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Abstract.

The selective functionalisation of triazamacrocycles is investigated herein, with the 
focus on 1, 4, 7-triazacyclononane (tacn) The ligands tris (5-fluoro, 2- 
aminophenyl) 1, 4, 7-triazacyclononane (L1), tris (4-fluoro, 2-aminophenyl) 1,4, 7- 
triazacyclononane (L") and tris (3-fluoro, 2-aminophenyl) 1, 4, 7-triazacyclononane 
(L ) were studied. X-Ray crystal data was obtained for [(L^M^ClO^.xMeCN 
where M=Mnn/Fen/Ni"/CuII/ZnII/Cdn/Hg11, [(L2)M](C104)2 xMeCN where 
M=Mn1I/FeII/NiI1/CuII/ZnII/Cdn and [(L3)M](C104)2 xMeCN where 
M=Mn,1/NiII/Cun/Znn/Cd,,/Pb11 complexes. The [(L1)Cu](C104)2 complex exhibits a 
rare dynamic Jahn-Teller effect in the solid state. Selected compounds exhibit an 
interesting capping mode by their perchlorate counterions, with threefold-hydrogen 
bonding through the oxygen to the amine protons. The [(L3)Pb](C104)2 crystal 
structure exhibits a typical geometry which accommodates a stereoactive lone pair 
from the lead centre. The variable temperature ‘H NMR of tris 1, 4, 7-(2- 
aminophenyl) 1, 4, 7-triazacyclononane zinc bis tetraphenylborate was carried out 
over 298K-193K and spectra are included within. All complexes characterized by 
'id NMR, 13C NMR, 19F NMR, IR, UV and where appropriate Mossbauer 
spectroscopy.

The investigation into the synthesis and chemistry of the novel 
sulphonamide pentaazamacrocycles 1 -(/?-tolylsulphonyl), bis 4, 7-(2-aminophenyl) 
- 1, 4, 7-triazacyclononane (L4), l-(/7-methoxyphenylsulphonyl), bis 4, 7-(2- 
aminophenyl) - 1 , 4 ,  7-triazacyclononane (L5), l-(p-fluorophenylsulphonyl), bis 4, 
7-(2-aminophenyl) - 1 , 4 ,  7-triazacyclononane (L6) and 1 -(2-mesitylsulphonyl) bis 
4, 7-(2-aminophenyl) 1, 4, 7- triazacyclononane (L7). The complexation with 
differing transition metals afforded the relevant complexes and X-Ray data was 
obtained for [(L4)Ni/Zn/Cd.MeCN](C104)2.MeCN,
[(L4)Pb(C104)](C104).2(MeCN), 2.[(L4)Cu](C104)4,4MeCN MeOH,
[(L5)Ni/Zn.MeCN](C104)2.MeCN, and [(L6)Ni MeCN](C104)2 MeCN H20. The 
[(L4)Zn/Hg/Pb.MeCN](C104)2 MeCN, [(L5)Zn/Hg MeCN](C104)2 MeCN,
[(L6)Zn.MeCN](C104)2 MeCN and [(L7)Zn MeCN](C104)2 MeCN compounds 
exhibit an unusual amine pattern in the JH NMR. This was further studied by 
variable temperature ’H NMR over the range of 298K-418K. The [(L4)Cu(C104)2 
crystal structure shows two complexes of the same compounds crystallizing in the 
same cell, each with slightly differing dimensions, but both of square based 
pyramidal geometry. The [(L4)Pb(C104)]C104.2 MeCN crystal structure exhibits a 
typical geometry which accommodates a stereoactive lone pair from the lead centre 
The bis sulphonamide l-(2-aminophenyl)-bis 4, 7-(/xira-tolylsulphonyl) 1, 4, 7- 
triazacyclononane (L8) was also prepared and its complexation of L8Ni/Cu/Zn/Cd 
coordination chemistry expanded.

The fluorinated A-aryl tacn class was expanded by producing bis and tris 
ortho meta para-fluorinated phenyl ligands. This selective methodology led to the 
development of a tri substituted tacn ring with meta and /wra-fluorinated aromatic 
rings. We report the electronic spectroscopic examination of the autocatalytic 
oxidative degradation of the macrocyclic aniline moiety over 120hrs. The synthesis 
of mono 1-(5-fluoro, 2-aminophenyl) bis 4, 7, (2-aminophenyl) 1, 4, 7-



triazacyclononane (L9), and mono l-(4-fluoro, 2-aminophenyl) bis 4, 7, (2- 
aminophenyl) 1, 4, 7-triazacyclononane (L10) are reported. The X-Ray single crystal 
data was collected for [(L9)Mn/Zn](C104)2

The synthesis of 1, 4-bis-(2-amino, 4-fluorophenyl) homopiperizene 
(L11) and its X-Ray crystal structure of (Ln Ni 2 MeCN)(C104)2 is described The 
conversion of N, N ' bis (2-aminophenyl) 1, 4-diazacycloheptane by reaction with p- 
toluenesulphonyl chloride afforded N, N ' bis (2-tosylaminophenyl) 1, 4- 
diazacycloheptane (Lu ) Reaction with nickel perchlorate afforded the neutral 
complex [(L^)Ni], This dianionic ligand is proposed as a porphyrin analogue.
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Chapter One: Introduction.

Chapter One

Introduction

Try to learn something about everything and everything about something

-- Thomas H. Huxley

The covers of this book are too far apart.

— Ambrose Bierce, The Devil's Dictionary
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Chapter One: Introduction.

Introduction

In a collaborative project between Cardiff University and PiezOptic Ltd, we set 

about to investigate the development of a colorimetric sensor for the detection 

of atmospheric nitrous oxide. We aimed to combine technology currently 

present at PiezOptic, with our azamacrocyclic chemistry, to develop a reagent to 

react with the target gas and produce a colour change that could be detected by 

the PiezOptic system

Chemical sensors

A chemical sensor is a system which gives a specific response to a target 

reagent Exposure to noxious gases has been an important area for health and 

safety regulations in recent years. This area has been focused upon further in 

light of harmful medical effects these gases have found to have on the human 

body. The health risks and effects of these gases have been recognised, and so 

the policies that govern exposure limits have been reviewed and revised every 

year, commonly reducing the exposure levels annually. Detection of these gases 

has been difficult due to many factors such as equipment standard, size and 

portability, interference from other gases, accuracy and the range of detection.

PiezOptic Technology

PiezOptic Ltd specialises in the development and supply of specific gas 

dosimeters for use in environments where toxic gases and vapours are present. 

The initial technology was invented at the Centre for Applied Microbiology 

Research (CAMR) at Porton Down in the early 1990’s. Research is now also 

being carried out at PiezOptic Ltd in Ashford, Kent.

PiezOptic Ltd was formed to take advantage of a niche in the gas 

detection market1. Specific analytes covered by the PiezOptic system at the 

moment include glutaraldehyde, chlorine dioxide, formaldehyde, nitrogen 

dioxide, ozone, sulphur, dioxide and styrene. Examples include glutaraldehde

'Wright J. D. Colin. F. Stockle, R. M. Shepherd. P. D. Labayen. T. Carter. T. J. N. A. 
Sensors and Actuators B. 1998, 51, 121-130. C. A. Gibson, T. J. N. Carter. P. D. 
Shepherd, J. D. Wright Sensors and Actuators B, 1998. 51,238-243
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Chapter One: Introduction.

which is a toxic and corrosive reagent used in the sterilisation of hospital 

equipment. Detection is achieved by using 2, 7-diaminofluorene

NH

OH

H

Figure 1.1: Reaction scheme of glutaraldehyde sensing by 2, 7-

diaminofluorene.

Reaction with the difunctional aldehyde propyl chain affords the 2, 7- 

diaminofluorene/glutaraldehyde derivative, with the formation of imine bonds 

and the loss of water. Differing products are obtained when the ratios of 

reactants are altered. These products include the 1:1 adduct, 1:2 adduct, 2:1 

adduct, polymeric material, oligomers, and cyclic oligomers. The colour change 

observed can be detected by the human eye, but is quantitatively calculated by 

the generic film reader so detecting the total exposure to the glutaraldehyde.

N=^
X X  >=N ,N

so.

CIO, o ,s

s
N+ N = ^  

> = N  N

SO,

Figure 1.2: Reaction scheme of chlorine dioxide by of 2, 2-azino bis (3- 

ethylbenthiazoline)-6-sulphonic acid diammonium salt.
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Chapter One: Introduction.

Chlorine dioxide is detected through the use of 2, 2-azino bis (3- 

ethylbenthiazoline)-6-sulphonic acid diammonium salt (ABTS) . ABTS is 

oxidised from the colourless compound, in the presence of CIO2 undergoing a 

one electron oxidation to form the stable radical cation, which is an overall 

anionic green compound

2Br
Br2 + 2Br + 2c

Figure 1.3: Reaction scheme of bromine sensing by styrene.

Styrene is detected through employing the tribromide ion suspended in a 

polyethylene glycol matrix3. Colour is lost as the reaction that occurs results in 

the halogenation o f the alkene bond present in the styrene. The reaction can be 

detected by the naked eye, but the generic reader can identify the specific 

amount of colour change through the voltage generated across the piezofilm. 

The high toxicity and volatility of these gases make the need for their detection 

in the workplace paramount, in order to comply with legislation.

The sensors developed are used in the rapid monitoring of gases in the 

workplace, a test that was previously slow and expensive in both terms of time 

and money. The dosimeter badges (Figure 1.4) that have been developed require 

little training, are disposable, and give results in a short period of time.

2 U. Pinkemell. B. Nowack, H. Gallard, U. Von Gunten, Wat. Res, 2000, Vol. 34, No 18, 4343- 
4350.

3K. R. Bearmaa D. C. Blackmore. T. J. N. Carter, F. Colia J. D. Wright. S. A. Ross. Chem. 
Commun.. 2002. 980-981.
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Chapter One: Introduction.

Figure 1.4: PiezOptic Dosimeter badge

No equipment is needed other than a generic reader (Figure 1.5), that can 

be obtained with the badges from PiezOptic Ltd. These readers take a 

background reading of the badges before the employee starts work and a final 

reading after their shift.

Figure 1.5: Dosimeter badge reader.

The reader then calculates the amount of contact that has been made 

with the target gas over this allotted time frame. The badges are developed for 

use over an 8 hour time period (time weighted average, TWA), or 15 minutes 

(short term exposure limits, STELs). The reader calculates the exposure by the 

change in colour intensity of the gas-specific reagent present in the spots on the

5



Chapter One: Introduction.

badge4. The PiezOptic system utilises a phenomenon called the “Piezoelectric 

effect". This has been employed as the mechanism in the films, used in the 

badges.

The piezoelectric effect

The piezoelectric effect is the generation of an electric potential across certain 

faces of a crystal, which is induced by mechanical pressure and distortion5. 

Pierre and Jacques Curie discovered this phenomenon in quartz crystals and 

Rochelle’s salt (potassium tartrate), in 1880. The effect is named 

piezoelectricity from the Greek “peizein” -  to press. This effect has been 

found in several crystalline structures such as tourmaline and barium titanate. 

Ions present in the crystal lattices are displaced from the non-symmetrical unit 

cell. Electric polarisation occurs when the crystal is compressed. These effects 

accumulate as the crystal is of regular conformation. This accumulation 

produces an electric potential across the faces of the crystal. Piezoelectric 

crystals are used as transducers, record playing pickup elements, and in 

microphones, due to their capacity to convert mechanical deformation into 

electric voltages. They are also used in resonators in electric oscillation, and 

high frequency amplifiers, as mechanical resonance frequency of adequately 

cut crystals is well defined.

PiezOptic Badge Technology

The reagent spots are coated on a piezofilm sensor which is sputtered 

with indium tin oxide, (ITO)6. The reader illuminates the spot in the badge with

’j. D. Wright. C. Von Biiltzingslowen. T. J. N. Carter, F. Colin. P. D. Sheperd. J. V. Oliver. S. J 
Holder. R. J. M. Nolte../ Mater. Chem. 2000, Vol 10. 175-182.

s Cady. W. G. Piezoelectricity: An Introduction to the Theory and Applications o f  
Electromechanical Phenomena in Crystals, New rev. ed., 2 vols. New York: Dover, 1964. 
Mason. W. P. Piezoelectric Crystals and Their Application to Ultrasonics. New York: Van 
Nostrand. 1950. Rosen, C. Z.; Hiremath. B. V.; and Newnham. R. (Eds.). Piezoelectricity. New 
York: Springer-Verlag, 1992. Halliday & Resnick, Fundamentals o f Physics 3rd Ed p808 
Tipler. Physics. 3rd Ed Extended Ch 36 p l2 1 1

6C. Yan. M. Zhamikov. A. Golzhauser. M. Grunze. Langmuir 2000, 16, 6208-6215.

6



Chapter One: Introduction.

a complementary colour, and the signal is processed within the reader. The spot 

produces an amount of heat which has been generated by the absorbance of light 

energy from the reader This heat distorts the sensor film and a voltage is 

produced. This electric charge is collected by the conductive ITO layer on the 

piezofilm This charge travels to the conductive pads present at the end of this 

piezofilm. The gas exposure is calculated by the reader, since the voltage 

produced is proportional to the colour intensity of the spot. The reader has a 

built-in memory capable of recording results and storing exposures for up to 400 

individuals. This data can then be read directly from the printed hard copy or 

downloaded to a PC.

The piezofilm is made from polyvinylidene fluoride, (PVDF), (Figure 

1.6). The film is constructed so the effects of the target gas on the spot are 

heightened and a back to back construction of poled polymer layers means 

microphony effects are eliminated.

tTOcoatimg (top and bottom)

PVDF film

2-part epo: 

PVDF film

Figure 1.6: Cross section of PVDF piezofilm.

The reader uses “chopped light” at 10Hz, and the LED’s emit at 470nm and 

654nm, both in the visible region This then generates the desired electrical 

signal.

K. L. Purvis, G. Lu, J. Schwartz, S. L Bemasek, J. Am. Chem. Soc. 2000. 122, 1808-1809.
N. Biyikli. T. Kartaloglu. O. Aytur, I. Kimukin, E. Ozbay, App. Phys. Lett. 2001. 79, 17. 2838- 

2840.
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diffusion filter 

sponge support pad 

reagent spot (1 of 5)

ITO coated PVDF film 

sponge support pad

light emitting diode 
(1 of 5)

conducting pad

voltage

Figure 1.7: Dosimeter Badge construction.

Construction of the reagent spot must be carried out whilst meeting 

specific criteria. The chemical reaction that occurs within the badge must be 

irreversible. Since the dosimeter badges measure the accumulative exposure, 

and do not monitor the immediate levels of gases present. Systems that are 

currently available in the market employ charcoal absorber tubes, which after 

usage the exposure levels are calculated by either solvent extraction or by 

thermally desorbing the tube so that the sample can be run on GC/MS or HPLC. 

The reagent spot must be stable to light, temperature, humidity, mechanical 

shock and ambient gases. The colour change must complement the LED’s in the 

reader, so the light is absorbed. The interaction between target gas must be fast 

and specific to the target gas only. The results obtained from the exposure must 

be quantitative and the reagent should be easy to synthesize, and precursors 

commercially available. When the spots are developed on the piezofilm, they 

must form a uniform spot, which is of even depth. These form porous matrices 

on the film, and form the desired spots. This allows good diffusion of the target 

gas into the matrix in order to react with the reagent. The solid formed is then

8



Chapter One: Introduction.

ground to a fine powder and made into a paste with a volatile solvent. The paste 

is then deposited onto the PVDF film and allowed to dry. Advantages of a 

uniform dispersant are that maximum accessibility is presented for the target gas 

when it diffuses into the badge spot matrix. The concentration of the reagent can 

be varied to control the sensitivity of the badge. The reagent spots are deposited 

onto the PVDF film that is a secured film piece in a spot-deposition jig. The 

spot solutions are deposited in 5pl aliquots, which are dispensed from an 

electronic micro pipette, which is also aligned by the jig. The employment of the 

jig allows the spots to be constructed within strict sizing parameters 

(approximately 5mm±10% diameter), and to also retain spot integrity.

Nitrous Oxide Complexation Chemistry.

The formation of nitrous oxide adducts are very rare and to date only one such 

complex has been formed and studied. Research in this field was carried out in 

the late 1960’s by Armor and Taube7. They showed that synthesis of ruthenium 

monoaquo-pentammine reacted reversibly with N2 O. When passed under a 

stream of N2O, the water molecule is displaced to form the nitrous oxide adduct.

(H,N)5RuOH22 + N20  — (H,N)5RuN20 2 + h 2o

Figure 1.7: Reaction between Ruthenium monoaquapentammine and N2O.

The use of other metals to form such adducts has resulted in the unwanted 

formation of oxides, nitrosyls and nitrides species. In the presence of a reducing 

agent such as Cr2i, it has been shown that the nitrous oxide component of this 

adduct is reduced to the dinitrogen species with the loss of water. From the data 

shown in the literature8, the formation of more stable nitrous oxide complexes 

would be a challenging and extensive field of research. N2O is a weak o and n 

donor and so a compound would have to be synthesised to produce a more

Armor J T.. Taube H.. J. Am. Chem. Soc.. 1969. 91, 6874-6876 
x Paulat F.. Kuschel T., Nather C.. Praneeth V. K. K., Sander O., Lehnert N„ Inorg. Chem..
2004. 43. 6979-6994.

9



Chapter One: Introduction.

stable metal-N20 bond9. This would have to be achieved through the increase of 

7i back bonding. The metal should be of low spin d6 electronic configuration to 

strengthen this interaction10. This is why Ru2 has shown to be the present 

within only nitrous oxide complex to date. Fe2' or Os2 could be good 

substitutes for Ru2 as iron would be a cheaper compound, and osmium would 

exhibit stronger n bonding, but for our purposes would be unbeneficial to our 

long term goals due to the high levels of toxicity of Os2 to the human body.

Introduction to Nitrous Oxide

Nitrous Oxide (N2O) is used almost exclusively in the anaesthetisation of 

patients undergoing Medical/Dental treatment. Areas include operating theatres, 

dental surgeries, and by obstetricians. Exposure to N2O by personnel in these 

areas will have long term effects, which are not experienced by patients who are 

administered it directly for short term anaesthesia11. Working area monitoring in 

hospitals could be achieved by the employment of the PiezOptic system. A 

target reagent is desired for their technology so to interact with the target gas 

and monitor N20  levels. Other application areas include the production o f N20  

as a by product from the synthesis o f adipic acid and nitric acid. Adipic acid is 

formed by the oxidation of a ketone alcohol with nitric acid and N20  is formed 

as a side product. Nitric acid is formed from the oxidation of ammonia with a 

platinum catalyst and so again N2O is formed. The largest source of N 2O is 

through nitrogen fertilization of agricultural soils, catalytic conversion of waste 

gases from car exhaust fumes, crop residue burning, and the treatment of 

industrial wastewater.

N2O was first isolated in 1772 by Joseph Priestly. Sir Humphrey Davy 

noted the analgesic effects in 1799 after testing the gas on himself. He 

experienced the relief from an erupting wisdom tooth pain after inhaling the gas.

9 Armor J T„ Taube H., J. Am. Chem. Soc., 1969, 91, 6874-6876. Armor J. N„ Taube H.. Chem. 
Commun., 1971, 287-288. Armor J. N., Taube H., J. Am. Chem. Soc., 1969, Vol 91, (24). 6874- 
6876. Armor J. N., Taube H., J. Am. Chem. Soc., 1970, Vol 92, (8), 2560-2562.
10 Diamantis A A., Sparrow G J., Chem. Commun., 1969. 469-470. Diamantis A A., Sparrow G 
J.. Chem. Commun., 1970, 819-820. Diamantis A A.. Sparrow G J., Snow M R., Norman T R„ 
Aust. J. Chem., 1975, 28. 1231-1244.
11 Bailleres Best Practice and Research in Clinical Anaesthesiology, 15. 3. 2001.
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He then noted “As nitrous oxide in its extensive operation appears capable o f  

destroying physical pain, it may probably be used with advantage during 

surgical operations in which no great effusion o f blo<xi take place. ” The 

properties of the gas were exploited in the field of public entertainment. During 

a sideshow tour in the US, a chemistry lecturer Gardner Quincy Colton inhaled 

the gas and while under its influence lacerated his leg after running into a bench 

It appeared that he felt no pain and this was observed by Horace Wells. This led 

him to deliberate the prospect that the gas could be used the in the painless 

extraction of teeth. Colton administered the gas to Wells the following day and 

extracted one of his teeth. He declared after the effects of the gas wore off that 

“A new era o f teeth pidling. It did not hurt me as much as the prick o f  pain. It is 

the greatest discovery ever made. ”

The use of N20  replaced ether and chloroform as anaesthetics in 

the medical field. The long term exposure effects of using N20  are: diffusion 

hypoxia, diffusion into closed body cavities (inner ear, intestinal gut), decreased 

methionine synthase activity (Vitamin B 12 inhibition), nausea, and vomiting. 

There are occupational hazards such as the possibility of fetotxicity (injury to 

the foetus from a substance that enters the maternal and placental circulation 

and may cause death or retardation of growth and development), as well as the 

increased greenhouse effect. Long-term effects are that N20  can suppress 

memory and consciousness, therefore decreasing awareness.

Other anaesthesia now used is desflurane, sevoflurane or using the short 

acting opiod remifentanil. There is a possibility that xenon may be a possible 

anaesthesia in the future. The need for monitoring of nitrous oxide is prevalent 

and so new methods of detection are needed to reduce exposure human 

exposure.

Proposed system

Some years ago, Groves reported that ruthenium tetramesitylporphyrins 

(Ru(TMP)) were capable o f catalysing the oxidation of a range of olefins using 

nitrous oxide as an oxidant12. Groves found that this extension of Taube’s

12Groves J T.. Quinn R., J. Am. Chem. Soc., 1985, 107, 5790-5792.
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ruthenium salt to be specific to nitrous oxide and did not produce the same 

results with the iron or osmium analogues. Groves found the dioxo-Ru(TMP) 

species can convert differing olefins (cyclooctene, norborene, methylstyrene, 

etc) to the relevant epoxide derivative through oxygen transfer.

Tetramesitylporphvrin -

6 Ru Ru

Ru1

Ru

Ru

21

Figure 1.12: Groves’ nitrous oxide oxidation cycle.

Figure 1.12 shows the proposed13 reaction cycle for the binding of nitrous oxide 

to a ruthenium tetramesityl porphyrin. It was shown, via spectroscopic methods 

that under elevated pressures of N20  (6 Psi), the dioxo species (2) is formed and 

that under anaerobic conditions oxidise /raws-/?-methylstyrene (We have 

inserted beta-carotene into the above scheme to illustrate our proposed system).

13 Groves J T.. Roman J S., J. Am.. Chem. Soc., 117,1995, 5594-5595.
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Groves has found the dioxoruthenium (VI) species has a limited shelf life14. 

There has been previous evidence that a bridged species is formed15 

((H}N)5 RuN2 0 Ru(NH3 )5) which implies that when nitrous oxide is bound and 

cleavage of the N -0 bond would lead to the formation of the dinitrogen species 

(7) and the Ru=0/THF adduct (4). Oxygen transfer from the dioxo species 

forms the monooxy species (3) whereby the oxygen is transferred to an olefin to 

epoxydise the alkene bond.

Tetramesitylporphyrin was reviewed by Lindsey et a l16 and they have 

devised a new synthetic route to its production from 2-mesitaldehyde and 

pyrrole. It oxidation from the porphryrinogen to the porphyrin was through 

employing /?-chloroanil or DDQ. This method incurred a higher yield (29%) 

than its original method (4.5%)1718.

The synthesis and metallation of tetramesitylporphyrin will be discussed 

further in chapter five.

In a more recent study by Yamada et a lX9 has shown that under elevated 

temperatures and pressure (100°C and lOatm), catalytic conversion of 

cholesteryl benzoate to the p-epoxide by ruthenium tetramesityl porphyrin 

occurs in good yield (30-99%) and in a range of solvents (toluene, benzene, 

fluorobenzene). Aside from olefin oxidation, Yamada et al 20 have shown the 

same system to work successfully with the oxidation of alcohols to aldehydes 

and ketones. Again higher pressures were used (lOatm), a range of yields were 

produced (22-71%) for the conversion of 2-naphthylmethanol to 2- 

napthtaldehyde at 100°C. Reaction of nitrous oxide with differing transition 

metal complexes have also been recorded * but has been the inertness of 

nitrous oxide has resulted few viable systems.

We proposed that by synthesizing a ruthenium complex with 5 sites of 

coordination occupied by a ligand with a degree of steric hindrance, then

14 Groves J T.. Quinn R.. lnorg. Chem., 23, 1984, 3844-3846.
13 Armor J N„ Taube H.. C.hem. Commun., 1971. 287-288.
16 Wagner R W.. Lawrence D S., Lindsey J S., Tett.Lett., 28. 27,1987, 3069-3070.
r  Lindsey J S., Hsu H C., Schreiman I C., Tett. Lett., 27, 1986, 4969-4970.
18 Lindsey J S., Schrieman I C., Hsu H C., Kearney P C., Marguerettaz A M„ J. Org. Chem., 52. 
1987. 827-836.
19 Yamada T., Hasimoto K., Kitaichi Y., Suzuki K., Ikeno T.. Chem. Lett., 2001. 268.
20 Hasimoto K„ Kitaichi Y„ Tanaka H„ Ikeno T.. Yamada T., Chem. Lett., 2001. 922-923.
21 Banks R G S., Henderson R J., Pratt J M.. Chem. Commun., 1967, 387-388.
22 Banks R G S., Henderson R J., Pratt J M., J. Chem. Soc (A)., 1968, 2886-2889.
23 Bottomley F„ Lin I J B., Mukaida M.. J. Am. Chem. Soc., 1980, 102, 5238-5242.
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formulation with beta carotene and a solid support such as silica or alumina, we 

would have our target reagent spot. Upon exposure with nitrous oxide the 

brown/orange colour of the composite would undergo a colour change to 

indicate the catalytic epoxidation of beta carotene within the matrix. This in 

essence, the proposed system, is a catalytic sensor.

The ruthenium complex will bind the nitrous oxide via the nitrogen 

terminus, and allow the oxygen end free to oxidise the double bonds present in 

the beta carotene. This loss of chromophore will then be observed in the UV/Vis 

spectra of the composite.

Beta carotene

The chromophore beta carotene (Figure 1.9) is found throughout nature as an 

orange pigment, and can be prepared synthetically24. It was first isolated in 1831 

by Wackenroder, and since then many other compounds in its class, which are 

called carotinoids have been studied. The structure of the chromophore was 

solved by Karrer in 1931 and for his work on vitamins he received the Nobel 

Prize for chemistry. The first commercial synthesis of y#-carotene was achieved
*7 S 0>)f\in 1950 and Roche produced it in 1954. ^-Carotene was found to exhibit 

antioxidant properties, and so suggested that it might have a role in the fight 

against cancer. In more recent times it has been found that ^-carotene has a 

significant role in the prevention of cystic fibrosis and arthritis and has been 

used as a vitamin supplement.

Figure 1.9: ^-Carotene

Johansen J E.. Lianen-Jensen S.. Acta. Chem. Scand., Series B., Org. Chem.Biochem.. 1974. 
28 (3). 349-356. Ahmad R., J. Imp. Coll. Chem. Soc.. 1953, 31, 23-37.
25 Karrer I P.. Eugester C H., Helv. Chim. Acta.. 1950, 33, 1172-1174.
26 Karrer I P.. Eugester C H.. Compt. Rend.. 1950. 230. 1920-1921.
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The large chromophore system of /7-carotene gives them colour due to them 

absorbing in the visible region. /7-Carotene absorbs blue/green light therefore 

they are perceived as orange. The orange colour is seen in many aspects of 

nature, more notably in carrots, pumpkins, apricots and nectarines.

Absorption spectrum of beta-carotene

0)uc<B.Q
O
V)£3
<

200 300 400 600500
Wavelength / nm

Figure 1.10: The UV/Vis spectrum of beta carotene.

The Xmax is 451nm, and has a molar extinction coefficient of 139,500 M^cm'1. 

The large chromophore system o f /7-carotene is a good example of a coloured 

compound that could upon oxidation could produce a useful colour change. The 

11 alkene bounds present are all susceptible to catalytic oxidation using N20  as 

an oxygen atom donor (Figure 1.11). Such oxidation reduces the degree of 

conjugation in the chromophore so as to cause a blue shift in the electronic 

spectrum. Oxidation of p-carotene would also lead to a loss of extinction 

coefficient. The formation of epoxidised products have lower extinction 

coefficients and this can be detected by the PiezOptic reader.
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Oxidant, e g MCPBA. Ru02TMP

Figure 1.11: Epoxidation of /?-carotene at 15, 15’ and 5, 6 positions.

Marchon e t al2 and Burton e t aF* have shown by HPLC analysis that 

epoxidation can occur with RuVI02(TMP), and that oxidation of /7-Carotene 

forms the full range o f epoxy products. The epoxy products exhibited XmaX over 

the range 409nm-446nm. If /7-Carotene was to be used in the system, then a loss 

of colour would be the observed change. This colour change would not be 

discemable to the human eye, but the PiezOptic reader has sufficient sensitivity 

for quantifiable detection.

Application of this system for our purposes has problems associated 

such as the high extinction coefficient of the catalyst. This high e value would 

saturate the system and detection of the epoxidised beta carotene products 

would not be detected by the reader. This reaction also takes place in the 

solution state. Our proposed system relies upon diffusion of the target gas into a 

porous solid matrix whereby the catalyst and chromophore are mixed and the 

catalytic oxidation occurs. Research into this catalysis chemistry would be novel 

for this field of nitrous oxide oxidative chemistry.

2 Veyrat C C„ Amiot M J., Ramasseul R., Marchon J C., New. J. Chem., 2001. 2. 203-206.
28 Mordi R C., Walton J C., Burton G W., Hughes L., Ingold K U„ Lindsay D A., Moffatt D J.. 
Tetrahedron.. 49, 4, 1993, 911-928.
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Introduction to Macrocycles.

Macrocyclic chemistry is a relatively young field in chemistry, with its origins 

dating from the 1960’s. A macrocycle is defined as a cyclic molecule, that 

within the ring of at least 9 atoms, has 3 or more potential donor atoms (e.g. N, 

O, P, S, As, and Se)

The potential applications of macrocyclic chemistry are vast and varied. 

The unusual co-ordination chemistry that the macrocycles adopt gives them 

differing properties that they exhibit spectroscopically and structurally. 

Application of macrocyclic ligands are found in biological systems29, MRI 

agents30, biological tracers31, anti-HIV32, tumour agents33, protein labelling34, 

and enzyme models , Also surfactants , metal extraction , and liquid 

crystals are fields covered by macrocycle appliance.

Macrocycle classes include polyamines39 (1), crown ethers40 (2), mixed 

donor macrocycles41 (3), catenates42 (4), cryptands43 (5), porphyrins44 (6), and 

phthalocyanines45 (7).

29 B. Boitrel. R. Guilaid. Tett. Lett.. 1994. Vol 35, Issue 22. 3719-3722.
E. Bienvenue. S. Choua. M. A. Lobo-Recio, C. Marzin, P. Pacheco, P. Seta. G. Tarrago. J. 
Inorg. Biochem.. 1995. Vol 57, Issue 3. 157-168.
311 F. Benetello. G. Bombieri. L. Calabi, S. Aime, M. Botta, Inorg. Chem., 2003, 42, 148-157.
31 S. J. DeNardo, G. L. DeNardo. A. Yuan. C. M. Richman, R. T. O’Donnell, P. N. Lara. D. L. 
Kukais. A. Natarajan. K. R. Lambom. F. Jacobs. C. L. H. Sianter. Clin. Can. Res.. 9. 3938-3944, 
Sept 1.2003.
32 M. Iwata, Chem. Lett.. 1999, 1273-1274.
33 K. P. Eisenwiener, M. I. M. Prata, I. Buschmann. H. W. Zhang, A. C. Santos. S. Wenger. J. C.
Reubin. H. R. Macke. Bioconjugate. Chem.. 2002. 13. 30-541.
34 A. Levin. J. P. Hill, R. Boetzel. T. Georgiou, R. James, C. Kleanthous, G. R. Moore, Inorg. 
('him. Acta.. 2002. Vol 331, Issue 1, 123-130.
3s J. P. Collman. L. Fu. P. C. Herrmann. X. Zhang. Science. Vol 275. 1997. E. Kimura. T.
Gostoh. S. Aoki. M. Shiro, Inorg. ('hem.. 2003. 41, .3239-3248. B. Graham. B. Moubarki. K. S. 
Murray. L. Spiceia. J. D. Cashian. D. C. R. Hockless, J. Chem. Soc., Dalton Trans., 1997. 887- 
893.
3r’ I. A. Fallis. P. C. Griffiths, P. M. Griffiths, D. E. Hibbs, M. B. Hursthouse, A. L. Winnington. 
('hem. Commun.. 1998. 665-666.
3 H. Tsukube. Y. Mizutani. S. Shinoda. M. Tadokoro, K. Hori. Lett. Lett.. Vol 38. 28. 5021- 
5024. 1997.
38 G. H. Waif. R. Benda. F. J. Litterst, U. Stebani, S. Schmidt. G. Lattermann. Chem. Eur. J., 
1998. 4, No 1, 93-99.
39 Kimura E.. Tetrahedron. 48, 30, 1992. 6175-6217.
411 Gokel G W.. Leevy W M„ Weber M E.. Chem. Rev.. 2004, 104, 2723-2750.
4‘ Kauffmann T.. Ennen J.. Tet. Lett., 22. 50. 1981. 5035-5038.
42 Amabilino D B.. Ashton P R., Balzani V., Boyd S E„ Credi A., Lee J Y.. Menzer S.. Stoddart 
J F., Venturi M.. Williams D J., J. Am. Chem. Soc., 1998. 120. 4295-4307.
43 McKee V.. Town. R M., Nelson J., Chem. Soc. Rev., 2003, 32, 309-325.
44 Sessler J L.. Seidel D .,Angew. Chem. Int. Ed., 2003, 42, 5134-5175.
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HN

NH

NH

HN

Figure 1.13: Examples of macrocycles.

4> Inabe T., Tajima H., Chem. Rev., 104, 2004. 5503-5533. De La Torre G.,Vasquez P., Aguilo- 
Lopez F., Torres T., Chem. Re\>., 104, 2004, 3723-3750. Cook M J., The Chem. Rec., 2, 2002. 
225-236. Kobayashi N., Coord. Chem. Rev., 227, 2002, 129-152.
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Azamacrocyles

1, 4, 7-Triazacyclononane (Tacn) was first synthesised by Koyama and 

Yoshino46, then extensively examined by Richman and Atkins.47 The chemistry 

of the free ligand tacn has been fully explored and is reviewed by Wieghardt 

and Chaudhuri48

H

1.4. 7-triazacvclononane=tacn

n

\ V N
o c ^ ¥ ^ c o

CO

M = Mo. W

Figure 1.14: 1,4, 7-triazacyclononane (Tacn) and W/Mo tacn tris carbonyl

“piano stool” complexes.

The range of complexes formed with tacn is vast and varied, and due to the size 

of the macrocycle ring, the ligand typically adopts coordination geometries with 

metals by bonding to three cis sites of an octahedron. This is typified by the 

“piano stool” complexes49 obtained when, for example tacn is reacted with 

W/Mo(CO)6

The Chelate Effect

The chelate effect is derived from the observed fact of the higher stability 

constants of chelates when compared with their free ligand analogues. From

* Koyaina H.. Yoshino T„ Bull. Chem. Soc. Jap.. 1972, 45, 481-484.
4 Richman J. E., Atkins T. J., J. Am. Chem. Soc.. 1974, 96, (7), 2268-2270.
48 Chaudhuri P., Wieghardt K., Prog. Inorg. Chem.. 1987, 35. 329.
49Roy P S., Wieghardt K„ Inorg. Chem.. 1987, 26, 1885-1888. Chaudhuri P., Wieghardt K.. Tsai 
Y-H.. Kruger C., Inorg. Chem... 1984, 23, 427-432. Wieghardt K.. Guttmann M.. Chaudhuri P.. 
Gerbert W.. Minelli M.. Young C G., Enemark J H., Inorg. Chem., 1985, 24, 3151-3155.
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figure 1.15, it can be seen that the most unfavoured system contains the 4 free 

ligands, but the highest stability constant is observed with the chelate analogue 

of the four ammonium atoms, 1, 4, 7, 10-triethylene tetraamine.

h 3n n h 3 /
h 2n

\
n h 2

/  \
NH NH2

/ \ 
,NH HN.

< < <

h 3n n h 3 H2Nv_ n h 2_y n h 2 n h , NH2H2N

Figure 1.15: Scheme to show the greater stability of ammonia, 

ethylenediamine, diethylenetriamine and triethylenetetramine.

This arises from the higher likelihood of reattachment of the dissociated ligand, 

as the other end of the chelate will still be attached. Free ligands are less stable 

as they are unbound to the metal centre and so will constantly exchange with the 

metal centre faster than the chelate. The equilibrium constant will lie toward the 

right, when using the example of Ni, 6 ammonia molecules, and 3 ethane 1, 2- 

diamine (en) ligands in favour of the chelated metal complex.

[Ni(NH3)6]2* + 3en [Ni(en),]2‘ + 6NH,

en = H2NCH2CH2 NH2

Figure 1.16: Equilibrium of nickel hexaammonia and nickel tris

ethylenediamine.

The entropy term of the system is the driving force behind the chelate effect. 

The example in scheme 1.17 shows the behaviour exhibited by cadmium, with it 

favouring complexation with 2 en bidentate chelate ligands over 4 methylamine

20
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monodentate ligands. The stability constant shows a four fold increase in 

stability for the en ligands over the 4 free methylamine ligands.

1. Cd2 (aq) + 4CH,NH2(aq) = [Cd(NH2CH,)4] (aq) (log (3 -  6.52)

2 Cd2 (aq) + 2H2NCH2CH2NH2(aq) = [Cd(en)2]2 (aq) (log P =10 6)

Ligands AH° (kJmol1) AS° (Jmol !deg *) AG° (kJmol )

4CH3NH2 -57.3 -67.3 -37.2

2en -56.5 + 14.1 -60.7

Figure 1.17: Enthalpy, entropy, and Gibbs free energy of cadmium tetra 

methylamine and cadmium bis ethylenediamine.

It can be seen that the higher entropy gives more free energy for the 

multidentate systems.

The Macrocyclic Effect

This increase in stability constants for macrocyclic ligands over their free 

ligands is called the macrocyclic effect. The enthalpy of forming the 

macrocyclic product smaller than the acyclic counterpart (figure 1.18). When 

the hole size of the macrocycle and metal ion size are closely matched then a 

favourable enthalpy of formation occurs.
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Figure 1.18: Nickel and copper acyclic and macrocyclic complexes with

stability constants.

2+ 2-
A good example is the formation cyclam and Ni and cyclen and Cu . When 

the enthalpy is decreased with a larger metal (Cu ) and a smaller macrocycle 

(Cyclen), the stability constant will increase slightly. If the macrocycle is to 

undergo some sort of reorganisation to accommodate the metal ion, then the
• "yenthalpy will increase. When Ni " complexes with cyclam, it fits within the 

plane of the macrocycle and so reorganisation is minimal, whereas Cu and 

cyclen requires the ligand to flex so the nitrogen lone pairs all point toward the 

metal ion. It can so be perceived that the stability constant for Ni-Cyclam is 

higher than Cu-cyclen due to these factors, which arise from the macrocyclic 

effect.

Defining the factors solely responsible for the macrocyclic effect is hard 

and exists as contributions from pH, solvent, temperature, and degree of ligand 

solvation.
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Cavity hole size

As metals bind in the macrocycle cavity, the metal centre will adopt a geometry 

that is dictated by the donor type, the macrocycle ring and any steric effects 

present on the ring. If the metal is too big for the hole in the macrocycle, then 

the metal will not be bonded in the plane of the ligand. The number of donor 

ligands will obviously dictate the geometry of the metal complex.

After taking the distance between opposite 
donors, d. and the perpendicular distance 
from the middle of d to one of the remaining 
donors, gives the cavity radius, r. The 
hole-size radius. r(H) is then determined by 
subtraction of the donor radius. r(D) from the 
cavity radius, r. i(H) = r - r(D) d for cyclam 
= 4.20 and 3.80A (due to conformational 
differences)
Therefore, r = 2.10 and 1.90A R(D) for
N(amine) = 0.12k
R(H) for cyclam = 1.18-1.38A

Figure 1.19: Cavity hole size for cyclam.

Due to the difference of 2 methylene groups between the macrocycles of 

cyclen to cyclam, different geometries are adopted. Cyclam has a larger hole 

size so can adopt more configurations than cyclen. It can be square planar 

geometry. This allows trans complexes to be formed, although cyclam is 

flexible enough to permit c is  complex formation. It can also configure so two 

c is  sites are free but this geometry is less favoured due to the higher strain from 

the macrocyclic ring. The smaller ring of cyclen (1.31-1.42A) means it can only 

arrange itself in a c is  configuration with the metal centre bonding in 4 sites of an 

octahedral geometry, leaving two c is  sites free to bond. This has a high strain on 

the ligand, but the metal cannot fit into the hole of the cyclen ring

Hole for v  
metal binding
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Octahedral and Trigonal Prismatic geometries of six coordinate complexes.

Six coordinate metal complexes most commonly adopt an octahedral geometry. 

This is due to it being energetically favourable, with all 6 ligands being 90° 

apart Occasionally 6 coordinate compounds arrange themselves in other 

geometries such as trigonal prismatic or rarely bicapped tetrahedral. In the 

trigonal prismatic arrangements, the eg and t2g levels split to an a'i, level, and an 

e' level of slightly higher energy and the eg level is lowered in energy to e" when 

in a trigonal prismatic geometry50, 51.

A
V

Oh

&

D3h

2g

Figure 1.21: ^-orbital diagram of octahedral and trigonal prismatic

arrangements.

Ibers et al52 discovered the complex tris (tv.v-1, 2-diphenylethene-l, 2- 

dithiolato)rhenium. The crystal structure showed the first example of trigonal 

prismatic geometry.

Gillum W O.. Wentworth R A D., Childers R F., Inorg. Chem., 9, 8, 1970, 1825-1832.
Hoffman R.. Howell J M., Rossi A R., J. Am. Chem. Soc., 98, 9, 1976, 2484-2492.
Ibers J A., Eisenberg R.. J. Am. Chem. Soc. 1965. 3776-3778.
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Figure 1.22: Tris (cis-1, 2-diphenylethene-l, 2-dithiolato)rhenium. 

Twist Angle

Figure 1.23: Definition of twist angle (O).

Twist angle (O) is defined as the torsional angle between opposite faces in the 

coordination polyhedra. Complexes with twist angles of 0° will be adopting a 

conformation of trigonal prismatic, whereas twist angles of 60° would be ideal 

octahedral conformations

Figure 1.24: A twist ofN 6 system and A twist.

If the complex (or ligand) is viewed down the Cj axis and the pendant-arms are 

twisted clockwise relative to the nitrogen plane it is assigned as A. The atoms of
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chelate form part of a right handed helix. If it is anti-clockwise it is assigned as 

A, as the atoms of this chelate form part of a left handed helix.

Figure 1.25: Chelate configuration of metal complexes.

We assign the configuration of chelate rings as X and 5. The first CH2 

group from the left hand nitrogen when below the nitrogen (anticlockwise) is 

assigned as X, and when above the nitrogen (clockwise) is 5. These chelates are 

found to be as 566 or IXX within the complex. The mixtures of chelate 

configurations such as 68X or XX5 are not common due to the high degree of 

strain within these types of complex. The minimum strain is found when all 

three complexes are of the same orientation.

Aims and Objectives

Within this thesis we aim to develop new classes of potential ligands for 

complexation with ruthenium. Hopefully we can achieve this and run 

preliminary tests on these compounds to see if they can carry out the 

epoxidation of beta-carotene If this were to occur, a potential colour change 

system could be suitable for Piez Optic technology.

We aim to extend work previously started by Fallis et al to see if this 

could be a potential route towards our nitrous oxide sensor. We will show the 

development of ligands with bulk to stop potential dimerisation, and a range of 

routes to these ligands.
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Chapter Two

Experimental

The first time 1 see a jogger smiling, I'll consider it.
Joan Rivers

If God wanted us to fly, He would have given us tickets. 
— Mel Brooks
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1, 4, 7-tris f2-nitro-5-fluorophenvh-l, 4, 7-triazacvclononane (L1).

To a solution o f 1,4,7-triazacyclononane (1.00 g, 7.75 mmol) in acetonitril 

ml) was added 2,4-difluoronitrobenzene (4.07 g, 25.58 mmol) and finely gr 

potassium carbonate (3.50 g, 25.58 mmol). The reaction mixture was heat 

reflux overnight. After cooling distilled water (50 ml) was added an< 

resulting solution was extracted with chloroform (3 x 100 ml). The or 

extracts were combined, dried (MgS0 4 ) and the solvent removed to affi 

bright yellow solid. This material was purified by column chromatogi 

(chloroform) isolating the first major band (Rf = 0.51). Recrystallisation 

acetone afforded a brilliant yellow fluffy powder (L1 ). Yield 3.30 g (78 % 

NMR (400 MHz, CDC13): 8 3.50 (s, 12H, Al), 6.59 (t, (JHH= 8.25Hz), 3 H 

6.70 (d, (.///// = 8.55Hz), 3 H, Ar), and 7.65 (t, {JHH = 8.09Hz), 3 H, Ar). 

NMR (400 MHz, CDC13): 54.33, 107.27, 107.89, 128.81, 128.92, 138.7  ̂

147.68 (Jcf = 986Hz). 19F-NMR (CDC13): 8 -102.45. IR (KBr disc, c 

3130, 2963, 1625, 1565, 1513, 1479, 1438, 1343, 1302, 1262, 1244, 1178, 

1082, 1015, 867, 799, 746 and 691. Mass spectrum: molecular ion peak a 

546.5 (calc. 546).



Tris K 4, 7-f2-amino, 5-fluorophenvlK 1, 4, 7-triazacvclononane) (L1).

Tris 1, 4, 7-(2-nitro, 5-fluorophenyl), 1, 4, 7-triazacyclononane (L1) (250 

0.46mmol) was dissolved in a THF:MeOH solution (60:1ml), in a 250ml ro 

bottomed Schlenk tube. It was found that the use of HPLC grade THF 

essential, and the catalyst (Pt/C (75mg) was added to methanol (2ml) to crea 

slurry. CAUTION: minimum contact with methanol was exercised as in 

incident a small fire occurred, and so the catalyst was added below the suri 

of the THF.MeOH slurry with a pipette. The Schlenk tube was evacuated 

backfilled with hydrogen gas. This was stirred for 24 hours upon which 

complete reaction was indicated by a colour change o f yellow to a c 

solution. The desired compound was filtered off via a cannula equipped a 

glass fibre filter tip, into another Schlenk and the solvent was removed in va< 

This afforded a colourless solid (L1). This material was found to be air-sensil 

Degradation was indicated by a colour change from colourless to pink. Y 

230mg, 92%. ‘H NMR: (250 MHz, CDCI3) 5 3.30 (s, 12H, Aliphatic), 5 3.9 

Br, 6H, N //2), 5 6.50 (dd, 6H, {JHH = 1.50 + 6.82), Ar), and 6 6.75 (dt, 3H, { 

= 1.50 + 10.50), Ar). 13C NMR: (250 MHz, CDCI3) 6 54.48, 108.75, 109 

114.99, 136.91, 140.52 and 155.14 (JCF= 940). ,9F NMR: (300 MHz, CDC1 

-124.64. IR: (KBr disc, cm'1) 3434, 2965, 1616, 1506, 1261, 1220, 1095, 1( 

802 and 728. E l -MS m/z 457.3 (M +H + 457)



tube via filter cannula which contained manganese (II) perchlorate (52rr 

0.14mmol). This solution was a cream colour and was stirred vigorously for 

hour. The solvent was then removed in vacuo to yield an off-white precipitai 

To this was added degassed ethanol (10ml), with vigorous stirring. The soluti< 

allowed to settle, was filtered off via cannula, dried in vacuo, to afford the til 

compound as an off-white solid. Single crystals suitable for X-Ray diffracti< 

were grown by slow vapour diffusion o f diethyl ether into an acetonitri 

solution. Yield 65mg, 70%. IR: (KBr disc, cm'1) 3433, 1607, 1506, 1373, 126 

1172, 1090, 866, 808, 770 and 726.

IIL1 VFeUCIOA. 1 IMeCNI

This compound was prepared using a similar method to that of [(L )Mn](C10<( 

Iron (II) perchlorate (52mg, 0 .14mmol), was added to the hydrogenatit 

solution which formed a grey precipitate. Overnight the solid became deep blu 

Crystals of X-Ray quality were grown by slow vapour diffusion o f diethyl eth 

into an acetonitrile solution. Yield 59mg, 63%. The Mossbauer spectrum w 

recorded. IR: (KBr disc, cm 1) 3450, 2963, 1261, 1095, 1019 and 802. UV/V 

(MeCN, nm (e/dm3 mol ' cm-1)): 236 (1286), 268 (2135), 298 sh (857) and 1‘ 

(722).

KL'lCoUCICM?.

This compound was prepared using a similar method to that o f [(L')Mn](C10^ 

Cobalt (II) perchlorate (53mg, 0.14mmol), was added to the hydrogenatic 

solution which formed a blue precipitate. Attempts at growing crystals o f X-Rt 

quality failed. Yield 67mg, 72%. IR: (KBr disc, cm 1) 3434, 1507, 1464, 136 

1305, 1269, 1172, 1100, 862, 811, 771 and 668. UV/Vis (MeCN, nm (e/dn 

mol'1 cm'1)): 332 (347), 418 (168) and 594 (127). Upon addition of HC104, 46 

(71).
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KL'W iMCIO^.

This compound was prepared using a similar method to that of [(L1)Mn](C1 0 4 ) 2  

Nickel (II) perchlorate (53mg, 0.14mmol), was added to the hydrogenation 

solution which formed a pink precipitate. Crystals of X-Ray quality were grown 

by slow vapour diffusion of diethyl ether into an acetonitrile solution. Yield 

67mg, 72%. IR: (KBr disc, cm'1) 3295, 3224, 3066, 2975, 1608, 1505, 1464, 

1269, 1171, 1106, 970, 915, 863, 816, 771 and 725. UV/Vis (MeCN, nm (e/dm3 

m of1 cm'1)):328 (38), 518 (22), 817 (19) and 872 (25)

KL')Cul(CI04)2.

This compound was prepared using a similar method to that of [(LJ)Mn](C1 0 4 ) 2  

Copper (II) perchlorate (54mg, 0.14mmol), was added to the hydrogenation 

solution which formed a green precipitate. Crystals of X-Ray quality were 

grown by slow vapour diffusion of diethyl ether into an acetonitrile solution. 

Yield 61 mg, 65%. IR: (KBr disc, cm'1) 3424, 2964, 1607, 1506, 1265, 1173, 

1095 and 725. Mass spectrum (ESI): molecular ion peak at m/z 518.1 (calc. 

519.16) for M-2(C104), 618.1 (calc. 618.11) for M-(C104), 716.1 (calc. 717.06). 

UV/Vis (MeCN, nm (e/dm3 mol"1 cm'1)): 686 (69).

K L 'gn K C IO ^ .

This compound was prepared using a similar method to that of [(L')Mn](ClC>4 )2 . 

Zinc (II) perchlorate (54mg, 0.14mmol), was added to the hydrogenation 

solution which formed an off white precipitate. Crystals of X-Ray quality were 

grown by slow vapour diffusion of diethyl ether into an acetonitrile solution. 

Yield 70mg, 74%. 'H-NMR (400 MHz, CDjCN): 5 3.19 (m, 6 H, Al), 3.80 (m, 

6 H, Al), 5.45 (s, 6 H, NH2), 7.22 (dt, (J„„ = 2.68 + 8.65 Hz), 3 H, Ar), 7,49 (dd, 

(Jim = 6.06 + 8 74 Hz), 3 H, Ar) and 7.78 (dd, = 2.71 + 9.88 Hz), 3 H, Ar). 

|:>C-NMR (400 MHz, CD,CN) 6 53.14, 115.14, 129.10, 131.92, 148 74, 159 98 

and 162.40 (Jcr = 982Hz). 19F-NMR (300 MHz, CD3CN): 8 -  112.92. IR (KBr 

disc, cm'1): 3296, 3222, 3056, 2965, 1608, 1505, 1269, 1174, 1108, 972, 916, 

863,813, 772 and 726.
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r(L1)Cd](ClQ4)2.

This compound was prepared using a similar method to that of [(L1)Mn](C1 0 4 ) 2  

Cadmium (II) perchlorate (57mg, 0.14mmol), was added to the hydrogenation 

solution which formed a cream precipitate. Crystals of X-Ray quality were 

grown by slow vapour diffusion of diethyl ether into an acetonitrile solution. 

Yield 79mg, 78%. 'H NMR: (400 MHz, CD,CN) 5 3.10 (m, 6H, Al), 6 3.45 (m, 

6H, Al), 5 4.65 (br s, 6 H, NH2), 6 7.00 (m, 3H, Ar), 8 7.35 (m, 6H, Ar) l3C 

NMR: (250 MHz, CDCh) 8 54.44, 113.99, 128.17, 128 86, 132.08, 155.65 and 

160.20 (Jcf= 972Hz). 19F NMR: (300 MHz, CD,CN) 8 -113 23 IR: (KBr disc, 

cm'1) 3424, 2962, 1621, 1606, 1507, 1462, 1375, 1319, 1268, 1174, 1090, 868, 

815, 771 and 726.

KL'lHgKCIOA.

This compound was prepared using a similar method to that of [(L )Mn](C10.i)2 

Mercury (II) perchlorate (58mg, 0.14mmol), was added to the hydrogenation 

solution which formed an off white precipitate. Crystals of X-Ray quality were 

grown by slow vapour diffusion of diethyl ether into an acetonitrile solution. 

Yield 75mg, 67%. ‘H NMR: (250 MHz, DMSO) 8 3.85 (m, 6H, Al), 8 4.05 (m, 

6H, Al), 8 6.65 (br s, 6 H, N//i), 8 7.55 (m, 3H, Ar), 8 8.10 (m, 6H, Ar). 199Hg 

Satellite peaks at 6.60 + 6.70, (JHgH = 55.29Hz). 13C NMR: (400 MHz, DMSO) 

8 52.86, 127.10, 128.38, 130.43, 134.61, 144.59 and 159.57 (JCF= 968 Hz).19F 

NMR: (300 MHz, DMSO) 8 -113.52. IR: (KBr disc, c m 1) 3446, 2961, 1621, 

1605, 1506, 1375, 1322, 1260, 1177, 1090, 868, 803, 772 and 725.

HL’lPbKCMXb

This compound was prepared using a similar method to that of [(L1)Mn](C1 0 4 ) 2  

Lead (II) perchlorate (59mg, 0.14mmol), was added to the hydrogenation 

solution which formed an off white precipitate. Crystals of X-Ray quality were 

grown by slow vapour diffusion of diethyl ether into an acetonitrile solution 

Yield 84mg, 74%. ‘H NMR: (400 MHz, CD3CN) 8 3.70 (m, 6H, Al), 8 3.90 (m, 

6H, Al), 8 4.55 (br s, 6 H, N //2), 8 7.05 (m, 3H, Ar), 8 7 35 (m, 3H, Ar), 8 7.40 

(dd, (Jhh = 2.71 + 10.91 Hz), 3H, Ar). 207Pb Satellite Peaks at 4.50 and 4.60
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(Jput = 11.02 Hz). I3C NMR: (250 MHz, CD3CN) 5 55.75, 111.05, 113.68, 

129 83, 131.24, 147.73 and 147.88 U r  = 960Hz). I9F NMR: (300 MHz, 

CD3CN) S - 115.05. IR: (KBr disc, c m 1) 3465, 2963, 1506, 1261, 1095, 1023 

and 801.

1, 4, 7 tris - (2-nitro, 4-fluorobenzene), 1, 4, 7- triazacvclononane (L2 ).

1,4, 7- triazacyclononane (0.15g, 1.16mmol), 2, 5-difluoronitrobenzene (0.61 g, 

3.84mmol), potassium carbonate (0.497g, 3.60mmol), and acetonitrile (50ml) 

were all stirred vigorously under reflux, in a round bottomed flask at 85°C for 

24 hours. After cooling distilled water (50 ml) was added and the resulting 

solution was extracted with chloroform (3 x 100 ml). The organic extracts were 

combined, dried (MgS0 4 ) and the solvent removed to afford an orange solid. 

This was recrystallized with hot ethanol (L2). X-Ray single crystals were grown

by slow vapour diffusion of diethyl ether into acetonitrile. Yield 93%, 0.58g. 

NMR: (400 MHz, CDCI3 ) 6  3.35 (s, 12H, Aliphatic), 8  7.15 (m, 3H, Ar), 6  7.25 

(m, 3H, Ar), 8  7.75 (m, 3H, Ar). ,3C NMR: (400 MHz, CDCI3) 8 56.32, 112.58, 

121.18, 126.68, 142.89, 143.56, 156.10 (JCf = 1124Hz). 19F NMR: (300 MHz, 

CDCI3 ) 8 -118.39. IR: (KBr disc, cm'1) 2951, 2911, 1570, 1395, 1339, 1305, 

1281, 1266, 1222, 1199, 1163, 1130, 1098, 1060, 1031, 1000, 902, 875, 868, 

829, 805, 794, 756, and 751. E.I.-MS m/z 547.0 (M++H+)

F

F
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XXnN N 

N

HoN.

NH'

Tris 1, 4, 7-(2-amino. 4-fluorophenvl), 1, 4, 7-triazacvclononane (L2).

Tris 1, 4, 7-(2-nitro, 4-fluorophenyl), 1, 4, 7-triazacyclononane (L2) (250mg,

0.46mmol) was dissolved in a THF:MeOH solution (60:1ml), in a 250ml round

bottomed Schlenk tube. It was found that the use of HPLC grade THF was

essential, and the catalyst (Pt/C (75mg) was added to methanol (2ml) to create a

slurry. CAUTION: minimum contact with methanol was exercised so the

catalyst was added below the surface of the THF:MeOH slurry with a pipette.

The Schlenk tube was evacuated and backfilled with hydrogen gas. This was

stirred for 24 hours upon which the complete reaction was indicated by a colour

change of yellow to a clear solution. The desired compound was filtered off via

a cannula equipped with glass fibre filter tip, into another Schlenk and the
• 2solvent was removed in vacuo. This afforded a colourless solid (L ). This 

material was found to be air-sensitive. Degradation was indicated by a colour 

change from colourless to pink. Yield 181 mg, 87%. 'H NMR: (400 MHz, 

CDC13) 5 3.20 (s, 12H, Al), S 4.40 (s Br, 6H, NH2), 6 6.20-6.30 (m, 6H, Ar), 

and 5 6.95 (m, 3H, Ar). 13C NMR: (400 MHz, CDCb) 8 55.76, 100.94, 103.55, 

123 91, 136.37, 143.27, and 161,12 (JCF = 780Hz). 19F NMR: (300 MHz, 

CDCb) 8 -117.52. IR: (KBr disc, cm'1) 3476, 3357, 3040, 2962, 2902, 2813, 

1614, 1501, 1440, 1373, 1287, 1261, 1188, 1163 and 1102. E.I.-MS m/z 457.4 

(M*+H+457)

34



I(L )MnlfCICM?.xMeCN

Manganese (II) perchlorate (74mg, 0.2mmol) was dissolved in ethanol (30n 

then transferred to another Schlenk tube, via cannula, which contained 

(60mg, 0.13mmol). The solution was heated with an air gun until the lig< 

dissolved in the ethanol solution. The solution was a white colour and v 

stirred vigorously for 18 hours. The ethanolic solution was removed via cann 

carefully so to not disrupt the solid precipitate that had formed. This solid v 

then dried in vacuo. The solid was obtained in warm, degassed ethanol (15n 

and then re-decanted to leave the title compound as a white solid. Crystals o f  

Ray quality were grown by slow vapour diffusion of diethyl ether into 

acetonitrile solution. Yield 69mg, 74%. IR: (KBr disc, cm'1) 3447, 3287, 16' 

1568, 1498, 1458, 1373, 1262, 1086, 855, 805 and 700.

l(L2)FeUCIOj>?.»MeCN

This compound was prepared using a similar method to that of [(L2)Mn](C10 

Iron (II) perchlorate (72mg, 0.2mmol), was added to the hydrogenation solut 

which formed a blue precipitate. Yield 55mg, 59%. The Mossbauer spectr 

was recorded IR: (KBr disc, cm'1) 3389, 1627, 1502, 1261, 1089 and 8 

UV/Vis (MeCN, nm (s/dm3 mol'1 cm 1)): 236 (1105), 270 (2225), 348 sh (8> 

and 735 (986).

l(L2)Nil<CIOjB.\MeCN

This compound was prepared using a similar method to that of [(L2)Mn](CtO. 

Nickel (II) perchlorate (73mg, 0 2mmol), was added to the hydrogenat 

solution which formed a pink precipitate. Yield 59mg, 63%. IR: (KBr disc, c 

') 3397, 1626, 1575, 1261, 1090 and 802. UV/Vis (MeCN, nm (s/dm3 mol'1 c 

')): 330 (31), 520 (14), 813 (15) and 870 (20)



618.1), UV/Vis (MeCN, nm (e/dm3 mol'1 cm 1)): 464 (90) and 700 (139).

KL2lZnl(CICM7.*MeCN

This compound was prepared using a similar method to that of [(L )Mn](ClC 

Zinc (II) perchlorate (74mg, 0.2mmol), was added to the hydrogenation solul 

which formed an off white precipitate. Yield 70mg, 74% ‘H NMR: (400 M 

CDjCN) 6 3.00-3.20 (m, 6H, Al), S 3.70-3.85 (m, 6H, Al), 6 5.60 (br s, 

NH2), 6 7.30-7.45 (m, 6H, Ar), 5 7.70-7.90 (m, 3H, Ar). I3C NMR: (400 M 

CDjCN) 6 53.31, 114.25, 116.12, 127.03, 135.35, 143.06 and 160.30 (Jc. 

984Hz). 19F NMR: (300 MHz, CD3CN) 5 -113.71. IR: (KBr disc, cm'1) 34 

3297, 1604, 1503, 1368, 1287, 1257, 1202, 1096, 1071, 860, 825 and 700.

KL2)Cdl(CIQ4)7.

This compound was prepared using a similar method to that of [(L2)Mn](C10 

Cadmium (II) perchlorate (82mg, 0.2mmol), was added to the hydrogenat 

solution which formed an off white precipitate. Yield 63mg, 63%. !H NN 

(250 MHz, CDjCN) 8 3.10 (m, 6H, Al), 8 3.60 (m, 6H, Al), 8 4,75 (br s, i 

NHi), 8 7.10 (m, 6H, Ar), 8 7.60 (m, 3H, Ar). 13C NMR: (400 MHz, CD3C> 

53.44, 112.67, 127.65, 131.60, 15243, 156.87, 161.43 (JCF= 988Hz). 19FN1V 

(300 MHz, CD3CN) 8 -114.63. IR: (KBr disc, cm'1) 3528, 2855, 1609, 14 

1463, 1373, 1282, 1247, 1197, 1132, 1081, 850, 820, 725 and 700.
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NO

NO

F

1, 4, 7 tris-(2-nitro, 3-fluorophenvh- 1, 4, 7- triazacvclononane (L3 ).

1, 4, 7- triazacyclononane (24mg, 0.186mmol), 2, 6-difluoronitrobenzene 

(lOOmg, 0.63mmol), potassium carbonate (36mg, 0.621mmol), and acetonitrile 

(30ml) were all stirred vigorously in a pressure tube at 90°C for 24 hours. The 

flask was washed out DCM (15ml). The combined washings were filtered then 

dried in vacuo. The resulting yellow oil was recrystallized with hot ethanol,
y

which afforded solid yellow flakes (L ). Crystals of x-ray quality were grown 

by slow vapour diffusion of diethyl ether into an acetonitrile solution. Yield 

88%, lOOmg. ‘H NMR: (400 MHz, CDCI,) 8 3.35 (s, 12H, Al), S 6.70 (t, (J„„ = 

8.48 Hz), 3H, Ar), 8 6.80 (d, (JHH = 8.61 Hz), 3H, Al), 8 7.25 (m, 3H, Ar). 13C 

NMR: (400 MHz, CDC13) 8 54.89, 109.06, 109.20, 116.85, 131.75, 145.68, and 

154.87 (Jc f =  1336 Hz). 19FNMR: (300 MHz, CDC13) 8-122.82. IR: (KBr disc, 

cm'1) 2963, 2900, 2849, 1613, 1520, 1495, 1475, 1445, 1407, 1371, 1261, 1228, 

1184, 1147, 1102, 1062, and 1012 E.I.-MS m/z 547.0 (M'+H )
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NH

NH

F

Tris 1, 4, 7-(2-amino. 3-fluorophenvl), 1. 4, 7-triazacvclononane (L3).

Tris 1, 4, 7-(2-nitro, 3-fluorophenyl), 1, 4, 7-triazacyclononane (L3) (250mg, 

0.46mmol) was dissolved in a THF:MeOH solution (60:1ml), in a 250ml round 

bottomed Schlenk. It was found that the use of HPLC grade THF was essential, 

and the catalyst (Pt/C (75mg) was added to methanol (2ml) to create a slurry. 

CAUTION: minimum contact with methanol was exercised, so the catalyst was 

added below the surface of the THF:MeOH solution with a pipette. The Schlenk 

was evacuated and backfilled with hydrogen gas. This was stirred for 24 hours 

upon which the reaction was signalled by a colour change from yellow to clear. 

The desired compound was filtered off via a cannula equipped with glass fibre 

filter tip, into another Schlenk which was then dried in vacuo. This afforded a 

clear product (L3). Yield 190mg, 91%. 'H  NMR: (250 MHz, CDC13) 8  3.35 (s, 

12H, Aliphatic), 5 4.70 (s Br, 6 H, NH2), 8  6.05 (m, 3 H, Ar), 6  6.15 (m, 3H, Ar), 

and 8  6.30 (d, 3H, (JHh = 1.19 Hz), Ar). 13C NMR: (250 MHz, CDCI3 ) 8  54.88, 

109.83, 115.95, 116.91, 129.74, 141.63, and 151.13 (Jcf= 945). 19FNMR: (300 

MHz, CDCI3) 8  -132.93. IR: (KBr disc, cm 1) 3458, 2965, 1617, 1474, 1261, 

1095, 1023, 802 and 726. E l -MS m/z 457 ( M + H +)
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then transferred to another Schlenk tube, via cannula, which contained 

(60mg, 0 .13mmol). The solution was heated with an air gun until the lig 

dissolved in the ethanol solution. The solution was a white colour. This  ̂

stirred vigorously for 18 hours and the ethanolic solution was removed 

cannula carefully so to not disrupt the solid precipitate that had formed. 1 

solid was then dried in vacuo. The solid was obtained in warm, degassed etha 

(15ml), and then re-decanted to leave the title compound as a white so 

Crystals of X-Ray quality were grown by slow vapour diffusion of diethyl et 

into an acetonitrile solution. Yield 72mg, 78%. IR: (KBr disc, cm 1) 3433, 32 

1652, 1468, 1368, 1259, 1105, 1019, 862, 796 and 730.

t(L, >Fel<CIOdV>.

This compound was prepared using a similar method to that of [(L3)Mn](C10 

Iron (II) perchlorate (52mg, 0.13 mmol), was added to the hydrogenat 

solution which formed a blue precipitate. Crystals of X-Ray quality were grc 

by slow vapour diffusion of diethyl ether into an acetonitrile solution. Yi 

74mg, 80%. The Mossbauer spectrum was recorded. IR: (KBr disc, cm'1) 3A 

2964, 1621, 1261, 1100, 797, 726 and 690. UV/Vis (MeCN, nm (e/dm3 m 

cm'1)): 236 (4271), 270 (2801), 349 sh (924) and 730 (1202).

I(L3)CoKCIOj)?

This compound was prepared using a similar method to that o f [(L3)Mn](C10 

Cobalt (II) perchlorate (53mg, 0 .13mmol), was added to the hydrogenat 

solution which formed a blue precipitate. Crystals of X-Ray quality were gro 

by slow vapour diffusion of diethyl ether into an acetonitrile solution. Attem 

at growing crystals o f X-Ray quality failed. Yield 77mg, 82%. IR. (KBr di 

cm'1) 3433, 2962, 1263, 1231, 1095, 1042, 797 and 720. UV/Vis (MeCN, i



solution which formed a pink precipitate. Crystals of X-Ray quality were gr 

by slow vapour diffusion of diethyl ether into an acetonitrile solution. \  

77mg, 83%. IR: (KBr disc, cm'1) 3433, 1611, 1262, 1095, 803, 726 and 

UV/Vis (MeCN, nm (e/dm1 mol’1 cm 1)): 466 (74) and 812 (36).

KL3)Cul(CIO<iVi.

This compound was prepared using a similar method to that of [(L )Mn](Cl( 

Copper (II) perchlorate (54mg, 0.13mmol), was added to the hydrogena 

solution which formed a green precipitate. Crystals of X-Ray quality v 

grown by slow vapour diffusion of diethyl ether into an acetonitrile solut 

Yield 79mg, 85%. IR: (KBr disc, cm 1) 3434, 2958, 1617, 1262, 1095, 801 

725. Mass spectrum (ESI): molecular ion peak at m/z 518.1 (calc. 519.16) 

M-2(C104), 616.1 (calc.618.11) for M-(C104), 718.0 (calc. 717.06). UV 

(MeCN, nm (e/dm3 mol’1 cm 1)): 684 (106).

KL^ZnKCIQA

This compound was prepared using a similar method to that o f [(L3)Mn](Cl( 

Zinc (II) perchlorate (54mg, 0.13mmol), was added to the hydrogena 

solution which formed an off white precipitate. Crystals of X-Ray quality \ 

grown by slow vapour diffusion of diethyl ether into an acetonitrile solul 

Yield 75mg, 81%. 'H NMR: (400 MHz, CD,CN) 5 3 10 (m, 6H, Al), 5 3.70 

6H, Al), S 4 60 (br s, 6 H, NH2), 5 7.15 (m, 3H, Ar), 5 7,45 (m, 6H, Ar). 

NMR: (250 MHz, CD3CN) 8 53.16, 114.25, 120.64, 122.54, 129.46, 148.47 

157.87 (JCF = 980Hz). I9F NMR: (300 MHz, CDjCN) 8 -119.69. IR: (KBr c 

cm'1) 3444, 2964, 1607, 1478, 1442, 1373, 1262, 1095, 859, 797, 726 and 69



6H, Al), 6 4.65 (br s, 6 H, NH2\  S 7,00 (m, 3H, Ar), 5 7.35 (m, 6H, Ar). 

NMR: (250 MHz, CD3CN) 6 53.20, 115.18, 117.69, 121.22, 123.72, 151.93 

157.29 (Jcy = 960Hz) l9F NMR: (300 MHz, CDjCN) S -119.66. [R: (KBr d 

cm'1) 3539, 3246, 1479, 1374, 1263, 1084, 862, 792 and 725.

l(L3)Hgl(CIO,),

This compound was prepared using a similar method to that of [(L )Mn](C10 

Mercury (II) perchlorate (58mg, 0.13mmol), was added to the hydrogenat 

solution which formed an off white precipitate. Crystals of X-Ray quality w 

grown by slow vapour diffusion of diethyl ether into an acetonitrile soluti 

Yield 83mg, 74%. ‘H NMR: (400 MHz, CDjCN) 6 3.10 (m, 6H, Al), 5 3 .5 0 1 

6H, Al), 8 4.90 (br s, 6 H, N //,), 8 7.10 (m, 3H, Ar), 8 7.40 (m, 6H, Ar). 199 

satellite peaks at 8 4.85 + 5.05, (54.77Hz). I3C NMR: (250 MHz, CDjCN 

53.61, 113.44, 113.65, 121.91, 128.32, 148.30 and 158.14 (JCF = 972Hz). 

NMR. (300 MHz, CD3CN) 8 -119.64. IR: (KBr disc, cm 1) 3459, 3335, 16 

1569, 1462, 1375, 1308, 1261, 1084, 802 and 726.

l(L3)Pbl(CIO„),

This compound was prepared using a similar method to that of [(L3)Mn](C10 

Lead (II) perchlorate (59mg, 0.13mmol), was added to the hydrogenat 

solution which formed an off white precipitate. Crystals of X-Ray quality w 

grown by slow vapour diffusion of diethyl ether into an acetonitrile soluti' 

Yield 84mg, 75%. *H NMR: (250 MHz, CD3CN) 5 3.60 (m, 6H, Al), 6 3.90 ( 

6H, Al), 6 4.45 (br s, 6 H, Nf f2\  5 7.15 (m, 3H, Ar), 6 7.35 (m, 6H, Ar). 207



triazacvclononane.

1-TosvK 4, 7-bis (2-nitrophenvl), 1, 4, 7-triazacvclononane (L

Mono 1-tosyl 1, 4, 7-triazacyclononane1 (500mg, 1.77mmol),

fluoronitrobenzene (498mg, 3.53 mmol), potassium fluoride (205n

3.53mmol), and acetonitrile (30ml) were all refluxed vigorously in a 100 

round bottomed flask at 100°C for 24 hours. The flask was washed out w 

DCM (15ml). The combined washings were filtered then dried in vacuo. T 

resulting orange oil was recrystallized with hot ethanol, which afforded 

orange powder (L4 ). Yield 1.26g, 92%. ‘H NMR: (400 MHz, CDCh) 6 2.30 

3H, Methyl), 5 3.15 (m, 4H, Al), 5 3.55 (m, 8H, Al), 5 6.85 (t, (J,m = 7.11 H 

2H, Ar), 5 7.10 (d, (J ,„ , = 8.43 Hz), 2H, Ar), 5 7.15 (d, ( J h h  = 8.02 Hz), 2 

Ar), 5 7.35 (m, 2H, Ar), and 5 7.55 (dd, ( J h h  = 1.63 + 8.12 Hz), 4H, Ar). 1 

NMR: (250 MHz, CDCh) 5 21.51, 50.97, 54.14, 55.47, 120.75, 121.92, 125.9

1 Lazar I., Takacs Z., Synth .C om m un., 2001, 31 (20), 3141-3144.
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127.25, 129.84, 133.26, 134.65, 142.84, 143.73 and 144 00. IR: (KBr disc, cm'1) 

1601, 1565, 1361, 1340, 1296, 1218, 1156, 1129, 1087, 1029, 1003, 867, 845, 

813, 768, 746, 708 and 694 E.I.-MS m/z 526 (M'+H*)

so 2
i

n h2/  'N 'A  nh2
N N
L _ J

1-TosvK 4, 7-bis (2-aminophenvD, 1,4, 7-triazacvclononane (L4)

L4 (lOOmg, 0.19mmol) was dissolved in a THF: MeOH solution (40:1ml), in a 

250ml round bottomed Schlenk. It was found that the use of HPLC grade THF 

was essential, and the catalyst (Pt/C (50mg) was added to methanol (2 ml) to 

create a slurry. CAUTION: minimum contact with methanol was exercised as in 

one incident a small fire occurred, and so the catalyst was added below the 

surface of the THF.MeOH solution with a pipette. The Schlenk was evacuated 

and backfilled with hydrogen gas. This was stirred for 24 hours upon which the 

reaction was signalled by a colour change from yellow to clear. The desired 

compound was filtered off via a cannula equipped with glass fibre filter tip, into 

another Schlenk which was then dried in vactto. This afforded a clear solid (L4). 

Yield 83mg, 94%. NMR: (400 MHz, CDC13) 5 2.30 (s, 3H, Methyl), 5 3.20 

(s, 8 H, Al), 5 3.40 (s, 4H, Al), 5 4.00 (br s, 4H, N //2), 5 6.60 (m, 4H, Ar), 6  6.80 

(m, 2H, Ar), 6  7.05 (dd, (J HH =1.17 + 8.19 Hz), 2H, Ar), 6  7.15 (d, (.JHh  = 8.04 

Hz), 2H, Ar), and 5 7.55 (d, {J h h  = 8.25 Hz), 2H, Ar). 13C NMR: (250 MHz, 

CDCb) 6  20.46, 52.10, 55.18, 55.26, 114.67, 117.64, 123.12, 124.15, 126.20,

128.72, 134.07, 139.77, 141.79 and 142.41. IR: (KBr disc, cm'1) 3444, 1497, 

1456, 1329, 1261, 1156 and 1089. E.I.-MS m/z 466 (M++H+)
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Synthesis of metal complexes of general formula I(L4)MUCKXff?.x(MeCN),

M=Ni. Cu. Zn« Cd. He and Pb. 

KL4>Ni.MeCNl(CIOa>7.1fMeCN).

The solution of L4 (lOOmg, 0 .13mmol) was transferred directly into another 

Schlenk tube via filter cannula which contained nickel (II) perchlorate (63mg, 

0.17mmol). This solution was a purple and was stirred vigorously for 18 hours 

The solvent was removed in vacuo, and afforded a light purple precipitate. To 

this was added degassed ethanol ( 1 0 ml), stirred vigorously then the solution 

allowed to settle. The solution was filtered off via cannula, again dried in vacuo, 

and produced the title compound as a lilac solid. Yield 102mg, 79%. Crystals of 

X-Ray quality were grown by layering of an acetonitrile solution by diethyl 

ether. IR: (KBr disc, cm'1) 3484, 2965, 1617, 1594, 1575, 1498, 1367, 1263, 

1165, 1100 and 1042. UV/Vis (MeCN, nm (e/dm3 mol' 1 cm'1)): 496 (38) and 

826 (26).

2.1(L4)Cu.l4.(CIOA4flyieCN) MeOH.

This compound was prepared using a similar method to that of [(L4 )Ni](CK)4 )2  

Copper (II) perchlorate (64mg, 0.17mmol) was used which formed a purple 

precipitate. Crystals of X-Ray quality were grown by slow vapour diffusion of 

diethyl ether into an acetonitrile solution. Yield 104mg, 81%. IR: (KBr disc, cm' 

l) 3501, 3243, 1595, 1564, 1456, 1336, 1262, 1230, 1089, 883, 802, 766, 740 

and 706. UV/Vis (MeCN, nm (e/dm3 mol' 1 cm'1)): 499 (219).

F(L4)Zn.MeCNUCKXiKMeCN.

This compound was prepared using a similar method to that of [(L4 )Ni](C1 0 4 )2 . 

Zinc (II) perchlorate (64mg, 0.17mmol) was used which formed an off white 

precipitate. Crystals of X-Ray quality were grown by layering of diethyl ether 

onto an acetonitrile solution. Yield 127mg, 85%. ^-N M R  (250 MHz, CD3CN). 

5 2.65 (s, 3H, Me), 3.00-3.15 (m, 4H, Al), 3.35-3.55 (m, 4H, Al), 3.75-4.15 (m, 

4H, Al), 5.10 (br d, (JNH = 13.12Hz), 2H, N //2), 5.45 (br d, (Jm/=13.12Hz), 2H, 

NH2), 7.60-7.80 (m, 8 H, Ar), 7.90 (d, (JHH =7.73Hz), 2H, Ar) and 8.10 (d, {Jhh 

=8.39Hz), 2H, Ar). 13C-NMR (250 MHz, CD3CN): 5 20.41, 47.16, 52.15, 54.55,
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123.90, 127.18, 128.12, 128.87, 128.99, 129.21, 130.12, 133.25, 145.52 and 

146 6 8 . IR (KBr disc, cm 1): 3499, 1575, 1497, 1455, 1342, 1294, 1261, 1090 

and 876.

IIL4>Cd.MeCNlICIQj>7.

This compound was prepared using a similar method to that of [(L4 )Ni](ClC>4 )2  

Cadmium (II) perchlorate (72mg, 0.17mmol) was used which formed an off 

white precipitate. Crystals of X-Ray quality were grown by slow vapour 

diffusion of diethyl ether into an acetonitrile solution. Yield 106mg, 77%. 'H 

NMR: (400 MHz, CD3CN) 5 2.85 (m, 2H, Al), 6  3.05 (m, 2H, Al), 8  3.40 (s, 

6 H, Al), 8  3.65 (m, 2H, Al), 8  4.70 (br s, 2H, NH2), 8  5.10 (br s, 2H, NH2), 8  

7.35 (m, 2H, Ar), 8  7.40-7.50 (m, 4H, Ar), 8  7.55 (d, (Jh h  = 0.72Hz), 2H, Ar), 8

7.60 (d, (J h h  = 0.75Hz), 2H, Ar), and 5 7.85 (d, (J Hh  = 8.34Hz), 2H, Ar). ,3C 

NMR: (400 MHz, CD3CN) 5 20.43, 46.91, 50.17, 64.94, 123.75, 126.78, 

127.32, 128.13, 128.84, 130.26, 133.36, 134.62, 144.90 and 146.87. IR: (KBr 

disc, cm'1) 3521, 1616, 1497, 1458, 1337, 1294, 1262, 1228, 1089, 885, 831, 

803, 763, 731, 709 and 697.

|(L4)Hg.UClQ4)2.

This compound was prepared using a similar method to that of [(L4 )Ni](C1 0 4 ) 2  

Mercury (II) perchlorate (8 8 mg, 0.17mmol) was used which formed an off 

white precipitate. Yield 116mg, 75%. 'H NMR: (400 MHz, CD3CN) 8  2.40 (m, 

3H, Me), 8  2.95 (m, 4H, Al), 8  3.45 (m, 4H, Al), 8  3.70 (m, 4 H, Al), 8  5.55 (br 

s, 2H, N //2), 8  6.35 (br s, 2H, NH2\  5 7.30 (d, (J h h  = 7.28Hz), 2H, Ar), 8  7.35-

7.55 (m, 6 H, Ar), 8  7.60 (t, (J „ h  = 7 87Hz), 2H, Ar) and 8  7.75 (d, (./„„ = 

8.04Hz), 2H, Ar). 201Hg satellite peaks at 8  5.50 + 5.60, (51.28Hz) and 8  6.30 + 

6  40, (53.83Hz). I3C NMR: (250 MHz, CD3CN) 8  21.56, 46,23, 49.84, 57.91, 

124 58, 125.81, 126.53, 127.09, 128.26, 128.91, 130.20, 131.06, 144.29 and 

146.21. IR: (KBr disc, cm 1) 3501, 1496, 1456, 1372, 1331, 1263, 1089 and 889.
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l(L^Pb.CIOJ<CIOi> 2.(MeCN>.

This compound was prepared using a similar method to that of [(L4)Ni](C1 0 .i)2 . 

Lead (II) perchlorate (89mg, 0.17mmol) was used which formed a clear 

precipitate. Crystals of X-Ray quality were grown by slow evaporation of a 

concentrated acetonitrile solution. Yield 104mg, 67%. *H-NMR (250 MHz, 

CD3CN): 8  2.55 (s, 3H, Me), 3.20-3.55 (m, exo, 6 H, Al), 3.75-4.15 (m, endo, 

6 H, Al), 5.05-5.35 (br s, 4H, NH2), 7.25-7.45 (m, 6 H, Ar) 7.50 (d, (JHH = 

8.15Hz), 2H, Ar) 7.60 (m, 2H, Ar) and 7.80 (d, (JHlI = 8.32Hz), 2H, Ar). 13C- 

NMR (100 MHz, CDiCN): 8  28.13, 56.15, 58.19 59.23, 114.63, 115.36, 124.85, 

126.42, 127.16, 127.90, 128.23, 129.36, 129.58 and 129.75. IR (KBr disc, c m 1): 

3465, 1652, 1498, 1331, 1261 and 1090.

OMe

N N

Mono l-(4-methoxvsulphonvlphenvh bis 4, 7-(2-nitrophenvl) 1, 4, 7-

triazacvclononane (L5).

32L (lOOmg, 0.27mmol), 4-methoxyphenyl sulphonyl chloride (56mg, 

0.27mmol), potassium fluoride (16mg, 0.27mmol), and acetonitrile (30ml) were 

all refluxed vigorously in a 100ml round bottomed flask for 24 hours. The flask 

was washed out with DCM (15ml). The combined washings were filtered then 

dried in vacuo. The resulting orange oil was recrystallized with hot ethanol,
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which afforded an orange powder (L5). Yield 131 mg, 90%. 'H-NMR (250 MHz, 

CDCh): 5 3.15 (m, 4H, Al), 3.50 (m, 8 H, Al), 3.75 (s, 3H, Me), 6.85 (m, 2H, 

Ar), 7.10 (dd, (./„„ = 0.72 + 8  49Hz), 2H, Ar, 7.35 (m, 4H, Ar, 7.50 (dd, (J h h  =

1.56 + 8  07Hz), 2H, Ar) and 7.60 (d, (J im  = 6.95Hz), 2H, Ar). 13C-NMR (250 

MHz, CDCh): 6  49.87, 53.03, 54.39, 54 89, 113.68, 119.61, 120.71, 128.28,

129.86, 132.23, 141.66, 142.88 and 161.98. IR (KBr disc, c m 1): 3434, 2956, 

1595, 1576, 1497, 1451, 1343, 1261, 1221, 1153, 1091, 1021, 831, 803, 731, 

719 and 690. Mass spectrum: molecular ion peak at m  z  542.

OMe

A
V

NHNH

Mono l-(4-methoxvphenvlsulphoirvD bis 4, 7-(2-aminophenvD 1, 4, 7-

triazacvclononane. (L5)

L5 (lOOmg, 0.185mmol) was dissolved in a THF:MeOH solution (40:1ml), in a 

250ml round bottomed Schlenk. The THF used was of HPLC grade, and the 

catalyst washed on a sinter with methanol, (Pt/C (50mg). CAUTION: minimum 

contact with methanol was exercised as in one incident a small fire occurred, 

and so the catalyst was added below the surface of the THF:MeOH solution 

with a pipette. The Schlenk was evacuated and backfilled with hydrogen gas. 

This was stirred for 24 hours upon which the reaction was signalled by a colour 

change from yellow to clear. The desired compound was filtered off via a
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cannula equipped with glass fibre filter tip, into another Schlenk which was then 

dried in vacuo. This afforded a clear solid (L5). Yield 82mg, 92%. ^-N M R  

(400 MHz, CDCI3 ): 6  3.30 (m, 4H, Al), 3.40 (m, 4H, Al), 3.75 (m, 4H, Al), 3.80 

(s, 3H, Me), 3.95-4.50 (Br, 4H, NH2), 6.60 (m, 2H, Ar), 6.65 (d, (J HH = 7.37Hz), 

2H, Ar), 6.85 (t, (J h h  = 8.21Hz), 2H, Ar), 6.90 (d, (J h h  = 8 .8 8 Hz), 2H, Ar), 7.05 

(d, (J HH = 8 .1 1 Hz), 2H, Ar) and 7.65 (d, (J h h  = 8.87Hz), 2H, Ar). 13C-NMR 

(250 MHz, CDCI3): 8  52.10, 54.58, 55.23, 55.29, 113.25, 114.67, 117.67, 

123.14, 124.16, 128.26, 128.85, 139.80, 141.80 and 161.86. IR (KBr disc, cm'1): 

3463, 1595, 1496, 1452, 1261, 1090 and 1018. Mass spectrum: molecular ion 

peak at 483 m z

Synthesis of metal complexes of general formula UL5}Ml(C104V?.x(MeCNl, 

M=Ni. Cu. Zn. Cd and H2 . 

RL5)NtMeCNUClQ^?.2fMeCNk

L5 (82mg, 0.17mmol) was transferred directly into another Schlenk tube via 

filter cannula which contained nickel (II) perchlorate (6 8 mg, 0.187mmol). This 

solution was purple colour and was stirred vigorously for 18 hours. The solvent 

was removed in vacuo, and yielded a light purple precipitate. To this was added 

degassed ethanol ( 1 0 ml), stirred vigorously then the solution allowed to settle. 

The solution was filtered off via cannula, again dried in vacuo, and produced the 

title compound as a lilac solid. Crystals of X-Ray quality were grown by 

layering of an acetonitrile solution by diethyl ether. Yield 119mg, 95%. IR (KBr 

disc, cm '): 3397, 1621, 1496, 1355, 1263, 1147, 1089, 804 and 625. UV/Vis 

(MeCN, nm (c/dm3 mol' 1 c m 1)): 352 (57), 462 (49) and 8 6 6  (23).

[(L5)Cu1(CIQ4),.

This compound was prepared using a similar method to that of [(L5)Ni](CIC>4)2 . 

Copper (II) perchlorate (73mg, 0.187mmol) was used which formed a purple 

precipitate. Yield 127mg, 80%. IR (KBr disc, cm'1): 3434, 2955, 195, 1576, 

1497, 1451, 1413, 1382, 1373, 1343, 1320, 1263, 1153, 1090, 1021, 884, 855, 

831, 803, 749 and 690. UV/Vis (MeCN, nm (s/dm3 mol' 1 cm'1)): 458 (312).
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HI .5>y.n.MffCNUCIO^^.MeCN.

This compound was prepared using a similar method to that of [(L )Ni](C1 0 4 ) 2  

Zinc (II) perchlorate (70mg, 0 .187mmol) was used which formed an off white 

precipitate. Crystals of X-Ray quality were grown by slow vapour diffusion of 

diethyl ether into an acetonitrile solution. Yield 119mg, 93%. 'H-NMR (400 

MHz, CD3CN): 8 2.75-2.90 (m, 2H, Al), 3 15-3.20 (m, 2H, Al), 3.55-3 80 (m, 

8H, Al), 4.85 (br d, Unit = 13.08Hz), 2H, N//2), 5 15 (br d, (./,„, = 13.08Hz), 2H, 

NH2), 7.15 (dd, Um, = 2.03 + 7.02Hz), 2H, Ar), 7.35-7.50 (m, 6H, Ar), 7.60 (d, 

(J hh = 7.72Hz), 2H, Ar), and 7 90 (dd, (./,,„ = 2.10 + 7.02Hz), 2H, Ar). 13C- 

NMR (400 MHz, CD3CN): 8 47.06, 52.00, 54.48, 55.60, 114.70, 122.88,

123.83, 127.09, 128.01, 128.88, 131.55, 133.22, 145 45 and 164.60. IR (KBr 

disc, cm'1): 3434, 1496, 1260, 1090 and 1023

l(L5Cdl(CIQ4)2-

This compound was prepared using a similar method to that of [(L )Ni](C1 0 4 ) 2  

Cadmium (II) perchlorate (78mg, 0.187mmol) was used which formed an off 

white precipitate. Yield 115mg, 84%. 1 H-NMR (400 MHz, CD3CN): 8 2.85 (m, 

2H, Al), 3.00 (m, 2H, Al), 3.20-3.65 (m, 8H, Al), 3.80 (s, 3H, Me), 4.70 (br s, 

2H, NH2), 5.10 (br s, 2H, NH2), 7.10 (d, (Jh h  = 9.01Hz), 2H, Ar), 7.25 (m, 2H, 

Ar), 7.35 (m, 2H, Ar), 7.40 (d, (J h h  = 7 82Hz), 2H, Ar), 7.55 (d, (J h h  = 7.21Hz), 

2H, Ar) and 7.80 (dd, (J,„, = 2.09 + 6.95Hz), 2H, Ar). I3C-NMR (400 MHz, 

CD3CN): 8 50.10, 55 04, 55.59, 57.16, 114 90, 119.84, 123.72, 126.76, 127.25, 

128.07, 131.22, 133.38, 144.90 and 164.79. IR (KBr disc, cm'1): 3489, 1496, 

1262 and 1089

KL5Hgl(CIQ4h.

This compound was prepared using a similar method to that of [(L5)Ni](C1 0 4 ) 2 

Mercury (II) perchlorate (95mg, 0 .187mmol) was used which formed an off 

white precipitate. Yield 115mg, 76% ‘H-NMR (400 MHz, CD3CN): 8 3.35- 

3.45 (m, 6H, Al), 3.45-3.55 (M, 6h, Al), 3 80 (s, 3H, Me), 5.50 (br d, (JHH =

11.13Hz), 2H, NH2), 6.35 (br d, (J„u = 12.00Hz), 2H, NH2), 7.10 (dd, (J h h  =  

1 91 + 7.04Hz), 2H, Ar), 7.30 (m, 2H, Ar), 7.40 (m, 2H, Ar), 7.45 (m, 2H, Ar),

7.60 (dd, (J h h  = 0.71 + 7.98Hz), 2H, Ar) and 7.65 (dd, (Jmt = 1.98 + 7.02HZ),
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2H, Ar). 20IHg satellite peaks at 5.40 + 5.65 (Jugn = 109.65Hz), and 6.20 + 6.50 

(JttgH = 108.4Hz). 13C-NMR (400 MHz, CD3CN): 6 49.77, 55.15, 55.52, 56.89,

114.84, 119.74, 124.57, 125.81, 127.09, 128.89, 130.60, 131.05, 144.27, 164.43 

and 119.74. IR (KBr disc, cm'1): 3485, 1621, 1496, 1329, 1307, 1262, 1147, 

1089 and 1023.

F

SO

NO NO

l-(4-Fluorophenvlsulphonvl), 4, 7 bis-(2-nitrophenvlK 1, 4, 7- 

triazacvclononane (L6 ).

L32 (lOOmg, 0.27mmol), 4-Fluorophenylsulphonyl chloride (52mg, 0.27mmol), 

potassium fluoride (16mg, 0.27mmol), and acetonitrile (30ml) were all refluxed 

vigorously in a 100ml round bottomed flask at 90°C for 24 hours. The flask was 

washed out with DCM (15ml). The combined washings were filtered then dried 

in vacuo. The resulting orange oil was recrystallized with hot ethanol, which 

afforded an orange powder (L6’). Yield 127mg, 89%. !H-NMR (400 MHz, 

CDCI3): 6 3.25 (t, {Jhh = 4.38Hz), 4H, Al), 3.55 (m, 8H, Al), 6.90 (m, 2H, Ar),

7.10 (m, 4H, Ar), 7.35 (m, 2H, Ar), 7.55 (dd, (JHH = 1.62 + 8.09Hz), 2H, Ar) 

and 7.70 (q, {JHh = 5.03 + 8.88Hz), 2H, Ar). 13C-NMR (250 MHz, CDC13): 5 

50.91, 54.32, 55.40, 116.68, 120.92, 125.94, 129.83, 133.28, 133.80, 142.93, 

143.99 and 165.19 (JCf=1013Hz). ,9F-NMR (CDCI3 ): 5 -104.68. IR (KBr disc, 

cm'1): 1601, 1517, 1342, 1293, 1224, 1154, 1087, 1051, 838, 742, 714 and 695. 

Mass spectrum: molecular ion peak at m/z 530.
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F

A

V
SO

NHNH

l-(4-Fluorophenvlsulphonvh, 4, 7 bis-(2-aminophenvl), 1, 4, 7- 

triazacvclononane. (L6)

L6 (lOOmg, 0.19mmol) was dissolved in a THF:MeOH solution (40:1ml), in a 

250ml round bottomed Schlenk. The THF used was of HPLC grade, and the 

catalyst washed on a sinter with methanol, (Pt/C (50mg). CAUTION: minimum 

contact with methanol was exercised as in one incident a small fire occurred, 

and so the catalyst was added below the surface of the THF:MeOH solution 

with a pipette. The Schlenk was evacuated and backfilled with hydrogen gas. 

This was stirred for 24 hours upon which the reaction was signalled by a colour 

change from yellow to clear. The desired compound was filtered off via a 

cannula equipped with glass fibre filter tip, into another Schlenk which was then 

dried in vacuo. This afforded a clear solid. Yield 83mg, 94%. !H-NMR (400 

MHz, CDC13): 8 3.25 (s, 4H, Al), 3.50 (m, 8H, Al), 4.10 (br s, 4H, NH2\  6.65 

(m, 4H, Ar), 6.85 (dt, (JHH = 1.36 + 7.57Hz), 2H, Ar), 7.05 (m, 4H, Ar), and 

7.70 (m, 2H, Ar). 13C-NMR (250 MHz, CDCh): 8 52.12, 55.13, 55.32, 114.77, 

115.20, 115.55, 117.77, 123.18, 124.27, 128.89, 139.71, 141.71 and 164.43 (JCF 

= 1085Hz). 19F-NMR (CDCh): 8 -  105.06. IR (KBr disc, c m 1): 3434, 1616, 

1497, 1335, 1261, 1153, 1086, 1025, 802, 748 and 715. Mass spectrum: 

molecular ion peak at m/z 469.
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Synthesis of metal complexes of general formula f(L<)MMC10jh.i(MeCN),

M=Ni, Cu and Zn.

KL6>Ni.MeCNI<CIO^.MeCN.H7Q.

The solution of L6 (83mg, 0 .18mmol) was transferred directly into another 

Schlenk tube via filter cannula which contained nickel (II) perchlorate (70mg, 

0.19mmol). This solution was a purple and was stirred vigorously for 18 hours. 

The solvent was removed in vacuo, and yielded a light purple precipitate. To 

this was added degassed ethanol ( 1 0 ml), stirred vigorously then the solution 

allowed to settle. The solution was filtered off via cannula, again dried in vacuo, 

and produced the title compound as a lilac solid. Yield 118mg, 93%. Crystals of 

X-Ray quality were grown by slow vapour diffusion of a diethyl ether solution 

into an acetonitrile solution. IR (KBr disc, cm 1): 3433, 1587, 1498, 1261, 1095, 

1019, 865, 801 and 698. UV/Vis (MeCN, nm (s/dm3 mol' 1 cm 1)): 332 (25), 528 

(12) and 840(12).

IfL^CuKCIO^.

This compound was prepared using a similar method to that of [(L6 )Ni](ClC>4 )2 . 

Copper (II) perchlorate (71 mg, 0 .19mmol) was used which formed a dark purple 

precipitate Yield 105mg, 65% IR (KBr disc, cm 1): 3433, 1495, 1339, 1261, 

1095, 802, 713 and 619. UV/Vis (MeCN, nm (e/dm3 m of1 c m 1)): 454 (462).

l(L‘)Znl(CI04)7.

This compound was prepared using a similar method to that of [(L )Ni](ClC>4 )2 . 

Zinc (II) perchlorate (71mg, 0 .19mmol) was used which formed an off white 

precipitate. Crystals of X-Ray quality were grown by slow vapour diffusion of 

diethyl ether into an acetonitrile solution Yield 114mg, 89%. 'H-NMR (400 

MHz, CD3CN): 6  2 85-2.90 (m, 2H, Al), 3.05-3.10 (m, 2H, Al), 3.20-3.25 (m, 

4H, Al), 3 70 (m, 3H, Al), 4.90 (br d, (Jhh = 13 10Hz), 2H, NH2), 5.20 (br d, 

(Jhh = 13.07Hz), 2 H, NH2), 7.40-7.50 (m, 8 H, Ar), 7.65 (d, (Jhh = 13.81Hz), 

2H, Ar), 8.00 (m, 2H, Ar), 13C-NMR (250 MHz, CD3CN): 8  47.13, 53.01,

54.72, 117.13, 123.95, 127.20, 128.15, 129.03, 130.42, 131.70, 133.22, 145.58
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and 163.89 (./,> = 1080Hz). ,9F-NMR (CDClj): 5 -103.14. IR (KBr disc, cm '): 

3567, 1616, 1494, 1150, 1089, 878, 841, 765, 736, 712 and 697

Mono l-(2-mesitvlsulphonvlphenvh bis 4« 7-(2-nitrophenvD 1, 4, 7-

L32 (lOOmg, 0.27mmol), 2-mesitylsulphonyl chloride (59mg, 0.27mmol), 

potassium fluoride (16mg, 0.27mmol), and acetonitrile (30ml) were all refluxed 

vigorously in a 100ml round bottomed flask at 90°C for 24 hours. The flask was 

washed out with DCM (15ml). The combined washings were filtered then dried 

in vacuo. The resulting orange oil was recrystallized with hot ethanol, which 

afforded an orange powder (L7). Yield 131mg, 8 8 %. 1 H-NMR (400 MHz, 

CDC13): 8  2.15 (s, 3H, Me), 2.40 (s, 6 H, Me), 3.35 (m, 4H, Al), 3.45 (m, 8 H, 

Al), 6.80 (s, 2H, Ar), 6.85 (t, (JHH = 7.74Hz), 2H, Ar), 7.05 (d, (JHH = 8.38Hz), 

2H, Ar), 7.30 (t, 2H, Ar) and 7.50 (dd, (JHH = 1.45 + 7.99Hz), 2H, Ar). 13C- 

NMR (250 MHz, CDCb): 8  19.86, 22.24, 47.73, 48.50, 53.63, 118.21, 119.26,

119.85, 120.98, 124.83, 131.18, 131.93, 138.99, 141.88 and 143.29. IR (KBr 

disc, c m 1): 1601, 1522, 1357, 1261, 1206, 1152, 1083 and 1033. Mass 

spectrum: molecular ion peak at m/z 555.

S 0 2

triazacvclononane (L7).
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NHNH

Mono l-(2-mesitvlsulphonvlphenvl) bis 4, 7-(2-aminophenvh 1, 4. 7- 

triazacvclononane. (L )

L7 (lOOmg, 0.19mmol) was dissolved in a THF:MeOH solution (40:1ml), in a 

250ml round bottomed Schlenk. The THF used was of HPLC grade, and the 

catalyst washed on a sinter with methanol, (Pt/C (50mg). CAUTION: minimum 

contact with methanol was exercised as in one incident a small fire occurred, 

and so the catalyst was added below the surface of the THF:MeOH solution 

with a pipette. The Schlenk was evacuated and backfilled with hydrogen gas. 

This was stirred for 24 hours upon which the reaction was signalled by a colour 

change from yellow to clear. The desired compound was filtered off via a 

cannula equipped with glass fibre filter tip, into another Schlenk which was then 

dried in vacuo. This afforded a clear solid. Yield 77mg, 91%. 1 H-NMR (400 

MHz, CDC13): 8  2.20 (s, 3H, Me), 2.50 (s, 6 H, Me), 3.20 (s, 4H, Al), 3.35 (m, 

8 H, Al), 4.0-4.20 (br d, 4H, NH2\  6.55 (m, 4H, Ar), 6.80 (dt, (JHh = 1.16 + 

15.21Hz), 2H, Ar), 6.85 (s, 2H, Ar) and 6.95 (d, (JHH = 6.81Hz), 2H, Ar). 13C- 

NMR (250 MHz, CDC13): 8  19.85, 22.37, 50.88, 54.95, 55.05, 114.71, 117.68,

122.77, 124.09, 131.89, 131.83, 138.98, 139.85, 141.39 and 141.54. IR (KBr 

disc, cm'1): 3434, 2962, 1606, 1497, 1456, 1316, 1261, 1148, 1100 and 1027. 

Mass spectrum: molecular ion peak at m/z 495.

54



Chapter Two: Experimental

Synthesis of metal complexes of general formula I(L7)Ml(ClQ.i)?.xfMeCNT

M=Ni, Cu, Zn, Cd and Hg.

KL7>Ni.MeCNl(CIOA.MeCN

The L (77mg, 0 .156mmol) was transferred directly into another Schlenk via 

filter cannula which contained nickel (II) perchlorate (63mg, 0.17mmol). This 

solution was a purple and was stirred vigorously for 18 hours. After this 

duration the solvent was removed in vacuo, and yielded a light purple 

precipitate. To this was added degassed ethanol (10ml), stirred vigorously then 

the solution allowed to settle. The solution was filtered off via cannula, again 

dried in vacuo, and produced the title compound as a lilac solid. Yield 105mg, 

90%. IR (KBr disc, cm'1): 3443, 1620, 1488, 1436, 1334, 1265 and 1106.

l(L7)Zn|(CIO„)2.

This compound was prepared using a similar method to that of [(L7 )Ni](C1 0 4 )2. 

Zinc (II) perchlorate (63mg, 0.234mmol) was used which formed an off white 

precipitate. Yield 105mg, 89%. ‘H-NMR (400 MHz, CD3CN): 5 2.30 (s, 3H, 

Me), 2.65 (s, 6 H, Me), 2.95-3.10 (m, 2H, Al), 3.15-3 30 (m, 2H, Al), 3.35-3.45 

(m, 4H, Al), 3.80 (m, 4H, Al), 4.95 (br d, Um, = 12.91Hz), 2 H, NH2), 5.45 (br 

d, (Jmi = 12.94Hz), 2H, N//2), 7.20 (s, 2H, Ar), 7.35-7,50 (m, 6 H, Ar), 7,65 (d, 

(Jhh = 0.90Hz), 2H, Ar). I3C-NMR (400 MHz, CD3CN) 5 19.71, 23.98, 46.06, 

50.95, 55.41, 123.52, 125.59, 126.95, 127.92, 128.70, 133 19, 133.46, 141.24, 

144.94 and 145.27. IR (KBr disc, cm'1): 3450, 1616, 1496, 1454, 1332, 1261 

and 1 1 1 0 .
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NO; 

.N
S 0 2\ / S 0 2

a

Bis 1,4 -tosvl, mono 7-(2-nitrophenvh-l, 4, 7-triazacvclononane L8

Bis 1, 4-Tosyl, 1, 4, 7-triazacyclononane (lg, 2.29mmol), fluoronitrobenzene 

(323mg, 2.29mmol), potassium fluoride (133mg, 2.29mmol), and acetonitrile 

(50ml) were all refluxed vigorously in a 100ml round bottomed flask for 24 

hours. The flask was washed out with DCM (15ml). The combined washings 

were filtered then dried in vacuo. The resulting yellow oil was recrystallized
O’

with hot ethanol, which afforded a bright yellow powder (L ). Yield 1.17g, 

92%. 'H-NMR (250 MHz, CDCI3): 5 2.40 (s, 6 H, Me), 3.15 (s, 2H, Al), 3.20 (s, 

2H, Al), 3.40 (s, 8 H, Al), 6.90 (t, 1H, Ar), 7.10 (d, = 8.39Hz), 1H, Ar), 7 25

(m, 4H, Ar), 7.40 (t, = 8.40Hz), 2H, Ar) and 7.55 (d, ( J h h  = 8.11Hz), 4H,

Ar) 13C-NMR (250 MHz, CDCI3): 6  20.45, 49 65, 51.20, 54 00, 119.53, 120.49, 

126.31, 128.91, 129.01, 129 49, 132 03, 133.63, 142.23 and 142.92. IR (KBr 

disc, cm’1) 2857, 1600, 1565, 1522, 1451, 1372, 1337, 1223, 1157, 1089, 1050, 

871, 840, 812, 770, 746, 711 and 694. Mass spectrum: molecular ion peak at 

559 m /z .
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NH'

N

N N ^
^ W ' S°2\ I S02 ^ ^

Bis 1, 4 -tosvK mono 7-(2-aminophenvlM« 4, 7-triazacvclononane L8.

L8 (lOOmg, 0.18mmol) was dissolved in a THF:MeOH solution (40:1ml), in a 

250ml round bottomed Schlenk. The THF used was of HPLC grade, and the 

catalyst washed on a sinter with methanol, (Pt/C (50mg). CAUTION: minimum 

contact with methanol was exercised as in one incident a small fire occurred, 

and so the catalyst was added below the surface of the THF:MeOH solution 

with a pipette. The Schlenk was evacuated and backfilled with hydrogen gas. 

This was stirred for 24 hours upon which the reaction was signalled by a colour 

change from yellow to clear. The desired compound was filtered off via a 

cannula equipped with glass fibre filter tip, into another Schlenk which was then 

dried in vacuo. This afforded a clear solid (L8). Yield 95mg, 95%. 1 H-NMR 

(250 MHz, CDCI3): 5 2.30 (s 6 H, Me), 3.05-3.25 (m, 4H, Al), 3.30-3.45 (m, 8 H, 

Al), 4.20 (br s, 2H, NH2), 6.60 (d, (J HH = 6.18Hz), 1H, Ar), 6.85 (t, (J h h  =  

6.49Hz), 1H, Ar), 7.15 (d, (J Hh  = 7.15Hz), 1H, Ar), 7.20-7.30 (m, 5H, Ar) and 

7.50-7.60 (m, 4H, Ar). 13C-NMR (250 MHz, CDC13): 5 39.42, 52.05, 53.01, 

53.81, 114.68, 117.38, 123.38, 124.62, 126.18, 128.82, 133.74, 138. 75, 142.72 

and 143.01. IR (KBr disc, cm 1) 3446, 3369, 1596, 1500, 1336, 1260, 1159, 

1090 and 1024. Mass spectrum: molecular ion peak at m/z 530.
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Synthesis of metal complexes of general formula I(L8)MUCI04l7.x(MeCNT

M=Ni. Cu, Zn« Cd and Hg.

KL^NiirClOA.

The solution of L8 (95mg, 0.18mmol) was transferred directly into another 

Schlenk via filter cannula which contained nickel (II) perchlorate (72mg,

0.2mmol). This solution was off white and was stirred vigorously for 18 hours. 

After this duration the solvent was removed in vacuo, and yielded an off-white 

precipitate. To this was added degassed ethanol (10ml), stirred vigorously then 

the solution allowed to settle. The solution was filtered off via cannula, again 

dried in vacuo, and produced the title compound as an off-white solid. Crystals 

of X-Ray quality were grown by slow vapour diffusion of diethyl ether into an 

acetonitrile solution. Yield 148mg, 92%. IR (KBr disc, cm'1): 3388, 1622, 1261, 

1095, 1019 and 801.

KL^CuKCIOA.

This compound was prepared using a similar method to that of [(L8 )Ni](C1 0 4 )2 . 

Copper (II) perchlorate (53mg, 0.2mmol) was used which formed a purple 

precipitate. Crystals of X-Ray quality were grown by slow vapour diffusion of 

diethyl ether into an acetonitrile solution. Yield 146mg, 8 6 %. IR (KBr disc, cm' 

'): 3465, 1261, 1150, 1089 and 1019.

KL8)ZnKCIQ4)r.

This compound was prepared using a similar method to that of [(L8)Ni](CI0 4 ) 2  

Zinc (II) perchlorate (73mg, 0.2mmol) was used which formed an off white 

precipitate. Yield 142mg, 8 8 %. 'H-NMR (400 MHz, CD3CN): 6  2.30 (s, 6 H, 

Me), 3.05-3.80 (m, 12H, Al), 4 30-4.95 (br s, 2H, N //2), 7.05 (m, 4H, Ar), 7.30 

(d, (J h h  = 7.99Hz), 2H, Ar) and 7 60 (d, (./„„ = 8.14Hz), 4H, Ar). 13C-NMR 

(100 MHz, CDjCN): 5 20.13, 57.19, 57.86, 58.29, 120.85, 123.52, 125.42, 

126.05, 126.35, 126.82, 127.07, 129.50, 134.16 and 143.79. IR (KBr disc, cm' 

'): 3542, 1652, 1496, 1452, 1336, 1261, 1157, 1089 and 1022.
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l(L8)Cdl(CIQ4)2.

This compound was prepared using a similar method to that of [(L8 )Ni](C104 ) 2 

Cadmium (II) perchlorate (82mg, 0.2mmol) was used which formed an off 

white precipitate. Yield 146mg, 8 6 %. ^-N M R  (400 MHz, CD3CN): 6  2.40 (s, 

6 H, Me), 3.15 (m, 2H, Al), 3.30 (m, 2H, Al), 3.65 (m, 8 H, Al), 4.20-4.75 (br s, 

2H, N //2), 7.40 (d, (.J h h  = 10.67Hz), 4H, Ar), 7.45 (m, 2H, Ar) and 7.70 (d, {J h h  

= 11.06Hz), 4H, Ar). °C-NMR (400 MHz, CD3CN): 6  46.44, 51.11, 51.55, 

54.56, 120.38, 124.14, 126.01, 126.90, 129.58, 129.69, 132.94, 138.32, 143.94 

and 144.21. IR(KBr disc, cm'1): 3433, 1329, 1261, 1159, 1089 and 1031.

F

1, 4-bis (2-nitro. 5-fluorophenvh 1, 4, 7-triazacvclononane.

1 , 4, 7 - Triazacyclononane (0.5g, 3.88mmol), 2 , 4-difluoronitrobenzene (1.29g, 

8.11mmol), K2CO3 (1.12g, 8.11mmol), and MeCN (30ml) were all stirred 

vigorously in a round bottomed flask at 110°C for 24 hours under a nitrogen 

atmosphere. The flask was washed with DCM (30ml). The combined washings 

were dried in vacuo. An orange solid was afforded. This solid was dissolved in 

CHCI3 (50ml), and washed with 4M HC1 (3 x 70ml). The aqueous extracts were 

combined and basified with 1M NaOH until the pH 12 was reached. This 

aqueous solution was washed with CHCI3 (150ml), and the organic extract dried 

MgS04. This was filtered and dried In Vacuo. This afforded an orange oil which 

after recrystallisation with hot ethanol afforded an orange solid. Yield 97%, 

1.53g. ‘H NMR: (400 MHz, CDCI3) 6  2 80 (t, (J h h  = 4.83Hz), 4H, A]), 5 3.30
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(t, (Jhh = 4.85Hz), 4H, Al), 6  3.50 (s, 4H, Al), 8  6.40 (m, 2H, Ar), S 6.60 (dd, 

(Jhh = 2.38 +11.95Hz), 2H, Ar), 5 7.60 (m, 2H, Ar). ,3C NMR: (400 MHz, 

CDCI3 ) 8  45.53, 51.77, 5 4 .2 1 , 103.48, 104 07, 127.13, 136.54, 144.01, and 

163.49 (J,f = 1008Hz), 19F-NMR (CDCI3): 8  - 102.83 IR: (KBr disc, cm 1) 

3092, 2843, 1568, 1491, 1430, 1385, 1347, 1305, 1251, 1170, 1151, 1130, 1119, 

1083, 1011, 887, 842, 835, 812, 796, 748, and 716 E.l.-MS m/z 408.0 (M*+H )

1. 4 bis - (2-nitro, 4-fluorophenvlt 1, 4, 7- triazacvclononane.

1, 4, 7- triazacyclononane (O.lg, 0.78mmol), 2, 5-difluoronitrobenzene (0.26g, 

1.64mmol), K2CO3 (0.22g, 1.59mmol), and MeCN (15ml) were all stirred 

vigorously in a pressure tube at 85°C for 24 hours. The tube was washed with 

DCM (15ml). The combined washings were dried in vacuo. An orange 

crystalline solid was afforded, which was recrystallized with hot ethanol. 

Crystals of X-ray quality were grown by slow vapour diffusion of diethyl ether 

into an acetonitrile solution. Yield 26%, 81 mg. JH NMR: (400 MHz, CDCI3 ) 5

3.00 (s, 4H, Aliphatic), 6  3.30 (s, 4H, Al), 5 3.35 (m, 4H, Al), 5 7.05-7.20 (m, 

2H, Ar), 5 7.25 (m, 2H, Ar), 5 7.40 (m, 2H, Ar). 13C NMR: (400 MHz, CDC13) 

5 49.11, 54.93, 56.73, 112.49, 120.28, 124.19, 141.56, 143.04, and 156.23 (JCF 

= 1216Hz). 19F NMR: (300 MHz, CDC13) 5 -121.18. IR: (KBr disc, cm’1) 3419, 

2962, 1575, 1538, 1533, 1354, 1264, 1222, 1195, 1163, 1130, 1099, and 1032. 

E.I.-MS m/z 408.0 (M++ H )
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NO

F
NO

l-(2-nitrophenvD, 4, 7- bis (2-nitro. 5-fluorophenvl), 1, 4, 7„ 

triazacvclononane.

1, 4-bis (2-nitro, 5-fluorophenyl), 1,4, 7, triazacyclononane (0.2g, 0.49mmol),

2-fluoronitrobenzene (83mg, 0.59mmol), potassium fluoride (30mg, 0.52mmol), 

and MeCN (30ml) were all stirred vigorously in a pressure tube for 24 hours at 

85°C. The tube was washed with DCM (15ml), filtered to remove the potassium 

fluoride and the resulting solution was dried in vacuo. Yield 107mg, 41%. 

NMR: (400 MHz, CDC13) 5 3.35 (m, 4H, Al), 5 3.40 (m, 4H, Al), 5 3.50 (s, 4H, 

Al), 6  6.80 (t, (J h h  = 2.85Hz), 1H, Ar), 5 7.00 (d, (JHH = 4.30Hz), 1H, Ar), 5

7.10 (m, 1H, Ar), 6  7.20-7.25 (m, 2H, Ar), 5 7.35 (m, 2H, Ar), 5 7.40 (m, 2H, 

Ar), 8  7.95 (m, 1H, Ar). I3C NMR: (400 MHz, CDC13) 5 48.63, 53.47, 55.90,

104.90, 105.77, 107.53, 122.21, 125.73, 128.94, 133.34, 136.99, 145.69, 145.69, 

146.44, and 165.18 Ua- = 1008Hz). I9F-NMR (CDC13): 6  - 102 64. IR: (KBr 

disc, cm ') 3087, 2927, 1617, 1565, 1515, 1430, 1346, 1305, 1244, 1180, 1130, 

1119, 1082, 1011, 835, 796, 746 and 709. E l.-MS m/z 529.0 (M++H+)
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NO

l-(2-nitrophenvD, 4, 7-(bis 2-nitro. 4-fluorophenvlh 1, 4, 7- 

triazacvelononane.

1, 4-bis 2-nitro, 4-fluorobenzene, 1, 4, 7- triazacyclononane (0.0 lg, 0.02mmol), 

fluoronitrobenzene (3.8mg, 0 .0 2 mmol), K2CO3 (4mg, 0.02mmol), and MeCN 

(15ml) were all stirred vigorously in a pressure tube at 85°C for 24 hours. The 

tube was washed with DCM (15ml). The combined washings were dried in 

vacuo. An orange solid was afforded. This was recrystallized with hot ethanol. 

Yield 5.9mg, 45%. 'H NMR: (400 MHz, CDCb) 5 3.30 (m, 4H, Al), 8  3.40 (m, 

4H, Al), 8  3.50 (s, 4H, Al), 8  6.85 (t, (J „ n  = 2.92Hz), 1H, Ar), 8  7.05 (d, ( J h h  =  

4.18Hz), 1H, Ar), 8  7.15-7.25 (m, 2H, Ar), 8  7.30 (m, 2H, Ar), 8  7.50 (m, 2H, 

Ar), 8  8.00 (m, 2H, Ar). 13C NMR: (400 MHz, CDC13) 8  55.03, 55.74, 55.82, 

112.49, 118.36, 118.56, 120.47, 124.60, 126.18, 133.16, 135.58, 135.66, 142.11, 

and 156.08 ( J r f  = 1444Hz). I9F NMR: (300 MHz, CDC13) 8  -117.39. IR: (KBr 

disc, cm'1) 3106, 2926, 1573, 1538, 1349, 1269, 1 2 2 2 , and 1165. E.I.-MS m/z

529.0 (M++H+)
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F

l-(2-nitro. 4-fluorophenvl), 4, 7-bis (2-nitro, 5-fluorophenvD, 1, 4, 7-

triazacvclononane.

1, 4-bis 2-nitro, 5-fluorophenyl, 1,4, 7- triazacyclononane (0.2g, 0.49mmol), 2, 

5-difluoronitrobenzene (94mg, 0.59mmol), K2CO3 (72mg, 0.52mmol), and 

MeCN (15ml) were all stirred vigorously in a pressure tube at 85°C for 24 

hours. The tube was washed out with DCM (15ml). The combined washings 

were dried in vacuo. Initially the product was recrystallized with chloroform and 

diethyl ether. The removal of the yellow by product was then followed with a 

second Recrystallisation of hot methanol. A yellow/orange crystalline powder 

was afforded Yield 99%, 265mg. ‘H NMR: (400 MHz, CDCI3) 6  3.35 (m, 4H, 

Aliphatic), 5 3 50 (m, 4H, Al), 6  3.65 (s, 4H, Al), 5 6.55 (m, 2H, Ar), 6  6.60 (dd, 

(J h h  = 2.37 + 1 1  61Hz), 2H, Ar), 8  6.70 (dd, (./„„ = 2.41 + 11 52Hz), 1H, Ar), 8

7.10 (m, 1H, Ar), 8  7.30 (m, 1H, Ar), 8  7 60 (m, 2 H, Ar). I3C NMR: (400 MHz, 

CDCI3) 8  53.89, 54.64, 56.12, 105.77, 106.24, 107.42, 111.29, 121.63, 125.94,

128.77, 140.03, 145 83, 146.50, 158.62 and 166.34. 19F NMR: (300 MHz,

CDCI3) 8  -115.81. IR: (KBr disc, cm'1) 2962, 1624, 1565, 1512, 1342, 1302, 

1243, 1153, 1079, and 1014. E.I.-MS m/z 547.0 (M++H+)
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NO

l-(2-nitro« 5-fluorophenvD. 4, 7-bis (2-nitro, 4-fluoro phenyl), 1, 4, 7-

triazacvclononane.

1, 4-bis 2-nitro, 4-fluorophenyl, 1, 4, 7- triazacyclononane (0.2g, 0.49mmol), 2, 

4-difluoronitrobenzene (94mg, 0.59mmol), K2CO3 (72mg, 0.52mmol), and 

MeCN (15ml) were all stirred vigorously in a pressure tube at 85°C for 24 

hours. The tube was washed out DCM (15ml). The combined washings were 

dried in vacuo. An orange crystalline powder was afforded. Yield 99%, 265mg. 

‘H NMR: (400 MHz, CDCb) 8  3.25 (s, 4H, Al), 6  3.45 (m, 4H, Al), 5 3.55 (m, 

4H, Ar), 8  6.40 (m, 1H, Ar), 8  6.60 (dd, (./„„ = 2.49 + 11.66Hz), 1H, Ar), 8  6  95 

(m, 1H, Ar), 8  7.05-7.15 (m, 2H, Ar), 8  7.30 (dd, { J h h  = 3.00 + 7.59Hz), 2H, 

Ar), 8  7.60 (m, 2H, Ar). I3C NMR: (400 MHz, CDCb) 8  54.46, 55.44, 56.38, 

105.29, 105.55, 106.43, 112.25, 120.43, 126.33, 129.06, 142.12, 144.75, 146.17, 

157.11 (J CF = 980Hz), and 165.25 U r n  = 1008Hz). ,9F NMR: (300 MHz, 

CDCb) 8  - 117.24. IR: (KBr disc, c m 1) 3087, 2916, 1621, 1533, 1520, 1445, 

1415, 1339, 1282, 1240, 1223, 1187, 1160, 1072, 1034, 1008, 900, 873, 839, 

806, 746, and 714. E.I.-MS m/z 547.0 ( M + H 4)
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1-mono (2-nitrophenvl)- 1, 4, 7- triazacvclononane.

1, 4, 7- triazacyclononane (0.3g, 2.3mmol), 2-fluoronitrobenzene (0.328g, 

2.3mmol), K2CO3 (0.32lg, 2.3mmol), and MeCN (40ml) were all stirred 

vigorously in a round bottomed flask at 95°C for 24 hours. The flask was 

washed out DCM (25ml). The combined washings were filtered and dried in 

vacuo. The orange residue was taken up in chloroform (30ml) and washed with 

distilled water (3 * 40ml). The organic layer was dried (MgS0 4 ), filtered and 

dried in vacuo. Red coloured oil was afforded which was then purified by acid 

extraction (4M HC1). The solution was washed with dichloromethane (3 x 

50ml), NaOH was added and basified to pH 12, and extracted with CHCI3 (3 x 

50ml). This was dried with M gS04, filtered, and dried in vacuo, which then 

afforded the desired compound as an orange coloured oil. Yield 81%, 489mg. 

‘H NMR: (400 MHz, CDCb) 5 2.70 (s, 4H, Aliphatic), 5 2  80 (t, (J hh = 

2.40Hz), 4H, Al), S 3.35 (t, (J „ i ,  = 2.35Hz), 4H, Al), 8  6.75 (m, 1H, Ar), 8  7 10 

(d, (J h h  = 8.39Hz), 1H, Ar), 8  7.30 (m, 1H, Ar), 8  7.50 (d, (J hh = 6.50Hz), 1 H, 

Ar). ,3C NMR: (400 MHz, CDCb) 8  46.90, 48.71, 53.91, 118.19, 120.06, 

124.79, 131.79, 141.27, and 143.03. IR. (KBr disc, cm ') 2964, 1522, 1362, 

1260, 1095, 802 and 706. E.I.-MS m/z 250.0 (M++H+)
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\_ J

l-(2-nitro« 4-fluorophenvD, 4-(2-nitrophenvD, 1, 4, 7- triazacvclononane.

l-(2-nitrophenyl)- 1, 4, 7- triazacyclononane (469mg, 1.88mmol), 2, 5- 

difluoronitrobenzene (283mg, 1.78mmol), K2CO3 (246mg, 1.78mmol), and 

MeCN (30ml) were all stirred vigorously in a round bottomed flask at 95°C for 

24 hours. The flask was washed out DCM (20ml). The combined washings were 

filtered then dried in vacuo. The resulting orange oil was taken up in chloroform 

(30ml) and washed with distilled water (3 * 40ml). The organic layer was dried 

(MgSO^, filtered, and dried in vacuo. Recrystallisation with hot ethanol 

afforded an orange crystalline powder. Yield 26%, 185mg. lH NMR: (400 MHz, 

CDCI3) 6  3.30 (s, 4H, Al), 6  3.40 (m, 4H, Al), 5 3.50 (m, 4H, Al), 5 6.90 (t, (JHH 

= 7.33Hz), 1H, Ar), 6  7.05 (d, (Jhh = 2.92Hz), 1H, Ar), 6  7.10 (m, 1H, Ar), 5 

7.15 (m, H, Ar), 6  7.20 (d, (JHh = 4.01 Hz), H, Ar), 5 7.25 (dd, (JHH = Hz), 1H, 

Ar), 7.35 (t, (J HH = Hz) , 1H, Ar), 7.55 (dd, (J h h  = 1.55 + 8.07 Hz), 1H, Ar). 13C 

NMR: (400 MHz, CDCb) 5 53.98, 54.52, 54.77, 111.74, 112.02, 119.91, 

120.40, 121.01, 125.25, 125.62, 133.31, 141.37, 142.83, 143.82, and 155.63 

(Jcf = 964 Hz). 19F NMR: (300 MHz, CDCb) 5 - 118.18. IR: (KBr disc, cm'1) 

2965, 2913, 2850, 1604, 1560, 1533, 1440, 1355, 1335, 1297, 1263, 1222, 1166, 

1105, 1048, 873, 807, 735, and 709. E.I.-MS m/z 390.0 (M++H+)
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NO

l-(2-nitro. 4-fluorophenvlh 4-(2-nitrophenvlk 7-(2-nitro. 5-fluorophenvD 1,

4, 7- triazaevclononane.

l-(2-nitro, 4-fIuorophenyl), 4-(2-nitrophenyl), 1, 4, 7- triazacyclononane 

(150mg, 0.39mmol), 2, 4-difluoronitrobenzene (61 mg, 0.38mmol), K2CO3 

(56mg, 0.41 mmol), and MeCN (30ml) were all stirred vigorously in a pressure 

tube at 90°C for 24 hours. The flask was washed out with DCM (15ml). The 

combined washings were filtered then dried in vacuo. The resulting orange oil 

was taken up in chloroform (15ml) and washed with distilled water (3 x 25ml). 

The organic layer was dried (MgS0 4 ), filtered, and dried in vacuo. 

Recrystallisation with hot ethanol afforded an orange crystalline powder. Yield 

33%, 6 6 mg. 'H NMR: (400 MHz, CDCb) 5 3,20 (s, 4H, Al), 8  3.30 (m, 4H, Al), 

8  3.40 (m, 4H, Al), 8  6.85 (m, 1H, Ar), 8  7.05 (m 1H, Ar), 8  7.10 (m 1H, Ar), 8  

7,13 (m 1H, Ar), 8  7.15 (m 1H, Ar), 8  7,17 (m 1H, Ar), 8  7.20 (m 1H, Ar), 8  

7,30 (m 1H, Ar), 8  7.35 (m 1H, Ar), 8  7.55 (dd, (JHH = 1.55 + 8.06 H z ), 1H, Ar), 

l3C NMR: (500 MHz, CDCb) 8  53.82, 54.13, 54.88, 111.23, 111.44, 119.41, 

11944, 119.52, 119.61, 119.62, 120.27, 124,83, 124.89, 124.96, 132.11, 141.12, 

14114, 141 58, 143.16, 143 23, 143.56, 154 79 and 156.75 (JCr=980Hz). 19F 

NMR. (300 MHz, CDCb) 8  -118 19. IR: (KBr disc, cm'1) 2917, 1605, 1533, 

1520, 1439, 1411, 1355, 1339, 1295, 1263, 1222, 1166, 1101, 1050, 1030, and 

1000. E.I.-MS m/z 529.0 (MT+H+)
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NO

l-(2-nitro. 5-fluorobenzene), 4, 7-bis 2-nitrobenzene, 1, 4, 7- 

triazacvclononane (L9).

1, 4 -  bis (2-nitrobenzene), 1, 4, 7- triazacyclononane (O.lg, 0.27mmol), 2, 4- 

difluoronitrobenzene (64mg, 0.4mmol), K2CO3 (17mg, 0.29mmol), and MeCN 

(15ml) were all stirred vigorously in a pressure tube at 85°C for 24 hours. The 

tube was washed out DCM (15ml). The combined washings were dried in 

vacuo. This was recrystallised with hot ethanol, a fluffy orange solid was 

afforded (L9 ). Yield 64%, 87mg. ‘H NMR: (400 MHz, CDC13) 6  3.35 (s, 4H, 

Al), 5 3.50 (m, 8 H, Al), 6  6.45 (m, 1H, Ar), 5 6.60 (dd, (Jh h  = 2.56 + 11.58 Hz), 

1H, Ar), 5 6.85 (t, (./„„ = 7.25 Hz), 2H, Ar), 6  7.05 (d, (J h h  = 0.80 Hz), 2H, 

Ar), 6  7.30 (t, (J hh = 1.14 Hz), 2 H, Ar), 6  7.50 (dd, (Jh h  = 1.68 Hz) + 8.08, 2H  

Ar), 6  7.60 (m, 1H, F). 13C NMR: (400 MHz, CDCb) 5 54.16, 54.49, 55.38, 

106.34, 106.70, 121.43, 122.42, 125.86, 129,09, 133.28, 137.30, 143.37, 144.78, 

146 32, and 165 23 (J CF = 1012Hz). 19F-NMR (CDCb): 6  - 103.41. IR: (KBr 

disc, cm'1) 3460, 2978, 2920, 1622, 1560, 1509, 1438, 1339, 1294, 1259, 1244, 

1156, 1073, 869, 851, 797, 771, 733, and 707. E.l.-MS m/z 511.0 (M++H+)
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NH

NH

1-(2-amino, 5-fluorobenzenek 4 ,7-bis aminobenzene, 1, 4. 7- 

triazacvclononane. (L9)

L9 (250mg, 0.46mmol) was dissolved in a THF:MeOH solution (60:1ml), in a 

250ml round bottomed Schlenk. The THF was of HPLC grade, and the catalyst 

washed on a sinter with methanol, (Pt/C (75mg). CAUTION: Minimum contact 

with methanol was exercised as in one incident a small fire occurred, and so the 

catalyst was added below the surface of the THF:MeOH solution with a pipette, 

as a methanol slurry. The Schlenk was evacuated and backfilled with hydrogen 

gas. This was stirred for 24 hours upon which the reaction was signalled by a 

colour change of yellow to a clear solution. The desired compound was filtered 

off via a cannula equipped with glass fibre filter tip, into another Schlenk which 

was then dried in vacuo. This afforded a clear solid (L9). Degradation of the 

ligand was seen by the product being a pink/red colour, thus generating an 

unusable sample. Yield 190mg, 92%. lU NMR: (400 MHz, CDC13) 5 3.30 (m, 

12H, Aliphatic), 6 4.00 (s Br, 6H, N //2), 5 6.50 (m, 2H, Ar), 6 6.60 (m, 4H, Ar), 

5 6.70 (m, 1H, Ar), 6 6.80 (m, 2H, Ar) 6 7.05 (d, 2H, (JHH = 7.28 Hz), Ar). 13C 

NMR: (250 MHz, CDC13) 6 55.00, 56.27, 56.55, 109.62, 109.92, 110.60,

110.87, 115.82, 115.85, 115.97, 118.78, 123.21, 124.95, 138.20, 141.85 (.JCF = 

302Hz). 19F NMR: (300 MHz, CDC13) 6 -124.73. IR: (KBr disc, cm'1) 3434, 

2963, 1606, 1497, 1450, 1260, 1095, 1018, 863, 802, 707 and 660. E.I.-MS m/z

421.0 (M++H+)
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Synthesis of metal complexes of the general formula ftl/lMUClCM?. M=Mn 

and Zn.

[(L9)MnWCIOA..

The solution of L9 (80mg, 1.9mmol) was transferred directly into another 

Schlenk via filter cannula which contained manganese (II) perchlorate (76mg, 

2.1 mmol). This solution was a cream colour and was stirred vigorously for 1 

hour. After this duration the solvent was removed in vacuo, and yielded an off- 

white precipitate. To this was added degassed ethanol (10ml), stirred vigorously 

then the solution allowed to settle. The solution was filtered off via cannula, 

again dried in vacuo, and produced the title compound as an off-white solid. 

Crystals of X-Ray quality were grown by slow vapour diffusion of diethyl ether 

into an acetonitrile solution. Yield 104mg, 81%. IR: (KBr disc, cm'1) 3427, 

3299, 3233, 1617, 1506, 1463, 1261, 1095, 1018 and 802.

|(L9)Zn|(C104)?.

This compound was synthesised in the same manner as [(L9)Mn](ClC>4)2 . Zinc 

(II) perchlorate (77mg, 2.1 mmol), was added and formed a white precipitate. 

Crystals of X-Ray quality were grown by slow vapour diffusion o f diethyl ether 

into an acetonitrile solution. Yield 99mg, 78% *H NMR: (400 MHz, CD3CN) S 

3 05 (m, 16H, Aliphatic), 5 3.70 (m, 6H, Aliphatic), 6 4.70 (s Br, 6H, NH2), 5 

7.10 (m, 1H, Ar), 8 6.60 (m, 4H, Ar), 8 7.25 - 7 35 (m, 4H, Ar), 8 7.40 - 7.50 

(m, 4H, Ar) 8 7.65 (d, 2H, (./„„ = 7.69 Hz), Ar). I3C NMR: (250 MHz, CD3CN) 

8 53 04, 53.10, 53.19, 111.54, 112.64, 114.95, 115 09, 124.97, 127.38, 127.92,

128.94, 129.96, 133.52, 146.50, 148.01 and 149.00 (JCF= 988Hz). I9F NMR: 

(300 MHz, CDjCN) 8 -112.76 IR. (KBr disc, cm'1) 3433, 3305, 1465, 1383, 

1369, 1267, 1234, 1110, 859, 762 and 731.
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F

NO

l-(2-nitro, 4-fluorophenvO, 4, 7-bis (2- nitrophenvl), 1, 4, 7- 

triazacvclononane.

1, 4-bis nitrobenzene, 1, 4, 7- triazacyclononane (0.05g, 0.13mmol), 2, 5- 

difluoronitrobenzene (23mg, 0.14mmol), K2CO3 (195mg, 0 .14mmol), and 

MeCN (15ml) were all stirred vigorously in a pressure tube at 85°C for 24 

hours. The tube was washed with DCM (15ml). The combined washings were 

dried in vacuo. An orange solid was afforded. This was recrystallized with hot 

ethanol. Yield 37%, 25mg. ‘H NMR: (400 MHz, CDCb) S 3.35 (m, 4H, 

Aliphatic), 6  3.45 (m, 4H, Al), 6  3.50 (s, 4H, Al), 6  6.85 (t, (Jhh = 7.17Hz), 2 H, 

Ar), 6  7.05 (d, (JHH = 7.92Hz), 2H, Ar), 8  7.10 (m, 1 H, Ar), 5 7.20 (m, 1 H, Ar), 

5 7.25 (m, 1H, Ar), 6  7.35 (m, 2H, A r), 8  7.55 (dd, (Jhh = 1.55 + 8.08Hz), 2 H, 

Ar). 13C NMR: (400 MHz, CDCb) 8 54.87, 54.95, 55.55, 112.26, 112.53, 

120 49, 120 73, 121.18, 126.01, 126.53, 126.61, 133.10, 133.19, 142.59, 143.91 

and 144.50 (JCF = 994Hz). 19F-NMR (CDCb): 8 -120.65. IR: (KBr disc, cm 1) 

2911, 1606, 1560, 1509, 1339, 1296, 1260, 1223, 1168, 1103, and 1051. E .I- 

MS m/z 5110 (M^+H )
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\ - ( 2-amino, 4-fluorobenzeneh 4, 7-bis aminobenzene, 1, 4, 7- 

triazacvclononane (L10).

L10 (250mg, 0.46mmol) was dissolved in a THF:MeOH solution (60:1ml), in a 

250ml round bottomed Schlenk. The THF was of HPLC grade, and the catalyst 

washed on a sinter with methanol, (Pt/C (75mg). CAUTION: Minimum contact 

with methanol was exercised as in one incident a small fire occurred, and so the 

catalyst was added below the surface of the THF:MeOH solution with a pipette, 

as a methanol slurry. The Schlenk was evacuated and backfilled with hydrogen 

gas. This was stirred for 24 hours upon which the reaction was signalled by a 

colour change of yellow to a clear solution. The desired compound was filtered 

off via a cannula equipped with glass fibre filter tip, into another Schlenk which 

was then dried in vacuo. This afforded a clear solid. Yield 188mg, 91%. lK  

NMR: (400 MHz, CDC13) 6 3.35 (s, 12H, Aliphatic), 6 4.05 (s Br, 6H, NH2\  5 

6.55 (m, 2H, Ar), 6 6.60 (m, 4H, Ar), 6 6.75 (m, 1H, Ar), 5 6.85 (m, 2H, Ar) 6

7.00 (d, 2H, (JHH = 7.35 Hz), Ar). 13C NMR: (250 MHz, CDC13) 6 56.12, 56.98, 

57.13, 109.13, 109.89, 110.89, 111.43, 115.23, 115.92, 116.27, 117.79, 121.66, 

124.55, 139.58 and 140.94 (JCF= 880Hz). 19F NMR: (300 MHz, CDC13) 5 - 

123.49. IR: (KBr disc, cm'1) 3450, 3335, 1611, 1497, 1441, 1325, 1299, 1261, 

1192, 1144, 1095, 1028, 798 and 747. E.l.-MS m/z 421.0 (M++H+)
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Synthesis of metal complexes of the general formula I(L10)MUC1Oj)2. 

M=Mn and Zn.

l<Ll0>MnHCIOjV».

The solution of L10 (80mg, 1.9mmol) was transferred directly into another 

Schlenk via filter cannula which contained manganese (II) perchlorate (76mg,

2.1 mmol). This solution was a blue colour and was stirred vigorously for 1 hour. 

After this duration the solvent was removed in vacuo, and yielded a blue 

precipitate. To this was added degassed ethanol (10ml), stirred vigorously then 

the solution allowed to settle. The solution was filtered off via cannula, again 

dried in vacuo, and produced the title compound as a blue solid. Yield 98mg, 

79%, IR: (KBr disc, cm 1) 3444, 1652, 1506, 1261, 1095, 1025, 802 and 621 

UV/Vis (MeCN, nm (e/dm3 mol'1 c m 1)): 604 (359).

[(Ll0)Znl(CIO.,h.

This compound was synthesised in the same manner as [(L )Mn](CIC>4 ) 2  Zinc 

(II) perchlorate (77mg, 2.1 mmol), was added and formed a white precipitate. 

Yield 95mg, 75%. ‘H NMR: (400 MHz, CD3CN) 8 3.05 (m, 6H, Aliphatic, 

Endo), 8 3 70 (m, 6H, Aliphatic, Exo), 8 4.20 (s Br, 4H, N7/2), 8 4.75 (s Br, 2H, 

NHi), 6 7.10 (dd, (J hh  = 2.92 + 8.98Hz), 2H, Ar), 8 7 20 (m, 2H, Ar), 8 7.35 (m, 

1H, Ar), 8 7,45 (m, 2H, Ar) 8 7.60-7.70 (m, 4H, Ar). I3C NMR: (250 MHz, 

CD3CN)S 53.12, 54.35, 54.89, 111.23, 112.50, 114.63, 115.38, 124.62, 127.41, 

127.89, 128.66, 130.41, 132.62, 146.22, 148 35 and 149.22 (J c f  = 996Hz). ,9F 

NMR: (300 MHz, CD3CN) 8 -113.98. IR: (KBr disc, cm 1) 3463, 3305, 1611, 

1575, 1497, 1370, 1261, 1095, 919, 810, 768, 739, 702 and 624.
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Porphyrin analogues and complexes.

n o 2 o 2nô ô o
N. N ’ bis {2-nitrophenvO 1 ,4-diazaevclohexane.

Piperizene (2.0g, 23.3mmol), 2 - fluoronitrobenzene (6.72g, 47.7mmol), 

potassium fluoride (2.77g, 47.7mmol), and acetonitrile (50ml) were all stirred 

vigorously together in a round bottom flask, refluxed at 90°C for 36 hours and 

under nitrogen. The resulting solution was filtered and the flask washed with 

DCM (30ml). The MeCN and DCM washings were combined and dried in 

vacuo. This afforded an orange crystalline solid, which was used without further 

purification. ‘H-NMR (400 MHz, DMSO): 8 3.15 (s, 8 H, Al), 7.30 (t, (J hh  =  

7.62HZ), 2H, Ar), 7.40 (d, (Jh h  = 8.26HZ), 2H, Ar), 7.65 (t, (J h h  = 7.43HZ), 

2H, Ar), and 7.85 (d, (Jh h  = 8.01HZ), 2 H, Ar), 13C (400MHz, DMSO): 5 51.17, 

121,68, 122.27, 125.37, 133.81, 143.07 and 144.95. IR (KBr disc, cm'1): 3460, 

3354, 2956, 2836, 1604, 1500, 1445, 1371, 1301, 1276, 1214, 1147, 1051, 937 

and 761. E.I.-MS m/z 329 (M +H' )
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NH2 h 2n

N. N ’ bis (2-aminophenvD 1. 4-diazacvclohexane.

N, N’ Bis (2-nitrophenyl) 1, 4-diazacyclohexane (200mg, 0.61 mmol) was 

charged in a 250ml round bottom Schlenk with THF:MeOH (30ml:0.5ml) and 

Pt/C (50mg). This was evacuated and backfilled with hydrogen. This reaction 

vessel was left to stir for 24hrs until the reaction had ended with a colour change 

from yellow to clear. The solution was filtered by cannula which had been 

equipped with a filter tip into another Schlenk with a stirrer bar. The solvent was 

removed in vacuo to yield a clear solid that was used without further 

purification. Yield 93%, 152mg. 'H NMR: (400 MHz, CDCb) 6 3.05 (s, 8H, 

Al), 8 4.65 (s br, 4H, N H 2), 8 6.15-6.25 (m, 4H, Ar), 8 6 90 (t, (Jh h  = 7.25 Hz), 

4H, Ar), 8 7.00 (d, = 7.20 Hz), 2H, Ar). 13C NMR: (250 MHz, CDCb) 8

51.85, 115.27, 118.65, 119.94, 124.79, 139.73 and 141.57. IR: (KBr disc, c m 1) 

3459,2957, 1601, 1585, 1500, 1457, 1445, 1383, 1371, 1356, 1300, 1275, 1255, 

1213, 1146, 1128, 1051, 1025, 761 and 668. E.I.-MS m/z 269 (M++H+)
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OoN

N, N* bis (2-nitro. 4-fluorophenvl) 1« 4-diazacvclohexane.

Piperizene (2.0g, 23.3 mmol), 2, 5-difluoronitrobenzene (7.58g, 47.7 mmol), 

potassium fluoride (2.77g, 47.7 mmol), and acetonitrile (50ml) were all stirred 

vigorously together in a round bottom flask, refluxed at 90°C for 36 hours and 

under nitrogen. The resulting solution was filtered and the flask washed with 

DCM (60ml). The MeCN and DCM washings were combined and dried in 

vacuo. This afforded an orange solid which was washed with methanol to afford 

an orange crystalline product. Yield 54%, 4.58mg. NMR: (400 MHz, CDCI3 ) 

6 3.05 (s, 8H, Al), 8 7.20-7.25 (m, 4H, Ar), 5 7.45-7.50 (m, 2H, Ar). 13C NMR: 

(250 MHz, CDCI3) 5 44.29, 50.81, 51.98, 112.30, 113.44, 120.48, 123.33, 

124.64 and 143.08 (Jrh = 1124Hz). 19FNMR: (300 MHz, CDC13) 5 -116.73 IR: 

(KBr disc, cm'1) 1522, 1447, 1380, 1328, 1292, 1265, 1213, 1199, 1149, 1121, 

1067, 1034, 886, 833, 811, 760 and 720. E.I.-MS m/z 365 (M++H+)

N. N ’ bis (2-amino, 4-fluorophenvh 1. 4-diazacvclohexane.

N, N ’ Bis (2-nitro, 4-fluorophenyl) 1, 4-diazacyclohexane (200mg, 0.55mmol) 

was charged in a 250ml round bottom Schlenk with THF: MeOH (30ml: 0.5ml) 

and Pt/C (50mg). This was evacuated and backfilled with hydrogen. This 

reaction vessel was left to stir for 24hrs until the reaction had ended with a 

colour change from yellow to clear. The solution was filtered by cannula which
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had been equipped with a filter tip into another Schlenk with a stirrer bar. The 

solvent was removed in vacuo to yield a clear solid that was used without 

further purification. Yield 90%, 150mg. 'H NMR: (250 MHz, CDCb) 5 2.90 (s, 

8H, Al), 6 3.90-4,20 (br s, 4H, NH2), 8 6.30-6 40 (m, 2H, Ar), 6.45-6.50 (m, 2H, 

Ar), 6 85 (m, 2H, Ar). 13C NMR: (250 MHz, DMSO) 8 50.77, 117.31, 119.74, 

133.91, 143.73 and 159.07 (Jcf = 940Hz). I9F NMR: (300 MHz, CDCb) 5- 

118.98. IR: (KBr disc, cm 1) 3444, 1606, 1500, 1367, 1261, 1219, 1153, 1133, 

1047, 845, 808, 753 and 716. E.I.-MS m/z 305 (M++H+)

NO

F

N. 7V-bis-(2-nitro, 5-fluorophenvD-  homopiperizene.

Homopiperizene (0.5g, 5 mmol), 2,4-difluoronitrobenzene (1.83g, 11.51 mmol), 

potassium carbonate (1.5g, 10.87 mmol), and acetonitrile (50ml) were all stirred 

vigorously together in a round bottom flask, refluxed at 110°C for 24 hours and 

under nitrogen. The resulting solution was filtered and the flask washed with 

DCM (30ml). The MeCN and DCM washings were combined and dried in 

vacuo. This afforded a green/yellow solid. The title product was purified further 

by column chromatography, using chloroform as an elutant. This removed any 

mis-inserted products which gave a yellow pure product. Crystals of X-ray 

quality were grown by slow vapour diffusion of diethyl ether into an acetonitrile 

solution. Yield 57%, 1 08g. 'H NMR: (400 MHz, CDCb) 8 2.05 (m, 2H, Al), 8 

3 35 (t, (Jhh = 5.57Hz), 4 H, Al), 8 3.40 (s, 4H, Al), 8 6 50 (m, 2H, Ar), 8 6.70 

(dd, {JHH = 2.52 + 11.14Hz), 2H, Ar), 8 7.75 (dd, (Jhh = 6.12 + 9.09Hz), 2H, 

Ar). 15C NMR: (400 MHz, CDCb) 8 27.20, 52.04, 52.05, 105.52, 105.85, 

128.15, 135.81, 147.01, and 164.12 (JCF = 1012Hz). 19F-NMR (CDCb): 8 - 

102.70. IR: (KBr disc, cm'1) 3080, 2962, 2920, 1617, 1568, 1514, 1489, 1346, 

1303, 1285, 1246, 1167 and 1077. E.I.-MS m/z 378.0 (M++H+)
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F

N, N ’-bis - (2-nitro, 4-fluorophenvh - homopiperizene.

Homopiperizene (0.5g, 5 mmol), 2, 5-difluoronitrobenzene (1.67g, 10.5 mmol), 

potassium carbonate (1.41g, 10.2 mmol) and acetonitrile (50ml) were all stirred 

vigorously in a round bottom flask, under reflux at 85°C for 24 hours. The 

resulting solution was filtered and the flask washed with DCM (30ml). The 

organic washings were combined and dried in vacuo. This afforded an orange, 

crystalline solid. Slow vapour diffusion of diethyl ether into an acetonitrile 

solution afforded crystals of X-ray quality. Yield 96%, 1.87g. ^ -N M R  (400 

MHz, CDC13): 5 1.95-2.05 (m, 2H, Al), 5 3.20 (t, (JHH= 6.10Hz), 4H, Al), 5 

3.35 (s, 2H, Al), 5 7.05-7.20 (m, 4H, Ar), 6 7.40 (dd, (JHII = 2.85 + 7.98Hz), 2H, 

Ar). I3C-NMR (400 MHz, CDCb): 5 28.95, 54,35, 54.87, 112.59, 120.43, 

123.30, 142.33, 143.18, and 156.04 (JCF = 976Hz). 19F NMR (300 MHz, 

CDCb): S -120.02. IR (KBr disc, cm'1): 2971, 2901, 1621, 1575, 1520, 1395, 

1336, 1294, 1261, 1209, 1177, 1142, 1099, 1061, and 1032. E.I.-MS m/z 379 

(M++H+)
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NH
F

TV. TV-bis-(2-amino, 4-fluorophenvP -  homopiperizene Ln .

TV, TV’ bis - (2-nitro, 4-fluorobenzene) - homopiperizene (50mg, 0.13mmol), and 

Pd/C catalyst (lOmg) were placed in a 250ml round bottom Schlenk, in a 

THF:MeOH solution (80ml: lml). The catalyst had been washed beforehand in a 

sinter with methanol, and was added as slurry to prevent ignition. The THF used 

was HPLC grade and had been thoroughly dry and degassed. The Schlenk was 

evacuated and then backfilled with hydrogen gas. This was stirred continuously 

under an atmosphere of hydrogen for 24 hours. Completion was signalled by 

loss of colour of the solution. After this period of hydrogenation, a cannula was 

equipped with a glass fibre filter. The solution was filtered into another Schlenk 

and dried in vacuo. The resulting product was an off-white clear solid (L11). 

Yield 37mg, 89%. ‘H-NMR (400 MHz, CDC13): 61.95 (m, 2H, Al), 5 3.05 (s, 

4H, Al), 5 3.10 (t, {JHH = 6.05Hz), 2H, Al), 6 4.15 (br s, 4H, Amine), 6 6.30- 

6.40 (m, 4H, Ar), 5 6.90 (m, 2H, Ar). 13C-NMR (400 MHz, CDC13): 6 29.00, 

53.53, 56.32, 100.50, 103.58, 121.77, 136.69, 142.26, 159.12 {JCF= 956Hz). 19F 

NMR (300 MHz, CDC13): 6 - 118.12. IR (KBr disk, cm 1): 3475, 1616, 1590, 

1506, 1376, 1256, 1203 and 1004. E.I.-MS m/z 319 ( M + H )
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NO OoN

/V-(2-Nitrophenvn, N ’-(2-nitro. 5-fluorophenvD-homopiperizene.

A-(2-nitrobenzene)-homopiperizene (0.2g, 0.905 mmol), 2, 4-

difluoronitrobenzene (0.158g, 0.99 mmol), potassium carbonate (0.13g, 0.94 

mmol) and acetonitrile (15ml) were all stirred vigorously in a pressure tube at 

85°C for 24 hours. The resulting solution was filtered and the pressure tube 

washed with DCM (10ml). The MeCN and DCM washings were combined and 

dried in vacuo. This afforded an orange/brown oil. Yield 93%, 0.302g. ^ -N M R  

(400 MHz, CDC13): 5 2.05 (m, 2H, Al), 6  3.20 (m, 2H, Al), 5 3.35 (m, 2H, Al), 

6  3.40 (m, 4H, Al), 6  6.45 (m, H, Ar), 5 6.95 (m, H, Ar), 6  7.05 (dd, (JHH = 2.53 

+ 11.43Hz), H, Ar), 6  7.30 (m, H, Ar), 6  7.60 (dd, (JHH = 1.55 + 8.08Hz), H, 

Ar), 6  7.70 (t, (JHH = 6.14 + 9.07Hz), H, Ar), 6  8.05 (m, H, Ar). 13C-NMR (400 

MHz, CDCI3): 6  42.40, 43.57, 47.20, 48.59, 56.24, 106.14, 120.58, 120.89, 

125.86, 128.25, 133.18, 136.27, 142.09, 146.00, 147.83, 162.56, and 165.14 

(J cf  = 1008Hz). 19F-NMR (CDC13): 6  -103.03. IR (NaCl plates), 2918, 1604, 

1558, 1464, 1430, 1410, 1396, 1347, 1277, 1260, 1242, 1214, 1177, 1105, 1090, 

1077, 1043 and 1021 cm'1. E.I.-MS m/z 361.0 (M++ H )
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2.CIO,
NCCH

F

N. ./V-bis (2-amino, 4-fluorophenvO, 1, 4, diazacvcloheptane nickel 

perchlorate bis acetonitrile adduct.

The solution of L11 (50mg, 0.16mmol) was transferred directly into another 

Schlenk tube via filter cannula which contained nickel (II) perchlorate (63mg, 

0.17mmol). This solution was light orange and was stirred vigorously for 18 

hours. After this duration the solvent was removed in vacuo, and yielded a light 

orange precipitate. To this was added degassed ethanol (10ml), stirred 

vigorously then the solution allowed to settle. The solution was filtered off via 

cannula, again dried in vacuo, and produced the title compound as an orange 

solid. Crystals of X-ray quality were grown from a concentrated solution of 

MeCN by vapour diffusion of diethyl ether. Yield 45mg, 76%. IR (KBr disc, 

cm'1): 3469, 1502, 1412, 1260, 1095, 1023, 862, 797, 701 and 623.
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2.CIO,NCCH

Cu

N. A^-bis (2-amino, 4-fluorophenvh, 1, 4, diazacvcloheptane copper 

perchlorate bis acetonitrile adduct.

The hydrogenation solution of L11 (50mg, 0.16mmol) was transferred directly 

into another Schlenk tube via filter cannula which contained copper (II) 

perchlorate (64mg, 0.17mmol). This solution was purple and was stirred 

vigorously for 18 hours. After this duration the solvent was removed in vacuo, 

and yielded a purple precipitate. To this was added degassed ethanol (10ml), 

stirred vigorously then the solution allowed to settle. The solution was filtered 

off via cannula, again dried in vacuo, and produced the title compound as a 

purple solid. Yield 44mg, 74%. IR (KBr disc, cm'1): 3437, 3276, 1614, 1568, 

1498, 1537, 1091, 1026, 855 and 800.
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N. N ’ bis (2-tosvlaminophenvn 1, 4-diazacvclohexane.

Under anaerobic conditions, a solution of DCM (30ml) was added to 

triethylamine (309mg, 3.06mmol), and tosyl chloride (584mg, 3.07mmol) in a 

pressure equalising dropping funnel. This was connected to a Schlenk which 

was charged with N, N’ bis (2-aminophenyl)-piperazine (412mg, 1 46mmol). To 

this was added the solution from the dropping funnel slowly over 30 minutes. 

This was kept at 0°C for 1 hour and allowed to warm to room temperature 

overnight with continual stirring of the dark red solution. This solution was then 

washed with 0.1M sodium hydroxide, and the organic layer separated, dried 

(MgS0 4 ), and filtered. The solvent was removed In Vacuo to yield a brown 

residue, which was recrystallized with hot ethanol with a few drops of glacial 

acetic acid. This afforded a pink/brown solid which was found to be air stable. 

Yield 81%, 72mg, ‘H NMR: (250 MHz, CDCU) S 2.25 (s, 6H, Me, Al), 8 2.55 

(s, 8H, Macrocyclic ring), 5 6.95 - 7.10 (m, 6H, Ar), 8 7.15 (d, (J h h  -  6.74 Hz), 

4H, Ar), 8 7.50 (dd, (J hh = 1.63 + 7.83 Hz), 2H, Ar), 8 7.65 (d, (J hh  = 8.32 Hz), 

4H, Ar). n C NMR: (250 MHz, CDCI,) 8 22.13, 53.67, 119.67, 122.83, 124.43, 

126 87, 127.49, 128.55, 129.82, 133.11, 136.99 and 143.58. IR: (KBr disc, cm 1) 

2944, 1591, 1496, 1454, 1382, 1381, 1337, 1280, 1260, 1234, 1173, 1156, 1136, 

1090, 1059, 1037, 813, 775, 755, 742 and 708. E.I.-MS m/z 577.48 (M++H+)
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A ,

so2r
HN.NH

\
N

N, N f bis (2-tosvlaminoDhenvl) 1, 4-diazacvcloheptane L12.

Under anaerobic conditions, a solution of DCM (30ml) was added to 

triethylamine (309mg, 3.06mmol), and tosyl chloride (584mg, 3.07mmol) in a 

pressure equalising dropping funnel. This was connected to a Schlenk tube 

which was charged with N, N ' bis (2-aminophenyl)-homopiperazine (412mg, 

1.46mmol). To this was added the solution from the dropping funnel slowly 

over 30 minutes. This was kept at 0°C for 1 hour and allowed to warm to room 

temperature overnight with continual stirring of the dark red solution. This 

solution was then washed with 0.1M sodium hydroxide, and the organic layer 

separated, dried (MgS0 4 ), and filtered. The solvent was removed in vacuo to 

yield a brown residue, which was recrystallized with hot ethanol with a few 

drops of glacial acetic acid. This afforded a pink/brown solid which was found 

to be air stable L12. Yield 85%, 733mg. ‘H NMR: (400 MHz, CDC13) 5 1.80 (m, 

2H, Al), 5 2.25 (s, 6H, Me), 8 2 70 (s, 4 H, Al), 8 2.85 (t, (./„„ = 5.63 Hz), 4H, 

Al), 8 6.95-7 10 (m, 6H, Ar), 8 7.15 (d, = 8.13 Hz), 4H, Ar), 8 7.50 (d, (Jmi

= 7.68 Hz), 2H, Ar), 8 7.60 (d, (./,,„ = 8.21 Hz), 2H, Ar). 13C NMR: (250 MHz, 

CDClj) 8 29.20, 39.67, 55.34, 57.65, 118.43, 123.27, 124.68, 126.01, 127.02, 

129,67, 132 77, 136.63, 144 01 and 144 14. IR: (KBr disc, c m 1) 3434, 2946, 

1596, 1492, 1337, 1286, 1222, 1166, 1091, 1044, 812 and 755. E.I.-MS m/z 

591.45 (M++H+)
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N, N ’ bis (2-tosvlamino, 4-fluorophenvh 1, 4-diazacvcloheptane.

Under anaerobic conditions, a solution of DCM (30ml) was added to 

triethylamine (lOOmg, 0.99mmol), and tosyl chloride (189mg, 0.99mmol) in a 

pressure equalising dropping funnel. This was connected to a Schlenk which 

was charged with N, N ' bis (2-amino, 4-fluorophenyl)-homopiperazine (150mg, 

0.47mmol). To this was added the solution from the dropping funnel slowly 

over 30 minutes. This was kept at 0°C for 1 hour and allowed to warm to room 

temperature overnight with continual stirring of the dark red solution. This 

solution was then washed with 0.1M sodium hydroxide, and the organic layer 

separated, dried (MgS0 4 ), and filtered. The solvent was removed In Vacuo to 

yield a brown residue, which was recrystallized with hot ethanol with a few 

drops of glacial acetic acid. This afforded a pink/brown solid which was found 

to be air stable. Yield 79%, 233mg. lH NMR: (250 MHz, CDC13) 8  1.80 (m, 2H, 

Al), 8  2.35 (s, 6 H, Me), 8  2.70 (s, 4 H, Al), 8  2.80 (t, Unn = 5.60Hz), 4H, Al), 8  

6  65 (m, 2H, Ar), 8  7,05 (m, 2H, Ar), 8  7.10 (d, (JHH = 7.70Hz), 4H, Ar), 8  7 15 

(m, 2H, Ar), 8  7 65 (d, (./,,,, = 8.24Hz), 4H, Ar) 13C NMR: (250 MHz, CDCI3) 8

28.94, 38.22, 55.64, 57.38, 117.87, 122.32, 124.11, 126.82, 127.37, 129.88, 

132.11, 135.61, 144 90 and 156.43 (/, ,- = 980Hz) 19F NMR. (300 MHz, CDCI3) 

8  -113.18. IR: (KBr disc, cm'1) 3452, 2954, 1597, 1503, 1329, 1265, 1218, 

1138, 1067, 1028, 798 and 748. E.I.-MS m/z 627 (M++H+)
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N , N ’ bis (2-tosvlaminophenvn 1, 4-diazacveloheptane nickel complex.

12Under anaerobic conditions, degassed acetone (10ml) was added to L (50mg, 

0.008mmol), nickel (II) perchlorate (34mg, 0.008mmol), and triethylamine 

(17.5mg, 0.017mmol) in a Schlenk tube. This light red solution was stirred 

vigorously dt room temperature for 10 minutes then dried in vacuo to yield a 

purple residue. Acetonitrile (10ml) was added to the residue and allowed to 

stand, upon which purple crystals of X-Ray quality were afforded. Yield 85%, 

47mg. IR: (KBr disc, cm'1) 1450, 1299, 1286, 1258, 1147, 1105, 1086, 1038, 

1020, 848,817,752 and 710.
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Chapter Three

Pendant Fluoroaniline derivatives of 

triazacyclononane.

I am returning this otherwise good typing paper to you because someone has 
printed gibberish all over it and put your name at the top.

— An English Professor, Ohio University

Reminds me of my safari in Africa. Somebody forgot the corkscrew and for several 
days we had to live on nothing but food and water.

-  W. C. Fields
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Introduction

The selective functionalisation of macrocycles has been an area of increased interest 

over past years. The desire to synthesise ligands with specific differing pendants has 

increased due to heightened interest to tune the properties of metal-ligand complexes53.

The reaction scope to produce multi substituted azamacrocycles has widened so 

to produce ligands in higher yields an in fewer steps. Many applications of 

azamacrocyclic ligands require functionalisation of the parent ligand54,56. The addition 

of differing pendant donor groups to the macrocyclic ring can be achieved in one of two 

ways. Firstly the carbon backbone of the ring can be tailored to different aims, but this 

incurs multi step syntheses to form the azamacrocycle ring. Parker et al have 

synthesised a variety of N  and C functionalised macrocycles for the derivitisation of 

antibodies55. Pendant addition at the carbon backbone allows additional groups to be 

incorporated into the macrocycle, whereas addition to the nitrogen terminus then is 

dictated by the number of nitrogen’s in the ring. The second point of functionalisation 

of the macrocyclic ring is at the nitrogen56.

The main focus of this thesis is concentrating on ortho-miYme group addition to 

1, 4, 7-triazacyclononane. Fallis et al57 originally synthesised the parent ligand L33 that 

was prepared using 2-fluoronitrobenzene and reduced under standard (F^/Pd/C) 

conditions. Reaction with divalent metal perchlorates in ethanolic solutions yielded the 

desired metal complexes in good yield of general formula [(L33)M](C1C>4)2 xMeCN.

M Bombieri G.„ Artali R., J. Alloy and Compounds., 344, 2002, 9-16.
4 Fallis I A.. Supramolecular Chemistry, Atwood J L., Steed J W., Annual Reports on the Progress of 

Chemistry. Section A., Inorg. Chem., 94, 1998, 351-387.
55 Cox J P L„ Craig A S., Helps I M., Jankowski K J., Parker D., Eaton M A W., Millican A T., Millar 
K., Beeley N R A., Boyce B A., J. Chem. Soc., Dalton Trans., 1990, 2567-2576.
56 Wainwright K P., Coord. Chem. Rev., 1997, 166, 35-90.
Fallis I A.,Annu. Rep. Prog. Chem., Sect. A, 2001, 97, 331-369.
57 Fallis I A., Farley R D., Malik K M A., Murphy D M., Smith H J., J. Chem. Soc., Dalton Trans., 2000, 
3632.
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NH

3 3Figure 3.1: 1,4, 7-tris (2-aminophenyl) 1, 4, 7-triazacyclononane (L )

Fallis and co workers have investigated the chemistries of the Fe, Ni, Cu and Zn 

complexes. A range of spectroscopic methods were used to investigate this class of 

complex with interesting results obtained. The iron complex crystal structure showed a 

mean Fe-N bond length of 2.10A which is intermediate between the normal ranges of 

low and high spin Fe11 complexes. EPR and magnetometry studies revealed that 5% of 

the sample was Fe111. Fallis et al then suggest that this could be the mono deprotonated 

anilide species [(L33 H)Fe](C1 0 4 )2 . The Ni complex exhibited a short average Ni-N bond 

length of 2.09A, and a high ligand field strength of 12,330cm'1 (E ^S O cm 1). The Cu 

structure showed a mainly axial species with a slight rhombic distortion. The NMR 

spectra was recorded for the zinc complex, over a temperature range of -40°C-(+70°C) 

in CD3CN and showed non fluxional behaviour.
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Figure 3.2: Pendant donor derivatives of 1, 4, 7-triazacyclononane.

Groups other than anilines such as (Figure 3.1) phenols58 (Lb), thiophenols59 (Lc),

alcohols60 (Ld), thiols61 (Lg), TV-methyl pyrazoles62 (Le), phosphonic acids63 (Lf), amino

alkyls64 (Lh), amides65 (L1), alkynes66 (17), alkyl alcohols67, 60 (Lk) and isopropyl 
68 1pendants (L ) are all some of the diverse groups that make up this field of study. These 

are all examples of tris substitution of the nitrogens present in the tacn ring.

58 Moore D A.. Fanwick P E.. Welch M J.. Inorg. Chem., 1989, 28, 1504.
59 Bessel T., Burger K S.. Voight G.. Weighardt K.. But/laff C.. Trautwein A X., Inorg. Chem., 1993. 32. 
124.
60 Fallis I A., Farrugia L J.. MacDonald N M., Peacock R D., J. Chem. Soc., Dalton Trans., 1993, 2759.
61 Mabeza G F.. Loyevsky M., Gordeuk V R., Weiss G., Pharmacol. Ther., 1999, 81, 53.
6“ Norante G de M„ Di Vaira M., Mani F.. Mazzi S.. Stoppionoi P .,./  Chem. Soc., Dalton Trans., 1992, 
361.
63 Prata M I M„ Santos A C., Geraldes CFGC. ,  de Lima J I P.. Nucl. Med. Biol, 1999, 26. 707.
64 Tei L.. Baum G., Blake A J., Fenske D., Schroder M., J. Chem. Soc., Dalton Trans., 2000. 2793.
65 Bakyal U„ Akkaya M S., Akkaya E U.,J. Mol. CatalA., 1999, 145, 309.
66 Ellis D., Farrugia L J., Peacock R D., Polyhedron, 1999, 18, 1229.
6 Belal A A., Chaudhuri P., Fallis I A., Farrugia L J., Hartung R.. MacDonald N M., Nuber B., Peacock 
R D., Weiss J., Weighardt K., Inorg. Chem., 1991, 30, 4397.
68 Haselhorst G., Stoetzel S., Strassburger A., Walz W., Weighardt K., Nuber B., J. Chem. Soc., Dalton 
Trans., 1993. 83.

90



Chapter Three: Pendant fluoroaniline derivatives o f triazacyclononane.

The Spiccia group69 have extended methodologies by Schroder et al70 to make 

biomimetic ligands resembling amino acids. The ligands Lmnp are all derived from 1, 4, 

7-triazatricyclo[5.2.1.°'4'10]decane and through the addition of one pendant to then form 

the monoamidinium salt. The formyl group formed is then removed by hydrolysis after 

addition of the second pendant to the free macrocyclic nitrogen. All reactions are over 

four steps and with overall yields of 22%(Lm), 44%(Ln) and 46%(LP) respectively.

N COOH HOOC^^N

Figure 3.3: Bis substituted tacn ligands by Spiccia et a l

The use of 1, 4, 7-triazatricyclo[5.2.10410]decane as a multifunctionalised tacn 

precursor is well published71, whereby after addition of the first desired pendant or 

more notably reaction with benzyl bromide, the formyl species formed has a nitrogen 

available for further reaction. After formation of the formyl tacn species through acid 

hydrolysis, Schroder et al subsequently added two equivalents of 2, 2-dimethyl oxirane 

formed the bis /so-butyl 2-ol intermediate. Base hydrolysis cleaved the formyl group to 

form the desired pentadentate macrocycle 1, 4-bis (2-hydroxy-2-methylpropyl)-l, 4, 7- 

triazacyclononane (Lq). The mono alcohol pendant version was synthesised by blocking 

one of the tacn nitrogen’s with a pendant benzyl group (Lr).

69 Warden A.. Graham B.. Hearn M T W., Spiccia L., Org. Lett., 2001, 3, 18, 2855-2858.
70 Blake A J., Fallis I A., Gould R O., Parsons S., Ross S A., Schroder M , J. Chem. Soc., Chem.. 
Commun., 1994, 2467-2469.
1 Atkins T J.,J.Am. Chem. Soc., 102, 1980. 6364-6365.
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Figure 3.4: Schroder et al-bis and tris substituted tacn ligands.

Formation of Ls was achieved by the addition of benzyl bromide to 1,4, 7-triazatricyclo

intermediate, then subsequent addition of 2 equivalents of the epoxide to form the 

aforementioned ligand.

Figure 3.5: Wieghardt’s mixed phenolate and carboxylate pendant tacn macrocycle.

[(Ll)Fe] and [(Lv)V/Mn/Fe/Co], These anionic ligands react well to produce the desired 

metal complexes in moderate yields (32%-62%). The mono addition of the phenolate 

pendant is achieved by using a large excess of tacn (5:1) then recouping the macrocycle 

through collection of the chloroform layer. Interestingly Wieghardt states that by 

addition of one or two equivalents of the corresponding ethyl bromoacetate in a LiOH

2 Stockheim C.. Hoster L., Weyermuller T., Wieghardt K., Nuber B., J. Chem. Soc., Dalton Trans.,
1996.4409-4416.

[5.2.1 .04' 10] decane, hydrolysis of the formyl group to produce the mono benzyl tacn

Penta and hexadentate ligands bearing phenolate and carboxylate donors have 

been prepared by Wieghardt et al72.

o

Ll and Lv are of the N3 O2 and N3O3 donor set, and were reacted to form the compounds
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solution, the ligands L1 and Lv are formed. Further explanation of formation of the bis 

substituted product with one equivalent is not included

Benniston et a P  have explored the region of addition of soft donors to 

macrocycles such as tacn, cyclen, and cyclam. Lithiation of the macrocycle and 

subsequent addition of vinyl aromatic pendants afford the mono and bis substituted 

ligands Lwxyz(aa).

R-
R,=R2=HR3=

\  /  L’

R,=H R.+R

• N N
R2" \___ / r3

R]=R-,=HR3= R

R,=R.=HR,= R* \  /

R,=HR.+R,= N 6 L

OH
Lz

Me

O

Figure 3.6: Mono and bis substituted tacn with electron rich arene pendants.

The ligands shown in figure 3.6 have been synthesised without the need for column 

chromatography and in reasonable yields (43%-68%). Reaction of Lwxyz(aa) with 

transition metal perchlorates (2:1) afforded tacn sandwich type complexes with the 

pendant arenas showing interesting crystal packing. A coordinated polymer is shown to 

form though the repeated cell o f [^.iJo^FhC fh].

Benniston A C., Ellis D., Farrugia L J., Kennedy R., Peacock R D., Walker S., Polyhedron, 21, 2002. 
333-342.
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Bul

Bu'

OH
Me'

Figure 3.7: Cationic tacn ligands for aluminium complexation by Mountford et al.

Mountford et al14 have monofunctionalised bisprotected tacn with an aromatic (Lbb) and 

alkyl (Lcc) alcohols. Reaction of L(bb)(cc) with AlMe3 or [AlMe3 .Py] afforded four and 

five coordinate complexes respectively. Interestingly the complexation only occurred 

through the macrocycle nitrogen that was attached to the pendant and not the one 

tethered to the /so-propyl group. Crystallographic data of [LbbAlMe2] shows a distorted 

tetrahedral arrangement with the two methyl groups is a cis arrangement to each other. 

Reaction of L00 generated the dimeric structure with both aluminium centres sharing the 

oxygen’s present on the phenolate pendants. [LccAl2Me4 ]. As stated before, the two 750-  

propyl bearing nitrogen’s do not contribute to the coordination of the metal and are left 

to dangle away from the coordination centre.

74 Robson D A., Rees L H., Mountford P., Schroder M., Chem. Commun., 2000. 1269-1270.
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Figure 3.8: Tacn macrocycles bearing the Sanger’s pendants 2, 4-bisnitrobenzene.

Research is in progress by Fallis et a l75 into the addition of Sanger’s reagent (1-Fluoro, 

2, 4-dinitrobenzene) to tacn and forming the mono, bis and tris substituted macrocycle. 

Addition of differing groups to the free macrocyclic nitrogen’s could lead to mixed 

donor sets (N4O2, N5O1) and so design of specific ligands. The increased degree of 

electron richness of the ligand, compared to L33, leads to more air sensitive samples 

upon hydrogenation but further functionalisation of the outer amine groups could be 

attempted to form larger dendrimers76.

75 Fallis I A., Tatchell T.. Unpublished Results. 2004.
6 Beer P D., Gao D., Chem. C om m u n 2000, 443-444.



Chapter Three: Pendant fluoroaniline derivatives o f triazacyclononane.

77  o o  1 0 1

Wieghardt et al 5 explored the pendant aniline class of ligand first by making the 

aminobenzyl derivative (LKU). Extensive research has shown the complexation of 

[(Lkw)M](C104 ) 2 (M=Mn/Fe/Co/Ni/Cu/Pd/Zn/Cd/Hg) and subsequent addition of 

triethylamine to the metal complexes produced the compounds [LKW'3H] (M=Fe/Co).

NH

NH

Lkw

Figure 3.9: Tris 1, 4, 7-(2-aminobenzyl) 1 , 4, 7-triazacyclononane.

2 -nitrobenzaldehyde was reduced with sodium borohydride to form the relevant 

alcohol which was subsequently brominated with phosphorus trichloride in carbon 

tetrachloride. Three equivalents of 2 -nitrobenzyl bromide were then reacted with 

potassium hydroxide and the macrocycle 1, 4, 7-triazacyclononane, then reduced with 

hydrazine hydrate over a graphite catalyst to afford LKW This ligand was dissolved in 

methanol and stirred with ethanolic metal perchlorate solutions. Refluxing and 

subsequent cooling of the reaction solutions afforded the desired metal complexes.

In depth investigation of the zinc sample revealed interesting fluxional 

behaviour over the temperature range of -30°C-(+90°C). Broad resonances for the 

benzylic and amine protons at room temperature are well resolved upon cooling and 

produce sharp peaks at elevated temperatures. At low temperature the protons of the 

benzylic and amine groups are locked into a preferred conformation and the 6 - 

membered chelate forces these protons into different environments. Similar behaviour 

was observed for the cadmium sample. Characteristic H-Hg coupling was found 

straddling the amine peak for the mercury sample satellite peaks and was found to be

77 Schlager O., Wieghardt K.. Nuber B., Inorg. Chem. 1995, 34, 6456-6462.
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Jmig =45Hz. Crystal data was obtained for the nickel, copper and palladium samples. 

The copper and palladium structures were found to be of square based pyramidal 

geometry. Coordination of the metal to the macrocycle nitrogen’s and to two of the 

benzylanilines generated the N5 donor set, and the third benzylaniline is left to dangle 

away from the metal centre and does not participate in bonding.

Addition of base to the metal complexes afforded the tris deprotonated 

species. Crystal data was obtained for the MnIV species, it was synthesised from 

manganese III acetate and the counterion exchanged for tetraphenylborate. Wieghardt 

states that the deprotonation of these ligands is reversible and was confirmed by 

UV/Vis spectroscopy.

Aims and Objectives

Our aim was to produce a class of ligands with similar structures to see if the 

alteration of peripheral groups on the pendant arms would have an effect upon the 

nature of the metal complex. With the incorporation of fluorine bearing aniline 

pendant we hypothesize that the metal-nitrogen bond lengths would alter depending 

on the electron withdrawing nature of the attached pendant. When the fluorine is 

ortho para to the amino group, electron withdrawal from the phenyl ring should lead 

to weaker interaction from the metal centre and the aniline nitrogen, thus longer 

bonding should be evident. When the fluorine is meta to the amino group, it is not 

activated therefore does should not have an effect on the Naniiine-M bond lengths. 

However, this fluorine will be para to the nitrogen of the macrocyclic ring and so 

should increase the Nnng-M bond lengths by withdrawing electron density from the 

phenyl ring.

We chose to combine methods from Perkins78 to produce mono, bis and tris 

fluorinated aromatic aniline pendant tacn ligands. Our interest lay in the possibility of 

producing such multifluorinated ligands with the aim of complexation and then 

comparison of these complexes metal ligand environments. The coordination centre of 

any crystallographic data obtained will be evaluated to assess the extent of the 

alteration of ligand has upon the overall complex

78 Perkins W T S.. Ph.D Thesis, 2002.
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H

NH

Figure 3.10: 1, 4-bis (2-aminophenyl) 1, 4, 7-triazacyclononane (L32).

Developing potential nitrous oxide compounds required us to investigate the 

possibility of making differing hexaamine ligands capable of complexing ruthenium.
2~hThese can be seen as mimics for the initial [Ru(NH3)5X] salt Taube developed. If  

complexation were to occur using L33, then there could be the possibilities that in 

future work the pentammine ligand (L3 2 ) 79 (Figure 3.10) could be synthesised 

allowing the sixth coordination site free for possible nitrous oxide bonding.

Results and discussion 

Ligand Synthesis

Reaction of fluorinated nitrobenzenes with tacn in the presence of potassium fluoride 

afforded the nitro ligands in good yield. The reaction proceeded via aromatic 

nucleophillic substitution (SNAr) to afford the bright yellow/orange powders. 

Reaction conditions have been optimised since the initial publication of L33, and so 

higher yields of the nitro precursor and amine ligands have been achieved.

Ligand L1 L2 I?.... ......... L 1 L2 L3

Yield (%) 78 93 8 8 92 87 91

Figure 3.11: Table of yields for nitro precursors and aniline ligands.

Production of the ligands with the pendant 2-amino, 6 -fluorophenyl could not occur 

due to no such precursor 2, 3-difluoronitrobenzene being available commercially. The

9 Fallis I A.. Perkins W T S., Longhurst S L.„ Malik K M A., Unpublished Results, 2000.
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closest derivative is 2, 3, 5 tri fluoronitrobenzene but unfortunately the synthetic route 

was not able to be repeated due to the high toxicity and corrosiveness of the reagents 

used by Olah et a f°. Reaction at room temperature with the aromatic in superacid 

produced a wide variety of differing fluorinated and other substituted nitrobenzenes in 

generally good yields (52%-99%). We feel the prospect of synthesising this final 

family of ligands appealing but due to lack of equipment, this could not be attempted.

Palladium catalysts were used in the primary reactions, but were found to 

produce samples that degraded quickly upon transfer. We chose to then employ a 

platinum catalyst which was found to produce more stable samples. The more reactive 

catalyst used was platinum on carbon and of 5% loading. The palladium catalyst was 

bought from different commercial suppliers and tested with L33. The results showed a 

variety of unstable samples. The palladium catalyst (10%) was loaded on carbon and 

was also washed with methanol. This isolation of this catalyst when employed, 

produced more stable L33 samples but not as stable as the platinum reduced samples.

NO,

c h  ~
H \ j H KF, MeCN, 85°C, 24Hrs

NO-

NO-

Pt/C
THF:MeOH 
18Hrs

H2N.

F “ | 2.C!04

-ecp
h2 f

L1 =Mn/Fe/Co/Ni/Cu/Zn/Cd/Hg/Pb 
L: Mn/Fe/Ni/Cu/Zn/Cd 
I M n  Fe Co Ni ( 'u  Zn Cd I Ig Mi

Metal Perchlorate 1.1 Eq

Ethanol. 12Hrs
NH-

NH

Lxm

80 Olah G. A., Orlinkov A., Oxyzoglou A B„ Prakash G K S., J. Org. Chem., 1995, 60 (22), 7348-7350.
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Figure 3.12: Reaction scheme for ligand synthesis and metal complexation.

Small test reactions were carried out upon the hydrogenation of nitro precursor 

compounds against the same batch of precursor but with a small trace of 2 - 

fluoronitrobenzene added. After 24 hours the sample without the 2-fluoronitrobenzene 

had hydrogenated well, but the sample with a trace did not undergo completion. This 

gave us the indication that any excess fluoronitrobenzene starting material present in 

the precursor would not allow the hydrogenation reaction to proceed. Purity of the 

nitro precursor was an overriding factor to the conversion, and so batches o f the nitro 

ligand were often successively recrystallised with hot ethanol. A reaction scheme of 

the route taken to synthesise the compounds in the chapter is shown in figure 3 .12. 

Synthesis of L 1 (IAF0303) was carried out under standard conditions, but was then 

purified by column chromatography, to remove any mis-inserted fluoronitrobenzene 

groups81.

81 Davey D D., Erhardt P W.. Cantor E H„ Greenberg S S., Ingebresten W R., Wiggins J., J. Med. 
Chem.. 1991, 34, 2671-2677. Longhurst S L., Fallis I A., Perkins W T S., Malik K M A., Unpublished 
Results, 2001.
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KF. MeCN, 85°C. 24HrsKF. MeCN. 85°C, 24IIrs

Pt/C
THF:MeOH
18Hrs

Pt/C
TFIF.MeOH
18Hrs

Figure 3.13: Reaction scheme showing the mis-inserted by-product in the synthesis

ofL2’.

The red fragment (Figure 3.13) indicates the mis-inserted pendant. Thus elution of the 

product on silica with chloroform (Rf = 0.51) isolated the ligand as the main bright 

yellow band, which was further purified with acetone. The crystal structure of L1 is 

included as appendix i. The arrangement appears that two aromatic rings are 

“stacked” but no n stacking is present due to an interplanar ring distance of 3.788A. 

The structures for L 1 and L2 are similar with two aromatic rings stacking, and the 

macrocycle ring folding to pack within the crystal.
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The synthesis of L2 (IAF0402) was carried out in analogous fashion to L1 but there 
was no need for chromatography as the fluorine is in the me/a position to the 
nitrobenzene and thus is deactivated Substitution would not occur at this position and 
we feel any sort of by products would be minimal (~1%) and removed by 
recrystallisation.

HI

KF, MeCN, 85°C, 24HrsKF, MeCN, 85°C, 24Hrs

This mis-inserted product is not 
formed as substitution does not occur 
for fluorines' meta to a nitro group.

Pt/C \  
THF:MeOH 
18Hrs

NH

NH-

2 ’ 2  i  • i  •Figure 3.14: Reaction scheme for the synthesis of L and L . The potential mis- 
inserted fragment is indicated in red
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The crystal structure of L2 (Included as appendix ii) indicates a like packing with two 
aromatic rings “stacking” but with minimal n interaction as the rings are a closer 
interplanar distance of 3.374A. Again the tacn ring is “folded” with one aromatic ring
free.

Degradation of Tris 1, 4. 7-(4-Fluoro, 2-Aminophenyl) 1. 4. 7- 
T riazaeyelononane.

200 -

1 0 0 -

6003 5 0 4CO
Wavelength (pm)

—  2 Hcurs “ “ 24 Hcurs 48 Hours “ 120 Hours

Figure 3.15: UV/Vis spectra of L/ degradation over 120 hours.

The initial sample of L2 was clear, and pure ligands could then be used to form metal 
complexes. Problems occurred after the initial transfer of the hydrogenated solution, 
and the clear sample was seen to degrade in the Schlenk tube and change to a bright 
pink colour. Figure 3.15 shows the UV/Vis spectra of L2 degrading over a period of 5 
days. This colour then changed to a dark brown after 5 days exposure. At a Xmax at 
492nm, the extinction coefficient can be seen to increase gradually. After 2 hours 
exposure (purple trace) s = 40, 24hrs exposure (blue trace) 8 = 36, 48hrs exposure 
(yellow trace) £ = 48 and after 5 days (red trace) £ = 80. Subsequent attempts at 
hydrogenation also produced unworkable ligands also turned pink upon transfer. New 
batches of ligand were made, and this problem still occurred. We would like to 
hypothesize that this degradation is due some sort of free radical reaction (e g 
polymerisation of diaminobenzene/Wtirsters blue/red)K2. All complexes made were

Eggers J., Frieser H.. Physikalische Chemie., 1956. 60, 372-376. Michealis L., J. Am. Chem. Soc., 
1931. 2953-2962. Michealis L.. Granick S., J. Am. Chem. Soc., 1943. 1747-1755.
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from the same initial batch of hydrogenated ligand, and have since not been able to be 
reproduced.

The ligand L3 (IAF0410) was produced in a like manner with potassium fluoride and 
refluxed in acetonitrile, again without the need for chromatography (Included as 
appendix i). There is the possibility of the difluoronitrobenzene reacting twice and 
thus tethering two tacn rings together, but a TLC of the reaction mixture showed no 
visible side-products and the ’H NMR spectra indicated a single product with a lone 
singlet present in the aliphatic region. This shows a triply substituted macrocycle, 
whereas tethered tacn rings would show a triplet, triplet, singlet arrangement in the 
aliphatic region.

Differing methods of hydrogenation were attempted to convert the nitro 
groups to amines. Initial tests were carried out with toluene:methanol, but this solvent 
mix was dispensed with as the higher volatility of THF allowed faster transfer of the 
air sensitive hydrogenation solutions. The THF grade used was found to be vital in the 
reduction of the nitro groups. When HPLC grade THF was used, a stable sample was 
afforded. The absence of stabilizers in the solvent was found to be paramount in the 
completion of this reaction.

The formation of metal complexes was achieved by the transfer of the amine 
ligand in THF solution via cannula onto the metal perchlorate salt. This was done 
anaerobically as to prevent and ligand degradation. The salt was allowed to dissolve 
over one hour in the THF solution with the aid of stirring. The volatile solvent was 
then removed in vacuo and degassed ethanol was added via cannula onto the dry 
precipitate. This solution was stirred overnight at room temperature (sometimes the 
solution was warmed with a heat gun to aid the ligand and salt to completely dissolve) 
upon which the desired metal complex has precipitated. After this time the ethanolic 
solution was decanted as it contained any unreacted perchlorate salt and the metal 
complex was washed with several batches of dry ether. This protocol was used for the 
formation of all metal complexes.
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Manganese complexes

Complexation around the metal centres within this class involves six nitrogen ligators, 

three tertiary amine from the tacn ring, and three coordinated bonds from the pendant 

aniline groups. Each set of donor nitrogen’s occupy three cis sites on the manganese, 

thus forming three five membered rings. Wentworth et a f 2, have shown that trigonally 

prismatic geometries are adopted by compounds that have empty, half-filled or full d- 

orbitals (d0 510). Octahedral orientations are adopted when a complex has ligand field 

stabilisation energy.

The average manganese-nitrogen bond lengths shown (L2-2.256A, L3-2.264A) 

are all comparable to the other literature compounds of Weihe115, bis (2 - 

pyridylmethyl)amine (2.261 A) and Li84, trisethylenediamine manganese (2.272A). 

The twist angles (<D) are [(L1)Mn](C104 ) 2 =2 0 .8 °, [(L2)Mn](C104)2.MeCN =35.6° and 

[(L3)Mn](C104 ) 2 =12.4°. The geometry is nearing trigonal prismatic as the ligand 

system approaches the othro fluorine ligand (L3). Preference for the trigonal prismatic 

geometry has been observed with N6 hexadentate ligand 1, 4, 7-triazacyclononane-A 

N \  A ’’-triacetate85. The [(L1)Mn](C1 0 4 ) 2  bond lengths are found to be the longest 

with an average of 2.292A. The chelate formed upon complexation with L 1 (Figure 

3.16) generates a conformation which we assign to be (%Xk). As this was found to 

crystallise in a chiral fashion (C3), no crystals of (8 6 6 ) orientation were found in the 

crystal lattice. The chelates formed for L2/3Mn (Figure 3 .16) were found to be achiral 

in the crystal lattice due to a centre of inversion within the crystal cell.

83 Gillum W O., Wentworth R A D., Childers R F., Inorg. Chem., 1970, 9, 1825-1832.
84 Li J., Inorg. Chim. Acta., 273, 1998, 310-315.
85 Van Der Meuwe M J., Boeyens J C A., Hancock R D., Inorg. Chem., 1983, 22. 1208.
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|(L‘)Mn|(C104)2 I(L2)Mn|(CI04)2.MeCN [(LJ)Mn](CI04)j

Figure 3.16: [(L')Mn](CI0 4 ) 2  selected bond lengths; N(l)-M n(l) 2.219(3), N(2 )-Mn(l) 2.308(3). Crystal configuration is of the geometry (A). 

[(L2 )Mn](C104)2.MeCNselected bond lengths; N(l)-Mn 2.308(3), N('2)-Mn 2.274(3), N(3)-Mn 2.309(3), N(4)-Mn 2.220(3), N(5)-Mn 2.205(3) 

and N(6 )-Mn 2.222(3). Crystal configuration is of the geometry (A). [(L3)Mn](C104 ) 2 selected bond lengths; N(l)-M n(l) 2.270(3), N(2)-Mn(l) 

2.239(3), N(3)-Mn(l) 2.333(3), N(4)-Mn(l) 2.320(3), N(5)-Mn(l) 2.257(3), N(6 )-Mn(l) 2.331(3). Crystal configuration is of the geometry (A). 

Hydrogen atoms, counter ions and solvent molecules have been removed for clarity.
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We were able to synthesize [(L9)M](C1C>4)2 , (M=Mn/Zn) metal complexes which 
exhibit a single fluorinated aniline. Reaction of the aza-macrocycle with two 
equivalents of 2-fluoronitrobenzene and base afforded the bis substituted ligand after 
acid-base work up. Further reaction with one equivalent of 2, 4-difluoronitrobenzene 
generated the mono fluoro derivative. Hydrogenation under standard conditions and 
reaction in the same manner as listed before afforded the mono fluorinated complexes.

F(1)

N(1) JM(2)

Mn(1)
N(2)

N(1)
N(1)

N(2)

Figure 3.17. [(L9)Mn](C104)2- Hydrogen atoms and counter ions have been removed 
for clarity. Due to 1/3 occupancy per cell, the fluorine atom is shown on one phenyl 
ring as 3/3 occupancy. Selected Bond Lengths; N(l)-Mn(l) 2.313(4), N(2)-Mn(l)

2.216(4).

The [(L9)Mn](C104)2 complex exhibits a $  of 2 2° therefore a pseudo trigonal- 
prismatic environment. This complex is highly comparable with it’s triply fluorinated 
[(L,)Mn](C104)2 analogue. With its O of 21°, chelate configuration and natural 
orientation the mono fluorinated version exhibits exactly the same geometrical 
preferences as [(L1)Mn](C104)2. The chelates formed are of the configuration (Ml). 
This type of crystal packing has shown to be highly organised as the single fluorine 
atom is found to have l/3rd occupancy within the cell. The Mn-Naniime and Mn-Nring 
bond lengths show minimal deviation from [(L1)Mn](C104)2 structure.
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L9 L1

Mn-NRing 2.313A 2.308A

Mll-N Aniline 2.216A 2.219A

Figure 3.18: Comparison of Mn-NRjn& Aniline average bond lengths for the mono 

fluorinated (L9) and triply fluorinated (L1) complexes

Iron complexes

All complexes were synthesised by the stated procedure, and crystal data collected for 

all complexes except [(L3 )Fe](ClC>4 ) 2  as crystals of X-Ray quality were not 

forthcoming. The bond lengths were similar with averages of 

[ (L1 )Fe] (C 104)2. (MeCN) =1.978A and [(L2)Fe](C104)2.(MeCN)=1.983A. These are 

comparable with averages of N, N, N \  Ar’-tetrakis(2 -pyridylmethyl)ethylene-diamine 

(1.978A)-Toftlund116, and of 1, 4-bis(2-pyridylmethyl)-l, 4, 7-triazacyclononane 

(1.988A)-Spiccia118. The values are also shorter than those found in the parent 

[(L3 3)Fe](C104 )2 .(MeCN) (2.103A), and so more indicative of Fe11 low spin 

compounds (~2 .0 0 A). The O for the crystal structures obtained were both similar with 

[(L1)Fe](C104)2 .(MeCN) =47.5°and [(L2)Fe](C104)2 .(MeCN) =46.6°. These angles are 

the closest of this class of complex to octahedral geometry. From the crystal data 

generated, we can assign the chelate geometry to be (555) [(L1)Fe](C104 )2 .(MeCN) 

and (MX) [(L2)Fe](C104)2 .(MeCN) for the figure 3.19. Both crystal structures were 

found to be of an achiral spacegroup, therefore having both compounds with both 

chelates formed within the same crystal lattice. The compound [(L1)Fe](C104)- 

2 .(MeCN) was the only metal complex for this ligand (L1) to not complex in a chiral 

spacegroup.
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N(1) N(6)

N(2)
, F e ( 1 ) ^ N ( 6 )

N(3)N(4]

[(Lt)Fe](CI0 4)2.MeCN |(L2)Fe|(CIOj)2 .MeCN
Figure 3.19: [(L‘)Fe](C1 0 4)2 .MeCN selected Bond Lengths; N(l)-Fe 1.839(4), N(2)-Fe 2.004(4), N(3)-Fe 2.033(4), N(4)-Fe 2.000(4), N(5)-Fe

1.991(4) and N(6 )-Fe 2.008(4). Crystal configuration is of geometry (A). [(L2)Fe](C1 0 4)2 .MeCN selected Bond Lengths; Fe-N(l) 2.011(4), Fe-

N(2) 2.013(4), Fe-N(3) 2.006(4), Fe-N(4) 1.960(4), Fe-N(5) 1.951(4) and Fe-N(6 ) 1.957(4). Crystal configuration is of geometry (A). Hydrogen

atoms, counter ions and solvent molecules have been removed for clarity.
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The 57Fe Mossbauer spectra was obtained for all three compounds. This spectroscopic 

technique employs the use o f resonant absorption of gamma rays by 57Fe in order to 

investigate the energy levels o f the nucleus. These energy levels are modified by the 

nuclei’s environment and so it can be considered that Mossbauer spectroscopy uses 

the nucleus to probe its own environment.

A typical Mossbauer spectrum is characterised by the number, shape, position, 

and relative intensity of various absorption lines. Two major parameters are used in 

Mossbauer spectroscopy. The first, isomer shift, measures total electron density (s- 

electrons) at the nucleus. Any factor that increases the s-orbital population will also 

increase the isomer shift, i.e. increased covalency of bonds, presence of lone pairs of 

electrons with high S-character, increase in oxidation state and a decrease in co

ordination number. The second parameter, quadrupole splitting, gives information on 

the electric field gradient. The quadrupole splitting therefore reflects the symmetry of 

the bonding environment and the local structure of the Mossbauer atom.

Dr Dave Evans of the John Innes Centre, Norwich, ran the Mossbauer 

Spectroscopy of the iron complexes and from the results, derived the d-orbital 

configuration of the metal centres. The [(L1)Fe](C1 0 4 )2 -(MeCN) Mossbauer spectrum 

shows two overlapping quadrupole split doublets. The second doublet is very broad 

and so the complex has been tentatively assigned as high-spin iron (III). The 

[(L2)Fe](C1 0 4 )2 -(MeCN) spectrum is seen as a major doublet and two minor doublets. 

These values are consistent with high-spin iron(II). The [(L3 )Fe](C1 0 4 ) 2  spectrum 

exhibits a major feature of a quadrupole split doublet, and is superimposed upon a 

broad unresolved feature. Assignment is difficult of the d-orbital arrangement and 

could be low-spin iron(II) or high-spin iron(III). Parameters are very similar to the 

mossbauer recorded for [(L3 3)Fe](C1 0 4 ) 2  (i s. = O.Sbmms'1, q.s. = O^Omms'1). From 

all the mossbauer spectra obtained, we feel that some contamination has occurred as 

crystal data and mossbauer spectra do not concur. Average bond lengths found from 

the crystal data are not indicative of the metal centres the mossbauer seems to suggest. 

The single crystal X-Ray crystal data shows that all iron samples are low spin Fe11. 

The mossbauer samples are ran from the bulk sample and ground with boron nitride. 

Possible oxidation of the samples upon preparation shows the air-sensitive nature of 

the compounds and is confirmed by the mossbauer data.
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w-

3 ■t Si

[(L')Fe](C1 0 4 )2 .1 (MeCN) |(L2 )Fe|(C1 0 4)2. 1 (MeCN) |(L3 )Fe|(CI0 4 )2

Figure 3.20: The Mossbauer spectra for [(L1)Fe](C1 0 4)2 .(MeCN),, [(L2)Fe](C1 0 4)2 .(MeCN) and [(L3)Fe](C104)2.

[(L1)Fo](C104)2.1(MeCN) [(L2)Fel(C104)2 .l(MeCN) [(L3)Fel(C104)2
Isomer shift (mms"‘) 0.19 and 0.34 1.36 0.57

Quadrupole splitting (mms'1) 1.95 and 1.31 3.43 0.23
Assigned d electron configuration High spin Fe111 High spin Fe11 Low spin Fea/High spin Fe111
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Cobalt complexes

Synthesis of [(L1)Co](C1 0 4 ) 2  and [(L3)Co](C1 0 4 ) 2  afforded blue/green precipitates 

indicating oxidation of the initial Co(C1 0 4 ) 2  reactant to the Co111 species. 

Unfortunately crystals o f X-Ray quality were not obtained. From crystal data obtained 

by Perkins et al79 for [(L33 H)Co](C1 0 4 ) 2  indicated that a proton is removed from one 

of the anilines hence producing a single anilido pendant. This occurs at neutral pH, 

and the fully protonated species can be formed by the addition of a few drops of 

perchloric acid. An instant colour change is observed from purple to yellow (Figure 

3.21).

-2+ “'3+

HC104 Addition

[C104 ] 2 [C104 ] 3

Purple Yellow

Figure 3.21: Reaction scheme indicating re-protonation of the anilide species to the 

amine moiety.

Due to some residual Co11 present in the samples, clean *H NMR spectra for [(L13' 

h)Co](C104 ) 2 were unobtainable. Heating of the samples in ethanol in the presence of 

oxygen, then subsequent solvent removal did not oxidise the excess cobalt salts, so 

did not afford pure diamagnetic samples.
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UVM* S p tc tn  ot 0104)2 Comptaa

500 -

CS190 490 900 600300 400
jun)

 i l lHCofrCKM)? «M4CM faH^CoXClCM,? e , U«CKXCl04

Figure 3.22: UVTVis spectra of [(L^CoKClC^ complex.

Both UWVis spectra of [(L^CoKClO^, and [(L3)Co](C1 0 4 ) 2  (Figure 3.22) were 

identical and exhibited the same behaviour as the parent [(L33 'H)Co](C1 0 4 ) 2  sample. 

The mono deprotonated species (blue trace) has peaks at 332nm(347), 418nm(168), 

and 594nm(127). Upon the addition of HCIO4 , (red trace) one peak is seen at 

468nm(71). Upon the addition of NaOD to the neutral sample in the NMR tube, a 

purple precipitate was observed to form in the solution. We would hypothesise that 

this is the triply deprotonated neutral species[(L3 3‘3H)Co], NMR data was highly 

unclear with no assignable peaks.

From the !H NMR spectrum (Figure 3.23) it can be seen that there are three 

sets of protons in the aliphatic region which integrate to 3 .3:6.
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!j solvent

[Co'"L-h]CI2 in D p

J

t ------------------------- 1------------------------- 1------------------------- 1------------------------- 1-------------------------r~

8  7 6  5 4 3
S

Figure 3.23: 'H NMR spectra of [(L33 H)Co]C12 in D20

The unusual aliphatic arrangement observed we hypothesise to be protons present on 

the tacn ring to be of three differing environments. Further in depth investigation by 

'H NOE NMR must be carried out to confidently assign these protons. The ’H NMR 

spectra of the free amine ligand shows a single aliphatic peak ( 1 2  protons on 

macrocylic ring). Upon complexation, the aliphatic protons are locked into a 

tetrahedral arrangement and therefore generate different signals in the aliphatic region 

of the 1H NMR spectra. From the crystal structure obtained by Perkins the O for 

[L33Co'h] is 51°. This indicates an almost octahedral geometry, therefore the metal 

when complexed, may force the ligands macrocyclic ring to distort in a fashion not 

observed in the !H NMR of group twelve metal complexes of this class.

114



Chapter Three: Pendant Fluoroaniline derivatives o f triazacyclononane.

solvent

Figure 3.24: ]H NMR spectra of [(L3 3)Zn](C104 ) 2 in CD3CN

The two aliphatic peaks observed for [(Lx)Zn/Cd/Hg/Pb](C1 0 4 ) 2  complexes are 

assigned to the equatorial and axial protons from the macrocyclic ring and so integrate 

to 2  x 6 H. These can be observed in the spectra above at ~3.00ppm and ~3.60ppm. 

We tentatively assign these to be the endo and exo protons present on the aliphatic 

ring, but it can evidently be seen as that the complex forms a more defined and 

symmetrical geometry.
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Nickel complexes

Crystal data collected for all the nickel compounds showed very similar behaviour 

with regards to O. Angles of 40.3°, 43.0°, and 44.1° indicate geometry very close to 

octahedral. The parent [(L3 3)Ni](C1 0 4 ) 2  has a O of 44° therefore indicating alike 

geometrical environments. Average bond lengths are very similar {[(L1)Ni](C1 0 4 ) 2  = 

2.099A, [(L2)Ni](C104)2 .(MeCN)‘ =2.105 A and [(L3)Ni](C104 ) 2 =2.103A} to the 

parent complex (2.09A), comparable to the average bond lengths (2.09A) discussed 

by Hodgson et a /86, and shorter than trisethylenediamine nickel (2 .131 A) by
o*7

Chesnut . These averages are also very short for such Ni-N bonds when compared 

the Lkw complex (2.163 A)88.

Its restricted complexation chelate may force the metal to bond with a stronger 

metal-ligand interaction whereas the aminobenzyl derivative allows the ligand more 

freedom to complex thus weaker interaction and longer bonding. It is interesting to 

note that the non-bonding distances between the ortho fluorine’s show uneven 

puckering of the metal chelate rings. F ( 1 )-F (2) =6.550A, F ( 1 )-F (3) = 7.383A and F 

(2 )-F (3) =8.480A. The chelate formed is of (kXk) for both [(L2/3)Ni](C1 0 4 ) 2  structures 

shown are enanatiomorphus. As with all o f the L 1 metal complexes [(L1)Ni](C1 0 4 )2  is 

found to be chiral and so only (658) is found within the crystal unit cell.

86 Arulsamy N., Glerup J., Hodgson D J., Inorg. Chem., 1994, 33. 3043-3050.
8 Chesnut D J., Haushatter R C., Zubieta J., Inorg. Chim. Acta., 292,1999. 41-51.
88 Schlager O., Wieghardt K., Nuber B., Inorg. Chem., 1995, 34, 6449-6455.
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N(2)
N(2)

N(2] Nl<1) N(6)
lN I(1)

N(1)
N(1),

N flf N(4) N(3)N(2)

N(31

Nl(1)
N(6)no:

N[6)

|(L')NiJ(C1 0 4 ) 2  |(L2 )Ni|(C1 0 4 )2 .MeCN [(L3 )Ni|(CI0 4 )2

Figure 3.25: [(L')Ni](Cl0 4 ) 2  selected Bond Lengths; N i(l)-N (l)2.114(3), Ni(l)-N(2) 2.092(3). Crystal configuration is of the geometry (A). 

[(L2)Ni](C1 0 4)2 .MeCN selected Bond Lengths; N(l)-Ni 2.092(4), N(2)-Ni 2.112(4), N(3)-Ni 2.106(4), N(4)-Ni 2.112(4), N(5)-Ni 2.094(4) and 

N(6 )-Ni 2.111(4). Crystal configuration is of the geometry (A). [(L3 )Ni](C1 0 4 )2  selected Bond Lengths; N(l)-Ni 2.103(5), N(2)-Ni 2.089(5), 

N(3)-Ni 2.113(5), N(4)-Ni 2.088(5), N(5)-Ni 2.115(5) and N(6 )-Ni 2.088(4). Crystal configuration is of the geometry (A). Hydrogen atoms, 

counter ions and solvent molecules have been removed for clarity.
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Copper complexes

The research into copper complexes has been widely investigated, in which a 

geometrical distortion arises from the devised theory of Jahn-Teller. This distortion 

arises from the d-orbital arrangement of eg1 complexes (e.g.: high-spin Crn/Mnin, low- 

spin Con/Nim and Cu11). The lone electron present in the eg orbitals can occupy the 

dx2-y2 or dz2 orbital. In a symmetrical geometry this orbital degeneracy renders the 

molecule unstable and so will distort to remove this degeneracy. The energy o f the 

system is lowered by an asymmetric distortion of the complex geometry in the form 

of lengthening or shortening of bonds present along the z-axis. Within the cf 

configuration, Cu2+ complexes generally exhibit two trans bonds longer than the four 

equatorial bonds. The complex [Cu(NC>2 )6 ]2+ exhibits this behaviour with four 

equatorial bonds of 2.05A and two bonds along the z-axis of 2.31 A length. 

Theoretically a compression can also occur along the z-axis but complexes o f this 

nature are very rare. This was reported first by H A Jahn and E Teller89, and recently 

Falvello90 reviews this theorem.

89 Jahn H E., Teller E„ Proc. R. Soc. London A., 161, 220. 1937.
90 Flavello L R., J. Chem. Soc., Dalton Trans., 1997, 4463-4475.
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N(3)N(4]

Fcu(1)m ,
N(2)

N(1)
N(6)

,N{2)
N(1)

C«(1) N(1) N(6)N(1)

N(2) N{3)
N(2) N(4)

[(L^C uK C lO ^ |(L 2 )Cu](C1 0 4)2.MeCN [(L3)Cul(CI0 4 ) 2

Figure 3.26; [(L^CuKClC^ selected Bond Lengths; Cu(l)-N(l) 2.106(4), Cu(l)-N(2) 2.176(4). Crystal configuration is of the geometry (A). 

[(L2)Cu](C1 0 4)2 .MeCN selected Bond Lengths; N(l)-Cu 2.090(2), N(2 )-Cu 2.085(2), N(3)-Cu 2.291(2), N(4)-Cu 2.036(2), N(5)-Cu 2.095(2) 

and N(6 )-Cu 2.249(2). Crystal configuration is of the geometry (A). [(L3)Cu](C1 0 4 ) 2  selected Bond Lengths; Cu-N(l) 2.094(2), Cu-N(2) 

2.244(2), Cu-N(3) 2.107(2), Cu-N(4) 2.024(2), Cu-N(5), 2.236(2) and Cu-N(6 ) 2.111(2). Crystal configuration is of the geometry (A). Hydrogen 

atoms, counter ions and solvent molecules have been removed for clarity
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The dynamic Jahn-Teller effect is observed in compounds where this effect is 

“dampened out” and so not displayed. This symmetry is the result of time-averaged 

distortions that arises from the electronic-vibrational coupling. Distortions of this kind 

are very rare and to date only a few compounds have been synthesised which show 

this non-distortion. Parker et a l 91 have shown that in a C3 symmetric tris phosphinic 

acid tacn species the Jahn-Teller distortion can be suppressed. Other such compounds 

have been investigated by Cullen92,93, Bertini9 4  and Sheldon95.The [(L!)Cu] (0 0 4 ) 2  

complex has revealed an interesting result. [(L1)Cu](C1 0 4 ) 2  (Figure 3.23) displays two 

sets of bond lengths, the metal-macrocycle ring, metal-aniline bonds, and crystallises 

in the chiral cubic space group P21/3. The crystal structure shows that in the solid 

state this compound exhibits a dynamic Jahn-Teller distortion. The lack of a Jahn- 

Teller effect is observed for this compound and further investigation to fully research 

the true nature of the complex must be carried out by Q-band EPR spectroscopy. 

[(L2)Cu](C1 0 4 )2 .(MeCN) (Figure 3.26) exhibits similar pairs of bond lengths 

comparable to the parent ligand L33Cu. N6-Cu-N3=2.249+2.29lA (long x axis), N5- 

Cu-N 1=2.095+2.090A (medium Y axis), and N4-Cu-N2=2.036+2.085A (short z 

axis). These three pairs of bond length sets indicate a distorted rhombic system. This 

is stated as the medium and short bond groups are very close in length and the N6 and 

N3 donors are very long within the complex. The [(L3)Cu](C1C>4)2 structure (Figure 

3.26) also exhibits a pronounced rhombic distortion. The three sets of bond lengths 

are N2-Cu-N5=2.244A+2.236A (Long x axis), N6-Cu-N3=2.11lA+2.107A (medium 

y axis) and N4-Cu-N1=2.024A+2.094A (short z axis). The average bond lengths for 

the copper compounds (L1/2=2.14lA, L3=2.136A) were all found to be shorter than 

trisethylenediamine copper96 (2.160A). The non-bonding distances for the ortho 

fluorine’s are F (1)-F (2) =6.768A, F (2)-F (3) =6.760A and F (1)-F (3) =6.913A. We 

find these non-bonding distances to be the closet of all [(L3)M](C1 0 4 ) 2  complexes,

91 Cole E., Parker D., Ferguson G., Gallagher J F., Kaitner B„ J. Chem. Soc., Chem. Commun., 1991, 
1473.
9" Cullen D L., Lingafelter B C., Inorg. Chem., 10, 6, 1971, 1264-1268.
93 Cullen D L., Lingafelter E C., Inorg. Chem., 9, 8, 1970, 1858-1864.
94 Bertini I., Dapporto P., Gatteschi D., Scozzafava A., J. Chem. Soc., Dalton Trans., 1979, 1409-1414.
95 Sheldon R I., Jircitano A J., Beno M A., Williams J M., Mertes K B., J. Am. Chem. Soc., 1983, 105,
3028-3031.
96 Bertini I., Dapporto P., Gatteschi D., Scozzafava A., J. Chem. Soc., Dalton Trans., 1979, 1409.
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indicating an even geometry within the structure. The chelate formed is of (XXX) for 

both [(L2 3 )Cu](C1 0 4 ) 2  structures shown that they are enantiomorphous. As with all of 

the L1 metal complexes [(L1)Cu](C1 0 4 ) 2  is found to be chiral and so only (865) is 

found within the crystal unit cell.

Zinc complexes

The crystal structures of [(L2)Zn](C1 0 4 )2 .(MeCN) (Figure 3.27) and 

[(L3)Zn](C1 0 4 ) 2  were obtained and the values of <D indicate geometry closer to 

octahedral than trigonal prismatic. The <I> for [(L2)Zn](C1 0 4 ) 2  (MeCN) and 

[(L3)Zn](C1 0 4 ) 2  were 38.4° and 37.4° respectively, whereas the geometry for 

[(L1)Zn](C1 0 4 ) 2  could be best described as an intermediate between octahedral and 

trigonal prismatic as it has a d> of 25.8°. The parent complex [(L33)Zn](C1 0 4 ) 2  is much 

closer to octahedral than trigonally prismatic with a $  of 50°. Upon complexation five 

membered chelates are formed between the A-aryl ortho aniline and the tacn 

backbone. Due to the rigidity of this system it may be restricting the complex to adopt 

a natural trigonally prismatic geometry as when compared to the L complexes 

researched by Wieghardt et a /133. The 6 membered chelates formed show more 

flexibility and so the Zn complex has a O  of 13.6°. The non-bonding distances are F 

(1)-F (2) =6.875A, F (1)-F (3) =7.030A and F (2)-F (3) =6.933A. The chelate formed 

upon complexation is of (AAX) for both [(L2/3)Zn](C1 0 4 ) 2  structures. They are both of 

an achiral spacegroup so are enantiomorphous. As with all of the L1 metal complexes 

[(L1)Zn](C1 0 4 ) 2  is found to be chiral and so only (XXX) is found within the crystal unit 

cell.
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l(L')Zn](CI0 4 ) 2 [(L2)Znl(C1 0 4 h.MeCN [(L3)Zn](C1 0 4 ) 2

Figure 3.27. [(L )Zn](C104)2 selected bond lengths; Zn(l)-N(l) 2.241(3), Zn(l)-N(2) 2.125(2). Crystal configuration is of the geometry (A).

[(L2)Zn](C 1 0 4 ) 2  MeCN selected bond lengths; N(l)-Zn 2.218(3),'N(2)-Zn 2.182(3), N(3)-Zn 2.227(3), N(4)-Zn 2.130(3), N(5)-Zn 2.117(3) and

N(6)-Zn 2.143(3). Crystal configuration is of the geometry (A). [(L3)Zn](C104)2 selected bond lengths; Zn-N(l) 2.187(3), Zn-N(2) 2.158(3), Zn-

N(3) 2.205(3), Zn-N(4) 2.120(3), Zn-N(5) 2.194(3) and Zn-N(6) 2.143(3).Crystal configuration is of the geometry (A). Hydrogen atoms, counter

ions and solvent molecules have been removed for clarity.
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N(1N(2)

Zn(1)
N(1)« ,N(2)

N(2)
N(1)

Figure 3.28. [(L9 )Zn](Cl0 4 )2 - Hydrogen atoms and counter ions have been removed 

for clarity. Due to 1/3 occupancy per cell, the fluorine atom is shown on one phenyl 

ring as 3/3 occupancy. Selected Bond Lengths; Zn(l)-N(l) 2.130(5), Zn(l)-N(2)

2.247(5).

The [(L9)Zn](C1 0 4 ) 2  complex exhibits a O of 27° and is very similar to 

[(L9)Zn](C104)2 with 26°. Its chelate configuration is AAX and natural orientation is A. 

It is found to crystallise in a chiral spacegroup, therefore no A enantiomers are found 

in the cell. This type of crystal packing has again shown to be highly organised as the 

single fluorine atom is found within the cell as 1/3”* occupancy. The average bond 

lengths (L1=2.183A, L2=2.170A, L3=2.168A) are shorter in this class of compounds 

when compared to trisethelenediamine zinc97 (2.190A). This could be due to the 

increased electron density present with the o/7//o-phenylenediamine analogous ligands 

we have synthesised. As can be seen from figure 3.29, the bond lengths between the 

L9 and L1 complexes are highly similar.

97 Li J., Inorg. Chim. Acta., 273, 1998. 310-315.
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L9  — ' L 1

Zn-NRing 2.247A 2.241 A
Zn-N Aniline 2.130A 2.125A

Figure 3.29: Comparison of Zn-NRing/Aniline average bond lengths for the mono 

fluorinated (L9) and triply fluorinated (L1) complexes.

The solution behaviour of [(L3 3)Zn](BPh4 )2  was investigated by variable 

temperature *H NMR. The range over which the experiment was carried out initially, 

upon further consideration was not wide enough. Perkins et a f 9 originally carried out 

the experiment to -40°C in CD3CN, then repeated in DMF. We envisioned at lower 

temperatures that the aliphatic proton peaks would shift or merge, indicating some 

behaviour at even lower temperatures. This data might give an insight into the nature 

of the fluxionality of the metal complexes.

J _ _ _ _ _ _ _ _ _ _ _ A A 1

Figure 3.30: Variable Temperature NMR of [(L3 3 )Zn](BPh4 ) 2  in <4-Acetone. 

Temperature range -80°C-25°C and * denotes water peak.
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The initial measurement was carried out in ^ 7 -DMF which has a lower limit of -40°C

We prepared the new sample initially from the nitrate salt, and which upon metathesis 

with an aqueous sodium tetraphenylborate solution afforded the tetraphenylborate 

salt. The white solid was dissolved in ^-acetone and so gave us a lower limit of -

As can be observed in figure 3.30, upon cooling to -80C, the amine proton 

singlet shifts upfield from 5.45ppm to 5.65ppm. The aliphatic multiplet at 3.85ppm 

merges to a broad singlet and starts to collapse into the baseline. When it reaches 

193K this aliphatic peak shifts upfield slightly from 3.80ppm to 3.85ppm. We would 

predict that if we could cool the solution further, then this peak would collapse fully 

into the baseline and a sharp singlet would rise in the centre of the previous aliphatic 

peak. There was a trace of residual water at 2.5ppm which shifted to 3 .45ppm when 

cooled to -80°C. This is perhaps indicative of hydrogen bonding to the [(L3 3)Zn]2" 

cation. There was no observed change in the aromatic region over the whole 

temperature range.

on the NMR machine. This sample was originally prepared as a perchlorate salt.

80°C.

N
h2

T r ig o n a l ly  p r i s m a t ic  
t r a n s i t io n  s ta te

N
H2

Figure 3.31: Bailar twist mechanism for interconversion of A to A for

[(L3 3 )Zn]2+.
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We propose that upon cooling, this fluxionality is reduced and so the stereochemical 

environment of the aliphatic protons approaches equivalence. At -80°C the 

macrocyclic protons present at 3.20ppm appear resemble the macrocyclic protons at - 

40°C. The rate at which these protons are merging is interesting as there are two 

different types present due to their position on the tacn ring. If we were able to run the 

*H NMR at a lower temperature, we feel that the aliphatic protons would resemble 

broad peaks, then collapse to the baseline, then rise as two singlets at ~3.85ppm and 

~3.15ppm. Further discussion of like tacn and cyclen systems which exhibit the same 

behaviour has been investigated by Wainwright et a/98' 10°. Wainwright shows this

A<->A interchange with examples such as alkaline earth metal A-l, 4, 7, 10-tetrakis 

((R)-2-hydroxy-2-phenylethyl)-l, 4, 7, 10-tetraazacyclododecane complexes101.

Cadmium Complexes

The complexes of [(L1/2/3)Cd](ClC>4 )2  were all solved crystallographically and from 

this data it is observed that these complexes all exhibit geometry closest to trigonally 

prismatic. For [(L^CdKClO^ O =19°, [(L2)Cd](C104 ) 2 O = 5.8° and 

[(L3)Cd](C1 0 4 )2 -(MeCN) O = 2.4° Comparison to the [(L3 3)Cd](C1 0 4 ) 2  complex, the 

O of 0 ° displays the ideal trigonally prismatic geometry, with its fluorinated 

counterparts close to this value. Bond lengths for [(L3)Cd](C1 0 4 ) 2  (2.357A) are 

comparable with bis (2 -pyridylmethyl) amine cadmium complexes (2.350A) 

synthesised by Hodgson et al102, 3, 6 , 14, 17, 23, 24-hexatricyclo [17.3.1.1812] 

tetracosa-1 (23), 8 , 10, 12, (24), 19, 21-hexaene (2.353A) by Jackels et al128, and tris 

ethylenediaminecadmium (2.35A) by Malarova103. The [(L2)Cd](C1 0 4 ) 2  bond average 

is 2.361 A and so similar to Planalp130 et aVs N, N \ N ”-tris (2 -pyridylmethyl)-c/5 , c/5 - 

1 , 3, 5-triaminocyclohexane (2.360A). The [(L3)Cd](C1 0 4 ) 2  (MeCN) complex exhibits

9X Weeks J M.. Buntine M A , Lincoln S F., Wainwright K P., Inorg. Chim. Acta., 331, 2002, 340-344.
99 Weeks J M„ Buntine M A., Lincoln S F., Tiekink ER T .. Wainwright KP..J. Chem. Soc., Dalton 
Trans., 2001. 2157-2163.
100 Dhillon., Lincoln S F., Madbak S., Stephens A K W., Wainwright K P., Whitbread S L., Inorg. 
Chem., 2000. 39. 1855-1858.
101 Whitbread S L., Valente P., Buntine M A., Clements P., Lincoln S F., Wainwright K P., J. Am. 
Chem. Soc.. 1998, 120, 2862-2869.
102 Glerup J., Goodson P A., Hodgson D J., Michelsen K„ Nielsen K M., Weihe H., Inorg. Chem., 
1992,31,4611-4616.
103 Malarova M., Kuchair J.. Cemak J.,Acta. Cryst., 2003, c59, m280-m282.
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a bond length average of 2.312k which is long but not uncommon as Bernhardt’s129 6 , 

13-dimethyl-1, 4, 8 , 11-tetraazacyclotetradecane-6 , 13-diamine derivatives (2.319k) 

shows similar bond lengths.

127



Chapter Three: Pendant Fluoroaniline derivatives o f triazacyclononane.

N(2) N(1)

CdO)N(1)

N (2]

NO)

C d ( 1 ) N (4 )

NO)NP)

|(L ')C d|(C 1 0 4 ) 2  |(L2)Cd|(CIOj)2 |(L,3)C d|(C I04)2.MeCN

Figure 3.32. [(L')Cd](C1 0 4 ) 2  selected bond lengths; Cd(l)-N(l), 2.295(3), Cd(l)-N(2) 2.419(3). Crystal configuration is o f the geometry (A). 

[(L2)Cd](C104 ) 2 selected bond lengths; Cd-N(l) 2.303(11), Cd-N(2 ) 2.419(10), Cd-N(3) 2.432(11), Cd-N(4) 2.283(12), Cd-N(5) 2.435(11 ) and 

Cd-N(6 ) 2 295(12). Crystal configuration is of the geometry (A). [(L/')Cd](C104 ) 2 MeCN selected bond lengths; Cd-N(l) 2.410(4), Cd-N(2) 

2.371(4), Cd-N(3) 2.293(4), Cd-N(4) 2.413(4),Cd-N(5) 2.441(4) and Cd-N(6 ) 2.302(5). Crystal configuration is of the geometry (A). Hydrogen 

atoms, counter ions and solvent molecules have been removed for clarity.
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The non-bonding distances are F ( 1 )-F (2) =7.724A, F (1)-F (3) =7.843A and F (2)-F 

(3 ) =8.149 A indicating an unequal puckering of the aromatic rings. The chelate 

formed is of (6 6 6 ) for both [(L2)Cd](C1 0 4 ) 2  and [(L3)Cd](C104)2 .(MeCN) structures 

shown but they are of an achiral spacegroup so are enantiomorphous. As with all of 

the L1 metal complexes [(L1)Cd](C104 ) 2 is found to be chiral and so only (XXk) is 

found within the crystal unit cell.

Mercury complexes

The fluorinated tris aniline tacn derivative of [(L1)Hg](C1 0 4 ) 2  afforded crystals of 

suitable for X-Ray diffraction. The mercury complex shows a geometry close to 

trigonal prismatic with an d> angle of 18.7° Although slightly smaller than the 

analogous Cd, we would predict the O for the [(L2/3)Hg](C1 0 4 ) 2  analogues to be 

smaller than the Cd values and so closer to 0 °.

N(1).

NO)

HflO)N(2)
N{2)

n o ;

Figure 3.33. [(L1)Hg](C1 0 4)2 . Hydrogen atoms and counter ions have been removed 

for clarity. Selected Bond Lengths; Hg(l)-N(l) 2.320(5), Hg(l)-N(2) 2.509(5). 

Crystal configuration is of the geometry (A).

The complex [(L1)Hg](C1 0 4 ) 2  is found to be chiral and so only (6 6 6 ) configuration of 

the chelate is found within the crystal unit cell. [(L1)Hg](C1 0 4 ) 2  was found to have an 

average bond length of 2.415A which is highly comparable to the parent
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[(L3 3)Hg](C1 0 4 ) 2  complex (2.412A), very similar to the LKX̂ complex133 (2.427A), 

and longer than triethylenediamine mercury perchlorate by Strasdeit104 Satellite peaks 

of 199Hg isotope are either side the amine peak and exhibit coupling constants of 

[(L1)Hg](C104)2 = 55.29Hz and [(L3)Hg](C104)2 = 54.77Hz. For comparison, 

Wieghardt133 reports coupling between the 199Hg isotope in [(LKW)Hg](C104)2 with 

the amine protons («7//g//=45Hz) and benzylic protons (J//g//=58Hz).

Lead complexes.

The crystal data was obtained for the [(L3)Pb](C104)2 complex (Figure 3.34), and 

produced an interesting result. The lead structure is the first of its kind for this class of 

compound to exhibit one of the aniline pendants to twist back against the natural 

rotation of the ligand, in which the complex does not conform to the usual A (555) or 

A (MX) stereochemistry. All structures beforehand have been (A) or (A) in 

configuration. This buckling of the ligand is indicative to the accommodation o f the 

stereochemically active lone pair of electrons present on the lead centre. Initial lead 

crystal structures that exhibited this lone pair were researched by Lawton and 

Kokotailo105,106. Compounds that exhibit this lone pair are generally main group 

compounds, and examples are IF7, XeF6, SeC^2', SeBr62', TeCk2* and SbBr63'.

Lead is the largest metal to date that has been complexed with this class of 

ligand and due to the strain of the bond lengths, we would predict that metals of any 

larger ionic radius would not be able to complex with this ligand.

104 Strasdeit H.. Dahme A K., Weber M., Pohl S., Acta Crystallogr. 1992, c48, 437.
105 Lawton S L., Kokotailo G T., Nature (London)., 1969, 221, 550.
106 Lawton S L., Kokotailo G T„ Inorg. Chem., 11, 2,1972, 363-368.

130



Chapter Three: Pendant Fluoroani/ine derivatives o f triazacyc/ononane.

Figure 3.34. [(L3)Pb](C104)2. Hydrogen atoms and one perchlorate counter ion have 
been removed for clarity. Selected Bond lengths; N(l)-Pb 2.691(3), N(2)-Pb 2.660(3), 
N(3)-Pb 2.649(3), N(4)-Pb 2.673(3), N(5)-Pb 2.697(3) and N(6)-Pb 2.539(3).

The average nitrogen-metal length for the Pb-NRing and Pb-NAniline is 2.661 A, and 
2.642A respectively. This is in agreement with values in other complexes such as 

Schroder’s107 binuclear cofacial lead complex-2.68A, and the “free” tacn-lead average 
bond lengths108 are 2.44A. Figure 3.35 depicts the Van Der Waals radii of the lead 
centre its nitrogen donors, clearly showing the cleft open on the right side.

107 Tei L., Area M., Aragoni M. C., Bencini A., Blake A. J., Caltagrione C., Devillanova F. A., 
Fomasari P., Garau A., Isaia F., Lippolis V., Schroder M., Teat S. J. and Valtanconi B., Inorg. Chem.. 
2003. 42, 8690-8701.
108 Wieghardt K., Kleine-Boymann., Nuber B„ Weiss J., Zsolnai L. and Huttner G., Inorg. Chem.. 
1986. 25. 1647-1650
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Figure 3.35. [(L3)Pb](C104)2. This depicts the Van Der Waals radii of the lead and 
nitrogen donors at the complex centre (Left). Note the cleft of the open face of the 

lead centre.

The perchlorate-lead bond lengths range from 3.128A-3.974A. These are too long to 
be classed as bonds and so the complex is truly hexa-coordinated. The 1-(1- 
methylimidazol-2-ylmethyl)-l, 4, 7-triazacyclononane, Di Vaira109 complex exhibits 
similar bonding with its perchlorate, but has shorter lengths (2.950A-3.189A). This 
we feel is due to the more flexible ligand allowing more accessibility to the lead 
centre, thus shorter bonding to its counterion. Our ligand is more rigid due to the 
phenyl rings and so this constraint prevents stronger bonding from the perchlorate ion. 
Other lead complexes have been synthesised which also exhibit this donor 
arrangement to accommodate the leads lone pairs110, U1,112‘

10 Di Vaira M., Guerra M., Mani F. and Stoppioni P. J. Chem. Soc., Dalton Trans., 1996, 1173-1179.
110 Di Vaira, M., Mani F., Stoppioni P., Eur. J. Inorg. Chem., 1999, 833-837.
111 Di Vaira M., Mani F., Stoppioni P., J .  Chem. Soc., Dalton Trans., 1998, 3209-3213.
112 Bazzicalupi C . ,  Bianchi A . ,  Bemi E . ,  Calabi L., Giorgi C . ,  Mariani P., Losi P., Valtancoli B., Inorg. Chim. 
Acta., 329, 2002, 93-99.
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19F NMR shifts of mono and tris fluorinated zinc complexes.

It is of interest to note the similarities in the ,9F NMR shifts observed for these L9 and 

L10 compounds with the triply fluorinated compounds L1 and L2.

L9 L1 L '“ L1

N 02 -103ppm -102ppm -120ppm -118ppm

n h 2 -124ppm -124ppm -123ppm -117ppm

Zn -112ppm -112ppm -114ppm -113ppm

Figure 3.36:19F NMR comparison table for shifts.

The 19F NMR shifts are very close to the triply fluorinated counterparts with 

only the amine version of L10 and L2 slightly different (-123ppm-(-l 17ppm)). These 

trends show that when the fluorine is in the meta position to the amine moiety, no 

discemable shift is observed due to being deactivated by the amine group. The 

activating fluorine when para to the amine shows marked shifts when converted from 

the nitro to amine then complexed with zinc. We would expect that the mono ortho 

derivative, if synthesised would exhibit the biggest degree of shift in its 19F NMR 

spectra.
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Perchlorate counterion hydrogen bonding.

The crystal data obtained revealed that 6 structures exhibit significant hydrogen 

bonding with one of their perchlorate counterions. Figure 3.37 shows the lengths of 

the perchlorate-amine hydrogen bond distances.

Complex Hydrogen Bond Length. (A) Figure

[(L1)Mn](C104)2 2.186 3.38A

[(L‘)Fe](C104)2MeCN 1.996+2.125+2.239 3.38B

[(L1)Ni](C104)2 2.232 3.39A

[(L3)Ni](C104)2 2.155+2.242 3.39B

[(L3)Cu](C104)2 2.137+2.190 3.40 A

[(L3)Zn](C104)2 2.234+2.242 3.40B

Figure 3.37: Table of perchlorate-aniline hydrogen bond lengths.

The structures for [(L')Mn](C104)2, [(L')Fe](C104)2MeCN, [(L‘)Ni](C104)2, all 

exhibit a “capping” mode as the three of the perchlorate oxygen’s hydrogen bond to 

three of the exo-protons of the amine groups present on the anilines. These bond 

lengths are over the range of 1.996-2.239A. The structures of [(L3)Ni](C104)2, 

[(L3)Cu](C104)2, and [(L3)Zn](C1 0 4 ) 2  all exhibit hydrogen bonding but not in the same 

fashion as the previous three examples. These structures show that only one oxygen 

on the perchlorate interacts with two amine protons on the aniline group. The 

counterion is now between two aniline protons and so they share the perchlorate 

oxygen by forming a bridging conformation. It is of interest to note that for the ligand 

L3 as the fluorine is ortho to the amine and the hydrogen bonding is only through one 

perchlorate oxygen. We hypothesize due to the position of the fluorine, the “capping” 

mode of the perchlorate cannot be adopted due to electron repulsion. For the L 1 

complexes the fluorine is para to the amine therefore sterically unhindered and not 

repulsed by the electron density of the fluorine. This space above the metal complex 

allows the threefold hydrogen bonding to occur. It is of interest to note that no 

counterion-aniline hydrogen bonding occurs with any of the cadmium compounds. In
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the parent [(L3 3)Cd](C1 0 4 ) 2  complex both its perchlorate counterions are seen to 

participate in hydrogen bonding by forming the N-H O H-N array. This perchlorate 

oxygen bridging is mirrored within the complex, but the parent complex exhibits 

perfect trigonal prismatic geometry with a twist angle of 0°. The complexes shown 

here have less than ideal twist angles (L1=19°, L2=6° and L3=2°) and so the aniline 

protons are not as readily presented for hydrogen bonding in this fashion. The parent 

complex aniline protons are observed to point directly up and away from the plane of 

the aniline ring.
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0 (3 )
0 (2),

0(4)
0 (1)

N(4)

1
N(5)i

N(2)

Figure 3.38: [(L1)Mn](C1 0 4 ) 2  crystal structure with one perchlorate capping the amine protons. The 0 -H  distances are 2.186A. 

[(L^FeK C lO ^^M eC N ) crystal structure displaying the capping mode o f the perchlorate counter ion. The 0 -H bond lengths are 1.996A, 

2.125Aand 2.239A.
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Figure 3.39: [(L1)Ni](C104)2 with perchlorate counterion capping three exo aniline protons of a distance of 2.232A. [(L3)Ni](C104)2 perchlorate 
counter ion hydrogen bonding to aniline protons. Bond lengths are 2.137A and 2.190A.
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Figure 3.40: The hydrogen bonding modes between the perchlorate and the aniline protons of [(L3)Cu](C104)2 and [(L3)Zn](C104>2 Bond 
distances are 2.155A + 2.242A and 2.234A + 2.242A respectively.
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Functionalisation of 1, 4, 7-triazacycIononane

We were able to successfully grow crystals of X-Ray quality of L32F2 and the crystal 

structure is included as appendix ii. The bis substituted ligand bis 1, 4-bis (2-nitro, 4- 

fluorophenyl), 1, 4, 7-triazacyclononane (L32F2), is found to crystallise with a 

potassium ion 3.067A away from the secondary nitrogen. This occurs due to the 

acid/base work up needed to isolate the bis-substituted product. The packing diagram 

indicates two potassium atoms bridging two secondary nitrogens thus the N-N 

distance being 4.243 A apart. The ligand crystallises in an ordered fashion, with the 

aromatic rings arranging within the same plane. There is no n stacking from the 

aromatic rings as they seem to stack in a staggered fashion and so are not directly 

above or below the preceding ligands aromatic rings.

An overall reaction scheme can be seen in Figure 3.41 for the routes to mono 

and bis substituted tacn ligands. These intermediates are then further reacted to form 

the triply substituted species of the overall scheme AAB or ABB. The addition of 

mono-fluorinated _ nitrobenzene in the presence of base then afforded the first 

intermediates. It has been found that the bis substituted species is more readily 

isolated through acid/base work up. More efficient work up procedures are needed to 

optimise the synthesis of the mono substituted species. An option available in the 

future could be the addition of 1 equivalent of fluoronitrobenzene to 5-10 equivalents 

of tacn. The excess macrocycle could be recovered by distillation, thus isolating the 

desired species.
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NO-

1 Equivalent

H

K2C 0 3, MeCN 
85°C. 18 HoursH

N02

KF. MeCN 
95°C, 18 Hours

K2C 03, MeCN 
85°C, 18 HoursR R

y  2 Equivalents2 Equivalents

KF, MeCN 
95°C, 18 Hours

no2

1 EquivalentR

R]=H, A2=F 2, 4-Difluoronitrobenzene 
Rj=F, A2 H 2, 5-Difluoronitrobenzene

Figure 3.41: Reaction scheme of the formation of bis fluorinated, tris substituted tacn

ligands.

We have developed a synthesis for the selective addition of differing fluorinated 

nitrobenzene derivatives, with the fluorines being present in the ortho, meta and para 

positions. Figure 3.42, shows this range of ligands. The fluorine position is with 

respect to the amine moiety of the aniline. To date we have synthesised tris, bis and 

mono fluorinated versions, but due to time constraints not all amine ligands were 

produced. We see no constraints as to why these could not be hydrogenated, and 

complexed. Also, extension of this class of ligands was not extended to the 2, 6- 

difluomitrobezene compound as due to its commercial availability. It is observed with 

the more activated ortho fluorine that the formation of bis tacn derivatives is more 

prevalent. This moiety could be added to the tacn ring, but under higher dilution 

conditions. Functionalisation of the tacn ring could be used as a useful tool to tuning 

the properties of the macrocycle, with the prospect of mixing different pendants. 

Developing a specific ligand could be achieved, as further groups and macrocycles
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could be added by addition to the aniline rings, through further SNAr reaction with the 

activated ortho and para fluorines.

1st Nitrogen Site 2 Nitrogen Site 3rd Nitrogen Site

Aniline Aniline Aniline

Aniline Aniline Para-Fluoro

Aniline Para-Fluoro Para-Fluoro

Para-Fluoro Para-Fluoro Para-Fluoro

Aniline Aniline Meta-Fluoro

Aniline Meta-Fluoro Meta-Fluoro

Meta-Fluoro Meta-Fluoro Meta-Fluoro

Meta-Fluoro Meta-Fluoro Para-Fluoro

Meta-Fluoro Para-Fluoro Para-Fluoro

Aniline Meta-Fluoro Para-Fluoro

Figure 3.42. Moiety table for differing tacn fluorinated aniline pendants.

Formation of the mono nitrobenzene tacn compound was synthesised under standard 

conditions, then one equivalent of 2, 5- difluoronitrobenzene was added and reacted 

further. Work up isolated the bis substituted compound, which was fully 

characterised, then reacted finally with one equivalent of 2, 4-difluoronitrobezene, to 

form the desired compound. The order of addition of the fluorinated nitrobenzene’s 

was crucial, as if the bis fluorinated derivatives were added in reverse order, then 

chromatography would have had to have been employed to remove the mis-inserted 

product, thus drastically decreasing the overall yield.
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F

C-rO K2C 0 3, MeCN 
18 Hours, 85°C

H

K2C 0 3. MeCN 
18 Hours, 85°C

F

F

1 Eq.

KF, MeCN 
18 Hours, 85°C

▼

F

F

Figure 3.43: Substitution by three different fluoroaniline pendant groups onto a tacn

ring.

We chose to add the 2, 4 difluoronitrobenzene last to maximise yield and minimise 

unwanted products. The overall yield is 7%, but we feel repeating this experiment 

would increase the yield o f the second and third steps from 26% and 33% 

respectively. Unfortunately hydrogenation and complexation could not be attempted 

due to lack of sample and time constraints. It would be interesting to form a metal 

complex to observe the coordination environment of the metal with six unequal 

nitrogen donors. Repeating this methodology with 2, 6-difluoronitrobenzene, would 

increase the class of tris substituted compounds fourfold [nb=nitrobenzene (o/m/p), 

(o/m/nb) and (o/p/nb)].
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m 2+

Ionic Radii 

(pm)

Para Meta Ortho I "

Mn 0.83 20.8 35.6 12.4 33.0

Fe 0.61 

(0.55 Is Fe111)

47.5 46.6 NA 48.0

Ni 0.69 40.3 43.0 44.1 46.0

Cu 0.73 28.1 40.0 39.9 Fallis et a t 1

Zn 0.74 25.8 38.4 37.4 50.0

Cd 0.95 19.0 5.8 2.4 0

Hg 1.02 18.7 NA Na 0

Figure 3.44: Twist angle (<1>) table for Mn, Fe, Ni, Cu, Zn, Cd and Hg complexes 

with fluorine in the ortho, meta and para positions, with respect to the aniline.

The twist angles (O) the complexes are summarised in figure 3 .44. Metals with half or 

fully filled d orbitals {c?-d10), should be closer to trigonal prismatic orientation and the 

cadmium complexes show this with O of 19°, 5.8°, and 2.3°. The zinc complexes 

show higher O, (25.8, 38.4 and 37.4) closer to octahedral. The copper with para 

fluorine is a special case in its own right due to the solid state dynamic Jahn-Teller 

effect observed hence O o f 28.1 °, but from the table it can be seen that all the Fe, Ni, 

and Cu complexes are closer to octahedral orientation with d> of 39.9°-47.5°.
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Metal-
Donor

Set

Ligand Average
M-N

Reference

Mnu-
n 6 o

CTO
cy

2.249 Wieghardt113

Mn"-
n 6 jf

H2N' ^ 7

V YX ^

1.973 Wieghardt114

Mnu-
n 6

6 ri)
2.261 Weihe115

Fe"-N6 O 1.978 Toftlund116

Fe"-N6
i r 2

h2n" ^ y" '^ nh2

2.014 Sargeson117

Fe"-N6 crO'X) 1.988 Spiccia118

113 Wieghardt K., Schoffmann E„ Nuber B.. Wiess J., Inorg. Chem., 1986, 25, 4877-4883.
114 Penkert E N., Weyhermuller T.. Bill E., Hildebrandt P., Lecomte S., Weighardt K., J. Am. Chem. 
Hoc.. 2000, 122. 9663. 9675..
115 Glerup J.. Goddson P A.. Hodgson D J., Michelson K., Nielsen K M„ Weihe H., Inorg. Chem. ,

1992. 31, 4611-4616.
116 Duelund L.. Hazell R.. McKenzie C J., Nielsen L P., Toftlund H., J. Chem. Soc., Dalton Trans., 
2001. 152-156.
117 Hegetschweiler K.. Weber M.. Huch V., Veith M., Schmalle H W., Linden A., Geue R J.. Osvath P.. 
Sargeson A M., Willis A.. Angst W.. Inorg. Chem., 1997, 36, 4121-4127.
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NiH-N6 /— NH N— \

^>h2n 
x = /  h2n

2.083 Spiccia1 iy

Nin-N6 2.160 Sheldon120

NiH-N6

______)
I  1

2.097 Di Vaira121

Cu11-
n 6

'y /— NH HN— v y
N—/  / [ ~ N _

/  '— NH HN— M ^
\  /

NH HN
\  / 2.168 Sargeson122

Cu11-
n 6

H^ /  \  ^H 
N N

i. 2.148 Wieghardt123

Cu11-
n 6

.N. X. / N .  X. JL / N .  J
S  (T i  N if  ̂ N
XX XX XX

/ s 2.141 Potts124
Zn11-
n 6 ,N. JL .N. X, JS  J  N Y  Y  N

2.196 Dell’
Amico125

118 Spiccia L.. Fallon G D., Grannas M J., Nichols P J., Teikink E R T., Inorg. Chim. Acta., 279,1998. 
192-199
119 McLachlan G A.. Fallon., Martin R L., Moubaraki B., Murray K S., Spiccia L., Inorg. Chem., 1994, 
33. 4663-4668.
120 Lever A B P.. Walker I M„ McCarthy P J.. Mertes K B., Jircitano A., Sheldon R., Inorg. Chem., 
1983. 22. 2252-2258.
121 Di Vaira M„ Mani F., Stoppioni P., Inorg. Chim. Acta., 303, 2000, 61-69.
122 Bernhardt P V., Bramley R., Englehardt L., Harrowflled J M., Hockless D C R., Korybut- 
Daszkiewicz B R., Krausz E R.. Morgan T., Sargeson A M., Skelton B W., White A H., Inorg. Chem. 
1995. 34, 3589-3599.
123 Chaudhuri P., Oder K., Weighardt K., Weiss J., Reedijk J., Hindrichs W., Wood J., Ozarowski A., 
Stratemeier H., Reinen D., Inorg. Chem., 1986, 25, 2951-2958.
124 Potts K T„ Keshavarz-K M., Tham F S., Abruna H D., Arana C., Inorg. Chem., 1993, 32, 4436- 
4449.
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Zn11-
n 6

NH HN

—̂ NH HN—^

2.171 Barbier126

Zn“-
n 6

<  N

2.229 Yano127"

Cd11-
n 6

/—N N—̂

o  o
'— '

2.353 Jackels128

Cd11-
n 6 /— NH HN— v ^

C  IXH2N '— NH HN— '  NH2

2.379 Bernhardt129

Cd11-
n 6 q

/ —N

2.360 Planalp130

Hg11-
n 6 — id

nX-
U

2.368 Butcher131

125 Dell’ Amico D B.. Calderazzo F.. Cuiardi M., Labella .L, Marchetti F., Inorg. Chem., 2004, 43, 
5459-5465.
126 Jubert C.. Mohamadou A.. Marrot J.. Barbier J-P.. J. Chem., Dalton Trans., 2001, 1230-1238.
127 Mikata Y.. Wakamatsu M., Yano S.. Dalton Trans., 2005, 545-550.
128 Bryant L H.. Lachgar A.. Jackels S C., Inorg. Chem.. 1995, 34, 4230-4238.
129 Bernhardt P V.. Comba P., Hambley T W., Lawrance G A.. Vamagy K.. J. Chem. Soc. Dalton 
Trans.. 1992, 355-359.
130 Park G.. Ye N„ Rogers R D., Brechbiel M W., Planalp R P., Polyhedron, 19, 2000, 1155-1161.
131 Bebout D C„ Garland M M., Murphy G S., Bowers E V., Abelt C J., Butcher R J., Dalton Trans., 
2003, 2578-2584.
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Hg11-
n 6

^ —NH HN—^  

NH HN 

^—NH HN—' 2.436 Santos132
Hg"-

n 6 jOH2N' f  NH,

o c l . 2.427 Wieghardt133
Pb11-

n 6 nh \  n V  yJ H

r ^ N  /
2.640 Valtancoli134

Pb"T“
n 6

Ĥ - Ny
Me-̂ N̂ N\  /N

y J Me 2.686 Reger135
Pb11-
n 6 O nN ^

h—b— r / ^  
ill

U 2.607 Reger136

Figure 3.52: Reference table for M-N6 bond length comparison.

132 De M A A F., Carrondo C T., Felix V.. Duarte M T., Santos M A., Polyhedron. 12. 8. 931-937. 
1993
133 Schlager O.. Wieghardt K., Grondey H., Rufmska A., Nuber B., Inorg. Chem., 1995, 34, 6440- 
6448.
131 Anda C.. Bazzicalupi C., Bencini A.. Bemi E., Bianchi A., Fomasari P., Llobet A., Giorgi C., 
Paoletti P.. Valtancoli B.. Inorg. Chim. Acta., 356, 2003, 167-178.
135 Reger D.. Collins J E., Rheingold A L., Liable-Sands L M., Yap G P A., Inorg. Chem., 1997, 36. 
345-351.
136 Reger D L., Huff M F., Rheingold A L., Haggerty B S., J. Am. Chem. Soc., 1992, 114, 579-584.
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Metal Average M-N 

Bond Length A

Metal Average M-N 

Bond Length A

L'Mn 2.264 L2Cu 2.141

I.'Mn 2.256 LJCu 2.136

LJMn 2.292 L'Zn 2.183

L'Fe 1.978 L2Zn 2.170

L2Fe 1.983 LJZn 2.168

L3Fe NA L'Cd 2.357

L'Ni 2.103 L2Cd 2.361

L2Ni 2.105 LJCd 2.372

LJNi 2.099 L‘Hg 2.415

L‘Cu 2.141 LJPb 2.652

Figure 3.46: M-N bond length averages for all complexes.

The above table is a collation of all the average M-N6 bond lengths for all the metal 

complexes present in this chapter. The average N-Ring and N-Aniiine bond lengths are 

tabulated in Figure 3.47. From the postulates stipulated in the aims and objectives, we 

hoped to see a trend of short bond lengths when the fluorine was in a meta position to 

the nitrogen. From Figure 3.47 above all the average bond lengths which were shorter 

are present in bold. The average bond lengths prove our initial theories wrong as the 

ortho compounds should have the shortest M-N-Ring lengths but only the nickel 

compound exhibited this behaviour. The meta class should have had short M-NRing 

bonds with the manganese, copper and zinc compounds possessing the shortest M- 

N Aniline bonds. The shortest M -N  lengths should have been the M-N-Ring lengths, for 

the para class, but no complexes did. All compounds in the para class had shorter M- 

N A n il in e  bonds.
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Ortho Mn Fe Ni Cu Zn Cd
Nhfe

Ntacn ^M-
NAmline 2.256 NA 2.106 2.126 2.140 2.2322

M-NRmo 2.328 NA 2.093 2.146 2.195 2.2421

Meta Mn Fe Ni Cu Zn Cd n h 2

NtacnM-
NAmhne 2.216 2.010 2.106 2.127 2.130 2.379

M-
NRmq 2.297 1.956 2.103 2.155 2.209 2.343

Para Mn Fe Ni Cu Zn Cd

n h 2

Ntacn

V
F

M-
NAniline 2.219 1.949 2.092 2.106 2.125 2.295

M-
NRina 2.308 2.009 2.114 2.176 2.241 2.419

Figure 3.47: Individual bond length tables for all metal complexes present in the

chapter.

These data show that the fluorine constituent present on the aniline ring do not 

affect the bond lengths of the complex, when related to current theories of aromatic 

ring activating/deactivating groups.
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L1 (Para) L2 (Meta) L3 (Ortho)

n o 2 -102ppm -118ppm -122ppm

n h 2 -124ppm -117ppm -132ppm

Zn -112ppm -113ppm -119ppm

Cd -113ppm -116ppm -119ppm

Hg -113ppm N/A -119ppm

Pb -115ppm N/A -121ppm

Figure 3.48: Summary table of 19F NMR shift in nitro precursors, amine ligand and

metal complexes.

19F NMR spectroscopy was carried out upon all derivatives and the shifts observed are 

summarised in Figure 3.48. There are no trends observed for the whole class of 

derivatives but the degree o f shift can be explained by fluorine position and thus its 

activation of the nitro/amine moiety. The main observation is that L2 has its fluorine 

meta to the nitro/amine and thus no discemable shift is observed in this class as when 

in this position as the nitro/amine does not activate the fluorine group137138. The meta 

position is inactive to nucleophillic aromatic substitution as it cannot stabilize the 

anion intermediate through resonance reconfiguration. The greatest 19F NMR shifts 

are observed with the L 1 compounds as the ortho fluorine is the most greatly 

activating and so nitro to amine conversion shows a downfield shift of 22ppm. Upon 

complexation, all metals show a similar shift of -112ppm-(-l 15ppm). The L3 

compounds exhibit similar but less pronounced activity in the 19F NMR with nitro to 

amine shifting downfield lOppm and its complexes appearing at -119pp-(-121ppm). 

L2 complexes also show similar shifts of -113ppm-(-l 18ppm).

13 Sokolowski A.. Adam B., Weyhermuller T., Kikuchi A., Hildenbrand K., Schnepf R., Hildebrandt 
P.. Bill E., Wieghardt K.. Inorg. Chem., 1997, 36, 3702-3710.
138 Kimura S.. Bill E., Bothe E., Weyhermuller T., Wieghardt K., J. Am. Chem. Soc., 2001, 123. 6025- 
6039.
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Other complexation studies

We have successfully complexed a variety of first row transition metal perchlorate 

salts, aswell as cadmium, mercury and lead. Complexation was also attempted with 

tin (II) sulphate, but unfortunately this reaction did not proceed under standard 

conditions. By following a standard method described in Vogel139, the nitro precursor 

was mixed with sheet tin metal, and refluxed with concentrated HC1. We initially 

hoped to form the tin chloride complex, but a green solid was afforded, which had an 

unclear ]H NMR spectra so conformation that complexation had occurred could not 

be determined.

It is interesting to note that for all complexes, the only mass spectrometry data 

to be successfully collected was for the copper samples. All other complexes were 

found to be demetallated, and so all showed a peak at 457 (L+H+). We feel that this is 

not due to sample quality but to the actual chemical behaviour of the complex. Owing 

to the low quantities of sample required, upon sample preparation, it became 

demetallated due to the complex having a low formation value.

Upon complexation, a noticeable shift is observed of all aniline peaks of d XQ 

complexes.

n h 2 Zn Cd Hg Pb

L1 3.95ppm 5.45ppm 4.65ppm 6.65ppm 4.55ppm

L2 4.40ppm 5.60ppm 4.75ppm NA NA

LJ 4.70ppm 4.60ppm 4.65ppm 4.90ppm 4.45ppm

Figure 3.49: Shift of NH2 peak in lH NMR spectra.

The smallest deviation occurs within the L3 class of diamagnetic complexes. The free 

ligand aniline peak occurs at 4.70ppm and complexation peaks are found within the 

range of 4.45-4.90ppm. Although there are no obvious trends with regards to the 

aniline peak, it can be seen that upon complexation with d10 metals, the peak shifts 

from its position for the free ligand for L12 compounds.

139 Vogel 5th Ed., Fumiss B S.. Hannford A J., Smith P W G., Tatchell A R.. 892.
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I T Mn Fe Ni Cu Zn Cd Hg

Department

Code

0418 0402 KM AM 0413 KM AM 0412 0427

Crystal System Cubic Triclinic Cubic Cubic Cubic Cubic Cubic

Space Group P21/3 P-l P21/3 P21/3 P21/3 P21/3 P21/3

L2 Mn Fe Ni Cu Zn Cd

Department Code 0405 0307 0301 0406 0404 0407

Crystal System Triclinic Triclinic Triclinic Triclinic Triclinic Monoclinic

Space Group P-l P-l P-l P-l P-l P2/c

V Mn Ni Cu Zn Cd Pb

Department Code 0416 0414 0415 0417 0421 0419

Crystal System Triclinic Orthorhombic Orthorhombic Orthorhombic Orthorhombic Monoclinic

Space Group P-l Pnab Pnab , Pnab P21/c P21/c

Figure 3.50: Tables of crystal system and space group of [(L1 2/3)M](C1 0 4 ) 2  complexes
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Crystallography

From the crystal data obtained, several interesting trends have arisen from this class of 

compound.

All the L1 complexes are o f the cubic space group except the iron complex which is 

triclinic. All L complexes are formed in the triclinic space group except the cadmium 

complex which is monoclinic. There is no definite trend with the L3 with complexes 

forming in orthorhombic (Cu, Ni, Zn), monoclinic (Cd, Pb) and triclinic (Mn) 

spacegroups.

Conclusions

This chapter has shown that the fluorinated arylamine versions of L33 can be 

synthesised and from the crystallographic data obtained, shows small variations from 

the original parent ligand and its complexes. A dynamic Jahn-Teller distortion was 

found to be exhibited in the complex o f [(L1 )Cu](C1 0 4 )2 , and a study must be carried 

out by Q-Band EPR spectroscopy to fully determine the behaviour of the complex. Q- 

Band EPR will determine if the structure does truly exhibit a dynamic Jahn-Teller 

distortion in solution, and not just in the solid state.

The [(L3 )Pb](C1 0 4 ) 2  structure exhibits a typical stereochemically active lone 

pair, whereby the structure distorts to accommodate this feature, and thus forming the 

first buckled sample in the class o f complexes.

After the results from the variable temperature !H NMR, we have developed a 

hypothesis as to why no discemable shift was observed even at -40°C. The sample run 

initially was the perchlorate salt, whereas this time the counterion was 

tetraphenylborate. It has been observed that in the crystal structure of the 

[L33(Zn)](C104 ) 2 compound, the counterion is bound by three hydrogen bonds from 

the oxygen’s o f the perchlorate to the exo protons of the three anilines. We suggest 

that the capping o f this counterion somehow restricts the twisting of the complex by 

“locking” it into place. When the counterion was replaced with tetraphenylborate, due 

to the size of it, does not cap the aniline protons in the same fashion. We propose that

153



Chapter Three: Pendant Fluoroaniline derivatives o f triazacyclononane.

as this was then run; shifting of the peaks was observed even at -40°C and then to -

80°C.

The 19F NMR spectroscopy was found to be a useful tool in determining 

complexation among the d 10 metals. Noticeable shifts were observed between nitro 

precursor, amine ligands and metal complexes. A minimal shift was observed for the 

fluorine meta to the aniline and so is concurrent with standard theories regarding 

nitro/amine activation of ortho and para positions.

The formation of Co samples completed but due to no crystals of X-Ray 

quality being forthcoming, such comparisons with the [(L3 3)Co](C1 0 4 ) 2  and [(L33' 

h)Co](C104 ) 2 structures obtained by Perkins79 cannot be attempted. The UV/Vis 

spectrum of [(L1/3)Co](C1 0 4 ) 2  indicates the same behaviour as the deprotonated 

complex reported by Perkins.

Ruthenium complexation was attempted with RuCb.xFMD, Ru(DMSO)4Cl2 

and Ru(PPh3 )3 Cl2 in ethanol, but no complexation was observed in the NMR 

spectra. Further reaction by refluxing in MeCN did not generate the desired species. 

We feel alteration of the reaction conditions should produce the desired complex, but 

a ruthenium salt with more labile ligands should be tried. Research is still underway 

with the optimising of reaction conditions to try and achieve some degree of
33complexation with ruthenium and L .

From the work outlined within this chapter, it can be seen that the synthesis of 

triply substituted tacn derivatives can be achieved without the use of protecting 

groups. By employing strict reagent ratio methodologies, the desired A-aryl species 

can be isolated, and further reacted to produce multi-substituted ligands. The triply 

fluorinated ligands L 1 2 3 are all synthesised in good yield and further hydrogenated to 

form the amine species. Auto-catalytic oxidation is thought to degrade the ligand L 

but research is currently underway to investigate the true nature of this chemical 

pathway. Complexation of the mono fluorinated ligands have shown by X-Ray 

crystallography that the metal complex does not deviate greatly from the triply 

fluorinated analogue, and this was reinforced by the 19F NMR spectroscopy data 

which indicates like shifts. Further investigation into the bis fluorinated versions with 

fluorines in different positions should be pursued to fully gain an insight into this 

class of ligands.
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Future Work

A majority of compounds synthesised exhibited a high degree of hydrogen 

bonding to their perchlorate counterions. Further investigation could be extended to 

the possibility of hydrogen bonding between the aniline protons and fluorine of the 

BF4‘ counterion.

This research was extended into the tetraazamacrocycle cyclen, and the 

possibility of producing 5, 6 , 7 and 8 -coordinate complexes has been explored by 

Fallis et a /140. It is hoped that within the near future this area of work will be fully 

investigated and finished.

It would be of interest to synthesize the fluorinated versions of the tris 

aminobenzyl derivative LK̂ , to explore the possible effects the fluorine has upon the 

amine group when the ligand has more flexibility to form complexes

1411 Fallis I A.. Tatchell T., Gurden D L G., Malik K M A., Ooi L., Unpublished Results., 2002.
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Chapter Four

Synthesis of metal-sulphonamide bond 

complexes

Guillotine, n. A machine which makes a Frenchman shrug his shoulders with good
reason.

—Ambrose Bierce, The Devils Dictionary

My wife's jealousy is getting ridiculous. The other day she looked at my 
calendar and wanted to know who May was.

— Rodney Dangerfield
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Introduction

Synthesis o f mono substituted tacn derivatives has been an area in which much effort 

has been paid in recent years

157 Differing methods of protection158 (La) and addition159 (Lb) have been pursued in 

which to achieve the desired mono substituted species. Chong e ta l]60 have shown that 

firstly by functionalising an alkylamine with alkyl alcohols, benzyls, 1 , 2 -diols, and 

tertiary butyl esters, then using standard tacn formation preparations the mono 

pendant macrocycle was formed in high yields (81 -92%). Using high excess methods, 

Fallis et a l1 6 1 162 used a 1 0  fold excess of the macrocycle with a long chained epoxide 

to form the desired mono substituted compound in excellent yield (93%).

F

OH

’X n 2X+1

Figure 4.1: Protection and single pendant addition compounds.

The use of secondary sulphonamides as ligands is very rare and to date we 

have only found one such complex example by Fabbrizzi et al174 The use of tosyl in 

tacn chemistry has largely been employed as a protecting group163,164,165.

15 Lazar I., Takacs Z.. Synth. Commun., 31 (20), 3141-3144. 2001
158 Yang W„ Giandomenico C M., Sartori M., Moore D A., Tett. Lett., 44, 2003. 2481-2483.
159 Blake A. J.. Danks J. P.. Fallis I. A., Harrison A., Li W-S., Parsons S., Ross S. A., Whittaker G., 
Schroder M., J. Chem.Soc., Dalton Trans., 1998, 3969-3976.
160 Chong H-S., Brechbiel M. W.. Synth. Commun., 2003, 33, (7), 1147-1154.
161 Fallis I A.. Griffiths P C.. Griffiths P M.. Hibbs D E., Hursthouse M B., Winnington A L„ Chem 
Commun., 1998, 665-668.
162 Griffiths P C„ Fallis I A., Willock D J., Paul A., Barrie C L., Griffiths P M„ Williams G M., King S 
M., Heenan R K„ Gorgl R., Chem. Eur. J., 2004, 10, 2022-2028.
163 Blake A. J., Danks J. P., Fallis I. A., Harrison A., Li W-S., Parsons S., Ross S. A., Whittaker G., 
Schroder M., J. Chem.Soc., Dalton Trans., 1998, 3969-3976.
164 McAuley A., Subramanian S., Inorg. Chem., 1990, 29, 2830-2837.
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Pentadentate ligand synthesis is an area researched by a few well known 

groups such as Spiccia166, Fallon167, and Schroder168. Mixed donor macrocycles have 

been synthesised bearing donors other than nitrogen such as oxygen, sulphur, 

selenium, and phosphorous. Within this chapter we will be focussing on 

pentatazamacrocycles, as we aim to replicate the Taube ruthenium salt chemistry.

Me

Figure 4.2: 1-Methyl, bis 4, 7-(3-aminopropyl) 1, 4, 7-triazacyclononane.

Schroder et al169 produced the pentadentate ligand Lc via two routes. Firstly 

methylating ditosyl tacn by the Esweiler-Clarke method to block the third nitrogen 

site. Then after detosylation, the addition of 2 equivalents of acrylonitrile yielded the 

bis substituted ethylnitrile intermediate. Subsequent reduction of the nitrile groups 

with BH3 .THF afforded the amine moiety. The second route is acid hydrolysis of 1, 4, 

7-triazatricyclo[5.2.1.0410]decane to yield the formyl tacn species. This formyl group 

blocks the third site and again addition o f acrylonitrile, and reduction forms the ligand 

Lc. Work by the same group shows the tethering of two of these groups by the third 

free nitrogen. The addition o f 1, 2-dibromoethane to 1, 4, 7-

triazatricyclo[5.2.10410]decane forms the bis formyl tacn intermediate. Methods 

previously discussed formed the bis pentaazamacrocycle. Complexation with Cu11

165 Tci L.. Blake A J.. Devillanova F A.. Garau A., Lippolis V., Wilson C., Schoder M., Chem 
Commun., 2001. 2582-2583.
166 Brundenell S J.. Spiccia.. Tiekink E R T., Inorg. Chem., 1996, 35, 1974-1979. Brundenell S J., 
Spiccia.. Bond A M., Comba.. Hockless D C R., Inorg. Chem. 1998. 37. 3705-3713. Brundenell S J.. 
Spiccia L.. Hockless D C R.. Teikink E R T„ J. Chem. Soc. Dalton Trans. 1999. 1475-1481.

Fallon G D., McLachlan G A.. Moubaraki B„ Murray K S.. O’Brien L., Spiccia L„ J. Chem. Soc. 
Dalton Trans., 1997, 2765-2769. McLachlan G A., Fallon G D„ Martin R L., Spiccia L., Inorg.
Chem... 1995, 34, 254-261. McLachlan G A., Brundenell S J., Fallon G D., Martin R L., Spiccia L., 
Tiekink E R T.. J. Chem. Soc., Dalton Trans., 1995, 439-447.
168 Blake A J., Fallis I A., Gould R O., Parsons S., Ross S A., Schroder M, J. Chem. Soc. Dalton 
Trans., 1996. 4379-4387.
169 Blake A J., Danks J P.. Li W-S., Lippolis V., Schroder M., J. Chem. Soc., Dalton Trans., 2000, 
3034-3040.
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salts formed the desired complexes and were resolved via crystallographic methods. 

LcCu exhibits a distorted square based pyramidal geometry, with two 6  membered 

chelates and one 5 membered chelate formed through the apical nitrogen. With the 

Cu-(apicai) bond length being 2.251k, its is comparable with long Cu-N(apiCai) distance of 

2.337A of the bis pentaazamacrocycle. The tethered version can be seen to have a 

weakly interacting acetonitrile solvent group, binding trans to the tertiary nitrogen at a 

distance of 2.71 OA.

R = Ethyl L 
Propyl L 
Butyl L

Figure 4.3: Tethered pentaazamacocycles.

Research by Spiccia et a liJ0 led to the development of The bis

pentaazamacrocycle can bond to metals in a pentadentate fashion, or by the addition 

of base to the complex, form the p-oxo bridged zinc species. They have shown that by 

altering the type of linker, the stereochemistry of the dimeric complexes can be 

controlled. The longer butyl chain Lf, rigid 1, 3 dimethylbenzene L8, and propyl-2-ol 

Lh linker171 can all be prepared by convenient routes.

1 ° Brudenell S J.. Spiccia L., Hockless D C R., Tiekink E R T., J. Chem. Soc. Dalton Trans., 1999, 
1475-1481.
1 1 Brudenell S J., Spiccia L.„ Bond A M., Mahon., Hockless D C R., J. Chem. Soc. Dalton Trans., 
1998. 3919-3925.
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Aims and Objectives

Preliminary ideas were to develop a rigid pentadentate ligand which complexed 

around a metal centre, with a high degree of steric hindrance. It was our aim to 

develop a new family o f derivatives bearing an innocent pendant on the macrocycle 

ring, and through our methodologies, add two pendant aniline pendants, thus forming 

potential desired ligands.

We needed the steric bulk to stop dimerisation of the nitrous oxide between 

ruthenium complexes. Groves et a l172 have shown that by using tetramesityl porphyrin 

the two ortho methyl groups present on the mesityl groups are sufficient enough to 

prevent this dimerisation between the porphyrins.

Results and Discussion

The primary ligand (L4 ) in this class was prepared by SNAr reaction of two 

equivalents o f nitrobenzene to mono tosyl tacn, then subsequent hydrogenation to 

give the desired amine moiety and finally complexation. A primary concern was that 

the sulphonamide nitrogen would be too electron deficient and thus not bond to the 

metal centre173. The only other example of a metal complex with the metal-2 ° 

sulphonamide bond was by Fabrizzi174 et a l The Cyclam-Ni complex has a Ni- 

sulphonamide bond length of 2.36A.

172 Groves. J.T., Roman. J.S, J. Am. Chem. Soc. 1995, 117, 5594-5595.
173 Blake A J., Danks J P., Fallis I A., Harrison A., Li W-S., Parsons S., Ross S A., Whittaker G., 
Schroder M.. J. Chem. Soc., Dalton Trans., 1998, 3969-3976.
174 Calligaris M„ Carugo O., Crippa G., De Santis G., Di Casa M., Fabrizzi L., Poggi A., Seghi B., 
Inorg. Chem., 1990, 29, 2964-2970.
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Figure 4.4: A-Tosylated Cyclam Nickel complex with Ts-N-Ni bond length 2.36A.

Cyclam was tosylated in high dilution and complexed with nickel (II) chloride. This 

complex shows the water molecules in a cis arrangement, and the macrocycle adopts a 

folded conformation rather than co planar as the metal tries not to bond with the 

sulphonamide nitrogen. If we were to synthesize any complexes of this nature then 

could we alter the bond length of the metal sulphonamide by increasing/decreasing 

the electron withdrawing nature of the group present on the SO2 moiety. The differing 

groups present will decrease in electron withdrawing nature (F>Me>OMe>), fluorine 

being the most electron withdrawing and oxymethyl being most electron donating. If 

this sphere of work was to prove fruitful then it could be extended to the bis tosyl tacn
1 1 "7/1  1 *7*7

version . We would like to investigate if metal complexes of this ligand could

be made to see if it would be strong enough to bond twice to a metal centre.

Addition of 2 equivalents of 2-fluoronitrobenzene to mono tosyl tacn with 

potassium fluoride, afforded the nitro ligand (L4) in good yield. Hydrogenation under 

standard conditions (Pt/C/H2 ) generated the aniline derivative. This was often 

delivered directly onto the metal perchlorate salt via cannula under anaerobic 

conditions, and stirred for 30 minutes. This THF:MeOH solution was removed in

vacuo, degassed ethanol was added, and the reaction mix stirred for a further 18

175 Pulachini S.. Watkinson M„ Eur. J. Org. Chem., 2001, (22), 4233-4238.
17* Pulachini S., Watkinson M., Tett. Lett., 1999, 40 (52), 9353-9365.
1 Weisman G R., Vachon D J., Johnson V B., Gronbeck D A., J. Chem. Soc. Chem. Commun., 1987, 
(12). 886-887.
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hours, after which the metal complex precipitated from the ethanolic solution. This 

was filtered and washed with a small amount of diethyl ether. All complexes were 

found to be air stable, and formed in good yield (65-85%).

NO- NO.

KF, MeCN, 9CTC 
Pressure Tube

S 0 2

2-Fluoronitrobenzene 

MeCN, KF, 90°C, 18Hrs

PressureTube

Pt/C

L =R=CH3, R’=H 
i7 = r =o c h 3, R'=H
L6=R=Fluoro, R -H  
L7=R+R'=CtE

L4=R=CH3, R'=H 
n o / " n A  N02 L5 =R=OCH3, R'=H 
1 ‘ ‘ 1 L6 =R=Fluoro, R -H

l7=R+R'=CH3

THF:MeOH

1 Atmosphere, 24Hrs

2 .  C I O ,

S 0 2so2
N H ^  NH:

Rex: EtOH

L =M=Ni/Cu/Zn/Cd/Hg/Pb 
L5=M=Ni/Cu/Zn/Cd/Hg 
L6=M=Ni/Cu/Zn 
L 7=M=Ni/Cu/Zn/Cd/Hg

Figure 4.5: Reaction scheme for the synthesis of [(L4/5/6/7)M](C1 0 4 ) 2  complexes

Generation of the para-oxy methyl phenyl (L5), /?ara-fluorophenyl (L6), and 2-Mesityl 

(L7) derivatives was achieved from addition of the chlorosulphonyl compound to 1,4- 

bis (2-nitrophenyl), 1, 4, 7-triazacyclononane178. All derivatives were formed in good 

yield and the metal complexes formed were all air stable. Addition of the

178 Fallis I A., Perkins W T S., Longhurst S., Malik K M A., Unpublished Results, 2001.
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chlorosulphonyl derivative to tacn to form the mono substituted macrocycle was 

attempted, but formed the mono, bis and tris substituted macrocycle, and was found to 

be difficult to purify by column chromatography. Addition the differing sulphonyl 

chlorides to L32 was found to be of a better methodology, as the nitro derivative could 

be synthesised in good yield and without column chromatography. Addition of the 

chlorosulphonyl compound to the ring formed no side products and so was employed 

for the synthesis of the other derivatives. We would predict that addition of tosyl 

chloride to bis 1 ,4  (2-nitrophenyl) 1, 4, 7-triazacyclononane would also produce the 

ligand L4.

Nickel complexes

This chapter will show, that a new class of metal complexes has been successfully 

explored. All complexes that were formed show from the crystal data that a bond 

exists between the metal centre and the sulphonamide nitrogen in the tacn ring.

To obtain a fully saturated coordination geometry, one molecule of acetonitrile bonds 

through the lone pair o f the nitrogen to the metal centre. In all cases except 

[(L4)Cd.MeCN](C1 0 4 ) 2  the acetonitrile is bonded to the metal to form an 

unsymmetrical complex (point group=P21/n), with the anilines being inequivalent, 

thus bearing 4 chemically inequivalent protons.
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0 (2)1N(2) k0 ( 3 )

N(6]N(5)
N(3)Nl(1

NI(1T0 (1)'N(1)
N (5 )

N(3)N(4) N(1)
N(2)

[(L4)Ni.MeCN|(C104)2.l(MeCN) [(L5)Ni.MeCN](CI04)2.l(MeCN)

Figure 4.6. [(L4)Ni.MeCN](C104)2.l(MeCN). Selected Bond lengths; N(l)-Ni 2.091(3), N(2)-Ni 2 088(3), N(3)-Ni 2.099(3), N(4)-Ni 2.078(3), 

N(5)-Ni 2.245(3) and N(6)-Ni 2.059(3). [(L5)Ni.MeCN](C104)2.l(MeCN). Selected Bond lengths; N(l)-Ni(l) 2.100(5), N(2)-Ni(l) 2.054(5), 

N(3)-Ni(l) 2.232(7), N(4)-Ni(l) 2.074(6), N(5)-Ni(l) 2.089(7), N(6)-Ni(l) 2.076(6). Hydrogen atoms and solvent molecules have been removed 

for clarity.
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The metal -sulphonamide bond length in [(L4)Ni.MeCN](Cl0 4 ) 2  (MeCN) is 

2.245A, which is 0.115A shorter than the bond present in the tosylated cyclam-nickel 

complex174. This could be due to the higher denticity of the macrocycle, therefore 

increasing the macrocycle effect and creating stronger bonds. The tosyl group may be 

coordinated weakly, or left free to dangle away from the meal centre. The complex 

crystallises with one MeCN molecule within the lattice. There is some hydrogen 

bonding present but will be discussed further in the hydrogen bonding section in this 

chapter.

The complex [(L5)Ni.MeCN](C104)2 (MeCN) also shows the same arrangement 

around its metal centre, again with the acetonitrile creating an unsymmetrical 

environment. There was no hydrogen bonding between counterions and complex 

present within the crystal structure.

The complex o f [(L6)Ni.MeCN](ClC>4 ) 2  (MeCNXThO) was the only structure 

achieved for this ligand to date. As fluorine is more electron withdrawing than OMe 

and Me, the weakest bond should be formed therefore keeping with the trend and 

being longer than the [(L4)Ni.MeCN](ClC>4 )2  (MeCN) bond 2.245A. This length is 

2.248A and so for the nickel derivatives a trend can be seen to follow the electron 

withdrawing nature of the bond in relation to the bond length.

The structure of [(L7)Ni.MeCN](C1 0 4 ) 2  MeCN was the only metal complex structure 

achieved to date for this ligand. The metal-Nsuiphonamide length was 2.232A which is 

identical to the [(L5)Ni.MeCN](ClC>4 ) 2  (MeCN) complex. It could be therefore 

perceived that these pendants are analogous with regard to their degree of electron 

withdrawing capabilities.
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[(L<)Ni.MeCN|(C104)2.MeCN. H20  ((L7)Ni.MeCN|(CI04)2.MeCN
Figure 4.7. [(L6)Ni.MeCN](C104)2.MeCN. H20. Selected Bond lengths; N(l)-Ni(l) 2.094(3), N(2)-Ni(l), 2.081(3), N(3)-Ni(l) 2.248(3), N(4)- 
N i(l) 2.061(3), N(5)-Ni(l) 2.094(3), N(6)-Ni(l)2.060(3) [(L7)Ni.MeCN](CI04)2.MeCN: N(l)-Ni(l) 2.232(4), N(2)-Ni(l) 2.096(3), N(3)-Ni(l) 
2.092(4), N(4)-Ni(l) 2.081(4), N(5)-Ni(l) 2.100(4), N(6)-Ni(l) 2.063(4). Hydrogen atoms and solvent molecules have been removed for clarity.
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Copper complexes

The crystal structure of 2 [(L4 )Cu](C1 0 4 ) 4  4(MeCN) MeOH exhibits a unique feature 

only observed for this class of compound. Within the cell, two of the same complexes 

are present, but both with slightly differing bond lengths and angles. Both metal 

centres are of distorted square based pyramidal arrangements, and the copper-nitrogen 

geometries are shown in figure 4.11.

N- Sulphonamide N-Sulphonannde
NM5) N(30)

N-TacnRing 1 N-TacnRing N-TacnRingT N-TacnRing 

Nf12) * N<13) I 2"’ 1 N,2iJ

N-Aniline

N(14)
N-Anilme ’ ’ N(22)

N-Aniline

Figure 4.9: Copper and nitrogen donors in the complex of 

2[(L4)Cu](Cl04)4 4(MeCN) MeOH. The square based pyramidal structures are shown 

for both copper complexes present in the cell.

The relevant bond lengths and angles are shown in figure 4.10, and both show only 

minimal deviances in structure. This complex does not show any octahedral behaviour 

as no solvent donor is present to complete a hexadentate arrangement.

Cu(l)-N(14) 1.982(10) Cu(2)-N(23) 1.967(10)

Cu( 1 )-N( 11) 1.998(11) Cu(2)-N(22) 1.988(11)

Cu(l)-N(13) 2.019(11) Cu(2)-N(21) 2.025(10)

Cu(l)-N(12) 2.051(11) Cu(2)-N(24) 2.041(10)

Cu(l)-N(15) 2.398(9) Cu(2)-N(30) 2.453(11)

N(14)-Cu(l)-N(l 1)99.9(4) N(23)-Cu(2)-N(22) 99.9(5)

N(11)-Cu(l)-N(13) 165.2(4) N(23)-Cu(2)-N(21) 171.4(5)
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N( 14)-Cu( 1 )-N( 12) 167.1(4) N(22)-Cu(2>N(21) 86.1(4)

N( 11 )-Cu( 1 >-N( 12) 84.5(4) N(23)-Cu(2)-N(24) 86.2(5)

N(13)-Cu(l>N(12) 86.2(4) N(22)-Cu(2)-N(24) 162.5(4)

N( 14)-Cu( 1 )-N( 15) 108.1(4) N(21)-Cu(2)-N(24) 86.4(4)
N(11)-Cu(l)-N(15) 109.4(4) N(23 )-Cu(2)-N(30) 100.6(4)

N( 13)-Cu( 1 )-N( 15) 80.5(4) N(22)-Cu(2)-N(30) 117.0(4)

N(12)-Cu(l)-N( 15) 81.4(4) N(21 )-Cu(2)-N(30) 81.9(4)

Figure 4.10: Table of bond distances and angles of both copper complexes present in 

2 [(L4)Cu](C1 0 4 )4 .4 (MeCN) MeOH crystal cell.

0(224} O H 2 )F
0 (1 1 1 }

f ( 1 1 3 j V c ( 1 1 0 )C(219)

0(124)

|C(120)

0 (121)

Figure 4.11: Both copper complexes 2 [(L4 )Cu](C1 0 4 ) 4  4(MeCN) MeOH present in 

the cell. All solvent and counter ions have been removed for clarity. Tosyl-phenyl ring 

non-bonding distances are C25-C120=3.802A, C26-C119=3.893A, C124-
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C21=3.868A, C24-C121=3.659A, C123-C22=3.648A, C122-C23=3.520A, C110- 

C221=3.959A, Cl 11-C222=3.810A, Cl 12-C223=3.843A, Cl 13-C224=3.9131 A, 
Cl 14-C219A=4.018A and C19-C220=4.046A.

The tosyl and phenyl rings present in the cell appear to be k  stacked 

179 with the carbon distances ranging from 3.520A-4.046A. It can be imagined that 

due to the repulsion of the metal centres of the complexes, the stacking of the opposite 

tosyl-aniline aromatic rings is very weak with the strongest bonds occurring at the 

furthest opposing carbons in each pair. The shortest bonds are Cl 11-C222=3.810A 

and C122-C23=3.520A. As a comparison, Riesgo et alm  have observed tc stacking in 

the crystal structure of 2, 2’-bibenzo[h] quinoline with an interplanar distance of 

3.37A. In a biological system, a slightly longer maximum of 3.5A was noted by 

Shiraki et a /181 in the crystal structure of Achromobacter Protease, a Chymotrypsin- 

type serine. The n stacking occurs between Typ 169 and His 210 and the range of n 

stacking is 3 .5A-3 .2A.

The SO2-H2N distances for the compounds are 2.461 A, 2.548A for one, and 

2.3 80A and 2.733 A for the other. Also within the cell, an aniline proton-oxygen 

hydrogen bond is present for opposing compounds with distances of 2.137A and

2212k.

179 Hunter C A.. Sanders J K M., J. Am. Chem. Soc., 1990, 112. 5525-5534.
180 Riesgo E C., Hu Y Z., Bouvier F., Thummel R P., Scaltrito D V., Meyer G J., Inorg. Chem., 2001, 
40. 12, 3413-3422.
181 Shiraki K., Norioka S., Li S., Yokota K., Sakiyama F., Eur. J. Biochem., 269, 2002, 4152-4158.
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Zinc complexes

The crystal structure of [(L4)Zn.MeCN](C104)2 MeCN also exhibits an octahedral 
geometry with a molecule of acetonitrile bound via the lone pair of the nitrogen to the 
zinc centre. The M - N SUiPhonamide length is 2 .404A .  The high resolution ]H NMR data 
obtained shows an interesting display of doublets present in the aniline region (5.50- 
6.20ppm), which we find difficult to assign. We propose that due to the pair of 
inequivalent protons on the amine peaks should display a more complex arrangement 
than is actually observed in the spectra. The variable temperature ]H NMR experiment 
was carried out on [(L4)Zn.MeCN](C104)2 MeCN to investigate the behaviour of the 
aniline protons. The spectrum is shown below in Figure 4.13. The temperature was 
increased stepwise from room temperature to 120°C and complete broadening of the 
aniline doublets was observed.

110°C

100°C

50 0 C

Figure 4.13: Variable Temperature 'H NMR Spectra, 1.0ppm-6.5ppm for 
[(L4)Zn.MeCN](C104)2 MeCN in (f nitrobenzene.
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£  N(3)

Figure 4.12. [(L4)Zn.MeCN](C104)2,MeCN. Selected Bond lengths; N(l)-Zn 2.161(3), N(2)-Zn 2.404(2), N(3)-Zn 2.202(3), N(4)-Zn 2.113(3), 
N(5)-Zn 2.117(3) and N(6)-Zn 2,086(3). [(L5)Zn.MeCN](CI04)2 MeCN. Selected Bond lengths; N(l)-Zn(l) 2.066(3), N(2)-Zn(l) 2.199(3), 
N(3)-Zn(l) 2.410(3), N(4)-Zn(l) 2.134(3), N(5)-Zn(l) 2.131(3), N(6)-Zn(l) 2.117(4). Hydrogen atoms and solvent molecules have been 

removed for clarity.
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As this increase occurred the doublets collapsing into the baseline. The deuterated 

solvent used was d$-nitrobenzene, and has a boiling point of 211°C, but was not taken 

higher due to the restriction of the upper heating range of the NMR machine. We 

would predict that upon further increase of the temperature, a singlet would form 

between the aniline peaks (~5.8ppm) integrating to the 4 protons. From the variable 

temperature !H NMR spectra obtained, it has been calculated182 that the temperature 

of coalescence is to be 81KJ M ol^i 1KJ M ol1 at which the aniline peaks broaden. If 

the experiment could be repeated to a higher temperature, the single peak observed 

would generate a figure greater than that calculated for the current spectra. It is 

interesting to note also that the aromatic region shifted downfield approximately one 

ppm and there was sharpening of the aliphatic peaks present due to the increased 

fluxionality of the compound at higher temperatures. There is also another broad peak 

which we cannot assign that shifts gradually downfield from 3.50ppm to 2.45ppm, 

and a trace of water at 2 .5 5 ppm at 25°C.

182 Iggo J., NMR Spectroscopy in Inorganic Chemistry, Oxford Chemistry Primer, Page 64.

172



Chapter Four: Synthesis o f  metal-sulphonamide bond complexes.
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Trigonally prismatic geometry 
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doublets in amine region

Locked octahedral geometry DdtaLambda configuration 
]H NMR Spectra-More complex amine region on spectra

Figure 4.14: Labelling scheme for amine protons on symmetrical and unsymmetrical

derivatives.

As can be seen from Figure 4.14, protons Ha and Hb would generate two doublets as 

observed in the [(L4)Zn.MeCN](CK)4 ) 2  MeCN, but the crystal structure shows an 

unsymmetrical arrangement in figure 4.14. This structure has 4 stereochemically 

inequivalent protons and so would generate a spectrum more complex than we 

actually observe. This spectrum we would predict would resemble four doublets.

The [(L5)Zn.MeCN](C1 0 4 ) 2  MeCN crystal structure again indicates an octahedral 

environment with the inclusion of a bound acetonitrile molecule to the zinc centre. 

The bond length of the metal-sulphonamide is 2.410A and so does not follow the 

trend as observed in the nickel analogue.

It is interesting to note a lack of apparent shifting in the 19F NMR of 

[(L6)Zn.MeCN](ClC>4)2 .MeCN. The nitro precursor (-104ppm), amine ligand L6 (-
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105ppm), and L6Zn (-103ppm) show minimal deviation indicating a lack of 
interaction from the para-fluoro substituent.

Cadmium complexes

N(5)

0 (1)
N(4)

Cd(1)0 (2)

N(2)
N(1)

Figure 4.15. [(L4)Cd.MeCN](CK)4)2 Hydrogen atoms and solvent molecules have 
been removed for clarity. Selected Bond lengths; N(l)-Cd(l) 2.243(4), N(2)-Cd(l) 

2.508(3), N(3)-Cd(l) 2.631(4), N(4)-Cd(l) 2.412(4), N(5)-Cd(l) 2.241(4), N(6)-Cd(l)
2.347(16).

The crystal structure of [(L4)Cd.MeCN](C104)2 shows a symmetrical arrangement, 
whereby an acetonitrile molecule is bound to the cadmium trans to the sulphonamide- 
metal bond of length 2.631 A. The spectra from the ‘H NMR is shown in figure 4.16, 
with an enlargement of the amine region shown in figure 4.17. The two broad peaks 
shown at 4.70ppm and 5.10ppm are tentatively assigned to the protons described in 
figure 4.14 as Ha and Hb.
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T
4.0

1 r~ 
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T
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Figure 4.16A: 'H NMR Spectra for [(L5)Cd.MeCN](Cl04)2.

Figure 4.16B: *H NMR Spectra of aniline region (4.45ppm-5.30ppm) for
[(L5)Cd.MeCN](Cl04)2.
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Mercury complexes

Crystals of X-Ray quality of any mercury complexes were not forthcoming, and so 

crystal data is not available to confirm its structure as if analogous to 

[(L5)Ni/Zn](C1 0 4 )2 . Its NMR data shows two doublets assigned as the aniline 

groups at 5.13ppm and 6.33ppm and is included as figure 4.18.

8.0 7.5 7 .0 /  6.5 6.0 5.5 5.0 \  4.5 4.0 3.5 3.0/ '

=  109 Hz

6.1 5.7 5.5 5.46.5 6/4 6.3 ppm

Figure 4.18: NMR Spectra of amine and Hg199 satellite region (5.30ppm-

6.60ppm) for [(L5)Hg(C104)2.
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Chapter Four: Synthesis o f metal-sulphonamide bond complexes.

These are due to the JHgH coupling between the 199Hg isotope and the amine protons. 

Both coupling constants are similar with values of 109Hz and 108Hz.

Lead complexation

Figure 4.19. [(L4)Pb.C104](C104).2(MeCN). Hydrogen atoms, counterions and 

solvent molecules have been removed for clarity. Selected Bond lengths; N(l)-Pb(l) 

2.953, N(2)-Pb(l) 2.584, N(3)-Pb(l) 2.633, N(4)-Pb(l) 2.443, N(5)-Pb(l) 2.476 and

0(5)-Pb(l) 2.808.

The crystal structure of [(L4)Pb.C104]C104.2(MeCN) indicated initially that the lead 

ion was not bonded to the ligand but upon further analysis indicated that the lead 

centre in the cell is bonded to the adjacent cells ligand. The lead is bonded through 

four true bonds (N2-N5) and a Pb-O bond is present from the perchlorate counterion. 

A very long bond is present from the lead to the sulphonamide nitrogen with a length 

of 2.953A and this completes a N50  donor set. There is no hydrogen bonding evident 

from the crystallographic data and so the lead exhibits an unusual 6 co-ordinate 

geometry. It is unclear whether the lead’s stereoactive lone pair of electrons is
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dictating the geometry of the complex, but it could be perceived as being between and 

above the SO2 group. The aniline pendant, when complexed to the lead centre, are 

rotated in one direction and so show the same metal-ligand geometry as the nickel and 

zinc complexes. The lH NMR spectra exhibits the same unusual amine splitting to 

that of the zinc and mercury counterparts. It is interesting to note the preference of the 

perchlorate oxygen over an acetonitrile solvent molecule to complete the 6 co

ordinate geometry. This deviance of metal donors is the first for this class of 

compounds where all other complexes have been completed with nitrogen donors.

Hydrogen bonding table

cio4 - - -H2N (A) so2 - - - h 2n  (A) h 2o  - - - h 2n  (A)
[(L4)Ni.MeCN](C104)2.

MeCN.H20

2.116/2.130 2.508 NA

[(L5 )Ni. MeCN] (C 104)2. 

MeCN

NA 2.342 NA

[(Lb)Ni.MeCN](C104)2.

MeCN/H20

NA 2.381 2.056

[(Lv)Ni.MeCN](C104)2.

MeCN

2.283/2.268 NA NA

2[(L4)Cu](C104)4.4.Me

CN.MeOH

2.137/2.272 2.461/2.548/2.380/

2.733

NA

[(L4)Zn.MeCN](C104)2.

MeCN

2.100/2.117/2.120/2.173 2.565 NA

[(L-)Zn.MeCN](C104)2.

MeCN

2.100 2.566 NA

[(L4)Cd.MeCN](C104)2 2.217 2.387/2.504 NA

Figure 4.20: Table of hydrogen bonding within crystal structures from this chapter.
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N(2)

Figure 4.21: Hydrogen bonding present in [(L4)Ni.MeCN](C 1 0 4 )2 .MeCN.H2O and [(L5)Ni.MeCN](C1 0 4 )2 .MeCN. Selected Counterions, 
hydrogen atoms and solvent molecules have been omitted for clarity.
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Figure 4.22: Hydrogen bonding present in [(L6)Ni.MeCN](C1 0 4 )2.MeCN/H2p and [(L7)Ni.MeCN](C1 0 4 ) 2  MeCN. Selected Counterions, 
hydrogen atoms and solvent molecules have been omitted for clarity.
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0(1 OA) 

0(9 B)

0(10B)

A 0 ( 6 )

Figure 4.23: Hydrogen bonding present in [(L4)Zn.MeCN](C1 0 4 ) 2  MeCN and [(L5)Zn.MeCN](C1 0 4 ) 2  MeCN. Selected Counterions, hydrogen 
atoms and solvent molecules have been omitted for clarity.
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Bis-tosylated macrocyclic ligands L8.

L was synthesised via standard methodologies to investigate the possibilities of 

forming two metal sulphonamide binds within one complex. This would be a 

first for this area of research, but unfortunately no crystal data was forthcoming. 

There is a marked shift on the amine peaks from 4.20ppm for L8 to 4.30- 

4.95ppm for [(L8)Zn](C104)2 and 4.20-4.75ppm for [(L8)Cd](C104)2.

Metal-Sulphonamide bond length comparison table.

Complex Code Metal- 

Sulphonyl 

bond length A

Crystal System Space Group

L4Ni 0423 2.245 Monoclinic P21/n

L4Cu 0501 2.453 Triclinic P-l

L4Zn 0426 2.404 Monoclinic P21/n

L4Cd 0504 2.631 Triclinic P-l

L4Pb 0503 2.953 Triclinic P-l

LsNi 0502 2.232 Triclinic P-l

LsZn 0506 2.410 Monoclinic P21/n

L^Ni 0508 2.248 Triclinic P-l

L7Ni 0512 2.232 Monoclinic P21/n

Figure 4.24. Table of Metal-Sulphonamide bond lengths, crystal system of cell

and space group.

Attempts were made to synthesize the Mn, Fe and Co derivatives of this chapter, 

but employing the same methods and the relevant perchlorate salt did not 

produce any o f the desired complexes. Complexation with ruthenium salts did 

not afford the desired complexes. Attempts were made with RuCl3.xH20  and 

Ru(DMSO)4C12 and stirring with L4 in ethanol. NMR data obtained indicated 

the presence of free ligand and showed no evidence of complexation. The 

reaction solution was dried in vacuo, and redissolved in MeCN and heated to
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reflux, but again the NMR spectroscopic data showed no evidence of 

complexation. We feel that complexation should occur, but experimenting with 

differing reaction conditions is needed to generate the desired ruthenium 

complex.

Conclusions

A new class of substituted sulphonyl macrocyclic metal complexes has been 

described. From the crystal data obtained a range of metal-sulphonamide bond 

lengths (2.232A-2.953A) have been exhibited. We find that alteration of the 

substituents on the SO2 group do not affect the bond length trend in relation to 

the electron-withdrawing nature of the substituted pendant. We would need 

more crystallographic evidence to fully explain and justify if this relation is 

coincidental or true to the previously stated hypotheses.

From the ‘H NMR spectra of the [(L45/6/7)M](CI04)2 (M=Zn/Hg/Pb) 

derivatives compared to the Cd sample, we have concluded that the cadmium 

sample must be more fluxional in solution as the aniline protons show a 

broadened peak, whereas the aforementioned samples exhibited the pair of 

doublets. It is our interpretation that this doublet arrangement is an average of 

the A and A geometrical configurations and so a symmetrical, trigonal prismatic 

geometry is observed. We should carry out more varied temperature studies 

upon these samples to ascertain the point at which all samples exhibit the same 

doublet arrangement. It is unusual that only the cadmium sample shows this 

broadened peak and the mercury and lead samples do not. This anomaly could 

be attributed to the fact that the lead is not bound by six nitrogen ligators but 

five and a perchlorate oxygen. This difference in complexation may restrict the 

[(L4)Pb.C1 0 4 ](C1 0 4 ) sample to interchange when in solution, therefore 

exhibiting behaviour closer to that of the zinc and mercury samples. As we do 

not have the mercury crystal data, we cannot state with confidence why this 

trend arises as it does.

When we extended this investigation to the variable temperature !H NMR 

spectra of the [(L4/5/6/7 )Zn](C1 0 4 ) 2  samples, the results obtained we were most 

unexpected. If the complex were to be fluxional in solution, then we should 

have observed broadened peaks as those observed in the [(L4)Cd.MeCN](ClC>4 )2
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spectra. The peaks only started to look like those of the [(L4)Cd.MeCN](C1 0 4 ) 2  

spectra at 100°C, and then the separation between the peaks did not reduce. This 

intense amount of energy needed to gain this result showed that the peaks were 

lost at 120°C and needed a calculated AG* value of SlkJMol’1 to achieve this 

degree of fluxionality. As a comparison, Wieghardt et a /183 calculated a AG* 

value o f 55KJM01'1 for the merging of benzylic protons of [(LKVV)Zn](ClC>4 )2  

Over a temperature range of -36°C-40°C, the diastereotopic proton peaks 

merged to form a singlet. Our value shows that more energy is needed to 

achieve this and as stated before, the amine protons are still not in an equal 

environment. Our system is more strained as the 2 metal-ligand chelates are 5 

membered, and the Wieghardt complex has 3><6  membered chelates. The 

barrier of rotation is currently being calculated by theoreticians at Cardiff 

University to see if the value agrees with data already collected.

183 Schlager O., Wieghardt K., Nuber B., Inorg. Chem., 1995, 34,6449-6455.
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Chapter Five

Tetra-aza ligands and complexes

I don't deserve this award, but I have arthritis and I don't deserve that
either.

— Jack Benny

O Lord, help me to be pure, but not yet.
— Saint Augustine
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Chapter Five 

Introduction

The research o f porphyrins is extensive and varied184'185. As explained in

chapter one, the need for sterically hindered ligands is paramount to the

operation of our proposed system. Due to the inaccessibility of

tetramesitylporphyrin in large quantities it is our aim to synthesize potential 

ligands that fit the criteria needed for the system (bulky groups to prevent 

dimerisation and nitrogen donors). Within this chapter we hope to show the 

possibility of producing such azamacrocyclic ligands that mimic porphyrin 

ligands, but that are more accessible and readily substituted.

Wieghardt et a /186 have shown that 6-membered chelates are formed 

upon complexation with the ligand 1, 4-bis(2-aminobenzyl)-l, 4-

diazacyclohexane. Reaction of 2-nitrobenzyl bromide with piperazine afforded 

La and subsequent hydrogenation with graphite catalyst and hydrazine generated 

the amine derivative (Lb). Ethanolic solutions of the metal salts were reacted 

with Lb to afford the respective metal complexes in good yield (67-80%).

184 Lindsey J S., The Porphyrin Handbook, 2000, 45-117.
185 Sessler J L.. J. Porphyrins Phthalocyanines, 4, 2000, 331-336.
186 Schlager O., Wieghardt K., Rufmska A., Nuber B., J. Chem. Soc., Dalton Trans., 1996, 
1659-1668.
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KOH

HN NH

NO

Graphite
Catalyst

Cu/Ni (C104)2 
PdOAc NH-

Figure 5.1: Synthesis of 1, 4-bis (2-aminobenzyl)-l, 4-diazacyclohexane 

complexes by Wieghardt et al.

Kimura et a l187 have developed a class of ligands to mimic carbonic anhydrase 

and have shown that a sulphonamide pendant inhibits this process. The process 

involves the formation of a Zn-OH species at pH 7 which has shown mimetic 

catalytic activity o f carbonic anhydrase.

18 Koike T.. Kimura E., Nakamura I., Hashimoto Y., Shiro M., J. Am. Chem. Soc., 1992, 114,
7338-7345.
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3.H
NH HN

+Zn Zri
S — 0-4.H

Me

Figure 5.2: 12aneN3 with a pendant propylamido/Mosyl, and its zinc complex.

Kimura and co-workers have shown that a sulphonamide pendant inhibits the 

process by forming a strong anionic nitrogen moiety and thus bonding with the 

zinc atom (Lc). The crystallographic data shows a tetragonally distorted 

geometry with the zinc-sulphonamide bond length 1.925A.

I

R= Propyl L

r= Q T l‘

Figure 5.3: Ortho-tosylaniline derivatives with different Schiff base backbones.

A large amount of research has been carried out by Bermejo et al, on tosyl 

pendant containing ligands By differing the backbone group, they have been 

able to construct helical complexes with many transition metals. Employing the
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flexible spacer of a propyl chain (Ld)188 allowed the complexation of 

Mn/Fe/Co/Cu/Zn/Cd. It is interesting to note that the Co and Cu structures 

showed the formation of monomeric species whereas the Zn complex showed 

the binding of two Zn metals to two ligand chains, forming the [Ld2Zn2] 

complex. The [(Ld)Co] complex exhibits a metal sulphonamide length of 

1.962A, and the [(Ld )Cu] complex 1.980A. The dimeric zinc compounds have 

an average metal-sulphonamide length of 1.978A.

Complexes with the cyclohexane backbone have been investigated by 

both Bermejo Lel89 and Lemaire Lel90. The formation of the [(Ld)Ni] and 

[(Le)Cu] formed tetragonally distorted compounds with metal-sulphonamide 

bond averages of 1.922A and 1.963 A respectively. The Lemaire group 

complexed the LeCo compound which exhibited like geometry and bond 

averages of 1.995A. Interestingly the Lemaire group could modify the sulphonyl 

moiety to add the triflate moiety using triflic anhydride, Et3N in 

dichloromethane at -78°C. This ligand was reacted with NiCh.bFLO which 

formed the desired complex. X-Ray crystallography showed the metal- 

sulphonamide bonds to be very short at 1.908A.

Bermejo et al extended their research further by incorporating a 2, 6- 

diacetylpyridine group between the tosylated anilines to form a new class of 

pentadentate ligand (Lf)191. Reaction group twelve metals afforded [(Lf )M] 

(0 0 4 ) 2  (M=Zn/Cd/Hg) X-Ray data was obtained for [(Lf)Zn](C1 0 4 ) 2  and 

[(Lf)Cd.H2 0 ](C1 0 4 ) 2  which showed distorted bipyramidal-trigonal and distorted 

pentagonal-pyramidal geometries respectively. Metal-sulphonamide averages 

are 2.012A (LfZn) and 2.291 A [LfCdH20],

188 Vasquez M., Bermejo M R., Fondo., Garcia-Deibe A., Gonzalez A M., Pedrido R., Eur. J., 
Inorg. Chem., 2002, 465-472.
189 Vasquez M., Bermejo M R., Sanmartin J., Garcia-Deibe A M., Lodeiro C., Mahia J., J. 
Chem. Soc. Dalton Trans., 2002, 870-877.
190 Karame I., Tommasino M L., Faure R., Lemaire M., Eur. J. Inorg. Chem., 2003, 1271-1276.
191 Pedrido R., Bermejo M R., Garcia-Diebe A M., Gonzalez-Noya A M., Maniero M , Vasquez 
M., Eur. J. Inorg. Chem., 2003, 3193-3200.
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Lg

O ^ /  T ' \ ^ 0N Q / I  1\  QV<s ' ' 1'
a /  ° /  i° V

R R
R=NM eV O-z-Pr

S —ArAr— S

Ar S - N

Figure 5.4: Titanium complexes bound by bis sulphonamide cyclohexyl 

ligands.

Walsh et al192' 193 have developed titanium complexes (L8̂ ) that are bound to a 

sulphonamide nitrogen for the catalytic asymmetric addition of diethylzinc to 

aldehydes194. It is of interest to note that an oxygen from the SO2 group 

participates in binding to the titanium metal centre and forms octahedral and 8- 

coordinate complexes with highly defined geometrical orientations.

The catalytic behaviour of Salen derivatives in previous years has proved to be 

very selective in the resolving of racemic mixtures of epoxides. Chiral versions 

of Salen complexes have been found to resolve epoxides in high enantiomeric 

excess and high yield.

Recently Fallis et a lx95 have shown that chiral vanadyl salen complexes 

can bind with different enantiomers and with the aid of EPR, can be 

distinguished by different characteristic spectra. The spectra indicate different 

interactions between the epoxides to the vanadyl salen catalyst, and also through 

the aid of DFT studies have confirmed the formation of diastereotopic 

complexes between the enantiomers of the vanadyl salen complex.

192 Royo E., Betancourt J M., Davis T J., Carroll P., Walsh P J., Organomet. 2000, 19, 4840- 
4851.
193 Pritchett S., Gantzel P., Walsh P J., Organomet., 1997, 16, 5130-5132.
194 Ojima I. Ed., Catalytic Assymetric Synthesis, VCH, New York, 1993.
195 Fallis I A., Murphy D M., Willock D J., Tucker R J., Farley R D., Jenkins R ., Strevens R R.. 
J. Am. Chem. Soc., 126, 2004, 15660-15661.

190



Chapter Five: Tetraaza ligands and complexes.

Santos et tf/196investigated the effects of bridge constituents upon the 

stabilisation of the Ni3" state. The crystal data obtained shows minimal 

deviation for I7-Lk with average metal bond lengths of 1.845A and 1.841 A 
respectively.

Ml  Me

r \
y = N . N = \

LJ

Figure 5.5: dimethyl and tetramethyl Schiff base (Salen) complexes of nickel.

107Fajer et al have investigated derivatives of porphyrins to see the effect non- 

planarity has upon the crystal packing of these complexes. These porphyrins are 

below and the N-Ni bond length averages are tabulated in figure 5.6.

1=2, 3, 7, 8, 12, 13, 17, 18-octaethyl, 5, 10, 15, 20-tetraphenylporphyrin.

2=2, 3, 7, 8, 12, 13, 17, 18-octapropyl, 5, 10, 15, 20-tetraphenylporphyrin.

3=2, 3, 7, 8, 12, 13, 17, 18-tetracyclohexenyl, 5, 10, 15, 20-

tetraphenylporphyrin.

4=2, 3, 7, 8, 12, 13, 17, 18-octabromo, 5, 10, 15, 20-tetramesitylporphyrin.

5=2, 3, 7, 8, 12, 13, 17, 18-octabromo, 5, 10, 15, 20-

tetrakis(pentafluorophenyl)porphyrin.

6=2, 3, 7, 8, 12, 13, 17, 18-octaethyllporphyrin.

196 Santos I C., Vilas-Boas M , Piedade M F M., Freire C., Duarte M T., de Castro B.. 
Polyhedron, 19, 2000. 655-664.
19 Barkinga K M., Renner M W., Furenlid L R., Medforth C J., Smith K M., Fajer J., J. Am.
Chem. Soc., 1993, 115, 3627-3635.
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1 2 3 4 5 6

1.906A 1.902A 1.914A 1.916A 1.903A 1.952A

Figure 5.6: Table for N-Ni average bond lengths for selected porphyrin 

complexes.

Aims and Objectives

Due to the problems associated (yields, chromatography) with synthesis of 

sterically hindered porphyrins and subsequent metallation, we decided to pursue 

our own area of research, through the formation of analogous tetraaza dianionic 

ligands and complexes.

Formation of the ligand N, N ’~ bis (2-aminophenyl) 1, 4-

diazacycloheptane (LHP) has been achieved previously by Fallis et al198 and the 

N4 donor set could be perceived as analogous to the N4 donors of porphyrins.

NH

Figure 5.7: N, AT-bis (2-aminophenyl) 1, 4-diazacycloheptane LHP.

We felt with deprotonation to form the dianionic anilide species, we 

could form square planar complexes, and tailoring of the backbone or phenyl 

rings would allow us the possibility of creating sterically hindered ligands. Our 

ultimate goal would be to complex ruthenium in a sterically hindered ligand 

environment, and then begin testing of the compound for catalytic properties.

198 Fallis I A., Perkins W T S., Malik K M A., Unpublished Results., 2001.
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Results and Discussion

Complexation with these piperazine derivatives has been found in the past to not 

form complexes due to the restricted access to the macrocycles lone pair. The 

tight bite angle formed upon complexation is too strained and so the 5- 

membered chelate cannot be formed. Increasing the macrocycle from a 6 to 7- 

membered ring allows complexes to be formed but albeit strained. There are 

examples of piperazine macrocycles forming 5-membered chelates199, but our 

N-Aryl derivative may be too rigid for such complexation. Larger 6-membered 

chelates have been formed with titanium by Mountford et al200. The ligand 1, 4- 

bis(2-amino-4-tert-butylbenzyl)piperazine has been crystallographically

examined to show a square based pyramidal structure with a tertiary butyl 

ammonium counterion forming the apical donor. The 1, 5-diazacyclooctane

macrocycle is large enough so when reacted forms metal complexes of square 

planar or octahedral geometries, by providing planar donors to the metal. 

Previous research by Fallis et al201 has shown formation of the 1, 5- 

diazacyclooctane (daco) compounds202, produces highly symmetrical square 

planar complexes.

199 Ratilainen J.. Airola K., Frohlich R., Nieger M , Rissanen K., Polyhedron, 18,1999, 2265-
2273.
209 Lloyd J., Vatsadze S Z., Robson D A., Blake A J., Mountford P., J. Organomet. Chem.., 591, 
1999, 114-126.
201 Fallis I A., Perkins W T S., Malik K M A., Unpublished Results, 2000.
202 Halfen J A., Moore H L., Fox D C., Inorg. Chem., 2002, 41, 3935-3943.
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Ethanol (Degassed)
8 Hours 

Metal (II) Perchlorate.

Pd/C H2 \  
THF.MeOH 
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NO
K2COs MeCN 
85°C. 18 Hours

HN NH K2C 03 MeCN 
85°C, 18 Hours

K2C 0 3 MeCN 
85°C. 18 Hours

NONO

Pd/C H2 
THF:MeOH 
36 Hours

Pd/C H2 
THF:MeOH 
36 Hours

Ethanol (Degassed) Ethanol (Degassed)
8 Hours 8 Hours

Metal (II) Perchlorate. Metal (II) Perchlorate

H2 |2.C104 
N

n -:m'- : n ^

h2
N

f  H2
N.

H2C10,

Figure 5.8: Reaction scheme for the synthesis of homopiperazine complexes.
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Synthesis of the ligands produced highly coloured orange and yellow 
powders, except for l-(2-nitrophenyl), 4-(2-nitro, 5-fluorophenyl)- 
homopiperizene which was afforded as a viscous orange oil. The hydrogenated 
ligands were found to be reasonably air stable but were manipulated under 
anaerobic conditions to reduce to possibility of any oxidised impurities 
catalytically degrading the samples. Complexation was carried out by stirring 
the ligand and metal perchlorate salt in an ethanolic solution. The crystal 
structure of LMNH is attached as Appendix iii.

Nickel complexes.

[(Ln)Ni.2MeCN](C104)2 was found to crystallise with two perchlorate 
counterions and two molecules of MeCN solvent. No hydrogen bonding was 
found within the cell. On comparison with the parent ligand LH , there are 

minimal bond length deviances but it is of interest to note an increase in the 
Nring-Ni distances of 0.012A and a decrease of 0.013A in the Naniiine-Ni 

distances. This could be perceived as due to the fluorine being in the para 
position relative to the nitrogen in the homopiperazine ring, electron density is 
being withdrawn from the ring and weakening the Nhng-Ni bond, thus making it 
longer.

N(2)
N(51 N(4)

M 1)

N(3)N(7)

N(1)

Figure 5.9: [(Ln )Ni 2 .MeCN)](Cl04)2 Hydrogen atoms and solvent molecules 
have been removed for clarity. N(l)-Ni(l) 2.129(4), N(2)-Ni(l) 2.127(4), N(3)- 
Ni(l) 2.080(4), N(4)-Ni(l) 2.094(4), N(5)-Ni(l) 2.092(4), N(7)-Ni(l) 2.071(4).
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Chapter Five: Tetraaza ligands and complexes.

It would be of interest to observe other nickel derivatives with the fluorine in the 
ortho and para position to the aniline to hopefully note a trend in bond lengths 
when compared to the fluorine position. We would expect when the fluorine is 
ortho to the aniline the Nnng distances would be shortest and Naniiine distances to 
be the longest. The octahedral geometry displayed is slightly distorted with the 
acetonitrile donors flexing out of the ideal position of 90° to all nitrogen donors 
of the ligand by -5° away from the macrocycle ring.

N(2)

M eC N

N(5)
N -T acn  Ring

N-Aniline

N -T acn  Ring

N-Aniline N(4)

M eC N

N(1)

Figure 5.10: Distorted octahedral environment of [(Ln)Ni 2 .MeCN)](C104)2.

N(7)-Ni(l)-N(3) 114.40(16) N(5)-Ni(l)-N(2) 96.29(15)
N(7)-Ni(l)-N(5) 84.49(15) N(4)-Ni(l)-N(2) 99.02(15)
N(3)-Ni(l)-N(4) 83.43(15) N(7)-Ni(l)-N(l) 85.59(15)
N(5)-Ni(l)-N(4) 77.63(15) N(3)-Ni(l)-N(l), 86.39(15)
N(7)-Ni(l)-N(2) 87.17(15) N(5)-Ni(l)-N(l) 94.11(14)
N(3)-Ni(l)-N(2) 86.46(15) N(4)-Ni(l)-N(l) 91.28(14)

Figure 5.11: Bond angles for [(Lu)Ni 2,MeCN)](C104)2.
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Chapter Five: Tetraaza ligands and complexes.

Sample Code N-Tacn N-Tacn N-Aniline N-Aniline N-MeCN N-

MeCN

[L"Ni 

2 MeCN]

0419 2.094(4) A 2.092(4) A 2.071(4)A 2.080(4)A 2.129(4) A 2.127(4)

A
[LHPNi 

2 MeCN]

01IAF11 2.082(2)A 2.080(2) A 2.083(3)A 2.094(3)A 2.129(2) A 2.117(3)

A
LHPNi 011AF12 1.902(2) A 1.893(2)A 1.911(2)A 1.911(2)A NA NA

Figure 5.12: Comparison of bond lengths of [(Ln )Ni 2 .MeCN](C1 0 4 )2 , 

[(LHP)Ni 2.MeCN] (C lO ^.and [(LHP)Ni] (C104)2.

Tosylated Ni complex.

NH HN

n = 1 = 1, 4-Diazacyclohexane = Piperazine 
n = 2 = 1, 4-Diazacycloheptane = Homopiperazine

Figure 5.13: Schematic of functionalised diazamacrocycles piperazine and

homopiperazine.

The synthesis of L12 was accomplished by the addition of tosyl chloride to LHP 

under basic conditions. Work-up methods to date have produced the desired 

ligand but have not been optimised. Tosylation methods were modified from
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Chapter Five: Tetraaza ligands and complexes.

procedures by Bermejo188' 189’191 and Goujon203. The metal salt was reacted with 
12L in degassed acetone, and after the removal of solvent, the residue was taken 

up in MeCN and left to stand over the weekend. Fortunately crystals of X-Ray 

quality were afforded but this reaction was repeated with Zn, Mn and Cu and no 

positive results were obtained.

The bonds lengths for [L12Ni] (IAF0402) are over a wide range (1.898A- 

1.939A), indicating a strained geometry. The plane of the nickel centre is 

slightly twisted and a plane drawn through N (2)-N (3) and N (4)-N (1), when 

measured as a torsion angle through the nickel centre gives an angle of 169°. 

This deviance from 180° shows a strain that could be due to the small ring size 

of the macrocycle, forcing the metal into a distorted square planar geometry. It 

is interesting to note the non-bonding distances for the oxygen’s present in the 

S02 to the nickel centre are 3.180, 3.466, 4.230 and 4.292A. This confirms that 

the geometry of the structure is truly a distorted square planar complex without 

axial ligands present.

Comparison o f the N-Ni bond lengths is restricted due to the lack of like 

compounds in the literature. The crystal structure of L°Ni by Bermejo189 

(Introduction, chapter five) shows bond lengths of 1.883 A, 1.925A 
(cyclohexane amines) and 1.871 A and 1.919A for the Ni-sulphonamide bonds. 

The [L12Ni] Ni-sulphonamide bond length average is 0.024A longer than [L°Ni] 

structure. The [L°Ni] complex shows a 6-membered chelate upon complexation, 

whereas [L12Ni] is the more strained 5-membered chelate. The two bonds of 

[L12Ni] are 1.939A and 1.898A and this big difference in like bonds could be 

due to the steric interference o f the tosyl groups around the metal centre. The 

stress of the tosyl groups folding away from each other may lead to this 

inequivalence of bond lengths.

203 Goujon J-Y., Zammattio F., Chretien J-M, Beaudet I., Tetrahedron., 60, 18, 2004. 4037- 
4039
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Chapter Five: Tetraaza ligands and complexes.

Figure 5.14. [(L12)Ni]. Hydrogen atoms have been removed for clarity. Selected bond Lengths: N (l)-Ni 1.912(3), N (2)-Ni 1.903(3), N (3)-Ni 

(1) 1.939 and N (4)-Ni 1.898(3). Image of [(L12)Ni] showing the S02 oxygen’s not participating with bonding of the nickel centre.
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Chapter Five: Tetraaza ligands and complexes.

Conclusions

This chapter has shown that there is a possibility of altering the macrocycle 

size, having fluorine present on the phenyl ring (which allows the possibility of 

further fiinctionalisation), and the addition of different sulphonyl components, such as 

the derivatives researched (^-fluorophenylsulphonyl chloride, 2-mesitylsulphonyl 

chloride, and p-oxymethylphenylsulphonyl chloride) in chapter four.

Future Work

The outcome of this project has developed many new and interesting fields of 

research. The pursuit of a nitrous oxide sensor has led us to develop large classes of 

ligands and metal complexes but without a positive result for the actual complexation 

of ruthenium. We feel that through further research, an accessible ruthenium source 

would give the desired result and therefore further preliminary testing can proceed 

with the nitrous oxide screening. Many factors have influenced the path we have 

taken, such as the poor yield o f tetramesitylporphyrin and difficult chromatography 

needed to isolate a pure sample. The most restricting factor was the metallation of the 

porphyrin. Current literature methods found were very vague and we feel yields 

quoted were ambitious. Attempts by us to form the desired metallated porphyrin 

failed, as the chromatography procedures followed were inaccurate.

This led us to pursue our own path with the study of potential Taube salt 

mimics, through the complexation o f ruthenium with pentadentate azamacrocycles. 

Preliminary studies with different ruthenium sources, /7-carotene, and silica/alumina 

mixed unfortunately produced no positive results. A main limiting factor could be that 

the previous studies by Yamada and Groves were all in the liquid phase, whereas we 

need our reaction to occur within the solid phase. If this were to work another 

drawback would be the level o f detection needed to comply with current health and 

safety regulations. There are 11 olefin sites present on /7-carotene, therefore 

epoxidation could occur many times per chromophore, but the degradation of the /7- 

carotene would be unequal throughout the reagent spot. Research into other coloured 

olefins would be needed, so to produce a more straightforward catalytic cycle. 

Epoxidation of the olefin would have to incur the loss of the chromophore and so 

produce some sort of colour change.
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Chapter Five: Tetraaza ligands and complexes.

Above all the biggest restriction would be the chemical inertness of nitrous 

oxide. Due to the lack of complexes formed with N20 , our line of research has been 

restricted to ruthenium complexes. If in the future other complexes could be found, 

then more possible options would be available to the researcher.
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Appendix i

0 (6)

[N {6)0 (6)

N(6)
N(4) 0(1)

0 (2) 0(4)'
Ndr 0(3)

Figure i.l. The crystal structure of L1, L2 and L3 . Hydrogen atoms have been removed for clarity.
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A ppend ix  ii

N(3) N(2)
0(3)N(5) N(4)

0 (2)0(4) 0 (1)

Figure ii.l. Bis 1, 4-bis (2-nitro, 4-fluorophenyl), 1, 4, 7-triazacyclononane 

(L32F2). Hydrogen atoms have been removed for clarity.
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A p p e n d ix  iii

The crystal structure for the ligand o f  L n (IAF 0308) was afforded by 

crystallisation from a concentrated ethanol solution and shows an almost planar 

arrangement within the crystal cell.

0(4)
N(4)

O P )

N(2) N<3)
kN(1)

0 (2)

'0(1)

Figure iii.l. N, N ’-bis (2-nitro, 4-fluorophenyl), 1, 4-diazacycloheptane. 

Hydrogen atoms have been removed for clarity.
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Appendix iv 

Crystal Departmental Codes

Chapter Two

L1 L2 V Ly
Ligand 0303 0402 0410 NA
Mn 0418 0405 0416 0422
Fe 0402 0307 NA NA
Ni S80 0301 0414 NA
Cu 0413 0406 0415 NA
Zn S92 0404 0417 0420
Cd 0412 0407 0421 NA
Hg 0427 NA NA NA
Pb NA NA 0419 NA

Chpater Four

L4 V 'L* L '
Ni 0423 0502 0508 0512
Cu 0501 NA NA NA
Zn 0426 0506 NA NA
Cd 0504 NA NA NA
Pb 0503 NA NA NA

Chapter Five

L11 L 12
Ni 0408 0409
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Table 1. Crystal data and structure refinement for iaf0418.

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system

iaf0418

C24 H27 C12 F3 Mn N6 08

710.36

150(2) K

0.71073 A
Cubic

Space group P 21 3

Unit cell dimensions a = 14.0658(8) A □= 90°. 

b = 14.0658(8) A □= 90°. 

c = 14.0658(8) A □ = 90°.

Volume 2782.9(3) A3
Z 4

Density (calculated) 1.695 Mg/m3

Absorption coefficient 0.748 mm'*

F(000) 1452

Crystal size 0.28 x 0.25 x 0.25 mm3

Tlieta range for data collection 3.24 to 27.45°.

Index ranges -16<=h<=18, -12<=k<=18. -18<=1<=8

Reflections collected 5092

Independent reflections 2063 [R(int) = 0.0698]

Completeness to theta = 27.45° 99.3 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.8351 and 0.8180

Refinement method Full-matrix least-squares on F^

Data / restraints / parameters 2 0 6 3 /0 /  133

Goodness-of-fit on F^ 1.034

Final R indices [I>2sigma(I)] R1 =0.0530. wR2 = 0.0918

R indices (all data) R1 = 0.0848, wR2 = 0.1043

Absolute structure parameter 0.02(3)

Largest diff. peak and hole 0.283 and -0.286 e.A"3

Table 1. Crystal data and structure refinement for iaf0405.

Identification code iaf0405

Empirical formula C26 H30 C12 F3 Mn N7 08

Formula weight 751.41

Temperature 150(2) K

Wavelength 0.71073 A
Crystal system Triclinic
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Space group

Unit cell dimensions

78.8550(10)°.

77.3900(10)°.

73.3330(10)°.

Volume

Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.44° 

Absorption correction 

Max. and nun. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

P - l

a = 10.8439(3) A □=

b= 11.0916(3) A □=

c =  14.1396(5) A □ =

1574.30(8) A3 
2

1.585 Mg/m3 

0.666 mm-1 

770

0 .23x0 .28x0 .35  mm3 

2.98 to 27.44°.

-14<=h<=14. -14<=k<=14. -18<=1<=18 

19323

6930 [R(int) = 0.0619]

96.6 %

Semi-empirical from equivalents 

0.8783 and 0.8783 

Full-matnx least-squares on F2 

6 9 3 0 /0 /4 1 2  

1.041

R1 = 0.0658. wR2 = 0.1500 

R1 =0.1031, wR2 = 0.1711 

0.935 and -0.798 e.A"3

Table 1. Crystal data and structure refinement for iaf0416.

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

84.6120(10)°.

77.8410(10)°.

iaf0416

C24 H27 C12 F3 Mn N6 0 8

710.36

180(2)K

0.71073 A
Triclinic

P - l

a = 10.0430(2) A 

b = 10.3171(2) A

a=

b=
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c -  15.3839(4) A

67.7840(10)°.

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta = 27.39°

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on

Final R indices [I>2sigma(I)]

R indices (all data)

Extinction coefficient 

Largest diff. peak and hole

1442.38(5) A3 

2

1.636 Mg/m3 

0.721 mm"1 

726

0.30x0.25 x 0.25 nun3 

3.02 to 27.39°.

-12<=h<=12, -13<=k<=13, -18<—1<—19 

21966

6437 [R(int) = 0.1169]

98.5 %

Seini-empirical from equivalents 

0.8403 and 0.8127 

Full-inatrix least-squares on F  ̂

6 4 3 7 /0 /4 1 4

1.071

R1 =0.0676, wR2 = 0.1762 

R1 =0.0935. wR2 = 0.1951 

0 .011(2)

1.175 and-1.142 e.A ' 3

Table 1. Crystal data and structure refinement for iaf0411.

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

98.7030(10)°.

91.6510(10)°.

103.3510(10)°.

Volume

Z

iaf0411

C26 H30 C12 F3 Fe N7 0 8

752.32

150(2)K

0.71073 A

Triclinic

P - l

a = 8.8824(3) A 

b = 9.8672(3) A 

c = 18.3752(6) A 

1545.51(9) A3

a=

b=
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Density (calculated)

Absorption coefficient 

F(000)

Cry stal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.56°

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)
Largest difif. peak and hole 1.402 and -0.881 e .A °

1.617 Mg/m3 

0.740 mm-1 

772

0.18x0 .10x0 .03  nun3

2.94 to 27.56°.

-1 l<=h<=l 1, -12<=k<=12, -22<=1<=23 

21961

7002 [R(int) -  0.0873]

97.9 %

Seini-empirical from equivalents 

0.9782 and 0.8784 

Full-matrix least-squares on F2 

7002 / 12 / 422

1.031

R1 = 0.0778. wR2 = 0.1642 

R1 =0.1408. vvR2 = 0.1940

Table 1. Crystal data and structure refinement for

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Cry stal sy stem

Space group

Unit cell dimensions

81.1520(10)°.

77.3660(10)°.

73.366(2)°

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection

iaf0307.

iaf0307

C26 H30 C12 F3 Fe N7 0 8

752.32

150(2) K

0.71073 A

Triclinic

P - l

a = 10.4248(3) A

b = 10.9636(4) A

c = 14.2289(6) A

1513.23(9) A3 

2

1.651 Mg/in3 

0.755 mm-1 

772

0.33 x 0.30 x 0.13 mm3

2.95 to 30.11°

□=

□=

□ =
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Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 30.11 ° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

Table 1. Crystal data and structure

-14<=h<=14, -15<=k<=15, -19<=1<=20 

21147

8484 [R(int) = 0.0941]

95.1 %

Semi-empirical from equivalents 

0.9082 and 0.7886 

Full-matrix least-squares on F2 

8 4 8 4 /0 /4 1 3

1.020

R1 = 0.0848, wR2 = 0.1981 

R1 =0.1464. wR2 = 0.2296 

0.791 and-1.008 e.A-3

for 02IAF13.

Empirical formula C24 H27 C12 F3 N6 Ni 0 8

Formula weight 714.13

Temperature 150(2) K

Wavelength 0.71073 A

Crystal system Cubic

Space group P2(l)3 (No. 198)

Unit cell dimensions a = 14.0797(6) A alpha = 90 deg.
b = 14.0797(6) A beta = 90 deg. 
c = 14.0797(6) A gamma = 90 deg.

Volume 2791.1(2) AA3

Z 4

Density (calculated) 1.699 Mg/mA3

Absorption coefficient 0.967 mmA-l

F(000) 1464

Crystal size 0.35 x 0.30 x 0.25 mm

Theta range for data collection 3.24 to 27.47 deg.

Index ranges -13 <=h<= 18, -4<=k<= 18,-12<=1<= 18

Reflections collected 5062

Independent reflections 2102 [R(int) = 0.0504]
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Max. and min. transmission 0.7940 and 0.7282

Refinement method Full-matrix least-squares on FA2

Data / restraints / parameters 2102 / 0 / 133

Goodness-of-fit on FA2 1.043

Final R indices [I>2sigma(I)J R1 = 0.0485, wR2 = 0.0881

R indices (all data) R1 = 0.0642, wR2 = 0.0940

Absolute structure parameter -0.02(2)

Largest diff. peak and hole 0.486 and -0.490 e. AA-3

Table 1. Crystal data and structure refinement for

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

79.7670(10)°.

77.763(2)°.

73.6170(10)°.

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Cry stal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 26.05°

Absorption correction 

Max. and min. transmission 

Refinement method

iaf0301.

iaf0301

C26 H30 C12 F3 N7 Ni 0 8

755.18

150(2) K

0.71073 A

Triclinic

P - l

a = 10.7140(3) A 

b = 10.9970(3) A 

c =  14.1370(4) A

□=

□=

□ =

1549.32(7) A3 

2

1.619 Mg/m3 

0.877 mm"1 

776

0.28x0.18 x 0.08 mm3

3.75 to 26.05°.

-13<=h<= 13, -13<=k<=13, -17<—1<—17 

26169

6078 [R(inl) = 0.0977]

99.1%

None

0.9331 and 0.7913 

Full-matrix least-squares on F^
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Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

Extinction coefficient 

Largest diff. peak and hole

Table 1. Crystal data and structure

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 26.37° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigina(I)]

R indices (all data)

Largest diff. peak and hole

6 0 7 8 /0 /4 1 0

1.063

R1 = 0.0650. wR2 = 0.1636 

R1 =0.1004. \vR2 = 0.1867 

0.025(3)

0.989 and -0.742 e.A ' 3

refinement for iaf0414.

iaf0414

C24 H27 C12 F3 N6 Ni 0 8

714.13

150(2) K

0.71073 A

Orthorhombic

P n a b

a = 14.0676(2) A a= 90°.

b = 14.4040(2) A b= 90°.

c = 27.3974(6) A g = 90°.

5551.53(16) A3 

8

1.709 Mg/in3 

0.973 mm' 1 

2928

0.20 x 0.18 x 0.15 mm3 

3.55 to 26.37°

-17<=h<=17, -17<=k<=18, -24<=1<=34 

29798

5655 [R(int) = 0.0613]

99.6 %

Semi-empirical from equivalents 

0.8678 and 0.8292 

Full-matrix least-squares on F2 

5655 / 54 / 398

1.047

R1 = 0.0760, wR2 = 0.1883 

R1 = 0.0966, wR2 = 0.2006 

1.297 and-0.898 e.A"3

Table 1. Crystal data and structure refinement for iaf0413.
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Identification code iaf0413

Empirical formula C24 H27 C12 Cu F3 N6 08

Formula weight 718.96

Temperature 150(2) K

Wavelength 0.71073 A

Cry stal sy stem Cubic

Space group P 21 3

Unit cell dimensions a = 13.9866(7) A a= 90°. 

b = 13.9866(7) A b= 90°. 

c -  13.9866(7) A g = 90°.

Volume 2736.1(2) A3

Z 4

Density (calculated) 1.745 Mg/m3

Absorption coefficient 1.076 mm'*

F(000) 1468

Cry stal size 0.25 x 0.20 x 0.20 imn3

Theta range for data collection 3.26 to 27.44°.

Index ranges -14<=h<=18, -14<=k<=17, -10<=1<=18

Reflections collected 6098

Independent reflections 2100 [R(int) = 0.0723]

Completeness to theta - 27.44° 99.6 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.8136 and 0.7747

Refinement method Full-matrix least-squares on F^

Data / restraints / parameters 2 1 0 0 /6 /1 3 3

Goodness-of-fit on F^ 1.039

Final R indices [I>2sigma(I)] R1 =0.0562. wR2 = 0.1226

R indices (all data) R1 =0.0833, wR2 = 0.1362

Absolute structure parameter 0.06(3)

Largest dilf. peak and hole 0.726 and-0.316 e.A"3

Table 1. Crystal data and structure refinement for iafl)406.

Identification code iaf0406

Empirical formula C26 H30 C12 Cu F3 N7 08

Formula weight 760.01

Temperature 150(2) K

Wavelength 0.71073 A

Crystal system Triclinic

Space group P - l
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Unit cell dimensions 

79.101(1)°

77.203(1)°.

72.745(1)°.

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta = 30.04°

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

a = 10.7705(2) A □=

b = 10.8796(2) A □=

c = 14.2665(3) A □ =

1543.11(5) A3 

2

1.636 Mg/m3 

0.960 mm" *

778

0.25x0.15 x 0.10 nun3

2.95 to 30.04°.

-15<=h<=15, -15<=k<=15, -19<=1<=20 

28588

8961 [R(int) = 0.0681]

99.1 %

Semi-empirical from equivalents 

0.9101 and 0.7954 

Full-matrix least-squares on F  ̂

8 9 6 1 /0 /4 2 5

1.027

R1 = 0.0494. wR2 = 0.1085 

R1 = 0.0746. wR2 -  0.1190 

0.790 and -0.637 e.A-3

Table 1. Crystal data and structure refinement for iaf0415.

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions

Volume

Z

iaf0415

C24 H27 C12 Cu F3 N6 08

718.96

150(2)K

0.71073 A

Orthorhombic

P n a b

a = 14.0450(2) A 

b = 14.3669(2) A 

c = 27.4338(5) A 

5535.68(15) A3 

8

□ = 90°.

□ = 90°.

□ = 90°.
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Density (calculated) 

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta = 27.48°

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

1.725 Mg/m3

1.064 mm' *

2936

0.25x0.15 x 0.13 nun3

2.97 to 27.48°

-18<=h<=18, -18<=k<=18, -31<=1<=35 

32388

6338 [R(int) -  0.0962]

99.8 %

Semi-empirical from equivalents 

0.8741 and 0.7768 

Full-matrix least-squares on F^

6338 / 0 / 408

1.037

R1 = 0.0480. wR2 = 0.0983 

R1 = 0.0714. \vR2 = 0.1078 

0.475 and -0.547 e.A“3

Table 1. Crystal data and structure refinement for 02IAF12.

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions

C24 H27 C12 F3 N6 0 8  Zn

720.79 

150(2)K 

0.71073 A 

Cubic

P2( 1)3 (No. 198)

a = 14.0172(5) A alpha = 90 deg. 
b = 14.0172(5) A beta = 90 deg. 
c = 14.0172(5) A gamma = 90 deg.

Volume

Z 4

Density (calculated) 

Absorption coefficient 

F(000)

Crystal size

2754.13(17) AA3

1.738 Mg/mA3

1.168 mmA-l

1472

0.20 x 0.15 x 0.10 mm

Theta range for data collection 3.25 to 27.47 deg.
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Index ranges -13<=h<=18, -1 l<=k<=18. -14<=1<= 18

Reflections collected 5838

Independent reflections 1993 [R(int) = 0.0433]

Max. and min. transmission 0.8922 and 0.8000 

Refinement method Full-matrix least-squares on FA2

Data / restraints / parameters 1993 101 133

Goodness-of-fit on FA2 1.030

Final R indices |I>2sigma(I)] R1 = 0.0389. wR2 = 0.0781 

R indices (all data) R1 = 0.0479. wR2 = 0.0821

Absolute structure parameter 0.009( 18)

Largest diff. peak and hole 0.438 and -0.521 e.AA-3

Table 1. Crystal data and structure refinement for

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

79.0690(10)°.

77.6390(10)°.

73.1250(10)°.

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections

iaf0404.

iaf0404

C26 H30 C12 F3 N7 0 8  Znl

761.84

150(2) K

0.71073 A

Triclinic

P-l

a = 10.8230(2) A a=

b =  11.0024(3) A b=

c = 14.0990(4) A g =

1554.69(7) A3 

2

1.627 Mg/m3 

1.040 mm'*

780

0 .2 0 x 0 .2 0 x 0.20 mm3

2.99 to 27.49°

-13<=h<=14, -13<=k<=14, -14<=1<=18 

23557

6931 [R(int) = 0.0866]
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Completeness to theta = 27.49°

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on

Final R indices [I>2sigma(I)]

R indices (all data)
Largest diff. peak and holeO.519 and -0.536 e.A"3

97.1 %

Semi-empirical from equivalents

0.906 and 0.830

Full-matrix least-squares on F^

6 9 3 1 /0 /4 5 0

1.076

R1 = 0.0519. wR2 = 0.1012 

R1 =0.1167. wR2 = 0.1215

Table 1. Cry stal data and structure refinement for

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Cry stal sy stem

Space group

Unit cell dimensions

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Cry stal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.49° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F^

Final R indices [I>2sigma(I)]

R indices (all data)

iaf0417.

iaf0417

C24 H27 C12 F3 N6 0 8  Zn

720.79

150(2) K

0.71073 A

Orthorhombic

P n a b

a = 14.17760(10) A a= 90°.

b =  14.25980(10) A b= 90°

c = 27.5815(3) A g = 90°.

5576.14(8) A3 

8

1.717 Mg/m3 

1.154 mm'l 

2944

0.25x0.15 x 0.13 nun3

3.00 to 27.49°.

-18<=h<=18. -18<=k<=18. -35<=1<=35 

48827

6364 [R(int) = 0.1131]

99.2 %

Seini-empirical from equivalents 

0.8645 and 0.7613 

Full-matrix least-squares on F3 

6364 / 30 / 408

1.084

R1 =0.0601, wR2 = 0.1433 

R1 = 0.0825, wR2 = 0.1557
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Largest diff. peak and hole 0.954 and -0.734 e.A"3

Table 1. Crystal data and structure refinement for

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta = 27.46°

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on F^

Final R indices [I>2sigma(I)]

R indices (all data)

Absolute structure parameter
Largest diff. peak and hole0.343 and -0.346 e.A'J

Table 1. Crystal data and structure 

Identification code 

Empirical formula 

Formula weight 

Temperature

iaf0412.

iaf0412

C8 H9 CdO.33 C10.67 F N2 02.67

255.94

150(2) K

0.71069 A

Cubic

P 21 3

a = 14.083(5) A □= 90°.

b =  14.083(5) A □=90°

c = 14.083(5) A □ = 90°.

2793.1(17) A3 

12

1.826 Mg/m3

1.054 mm"l 

1544

0.20 x 0.15 x 0.10 mm3

3.23 to 27.46°.

-18<=h<=18, -18<=k<=18, -18<=1<= 13 

27702

2149 [R(int) = 0.1407]

99.8 %

Semi-empirical from equivalents 

0.9019 and 0.8168 

Full-matrix least-squares on F  ̂

2 1 4 9 /0 /1 3 3

1.076

R1 = 0.0384, wR2 = 0.0684 

R1 = 0.0547, wR2 = 0.0734 

-0.02(4)

refinement for iaf0407.

iaf0407

C24 H27 Cd C12 F3 N6 08

767.82

150(2) K
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Wavelength 

Cry stal sy stem 

Space group 

Unit cell dimensions

101.874(2)°

Volume

Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 25.03°

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)
Largest diff. peak and hole3.227 and -1.233 e.A"3

0.71073 A 

Monoclinic 

P 21/n

a = 11.0887(5) A 

b = 21.7388(8) A

a= 90°. 

b=

g = 90°.c = 12.0387(6) A 

2839.9(2) A3 

4

1.796 Mg/m3

1.037 mm'*

1544

0.20 x 0.13 x 0.10 mm3 

3.58 to 25.03°.

-12<=h<=12, -25<=k<=25. -14<=1<=14 

24465

4895 [R(int) = 0.1128]

97.4 %

Semi-empirical from equivalents 

0.9034 and 0.8195 

Full-matrix least-squares on F2 

4895 / 0 / 401 

1.156

R1 =0.1164. wR2 = 0.2633 

R1 =0.1444, wR2 = 0.2773

Table 1. Crystal data and structure refinement for iaf0421.

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions

100.0520(10)°.

iaf0421

C25.50 H30.50 Cd C12 F3 N6.50 08.50

804.36

150(2) K

0.71073 A

Monoclinic

P 2/c

a = 13.4616(2) A a= 90°.

b = 8.9614(2) A b=

c = 26.6072(6) A g = 90°.
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Volume

Z

Density (calculated)

Absorption coefficient

F(000)

Cry stal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.47°

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on

Final R indices [I>2sigma(I)]

R indices (all data)
Largest diff. peak and hole2.823 and -1.489 e.A"3

3160.48(11) A3 

4

1.690 Mg/m3 

0.937 mm"1 

1624

0.35 x 0.30 x 0.15 mm3

2.92 to 27.47°.

-17<=h<=17. -8<=k<=l 1. -34<-l<=34 

21407

7192 [R(int) = 0.0813]

99.2 %

Semi-empirical from equivalents 

0.8722 and 0.7350 

Full-matrix least-squares on F  ̂

7 1 9 2 /3 7 /4 2 2  

1.068

R1 =0.0625, wR2 = 0.1581 

R1 = 0.0835, wR2 = 0.1711

Table 1. Crystal data and structure refinement for iaf0427.

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions

Volume

Z

Density (calculated) 

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges

iaf0427

C24 H27 C12 F3 Hg N6 0 8

856.01

150(2) K

0.71073 A

Cubic

P 21 3

a = 14.0927(6) A a= 90°.

b = 14.0927(6) A b= 90°.

c = 14.0927(6) A g = 90°.

2798.9(2) A3 

4

2.031 Mg/m3 

5.771 mm'l 

1672

0 .15x0 .15x0 .10  mm3

3.23 to 30.03°.

-14<=h<=19, -19<=k<=18, -9<=1<=19
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Reflections collected

Independent reflections

Completeness to theta = 30.03°

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on

Final R indices [I>2sigma(I)J

R indices (all data)

Absolute structure parameter 

Largest diff. peak and hole

7072

2722 [R(int) = 0.0724]

99.3 %

Semi-empirical from equivalents 

0.5961 and 0.4781 

Full-matrix least-squares on F^

2 7 2 2 /0 /  133

1.035

R1 = 0.0473. wR2 = 0.0802 

R1 = 0.0611, wR2 = 0.0851 

-0.017(11)

0.798 and -0.646 e.A"3

Table 1. Crystal data and structure

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

99.4060(10)°.

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 30.07° 

Absorption correction 

Max. and min. transmission

refinement for iaf0419.

iaf0419

C24 H27 C12 F3 N6 0 8  Pb 

862.61 

150(2) K 

0.71073 A 

Monoclinic 

P 21/c

a = 10.2444(2) A 

b = 18.7379(3) A

a= 90°. 

b=

g = 90°.c -  14.9096(3) A 

2823.54(9) A3 

4

2.029 Mg/m3 

6.245 m nfl 

1680

0.23 x 0.15 x 0.10 mm3

3.13 to 30.07°

-14<=h<=14, -18<=k<=26. -20<=1<=20 

30488

8215 [R(int) = 0.1042]

99.0 %

Semi-empirical from equivalents 

0.5740 and 0.3277
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Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)] 

R indices (all data)

Largest diff. peak and hole

Full-matrix least-squares on F2

8215/ 18/453

1.097

R1 =0.0361. wR2 = 0.0868 

R1 = 0.0440, wR2 = 0.0910

1.081 and-2.251 e.A ' 3

Table 1. Crystal data and structure refinement for iaf0422. 

Identification code 

Empirical formula 

Formula weight

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Cry stal size

Thela range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.48° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

iaf0422

C24 H29 C12 F Mn N6 0 8

674.37 

150(2) K 

0.71073 A 

Cubic 

P 21 3

a = 14.0304(6) A a=

b = 14.0304(6) A b:

c = 14.0304(6) A g

2761.9(2) A3 

4

1.622 Mg/m3 

0.739 mm"1 

1388

0.28 x 0.28 x 0.10 mm3 

3.25 to 27.48°.

-14<=h<=18, -14<=k<=18, -8<=1 

5915

2106 fR(int) = 0.0658]

99.4 %

Semi-empirical from equivalents 

0.9298 and 0.8199 

Full-matrix least-squares on F2

2 1 0 6 /0 /1 3 3

1.073

R1 = 0.0687, wR2 = 0.1735 

R1 =0.0813. wR2 = 0.1837

Absolute structure parameter 0.05(5)
Largest diff. peak and hole 1.443 and -0.458 e.A"-5

90°.

90°.

90°.

:=18
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Table 1. Crystal data and structure

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Tliela range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.47° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

Absolute structure parameter 

Largest diff. peak and hole

refinement for iaf0420.

iaf0420

a= 90°. 

b= 90°. 

g = 90°.

C8 H9 C10.67 F0.33 N2 02.67 ZnO.33

227.60

150(2) K

0.71069 A

Cubic

P 21 3

a = 13.952(5) A 

b = 13.952(5) A 

c — 13.952(5) A 

2715.9(17) A3 

12

1.670 Mg/m3

1.169 mm"*

1400

0.28 x 0.25 x 0.23 mm3

2.92 to 27.47°.

-13<=h<=18, -8<=k<=18„ -17<=1<= 14 

5403

2070 [R(int) = 0.0574]

99.8 %

Semi-empirical from equivalents 

0.7748 and 0.7355 

Full-matrix least-squares on F2

2 0 7 0 /0 /  133 

1.039

R1 = 0.0685. wR2 = 0.1737 

R1 = 0.0857, wR2 = 0.1882 

-0.02(3)

1.540 and-0.583 e.A ' 3

Table 1. Crystal data and structure refinement for iaf0423.

Identification code iaf0423

Empirical formula C29 H37 C12 N7 Ni O10 S

Formula weight 805.33

Temperature 150(2) K

Wavelength 0.71073 A
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Crystal system 

Space group 

Unit cell dimensions

108.1560(10)°

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta - 27.48°

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

Monoclinic 

P 21/n

a = 10.52110(10) A 

b = 26.9809(4) A

a= 90°. 

b=

c=  13.1552(2) A g = 90°.

3548.42(8) A3 

4

1.507 Mg/m3 

0.820 mm'*

1672

0.30 x 0.20 x 0.20 nun3

2.98 to 27.48°.

-13<=h<=13, -34<=k<=35, -17<=1<=17 

28941

8101 [R(int) = 0.0912]

99.7 %

Semi-empirical from equivalents 

0.8531 and 0.7909 

Full-matrix least-squares on F  ̂

8 1 0 1 /30 /473

1.094

R1 = 0.0537, wR2 = 0.1309 

R1 =0.0762. wR2 = 0.1421 

1.444 and -0.745 e.A-3

Table 1. Crystal data and structure refinement for iaf0502.

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Cry stal system 

Space group 

Unit cell dimensions 

93.5730(10)°.

98.8200(10)°.

iaf0502

C31 H40 C12 N8 Ni O il S

862.38

150(2)K

0.71073 A

Triclinic

P - l

a = 10.7650(3) A 

b = 13.4460(4) A 

c = 13.7870(5) A

b=

g =
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106.899(2)°

Volume

Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 26.37° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

1874.77(10) A3 

2

1.528 Mg/m3 

0.784 mm*1 

896

0.23 x 0.18 x 0.08 mm3 

3.53 to 26.37°.

-13<-h<-13, -16<-k<=16, -17<=1<=17 

29404

7655 fR(int) -  0.0903]

99.6 %

Semi-empirical from equivalents 

0.9399 and 0.8402 

Full-matrix least-squares on F2 

7655 / 90 / 491

1.030

R1 -0.1052, w R 2 - 0.2555 

R1 -0.1417. wR2 = 0.2797

2.264 and -0.995 e.A"3

Table 1. Crystal data and structure refinement for iaf0508.

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

109.307(2)°.

111.184(2)°

99.343(2)°.

Volume

Z

Density (calculated) 

Absorption coefficient

iaf0508

C28 H36 C12 FN 7 Ni O il S

827.31

150(2) K

0.71073 A

Triclinic

P - l

a = 10.7270(3) A 

b = 13.7960(4) A 

c = 14.0750(5) A

a -

b=

1736.43(9) A3 

2

1.582 Mg/m3 

0.846 inm' 1
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F(OOO)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 26.37°

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

Table 1. Cry stal data and structure refinement for

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Cry stal sy stem

Space group

Unit cell dimensions

108.4110(10)°

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 26.37°

856

0.18x0.15x0.15  nun3 

3.52 to 26.37°.

-13<=h<=13. -17<=k<=17. -17<=1<=17 

26253

7071 [R(int) = 0.0961]

99.6 %

Seini-einpirical from equivalents 

0.8835 and 0.8626 

Full-matrix least-squares on F^

7071 /6 /4 8 9

1.028

R1 =0.0518, wR2 = 0.0998 

R1 =0.0837, wR2 = 0.1110 

0.494 and -0.543 e.A-3

iaf0512.

iaf0512

C31 H41 C12 N7 NiOlO S

833.38

150(2)K

0.71073 A

Monoclinic

P 21/n

a = 10.51400(10) A 

b = 27.5370(4) A

a= 90°. 

b=

c=  13.0140(2) A g = 90°.

3575.01(8) A3 

4

1.548 Mg/m3 

0.817 mm-1 

1736

0.15x0.15 x 0.03 mm3

3.60 to 26.37°.

-13<=h<= 13, -34<=k<=34. -16<=1<=16 

27921

7281 [R(int) = 0.0557]

99.6 %
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Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)J 

R indices (all data)
Largest diff. peak and hole 1.762 and -0.941 e.A ' 3

Semi-empirical from equivalents 

0.9759 and 0.8873 

Full-matrix least-squares on F2 

7 2 8 1 /0 /4 6 4

1.037

R1 =0.0660, wR2 = 0.1692 

R1 = 0.0874. wR2 = 0.1828

Table 1. Crystal data and structure

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

108.6140(10)°.

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.50° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

refinement for iaf0426.

iaf0426

C29 H37 C12 N7 O10 S Zn

811.99

150(2) K

0.71073 A
Monoclinic

P 21/n

a = 10.5744(2) A 
b = 26.9854(4) A

a= 90°. 

b=

c =  13.2130(2) A g = 90°.

3573.16(10) A3 
4

1.509 Mg/m3 

0.959 nun'l 

1680

0.30x0.23 x 0.10 mm3

2.98 to 27.50°.

-13<=h<=13. -33<=k<=35. -17<=1<=17 

27943

8176 [R(int) = 0.0691]

99.6 %

Semi-empirical from equivalents 

0.9102 and 0.7618 

Full-matrix least-squares on F2 

8 1 7 6 /3 6 /4 7 4

1.035

R1 = 0.0507, wR2 = 0.1172 

R1 = 0.0805, wR2 = 0.1306
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Largest diff. peak and hole 0.897 and -0.601 e.A-3

Table 1. Crystal data and structure 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions

107.1190(10)°

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 26.37°

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F̂

Final R indices [I>2sigma(I)]

R indices (all data)
Largest diff. peak and holeO.521 and -0.501 e.A0

refinement for iafl)506.

iaf0506

C29 H37C12 N7 011 S Zn

827.99

150(2)K

0.71073 A
Monoclinic

P 21/n

a = 15.6220(2) A 
b = 12.9110(3) A

a= 90°. 

b=

g -  90°.c -  18.4590(4) A 
3558.15(12) A3 
4

1.546 Mg/m3 

0.967 mm'l 

1712

0.43 x 0.23 x 0.20 nun3 

3.62 to 26.37°.

-19<=h<=19, -16<=k<=16, -23<-l<=23 

52914

7259 [R(int) -  0.2247]

99.7 %

Numerical 

0.8302 and 0.6813 

Full-matrix least-squares on F^

7259/ 18/463  

1.044

R1 = 0.0579, wR2 = 0.1355 

R1 = 0.0930. wR2 = 0.1514

Table 1. Crystal data and structure refinement for iaf0501.

Identification code iaf0501

Empirical formula C57.50 H74.50 C14 Cu2 N13.50 020.50 S2

Formula weight 1615.81

Temperature 150(2) K
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Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

114.5540(10)°

95.4010(10)°.

90.7610(10)°.

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 24.99°

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigina(I)]

R indices (all data)
Largest diff. peak and hole 1.845 and -0.742 e.A"3

0.71073 A
Triclinic

P -l

a = 13.6500(5) A 

b = 16.2300(5) A 

c = 18.5970(7) A

b=

g =

3724.5(2) A3 
2

1.441 Mg/m3 

0.847 mm-1 

1672

0.25 x 0.20 x 0.05 mm3 

2.91 to 24.99°.

-16<=h<=16, -19<=k<=18, -22<=1<=22 

44248

12915 [R(int) = 0.1416]

98.4 %

Semi-empirical from equivalents 

0.9589 and 0.8161 

Full-matrix least-squares on F2 

12915/60/915  

1.138

R1 = 0.1465, wR2 = 0.3461 

R1 = 0.2056. wR2 = 0.3756

Table 1. Crystal data and structure refinement for iafl)504.

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

78.8950(10)°.

iaf0504

C26 H34.50 Cd C12 N5.50 010.50 S

807.45

150(2)K

0.71073 A
Triclinic

P - l

a = 9.9690(2) A a=
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86.0020( 10)°.

84.0680(10)°.

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.34° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

b=  11.6260(2) A b=

c = 14.5400(3) A g =

1642.63(6) A3 
2

1.633 Mg/m3 

0.954 mm' 1 

822

0.25x0.25 xO.lOimn3

3.08 to 27.34°.

-12<=h<=12. -14<=k<=14. -18<=1<= 18 

27261

7338 [R(int) = 0.0935]

99.0 %

Seini-empirical from equivalents 

0.9106 and 0.7964 

Full-matrix least-squares on F2 

7 3 3 8 /2 /4 1 5  

1.042

R1 =0.0513, wR2 = 0.1372 

R1 = 0.0692, wR2 = 0.1487 

1.919 and-0.939 e.A'3

Table 1. Crystal data and structure refinement for iaf0503.

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

113.6220(10)°.

92.8370(10)°.

106.2030(10)°.

Volume

iaf0503

C29 H37 C12 N7 010  Pb S

953.81

150(2)K

0.71073 A
Triclinic

P - l

a = 11.7030(2) A 

b = 12.3650(2) A 

c = 14.0520(2) A 

1758.72(5) A3

b=
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Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.47°

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F3 

Final R indices [I>2sigma(I)]

R indices (all data)
Largest diff. peak and holel.574 and -1.084 e.A'3

1.801 Mg/inJ

5.073 mm'*

944

0.33 x 0.28 x 0.25 mm^

2.95 to 27.47°.

-15<=h<= 15, -16<=k<=16. -18<=1<=18 

28667

7986 [R(int) = 0.0622]

99.3 %

Semi-empirical from equivalents 

0.3636 and 0.2853 

Full-matrix least-squares on F^

7986 / 12 / 454

1.014

R1 -  0.0318. wR2 -  0.0678 

R1 = 0.0377, wR2 = 0.0703

Table 1. Crystal data and structure refinement for

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

90.0000(10)°.

95.1530(10)°.

90.0000(10)°.

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

iaf0408.

iaf0408

C24 H32 C12 F2 N9 Ni 0 8

742.20

150(2) K

0.71073 A
Triclinic

P - l

a = 8.44000(10) A

b = 25.0230(3) A

c = 15.2870(5) A

3215.48(12) A3 
4

1.533 Mg/m3 

0.841 Inin"*

1532

0.20 x 0.18 x 0.15 inin3

□ =

□ =

□ =
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Theta range for data collection 3.52 to 27.31°.

Index ranges -9<=h<=10, -32<=k<=32, -19<=1<=17

Reflections collected 37832

Independent reflections 7185 [R(int) = 0.1415]

Completeness to theta = 27.31° 99.3 %

Absorption correction None

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 7 1 8 5 /0 /4 5 0

Goodness-of-fit on F2 1.062

Final R indices [I>2sigma(I)] R1 =0.0723. wR2 = 0.1787

R indices (all data) R1 =0.1103. wR2 = 0.1973

Largest diff. peak and hole 1.547 and-0.714 e.A-3

Table 1. Crystal data and structure refinement for iafD409.

Identification code iaf0409

Empirical formula C31 H32 N4 Ni 0 4  S2

Formula weight 647.44

Temperature 150(2) K

Wavelength 0.71073 A
Crystal system Orthorhombic

Space group P 212121

Unit cell dimensions a = 8.4419(2) A a= 90°. 

b=  15.8586(3) A b= 90°. 

c = 21.2946(6) A g = 90°

Volume 2850.85(12) A3
Z 4

Density (calculated) 1.508 Mg/m3

Absorption coefficient 0.873 mm-1

F(000) 1352

Crystal size 0.15 x 0.15 x 0.13 mm3

Theta range for data collection 3.08 to 27.47°.

Index ranges -9<=h<=10, -20<=k<=20, -26<=1<=27

Reflections collected 23848

Independent reflections 6136 [R(int) = 0.0903]

Completeness to theta = 27.47° 98.5 %

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters

Semi-empirical from equivalents 

0.8950 and 0.8803 

Full-matrix least-squares on F2 

6 1 3 6 /0 /3 8 1
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Goodness-of-fit on

Final R indices [I>2sigma(I)]

R indices (all data)

Absolute structure parameter 

Largest diff. peak and hole

Table 1. Crystal data and structure refinement

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

88.7540)°

85.637(1)°

64.579(1)°.

Volume

Z

Density (calculated)

Absorption coefficient 

F(OOO)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 27.45°

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F^

Final R indices [I>2sigma(I)]

R indices (all data)

Extinction coefficient

1.031

R1 = 0.0511, wR2 = 0.0800 

R1 = 0.1011. wR2 = 0.0944 

-0.010(16)

0.400 and -0.439 e.A"3

for iaf0302. 

iaf0302

C24H21 F3 N6 O6

546.47

150(2)K

0.71073 A
Triclinic

P -l

a = 7.8250(2) A □=

b = 7.9750(2) A □ =

c = 20.5520(6) A □ =

1154.92(5) A3 
2

1.571 Mg/m3 

0.131 mm' 1 

564

0.25 x0.18 x0.15 mm3

3.55 to 27.45°

- 10<=h<=10. - 10<=k<=10. -26<=1<=26 

18907

5216 fR(int) = 0.13961

98.7 %

Semi-empirical from equivalents

1.265 and 0.769

Full-matrix least-squares on F^

5 2 1 6 /0 /3 5 3

1.123

R1 =0.1577, wR2 = 0.4014 

R1 = 0.1760, wR2 = 0.4083 

0.076(11)
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Largest diff. peak and hole 0.815 and -0.541 e.A-3

Table 1. Crystal data and structure refinement for iaf0410.

Identification code iaf0410

Empirical formula C24H21 F3 N6 O6

Formula weight 546.47

Temperature 150(2) K

Wavelength 0.71073 A

Crystal system Orthorhombic

Space group P 212121

Unit cell dimensions a -  7.4079(2) A a= 90°. 

b= 13.7027(3) A b= 90°. 

c = 23.1595(5) A g = 90°

Volume 2350.88(10) A3

Z 4

Density (calculated) 1.544 Mg/m3

Absorption coefficient 0.129 mm'l

F(000) 1128

Crystal size 0 .28x0 .20x0 .20  nun3

Theta range for data collection 3.52 to 26.37°

Index ranges -9<=h<=9, -14<=k<=17, -28<=1<=27

Reflections collected 19622

Independent reflections 4782 [R(int) -  0.0786]

Completeness to theta = 26.37° 99.6 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.9747 and 0.9649

Refinement method Full-matnx least-squares on F2

Data / restraints / parameters 4 7 8 2 /0  / 353

Goodness-of-fit on F2 1.002

Final R indices [I>2sigma(I)] R1 = 0.0459. wR2 = 0.0880

R indices (all data) R1 = 0.0999. wR2 = 0.1028

Absolute structure parameter -0 .6(8)

Extinction coefficient 0 .0112(11)

Largest diff. peak and hole 0.200 and -0.206 e.A"3

Table 1. Crystal data and structure refinement for iaf0403.

Identification code iaf0403

Empirical formula C18H 19F2K N 5 0 4

Formula weight 446.48
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Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions

95.715(2)°

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta = 25.00°

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on

Final R indices [I>2sigma(I)]

R indices (all data)

Largest diff. peak and hole

120(2) K 

0.71073 A 

Monoclinic 

P 21/n

a = 7.9432(3) A 

b = 13.4354(6) A

a= 90°. 

b=

g -  90°.c — 18.1300(7) A 

1925.22(13) A3 

4

1.540 Mg/m3 

0.332 nun"̂

924

0.25 x 0.25 x 0.08 mm3

2.99 to 27.48°.

-10<=h<=10, -15<=k<=17. -21 <=1<=22 

12440

4020 [R(int) = 0.0782]

97.8 %

Semi-einpirical from equivalents

0.9739 and 0.9215

Full-matrix least-squares on F^

4 0 2 0 /0 /2 7 1

1.072

R1 = 0.0739, wR2 = 0.1864 

R1 = 0.1394, wR2 = 0.2251 

0.875 and-0.671 e.A"3

Table 1. Crystal data and structure refinement for iaf0308.

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

93.416(5)°.

iaf0308

C17H16F2 N4 0 4

378.34

150(2)K

0.71069 A

Triclinic

P - l

a = 8.212(5) A 

b = 8.535(5) A □=

235



77.309(5)°.

82.241(5)°

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 25.00° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [I>2sigma(I)]

R indices (all data)

Extinction coefficient 

Largest diff. peak and hole

c=  11.798(5) A □ =

795.9(8) A3 
2

1.579 Mg/in3 

0.130 inirfl 

392

0.30 x 0.20 x 0.10 mm3 

2.87 to 30.17°.

-10<=h<=10. -10<=k<=l 1. -11 <=1<= 15 

12904

3559 [R(int) = 0.1069]

99.7 %

Semi-empirical from equivalents 

0.9871 and 0.9621 

Full-matnx least-squares on F2

3559 / 0 /245  

0.982

R1 = 0.0622. vvR2 = 0.1330 

R1 = 0.1651, wR2 = 0.1719 

0.026(4)

0.318 and-0.344 e.A-3


