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A b stract

A brain computer interface (BCI) allows the user to communicate with a com­

puter using only brain signals. In this way, the conventional neural pathways 

of peripheral nerves and muscles are bypassed, thereby enabling control of a 

computer by a person with no motor control. The brain signals, known as elec­

troencephalographs (EEGs), are recorded by electrodes placed on the surface of 

the scalp.

A requirement for a successful BCI is that interfering artifacts are removed 

from the EEGs, so tha t thereby the important cognitive information is revealed. 

Two systems based on second order blind source separation (BSS) are therefore 

proposed. The first system, is based on developing a gradient based BSS al­

gorithm. within which a constraint is incorporated such that the effect of eye 

blinking artifacts are mitigated from the constituent independent components 

(ICs). The second method is based on reconstructing the EEGs such that the 

effect of eye blinking artifacts are removed. The EEGs are separated using an 

unconstrained BSS algorithm, based on the principles of second order blind iden­

tification. Certain characteristics describing eye blinking artifacts are used to 

identify the related ICs. Then the remaining ICs are used to reconstruct the 

artifact free EEGs. Both methods yield significantly better results than standard 

techniques. The degree to which the artifacts are removed is shown and compared 

with standard methods, both subjectively and objectively.

The proposed BCI systems are based on extracting the sources related to fin­

ger movement and tracking the movement of the corresponding signal sources. 

The first proposed system explicitly localises the sources over successive temporal



windows of ICs using the least squares (LS) method and characterises the trajec­

tories of the sources. A constrained BSS algorithm is then developed to separate 

the EEGs while mitigating the eye blinking artifacts. Another approach is based 

on inferring causal relationships between electrode signals. Directed transfer func­

tions (DTFs) are also applied to short temporal windows of EEGs, from which 

a time-frequency map of causality is constructed. Additionally, the distribution 

of beta band power for the IC related to finger movement is combined with the 

DTF approach to form part of a robust classification system.

Finally, a new modality for BCI is introduced based on space-time-frequency 

masking. Here the sources are assumed to be disjoint in space, time and fre­

quency. The method is based on multi-way analysis of the EEGs and extraction 

of components related to finger movements. The components are localised in 

space-time-frequency and compared with the original EEGs in order to quantify 

the motion of the extracted component.
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Statem ent o f O riginality

Chapters 4 to 8 of this thesis comprise of original work to the author’s best 

knowledge except where referenced and stated. The novelty of the thesis sterns 

from the following contributions

C hapter 4: A rtifact R em oval using C onstrained Blind Source Separa­

tion

• Implementation and application of a gradient version of SOBI for the sep­

aration of EEG signals

• Constraining the gradient SOBI algorithm so tha t it automatically rejects 

eye blinking artifacts.

C hapter 5: A rtifact Rem oval from th e EEG s using B lind Source Sep­

aration and C lassification

• Combining a gradient SOBI BSS algorithm with a classification system 

using support vector machines for automatic identification and removal of 

eye blinking artifacts.

C hapter 6: Brain C om puter Interfacing by Localisation of Finger M ove­

m ent Sources

• Development and implementation of a localisation algorithm by combin­

ing blind source separation with a non-linear least squares algorithm for



localisation.

• Constraining the gradient SOBI algorithm so that it automatically rejects 

eye blinking artifacts.

C hapter 7: Brain C om puter Interfacing by Extracting Propagation  

Factors using D irected  Transfer Function

• Application of directed transfer functions together with scalp projections 

of the independent components for the classification of left and right finger 

movements.

C hapter 8: Brain C om puter Interfacing by Space-Tim e-Frequency A naly­

sis

• Development and application of a space- time-frequency masking method 

for extraction of the components that are disjoint in space, time, and fre­

quency. The algorithm combines short-time Fourier transforms across all 

the EEG channels, with k-means clustering.

3



P ublications

The original contribution of this thesis is partially supported by the following 

publications

M. A. Latif, J. A. Chambers, S. Sanei, L. Shoker, “Localization of Abnormal 

EEG Sources using Blind Source Separation Partially Constrained by the Loca­

tions of Known Sources" IEEE Signal Processing Letters, vol. 13 (3), 2005, pp. 

117-120.

L. Shoker. S. Sanei. and A. Sumich, “Distinguishing Between Left and Right 

Finger Movement from EEG using SVM” Proceedings of the IEEE Engineering 

in Medicine and Biology Annual Conference, Shanghai, China, September 1-4, 

2005.

L. Shoker, S. Sanei, and J. Chambers, “Artifact removal from Electroen­

cephalograms using a hybrid BSS-SVM algorithm” , IEEE Signal Processing Let­

ters, vol. 12 (10), 2005, pp. 721-724.

J. Corsini, L. Shoker, S. Sanei, and G. Alarcon, “Epileptic seizure prediction 

from scalp EEG incorporating BSS” , IEEE Transactions on Biomedical Engi­

neering, vol. 53(5), 2006, pp. 790-799.

L. Shoker, S. Sanei, W. Wang, and J. Chambers, “Removal of eye blinking 

artifact from EEG incorporating a new constrained BSS algorithm” , IEE Journal

4



of Medical and Biological Engineering and Computing, vol. 43, 2005, pp. 290-295.

L. Shoker, S. Sanei, and J. Chambers, “A hybrid algorithm for the removal of 

eve blinking artifacts from electroencephalograms” , Proceedings of the Statistical 

Signal Processing Workshop, SSP2005, France, February 2005.

S. Sanei and L. Shoker, “Artefact Removal from EEGs Using a Hybrid BSS- 

SVM Algorithm” , Invited talk, IEE Biomedical Signal Processing Workshop, Lon­

don, 2004.

L. Shoker, M. A. Latif, S. Sanei “A New Constrained BSS Algorithm for 

Separation of EEG Signals with Eye-Blinking Artifact” , Proceedings of the IEEE  

Sensor Array And Multichannel Signal Processing Workshop, SAM2004, Spain, 

2004.



List o f A bbreviations

AIC Akaike Information Criterion

A M U SE Algorithm for Multiple Unknown Signal Extraction

A P Action Potential

A R Auto Regressive

B P Bereitschafts Potential

BC I Brain Computer Interface

BSS Blind Source Separation

B SS-SV M Hybrid Blind Source Separation Support Vector Machine

C BSS Constrained Blind Source Separation

C N S Central Nervous System

C SP Common Spatial Patterns

CT Computed Tomography

CV Cross Validation

D T F Directed Transfer Function

ECG Electrocardiogram

ECoG Electrocorticogram

EEG Electroencephalograph

EM G Electromyogram

6



EOG Electrooculogram

EP Evoked Potential

ER D Event Related Desynchronisation

ERS Event Related Synchronisation

E R P Event Related Potential

e f t Fast Fourier Transform

GA Gradient Algorithm

HOS Higher Order Statistics

IC Independent Component

IC A Independent Component Analysis

InfoM ax Information Maximisation

IST FT Inverse Short Time Frequency Transform

K K T Karush Kuhn Tucker

KL Kullback-Leibler Divergence/Distance

LDA Linear Discriminant Analysis

LFP Local Field Potential

LHS Left Hand Side

LS Least Squares

M R I Magnetic Resonant Imaging

M V A R M ultivariate Auto Regressive

OA Ocular Artifact

OSH Optimal Separating Hyperplane

P C A Principal Component Analysis

P D F Probability Density Function

P E T Positron Emission Tomography

R B F Radial Basis Function

7



RH S Right Hand Side

R P Readiness Potential

SCP Slow Cortical Potential

SD T F Short Time Directed Transfer Function

SOBI Second Order Blind Identification

SOS Second Order Statistics

STF Space-Time-Frequency

ST F D Space-Time-Frequency Distribution

ST F T Short Time Frequency Transform

SV Support Vector

SV M Support Vector Machine

W SS Wide Sense Stationary

8



List o f N om enclatures

t Discrete time index

(•)T Transpose of matrix or vector

(•)t Pseudoinverse of matrix

(•)_T Pseudoinverse and transpose of matrix

det(W ) Determinant of matrix W

||W ||f ' Frobenius norm of matrix W

| • | Absolute value

p(x) Probability density function of variable x

s(t) Vector of sources at discrete time t

x(t) Vector of observed EEGs at discrete time t

y (t) Vector of estimated sources at discrete time t

A Mixing m atrix

W  Separation or unmixing matrix

I Identity m atrix

E {•} Expectation

Estim ated covariance matrix of x(t) at lag k 

[R]lJ The i j lh element of matrix R

T}i D ata length in samples

9



arg minw / ( W ) 

inax(-)

P

B„

0

<*v

diag(-)

K L ( p ( x i ) \ \ p ( x 2))

C

A 'M
gz

The value of W  that minimises the function / ( W)

maximum value

Permutation m atrix

Whitening or sphering matrix

Matrix of zeros

Standard deviation of variable v(t)

Diagonal of a matrix

Kullback-Leibler distance between PDF of variables X\ and x 2

Lagrangian Multiplier used in SVM

Nonlinear function used in SVM

Regularisation parameter used in SVM

Kernel function used in SVM

ilh feature vector used in SVM

10



C ontents

1 Brain C om puter Interfacing; Introduction  23

1.1 Aims and O b je c tiv e s ................................................................................  25

1.2 Thesis O u tlin e .............................................................................................  26

2 O verview  of the E lectroencephalogram  28

2.1 In tro d u c tio n .................................................................................................  28

2.2 Brain Im ag in g .............................................................................................. 29

2.3 Anatomical Makeup of the Brain .........................................................  31

2.3.1 The Structure of Neurons ........................................................  32

2.3.2 Cortical A re a s ................................................................................  35

2.4 Acquisition M e th o d s ................................................................................  37

2.4.1 Electrode placement and C onfigura tion ...................................  38

2.5 EEG Signal P ro p e r t ie s .............................................................................  39

2.5.1 R hy thm icity ....................................................................................  39

2.5.2 Event Related P o te n t i a l ............................................................. 40

2.5.3 Event Related Desynchronisation /  Synchronisation . . . .  43

3 S tate o f the A rt in Brain C om puter Interfacing 45

3.1 Artifact R ejec tion ....................................................................................... 46

3.2 Blind Source Separation in Artifact Rejection .................................. 48

11



3.2.1 W h iten in g .......................................................................................  52

3.2.2 Information Theoretic Based B S S ...........................................  53

3.2.3 Second Order Blind Iden tifica tion ...........................................  54

3.3 Approaches to Brain Computer In te rfac in g .......................................  58

3.3.1 Autoregressive M odelling ............................................................  58

3.3/2 Complexity M e a s u r e ................................................................... 59

3.3.3 Time-Frequency Methods..... ........................................................  61

3.3.4 Common Spatial P a t t e r n s .........................................................  61

3.3.5 Blind Source Separation in B C I .................................................  62

4 A rtifact R em oval using C onstrained Blind Source Separation 64

4.1 .Joint Diagonalization of Correlation Matrices ................................ 65

4.2 Constrained L earn in g ............................................................................... 66

4.3 E xperim en ts ................................................................................................ 71

4.3.1 Simulated Source S ig n a ls ............................................................. 71

4.3.2 Removing The Effect of Eye Blinking From Real EEG Data 75

4.3.3 Removing The Effect Of ECG From EEG Real Data . . .  78

4.4 C o n c lu s io n s ...............................................................................................  80

5 A rtifact R em oval from  th e  EEG s using B lind  Source Separation  

and C lassification 88

5.1 In tro d u c tio n ................................................................................................ 88

5.2 M e th o d s ......................................................................................................  89

5.2.1 Feature E x t r a c t io n ....................................................................... 89

5.2.2 C la ss if ic a tio n .................................................................................  92

5.3 E xperim en ts ................................................................................................ 96

5.3.1 Dataset for an a ly s is .......................................................................  96

5.3.2 Testing the F e a tu r e s .................................................................... 96

12



5.4 Conclusions 100

6 Brain C om puter Interfacing by L ocalisation of Finger M ovement 

Sources 104

6.1 M e th o d s ........................................................................................................... 105

6.1.1 BSS and the Permutation P r o b le m ............................................105

6.1.2 Localisation A lg o rith m ................................................................... 107

6.1.3 Motion C h a ra c te r isa tio n ................................................................I l l

6.2 E x p erim en ts .....................................................................................................113

6.2.1 D ata C o llec tio n .................................................................................113

6.2.2 R esu lts ..................................................................................................113

6.3 C o n c lu s io n s ..................................................................................................... 116

7 Brain C om puter Interfacing by E xtracting Propagation Factors 

using D irected  Transfer Function 120

7.1 In tro d u c tio n ..................................................................................................... 120

7.2 M e th o d s ............................................................................................................124

7.2.1 Feature E x t r a c t io n .......................................................................... 124

7.3 E x p erim en ts ..................................................................................................... 129

7.3.1 D ata C o lle c tio n .................................................................................129

7.3.2 Testing the F e a tu r e s .......................................................................130

7.4 C o n c lu s io n s ..................................................................................................... 134

8 Brain C om puter Interfacing by Space-Tim e-Frequency A nalysis 142

8.1 In tro d u c tio n ..................................................................................................... 142

8.2 M e th o d s ............................................................................................................ 144

8.2.1 Space-Time-Frequency A n a ly s is ...................................................144

8.2.2 C lu s te r in g ........................................................................................... 146

13



8.2.3 Reconstruction .................................................................................148

8.2.4 Motion C h arac te risa tio n ................................................................148

8.3 E xperim en ts .................................................................................................... 149

8.3.1 Testing the Algorithm ................................................................... 149

8.4 C o n c lu s io n s .................................................................................................... 151

9 C onclusions and Future W ork 154

9.1 C o n c lu s io n s .....................................................................................................154

9.2 Future w o r k .....................................................................................................158

14



List o f Figures

2.1 A cross-sectional view of the brain. The main areas are highlighted

and labelled [1]............................................................................................. 31

2.2 Structure of a neuron [1]. The neuron is made up from a cell body,

dendrites, axon, and synapse.................................................................... 33

2.3 Ion exchange between the inside of a neuron cell and extracellular

fluid.................................................................................................................  34

2.4 The cortical areas of one hemisphere and their associated functions

[2].....................................................................................................................  37

2.5 A block diagram of the EEG acquisition system.................................  37

2.6 A diagram of the international 10-20 system for electrode place­

ment. The diagram shows a 21 electrode system [3]..........................  39

2.7 An example of the P100 evoked potential. The labels on the y-axis

are the number of trials th a t have been averaged............................... 41

3.1 An example of EEG th a t is contaminated by eye blinking artifact 47

3.2 The ensemble average of autocorrelation at rx(r), r  =  3, for 30 real

EEGs (solid line). The dotted line shows the standard deviation in 

the estimate of the ensemble average of rx(r) at each consecutive 

window............................................................................................................ 51

15



4.1 The solution space for an optimisation problem is shown in the area

within the solid line and a solution which satisfies a constrained 

optimisation problem, i.e. W  is shown in the hatched area.............  67

4.2 Original speech like source signals. The third signal represents the

artifact............................................................................................................ 72

4.3 Artificially mixed signals.......................................................................... 73

4.4 Estimated sources with the artifact minimised..................................  73

4.5 Convergence performance of the proposed algorithm (solid line)

compared with tha t of an unconstrained gradient SOBI [4] algo­

rithm  (dotted line)......................................................................................  74

4.6 A selection of five EEG channels from a 16 channel EEG recording.

The EEGs on these channels are corrupted by the ocular artifact 

between samples 600 to 900.....................................................................  76

4.7 The vertical EOG signal measured from the right eye.....................  77

4.8 A selection of five independent components (ICs) derived from the

EEG primarily corrupted by ocular artifact. The ICs represent the 

EEG with the EOG artifact removed....................................................  78

4.9 The EEGs heavily contaminated by eye blinking artifact................ 79

4.10 The ICs of the EEGs in Fig. 4.9 using the proposed CBSS algorithm. 80

4.11 The ICs of the EEGs in Fig. 4.9 using an unconstrained BSS 

algorithm ........................................................................................................ 81

4.12 The EEGs in Fig. 4.9 separated using PCA.......................................  82

16



4.13 The reprojected ICs to the scalp electrodes after application of 

the proposed CBSS algorithm. Each scalp plot represents the pro­

jection strength of one IC in Fig. 4.10, designated by the label 

beneath the scalp plot. The colour represents projection strength 

of the IC onto each electrode and is normalised to unity across 

all electrodes (arbitrary units). The frontal electrodes are located 

towards the top of the scalp plot. In comparison with Fig. 4.14 

the projection strengths of the CBSS ICs are not smeared over the 

frontal electrodes......................................................................................... 84

4.14 The reprojected ICs to the scalp after application of the uncon­

strained BSS algorithm. Each scalp plot represents the projection 

strength of one IC in Fig. 4.11, designated by the label beneath 

the scalp plot. The colour represents projection strength of the IC 

onto each electrode and is normalised to unity across all electrodes 

(arbitrary units). The frontal electrodes are located towards the 

top of the scalp plot. Point ‘A’ in the figure highlights the limita­

tion of the unconstrained BSS algorithm, in that the projections 

are smeared over a number of electrodes. A similar pattern can be

seen in a number of other electrodes...................................................... 85

4.15 A selection of five channels from the EEG recording. There is an 

obvious ECG artifact present in the first and fourth channels of

the figure.......................................................................................................  86

4.16 A selection of five independent components after the CBSS algo­

rithm has removed the ECG .................................................................... 87

4.17 The measured ECG reference signal...................................................... 87

5.1 Block diagram of the BSS and SVM system.......................................  89

17



5.2 (a) Three features plotted against each other forming the feature

space, (b) The optimum separating hyperplane for the feature 

space in (a)...................................................................................................  93

5.3 The feature space for a nonseparable case. The circled points are 

the support vectors calculated by minimising (5.5). The slack pa­

rameter 7 i enables the use of Lagrangian theory since it can now 

account for the overlapping features......................................................  95

5.4 (a) A plot of the two largest principal components of the feature 

space. There are 200 feature vectors, 100 from normal EEG (+) 

and 100 from EEG containing eye blinks (o). (b) A histogram plot 

showing the output of the classifier pre sgn(-) using the linear kernel. 97

5.5 The (a) classification rate and (b) number of support vectors re­

quired for various param eter values of the RBF kernel......................... 102

5.6 A selection of 8 electrodes from a 16 electrode EEG recording.

The OAs are clear in (a) between samples 400 to 600, 900 to 1400, 

and 1700 to 1900. They are more prominent over the frontal elec­

trodes (F P 1, F P 2 etc.). (b) The same segment of EEGs after the 

eye blinking artifacts are removed using the proposed BSS-SVM

algorithm............................................................................................................103

6.1 A block diagram of the localisation based BCI system.......................... 105

6.2 Part of the scalp including three electrodes, and the location of the

source to be identified (assuming the head is homogenous) . . . .  107

6.3 The relationship between the conductivity and the distance from 

the source to the electrode. When the source is close to the scalp 

the conductivity is large compared to sources that are deep within

the brain as they have to travel through the skull..................................109

18



6.4 The relationship between the cross correlation and the distance 

from the source. Sources located closest to the electrode have 

larger cross correlation value than those located farther away. Cross 

correlation approximately reflects the conductance of various re­

gions in the head (as in Fig. 6.3)............................................................... 110

6.5 The results of the localisation algorithm for synthetic stationary 

and moving sources. The squares (□) are the known sensor loca­

tions, the circles (o) are the known source locations, (x) are the 

locations calculated directly from the actual distances, and aster­

isks (*) are the source locations calculated from the cross correla­

tion value in (6.4). The numbers close to the estimated locations of 

the moving source identify the order of the consecutive localisation 

windows, i.e. 1 being the first processing window, and so on. . . .  117

6.6 The results of the localisation algorithm for real EEGs containing 

left and right finger movement. The squares (□) are the known 

sensor locations and are labelled with the corresponding electrode 

name. Each +  and o represent the source location of one process­

ing window (for one IC) for left and right finger movement respec­

tively. The lines between the +  and o represent the trajectory 

of one estim ated source between two consecutive localisation win­

dows. For clarity the source trajectories of left finger movement are 

plotted using a solid line while right finger movement trajectories 

are plotted using a dash-dot line. The source locations are calcu­

lated assuming tha t they are proportional to the cross correlation 

value as in ( 6 .4 ) ............................................................................................. 118

19



6.7 The histogram plot for the motion characterisation algorithm col­

lapsed across all trials. The number of times that an angle between

two consecutive processing blocks for left and right finger move­

ment trials are represented by black and white bar plots, respec­

tively. This shows that the angle between motion vectors does not 

reveal any significant distinctive features between left and right 

finger movements............................................................................................ 119

7.1 An example of the spectral coherence for the EEGs one second 

prior to finger movement...............................................................................122

7.2 A block diagram of the proposed BCI system based on extracting

the propagation of EEG sources and the location of beta activity. 124

7.3 A block diagram showing the localisation of beta band activity

feature. The EEGs are processed in blocks of Tb samples. The

outputs of this feature are the reprojected beta band power values 

of the IC corresponding to finger movement i.e. the IC with the 

largest reprojection to the electrodes located over the motor cortex. 125

7.4 Block diagram of the system for classification of the propagation 

features. X  is an EEG block........................................................................126

7.5 The recording procedure for the BCI data. Each trial lasted for 

a total of 9 seconds. Between each trial there was an interval in 

which the user was able to blink or get comfortable..............................130

20



7.6 SDTF calculated for left finger movements. Frequency is plotted

on the y axis and time (seconds) along the x  axis. The movement

of the left finger occurs at t = 3 seconds. The direction of flow is 

read from the electrode denoted above the column to the electrode 

denoted by the label on the left of the rows. Electrode FC6 (col­

umn) is the most active because of the high value of STDF (red), 

suggesting that the source of finger movement is located close the 

that electrode................................................................................................... 135

7.7 SDTF calculated for right finger movements. Frequency is plotted

on the y axis and time (seconds) along the x  axis. The movement

of the left finger occurs at t = 3 seconds. The direction of flow is 

read from the electrode denoted above the column to the electrode 

denoted by the label on the left of the rows. In this case electrodes 

CP5 and CP3 (columns) are the most active at the time of finger 

movement, suggesting that the source is located close to those 

electrodes........................................................................................................... 136

7.8 The SDTF calculated for electrodes located over the left hemi­

sphere for left finger movement trials averaged over the alpha band.

The y axis shows the SDTF value, where a value of 1 indicates 

maximal causal relation between the electrode denoted above the 

column to the electrode denoted to the left of the row. Time (sec­

onds) is shown along the x  axis. The movement of the left finger

occurs at t =  3 seconds, which is indicated by the dotted line. . . 137

21



7.9 The SDTF calculated for electrodes located over the right hemi­

sphere for left finger movement trials averaged over the alpha band.

The axis are as in Fig. 7.8 Lower values of SDTF are observed near 

the time of finger movement compared with the left (ipsilateral) 

hemisphere (Fig. 7 .8 ) ...................................................................................138

7.10 The SDTF calculated for electrodes located over the left hemi­

sphere for right finger movement trials averaged over the alpha 

band. The axis are as in Fig. 7.10. For right finger movement the 

SDTF is lower in the left hemisphere compared with that of the 

right hemisphere (Fig. 7 .1 1 ) ......................................................................139

7.11 The SDTF calculated for electrodes located over the right hemi­

sphere for right finger movement trials averaged over the alpha 

band. The axis are as in Fig. 7 . 8 .......................................................... 140

7.12 A histogram plot showing the distribution of classifier output val­

ues using the RBF kernel tested on 100 trials, 50 from each class.

The outputs for each class are clearly separated, which generally 

indicates th a t features are significant for detection of left and right 

finger movements............................................................................................ 141

8.1 Block diagram of the space-time-frequency extraction algorithm. . 145

8.2 The cluster centres for the extracted atoms for 45 left and 45 right 

finger movement trials................................................................................... 151

8.3 The time-frequency representation of the extracted atoms for a left 

finger tria l......................................................................................................... 152

22



C hapter 1 

Brain C om puter Interfacing; 

Introduction

In the world of computing there is an emphasis on the interface between human 

and the core program. The ergonomics of the interface between human and 

computer is known as Human Computer Interaction (HCI). The field of HCI 

has received a wealth of interest amongst researchers and industry which has 

led to many innovative methods of interacting with a computer e.g. via voice 

recognition, gesture recognition, and handwriting recognition. Underlying many 

advances in HCI is the assumption that the user has ‘normal’ motor control 

and coordination. Therefore, a person who suffers from a muscular disorder or 

a quadriplegic, who has no physical control, cannot reap the benefits that a 

computer brings.

A system with a direct communication path between the brain and the com­

puter has long been a fantasy confined to the imagination of science fiction writers. 

However, with the advances in computing power and signal processing technol­

ogy this dream is becoming more realisable. Direct brain-computer interaction,
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or brain-computer interface (BCI), has inspired many interdisciplinary research 

associations between biomedical and engineering faculties. A BCI is defined as 

a system which allows the user to interact with a computer using brain signals 

alone.

There are a number of modalities in measuring the cognitive function of 

the brain, such as functional magnetic resonance imaging (fMRI), Magnetoen- 

cephalography (MEG), and Electroencephalography (EEG). The most viable 

modality for the design of a BCI is EEG, since it is a relatively low cost option for 

monitoring the brain function. EEGs have a very high temporal resolution since 

they are only limited by the acquisition speed of the analogue to digital convert­

ers. The current temporal resolution is 200/is. However, the main disadvantage 

of EEGs is its poor spatial resolution, since they are limited to the number of 

electrodes that can be placed over the scalp. Embedded within the EEGs are 

cortical processes for many tasks, most of them unknown. The main aim of a 

BCI is to identify and exploit distinguishable states from the EEGs.

In general a BCI system comprises of three major components; an input, a 

translation algorithm, and an output [5]. The input to the BCI is, generally, an 

extractable feature of the brain’s normal function. Traditionally, these features 

may be the activity in certain frequency bands over time over a certain region of 

the brain such as the motor cortex, which is involved with voluntary movements, 

or time domain features such as P300, or the action potentials of individual 

neurons. The translation algorithm converts the inputs (brain waves) to the 

outputs (commands) i.e. it decodes the features generated from the brain waves 

into output commands. In general, if the features are well separated in the feature 

space then linear classifiers are used, however if the feature space is not linearly 

separable non-linear methods for classification, such as those based on artificial 

neural networks (ANNs), will be favorable. BCIs can be divided into two main
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categories; invasive and non-invasive. The former uses intracranial electrodes or 

subdural electrodes implanted, respectively, deep inside or on the surface or the 

brain, whereas the latter uses surface electrodes placed over the scalp.

The first attem pt in the design of a BCI system was by Vidal [6] in 1973. In his 

attem pt for BCI he used a parsimonious representation of the EEGs, namely using 

principal component analysis [6], for a variety of experimental setups. Current 

BCIs use one of a number of extractable EEG components, such as rhythmicities 

[7] in the data, such as slow cortical potentials (SCP) [8], or evoked potentials 

(EPs) [9]. EPs such as P300 are time-locked events which are, generally, extracted 

by averaging many trials of the same event.

1.1 A im s and O bjectives

The main interfering signals in EEGs are eye blinking artifacts. These signals gen­

erally have detrimental effects on BCIs in that they may increase misclassification 

errors and thus a lead to lower command throughput. Therefore, a requirement 

for a successful BCI is to remove such artifacts from the EEG signals. The effect 

that eye blinking artifacts have on EEGs and their signal characteristics will be 

investigated. The signal characteristics of the eye blinking artifacts will deter­

mine the a priori information th a t can be extracted from such signals and thereby 

facilitate in their removal from the EEGs. The aim of the artifact removal algo­

rithm  is to condition the EEGs such that the BCI algorithm is presented with 

uncontaminated EEG signals.

Once suitable artifact correction algorithms are developed a survey of current 

BCI systems can be made. During planned finger movement the prefrontal region 

of the motor cortex is activated, then during execution of the movement the 

posterior region of the motor cortex is activated [10]. This suggests that the source
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related to finger movement follows a particular path. Another explantation is that 

the two regions of the brain communicate in order to coordinate the movement. 

Therefore, for the BCI system the aim is to develop a BCI that identifies this 

characteristic through electrodes placed on the surface of the scalp and determines 

whether the left or right finger has been moved.

1.2 Thesis Outline

Chapter 2 gives the reader a general overview of the electroencephalogram (EEG) 

and other brain imaging techniques. The purpose of this chapter is to introduce 

the reader to the terminology and concepts of brain imaging techniques and 

become familiar with the basics in neuroscience.

In Chapter 3 a survey is carried out on the state of the art techniques used to 

process EEGs for the application to BCI. The background work will be used as 

a framework for the design of the BCI system and artifact rejection algorithms.

In Chapters 4 and 5 two types of preprocessing algorithm are developed for the 

removal of eye blinking artifacts. Both are based around blind source separation. 

In Chapter 4 a constrained blind source separation algorithm is developed to 

separate the EEGs into constituent independent components and at the same 

time mitigate the effect of eye blinking artifact. The algorithm uses the concepts 

derived from nonlinear programming, and these are used to solve the constrained 

optimisation problem. The preprocessing algorithm proposed in Chapter 5 uses 

a hybrid approach where blind source separation is coupled with classification in 

order to reconstruct the artifact free observations.

Chapters 6 , 7, and 8 propose three approaches to the design of a brain com­

puter interface. The method in Chapter 6 is based on localisation of the ERP 

sources related to finger movement. The algorithm provides a solution to the
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geometrical LS, where the geometric distances are derived from ICs of a BSS 

algorithm. Though this method doesn’t yield particularly acceptable results it 

gives an insight to the problems in localising the ERPs such as non-homogeneity 

of the brain regions. Chapter 7 uses the spectral correlations between electrodes 

to determine the direction of cortical flow during finger movement. The direc­

tion of cortical flow and the scalp projections of the ERP sources are used in 

the classification of left and right finger movements. The BCI system proposed 

in Chapter 8 is based on the extension of time-frequency masking to include the 

spatial dimensions.

Finally in Chapter 9, conclusions are presented with suggestions for further 

work.
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C hapter 2

O verview  of the  

E lectroencephalogram

2.1 Introduction

The electroencephalogram (EEG) was discovered by Hans Berger in 1926. The 

EEG is commonly defined as the electrical activity recorded from the surface of 

the head, which is called the scalp as opposed to invasive methods which enable 

measurement of the EEG from inside the brain. The most common type of 

electrodes used to record the EEGs are the metal disc electrodes which are applied 

to the scalp with a saline gel. The saline gel acts as an electrolyte medium between 

the scalp and the electrode. Another type of EEG is electrocorticogram (ECoG), 

which uses subdural electrodes. Subdural electrodes are inserted into the scalp 

and measure the electrical activity from the dura, a membrane covering the brain. 

In intracellular recordings the individual neurons’ activation is measured using 

an electrode inserted into the cell. Where as extracellular recordings are made 

using electrodes places within the brain tissue sufficiently close to the neurons.
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It reflects the activation of local neurons, and hence is also known as local field 

potential (LFP). For the purpose of this research only surface electrodes will be 

used.

2.2 Brain Imaging

There are a variety of electro-physiological measurement technologies used to 

measure phenomena from different organs. These include the electro-oculogram 

(EOG) which is the measurement of the electrical activity generated by the mus­

cles around the eye, the Electromyogram (EMG) which reflects the measurement 

of muscle activity, and the Electro-cardiogram (ECG) which shows the heart’s 

activity.

Brain imaging techniques can be divided into those that reflect the anatomical 

information and those tha t highlight the functional regions within the brain. Ad­

ditionally, imaging techniques that reflect brain functionality suffer from a trade 

off between spatial and temporal resolution. For example functional imaging 

techniques with high spatial resolution tend to have a low temporal resolution. 

An example of an anatomical imaging modality is computed tomography (CT) 

in which a series of X-ray beams strike the body at different angles and the cross- 

sectional image is reconstructed by the computer. The spatial resolution in CT is 

very high but the temporal resolution is very low, on the order of 10 seconds per 

scan for brain. The brightness of the image is proportional to the density of the 

tissue. The CT images only reflect anatomical information and are used in con­

junction with other imaging modalities to highlight any pathological information. 

The main disadvantage of CT is that it exposes the subject to radiation, which 

limits the number of scans that can be performed on one person, since exposure 

to ionising radiation may cause malignancy.
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Magnetic resonance imaging (MRI) is a safer option to CT. It measures 

changes in electromagnetic activity within a large magnetic field. Pulses of radio 

waves build up a two/three dimensional image of the brain. MRI provides high 

resolution (approximately 1mm) two/three dimensional images of the anatomi­

cal make up of the brain, but no functional information. Functional magnetic 

resonance imaging (fMRI), however, reflects the reaction of the oxygen molecules 

against a controlled magnetic field and hence highlights the functional properties 

of the brain. fMRI has a high spatial resolution (between 2mm to 4mm) but 

low temporal resolution (approximately 4 seconds) and the equipment is very 

expensive.

Magnetoencephalography (MEG) refers to measurement of magnetic fields 

produced by the electrical activity in the brain. More specifically, MEG measures 

magnetic fields that are generated as a result of ionic currents flowing through 

the dendrites (see next section). The magnetic fields generated by the brain are 

on the order of 100 to 1000 fT (femto Tesla, femto =  10“ 15) and therefore require 

specialised (and expensive) equipment to detect such small magnetic fields. Typi­

cally, MEG is acquired from 300 recording electrodes (Superconducting Quantum 

Interference Devices - SQUIDs) placed around the scalp in a radio frequency and 

magnetically shielded room. Unlike EEGs, MEGs are not distorted by the body 

and hence make it ideal for localisation studies. The most common use for MEG 

is localising sources in the primary auditory, somatosensory, and motor areas.

Positron emission tomography (PET) measures the metabolic rate in the 

blood. Before recording PET, the subject is administered a short lived radioac­

tive substance, known as radiotracer, which emits a positron as it decays. When 

the positron strikes the electron of oxygen molecule, two photons are emitted 

in equal and opposite directions, which is then detected by the scanning device. 

More active regions in the brain having larger blood flow would elicit a larger
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response on the scanning device. PET reflects the metabolic processes and there­

fore typically combined with CT or MRI to show the structural and metabolic 

information simultaneously. PET typically has a lower spatial resolution than 

fMRI and suffers from a poor temporal resolution of about 15-20 seconds.

The above mentioned imaging technologies show physiological or pathological 

properties. Although EEGs are mainly used to determine functional properties 

of the brain, by using advanced signal processing techniques other properties can 

also be investigated.

2.3 A n a to m ic a l  M a k e u p  of th e  B ra in

The brain can be divided into six major anatomical areas; cerebral hemisphere, 

thalamus, midbrain, cerebellum/pons, and medulla oblongata (medulla), as shown 

in Figure 2.1. The medulla contains neurons passing through it into the rest of

C«r*bral hemiipWsr*

Thalamus ,

Pons

Modullo oblongott Cambalh

Figure 2.1: A cross-sectional view of the brain. The main areas are highlighted 

and labelled [1].

the brain. In general the neuronal information that ascends through the medulla 

is associated with sensory inputs to the brain, such as touch, smell, etc. On the 

contrary, the information passing through from the medulla to the rest of the
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body are associated with voluntary movements. The medulla is also responsible 

for the regulation of respiratory organs and heart. The cerebellum is considered 

as part of the motor system and contains the source of facial nerve endings. The 

midbrain is considered as the link between the brainstem and the forebrain [1]. It 

contains neural pathways connected to visual, auditory and motor systems. The 

midbrain is also responsible for the transmission of pain. The thalamus can be 

seen as the central junction for all of the sensory inputs, with the exception of 

smell. Its function is to distribute the information to the relevant parts of the 

cerebral hemisphere. The cerebral hemisphere is the largest part of the brain. It 

is divided into three areas; cerebral cortex, subcortical white matter, and basal 

ganglia. On the surface of cerebral cortex there are peeks and valleys of 0.5cm 

deep, which give the well known look of the brain. The peaks and valleys are 

respectively known as gyri and sulci. Certain areas of the cerebral cortex are asso­

ciated with sensory input, such as vision, touch etc, whereas others are associated 

with voluntary movement and cognitive thought.

In order to understand how the electrical currents are generated within the 

brain, it is im portant to understand the most basic unit of the make up of the 

brain, the neuron.

2.3.1 T he Structure o f Neurons

The central nervous system (CNS) consists of 100 billion cells for which the two 

most common types are Neurons and Glia cells [1]. Neurons, also known as 

nerve cells, are the fundamental building blocks of the brain. A neuron trans­

mits, receives and processes information from other neurons or tissue by changing 

its biochemical properties. All neurons produce the same electrical signal [11]. 

Neurons are made up from three major parts as in Figure 2.2;
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Figure 2.2: Structure of a neuron [1]. The neuron is made up from a cell body, 

dendrites, axon, and synapse.

D endrites

Dendrites are tree-like structures which extend from the central part of neuron, 

the cell body (see next section). They receive signals from synapses, which are 

junctions between the tips of the dendrites and cell bodies.

Cell body (Som a)

The cell body, or soma, is the central part of neuron. It is similar to a regular cell 

with the exception tha t it can modify its biochemical processes to communicate 

with other neurons. It contains deoxyribonucleic acid (DNA) in its nucleus, 

ribosomes in its cytoplasm (the plasma between the nucleus and the cell wall) for
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Outside of cell

Biological pump

Cell m em brane

Figure 2.3: Ion exchange between the inside of a neuron cell and extracellular 

fluid.

building proteins. The cell body draws its energy from mitochondria within the 

cytoplasm.

A xon

An axon is a long trunk like structure, typically greater in length compared to 

dendrites, which carries the information from the cell body to the dendrites. Its 

cytoplasm contains a large number of microtubules and neurofilaments which are 

tiny tube like structures tha t carry metabolic information between the cell body 

and dendrites. The speed at which the axon can transmit information is directly 

proportional to its thickness. Most human axons are 30fim  thick, which is very 

thin compared to tha t of other animals such as squid.

As mentioned earlier a neuron communicates by changing its biochemical 

properties. The axon’s membrane is permeable to positively charged potassium 

(K +) and negatively charged chloride (C~) ions but is impermeable to sodium 

(N a+). Since an unequal amount of Cl~ is distributed across the cell wall a 

voltage gradient forms at the junction between the intracellular plasma and the
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outside of the cell (see Fig. 2.3). The inside of an inactive cell (intracellular) 

rests at -70mV relative to the outside of the neural cell (extracellular), this is 

known as the membrane potential or resting potential. The resting potential is 

maintained with biological pumps on the membrane which regulate the amount 

of N a + inside the axon.

When a soma transmits an electrical pulse the intracellular concentration of 

sodium within the axon decreases causing the membrane voltage to increase to 

approximately 30mV. This is known as an action potential (AP). Long axons, such 

as peripheral nerve axons, are insulated with a myelin sheath with gaps at regular 

intervals, where the axon is not insulated. These gaps are known as Ranvier node. 

The myelin sheath prevents the axon from producing AP, i.e. it creates an ionic 

barrier. Only regions of the axons which are not insulated can transmit action 

potentials and the distance between Ranvier nodes is sufficiently small such that 

the action potential can propagate along the axon. This overcomes the relative 

slowness of information transfer since the AP propagates in discrete steps from 

one Ranvier node to the next.

When an AP reaches the end of the axon it is at a part called a synapse. A 

synapse is the junction between the dendrites, muscle or glands etc. It contains 

a chemical called neurotransm itter which either excites or inhibits the recipient 

cell. The action depends on the type of cell it is connected to (the postsynaptic 

cell).

2.3.2 Cortical Areas

The cerebral cortex is divided into six neuronal layers which are parallel with the 

scalp, and consists of a large number of pyramidal neurons. The dendrites of the 

pyramidal neurons are perpendicular to the scalp and hence have the greatest
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effect on the EEG. Most of the neurons in the cerebral cortex are arranged in 

this way and hence the observed EEG proportional to summation of the poten­

tials radiating from these dendrites. Additionally, the thalamus and brainstem 

regulate the rhythm of the pyramidal cells by acting as a biological pace maker 

[12]. The neuronal rhythms can also be affected by respiration, heart rate, or any 

events which affect the oxygen and glucose level in the cells. The EEG can only 

detect large populations of neurons tha t are in near synchrony.

The cerebral cortex is divided into two halves or hemispheres. In general, 

the left hemisphere controls the right half of the body whereas the right hemi­

sphere controls the left half of the body. Each hemisphere is divided into various 

functional areas as shown in Figure 2.4. The premotor cortex is associated with 

the preparation of voluntary movements, where as the primary motor cortex is 

associated with voluntary movement. If the cells in one part of the motor area 

are electrically stimulated the subject will move one side of the body, depending 

on which section of the motor cortex is stimulated. In an experiment by Stewart 

et al. [13], 12 subjects were asked to listen to a familiar piece of music while 

the brain activity was being monitored using fMRI. The aim of this experiment 

was to monitor the cortical associations between piano players and non piano 

players. The experiments show tha t the motor cortex areas associated with the 

fingers and thumbs would be active in the piano players but not in the non piano 

players. The sensory area receives sensory information from the rest of the body, 

such as taste, smell, touch etc. The frontal lobe acts as a short term memory 

storage, where imagery and higher cognitive function take place.
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Figure 2.4: The cortical areas of one hemisphere and their associated functions 
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amplifierElectrodes

Figure 2.5: A block diagram of the EEG acquisition system.

2.4 A c q u is i t io n  M e th o d s

The signals recorded using scalp EEG electrodes are on the order of microvolts and 

are digitised before being processed by the clinician. A block diagram for a typical 

EEG recording is shown in Figure 2.5. The electrodes are silver-silver/chloride 

disc electrodes and are applied to the scalp individually or using a pre configured 

electrode cap. The isolation amplifier protects the subject from the large currents 

from the computer terminal and amplifies the signal before being digitised. The 

computer terminal stores and displays the EEG on the screen for the clinician. 

Typically the EEGs are bandpass filtered between 0.1Hz and 100Hz. Additionally, 

a 50Hz notch filter is applied to remove the effects of mains frequency.
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2.4.1 E lectrode placem ent and Configuration

During the EEG recording it is im portant that the connection impedance for each 

electrode is kept below 5K tt.  In order to keep the impedance low, the skin is 

lightly abraded so that a thin layer of the skin is removed. Additionally an ionic 

conductive paste is applied to the electrodes to facilitate current flow from the 

brain to the electrodes. Electrodes can be applied individually to the scalp or 

by using an electrode cap. An electrode cap is an elastic cap with the electrodes 

attached at predefined locations. If an electrode cap is used, a blunt siring is used 

to inject the saline gel into the electrode and abrade the skin.

In most cases the electrodes are arranged on the scalp using the International 

10-20 system for electrode placement which was introduced by Jasper in 1958 [14]. 

The 10-20 system is used uniformity of the recordings between EEG recordings 

and across different patients. The name 10-20 system arises from the distances 

between electrodes, as they are spaced at regular intervals defined by 10% or 20% 

of the distance between the nasion and inion. The nasion is the bone between the 

eyes and the inion is the prominent bump located over the occipital cortex (to the 

rear of the head). A 10-20 system for 21 electrodes is shown in Figure 2.6. The 

letters in the 10-20 system refer to the region of the brain that the electrode is 

closest; frontal lobe (F), parietal lobe (P), temporal (T), central (C) and occipital 

(O). Odd label numbers are located on the left hemisphere and even numbers are 

located on the right hemisphere, the label ‘z’ is located on the midline. In some 

EEG recordings, such as localisation studies, up to 256 electrodes are used and 

therefore researchers modify the 10-20 system to accommodate the larger number 

of electrodes.
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Figure 2.6: A diagram of the international 10-20 system for electrode placement. 

The diagram shows a 21 electrode system [3].

2.5 EEG Signal Properties

This section explains various ways that EEG can be grouped based on properties 

of the signals. The most obvious descriptor of EEG is its morphology for example, 

rhythmicity, spindles, or spikes. The frequency content, amplitude, periodicity, 

and distribution are all examples of EEG descriptors.

2.5.1 R hythm icity

The frequency spectrum of the EEG can be divided into four main frequency 

components known as delta, theta, alpha, beta, and gamma.

D elta  (0Hz - 4H z) Dominant in infants and are active in the central cerebel­

lum and frontal lobes. They appear in adults during deep sleep and when 

brain damage has occurred.

T heta  (4-8) Appears over the frontal, temporal, and parietal regions in drowsy 

or emotionally stressed normal adults. Diffuse theta commonly signifies 

abnormal activity.
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A lpha (8-13) The most prominent rhythm in normal adults observed over the 

occipital and parietal regions. Alpha occurs when the person is relaxed 

and comfortable. The non-dominant hemisphere (right for right handed 

persons) typically has a larger amplitude in the alpha band. They are more 

prominent when the eyes are closed and when the person is in a relaxed 

state.

B eta  (>  13) Is mainly observed over the anterior region of the brain and has a 

low amplitude compared with the amplitude in the other frequency ranges. 

It can be divided into three categories based on its distribution over the 

scalp; Frontal beta is blocked by movement, Widespread is unreactive, and 

Posterior reacts to opening eyes

The frequency band above 30Hz is also known as gamma band.

2.5.2 Event R elated Potential

Event related potentials (ERPs) are potential changes tha t are in response to a 

stimulus or event. They are used to evaluate a variety of cognitive processes and 

neurological disorders, by analysing the spatial and temporal distribution of the 

ERP. In general, ERPs are time locked to the stimulus and therefore the most 

common method for extracting the ERP is to ensemble average over a number of 

trials, see Fig. 2.7 for an example of the P I 00 ERP. Trials that contain artifacts 

are manually excluded from the ensemble. This method for extraction assumes 

that the background EEG is a zero mean ergodic process and therefore will cancel 

out revealing the ERP. The fundamental flaw in this method is that it ignores 

the event related activity that is not well represented by the aforementioned 

assumption [15].
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Figure 2.7: An example of the P I 00 evoked potential. The labels on the y-axis 

are the number of trials that have been averaged.

Evoked P otential

Evoked potentials (EP) are time locked responses tha t evoke a response from 

the sensory organs, such as visual and auditory systems, as opposed to those 

evoked responses from other neural structures. The EPs are direct results of 

reorganisation of the phases in neural structures related to the sensory organs. 

They have a number of distinguishable features which are used by clinicians for 

diagnosing schizophrenia and other neurological and mental disorders [16]. The 

most obvious identifiers of EPs are the latency and the sign of the EP. Typically, 

the notation for EPs is that a P or N, indicating positive or negative potential, 

precedes a number which signifies the latency of the EP. As an example, the EP in 

Fig. 2.7 is a P100 meaning that it is a positive potential with a latency of 100 ms. 

The spatial distribution of the EP is directly related to the stimuli presented, for



example an inverting checkerboard pattern elicits a response in the visual cortex, 

while an auditory click elicits a response in the auditory cortex. This type of EP 

is termed visually evoked potential (VEP). An experiment by Sutton et al. [17], 

proved th a t there is a larger response when the subject is uncertain to what the 

stimulus will be. An experimental paradigm where there was an uncertainty to 

whether the stimuli would be a flashing light or an auditory click after a random 

interval proved that, in comparison with certainty in the stimuli, when the stimuli 

is unknown a prion  the EP is more pronounced and larger in magnitude. This 

uncertainty is known as the ‘oddball’ paradigm.

A number of BCI researchers have used EPs as the control signals in their 

development of BCIs. For example the P300 was used to implement a spelling 

device [18] by randomly flashing rows of a matrix containing letters of the alpha­

bet. In another application P300 was used to manoeuver the user through virtual 

worlds [9].

B ereitschafts P oten tia l

Bereitschafts potential (BP), also known as readiness potential (RP) or slow cor­

tical potential (SCP), is a slow moving wave (0.1-0.5Hz) which precedes imagined 

or real movement by up to one second [19]. Planning and organisation of move­

ment involves a number of brain structural components such as the primary motor 

area, premotor area, secondary somatosensory area, basal ganglia, supplementary 

motor area (SMA), thalamic nuclei, and the cerebellum [20]. It is believed that 

the communication and spatial organisation of these structures are the reason for 

the SCP [21]. One can learn to control the amplitude of one’s SCP [22]. BCIs 

based on regulation of SCP exploit the adaptive nature of the brain by using 

biofeedback. In biofeedback the brain is placed in the adaptive loop of the BCI 

via a, typically visual, feedback. A typical experimental setup of biofeedback
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places the subject in front of a computer monitor with a cursor at the centre of 

the screen. The user is then asked to make the cursor move up. The user is not 

instructed on how to achieve this goal, however they are ‘rewarded’ for making 

the cursor move up or down. After a number of experimental sessions the user 

is be able to successfully move the cursor on demand. In one experiment the 

user thought about playing in the park in order to move the cursor upwards [23]. 

Essentially the brain was placed in the feedback loop and therefore adapted in 

order to achieve the goal of moving the cursor up or down.

2.5.3 Event R elated  D esynchronisation /  Synchronisation

Another example of an ERP is the Event Related Desynchronisation/Synchronisa­

tion (ERD/ERS)[24][3]. The ERD/ERS is the result of a decrease or increase in 

the synchrony of a neuronal population for ERD and ERS respectively. This 

results in a decrease/increase in power in a certain frequency band. This power 

variation reflects the local change in interneuron activity, and this in turn reflects 

the frequency spectrum of the ongoing EEG. A typical task that elicits an ERD 

is perceptual, judgemental or memory task, where the magnitude of the desyn­

chronisation is proportional to the complexity of the task [3]. The behavior of 

EEG just before and during voluntary finger movement was first quantified in 

[25]. The experiments in [25] quantified the ERDs as follows:

1. Band pass filter the EEG between frequencies 1.6Hz - 30Hz.

2 . Average a 2s window beginning 4s prior to movement, call this value R.

3. Average consecutive 250ms windows, call them A(t).

4. Then E R D (t)  = ^ ^ 1 0 0 .
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It was observed that the ERD occurs on average, 1.7 seconds before the finger 

movement [20]. This means that the brain knows which finger will move well be­

fore the action has taken place. The ERD is most prominent over the contralateral 

motor cortex in the upper alpha band ( l l - 12Hz). ERS can be observed 0.5 to 1 

second after the finger movement over the ipsilateral hemisphere. ERD/ERS are 

traditionally extracted by averaging 10-20 trials of the same event, such as press­

ing a micro switch with the index finger. This method of extraction assumes that 

the ERP has a fixed time delay and the background EEG behaves like additive 

uncorrelated noise [26]. However, this simple assumption does not hold since, in 

general, ERD /ERS is time locked but not phase locked. Therefore, a method 

based on frequency analysis may be more effective in extracting the ERD/ERS. 

There are many methods for the quantification of ERD/ERS e.g. the band power 

method [27] and those based on the Hilbert transform [28].
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C hapter 3 

State o f th e  A rt in Brain  

C om puter Interfacing

The field of BCI has made considerable advances since Vidal’s [6] first attempt 

in the early 1970s. There are a number of BCI systems with a variety of signal 

processing techniques to extract and classify the signals of interest e.g. those 

associated with left or right finger movements. Majority of these techniques can 

be classified into two major approaches: pattern recognition and operant condi­

tioning. The former relies more on the signal processing algorithms to extract a 

natural phenomena of the brain’s activity, such as ERS/ERD or P300, whereas 

the latter relies more on the BCI user training the brain to adjust a phenomena 

of normal brain activity, such as increasing the power in a particular frequency 

band. A common problem for all BCI systems is that the EEGs are usually cor­

rupted by artifacts. In this section the requirements for a successful BCI system 

are identified and the methods applied in BCI are outlined.
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3.1 Artifact R ejection

Ocular artifacts (OAs), also called electro-oculograms (EOGs), are the main 

source of interference for EEG signals. These pose a significant problem to clini­

cians and neurologists because of the large amount of data that can be lost due 

to their presence. The majority of BCI researchers exclude the trials that contain 

eye blinks [29].

OAs refer to the potential difference that is generated when the eye moves in 

its socket or when a blink occurs. OAs propagate to other recording electrodes 

and impose themselves over the existing EEG. They can be measured by placing 

electrodes around the eyes. Horizontal eye movement can be measured by placing 

electrodes on either side of the eyes, whereas vertical movement and blinks can 

be measured by the electrodes placed above and below the eyes.

The interfering eye blinks generate a signal that is on the order of ten times 

larger than cortical signals. Eye blinks can last between 200 to 400ms. The 

eyeball can be considered as a dipole rotating in a socket, since the cornea remains 

at 0.4 to lmV positive with respect to the retina. Rotations of the eyeball in 

saccadic eye movements cause large external field variations that can contaminate 

EEG readings [30]. Due to the magnitude of the blinking artifacts and the high 

resistance of the scalp, OAs can contaminate majority of the electrode signals, 

even those in the occipital area. An example of EOG artifact is shown in Fig 3.1.

It is possible to ask patients to fixate on a point, which will reduce the num­

ber of eye movements, but involuntary movements, such as eye blinks, are just as 

troublesome. Asking the patients to suppress eye blinks will distract them from 

the clinician’s instructions and proves to be impossible, for example, when exam­

ining children. Closing the eyes results in increased involuntary eye movements. 

Eye blinks may be in response to a cognitive task, therefore simply rejecting the
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Figure 3.1: An example of EEG that is contaminated by eye blinking artifact

data segment will result in the loss of important information.

The main reason why EOGs cannot be simply removed using the conventional 

frequency domain filtering techniques is because of the spectral overlap between 

EOG and the underlying EEGs. Numerous methods have been employed for re­

moval of OAs tha t exploit the use of regression analysis which is incorporated into 

popular EEG monitoring software, such as Neuroscan. Part of the EOG is sub­

tracted from the EEG such th a t Corrected E E G  = Raw E E G  — 'yEOG,  where 

the EOG is measured at the mastoids which removes the need for a horizontal 

and vertical EOG measurement [31]. The parameter 7 has been determined in 

numerous ways, such as the ratio between EEG and EOG. In [32] 7 was deter­

mined by the maximum covariance between EOG and EEG. However, due to 

volume conduction, OAs contain some EEG information which will inevitably be 

subtracted using these techniques.

— |in  a iM >  ■ y m  * 7 7 .
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Adaptive filters have been implemented for the removal of EOG artifacts 

[33]. In these methods the vertical and horizontal EOGs were measured and 

used as reference inputs to the adaptive algorithm. In another approach [34] a 

method has been proposed which does not require a reference input for removing 

the EOG artifact. Their adaptive algorithm estimated the EOG by predictive 

filtering techniques. The mentioned adaptive filtering techniques show promising 

results, however, they operate on one EEG channel at a time, which can be 

computationally expensive, especially when a large number of electrodes are used. 

Moreover, these techniques do not consider all the information within the EEG 

signals, hence their use in artifact rejection is not efficient. Another method 

for removing blinking artifacts from EEG was proposed by [35] using principal 

component analysis (PCA). It finds orthogonal directions of greatest variance 

in the EEG signals. PCA is based on explicit spectral matrix factorization of 

the EEG signals, therefore the application of PCA is generally superior to the 

traditional aforementioned regression technique. The main drawback of PCA lies 

in the fact th a t neurobiological signals are not believed to be orthogonal, hence 

OAs will not always be effectively removed [36].

3.2 B lind  Source Separation in Artifact Rejec­

tion

One area which has sparked interest in the biomedical field is the use of In­

dependent Com ponent Analysis (ICA) in blind source separation (BSS). ICA 

is a method of estim ating the sources given that only the mixtures are avail­

able. This is achieved by making as few assumptions as possible about the 

original sources. One common assumption is that the source signals within
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s (t) =  [si(<)? s2(0 ? • • •  ̂sN(t)]T ^re statistically independent and zero mean, where 

t denotes the discrete time sample and (-)T is vector transpose. This is a stronger 

claim than uncorrelatedness because it assumes that the joint probability density

of the sources can be factorised into the product of marginal densities [37] i.e

P(s) = (3-1)
i

The mixtures can be modelled by

x(t) =  As (t) +  v(t) (3.2)

where A  is the M  x N  full column rank mixing matrix, N  is the number of sources, 

M  ( M  > N)  is the number of linear mixtures, x(t) = [xi(t), x 2(t), . . . ,  xm(t)]T 

observed at the electrodes and v(£) =  [vi(£), v2(£), . . . ,  VM{t)]T is the additive zero 

mean sensor noise. It is assumed tha t the sensor noise is temporally uncorrelated

i.e. E { v ( t ) v T(t — k)} = 0 V k ^  0, and uncorrelated with the sensor data

E{x(t){As(t . ))T } = 0. The output of the ICA system (i.e. the estimated original

sources) is given by

y (t) =  W x(i) (3.3)

where y(t) =  [yi{t), ij2 (t) , .. ., 2//v(£)]T is the vector of the estimated sources, W  is 

the N  x M  separation matrix. Equation (3.3) implies that A =  W*, where * is the 

pseudoinverse (henceforth, W  is assumed to be square, i.e. M  = N).  However 

this is not generally true, since there is a scale and permutation ambiguity in 

most BSS algorithms. A more accurate definition for the sources is

y  (t) = s (t) = P D W  x(t) (3.4)

where P  is a permutation matrix of size N x N  with each row having only one 

column equal to one where the perm utation has occurred, and D is a diagonal 

scaling matrix.
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Some BSS algorithms require tha t the data is stationary or at least wide-sense 

stationary (WSS). EEGs can be considered stationary stochastic processes when 

data is not corrupted by artifacts for up to 25 seconds [38]. In the general case 

EEGs can be considered, at the least, WSS processes for shorter intervals. A 

WSS processes is described to have the following properties [37];

1. The time average of the data /i(t) is time invariant.

2 . The autocorrelation function is independent of time, in that rx(r) = E{x(t )x( t+  

t)}  for all values of t. This property is demonstrated for EEG signals in 

Fig. 3.2. One can see tha t the auto correlation function of EEGs do not 

vary significantly with time.

3. The variance, a 2 =  rx(0) =  E{x( t )x( t )}  is finite, which holds true for EEGs.

Most BSS algorithms estimate the probability distribution of the data, and are 

typically applied to blocks of data. Therefore, the stationarity requirement of the 

sources is not as great as the stationarity of the mixing system [37], i.e. the mixing 

matrix must not change with time. W ithin the context of EEGs, this requirement 

is met when processing short blocks of EEGs. However, location of the sources 

cannot be guaranteed between two consecutive nonoverlapping blocks. The goal 

of an ICA algorithm is to estimate sources that are statistically independent. 

There are three prominent approaches to attaining this goal:

1. Assuming that the source signals are stationary and non Gaussian, they can 

be reconstructed by measuring the statistical distance between the joint 

distribution and the product of marginal densities. One example of this 

measure is the Kullback-Leibler divergence (KL). However, the drawbacks 

of this method is that it is sensitive to noise and the measure is also sensitive 

to the estimation of the probability densities, i.e. a poor estimation of
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Figure 3.2: The ensemble average of autocorrelation at r x(r), r  — 3, for 30 real 

EEGs (solid line). The dotted line shows the standard deviation in the estimate 

of the ensemble average of rx(r) at each consecutive window.

probability densities, for example in nonstationary source signals, results in 

poor performance of the separation algorithm.

2 . Simultaneous diagonalization of several covariance matrices for multiple 

blocks of data, i.e. time varying covariance. If the sources are non-stationary 

and mutually independent then the sum of the off diagonal elements in the 

covariance matrices will be close to zero. By applying the decorrelation al­

gorithm the unmixing m atrix can be found. The advantage of this method 

is that it only uses second order statistics to account for non-stationarities 

in the signal, hence making it computationally attractive.
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3. Minimising the mutual temporal correlation over a number of time lags. 

The main advantage of this method over the second method is that it is 

able to separate source signals that contain white noise. This and the second 

method use second order statistics only, hence, both have low computational 

cost.

3.2.1 W hiten ing

A common preprocessing step in ICA is known as whitening or sphering the 

data. Whitening, which is also the basis of PCA, is defined as a linear co­

ordinate transformation of an arbitrary multivariate density function into a spher­

ical one [39] [40]. This decorrelates the data. Decorrelation is a weaker condi­

tion compared to independence. Two variables y\ and y2 are said to be uncorre­

lated if E{y iy2} — E { y \ } E { y 2} = 0 whereas for independence E{h(yi )h(y2)} — 

E{h( y i ) }E{h( y2)} =  0 where h(-) is an arbitrary function. The transforma­

tion matrix is found by decomposing the covariance matrix of the observed data, 

R x =  E{x(£)xT(£)}, into its eigenvalues and corresponding eigenvectors. The 

observed data x(£) is whitened by the following transformation

B w =  U Q “ 1/2U t  (3.5)

Where U  is a m atrix of orthonormal eigenvectors of R x, Q is the diagonal 

matrix where the diagonal elements are the eigenvalues of R x and Bu, is the 

whitening transformation matrix. This means that the covariance matrix of 

the whitened observed data  R 2 =  E{z ( t ) z T(t)} = I after whitening, where 

z[t) — [z\(t) , . . . ,  zm(£)]T, is the whitened observed data at discrete time t, and 

z (t) =  Bu,x(*).

As mentioned above a number of authors have attempted to use PCA to 

separate OAs [41] from EEGs based on the assumption that OAs are algebraically
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orthogonal to neurobiological signals. The principal components are ranked by 

the value of the eigenvalues, in that, a principal component containing most of 

the information has a large eigenvalue.

This helps the ICA algorithm by reducing the solution to finding an orthogonal 

mixing matrix. This means that the joint distribution of the data will only need 

to be rotated in N ( N  — l )/2  degrees of freedom, as opposed to unwhitened data, 

which has N 2 degrees of freedom [37]. Pre-processing by whitening the data 

considerably reduces the complexity of the problem. With this assumption in 

mind, many algorithms are designed so that the estimated sources meet this 

criterion, albeit approximately in practice.

3.2.2 Inform ation T heoretic Based BSS

One semi-autonomous algorithm for the removal of of artifacts from EEGs is based 

on the Information Maximization (Infomax) theorem [42]. The Infomax algorithm 

is based on the principles of maximum likelihood (ML) estimation. Using the 

assumption given in (3.1) and substituting the estimated sources y = W x  for the 

actual sources in (3.1), for a given number of observations, M, the log-likelihood 

expression can be formulated as [43] [37]

1 M
—  logL(W ) -  E jV lo g p ^ w f x ) } +  lo g |d e tW | (3.6)
1 b i=i

the incremental update rule is given by

a w  oc y b 9Lq^  = 1W _T -  f(y )xTl  (3-7)

where f(y) =  [f(yi),  7(2/2)? • • •, / ( 2/tv)]t  is a nonlinear function applied to each

element of the estimated output y, (-)_T is the pseudoinverse and transpose, and

Tb is the data length. The update equation is given by,

W  (t +  1) =  W  (t) +  77AW , (3.8)
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where 77 is the learning rate and is typically set to a low value (77 < 1).

In [36] the form of f{yi)  is proportional to the cumulative density function 

of the sources. Where as in [42] the nonlinear function has been defined as 

f ( y ) =  (1 +  e~v)~l . However, in most cases the nonlinearity is restricted to a 

sigmoidal function which limits the separation to super-Gaussian sources.

In order to avoid the matrix inversion and to speed up the convergence the 

gradient equation in (3.7) is modified by post-multiplying the term W TW  [44]. 

The natural gradient becomes

w Tw  = [I -  f(y)yr]w (3.9)

Jung et al. [43] proposed a system to segregate the EEG signals using the Infomax 

algorithm, and then the effect of eye blinking artifact was removed via manually 

inspecting the ICs for flagged components that contained eye blinking artifacts. 

The separated signals are then recombined to reconstruct the artifact free EEG.

3.2.3 Second Order B lind Identification

Second Order Blind Identification (SOBI) [45] has been used by a number of 

researchers for the separation of EEG signals [46] [47] and particularly for the 

separation of EEGs contaminated by EOGs [48]. It is the ability of recover­

ing correlated sources which has attracted researchers to use SOBI for artifact 

removal. SOBI is particularly popular in experiments investigating the frontal 

lobe activity, such as short term memory tasks. Eye blinking artifacts severely 

corrupt the signals from electrodes located at these sites. Moreover, when move­

ment related potentials are of interest, OAs interfere with the parietal electrodes, 

which are associated with movement preparation and hence these ERPs can be 

misclassified as OAs by the majority of BSS algorithms. The main reason why 

SOBI performs so well 011 temporally correlated data is because it exploits the
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temporal information in order to estimate the separated sources. On the contrary, 

BSS algorithms based on an information theoretic approach exploit the PDF of

the sources and hence the time structure is completely neglected i.e information

theoretic BSS algorithms are insensitive to the order of the data points.

In SOBI it is assumed that the covariance of the observed vector, x(f) is 

structured as follows [45]:

R x(0) =  £ { x (t)x r (t)} =  A R s(0)A t  +  a2nl  (3.10)

R  x ( t ) = £ {x (l +  r )x r (t)} =  A R s(r)A T (3-11)

where I is the identity matrix, o \ is the variance of the noise and

R s(r) =  E{s( t  +  r)sT(t)} (3.12)

is the covariance of the source signals at time lag r. In practice the covariance 

matrix is estimated from a finite length of data given by,
Jig

R»(U = — £ s ( l  +  r ) s r (t) (3.13)
T* - r  t r

assuming that the sources have zero mean. Further references to covariance ma­

trices are assumed to be calculated in this fashion. Since the sources are mutually 

uncorrelated, the covariance matrix of the source signals, R s(0) will be the iden­

tity matrix, assuming tha t the sources have unit variance. Hence, the covariance 

matrix of the mixtures at r  =  0 will be R x(0) =  A A T +  cr^I. The eye blinking 

artifact introduces a non-stationary source into the EEGs, which will hinder the 

separation performance of any BSS algorithm which assumes that the sources are 

stationary. Since SOBI can only derive optimal separation parameters when the 

sources are stationary, a common preprocessing step when the sources are not 

stationary is symmetrising the correlation matrices, given by

R ( t ) = [R (r) +  R r ( r )]/2  (3.14)
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where R( r )  is the symmetrised correlation matrix for a given time lag r . This 

has the effect of extinguishing any non-stationarity in the covariance matrices, 

which is indicated by the off diagonal elements of R (r) having the property, 

[ R } i j ( r )  ±  [ ^ ( t ), V r  >  0.

The first step in SOBI is to apply the whitening transform using (3.5) such 

that R 2(0) =  B lt;R x(0)B^ =  B WA A TB^ =  I, assuming that the sources are 

mutually uncorrelated and variances normalised to unity. R*(0) is the covariance 

matrix of the whitened data. This implies that

U  =  B „A  (3.15)

is a N  x N  unitary matrix. Thereby, the mixing matrix can be determined by

A  = b ; ' u , (3.16)

subject to scaling and perm utation ambiguities.

Following these aims SOBI algorithm attem pts to find a unitary factor U 

that will diagonalize a set of covariance matrices. Using the properties defined in 

(3.11) and (3.16) the following is obtained

R  z ( t ) =  B wR I (r)B j; =  U R s( t)U t , (3.17)

Where R 2(r) is the covariance m atrix for the whitened observations. Since the

observations are whitened, i.e. all cross terms are discarded, then U  can be any

unitary matrix.

The covariance m atrix of the estimated sources can be recovered by

Rj, =  V r R ,( r )V  (3.18)

where is a diagonal m atrix in which the diagonal terms contain the autocor­

relation values for the estimated sources at time lag r , i.e.

[R»]« ^  [RyL V I < i ^ j < N .  (3.19)
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The m atrix V  is a unitary factor and since any unitary factor is a diagonalizer 

of R 2( t )  then V  =  U. More formally the diagonalization of a matrix is defined 

as

off(M) 4  ^  IM.jl2 (3.20)

Provided that the source covariance matrix, R s(r), satisfies the spectral theorem 

for normal matrices, namely M TM  =  M M 7 , then it is said to be unitarily 

diagonalizable, i.e. there exists a diagonalizing matrix V.

This property led to the popular time-structure based BSS algorithm known 

as Algorithm for Multiple Unknown Signals Extraction (AMUSE) [49] [50]. Many 

applications have been found in the processing of EEG signals, particularly for 

the removal of artifacts from the EEGs [51]. However, the main drawback of 

this method is the requirement set by (3.19) which means that for successful 

diagonalization of R 2(t ), t ^ 0 ,  the eigenvalues of R s(t ) must be distinct. This 

in general, cannot be checked a priori. Furthermore, as the spectral shapes of 

the sources become more similar, the estimate of U becomes poorer. With this 

in mind and the fact tha t the distribution of EEGs are yet unknown the AMUSE 

algorithm is not an ideal candidate for optimal separation of EEG sources.

One solution to this shortcoming of AMUSE, proposed by [45], is to jointly 

diagonalize multiple covariance matrices at different time lags, i.e. {R2(rfc), k =  

l , . . . , / f }  (where K  is the maximum time lag) whitened covariance matrices, 

given by,

R^r*) =  V TR 2(r,)V  V k = l , . . . , K  (3.21)

under the condition that

[ R y ( r k )]u +  [ ^ y ( j k ) ] j j  V I  < i ^  j  < N  and VI <  k  < K  (3.22)

The unitary diagonalizer in (3.21) is found by computing the product of Givens 

rotations [45]. Since V  is an approximate joint diagonalizer the criterion defined
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in (3.20) applied to (3.21) will not, generally, be equal to 0. This is because of the 

estimation errors in the covariance matrices as they are estimated from a finite 

set of data.

3.3 Approaches to Brain Computer Interfacing

A brain computer interface (BCI) is a system which allows the user to interact 

with a computer using brain signals only. BCIs can be divided into two main 

categories; invasive and non-invasive. The former uses intracranial electrodes or 

subdural implanted deep inside or on the surface of the brain, whereas the latter 

uses surface electrodes placed over the scalp. Non-invasive BCIs will be considered 

and further will give references to BCIs imply the non-invasive type. Current 

BCIs use one of a number of extractable EEG signals, such as rhythmicities [7] 

in the data  or a particular component, such as slow cortical potentials (SCP) [8], 

or evoked potentials (EPs) [9]. EPs such as P300 are time-locked events which 

are, generally, extracted by averaging many trials of the same event.

In this section the focus will be on the signal processing techniques used for 

BCI.

3.3.1 A utoregressive M odelling

A number of researchers have modelled the EEGs using auto regressive (AR) 

modelling on the basis tha t the EEGs are temporally correlated within a reason­

ably short term. In all cases they assume that each EEG sample can be calculated 

from its previous samples as

p
x(t)  =  amx(t  — m)  +  e(t) (3.23)

r n — 1
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where x(t)  is the EEG sample at discrete time £, am is the AR coefficient for an 

all-pole filter, e(t) is the residual error, which is considered as additive noise, and 

p is the model order. The parameters are determined by the Akaike information 

criterion (AIC) [52] give by,

where a\  is the variance of the residual error and TB is the data length. Typi­

cally the AR coefficients are used directly as features to classify the EEGs into 

differentiating states with an application to BCI. However the main drawback of 

this method is that the AR coefficients are highly interdependent, which results 

in poor generalisations performance as the number of AR coefficients change. 

One solution to this limitation in AR modelling was proposed by Curran et al. 

[53], in which the reflection coefficients were considered instead of the prediction 

coefficients. Curran et al. [53] managed to classify left and right motor imagery

with an accuracy of 71% using a nonlinear classification method.

3.3.2 C om plexity M easure

Complexity is defined as the ‘randomness’ of a given dataset. This has been used 

to detect ERD/ERS on the basis tha t EEGs over the motor cortex become more 

complex during ERD and less complex during ERS. Roberts et al. [54] compared 

several measures of complexity and assessed their suitability for identifying finger 

movements. One of the successful complexity measures was the embedding-space 

decomposition which describes the EEG as a sequence of repeatedly windowed

versions of the same data. It is described as follows

AIC(p)  = ln(u^) +  ~
-L B

(3.24)

X =  ( x i , x 2, . . . (3.25)
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where T  is the number of windows, and

x* =  (xi} x l+J, . . . ,  x l+{l„l)J)T (3.26)

where J  is the jump interval. The parameter I is the embedding dimension and 

according to [55] must satisfy I > 2U +  1, where U is the dimensionality of the 

attractor1. If I is chosen large enough such that a phase portrait of the attractor 

is obtained with redundancy, then the amount of redundancies can be exploited 

to describe the complexity of the EEGs, as in [54]. Firstly, the eigenvalues of 

the embedding matrix in (3.25) are calculated, denoted by At i = 1, . . . , The 

entropy of the eigen spectrum of the embedding matrix in (3.25) is given by,

T

H  = -  Xt log Xx (3.27)
*=i

where A* are the eigenvalue above the noise floor. The number of states is given 

by, ft = 2H. Later Roberts et al. [54] extended the method to provide a measure 

of spatio-temporal complexity by reconstructing the embedding matrix in order 

to accommodate the spatial dimension, as follows:

X tot =  ( Xl5. . . ,  Xjv) (3.28)

where X z are constructed from (3.25) for N  EEG channels. The results showed 

that there was spatio-temporal localisation of complexity at the point of finger 

movement over the contralateral motor cortex. The advantage of this proposed 

method is it takes into account all of the information available (spatial and tem­

poral) to detect an event. However the method has yet to be followed by a

classification algorithm to evaluate its performance.

JAn attractor is a point in the phase space to which the trajectory of embedding matrix 

follows.
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3.3.3 Tim e-Frequency M ethods

The time-frequency analysis is commonly used to visualise the changes in the fre­

quency spectrum over time. In particular, short term Fourier transform (STFT) 

[56] is used to highlight the time varying frequency characteristics of the EEGs. 

The STFT algorithm applies the fast Fourier transform to short overlapping win­

dows of the data. This yields a fixed resolution time-frequency representation 

for one EEG channel. This information was used by He et al. [57] and Qin et 

al. [58]. They extracted the region of the time-frequency representation (TFR) 

that was related to finger movement (namely the alpha band) and reconstructed 

the time domain signal by applying time frequency masks [59] to the TFR of the 

EEGs. The use of spatial and temporal information is becoming more popular 

in BCI for extracting movement related potentials (MRPs) since the brain signal 

source related to finger movement is localised over the contralateral motor cortex 

within a specific frequency band.

3.3.4 Com m on Spatial Patterns

A popular feature for BCI is to extract the characteristics in the common spatial 

patterns (CSP) [60] [61], which are parsimonious representations of the EEGs. 

Since left and right finger movements are localised within the contralateral motor 

cortex then the patterns in the distribution of potential over the scalp can identify 

which finger is being moved. CSP is based on decorrelating the sum of covariance 

matrices, R t0( =  R /e/t +  R right: °f th e EEGs for each of the classes, in the same 

way as PCA (or whitening), to yield a whitening matrix B tot. Then the class 

covariance matrices, R [cj t and R riff/l( are transformed by the whitening matrix 

B tot, yielding S/e/ t and S , .^ .  Next, an eigenvalue decomposition of S iej t and 

Snght yields a common eigen vector m atrix U. Finally, the projections onto the
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electrodes are given by P = U TB fo(. The columns of P are used to determine the 

projection strengths onto the scalp electrodes and hence to discriminate between 

each of the classes. Ramoser et al. [60] and Miiller-Gerking et al. [62] achieved 

a 92% classification rate using CSP with a linear discriminant (LDA) classifier. 

In summary, CSPs find a common describing factor to both classes as a way 

to maximally discriminate between the left and right finger movements. The 

technique was further extended to multi-class BCI by [63] to discriminate between 

finger/foot movements.

3.3.5 Blind Source Separation in BCI

BSS has been applied to BCI by a number of researchers [64] [65] [46]. The EEG 

source signal related to finger movement is embedded within the background 

EEGs. In most cases the head is considered a homogeneous region and the sources 

isotropic. Therefore, it is generally assumed that EEG source related to finger 

movement will be mixed with the background EEGs.

Understandably, BSS is an attractive candidate for processing the EEGs since 

there is an array of observation sensors, unknown number of sources (presumed 

to be less than the number of sensors provided that the number of recording 

electrodes is high), and an unknown mixing channel. The motivation for using 

BSS in BCI is that it is assumed that the source related to finger movement 

or imagination constitutes one of the independent sources. Kamousi et al. [64] 

used the FastICA algorithm [66] to separate the EEGs and then used a dipole 

fitting algorithm [57] to localise the ICs. The results therein demonstrated that 

the ipsilateral ERS at finger movement would be correctly localised for their test 

datasets. Serby et al. [65] used a higher order statistics based BSS [67] method 

for extracting the P300 component for their BCI. In order to determine which
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component contained the P300 they compared the ICs with a P300 extracted 

offline [65].

The use of SOBI [45] algorithm (see Section 3.2.3) for the detection of ERPs 

has been validated in [46]. Wang et al. [68] used SOBI to discriminate between 

left and right hand median nerve stimulation from two channels of EEGs. Essen­

tially the projection strengths of the SOBI components were used to determine 

the median nerve stimulation source. The SOBI components were presented to a 

back propagation neural network (BPNN) and achieved classification rates of up 

to 83%. Tang et al. [69] separated the EEGs using a hybridised algorithm which 

extracts spatial and temporal information from the SOBI components to localise 

the ERPs. The SOBI components that were correlated with a previously ex­

tracted ERP were flagged and formed a subset. Additionally, ICs that projected 

onto the motor cortex were flagged and formed another subset. Finally only 

ICs that were in both IC subsets were in both subsets were fitted to the equiva­

lent current dipoles. This method thereby, neglects the redundant ICs and only 

localises the ICs that are significant to detecting the median nerve stimulation.
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C hapter 4 

A rtifact Rem oval using  

C onstrained B lind Source 

Separation

The challenge is to separate the signals into their independent constituent sources 

while automatically removing the artifact and retaining any diagnostic informa­

tion about the brain disorder. A pre-determined reference is incorporated into 

the minimisation algorithm hence yielding an automated artifact rejection sys­

tem. The significance of the algorithm is also due to its performance in the case 

of an undetermined number of sources.

EEGs are said to be instantaneous mixtures since the potentials are due to 

emission from the volume regions of electromagnetic dipoles and the bandwidth of 

the signal (and accordingly the required sampling frequency) is very low (Band­

width < 50Hz). This in turn means tha t the signals measured at the electrodes 

are received with a negligible delay i.e. in much less than one sample interval 

(linearly mixed), hence an instantaneous type of ICA is used for separation of
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EEG signals. Although the number of signal sources within the brain is yet 

unknown, an initial assumption is that, for a reasonably large number of elec­

trodes, the number of sources, N,  is less than the number of electrodes M  i.e. an 

over-determined system has been considered.

4.1 Joint D iagonalization of Correlation Matri­

ces

The standard SOBI algorithm (see Section 3.2.3) is based 011 finding a rotation 

matrix such that several matrices are diagonalized. Presented here is a gradient 

based algorithm for joint diagonalization of multiple correlation matrices. The 

separation matrix can be found by minimising a cost function J(W ), which pro­

vides a measure of independence of the estimated sources. Therefore the goal of 

the diagonalization algorithm is to find a W  that diagonalizes the output covari­

ance matrix Ry'(Zc) diagonal, k E {1, 2 , . . . ,  K},  where K  is the maximum time 

lag. Hence minimising ,/(W ) will ensure that the estimated sources are as inde­

pendent as possible. The covariance matrix Ry(/c) to be diagonalized, is given

where in practice Rx( ^)  is the estimate of the time lagged covariance matrix of 

the signal mixtures and Rv/(&) is the estimate of the covariance matrix of the 

sensor noise. Since it is assumed tha t the noise is spatially uncorrelated, Ry(0) 

will be a diagonal matrix and Rv/(A;) =  0 for k 7̂  0 [70].

by

R y(/:) =  W [R x{k)  -  Rk(A:)]W7' (4.1)

R x (k) = A R s ( k )A T + R V (4.2)
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where R s(k)  is a diagonal covariance matrix of the independent source signals. 

Following [70], the least squares (LS) estimate of W  is

K

V V  =  argm in ] T \\JM(W,  fc)||2F (4.3)
fc=l

where W opt is the optimum separation matrix, || • ||^  is the squared Frobenius 

norm, and J a / ( W ,  k )  is the error to be minimised between the covariance of 

the source signals R s ( k )  and the estimated sources R y ( k ) .  This criteria can 

be replaced by a suitable cost function based upon minimising the off-diagonal 

elements for multiple lagged covariance matrices, as

K

W 0pt =  argm in ^ | | R y ( f c )  -  diag(RY (k))\\2F (4.4)
k= 1

where diag(-) is an operator which zeros the off-diagonal elements of a matrix.

4.2 Constrained Learning

Minimising the cost function in (4.4) alone is not enough to remove the EOG 

from the underlying EEG, as there is no constraint to minimise the effect of the 

EOG. This is very im portant in places where there is an undetermined number 

of sources such that the output independent components (ICs) may not represent 

the actual sources. In this case, minimisation of the cost function should be 

subject to an equality constraint as

min JM{W ) s.t. d (W ) -  0 (4.5)

where d (W ) =  [cb(W), d2{W ) , .. ., dr(W )]T, r G N is the constraint term, and 

r > 1 indicates that there is more than one constraint. The problem of con­

strained optimisation is shown in Fig. 4.1.
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w,

Figure 4.1: The solution space for an optimisation problem is shown in the area 

within the solid line and a solution which satisfies a constrained optimisation 

problem, i.e. W is shown in the hatched area.

Penalty function based approach is a method for solving the constrained opti­

misation problem. It converts a constrained problem (4.5) into an unconstrained 

one by introducing a penalty parameter to the constraint term (right hand side of 

(4.5)) and incorporating it into the cost function. The penalty parameter asserts 

a penalty when the constraint term is in violation of the objective function. In 

general, penalty functions can be classified into two classes; interior and exterior 

functions. For equality constraints, as defined in (4.5), exterior penalty functions 

are best suited and interior penalty functions are generally used for inequality 

constraints such as d (W ) 0. The exterior penalty function is defined as in 

[71] and in matrix form in [72] as follows; Define a closed subset W  € KM and a 

sequence of continuous scalar valued functions Gq(W) with q £ N. Gq (W ) is a
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sequence of exterior penalty functions if the following conditions are true

G ,(W ) = 0, V W  € W  (4.6)

0 < G ,(W ) < G ,+i(W ) V W  i  W  (4.7)

G ,+,(W ) —> oo as q —> ex) (4-8)

Let c (d(W))  =  [c1(d1(W)) ,c2(d2( W ) ) , . . . , c r (dr (W))]T be a positive penalty 

function vector corresponding to the constraints d(W)  and is weighted by A =  

[Ai, A2, . . . ,  Ar]T. The constrained problem is then converted into the minimisation 

of the following unconstrained problem

min( J M(W ) + Ar c(d(W ))) (4.9)

An example of function cx is given by,

Ci(W) =  & ||d(W )|| (4.10)

where & is a weighting factor such that £i+1 > £* > 0. This ensures that the adap­

tation will converge monotonically [72]. It is important to note that minimisation 

of the cost function in (4.4) will not guarantee that the conditions in (4.5) will 

be met. Only when the conditions in (4.9) are satisfied the unmixing parameter 

will be equivalent [71]. Incorporation of the Lagrangian multipliers is another 

approach for solving constrained optimisation problems. It works by finding the 

optimal solution where the gradients of the constraint terms coincide with those 

of the cost function [72] and the Lagrangian multipliers are defined at this point. 

For nonlinear optimisation Lagrangian multiplier may only locally minimise the 

objective function. These local minimisers of the cost function may not be global 

ininimisers, especially in nonlinear optimisation which is often encountered in 

real world situations. Therefore, in general, penalty functions globally minimise
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nonlinear optimisation problems. For further proof of the convergence properties 

of penalty function approach applied to BSS read [72] and [4].

In removal of eye blinking artifact, for example, the constraint is the cross 

correlation between the EOG electrode and the EEG electrodes. The constrained 

optimisation problem (4.5) can be converted into an unconstrained one as in (4.9) 

by using the penalty function method or by using Lagrangian multipliers. Define 

a new cost function, Jt (W ), such that

W ^  =  arg inin JT( W )

K

= arg mm ^  (JM(W, k) + AJa ( W,  k)) (4.11)
k=1

where A =  {Alt} (i = 1, . . . ,7V) penalty coefficient which is governed by the 

cross-correlation between the EOG and estimated EEG source signals, defined 

by

{A,,} =  P  E{y,(t)g(t)} (4.12)

where P  E R+ is an adjustable constant, g(t) is the reference artifact signal

and yi(t) is the ith IC. This applies a penalty at each iteration on each of the

estimated sources that is proportional to its cross correlation with the artifact 

source. Therefore a component that is uncorrelated with the artifact will have 

no penalty applied to it. The constraint term is given by

M  w ,  k ) = l-  5 3  llcfeuHFUfc))}!!2 (4.13)
k

where Rvg(k) = E{y ( t )gT(t + k)} is the cross correlation between ICs and artifact 

signal, g(t) = [<7i(£), . . . ,  (?m(£)]T is a vector with the reference signal copied M  

times. A gradient algorithm (GA) [73] was used to find the W  that minimises 

Jm {W , fc) as well as the constraint term Jc(W , k). The general GA update 

equation is

W  (t +  1) =  W(*) +  A W  (t) (4.14)
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where A W (t) is the incremental update of W( t )  given by [74]

A W  (t) =  (4.15)

The adaptive learning rate as used in [72], is dependent on the spread of 

the data and on the gradient of the total cost function. It is given by

" (i) =  ^  ( e L i IIRx W I I f  +  C +  I I A J r ( w ) i p )  ( 4 1 6 )

where /i0 is a positive constant typically no < I and £ is a regularisation pa­

rameter, which prevents the learning rate from being too large when the gra­

dient becomes small. The typical value of the parameter £ is 0.05 and A Jt = 

JT(W(£ — 1)) — Jt(W (£)). Finding the gradient of (4.11) yields

dJQ W ] = 4 “  diag(RY (k))}W{Rx (k) -  R v (fc)l
k = l

+ \ Y , d i a g ( W R XG(k))diag(RXG(k)) (4.17)
k

where R x d k )  — E{-x.(t)gT(t + k)} is the cross correlation between mixtures and 

artifact signal.

When the noise of the system is unknown its covariance can be estimated in 

the following fashion

R v (t +  1) =  r/Rv (t) +  (1 -  r])ARv (t) (4.18)

where A R v (t) — Rx(/c) — W _1Ry(/c)(W T)_1, R x (k) and R Y(k) are respectively 

moving window estimates of the observation and output covariance matrices and 

rj £ (0,1). The adaptation stops when the error falls below an acceptable level 

i.e. when ||W (t — 1) — W (£)||2 ~  0.

In the following section the algorithm is examined using a set of simulated 

signals, a set of EEG contaminated by eye blinking artifact, and a set of EEG 

contaminated by ECG.
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4.3 Experim ents

In this section the CBSS algorithm is applied to both simulated signals and 

real EEG data and the results are analysed. The performance of the proposed 

algorithm will be evaluated in terms of the convergence speed and the ability to 

remove the artifact from each of the components.

4.3.1 Sim ulated Source Signals

In the first experiment the algorithm is presented with a synthetic set of signals 

affected by a simulated artifact. The synthetic signals were two speech like signals 

of 5000 samples length sampled at 12kHz. The artifact was generated using a 

sampled sine function as shown in Fig. 4.2. Here it is assumed that the artifact 

signal can be easily extracted from the mixtures. The source signals and artifact 

are artificially mixed using an M  x TV matrix (M  =  N).  W  is initialized to I and 

the other parameters are set as follows; P  = 0.01, /io =  0.1 and 77 = 0.1. Since 

the original sources are available, the mean square error (MSE),

e2 = £;||y -  s | |2 =  E { \ Vi{t) — Si(i) |2} , (4.19)
t=l

is used to evaluate the resemblance between the estimated and the original 

sources. The performance of the algorithm is measured by finding the wave­

form similarity in dB  defined by edB — 101og10 (1 — £2). It is assumed that the 

signals are zero mean and unit variance. The mixed signals and the estimated 

sources are shown respectively in Fig. 4.3 and Fig. 4.4. By inspection of the 

estimated sources it is possible to see tha t the artifact has been removed from 

the signals of interest. The algorithm was tested using 10 data sets of synthetic 

signals mixed with the same mixing matrix. The waveform similarity index is 

compared with the SOBI [45] [4] algorithm (A =  0) and the proposed algorithm
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(A ~  P d i a g ( R ev)) for each data set.

Simulated Source Signals

>m>« i <ii«i»y
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Figure 4.2: Original speech like source signals. The third signal represents the 

artifact.

The waveform similarity for the proposed algorithm and SOBI algorithm are
-2 _ 
dB ~ —0.27dB (s.d. 0.02dB)  and —0.53dB  (s.d. 0.01 dB)  respectively, which

is a difference of 0.26dB.  This shows that sources estimated by the proposed 

CBSS algorithm significantly improves the quality of the signals compared to the 

unconstrained BSS algorithm. The performance of the algorithm was further 

examined by comparing the cross-correlation between the estimated sources and 

the artifact. Table 4.1 shows the performance improvement over SOBI algorithm. 

The goal of the algorithm is to minimise the effect of the artifact by minimising 

the cross-correlation between the estimated sources and the artifact. The arti­

fact component may not be completely eliminated since the number of iterations 

in (4.15) is finite, which means that W  will approach W opt as t —> oo. The 

convergence performance, shown in Fig. 4.5, is comparable with that in [4].
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Figure 4.3: Artificially mixed signals.
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Figure 4.4: Estimated sources with the artifact minimised.
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Figure 4.5: Convergence performance of the proposed algorithm (solid line) com­

pared with tha t of an unconstrained gradient SOBI [4] algorithm (dotted line).

Table 4.1: Performance of the CBSS algorithm is based on the measurement 

of cross-correlation; the average cross-correlation between the artifact and the 

mixtures is compared with the cross-correlation between the artifact and the 

estimated sources. In this experiment the artifact is a sampled sine signal. The 

results are also compared with SOBI algorithm

Average correlation between synthetic artifact and estimated sources by

mixtures SOBI CBSS

0.82 (s.d. 0.3) 0.19 (s.d. 0.01) 0.09 (s.d. 0.01)
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4.3.2 Rem oving The Effect of Eye Blinking From Real 

EEG D ata

The CBSS algorithm is further examined by using real EEG data. The signals 

were recorded in King’s College London using a Cadwell Easy II EEG amplifier. 

EEG was collected from 16 electrodes placed on the scalp at locations defined 

by the conventional 10-20 electrode system. The earlobe was used as a common 

reference for all of the channels. The ocular artifact reference signal was obtained 

from electrodes placed above and below the left or right eye. The data was 

sampled at 200Hz and was digitally lowpass filtered with a cutoff frequency of 

40Hz. Twenty data sets of 10 seconds in length containing eye blinking artifacts 

were presented to the CBSS algorithm. Ten datasets were used since this was the 

minimum number that provided a reliable measure of performance. Each of the 

data sets was standardised to have unit variance and zero mean. A threshold is 

applied to the artifact so that any details concerning other brain signals presented 

in the EOG will not contribute to the penalty term. The artifact signal then 

becomes

\g( t )  if g(t) > c V t
\  (4-20)
^0 if g(t) < q V t

The parameter c was empirically found to be 0.2 for normalised signals. The 

performance was evaluated by finding the cross-correlation between the artifact 

and each of the mixtures and comparing them with the cross-correlation between 

the artifact and the estimated sources. EEG sensor data and the artifact reference 

are shown in Fig. 4.6 and Fig. 4.7 respectively. The resulting separated sources 

are shown in Fig. 4.8.

From Table 4.2 its possible to see that by applying the constrained algorithm
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M easured EEG corrupted by eye blinking artifact
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Figure 4.6: A selection of five EEG channels from a 16 channel EEG recording. 

The EEGs on these channels are corrupted by the ocular artifact between samples 

600 to 900.

the cross-correlation between the estimated sources and the artifact has been 

considerably reduced. The penalty term A is adjusted in proportion to the cross 

correlation between the artifact and the estimated sources, i.e. E{g(t)yt(t)}. 

Therefore, the higher the cross-correlation between the estimated source and the 

artifact, the larger the penalty on tha t component.

Another dataset presented to the algorithm is shown in Fig. 4.9. Eye blinks 

occur bilaterally, therefore in this experiment Fp\ electrode was used as a refer­

ence signal, which can be seen in the first row of Fig. 4.9. The artifact corrected 

signals by the proposed CBSS algorithm are shown in Fig. 4.10 and the same 

EEGs separated by an unconstrained BSS algorithm and PCA are shown re­

spectively in Fig. 4.11 and Fig. 4.12. Visual inspection of the ICs shows that

76



Figure 4.7: The vertical EOG signal measured from the right eye.

Table 4.2: Performance of the CBSS algorithm is based on the measurement of 

cross-correlation between the EEG and the EOG artifact.

Average correlation between artifact and

mixtures estimated sources by SOBI estimated sources by CBSS

0.75 (s.d. 0.02) 0.23 (s.d. 0.02) 0.16 (s.d. 0 .01)

the effect of eye blinking artifact is not entirely removed by unconstrained BSS 

algorithm or PCA, i.e. the estimated sources resemble the reference signal. Sepa­

ration performance of PCA was slightly better than the unconstrained algorithm 

since the eye blinking artifact is clearly defined in PC 10 of Fig. 4.12, however the 

remaining components still contain remnants of the eye blinking artifact. On the 

contrary, the signals separated by the CBSS algorithm do not resemble the refer­

ence signal. Furthermore, in order to validate the ICs extracted using the CBSS 

and unconstrained BSS algorithms, each IC was reprojected to all electrodes by

Y [ep =  (W )- 1̂  (4.21)

where Y* is a x TB m atrix of zeros with only the ith row being the ith IC, with 

Tb defined by the length of the signal. Y [ep are the projection strengths of the IC 

to each of the electrodes. The projection results for the proposed CBSS algorithm 

and unconstrained BSS are shown in Fig. 4.13 and Fig. 4.14 respectively. The 

projection strengths of the ICs are similar for both constrained and unconstrained 

algorithms. However the ICs extracted by CBSS contain fewer projections to the



I>
|  y 
1.6

-5
0 200 400 600 600 1000 1200 1400 1600 1600 2000

Sam ples

Figure 4.8: A selection of five independent components (ICs) derived from the 

EEG primarily corrupted by ocular artifact. The ICs represent the EEG with 

the EOG artifact removed.

frontal electrodes as can be seen by comparing Fig. 4.13 and Fig. 4.14. The 

projection strengths of the ICs using the unconstrained algorithm are similar to 

those extracted from CBSS algorithm. Tang et al. [46] demonstrated the validity 

of the extracted SOBI component and therefore similar projection patterns of the 

ICs suggests the validity of the components extracted by CBSS algorithm.

4.3.3 R em oving T he Effect Of ECG From EEG Real D ata

The proposed system was also tested on EEG signals contaminated by ECG, and 

the performance was examined. The ECG was measured using Eindhoven’s Tri­

angle for the electrode configuration [75]. The ECG data were acquired by the 

Cadwell Easy II amplifier and sampled at 200Hz. In this experiment appropriate

EEG with the eye blinking artifact removed
 1 1 1 1 1 1 1 1 1--------------------

_______I_______ l_______ I_______ 1_______l_______ l_______i_______ I_______1______
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Figure 4.9: The EEGs heavily contaminated by eye blinking artifact.

values for /i0 =  0.01, ry =  0.1 and P  = 0.01 were found empirically. The perfor­

mance of the system in terms of the cross correlation between the artifact and 

the estimated output is illustrated in Table 4.3. An 8 second long segment of 

contaminated EEG is shown in Fig. 4.15 and the measured ECG reference signal 

is shown in Fig. 4.17. The EEG after removing the artifact is shown in Fig. 4.16.

Based on 20 sets of EEGs it was found that the average correlation for the 

proposed CBSS algorithm was 0.16, with standard deviation 0.01. As the distri­

bution of the estimator was not known but variance was known (0.012), Cheby- 

chev’s inequality was used given by, Prob{ |0.16 — R\ < e} > 1 — O.Ol2/^2, where R  

is the true value of the average cross correlation. This shows that the estimate of 

the mean correlation value was within e of the true value of R  with a probability
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Figure 4.10: The ICs of the EEGs in Fig. 4.9 using the proposed CBSS algorithm, 

of 90%.

From Table 4.3 it is possible to see that the CBSS algorithm has successfully 

separated the mixtures and its decorrelation performance in the undetermined 

case of EEG is, on average, better then that of SOBI algorithm [45]. The extent 

to which the artifact has been removed can also be verified by visual inspection 

of the output (Fig. 4.16).

4.4 Conclusions

As a requirement for preprocessing of the EEGs, a constrained BSS system for 

removing the eye blinking artifact has been developed by introducing nonlinear
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Figure 4.11: The ICs of the EEGs in Fig. 4.9 using an unconstrained BSS 

algorithm.

penalty functions. The penalty terms incorporate the constraints into the main 

objective function, thereby converting the constrained problem into an uncon­

strained problem.

The algorithm was first tested using synthetic signals corrupted by a known 

artifact. Synthetic signals were used to highlight the efficacy of the constraint 

in mitigating the artifact source. The effect of the constraint was objectively 

quantified by using the waveform similarity index (4.19). The effect of the un­

desired (interfering) signal was highly reduced and the desired components were 

extracted, as highlighted by the results. The results of the first experiment show 

that the quality of the separated signals has been improved and the convergence
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Figure 4.12: The EEGs in Fig. 4.9 separated using PCA.

performance was comparable to that of Joho et al. [4] [76].

The results of experiments with real EEG signals show that the solution space 

has been found which meets the criteria defined by (4.11), albeit approximately. 

The main advantage of the proposed CBSS method is that it performs the separa­

tion and mitigation of the interfering signal, which can be utilised by the clinician 

without further identification of artifacts related to eye blinks.

The result of the algorithm may be extended to removal of other interferences 

such as electroglottograms (EGG) from EEGs. As for the case of online EEG 

processing the permutation ambiguity of BSS must be resolved [77].
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Table 4.3: Performance of system based on cross-correlation between EEG and 

ECG.

Average correlation between the artifact and

mixtures estimated sources by SOBI estimated sources by CBSS

0.76 (s.d. 0.23) 0.21 (s.d. 0 .01) 0.17 (s.d. 0.02)
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Figure 4.13: The reprojected ICs to the scalp electrodes after application of the 

proposed CBSS algorithm. Each scalp plot represents the projection strength of 

one IC in Fig. 4.10, designated by the label beneath the scalp plot. The colour 

represents projection strength of the IC onto each electrode and is normalised to 

unity across all electrodes (arbitrary units). The frontal electrodes are located 

towards the top of the scalp plot. In comparison with Fig. 4.14 the projection 

strengths of the CBSS ICs are not smeared over the frontal electrodes.
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IC 14 IC 15 IC 16

Figure 4.14: The reprojected ICs to the scalp after application of the uncon­

strained BSS algorithm. Each scalp plot represents the projection strength of 

one IC in Fig. 4.11, designated by the label beneath the scalp plot. The colour 

represents projection strength of the IC onto each electrode and is normalised to 

unity across all electrodes (arbitrary units). The frontal electrodes are located 

towards the top of the scalp plot. Point ‘A’ in the figure highlights the limi­

tation of the unconstrained BSS algorithm, in that the projections are smeared 

over a number of electrodes. A similar pattern can be seen in a number of other 

electrodes.
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Figure 4.15: A selection of five channels from the EEG recording. There is an 

obvious ECG artifact present in the first and fourth channels of the figure.
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T he EEG  with the artifact rem oved
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Figure 4.16: A selection of five independent components after the CBSS algorithm 

has removed the ECG.
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Figure 4.17: The measured ECG reference signal.

The ECG artifact signal
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C hapter 5 

A rtifact Rem oval from the EEGs 

using Blind Source Separation  

and Classification

5.1 Introduction

An automated method for removing OAs from the EEGs has been described by 

Joyce et al. [48]. Joyce et al. used a BSS algorithm based on second order 

statistics, to separate the EEG and measured EOG into statistically independent 

sources. The separation is then performed a second time on the raw EEGs but 

with a selection of EOG channels inverted. The ICs which have been found after 

inversion are compared with the ICs of the previous separation and those which 

inverted are removed. In addition, ICs that are above a threshold of correlation 

with the measured reference are removed, as are the ICs with high power in the 

low frequencies. The main drawback of this method is that it is restricted to 

having the reference EOG channels, which may not be available if one would like
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Figure 5.1: Block diagram of the BSS and SVM system.

to process sets of previously recorded data.

A block diagram of the proposed system is shown in Fig. 5.1. In the first 

stage of the block diagram the EEGs are acquired and stored, these are denoted 

in the diagram as X \ t, • • • ,Tb ) where M  is the number of electrodes and 

Tb is the data block length. Similarly, the intermediate signals within the figure 

are denoted as Fi,...^, Y{ . iAr, Y" n , where N  is the number of the estimated 

sources. In the second stage of Fig. 5.1, the EEGs are separated into statistically 

independent sources using BSS. The SOBI algorithm was used for separation due 

to its excellent separation of OAs from the background EEGs [48]. Then, features 

are extracted from the independent sources and used to establish whether the 

source contains eye blinking artifact. Finally, the sources which are not identified 

as artifact are used to reconstruct the artifact free EEGs through re-projection.

5.2 M ethods

5.2.1 Feature Extraction

Artifacts such as eye blinks and ECGs have certain waveform shapes, statistical, 

and temporal characteristics. Therefore, these characteristics are present in the 

ICs related to eye blinking artifacts. The four most effective features found which 

efficiently discriminate the artifact signal from the normal EEG are as follows:

89



Feature 1

A large ratio between the peak amplitude and the variance of a signal suggests 

that there is an out of range amplitude in the data. This is a typical identifier for 

the eye blink because it causes a large deflection on the EEG trace. The equation 

describing this feature is given by

,  m ax(|un|) Ar , n
f \ =  -------2-----  (5.1)

where un is one of the N  ICs, max(-) is a scalar valued function that returns 

the maximum element in a vector, au is the standard deviation of un and | • | 

is the absolute value applied element-wise in (5.1). The normal EEG activity is 

tightly distributed about its mean value, therefore a low ratio is expected for it 

in contrast to ICs containing eye blink sources for which a high value is expected.

Feature 2

This feature corresponds to a third order statistic of the data. The normalised 

skewness for each IC is given by

E { u 3n(i)}
n =  l , . . . , W  (5.2)

for zero mean data. An EEG containing eye blinks typically has a positive or 

negative skewness since the eye blinking artifact increases locally the asymmetry 

of the signal segment. Therefore ICs corresponding to the source of eye blinking 

artifact will also have a positive or negative skew. The absolute value of the 

skewness is used because both negative and positive skew are associated with eye 

blinking artifacts. The significance of this feature in the overall classification is 

high since the eye blink signal has larger skewness than that of normal EEGs, 

which are approximately symmetrically distributed.
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Feature 3

As the third feature, the correlation between the IC and an independent dataset 

containing eye blinking artifact from six electrodes including the frontal electrodes 

close to the eyes (FPi, Fp2, F3, F4) and the electrodes on the occipital lobe 

(Oi, O2) is used. The reference dataset i.e. the EEG from the aforementioned 

electrodes, is distinct from the training and test datasets. This will make the 

classification more robust by introducing a measure of the spatial location of 

the eye blinking artifact. The mean of the maximum value of cross-correlation 

between each of the electrode locations and the IC is used as:

1 6
h  =  - ^ m a x ( |F { x ° ( £ ) u n(t +  r)} |)  ra =  l , . . . , i V (5.3)

t=i

where un(t) is the n th independent component and x®(t) are eye blinking reference 

signals, where i indexes each of the aforementioned electrode locations. The value 

of this feature will be larger for ICs containing eye blinking artifact, since they will 

have a larger correlation for a particular value of r  in contrast to ICs containing 

normal EEG activity, the maximum is empirically chosen r  «  \/Tp. This ensures 

that the cross correlation estimate will be accurate.

Feature 4

The fourth feature is the statistical distance between the probability density 

function (PDF) of an IC and the PDF of a reference IC known to contain OA. 

The OA reference IC is taken from a dataset which is also distinct from the 

training and test datasets. Here it is assumed that the PDF of the IC containing 

the artifact is identical to that of the reference signal containing the artifact. To 

measure the statistical distance between the two PDFs the Kullback-Leibler (KL)
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distance is used, given by

u  =  K L ( P ( u n) \ \P(xref))
P n{ v(u )

= / p(un) In n dun n — 1, . . . ,  AT (5.4)
J  in f  P { x r e f )

where P (u n) and P ( x ref ) are the PDFs of one of the N  ICs and a previously 

measured artifact, respectively. When the IC contains OAs the KL distance 

between its PDF and the PDF of the reference IC will be approximately zero, 

whereas the distance to the PDF of a normal EEG signal will be larger. Since 

the KL distance is related to the mutual information it reflects effectively the 

information shared between the IC and the reference signal.

5.2.2 Classification

While the classification stage is an important part of a BCI system, the choice 

of classifier is not as im portant as the choice of features. In EEG recording a 

number of classification methodologies have been used. For example in artifact 

classification neural networks (NN) have been used together with decision trees 

[78], a Bayesian network in [79] and even basic thresholding techniques [80]. An 

SVM is used for the classification method due to its generalisation and estab­

lished empirical performance [81]. The standard SVM algorithm is a supervised 

learning algorithm for the classification of two classes. This means that the SVM 

is trained using a feature set in which target values are known a priori, thereby 

the testing feature set is classified based on these training values. Modifications 

of the traditional versions of SVM algorithms have been applied to allow semi­

supervised classification (see [82] and [83] for more details). The goal of an SVM 

is to find a separating hyperplane for a given feature set that is optimal in the 

sense that the closest feature vector is furthest from the separating hyperplane. 

This is called the optimal separating hyperplane (OSH) [81]; see Fig. 5.2(a).
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There are generally two regimes for finding the OSH; by maximising the margin 

between the two classes (Maximal Margin Classifier) with the assumption that 

there is no overlap between the classes in the feature space, and the soft mar­

gin classifier with the assumption that there is a degree of overlap between the 

classes. More often than not the feature space for real data is best suited to a soft 

margin classifier, therefore a soft margin classifier will be treated in this section.

#  Class 1

O Class 2

Feature 1

D ecis io n

B oundary

•  •

(a) (b)

Figure 5.2: (a) Three features plotted against each other forming the feature 

space, (b) The optimum separating hyperplane for the feature space in (a).

The OSH is found by solving the following constrained optimisation problem:

 , ( | l l z l|2 +  C E != i7 i)

s.t. <?i(zTgi - b )  + 7, > 0, 7; > 0 i = I , . . . , /  (5.5)

where, I is the number of training vectors and E { ± 1} are the output targets, 

||z ||2 =  ^zTz is the squared Euclidean norm. The parameter z determines the 

orientation of the separating hyperplane, 7* is the ith positive slack parameter 

and places an upper bound on the number of training errors [84], gt is a vector 

containing the features gt =  [f^i )  f 2(i) f 3(i) I a^ Y  ■
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The constrained optimisation equation in (5.5) is solved using an extension of 

Lagrangian theory to solve inequality statements, known as Karush-Kuhn-Tucker 

(KKT) theory [85]. Forming the Lagrangian primal according to KKT from (5.5) 

yields,

where rt are the Lagrangian multipliers introduced in to keep 7* positive. The 

non negative parameter C is the (misclassification) penalty term, and can be 

considered as the regularisation parameter and is selected by the user. It places 

an upper bound on the Lagrangian multipliers, such that 0 < a* < C. A larger C 

is equivalent to assigning a higher penalty to the training errors. The parameter C 

is set to a value which yields the lowest cross-validation (CV) test error. Support 

vectors (SVs) are the points from the dataset that fall closest to the separating 

hyperplane. Any vector gt that corresponds to a non-zero a t is a SV of the 

optimal hyperplane. It is desirable to have the number of SVs small to have a 

more compact and parsimonious classifier. The diagram in Fig. 5.3 illustrates 

the soft margin classifier for a two dimensional case, but the principle is the same 

for an n-dimensional feature space.

Minimising with respect to each of the parameters on left hand side (LHS) of

(5.6) and substituting back into (5.6) yields,

The OSH (generally nonlinear) is then computed as a decision surface of the form

where sgn(-) G {±1}, g | are SVs, K ( gf,g) is the nonlinear kernel function (if 

x ( g? ,g )  = gTg;s the SVM is linear), and L s is the number of support vectors.

(5.7)
t=l i , j  =  1

(5.8)
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Figure 5.3: The feature space for a nonseparable case. The circled points are the 

support vectors calculated by minimising (5.5). The slack parameter 7* enables 

the use of Lagrangian theory since it can now account for the overlapping features.

A kernel for a nonlinear SVM projects the samples to a feature space of higher 

dimension via a nonlinear mapping function.

Using Mercer’s theorem [86], the high computational cost required in project­

ing samples into the high-dimensional feature space can be replaced by a simpler 

kernel function satisfying the condition K ( g i ? g )  =  <^(gi) * ^(g)- Where <p(gj) is 

nonlinear function which satisfies Mercer’s condition [84].

Among nonlinear kernels the radial based function (RBF) defined as K( g {, g) = 

exp(—|g — gi |2/ ( 2p)), where the adjustable parameter p governs the variance of 

the function is more popular. Another kernel is the nth order polynomial defined
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as ^(gi.g) = (gTgt + 1)"-
The main advantage of SVM is tha t unlike neural networks, it does not suf­

fer from local minima since it has a convex convergence and therefore the local 

minima is also the global minima. Furthermore, with the correct choice of reg- 

ularisation parameters it is robust against outliers. This makes the use of SVM 

ideal for classifying EEGs since the signals may be corrupted by noise and artifact, 

which may transpire in outlying features.

5.3 Experim ents

5.3.1 D ataset for analysis

The data were provided by King’s College Hospital, London U.K. and are avail­

able online [87]. The data represent a wide range of patients and therefore gives 

a comprehensive set of data for the evaluation of the proposed method. The 

scalp EEG was obtained using Silver/Silver-Chloride electrodes placed at loca­

tions defined by the 10-20 system. The data were acquired using a Beekeeper 

Telefactor EEG amplifier, sampled at 200Hz and bandpass filtered with cutoff 

frequencies of 0.3Hz and 70Hz. The independent components are obtained by 

applying BSS to blocks of data, 10 seconds in length. It is assumed that the 

number of sources is the same as the number of electrodes (i.e. N=M). Then, the 

features are extracted from each of the ICs. The classifier was trained using the 

ICs from different patients.

5.3.2 Testing the Features

The features were tested using 200 ICs; 100 ICs containing eye blinks and 100 

free of artifact. The classifier [88] was tested using a variety of kernels. For
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each kernel the average error values were estimated with 4-fold cross validation 

i.e. using 75% of the data as training examples and 25% for testing with no 

overlapping. The cross-validation was performed 10 times, each time the data 

were randomly rearranged in order to yield a better estimate of the error. To 

find the value of parameter C  the average CV test error is evaluated for a range 

of values for C . The optimum value of C was found to be 64 in the case of the 

linear and cubic polynomial. For the RBF kernel the parameters C and p were 

adjusted and found the optimal values for the RBF kernel as C = 72 and p — 7. 

The CV error results are shown in Table 8.1.

Two largest principal com ponents of the feature sp a ce The distribution of the classifier output

with e y e  blinks 
without e y e  blinks
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°

1 1 1 with eye  blink 
H H 1  without eye  blink

J l J l r T T - r ^ - f f h  f

Classifier output

(a) (b)

Figure 5.4: (a) A plot of the two largest principal components of the feature 

space. There are 200 feature vectors, 100 from normal EEG (+) and 100 from 

EEG containing eye blinks (o). (b) A histogram plot showing the output of the 

classifier pre sgn(-) using the linear kernel.

Illustration of the distribution of the feature space becomes difficult when the 

dimension of the features is greater than 3. In order to understand the distribution 

of the feature space, one can use an RBF kernel with varying C  and p to give
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Table 5.1: The performance of the classifier based on the average number of 

correctly classified points. Three kernels are compared in the classification.

Kernel Average classification rate (%) (s.d.)

Overall Normal Eye Blinks

Gaussian RBF 98.50 (1.00) 98.26 (1.17) 99.03 (1.35)

Cubic Polynomial 94.50 (1.92) 91.15 (2.31) 97.91 (2.04)

Linear 99.00 (1.15) 99.24 (1.11) 99.21 (0.97)

further insight into the optimum shape of the separating hyperplane. One would 

expect the number of SVs to decrease as p decreases. A linear kernel corresponds 

p —> oo. Fig. 5.5(a) and Fig. 5.5(b) show the hyperparameter space for the 

RBF kernel. W ith the kernel width parameter p being finite, and regularisation 

parameter kept constant the classifier yields its highest classification rate with 

the lowest number of SVs. Therefore the feature space can be considered a linear 

one. The RBF kernel can be considered as both a linear and non-linear kernel 

depending on the parameter values, C  and p, that are chosen.

In the case of cubic polynomial and linear kernels the number of support 

vectors found were 18% and 3.3% respectively of the training dataset size. The 

results in Table 8.1 show that, with the exception of linear kernel, the classifier 

had lower classification rates when classifying normal EEG. This may be due to 

non ocular related artifacts present in the EEG such as spikes, which produce 

similar feature values to that of the true eye blinks.

The training error was found by using the training data to test the SVM. The 

training error was found to be 2% (av) and the test error was 3% (av). This 

avoids any overfitting since the training error is close to the training error.
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The classifier was further evaluated by plotting the distribution of the classifier 

output for 200 test points. It is calculated by applying the classification function 

in (5.8) without the sgn(-) function. The result from the training data using the 

linear kernel is shown in Fig. 5.4(b). The ICs containing eye blinks are clustered 

around and above +1  and the ICs containing normal EEG activity around and 

below -1. There is minimal overlap between the classifier outputs, indicating that 

the proposed features are sufficiently significant to the detection of eye blinking 

artifacts for the test datasets.

For the dataset tested there is only 0.5% difference in the overall classifica­

tion rate between the linear kernel and the RBF kernel. The cubic polynomial 

had the lowest overall classification rate. The largest difference in classification 

performance was between the RBF and cubic polynomial kernel when classifying 

normal EEGs, there was a difference of 7.1%. The reason for the close overall 

classification rates is mainly due to the separability of the feature space. Since 

the linear kernel requires fewer SVs in calculating the OSH and due to its com­

putational simplicity, the linear kernel will be used to classify eye blinks in the 

following experiments. In order to test the significance of proposed features their 

eigenvalues were evaluated as 2.97, 0.68, 0.66 and 0.25; this testifies that the pro­

posed features are significant to the detection of eye blinks in EEGs. A plot of 

the two largest principal components is shown in Fig. 5.4(a). From Fig. 5.4(a) it 

can be verified that the multidimensional feature space was linearly nonseparable, 

in the sense that there was an overlap between the features extracted from ICs 

containing eye blinking artifacts and those related to normal EEGs.

The BSS-SVM algorithm was applied to 10 real EEG datasets, each were 7 

minutes long. The performance of the algorithm can be seen by comparing the 

EEG data obtained at the electrodes (see Fig. 5.6(a)) and the same segment 

of data after being processed by the proposed algorithm (see Fig. 5.6(b)). The
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significance of the results was subjectively justified by a clinician at King’s Col­

lege Hospital. The proposed algorithm was compared to EEGs reconstructed by 

manual artifact rejection (i.e. manually identifying and cancelling the artifact) 

by calculating the cross correlation between the BSS-SVM reconstructed EEGs 

and the manually reconstructed EEGs. The average value of cross correlation 

between the reconstructed EEGs is 0.92 (s.d. 0.02). In a number of trials the ef­

fect of ECG has been automatically detected and removed, whereas the complete 

removal has not been achieved with the method based on the manual selection. 

This had a detrimental effect on the cross-correlation measure since the BSS-SVM

output will be less correlated with the manually reconstructed outputs, but has

a positive effect on the output since there is less artifact present in the output.

As a second criterion for measuring the performance of the overall system a 

segment of EEG, x seg, and the reconstructed EEG, x seg, that do not contain any 

artifact were selected, and measured the waveform similarity,

/  M

edB =  10 log I 1/M  ( I 1 “  E { ( x ljSeg[n] -  xMeg[n])}|)
V i=i

When the value of edB is zero, the original and reconstructed waveforms are identi­

cal. From ten sets of EEGs the average waveform similarity was edB — —0.009dB 

(standard deviation 10~AdB).  These results suggest that the observations have 

been faithfully reconstructed both in terms of subjective visual inspection and 

objective performance metrics.

5.4 Conclusions

A robust method for removing ocular artifacts from EEGs by fusing BSS and 

SVM methods is presented in this chapter. The results show that the proposed 

algorithm identifies and removes the effect of eye blinking artifacts. A second
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order methods was used to separate the sources which are spatially and tempo­

rally uncorrelated. The main advantage of using second order methods is that 

it requires fewer samples than the HOS methods, which lends itself to a lower 

computational complexity and hence shorter processing times. The efficacy of the 

SOBI algorithm in separation of OAs has been demonstrated in [48] and was ex­

ploited in this algorithm to extract features from the ICs. A second order method 

for source separation was used since, unlike higer order methods, it exploits the 

time structure of the EEGs. The EEGs are separated using the time lagged SOBI 

algorithm and the identified artifacts are autonomously cancelled, then the EEG 

is reconstructed from the remaining ICs.

Four features were identified as effective descriptors of eye blinking compo­

nents. The selection of features were based on statistical measurements such 

as KL distance, cross correlation, power ratio, and skewness. The experiments 

herein demonstrate that for the test dataset the eye blinking sources are effec­

tively classified by using the introduced features especially when the linear kernel 

is used for the SVM. It was demonstrated that the feature space is linearly separa­

ble by fixing the RBF kernel width parameter p, adjusting the slack parameter C, 

examining the number of support vectors found, and the corresponding classifica­

tion rate. Based on the experimental data the BSS-SVM algorithm consistently 

removes the effect of eye blinking artifacts from the EEGs. When removing the 

artifacts from long data sets, manual removal of artifacts becomes infeasible and 

therefore automated techniques are required.
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Figure 5.5: The (a) classification rate and (b) number of support vectors required 

for various parameter values of the RBF kernel.
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The EEG Contaminated by Eye Blinking Artifacts
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Figure 5 .6 : A selection of 8 electrodes from a 16 electrode EEG recording. The 

OAs are clear in (a) between samples 400 to 600, 900 to 1400, and 1700 to 1900. 

They are more prominent over the frontal electrodes (FPl, FP2 etc.). (b) The 

same segment of EEGs after the eye blinking artifacts are removed using the 

proposed BSS-SVM algorithm.
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Chapter 6

Brain C om puter Interfacing by 

Localisation of F inger M ovem ent 

Sources

In this chapter the aim is to localise th e  source of finger movement and track 

the motion of source location. Brain imaging and localisation techniques have 

been applied in order to localise brain abnormalities [89]. Source localisation 

techniques based on beamforming and direction of arrival (DOA), such as MUSIC 

and ESPRIT, perform well in noisy conditions, however they do not exploit the 

nature of the EEGs in calculating the location of the source, i.e. these method 

do not use any prior knowledge in order to  calculate the location of the sources.

A block diagram of the proposed localisation based BCI system is shown in 6 .1. 

Firstly, a window of EEGs, X (t, t +  1,. . . ,  t  +  L) is separated into its statistically 

independent components using the CBSS algorithm explained in chapter 4, where 

L is the window length. Next, the ICs are reordered and corrected for the sign and 

scale ambiguity of the BSS algorithm, as explained in the next section. Then each
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source is localised (see Section 6 .1.2) and the motion with respect to the previous 

processing window is characterised, as in Section 6.1.3. Finally the location of 

finger movement is identified and classified.

S c a le  & ! M otion
B S S -------►

P e rm u ta tio n
------►! Localization

i
I

------ ►
C harac te risa tio n

C lassification

Figure 6 .1: A block diagram of the localisation based BCI system.

6.1 M ethods

6.1.1 BSS and the Perm utation Problem

The first step in the BCI system is to separate the EEGs into their indepen­

dent components. However, one of the ambiguities of BSS algorithms is that 

there is a permutation in the output. This means that the order of the ICs 

may change from one processing block to another. This problem is mitigated 

by following the overlapping window approach, as used in [90]. The constrained 

BSS algorithm proposed in Chapter 4 was used to separate the sources into in­

dependent components while removing any artifacts relating to eye blinks. The 

BSS and localisation algorithm are applied to a fixed length window L with 

overlap O samples (O < L ). Assume that x(t) = [x\(t),x2( t ) , . . .  , x M{t)]T rep­

resents the scalp EEG recording at time t , where M  is the number of sensor 

signals and X(£) =  [x(£), x( t  -I- 1) , . . .  ,x(T )]T is the entire scalp recording where 

T  is the total recording length in samples. Therefore two consecutive overlap­

ping windows would be represented by X i =  [x(£),x(£ +  1) , . . .  ,x(£ +  L)\ and 

X 2 =  [x(t + L — 0 ) , x ( t  + 1 + L — O ) , .. . , x ( t  + 2L — 0)\  for 0 < t < T  -  2L +  O.
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The BSS algorithm is applied to X i and X 2 which gives the estimated sources 

for each of the windows Si =  [s(l), s (2 ) , . . . ,  s(L)], where s (t) — [si(t), s2( t ) , . • •, 

SAr(t)]T are the sources estimated from X i and S2 =  [sT(l), sT(2),. . . ,  sT(L)]T 

where sT (t) =  [si(£), s2 , s^(t)]T. The estimated sources may be permuted 

with respect to each other within the overlapping region. Therefore the overlap­

ping region can be represented by S 2{t)t=i,...,o = P  D Si( t ) t=L-o,...,L, where 

P  is an TV x TV perm utation matrix and D =  diag{di, d2, . . . ,  d^}  is the scaling 

matrix.

In order to measure the similarity between each of the estimated sources in 

the overlapping region the cross-correlation coefficient was used and is given by,

P*., =  V t6-1)Cr(Si)<7(Sj)

where rSiSj is the cross-correlation between Si(t) and Sj(t) (from hereon denoted 

by sl and Sj, respectively) and is given by E{si(t)sj(t)},  with t being within the 

overlapping region, cr(sf) and a (sj) are the variances of S{(t) and Sj(t) respectively. 

The cross-correlation coefficient satisfies — 1 < pSiSj < 1- When pSiSj =  1 s* and Sj 

are perfectly correlated, i.e. st = Sj. If pSiSj = — 1 Si and Sj are anti-correlated, i.e. 

st =  —Sj. When ps.s = 0 there is no correlation between S{ and Sj. BSS yields 

statistically independent sources, and since independence is a stronger criteria 

than uncorrelatedness it is expected that the output of only one source in the 

overlapping region will be perfectly correlated. The permutation matrix can be 

found by -  pSiSj.

Another ambiguity of BSS is the scaling and sign change of the ICs between 

each window. After performing BSS the variances of the output sources are 

normalised to unity and therefore matching sources from each window, Si(t) and 

Sj(t) respectively, both have equal variance. Since the signals only share an 

overlap of O samples, the energy within the overlap segment of these signals will

106



Figure 6 .2 : Part of the scalp including three electrodes, and the location of the 

source to be identified (assuming the head is homogenous)

where pXj is calculated for Si(t) and Sj(t) within the overlap segment, and d* and 

&j are the variances of st {t) and Sj(t) respectively, within the overlap segment.

6.1.2 Localisation A lgorithm

For the localisation algorithm the sources are considered to be isotropic signals 

within a homogenous and isotropic medium [91]. This means that the mixing 

media only mixes and attenuates the sources, i.e. there is no delay in the conduc­

tion from the source to electrodes. The attenuation corresponds to the distance 

between the electrode and the sources, as shown in Fig. 6.2. From Fig. 6.2 the 

distance between the source and electrode is given by,

nates of the electrode. The parameter d3 is proportional to the distance between

generally be different and therefore can be used to solve the amplitude ambiguity. 

In particular

Si(t + L — O) = sgn(pi j ) -Sj ( t ) ,  for t =  1 , . . . ,  L -  O, (6 .2)
aj

3

where G 1R3 is the location of the k th estimated source and a j G M3 is the coordi-
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the electrode and estimated source. In reality the head is a non-homogeneous 

region, therefore a more accurate estimation of the source position requires in­

formation about the non-homogeneity of the media between the source and the 

sensors [91]. However, since the aim is to characterize relative motion, an accurate 

location is not required and therefore the assumption of a homogenous medium 

is sufficient for this application. The relationship for conductivity between the 

source and scalp electrodes is shown in Fig. 6.3. The conductivity in Fig. 6.3 

shows a simple representation of the non-homogeneity in the head, which would 

need to be accounted for when determining the distances between the source and 

the electrodes. The thickness of the skull varies between sexes and geographic 

origin [92]. Accounting for various skull thicknesses is beyond the scope of this re­

search and is left for a later date. The skull has the lowest conductance and hence 

has the largest attenuation factor for the sources located beneath the skull, which 

constitutes most of the sources of interest. The distances to the electrodes can 

be represented as the inverse square of the cross-correlation between the source 

and the electrode. The relationship between the distance and cross-correlation is 

shown in Fig. 6.4.

In order to determine the value of dj the three electrodes which contribute 

most to a source are found by estimating the correlation between each IC and all 

of the electrodes. The largest contributors are defined as the three electrodes that 

are most correlated with the IC to be localised. Then the distance parameter is 

given by

dj =  * =  1, 2, 3 (6.4)E { y l{t)xl (t)}2

where yi(t) is the estimated source from the BSS algorithm and £*=1,2,3{t) are the 

three largest contributors to source yi(t), H  is a scaling factor which is empirically 

adjusted to accommodate any bias in the cross-correlation model of the distance
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Figure 6.3: The relationship between the conductivity and the distance from the 

source to the electrode. When the source is close to the scalp the conductivity is 

large compared to sources th a t are deep within the brain as they have to travel 

through the skull.
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the conductance of various regions in the head (as in Fig. 6.3).



measure. The three dimensional coordinates of the estimated sources can be

found [93] by solving the LS problem, formulated from in (6.3), given by,

arg min •S'(f)fe) (6.5)

where
3

5 (ffc) =  (6 6 )
.7 = 1

The iterative solution to (6.5) is given by,

ffc(n) =  f*(n -  1 ) +/zVS(ffc(n)) (6.7)

where fi is the iterative learning rate and V S ( f k(n)) is the gradient of (6.5), which 

is defined by

3

V S ( f k{n)) = 2 ^ ( | | f k(n) -  a-,|| -  dj)(fk(n) -  a3). (6 .8)
j =i

The location defined at the minima of (6 .8) yields the optimum location in the 

LS sense.

6.1.3 M otion Characterisation

The motion characterisation algorithm is based on the difference in the estimated 

source location between successive signal segments. The motion vector is calcu­

lated by

v k(t) = fk(t -  1) -  fk(t). (6.9)

It is assumed that any movement in the location of finger movement sources is 

localised within the contralateral hemisphere as discussed by Pfurtscheller et al. 

[26] and demonstrated with LFP studies [94]. The number of motion vector tra­

jectories is currently equivalent to the number of estimated sources (via BSS), 

i.e. k = 1 , . . . ,  N.  The number of sources related to finger movement, denoted as
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Nmw,  is typically lower than the number of active sources in normal EEGs (typi­

cally Nmov << N.  Features that are extracted from sources that are unrelated to 

finger movement will introduce redundancy, which in turn will reduce the perfor­

mance of the classifier. Therefore it is important to reduce the number of sources 

that are unrelated to finger movements. The physiological characteristics during 

finger movements were demonstrated by Pfurtscheller et al. [26]. They showed 

that the sources related to finger movements are localised to within the contralat­

eral motor cortex. Therefore any motion vectors representing unexpected jumps 

from one side of the head to the other are considered as noise and removed. Large 

movements are detected by measuring the variance for each of the axis in ik(t). 

If the variance is above a threshold then that component is rejected. Finally the 

angle between each motion vector is calculated to characterize the motion given

b y '  r
<f)(t) — 90 — 180arccos ( - —*;■ \777r fe ,7 tt"1. (6.10)K) viivfcwiiiivfc(* + i)n;

where <f>(t) is the angle between motion vectors and v*.(£ +  1) is the motion vector 

for the next processing window. Therefore, it is expected that for a source with 

a circular trajectory, the angle between motion vectors remain constant, either 

negative or positive depending on the direction (clockwise or counter-clockwise). 

The main reason for including this step rather than using the motion vectors or 

actual locations is to reduce the number of features. This method enables classi­

fication of a series of scalar values, representing angles between motion vectors, 

rather than a series of vectors representing motion values. This method effectively 

reduces the number of features from 3Q, where Q is the number of processing 

windows for calculating the location of a source, down to Q. This also reduces 

the number of features required for training the classifier.
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6.2 Experim ents

6.2.1 D ata C ollection

The data was provided by King’s College Hospital. The EEG was collected using 

64 electrodes using a Synamp acquisition system from Neuroscan. The electrodes 

were placed using the extended 10-20 system referenced to linked mastoids. Dur­

ing acquisition the electrode impedance was kept below 5kQ. The signal was 

sampled at 2k H z  and lowpass filtered with a cutoff frequency of 200Hz.  An able 

bodied subject was seated with arms resting on a table. The subject was asked 

to press either a left or right microswitch on a button box at approximately 5-7 

second intervals. The test dataset consisted of 50 left and 50 right button presses 

with left or right hand respectively.

6.2.2 Results 

Synthetic D ata

In the first experiment the performance of the localisation algorithm when the 

distance between source and electrode was estimated by cross correlation, as in

(6.4) was assessed. Four sources were generated by bandpass filtering white noise, 

such that there was minimal overlap between the spectra of each of the sources. 

One of the sources was a moving source with a trajectory shown in Fig. 6.5 

by the circles and the others were static. This means that between consecutive 

processing blocks the geometric location of the source was moved (others kept 

constant) and then the localisation algorithm was applied. This was repeated 

for six consecutive processing blocks (as shown in Fig. 6.5). The sources were 

artificially mixed where the elements of the mixing matrix were proportional to 

the distance to the electrode. The scaling factor H  was set to 0.75.
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The results of the initial experiment are shown in Fig. 6.5. When the distances 

between the source and the electrodes were used instead of the cross correlation 

estimate in (6.4), the LS algorithm localises the sources accurately indicated by x 

in Fig. 6.5. When the cross correlation estimate (6.4) is substituted for the known 

distance there was a constant bias in the calculated location of each source. This 

bias in the location was different for each of the sources. The bias in the locations 

of the estimated sources may have been introduced because the distance between 

the source and electrodes was based on the an estimate of cross correlation (6.4). 

The cross correlation is estimated from a finite data length, thereby introducing 

a source of error. Of importance, was that the moving source (labelled in Fig.

(6.5)) was tracked and clearly in motion relative to the geometrically stationary 

sources.

The purpose of this experiment was to clarify that the relative motion of the 

source between consecutive localisation windows could be identified and not to 

exactly localise each source. Since the relative motion of the sources are used the 

exact location of the source is not required.

EEG D ata w ith finger m ovem ent

The aim of the next experiment was to assess the performance of the localisation 

algorithm with real EEGs. The window length, L, was set to 1000 samples and 

the overlap, O, was set to 95% of the window length. The centre of the first 

processing window (500th sample) was aligned such that it was it coincided with 

500ms prior to the finger movement. It was suggested by Pfurtscheller et al 

[26] that ERD occurs up to one second prior to finger movement. Therefore, 

an interval of 500ms prior to movement would increase the probability that the 

ERD is captured within the processing window. Furthermore, in order to reduce 

the processing time, the number of electrodes was limited to 21 over the sensory
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motor cortex (FC, C, and CP electrodes).

Each consecutive EEG processing block was localised and plotted in Fig. 6 .6 . 

The general locations of the sources occurred in the contralateral hemisphere as 

described in [95] and were located within the motor cortex area. From Fig. 6.6 

the localisation points occurred in the regions below the electrodes located over 

the sensory motor cortex, as opposed to the frontal or occipital regions of the 

brain. The contralateral locality of sources did not occur in all trials, i.e. the 

location of left finger trials occurred in the ipsilateral hemisphere. This may be 

due to the assumption tha t the conducting medium is homogeneous. Additionally 

the instantaneous cerebral blood flow changes the conduction characteristics of 

the brain as a function of time and mental task. Therefore the conduction char­

acteristics may change between two consecutive processing windows. This may 

explain the large changes in location between two consecutive processing blocks 

thereby leading to unsatisfactory performance in the localisation algorithm.

It is difficult to interpret the individual source trajectories from Fig. 6 .6 , 

therefore the directionality of the sources were characterised by calculating the 

angles between the motion vectors as in (6.10). The histogram plot of the angle 

between consecutive motion vectors for 100 trials is presented in Fig. 6.7. It was 

expected that the distribution of angles between motion vectors would be dis­

tinct such that the sources tha t are related to left finger movement, for example, 

would be mainly positive angle values and those related to right finger movement 

would have negative angle values. This would indicate that the source of finger 

movement moves in distinct patterns for left and right finger movements. How­

ever, as shown in Fig. 6.7 the distribution of angles between successive motion 

vectors for left and right finger movements were almost completely overlapped. 

Assuming that the location of the sources are correct in relation to the previous 

processing window, the angle between successive motion vectors cannot be used
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to discriminate between left and right finger movements.

6.3 Conclusions

In this chapter a BCI system based on BSS and localisation of moving sources 

was presented. The algorithm was tested on synthetic and real data. The syn­

thetic data sets were modelled by instantaneously mixed isotropic sources with 

one source moving within a homogeneous medium. In this case the mixing ma­

trix was proportional to the cross correlation between the estimated sources and 

electrodes, which was demonstrated in Fig. 6.5. The results indicated that this 

model was able to localise and track a moving source, albeit with a bias.

For real EEG experiments however, the localisation algorithm was not effec­

tive enough in localising the moving ERP sources related to finger movement. 

The main causes of this were due to the assumption that the head is a homoge­

neous medium and the number of sources was high. The high number of sources 

indicates that there are redundant ICs that are not related to the source of finger 

movement. This in turn leads to poor estimates in the locality of the sources in 

comparison with the synthetic datasets, where the number of sources was known 

a priori.

Visual inspection of the histogram plot for angles between successive positions 

(Fig. 6.7) for each class shows tha t by using this feature one cannot discriminate 

between left and right finger movements. In addition, a robust method for iden­

tifying the components related to ERPs, such as those methods proposed in [69] 

is required.
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Figure 6.5: The results of the localisation algorithm for synthetic stationary and 

moving sources. The squares (□) are the known sensor locations, the circles (o) 

are the known source locations, (x ) are the locations calculated directly from the 

actual distances, and asterisks (*) are the source locations calculated from the 

cross correlation value in (6.4). The numbers close to the estimated locations of 

the moving source identify the order of the consecutive localisation windows, i.e. 

1 being the first processing window, and so on.
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Figure 6 .6: The results of the localisation algorithm for real EEGs containing left 

and right finger movement. The squares (□) are the known sensor locations and 

are labelled with the corresponding electrode name. Each +  and o represent the 

source location of one processing window (for one IC) for left and right finger 

movement respectively. The lines between the +  and o represent the trajectory 

of one estimated source between two consecutive localisation windows. For clar­

ity the source trajectories of left finger movement are plotted using a solid line 

while right finger movement trajectories are plotted using a dash-dot line. The 

source locations are calculated assuming that they are proportional to the cross 

correlation value as in (6.4)
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Figure 6.7: The histogram plot for the motion characterisation algorithm col­

lapsed across all trials. The number of times that an angle between two consec­

utive processing blocks for left and right finger movement trials are represented 

by black and white bar plots, respectively. This shows that the angle between 

motion vectors does not reveal any significant distinctive features between left 

and right finger movements.
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Chapter 7

Brain Com puter Interfacing by 

Extracting Propagation Factors 

using D irected Transfer Function

7.1 Introduction

In this chapter the efficacy of features derived from the propagations of EEG 

sources during voluntary finger movements is evaluated. There are many methods 

used in BCI research for the quantification of EEG signal states, some mentioned 

in Section 3.3. This section outlines and exploits the interaction, or ‘cross-talk’, 

between EEG signals. In order to bring to light the relationship between the un­

derlying processes during cognition, the frequency content and the phase relations 

between each of the electrodes are commonly used to determine the connectivity 

during performance of specific tasks. It has been well documented that different 

regions within the brain communicate with each other during mental tasks. The 

various cortexes that are involved in a particular mental task may be considered
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as statistically independent processes [96]. However, the interaction between the 

various cortexes may not be captured with the statistical independence assump­

tion. Rodriguez et al. [97] demonstrated that within the framework of facial 

recognition tasks there are transient periods of synchrony between various spa­

tial locations within the brain. This manifests itself as a synchronisation of the 

phases in the electrodes located near to the corresponding cortex. It is not pos­

sible to directly infer causal relationships by visually inspecting the EEGs, and 

hence one must use advanced signal processing techniques in order to infer such 

causal relationships. One time series is said to be causal to another if the in­

formation contained in tha t time series enables the prediction of the other time 

series.

A common method for determining the synchrony in EEG activity is the 

spectral coherence [98], which is given by,

where Clj{ f )  =  Xi ( f ) X*( f )  is the Fourier transform of the cross correlation 

coefficients between channel i and channel j  of the EEG. An example of the 

cross-spectral coherence for an EEG signal 1 second prior to finger movement is 

shown in Fig. 7.1. Typically, a feature is created by averaging the coherence 

over a certain frequency band of interest, as Cohave = 7w 7 E/I Coh%{f) (99], 

where f \  and fa are the lower and upper frequency bounds. As can be seen from 

Fig. 7.1 coherence provides no information on the directionality of the coupling 

between two recording sites. Furthermore it is only capable of detecting zero time 

lag synchronisation and nonzero but fixed time lag synchronisation, which may 

occur when there is a significant delay between the two neuronal population sites 

[100],

Another method for extracting directionality from the EEGs is Granger causal-
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Figure 7.1: An example of the spectral coherence for the EEGs one second prior 

to finger movement.

ity [101] (also referred to as Wiener-Granger causality). It is based on bivariate 

auto regressive estimates of the data in order to infer causal relationships be­

tween the two time series. When determining directionality from more than two 

electrodes, Granger causality is typically calculated from pair-wise combinations 

of electrodes. In an experiment by Benasconi et al. [102] a trained cat performed 

a visiomotor behavioral task guided by events on the video screen. Intracorti- 

cal local field potentials were recorded from various locations of the cat’s visual 

system, while performing the task. The Granger causality was calculated for 

pairwise combinations of electrodes. They concluded that the Granger causality 

measure yielded satisfactory results but needed to be interpreted with caution be­
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cause it often resulted misleading results, e.g. causal relations that were known 

to be untrue.

The directed transfer function (DTF) [103] has been developed in order to 

provide a method for detecting the direction of the coupling when applied to 

multivariate data. It was demonstrated in [104] that the DTF is a multivariate 

extension of the Granger causality measure. Granger causality can be applied 

to multivariate data by processing pair-wise combinations of the data. However, 

this approach often results in misleading results, i.e. pair-wise Granger infers 

causal relations that are untrue [102] [104] e.g. in experiments to highlight alpha 

rhythm dynamics while the eyes are closed [105], it was expected that the source 

of activity should be focused on the posterior region of the brain. DTF pro­

duced results inline with clinical explanations in that sources were located at P4, 

0 2, and Oz electrodes. In contrast, pair-wise Granger causality yielded causal 

relationships that were not precisely representative of clinical explanations, in 

that the source of activity was smeared over the majority of posterior electrodes. 

Another disadvantage of processing pair-wise Granger is that for each pair-wise 

combination the multivariate autoregressive (MVAR) parameters must be calcu­

lated, which accordingly increases the processing time. The advantage of DTF 

over spectral coherence is tha t it can determine the directionality in the coupling 

when the frequency spectra of the two brain regions have overlapping spectra. 

DTF has been adopted by many researchers for determining the directionality in 

the coupling [106] [105].
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Figure 7.2: A block diagram of the proposed BCI system based on extracting the 

propagation of EEG sources and the location of beta activity.

7.2 M ethods

7.2.1 Feature E xtraction

A block diagram for the proposed classification system is shown in Fig. 7.2. The 

EEGs, denoted by X lt M( l , .. ., Tb ) are processed in blocks of length Tb ■ The 

EEGs are then classified into left or right finger movement, based on the extracted 

features. The proposed features describing beta band activity and propagation 

of EEG activity are as follows:

Feature 1 - L ocalisation o f b eta  band activ ity

It is well established th a t after imagined and real finger movement there is an 

increase in the amplitude of the beta band, which is known as event related 

synchronisation (ERS), over the contralateral side of the sensory motor cortex 

to the moved or imagined finger [95]. A block diagram for extraction of this 

feature is shown in Fig. 7.3. The inputs to this system are the EEGs, denoted 

as X iv.ma/(1, • • • ,Tb), where M  is the number of electrodes and Tb is the data 

block length. The first stage in extracting this feature is to bandpass filter the

124



Wt

xm(1 .-.T b)
BSSBandpass

Filter
Projection
Strength

Figure 7.3: A block diagram showing the localisation of beta band activity feature. 

The EEGs are processed in blocks of T b samples. The outputs of this feature 

are the reprojected beta band power values of the IC corresponding to finger 

movement i.e. the IC with the largest reprojection to the electrodes located over 

the motor cortex.

EEGs, with cutoff frequencies of 14H z  and 20Hz,  denoted as X[  M( l , . . .  , Ts ). 

Then the filtered EEGs are separated into statistically independent sources, using 

the proposed constrained BSS algorithm (as in Section 4), denoted by y and the 

projection strength of the IC onto the scalp electrodes is defined by W^. When 

separating the EEGs it is assumed tha t the number of sources is equivalent to the 

number of electrodes (N  =  M)  and therefore the unmixing m atrix will be square. 

The parameter Fi,...,p is the extracted feature, where P  is the total number of 

electrodes over the motor cortex. A gradient implementation of SOBI was used to 

separate the sources due to its proven separation performance in ERP extraction 

[69] [46],

The next stage is to find the ICs whose projections are over the sensory 

motor cortex, which correspond to electrodes T3, T4, C3, C4 and Cz. The ICs 

projected onto other electrodes, i.e. those tha t are not located over cortical 

regions associated with finger movement, are considered to be unrelated to finger 

movement or noise. The columns of the inverse of the unmixing matrix W " 1 

reflect the projection strength of the ICs onto the electrodes. One may use the
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Figure 7.4: Block diagram of the system for classification of the propagation 

features. X  is an EEG block.

rows of W -1 th a t correspond to the electrodes over the sensory motor cortex as 

a feature. For example, the projection strength for all ICs onto one electrode 

would be in the i th row of W -1. The scale ambiguity of BSS means that using 

the inverse of unmixing matrix, directly, will yield an inaccurate representation 

of the projection strengths when comparing two different ICs. However, the scale 

information is preserved when combining W -1 with the IC yi(t).

Therefore the ICs are reprojected to the electrodes, given by

x»W =  w iVi(t) (7.2)

where w t is the i th column of W -1, yi(t) is the i th IC, and xz(t) is the reprojection 

of the i th IC to all electrodes. Then the power within beta band (14Hz-20Hz) 

is calculated for each of the electrodes located over the motor cortex and the IC 

corresponding to the largest beta band power values over the motor cortex is used 

as the feature.

Feature 2 - P ropagation  o f th e  EEG s

The second feature is the flow of cortical information between electrodes, within 

the 8H z  — 13H z  range. Ginter et al. [107] demonstrated that there is a di­

rected flow of information or ‘cross-talk’ between the sensors around the sen­

sory motor area before finger movement. A block diagram for this feature is 

shown in Fig. 7.4. The flow of information between EEG electrodes in the al­
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pha band is used to extract a feature value by using a preclassifier. The method 

used to calculate the information flow, initially developed by Kaminski et al. 

[103], is called directed transfer function (DTF). The DTF is based on fitting the 

EEGs to a multivariate autoregressive (MVAR) model. Assume that the process 

x(t)  =  [ x \ X M ( t ) ] T is sufficiently described by

x(t)  +  L (l)x (t — 1) +  • • • +  L (m)x(t  — m) — v(t) (7.3)

where x(t)  is the M  channel EEG and t denotes the time index, L(z) is an M-by- 

M  matrix containing the model order coefficients and v(t) is a vector containing 

the residual prediction error and can be considered as zero mean noise [108], 

with a covariance matrix f2. Post multiplying (7.3) by x T(t — k) and taking 

expectations, where k =  1, 2 , . .  . ,  m  and m  is the model order which is chosen 

using Akaike AIC criterion [52], yields the following Yule-Walker equation [108]

R(-fc) +  L( l ) R( - f c  +  1) +  • • • +  L (m )R (-fc  +  m)  =  0 (7.4)

where R(^) =  E { x ( t ) x T(t + q)} is the covariance m atrix of x(t), and the noise 

vector is 0 because x(t) is spatially and temporally uncorrelated with the noise 

vector v(t), i.e. E { v ( t ) x T(t +  g)} =  0 V q. There are a number of methods 

for calculating the MVAR coefficients such as Levinson-Wiggins-Robinson (LWR) 

algorithm [109].

In order to yield an accurate representation of the EEGs, long stationary data 

are required for estimating the correlation matrices and MVAR coefficients. EEGs 

can be considered stationary over a short interval and since the sampling rate is 

typically 250Hz there are not enough data  points to yield an accurate estimate 

of the correlation matrix. Ding et al. [108] proposed an algorithm that reduces 

redundancy in the data given multiple realisations of the same process. This is 

usually the case for ERP data  when there are a number of trials of the same
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action. The inter trial ensemble average of the estimated cross correlation can be 

used to reduce any redundant information and thereby increasing the efficiency 

of the estimate, given by

(7-5)
r r = l

where R r(q) is the cross correlation m atrix for trial r  =  1 , . . . ,  -/Vr , and N r is the 

total number of trials. Provided tha t the number of trials is large, the data used 

to calculate the cross correlation m atrix can be as short a s m + 1  samples.

Once the MVAR coefficients are found to satisfy the model in (7.3) it is

transformed into the frequency domain

M / M / )  =  v ( / )  C 7 - 6 )

where
771

M / )  =  /  =  o ,  i ,  . . . ,  A 7 —  i  ( 7 . 7 )
3 =  1

with L(0) =  I and N f  is the window length of the FFT. Rearranging (7.6) yields

x ( / ) = L 7 1( / ) v ( / )  =  H ( / ) v ( / )  (7.8)

where H ( /)  is the transfer m atrix of the system [108] [103] [104]. The DTF 

or causal relationship between channel i to j  can be defined directly from the 

transform coefficients [104] given by

© * ( / )  =  I M ( / ) P  ( 7 - 9 )

where | - | is the absolute norm. Electrode i is causal to j  at frequency /  if 

©?■(/) > 0. The DTF is calculated for a window size of 500 samples (500 ms). 

A time-varying DTF is generated by calculating the DTF over short windows to 

vield the short time DTF (SDTF). A window size of 500 samples was chosen for 

calculating the short time DTF in order to capture at least four cycles of the
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lowest frequency of interest and thereby improving the frequency estimate. The 

window is then shifted by 50 samples (90% overlap) and the DTF is calculated 

for the new window. The same model order was used for all of the windows and 

trials.

The final stage in the extraction for this feature is to calculate the mean am­

plitude of the DTF in the alpha frequency band and over time for each electrode. 

The feature vector is made up from the average flow of information between elec­

trodes i to j  in the alpha frequency band. Then the feature vector is passed 

through a preclassifier, from which a value is obtained as the feature. The reason 

for the preclassification stage is to reduce the number of features in the main 

classification stage.

7.3 Experim ents

7.3.1 D ata C ollection

The data was provided by King’s College Hospital. The EEG was collected using 

64 electrodes using Neuroscan Synamp2. The electrodes were placed using the 

extended 10-20 system referenced to linked mastoids using an electrode cap for 

placement. The signal was sampled at 1 k H z  and lowpass filtered with a cutoff 

frequency of 200Hz.  The experimental paradigm was as shown in Fig. 7.5. The 

blank screen period at the beginning of each trial allows the user to blink and get 

comfortable. This region of the trial was rejected from the datasets since it doesn’t 

contain any useful information. At t — 2.5s either an ‘E ’ or ‘I’ is presented at the 

centre of the screen informing the user tha t the action should be done explicitly 

or imagined, respectively. At t =  3.5 seconds the user was presented with either 

an ‘L’ for left hand, ‘R ’ for right hand, or ‘N’ for no response. At t =  4.5 seconds
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Figure 7.5: The recording procedure for the BCI data. Each trial lasted for a 

total of 9 seconds. Between each trial there was an interval in which the user was 

able to blink or get comfortable.

an ‘X’ is presented on the screen at which point the user is to initiate the required 

task dictated by the previous two cues. The proceeding 2 seconds contain the 

actions being performed.

Each session consisted of two blocks with a five minute break in between 

blocks. Each block consisted of 45 trials for each combination of the above com­

mands, i.e. 45 explicit left finger movements, 45 imagined right finger movements, 

etc. The combination of commands was generated randomly for each block.

7.3.2 Testing th e Features

In this study the features were tested using 180 trials in total; 90 for left finger 

movement and 90 for right finger movement. An additional 50 trials consisted of 

25 left and 25 right finger movements.

When using all of the 64 electrodes to calculate the DTF, the algorithm was 

very slow and was very difficult to visualise. This is because there would be 642 

time-frequency plots for the SDTF corresponding to every combination of the 

inter-electrode flow. A solution to this problem was proposed by [107] on the 

basis that there is negligible cortical flow between the hemispheres. Therefore, 

the electrodes on each hemisphere will be processed separately.
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An example of the SDTF ensemble averaged over all trials for left and right 

finger movement is shown in Fig. 7.6 and Fig. 7.7 respectively. The SDTF over 

the right hemisphere for left finger movements (Fig. 7.6) shows that during finger 

movement (t = 3) the FC6 electrode is active, which is indicated by the red areas 

in the column of FC6 electrode. This suggests tha t the source related to left finger 

movement is located in the vicinity of th a t electrode. Furthermore, between t = 2 

and t = 3 seconds (before finger movement) there is a reduction in the SDTF 

which can be seen by the blue areas between those two time points in the column 

of electrodes C6 and C P6 . For further clarification of the characteristics of the 

SDTF during left finger movement it was averaged over the alpha band and shown 

in Fig. 7.9. In Fig. 7.9 a value of one (on the y-axis) indicated that there is a 

causal relationship in the alpha band between the electrode denoted above the 

column to the electrode denoted to the left of the row. The dotted line indicates 

the point of finger movement. Comparing with the left hemisphere (ipsilateral 

hemisphere) shown in Fig. 7.8, the SDTF of the left hemisphere is attenuated in 

comparison with th a t of the right hemisphere at t = 3.

The STDF calculated over the left hemisphere for right finger movement is 

shown in Fig. 7.6. In this case the active electrodes are CP5 and CP3 indicated 

by the red areas in the figure. At the time of finger movement (t = 3) CP3 is 

causal to FC3 and FC5 indicated by the red area at that time index. Another 

interesting observation is th a t while CP3 is active CP5 is inactive between t = 2 

and t = 3 (blue areas prior to finger movement). This suggest that there is 

movement in the causality from electrode CP5 to CP3.

Comparing the left hemisphere (Fig. 7.10) alpha band STDF with that of 

the right hemisphere (Fig. 7.11) one sees that the SDTF is more attenuated 

at the point of finger movement (t = 3). This is expected since experiments 

by Pfurtscheller et al. [27] using a similar experimental paradigm showed that

131



the contralateral hemisphere to finger movement is more desynchronised during 

finger movement compared with the ipsilateral hemisphere. Furthermore, atten­

uation of the SDTF at the locations identified as sources during finger movement 

are expected since during desynchronisation the EEGs become more chaotic or 

‘complex’, therefore are not linearly interrelated thereby yielding a lower SDTF 

value. It is difficult to compare and contrast the SDTF plots for left and right 

finger movement by visual inspection, however the features derived from SDTF 

are separable on a higher dimensional feature-space.

The preclassifier was trained using the 50 trial set and the SVs were saved. 

The preclassifier was the discriminating function of the SVM defined in (5.8), but 

without the sgn(-) function. For the main classification task an SVM was used 

with the feature vector given by

g ,  =  [F1( i ) , . . . , F P(z),FP+1(i)]T (7.10)

where F\ a r e  the beta band power values for the P  electrodes located over 

the motor cortex, and Fp+i(i) is the output of the preclassifier.

In order to test the overall classification rate 4-fold cross-validation (CV) with 

no overlap was used, i.e. using 75% of the data for training and 25% for testing. 

The CV was performed 10 times, in each time the data was chosen at random 

from the trial pool. The classifier was used with three kernels, linear, RBF and 

cubic polynomial, for which the error is shown in Table 8.1. The optimum value 

for parameter C  was found by calculating the CV classification rate for a range 

of values i.e. C in the range of 0.1 (non overlapping classes) to 1000 (overlapping 

classes). For the RBF kernel the optimal parameter values, C  and p, were found 

by varying each param eter in turn and using the combination that yields the 

highest classification rate. The optimum values for C  and p for RBF kernel were 

respectively, 10 and 0.9. The model order, m, for the propagation feature was
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found to be 8 by applying the AIC algorithm [52] and was kept constant across 

all trials.

The average number of SVs calculated when using the RBF kernel was 54.9% 

of the training examples. When using the linear kernel the average number of 

SVs found was 12.4% and for cubic polynomial it was 16.5%. The training error 

was found by using the training data as test data. The training error was found 

to be 5% (ave.) and the test error was 7% (ave.). Since they are close together 

this gives an indication tha t the overfitting of the separating hyperplane has been 

avoided.

From the classification results in Table 8.1 it is possible to see that the RBF 

kernel performs best in terms of overall, left and right finger movement classi­

fication. This testifies tha t the feature space is not linearly separable because 

the classification rate increases when applying the RBF kernel compared with 

the linear kernel. Given th a t the optimum kernel width parameter of the RBF 

kernel was greater than 0 supports the use of nonlinearity in the OSH. An inter­

esting pattern emerges from the results of Table 8.1, in all cases right hand finger 

movement yields a higher classification rate than the left. Pfurtscheller et al. [20] 

observed tha t tha t the contralateral hemisphere to the dominant hand yielded a 

larger amplitude in the alpha band than the contralateral hemisphere of the less 

dominant hand. The subject was right handed and therefore may explain the 

higher classification rates for right finger trials.

The classifier was further evaluated by plotting the distribution of the classifier 

output. It was calculated by using (5.8) before sgn(-) operation. The results 

are shown in Fig. 7.12. The trials which refer to right finger movement are 

clustered around —1 and those corresponding to left finger movement are clustered 

around +1. There is a small amount of overlap indicating that these features are 

significant for detecting left and right finger movements for the test datasets.
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Table 7.1: The performance of the classifier based on the average number of 

correctly classified points. Three kernels are compared in the classification.

Kernel Average classification rate (%) (s.d.)

Overall Right Left

Gaus. RBF 83.50 (1.0) 81.16 (1.2) 78.23 (1.5)

Cubic Poly. 73.30 (1.4) 72.15 (1.0) 70.36 (1.0)

Linear 67.01 (1.3) 69.34 (1.4) 63.41 (1.0)

7.4 Conclusions

A robust method was proposed for distinguishing between left and right finger 

movements from scalp EEGs using the features corresponding to the beta rhythms 

and propagation of those sources.

SOBI was shown to be a useful tool for highlighting the ERPs related to 

finger movement. The projection strength of the ICs onto the electrodes over the 

motor cortex showrs th a t for left finger movements the ICs project onto the motor 

cortex in the right hemisphere, and vise versa for right finger movements. The 

direction of information flow within the brain during finger movement, was used 

as another feature. In order to detect and quantify the direction of flow the DTF 

was applied using short sliding windows so that the time varying characteristics 

in information flow can be detected.

The experiments herein demonstrate that for the test dataset left and right 

finger movements are correctly classified by using the introduced features. A 

higher classification rate is achieved when the RBF kernel is used for SVM.
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Figure 7.6: SDTF calculated for left finger movements. Frequency is plotted on 

the y axis and time (seconds) along the x  axis. The movement of the left finger 

occurs at t = 3 seconds. The direction of flow is read from the electrode denoted 

above the column to the electrode denoted by the label on the left of the rows. 

Electrode FC6 (column) is the most active because of the high value of STDF 

(red), suggesting tha t the source of finger movement is located close the that 

electrode.
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Figure 7.7: SDTF calculated for right finger movements. Frequency is plotted on 

the y axis and time (seconds) along the x  axis. The movement of the left finger 

occurs at t =  3 seconds. The direction of flow is read from the electrode denoted 

above the column to the electrode denoted by the label on the left of the rows. 

In this case electrodes CP5 and CP3 (columns) are the most active at the time of 

finger movement, suggesting that the source is located close to those electrodes.
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Figure 7.8: The SDTF calculated for electrodes located over the left hemisphere 

for left finger movement trials averaged over the alpha band. The y axis shows 

the SDTF value, where a value of 1 indicates maximal causal relation between 

the electrode denoted above the column to the electrode denoted to the left of 

the row. Time (seconds) is shown along the x  axis. The movement of the left 

finger occurs at t =  3 seconds, which is indicated by the dotted line.
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Figure 7.9: The SDTF calculated for electrodes located over the right hemisphere 

for left finger movement trials averaged over the alpha band. The axis are as in 

Fig. 7.8 Lower values of SDTF are observed near the time of finger movement 

compared with the left (ipsilateral) hemisphere (Fig. 7.8)
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. 0. 5/A-jvJ 0s o w
s A j ° v\AAvA- Q°iE3oiQ °inoiE9DiH0i

Figure 7.10: The SDTF calculated for electrodes located over the left hemisphere 

for right finger movement trials averaged over the alpha band. The axis are as in 
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T he output o f the classifier
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Classifier output

Figure 7.12: A histogram plot showing the distribution of classifier output values 

using the RBF kernel tested on 100 trials, 50 from each class. The outputs 

for each class are clearly separated, which generally indicates that features are 

significant for detection of left and right finger movements.

141



C hapter 8

Brain C om puter Interfacing by 

Space-T im e-Frequency Analysis

8.1 Introduction

This section dem onstrates th a t in addition to the time and frequency informa­

tion of the EEG signals, the spatial and directional information provide crucial 

indicators of intended left or right finger movement.

EEG is the result of a summation of a large number of synaptic potentials 

within the cortex [3]. These neurons tune into an oscillatory rhythm at a time 

interval, and location determined by the task at hand, e.g. finger movements 

causes a synchronisation of oscillatory rhythm in the beta band at approximately 

one second post movement located over the contralateral motor cortex. In visual 

processing tasks, a measurable response may be larger over the visual cortex. 

Therefore, the geometrical location provides important information about brain 

function. It is still debatable whether ERPs are a result of large amplitude bursts 

from a number of neurons, or the result of phase resetting in rhythmic activity
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[110]. The latter view is generally supported by a growing number of clinicians 

and researchers.

Typically, in ERP analysis, time-frequency information is used to detect and 

extract relevant information. The geometric locations of the electrodes for the 

respective time frequency plots are also taken into account by the clinician, for 

example ERPs in the visual cortex are assumed to be related to visual processing. 

ERPs have the following properties:

1. ERPs are active within a certain region of the brain.

2 . ERPs are active within a certain duration.

3. Typically active within a narrow frequency band.

These properties show th a t the geometric location of the ERP is an important 

factor in decomposing and understanding ERPs. Miwakeichi et al. [Ill] used 

Parallel Factor analysis (PARAFAC) to decompose the EEGs into space-time- 

frequency components. Traditional techniques such as PCA or ICA commonly 

analyse data in two dimensions1, space-time. Time-frequency representation over 

the space of electrodes effectively increases the dimensionality of data from two 

dimensions (space-time) to three dimensions (space-time-frequency) since the po­

sitions of the electrodes are taken into account. PARAFAC was used by Nazar- 

pour et al. [112] to highlight the effect of finger movements on the EEGs by 

localising the alpha activity during finger movements.

Kaminski et al. in [104] dem onstrated th a t there is a causal relationship 

between geometrically neighboring channels of the EEGs. Further works in [107] 

[113] and in the previous chapter showed th a t this can be used to distinguish

between left and right finger movements from the EEG.

lrThe term ‘dim ension’ is used in the context of PARAFAC to describe a modality, such as 

time, space, or frequency (i.e. not the number of recording channels).
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8.2 M ethods

In this section the EEGs are separated by assuming that the neuronal sources are 

disjoint in space, time, and frequency. A block diagram of the proposed system 

is shown in Fig. 8.1. In the first section the EEGs are converted into the time- 

frequency (TF) domain, then the T F  representation of each electrode is arranged 

into a m atrix where each element represents the x-y coordinates of the electrode. 

In the next block a space-time-frequency mask is created and the components 

within the mask are clustered. The cluster centres are one of the features used 

by the classifier. The other significant feature is the directionality of the moving 

reconstructed source signal, which is deduced from its cross correlation with the 

raw EEGs.

Section 8 .2.1 explains the m ethod for extracting the space-time-frequency dis­

tribution (STFD) from the EEGs. Then, Section 8 .2.2 describes the clustering 

technique for extracting the atom s from the space-time-frequency distributions. 

Section 8.2.3 explains reconstruction of the signals from the clustered STFD. Sec­

tion 8.2.4 describes the m otion characterisation algorithm which forms one of the 

features used in the classification algorithm described in Section 5.2.2.

8.2.1 Space-T im e-F requency A nalysis

The time-frequency distribution (TFD) of each electrode is constructed using 

short-term Fourier Transform (STFT) defined by

=  (8 .1)
T

where w(-)  is a window function and Sj(t )  is the j th electrode signal, i =  

and cu = 2 n f  / f . s . The time-frequency plot for each electrode is arranged into a
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Figure 8 .1: Block diagram  of the space-time-frequency extraction algorithm.

four dimensional m atrix such as

P{x , V, t, f )  — FSj j  = 1 , . . . ,  TV (8.2)

where x  and y are the spatial coordinations of the electrodes, assuming that 

the scalp is represented by only two dimensions, t is the time index and /  is 

the frequency index. The first two dimensions, x  and y are sufficiently large so 

t hat all the electrodes can be arranged as they are defined by the 10-20 electrode 

placement system. For example, 11 x 11 matrix is sufficient for a 64 electrode

145



EEG. The electrode Cz would be located at coordinates (6 ,6). parameter N  

is the num ber of electrodes.

A space-time-frequency mask is constructed from the STFT pl°t based on the 

following criterion,

20 log(P(x, y, t ,  f ) )  > u (83)

I 0 , othetwise

where u is a threshold, which is empirically chosen to be 0.25ni&x(^V,)-

8.2.2 C lu sterin g

In order to ex tract the regions of activity from the STFT, the atdns in space-time- 

frequency must be identified and isolated from the background EEG. K-mean 

clustering algorithm  [114] was used to identify and separate the active regions 

under the S T F T  mask M (x ,  y , t , / ) .

The goal of k-means clustering algorithm is to find the duster centres or 

means of a dataset given th a t the number of cluster centres is known a pnon.  

The first step in clustering is to initialise the cluster centres randomly. Then 

cluster memberships are recomputed based the distance betwe('n each datapoint 

and the com puted cluster centre as follows,

rrii = min | |x* -  £ifc||2 z =  l , . . . , n  (8-4)
k

where n is the number of datapoints, ra* G [1, 2 , . . . ,  k\ is the m^mt>ership vector.

A datapoint is assigned a membership to the nearest kth cluster centre. Then the

cluster centres are recalculated for each cluster as,

k — 1, . . . ,  No. of clusters (8-5)
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where k is the number of datapoints belonging to the kth cluster. The process

of updating (8.4) and (8.5) is repeated until the change in the value of fj,k falls 

below a threshold.

Since, the number of clusters k is unknown, an estimate of the optimum 

number of clusters is required. The Gap statistic method proposed by [115] was 

used for this purpose. The within cluster compactness is given by

ijeCr

where r E {1, . . . ,  K } ,  K  is the number of clusters, Cr are the datapoints within 

cluster r, and

is a compactness measure for K  clusters and Nr is the number of datapoints within 

cluster Cr. Traditionally the optimal number of clusters is chosen by finding 

max x opt(hx — h x - 1), known as the L-Curve method. However the problem with 

this method is tha t the difference between {Hk  — hj<-i) is not normalised, which 

may give an incorrect estimate of the optimal number of clusters. The solution 

to this problem was proposed by the authors in [115] by comparing the clusters 

to a null reference dataset {b — 1 , . . . ,  J3}, where B  is the number of reference 

datasets. The number of clusters at which the clustered reference dataset is least 

similar to the clustered observations, is defined as the optimum K , K ^ .  The 

reference dataset is formed by scaling a uniformly distributed random dataset 

to the range of the principal components of the dataset. Then the reference 

dataset is clustered and h^b is evaluated, where b = 1, . . . ,  B. The Gap statistic 

is computed as

(8 .6)

r= 1
(8.7)

Gap(K)  =  ^ 2  log h Kh -  log h (8 .8)
6 = 1
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Next define

s k = \j]. +  — (Jk  (8.9)

where crK is the standard deviation of {logh,Kb}b=i,...,B- The optimum number

of clusters, K opt is then defined as the smallest K  which satisfies Gap(K) > 

Gap(K  +  1) — s/c+i. Essentially, K opt is defined as the number of clusters which 

yields the largest difference between the clustered reference dataset and clustered 

observations.

8.2.3 R econstruction

Each of the atoms are reconstructed by choosing the data points from the mask 

that belong to each cluster. Let M c denote the mask with one cluster selected. 

The STFD for the cluster is given by

Pc = M c - P  c = 1, . . . ,  K opt (8.10)

where the space-time-frequency indices have been omitted, (•) is the elementwise 

multiplication operator. Next the time series signal is reconstructed by computing 

the inverse short-time Fourier transform (ISTFT) of Pc( x , y , t , f )  defined as

A k(t) = (8-n )
P  1 = 1 U T

Where Ak(t) k — 1 , . . . ,  K ^ t  is the reconstructed atom and p is the number of 

electrodes that fall within spatial coordinates of atom k.

8.2.4 M otion C haracterisation

In this section motion of the sources are quantified in order to determine whether 

there is left or right finger movement. The extracted atom’s, Ak(t), cross cor­

relation with the raw EEGs is used within an overlapping window of length L,



and with an overlap O. The absolute maximum value for each window of cross 

correlation is used as the location of the atom, given by

pk(t) = m a x ( |  E { A k(t)sj(t)}\) (8 .12)
j

and the location (coordinates) is deduced by the index j .  For example, if the 

largest cross correlation between EEGs and extracted atom were electrode Cz at 

t, = 1 then C3 at t = 2 , the transition would be from coordinates pkiX) — {6 , 6} 

to pk(2) =  {4,6}. Since the atom is disjoint in time, space, and frequency, there 

should be only one peak in the cross correlation function for each window. Finally 

the average direction is given by

d  k = j , 'Y ^P k{ t ) (8.13)
t

where d*, is the direction for atom /c, and T  is the number of cross correlation 

windows.

8.3 E xperim ents

8.3.1 T esting th e A lgorithm

The dataset described in Section 7.3.1 was used to test the algorithm. Before 

applying the STF algorithm the EEGs were corrected for eye blinking artifacts 

as described in Section 5. In this study the features are tested using 180 trials in 

total; 90 for left finger movement and 90 for right finger movement. A feature set 

was created as g* =  [mxi {i) , m yi (i) , dXl (i) , dyi (i) , . . .  m Xkopt (i) , m ykopt (i), dXkopt (z), 

dykopt(i)]T , where m Xk(i) and m yk(i) are the x  and y components of the cluster 

centres, dXk(i) and dVk(i) are the x  and y components of the directional vector. 

For classification the SVM is used since it suited the highly nonlinear nature of 

the feature set.
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In order to test the overall classification rate 4-fold cross-validation (CV) was 

used with no overlap, i.e. using 75% of the data for training and 25% for testing. 

The CV was performed 10 times, with each time the data was chosen at random 

from the trial pool. The classifier was used with three kernels, linear, RBF, and 

cubic polynomial, for which the error is shown in Table 8.1. For the test dataset 

the value chosen for the param eter C  was 64 and for the case of the RBF kernel 

the parameter p was set to 0.5. The parameter B  was set to 20 reference datasets 

such that the standard deviation param eter (8 .9) can be accurately estimated. 

The maximum number of clusters, K , was set to 6 , since the number of active 

sources at time of finger movement is generally low. This was demonstrated in

[112]. A Hanning window function was used for the STFT algorithm. The window 

length, L, for the motion characterisation algorithm was set to 1000 samples, and 

the overlap, O, was 900 samples.

The cluster centres in the spatial domain are shown in Fig. 8.2. From the 

figure it can be seen th a t the cluster centres for the left finger movement occur on 

the contralateral hemisphere very close to C2 electrode location, which is located 

over the motor cortex. For right finger movements the location of the cluster 

centre is at electrode C3, which is associated with right finger movements as ex­

plained in [95]. Figure 8.3 shows the time-frequency representation for the atoms 

of the left finger movement trial. The alpha band is the most dominant feature in 

the time-frequency domain for movement related tasks. This is highlighted by the 

results in Fig. 8.3 which shows alpha band activity is present before finger move­

ment, then desynchronisation in the motor cortex causes the alpha band power 

to drop below the threshold, u. Post movement, the alpha band power returns to 

normal. The desynchronisation separates the clusters, i.e. before movement and 

post movement, and therefore two clusters are generally identified.

The average number of support vectors calculated when using the RBF kernel
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Figure 8.2: The cluster centres for the extracted atoms for 45 left and 45 right 

finger movement trials.

was 35.5% of the training examples. When using the linear kernel the average 

number of SVs found was 10.4% and for cubic polynomial it was 22.5%. The 

training error was found by using the training data as test data. The training 

error was found to be 7% (ave) and the test error was 9% (ave). Since the 

difference between two error values is small, this indicates that overfitting has 

been avoided.

8.4 C onclusions

A new method was presented based on space-time-frequency disjointness of the 

EEG sources for distinguishing between left and right finger movements from 

scalp EEGs using the features corresponding to the activity of alpha rhythms 

and directionality of the sources. The experiments herein demonstrated that 

for the test dataset the signals are correctly classified by using the introduced
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The Time-Frequency Representations of the Extracted Atoms
400

200

0

-200

-400

3
15-

100

--------------------
ocO)

|  501

0 500 1000 C1 1 2  3
Sam ples

500
S am p les

Time (s)

100

50

1000 1 2 
Time (s)

Figure 8.3: The time-frequency representation of the extracted atoms for a left 

finger trial.

features. Using k-mean clustering followed by the Gap statistic method enables 

accurate estimation of the number of disjoint factors, representing the brain’s 

active sources. A higher classification rate is achieved when the RBF kernel is 

used for the SVM.
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Table 8 .1: The performance of the classifier based on the average number of 

correctly classified points. Three kernels used in the classification are compared.

Kernel Average classification rate (%) (s.d.)

Overall Right Left

Gaus. RBF 75.50 (1.0) 74.16 (1.2) 72.43 (1.5)

Cubic Poly. 63.30 (1.4) 63.35 (1.0) 63.36 (1.0)

Linear 57.01 (1.3) 56.34 (1.4) 55.51 (1.0)
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C hapter 9

C onclusions and Future Work

9.1 Conclusions

Over the last three decades BCI research has received increasing attention. As 

a result, BCI is becoming realisable because of the advances in signal process­

ing techniques. In the past, communication between the neuroscience community 

and the signal processing community was very limited. However, with researchers 

from both areas realising the m utual requirement for each other, the two disci­

plines are, gradually, merging together. This means tha t the possibilities are 

endless in terms of diagnosing neuronal abnormalities and of course development 

of BCIs.

The main problem in BCI research is the destructive effects of artifact signals 

masking the signals of interest. One of the requirements for a BCI was to remove 

artifacts from the EEGs. The most common artifact signal in BCI, and for almost 

all clinical applications of EEG, is eye blinking artifact. Experimental results 

show that the majority of recording electrodes are affected during eye blinks.

Two methods have been developed to mitigate the effect of eye blinking arti­
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fact. The first method described in Chapter 4 is based on extending the gradient 

implementation of the SOBI BSS algorithm [4] such that the artifact signal is mit­

igated from the recovered independent components. The assumptions of linear 

generation of EEGs and statistically independent neuronal sources are generally 

accepted by the m ajority of researchers in EEG analysis [46] [47] [69].

The proposed constrained BSS algorithm uses second order statistics only 

and therefore processing speeds are much faster than those based on higher order 

statistics [67]. Another advantage of using a second order statistic approach is 

that, in contrast to higher order statistics based BSS, it uses estimates of the 

covariance matrices at multiple time lags, hence is insensitive to certain noisy 

data or individual points out of the range of normal EEGs. The cost function 

was extended so th a t the calculated independent components were constrained in 

order not to be correlated with a reference signal. The validity of the constrained 

ICs was shown in Section 4.3.2 by reprojecting the ICs onto the scalp electrodes 

and comparing with those obtained from an unconstrained SOBI algorithm. The 

quality of the ICs was also subjectively quantified by visually inspecting the ICs 

and making comparisons with those from the unconstrained SOBI algorithm [4]. 

Furthermore, a visual comparison of the output of the CBSS algorithm with that 

of PC A [116] shows the improvement in separation performance of the CBSS 

algorithm over PC A. This algorithm was used in the preprocessing stage for 

detecting the predictability of epilepsy [90].

The second approach for removal of eye blinking artifact was based on com­

bination of the SOBI algorithm with automatic classification of the ICs resulting 

from artifacts. The aim of the hybrid BSS-SVM method, described in Chapter 

5, was to m itigate the eye blinking artifacts while preserving the EEGs. It was 

shown tha t the proposed features effectively characterised the ICs related to the 

eye blinking artifacts. The hybrid BSS-SVM algorithm is useful when long EEG

155



recordings are contaminated by eye blinking artifacts. The clinician would have 

to scroll through an entire EEG recording and manually remove the artifacts. 

Noting th a t EEG recordings can be on the order of hours makes this a tedious 

and time consuming process. In comparison with the manual artifact rejection al­

gorithms [43] the proposed autom ated m ethod can remove eye blinking artifacts 

from EEGs in a fraction of the time th a t manual techniques can. The hybrid 

BSS-SVM algorithm processes consecutive non-overlapping blocks of EEGs in 

turn, and since the ICs are reprojected to the electrodes, it is immune from any 

scale and permutation ambiguities of the BSS. Objective and subjective results in 

Section 5.3 show that the hybrid BSS-SVM algorithm effectively and consistently 

removes eye blinking artifacts from the EEGs. This method may be extended to 

remove other artifacts, such as ECG. Furthermore, unlike reconstructive artifact 

removal algorithms such as th a t proposed by Joyce et al. [48] the BSS-SVM al­

gorithm does not require a reference channel to be recorded simultaneously with 

the EEGs.

Three BCI systems were proposed. They are based on the hypothesis that the 

EEG sources related to movement are geometrically nonstationary, and on the 

basis that the thalamus and various parts of the cortex communicate during fin­

ger movement. The evidence presented by Ginter et al. [107] suggests tha t there 

is a movement in the location of the source at the time of finger movement. The 

first system proposed in Chapter 6 was based on separating and localising consec­

utive overlapping blocks of EEGs such th a t any change in the location between 

consecutive windows would be interpreted as a moving source. From this system 

it was found that an accurate model was required for the conductivities of layers 

within the brain. This was dem onstrated in Section 6.2.2 by a synthetic dataset 

in which the mixing medium was homogenous and signal sources were isotropic. 

On the contrary, when processing real EEGs the algorithm was unsuccessful in
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localising the sources. This may be due to the assumption of homogeneity in 

the conducting medium. Furthermore, the conducting medium also changes with 

time as cerebral blood flow changes. This further degrades the accuracy of the 

estimated location of the source. Therefore an accurate model of the conductiv­

ities of the layers within the brain is required in order for this algorithm to be 

successful. This experiment gave an insight into localisation algorithms and the 

problems faced by this wide area of research.

The second BCI system described in Chapter 7 was based on extracting fea­

tures from the causal relationship between electrodes and the projection strengths 

of the IC related to finger movements. The causal relationship feature gave high­

lighted the movement of a sources within the brain. It showed that the movement 

of the sources were generally from the fronto central to parietal electrodes as de­

scribed by Ginter et al. [107]. Additionally, the location of the largest projection 

of the beta  band activity highlighted the ERS observable within one second af­

ter finger movement. This characteristic of the time course of EEGs after finger 

movement was defined by Pfurtscheller et al. [20] and has been used to increase 

the classification performance of the proposed BCI. The EEGs were bandpass 

filtered within the beta  band and separated by SOBI. Filtering the EEG signals 

effectively reduced the number of redundant active sources. The results of this 

experiment showed th a t the location of beta activity and propagation of EEG ac­

tivity could be used to distinguish between left and right finger movements. Tang 

et al. [69] dem onstrated th a t SOBI was a effective in separating the source of left 

and right finger peripheral nerve stimulation from the background EEGs. The 

results obtained by Tang et al. [69] corroborate the results obtained in Chapter 

7 because the active brain regions are located on the contralateral hemisphere to 

side of finger movement.

The third experiment proposed in Chapter 8 was based on the assumption that
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the EEGs are disjoint in space-time-frequency. This means that only one source 

is active within a given duration, within one region of the brain, and within 

a particular frequency band. The disjoint sources are known as atoms. The 

atoms were extracted by applying a mask to the space-time-frequency signatures. 

A desirable feature of this algorithm is that, unlike ICA, the sources can be 

extracted without assuming th a t they are statistically independent of each other. 

Therefore, fewer assumptions are made on the mixing model thereby allowing the 

sources to be interdependent which was evident from SDTF in Chapter 7. When 

combined with a clustering algorithm, the location of atoms can be deduced. The 

motion of the atom was quantified by cross correlation with the EEGs. Qin et 

al. [58] extracted the disjoint sources from just two electrodes located over the 

motor cortex. In the proposed algorithm the disjoint sources were extracted from 

64 electrodes, yielding a more reliable estimate of the location of the atom. The 

experiments with EEGs during left and right finger movements show that the 

geometric location of the sources are localised to the contralateral hemisphere 

agrees with the second proposed BCI system proposed in Chapter 7.

9.2 Future work

W ithin the field of BCI there are endless possibilities for improvements and devel­

opments. The m ajority of current BCI systems operate on blocks of data (or per 

trial basis), meaning th a t the minimum time interval between user input com­

mands is constrained by the time taken to sample and process one trial. Therefore, 

a BCI system th a t processes EEGs in real time would, in general, yield a higher 

command throughput. This in tu rn  means th a t for the BCI systems based on 

BSS, online algorithms should be further investigated. Increasing the sampling 

rate by four or even eight times the typical 250Hz enables the extraction of the
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dynamics of the finger movement from the EEGs. This may be considered in 

development of a convolutive BSS for separating the movement related sources.

In terms of the localisation approach in Chapter 6 a detailed model of the 

conductivities would be essential for the algorithm to perform to a satisfactory 

level. One solution may be to use the location of a known source as a reference 

point. The reference source will project to the electrodes and superimpose itself 

over the normal EEGs. The conduction strengths will be apparent from the 

amplitude of reference signal a t each of the electrodes. The amplitude of the 

reference source at each electrode can then be used as a priori knowledge when 

localising the finger movement related EEGs. The reference signal may induced 

externally via an electrodes placed in close proximity with the centre of the brain.

The solution space of the estim ated source location can be constrained by 

using a priori knowledge of the approximate location of the source. The propa­

gation feature proposed in Chapter 7 gives a rough estimate of the source location 

and it’s directionality. When localising successive overlapping windows of EEGs 

the SDTF may be calculated. It would be expected tha t the source would be 

travelling in the same direction defined by the SDTF estimates. Calculation of 

the location would then be a feedback system where the location is adjusted based 

on the SDTF estimates.

The system proposed in Chapter 8 was based on disjoint ness of the EEG 

sources in space-time-frequency. The space of electrodes were defined by a coarse 

11 x 11 m atrix which was used to represent 64 electrodes according to the 10- 

20 system for electrode placement. One may investigate the effect of increasing 

the density of electrodes, this would presumably increase the accuracy of the 

geometric location of the atoms over the scalp. For the application of finger 

movement one may only need to increase the density of electrodes over the motor 

cortex area in order to gain an improvement. This is because the results in Fig.
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8.2 show th a t the cluster centres are located around the motor cortex. One may 

also further investigate the effect of using other time-frequency transforms such 

as wavelet transform.

In terms of artifact rejection a more general algorithm for removal of multiple 

artifacts such as EOGs, EMGs, ECGs, and other artifacts, may be proposed. For 

example, to identify the ICs containing ECG with the BSS-SVM algorithm in 

Chapter 5, the ECG is a almost periodic in nature. A template of one ECG pulse 

can be used in order to identify the corresponding ICs by finding the template 

ECG’s cross correlation with the ICs. It would be expected that the IC containing 

ECG would be more correlated than ICs related to brain activity. EMG artifacts 

may be removed in a similar fashion, i.e. by finding physiological descriptors of the 

EMG. EMG typically has a broad frequency spectrum (20 — 400H z) that overlaps 

with normal EEGs. Therefore, the ratio between the EM G’s lower frequency band 

(for example 20 — 60H z)  and higher frequency band (60 — 100H z) could be used 

to describe an IC containing EMG. It would be expected tha t the ratio between 

low and high frequency bands, denoted as x> would be x  ~  1 f°r ICs containing 

EMG and x > 1 f°r ICs unrelated to EMGs.

It was dem onstrated th a t the constrained BSS algorithm in Chapter 4 could 

be extended to removal of ECG artifacts simply by using the ECG as a reference 

signal. It may be possible to extend the current constrained BSS algorithm so 

that it can accommodate multiple constraints related to the above mentioned 

artifacts simultaneously.
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