A c C c T/A T/A A T c C/A T/C c C T

62 X/Y T A/T A T A G A C/G A c C c T/A T/A A T c C/A T/C c C T

84 X/Y T A/T A T A G A C/G A c C c T/A T/A A T c C/A T/C c C T

147 X/Y T A/T A T A G A C/G A c c c T/A T/A A/T c C/A T/C c C T

243 X/Y T A/T A T A G A C/G A c c c T/A T/A A/T c C/A T/C c c T

B
lo

od

0 x/x T A T A T T G T C/G A C T c c T/A T A c C T C T C/G T

42 xoc T A/T A T T G T C/G A C T c c T/A T A c c T C T C/G T

62 x/x T A T A T T G T C/G A C T c c T/A T A c c T C T C/G T

84 x/x T A/T A T T G T C/G A C T c c T/A T A c c T C T C/G T

147 x/x T A/T A T T G T C/G A C T c c T/A T A c c T C T C/G T

243 x/x T A/T A T T G T C/G A C T c c T/A T A c c T C T C/G T

Grey boxes indicate complete locus drop-out. ‘F  designations indicate single peaks falling below Ht. 
semen samples were provided by one donor and the blood sample by a different donor.

Heterozygous genotypes are standardised with green peak base/blue peak base. Saliva and
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Allele drop-in was observed for both hair and latent 
fingerprint samples. Finger marks are most likely to show 
contamination from other individuals due to the nature of the 
sample type. Secondary transfer of DNA from one individual 
to another through touch is well documented [29J. SGM 
plus™ can be used to assess DNA mixtures and contamina
tion much more readily than SNPs and so, in these cases, 
STRs should be used in preference. Hair root samples for 
some individuals also showed some allele drop-in peaks, i.e. 
peaks not related to the reference sample.

3.12. Species specificity

The following samples were extracted for amplification 
using the SNP multiplex: dog, cat, guinea pig, ferret, horse, 
chicken, wolf, toad, rat, bull, deer, badger, pigeon and orang
utan; along with three types of bacteria: Micrococcus luteus, 
Escherichia coli and Clostridium perfringens. Samples were 
amplified using the same method as for human samples with 
optimal DNA starting templates of 1 ng. PCR products were 
run on the 3100 CE instrument using 20 s injection para
meters and data was analysed in Celestial™. A number of 
non-allelic peaks with low peak heights (<200 rfu) were 
observed in all samples, these were not characterised as they 
fell below the negative threshold baseline (Bt). Only four 
species samples produced peaks in allelic positions: a horse 
sample showed a blue peak at W3 (220 rfu), one cat sample 
gave a green peak at W3 (232 rfu); another cat sample gave a 
blue peak at D (288 rfu); and a toad sample showed a green 
peak at P5 (219 rfu). It should be noted that all peaks were 
below 300 rfu and may be attributable to stochastic mis
printing events as they were not reproducible.

3.13. Artefacts

Artefact peaks were found to be associated with 
some SNP loci. Negative control logs allowed the possibi
lity of contamination to be disregarded and full sequencing 
was carried out on samples showing artefact peaks to 
identify the sample genotypes. Full sequencing identified 
the samples as homozygotes enabling the peaks to be 
characterised as true artefacts, possibly derived from pri- 
mer-primer or primer-sample DNA interactions, as opposed 
to low Hb peaks.

4. Discussion

There are a number of factors that have to be considered 
in the development of new SNP multiplexes for forensic 
identification purposes. They should have low molecular 
weight genomic targets, i.e. lower than current conventional 
STR systems with the amplicon size preferably be less than 
150 bp. This size of amplicon coincides with the length of 
DNA wrapped around the octameric hi stone core of the 
nucleosome [3] and we hypothesise that this covalent attach

ment actually protects fragments less than this length, 
and consequently some SNP allele copies, from degradation 
by nucleases. The use of SNPs for analysis of very 
highly degraded samples, such as burned or heavily decom
posed bodies, means that to maximise their efficiency 
we need to implement a stringent interpretation strategy. 
Degraded samples have a lower amplification efficiency, 
even when DNA template concentrations are not limiting, 
due to fragmentation of the DNA, which necessitates the 
use of LCN guidelines. Also the use of a SNP multiplex 
should act as an adjunct to current STR profiling techniques
[30], allowing the same DNA extracts to be used for both 
systems.

In this paper, we have developed a candidate low mole
cular weight SNP multiplex that has been validated in order 
to be used in a comparative study with competing strategies 
such as conventional STR LCN methods and mini-STRs
[31], both of which boost the sensitivity of DNA analysis. 
The SNP system that we have developed can detect DNA 
down to sub-100 pg levels in a single multiplex and is able to 
give a full or partial profile when SGM plus™ fails to give a 
full profile. In contrast, alternative strategies have used 
several PCR reactions per sample to achieve large multiplex 
sizes, e.g. a 70-SNP analysis method using five separate 12 
SNP multiplexes, [6], in addition requiring 1-2 ng of DNA 
in each reaction. Recently, a 39-plex analysis method using 
multiplex PCR followed by primer extension has been 
reported [7]. This initially employs a single tube reaction 
that is subsequently split into five tubes for a primer exten
sion assay. The authors used 1 ng reactions in all analyses. 
The SNP multiplex presented in this paper is advantageous 
over other techniques as it is a single tube reaction which 
could be easily automated; interpretation of the results is 
possible using an automated software solution; multiplex 
preparation is standardised due to the use of URP biochem
istry and the technique has been shown to work on degraded 
DNA samples.

To interpret mixtures, Gill [5] has detailed a theoretical 
way forward and the SNP multiplex described here can be 
used as a model to develop the strategy. Details of the 
limitations of the system will be outlined in a subsequent 
paper.

5. Conclusions

The 21-locus SNP multiplex was developed to act as an 
adjunct to the currently available methods of DNA profiling. 
Validation studies were carried out to verify the use of the 
technique for casework purposes. This paper indicates that 
the SNPs selected for use within the multiplex all conform to 
Hardy-Weinberg expectations and show no linkage disequi
librium. All genotypes obtained were verified using control 
samples within all PCR amplification batches. Interpretation 
guidelines were based on dilution series data identifying the 
threshold limits for both Hb and Ht, allowing both optimal
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(0.5-1.0 ng) and sub-125 pg DNA template to be amplified 
and genotyped with confidence in the result. These para
meters were encoded into software in order to automate the 
process of interpretation. Artificially degraded samples 
showed a greater level of amplification when looking at 
SNPs than STRs, due to targeting of smaller DNA fragment

sizes between 57 and 146 bases in length. Genotypes 
obtained from SNPs were reproducible across a range of 
different sample types, and for different DNA extracts from 
the same sample types. This paper supports the use of SNPs 
for forensic identification purposes, for discrete sample 
types.

Appendix A. Primer sequences

TSC = The SNP Consortium identification number; () = Arbitrary internal reference code 
Forward primers Universal 9 tail (CGACGTGGTGGATGTGCTAT)

Amelo X (Am) 
TSC0252540/9 (D) 
TSC0746324/9 (U6) 
TSC 1342445/9 (B6) 
TSC 1156239/9 (N4) 
TSC0846740/9 (Y3) 
TSCO176551/9 (P5) 
TSC0421768/9 (A4) 
TSC 1588825/9 (06) 
TSC0086795/9 (Z2) 
TSC0078283/9 (K3) 
TSC0156245/9 (J2) 
TSC0627632/9 (Y6) 
TSC0897904/9 (P7) 
TSC0709016/9 (J8) 
TSC0031988/9 (X) 
TSCO155410/9 (F) 
TSCO 154197/9 (G) 
TSC0384808/9 (L2) 
TSC0820041/9 (W3) 
TSC0131214/9 (H8)

Uni9-CCAGATGTTTCTCAAGTGGTCCTG
Uni9-GGGAAACTGCTGGGTCTGT
Uni9-GCAAGGCCCAAAGCAAAGAA
Uni9-GGGAGACAGGCCCATGCA
Uni9-CAGAAAAGGCAGGAACCTGGACA
Uni9-ACCAACCCCACAAAGCAGG
Uni9-GGGGGTACTGGGGAGACCAA
Uni9-GATGCCTCTTGCATTGTGAACG
Uni9-GAGCCAAGAATCGCAGGGAA
Uni9-CATTGTGTTTCAAACGCGTGCC
Uni9-TGCCACTCTGACACTGATGCTTG
Uni9-CTGCCTTGGCTCCCAGCC
Uni9-CAAGATTCCTGGCCCCTGGTAA
Uni9-CTCTTCCAGCAGGCACCATGA
Uni9-CAGGGAATGACAGGGAACCACTA
Uni9-CTGTGCATCCACTGCGCC
Uni9-CCTGGAGCATGIGCTGACCAC
Uni9-CCATGCCTCACCTCCTGCATT
Uni9-GCATGCCATTGCCAAATTCC
Uni9-GCCAACCAGACCTCCCAGG
Uni9-CTCAGTTGGGTGCTTACGTGCA

Forward primers Universal 11 tail (TGACGTGGCTGACCTGAGAC)
Amelo Y Uni 11 -AAAGTGGTTTCTCAAGTGGTCCCA
TSC0252540/11 Unil 1-GGGAAACTGCTGGGTCTGC
TSC0746324/11 Unil 1-GCAAGGCCCAAAGCAAAGAT
TSC 1342445/11 Unil 1-GGGAGACAGGCCCATGCT
TSC 1156239/11 Unil 1-CAGAAAAGGCAGGAACCTGGACT
TSC0846740/11 Unil 1 - ACC AACCCC AC A AAGC AGC
TSC0176551/11 Unil 1 -GGGGGTACTGGGG AG ACCAT
TSC0421768/11 Unil 1 -G ATGCCTCTTGC ATTGTGAACC
TSC 1588825/11 Uni 11 -GAGCC AAG AATCGCAGGG AT
TSC0086795/11 Uni 11 -C ATTGTGTTTC AAACGCGTGCT
TSC0078283/11 Unil 1 -TGCC ACTCTG AC ACTG ATGCTTC
TSCO 156245/11 Uni 11 -CTGCCTTGGCTCCC AGCT
TSC0627632/11 Unil 1-CAAGATTCCTGGCCCCTGGTAT
TSC0897904/11 Uni 11 -CTCTTCC AGC AGGC ACC ATGT
TSC0709016/11 Unil 1 -C AGGG A ATG AC AGGG A ACC ACTT
TSC0031988/11 Unil 1 -CTGTGCATCC ACTGCGC A
TSCO 155410/11 Unil 1-CCTGG AGC ATGIGCTG ACC AA
TSC0154197/11 Uni 11 -CCATGCCTCACCTCCTGCATC
TSC0384808/11 Unil 1 -GC ATGCC ATTGCCAA ATTCT
TSC0820041/11 Uni 11 -GCC AACCAG ACCTCCCAGC
TSC0131214/11 Uni 11 -CTCAGTTGGGTGCTTACGTGCT
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Appendix A. (Continued)

Reverse primers Universal 13 tail (CAAGCTGGTGGCTGTGCAAG)
Amelo/13 Uni 13-TGCTTAAACTGGGAAGCTGITGGT
TSC0252540/13 Uni 13 - AATG ACITGCCCC AC AGG AG
TSC0746324/13 Uni 13-ACAAAGCCCCAAGGCAGAG
TSC 1342445/13 Uni 13-GCCATTCAGAACTAACTAGTCTGGGA
TSC1156239/13 Uni 13-CGACGGGGGTTGAGTGGTTC AG
TSC0846740/13 Uni 13 - ATTAG AGC AGCC AAGTCCTG ACC A
TSC0176551/13 Uni 13-AGGCGGATCCTGGAGGG
TSC0421768/13 Uni 13-GCTCAACAGCACAACTCTGCTACAGC
TSC 1588825/13 Uni 13-GCTAAAGCAGCTCTGAAACCCA
TSC0086795/13 Uni 13-GGATCAGAGAAAGTGCAGCTGGT
TSC0078283/13 Uni 13-AATGGGGAGATTGGCTTGGAC
TSCO 156245/13 Uni 13-CCTGAACATCCCTGAAGGTATTTCG
TSC0627632/13 Uni 13-TAGCCTTAGG AC ATGGTG ATTACAG A
TSC0897904/13 Uni 13-GATTTGGGAITTTAGTGAC ATCTGCA
TSC0709016/13 Uni 13-CTGTACATCTTTTAAGACC AACTCCTT
TSC0031988/13 Uni 13-TCTAGGCTGGTGCC AGCCC
TSC0155410/13 Uni 13-GGCTCTG AAG AAC AATGGGG AG
TSCO154197/13 Uni 13-CAATCCTGTTTGCAGAGTTCCAG
TSC0384808/13 Uni 13-TGAGCC AAGGTGTGGGGA
TSC0820041/13 Uni 13-TTACAC AGGTCTCCAGCTTGAGCAA
TSC0131214/13 Uni 13-AAG AGGG AGCACTGTGGG ACTG

Heterozygous balance (Hb) data were calculated using 
dilution series data. Where Hbmin was greater than 50% the 
Celestial™  criteria was set at 50% to allow for sample 
variation. Homozygous threshold criteria (Htmax) were the 
maximum observed value plus an additional 20% to allow 
for sample variation. An upper peak height threshold was set 
at 7000 rfu and the negative baseline (Bt) was set at 100 and 
200 rfu for 12 and 20 s data, respectively.
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Abstract

Recently, there has been much debate about what kinds of genetic markers should be implemented as new core loci that 
constitute national DNA databases. The choices lie between conventional STRs, ranging in size from 100 to 450 bp; mini-STRs, 
with amplicon sizes less than 200 bp; and single nucleotide polymorphisms (SNPs). There is general agreement by the European 
DNA Profiling Group (EDNAP) and the European Network of Forensic Science Institutes (ENFSI) that the reason to implement 
new markers is to increase the chance of amplifying highly degraded DNA rather than to increase the discriminating power of the 
current techniques.

A collaborative study between nine European and US laboratories was organised under the auspices of EDNAP. Each 
laboratory was supplied with a SNP multiplex kit (Foren-SNPs) provided by the Forensic Science Service®, two mini-STR kits 
provided by the National Institute of Standards and Technology (NIST) and a set of degraded DNA stains (blood and saliva). 
Laboratories tested all three multiplex kits, along with their own existing DNA profiling technique, on the same sets of degraded 
samples. Results were collated and analysed and, in general, mini-STR systems were shown to be the most effective.
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Accordingly, the EDNAP and ENFSI working groups have recommended that existing STR loci are reengineered to provide 
smaller amplicons, and the adoption of three new European core loci has been agreed.
©  2005 Elsevier Ireland Ltd. All rights reserved.

Keywords: Degraded DNA; Short tandem repeats; Single nucleotide polymorphisms; Mini-STRs

1. Introduction

Existing short tandem repeat (STR) systems used in 
European national DNA databases (NDNADBs) include 
seven core STR loci recommended by the European Net
work of Forensic Science Institutes (ENFSI) and agreed by 
Interpol [1]. The core loci are included in commercially 
available multiplexes. However, all current markers have 
relatively large amplicon sizes (between 150 and 450 bp) 
[2]. It has been demonstrated that smaller amplicons are 
much more likely to be amplified in samples containing 
degraded DNA [3-11], There are two kinds of markers that 
can bring the size of the amplicon substantially below 
150 bp: ‘mini-STRs’ that have short flanking regions to 
the tandem repeat sequence and single nucleotide poly
morphisms (SNPs). See Butler [4] and Budowle [12] for 
an extensive review of existing technologies. A small num
ber o f validated SNP assays are used in casework and these 
include mini-sequencing assays for mitochondrial DNA 
(mtDNA) [13-16], Y chromosome [17], a red hair marker 
assay [18] and autosomal multiplexes [19]. There has been 
some debate about which is the best approach [20]. Some 
existing high molecular weight markers have already been 
converted into low molecular weight (<130 bp) ‘mini-STR’ 
multiplexes simply by moving the primer binding sites 
closer to the STR repeat region [3,7,21]. The advantage 
of this approach is that it is possible to maintain consistency 
with existing core loci that are used in NDNADBs. To 
achieve the ultimate lower limit of small amplicons (ca. 
40 bp), SNPs are preferable, but the downside is that a panel 
of 45—50 loci would be needed to achieve match probabil
ities comparable with existing STR multiplexes [22,23]. 
Furthermore, the larger the multiplex, the more difficult it 
is to reliably and to reproducibly construct [12]; loss of 
amplification efficiency may ensue, effectively defeating the 
object of the exercise. To circumvent this problem, several 
SNP multiplexes of a dozen loci each can be used in 
concurrent multi-tube reactions, however, the sample size 
needs to be sufficient to allow this option [24,25]. Large 
amounts of DNA from, e.g., bones, can be analysed in this 
way, but the study of many small forensic stains is precluded 
as the amount of DNA extract available is limited. In 
addition, the binary nature of SNPs means that their statis
tical characteristics are not amenable to the interpretation of 
complex samples such as mixtures. A robust, highly quan
titative SNP assay would be required to allow determination 
of mixtures using an interpretation strategy based on hetero
zygous balance and homozygous thresholds [22].

Accordingly, a collaborative EDNAP study was carried 
out to compare some different DNA profiling techniques for 
their usefulness in genotyping artificially degraded samples. 
The study was primarily designed to assess the effectiveness 
of new techniques (especially SNPs and mini-STRs).

2. M aterials and methods

2. /. Degraded DNA samples

All laboratories were provided with sets of artificially 
degraded blood and saliva samples. Aliquots of 5  jjlI blood or 
10 p.1 saliva were pipetted onto 4 mm2 cotton squares and 
degraded at 37 °C in a 100% humid environment over a 
period of 12 and 16 weeks, for saliva and blood, respectively. 
After set periods of 0 ,2 , 8, 12 [saliva] and 16 [blood] weeks, 
degradation was suspended by storing the samples at - 2 0  °C 
until the time course was complete. Laboratories extracted 
3—4 stains at each time-interval, combining the extracts 
together. This protocol was used to average out variation 
that may be inherent between different stains.

2.2. Extraction and quantification

Standard protocols of laboratories carrying out the ana
lyses were used (Table 1). Methods included: QIAamp or 
QIAshredder supplied by Qiagen™  [26,27] and phenol- 
chloroform [28]. Quantification was carried out using Pico- 
green [29], Q uantifier™  Human DNA Quantification kit 
(according to manufacturer’s protocol) or Slot-blot meth
odology [30]. One laboratory performed quantification 
using a real-time quantitative PCR assay with a fluorogenic 
Taqman probe, targeting the human Alu repetitive 
sequence, with PCR primers adopted from Nicklas and 
Buel [31].

2.3. SNP and STR kits and protocols

The following STR kits were used in the study, according 
to manufacturer’s protocol: AMPF/STR® SGM Plus™ 
(SGM+) (Applied Biosystems) [7 labs][32]; AMPF/STR® 
Identifier (Applied Biosystems) [1 lab] [33]; Powerplex®16 
system (Promega) [1 lab] [34]; plus mini-SGM and 
miniNCOl (National Institute of Standards and Technology 
(NIST), US) [9 labs] [3,6,21], The 21 loci ‘Foren-SNP™’ 
multiplex kit (The Forensic Science Service®, UK) was used 
as described by Dixon et al. [9 labs] [19].



Table 1
Extraction and quantification methods and results, provided by participants. Grey boxes indicate that no information was received. UND = undetermined data value

Lab ID Extraction Quantification values (ng/uL)
protocol Ref 1 blood Ref 1 saliva Ref 2 blood Ref 2 saliva

Quant
method

0
weeks

2
weeks

8
weeks

16
weeks

0
weeks

2
weeks

8
weeks

12
weeks

0
weeks

2
weeks

8
weeks

16
weeks

0
weeks

2
weeks

8
weeks

12
weeks

1 Qiagen
(manual)

Picogreen 1.91 0.22 0.22 0.03 1.03 0.07 0.01 0.01 2.13 0.23 0.23 0.02 0.36 0.03 0.03 0.01

2 Qiagen
(robot)

Quantifiler 0.63 0.01 0.00 0.00 0.82 0.00 0.00 0.00 0.72 0.01 0.01 0.00 0.36 0.00 0.00 0.00

3 Phenol-
chloroform

Quantifiler 2.31 0.22 0.06 0.02 6.59 0.00 0.00 0.00 5.16 0.92 0.25 0.46 8.95 0.06 0.01 0.03

4 Phenol-
chloroform

Quantifiler 2.18 1.29 0.00 0.00 UND 0.00 0.00 0.00 3.65 2.35 0.96 0.00 8.31 0.00 0.00 0.00

5

6 n
Phenol-
chloroform
Chelex

qPCR

None

9.67 0.93 0.53 0.12 19.00 0.10 0.03 0.03 10.29 1.64 1.97 1.58 15.84 0.06 0.15 0.06

/
8

9

Phenol-
chloroform
Qiagen
(manual)

Slot-blot

None

11.79 0.57 1.00 1.68 33.46 0.12 0.03 0.05 10.15 2.33 4.13 0.80 14.88 0.36 0.23 0.05
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In addition, two laboratories carried out low copy number 
AMPF7STR® SGM Plus™  profiling (34 PCR amplification 
cycles) using the method described by Gill et al. [35]

All PCR products were electrophoresed on AB 3100 
capillary electrophoresis (CE) sequencers (Applied Biosys
tems) with either POP-4 or POP-6 polymer. Results were 
analysed using Genescan™  and Genotyper™ analysis soft
ware (Applied Biosystems).

2.4. Data analysis

Each laboratory was given an identifier number and 
genotyping results for each DNA profiling system for each 
laboratory were collated on Microsoft® Excel spreadsheets.

Genotypes were analysed as percentages—e.g. for 
SGM+ a full genotype comprised 22 alleles, thus a profile 
with 11 alleles was 50% of a full profile. Converting into 
percentages allowed direct comparisons between different 
multiplex systems.

Data were analysed with Minitab™  Release 14 using 
ANOVA, box-whisker plots, and the median polish method 
[36]. Box-whisker plots are a convenient method to display 
the main features of a set of data and facilitate the compar
ison of multiple sets. A box-whisker plot comprises a box, 
whiskers and outliers. A line is drawn across the box to 
represent the median; the bottom of the box is the first 
quartile (Qi) and the top is the third quartile (£?3)— hence 
half of the data are represented in the inter-quartile (IQ) 
range Q3 - Q 1 ; 25% of the data values are less than or equal to 
the value of Q\ \ and 75% are less than or equal to the value of 
Q3. The whiskers are lines extending from the top and 
bottom of the box. The lower whisker extends to the lowest 
value within the lower limit, whilst the upper whisker 
extends to the highest value within the upper limit. The

limits are defined by: Q\ -  L5(Q3 - Q |)  (lower limit) and 
Qj + 1.5(Q3 -  Q \) (upper limit). The outliers are unusually 
high or low data values that lie outside of the lower and upper 
limits, these are represented by asterisks.

Identifiler® and Powerplex®-16 were omitted from the 
final results analysis, except for the inter-laboratory com
parison, because only one laboratory used each multiplex. 
Low copy number (LCN) SGM+ results were also disre
garded from intra-laboratory analyses, because only two 
laboratories submitted data.

3. Results

3.1. Extraction methods

Details of extraction techniques and corresponding quan
tification values were submitted by six of the laboratories 
(Table 1). These ranged from 0 ng/p,L for heavily degraded 
samples to 33 ng/p,L for a reference sample stain (Fig. 1).

The inter-quartile (IQ) range for degraded saliva samples 
(>2 weeks incubation) varied between 0.03 and 0.17 ng/p,L, 
compared to 0.5-2.3 ng/|i.L for blood samples indicating 
that DNA in the saliva stains degraded much more rapidly 
than in blood.

In comparison, undegraded control (time zero) reference 
samples showed considerable variation in the amount of 
DNA recovered between laboratories. More DNA was 
recovered with phenol-chloroform compared to Qiagen™  
but the variation was much greater in the former (IQ 
range = 27 and 1.4ng/|jiL, respectively) (Fig. 1). The 
method of quantification may have affected the DNA 
quantification values gained. Both laboratories using 
phenol-chloroform extraction followed by Quantifiler™

Q uantification values o f degraded sam ples

5 (9
> 2 *T3

8
•O

8 11 I a t S j jS X j

U 4d. J d

I S s E S *
C4 0 0 N O INI OO

mm M mm r * N rs i
u . bu LU —• U . U - Uu
— LU UJ u~ U J m H
e * Ct DC LUOC QC an 0£

Fig. 1. Box-whisker plot showing the range o f  quantification values received for each reference individual for each sample type. Calculations 
are based on data from the six laboratories that submitted data.
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Table 2
ANOVA results for percentage profile data for each laboratory for each sample type using each multiplex kit. Significant P-values are denoted in 
bold

Analysis o f variance (ANOVA) tests Degrees o f  
freedom (DF)

Sum of 
squares (SS)

F ratio Probability (P )

Multiplex 3 11705 2.49 0.061
Lab ID 7 96328 8.78 <0.001
Ref ID 1 11829 7.55 0.006
Sample type 1 177422 118.4 <0.001
Degradation time 3 280931 59.78 <0.001
Multiplex * lab ID 21 20122 0.61 0.909
Multiplex * ref ID 3 553 0.12 0.950
Multiplex * sample type 3 2293 0.51 0.676
Multiplex * degradation time 9 2949 0.21 0.993
Lab ID * ref ID 7 5841 0.53 0.809
Lab ID * sample type 7 15431 1.47 0.176
Ref ID * sample type 1 6126 4.09 0.044
Lab ID * degradation time 21 47521 1.44 0.098
Ref ID * degradation time 3 2867 0.61 0.609
Multiplex * lab ID * ref ID 21 3545 0.11 1.000
Multiplex * lab ID * degradation time 63 20937 0.21 1.000
Multiplex * ref ID * degradation time 9 2765 0.2 0.994
Lab ID * ref ID * degradation time 21 30254 0.92 0.566
Multiplex * lab ID * ref ID * degradation time 63 13408 0.14 1.000
Multiplex * lab ID * sample type 21 8114 0.26 1.000
Multiplex * ref ID * sample type 3 262 0.06 0.981
Lab ID * ref ID * sample type 7 14042 1.34 0.231
Multiplex * lab ID * ref ID * sample type 21 3571 0.11 1.000

quantification (labs 3 and 4) gave similar values, whereas 
quantification with qPCR (lab 5) and slot-blot (lab 8) 
produced much greater values (Table 1). However, all 
phenol-chloroform values (for control samples) were 
greater than those gained with Qiagen™ , regardless of 
the quantification method.

3.2. Analysis o f variance (ANOVA) calculations

ANOVA analysis on percentage profile data (Table 2) 
showed major significant differences as follows: (a) between 
different laboratories (p  <  0.001); (b) between the two 
donating individuals (ref ID) (p  = 0.006); (c) between the

Percentage success with STR multiplex kits
100

so

ts  6 0©
^  4 0 -

20-

0-

» o  J2 .2 ■= ■■=
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------- 1----
- o T3
8 8 8
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* * *
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Fig. 2. Box-whisker plot showing the variation in percentage profiles per sample between the participating laboratories, using standard STR 
multiplex DNA profiling kits.
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Percentage success with the Foren-SNP kits
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Fig. 3. Box-whisker plot showing the variation in percentage profiles per sample between the participating laboratories, using the Foren-SNP 
multiplex DNA profiling kit.

sample types— blood and saliva (p  <  0.001); and (d) 
between different degradation times (p  <  0.001). There 
was a smaller (borderline) significant two-way interaction 
between ref.ID and sample type (p  = 0.044), i.e., there may 
be a significant difference between blood and saliva samples 
that are dependent on the reference individual. Otherwise, 
higher order interactions were not obvious in the data-set. 
Differences between the performance of the four multiplexes 
were almost significant using ANOVA (p  = 0.061). 
Although there were differences between laboratories, these 
differences were consistent when averaged across different 
multiplexes, i.e., if a lab performed well with one multiplex 
then it would also perform well with another, and vice versa.

3.3. Intra-laboratory variation

Laboratories obtained full DNA profiles from control 
reference samples (time zero). As samples degraded, there 
was an increase in the amount of variation between the 
different laboratories in terms of percentage profile observed 
(Figs. 2-5). After several weeks, virtually all the DNA had 
degraded and no profile was obtained.

The most consistent multiplex across all laboratories was 
the mini-STR NC01 kit (Fig. 5). This multiplex consisted of 
three STR loci, D10S1248, D14S1434 and D22S1045, 
which are not available in commercial STR kits. The small 
number of loci present in the multiplex, compared to the 21

Percentage success with m ini-SC M  m ultiplex kits
100-

5  60

5? 40

2 0 -

<N
til l . u. U- u. Ll. Ll. (JU u.Lu

Fig. 4. Box-whisker plot showing the variation in percentage profiles per sample between the participating laboratories, using the mini-SGM  
DNA profiling kit.
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Percentage success with NC01 multiplex kits
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Fig. 5. Box-whisker plot showing the variation in percentage profiles per sample between the participating laboratories, using the NC01 mini- 
STR DNA profiling kit.

loci found in the Foren-SNPs1M kit, eleven loci in SGM+ 
and seven loci in the mini-SGM multiplex, may have 
increased the robustness of the system.

In order to standardise the data and allow the different 
laboratories to be compared without bias, median polish 
analysis [36] was used. Median polish is similar to analysis 
of variance tests except that medians are used instead of 
means, thus adding robustness against the effect of outliers. 
The degradation time course of each sample averaged 
across all laboratories was compared and consequently,

the performance of each multiplex—noting that the 
ANOVA showed no higher order interactions to complicate 
analysis. All four degradation profiles were quite different 
from each other (Fig. 6). As indicated by the ANOVA, 
saliva degraded faster than blood. It can be further general
ised that the mini-STR systems performed better than 
SGM+. The SNP multiplex was inconsistent, but appeared 
to work better with the saliva compared to blood, possibly 
due to the presence of inhibitory factors in the blood 
samples. Interestingly, LCN SGM+ (34 amplification

Ref. 1 Blood Ref. I Saliva

100
±  80
© 60 U
a  A(\

0 2 4 6 8 10 12 14 16 18
(A) W eeks degradation

Ref. 2 Blood

4 6 8 10 12 14
W eeks degradation

100

±  80 e 
£ 60 
0.
so 40

2 8 120 4 6 10 14
(B)

(D)

W eeks degradation

Ref. 2 Saliva

100

E  80 
o
fc 60
S? 40

20 84 6 10 12 14

 SGM-t-

—  —  Mini-SGM

 NC01

 SNPs

LCN SGM+

W eeks degradation

Fig. 6. Percentage profiles obtained across all labs for all samples and sample types. (A) Reference 1 blood. (B) Reference 1 saliva. (C) 
Reference 2 blood. (D) Reference 2 saliva. Values were calculated using median polish analysis to standardise the data obtained from all 
laboratories.
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Summ ary u f percentage success o f  the four DNA  
profiling m ethods

100 —

90 M

£  80

• • •
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60

50
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SGM + Foren-SNPs Mini-SGM NCOI

Fig. 7. Median polish results showing the variation in median 
percentage profiles across laboratories.

cycles) worked significantly better in three out of four 
samples (Fig. 6), compared to any other profiling method. 
Likewise, the single laboratory that reported LCN results 
with Powerplex0116 achieved results that compared favour
ably to the overall results for the mini-STR multiplexes in 
this study.

3.4 . In te r -la b o ra to ry  v a r ia tio n

Median polish analysis (Fig. 7) was again used to provide 
a relative comparison of individual laboratory performance 
(averaged across all samples) (Table 3).

The analysis confirmed that the NCOI mini-STR multi
plex kit performed the best, giving a median value of 
detected genotypes of 100% followed by mini-SGM 
(75%). The Foren-SNPrM multiplex gave the lowest median 
value of detected genotypes (61.6%). This was attributed to 
the complexity of the SNP multiplex. The multimix com
prised 65 separate primers of which 63 were >35 bp in 
length. Transporting the multimix to different countries may 
have permitted freeze-thawing of the solution, causing 
shearing of the large primers. Consequently, SNPs also

Table 3
Median polish analysis results for each laboratory in the study, 
including median values gained for each multiplex across all labs

Lab ID SGM+
(%)

Foren- 
SNPs (%)

Mini- 
SGM (%)

NC01
(%)

1 69.5 69.3 75.0 100
2 69.5 58.2 75.0 100
3 69.5 * 75.0 100
4 69.5 43.5 75.0 100
5 89.5 60.0 89.6 100
6 69.5 64.4 75.0 100
7 67.2 56.5 35.4 91.5
8 77.4 68.3 75.0 100
9 69.5 63.1 75.0 100
Median 

across labs
69.5 61.6 75.0 100

showed the greatest variation between the different labs 
(Fig. 7).

To evaluate further, we ranked the SNPs in order of 
success, and selected the best ten for separate statistical 
analysis, irrespective of amplicon size. This modified system 
gave equivalent results to the miniSTR systems (data not 
shown). The Foren-SNPs™ loci ranged in size from 56 to 
146 bp and the maximum amplicon size for mini-STRs was 
170 bp. Thus, we concluded that good markers for degraded 
DNA were dependent upon the small size of the amplicon, 
and not on the choice of SNP or a mini-STR (unless the 
former was used to achieve the smallest amplicon size 
possible).

3 .5 . T otal a l le le  d ro p o u t a c r o ss  d e g ra d a tio n  p e r io d s

Allele dropout was measured for each sample at each 
stage of degradation, averaged across laboratories plotted 
against molecular weight (bp). Data from the two mini-STR 
systems (mini-SGM and NCOI) were combined under a 
general heading of ‘mini-STRs’, with a maximum amplicon 
size of 170 bp. Linear regressions were plotted for reference 
1 blood sample (Fig. 8a-c), confirming a general trend that 
lower molecular weight loci were more likely to stay intact. 
Allele dropout increased with increasing times of degrada
tion for all three DNA profiling techniques. Foren-SNPsrM 
was the only multiplex to show allele dropout in control 
samples (time zero). Mini-STRs showed decreased allele 
dropout with the more degraded samples compared to 
SGM+.

4. Discussion

A previous EDNAP study using DNA degraded by 
sonication and DNAse I [37], and other studies using 
degraded body fluid stains [3,5,6,8-11] and telogen hair 
roots [7], have demonstrated the efficacy of low molecular 
weight amplicons to analyse degraded DNA. The experi
ment described in this paper followed a different design to 
those previously described, as it simulated a time-course 
series of degraded stains in their ‘natural state’. This was 
achieved by incubating material spotted with saliva and 
blood in 100% humidity at 37 °C. Under these conditions, 
degradation was greatly accelerated compared to the dried- 
state process and total degradation was achieved within a 
short time period of 12-16 weeks. By taking samples at 
regular intervals, a complete time-course was produced and 
a point reached which corresponded to the time where little 
or no amplifiable DNA remained. We showed that saliva 
degraded faster than blood, but this is not surprising as this 
body fluid contains enzymes such as lysozymes, amylases, 
peroxidases and histatins, as well as numerous bacteria, 
which contribute micrococcal nuclease. Micrococcal nucle
ase is a non-specific endonuclease, that cuts adjacent to any 
base, with the rate of cleavage reported to be 30 times greater
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Fig. 8. Degradation plots for reference 1 blood investigated with SGM+, Foren-SNPs and mini-STR multiplexes. Graphs indicate the proportion 
of allele dropout compared to amplicon size. (A) SGM+ profiles. (B) SNP multiplex profiles. (C) mini-STR profiles. Mini-SGM & NC01 were 
combined for the mini-STR analysis.

at the 5' side of A or T rather than G or C (fortunately most 
STR sequences tend to be GC-rich). Mammalian cells 
contain two additional DNAses that cleave non-specifically; 
DNAse I, which slightly favours purine-pyrimidine 
sequences [38] and DNAse II, an enzyme found in lyso- 
zomes associated with cell apoptosis [39].

Median polish analysis was carried out in order to 
standardise the data, allowing data sets from all laboratories 
to be compared regardless of variability in laboratory 
techniques, operator differences and sampling limitations

[36]. Transformed data was analysed to investigate degra
dation rates, allele dropout and performance of the four 
assays used in this study. The artificially degraded samples 
gave similar results across all laboratories, showing the 
method produced samples with consistent levels of degra
dation across all sets.

The mini-STR assays tested gave the best results overall, 
when compared with standard SGM+ profiling and the 
Foren-SNPs™ kit. Low copy number (LCN) DNA profiling 
proved to be the most successful method of amplification,
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although this technique was only carried out by three labora
tories; one using Powerplex®16 and two using SGM+. LCN 
profiling only differs from standard DNA profiling by the 
number of cycles used for PCR amplification [40]. By increas
ing the number from 28 cycles to 34 cycles, the chance of 
amplifying the few molecules present in the DNA extract is 
improved. However, when LCN conditions are used, the 
allelic balance concurrently deteriorates and the chance of 
allele dropout is increased compromising interpretation. The 
advantage of mini-STRs is that more fragments are likely to 
survive degradation, hence it is more likely that a complete 
DNA profile will be observed using a standard number of 
cycles. The mini-STR assays tested in this study used 32 
cycles in PCR amplification, hence the method was inter
mediate between LCN and standard testing, which may have 
increased the percentage profiles obtained [3,6,41]. It is 
possible that the mini-STR assays performed better as a 
consequence of an increased cycle number compared to 
standard profiling methods, as opposed to the smaller ampli
con sizes targeted, however it is likely that a combination of 
both factors contributed to the increased success rates of these 
assays. Fig. 8 demonstrates the mini-STR loci give a negative 
regression in relation to amplicon size after 8 weeks of 
degradation, whereas the higher molecular weight SGM+ 
loci begin to show allele dropout after 2 weeks The mini- 
STR assays were also the most robust in this study as the 
number of loci targeted was lower than the other DNA 
profiling methods tested. NCOI, giving the highest percentage 
profiles overall, only contained three STR loci and therefore 
would generally have been easier to optimise than the Foren- 
SNP™ multiplex containing 21 loci.

The Foren-SNP™  kit performed poorest out of the four 
assays tested in this study. This particular kit was used as it 
was the only fully validated forensic SNP multiplex avail
able [19]. Other SNP multiplexes have been developed, but 
lack the quantitative and qualitative properties for forensic 
use [12,24,42]. SNP assays based on primer extension 
biochemistry, such as GenomeLab™  SNPStream® (Beck
man Coulter) and SNaPshot™  multiplex system (Applied 
Biosystems™ ), are capable of genotyping thousands of 
SNPs in a single analysis but require an increased volume of 
either initial DNA template or PCR product, both of which 
are limited in crime scene samples. They also have the 
disadvantage of being multi-stage procedures, with sample 
tubes needing to be opened at various stages within the 
process. The Foren-SNPs™  kit allowed amplification of all 
21 loci in a single tube reaction which were then analysed 
on an electrophoresis instrument. The potential certainly 
exists to further optimise SNP multiplex systems, as loci do 
benefit from being single base sites, therefore much smaller 
amplicons can be targeted [22,23,43]. The ability to obtain 
a result using SNPs would be beneficial, especially if the 
sample failed to give a profile using standard STR DNA 
profiling. However, the biallelic nature of SNPs makes it 
difficult to interpret mixtures and a well balanced assay 
would be required to make this feasible [22], Consequently,

for crime stain work where mixtures are often encountered, 
STRs are preferable. STRs also benefit from being con
sistent with, and therefore comparable to, current national 
DNA databases. For identification of discrete samples, such 
as bones, teeth and highly degraded tissues commonly 
encountered in mass-disasters, there is no reason why SNPs 
may not be used [20,44]. It is therefore proposed that 
further research is focussed on reducing the size of STR 
amplicons, so that degraded samples can be amplified with 
an increased chance of success using both conventional and 
LCN conditions.

5. Conclusions

The EDNAP and ENFSI groups have recommended that 
new multiplexes can be made more efficient to detect 
degraded DNA by re-engineering the STR amplicons so 
that primers lie closer to the repeat region. To achieve the 
best sensitivity, amplicons should be lower than 150 bp. Not 
all existing core loci (e.g. HUMFTBRA/FGA) can be engi
neered to be this small. Since the number of core loci in 
Europe is currently insufficient for an effective pan-Eur- 
opean database the EDNAP and ENFSI groups have recom
mended that the three NCOI loci, DIOS 1248, DI4S1434 and 
D22S1045 be adopted as European standards [45,46].
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