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SUMMARY

The influence of ecological heterogeneity on invertebrate diversity, trophic guild structure, 

and host-parasitoid interactions was assessed at landscape, habitat and host-plant scales. 

Variation in the cover of forest and spatial heterogeneity of six landscapes affected the 

diversity of epigeal beetles and soil fauna, indicating human land-use can structure 

communities that operate at fine spatial scales. Invertebrate taxon identity determined if 

species richness, abundance or both were affected by landscape structure; and whether the 

relationship was linear or hump-shaped. Above-ground diversity positively correlated with 

soil fauna diversity, but worm and collembola diversity correlated with different plant 

functional groups. Using the presence of cattle grazing in birch woodlands the impact of 

disturbance to semi-natural habitat on invertebrate diversity and trophic interactions was 

studied. Grazing led to a reduction in the height of understorey vegetation, and concomitant 

increase in plant diversity. This grazing-dependent habitat heterogeneity was correlated with 

a decline in the diversity of generalist secondary consumers but left herbivores unaffected. A 

host-parasitoid interaction was affected by the presence of cattle in birch woods. Increased 

floral diversity in the grazed sward indirectly (via increases in host density) and directly 

increased parasitism rates, a rare example of a tertiary trophic level being positively affected 

by anthropogenic disturbance. Using this host-parasitoid system we examined the influence 

of habitat patch size and isolation on this antagonistic interaction. The largest patches 

supported the greatest herbivore densities, but the parasitoid was unaffected. This differential 

impact of habitat structure meant that parasitism was inversely density-dependent and the 

potential stability of the interaction (CV > 1) was reduced, providing a refuge from 

parasitism for the host. Bottom-up sources of heterogeneity at different scales affect diversity 

at higher trophic levels. Anthropogenic disturbance to plant communities can alter trophic 

guild structure and interactions between insect species.
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Chapter 1. Introduction and thesis outline

CHAPTER 1

In t r o d u c t io n  a n d  t h e s is  o u t l in e

Ecological heterogeneity is a multifaceted term but at its core is the principle that variation at 

different spatial scales (e.g. global, ecosystem, landscape, habitat) in environmental 

constraints (biotic or abiotic) produces a response by organisms at different levels of 

biological organisation (individuals, populations, species, communities) (Stewart et a l 2000). 

Ecological heterogeneity is a major determinant of the distribution of biological diversity at 

all spatial scales (MacArthur & Wilson 1967, Hanski 1998) and can alter interactions between 

species (Roland & Taylor 1997, Doak 2000, Vdsquez & Simberloff 2003, Vanbergen et a l 

2006). In the modem world anthropogenic sources of ecological heterogeneity both dwarf 

and modify the influence of natural heterogeneity on biodiversity. A globally common form 

of anthropogenic disturbance to natural communities is the loss and fragmentation of forest, 

and the conversion of deforested land to pastoral and agricultural systems (Didham et a l 

1998a, Davies et a l 2000, Driscoll & Weir 2005). This thesis examines how anthropogenic 

and natural ecological heterogeneity influences invertebrate diversity and community 

structure, how this response of invertebrate species may vary with trophic level, and how 

antagonistic species interactions are affected by ecological heterogeneity at habitat and host- 

plant scales.

These broad aims are met by utilising three spatially and biologically distinct systems. 

Initially the role of landscape-scale patterns in human land-use (forestry, agriculture, 

pastoralism) in generating patterns in the community diversity of organisms that operate at 

much finer spatial scales, namely epigeal (carabids) and soil-dwelling (collembola, 

earthworms) invertebrate species, is studied. Next, the impact of a specific anthropogenic 

disturbance (cattle grazing) to a semi-natural habitat (birch woodland) is considered, 

exploring the influence of the ecological heterogeneity arising from this habitat-scale 

disturbance on the diversity of different trophic guilds (secondary and tertiary consumers), 

and on the interaction between specialist insect herbivores and a parasitoid. Finally, an 

experiment is carried out to assess how heterogeneity in host-plant patches (patch size, 

isolation, phenology, architecture) differentially affects the abundance of a specialist
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Chapter 1. Introduction and thesis outline

herbivore, its parasitoid and parasitism rates. This thesis therefore addresses the issue of how 

ecological heterogeneity from landscape to host-plant scales impacts upon the diversity and 

interactions of invertebrate species at different trophic levels.

The literature is reviewed in Chapter 2 focussing on theoretical concepts underpinning habitat 

loss, fragmentation and biodiversity change, empirical evidence demonstrating how spatial 

heterogeneity arising from habitat loss and fragmentation may affect invertebrate species, and 

highlighting general trends in biodiversity losses. How the spatial structure of human- 

modified landscapes and habitats affect insect populations and communities is considered 

across a nested hierarchy of spatial scales: the landscape scale (> lkm ), the within fragment 

or habitat scale (< lkm2), and - for higher trophic levels - at the scale of the individual host- 

insect or host-plant species. Moreover, the impact of natural and anthropogenic heterogeneity 

on different trophic levels (primary and secondary consumers), and the interactions between 

them, is evaluated.

Chapter 3 deals with how landscape-scale patterns in habitat cover and heterogeneity arising 

from patterns of human land-use affects carabid beetle diversity and assemblage structure. 

Carabid communities were sampled in six lkm2 landscapes in Northern Scotland that together 

represent a land-use intensification gradient from semi-natural forest to habitat mosaics to 

intensive agriculture. Carabid diversity was predicted to peak in landscapes that were a 

mosaic of forest and open habitats, either because the mosaic represents the intermediate point 

of a reduction in forest cover on this land-use gradient or because the accumulation of habitats 

promotes species turnover and population persistence. Whichever mechanism is operating, 

the habitat mosaics were predicted to support a carabid assemblage less distinct than those 

found in single-use landscapes, because they contain elements of both forest and agricultural 

species assemblages.

The same landscape scale intensification gradient is utilised in Chapter 4 to assess how habitat 

cover and heterogeneity produce a gradient in plant diversity and resources that influences 

soil fauna diversity in those landscapes. Collembola and lumbricid worms were chosen as 

they represent important members of the soil decomposer community and are known to be 

responsive to land-use and environmental gradients in the soil. It was predicted that soil 

collembola diversity would be highest in forested areas, declining monotonically as the 

landscapes became more agricultural and the litter resources decrease; while lumbricid worm 

diversity would show the opposite pattern as soil pH increases from agricultural inputs.

2
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Furthermore, the prediction was tested that the collembola and lumbricid diversity would 

correlate with the changes along the land-use gradient to above-ground diversity of different 

plant functional groups.

Chapters 5 and 6 move away from the impact of landscape-scale, land-use heterogeneity on 

invertebrate diversity to consider how a single anthropogenic disturbance (cattle grazing) to a 

woodland habitat affects the trophic structure of a generalist insect assemblage and a host- 

parasitoid interaction. In Northern Scotland, birch woodlands represent patches of semi­

natural habitat within the wider agricultural landscape. Some of these birch habitats are 

undisturbed by human land-use whilst others are incorporated into the predominant 

surrounding land-use of grazing beef cattle. The presence and absence of cattle grazing in 

these disjunct woodland patches represented a serendipitous experiment to test whether 

disturbance to a naturally fragmented habitat has a differential affect on invertebrate diversity 

(species richness and abundance) according to trophic level, and whether grazing can 

influence antagonistic interactions between insect species. Chapter 5 describes an experiment 

where eight marsh thistles, Cirsium palustre, are randomly transplanted into 10 grazed 

(disturbed) and 10 ungrazed (semi-natural) birch woodlands to test the hypothesis that tertiary 

trophic levels (predators) are more sensitive (i.e. decreased diversity and abundance) than 

secondary trophic levels (herbivores) to this anthropogenic disturbance. The diversity of 

invertebrate feeding guilds was predicted to be greater in larger and ungrazed habitat patches, 

and secondary consumers were expected to show a comparatively greater decrease in 

diversity compared with primary consumers. It was expected that these changes in trophic 

guild diversity would be correlated with grazing-dependent changes to vegetation diversity 

and structure.

Using the same birch woods system, in Chapter 6 the influence of grazing cattle in birch 

woodlands on a simple host-parasitoid interaction is evaluated. In Northern Scotland, C. 

palustre is attacked by the tephritid seed herbivores Tephritis conura and Xyphosia miliaria, 

which are in turn parasitized by the hymenopteran parasitoid Pteromalus elevatus. It was 

hypothesised that cattle would act as ecosystem engineers producing habitat heterogeneity 

that would directly and indirectly (trophic cascade) influence parasitism rates. The presence 

of grazing cattle was predicted to produce both a greater density and even dispersion of thistle 

host-plants, and increased plant diversity in the wider plant assemblage. Moreover, these 

changes to the host-plant and habitat were predicted to result in a bottom-up cascade with an

3
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increase in seed herbivore numbers and density-dependent parasitism a consequence of this 

anthropogenic habitat perturbation.

Pursuing the idea that a species sensitivity to habitat heterogeneity is dependent on trophic 

position, the tri-trophic system (identified in Chapter 6; C. palustre thistles, the seed herbivore 

T. conura and the parasitoid P. elevatus) is used in Chapter 7 to explore whether habitat patch 

size, patch isolation and host-plant heterogeneity differentially affect herbivore and parasitoid 

densities, and thus influence parasitism rates. An experiment with 240 second-year C. 

palustre thistles transplanted in 24 blocks was replicated in two sites to create a range of 

habitat patch sizes (2,4,8,16 individual plants) at increasing distance (10, 20 ,40m) from a pre­

existing source population of thistles and associated insects. The experimental C. palustre 

patches, therefore, established a gradient in larval resources (C. palustre seeds, T. conura 

larvae) for the dispersing seed herbivore T. conura and its parasitoid P. elevatus. Coincident 

with peak insect oviposition the architecture and the phenological stage of each host-plant 

were measured. It was predicted, firstly, that habitat patch size and isolation would 

differentially affect patch colonisation by the host and parasitoid and thus affect parasitism 

rates. Secondly that host-plant heterogeneity would both indirectly (via host insect density) 

and directly affect the parasitoid densities and the parasitism rate.

Finally, the results of these separate studies on invertebrate diversity and trophic interactions 

are broadly discussed in Chapter 8 within the context of ecological heterogeneity operating at 

different spatial scales. Key findings from the research are used to highlight the potential for 

human activities to affect diversity and species interactions, and to suggest further avenues of 

research.
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Chapter 2. Literature review

CHAPTER 2

L it e r a t u r e  r e v ie w : t h e  c o n s e q u e n c e s  o f  a n t h r o p o g e n ic  h a b it a t

FRAGMENTATION AND INTENSIFICATION FOR INVERTEBRATE ASSEMBLAGES AT 
DIFFERENT SPATIAL SCALES

2.1 Introduction

Human activities that pervade and disturb natural communities of plants and animals range 

from the fragmentation and clearance of forests (and other climax vegetation) for conversion 

to agriculture, to agricultural intensification, to eutrophication and pollution of terrestrial and 

freshwater habitats, and to land urbanisation. These anthropogenic effects will vary according 

to the species, population or community in question, and the severity, scale and speed of the 

environmental perturbation (Wilson 1988; Cappuccino & Martin 1997; Davies & Margules 

1998; Golden & Crist 1999; Collinge 2000; Steffan-Dewenter et a l 2002; Kruess 2003; Thies 

et a l 2003). In general, the loss, fragmentation or pollution of the natural environment leads 

to biological impoverishment, the denuding of ecosystem processes and a potential loss of 

function (Klein 1989; Naeem et a l 1995; Roland & Taylor 1997; Lawton et a l 1998; Kruess 

& Tschamtke 2000; Vazquez & Simberloff 2003). Whilst it is undeniable that human 

activities change the environment it is not universally true that all animal and plant species 

suffer as a result. Many organisms benefit from the changes to the landscape or habitat, which 

in some cases can provide a new resource or niche space (e.g. Cappucino & Martin 1997). A 

caveat to this statement is that those organisms that profit from human-induced environmental 

changes tend to be more common generalist species; specialists tend to become more rare, and 

in some cases extinct (Gilbert et a l 1998; Golden & Crist 1999; Davies et a l 2000; Kruess & 

Tschamtke 2000). It is only relatively recently that the functional consequence of this 

biological impoverishment has begun to be considered (Klein 1989; Naeem et a l 1995; 

Roland & Taylor 1997; Wardle et a l 2001; Andresen 2003; Vazquez & Simberloff 2003; 

Tschamtke et a l 2005).

One potential change stemming from human-induced fragmentation of natural habitats is 

increased 'patchiness' or heterogeneity of the habitats (Didham et a l 1996; Didham et a l 

1998a; Pimm & Raven 2000; Tschamtke et a l 2002b). This, in turn, can affect the dispersal
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and persistence of populations and species in the landscape (Cappuccino et a l 1998; Hanski 

1998, 1999; Davies et a l 2000; Ellner et a l 2001; Bonsall et a l 2002; Benton et a l 2003). 

Ecological heterogeneity is a multifaceted term that can be defined in many ways but its 

underlying principle is that spatio-temporal variation in environmental constraints (biotic or 

abiotic) results in a differential response to the variation in these constraints by organisms 

(Stewart et a l 2000). More specifically heterogeneity can be any factor that induces variation 

in individual demographic rates. One such demographic effect occurs when dispersal of 

individuals results in members of a single population or cohort experiencing different 

environments, thus exposing them to spatio-temporal heterogeneity (Rees et a l 2000). 

Ecological heterogeneity may be revealed along environmental gradients that will structure 

biological communities according to their physiological tolerances or their behaviour 

(avoidance). These gradients alter the ideal distribution of organisms, creating a patchy world, 

and thereby affecting diversity and species coexistence (Begon et al. 1996). Examples include 

the stratification of the plant community structure with proximity to the tidal zone (Hacker & 

Gaines 1997), or the changes in microclimate between a forest edge and its centre (Didham 

1998; Meiners & Pickett 1999; Dauber & Wolters 2004).

Heterogeneity arising from habitat fragmentation may operate in a hierarchical manner 

according to the spatial scale of the impact. For example, landscape heterogeneity may arise 

where differing land-uses create a mosaic of habitats. Conversely, a landscape managed solely 

for intensive agricultural production is likely to support few other habitats and result in a 

homogeneous landscape. Habitat-specific heterogeneity, however, could arise within this 

second scenario due to differences in altitude or geology that lessen the impact of agriculture 

and retain areas of semi-natural vegetation. Furthermore, within habitat patches organisms 

may experience individual-specific heterogeneity relating to the patchy distribution or 

variable genotype of their hosts or prey. Superimposed above this hierarchy are stochastic 

effects such as climate that produce further non-specific ecological heterogeneity (Rees et a l 

2000).

Different sources and scales of ecological heterogeneity are liable to interact making the 

identification of individual factors governing the distribution of organisms difficult to 

identify. Importantly the effect of heterogeneity depends on the scale at which species 

experience spatial heterogeneity; for example, to a leaf-mining insect, the spatial distribution 

of its host plants within a habitat patch and the biochemical heterogeneity between plant 

individuals may be more relevant than a mosaic of wood and farmland. If the scale of the
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disturbance is greater than what the species can sense and respond to then the observed 

distribution is a response of the species to spatially distinct environments, and not a response 

to ecological heterogeneity. In contrast, where ecological heterogeneity does occur at a 

spatially relevant scale then the question is: does the ecological response differ when the 

‘resource’ is presented either uniformly or heterogeneously (Stewart et a l 2000).

A point of distinction between anthropogenic and natural ecological heterogeneity is that the 

former operates at a magnitude and speed to which the majority of organisms are unable to 

respond and adapt (Wilson 1988; Pimm & Raven 2000). One mechanism by which 

anthropogenic heterogeneity leads to biological change is that its effects can cascade through 

food webs (Wardle et a l 1995; Jones et a l 1997; Fortin et a l 2005; Tschamtke et a l 2005; 

Vanbergen et a l 2006), affecting different functional groups (e.g. herbivores, detritivores, 

predators) in very different ways (Kruess & Tschamtke 1994; Didham et a l 1996; Didham et 

a l 1998b; Davies et a l 2000; Thies et a l 2003; Purtauf et a l 2005; Vanbergen et a l 2006). 

Grazing by livestock, for example, may - according to its intensity - modify the natural inter­

relationships within and between plants and animals (Wardle et a l 2001; Vazquez & 

Simberloff 2003, 2004; Vanbergen et a l 2006). Grazing may also facilitate the emergence of 

distinct and diverse plant communities that would otherwise be excluded by a simpler 

community of competitive dominants (Hobbs 1996; Rambo & Faeth 1999; Fowler 2002; 

Pykala 2003). Such grazing-induced changes to the plant community may enhance or reduce 

insect diversity; either directly or indirectly (via trophic cascades) affecting populations of 

herbivores, predators and parasitoids differently (Gibson et a l 1992b; Sterling et a l 1992; Di 

Giulio et a l 2001; Cagnolo et a l 2002; Hartley et a l 2003; Woodcock et a l 2005). 

Disturbance (e.g. fragmentation) and subsequent ecological heterogeneity (e.g. variation in 

area or microclimate) may result in a loss of biodiversity (Fahrig 1997; Gilbert et a l 1998; 

Davies et a l 2000) with cascading effects leading to a change in food web structure (Sieving 

& Karr 1997; Frank et a l 2005; Borrvall & Ebenman 2006), and the loss or disruption of 

ecological processes (Klein 1989; Roland & Taylor 1997; Cappuccino et a l 1998; Andresen 

2003; Vazquez & Simberloff 2003).

In this literature review I focus on spatial heterogeneity caused by a single anthropogenic 

impact: habitat loss and fragmentation. I consider how the landscape and patch structure 

(area, insularity, geometry and context) of human-modified ecosystems affect insect 

populations and communities across a nested hierarchy of spatial scales: the landscape scale 

(> lkm ), the within fragment or habitat scale (< lkm ), and at the scale of individual species.
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In addition, I review how fragmentation and the heterogeneity that it produces affects 

different trophic levels (plant-herbivore-enemy) and the interactions between them.

2.2 Fragmentation and landscape structural heterogeneity in forest and agricultural 
ecosystems

2.2.1 Biodiversity change and fragmentation - theory

The loss and fragmentation of natural habitats such as forest contribute to global biodiversity 

impoverishment (Wilson 1988; Whitmore 1990; Watt et al. 1997b; Didham et al. 1998b; 

Lawton et al. 1998; Pimm & Raven 2000; Myers & Knoll 2001; Dunn 2004) and potentially 

threaten ecosystem processes (Klein 1989; Roland & Taylor 1997; Cappuccino et al. 1998; 

Steffan-Dewenter et al. 2002; Andresen 2003; Steffan-Dewenter 2003). Biodiversity losses 

post-fragmentation may arise as a result of physical edge effects (Davies & Margules 1998; 

Didham 1998) or biological processes (Sieving & Karr 1997), and may affect species 

differently according to their trophic position or rarity (Gilbert et al. 1998; Golden & Crist 

1999; Davies et al. 2000). Since the 1960s this topic has been of both academic and applied 

interest to those interested in extinction and conservation biology (Diamond 1975, 1976; 

Gilpin & Diamond 1980, 1981; Diamond & Gilpin 1982; Gilpin & Soule 1986; Simberloff et 

al. 1992; Hanski 1999). MacArthur & Wilson’s (1967) theory of island biogeography asserts 

that the number of species in an island of habitat is dependent on an equilibrium between 

distance-dependent immigration rates and area-dependent extinction rates, with the prediction 

that smaller, more isolated habitats will support fewer species compared with better 

connected, larger areas of equivalent habitat. This theory, in recognizing a spatial component 

to the mechanisms determining species distributions, generated a paradigm shift in the study 

of distribution and became a seminal principle of conservation biology (MacArthur & Wilson 

1967).

Island biogeographical theory, however, requires a 'mainland’ habitat in the conceptual 

framework that is often lacking in highly disturbed and intensively used landscapes. It was 

this observation that gave rise to metapopulation theory (Levin & Paine 1974; Hanski 1998, 

1999; Van Nouhuys & Hanski 1999; Holyoak 2000; Weisser 2000; Ellner et al. 2001; Bonsall 

et al. 2002; Cronin 2004). While the development of this theory also focused on the 

distribution of organisms in a heterogeneous environment, and the balance between 

colonization and extinction, it did not assume the existence of a continuous 'mainland’ habitat
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(Hanski 1998). Instead, the persistence of populations within a heterogeneous environment is 

predicted to be a consequence of dispersal in a pattern of local extinction and re-colonisation 

of habitat fragments; so in a patchy environment, populations persist at a regional scale but 

may be absent from a given point in space and time (Hanski 1999). A second distinction 

between the two concepts is that island biogeographical theory focuses on the distribution of 

species assemblages in space whereas metapopulation theory is concerned with the 

distribution of individual species (Hanski 1998,1999).

The application of these theoretical models to real-world conservation solutions has provoked 

a vociferous debate over the impact of habitat area and fragment insularity on biodiversity 

with particular reference to the design of biodiversity reserves (e.g. SLOSS debate) and how 

best to mitigate biodiversity loss (Diamond 1975, 1976; Gilpin & Diamond 1980, 1981; 

Diamond & Gilpin 1982; Gilpin & Soule 1986; Simberloff et al. 1992; Hanski 1999; 

Tschamtke et a l 2002a). Much of the evidence underpinning this debate on population 

persistence and extinction in fragmented landscapes is derived from conceptual modelling 

(Gilpin & Diamond 1981; Gilpin & Soule 1986; Kareiva & Wennergren 1995; Fahrig 1997) 

while empirical evidence supporting or refuting the theory is sparse or lacking (Tschamtke et 

al. 2002b; Tschamtke & Brandi 2004). In this section I review the current empirical evidence 

underpinning the debate over habitat loss and fragmentation and its relationship to 

biodiversity loss, population persistence and damage to ecosystem processes.

The effect of fragmentation on biological populations and communities is dependent on three 

main factors: the amount of habitat lost, the state of the remaining habitat (fragment 

geometry, isolation, size) and landscape context (the matrix in which the remnant patch is 

situatedXKareiva 1987; Kareiva & Wennergren 1995; Fahrig 1997; Harrison & Bruna 1999). 

Fragmentation can effect populations and communities either physically or biologically 

(Didham et al. 1996; Didham 1998; Didham et al. 1998a; Harrison & Bruna 1999; Dauber & 

Wolters 2004); the impact will vary with the scale of the disturbance and the species in 

question (Tschamtke et al. 2002a).

The effect of habitat fragmentation on invertebrate communities varies greatly according to 

species and trophic level. For example, predatory species are often more sensitive to the 

effects of habitat fragmentation (Gilbert et al. 1998; Golden & Crist 1999; Davies et al. 2000; 

Tschamtke et al. 2002a; Thies et al. 2003) and according to which facet of fragmentation (e.g. 

loss of area, increased isolation) is important to that species (Kruess & Tschamtke 1994;

9



Chapter 2. Literature review

Didham et al. 1998a; Coliinge 2000; Kruess & Tschamtke 2000). This makes the extraction 

of general patterns from the available empirical data difficult. Nevertheless, it seems the 

probability of extinction may increase with the rarity of a species. Theory and empirical 

studies predict that small, rare populations are more vulnerable to extinction (from factors 

such as environmental and demographic stochasticity), especially when isolated in habitat 

fragments (MacArthur & Wilson 1967; Gilbert et a l 1998; Hanski 1998; Golden & Crist 

1999; Davies et a l 2000; Komonen et a l 2000). Some studies, however, have found the 

opposite effect, with rare species able to persist better in a fragmented landscape than 

common abundant species (Didham et a l 1998a), and being unaffected by isolation of habitat 

fragments (Coliinge 2000).

2.2.2 Loss o f habitat area, habitat insularity, species and population decline

Both island biogeographical and metapopulation theories predict that the isolation of a habitat 

patch is integral to an area's colonization potential and capacity to support persistent 

populations (MacArthur & Wilson 1967; Hanski 1999). The application of these theoretical 

concepts to nature reserve design (e.g. Diamond 1975; Gilpin & Soule 1986) together with 

spatially explicit modelling - centred on the spatial configuration of habitats and the 

mitigation of biodiversity loss (Kareiva & Wennergren 1995; Fahrig 1997) - have contributed 

to the debate, in the face of widespread global habitat loss and extinction (Pimm & Raven

2000), over whether area effects per se (loss of habitat) or fragmentation effects (e.g. 

isolation) were more important to the persistence of populations. There is, nonetheless, a 

paucity of empirical data relating to this debate (Tschamtke & Brandi 2004) and existing data 

are variable as organisms differ in their sensitivity to isolation, or because of the inherent 

practical difficulties of separating area and fragmentation effects from each other in replicated 

landscape-scale experiments. As an exception, an elegant study using a moss-microarthropod 

microcosm showed that gamma-diversity was elevated and population persistence improved 

by increasing the connectivity between habitat patches (Gilbert et al. 1998; Gonzalez et al. 

1998). At the higher spatial scale of forest fragments it has also been shown that habitat 

corridors do facilitate movement in a number of plant and animal taxa, however this was not 

consistent for all the taxa surveyed and while suggestive, the presence of the taxa in the 

corridors does not unequivocally support the idea that increasing connectivity promotes 

population persistence in fragmented landscapes (Haddad et al. 2003). Studies on the efficacy 

of parasitoids in regulating insect herbivore populations have in some cases shown them to be 

negatively affected by habitat isolation (Kruess & Tschamtke 1994,2000; Kruess 2003).
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The majority of studies have found that the potentially negative effect of isolation on 

invertebrate populations and species is weak or lacking. Coliinge (2000) found that improving 

connectivity in an experimentally fragmented grassland system did not mitigate species loss 

or promote re-colonisation and persistence in patches. In other cases, host-specific insect 

species (curculionid weevils, cicadellid leafhoppers and Lepidoptera) have been shown to be 

insensitive to the effects of isolation (Jonsen & Fahrig 1997; Haddad et a l 2003). Similarly, a 

study on carabid beetles in a fragmented eucalypt forest in Australia revealed no decline in 

species richness between continuous forest and fragments of variable size after years of 

isolation (Davies & Margules 1998; Davies et a l 2000). Different carabid species did, 

however, exhibit the whole range of population responses to fragmentation from declining to 

unaffected or increasing in density. Of the eight species studied, two were truly isolated 

populations (i.e. unable to disperse across non-forest area) and showed a significant decline in 

density (Davies & Margules 1998).

Other studies have demonstrated that area is the most important fragmentation variable to 

consider; in a study of leaf litter beetle species in Amazonian forest fragments, the majority of 

species were adversely affected by the loss of habitat area: densities declined in smaller 

fragments and fragment size was a significant predictor of extinction (Didham et a l 1998). In 

the same study system, dung beetle and euglossine bee density and species richness was lower 

in fragments compared to nearby, continuous forest (Klein 1989; Didham et a l 1996; 

Andresen 2003). It was also observed that secondary forest growth eased the effect of 

fragmentation on dung beetles (Klein 1989). Unfortunately this latter study did not explicitly 

separate the effects of habitat area from isolation. In a study that used mesocosms to separate 

experimentally area from isolation effects, habitat area was found to be the most important 

factor governing the distribution of species (Coliinge 2000). Recent work, using invertebrate 

tri-trophic systems in an agricultural mosaic, has shown that the amount of non-crop area in 

the landscape affects the abundance of herbivores and parasitoids (Kruess 2003; Thies et a l 

2003). Similarly, the abundance and diversity of solitary and social bee species was found to 

increase with increasing area of semi-natural fragments (Steffan-Dewenter et a l 2002). As 

well as affecting the distribution of species, the amount of habitat area can influence species 

interactions. Parasitoid attack on herbivore populations has been shown to vary according to 

the proportion of forested land (or other non-crop habitat) in a fragmented landscape (Roland 

& Taylor 1997; Kruess 2003; Thies et a l 2003). The impact of generalist predators on aphid 

populations was found to be enhanced by greater amounts of non-crop and perennial crops in 

the landscape as these areas acted as refuges from disturbance (Ostman et a l 2001).
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2.2.3 Spatial-scale, species and trophic level

A common theme in the literature on habitat fragmentation and the spatial heterogeneity it 

creates at the landscape scale is that while certain generalisations can be made, for example, 

habitat loss and isolation leads to population declines and extinction (Pimm & Raven 2000; 

Gibbs & Stanton 2001), we must expect species-specific responses that do not conform to the 

overall trends (Kareiva 1987; Cappuccino & Martin 1997; Davies & Margules 1998; Didham 

et al. 1998a). These exceptions can lead to other generalisations on the effect of habitat 

fragmentation on organisms. Such species-specific variations as described above, for 

example, tend to arise where a species does not perceive the habitat fragmentation because 

dispersal or foraging occurs over a geographic range greater than that at which the disturbance 

impacts. This scale-dependent perception tends to happen with highly dispersive or generalist 

species, or because of the species trophic level.

Carabid species response to an experimentally fragmented forest is dependent on their ability 

to disperse between fragments and utilise the non-forest matrix (Davies & Margules 1998; 

Davies et al. 2000). Populations of species that were unable to cross or use the matrix 

declined, while those that were able to disperse into and use the matrix were insensitive to the 

effect of fragmentation (Davies & Margules 1998; Davies et al. 2000). Similarly, other 

researchers have found that curculionid weevils and cicadellid leafhoppers were unaffected by 

the level of isolation of habitat patches, with both generalist and specialist insect herbivores 

being unaffected by fragment isolation if they were able to disperse across the matrix (Jonsen 

& Fahrig 1997). In an experimentally fragmented goldenrod (Solidago canadensis L.) field 

the species richness of sap-sucking herbivores and parasitoid abundance declined in 

progressively fragmented habitat while leaf-chewing guilds and predators were unaffected. 

This differential response between guilds is believed to be due to the differences in habitat 

(host) specificity, lessening the probability that specialists will disperse to other patches in a 

fragmented system (Golden & Crist 1999).

Such guild-specific differences in the observed response to fragmentation has led to the 

trophic level hypothesis of Holt (1996) which predicts that plant distributions are determined 

mainly by available microhabitat; herbivore populations are wider ranging but ultimately 

limited to certain plant species/communities, while predators will have the largest ranges due 

to their need to exploit alternative prey patches. Consequently the population density of
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higher trophic levels is determined at greater spatial scales, and is less likely to persist in 

fragmented environments (Holt 1996).

Spatial scale has been shown to affect differentially populations of herbivores and their 

natural enemies with consequences for population regulation in fragmented landscapes. Thies 

et al. (2003) showed herbivory and parasitism in an agricultural mosaic to be scale-dependent. 

Overall, the percentage of non-crop area in the habitat negatively affected crop-attack by 

herbivores while positively affecting parasitism, however both primary and secondary 

consumers showed the strongest association with fragment area at the same spatial scale, 

refuting the idea that different trophic levels respond to different spatial scales. However, the 

slopes of regression analysis showed that parasitoid populations were more sensitive to the 

disturbance of the landscape structure giving some support to the trophic level hypothesis. 

Scale-dependent effects according to trophic position have been found in other systems, with 

predator-prey ratios increasing with area of habitat, demonstrating that the importance of 

natural enemies increases with spatial scale (Denys & Tschamtke 2002). Other studies have 

shown that the effects of area and isolation on insect species are scale-dependent with 

secondary consumers having greater impact on prey at greater spatial scales (Roland & Taylor 

1997; Kruess & Tschamtke 2000; Kruess 2003) and are more likely to decline or go extinct 

following fragmentation (Didham et al. 1998b; Gilbert et al. 1998; Davies et al. 2000; 

Komonen et al. 2000).

Even within a trophic level, variation in specific ecology alters the perception of scale. 

Different hymenopteran pollinator guilds responded to the proportion of semi-natural habitat 

at different landscape scales, with eusocial bees (Apis mellifera L.) sensitive to habitat area at 

much greater spatial scales than solitary bee species (Steffan-Dewenter et al. 2002). 

Parasitism of spruce budworm by hymenopteran and tachinid parasitoids varied according to 

the parasitoid species and the spatial scale of fragmentation of balsam fir forest, with certain 

parasitoids having greater impact on budworm numbers in isolated habitat islands while 

others caused greater mortality in continuous areas (Cappuccino et al. 1998). Similar intra­

guild variation was found with parasitoids attacking forest tent caterpillar (Malacosoma 

disstria Htibner). Forest structure and the spatial scale of fragmentation affected differently 

the ability of four dipteran parasitoid species in finding and attacking caterpillars of M. 

disstria. This variability was correlated with body size, the implication being that different 

sized animals foraged over different spatial scales and thus perceived the patchiness of the 

habitat differently (Roland & Taylor 1997).
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2.2.4 Loss o f diversity and ecosystem processes

The process of habitat fragmentation (loss of area and isolation of remnants) and its effects on 

species diversity and functional groups can lead to trophic cascades and ultimately to 

ecosystem processes being denuded (Naeem et al. 1995; Didham et al. 1996; Loreau et al. 

2001). In tropical forest fragments, rates of litter decomposition are significantly reduced in 

small fragments (lha) compared with larger fragments (10 & 100 ha) and continuous forest, 

whilst litter decomposition rates in 100 ha fragments are accelerated with proximity to the 

forest edge, compared to baseline levels in continuous forest edges. These edge and area 

effects are postulated to be the result of changes in the activity of decomposer organisms 

rather than direct physical edge effects (Didham 1998). Dung decomposition and removal 

rates were also negatively affected by fragment size due to lower densities and diversity of 

dung beetles (Klein 1989; Andresen 2003). These altered dung beetle communities have 

consequences for secondary seed dispersal, the proportion of seeds interred decreasing with 

beetle numbers and fragment area. Dispersal and burying by beetles has positive 

consequences for the seedling establishment and regeneration of certain plant species possibly 

by minimising the impact of rodent seed predators. It is known that rodent densities are 

elevated in smaller fragments, thus the interaction between dung beetle and rodent densities 

are likely to have profound effects on the forest composition, structure and processes 

(Andresen 2003). Forest fragmentation in the boreal zone follows a similar pattern of species 

losses, particularly with higher trophic levels failing to persist in fragmented habitat over time 

and this leading to a truncation of food chains and disruption of interactions (Komonen et al. 

2000).

The regulation of herbivore populations by parasitism is yet another ecosystem process that 

interacts with scale and fragmentation. Decreased area of habitat and increasing insularity of 

habitat patches may lead to a proportionally greater decline in parasitism rate compared to 

losses in host density - due to the different scales at which these organisms forage and 

disperse (Kruess & Tschamtke 1994; Roland & Taylor 1997; Kruess 2003; Thies et al. 2003). 

This disruption to host-parasitoid interactions may - where parasitism is the main constraint 

on host population growth - lead to increased herbivore outbreaks in a disturbed and 

fragmented landscape. Fragmentation may negatively affect plant-pollinator interactions as 

the loss of disturbance-sensitive insect mutualists can lead to decreased plant fitness and 

subsequent decline in population viability. One such decline in a component of plant fitness 

showed that the numbers of seeds set per plant declined significantly with fragmentation, and
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that this was related to a two* to three-fold decrease in pollinator visitation (Didham et al.

1996). In an experimentally fragmented goldenrod (S. canadensis) system, Kareiva (1987) 

showed that habitat fragmentation increased the likelihood of an aphid (Uroleucon 

nigrotuberculatum Olive) outbreaking due to fragmentation interfering with the non-random 

searching behaviour of its predator (Coccinella sp.), a decoupling of a species interaction via 

a differential response to fragmentation leading to a loss in population regulation.

2.2.5 Summary

The fragmentation of semi-natural habitats leads to biodiversity loss via the twin processes of 

habitat isolation and decrease in habitat area. The relative importance of these mechanisms 

varies with the spatial scale of the disturbance and scale-dependent perception of that 

disturbance by a given species - largely a property of the trophic position or dispersal power 

of the species. Available evidence suggests that the fragmentation of semi-natural habitat 

together with scale-dependent species responses leads to the de-coupling of species 

interactions, with probable impacts on ecosystem processes. Despite the acknowledged 

importance of insects as pollinators, decomposers and consumers it is remarkable that, to date, 

so little data have been collected on the impact of habitat fragmentation on processes and 

ultimately ecosystem function. The paucity of empirical work reflects the difficulties inherent 

in manipulating landscape heterogeneity in order to simulate the effects of fragmentation and 

partly it represents a historical failure of scientists and policy makers to realise the potential 

functional consequences of declining biodiversity. Fortunately over the last 20 years the 

establishment of long-term and large-scale studies on forest fragmentation (e.g. Klein 1989, 

Davies & Margules 1998, Andresen 2003), together with the use of mesocosms (e.g. Gilbert 

et al. 1998, Collinge 2000, Thies et al. 2003) has begun to enable the elucidation of patterns 

and processes relating to habitat fragmentation, landscape hetereogeneity and invertebrate 

assemblages.

2 3  Habitat-specific heterogeneity, intensification and impacts

In causing a decline in the amount and connectivity of habitat at the landscape level human 

activities drive a loss of biodiversity and denude species interactions. These human impacts 

also extend to smaller spatial scales resulting in further losses of biodiversity and disruption to 

species interactions within habitats such as natural forest or grassland habitats, and their 

anthropogenic analogues: silvicultural and agricultural habitats. The presence and
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intensification of human management practices in both natural and anthropogenic habitats 

results in plant structural and compositional changes with concomitant effects on the 

associated invertebrate assemblages.

2.3.1 Disturbance and heterogeneity in grasslands

One anthropogenic driver of change in invertebrate assemblages is the type and intensity of 

management of grassland systems; livestock grazing, mowing and fertilisation are important 

in creating spatio-temporal resource heterogeneity (Gibson et al. 1992b; Dennis et al. 1998; 

Borges & Brown 2001; Kruess & Tschamtke 2002b). These management prescriptions may 

result in changes to plant communities. For example, grazing may deflect the ecological 

succession producing an altered version of the flora (compositional change) or in changing the 

physical attributes of the plant community (structural or architectural change) (Rambo & 

Faeth 1999; Fowler 2002). These changes to plant diversity can lead to an upward trophic 

cascade affecting species directly or indirectly dependent on plants, the strength of the effects 

varying with the taxon or functional group, and with the intensity of the disturbance (Gibson 

et al. 1992a; Di Giulio et al. 2001; Kruess & Tschamtke 2002a; Woodcock et al. 2005; 

Vanbergen et al. 2006).

That grassland management impacts on invertebrate communities has been well documented 

for certain invertebrate groups, although the direction of the response tends to vary with the 

taxon and species in question. In a recent study of heteropteran bugs in intensively and 

extensively mown meadows (Di Guilio et al. 2001), it was found that the structure of the bug 

community differed between the two management schemes. Community structure was more 

homogeneous in intensive meadows compared with extensive meadows, in extensive 

meadows spatial effects, for example area or aspect, were as important as the management 

intensity in structuring the community whilst the management prescription was the 

dominating influence on assemblages in intensive meadows. Furthermore, the intensive 

meadows were marked by the dominance of a few abundant individual species while the 

extensive situation showed a more even dominance structure and higher species richness (Di 

Guilio et al. 2001). Species-specific responses to cutting regime varied widely - two species 

increased in abundance in response to mowing, six were negatively affect by either early 

season cuts or increased frequency of cuts, while 16 species were unaffected (Di Guilio et al.

2001). Species that declined in abundance with increased management intensity did so as a 

consequence of their life-history making them more vulnerable; either because the frequency
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and timing of mowing was coincident with the juvenile stage (nymphs) or adults being poor 

dispersers. Species able to exploit these ephemeral environments tended to be predatory, 

highly dispersive and multivoltine while the insensitive species were widespread habitat 

generalists or polyphagous grassland herbivores (Di Guilio et al. 2001).

Another study (Kruess & Tschamtke 2002) examined insect community responses along a 

grazing intensity gradient ranging from ungrazed to intensively grazed grasslands. In general, 

a significant decrease in insect species richness and abundance was found with higher 

diversity in the ungrazed compared to intensively grazed pastures. Changes to the physical 

structure of the sward between ungrazed and grazed systems drove this community change. 

Both Lepidoptera and certain Hymenoptera guilds responded positively to increased 

vegetation height in ungrazed grassland, while grasshopper species diversity was significantly 

predicted by vegetation heterogeneity -  a mosaic of bare ground and plant cover required for 

grasshopper oviposition and feeding needs (Kruess & Tschamtke 2002). This result is in 

agreement with the idea that bottom-up effects such as resource heterogeneity or productivity 

promote the diversity of higher trophic levels (Strong et a l 1984). The difference in 

community assembly between intensively and extensively grazed pasture was less 

pronounced with only a few taxa showing an increase in diversity with extensification. This 

was not, however, linked to bottom-up effects (i.e. increased architectural complexity or plant 

diversity), but instead was thought to be a direct disruption of plant-herbivore interactions by 

livestock. Higher trophic levels were also negatively affected by grazing with percentage 

parasitism by cuckoo wasps three times greater in the ungrazed situation compared with 

pastures (Kruess & Tschamtke 2002). This again adds support to the idea that higher trophic 

levels are more sensitive to disturbance (Kruess & Tschamtke 1994; Didham et al. 1998b; 

Davies et al. 2000; Kruess & Tschamtke 2000; Thies et al. 2003).

These two examples (Di Guilio et al. 2001; Kruess & Tschamtke, 2002), along with other 

studies (Gibson et al. 1992a; Gibson et al. 1992b; Sterling et al. 1992; Dennis et al. 1997; 

Dennis et al. 1998; Borges & Brown 2001), indicate that responses to grazing tend to be 

taxon-specific. In general, however, invertebrate populations can be divided into two 

categories - those that respond to plant composition and those that respond to plant 

architecture and habitat structure. Specialists on herbaceous plants are found to be responsive 

to changes in plant composition, mainly due to intimate host plant relationships, for example, 

leaf miners and phyotphagous Coleoptera (Sterling et al. 1992, Gibson et al. 1992a). 

However, grass specialists (Auchenorrhyncha) are also responsive to changes in sward
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structure with grazing intensity (Brown et al. 1992; Gibson et a l 1992a), as are generalists 

such as Heteroptera (containing a range of trophic guilds) and obligate predators such as 

spiders (Gibson et al. 1992a; Gibson et al. 1992b). In a study by Dennis et al. (1998) 

structural hetereogeneity produced by experimental grazing treatments supported a more 

diverse assemblage of small-bodied invertebrates in upland grassland; in paired plots where 

reduction in grazing produced greater heterogeneity (tussocks) a more diverse fauna was 

supported compared to structurally simpler heavily grazed plots (sward). These structural 

refuges also mitigated the overall trend in the experiment of declining diversity with increased 

grazing intensity. Similar work (Dennis et al. 2001) found that generally structural 

heterogeneity (arising from reduction in grazing) not botanical composition was more 

important for arachnid species composition and abundance, although certain species did 

prefer the intensively grazed areas. Consequently it was proposed that a mosaic of grazing 

pressure should be maintained in this system as a conservation measure to ensure that all 

species were accommodated (Dennis et al. 1997; Dennis et al. 2001). In contrast, a study of 

pastures under different management in the Azores by Borges and Brown (2001) found that 

taxa, when grouped into functional groupings (forb-feeders, grass-feeders, web-building 

spiders), responded not to vertical structure but to plant alpha diversity and abundance of 

plant functional types (e.g. forbs).

Species differ in their sensitivity to the direct and indirect effects of grazing. The above 

studies show differing sensitivities of higher taxonomic and functional units to habitat 

structure and compositional changes in plant communities. Using spatial statistics to test for 

association between grazing-driven landforms and aggregations of beetles, Dennis et al. 

(2002) demonstrated that carabid and staphylinid species responded differently to components 

of grazing impact. Some beetle species were associated with land-form, others with grazing 

intensity and mammalian grazer species, while others responded to microclimate changes 

(e.g. soil moisture and landform) (Dennis et al. 2002). Despite these taxon-specific changes, 

in general, increased intensity of grazing led to an overall decline in diversity with an 

impoverished or distinctive fauna in the most intensively grazed situation (Gibson et al. 

1992a; Di Giulio et al. 2001; Cagnolo et al. 2002; Kruess & Tschamtke 2002b).

Grazing can affect the structure of invertebrate communities with the elimination of rare, 

specialist species and often the promotion of abundant generalists resulting in changes to the 

taxonomic and trophic guild structure of the community (Gibson et al. 1992a; Di Giulio et al. 

2001; Cagnolo et al. 2002). In a study by Dennis et al. (1997) grazing altered beetle
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assemblages on upland grassland systems. Species associated with intense grazing tended to 

be copraphages or predators of dung-arthropods, and were widespread and common in 

grassland, while larger-bodied carabid species were negatively affected by intense grazing 

due to their need for structurally more complex vegetation (Blake et al. 1994). Cagnolo et al. 

(2002) found that intense grazing led to major changes to invertebrate assemblages in 

montane grasslands. The abundance, species richness and biomass of invertebrate families 

were lower in intensively grazed areas compared with lightly grazed and ungrazed areas. The 

heavily grazed areas were distinct in terms of the taxonomic composition of invertebrate 

assemblages with different assemblages being found in the most disturbed situation for both 

insect families and Coleoptera (Cagnolo et a l 2002). Functional changes accompanied this 

taxonomic turnover with a significant decrease in both density and biomass of predators and 

parasitoids in the heavily grazed areas compared to lightly grazed and ungrazed areas. This 

change was accompanied by changes in the relative abundance of herbivore guilds; 

intensively grazed grassland had an order of magnitude fewer sap-sucking insects with 

concomitant increase in the number of chewing herbivores (Cagnolo et a l 2002). These 

taxonomic and functional changes are postulated to be a consequence of the simplification in 

structure of the sward under intensive grazing pressure.

These results (Cagnolo et a l 2002) are consistent with the hypothesis that resource- 

concentration or heterogeneity is reduced by the large-scale offtake of vegetation biomass by 

vertebrate herbivores, with consequences for invertebrate populations. The loss of secondary 

consumers is consistent with studies in forest and agricultural ecosystems that demonstrate the 

differential impact of disturbance on insect trophic guilds (Komonen et a l 2000), leading to 

the possible erosion of ecosystem processes, such as the regulation of herbivore populations 

and suppression of outbreaks (Kruess & Tschamtke 1994).

2.3.2 Disturbance and heterogeneity in forests

Forest fragmentation at landscape scales has far-reaching consequences for invertebrate 

biodiversity (see above), however, the impact of anthropogenic heterogeneity in forest 

ecosystems extends to smaller spatial scales, affecting invertebrate assemblages within 

managed forestry and in remaining semi-natural fragments. Recent work by VAsquez and 

Simberloff (2003) shows that livestock grazing in forests also impacts on invertebrate 

assemblages. Their study was able to show that the presence of cattle disrupted plant- 

pollinator relationships to produce mutualist webs that were distinct from those found where
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cattle are absent. This effect of grazing regime on pollinator interactions was strong and 

outweighed the influence of geographical location (i.e. sites co-located were more similar in 

their interaction web structure compared to more distant sites, but the influence of grazing 

was significant over and above these effects (Vazquez & Simberloff 2003)). The niche 

breadth hypothesis predicts that the host or habitat specificity of a species determines its 

response to disturbance - specialist organisms are more likely to be negatively affected by 

habitat fragmentation and other forms of disturbance than generalists (Golden & Crist 1999; 

Vazquez & Simberloff 2002). Earlier work, however, in the above plant-pollinator system 

demonstrated that the disruption to these interaction webs in grazed forest was not a 

consequence of the degree of specialisation of the mutualists (V&squez & Simberloff 2002). 

In fact, the difference between the grazing regimes was identified to be a consequence of the 

loss of a number of “keystone interactions'’ centred on certain numerically dominant plant and 

insect generalists. The loss of these key mutualist species alters the overall structure of the 

interaction web and is likely to cascade though the web as these important generalist species 

interact exclusively with rarer, specialist species in the community (V&squez & Simberloff 

2003). The possible mechanisms underpinning these grazer-mediated changes in interactions 

could not be separated explicitly in this observational work, although it was suggested that 

some of the observed interaction losses may arise because grazing directly reduces the 

abundance of certain plant species - so the decline in the frequency of interactions involving 

this plant species is a function of their increased rarity. This pattern, however, was not 

universal and therefore the observed changes in those species not affected directly by cattle 

remain likely to be via complex indirect routes (Vasquez & Simberloff 2003).

Some evidence (Wardle et a l 2001) that browsing by introduced ungulates (deer and goat) 

can impact on forest food-webs has been supplied by data from New Zealand, where 

historically recent introductions provide a natural experiment on how forest ecosystems 

respond to disturbance by novel vertebrate herbivores. Wardle et a l (2001) aimed to show 

that these introductions produced a trophic cascade impacting on components of the soil 

microflora and fauna, as well as on soil processes. Browsing by ungulates produced changes 

in the composition of the plant community and lowered vegetation density, at least in the 

browsed layer. Only one taxon (humus nematodes), however, was negatively affected across 

all sites by the magnitude of changes in plant diversity. Overall, the majority of micro-, meso- 

and macrofauna studied showed idiosyncratic responses to browsing-induced changes to plant 

communities, refuting the idea that changes in plant community diversity will cascade through 

food-webs in a clear and consistent manner (Wardle et a l 2001). There were overall
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reductions in the density of dominant meso- and macrofaunal groups in response to browsing, 

but in general, these soil faunal changes were correlated with other variables (variation in 

macroclimate, stand characteristics, soil nutrients) not changes to plant community diversity. 

Significant relationships between browsing-induced changes to leaf-litter composition and 

habitat diversity in the litter layer and certain invertebrate groups (nematodes, gastropods and 

diplopods) were found (Wardle et a l 2001). Browsing had some direct consequences for soil 

processes, both carbon and nitrogen storage in the soil showed strong browsing effects, and 

these had significant consequences for certain fauna (e.g Gastropoda), but again the direction 

of these responses was idiosyncratic (Wardle et a l 2001). The study by Wardle et a l 

emphasises the wide-ranging effects of vertebrate herbivores on invertebrate assemblages, but 

the idiosyncratic nature of the findings suggests the mechanisms via which vertebrate-induced 

changes operate on lower trophic levels and other food-webs are complex, difficult to 

disentangle, and vary with location and species.

Aside from the impact of introduced ungulate herbivores on forest invertebrates, spatial 

heterogeneity may arise from forestry practices, such as selective logging or clear felling, with 

generally negative consequences for invertebrate assemblages. Grove (2002) in a study of the 

saproxylic beetle fauna of a tropical rainforest in Queensland found that these assemblages 

were generally negatively affected by greater intensity of disturbance. Levels of beetle 

abundance were significantly lower in selectively logged and secondary forest compared with 

areas of old-growth forest. Although the effect on species richness was not as clear, there was 

a significant difference in mean richness between old-growth and secondary forest (Grove

2002). Ordination analysis demonstrated that the assemblages in the three forest categories 

were distinct from each other in terms of community composition, with the difference 

between the old-growth and secondary re-growth most pronounced. Furthermore, these 

differences may be functionally significant as the trophic guild structure of the different 

management areas was significantly different. Old-growth forest supported significantly 

more predators, detritivores and mycophages in the larval feeding guilds with the most 

profound changes being between the old-growth and secondary regrowth (Grove 2002). This 

truncation of a food—chain and loss of predators with increased disturbance is consistent with 

other studies (e.g. Watt et a l 1997b; Komonen et a l 2000).

In another tropical system (Watt et a l 1997a; Watt et a l 1997b) showed that management 

intensity of planted forest in Cameroon negatively affected a range of invertebrate orders and 

families in the forest canopy. Overall, invertebrates were more abundant in plots subjected to

21



Chapter 2. Literature review

low-intensity, selective manual logging compared to complete, mechanical clearance (Watt et 

al. 1997ab). The authors tentatively suggest that due to some of the taxa sampled 

(Hymenoptera, Araneae) being generally predatory there may be consequences for herbivore 

regulation in more intensively used forests. Jones et al. (2003) examined termite assemblages 

along a gradient of increasing intensity of tropical forest management-species richness and 

abundance declined with increasing intensity of disturbance. Correlation with certain 

environmental variables (e.g. tree basal area) suggested that increasing management intensity 

simplified the physical structure of the habitat. These changes altered the microclimate and 

removed the feeding and nesting sites important to the termite fauna (Jones et al. 2003). 

Again, management intensification of forest may have ramifications for ecosystem processes; 

in this case, the depletion of termites may impact on forest decomposition, with concomitant 

impacts on other soil food-web components.

A study along a successional gradient of logged boreal forest in Finland demonstrated that 

there was a high level of complementarity between samples of invertebrates taken from 

different age classes of forest (Niemela et al. 1996). In the three taxa studied (ants, carabid 

beetles, spiders), over 50 % of the catch from any forest age class were present in other age 

classes, and in the mature forest. The majority of spiders and carabid species were widely 

distributed across all the forest age classes, while a higher proportion of ant species had a 

narrower range (Niemela et al. 1996). Nevertheless, in all three arthropod groups there were 

clear differences between assemblage from younger, more open age classes and mature, 

closed canopy classes (Niemela et al. 1996). When the compositional similarity of samples 

was compared from within the age classes it was observed that there was greater 

heterogeneity in the composition of the samples from younger successional classes that in 

samples from mature forest, and that this heterogeneity was operating at very fine spatial 

scales (10-15m). The authors attribute this heterogeneity not to sampling error but actual 

micro-site variation (litter, ground vegetation) between structurally homogeneous tree stands 

(Niemela et al. 1996). A major determinant of the diversity of these arthropod assemblages 

appears to be an interaction between coarse (successional stage) and fine (microsite) 

heterogeneity that combine to affect the diversity of the regional species pool (Niemela et al.

1996).

In order to minimise losses of invertebrate biodiversity, some of which are likely to have 

functional importance, it would be prudent to ensure that as well as maintaining landscape- 

scale forest diversity (area, connectivity, context) that forest habitats should be managed to
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promote within-habitat heterogeneity, for example, by retaining some over-mature trees 

within intensively managed forest which will provide a refuge for disturbance-sensitive 

species (e.g. saproxylic fauna; Grove 2002) and will also create microsite variability to which 

less sensitive species (e.g. carabids; Niemela et a l 1996) will respond positively.

2.3.3 Summary

Structural and compositional changes to plant communities may arise as a result of grazing by 

introduced ungulates or by forestry practice. These changes may in turn cascade through 

invertebrate food-webs, in general, with an accompanying loss of diversity with greatest 

losses at higher trophic levels. Species identity determines greatly the direction of the 

response to these anthropogenic pressures, as does the intensity of the disturbance. Commonly 

invertebrate communities appear to be able to adapt to moderate disturbance but radical 

environmental changes resulting from the application of intensive management practices tend 

to result in substantial biodiversity losses. Evidence is sparse at present, but there are 

indications that losses at these within-habitat scales are likely to have repercussions for the 

overall ecosystem processes (e.g. loss of mutualist pollinators, changes to soil food webs) 

although the mechanisms are complex and difficult to elucidate. Again, the scale at which the 

disturbance operates and the organism responds are of critical importance to any measures 

devised to mitigate loss of biodiversity and ecosystem function.

2.4 Species-specific heterogeneity

Species are rarely uniformly distributed in space and this heterogeneity may arise as a product 

of many different processes that are manifested as spatio-temporal heterogeneity in the 

physical or biological environment. Insects rarely organise themselves according to an ideal 

free distribution, more often the spatial distribution of insects is patchy (Begon et al. 1996). 

This patchiness may arise as a consequence of environmental variability (physical gradients) 

but also due to interactions with other organisms (competition or predation). One interaction 

that has been the subject of both theoretical and empirical study is that between parasitoid 

insects and their hosts. Host-parasitoid dynamics have been the focus of study as they are 

abundant in most terrestrial ecosystems, have economic importance as biocontrol agents, and 

they provide an important ecosystem function in regulating herbivorous insect populations. 

Additionally host-parasitoid systems, due to their relatively simple trophic structure (one host 

gives rise to one parasitoid individual or family), provide a useful model to test ecological and
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evolutionary hypotheses in resource-consumer systems (Godfray et al. 2000). The impact of 

landscape and habitat scale anthropogenic disturbance on parasitoid populations has already 

been reviewed above, in this section I will first focus on spatial heterogeneity arising as a 

result of intrinsic processes (i.e. interactions) between hosts and parasitoids, and then on the 

interaction between parasitism and spatial habitat heterogeneity at very fine scales.

2.4.1 Host-parasitoid systems: an example

Interactions between hosts and parasitoids have been shown to be important at driving the 

population oscillations of herbivorous insects (Turchin et a l 2003), these oscillations driven 

by the time-lag in the density response of parasitoid populations to increases in host 

popualtion densities, both populations then crash and eventually host and then parasitoid 

populations recover, and the cycles start again. Heterogeneity in parasitism, arising from the 

spatial patchiness of host populations and non-random searching of parasitoids (Godfray et al. 

2000) has often been purported to be a structuring factor stabilising host-parasitoid temporal 

dynamics (Pacala et al. 1990; Hassell et al. 1991). Density-dependent and density- 

independent responses of parasitoids can both contribute to the regulation or stability of host 

populations, and the temporal stability of host-parasitoid dynamics may be dependent on the 

presence of environmental heterogeneity in the form of aggregation of parasitoids and hosts 

(Pacala et al. 1990; Hassell et al. 1991; Godfray et al. 2000).

This aggregation and stabilisation of host-parasitoid dynamics may arise as a result of two 

different mechanisms; firstly density-dependence acting on hosts (resource competition) or 

parasitoids (interference) (Visser et al. 1999; Godfray et al. 2000), or secondly, as a result of 

spatio-temporal refuges where host populations can persist during periods of intense 

parasitism (Reeve et al. 1994; Begon et al. 1995; Sait et al. 1995; Godfray et al. 2000). These 

refuges may be physical (e.g. galls), temporal (phenological asynchrony), resistant 

(immunological or genetic variability), life-history (overlapping host generations with long 

lived adults) or they may be a consequence of spatial habitat heterogeneity (Godfray et al. 

2000 and references therein). All these refuges are stabilising and facilitate population 

persistence because they result in certain host individuals in the population being more 

susceptible than others to parasitism (Pacala et al. 1990; Hassell et al. 1991; Godfray et al. 

2000). It is the influence of habitat heterogeneity that has had least attention in the literature.
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One empirical example that demonstrates how refuges from parasitism can arise from life- 

history differences between predators and prey is the case of the tussock moth (Orgyia vetusta 

Bdv.) and its natural enemies (Brodmann et a l 1997; Harrison 1997). This species attains 

extremely high densities when feeding on perennial Lupinus spp., yet shows a highly patchy 

distribution despite apparently abundant and contiguous Lupinus habitat. To determine what 

limited the spatial distribution of these patchy herbivore outbreaks, studies were carried out to 

assess the contribution of a number of likely parameters (host-plant quality, generalist 

predator abundance, rates of predation, dispersal of moths and parasitism) to the spatial 

distribution of the moths. Differences in host-plant quality were excluded as no differences in 

larval performance between outbreak and non-outbreak areas were detected for any 

performance parameter (e.g. pupal weight, survivorship) measured (Harrison 1997). No 

differences between outbreak and non-outbreak areas were found in either predator abundance 

or rates of predation (Harrison 1997). It was the combination of the very lower dispersal 

abilities of the moth and parasitism by hymenopteran and dipteran parasitoids that was 

creating the heterogeneity in the distribution of the moth (Harrison 1997; Brodmann et a l

1997). Rates of parasitism and predator-prey ratios were elevated in the zone around the 

outbreak (Brodmann et a l 1997). This pattern was due to the parasitoid population 'spilling 

over’ the edge of the prey population, a consequence of the greater rate of dispersal by 

enemies, but within the patch the prey population is spared from total extinction by this 

constant diffusive loss of a percentage of the parasitoid population (Brodmann et a l 1997).

The emphasis in both modelling and empirical approaches in host-parasitoid systems has 

tended to focus on the influence of prey density on the behaviour and parasitism rates of 

parasitoid populations. A relatively new question is to what extent does habitat structure (e.g. 

plant patch size and dispersion) influence these predator-prey interactions, especially in view 

of the evidence suggesting the importance of density-independent heterogeneity in parasitism 

(Pacala et a l 1990, Hassell et a l 1991).

Spatial modelling has shown that the interaction between parasitoid and hosts can be 

modelled as a series of interconnected metapopulations where overall environmental 

heterogeneity can mitigate the local decline or extinction of host populations by a 'rescue 

effect’ of immigration from other populations, so the populations persist at larger spatial 

scales even if they decline locally as a result of intense parasitism (Reeve 1988; Hassell et a l 

1991; Godfray et a l 2000). The effect of spatial habitat heterogeneity in acting as a refuge 

and stabilising the dynamics of host-parasitoid systems is a relatively new area of research
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and little has been done empirically due to the difficulty in studying parasitoid population 

dynamics and dispersal in the field (Jones et a l 1996).

Roland and Taylor’s (1997) study was among the first to examine the issue of spatial 

heterogeneity and its effect on host-parasitoid dynamics. Using a fragmented forest system it 

was found that four species of parasitoid attacking Malacosoma disstria responded differently 

to host density and fragmentation of the habitat, and that these differences were related to 

parasitoid body size -  a surrogate of dispersal ability. The largest parasitoid species showed 

scale dependent density-dependence at the largest scale of fragmentation, the two medium 

sized parasitoid species showed a responses to intermediate scale fragmentation, while 

parasitism by the smallest species was greatest in highly fragmented areas (Roland & Taylor

1997). There was a significant interaction between host density and forest structure on rates 

of parasitism by the two smallest species (Carcelia malacosomae Sellers and Patelloa 

pachypyga Aldrich). C. malacosomae responded to host density in partially-felled forest but 

not in contiguous forest while the reverse was true for rates of parasitism by P. pachypyga 

(Roland & Taylor 1997). This suggests that altered forest structure either acts as a barrier to, 

or facilitate dispersal and aggregation by different parasitoids. These species-specific 

correlations were dependent on body size, and therefore relating to dispersal power and the 

scale at which a species perceives ecological heterogeneity. This response to forest 

fragmentation has the potential to disrupt the stabilising effect of parasitoid aggregation on the 

host population. Indeed those species that are most affected by the habitat fragmentation are 

those that dominate in M. disstria populations that are in decline, thus fragmentation may 

extend the duration of these herbivore outbreaks (Roland & Taylor 1997).

Doak (2000), using populations of a moth (Itame andersoni Swett) and its hymenoptera 

parasitoid complex in a naturally patchy Dryas host plant environment, demonstrated a 

general absence of a density-dependent response of parasitoids to the host, but a strong 

influence of habitat structure in the form of patch size and isolation. The parasitoid species 

showed idiosyncratic responses to habitat structure - a braconid species responding negatively 

to increased patch area while an ichneumonid responded positively; total parasitism was 

greatest in the smallest habitat patches (Doak 2000). These differences are important 

considering all the parasitoids were using the same host in the same simple, host plant 

community (Doak 2000) and reflect the importance of considering spatial scale and habitat 

structure when assessing parasitoid - prey interactions.
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In contrast to Doak (2000) other studies have found a positive response of parasitism to 

increasing patch size (Sheehan & Shelton 1989; Kruess & Tschamtke 2000). Sheehan and 

Shelton (1989) found that an aphid parasitoid, while responding to host density, also 

responded independently and positively to patch size -  parasitoid leaving rates were 

significantly lower in larger habitat patches. A study of an herbivore-predator-parasitoid 

system (Cappuccino 1992) showed that the predator did not respond to the density of its prey, 

nor did the parasitoid to its prey, the predator. The density of the parasitoid was rather 

positively influenced by the density of the prey of its host, indicating the parasitoid finds it 

easier to search for the prey item (in this case galls) rather than its cryptic host (Cappuccino 

1992). It is suggested that the lack of a density relationship between the prey and the predator 

is a product of the predator avoiding these cues, in order to avoid its parasitic enemy 

(Cappuccino 1992). The important point is that considered in isolation the lack of a density- 

dependent response may appear maladaptive, but improved understanding of system 

dynamics comes when a consideration of the selective pressure from other trophic levels and 

spatial variability in habitat structure is included.

2.4.2 Summary

Excepting the study by Roland and Taylor (1997), the majority of the studies cited above are 

concerned with natural heterogeneity arising either as a result of intrinsic processes (e.g. 

density-dependence) that generate population structure or due to fine-grain habitat 

heterogeneity (e.g. plant dispersion). A few other studies have looked at how the interaction 

of host and parasitoid is affected by coarse-grain heterogeneity caused by human activities in 

the landscape (reviewed in detail above: Kruess & Tschamtke 1994, 2000; Kruess 2003; 

Thies et al. 2003). The spatial scale at which species respond to disturbance to habitat 

structure (fine and coarse grain) varies both between parasitoid species, and between 

parasitoid and host. Additionally, density-dependent regulation of host-parasitoid systems is 

likely to vary with this heterogeneity. These points are likely to be key to understanding the 

consequences of habitat fragmentation not only for host-parasitoid dynamics but also, 

perhaps, for other species interactions (e.g. mutualisms). Increased understanding of how 

spatial processes affect species interactions aswell as diversity may provide insights of 

practical use when managing the landscape for biodiversity conservation and maintenance of 

ecosystem processes.
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2.5 Conclusions

The fragmentation of semi-natural habitats leads to biodiversity loss via the twin processes of 

habitat isolation and decrease in habitat area. The relative importance of these mechanisms 

varies with the spatial scale and intensity of the disturbance, and the scale-dependent 

perception of that disturbance by a given species (often a property of a species trophic level). 

Available evidence suggests that the fragmentation of habitat and subsequent intensification 

of land-use, together with scale-dependent species responses leads to the de-coupling of 

species interactions (e.g. changes to density-dependent responses of predator to prey, loss of 

mutualisms), the effects of which may cascade through food-webs. Such changes to food-web 

structure are likely to have profound impacts on ecosystem processes (e.g. decomposition, 

regulation). Future research must, while continuing to address the loss of numbers of 

individuals and species, focus on how habitat fragmentation and anthropogenic intensification 

affect interactions and other community dynamics either directly (e.g. changes to habitat 

structure) or indirectly (disruption of interactions leading to trophic cascades).
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Carabid beetle assemblages were studied to assess how diversity and community structure 

varied along a gradient o f land-use. This gradient was composed o f six lkm 2 quadrats with an 

increasing proportion o f agricultural land reflecting the anthropogenic fragmentation and 

intensification o f landscapes. Carabid species richness and abundance was predicted to peak 

in the most heterogeneous landscape, in accord with the intermediate disturbance hypothesis 

(IDH), and then decline as agricultural intensification increased. It was also predicted that 

the different landscapes would support beetle communities distinct from  each other. The IDH 

was unsupported - in both years o f this study carabid species richness and abundance was 

greatest in the most intensively managed, agricultural sites. Detrended correspondence 

analysis revealed a clear separation in beetle community structure between forested and open 

habitats, and between different forest types. Canonical correspondence analysis revealed a 

significant correlation between beetle community structure and the environment, showing 

distinct beetle assemblages to be significantly associated with specific edaphic and botanical 

features o f the land-use gradient. This study adds to increasing evidence that landscape-scale 

patterns in land-use significantly affect beetle community structure producing distinct 

assemblages.

* Published in Ecography (2005) 28,3-16.
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3.1 Introduction

A major contributing factor to the global loss in biodiversity is anthropogenic impacts in the 

environment, with land-use change being acknowledged as one of the more significant drivers 

(Myers & Knoll 2001; Novacek & Cleland 2001). The fragmentation of forest habitat and 

subsequent replacement by agriculture is one such land-use transition. This anthropogenic 

succession can, according to its intensity, result in landscapes of varying heterogeneity with 

impacts on the biological communities therein (Davies & Margules 1998). In Europe, much of 

the semi-natural forest has already been modified or replaced by agricultural or silvicultural 

systems managed at a range of intensities. To what extent do these different forms and 

intensity of land-use contribute to current levels of biodiversity? How can landscape 

managers halt species loss and promote sustainable biological communities? These are not 

trivial questions and, given recent international commitments to slow and halt biodiversity 

losses (e.g. Anon 2001, Anon 2002a), are politically sensitive and require urgent 

consideration.

This study is situated within a research framework that aims to explore how the fragmentation 

of semi-natural terrestrial communities and intensification of land-use impacts on biodiversity 

(Anon 2003). The term biodiversity has many meanings relating to different scales of 

biological organisation from genes to ecosystems. As such it is important that it is explicitly 

defined: in this project it is used to denote variation in the species composition of plant and 

animal communities, within the context of six landscape scenarios that constitute a gradient of 

increasing landscape-scale disturbance. Environmental gradients can be used to assess the 

impact of human activities on biological systems, and despite the complication of multiple 

cause-effect relationships the use of gradients may enable generalisations to be drawn from 

community responses to perturbation (McDonnell & Pickett 1990; Desender & Maelfait 1999; 

Ribera et al. 2001; Koivula et al. 2002; Niemela et al. 2002).

Fragmented forest-agriculture landscapes are predicted to be high in biodiversity for two 

reasons. Firstly, the dynamic relationship between biodiversity and disturbance is dependent 

on the frequency and duration of disturbance; at intermediate levels of disturbance it is 

proposed that competitive dominants are suppressed, facilitating colonisation by less- 

competitive organisms and promoting species coexistence (Connell 1978). Following this 

hypothesis, it was predicted that levels of species diversity would be elevated at the point of 

intermediate disturbance along this anthropogenic disturbance gradient where forested and
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open areas co-occur in significant proportions. Secondly, it was envisioned that this peak in 

diversity would reflect the accumulation of niches - a consequence of partial replacement of 

semi-natural and managed forest by open and agricultural habitats. Such a mosaic was 

predicted to support significant elements of forest-adapted communities in an essentially 

agricultural landscape (Petit & Usher 1998; de la Pena et al. 2003).

It is not possible through either a lack of specialist knowledge or logistical constraints, to 

survey all the biological diversity in a given area (Kremen 1994; Oliver & Beattie 1996). 

Consequently surrogates of total biodiversity are commonly used to make a rapid assessment 

of the relative contribution of different types of land-use or habitat to an area's biodiversity 

(Kremen 1992, 1994; Oliver & Beattie 1996; Prendergast 1997; Duelli & Obrist 1998; Stork 

1999). This study uses carabid beetle assemblages as a surrogate of biodiversity to assess the 

response of invertebrate communities to the twin anthropogenic impact of fragmentation and 

land-use intensification. Carabidae were surveyed along a gradient of land-use in Northern 

Scotland, corresponding to a decline in the proportion of forest cover and concomitant 

increase in the amount of agricultural land. Carabid beetles were chosen as study organisms 

because they are widely-distributed and abundant (Thiele 1977), sensitive to landscape 

structural heterogeneity and land-use (Dennis et al. 1997; Davies & Margules 1998; Ribera et 

al. 2001; Dennis et al. 2002; Brose 2003), are both taxonomically and ecologically diverse 

(Ribera et al. 2001; Cole et al. 2002), and yet well-known having been studied intensively 

(Thiele 1977). Furthermore, recent studies have shown that despite species turnover between 

habitats or regions, the response of carabid communities to disturbance is consistent (Ribera 

et al. 2001; Niemela et al. 2002).

By quantifying carabid diversity under different land-use scenarios this study aims to improve 

the understanding of the interrelationship between this beetle community and landscape 

structural heterogeneity, and thus contribute to the development of standardised systems for 

the monitoring of the interaction between biodiversity and land-use. Two specific predictions 

are tested: (i) carabid diversity (species richness and abundance) will be highest at the point 

along the gradient with the greatest landscape heterogeneity- a consequence of intermediate 

levels of disturbance (IDH) (Connell 1978). This pattern will be evaluated further by an 

assessment of compositional patterns and species autecology; and (ii) carabid community 

structure will reliably signal landscape structural heterogeneity and will be correlated with 

site-specific features.
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3.2 Methods

3.2.1 Land-use units and carabid sampling

Six land-use units (LUU) representing a land-use gradient, numbered from LUU1 (lowest 

intensity land-use) to LUU6 (highest intensity land-use), were set up in the area to the west of 

CEH Banchory (57°0r- 07’ N, 02°61’- 87’ W) (Table 3-1). Each LUU was represented by a 

1 km by 1 km square (Figure 3-la) and these LUUs were all a maximum of 10 km from each 

other. The LUUs were visually selected according to an ideal, pre-defined set of criteria 

corresponding to the type of land-uses predominating within this spatial unit (LUU1 & 2 100 

% forest; LUU3: 70 % forest; LUU4: 50 % - forest, 50 % - open habitat; LUU5: 70% 

managed grassland; LUU6: 70 % arable) (Table 3-1, Figure3-lb). We sampled each LUU on 

a systematic 4 x 4  grid giving 16 sampling points (Table 3-2) each separated by 200m from 

neighbouring points and the edge of the square (Figure3-la). All biotic and abiotic data were 

gathered on this grid. The choice of a systematic grid rather than a stratified design to sample 

the beetle communities in different habitats resulted from the broader research framework in 

which this study fits: birds were also sampled in the LUUs and are distributed at coarser 

spatial scales than beetles, hence the systematic grid is a compromise between the ideal 

sampling strategy for different taxa (Anon 2003).

Carabid beetle communities were sampled using pitfall trapping: four traps (with plastic rain 

shields to prevent flooding) were placed 4m apart in a regular 2 x 2  grid at each sampling 

point. Traps consisted of polypropylene cups, 8.5 cm diameter and 10 cm deep, partially filled 

with 80% ethylene glycol to act as a preservative and killing agent, and a small amount of 

unscented detergent. Traps were emptied at 2-week intervals between 4 May and 30 August 

2001 (15 weeks continuous trapping effort), and 8 April and 26 August 2002 (20 weeks 

trapping effort). The length of the trapping period was set to provide as complete a sample of 

the communities as logistically possible. The later start in 2001 was a consequence of the foot 

and mouth epidemic resulting in a delay in access to the study sites. On each occasion the 

contents of the four traps at each sampling point were pooled to give one sample per point in 

the sampling grid. The catch was sorted and identified to species using Lindroth (1974), 

nomenclature followed Luff and Duff (2004).
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Figure 3-1. Figure 3-la. Location, dimension and sampling grid of the six land-use units (LUUs) in 
Aberdeenshire, Scotland, UK. Each LUU was a 1km2 quadrat with a nested grid of sampling points 
distributed at 200m intervals from each other and the edge of the square. No LUU was more than a 
distance of 10km from the others. All biological and environmental data were gathered on the 
intersections of this grid. Figure 3-lb. Habitat composition and context of the six LUUs showing the 
landscape heterogeneity of the LUUs and surrounding areas. These images were produced with 
ARCGIS using a fused satellite image (LandsatTM & IRS) of the study area.
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3.2.2 Environmental variables

At each sampling point along the gradient potential explanatory variables were collected to 

characterise the site and to attempt to identify those factors structuring the beetle 

communities. Soil pH and temperature data were collected using a Hanna HI 9024 

microcomputer; three measurements were taken and averaged to give a single value for each 

sampling point on the grid. Soil moisture (m'3m'3) was determined using a theta probe (Delta- 

T ML2x) and calibrated according to soil humus type. Again three measurements were taken 

and averaged to give one value per sampling point. The depth (cm) of the organic horizon in 

the soil profile and nominal soil classes (mor, moder or mull humus) were determined for 

each sampling point by the excavation of a pit. Canopy density over the sampling point was 

estimated using a concave spherical densiometer (Forestry Suppliers Inc.). Information on the 

plant community in the form of compositional and structural data was collected at each of the 

16 sampling points within each site. A rectangular plot of 100 m2 (20 x 5 m) was laid down 

around the centre of the sampling point. This rectangular plot was composed of two sets of 

nested sub-plots of 1, 5,12.5, 25 and 50m within which plant species richness and the 

percentage cover of each plant species was determined. The cumulative total number of

species sampled within the 100m was then used in the subsequent analyses. The basal area
0% |

(m ha’ ) of the different tree species present was determined in the 12.5 sub-plots (n = 2) 

only.

3.2.3 Statistical analysis

3.23.1 Patterns in carabid diversity

We analysed the effect of the land-use gradient (n = 6) on carabid total species richness and 

average abundance (2001 and 2002) using linear regression models (PROC REG, SAS 

version 8.1). Parameters of likely importance to beetle communities and assumed to represent 

the structure, productivity and intensity of soil use of the land-use gradient were fitted. These 

parameters were: the proportion of the landscape covered by forest (calculated from 

Landsat/IRS data setsXAnon 2003), the total species richness of the plant communities, the 

average soil pH and the average depth (mm) of the organic horizon of each LUU (Table 3-1). 

In this landscape-scale analysis the mean of soil variables are appropriate model parameters, 

even in heterogeneous landscape mosaics, as they reflect the addition of non-forest habitats to 

the LUU and thus the land-use gradient. Due to the significant correlation between these
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environmental parameters only their marginal effects on carabid species richness and 

abundance are reported here.

The composition of the beetle community at the sampling point level was also evaluated to 

gain insight into the observed patterns of carabid abundance and species richness between 

agricultural sampling points along the gradient. This was done using information on the 

ecology and known distribution of individual species (e.g. body size, open - habitat specialist, 

collembolan predator etc) drawn from Lindroth (1974, 1985, 1986), Hyman and Parsons 

(1992) and Anon (2002b). This evaluation of compositional differences between sampling 

points is a qualitative analysis - no formal statistical analysis could be used due to restricted 

sample size and with the sampling points being nested within LUU (risk of pseudoreplication, 

Hurlbert 1984). Bearing this caveat in mind a number of questions were posed using data 

from sampling points in agricultural grassland (n = 26, Table 3-2) from the predicted high 

(LUU4) and low (LUU5 and 6) points of the ‘intensification’ end of the land-use gradient: (i) 

Do these samples show equivalent levels of mean carabid species richness and abundance? 

(ii) Do individual species recorded from grassland-dominated sampling points in LUU4 (n -  

9) and LUU6 (n = 5) show differences in their relative average abundance? (iii) Are species 

commonly recorded from open and agricultural habitats present in the mosaic land-use 

(LUU4) that are absent in the more intensively farmed landscapes (LUU5 and 6)?

3.23.2 Carabid commaaity structure

Dominance structure of the carabid beetle communities from each LUU was assessed using 

species rank-abundance plots. The species-specific abundance data were summed over time to 

give a single value for each species at each sampling point along the gradient in each year. 

Factors responsible for the structuring of the carabid beetle communities were identified using 

ordination analysis (CANOCO ver. 4.5). To ensure that the ordination was not unduly 

influenced by individual species the rarest 1% of species were excluded, then loge (x+1) 

transformed to minimise the impact of the most abundant species on the analysis, and the least 

common species were down-weighted using the options available in CANOCO (Jongman et 

a l 1995, ter Braak and Smilauer 1998).
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Table 3*1. Location, description and composition of the land-use unit gradient along which carabid beetles were collected. Coordinates me decimal degrees of 
the first sampling point in each LUU e.g. LUU 1.1, LUU2.1 etc. The soil parameters are derived from three measurements taken at each sampling point in each 
LUU and then averaged for the LUU. Plant S is the total plant species richness recorded for each LUU.

LUU Landscape description Plant community Arable Grassland Forest Plants Soil Latitude-
Longitude

(dominant) (%) (%) (*/•) (n) pH O-horizon (cm)

1 Old-growth forest Caledonian pinewood 0 0 100 9 3.9 28.9 57.019057
03.140373

2 Managed forest Scots pine plantation 0 0 88.5 10 3.9 9.0 57.047952
03247554

3 Forest-dominated
mosaic

Scots pine-birch forest 0 16.7 65 20 4.3 10.7 57.015483
03.309506

4 Mixed-use mosaic Grazed grassland 17.3 30.9 49.8 29 5.5 1.7 57.068030
03.127909

5 Pasture dominated Mown grassland 35 57.6 7.4 15 6.2 0.1 57.030556
03.375779

6 Arable dominated Arable cropping 51.7 43 1.6 11 6.2 0.1 57.143960
03.189496

Table 3-2. Distribution of the sampling points among the major habitat classes in the LUUs sampled. LUU4 only has 15 sampling points because one point 
fell in an arable field and access to this point was denied.

LUU_________________________________ Forest_______________
_______________Coniferous_________________Deciduous

Natural_____________Managed_________
Exotic_______ Native

1 16 0 0 0
2 0 1 15 0
3 0 0 7 3
4 0 1 5  0
5 0 1 0  0
6 0 0 0 1

____________________ Pasture_______________ Arable
Mixed Permanent Rotational Rotational

0 0 0 0
0 0 0 0
2 4 0 0
0 3 6 0
0 0 12 3
0 1 4 10
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Species abundance data were first analysed using detrended correspondence analysis (DCA) 

with detrending by segments to identify whether, theoretically, an environmental gradient 

existed in the species abundance data set and to identify whether the beetle community 

demonstrated a strongly unimodal or linear response to that gradient. Subsequently the data 

were analysed with a canonical correspondence analysis (CCA) relating the species 

abundance data to measured environmental variables. Scaling was focused on inter-species 

distances with bi-plot scaling being applied. The significance of these environmental factors 

in structuring the carabid communities was determined with a forward selection procedure 

using Monte-Carlo tests (999 permutations). Environmental variables not of primary interest 

within the objectives of this study (e.g. altitude of sampling point) were subsequently fitted as 

covariates, thus the final model is a partial CCA controlling for these effects and constraining 

the Monte-Carlo permutations to operate within blocks defined by the LUU. Inflation factors 

in the CCA model were inspected to check for colinearity between significant environmental 

variables.

33  Results

3.3.1 Patterns in carabid diversity

A total of 17,494 individuals from 51 species were collected in 2001, and 20,935 individuals 

from 54 species in 2002. The five most numerous species in 2001 were Nebria brevicollis 

Fabricius (3,059, 17% of total), Pterostichus madidus Fabricius (2,993, 17 %), Bembidion 

tetracolum Say (1,334, 8%), Anchomenus dorsalis Pontopiddan (1,164, 7%) and Calathus 

micropterus Duftscmid (1,030, 6%), representing 55% of the total fauna collected. The most 

numerous species in 2002 were N. brevicollis (5,531, 26%), P. madidus (3,192, 15%), 

Agonum muellerii Herbst (1,537, 7%), B. tetracolum (1,168, 6%) and Pterostichus niger 

Schaller (964,5%), representing 59 % of the total collected (Appendix I).

In both years of study an increase in species richness was recorded as the proportion of forest 

declined, and open, agricultural habitat increased along the gradient from LUU1 to LUU6. In 

2001, the highest species richness was found at LUU6, the arable site, while in 2002 the 

greatest number of species was collected from LUU5, the grassland dominated site (Figure 3- 

2a). The lowest value of species richness in both years was recorded at LUU1, the semi­

natural forest site (Figure 3-2a). The average abundance of Carabidae was greatest in the most 

disturbed and open landscapes of LUU5 and LUU6 in both years o f the study (Figure 3-2b).
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When the species abundance data were ranked, differences in the dominance structure of the 

carabid communities between LUUs were observed (Figure 3-3). The forest landscapes 

(LUU1 and 2) had carabid communities dominated by a few abundant species and supported 

more rare species (relative to overall species richness) than the other landscapes. The mosaic 

and agricultural landscapes (LUU3-6) supported more even assemblages with more species of 

equivalent abundance. In general, the less forested the landscape the more species and greater 

abundance it could support.

Figure 3-2. Figure 3-2a.Mean species richness (±  SE) of Carabidae; Figure 3-2b. Mean 
abundance ( ± SE) of Carabidae per land-use unit (LUU)
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At the LUU scale (1 km2 x 6) the proportion of forest in the landscape was a good, inverse 

predictor of both the average carabid abundance (Fi, 4 = 22.32, P 8  0.009, Adj. r2 8  0.81) and 

total species richness (Fi, 4s  16.89, P  8 0.014, Adj. r2 8  0.76). Soil pH also showed a notable, 

but marginally non-significant, inverse relationship with carabid abundance (Fi, 4 * 7.31, P  8 

0.053, Adj. r2 8 0.56) and a highly significant relationship with species richness (Fi,4 8 16.06, 

P  8 0.016, Adj. r2 8 0.75). The depth of the organic horizon in the soil profile predicted 

species richness well (Fi, 4 * 8.92, P  8 0.040, Adj. r2 8  0.61) but not abundance (Fi, 4 * 5.14 

P= 0.085, Adj. r2 8  0.45). Plant community species richness predicted neither carabid 

abundance (Fi, 4 = 0.03 P 8  0.866, Adj. i2 8 -0.24) nor carabid species richness (Fj, 4 =  1.69 P 

8 0.263, Adj. r2 8  0.12).

When examining comparable plots from LUU4 and 6 (i.e. those under grassland management 

n 8 26, LUU4 n 8 9, LUU5 n 8 12, LUU6 n 8 5), certain patterns in diversity and 

composition became evident. Firstly, the overall mean abundance of Carabidae recorded from 

grassland plots was lower in the mosaic landscape (LUU4 8 145.1, SE 8 35.9) compared to 

both intensively farmed landscapes (LUU 5 8 253.8, SE 8 41.1; LUU6 8 460.6, SE 8 94.6). A 

similar, albeit less pronounced, difference was seen in the mean species richness of these 

same samples (LUU4 8 13.1, SE 8 1.0; LUU5 8 15.8, SE 8 0.6; LUU6 8 16.0, SE 8 1.9).

Secondly, patterns in abundance of individual species occurring in grassland samples from all 

three agricultural LUUs, showed a trend for greater numbers towards the arable end of the 

land-use gradient. Four Amara species (A.eurynota Panzer, A. apricaria Paykull, A. aulica 

Panzer and A. fiilva  Mtiller) that may have been expected to be present in the agricultural 

areas of LUU4 were absent from samples from this landscape (Appendix I), all of these 

Amara species are phytophagous (and/or granivorous) and grassland specialists (Lindroth 

1974, 1985,1986, Anon 2002b). Only one species in the genus Amara (A. plebja Gyllenhal) 

was collected from the grassland sampling points of all three LUUs with agricultural 

grassland (LUU4, 5 and 6) but it was still far more abundant in LUU5 and 6 (Appendix I, 

Figure 3-4). The paucity of Amara in LUU4 samples was therefore surprising considering this 

genus is commonly found in grass and arable landscapes, being generally xerophilous and 

phyto- or granivorous in habit (Lindroth 1974, 1985, 1986, Anon 2002b).

Other open habitat species not collected from LUU4 but present in LUU5 and 6 include: 

Synuchus vivalis Illiger, Harpalus affinis Schrank, Trechus micros Herbst, Leistus fuhibarbis 

Dejean and three species of Bembidion (fi. tetracolum Say, B. bruxellense Wesmael and B.
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guttula Fabricius) (Appendix I). The majority of species that were collected from grassland 

areas of both LUU4 and LUU6 were relatively more abundant in the situation where a greater 

proportion of the landscape was under intensive rotational management (LUU6) (Figure 3-4). 

Anchomenus dorsalis, Calathus melanocephalus L  sensu strictu, Clivina fossor L. and 

Pterostichus melanarius Illiger, all common species in open grassland habitats (Lindroth 

1974, 1985, 1986, Anon 2002b) were far more abundant in LUU6 (Figure 3-4). Nebria 

brevicollis, a species commonly considered to be eurytopic (Lindroth 1974, 1985, 1986, Anon 

2002b), showed the strongest preference toward the arable end o f the gradient (Figure 3-4).

Figure 3-3. Species rank-abundance plot for the six LUUs from 2001 (illustrative example)
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Figure 3-4. Relative difference in abundance between the Carabidae recorded from grassland 
sampling points in LUU4 (n “  9) and LUU6 (n *= 5). Ranked differential abundance of all species 
recorded in one or both of the LUUs. Negative values indicate a species was recorded in greater 
abundance in the mosaic landscape (LUU4) while positive values indicate a trend in abundance 
towards the arable-dominated landscape (LUU6). See Appendix I for full details of species names.
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Rank Spadaa Valua

1. C. fusdpas -19.43
2. P. dgrita agg. -3.63
3. P. atronjfus -2.28
4. P. atanuua -2.03
S. A  aanaa •0.88
6. A  famUaris -0.50
7. C. vMacaus -0.50
a L tanninatus -0.36
9. C. mtundicotis -0.35
10. P. aaakniMa -0.25
11. A  lunicoHia -0.25
12. C. probfamabcus -0.25
13 N. mfaacans. -0.25
14. r . mMvKtUB -0.25
15. A. bffmns -0.13
16. C. namoralis -0.13
17. C. caraboidas -0.13
18. A. futva 0.00
19. H. afllnis 0.00
20. L. fuMbarbia 0.20
21. P. obtongopunctati 0.20
22. B. mannarhaimi 0.23
23. T. micros 0.40
24. S. vivaHs 0.60
25. B. lamproa 1.08
26. N. bigutatua 2.30
27. P.nigar 3.68
28. T. quadriaatriatus 4.15
29. B. guttula 4.80
30. L. piHcomia 5.48
31. A. phbja 6.93
32. A. muallari 10.15
33. C. foaaor 11.13
34. C. malanocaphaiu: 15.45
35. P. madidua 15.80
36. B. tatracoium 23.40
37. A. dortaMt 51.53
38. P. malanarius 72.73
39. N. bravlcollia 103.60

3.3.2 Carabid community structure

Detrended Correspondence Analysis (DCA) revealed that the carabid communities were 

showing a strongly unimodal relationship to the environmental gradient (axis 1: 2001 

eigenvalue * 0.76, gradient length = 4.57 SD; 2002 eigenvalue = 0.68, gradient length * 4.14 

SD). The LUUs can be discriminated by their faunal composition: the forested sites (LUU1 

and 2) are clearly separated from the open habitats (LUU5 and 6) in the ordination plot, and 

the more heterogeneous mosaic landscapes (LUU3 and 4) intermediate between the two 

extremes of the gradient (Figure 3-5). In addition, the ordination plot clearly shows that the 

carabid communities in LUU1 and LUU2 are quite distinct from each other despite these 

environments being dominated by the similar plant communities (Figure 3-5, Table 3-1).
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Figure 3-5. Detrended correspondence analysis (DCA) of Carabidae along a land-use gradient from 
2001 (illustrative example). Axis 1 eigenvalue = 0.761 Axis 2 eigenvalue = 0.12. Length of gradient 
along first axes = 4.572.
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CCA analysis showed that the structure of the carabid community was significantly correlated 

with environmental variables in both years (2001 sum of canonical eigenvalues of first axis = 

0.171, Monte Carlo global permutation test P = 0.001; 2002 sum of canonical eigenvalues of 

first axis = 0.127, Monte Carlo global permutation test P = 0.005). LUU was a significant 

influence on the species data in the full, unconstrained model accounting for 7.5% (eigenvalue 

= 0.10, P = 0.001) and 6.4% (eigenvalue = 0.07, P = 0.001) of the inertia in 2001 and 2002, 

respectively. Sampling point altitude accounted for a significant amount of the variation in 

carabid community structure within each LUU explaining 8.3 % (eigenvalue = 0.11, P = 

0.001) and 8.2% (eigenvalue = 0.09, P= 0.001) of the inertia in 2001 and 2002, respectively. 

These two significant environmental variables were subsequently fitted as covariates to 

account for this variation, and the model was rerun as a partial CCA constrained by LUU. 

Overall, the partial CCA model accounted for 30.0 % and 19.8% of the variation in the 

species data in 2001 in 2002, respectively (Table 3-3, Figure 3-6). The land-use gradient 

(LUU 1-6), fitted as a categorical covariable in this partial model, explained a further 36.6 % 

and 34.8 % of the total inertia in the species data in 2001 and 2002, respectively (Table 3-3).
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Table 3-3. Partial canonical correspondence analysis (pCCA) of Carabidae along the land-use gradient showing eigenvalues and intra-set species environment 
correlation coefficients for the first three environmental axes. Correlation coefficients for the significant environmental variables are also shown.

Axes 1 2 3 Total inertia

Y ear 2001 2002 2001 2002 2001 2002 2001 2002
Eigenvalue 0.169 0.108 0.083 0.068 0.056 0.026
Species-environment correlation 0.863 0.779 0.786 0.727 0.738 0.558
Sum of all unconstrained eigenvalues 1.362 1.219
Sum of all canonical eigenvalues 0.411 0.242
Total inertia 2.149 1.893

Intra-set correlation coefficients
Canopy density -0.8748 -0.9497 0.0365 0.0372 0.2832 0.1772
Moder soil -0.1289 - 0.2005 - 0.5806 -
Mull soil 0.6905 0.7270 0.2974 0.2852 -0.4643 -0.3884
Depth of organic horizon 0.2532 - -0.3371 - 0.5054 -
Soil pH 0.6136 - -0.0527 - -0.0910 -
Soil moisture 0.0762 0.2664 0.3202 0.1953 -0.1964 0.4011
Plant species richness 0.1700 0.1614 0.8355 0.8979 0.2967 0.2585
Birch spp. cover -0.1810 -0.3055 0.7400 0.7503 0.1022 -0.4035
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After controlling for the overall effect of the land-use gradient it was possible to identify a 

number of environmental parameters that differentiate the carabid communities along the 

gradient. In 2001, there were eight environmental variables that significantly explained the 

inertia in the species abundance data, whereas in 2002 there were only five, the latter being 

significant in both years (Table 3-4).

Table 3-4. Significant environmental parameters fitted step-wise by forward selection in a partial 
CCA model. Eigenvalues, and F and P values from Monte-Carlo global permutation tests (999 
permutations constrained by LUU as a blocking factor).

Environmental
param eter

Eigenvalue F-values P

2001 2002 2001 2002 2001 2002
Canopy density 0.14 0.10 10.09 7.97 0.001 0.001
Moder soil 0.03 - 2.38 - 0.01 -
Mull soil 0.03 0.02 2.69 2.20 0.006 0.009
Depth of organic 
horizon

0.05 - 3.83 - 0.002 -

Soil pH 0.03 - 2.22 - 0.01 -
Soil moisture 0.02 0.02 2.07 1.64 0.003 0.026
Plant species richness 0.07 0.06 5.43 5.12 0.001 0.001
Birch spp. cover 0.05 0.04 3.79 3.26 0.01 0.01

The high acidity o f the soil, possibly a consequence of the accumulation of a deep litter and 

organic layer in the soil profile and granitic bedrock, was structuring the carabid community 

in LUU1 (Figure 3-6a). Furthermore, the strong, negative relationship of the beetle 

community in LUU1 to canopy density reflects the open, structure of Caledonian pinewood 

and the nature of the adapted fauna (Figure 3-6). This contrasts to the situation in LUU2 

where, despite sharing a similar plant community in compositional terms, the structural 

differences and implicitly more frequently disturbed environment lead to a different carabid 

assemblage being found in this landscape - a fauna indicative of dense, closed canopy forest 

(Figure 3-6).
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Figure 3-6. Partial canonical correspondence analysis (pCCA) sample-environment biplot of the 
Carabidae a) 2001 and b) 2002. Continuous environmental variables are represented by solid line 
vectors, nominal environmental variables by large, open circles. Environmental variable abbreviations: 
Plant = plant species richness, Birch = basal area (m2) of Betula spp., Canopy = canopy density, pH= 
soil pH, Moisture = soil moisture, O-horizon = depth (mm) of the organic horizon, Mull or Moder = 
soil humus class. Significance of environmental variables determined by Monte-Carlo global 
permutation tests (constrained by LUU) * <0.05, **<0.01
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Both agriculturally dominated sites (LUU5 and 6) possess a fauna that is associated with mull 

soils and, while still separated from each other in the tri-plot, cluster closer together than the 

other LUUs in the ordination. This shows a clear separation between the forested and open 

agriculturally dominated sites (Figures 3-5 and 3-6). The mosaic sites (LUU3 and 4) show a 

wider scatter in the ordination plot reflecting the overall heterogeneity of the landscape in 

those squares. There is a greater degree of sample similarity with points in other LUUs 

compared to sampling points within these mosaic squares, thus samples taken from the same 

land-use but different site are compositionally more similar than samples from the same site 

but different land-use (Figures 3-5 and 3-6). A large number, however, of the samples from 

LUU3 and 4 are associated with the greater floristic richness of these squares and the presence 

of fragments of birch woodland (Figure 3-6) - a direct consequence of the accumulation of 

habitats and/or niches within these fragmented and heterogenous landscapes.

3.4 Discussion

3.4.1 Patterns in carabid diversity

Carabid species richness and abundance was not, as predicted by theory, greatest at 

intermediate levels of disturbance (i.e. in the mosaic landscape). The highest species richness 

and abundance were found in the homogeneous and more frequently disturbed agricultural 

landscapes (LUU5 and 6). The lack of a peak in diversity at LUU4 is surprising as 48.2 % o f 

the landscape is composed of open habitats superficially similar to those in LUU5 and 6. It 

would have been reasonable to expect that the addition of these habitats to the landscape and 

retention of forested habitats would serve to enhance species diversity at the 1km spatial 

scale (Judas et al. 2002). Instead, a number of species found in LUU5 and 6 were not 

collected from LUU4 despite the sampling of areas of habitat that, based on their known 

ecology, appeared suitable. For example, four species of Amara, together with Harpalus 

qffinis and Synuchus vivalis, were all absent from LUU4 (Figure 3-4). This was despite their 

phytophaghous (or granivorous) nature, adaptation to the open environment and general 

commonness (the exception being Amara julva  which is listed as declining) in agricultural 

land (Lindroth 1974, 1985, Hyman and Parsons 1992). There were further absentees 

including, for example, Bembidion tetracolum, a generalist predator preferring open country 

yet able to live in light forest (Figure 3-4).
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These absentee species were collected from the arable fields (barley) or intensively managed 

grassland (silage and grazing) in LUUS and 6. No sampling point in LUU4 was located either 

in or adjacent to arable fields, firstly because access was denied to the one arable sampling 

point in LUU4, and secondly, reflecting the relatively low proportion of arable habitat in that 

landscape (Figure 3-1, Tables 3-1 and 3-2). In addition, 86% of samples from LUU5 and 6 

containing these missing species were obtained from sampling points at or within 10m of 

edge features such as dry-stone walls, field margins, hedgerows and drainage ditches, or 

combinations thereof. These features are important to carabid beetles and other invertebrates 

(Petit & Usher 1998; Holland & Fahrig 2000; Meek et al. 2002; de la Pena et al. 2003) with 

implications for biocontrol -  these landscape features are likely to be important as over­

wintering sites and refuges enabling predator (and herbivore) populations in agricultural 

landscapes to persist and re-colonise fields after periodic disturbances (Ostman et al. 2001; 

Weibull et al. 2003). These features are, however, also present in the mosaic LUU4 (77 % of 

grassland sampling points were within 10m of edge features) so are not entirely convincing 

hypotheses for die absence of these species from that location.

Open-habitat species that did occur in LUU4 were, in general, less abundant in that location 

than in the more intensively managed site at LUU6 (Figure 3-4). Some species (Nebria 

brevicollis, Anchomenus dorsalis and Pterostichus melanarius) demonstrated a strong 

gradient in their relative abundance, occurring more frequently in grassland sampling points 

within the more intensive landscape (Figure 3-4). Only a few species showed trends towards 

increasing abundance in the mosaic landscape (Figure 3-4), o f these two - Pterostichus 

strenuus and P. nigrita agg. - are commonly associated with woodland and may be considered 

tourists from nearby forest stands. The third, Calathus fuscipes, showing the strongest 

preference for LUU4 over LUU6 (Figure 3-4), is adapted to open habitat but with quite 

specific edaphic requirements (sandy / clay substrate rich in organic matter (Lindroth 1974, 

1985,1986)), better met by LUU4 (AJ.Vanbergenpers. obs.). Overall, most species showed 

a slight to moderate directional gradient in their abundance towards the more intensively 

managed situation (Figure 3-4). A number of specialised collembola predators e.g. Trechus 

quadriastriatus appeared to favour LUU6 and it is conceivable that the variation in the 

abundance of these species may in some part be explained by a tendency of collembola to be 

more abundant in heavily fertilised agricultural soils (Cole et al. 2002).

These patterns of occurrence lead to hypotheses requiring further testing and caveats 

regarding these data: (i) Species absences may merely reflect the existence of a local fauna at
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LUU4 (Kinnunen et al. 2001), difficult to refute in the absence of a replicate mosaic site; (ii) 

The spatial structure of the mosaic of land-use may be impacting negatively on certain species 

or the whole community of open habitat species (Judas et al. 2002) either through a high level 

of insularity between comparable habitat types (Kinnunen & Tiainen 1999) or a lower number 

of beneficial habitats in the mosaic e.g. arable fields (Petit & Usher 1998; de la Pena et al. 

2003); (iii) Small scale heterogeneity (at the sampling plot level) may be responsible for the 

observed patterns. It is obvious that at the 1km2 scale the landscapes LUUS and 6 are more 

homogenous than LUU4 (i.e. less patches of woodland; Figure 3-1, Table 3-2), but it may be 

that the more frequent disturbance arising from rotational crop management at LUU5 and 

LUU6 can produce spatio-temporal heterogeneity (e.g. in resource availability or edge effects 

arising from the juxtaposition of field margins and crop habitats) at fine scales (e.g. individual 

fields). Such fine-scale heterogeneity could have the effect of increasing beetle species 

richness and abundance, and it is possible that it is at this fine scale and not at the landscape 

scale that carabid beetles are most sensitive to disturbance (Niemela et al. 1996; Dennis et al. 

1997; Dennis et al. 2002; Koivula et al. 2002; Brose 2003); and (iv) The lack of certain open- 

habitat species from LUU4 may be an artefact of the sampling design: the regular grid may, 

by chance, have failed to sample key carabid habitats (e.g. agricultural fields and field 

margins), so accounting for their absence from the samples but not, in reality, from the 

landscape.

3.4.2 Carabid community structure

DCA analysis showed that there were considerable differences between carabid assemblages 

along the land-use gradient. The LUU was a significant determinant of carabid community 

structure accounting for over a third of the inertia in the beetle community data when fitted as 

a covariable in the CCA. In the absence of a replicate gradient, this pattern should be 

interpreted with caution, but by accounting for this variation landscape attributes or features 

that are significant in structuring these beetle assemblages could be identified. Global 

permutation tests identified that the density of tree canopy, a mull soil profile and the plant 

species richness (Table 3-4) were the most important factors that affect these carabid 

assemblages. Soil pH and the coverage of birch (Betula spp) were also significant features of 

these landscapes (Table 3-4). The Caledonian pinewood fauna at LUU1 was primarily 

associated with low pH and a deep organic horizon in the soil profile together with low levels 

of canopy closure, indicating that these carabid communities require an undisturbed 

environment, probably with certain habitat features (e.g. deadwood). Indeed, this habitat
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supports few abundant species and many more uncommon species compared with the other 

environments in this study (Figure 3-3). Cicindela campestris, for example, while not 

threatened, is very locally distributed in the landscape gradient studied here. Furthermore, this 

pinewood habitat supported the greatest abundance of Pterostichus oblongopunctatus, a 

notable species of restricted distribution in the UK (recorded from < 100, 10 km2 in Britain) 

(Hyman & Parsons 1992). This species occurred at much lower numbers in the forested areas 

of the other landscapes, and there was a notable drop in the abundance of this species between 

LUU2 and 3, where the forest is more fragmented (Appendix I).

The carabid fauna of the Scots pine plantation (LUU2) was clearly separated in the ordination 

space from that of Caledonian pinewood (LUU1) (Figures 3-5 and 3-6) - an unexpected result 

given the vastly greater area of land under plantation and highlighting further the conservation 

value of Caledonian pinewood. While some species were shared between the Caledonian and 

plantation pinewoods (e.g. Cychus caraboides) others were found only in the plantations (e.g. 

Carabus problematicus). Managed forests such as these, therefore, have an intrinsic 

biodiversity value of their own as well as the potential to be managed toward a semi-natural 

scenario where they may support a more typical old-growth fauna (Humphrey et al. 1999; 

Jukes et a l 2001; Koivula et al. 2002).

The agricultural sites (LUU5 and 6), although separated in the ordination, were much more 

similar in beetle community composition to one another than to forest sites implying that 

these agricultural landscapes support a more homogenous fauna with few rare and many 

common, abundant species. Carabid communities in these agricultural locations are 

associated with mull soils, indicative of the rapidly fluctuating environment of a rotational 

agricultural landscape.

The mosaic sites (LUU 3 and 4) show greater heterogeneity in the beetle community 

composition, containing elements of the assemblages from the structurally more simple 

landscapes (e.g. samples from plantation stand in LUU3 contain very similar beetle 

assemblages to samples from the plantation site: LUU2). Therefore, for some samples in 

these mosaic landscapes there appears to be more concordance in species composition 

between than within sites. Over and above these similarities between management units the 

amount of birch woodland and increasing plant species richness in the mosaic landscapes is 

significantly associated with the beetle assemblages therein. Birches, the dominant deciduous 

tree in N.E. Scotland and common features of agricultural landscapes, undoubtably act as
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reserves of biodiversity (Kennedy and Southwood 1984, Woodcock et a l 2003) but 

increasing intensification of use both by grazing and logging (Woodcock et a l 2003) may 

have consequences for insect biodiversity in these woodland fragments.

3.4.3 Conservation relevance

Initially, it may be tempting to conclude from our data that the replacement of forest systems 

with intensive rotational agricultural systems would be beneficial for carabid biodiversity. 

This, however, would be an oversimplification as it fails to consider that biodiversity 

conservation is not only a question of maximising the number of species but also the 

composition of the community is important. For example, in agricultural landscapes many 

larger bodied species (e.g. Carabus spp. see Appendix I) are completely absent or much less 

common. These species are among the longest lived among the Carabidae, with a 2-year 

generation time, slow growing soil-dwelling larvae and apterous adults, and consequently are 

more vulnerable to the rapid and drastic changes that occur in these intensively managed sites 

(Cole et a l 2002). One other explanation may be changes in food resources; it has been 

suggested that Carabus and other larger carabid species prefer larger prey (e.g. Homoptera: 

Cicadellidae) that tend to be found in the more structurally diverse vegetation of unimproved 

grasslands (Lang et a l 1999; Cole et a l 2002). The retention of areas of low intensity 

management - heather moor, semi-natural grassland, planted and semi-natural woodlands - on 

farms would possibly mitigate these negative effects by providing a refuge for Carabus and 

other larger bodied species of conservation importance (Petit & Usher 1998; Koivula et al 

2002; de la Pena et a l 2003).

Our data indeed imply that woodland and forest specialists such as Carabus spp., Pterostichus 

oblongopunctatus and Cychrus caraboides are able to persist in agricultural landscapes 

provided sufficient areas of plantation and/or semi-natural fragments are in juxtaposition to 

the agricultural land (e.g. LUU4, see Appendix I) (Koivula et a l 2002; de la Pena et a l 2003). 

The size, degree of fragmentation and intensity of management of these woodland fragments 

is, however, likely to be important to certain species. For example, P. oblongopunctatus, a 

species with restricted national distribution (Hyman & Parsons 1992), generally recorded 

from broad-leaf semi natural woods (in this study the majority of specimens were recorded 

from semi-natural or managed pinewood habitats), was most abundant in LUU1 -  possibly 

the preponderance of dead wood, continuous habitat, and lack of disturbance over time 

making Caledonian pinewood the favoured habitat.
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3.5 Conclusions

Our data did not support the hypothesis that carabid diversity would follow the intermediate 

disturbance hypothesis -  diversity was elevated at the more frequently disturbed agricultural 

sites. A possible explanation for this pattern was these agricultural habitats support ruderal 

carabid species (e.g. granivorous Amara) that respond positively to ephemeral, but abundant 

crops, and possibly due to fine-scale heterogeneity not measured in this study. Ordination 

analyses supported our second prediction that different landscape configurations would 

support different carabid communities and thus carabid beetles do reliably signal land-use 

type. Furthermore, the mosaic landscapes in this study supported the least clearly defined 

carabid community. Species assemblages found in these more heterogeneous landscapes 

were more similar to assemblages from different sites but under the same land-use -  

suggesting, at the landscape scale, land-use type and not heterogeneity may be the more 

important influence.

Caution should be exercised if attempting to generalise from the response to anthropogenic 

perturbation of a single taxon to the response of wider biodiversity as species are likely to 

respond differently to any perturbation; a consequence of the spatial scale at which the species 

(or higher taxon) interacts with the perturbation. Staphylinid beetles, for example, would 

probably be distributed differently along the land-use gradient - as they are predominantly 

saproxylic in their habitat association -  but would be sensitive to disturbance at similar scales 

to carabids (< 1 ha -  1 km2), while resident birds may respond to habitat fragmentation at 

much greater scales, depending on species (< 1 km2 -  10 km2). The lack of stratification in 

our sampling design meant that certain microhabitats, landscape features and possibly species 

were not sampled; consequently our results demand appropriate caution. Nevertheless while 

small-scale heterogeneity, certainly important to the diversity of carabid beetle assemblages 

(Niemela et a l 1996; Judas et a l 2002), was not explicitly accounted for in our sampling 

design, our study adds to increasing evidence that landscape-scale patterns in land-use affect 

carabid community structure producing distinct assemblages (Kinnunen et a l 2001; Ostman 

et a l 2001; Judas et a l 2002; Weibull et a l 2003).

51



Chapter 3. Effect of land-use heterogeneity on carabid communities at the landscape scale

Acknowledgements
Thanks to Dr. Ruth Mitchell and Annie-Marie Truscott (CEH) for supplying the plant data and to the University 
of Freiburg (FELIS) for supplying the remote sensing data. Thanks also to David Elston, Dr. Steve Palmer, Dr. 
Johan Kotze for discussions and advice on the statistical analysis, and to Dr. Rosie Hails and Dr. Hefin Jones for 
valuable comments on earlier drafts. Thanks to Carolyn Dawson, Tina Hall, Liz Wickens and Chantal Beaudoin 
for help in the field and laboratory. Finally thanks to the landowners for allowing this research to be carried out 
on their property: Glen Tanar Estate, Finzean Estate partnership, Macroberts Trust Estate and the Forestry 
Commission. Ibis research was financially supported by the EU Framework 5 Environment Programme 
(contract no. EVK2-CT-1999-00041)

52



Chapter 4. Soil fauna diversity along a land-use intensification gradient

CHAPTER 4

L a n d sca pe  stru ctu re , pla n t  diversity  a n d  reso u r ces  stru ctu re  soil

FAUNA DIVERSITY ALONG A LAND-USE INTENSIFICATION GRADIENT b

Adam J.Vanbergen1,2, Allan D.Watt1, Ruth Mitchell1, Anne-Marie Truscott1, Stephen C. F. 
Palmer1, Eva Ivits3, P. Eggleton4, T. Hefm Jones2 and Jose Paulo Sousa5

1 Centre for Ecology and Hydrology (Banchory), Hill of Brathens, Banchory, Aberdeenshire, AB31 4BW, UK;
2 Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3TL, UK;3 Department of Remote Sensing 
and Land Information Systems (FELIS), University of Freiburg, Germany; 4 Soil Biodiversity Group, Dept, of 
Entomology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK;5 Institute of Environment 
and Life Sciences, University of Coimbra, Portugal

Large-scale patterns in land-use have consequences fo r species turnover and persistence. 

Changes in habitat cover and heterogeneity, plant diversity and resource (litter) quantity 

along a landscape scale, land-use intensification gradient are hypothesised to correlate to 

variation in soil animal diversity (collembola, lumbricid worms). The proportion o f forest 

along the gradient showed a significant hump-shaped relationship with collembola and 

lumbricid species richness, and lumbricid abundance, peaking where landscapes were a 

forest-agricultural mosaic. Collembola abundance decreased while lumbricid numbers 

increased in spatially patchy landscapes, and a diversity o f habitats increased lumbricid 

species richness. Above-ground diversity was correlated with below-ground diversity: 

collembola species richness was positively correlated with tree species richness, while 

lumbricid species richness and abundance was related to the diversity o f forbs. Collembola 

abundance was positively and lumbricid abundance negatively correlated to the amount o f 

plant litter on the soil surface and to the acidity o f the soil. Anthropogenic landscape 

patterns in the extent and heterogeneity o f habitats, the diversity o f plant functional groups 

and variation in litter resources and soil acidity combine to structure soil animal diversity 

and facilitate a shift in dominance between soil micro- and macrofauna. Heterogeneity in 

land-use intensity at large spatial scales generates patterns in diversity among species that 

operate at much finer spatial scales.

b Submitted to Oecologia May 2006
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4.1 Introduction

Land-use intensification by altering the extent (Fahrig 1997; Didham et a l 1998a; Kruess & 

Tschamtke 2000; StefFan-Dewenter 2003), spatial configuration (Kruess & Tschamtke 1994; 

Kareiva & Wennergren 1995; Golden & Crist 1999) and context (StefFan-Dewenter et a l 

2002; Kruess 2003; Thies et a l 2003) of habitat patches in anthropogenic landscapes can 

affect biodiversity. Declines in species diversity are associated with forest fragmentation 

(Didham et a l 1998a; Pimm & Raven 2000; Andresen 2003), conversion to agriculture (Stork 

et a l 2003; Dunn 2004) and intensification of human land-use (Lawton et a l 1998; Jones et 

a l 2003; Eggleton et a l 2005). Such large-scale anthropogenic disturbances can create 

patchy landscapes providing refuges and enabling species persistence via regular dispersal 

from more favourable patches (Hanski 1998; Petit & Usher 1998; Holland & Fahrig 2000), or 

alter species diversity by driving assemblage collapse and species turnover (Didham et a l 

1998b; Jones et a l 2003; Eggleton et a l 2005; Vanbergen et a l 2005).

Soil biota recycle nutrients and energy vital for primary production, in this interaction with 

primary producers, soil decomposers underpin the functioning of terrestrial ecosystems 

(Bardgett & Cook 1998; Bardgett 2002; Wardle 2002). To what extent ecosystem processes 

and function are dependent on biodiversity (Loreau et a l 2001; Tilman et a l 2001; Hooper et 

a l 2005) and above-ground diversity influences soils and the diversity and abundance of 

below-ground species (Hedlund et a l 2003; Wardle et a l 2003; Wardle et a l 2004; De Deyn 

& Van der Putten 2005) remain unanswered questions.

Variation in human land-use can govern the presence and distribution of habitats, the identity 

of dominant plant species and plant community diversity. Plant species identity and 

community diversity have direct influence on soil animals via the amount and composition of 

plant litter (Ponge et a l 1993; Hansen & Coleman 1998; Hasegawa 2002; Armbrecht et a l 

2004; De Deyn et a l 2004; Salamon et a l 2006). Variation in plant diversity and abundance 

may therefore influence soil animal diversity and abundance via the resource underpinning 

the soil decomposer system. While the effect of variation in the diversity of plant 

communities on above-ground arthropod diversity is known (Siemann et al. 1998; Koricheva 

et a l 2000), and the linkages between above- and below-ground systems in nutrient and 

energy flow are undoubted (Wardle et a l 2004), significant correlations between plant and 

soil animal diversity are uncommon or idiosyncratic, and often regarded as weak (Hooper et 

a l 2000; Wardle et a l 2003; Armbrecht et a l 2004).
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In this study we examine the diversity (species richness and abundance) of soil micro- and 

macrofauna along a large-scale, land-use intensification gradient ranging from forest to 

agricultural landscapes. The target soil taxa (collembola and lumbricid worms) were chosen 

because they are important components of the soil decomposer community and are known to 

respond, often differently, to the same environmental gradients in, for example, pH, moisture, 

organic matter and land-use (Ponge 1993; Hasegawa 2002; Wardle 2002; Sousa et al. 2004; 

Joschko et a l 2006; Salamon et al. 2006). We hypothesised that the diversity of these soil 

animal taxa would be correlated to changes in habitat cover and heterogeneity, above-ground 

diversity and resource (litter) quantity along the landscape scale gradient. We predicted that 

soil collembola diversity would be highest in forested areas declining monotonically as the 

landscapes became more agricultural, while lumbricid diversity would show the opposite 

pattern. Furthermore, we predicted that the diversity of these soil fauna would be related to 

above-ground plant diversity, but that collembola and lumbricids would correlate with 

different plant functional groups. Finally, as forest cover is reduced and agricultural land-use 

increases the decrease in the litter resource and rise in soil pH will be correlated with a decline 

in collembola numbers, and concomitant rise in lumbricid abundance.

4.2 Methods

4.2.1 Land-use intensification gradient

Six land-use units (LUU) representing a gradient of land-use intensification were established 

in Aberdeenshire, Scotland, each LUU was located no more than 10 km away from the 

neighbouring sites (Table 4-1). Each LUU was represented by a 1 km by 1 km landscape 

square visually selected according to an ideal, pre-defined set of criteria corresponding to the 

predominant land-use within each square: LUU1 - old-growth forest (100 %); LUU2 - 

managed forest (100 %); LUU3 - forest-dominated (>50 %) mosaic; LUU4 - Mixed-use 

mosaic (50 % forest-50 % open, agricultural habitats); LUU5 -  grassland dominated (> 50 

%); and LUU6 - amble dominated (>50 %). Within each LUU we sampled on a systematic 

grid of 16 sampling points, with each sampling point at least 200m from neighbouring points 

and the edge of the 1 km square, giving a distribution of points within the realised habitat 

proportions of each LUU (Table 4-1).
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4.2.2 Soil fauna sampling

Collembola were sampled with a soil core (5cm diameter x 5cm depth) at each sampling point 

during the period 18 April to 23 May 2002. The soil samples were transferred to the 

laboratory where collembola were extracted over 14 days from the soil cores using Tullgren 

funnels (Hopkin 2000). The specimens were individually slide-mounted and identified to 

species at the Centre for Ecology and Hydrology (CEH) using standard keys (Fjellberg 1998; 

Hopkin 2000). At each sampling point (May 2002) a steel frame quadrat (25 x 25 xl5cm 

deep) was forced into the ground, the litter and soil were then excavated and hand-sorted on 

trays for lumbricids. When soil had been excavated down to the base of the quadrat (15cm 

depth) 1.5 L of a 0.02% formalin solution was applied to the exposed soil surface and worms 

emerging over a 10 min period collected. Lumbricid worms were identified to species at The 

Natural History Museum, London, UK.

4.2.3 Plant sampling

Information on the composition and structure of the plant community was collected at each of 

the 16 sampling points within each LUU from 14 May -  12 July 2001. Plant sampling 

coincided with the point in the growing season of maximum plant species density. A 

rectangular plot of 100 m2 (20m x 5m) was laid down around the centre of the sampling point. 

This rectangular plot was composed of two sets of nested sub-plots of 1, 5,12.5, 25 and 50m2 

within which identity and number of plant species, and the percentage cover of litter were 

measured. The cumulative total number of vascular plant species sampled within the 100m2 

and the species richness of plant functional groups (trees, shrubs, forbs, graminoids) was 

derived from this dataset.
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Table 4-1. Composition and structure of the land-use gradient

f u iji Latitude- 
Longitude % Cover2 HR3" NT3" Soil4 Litter5 P la n ts6

Arable Grassland Forest n n Humus pH O-
horizon % All Tree Shrub Forb Graminoid

57.019057N 
02.859627E 
57.047952N 
02.752446E 
57.015483N 
02.690494E 
57.068030N 
02.87209IE 
57.030556N 
02.810504E 
57.143960N 
02.810504E

0 0 100(16) 1 1 Podzol mor 3.9 29 36 33 3 8 8 11

0 0 88 (16) 2 2 Mor 3.9 9 50 32 6 5 9 9

0 17(4) 65 (12) 6 7 Mor-Mull 4.3 11 26 104 13 11 51 23

17 31(9) 50 (6) 7 15 Mull 5.5 2 6 115 16 11 59 25

35(3) 58(12) 7(1) 5 11 Mull 6.2 0.1 1 71 9 5 45 12

52(10) 43 (5) 2(1) 6 10 Mull 6.2 0.1 0 70 7 4 44 13

1 Land-use units (LUU): l.old- growth forest 2. plantation forest 3. forest-dominated mosaic 4. mixed-use mosaic 5. pasture-dominated 6. arable-dominated. 
All data (except GIS) were collected from 16 sampling points (LUU4: 15 sampling points due to bar on accessing arable fields) nested within each LUU on a 
lkm2 grid.
2 Percentage cover of the major habitat types, and the distribution of sampling points (number in parentheses) within the major habitat types.
3a HR: habitat richness (number of habitat types) and 3b NP: landscape patchiness (cumulative number of habitat patches, irrespective of type) of each LUU 
(derived from LANDSAT-IRS fused image using ArcView & FRAGSTATS).
4 Soil parameters are average (mean of 16 sampling points) a) pH and b) the depth (cm) of the organic horizon in the soil profile per LUU
5 Percentage cover of plant litter (mean of 16 sampling points) per LUU
6 Sum total plant species richness (5) of all vascular plants and four functional groups for each LUU.
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4.2.4 Landscape metrics

The landscape composition of the LUUs was assessed using remotely sensed land-cover data. 

Two satellite images of the study area were used, a Landsat ETM 7 multispectral image and 

an IRS* 1C panchromatic image, to create a single fused image with a 5m spatial resolution for 

each LUU. A hierarchic classification system based on the CORINE biotopes database 

(European Environment Agency) was defined and used to interpret visually the satellite 

images using GIS (Arcview 3.1). This CORINE classification was used to quantify landscape 

patterns in the LUUs using FRAGSTATS software and to calculate landscape indices for each 

LUU: percentage cover of forest, habitat richness (number of habitats) and landscape 

patchiness (cumulative number of habitat patches irrespective of type).

4.2.5 Soil variables

Soil pH and the depth of the organic (O) horizon (mm) were determined at each sampling 

point using a portable pH probe (Hanna HI 9024 microcomputer, Hanna Instruments Ltd) and 

by excavating a pit to reveal the soil profile, respectively. Three measures of each parameter 

were taken at each sampling point and averaged to give the mean pH and depth of the organic 

horizon at the sampling point.

4.2.6 Data analysis

Plot level soil fauna data were pooled to provide sum values of collembola and lumbricid 

species richness and abundance at the LUU scale. Plant species richness data were summed 

for each LUU and with average cover of plant litter, soil pH, depth of O-horizon and 

landscape metrics (% forest, habitat richness, landscape patchiness) per LUU (Table 1) were 

used as explanatory terms in the statistical analysis. The relationship of soil faunal species 

richness and abundance to the components of the land-use gradient was analysed as count 

data within a generalised linear model (GLM) using a Poisson error structure and a Log-link 

function. An exact test (720 permutations) was used to determine the significance of the 

observed GLM model deviance (SAS Institute 1999). This test gives the exact probability 

that the deviance as small as that obtained by the fitted GLM model could have occurred by 

chance, and therefore the robustness of the correlation. Owing to the intercorrelation between 

the various explanatory terms and the limited degrees of freedom at this spatial scale (n = 6) 

only the univariate effect of each covariate on collembola and lumbricid species richness and 

abundance are reported.
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4.3 Results

Both collembola and plant species richness showed a maximum peak where a mixture of 

forest and open habitats occurred (LUU4), conversely lumbricid worm species richness was 

greatest where pasture was the dominant land-use (LUU5) (Figure 4-la). Collembola 

abundance peaked in the plantation forest site (LUU2) and declined as the proportion of 

agricultural land in the landscape increased (Figure 4-lb). Lumbricid abundance showed the 

opposite trend with greater numbers in the sites (LUU4-6) where a significant amount of the 

land-cover was devoted to agriculture (Figure 4-lb). Collembola abundance was negatively 

correlated with lumbricid abundance (Figure 4-lc, Table 4-2) but there was no significant 

relationship between lumbricid worm and collembola species richness, or between species 

richness and abundance of either soil taxa (Table 4-2).

4.3.1 Landscape metrics

Of the landscape parameters derived from remote sensing (Table 4-1), the proportion of forest 

in the surveyed landscapes showed a quadratic relationship with the species richness of 

collembola and lumbricids, and lumbricid abundance (Figures 4-2a-b, Table 4-2). 

Collembola species richness and lumbricid abundance was greatest where a mix of forested 

and agricultural habitats existed (LUU3 & 4, Figures 4-2a-b, Table 4-1), whereas lumbricid 

species richness was greatest where pasture was a major land-use (LUU5) and was lower 

when the landscape was predominantly forested (LUU 1-3) or was dominated by intensive 

arable farming (LUU6) (Figure 4-2a, Table 4-1). Collembola and lumbricid species richness 

was positively correlated with the habitat richness (although marginally non-significant) of 

the landscape (Table 4-2), species richness was greatest in the mosaic landscape LUU4 where 

a diversity of habitats existed.
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Figure 4-1. (a) Species richness (sum total) of collembola, lumbricid worms and plants, (b) abundance 
(sum total) of collembola and lumbricid worms, and c) relationship between collembola and lumbricid 
abundance along a land-use intensification gradient ranging from old-growth forest (1), plantation 
forest (2), forest dominated mosaic (3), mixed-use mosaic (4), pasture (5) and arable dominated (6) 
sites. Soil fauna and plants were sampled on a grid of 16 sampling points within each site.
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Table 4-2 Results of exact test (720 permutations) of the deviance in soil fauna species richness and abundance explained by generalised linear models (GLM) 
with a Poisson error distribution and Log link function (SAS).

Collembola Lumbricids
Independent variable Species richness Abundance Species richness Abundance

deviance P deviance P deviance P deviance P
Lumbricids
Species richness 3.18 0.14 80.77 0.18 - - - -

Abundance 3.03 0.14 30.99 0.04 - - - -

Coltembola
Species richness - - - - 4.34 0.17 262.8 0.15
Abundance - - - - 4.21 0.14 12435 0.02

Landscape variables1
Forest (%) 0.12 0.006 56.05 0.29 0.56 0.03 10.64 0.02
Habitat richness (n) 1.76 0.06 70.87 0.13 2.56 0.06 53.47 0.008
Landscape patchiness (n) 2.99 1.44 48.5 0.06 1.66 0.02 6437 0.003

Plant variables2
Vascular S 0.83 0.03 85.10 0.19 3.85 0.12 17439 0.05
Tree S 0.43 0.006 119.0 0.47 4.06 0.14 226.19 0.10
Shrub S 3.20 0.19 141.3 0.88 7.11 0.89 403.32 0.68
Forb S 1.55 0.03 62.31 0.12 1.97 0.03 52.99 0.01
Graminoid S 136 0.03 112.9 0.39 5.86 0.37 290.59 0.17
Plant litter (%) 4.84 0.48 10.8 0.007 2.42 0.05 96.69 0.01

Soil variables3
PH 5.24 0.6 37.9 0.04 2.69 0.07 16835 0.04
O-horizon (cm)1 . • ___ Lit TT T IV_ 4.01 0.31 120.13 0.41 1.95 0.03 13835 0.03

2 Sum total species richness (S) of vascular plants and functional groups and mean percentage cover of litter. Data collected from 16 sampling points nested 
within each LUU on a 1km2 grid;
3 Soil pH and the depth of the organic horizon in the soil profile. Data analysed are means of 16 sampling points nested within each LUU on a 1km2 grid
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Collembola and lumbricid worm abundance were both significantly related to the spatial 

patchiness of the landscape with the collembola numbers negatively and worm numbers 

positively correlated to landscape patchiness (Figure 4-2c, Table 4-2). Collembola 

numerically dominate the forest-dominated sites, in particular the plantation forest (LUU2), 

whereas lumbricids were more abundant in the more heterogeneous landscapes, particularly 

LUU4 (Figure 4-2c). Lumbricid worm species richness was also positively related to the 

overall patchiness of the landscape (Table 4-2).

4.3.2 Plant functional group diversity

Collembola species richness was more closely related to the richness of the plant assemblage 

than to soil variables (Figure 4-3a, Table 4-2). When the plant assemblage diversity was 

divided by functional groups, it was the species richness of trees that was the most significant 

correlate of observed collembola species richness (Figure 4-3a); other significant plant 

community covariates included the species richness of forbs (Figure 4-3b) and graminoids, 

but not shrubs (Table 4-2). Lumbricid worm species richness and abundance was not related 

to tree diversity; the species richness of forbs was the most significant plant assemblage 

correlate of worm abundance and species richness (Table 4-2, Figure 4-3b).

4.3.3 Soil variables

While collembola species richness was best explained by forest cover and above-ground plant 

diversity, the abundance of collembola was significantly correlated with edaphic factors. The 

decline in the average percentage cover of plant litter along the gradient as agricultural areas 

replaced forest elements of the landscape was strongly correlated with the reduction in 

collembola abundance (Figure 4-4a, Table 4-2).
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Figure 4-2. The observed (lumbricids: open symbols, collembola: closed symbols) and fitted - dashed (lumbricids) and solid (collembola) lines from GLM with Poisson error 
distribution - relationships along a land-use intensification gradient in Scotland between (a) collembola and lumbricids species richness, (b) lumbricid abundance and the 
proportion of forest cover, c) collembola and lumbricid abundance and landscape patchiness, and d) lumbricid abundance and habitat richness. Symbol labels indicate LUU 
number and predominant land-use: (1) old-growth forest, (2) plantation forest, (3) forest dominated mosaic, (4) mixed-use mosaic, (5) pasture and (6) arable dominated.
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Figure 4-3. The observed (points) and fitted (lines from GLM with Poisson error distribution) 
relationships along a land-use intensification gradient between (a) collembola species richness and 
total vascular plant (closed symbols, solid line) and tree (open symbols, dashed line) species richness 
and (b) soil fauna species richness (collembola: closed symbols, solid line, lumbricids: open symbols, 
dashed line) and lumbricid abundance (grey symbols, dot-dash line) and forb species richness. 
Symbol labels indicate LUU number and predominant land-use: (1) old-growth forest, (2) plantation 
forest, (3) forest dominated mosaic, (4) mixed-use mosaic, (5) pasture and (6) arable dominated.
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While collembola numbers were positively correlated with plant litter cover, lumbricid 

abundance was negatively correlated with the amount of the litter resource (Figure 4-4a, 

Table 4-2). Furthermore, lumbricid richness and abundance was negatively correlated with the 

depth of the organic horizon in the soil profile (Table 4-2). Collembola and lumbricid 

abundance showed contrasting patterns to the increasing average pH of the soil along the 

intensification gradient as the landscape became progressively dominated by more intensive 

agriculture. Collembola numbers were lower in the landscapes where there was a significant
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agricultural presence and soil pH more neutral, whereas lumbricid abundance was lower 

under forest soils and acidic conditions (Figure 4-4b, Table 4-2).

Figure 4-4. The observed (lumbricids: open symbols, collembola: closed symbols) and fitted - dashed 
(lumbricids) and solid (collembola) lines from GLM with Poisson error distribution - relationships 
along a land-use intensification gradient between collembola and lumbricid abundance and mean (a) 
plant litter cover and b) soil pH. Symbol labels indicate LUU number and predominant land-use: (1) 
old-growth forest, (2) plantation forest, (3) forest dominated mosaic, (4) mixed-use mosaic, (5) 
pasture, and (6) arable dominated.
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4.4 Discussion

Changes in habitat cover and heterogeneity led to changes in the species richness and 

abundance of both collembola and lumbricid worms. Contrary to our prediction that 

collembola diversity would decline and worm diversity increase as the landscape became less 

forested we found that the species richness of collembola and lumbricids, and lumbricid 

abundance had a hump-shaped relationship with the proportion of forest along the land-use 

gradient. Collembola species richness peaked in the sites with an intermediate amount of 

forest cover and a significant amount of grassland (LUU3-4) (Sousa et al. 2006). Worm 

abundance rose as forest cover declined reaching a peak in the mixed-use landscape (LUU4) 

before declining as the landscape became used for intensive agriculture. Worm species 

richness also increased with declining forest cover but peaked in the pasture dominated site 

(LUU5), before abruptly declining when a greater amount of land was used for arable 

production (LUU6). These hump-shaped diversity relationships are in direct contrast to the 

majority of previous evidence pointing to soil animal diversity decreasing or increasing 

monotonically along stress or land-use gradients (Bardgett et al. 1993; Freckman & Ettema 

1993; Lawton et al. 1998; Mittelbach et al. 2001; Wardle 2002; Jones et al. 2003; Maraun et 

al. 2003). The majority of these studies focussed at within habitat or finer spatial scales, while 

our observations are at landscape-scales; hump-shaped soil diversity patterns may be scale- 

dependent.

The hump-shaped correlations can be interpreted in two ways. Firstly, the land-use gradient 

surveyed in this study may represent a stress gradient, in the form of resource limitation or 

disturbance, where species coexist and diversity peaks at intermediate levels of the stress via a 

reduction in competitive exclusion (Grime 1973; Connell 1978; Grace 1999). Diversity is 

governed in this way in aquatic (Leibold 1999; Dodson et al. 2000; Homer-Devine et al. 

2003), terrestrial plant (Grime 1973; Grace 1999) and soil microbial (Degens et al. 2001) 

communities; evidence for such unimodal relationships between stress or disturbance and 

terrestrial animal diversity remains more elusive, particularly so for soil faunal diversity 

(Mittelbach et al. 2001; Wardle 2001, 2002). Secondly, it is recognised that habitat spatial 

heterogeneity can contribute to species coexistence and persistence (Levin & Paine 1974; 

Ellner et al. 2001). The spatial patchiness of the landscapes arising from human land-use 

(Ettema & Wardle 2002) may enable populations to persist in habitat refuges, and to act as a 

source habitat facilitating repeated colonisation of more unfavourable areas of the landscape
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(Hanski 1998; Ellner et a l 2001). In this way spatially heterogeneous landscapes may 

produce the highest diversity at a given point.

For hump-shaped patterns to be generated by the existence of a stress gradient would require 

competitive exclusion to be occurring between the soil taxa. In the current study, although 

collembola and lumbricid abundance were negatively correlated, there was little other 

evidence of competitive interactions between these taxa, and in the absence of empirical data 

we reject the intermediate disturbance hypothesis as an explanation for the observed hump­

shaped patterns in soil faunal diversity.

A more likely explanation is that the hump-shaped soil diversity patterns are a property of the 

extent of forest habitat, and spatial heterogeneity of the landscape arising from human land- 

uses (Eggleton et a l 2005; Sousa et a l 2006). Differences do however exist between the two 

taxa. Collembola species richness was strongly correlated to the extent of forest habitat with 

peak richness occurring where a mix of forest and open habitats co-occur. This peak in 

collembola diversity may arise because elements of forest and agricultural communities 

persist in this heterogeneous habitat mosaic, and through repeated colonisation of habitat 

sinks from adjacent source habitats. Lumbricid diversity was more strongly correlated with 

^ landscape spatial heterogeneity: landscapes with a diversity of habitat types had greater 

lumbricid abundance, while landscapes with high spatial patchiness contained both more 

worm species and numbers of individuals. The effect of habitat diversity may provide 

alternative niches while spatial patchiness may provide refuges. Patches of deciduous 

woodland or semi-permanent pasture in the more frequently disturbed agricultural areas of 

LUU4, 5 and 6 may, for example, allow worm populations to persist undisturbed in otherwise 

intensively tilled agricultural landscapes.

The soil fauna may not be responding directly to the land-use gradient but, instead, be 

correlated with changes in plant diversity along that gradient. The observed peak in soil faunal 

diversity in the heterogeneous landscapes would then be due to the corresponding peak in 

plant diversity at that point. Previous studies have shown that above-ground consumer and 

plant diversity can be significantly correlated (Siemann et a l 1998; Koricheva et a l 2000) 

and that plant species identity can have an effect on soil diversity and trophic structure 

(Wardle et a l 2003; De Deyn et a l 2004). Few studies have shown significant correlations 

between plant and below-ground diversity (Hooper et a l 2000; Wardle 2002; De Deyn et a l 

2004; Ponge et a l 2005).
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Faunal species richness was positively correlated with the diversity of the above-ground 

vegetation. The identity of the plant functional group to which soil faunal diversity was 

correlated varied, however, with the identity of the soil taxa. Collembola species richness was 

correlated to overall vascular plant diversity, the species richness of graminoids and forbs, but 

it was mostly variation in tree species richness along the gradient that was highly correlated 

with collembola diversity. Lumbricid species richness and abundance was, by contrast, 

positively correlated only with forb species richness. This finding confirms those of previous 

experimental work that show the importance of plant identity (in this case functional group 

identity) for soil animal diversity (Wardle et a l 2003; De Deyn et al. 2004), but also 

highlights the role of species diversity within plant functional groups in structuring soil 

animal diversity at large spatial scales.

The positive effect of tree species richness on collembola diversity further explains the hump­

shaped relationship with forest cover, since the peak at intermediate forest cover (LUU3 and 

4) is coincident with the greatest tree species richness. The forest sites LUU1 and 2 (100 & 

80% forest cover respectively) are totally dominated by coniferous trees (mainly Pinus 

sylvestris), while the heterogeneous mosaic sites (LUU3 & 4: 65-50% forest cover) include 

individuals and patches of deciduous tree species (Quercus sp.& Betula sp.). This greater 

diversity of tree species at the gradient mid-point may facilitate the observed peak in the 

species richness of the collembola by producing heterogeneity in the availability and quality 

of the litter resource, thereby enabling collembola species coexistence in the more diverse 

resource space (Hansen & Coleman 1998; Hansen 2000).

Forest cover and tree species had a further bottom-up effect on soil fauna abundance via the 

amount of litter resource available to decomposers and the soil acidity of these sites. As 

predicted the decline in the amount of tree litter, as coniferous forest cover in the landscapes 

was reduced, had a significant and contrary effect on the abundance of the studied soil animal 

taxa. Collembola abundance was positively and lumbricid worm numbers negatively 

correlated with the reduction of litter cover on the soil surface as forest cover was replaced by 

agriculture along the land-use gradient. Collembola and worm abundance also showed an 

inverse response to the gradient in soil pH with differing land-use types: as the landscape 

became less forested the soil pH rose and this was correlated with a rise in lumbricid worm 

and concomitant decline in collembola numbers. The decline in tree litter inputs and acidity 

along the gradient marks the transition in the soil decomposer community from acidophilic,
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arthropod dominated soils to soils that are more neutral and dominated by lumbricid worms 

(Eggleton et al. 2005).

This study is among the first (Eggleton et al. 2005; Sousa et al. 2006) to demonstrate a hump­

shaped relationship of soil animal diversity to a land-use intensification gradient. It appears 

that a number of interrelated factors operating at different ecological scales (landscape, 

habitat, plant) are involved in structuring spatial patterns in soil faunal diversity. Human 

land-use generates coarse patterns in the extent (forest cover) and heterogeneity (patchiness) 

of habitats, identity and diversity of plant functional groups, and variation in litter resources 

and soil acidity. These factors combine to structure soil animal assemblages facilitating 

species turnover and shifts in dominance between different soil micro- and macrofauna 

(Eggleton et al. 2005). It is not explicit from these data if this variation in diversity is partly 

generated by individual species responding to stress gradients (e.g. soil acidity) within the 

overall land-use gradient. Experimental study is needed to tease apart the relative importance 

of the factors correlated with diversity in this snapshot of these soil animal communities; 

whether competitive interactions occur between collembola and lumbricids at fine-scales, and 

if this can scale up to produce larger-scale diversity patterns which are stable over time. 

These data do, however, imply that varying human land-use intensity at large spatial scales 

can generate patterns in diversity among species that operate at much finer spatial scales.
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CHAPTER 5

P red a to rs  fail bu t  h erbiv o res  prev ail: a  co n seq u en ce  of anthropogenic

DISTURBANCE TO A NATURALLY PATCHY HABITAT c

A. J. Vanbergen1,4, B. A. Woodcock2, A. D. Watt1, R. S. Hails3 and T. H. Jones4

1 Centre for Ecology & Hydrology Banchory, Hill of Brathens, Banchory, AB31 4BW, UK; 2 Centre 
for Agri-Environmental Research, Department of Agriculture, University of Reading, PO Box 237, 
Earley, Reading, RG6  6 AR, UK; 3 Centre for Ecology & Hydrology Oxford, Mansfield Road, Oxford 
0X1 3SR, UK; 4 Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3TL, UK.

Tertiary trophic levels (predators, parasitoids) are known to be more sensitive than 

secondary trophic levels (herbivores) to anthropogenic disturbance. Using a naturally 

fragmented habitat we studied the influence o f habitat area and disturbance (cattle 

introduction) on the diversity o f  invertebrate trophic guilds (herbivores, omnivores, 

predators). Habitat area had no influence on the species richness or abundance o f the 

trophic guilds. The presence o f cattle led to a reduction in the diversity (species richness and 

abundance) o f secondary consumers, but primary consumers were unaffected. This loss o f  

secondary consumers meant grazed habitat supported fewer trophic levels compared with 

ungrazed habitat. Cattle modify the habitat producing a compositionally diverse but 

architecturally simple plant assemblage distinct from the ungrazed situation. The lower 

diversity o f  secondary consumers in grazed habitat was correlated with this grazing- 

dependent habitat heterogeneity, while primary consumers were unaffected. Our findings 

support the suggestion that tertiary trophic levels are more vulnerable than herbivores to the 

effects o f  anthropogenic disturbance, in this case cattle grazing. The undisturbed semi­

natural habitat provides a refuge for invertebrate predators; the disturbance o f this habitat 

has potential consequences for pest suppression in adjacent agricultural land and regional 

biodiversity.

c Submitted to Oecologia February 2006
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5.1 Introduction

The greater rarity and population variability of tertiary trophic levels (predators, parasitoids) 

makes them more sensitive (i.e. greater extinction probability, decreased diversity and 

abundance) than secondary trophic levels (herbivores) to anthropogenic disturbance (Kruess 

& Tschamtke 1994; Didham et al. 1998a; Didham et al. 1998b; Gilbert et al. 1998; Spencer 

2000). This differential impact of anthropogenic disturbance according to trophic position has 

been shown to occur in fragmented habitats (Didham et al. 1998b; Gilbert et al. 1998; Davies 

et al. 2000; Komonen et al. 2000; Kruess & Tschamtke 2000); in landscapes varying in 

structure and land-use (Tschamtke et al. 2002; Thies et al. 2003; Purtauf et al. 2005); where 

the presence of livestock perturbs semi-natural habitat (Vanbergen et al. 2006); and where 

grazing intensity is high (Cagnolo et al. 2002; Kruess & Tschamtke 2002). These 

anthropogenic effects impact negatively on secondary consumers (predators, parasitoids) both 

directly via habitat changes and indirectly mediated by their prey (Thies et al. 2003; 

Vanbergen et al. 2006).

The majority of studies that have examined the differential impact of disturbance on different 

trophic levels centre around examples of habitat fragmentation as consequences of human 

land-use (Didham et al. 1998b; Davies et al. 2000; Gibb & Hochuli 2002) or experimentation 

(Kruess & Tschamtke 1994; Gilbert et al. 1998; Golden & Crist 1999; Kruess & Tschamtke 

2000). Some studies have explored the influence of natural habitat patchiness on natural 

enemy attack rates (Brodmann et al. 1997; Doak 2000) and others the effect of disturbance to 

natural habitats on parasitism rates (Vanbergen et al. 2006) but none, to our knowledge, have 

examined the impact of anthropogenic disturbance to a naturally fragmented habitat on the 

diversity of tertiary trophic levels.

This study exploits naturally fragmented lowland birch woodlands that are, in some cases, 

semi-natural habitat under no human management while in other cases are used as part of the 

surrounding agricultural land-use - cattle production (Armstrong et al. 2003; Woodcock et al. 

2003; Vanbergen et al. 2006). Livestock grazing is a common anthropogenic disturbance of 

habitats and ecosystems with profound consequences for plant populations and community 

diversity (Hobbs 1996; Rambo & Faeth 1999; Fowler 2002; Pykala 2003), and the presence 

and diversity of consumer species dependent, either directly or indirectly, on the plant 

assemblage (Gibson et al. 1992a; Borges & Brown 2001; Kruess & Tschamtke 2002; Hartley
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et al. 2003; Woodcock et a l 2005). The presence and absence of cattle grazing in disjunct 

woodland patches therefore represented a serendipitous experiment to test whether 

disturbance to a naturally fragmented habitat has a differential effect on invertebrate diversity 

(species richness and abundance) according to trophic position.

We hypothesised that tertiary trophic levels (secondary consumers), of the woodland 

understorey arthropod assemblage, would be more sensitive than secondary trophic levels 

(primary consumers) to both woodland patch area and disturbance from cattle grazing. A 

number of specific predictions were tested: i) the species richness and abundance of

arthropods and feeding guilds (herbivore, omnivore, predator) would be greater in larger 

and/or ungrazed woodland patches; ii) secondary consumers (omnivore, predator) would 

show a comparatively greater reduction in diversity (species richness and abundance) than 

primary consumers (herbivore) in smaller and cattle-grazed woodlands; iii) cattle grazing 

would modify the birch habitat creating a more diverse, compositionally and structurally 

distinct plant assemblage compared to the ungrazed situation; and iv) the observed reduction 

in arthropod and feeding guild diversity would be correlated with this grazing-dependent 

habitat heterogeneity.

5.2 Method

5.2.1 Sites and experimental design

Birches (Betula spp. L.), a pioneer species supporting great diversity of associated insects 

(Kennedy & Southwood 1984), provide a refuge for forest-dependent species (Petit & Usher 

1998; Woodcock et al. 2003) and are the dominant deciduous forest type in Northern 

Scotland. 20 birch woodland sites were selected in the Deeside region of Aberdeenshire 

(57 3.0'N, 2 30.2'E - 57°3.3'N, 2 57.9'E) according to the presence (n = 10) or absence (n = 

10) of livestock grazing. This management had been in place for at least the preceding 10 

years. Care was taken to ensure that sites selected were not geographically confounded 

(Figure 5-1). Livestock in the grazed sites were predominantly cattle (n = 10), although 

occasional additional low level grazing by sheep (n = 3) and horses (n = 1 ) did occur. The low 

incidence of grazing by wild ungulates (i.e. roe deer) was not measured because it was 

assumed to be of minimal importance when compared with the intensive livestock 

management. No other systematic management (e.g. forestry) occurred at the sites. At the 

end of April 2003 (coincident with the date of birch budburst) eight second-year Cirsium
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palustre (Linnaeus) thistles were transplanted, from two nearby sites, into each of the 

woodland locations (160 thistles in total).

As thistles are known to support a large and diverse insect fauna, and attract both herbivores 

and their predators, these plants were used as trap plants to sample arthropods that were 

associated directly with pre-existing populations of C. palustre or with the wider birch habitat. 

Within each site the eight thistles were randomly planted within a 4 x 4 grid (15m2), with each 

point on the grid separated by 5m. The centre of the grid was situated at least 50m from the 

woodland edge. Prior to flowering cattle trampling destroyed some replicate thistles (18 %), 

and neighbouring thistles of local origin were used as replacements. No evidence of direct 

vertebrate grazing on experimental thistles was seen during the course of this experiment.

Plate 5.1. Balnagowan farm: a grazed birch 
woodland

Plate 5.2. Auchattie: an 
ungrazed birch woodland
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Figure 5-1. Schematic map showing the location of the study area in Scotland (black rectangle) giving the name, distribution (West-East) and 

area (ha) of grazed and ungrazed birch woodland fragments used in this study.
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|  Ungrazed woodland Grazed woodland

Site Area (ha)
1. Brathens 28.30
2. Blackhall 2.46
3. Scolty 8.87
4. Auchattie 4.95
5. Beechgrove 4.75
6. Sunnydale 1.05
7. Woodend 2.54
8. Potarch 1.17
9. Allancreich 2.86
10. Woodfield 16.97
11. Bridgend 8.01
12. Balnagowan hill 4.57
13. Balnagowan farm 8.96
14. Airfield 26.28
15. St. James 1.31
16. Dinnet 18.98
17. Nertherton 21.81
18. Comtulloch 11.26
19. Greystone 4.91
20. Braehead 8.36
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5.2.2 Arthropod sampling

Each thistle was sampled (13-16 July 2003) for 2 minutes with a motorised suction sampler 

(McCulloch BVM240™) and the arthropods collected in an Organza™ gauze bag. Multiple 

arthropod taxa (Heteroptera, Coleoptera, Auchenorrhyncha, Araneae) known to be sensitive to 

grazing (Gibson et al. 1992a; Gardner et al. 1997; Hartley et al. 2003; Woodcock et al. 2005) 

were sampled to capture the extent of invertebrate responses (Gibson et al. 1992a) to habitat 

area and disturbance. Individuals were identified to species and assigned to a feeding guild 

(predator, omnivore and herbivore) using available life-history information (Southwood & 

Leston 1959; Roberts 1987; Jolivet & Verma 2002). Predators were defined as species that 

are obligate carnivores throughout their life history, omnivores if facultative carnivores or 

carnivorous for part of their life history, and herbivores as strictly phytophagous species. 

Juvenile arthropods could not be reliably identified to species and were therefore excluded 

from all counts of species richness, species-specific and feeding guild abundance, but 

included in the count of total arthropod abundance. The number of trophic levels present in 

each woodland patch was determined, irrespective of the number or identity of species, as the 

presence ( 1 ) or absence (0 ) of each trophic guild (herbivore, omnivore, predator) per 

woodland. These were then summed resulting in scores of 1-3 trophic levels per woodland 

patch. Data from the eight thistles within each of the 20 woodlands were pooled to give a 

snapshot of the arthropod assemblage at each site.

5.2.3 Habitat and plant assemblage variables

Six lm quadrats per site were randomly placed on grid points not occupied by experimental 

thistle replicates, and an assessment made (28 July - 12 August 2003) of the species richness 

of functional groups (forbs, grasses), the total vascular plant species richness, the percentage 

cover for each vascular plant species and functional group (forbs, grasses, bryophyte), and the 

proportion of bare, disturbed soil surface arising from cattle trampling. The percentage cover 

of the tree canopy above each quadrat was estimated using a canopy densiometer (Forestry 

Suppliers Inc. USA) and at the four comers of each quadrat the maximum field layer height 

(mm) was recorded. The area of each birch woodland fragment was determined from 

digitised maps (Ordnance Survey, UK) using GIS (ArcGIS) (Figure 5-1).

5.2.4 Statistical analysis: habitat and plant assemblage structure

75



Chapter 5. Predators fail but herbivores prevail

Wilcoxon signed-rank tests were used to test if mean habitat variables differed between 

grazed and ungrazed sites. Factors responsible for the structuring of the plant assemblages 

were identified using redundancy analysis (RDA, CANOCO version 4.5); this is a constrained 

form of principal components analysis (PCA) that identifies trends in the scatter of species 

data that are linearly related to a set of constraining, explanatory variables. RDA was used to 

relate the percentage cover of vascular plant species to measured environmental variables 

(canopy density, sward height, proportion of bare and trampled soil, bryophyte and plant litter 

cover). Variables derived from the plant species data (forb and grass percentage cover, 

vascular plant species richness) were fitted as supplementary variables to illustrate further 

trends in the plant assemblage and did not affect the variance explained by the RDA of the 

vascular plant assemblage. The significance of the explanatory variables in structuring the 

plant assemblage was determined with a forward selection procedure using Monte-Carlo tests 

constrained within sites (9999 permutations). Thus the model presented is a partial 

redundancy analysis (pRDA) controlling for site-level variance when assessing the impact of 

grazing-dependent habitat variation on the plant assemblage.

5.2.5 Statistical analysis: arthropod and feeding guild species richness and abundance

Untransformed counts of total arthropod, herbivore, omnivore and predator populations per 

site were used as the dependent variables in generalised linear models (GLM, SAS v.8.02, 

SAS Institute) using a Poisson error distribution with a Log-link function. Firstly, arthropod 

and feeding guild species richness and abundance were correlated to the area of the woodland 

and the presence or absence of cattle. Following on, the categorical term ‘cattle presence’ 

was replaced with continuous grazing-dependent habitat variables, namely median values of 

vascular plant, forb and grass species richness, mean cover (%) of functional groups (forbs, 

grasses, bryophytes), mean tree canopy density (%), bare, trampled soil (%), mean sward

height (mm) and the coefficient of variation ( 5  / x ) in sward height.

Inter-correlation between habitat variables (Appendix II) meant the separation of their effects 

on the invertebrate assemblage by step-wise multivariate regression was confounded. 

Principal components analysis (PCA) was performed on these habitat covariates. The 

orthogonal axes scores of the first three principal components (which are uncorrelated with 

each other, but principally correlated with specific habitat variables) were then used as the 

explanatory variables in the GLM model. This PCA step reduced the number of explanatory 

variables to sets of co-varying habitat variables, allowing the influence of orthogonal habitat
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gradients on the insect abundance to be tested. Simplification of multivariate GLM was by 

step-wise elimination of the least significant term (PCA axes 1-3) until the most parsimonious 

model was found; y? values of explanatory terms using adjusted sums of squares are reported.

Analysis of deviance was performed to assess whether the addition of the categorical term 

‘cattle presence’ to a model containing the significant continuous habitat variables (e.g. PCA 

axes scores) resulted in a significant increase in the explained deviance of the model, and 

therefore whether there was a residual effect of cattle presence on arthropod diversity over 

and above the significant grazing-dependent habitat variation identified in the PCA analysis.

5.3 Results

5.3.1 Influence o f woodland area and cattle presence on arthropods

A total of 874 individuals were identified from 56 invertebrate species (Appendix III). The 

Heteroptera were the most abundant taxon (388 individuals, 14 species), followed by the 

Araneae (369, 12), the Auchenorrhyncha (83, 11) and the Coleoptera (38, 19). Species 

accumulation curves are asymptotic in grazed woodland and close to asymptotic in the 

ungrazed habitat indicating the sampling method produced a representative sample of 

invertebrate species richness in the birch habitats (Figure 5-2). Despite considerable variation 

in woodland size (Figure 5-1) the area of the woodland patch did not affect significantly the 

species richness or abundance of either all arthropods or the feeding guilds (Table 5-1). Our 

data do not support the prediction that the larger woodland patches would support greater 

arthropod and functional group diversity. Furthermore the prediction that secondary 

consumers would suffer a comparatively greater loss of diversity than primary consumers in 

smaller habitat patches was not upheld by these data.
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Figure 5-2. Species accumulation curves by number of samples for grazed and ungrazed birch woods. 
Dotted lines are species richness ± SD. Plots constructed using Estimate S.
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Table 5-1. Summary of generalised linear models (GLM) of the influence of habitat area and cattle 
presence on the arthropod assemblage. Counts of individuals and species were modelled with Poisson 
error distribution and Log-1 ink function.

Woodland area (ha) Cattle presence

estimate df P estimate df £ P
Species Richness

Arthropoda -0.00 1,17 0.69 0.41 •0.35 1,17 4.49 0.03
Herbivores -0.00 1,17 0.46 0.50 -0.28 1,17 1.30 0.25
Omnivores -0.00 1,17 0.72 0.39 -1.34 1,17 10.43 0.001
Predators -0.00 1,17 0.38 0.54 -0.17 1,17 1.11 0.29
2° Consumers -0.00 1,17 0.78 0.38 -0.35 1,17 4.91 0.03

Abundance

Arthropoda 0.00 1,17 1.61 0.20 -0.56 1,17 6.82 0.009
Herbivores -0.00 1,17 0.50 0.58 -0.18 1,17 0.31 0.58
Omnivores -0.00 1,17 0.66 0.42 -1.43 1,17 6.46 0.01
Predators 0.00 1,17 2.75 0.10 -0.59 1,17 5.04 0.02
2° Consumers 0.00 1,17 2.33 0.13 -0.64 1,17 6.87 0.009
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Figure 5-3. The effect of the presence of cattle grazing in woodlands on the a) abundance and b) 
species richness of Arthropoda, feeding guilds (herbivore, omnivore and predator), and all secondary 
consumers (predators and omnivores). The number of trophic levels present in grazed and ungrazed 
woodlands is also shown on a secondary y-axis. Data are mean counts ± SE derived from 10 grazed 
and 10 ungrazed woodlands. Data were analysed with generalized linear models (SAS) using Poisson 
errors and a Log-link function.
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Cattle grazing, however, did influence the composition and abundance of the invertebrate 

assemblage. Total arthropod densities and species richness were greatest in the ungrazed 

birch woods (Table 5-1, Figure 5-3). The total abundances of invertebrate predators and 

omnivorous insects were greater in the ungrazed woodlands while total herbivore abundance 

was unaffected (Table 5-1, Figure 5-3a). The species richness of the omnivore guild was 

greater in cattle-grazed woodland but the species richness of the other two functional groups 

were unaffected by the presence of grazing cattle (Table 5-1, Figure 5-3b). When predators 

and omnivores were pooled as secondary consumers the presence of cattle significantly 

lowered both the species richness (Table 5-1, Figure 5-3b) and abundance (Table 5-1, Figure 

5-3a) of this functional group. The loss of secondary consumers from grazed sites resulted in 

ungrazed woodlands supporting a greater mean number of arthropod trophic levels compared 

with grazed woodlands = 6.00, p  = 0.014) (Figure 5-3a). Furthermore, aside from 

average differences between grazed and ungrazed woodlands, there was greater variation in 

the population densities of secondary consumers among ungrazed (range = 20-124, s = 31.5) 

compared to grazed (range = 15-41, s = 9.5) sites. These data support our general prediction 

that there would be significantly more arthropod species and individuals in the ungrazed 

woodland patches, and that the secondary consumers would be more sensitive (in terms of 

reduced diversity) to disturbance from grazing than the primary consumers.

5.3.2 Influence o f cattle presence on plant assemblage structure

Plant assemblage structure also varied with the presence of grazing livestock; partial 

redundancy analysis (pRDA) revealed a clear separation between plant assemblages 

depending on whether they were grazed or not (Figure 5-4).

Both axes of the pRDA were significant (Monte-Carlo global permutation tests: first 

canonical axis: p  = 0.008, all canonical axes: p  = 0.006) but it was the first axis of the pRDA 

(Table 5-2), which explained the majority of the variation in the assemblage of vascular plant 

species. This first axis was negatively correlated with the amount of disturbed soil and 

positively with increasing bryophyte cover, tree canopy density, litter cover and sward height 

(Table 5-2, Figure 5-4). Overall the plant assemblages in the grazed sites tended to be more 

speciose, with a greater proportion of forb cover and of the soil surface disturbed and 

unvegetated by cattle trampling, lower levels of bryophyte cover, tree canopy density, and 

reduced levels of plant litter and mean sward height compared to the ungrazed plant 

assemblages (Tables 5-2 & 5-3, Figure 5-4). Our third prediction that cattle would modify the
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habitat producing a more diverse, compositionally and structurally distinct plant assemblage 

compared to the ungrazed situation was therefore supported.

Figure 5-4. Partial redundancy analysis (pRDA) of plant assemblages from 10 grazed and 10 
ungrazed birch woodlands. Significant environmental variables structuring the plant assemblage are 
represented by solid line vectors: tree canopy density (Canopy), plant litter (Litter) and bryophyte 
(Bryo) percentage cover, mean height (mm) of ground vegetation (Sward), and the percentage cover of 
bare, disturbed soil (Bare). Supplementary variables are derived from the plant assemblages and 
represented by dashed line vectors: total vascular plant species richness (Plant S), percentage cover of 
plant functional groups (Forb and Grass). The species scores of the 10 most abundant (percentage 
cover) plant species are shown (in rank order: Holcus lanatus (Ho.la.), Agrostis capillaris (Ag.ca.), 
Pteridium aquilinum (Pt.aq.), Holcus mollis (Ho.mo.), Poa trivialis (Po.tr.), Agrostis stolonifera 
(Ag.st.), Molinia caerulea (Mo.ca.), Deschampsia flexuosa (De.fl.), Ranunculus ripens (Ra.re.), 
Trifolium ripens (Tr. Re.). Open and closed symbols denote the mean sample scores per site SE. 
Significance of environmental variables was determined using a forward selection procedure with 
Monte-Carlo permutation (9999) tests.
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Table 5-2. Partial redundancy analysis (pRDA) of plant species cover data with Monte-Carlo tests 
constrained by site (9999 permutations). Correlation coefficients of significant environmental 
variables to ordination axes are shown. Eigenvalues are a measure of the relative dispersion of species 
scores on each ordination axis and therefore the relative importance of each axis. Supplementary 
variables are fitted passively and do not affect the ordination.

Axes 1 2 3 Total variance

Eigenvalues 0.08 0.03 0.01 1.000
Species-environment correlation 0.72 0.65 0.61
Cumulative percentage variance

of species data 7.6 10.6 12.1
of species-environment relation 55.2 76.8 87.8

Sum of all eigenvalues 0.98
Sum of all canonical eigenvalues 0.14

Intra-set correlation coefficients

Environmental variables Monte-Carlo
Bryophyta (%) 0.71 0.48 -0.23 0.004
Bare ground (%) -0.56 0.50 0.37 0.04
Sward (mm) 0.50 -0.54 0.66 0.04
Canopy (%) 0.56 0.04 -0.37 0.003
Litter (%) 0.56 0.40 0.19 0.02
Supplementary variables
Forb (%) -0.86 0.27 -0.05 -
Grass (%) -0.08 -0.84 -0.97 -
Plant S  (n) -0.79 -0.41 -0.16 -

Table 5-3. Wilcoxon signed-ranks comparison of averages of plant and habitat variables from grazed 
(n =10) and ungrazed (n =10) woodland sites.

Variable Mean SD z P
Grazed Ungrazed Grazed Ungrazed

Plant species richness 26.3 16.8 6.3 5.1 2.88 0.002
Grass species richness 7.4 6.0 1.8 1.9 1.34 0.09
Forb species richness 15.5 6.4 4.1 3.9 3.41 0.0003
Bare ground (%) 18.0 1.2 0.1 0.0 2.82 0.002
Sward height (mm) 347.1 503.8 161.7 176.1 -1.85 0.03
Sward height (CV) 178.0 134.2 58.9 72.8 1.55 0.06
Grasses (%) 76.9 76.0 14.1 30.7 -0.57 0.285
Forbs (%) 42.6 13.7 20.1 8.6 3.21 0.0007
Bryophytes (%) 7.3 26.0 7.3 6.6 -2.83 0.002
Canopy density (%) 63.0 87.4 0.3 0.1 -1.70 0.04
Area (ha) 8.73 10.12 6.85 10.25 0.11 0.45
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5.3.3 Effect o f grazing-dependent habitat heterogeneity on arthropods

The PCA of habitat variables revealed that the first three axes summarised 74 % of the habitat 

variation across grazed and ungrazed birch woodlands. The first PCA axis (38 % of 

variation) was positively associated with increasing total vascular plant and forb species 

richness, and forb percentage cover and so represented a gradient in flowering plant diversity. 

The second and third PCA axes summarised the architectural and spatial complexity of the 

plant assemblage: the second axis ( 2 2  %) was positively associated with average sward 

height, grass species richness and percentage cover; while the third axis (14 %) was positively 

related to spatial variability in sward height, quantified by the coefficient of variation. These 

three principal components effectively summarised grazing-dependent habitat variability and 

were, as predicted, significant correlates of arthropod and functional group diversity.

Total arthropod species richness was negatively related to the third principal component, 

correlated with spatial variability in sward height (PCA 3), but not to the other gradients 

(PCA 1 & 2) in habitat heterogeneity (Table 5-4). Arthropod abundance was negatively 

related to the first PCA axis - correlated with increasing plant, forb richness and forb percent 

cover - and positively related to the second principal component - associated with grass 

richness, percent cover and sward height (Table 5-4). Herbivore species richness and 

abundance were not significantly affected by the grazing-dependent habitat variation 

summarised in the PCA axes (Table 5-4). The omnivore guild was, however, negatively 

associated with the first principal component axis (plant and forb richness, forb cover) both in 

terms of the number of species and the number of individuals (Table 5-4, Figure 5-5c). 

Species richness of the predator guild was not significantly affected by grazing-driven habitat 

variation (Table 5-4). Predator abundance was positively related to the second axis of habitat 

variation (sward height, grass species richness and cover) (Table 5-4, Figure 5-5d) but only 

marginally and negatively with the first principal component (plant and forb richness, forb 

cover) (Table 5-4). When predators and omnivores were pooled as secondary consumers the 

species richness of this functional grouping was negatively related to the third principal 

component (Table 5-4, Figure 5-5e), correlated with the spatial variability in the height of the 

sward, while secondary consumer abundance was negatively related to the first (plant and 

forb richness, forb cover) and positively to the second PCA axis (sward height, grass species 

richness and cover) (Table 5-4, Figure 5-5a-b).
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Furthermore, analysis of deviance revealed that the change in deviance explained by the 

models including both cattle presence/absence and significant habitat (PCA) variables did not 

differ significantly from the model where only the habitat variables were included 

(Abundance: Arthropod Fi, i6 = 2.03,/? = 0.17; Predator Fi, 1 7= 1.62,/? = 0.22; Omnivore Fi, 16 

= 0.97, p  = 0.34; Secondary consumers Fj,i6 -  199, p  -  0.18; Species richness: Omnivore 

Fi.n = 2.96, p  = 0.10; Secondary consumers Fi n  =3.40, p  = 0.09). Thus there was no 

additional grazing effect, above that encompassed by the PCA of the measured habitat 

variables on the diversity of the arthropod guilds.

Our fourth prediction that a reduction in arthropod and guild diversity would be correlated to 

grazing-dependent habitat heterogeneity was strongly supported. Herbivorous insects were 

unaffected by cattle-driven changes to the plant community but, correlated to a loss of 

vegetation height and a concomitant increase in flowering plant diversity, there was a 

reduction in secondary consumer diversity in the grazed birch woods.
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Table 5-4. Effect of grazing-dependent habitat heterogeneity on arthropod and feeding guild species richness and abundance. Summary of generalised linear 
models (GLM) using the first three axes scores of habitat covariates (from PCA) as independent variables. Counts of individuals and species were modelled 
with Poisson error distribution and Log-link, x 2-values adjusted to account for other significant independent variables in the model. Habitat covariates 
contributing the most variance to the PCA axes are given in parentheses.

PCA1
(+ vascSR, forbSR, forb%)1

PCA2
(-(-sward, grassSR, grass%)2

PCA3
(+swardCV)3

estimate df P estimate df r t P estimate df P
Species Richness

Arthropoda -0.06 1,16 2.87 0.09 0.10 1,17 3.38 0.07 -0.15 1,18 4.60 0.03
Herbivores -0.06 1,16 1.17 0.28 0.15 1,18 3.09 0.08 -0.16 1,17 3.15 0.08
Omnivores -0.27 1,18 5.52 0.02 0.04 1,16 0.08 0.78 -0.31 1.17 2.35 0.12
Predators -0.01 1,16 0.11 0.74 0.09 1.17 3.24 0.07 -0.11 1,18 3.10 0.08
2° Consumers -0.05 1,16 2.02 0.15 0.07 1,17 1.73 0.19 -0.14 1,18 4.28 0.04

Abundance

Arthropoda -0.13 1,17 5.01 0.02 0.16 1,17 5.17 0.02 -0.63 1,16 0.44 0.51
Herbivores -0.05 1,16 0.36 0.55 0.07 1,17 0.44 0.55 -0.20 1.18 2.52 0.11
Omnivores •0.34 1,18 5.40 0.02 0.14 1,16 0.60 0.44 -0.45 1.17 2.94 0.09
Predators -0.13 1,17 3.44 0.06 0.19 1,17 4.41 0.03 -0.00 1.16 0.00 0.97
2° Consumers -0.15 1,17 4.86 0.03 0.18 1,17 4.40 0.03 -0.03 1.16 0.09 0.76

*vascSR, forbSR, forb% -  total vascular plant, forb species richness and forb percentage cover 
2sward, grass SR, grass% -  mean sward height, grass species richness and percentage cover 
3swardCV -  spatial variability (CV2) in sward height
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Figure 5-5. The relationship between the number of individuals in the (a) secondary consumer (x2 1, n 
= 4.86, p = 0.03) and (c) omnivore guild (x2 i, is= 5.40, p = 0.02) and the first principal component 
(vascular plant, forb species richness and forb cover), and (b) secondary consumer (x 2 1, n -  4.40, p = 
0.03) and (d) predator ( x 2 1, \i -  4.41, p = 0.03) abundance and the second principal component (sward 
height, grass species richness and cover). The relationship between the species richness of (e) 
secondary consumers (x 2 i, is= 4.28, p = 0.04) and the third principal component (CV sward height). 
Symbols are the total number of individuals in grazed (open circles) and ungrazed (closed circles) 
woodlands (n-10 ungrazed, 10 grazed). Lines were fitted using GLM with Poisson error distribution 
and log link (SAS).
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5.4 Discussion

The presence of grazing cattle led to a reduction in both species richness and abundance of the 

arthropod assemblage. This impact of grazing on invertebrate diversity depended on trophic 

position: the abundance and species richness of secondary consumers was significantly lower 

where cattle were present, whilst the primary consumers were unaffected. This loss of 

facultative and obligate predators led to grazed woodlands supporting, on average, fewer 

trophic levels compared to the ungrazed situation. Higher trophic levels of the arthropod 

assemblage were, as predicted, more sensitive to the presence of grazing livestock.

Cattle in this woodland system act as ecosystem engineers (Hobbs 1996; Jones et a l 1997) 

influencing the arthropod assemblage by modifying the habitat and altering plant assemblage 

structure. Grazing shifted the woodland plant community from one characterised by few 

species (including disturbance sensitive bryophytes) with an architecturally complex sward 

(dominated by Molinia caerula L. (Moench), Pteridium aquilinum (L.) Kuhn, Holcus L. spp), 

to one characterised by increased plant and forb diversity, greater cover of forbs, lower 

vegetation height and higher levels of disturbance to the soil surface. These data suggest that 

cattle through a combination of trampling and grazing suppressed competitive-dominants and 

created niche space (Grant et a l 1996; Fowler 2002). The ungrazed plant assemblage tended 

to be dominated by competitively superior plant species (e.g. Molinia caerula, Pteridium 

aquilinum, Holcus spp.). Grazing reduced the cover of these competitive-dominants (Grant et 

al 1996; Humphrey & Swaine 1997; Pakeman 2004) and increased the cover of grazing 

tolerant species (e.g. Ranunculus repens L., Trifolium repens L., Poa trivialis L.). These 

grazing-dependent changes were significantly correlated to the lower species richness and 

abundance of secondary consumers, supporting our prediction that grazing-dependent habitat 

heterogeneity would negatively affect the tertiary trophic level.

Our data lead us to suggest that the shift in plant species composition led to a loss of 

architectural complexity in the understorey plant assemblage, and thus a reduction in the 

amount and diversity of niches in grazed woodlands available to arthropod predators (Gibson 

et al 1992b; Kruess & Tschamtke 2002). Web-building spiders, for example, are a predatory 

group dependent on rigid plant structures to anchor webs and are therefore sensitive to losses 

in vertical structure due to grazing (Gibson et a l 1992b). Furthermore, cattle tend to graze 

unevenly in space (Armstrong et a l 2003) and this did create greater horizontal variability 

(quantified by the coefficient of variation) in sward height in the grazed habitat. This greater
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spatial heterogeneity was also correlated with a decline in the species richness of secondary 

consumers, and thus, for the taxa sampled, does not compensate for the overall loss of vertical 

structure and associated niches in the sward. Without a controlled experiment, however, 

where habitat structure is directly manipulated the precise mechanism governing the loss of 

higher trophic levels in these habitats remains equivocal.

As well as the mean difference between the grazed and ungrazed woodlands in species 

richness and abundance of secondary consumers there was greater variation in population 

densities of secondary consumers among the samples from ungrazed sites compared with 

among grazed locations. This implies that the habitat modification by cattle led not only to a 

reduction in the average abundance and species richness of arthropod secondary consumers, 

but also to a truncation in the potential range of predator population densities that these semi­

natural habitat patches can support.

Woodland area did not affect either species richness or abundance of the arthropod 

assemblage, or those of the feeding guilds. This was unexpected given the published 

evidence for the effect of habitat area on species persistence and diversity (Kareiva & 

Wennergren 1995; Fahrig 1997; Didham et al 1998a; Andresen 2003; Steffan-Dewenter 

2003). The absence of a species-area relationship does not appear to be an artefact of the 

sampling method as species accumulation curves imply that the majority of species in both 

the grazed and ungrazed habitat were captured. A more extensive sampling strategy over time 

may, however, have revealed the predicted species-area relationship and whether the loss of 

secondary consumers from grazed woodlands is irrevocable.

Our findings support earlier studies that show tertiary trophic levels to be more vulnerable 

than herbivores to the effects of anthropogenic disturbance (Didham et a l 1998b; Davies et 

al. 2000; Kruess & Tschamtke 2002; Purtauf et al. 2005). Specifically we show that grazing 

cattle can lead to losses of predatory species from semi-natural habitat, analogous to species 

losses due to habitat loss and fragmentation in other systems (Didham et al 1998b; Gilbert et 

al 1998; Davies et a l 2000). Few studies have looked at the effect of anthropogenic grazing 

in semi-natural habitat on trophic guild diversity (Cagnolo et a l 2002), or the impact of 

grazing on tertiary trophic levels in a naturally fragmented woodland habitat (Vanbergen et al 

2006). In this birch woodland system anthropogenic grazing is a greater influence on 

diversity than habitat area, particularly for the tertiary trophic level. Cattle introductions 

affected both primary and tertiary trophic levels (but not invertebrate herbivores) shifting
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plant and invertebrate diversity from a typical birch wood scenario to a typical grazed 

grassland assemblage.

This study provides an insight into the importance of livestock grazing for arthropod trophic 

structure, pest management and regional biodiversity. Natural habitat patches, such as 

woodlands and hedgerows, have been shown to act as refuges for insect predators from 

agricultural disturbance, contributing to the population persistence of predators, and thereby 

improving their impact on pest populations (Petit & Usher 1998; Ostman et al 2001; 

Marshall & Moonen 2002; Thies et al 2003). The use of these natural woodland patches for 

agricultural grazing may have negative consequences for the sustainable biological control of 

insect pests in adjacent agricultural land. Grazing livestock in primary and secondary semi­

natural forest is known to affect invertebrate diversity (Bromham et al 1999), mutualistic 

(Vazquez & Simberloff 2003) and antagonistic (Vanbergen et a l 2006) interactions. This 

paper demonstrates that the potentially high contribution - due to the regionally large area 

covered by these birch woods (Woodcock et al 2003) - of these secondary woodland patches 

to regional biodiversity is, depending on trophic position, both promoted (plants) and eroded 

(invertebrates) by their use for livestock production. Maintaining a balance between livestock 

production and biodiversity conservation (i.e. the number of these semi-natural woodlands 

used for grazing should be offset against those set-aside) would produce at a regional level a 

mosaic of management and habitats allowing biodiversity and economic needs to coexist.

Livestock grazing is often used as part of nature reserve management in Europe to promote 

restoration of habitats and species conservation (WallisDeVries & Raemakers 2001; 

Armstrong et a l 2003; Pykala 2003; Poyry et a l 2004). Such grazing management regimes 

are frequently targeted at desired plant communities (Bokdam & Gleichman 2000; Pykala 

2003) and associated Lepidoptera populations (WallisDeVries & Raemakers 2001; Poyry et 

al 2004), and it is the impact of the management on these target groups that are measured. 

This study and others (Gardner et al 1995; Evans et a l 2005; Woodcock et a l 2005) show 

that livestock grazing can alter habitat structure with direct, negative consequences for 

populations of secondary consumers. There should, therefore, be more consideration for the 

consequences of conservation grazing on non-target species, and particularly tertiary trophic 

levels, as it could lead to changes in the trophic structure of the community. Monitoring of 

biodiversity restoration measures should encompass a diverse range of taxa and trophic levels 

to assess accurately the ramifications of conservation grazing for the structure of the wider 

food-web.
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CHAPTER 6

C onsequences  for  h o st-parasitoid  interactions of grazing-d ependent

HABITAT HETEROGENEITY d

A. J. Vanbergen13 R. S. Hails2 A. D. Watt1 and T. H. Jones3

1 Centre for Ecology & Hydrology Banchory, Hill of Brathens, Banchory, AB31 4BW, UK; 2 Centre 
for Ecology & Hydrology Oxford, Mansfield Road, Oxford 0X1 3SR, UK; 3 Cardiff School of 
Biosciences, Cardiff University, Cardiff, CF10 3TL, UK

Environmental heterogeneity can produce effects that cascade up to higher trophic levels and 

affect species interactions. We hypothesised that grazing-dependent habitat heterogeneity and 

grazing-independent host plant heterogeneity would directly and indirectly influence a host- 

parasitoid interaction in a woodland habitat. Thistles were randomly planted in 20 birch 

woodlands, half o f  which are grazed by cattle. The abundances o f two species o f seed 

herbivore and their shared parasitoid were measured, and related to habitat and host-plant 

heterogeneity. The presence o f cattle grazing created a structurally and compositionally 

distinct plant assemblage from the ungrazed semi-natural situation. Grazing did not affect 

the number or dispersion o f the host plant underpinning the host-parasitoid interaction. The 

density o f  one insect herbivore, Tephritis conura and its parasitoid Pteromalus elevatus was 

significantly increased by the presence o f cattle; but another herbivore, Xvphosia miliaria 

was unaffected. Percent parasitism o f  T. conura was increased in grazed habitat occurring at 

twice the rate found in ungrazed habitat. The increase in T. conura abundance was correlated 

with increased species richness and cover o f  forbs in grazed sites. This effect o f  grazing- 

dependent habitat variation on host insect density cascaded up to parasitoid density and 

percent parasitism. Habitat heterogeneity had a further direct, positive effect on parasitoid 

density and percent parasitism after controlling for host insect density. Independent o f  

grazing, heterogeneity in host plant flowering, architecture and stature further affected T. 

conura and its parasitoid's densities. Parasitoid density was also affected by the dispersion o f  

the host plant. A combination o f habitat and host-plant scale environmental heterogeneity 

influenced a host-parasitoid interaction indirectly and directly, providing a rare example o f

d Published in Journal of Animal Ecology (2006) 75 789-801
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an anthropogenic disturbance positively affecting a tertiary trophic level This finding 

highlights the need to consider not only the importance o f  bottom-up effects for top-down 

processes, but also the role o f  environmental heterogeneity arising from anthropogenic 

disturbance for trophic interactions like parasitism.
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6.1 Introduction

Trophic cascades occur when one species (or group of species) indirectly affects a second 

species (or group of species) by influencing the abundance or biomass of a third, connected to 

the first two by trophic interactions (Rosenheim et a l 1993). The indirect effect of predators 

on plants mediated via impact on herbivore populations is one type of trophic cascade 

(Gomez & Zamora 1994; Moran et al. 1996; Schmitz 2003). Typically these studies focus on 

simple interaction chains (Matsumoto et al 2003) or webs (Finke & Denno 2004), and 

examine the effect of top predators on the density or behaviour of other predators (Rosenheim 

et a l 1993; Lang 2003) and herbivores (Krivan & Schmitz 2004). Fewer studies have 

investigated the extent to which such relatively simple food chains may be affected by 

perturbation of the wider community or habitat in which the interaction chain is embedded 

(Chase 1996; Jones et a l 1997; Grabowski 2004; Preisser & Strong 2004).

Cattle can significantly alter plant communities and habitats (Hobbs 1996; Rambo & Faeth 

1999). Cattle grazing can suppress competitive dominants and facilitate the emergence of a 

distinct, more diverse plant community (Rambo & Faeth 1999; Fowler 2002; Pykala 2003), 

and affect higher trophic level diversity and abundance (Gibson et a l 1992; Kruess & 

Tschamtke 2002b; Woodcock et a l 2005). Studies examining the effect of cattle grazing on 

species interactions are less common (Kruess & Tschamtke 2002; Vazquez & Simberloff 

2003, 2004). Cattle grazing in Argentine forests, for example, disrupted pollinator-plant 

mutualism webs via the loss of a number of “keystone interactions” (Vazquez & Simberloff 

2003) and for one plant species cattle-driven changes to plant population density affected 

plant reproduction by reducing pollen deposition by insects (Vazquez & Simberloff2004).

Parasitism has the potential to be affected by the cascading effects of cattle ecosystem 

engineering (Jones et a l 1997; Kruess & Tschamtke 2002b) as environmental heterogeneity 

at both coarse (e.g. habitat) and fine scales (e.g. host plant) can affect host-parasitoid 

interactions. Forest fragmentation is known to influence parasitism rates (Roland & Taylor 

1997); and isolated 'habitat fragments' tend to support reduced parasitoid diversity and 

percent parasitism compared with contiguous habitat (Kruess & Tschamtke 1994). Host-plant 

patch size (Sheehan & Shelton 1989; Doak 2000), patch isolation (Doak 2000), plant species 

identity (Roland 1986; Englishloeb et a l 1993) and plant architecture (Gingras & Boivin 

2002; Gingras et a l 2003) affect both the pattern and level of parasitism. In summary, the
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effect of spatial and structural heterogeneity at lower trophic levels, and at different scales, 

can affect parasitoid density and parasitism rates.

In this present study we assess the impact of grazing by cattle in birch woodlands, and the 

environmental heterogeneity it generates, on a simple thistle-seed herbivore-parasitoid 

interaction chain. Independent of grazing effects we also evaluate the influence of host-plant 

heterogeneity (e.g. architecture) to this same interaction chain. The only previous study, to 

our knowledge, to consider the effects of grazing for host-parasitoid interactions was carried 

out in anthropogenic grassland (Kruess & Tschamtke 2002b). The present study considers the 

importance to a host-parasitoid interaction of habitat heterogeneity arising from 

anthropogenic disturbance of semi-natural woodland.

We hypothesised, firstly, that cattle act as ecosystem engineers in birch woodland fragments 

with indirect, cascading and direct effects on the host-parasitoid interaction. Indirect, 

cascading effects on host insect and parasitoid populations would arise as a result of cattle 

grazing and trampling reducing plant competitive exclusion, creating niche space and thus 

increasing the density and evenness in the thistle distribution. We predicted that: i) the 

presence of cattle would increase the density, and create a more even dispersion, of thistles 

compared to ungrazed woodlands; ii) parasitoid density would be positively correlated to host 

insect density at the individual host plant and habitat scale; and iii) an increase in host insect 

and parasitoid densities, and the amount of parasitism, will result from the greater density and 

more even dispersion of host-plants in grazed woods. We also predicted that cattle would 

modify the woodland habitat producing a more diverse, compositionally and structurally 

different plant assemblage compared to the ungrazed woodlands. This grazing-dependent 

habitat heterogeneity would directly affect the abundance of the two species of seed 

herbivores, their shared parasitoid and the amount of parasitism.

Secondly, we hypothesised that grazing-independent host-plant heterogeneity (stature, 

architecture and proportion of open inflorescences) would affect the density of both host 

insect and parasitoid populations with the prediction that taller, bushier plants with more 

flowers will support greater densities of herbivores and parasitoids, and increased parasitism.
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6.2 Methods

6.2.1 Tri-trophic system

The marsh thistle Cirsium palustre L. is a multi-stemmed biennial ranging from 50 to 120cm 

in height with composite flowerheads clustered at the end of each stem. Cirsium palustre 

tends to have an aggregated dispersion where it occurs naturally (Williams et al. 2001). 

Flowering occurs from early June to mid-September and seed herbivores attack the 

flowerheads - the most common of which are tephritid flies (Diptera: Tephritidae). The adult 

tephritid fly inserts its eggs among the florets of recently opened flowerheads and the larva 

burrows into the flowerhead where it feeds on the receptacle and seeds (Janzon 1984; Jones et 

al 1996). Two tephritid species were considered. Tephritis conura Loew is univoltine with 

gregarious larvae (up to seven conspecific larvae per capitulum) feeding during June and July, 

and the adult emerging in August to over-winter (Janzon 1984; White 1988; Romst6 ck-V6 lkl 

1990a). Xyphosia miliaria Schrank, on the other hand, is generally solitary (occasionally two 

conspecific larvae per capitulum) and bivoltine: the first generation completes larval 

development and emerges as an adult between July and September, the second completes 

larval feeding by the autumn overwintering in the final instar to pupate in spring, and emerge 

as the adult fly between May and July (White 1988). In Britain, T. conura has also been 

recorded feeding on Cirsium heterophyllum (L.) Hill (White 1988), a species not seen in the 

sites studied here. The alternative host plant of X. miliaria, which occurred in some of the 

grazed study sites, is Cirsium arvense (L.) (White 1988). The tephritids share a parasitoid 

Pteromalus (syn: Habrocytus) elevatus (Walker) (Hymenoptera: Pteromalidae). This 

endoparasitoid probes the thistle capitula with its ovipositor and deposits eggs externally on 

the tephritid larvae (Hoebeke & Wheeler 1996). The peak in parasitoid oviposition occurs 

during early to mid-August (Jones et al 1996). The parasitoid overwinters within the larval 

host (yielded from X  miliaria and late season T. conura) or possibly as an adult (when 

yielded from early season T. conura) (AJ.Vanbergen. pers.obs).
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Plate 6.1. Pteromalus elevatus

Plate 6.2. Xyphosia miliaria, one 
of the two tephritid species
stu d ied  h ere

6.2.2 Sites and experimental design

20 birch (Betula pendula /  pubescens) woodland sites were selected in the Deeside region of 

Aberdeenshire (57°3.0'N, 2 30.2'E - 57°3.3'N, 2 57.9'E) according to whether they supported 

existing populations of C. palustre and to the presence (n = 10) or absence (n = 10) of 

livestock grazing. Care was taken to ensure that sites selected were not geographically 

confounded (Figure 5-1). Livestock in the grazed sites were predominantly cattle (n = 10), 

with occasional and additional grazing by sheep (n = 3) and horses (n = 1), and this 

management had been in place for at least the preceding 10 years. The low incidence of 

grazing by wild ungulates (i.e. roe deer) was not measured because it was assumed to be of 

minimal importance when compared with the intensive livestock management. No other 

systematic management (e.g. logging) occurred at either grazed or ungrazed sites. At the end 

of April (coincident with the date of birch budburst) eight second-year C. palustre thistles 

were transplanted, from two nearby sites, into each of the woodland locations. Within each 

site replicate plants were randomly assigned to a position within a 4 x 4 grid (15m2) with each 

point on that grid separated by 5m. The centre of the grid was situated at least 50m from the 

woodland edge and, at most, 50m from the pre-existing population of thistles. Prior to 

flowering cattle trampling destroyed some replicate thistles (18 %) and neighbouring thistles 

of local origin acted as replacements. No evidence of vertebrate grazing was seen on 

experimental thistles during the course of the experiment.

6.2.3 Insect abundance

Colonisation of the thistles by both the tephritid herbivores (X. miliaria and T. conura) and 

their shared parasitoid (P. elevatus) was assessed by bagging and excising the thistle stem (14 

- 15 August 2003). 12 seed heads were randomly selected from each bagged thistle (160), a 

total of 2,112 flowerheads, and dissected for tephritid pre-pupae or pupae. These were
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removed and placed in labelled Eppendorf™ tubes to rear-on the adult tephritid or parasitoid 

within the host. Identification ofX.  miliaria and T. conura was based on White (1988) and P. 

elevatus on (Hoebeke & Wheeler 1996).

6.2.4 Habitat variables

Six lm 2 quadrats per site were randomly placed on points on the aforementioned grid not 

occupied by experimental thistle replicates, and an assessment was made in each quadrat of a 

range of field layer variables (28 July - 12 August 2003). The species richness of functional 

groups (forbs, grasses) and total vascular plant richness was determined, and the percentage 

cover for each vascular plant species and functional group (forbs, grasses, bryophyte) visually 

estimated. The proportion of bare, disturbed soil surface arising from cattle trampling was 

also recorded in each quadrat. The percentage cover of the tree canopy above each quadrat 

was estimated using a canopy densiometer (Forestry Suppliers Inc. USA) and at the four 

comers of each quadrat the maximum sward height (mm) was recorded. The area of each 

birch woodland fragment was determined from digitised maps (Ordnance Survey, UK) using 

GIS (ArcGIS) (Figure 5-1).

6.2.5 Host p lant variables

Towards the end of the adult tephritid activity period (20 -  25 July 2003) a number of host- 

plant level parameters were measured to quantify the effect of heterogeneity between 

individual plants on insect abundance and parasitism rates. The structure of each thistle 

replicate was quantified by measuring: the height (cm) of the stem (or tallest stem in case of 

multi-stemmed individuals), the architectural complexity (number of stems plus branches) and 

the proportion of open inflorescences. The degree to which the density and distribution of the 

pre-existing C. palustre populations in each birch wood affecting colonisation of experimental 

thistles was assessed. C. palustre density was mapped in a 100m quadrat centred on the 

experimental grid. The quadrat was sub-divided into 5m2 cells, giving a total of 400 cells per 

100m , and the number of pre-existing thistles in each cell was recorded. The density and

aggregation (s /  x )  (Hassell et al. 1991) of C. palustre host-plants was derived at two spatial 

scales (100m2, 25m2) around the experimental thistles, set by what is known about tephritid 

and pteromalid maximum dispersal distance (Jones et al. 1996), and these data were used in 

subsequent tests.
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6.2.6 Statistical analysis

6.2.6.1 Effect of grazing on the habitat and plant assemblage

Whether mean habitat variables between the grazed and ungrazed sites were significantly 

different was determined with Wilcoxon signed-rank tests. Plant assemblage structure was 

assessed using redundancy analysis (RDA; CANOCO version 4.5); a constrained form of 

principal components analysis (PCA) that identifies trends in the scatter of species data that 

are linearly related to a set of constraining, explanatory variables (ter Braak & Smilauer 1988; 

Jongman, ter Braak & van Tongren 1995). Vascular plant species with <10 % cover 

(constituting only 1% of the total vegetation) when summed across all sampled sites were 

removed from the data set to avoid the RDA being biased by species that occurred only in a 

limited number of sites; data were log transformed prior to analysis (ter Braak & Smilauer 

1988; Jongman et a l  1995). RDA was used to relate the percentage cover of vascular plant 

species to measured explanatory variables (canopy density, sward height, proportion of bare 

and trampled soil, bryophyte and leaf-litter cover). Variables derived from the plant species 

data (forb and grass percentage cover, vascular plant species richness) were fitted as 

supplementary variables only in order to illustrate further trends in the plant assemblage and 

do not affect the variance explained by the RDA of the vascular plant assemblage. The 

significance of the explanatory variables in structuring the plant assemblage was determined 

with a forward selection procedure using Monte-Carlo tests constrained within sites (9999 

permutations). Thus the model presented is a partial redundancy analysis (pRDA) controlling 

for site-level variance when assessing the impact of grazing-dependent habitat variation on 

the plant assemblage.

6.2.6.2 Effect of grazing on thistles, herbivore and parasitoid populations

Data were analysed using generalised linear mixed models (GLMM) (SAS version 8.01, SAS 

Institute) at two scales: i) the site (n=20) to test for treatment (grazed or ungrazed) and cattle- 

dependent habitat effects, and ii) individual plants (n=160) nested within site to test for host- 

plant effects. Dependent variables were host-plant (C. palustre) density and aggregation (s /

x ), counts per plant and mean counts per site of tephritid (X. miliaria and T. conura) and 

parasitoid (P. elevatus) populations. Parasitism was modelled with the count of P. elevatus as 

the dependent variable offset against the log transformed count of host insect pupae. Poisson 

error distributions were fitted to all count data except mean parasitoid counts as these data had 

residuals that were normally distributed. Solution of fixed explanatory (treatment, habitat and
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host-plant variables, host insect density) and random (categories: ‘site’ and ‘thistle nested 

within site’) effects was estimated by residual maximum likelihood (REML) (Schall 1991; 

Elston et a l 2001). Denominator degrees of freedom were estimated using Satterthwaite’s 

approximation (Littell et a l 1996). Details of the models run to test our hypotheses are 

summarised in Table 6-1. Model simplification was by step-wise elimination of the least 

significant term until the most parsimonious model was found and F-ratios of fixed effects 

using adjusted sums of squares (Type 3 tests) are reported. To assess the effect of cattle- 

dependent habitat heterogeneity on the abundance of tephritids and parasitoid, and percent 

parasitism the term ‘treatment’ was replaced with specific habitat variation (e.g. plant species 

richness) between grazed and ungrazed sites. Owing to inter-correlation between habitat 

variables (Table 6-2) the separation of their effects by step-wise multivariate regression was 

confounded. We therefore performed PCA on these habitat data. The orthogonal PCA axes 

derived (which are uncorrelated with each other, but principally correlated with specific 

habitat variables) were then used as the fixed effects in the models. This was done to separate 

the effect of these inter-correlated habitat variables on the insect abundance and reduce the 

number of explanatory variables in an ecologically meaningful manner. Similarly variables 

describing heterogeneity between host-plants were inter-correlated (Table 6-2) and we treated 

these in the same way.
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Table 6-1. Structure of GLMM models run to test the effect of treatment (cattle presence or absence), grazing-dependent heterogeneity, host-plant 
heterogeneity, host-insect density on host-plant, tephritid seed herbivore, parasitoid abundance and the amount of parasitism in birch woodlands.

Test Dependent Scale Independent

Effect of grazing on host-plant
Host-plant density Habitat (25 & 100m ) Treatment
Host-plant aggregation Habitat (25 & 100m2) Treatment

Effect of host-plant distribution on insects
Host-insect count Habitat (25 & 100m ) Treatment, Host-plant density or aggregation
Parasitoid count Habitat (25 & 100m2) Treatment, Host-plant density or aggregation
Parasitism Habitat (25 & 100m2) Treatment, Host-plant density or aggregation

Effect of cattle presence on insect density
Host-insect count Habitat Treatment
Parasitoid count Habitat Host insect count, Treatment
Parasitism Habitat Treatment

Host-parasitoid correlation
Mean parasitoid count Habitat Mean host insect count, Treatment x Mean host-insect count
Parasitoid count Host-plant Host-insect count

Effect of cattle-dependent habitat 
heterogeneity

Host-insect count Habitat PCA1, PCA2
Parasitoid count Habitat Host-insect count PCA1, PCA2
Parasitism Habitat PCA1, PCA2

Effect of host-plant heterogeneity
Host-insect count Host-plant PCA1, PCA2
Parasitoid count Host-plant Host-insect count PCA1, PCA2
Parasitism Host-plant PCA1, PCA2



Table 6-2. Inter-correlation between birch habitat and host-plant variables. Values are Pearson’s correlation coefficients (SAS version 8.01) P<0.05*, 
P<0.01**, PO.OOl***. Habitat variables are the percentage cover of bare soil, forbs, grasses and bryophytes, tree canopy density (%), height (mm) of the 
vegetation (Sward), and the number of vascular plant species (Plant S), forb species (Forb S) and grass species (Grass S). Host-plant variables are: 
architecture - the total number of stems and branches per plant, height - the height (cm) of the tallest stem of each plant, and inflorescence - the proportion of 
flowers open by the end of the adult tephritid activity period.

Habitat Sward Plants ForbS Grass S Bare soil Forb Grass Bryophyte

Canopy 0.05 -0.59*** -0.41*** -0.50*** -0.18* -0.20** -0.13 0.44***

Sward -0.36*** -0.54*** 0.16 -0.48*** -0.49*** 0.31*** -0.10

Plants 0.86*** 0.56*** 0.47*** 0.43*** -0.20** -0.33***

ForbS 0.27** 0.52*** 0.69*** -0.30*** -0.39***

Grass S 0.27** 0.13 0.42*** -0.52***

Bare soil 0.47*** -0.09 -0.38***

Forb -0.16* .044***

Grass -0.57***

Host-plant Arch. Height

Inflorescence 0.29** 0.31***

Architecture 0.49***
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6.3 Results

6.3.1 Effect o f  cattle on the p lant assemblage and host-plant

The presence of cattle in birch woodlands altered the plant assemblage in this habitat. The 

grazed sites had a greater species richness of vascular plants, and forbs in particular, 

compared to ungrazed locations (Table 6-3). The percentage cover of bryophytes (principally 

Hylocomium splendens (Hedw.) Br. E ur- an undercanopy species) was significantly 

decreased in the grazed locations with a concomitant increase in the overall percentage cover 

of forbs (particularly genera such as Ranunculus L. and Trifolium L.) (Figure 5-4, Table 6-3). 

In addition, grazed sites had a less dense tree canopy, a greater proportion of bare earth on the 

soil surface (a consequence of trampling by cattle) and a lower mean sward height compared 

to the ungrazed situation (Figure 5-4, Table 6-3).

Plant assemblage structure was affected by the presence of grazing livestock; pRDA revealed 

a clear separation between plant assemblages depending on whether they were grazed or not 

(Figure 5-4). The axes of the pRDA were significant (Monte-Carlo global permutation tests: 

first canonical axis: P  = 0.008, all canonical axes: P  = 0.0006) and it was the first axis of the 

pRDA that explained most of the variation (eigenvalue = 0.08) in the plant species 

assemblage (Figure 5-4). This primary axis of variation was positively correlated with 

increasing bryophyte percentage cover (correlation coefficient = 0.74), tree canopy density 

(0.56), plant litter cover (0.56) and average sward height (0.50), and negatively correlated 

with the amount of disturbed and trampled soil (-0.56). These fitted environmental variables 

explained 14% of the total variance in the plant species percentage-cover data. Plant 

assemblages in grazed sites were positively related to greater amounts of soil disturbance 

(Monte-Carlo P  = 0.04, Figure 5-4) and negatively associated with lower levels of bryophyte 

cover (P = 0.004, Figure 5-4), tree density (P = 0.003, Figure 5-4), sward height (P = 0.04, 

Figure 5-4) and reduced amounts of plant litter on the soil surface (P = 0.02, Figure 5-4). 

Grazed plant assemblages were characterised by high species diversity and forb percentage 

cover (Figure 5-4). There was no statistical support for the prediction that the density or 

dispersion of thistles was affected by the presence of cattle at any of the spatial scales 

examined (Table 6-4).
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Table 6-3. Wilcoxon signed-ranks comparison of mean habitat variables from grazed (n =10) and ungrazed (n =10) sites.

Variable Mean SD Z P
Grazed Ungrazed Grazed Ungrazed

Plant species richness 26.3 16.8 6.3 5.1 2 .8 8 0 .0 0 2

Grass species richness 7.4 6 .0 1 .8 1.9 1.34 0.09
Forb species richness 15.5 6.4 4.1 3.9 3.41 0.0003
Bare ground (%) 18.0 1 .2 0 .1 0 .0 2.82 0 .0 0 2

Sward height (mm) 347.1 503.8 161.7 176.1 -1.85 0.03
Grasses (%) 76.9 76.0 14.1 30.7 -0.57 0.285
Forbs (%) 42.6 13.7 2 0 .1 8 .6 3.21 0.0007
Bryophytes (%) 7.3 26.0 7.3 6 .6 -2.83 0 .0 0 2
Canopy density (%) 63.0 87.4 0.3 0 .1 -1.70 0.04
Table 6-4. The effect of treatment (grazed or ungrazed woodland) on the density and aggregation of C. palustre host-plants at two spatial scales (100m2, 
25m2) centred on the experimental grid and effect of host-plant density and aggregation on the abundance of two seed herbivores (X. miliaria, T. conura) their 
parasitoid P. elevatus and the proportion of parasitized T conura. F-ratios and P- values are from GLMM with Poisson errors and log link, f P = 0.05 ** P < 
0 .01.

Thistle Grazed Ungrazed Treatment X. miliaria T. conura P. elevatus Parasitism

25 m2 Mean (SD) F (d.f.) F (d.f.) F (d.f.) F (d.f.) F (d.f.)
Density 4.90(5.28) 3.60 (5.99) 0.01 (1,14) 3.94(1,18) 0.25 (1,14) 0.00(1,13) 0.87(1,10)

Aggregation 1.28(1.16) 2.19 (1.71) 0.55(1,13) 1.25(1,11) 2.47(1,15) 10.82 (1,18)** 9.98(1,18)**

1 0 0  m2

Density 58.0 (34.8) 73.8 (85.6) 0.16(1,17) 3.89(1,11) 0.02(1,15) 0.00(1,15) 0.92(1,15)
Aggregation 3.82 (2.23) 5.03 (3.16) 0.55(1,16) 2.80(1,17) 1.57(1,17) 4.50 (l,13)f 3.48(1,16)
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6.3.2 Effect o f  cattle presence on tephritid and parasitoid populations

The two tephritid species dominated the endophagous capitulum fauna; only rarely were 

microlepidopteran and hymenopteran (Palloptera spp.) larvae found in samples. The 

response of the tephritid herbivores to the presence of cattle in birch woodlands contrasted 

strongly: Xyphosia miliaria was not affected by the presence of grazing livestock (Table 6-5, 

Figure 6 - la) while Tephritis conura increased in number in grazed compared to ungrazed 

birch woodlands (Table 6-5, Figure 6 -la). Parasitoid abundance was also significantly 

affected by cattle presence with greater numbers found in grazed woodlands compared with 

the ungrazed situation (Table 6-5, Figure 6 - la). Furthermore, the percentage of T. conura 

pupae parasitised was significantly higher in grazed woodlands compared with ungrazed 

woodlands (Figure 6 -lb, Fj, is = 9.69, P  = 0.006), suggesting this increase in parasitism could 

not be solely explained by increasing host insect abundance.

6.3.3 Tephritid-parasitoid interactions

There was a strong, positive association between T. conura and parasitoid number at the scale 

of host-plant (Figure 6-2a, Fi, ng = 82.73, P  < 0.0001) and woodland site (Figure 6-2b, Fi, ig = 

69.87, P < 0.0001). Parasitoid abundance was significantly affected by the interaction 

between host insect number (T. conura) and cattle presence or absence at the woodland site 

scale (T. conura x treatment: Fi; i8 = 9.91 P  = 0.006) with parasitism of T. conura at grazed 

sites occurring at more than twice the rate found in ungrazed sites (Figure 6-2b). Parasitoid 

abundance was not correlated with X. miliaria abundance either at the host-plant (Fi, isg = 

0.82, NS) or woodland site (Fj, ig = 0.03, NS) scales. There was no correlation between the 

abundance of the tephritid herbivores at the host plant scale (Fi, isg = 1.83, NS) or at the scale 

of the woodland site (Fi, ig= 0.49, NS).
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Table 6-5. The effect of grazing, cattle-driven environmental and host-plant heterogenity on the abundance (counts) of two tephritid herbivores Xyphosia 
miliaria, Tephritis conura and their parasitoid Pteromalus elevatus. Summary of GLMM models (SAS version 8.02) with Poisson error structure and log link 
function, F-ratios of significant fixed effects adjusted to account for other significant variables, non-significant terms were eliminated in step-wise manner. 
Due to inter-correlation between habitat and host plant variables PCA axes scores of covariates were obtained and used as explanatory terms in the model. 
Principal components correlated with the orthogonal axes scores are given in parentheses (+ vascSR - plant species richness, + forbSR -  forb species richness, 
+forb -  % cover of forbs, + Arch -  Host-plant architecture (number of branches and stems per thistle), +Flower - % of open inflorescences during the adult 
flight period, +Height -  height (cm) of the thistle flower stalk).

Fixed effect X, miliaria T. conura P. elevatus

intercept estimate df F P intercept estimate df F P intercept estimate df F P

Treatment
(Grazed or Ungrazed) -0.89 -0.21 1,14 0.11 0.74 -1.64 1.61 1,17 7.75 0.012 -2.98 1.97 1,18 12.37 0.003

Habitat
T. conura density -2.72 0.24 1,37 49.15 <.0001
PCA1
(+vascSR, +forbSR, +forb) -1.03 0.01 1,13 0.00 0.97 -0.85 0.45 1,17 9.18 0.007 0.38 1,15 6.60 0.02

PCA2
(+grassSR, +grass,+sward) 0.23 1,16 0.92 0.35 0.16 1,24 0.49 0.49 0.01 1,19 0.00 0.97

Host plant
T. conura density 
PCA1 (+Arch, +Height) 
PCA2 (+Flower)

-0.96 -0.16
0.02

1,131
1,141

2.18
0.01

0.14
0.92

-0.88 0.44
0.80

1,144
1,138

6.68
10.25

0.01
0.002

-2.89 0.21
0.79
0.84

1,31
1,138
1,80

39.19
10.59
5.30

<.0001
0.001
0.024
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Figure 6-1. The effect o f the presence of cattle grazing on (a) the abundance o f two tephritid 
herbivores (Tephritis conura FJt ]7 = 7.75 P = 0.012 and Xyphosia miliaria Fjt 14 = 0.11, NS) and their 
shared parasitoid (Pteromalus elevatus Fii2j = 8.55, P = 0.008), and (b) the proportion of parasitized T. 
conura (Fj, 2o = 8.98, P = 0.007). Mean values ± SE derived from 10 grazed and 10 ungrazed birch 
woodland sites.
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Chapter 6. Host-parasitoid interactions and grazing-dependent habitat heterogeneity

Figure 6-2 Relationship between the abundance of the parasitoid P. elevatus and its host T. conura at 
the scale of (a) the individual host plant (Fi, us = 82.73, P < 0.0001), and (b) the woodland site (T. 
conura Fi, ]8 = 69.87, P < 0.0001, T. conura x treatment Fi, ]8 = 9.91 P = 0.006). Fitted lines from 
GLM with normally distributed error distribution.
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6.3.4 Cattle habitat engineering effect on tephritid populations

The compositional changes to the plant assemblage driven by cattle grazing directly affected 

the T. conura population. When T. conura abundance was modelled against the orthogonal 

PCA axes of the habitat variables it was the first ordination axis - positively correlated with 

forb species richness (eigenvector = 0.46), plant species richness (eigenvector = 0.45) and 

forb cover (eigenvector = 0.38) - that was significantly and positively correlated with the 

numbers of this herbivore (Table 6-5, Figure 6-3). The second PCA axis - correlated with the 

percent cover (eigenvector = 0.56) and species richness of grasses (eigenvector = 0.43) and 

average sward height (eigenvector = 0.43) -  did not correlate with T. conura density. X. 

miliaria was not significantly affected by either of the PCA axes (Table 6-5). The woodland 

area had no significant effect on the abundance of either herbivore {T. conura Fi, n  = 0.26, 

NS, X. miliaria Fi, 12 = 3.50, NS).

6.3.5 Cattle habitat engineering effect on the parasitoid population

Grazing-dependent changes to the composition of the plant assemblage both directly and 

indirectly (via changes in host insect density) affected the highest trophic level. The 

abundance of the parasitoid, P. elevatus, was positively and significantly correlated with the 

first PCA axis (positively correlated with vascular plant species richness, forb species richness 

and percent cover) (Figure 6-3). This is partially explained by the observed increase in floral 

richness cascading up to the parasitoid population via changes to host-insect density (Table 6 - 

5, Figure 6-2b). There remained, however, after accounting for host density, a direct and 

positive effect of this grazing-dependent habitat variation on parasitoid abundance (Table 6-5, 

Figure 6-3). Furthermore percent parasitism (proportion of T. conura pupae parasitised) in 

these woodlands was also positively related (Fi, 17 = 6.85, P = 0.02) to this grazing-dependent 

habitat variation represented by the first axis of the PCA. The woodland area had no 

significant effect on parasitoid abundance (Fi, 17 = 0.09, NS).
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Figure 6-3 Relationship of T. conura and P. elevatus abundance to the first principal component of 
grazing-dependent habitat heterogeneity (correlated with plant (vascSR) and forb (forbSR) species 
richness and forb percentage cover (forb%)). T. conura F] n = 9.18, P = 0.007; P. elevatus Fi 15 = 6.60, 
P = 0.02. Fitted line derived from GLMM with Poisson error structure and log link function.
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6. S.6 Host-plant level effects on tephritid and parasitoid populations

Plant structural variables, namely the height of the stem, architecture (number of branches and 

stalks per thistle) and the proportion of open inflorescences per thistle were significantly inter­

correlated (Table 6-2). None were significantly affected by the presence of cattle (architecture 

Fi.is = 0.14 NS, height F^is = 0.46 NS, inflorescences Fi,i8 = 0.17 NS). Both the first 

(correlated with plant architecture - eigenvector =0.61, and stem height - eigenvector =0.62) 

and second (correlated to the proportion of open inflorescences - eigenvector = 0.86) PCA 

axes were significantly and positively related of the abundance of T. conura and P. elevatus 

(Table 6-5). Taller, bushier thistles with a larger proportion of open flowers supported greater 

numbers of T. conura and, after controlling for variance due to host tephritid density, the 

parasitoid (Table 6-5). Percent parasitism was positively correlated with the first (Fi, 67 = 

12.08, P = 0.0009) and the second PCA axes (Fi, 49 = 5.72, P = 0.02). There was no 

significant effect of host-plant structure on X. miliaria abundance (Table 6-5). Furthermore, 

independent of grazing, neither tephritid herbivore was affected by the density or degree of
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aggregation of their host plants at any spatial scale measured (Table 6-4). Parasitoid density, 

however, showed a highly significant, negative relationship with the aggregation of thistles. 

Parasitoids occurred in greater numbers where the thistle distribution was more clumped at 

25m2 and marginally at the 100m2 scale (Table 6-4). The level of parasitism also increased 

where thistles had a more clumped distribution at the smallest spatial scale measured (Table

6-4).

6.4 Discussion

6.4.1 Cascading and direct effects o f  cattle on a tri-trophic system

There was no effect of cattle engineering on the density or dispersion of thistles, and therefore 

no grazing-driven cascade via the host-plant to the abundance of the higher trophic levels or 

the amount of parasitism in the tri-trophic system. The presence of cattle did, however, have 

consequences for one of the two host-parasitoid interactions studied. An increase was seen in 

the abundance of the herbivore, T. conura, and its parasitoid in the grazed compared to the 

ungrazed situation. No change was observed in the abundance of the second herbivore, X  

miliaria; the reason for the lack of a response remains unclear. This provides partial support 

for our prediction that the effects of cattle grazing would influence primary consumers. While 

cattle grazing did not initiate a bottom-up cascade from host-plant to herbivore, grazing did 

lead to an increase in T. conura abundance that did cascade up to the tertiary trophic level of 

the interaction chain. The number of T. conura was highly correlated with the increase in 

parasitoid abundance in grazed woodland and the presence of cattle doubled the parasitism 

rate contributing to the higher levels of parasitism in grazed sites.

Despite not affecting the tephritids’ host-plant, cattle did act as ecosystem engineers (Jones et 

al. 1997) facilitating (via grazing and trampling) compositional (e.g. increased plant species 

richness) and structural (e.g. decrease in tree density) changes to the wider plant assemblage 

(Hobbs 1996). The grazed woodlands had a more diverse field layer and supported a plant 

assemblage compositionally different to that in ungrazed woods. In ungrazed sites the plant 

assemblage was dominated by competitively superior plant species (e.g. Molinia caerula L. 

(Moench), Pteridium aquilinum (L.) Kuhn, Holcus L. spp.). Grazing reduced the cover of 

these competitive-dominants (Grant et al. 1996; Humphrey & Swaine 1997; Pakeman 2004) 

and facilitated a structurally simpler but compositionally diverse sward including grazing
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tolerant species (e.g. Ranunculus repens L., Trifolium repens L., Poa trivialis L.) more typical 

of open, grassland.

Changes in plant assemblage structure driven by cattle appear responsible for the observed 

changes in abundance of the higher trophic levels of the interaction chain. The abundance of 

T. conura, P. elevatus and percent parasitism were positively correlated with the first 

principal component of the habitat variables (increased plant and forb species richness, and 

forb cover). This suggests that the greater floral diversity of the grazed sward may provide 

nectar resources throughout the flight period leading to, for example, improved fecundity, 

longevity and survival (Jervis et al. 1993; RomstOck-V5lkl 1990a; Jervis 1998; Heimpel & 

Jervis 2005). Cattle, therefore, affected the host insect in an indirect manner, not mediated by 

the host-plant but by wider plant diversity, and this effect cascaded up to the highest trophic 

level, the parasitoid population. In addition to this trophic cascade there was evidence of a 

further, direct effect of habitat engineering by cattle on the parasitoid populations: after 

controlling for host insect density there remained a positive correlation between the increased 

floral richness in grazed woods, parasitoid number and percent parasitism. In contrast to 

studies that have demonstrated specific host-plant effects on parasitoids (Englishloeb et al 

1993; Van Nouhuys & Hanski 1999) this study revealed that parasitism rates occurring within 

a host-plant were in part dependent on the wider plant community diversity. This is 

analogous to studies that have found at coarser spatial scales the amount of parasitism 

occurring in a habitat patch is influenced by the composition or heterogeneity of the 

surrounding landscape (Kruess 2003; Thies et al. 2003). Parasitism is therefore sensitive to 

environmental heterogeneity from sources beyond the immediate host or habitat patch 

highlighting the potential for trophic interactions to be altered by anthropogenic disturbance.

The role of grazing in influencing host-parasitoid interactions had, as far as we are aware, 

previously been considered only in one other study which demonstrated a decline in parasitoid 

number and parasitism rates associated with intense grazing (Kruess & Tschamtke 2002b). In 

contrast, we showed a positive consequence of grazing (and the environmental heterogeneity 

produced) for parasitoid abundance and parasitism rates. This distinction may have arisen as 

a result of differences between the study systems. Kruess & Tschamtke (2002b) considered 

how intense grazing in an anthropogenic grassland habitat reduced the height of the 

vegetation and led to a decline in the numbers of insect hosts and their parasitoids. In this 

case, the introduction of cattle to birch woodlands is a perturbation of a semi-natural habitat, 

leading to a shift in the plant assemblage structure towards one more typical of open
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grassland. A consequence of this habitat modification was an increase in floral resources with 

unforeseen, positive consequences (direct and indirect) for parasitoid density and parasitism 

rates.

6.4.2 Direct and indirect host-plant effects on higher trophic levels

Given the intimate relation (reproduction and larval feeding) between both these seed 

herbivores and their host plant, heterogeneity in host plant attractiveness or larval resources 

would be expected to affect strongly on the probability of colonisation by the herbivores 

(RomstSck-Vfllkl 1990a; Williams et al 2001). T. conura density was determined by the 

number of inflorescences and overall plant size, either because the larger individual plant with 

many inflorescences is more apparent in the habitat (Prokopy 1968; Aluja & Prokopy 1993) 

or because it offers more resources in terms of mating, oviposition, and larval growth and 

survival (Romst6ck-VOlkl 1990a; Williams et al. 2001). Parasitoid population density and 

parasitism rate was also greater on larger plants with many inflorescences, partly explained by 

the correlation between host (T. conura) density and these host-plant parameters, but also by a 

direct influence of this plant level heterogeneity on the parasitoid. The failure to detect any 

relationship between X  miliaria and the various host plant structural variables is unexpected, 

particularly given the low occurrence in grazed and absence in ungrazed sites of the 

alternative congeneric host (C. arvense). One possibility is that the variables measured here 

are not those employed by X  miliaria for locating and colonising hosts.

In direct contrast to previous studies (Jones et al 1996; Williams et al 2001) there was no 

effect of the number or aggregation of the pre-existing thistle population on the abundance of 

either tephritid species. It may be that the lack of a response to host plant density or 

aggregation reflects the overall commonness of the plants in both grazed and ungrazed birch 

woods. There may be little selective pressure for these insects, despite gradients in thistle 

distribution within and between sites, to distribute themselves non-randomly as the source of 

their food is abundant overall (Jakobsen & Jjohnsen 1987). In contrast, parasitoid density and 

percent parasitism of T. conura increased in areas where thistles were aggregated. It appears 

likely, therefore, that the parasitoid uses the thistles as an environmental signal to initiate 

searching for the host insect and may find it simpler to locate host-plant patches rather than 

the more cryptic host insect (Cappuccino 1992). The difference between the response of the 

herbivore T. conura and the parasitoid to thistle aggregation may be explained as one strategy 

by the herbivore to avoid its enemy: in ovipositing randomly the herbivore may spread the
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risk of parasitism by decoupling the larval distribution from the host plant distribution in a 

predictable manner (Cappuccino 1992; Williams et al. 2001).

6.5 Conclusions

Grazing-dependent habitat heterogeneity and grazing-independent host-plant heterogeneity 

influence the studied host-parasitoid interactions in both a direct and indirect, cascading 

manner. Grazing cattle in forests can erode the strength and extent of mutualistic (Vazquez & 

Simberloff 2003) and antagonistic insect interactions (Kruess & Tschamtke 2002); however 

in this study grazing cattle more than doubled the rate of parasitism compared with the 

ungrazed scenario. This provides a rare example of a tertiary trophic level being positively 

rather than negatively affected by anthropogenic disturbance (Didham et al. 1998; Davies et 

al. 2000; Kruess & Tschamtke 2002). This was not a conventional bottom-up cascade 

because grazing did not alter the density, dispersion or architecture of the host-plants 

underpinning this host-parasitoid interaction. Instead it was grazing-driven changes to the 

diversity of the wider plant assemblage, cascading up via the insect host and acting directly on 

the parasitoid populations, which led to the observed increase in parasitism. Host-plant 

heterogeneity also affected parasitoid density and percent parasitism both indirectly (via host 

insect density) and directly. Along with scale (habitat and host-plant) and the relative role of 

vertical effects (bottom-up versus top-down) the importance of wider environmental 

heterogeneity, and not only those features intrinsic to a single food chain, must be taken into 

consideration when determining how anthropogenic environmental perturbation affects 

trophic interactions (Hunter & Price 1992; Jones et al. 1997).
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CHAPTER 7

H o st-plant  aggregation  a n d  phenology affect  parasitism  in

EXPERIMENTAL HABITAT PATCHES 6

A. J. Vanbergen1,2, T. H Jones2, R. S. Hails3, A. D. Watt1 and D. Elston4

1 Centre for Ecology & Hydrology Banchory, Hill of Brathens, Banchory, AB31 4BW, UK;2 Cardiff School of 
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Spatial habitat structure can influence the likelihood o f patch colonisation by dispersing 

individuals; sensitivity to this spatial heterogeneity often varies with trophic position. The 

resource concentration hypothesis predicts that higher specialist herbivore densities, and by 

extension their natural enemies, should occur where the habitat, the host-plant, is 

concentrated in patches. Using a tri-trophic thistle-seed herbivore-parasitoid system we 

tested whether habitat patch size, isolation and host-plant heterogeneity differentially affected 

host and parasitoid densities. 240 second-year C. palustre thistles were transplanted in 24 

blocks replicated in two sites, to create a range o f habitat patch sizes at increasing distance 

from a pre-existing source population. Coincident with peak insect oviposition the 

architecture and the phenological stage (% open inflorescences) were determined for each 

plant. The numbers o f the herbivore T. conura and parasitoid P. elevatus emerging from each 

plant were recorded. Patch area had a differential impact according to trophic position. 

Herbivores increased in numbers in the largest patches while the parasitoid was unaffected, 

although there was a slight trend for reduced parasitism in larger patches. Isolation o f  the 

habitat patch did not affect the herbivore, parasitoid or parasitism rates. Host insect density 

was a major predictor o f parasitoid number and parasitism was inversely density-dependent. 

The phenological stage o f the host-plant directly affected both herbivore and parasitoid 

populations, and interacted with patch size to increase herbivore densities in the larger 

patches. The concentration o f herbivores in the largest habitat patches, the inverse density- 

dependent parasitism, and the potential for unstable (CV2 <1) host-parasitoid dynamics in 

spatially structured habitat leads us to suggest that these large host-plant aggregations may

e Draft paper for submission to Ecological Entomology
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provide a spatial refuge from parasitoid attack. This refuge most probably arises as a 

consequence o f a differential behavioural response o f host and parasitoid to the heterogeneity 

in the plant distributions.
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7.1 Introduction

Metapopulation theory predicts that the presence of a species in a landscape is dependent on 

the balance between local extinction and colonisation of habitat patches by dispersing 

individuals (Hanski 1998). Source populations persist in more favourable habitat patches and 

the probability of colonisation of vacant patches is increased by proximity to these occupied 

habitat patches (Hanski 1998). The majority of classic metapopulation studies have focussed 

on the impact of spatial habitat structure on individual species at one trophic level (reviewed 

in Hanski (1999)); the effect of spatial habitat structure upon interactions between secondary 

and tertiary trophic levels have been examined in only a few microcosm (Holyoak 2000; 

Ellner et al 2001; Bonsall et al 2002) and field (Van Nouhuys & Hanski 1999; Weisser 

2000; Cronin 2004) studies.

The sensitivity of a species to spatial habitat heterogeneity is often dependent on trophic 

position. Predators and parasitoids are - compared with herbivores - more prone to extinction 

as a consequence of anthropogenic habitat fragmentation (Kruess & Tschamtke 1994; 

Didham et al 1998; Gilbert et a l 1998; Davies et al 2000; Spencer 2000). The factors that 

influence the colonisation of habitats in naturally patchy landscapes vary with trophic 

position; predators tend to have greater dispersal abilities and thus are likely to be less 

sensitive than herbivores to spatially sub-divided habitat (Holt 1996; Jones et a l 1996; 

Brodmann et al 1997; Ellner et a l 2001 but see Kruess & Tschamtke 2000).

For specialist invertebrate herbivores the habitat patch is most likely represented by the host- 

plant. Where host-plants are aggregated they represent to specialist herbivores a 

concentration of a food resource in a habitat patch that varies in size and quality, plant 

density, and isolation from other patches (Williams et a l 2001; Otway et a l 2005). The 

resource concentration hypothesis (Root 1973) suggests that specialist herbivores should 

attain higher densities where their host-plants are concentrated in patches; dispersing 

herbivores are more likely to locate and reproduce in, and less likely to leave, such habitat 

patches (Root 1973; Sheehan & Shelton 1989; Otway et a l 2005). Spatially patchy host-plant 

distributions produce aggregated herbivore populations and such spatial heterogeneity in 

herbivore populations can have a role in structuring parasitoid population dynamics and 

influencing parasitism rates (Jones & Hassell 1988; Pacala et a l 1990; Hassell et a l 1991; 

Dubbert et al 1998; Umbanhowar et a l 2003).
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Wider environmental heterogeneity - beyond the interaction with host insect density -  may 

also influence parasitism rates. Habitat patch size and isolation (Maron & Harrison 1997; 

Doak 2000; Kruess & Tschamtke 2000; Cronin 2004), the identity (Englishloeb et al. 1993; 

Van Nouhuys & Hanski 1999) and density (Cappuccino 1992) of the host’s food, the plant 

community diversity (Vanbergen et al. 2006), vegetation height and complexity (Kruess & 

Tschamtke 2002; Gols et a l 2005) and landscape structure (Roland & Taylor 1997; 

Cappuccino et al 1998; Kruess 2003; Thies et al 2003) are all now understood to have the 

potential to affect parasitism rates.

Using a tri-trophic system consisting of a thistle (Cirsium palustre L.), a seed herbivore 

(Tephritis conura Loew) and a parasitoid (Pteromalus elevatus (Walker)) we aimed to test 

whether habitat patch size, quality and isolation affected herbivore and parasitoid densities, 

and parasitism rates. Previous study suggested that herbivore and parasitoid differed in their 

response to host-plant aggregation -  the herbivore was unaffected by host-plant distribution 

whereas parasitism was higher where host-plants were aggregated (Vanbergen et a l 2006). 

To test further the response of this host-parasitoid interaction to habitat spatial structure we 

established a network of experimental habitat (C. palustre) patches. These habitat patches 

varied in terms of patch size (number of individual C. palustre), patch quality (host-plant 

architecture and phenological stage), and distance from a pre-existing source population.

We hypothesised, firstly, that habitat patch size and isolation would differentially affect patch 

colonisation by the host and parasitoid, and thus parasitism rates. Secondly, that host-plant 

heterogeneity would directly and indirectly (via host insect density) affect the parasitoid 

densities and parasitism rate.

7.2 Method

7.2.1 Tri-trophic system

The marsh thistle Cirsium palustre is a multi-stemmed biennial ranging from 50 to 120 cm in 

height with composite flower-heads clustered at the end of each stem. Cirsium palustre tends 

to have an aggregated dispersion where it occurs naturally (Williams et al. 2001). Flowering 

occurs from early June to mid-September and seed herbivores attack the flower-heads - the 

most common of which are tephritid flies (Diptera: Tephritidae). The adult tephritid fly inserts
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its eggs among the florets of recently opened flower-heads and the larva burrows into the 

flower-head where it feeds on the seeds and receptacle (Janzon 1984; Jones et al 1996). The 

tephritid Tephritis conura, a thistle specialist, is univoltine with gregarious larvae (up to seven 

conspecific larvae per capitulum) feeding during June and July. The long-lived adult (~9 

months) emerges in August to over-winter; mating and oviposition on thistle flowers takes 

place in the following Spring (Janzon 1984; White 1988; Romst6ck-V6lkl 1990b). In Britain, 

T. conura has also been recorded feeding on Cirsium heterophyllum (L.) Hill (White 1988), a 

species not seen in the sites studied here. Pteromalus (= Habrocytus) elevatus (Walker) 

(Hymenoptera: Pteromalidae) a parasitoid of tephritids attacks T. conura in the experimental 

study site (Vanbergen et al 2006). This ectoparasitoid species probes the thistle capitula with 

its ovipositor and deposits its eggs onto a single host larva; the emerging larvae destroy 

competitors so that a single parasitoid is reared per host (Hoebeke & Wheeler 1996). Peak P. 

elevatus oviposition (attacking other hosts) is known to occur during early to mid-August 

(Jones et a l 1996). The parasitoid either over-winters within the larval host (yielded from 

late season T. conura) or as an adult (when yielded from early season T. conura) 

(A.J.Vanbergen. pers.obs). Identification of T. conura was based on White (1988) and P. 

elevatus on Hoebeke & Wheeler (1996).

7.2.2 Experimental field sites and design

240 second year C. palustre thistles were transplanted from a nearby field location (Headinch 

57° 3.3'N 02° 57.9'W) individually into pots (25cm diameter, 20 cm height) and introduced 

as part of a randomised block (n = 24 patches) design (Figure 7-1) to two experimental sites 

(Brathens 57° 4.6'N 02° 32.2'W; Comtulloch 57° 3.9TSf 02° 55.0'W). The thistles were 

introduced prior to flowering and tephritid-parasitoid activity into the experimental sites in 

April 2004 to enable the plants to acclimate and ensure phenological asynchrony with 

colonising insects did not confound the experiment (Jones et al 1996). Previous work 

(Vanbergen et a l 2006) mapping thistle distributions identified these two experimental sites 

as supporting a pre-existing population of C. palustre restricted to a single marsh. The two 

sites supported a high (Brathens) and low (Comtulloch) population density of T. conura and 

P. elevatus (Vanbergen et al. 2006). Patches of thistles were established at the vertices of a 

square grid to create a range of habitat patch size classes: small (2 individual plants per 

patch), medium (4 plants), large (8 plants), extra-large (16 plants) at increasing distance (10, 

20 and 40m) from the pre-existing source population of C. palustre and associated T. conura 

and P. elevatus (Figure 7-1). The distance from the source population of the experimental
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patches was based on knowledge available on the maximum dispersal distances within a site 

of tephritids (upto 50m) and pteromalid parasitoids (upto 100m) (Jones et al. 1996). 

Replicate potted thistles stood in individual water trays and were watered (1L per plant) 

weekly to supplement rainfall.

Plate 7.1. Experimental 
thistle patch at 
Comtulloch

7.2.3 Tephritid and parasitoid counts

At the end of August 2004, following peak tephritid and parasitoid oviposition (Jones et al. 

1996), the flower-heads of each individual plant were excised, placed inside Organza bags, 

and transferred to an outdoor insectary at the Centre for Ecology & Hydrology (CEH) 

Banchory. Subsequently (September 2004, May 2005) the numbers of T. conura and P. 

elevatus emerging from each plant were recorded. Previous work (Vanbergen et al. 2006) 

had shown that this host-parasitoid interaction dominated the C. palustre seed head fauna, and 

other species in this study system were uncommon (e.g. Palloptera spp.) or did not influence 

the T. conura-P. elevatus interaction (e.g. Xyphosia miliaria Schrank). The total number of 

host T. conura pupae was estimated from the sum of all emerging insects and from this 

parasitism rates were calculated (number of emerging P. elevatus / total number of T. conura 

pupae). This estimate is based on the assumption that larval mortality from other sources (e.g. 

predation by microlepidopteran larvae) is likely to be insignificant (Romstock-Volkl 1990b; 

Vanbergen et al. 2006).
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Figure 7-1. Schematic diagram of the experimental C. palustre habitat patches established to create a 
range of habitat patch sizes (2,4,8,16 individual plants) at increasing distance (10, 20 and 40m) ffom 
the pre-existing source population of C. palustre and associated T. conura and P. elevatus located in a 
small marsh. The experiment was replicated in two birch woodland sites (host-plants = 120, patches = 
24). The number in the upper left hand comer of each patch denotes patch identity.
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7.2.4 Host-plant variables

Coincident with peak insect activity (late July) (Jones et al. 1996; Vanbergen et al. 2006) the 

proportion of open, inflorescences on each thistle was recorded. Thistle architectural 

complexity (sum of branches and stems per plant) was also recorded. The number of adjacent 

thistles was determined for each plant replicate to provide an index of the centrality of each 

plant within a patch.

7.2.5 Statistical analysis

Data were analysed using generalised linear mixed models (GLMM) (SAS version 8.01, SAS 

Institute) with replication at two strata: i) the habitat patch (n= 48) to test for patch size and 

isolation effects, and ii) individual plant (n = 240) to test for patch quality effects. Dependent 

variables were the count of T. conura and P. elevatus, and percent parasitism of T. conura. 

Parasitism was modelled as the proportion of emerging P. elevatus from the total host pupae
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per plant. Poisson error distributions with a Log-link were fitted to models of host insect and 

parasitoid abundance; binomial errors and logit link were applied to parasitism data. 

Available explanatory data (covariates and categorical variables) were: site (Brathens or 

Comtulloch); count of emerging host insects (T. conura) (for models of parasitoid abundance 

and parasitism rate); realised (accounting for thistle mortality) patch size classes: small (1-2 

plants per patch), medium (3-4), large (6-8), extra-large (13-15); distance from source 

population (10, 20 or 40 m); patch quality (proportion of open inflorescences, thistle 

architecture, centrality of thistle position within a patch); and unknown environmental 

gradients arising from dispersal of insects among experimental patches (column effects 1-8). 

Random categorical variables fitted were ‘block’ (n = 48) and ‘plant nested within block’ (n = 

240). Solution of fixed explanatory and random effects was estimated by residual maximum 

likelihood (REML) (Schall 1991; Elston et al. 2001). Denominator degrees of freedom were 

estimated using Satterthwaite’s approximation (Littell et a l 1996). Covariates and categorical 

variables were fitted sequentially as main effects and all two-way interactions in the following 

order: site, patch parameters (patch, isolation, column) and patch quality parameters (flowers 

open (%), architecture, centrality). Non-significant interactions and main effects were 

dropped step-wise until the most parsimonious model was found. Interactions were eliminated 

from the model prior to any constituent main effects; all F-ratios of main fixed effects (SAS 

Type 1 tests) are reported for this final model whereas interactions are only reported if 

significant. Partial residual plots were constructed to show the evidence for the effect of 

particular covariates, and include a fitted line to show the slopes, but not necessarily the 

correct intercept, of the relationships.

The square of the coefficient of variation (CV ) gives an approximation of the stability of 

host-parasitoid dynamics: the CV2 rule states that the interaction between the host and 

parasitoid will be stable if the coefficient of variation (CV ) of searching parasitoids per patch 

is greater than 1 (Pacala et al 1990; Hassell et al 1991). The C V ^ l rule was used to test for 

the potential contribution of observed heterogeneity to stable host-parasitoid dynamics 

(Hassell 2000). Because of practical difficulties inherent in collecting field data on the 

distribution of searching adult parasitoids per host patch the CV2 was estimated from the 

distribution of parasitism rather than searching parasitoid adults (Hassell 2000). The number 

of parasitoids per patch was weighted by the estimate of host pupal density (sum of emerging 

parasitoids and hosts) to control for the scale-dependent sensitivity of the CV2 criterion 

(Hassell 2000). A caveat in this case is that repeated sampling over many years would be 

needed for any conclusions on the stability of the studied host-parasitoid interaction - inferred
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from the C V ^l rule - to be fully justified (Hassell 2000). The C V ^ l rule, in this case, 

provides a means of evaluating the potential for habitat heterogeneity to influence percentage 

parasitism (Hassell 2000). The C V ^ l rule was tested at the level of the host-plant (n = 217) 

and the patch size classes (extra-large: n = 6, large: n = 6, medium: n = 12, small: n = 24).

73  Results

7.3.1 Influence o f woodland sites

A total of 3430 T. conura and 3100 P. elevatus emerged from the experimental habitat 

patches in one (T. conura: August-September 2004) and two (P. elevatus: August-September 

2004, April-May 2005) waves. The only other insect species yielded from this experiment 

was another tephritid (X miliaria) of much lower abundance (Comtulloch = 5 individuals, 

Brathens = 60) and previously shown (Vanbergen et al. 2006) to be of little importance to the 

studied host-parasitoid interaction. As shown in previous work (Vanbergen et al 2006) there 

was a strong influence of woodland site on the numbers recorded from the experimental

thistle patches of T.conura (Brathens: x = 9.4 sd = 12.0, Comtulloch: jc = 22.7 sd = 17.4,

Table 7-1) and P. elevatus (Brathens: jc= 0.9 sd=  2.2, Comtulloch x  = 28.6 sd=  22.9, Table

7-1). Proportional parasitism was similarly affected by site level differences (Brathens: x =

0.10 sd = 0.27, Comtulloch: x  = 0.55 sd = 0.19, Table 7-1). Thereafter all remaining 

categorical variables and covariates were tested after controlling for this significant site-level 

variance.

7.3.2 Habitat patch size and isolation: Influence on herbivore and parasitoid populations

The size of the habitat patch was overall a significant predictor of T. conura abundance, the 

largest patches yielding more T. conura individuals than the smaller patches (Table 7-1, 

Figure 7-2). Habitat patch size did not have a statistically significant effect upon parasitoid 

abundance or proportional parasitism (Table 7-1, Figure 7-2); nevertheless, with increasing 

patch size there appeared to be a declining mean parasitism rate (Figure 7-2). The numbers of 

T. conura or P. elevatus yielded from a habitat patch, and the proportional parasitism of T. 

conura were unaffected by the isolation of the habitat patch, tested as the distance (10, 20, 

40m) of the habitat patch from the source population (Table 7-1). Furthermore, there were no 

significant column effects on the numbers of T. conura and P. elevatus, or proportional
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parasitism (Table 7-1); therefore this study provides little evidence for significant gradients in 

insect distribution between experimental habitat patches.

Table 7-1. F-ratios of main fixed effects (SAS Type 1 tests) from a GLMM of the factors affecting 
the numbers of an herbivore T. conura, its parasitoid P. elevatus and percentage parasitism. Poisson 
error distributions with a Log-1 ink were fitted to models of host insect and parasitoid abundance; 
Binomial errors and logit-link were applied to parasitism data. Solution of fixed explanatory and 
random effects was estimated by residual maximum likelihood (REML). Denominator degrees of 
freedom were estimated using Satterthwaite’s approximation.

T. conura (n) P. elevatus (n) Parasitism (%)

Predictor F <M) p F (d-f-) P F <d.f.) p

Site 41.81(1,28) <0.0001 238.72(i, 29) < 0.0001 205.89(i, 27) <0.0001

Host density - - 12.29(i, 212) 0.0006 30. 78(i, 158) <0.0001

Patch size 3*45 (3,29) 0.03 0.69(3,17) 0.57 0.67(3,7) 0.60

Patch distance 0*58 (2,3i) 0.56 0.06 (2,18) 0.95 0.40 (7,7) 0 . 6 8

Column effect 1 -28 (7,31) 0.29 0.87(7,19) 0.55 0.38 (7,7) 0.89

Plant architecture 0.16 (1,173) 0.69 0.04(i, 140) 0.84 0.02 (1, 84) 0.90

Infloresences (n/N) 14.44 (i, i7i) 0.0002 8.25 (1,212) 0.0045 6.51 (1,134) 0.01

Plant centrality 0.26 (i, i6i) 0.61 0.01(i, 106) 0.91 f•rT00

0.82

7.3.3 Habitat patch quality: Influence on herbivore populations

The quality of the habitat patches was a significant predictor of colonisation by T. conura. 

After controlling for the significant effect of site and habitat patch size the proportion of 

flowers supported by a thistle was positively related to the abundance of T. conura (Table 7-1, 

Figure7-4a). The strength of this relationship was increased by the significant interaction 

with habitat patch size (Figure 7-5, F 3 , 1 7 9  =3.63, p  = 0.01). The slope of the relationship 

between T. conura density and the proportion of open flowers was significantly different from 

zero for large (b = 4.94, p  <0.0001) and extra -large patches (b = 1.52, p  = 0.0195), but not 

for the small (b =1.18,/? = 0.16) and medium sized patches (b = 0.37,/? = 0.76) (Figure 7-5). 

There was no influence of habitat patch size on the proportion of open flowers per thistle (F 3 , 

32 =1.37, p  = 0.27), even after controlling for site-level differences in the proportion of open

flowers (Brathens: x  = 0.62 s = 0.20, Comtulloch: x  = 0.74 s = 0.14; F i, 38 =14.90, p  = 

0.0004). The architecture of individual thistles or the position (central or edge) of the thistle 

within a patch had no affect on T. conura density (Table 7-1).
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Chapter 7. Host-plant aggregation and phenology affect parasitism

Figure 7-2. The effect of patch size classes on the mean (± SE) abundance of T. conura (F3> 29 = 3.45, 
P = 0.03), P. elevatus (F3, p = 0.69, P = 0.57) and the proportion of parasitized T. conura pupae (F3, 7 = 
0.67, P = 0.60). Data were analysed with GLMM (REML) with Poisson errors and log link for count 
data and binomial errors and logit link for parasitism data. Degrees of freedom were estimated using 
the Satterthwaite’s approximation.
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7.3.4 Host insect density: Influence on parasitoid populations

The abundance of P. elevatus was strongly and positively correlated to the total number of 

available host pupae (Figure 7-3a), even after controlling for site-level differences (Table 7- 

1). This relationship was, however, asymmetric (<1:1, Figure 7-3a) resulting in the 

percentage parasitism (parasitoid emergence / total host pupae) being inversely proportional 

to the density of emerging host T. conura (Figure 7-3b, Table 7-1). At the host-plant level 

percentage parasitism level with the potential for stable dynamics (CV2 = 1.05), but this 

potential for stability disappeared when spatial heterogeneity in habitat patch structure was 

introduced (CV2: extra-large = 0.66, large = 0.62, medium = 0.90, small = 0.87). It is notable, 

however, that the host-parasitoid interaction is closer to the values required to infer stability in 

the smaller host-plant aggregations.
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Figure 7-3. Relationship between a) P. elevatus density per host-plant and total host pupal number 
(sum of emerging T. conura and P. elevatus) (Pearson correlation coefficent = 0.91, P < 0.001) and b) 
partial residual percentage parasitism of T. conura on the linear predictor scale in response to the 
density of emerging T. conura per host-plant (Fj, 15s =30. 78, P <0.0001). Percentage parasitism data 
were analysed and lines fitted with a GLMM (REML) with binomial errors and logit link. Degrees of 
freedom were estimated using the Satterthwaite’s approximation.
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Figure 7-4. Relationship between the proportion of open inflorescences per host-plant and a) partial 
residual abundance of T. conura (Fi, = 14.44, P ~ 0.0002) and b) partial residual proportional 
parasitism (F]t 134s  6.51, P = 0.01) on the linear predictor scale. Data were analysed and lines fitted 
with GLMM (REML) with Poisson errors and log link for count data and binomial errors and logit 
link for parasitism data. Degrees of freedom were estimated using the Satterthwaite’s approximation.
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Figure 7-5. Effect on partial residual T. conura abundance of the interaction between habitat patch 
size class and the proportion of open inflorescences per host-plant (F 3, i79 =3.63, p = 0.01). Slopes of 
the relationship for extra-large (b = 1.52, p = 0.0195), large (b = 4.94, p <0.0001), medium (b = 0.37, p 
= 0.76) and small (b = 1.18, p — 0.16) patches. Data were analysed and lines fitted with GLMM 
(REML) with Poisson errors and log link for count data. Degrees of freedom were estimated using the 
Satterthwaites approximation.
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7.3.5 Habitat patch quality : Influence on parasitoid populations

P. elevatus abundance and percentage parasitism was - after accounting for host insect 

number and site differences - positively related to the proportion of open inflorescences per 

plant (Table 7-1, Figure 7-4b), but was unaffected by thistle architecture (Table 7-1) or 

position within a habitat patch (Table 7-1). Thus over and above the effect of host insect 

density there remained an effect of patch quality, specifically the proportion of open flowers 

available for oviposition by the searching parasitoid, on parasitoid number and percentage 

parasitism.
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7.4 Discussion

There was some evidence that habitat patch size did have a differential impact on the 

secondary and tertiary trophic levels of the studied food chain: the herbivore T. conura 

increased significantly in numbers in the very largest habitat patch class, while parasitoid 

numbers and parasitism rates were independent of the habitat patch size. The isolation of the 

habitat patch from the source population, contrary to our prediction and published evidence 

elsewhere (Kruess & Tschamtke 1994; Maron & Harrison 1997; Doak 2000; Cronin 2004), 

did not influence herbivore and parasitoid abundance or percentage parasitism. The 

experimental C. palustre patch sizes, therefore, established a gradient in larval resources (C. 

palustre seeds, T. conura larvae) for the dispersing seed herbivore T. conura but not for its 

parasitoid P. elevatus. This lack of a parasitoid response to host-plant patch size contrasts 

with other studies showing strong bottom-up effects on parasitism: Sheehan & Shelton (1989) 

in a study of aphid parasitism showing longer parasitoid residence times in larger habitat 

patches and where prey density was greater; Dubbert et a l (1998) similarly showed a positive 

correlation between parasitism and the proportion of plant shoots attacked by host insects -  it 

being easier to locate and parasitise hosts in areas of high host density.

Mechanisms explaining the influence of host-plant variables (e.g. patch size) on parasitism 

rates are not always clear but may involve changes in behaviour or microclimate (Sheehan & 

Shelton 1989) or reflect the different perception of habitat structure according to dispersal 

abilities or range sizes (Holt 1996; Jones et al 1996). It is possible in this case the parasitoid 

simply does not perceive the experimental habitat structure, due to the grain of the spatial 

habitat heterogeneity being within the range of between-plant dispersal shown for P. elevatus 

(Jones et a l 1996). Similarly the habitat patches may not have been sufficiently isolated from 

each other and the source habitat to have a significant influence on patch colonisation by the 

dispersing insects. A previous study (Jones et a l 1996) showed maximum dispersal distance 

between C. palustre thistles (within a single site) was 50m for another tephritid host species 

and upto 100m for P. elevatus', previous work on T. conura suggests this species has the 

potential to disperse to host-plants up to 1.5 km away from the point of emergence 

(Romstdck-V6lkl 1990a). The potential for step-wise insect dispersal among patches to 

mitigate the effect of isolation does not seem a likely alternative explanation because no 

significant column effects were detected, together with the lack of a patch isolation effect, 

means that in this experiment we have little evidence of habitat structure impacting on insect 

dispersal. The differential impact of habitat patch size on the host and parasitoid also
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contrasts with previous work in this system (Vanbergen et al. 2006) which showed the 

opposite pattern of T. conura being insensitive to the host-plant distribution and higher 

parasitism rates where host-plants were clumped. The reason for this difference may be that
A ^

the earlier study mapped thistles in a 100m with thistle patches defined at a resolution of 5m 

and the largest of these patches was never composed of more than eight individual plants. The 

size and density of the experimental thistle patches in this paper was therefore greater than 

that observed in the previous study, which may contribute to the contrasting results.

While patch size and isolation either partly or did not influence herbivore abundance and 

parasitism, the availability of the larval resource (seeds or host larvae) mediated via the 

phenological stage of the host-plant is an important predictor of patch colonisation by the 

dispersing host insects and parasitoids. The proportion of open inflorescences per plant was a 

significant positive correlate of the densities of herbivore and parasitoid, and percentage 

parasitism. This confirms that for tephritid seed herbivores, access to the larval seed resource 

is restricted by the phenological stage of thistle flower-heads, requiring budburst to allow 

oviposition (Romstdck-Vfllkl 1990b; Williams et al. 2001; Vanbergen et al. 2006).

The positive influence of advanced plant phenology on T. conura abundance is modified by 

the size of the host-plant aggregation: in the larger patches the slope of the correlation 

between herbivore abundance and plant phenology is significantly steeper compared to where 

host-plants occur in smaller patches. Habitat patch size had no direct effect on the proportion 

of open inflorescences, and thus did not affect the availability of the seed resource. The 

inference from this interaction between patch size and plant phenology is that larger habitat 

patches elicit a behavioural change in the ovipositing herbivore, perhaps reducing the 

likelihood of leaving the larger habitat patches once located (Sheehan & Shelton 1989). T. 

conura oviposits randomly within a host-plant although with the tendancy to avoid buds with 

large numbers of eggs (Romst6ck-Vfjlkl 1990a). An ovipositing female is perhaps likely to 

reside longer in large host-plant patches that provide a greater density of available oviposition 

sites compared to patches composed of one or to individual plants rapidly occupied by 

conspecifics.

The phenological stage of the host-plant was also a significant, positive predictor of parasitoid 

abundance and parasitism rates. This effect of host-plant heterogeneity on parasitism was 

seen after controlling for the effect of T. conura density per plant, and thus also the effect of 

plant phenology on the host insect. There was therefore a direct, host-plant mediated effect
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on the availability of the resource to searching parasitoids with consequences for parasitism 

rates. The phenological stage of the developing flower-head is known to influence the ability 

of other Pteromalus parasitoid species attacking T. conura larvae feeding on C. heterophyllum 

with larvae at the centre of flowerheads or in mature, larger flowerheads finding a structural 

refuge from parasitism (Romst6ck-V6lkl 1990a). The observed correlation with C. palustre 

host-plant phenology in this current paper may represent the presence of a similar 

phenological attack window.

Parasitoid abundance was positively correlated to the estimated total count of host insects but 

this relationship was asymmetric (<1:1) with parasitoid numbers lagging behind at high host 

insect densities. This led, as seen in other studies (Stiling 1987; Lozano et al. 1996; Williams 

et a l 2001), to parasitism rates being inversely related to host density. Inverse density- 

dependent patterns in parasitism are often a result of interference among parasitoids or 

constraints set by handling time (Waage 1983; Visser et a l 1999). In this present study 

differential aggregative response of herbivore and parasitoid to spatial heterogeneity in the 

host insect food-plant may be driving this inverse parasitism rate. Firstly, there is a slight, 

albeit not statistically significant decline in parasitoid numbers and percentage parasitism 

accompanying the rise in host insect density within the largest habitat patches. Secondly, 

when evaluated against the CV2 >1 rule the habitat patch size influenced the potential stability 

of this host-parasitoid interaction. The heterogeneity in parasitism has the potential for stable 

host-parasitoid dynamics at the scale of individual host plants, but this breaks down at the 

patch scale. Furthermore, there is a trend towards increasing potential for stable host- 

parasitoid dynamics with decreasing habitat patch size. It is important to note, however, that 

whether the host-parasitoid dynamic is stable can only be properly ascertained by sampling 

over multiple years (Hassell 2000). Furthermore, the presence of an alternative host tephritid 

(X miliaria) - while deemed insignificant at the point in space and time in this paper and 

others (Vanbergen et a l 2006) -  might nevertheless have a role in the host-parasitoid 

dynamics when examined over longer timescales (Hassell 2000).

Taken together these data, caveats acknowledged, suggest that the herbivore T. conura might 

have a spatial refuge from parasitism where the host-plants are aggregated at higher densities 

(Jeffries & Lawton 1984; Williams et al 2001 but see Begon et a l 1995). Potentially this 

refuge may arise from the greater architectural complexity (arising from the tangle of stalks 

and branches) of the large patches interfering with parasitoid searching and host location 

efficacy (Gingras & Boivin 2002; Gols et al 2005), but the lack of an effect of thistle
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architecture on parasitism does not support this hypothesis. Structural refuges from 

parasitism within flower-heads are known to occur when T. conura attacks C. heterophyllum 

(Romst6ck-V8lkl 1990b), and it is possible such refuges at the fine-scale of the flower-head 

may contribute to the observed inverse density dependence. Our data suggest it is perhaps 

more probable that the spatial refuge arises as a consequence of the differential response of 

the herbivore and parasitoid to habitat patch sizes. This difference could be attributed to 

altered dispersal behaviour, in this case of the herbivore, with patch size (Sheehan & Shelton 

1989); or differences between host and parasitoid in the scale at which habitat structure is 

perceived due to greater mobility of the higher trophic level (Jones et al. 1996; Brodmann et 

al 1997; Ellner et al. 2001). The insensitivity of P. elevatus to host-plant spatial 

heterogeneity contrasts with recent work demonstrating that density and spatial patchiness in 

the trophic level underpinning the host can influence parasitism rates (Cappuccino 1992; 

Roland & Taylor 1997; Vanbergen et al. 2006; Appendix IV).

Resource availability governed by host-plant heterogeneity in phenology affects both 

herbivore and parasitoid densities. The differential impact of plant patch size on this 

relationship for hosts but not parasitoids, together with an overall lack of sensitivity to patch 

size by dispersing parasitoids, leads to a spatial refuge from parasitism in larger habitat 

patches. Spatial heterogeneity at the primary trophic level can structure interactions between 

secondary and tertiary trophic levels.
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CHAPTER 8

D iscussion

In this thesis the influence of ecological heterogeneity on invertebrate diversity, trophic guild 

structure, and species interactions was assessed from landscape to host-plant scales. The large 

and pervasive influence of human activities, mediated via habitat and plant assemblage 

heterogeneity, on invertebrate diversity and species interactions is demonstrated to occur at 

both landscape and habitat scales.

Landscape scale patterns in land-use were shown to have a role in governing the diversity of 

species that operate at much finer spatial scales. Large-scale variation in the cover of forest 

and spatial heterogeneity of the landscape was strongly correlated with the diversity of both 

epigeal beetles and soil fauna. This finding is part of a growing number of studies that 

demonstrate that coarse-scale environmental gradients have a major role in structuring soil 

faunal diversity (Chust et al 2003; Chust et al 2004; Dauber et a l 2005; Joschko et al 

2006), as well as above-ground insects (Steffan-Dewenter et a l 2002; Purtauf et al 2005). 

This thesis showed that land-use can generate landscapes of varying habitat heterogeneity 

and, while not explicit here, one possible explanation is that this spatial habitat structure will - 

over time - affect soil faunal diversity via active and passive dispersal (Ojala & Huhta 2001; 

Dunger et al 2002; Ims et al 2004) and differential population persistence among habitat 

patches of varying quality e.g. abiotic gradients, disturbance from tillage (Hanski 1999; Ims et 

al 2004; Bardgett 2005). Whether this large-scale ecological heterogeneity affected the 

number of species or individuals, and the shape of the relationship, was dependent on the 

taxonomic identity. For example, at landscape scales carabid beetle and soil fauna diversity 

were respectively negatively and quadratically correlated with the proportion of forest cover; 

collembola abundance was negatively and lumbricid abundance positively correlated with the 

spatial patchiness of the landscape. Overall these findings illustrate that coarse-scale patterns 

in land-use can have a role in structuring invertebrate communities, even for species that 

interact with each other, and the environment, at finer spatial scales.

One-way by which land-use changes to landscape structure may affect invertebrate diversity 

is through changes to plant diversity. Correlation between above-ground and soil animal
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diversity, however, is uncommon or tends to be weak (Hooper et a l 2000; Wardle et al. 2003; 

Armbrecht et al 2004). In this study where such correlations were found -  although once 

again the response varied with taxonomic identity -  they tended to be highly significant. 

Carabid beetle diversity was independent of plant diversity, while lumbricid worms and 

collembola were highly correlated with forb and tree diversity respectively. That carabids 

were insensitive to plant diversity is perhaps unsurprising given they are predominantly a 

predatory taxon, and thus by virtue of their trophic rank, only indirectly connected to the 

primary trophic level. The highly significant relationship between collembola and tree 

species richness is presumably a reflection of the large role in which trees have in shaping the 

amount and diversity of the litter resource underpinning collembola assemblages (Hasegawa 

2002, De Deyn et al 2004, Salamon et al 2006). Evidence of the importance of the litter 

resource to collembola is seen in the negative correlation between collembola abundance and 

the declining amount of litter at the soil surface as the landscapes become less forested. In 

contrast, lumbricid worm abundance increased as forb cover increased, litter cover decreased 

and soil pH rose, a reflection of the adaptation of the majority of lumbricid worm species to 

open, grassland environments and more neutral soils (Wardle 2002; Bardgett 2005).

It was impossible due to limitations in the study design of Chapters 3 & 4 arising from wider 

project objectives (e.g.the lack of replicate Scottish land-use gradients reflected the pan- 

European replication of the wider EU FP5 BioAssess project) to disentangle (e.g. with 

multivariate regression) the relative importance of different factors structuring invertebrate 

diversity. Moreover, because the study was purely correlative it is not possible to determine 

whether the invertebrate assemblages were responding directly to landscape structure or to 

changing plant diversity along the land-use gradient or other unknown gradients. Controlled 

experimentation is, however, often not possible or impractical when examining large-scale 

ecological questions and multivariate environmental gradients, hence it was not possible to 

separate cause and effect to identify the ultimate factor structuring invertebrate diversity in 

these landscapes. Despite these statistical shortcomings these observational data can lead to 

hypotheses to be tested with further observations and experiments at more manageable spatial 

scales. In this thesis the landscape-scale observations of the factors (e.g. plant diversity, 

forest cover) structuring invertebrate communities along a land-use gradient led to a study of 

how a specific anthropogenic land-use, cattle grazing, influenced plant density, diversity and 

architecture to impact on higher trophic levels (herbivores, predators, parasitoids).

133



Chapter 8. Discussion

Cattle in birch woodlands act as ecosystem engineers (Jones et a l 1997) altering the habitat to 

produce an architecturally and compositionally distinct plant community in the woodland 

understorey. This disturbance of semi-natural woodlands led, in grazed woods, to a decline in 

the species richness and abundance of generalist secondary consumers across a range of 

invertebrate taxa, but left obligate herbivores unaffected - consistent with the hypothesis that 

different trophic levels respond differently to ecological heterogeneity (Holt 1996; Kruess & 

Tschamtke 2000; Thies et a l 2003; Purtuaf et al 2005). This loss of secondary consumers 

was correlated with a reduction in the height of understorey vegetation, and the concomitant 

increase in plant diversity. The mechanisms via which these grazing-dependent changes in 

habitat structure and diversity occur are not, in the absence of further experimental 

manipulations, clear from these data. The changes to the plant assemblage are hypothesised 

to be driven either singly or in combination by grazing, dunging and trampling affecting 

interspecific competition and producing niche space (Hobbs 1996; Pykala 2003; Pakeman 

2004); while the loss of invertebrate predators is hypothesised to be a function of the loss of 

niche space with the reduction in the vertical height of the grazed sward (Gibson et a l 1992b, 

Kruess & Tschamtke 2002).

The response to grazing from a specialist insect herbivore Tephritis conura and its parasitoid 

enemy Pteromalus elevatus contrasted with that of generalist secondary consumers in this 

system. Both the herbivore and parasitoid densities, and parasitism rates were positively 

affected by the presence of grazing cattle. Tephritis conura density was positively correlated 

to the higher plant, particularly forb, diversity in the grazed habitat, and this habitat 

modification both cascaded up to the parasitoid (via host density) and directly affected the 

parasitoid density and increase parasitism rates. Specialist phytophages and parasitoid species 

are more often negatively affected by disturbance due to their narrow host resource base 

making them vulnerable to extinction (Golden & Crist 1999, Komonen et al 2000, Kruess & 

Tschamtke 2000, 2002). This thesis, therefore, provides a rare example of how two specialist 

(stenophagous host ranges) species - one of which is a parasitoid - are positively affected by 

anthropogenic disturbance. The mechanism by which the grazing-driven habitat modification 

affected both herbivore and parasitoid populations is, however, not explicit from these data. 

Grazing had no impact on the thistle host-plant underpinning this interaction thus a 

conventional bottom-up cascade via the host-plant to the larval insects can be excluded. The 

correlation with the floral diversity may indicate that an increase in nectar resources could be 

having a positive effect on the adult herbivores and parasitoids, perhaps via adult nectar 

feeding promoting adult longevity or fecundity (Jervis 1998, Heimpel & Jervis 2005).
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Although these species can be considered to be specialists in the larval stage, once adults both 

the tephritids and the parasitoid function as generalist nectar feeders. This research, therefore, 

also highlights the importance of considering the age-structure of populations when assessing 

how species interact, and respond to environmental heterogeneity (e.g. Reeve 1994).

Independent of anthropogenic habitat heterogeneity, the work on the thistle-herbivore- 

parasitoid system revealed that natural heterogeneity at the host-plant scale also affected this 

antagonistic species interaction (Strong et al. 1984). The phenological stage of the host-plant 

was an important predictor of both herbivore and parasitoid densities: bud-burst determined 

whether the herbivore could successfully oviposit into the larval habitat and thus also limited 

the availability of host-larvae to the parasitoid. The impact of experimental host-plant patch 

size was dependent on trophic position: the largest patches supported the greatest herbivore 

densities but the parasitoid was unaffected by this spatial habitat structure supporting what is 

understood about the contrasting sensitivity of species occupying different trophic positions to 

environmental heterogeneity (Holt 1996; Gilbert et al. 1998; Davies et al. 2000; Thies et al. 

2003, Purtauf et al. 2005). These large host-plant aggregations may provide a refuge from 

parasitism, and evidence was provided that this refuge may arise as a result of the differential 

response of herbivore and parasitoid to habitat structure (Jones et al. 1996; Brodmann et al. 

1997; Ellner et al. 2001). The positive relationship between the phenological stage of the 

host-plant and herbivore densities was significantly enhanced in the larger host plant 

aggregations, one possible reason might be that the tephritid herbivores having located a large 

host-plant patch were less likely to leave it, compared to isolated plants or small plant patches 

(Sheehan & Shelton 1989). This inferred behavioural shift coupled with the lack of a 

response by the parasitoid to habitat structure meant, overall, that parasitism was inversely 

density-dependent (Stiling 1987; Williams et al. 2001), and that the potential for stable (CV2 

>1) host-parasitoid dynamics was reduced when the host-plant habitat was spatially structured 

(Ellner et al. 2001).

This thesis demonstrated the possibility of human activities indirectly via the plant 

communities affecting the diversity and population densities of invertebrate assemblages. 

Evidence for correlations between diversity at the primary trophic level and consumers is 

mixed (Siemann et al. 1998; Wardle et al. 2003; Woodcock et al. 2005), with stronger 

evidence that it is plant species identity and not diversity per se that is important in shaping 

the diversity of higher trophic levels (Wardle et al. 2003; De Deyn et al. 2004). Evidence is 

provided in this thesis that plant diversity per se can be highly correlated with invertebrate
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species richness below-ground, and the abundance of generalist predators, host-parasitoid 

populations, and the strength of parasitism, above-ground. A potential mechanism linking 

plant diversity to these higher trophic levels (while needing experimental verification) is 

postulated to be via the effect of plant diversity on the consumer resource base. Elevated 

plant diversity may increase the diversity of the consumer resources either providing 

additional niches (Hansen 2000) and contributing to consumer diversity - as in the case of 

collembola diversity - or by promoting population-level performance, and perhaps increasing 

fitness, as in the adult stages of the host-parasitoid interaction (Heimpel & Jervis 2005).

The potential for anthropogenic disturbance to semi-natural habitat to alter not only the 

diversity and guild structure of invertebrate communities, but also interactions between insect 

species is shown in this study. This supports other studies (Vazquez & Simberloff 2003; 

Kruess & Tschamtke 2002b) that have found that antagonistic and mutualistic interactions in 

other systems are similarly affected by agricultural disturbance. The evidence provided by 

this thesis suggests the response of species to ecological heterogeneity arising from 

anthropogenic disturbance or land-use may be positive, negative or idiosyncratic. This 

variability can partly be explained by differences due to the trophic position of the different 

species studied here, for example the contrasting sensitivity of primary and secondary 

consumers to grazing-dependent habitat heterogeneity, and is in agreement with many other 

studies which show greater susceptibility of higher trophic levels to habitat heterogeneity and 

other disturbances (e.g. Gilbert et al 1998; Davies et al 2000; Kruess & Tschamtke 2000; 

Thies et al 2003, Purtauf et a l 2005). It is important to note, however, that trophic guild is 

not always a reliable guide: in this study, species within a guild (two tephritid seed 

herbivores) responded differently to the same grazing-driven heterogeneity for unknown 

reasons. Such within trophic level responses are often related to differences in specific 

ecology (Steffan-Dewenter & Tscamtke 2000; Steffan-Dewenter et al 2002), while the life- 

history differences between the studied tephritids are not obvious (e.g. similar host-ranges) 

this remains a possible explanation for the contrasting pattern observed here.

The sensitivity of parasitoids and parasitism rates, an important ecological process, to 

ecological heterogeneity has been shown to extend beyond variation in host-insect and host 

food-plant populations to wider environmental heterogeneity. In this study it was shown 

aside from the influence of host-plant heterogeneity that habitat heterogeneity driven by cattle 

grazing affected parasitism rates. This is analogous to studies that have found at coarser 

spatial scales the amount of parasitism in a habitat patch to be affected by the composition or
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heterogeneity of the surrounding landscape (Kruess 2003; Thies et al. 2003). This study 

supports the idea that parasitism is sensitive to heterogeneity from sources beyond the 

immediate host or habitat patch and provides evidence of how trophic interactions may be 

altered by anthropogenic disturbance. Indeed a critique of this thesis is while landscape-scale 

environmental heterogeneity is considered in the study of soil fauna diversity, it would have 

been prudent given the published evidence on how landscape context influences both 

diversity and interactions (Steffan-Dewenter et al. 2002; Tschamtke et al. 2002b; Kruess 

2003; Steffan-Dewenter 2003) to have considered influence of the landscape context of the 

birch woods on the diversity of different trophic guilds and parasitism rates. Indeed it would 

be interesting to compare the relative importance of the landscape context of the birch woods 

and the impact of the local disturbance to the habitat resulting from the introduction of cattle 

for invertebrate diversity and trophic interactions.

The finding that interactions (parasitism) are, along with species diversity, sensitive to 

environmental heterogeneity arising from human activities is of relevance to those interested 

in conservation. Biodiversity conservation has generally been traditionally focussed at the 

conservation of species and species diversity (Wilson 1988; Diamond 1975; Diamond & 

Gilpin 1982; Begon et al. 1996). It is being increasingly recognised that interactions between 

species are vulnerable to the same anthropogenic habitat losses and disturbance (Kruess & 

Tscamtke 1994, 2002b; Vazquez & Simberloff 2003; Fortuna & Bascompte 2006; Vanbergen 

et al. 2006); and that interactions and food-web structure may have a more important role than 

diversity alone in underpinning the stable functioning of ecosystems (McCann 2000; Loreau 

et al. 2001; Dunne et al. 2002; Montoya et al. 2003; Montoya et al. 2006). This recognition 

implies that measures taken to conserve biodiversity should consider not only species 

diversity but also the diversity and connectance of interactions, if such measures are to be 

both stable over time and contribute to the maintenance of ecosystem functions. In practical 

terms this may require setting aside areas as reserves free from those anthropogenic influences 

(e.g. grazing Vazquez & Simberloff 2003) that are documented to erode diversity, interactions 

and food-web stability.

While the functional significance of the loss of invertebrate predators reported from the study 

of grazing in birch woods is perhaps questionable (Loreau et al.2001), nonetheless this 

finding remains of conservation significance and is supported by evidence elsewhere 

reporting declines in invertebrate predator densities and diversity with disturbance to habitats 

(Didham et al. 1998b; Bromham et al. 1999; Davies et al. 2000; Purtauf et al. 2005). Taking
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into consideration the indications that invertebrate diversity and trophic guild structure can be 

structured by landscape-scale patterns in land-use further agricultural intensification of 

landscapes will have negative repercussions for biodiversity conservation, in particular for 

species occupying the highest trophic level. A sensible conservation approach would be to 

maintain a habitat mosaic (at a range of spatial and temporal scales to suit a range of taxa) in 

the landscape (Benton et al 2003), and to avoid the intrusion and impact of agriculture into 

semi-natural parts of that mosaic (Vazquez & Simberloff 2003; Vanbergen et a l 2006), in 

order to provide refuges for those species most sensitive to anthropogenic disturbance. These 

natural patches may then function as source habitats contributing to the persistence of 

populations as part of metapopulations (Hanski 1999) and even species in a wider 

metacommunity (Leibold et a l 2004; Mouquet et al. 2006).

Constraints due to limited time and finances, logistical difficulties, and the need to balance 

competing areas of research meant it was not always possible to take all the individual studies 

within the thesis to their logical conclusion. For example, experiments were not carried out to 

settle whether competitive interactions between worms and collembola occur, if these can 

scale up to produce the observed landscape level patterns in diversity, and whether 

disturbance can mitigate competitive exclusion between soil fauna. Observations and 

experiments were not carried out on the feeding behaviour and associated fitness components 

(e.g. fecundity) of T. conura and P. elevatus adults to support the idea expressed in Chapter 6 

that the effects of cattle engineering were transmitted to these insect populations via changes 

to the nectar resource (e.g. Heimpel & Jervis 2005). Similarly, the impact of habitat structure 

on parasitism rates was explored in Chapter 7, but the indirect effect of altered rates of 

parasitism on plant growth and reproduction (e.g. Matsumoto et al. 2003) were not 

investigated. The effect of spatial heterogeneity at different spatial scales on insect diversity 

and trophic interactions is the overall theme of this thesis, temporal heterogeneity was not 

considered being deemed at the outset beyond the scope of this thesis. Nevertheless, it should 

be acknowledged that a temporal component to the data presented here must exist and may 

have introduced a bias into the diversity data presented here.. For example, the use of a 

snapshot method of sampling meant that diversity may have been under represented in the 

studies of soil and trophic guild diversity because of seasonality in insect phenology (Brown 

et al 1992; Borges & Brown 2001) or because of insufficient time for invertebrates to locate 

or re-colonise new or recently disturbed habitat patches (e.g. tilled fields) in agricultural 

mosaics (Benton 2003; Bardgett 2005). The timing of agricultural management was not 

quantified, for example, the timing of cattle grazing and its effect upon insect functional
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group diversity was not considered within this thesis -  such an approach may reveal if the 

observed changes to the insect guilds persisted over time and if susceptibility to this 

disturbance varied over time.

It would be desirable to build on the work in this thesis to explore further the disturbing 

impact of anthropogenic grazing in birch woods on other species interactions (other host- 

parasitoid interactions, insect-plant mutualisms), and whether the effect on trophic guild 

structure in the woodland understorey extends below-ground to the soil invertebrate 

assemblages (recent preliminary data indicate that grazed woods support greater overall 

nematode densities, but a lower density of predatory nematodes). Pollination services are a 

vital ecosystem service provided to agriculture, and given the positive ramifications of this 

disturbance for the studied antagonistic interaction it would be interesting to discover if the 

elevated plant diversity leads to an increase in pollinator diversity, and in turn the parasitoids 

of pollinators. Plant visitation webs (Gibson et al 2006) could be constructed to assess 

pollinator assemblage structure and collections of pollinator hosts (Bombus spp.) from field 

sites would reveal levels of parasitism. Through a combination of field observation and 

experimental manipulations (grazing exclosures, nutrient additions), and experimental 

microcosms it should be possible to disentangle the relative contribution of plant diversity, 

vegetation structural heterogeneity and the quality and amount of resources (e.g. litter) to the 

diversity and community structure of the soil food-web (Hansen & Coleman 1998; Hasegawa 

2002; Wardle et al. 2003; Wardle et al 2004). This system of disturbed and undisturbed 

birch woods represents an opportunity to assess how an anthropogenic global change (land- 

use, invasions, climate) can influence diversity, population and food-web stability. Moreover, 

it is both a natural experiment in the real world and of a spatial scale amenable to direct, 

experimental manipulation to elucidate specific mechanisms and feedbacks.
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Appendices

APPENDIX I. Species abundances in the 6 LUUs, data are pooled catches from two years (2001, 2002) 
per LUU
Species Authority LUU1 LUU2 LUU3 LUU4 LUU5 LUU6
Agonum assimile (Paykull, 1790) 0 0 0 5 0 12
Agonum muelleri Herbst, 1784 0 0 0 251 1232 857
Anchomenus dorsalis (Pontoppidan, 1763) 0 0 0 19 954 931
Amara aenea (Degeer, 1774) 0 0 12 20 8 1
Amara apricaria (Paykull, 1790) 0 0 0 0 13 2
Amara aulica (Panzer, 1797) 0 0 6 2 4 4
Amara bifrons (Gyllenhal, 1810) 0 0 0 1 3 5
Amara communis (Panzer, 1797) 0 0 9 5 0 0
Amara eurynota (Panzer, 1797) 0 0 0 1 2 0
Amara familiaris (Duftschmid, 1812) 0 0 3 8 15 1
Amara fuha (Mflller, 1776) 0 0 0 0 9 0
Amara lunicollis Schiodte, 1837 0 0 1 24 51 0
Amara plebeja (Gyllenhal, 1810) 0 0 0 19 289 152
Bembidion bruxellense Wesmael, 1835 0 0 0 0 3 30
Bembidion guttula (F., 1792) 0 0 0 0 134 112
Bembidion lampros (Herbst, 1784) 0 0 1 37 355 37
Bembidion mannerheimii Sahlberg, 1827 0 0 1 18 74 10
Bembidion tetracolum Say, 1823 0 0 0 0 1876 626
Bradycellus harpalinus (Audinet-Serville, 1821) 0 1 0 0 0 0
Calathus fuscipes (Goeze, 1777) 0 3 215 334 383 295
Calathus melanocephalus (L., 1758) 0 0 17 37 68 313
Calathus micropterus (Duftschmid, 1812) 81 1252 136 18 2 12
Calathus rotundicollis Dejean, 1828 0 22 215 36 3 2
Carabus glabratus Paykull, 1790 367 141 30 0 0 1
Carabus granulatus L., 1758 3 0 2 0 0 0
Carabus nemoralis Mttller, 1764 0 3 4 8 1 3
Carabus problematicus Herbst, 1786 17 1204 361 44 0 11
Carabus violaceus L., 1758 247 259 119 85 0 0
Cicindela campestris L., 1758 1 0 0 0 0 0
Clivina fossor (L., 1758) 0 0 8 17 253 256
Cychrus caraboides (L., 1758) 81 91 24 6 1 2
Dromius agilis (F., 1787) 0 0 1 0 0 0
Elaphrus cupreus Duftschmid, 1812 0 0 0 0 2 0
Harpalus affinis (Schrank, 1781) 0 0 0 0 9 0
Leistus fulvibarbis Dejean, 1826 0 0 0 1 0 2
Leistus spinibarbis (F., 1775) 0 0 2 1 0 0
Leistus terminatus (Hellwig in Panzer, 1793) 11 290 50 25 8 11
Loricera pilicornis (F., 1775) 5 67 138 269 450 369
Nebria brevicollis (F., 1792) 1 18 173 1211 3287 3900
Nebria rufescens Strom, 1768 (Sch., 1806) 0 0 3 5 3 9
Nebria salina Fair. & Labou., 1854 0 185 14 0 2 1
Notiophilus aquaticus (L„ 1758) 1 0 0 0 3 0
Notiophilus biguttatus (F., 1779) 10 22 116 37 181 39
Patrobus atrorufus (StrOm, 1768) 0 0 0 62 8 141
Pterostichus adstrictus Eschscholtz, 1823 1 161 16 2 0 0
Pterostichus diligens (Sturm, 1824) 2 0 0 0 0 0
Pterostichus madidus (F., 1775) 0 147 4103 416 1054 465
Pterostichus melanarius (llliger, 1798) 0 1 1 261 206 1275
Pterostichus niger (Schaller, 1783) 5 0 303 119 508 561
Pterostichus nigrita (Paykull, 1790) 6 11 15 61 181 19
Pt. oblongopunctatus (F., 1787) 341 458 96 110 0 2
Pterostichus strenuus (Panzer, 1797) 3 1 47 142 83 95
Stomis pumi cat us (Panzer, 1796) 0 0 0 0 2 0
Synuchus vivalis (llliger, 1798) 0 0 5 0 17 13
Trechus micros (Herbst, 1784) 0 0 0 0 0 7
Trechus quadristriatus (Schrank, 1781) 18 109 28 70 74 337
Trichocellus cognatus (Gyllenhal, 1827) 0 0 0 1 0 0
Trichocellus placidus (Gyllenhal, 1827) 0 0 0 0 1 0
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APPENDIX II. Intercorrelation between 11 habitat variables measured in 10 grazed and 10 ungrazed birch woodlands. Values are Pearsons correlation 
coefficients (P = 0.06t, P<0.05*, P<0.01**, P<0.001***). Variables are the percentage cover of bare and disturbed soil, forbs, grasses and bryophytes; the 
tree canopy density (%), height of the sward (mm), spatial variability in sward height (CV2), the number of vascular plant species (Plant 5), forb species (Forb 
S) and grass species (Grass S) and the area (ha) of the woodland.

Habitat
variables

Sward Sward
CV

Bare
soil

Forb Grass Bryophyta Plant S ForbS Grass S Area

Canopy 0.05 0.04 -0.18 -0.20 -0.13 0.44* -0.59** -0.411 -0.50* -0.21

Sward 0.26 -0.48* -0.49* 0.31 -0.10 -0.36 -0.54** 0.16 -0.03

Sward CV 0.18 0.24 -0.23 -0.28 0.016 0.15 -0.11 -0.05

Bare soil 0.47* -0.09 -0.38 0.47* 0.52* 0.27 -0.18

Forb -0.16 -0.44* 0.43t 0.69** 0.13 -0.19

Grass -0.58** -0.20 -0.30 0.42f 0.18

Bryophyta -0.33 -0.39 -0.52* -0.08

Plant S 0.86*** 0.56** 0.25

ForbSR 0.27 0.12

GrassSR 0.10
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Appendix m . Invertebrate species sampled from 10 grazed and 10 ungrazed birch woodlands

Spec!—_______________________________ Taxa_____________ Guild
Anthocoris nemorum L. Heteroptera predator
Unypha triangularis (Clerck) Araneae predator
Philaenus spumarius L. Auchenorrhyncha herbivore
Mecomma ambulans Fallen Heteroptera omnivore
Enoplognatha ovata (Clerck) Araneae predator
Lygocoris pabulinus L. Heteroptera herbivore
Meta mengei (Blackwall) Araneae predator
Javesella spp. Auchenorrhyncha herbivore
Notus flavipennis Zetterstedt Auchenorrhyncha herbivore
Tetragnatha montana Simon Araneae predator
Monalocoris ffflds L. Heteroptera herbivore
Lygocoris contaminates Fallen Heteroptera herbivore
Meligethes aeneus (Fabricius) Coleoptera herbivore
Jassargus distinguendus (Flor) Auchenorrhyncha herbivore
Bryocoris pteridis Fallen Heteroptera herbivore
Eupteryx vittata L. Auchenorrhyncha herbivore
Neriene peltata (Wider) Araneae predator
Betulapion simile (Kirby, 1811) Coleoptera herbivore
Ceratapion carduorum (Kirby, 1808) Coleoptera herbivore
Cyphon sp. Coleoptera herbivore
Epuraea sp. Coleoptera herbivore
Thamnotettix confinis Zetterstedt Auchenorrhyncha herbivore
Plagiognathus arbustorum Fabricius Heteroptera omnivore
Anthophagus caraboides (Linnaeus, 1758) Coleoptera predator
Stenus picipes Stephens, 1833 Coleoptera predator
Otiorhynchus scaber (Linnaeus, 1758) Coleoptera herbivore
Perapion curtirostre (Germar, 1817) Coleoptera herbivore
Pachytomella parallels Meyer-Dur Heteroptera herbivore
Cicadella viridis L. Auchenorrhyncha herbivore
Eupteryx aurata L. Auchenorrhyncha herbivore
Malthodes Havoguttatus Kiesenwetter Coleoptera omnivore
Theridion varians Haha Araneae predator
Strophosoma melanogrammum (Forster, 1771) Coleoptera herbivore
Crepidodera fenruginea (Scopoli, 1763) Coleoptera herbivore
Polydrusus undatus (Fabricius, 1781) Coleoptera herbivore
Kfeidocerys resedae Panzer Heteroptera herbivore
Lygocoris sp. Heteroptera herbivore
Psallus sp. Heteroptera herbivore
Stenodema laevigatum L. Heteroptera herbivore
Evancanthus interrruptus L. Auchenorrhyncha herbivore
Neophilaenus lineatus L. Auchenorrhyncha herbivore
Rhytidodus dedmusquatus Schrank Auchenorrhyncha herbivore
Cercyon lateralis (Marsham, 1802) Coleoptera omnivore
Malthodes guttifer Kiesenwetter Coleoptera omnivore
Malthodes mysticus Kiesenwetter Coleoptera omnivore
Rhagonycha femoralis (Brulle) Coleoptera omnivore
Pocadicnemis pamila (Blackwall) Araneae predator
Aleocharinae sp. Coleoptera predator
Stenus aceris Stephens, 1833 Coleoptera predator
Bathyphantes gracilis (Blackwall) Araneae predator
Cyclosa conica (Pallas) Araneae predator
Erigone dentipalpis (Wider) Araneae predator
Lepthyphantes tenebricoia (Wider) Araneae predator
Lepthyphantes tenuis (Blkackwall) Araneae predator
Nabis flavomarginatus Scholtz Heteroptera predator
Saldula scotica Curtis Heteroptera predator
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Summary

While there is considerable theoretical interest into the role of habitat heterogeneity in stabilising host- 
parasitoid systems, there remains a paucity of empirical studies within natural systems. We 
investigate the responses of a suite of parasitoid species attacking a single host to heterogeneity in host 
insect abundance, host-plant canopy patch area and host-plant characteristics (size and location).

Within a birch dominated woodland 88 Fagus sylvatica trees were sampled for the leaf mines of the 
specialist beetle herbivore Rhynchaenus fagi. Host F. sylvatica trees occurred in patches throughout 
the birch woodland varying in size from isolated individuals to clumps of up to nine trees. Leaf-mine 
abundance and percentage parasitism by hymenopteran parasitoids was sampled from each tree.

Herbivore mine abundance was greatest where trees were located on the edge, compared with the 
interior, of the birch woodland. Parasitism rates of R. fagi showed independent, direct, and inverse 
responses to the density of leaf mines depending on parasitoid species identity.

The two smallest parasitoid species, Prtigalio longulus and Chrysocharis nephereus, were respectively 
positively and negatively correlated with the canopy area of host-plant patches, and positively, but 
weakly, correlated with tree trunk diameter. The largest parasitoid species, Colastes braconius, was 
unaffected by canopy area.

Host-plant position (edge v. interior) modified P. longulus parasitism by interacting with host-insect 
density. Parasitism was density-independent within the woodland interior, and inversely density- 
dependent where trees were situated at the woodland edge.

The persistence of species within this multi-parasitoid assemblage is likely to be shaped by 
heterogeneity in both host insect abundance and the distribution of host-plants. The relative 
importance, however, of the different sources of environmental heterogeneity depends on parasitoid 
species identity. Only for one (C. braconius) of three parasitoids was the interaction with the host 
insect species stable under the CV2 > 1 rule.

Keywords: bottom-up, CV2>1, parasitism, spatial heterogeneity, density-dependence.

Introduction
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The complexity of interactions in multi-parasitoid food webs are dependent on the mechanisms of 
coexistence allowing parasitoids to utilise either single or multiple hosts (Bonsall & Hassell, 1997; 
Amarasekare, 2000; Hassell, 2000a). The persistence of multiple species assemblages may be 
promoted by a number of potential, although not always mutually exclusive, mechanisms (Bonsall et 
al., 2004). These include behavioural processes resulting in aggregation and segregation of 
individuals (Sevenster & Van Alphen, 1993; Woodcock, Watt & Leather, 2002), niche partitioning of 
resources (Naeem & Hawkins, 1994; Wieber et al., 1995), dispersal ability (Kareiva, 1987; 
Amarasekare, 2000) and life histoiy trade offs (Bonsall, Hassell & Asefa, 2002).

Understanding the processes that drive regional dynamics of predator-prey or host-parasitoid 
interactions requires an understanding of the factors that determine both rates of colonization and local 
extinction (Hanski, 1999; Cronin, 2004). In host-parasitoid systems variation in parasitism rates are 
known to be affected by the influence of habitat complexity on parasitoid dispersal rates and the 
probability of host-patch colonization (Kareiva, 1987; Cronin & Strong, 1999). The mechanism of 
host location by parasitoids - by chemical and physical cues (reviewed in Quicke, 1997) - will be 
influenced by the complexity of the habitat within which they persist. As habitat complexity is 
reduced, the probability of host location by parasitoids becomes more likely, relative to what would be 
expected from more spatially structured or complex landscapes (Gols et al., 2005). Habitat 
heterogeneity will, therefore, introduce variation in parasitism rates among hosts, stabilizing the host- 
parasitoid relationship (Huffaker, 1958; Hassell, 2000b). In addition to habitat heterogeneity, the 
presence of refuges and aggregation are also key mechanisms promoting stability in tightly coupled 
host-parasitoid associations (Huffaker, 1958; Hassell & May, 1973). Furthermore, host location 
within patchy environments will be influenced by secondary factors including habitat location, the 
spatial positioning of host species within that habitat and individual host quality (Vinson & Iwantsch, 
1980a, 1980b).

The influence of heterogeneity at a landscape scale will not influence all species in the same manner, 
as individual species within a parasitoid assemblage will have different dispersal powers and strategies 
for host location and colonisation (Kareiva, 1987; Hanski, 1999). It is this variation in dispersal 
abilities and its influence on patch colonisation within a heterogeneous landscape, which will 
influence both the persistence of individual species and the assemblage structure of host-parasitoid 
associations (Jones, Godfray & Hassell, 1996; Hassell, 2000b; Van Nouhuys & Hanski, 2002).

In addition to the factors influencing dispersal and colonisation, considerable variation is likely 
between parasitoid and host insects in the factors driving local population turnover (Van Nouhuys et 
al., 2002; Cronin, 2004). It is known that tertiary trophic levels are often more susceptible to habitat 
fragmentation than secondary consumers (Kareiva, 1987; Tschamtke & Brandi, 2004; Elzinga et al., 
2005), and levels of parasitism may be reduced in isolated habitat patches (Roland & Taylor, 1997; 
Doak, 2000; Kruess & Tschamtke, 2000; Cronin, 2003; Elzinga et a l, 2005). Once established in a 
given patch the persistence of individual species within a habitat matrix will be dependent on a variety 
of environmental and demographic factors, including inbreeding depression (Hanski & Heino, 2003), 
weather (Solbreck, 1991), changes in the rates of parasitism (Eber, 2001; Cobbold et al., 2005) and 
host plant species (Van Nouhuys et al., 2002). Patch size itself will also contribute to the potential for 
local extinction, with smaller populations generally being at greater risk (Pimm, Jones & Diamond, 
1988; Cronin, 2003).

To determine mechanisms underpinning host-parasitoid interactions in a naturally patchy habitat we 
investigated the responses of a suite of parasitoids attacking a single host to spatial heterogeneity in 
the distribution of host insects and the host plant resources. We sampled populations of the beech 
leaf-miner Rhynchaenus fagi L. (Curculionidae, Coleoptera) and associated parasitoids on Fagus 
sylvatica trees (Beech) distributed in discrete patches within a predominantly birch woodland. This 
was done to test the following null hypotheses:

H0i: There is no numerical response shown by parasitoids host insect density.
HO2 : There is no numerical response shown by parasitoids to the patch size of the host plant F. 
sylvatica.
HO3: There is no numerical response shown by parasitoids to individual attributes of host plant trees.
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HO4: Where numerical responses to either host insect density or host plant patch area were found, these 
were unaffected by the spatial location of the F. sylvatica trees in relation to the woodland edge or 
interior.
HO5: There is no evidence of interactions between the parasitoid species in terms of their percentage 
parasitism of the R. fagi host.

Materials and methods

STUDY SITE

The study site was a single deciduous woodland stand in Banchory, Aberdeenshire, Scotland 
(57°04’N, 2°32’W). The woodland was dominated (>80% of the total area) by two species of birch 
(Betula pendula Roth and Betula pubescens Ehrh.), with occasional patches of Scots pine {Pinus 
sylvestris L.). Grasses, particularly Holcus spp., Festuca spp. and Deschampsia spp. together with 
patches of bracken Pteridium aquilinum (L.) dominated the understorey, and large patches of moss 
and bare ground were also present. Interspersed into this birch woodland were 88 Fagus sylvatica 
trees, the host plant of R  fagi. The woodland covered an area of 28 hectares and was surrounded by 
either Scots pine dominated plantation or areas of die plantation that had been clear felled no less than 
7 years prior to sampling in 2005. F. sylvatica trees with a trunk diameter at breast height (DBH) of 
less than 5 cm were ignored.

TRI-TROPHIC SYSTEM

Rhynchaenus fagi is a univoltine leaf-mining weevil which feeds as larvae exclusively on F. sylvatica 
trees, although adults will feed on a variety of plants (Bale & Luff, 1978). Adult weevils overwinter 
primarily within leaf litter (Bale, 1979, 1984) until mid-March, when the majority of adults will 
migrate to F. sylvatica trees just prior to bud burst. Some individuals will, however, remain within 
leaf litter until after this time (Nielsen, 1970, 1974). Eggs are laid in the leaf mid-rib from where a 
linear blotch-mine develops within which the larvae feed on both the palisade and spongy parenchyma 
(Nielsen, 1966). From oviposition to emergence of the weevil takes approximately 30-35 days, with 
adults appearing towards the end of June (Bale et al., 1978). Rhynchaenus fagi has a relatively diverse 
fauna of hymenopteran parasitoids, with Askew & Shaw (1974) rearing ten chalcid species within the 
UK from the mines of this weevil. Braconid parasitoids have also been reared from this weevil (Day 
& Watt, 1989; Rott & Godfrey, 2000).

HOST-PLANT VARIABLES

For each of the 88 F. sylvatica trees present within the woodland the following measurements were 
taken. Tree trunk diameter at breast height (DBH) and the canopy diameter (mean of two measures 
per tree) were measured. The individual canopy diameter of each tree was then used to calculate the 
canopy area of F. sylvatica habitat patches (PATCH) represented by both individual trees and clumps 
of trees whose canopies overlapped, and therefore represented a continuous patch of F. sylvatica 
canopy to dispersing R  fagi. As some F. sylvatica trees occurred on the edge of the woodland 
adjoining areas of clear-cut coniferous plantation forestry, trees were categorised as being either 
woodland edge or interior trees (EDGE).

INSECT SAMPLING

All sampling occurred in June 2005 towards the end of R  fagi larval development. A branch was 
excised from both the North and South aspect of each of the 88 F. sylvatica trees at a height of 
between 1.5 and 4.0 m off the ground. Although only 11% of the leaves of a F. sylvatica tree are 
found in this lower canopy strata, previous work has shown that 75-85% of these received some form 
of phytophagous invertebrate damage, representing approximately 35 % of the total phytophage 
damage to an individual tree (Phillipson & Thompson, 1980). 50 leaves were randomly picked from 
each branch giving a total of 100 leaves sampled per tree. From these samples of leaves the 
proportion of leaves from an individual tree mined by R  fagi was calculated.
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A sub-sample of ten randomly chosen leaves, each containing a single R  Fagi leaf-mine, were 
removed from both the North and South aspect of each tree (20 leaves per tree, 1760 leaves in total). 
Each leaf-mine was examined to ensure that a living R  fagi larva was present. The sub-samples from 
each tree (n = 10 x 2) were placed into Organza™ covered plastic pots in an insectary adjacent to the 
woodland (which maintained a similar temperature regime to that of the woodland). Every two days 
the leaves were checked and emerging adult R  fagi and parasitoids were removed and transferred to 
70 % IMS. Inspection of the mines continued for a 4-week period after the last emergence of either 
the host or parasitoid. All parasitoids were subsequently identified to species and compared to 
reference material at die Hope Entomological Collection, Oxford.

STATISTICAL ANALYSIS

Although leaf mines were collected from branches on both the North and South sides of trees these 
values were summed so that either the number of mines or parasitoid emergence per tree represented 
the sample unit. Percentage herbivory of F. sylvatica by R  fag i (leaf mine abundance per 100 leaves) 
and percentage parasitism of R  fagi (parasitoid count per 20 leaves) were modelled with generalised 
linear mixed models (GLMM) with Binomial error distribution and Logit link (SAS Institute, 1999). 
The influence of four fixed effects on percentage herbivory by R  fag i were considered: 1) the position 
of F. sylvatica trees within the woodland interior or at the woodland edge (EDGE); 2) the diameter at 
breast height of individual F. sylvatica tree trunks (DBH); 3) the canopy area of R  fagi habitat patches 
(isolated F. sylvatica individuals or clumps of F. sylvatica trees with overlapping canopies) (PATCH). 
Also considered was the two-way interaction between EDGE*DBH and EDGE*PATCH. In addition 
to the main effects and interactions described above, percentage parasitism of R  fagi by each 
parasitoid species was also correlated to the main effect of host insect density (MINES) and the 
interaction of this with tree position (EDGE*MINE). It was not possible to directly test for 
interspecific competition or interference between different parasitoid species because only parasitoid 
emergence was measured. Instead percentage parasitism by each species was correlated (GLMM, 
Binomial error and Logit link) to the count of the other parasitoid species emerging from the leaf- 
mines.

Solution of fixed explanatory (EDGE, PATCH, DBH, MINES) and random (categories: ‘Tree 
identity’ and ‘Patch identity’) effects was estimated by residual maximum likelihood (REML). 
Denominator degrees of freedom were estimated using Satterthwaite’s approximation (Littell et al., 
1996; Schabenberger & Pierce, 2002). Model simplification was by step-wise elimination of the least 
significant term until the most parsimonious model was found; where a significant interaction 
occurred its component parameters were not deleted, even if individually non-significant. F-ratios of 
main effects and interactions using sequential sums of squares (SAS Type 3 tests) are reported.

Results

A total of 88 F. sylvatica trees were sampled within the birch woodland of which 15 trees were 
considered to be present on the edge of the site. Sixteen patches containing two or more F. sylvatica 
trees were present within the birch woodland, with the largest patch of nine trees covering an area of 
1265.6 m2. From the 1,760 leaf-mines returned to the insectary 10 % yielded R  fagi adults (n = 176) 
while 31 % of mines were parasitized (551 parasitoids) by one of four species of hymenopteran 
parasitoid, under the assumption of solitaiy larvae (Askew et al.> 1974). This left 59 % of the 
mortality of the insectary reared R  fagi unexplained. Of the four parasitoids, three species represented 
95 % of the total parasitoid abundance: Pnigalio longulus (Zett.) (Eulophidae) (n = 225 individuals); 
Chrysocharis nephereus (Walker) (Eulophidae) (n = 182); and Colastes braconius Haliday 
(Braconidae) (n = 129). The remaining parasitoid {Pnigalio soemius (Walker)) (Eulophidae) was 
represented by only 25 individuals, and due to this low representation within the samples it was 
excluded from the subsequent analyses.

INFLUENCE OF HOST-PLANT HETEROGENEITY ON HERBIVORY & PARASITISM
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The amount of herbivory by R fagi was affected by the position of the host tree within the woodland
(EDGE): percentage herbivory was significantly greater at the woodland edge (x  = 0.78 s = 0.23)
compared to trees in the woodland interior ( x = 0.45 s = 0.31) (Table 1). Herbivory in R fagi was not 
significantly affected by any of the other measured host-tree parameters (Table 1). For all three 
parasitoids, percentage parasitism of R fagi was not directly affected by whether the host tree was 
located at either the woodland edge or interior (Table 1). The host tree size (trunk diameter) was a 
significant and marginally significant positive predictor of the proportion of mines parasitized by C. 
nephereus and P. longulus respectively (Table 1, Fig.la-b). The rate of C. braconius parasitism was 
affected by the interaction between host-plant trunk diameter and tree position. There was a positive 
relationship between trunk diameter and percent parasitism when the trees were located at the 
woodland edge, while this relationship disapeared when the trees considered were found in the 
woodland interior (Table 1, Fig.lc). The canopy area of the F. sylvatica patches -  the host insect 
resource - was a highly significant predictor of percentage parasitism for two of the three parasitoid 
species: P. longulus was positively and C. nephereus negatively correlated to patch canopy area (Table 
1, Fig.2), while C. braconius was not affected (Table 1).

HOST-PARASITOID INTERACTIONS

Percentage parasitism by C. braconius was significantly and positively correlated with host-insect 
mine density, while parasitism by C. nephereus was independent of host-insect mine density (Table 1, 
Fig. 3a). Pingalio longulus parasitism was affected by a significant interaction between host insect 
mine density and F. sylvatica tree position (MINE*EDGE, Table 1, Fig. 3b). Where trees were 
located in the woodland interior the slope of the response to host- insect mine density did not differ 
significantly from zero (b = -0.02 t = -0.21 p =0.83). However, where trees were located at the 
woodland edge there was a highly significant and inverse relationship between P. longulus parasitism 
and host mine density (b = -1.10, t = -3.31 p = 0.001). The percentage parasitism of each of the three 
parasitoid species was unaffected by the density of the other parasitoid species attacking R fagi, 
therefore there was no evidence of direct interactions between the parasitoid species (Table 2).

The overall stability of the host-parasitoid interaction was tested using the CV2>1 rule, which states 
that the interaction between the host and parasitoid will be stable if the coefficient of variation of 
searching parasitoids per patch (CV2) is greater than 1 (Pacala, Hassell & May, 1990; Hassell et al., 
1991; Pacala & Hassell, 1991). The CV2>1 rule was tested at the level of individual trees (n = 8 8 ) and 
for patches of trees (43 patches of 1 or more trees). In all cases the number of parasitoids per patch 
was weighted for the number of potential hosts, which was considered to be the number of mines per 
tree or patch. The values of CV2 for C. braconius (tree: 1.82, patch: 1.18), P. longulus (tree: 0.51, 
patch: 0.39) and C. nephereus (tree: 0.97, patch: 0.41) revealed that the host-parasitoid association was 
stable only for the largest species, the braconid C. braconius.

Discussion

This study provides evidence for bottom up forces influencing rates of parasitism within the R fagi 
host -  multi-parasitoid system, as a function of hymenopteran parasitoid species identity. While no 
evidence for direct interactions between the hymenopteran parasitoids of the leaf mining weevil R 
fagi were found (hypothesis HO5), variation in the rates of parasitism between these species were 
found in their response to host insect density, host plant patch area, to the physical characteristics of 
individual trees and to the spatial location of the host plants. Respectively, this resulted in the 
rejection of hypothesis H0i -  H04.

HOST INSECT DENSITY

At the spatial scale of individual trees, host insect density was a significant predictor of parasitism 
rates for both the braconid C. braconius and the chalcid P. longulus. The direction of this response to 
host insect density was not consistent in these two species. Colastes braconius parasitism was directly 
density-dependent, and although not explicit demonstrated in our data such aggregation of parasitoids 
to patches of high host density has been shown to contribute to temporal stability in other host-
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parasitoid interactions (e.g. Hassell et al., 1973; Hassell & May, 1974). In addition to being the only 
parasitoid to show such direct density dependence, C. braconius was alone in being spatially stable 
according to the CV2 >1 criterion (Pacala et al., 1990; Hassell et al., 1991). Density dependence in 
parasitism rates has been suggested to be caused by species specific searching behaviour resulting in 
increased attraction to, and residency time in, areas of high host density (Hassell, 1978; Stiling, 1987; 
Doak, 2000). Such responses to increased host density are predicted under optimal foraging theory 
(Cook & Hubbard, 1977; Hubbard & Cook, 1978) and result in the creation of probabilistic refuges 
within which host persistence is more likely (Hassell et al., 1991).

In contrast to the density-dependent response of C. braconius, parasitism by C. nephereus was 
independent of host -insect density, while the response of P. longulus to host density was modified by 
spatial heterogeneity in the food resource of the host insect. For host trees present in the woodland 
interior parasitism of R. fagi by P. longulus was density independent, whereas on host trees located on 
the woodland edge R. fagi experienced inverse density-dependent parasitism. Patterns of inverse 
density-dependence may reflect longer handling times during host location and oviposition or 
interference among parasitoids (Waage, 1983; Visser, Jones & Driessen, 1999) reducing parasitoid 
efficiency in exploiting high density patches (Lessells, 1985; Stiling, 1987; Taylor, 1993). 
Alternatively, inverse density dependence may arise through 'risk spreading behaviour* resulting in an 
absence of parasitoid aggregation to areas of high host density (Strong, Antolin & Rathbun, 1990). 
From our data, however, we have no evidence of direct interactions (competition, hyperparasitism) 
between the parasitoid species. Potentially the location of the tree at the woodland edge may 
constitute a refuge from parasitism if aversion to differences in microclimate impact on the ability of 
P. longulus to use the host’s habitat as cue to locate the host insect. Overall in this study, the different 
parasitoid responses to host density broadly reflect the suggestion by Stiling (1987) that direct and 
inverse dependence occur in 25 % and 23 % of host parasitoid interactions respectively.

HABITAT PATCH AREA

The increased sensitivity to habitat fragmentation or patchiness within tertiary trophic levels relative to 
secondary consumers has been seen from both a range of systems and spatial scales (Kruess & 
Tschamtke, 1994; Didham et al., 1998; Davies, Margules & Lawrence, 2000; Thies, Steffan-Dewenter 
& Tschamtke, 2003). A reduction in habitat patch area or increases in the degree of isolation have 
been shown to result in reduced rates of parasitism in a number of cases (Roland et al., 1997; Doak, 
2000; Cronin, 2003,2004; Elzinga et al., 2005). In this study canopy patch area influenced parasitism 
rates positively for P. longulus and negatively for C. nephereus, while C. braconius was insensitive to 
the area of the host plant patches. This finding confirms that parasitism rates or parasitoid behaviour 
can be influenced by not only host abundance, but also by heterogeneity in host resources 
(Cappuccino, 1992; Doak, 2000). This is potentially the result of searching parasitoids using host 
resources as cues to commence searching for the more cryptic hosts (Cappuccino, 1992).

Differential responses to spatial heterogeneity in host resources are likely to stem from intrinsic 
differences between the parasitoids in terms of their ability to colonise, disperse and locate new hosts 
(Kareiva, 1987; Hanski, 1999; Van Nouhuys et al., 2002). The spatial scale at which different species 
perceive habitat patchiness may relate to differences in body size, a surrogate of dispersal ability 
(Roland et al., 1997). Differences in relative body size between the parasitoid species of this study 
could explain the differential response of the parasitoids to the canopy patch area. Colastes braconius 
was at least 2-3 times larger than the other parasitoid species, and thus it is assumed possessed greater 
powers of dispersal, making it less sensitive to the variable area of the habitat patches. The smaller 
species P. longulus and C. nephereus, by contrast, are sensitive to the area of the habitat patch. There 
was no effect of patch area on herbivore density, thus parasitoids were not simply tracking host 
numbers in larger habitat patches. While not explicit from our available data, the implication is that 
the three parasitoid species attacking R fagi perceive the spatial patchiness of the habitat differently, 
most likely as a consequence of differences in dispersal ability.

INDIVIDUAL CHARACTERISITCS OF THE HOST PLANTS
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Parasitism rates by the three species of parasitoid were influenced by variation in tree trunk diameter, 
therefore between tree heterogeneity independent of host insect density influenced parasitism rates for 
R. fagi. Tree trunk diameter is an indirect index of tree age, health and size (Thomas, 2000), although 
which of these influenced rates of parasitism is unclear. Spatial heterogeneity in the host tree 
distribution interacted with trunk diameter to influence C. braconius parasitism, which was positively 
correlated with tree trunk diameter at die woodland edge, while negatively correlated within the 
woodland interior. This change in the response to tree trunk diameter between the edge and the 
interior may be due to differences in both ambient temperature, timing of bud burst (and so host 
availability) and leaf nutritional quality in these two areas. There is evidence for R. fagi that selection 
for individual trees does occur (Bale, 1984). This indicates that the importance of individual trees as 
resources for larval development is both variable and that this variation is detectable by the miner. It is 
likely, therefore, that variation in the quality of either the host plant or the R. fagi host is also 
detectable by the parasitoids (Quicke, 1997).

CONCLUSIONS

A large proportion of the mortality of R. fagi (58.4 %) was from unidentified sources. These 
unexplained mortality factors may contribute to the population regulation of R. fagi, as there is 
evidence that such sources of unidentified mortality may act in a density dependent manner for R. fagi 
(Day et al., 1989). One of the major likely causes of unidentified mortality for K fagi is phenological 
asynchrony with the host-plant inhibiting mine development (Nielsen, 1966, 1968; Bale, 1979; Day et 
al., 1989). Allowing for these other sources of mortality, parasitism by hymenopterans remained an 
important component of R. fagi mortality. The responses of the three parasitoid species to bottom-up 
heterogeneity was idiosyncratic particularly with respect to host insect density, habitat patch area and 
the spatial location of the host-plant. Evidence for bottom-up forces acting to stabilize the host- 
parasitoid interactions (based on die C V2> 1) was, however, limited to only one of the three species (C. 
braconius). The CV2>1 criterion may, however, be insufficient in some cases to accurately assess the 
stability of host-parasitoid interactions (Hochberg, Elmes & Clarke, 1996; Gross & Ives, 1999), 
therefore some of the other host-parasitoid interactions may have been more stable than indicated. 
There was also correlative evidence for ‘edge effects’ modifying two of the three host-parasitoid 
interactions to produce contrasting patterns of parasitism depending on the location of the hosts’ food- 
plant either at the woodland edge or interior. A Ending demonstrating how a functional response 
between host density and parasitism rates may be affected by fragmentation altering the habitat edge: 
interior ratio. This heterogeneity in parasitism indicates the complex and variable nature of responses 
of parasitoids to spatial habitat structure and host density.
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Table 1. The effect of F. sylvatica tree position (EDGE), host insect (R fagi) density (MINES), F. sylvatica trunk diameter (DBH), F. sylvatica patch area 
(PATCH) on percentage R fagi herbivory and percentage parasitism of R fagi by three parasitoid species. Results of Type 1 F-tests from GLMM with 
binomial error distribution and Logit link. Model simplification was by step-wise removal of the least significant term, with interactions dropped before main 
effects.

R. fagi C. braconius P. longulus C. nephereus
(% herbivory) (% parasitism) (% parasitism) (% parasitism)

F (df) p F (dn P F (df) P F (df) P

EDGE 13.40 (j, 5) 0 .0 1 0.28 (i, 32) 0.60 2.90 (i, 13) 0 .11 2.3 l(i, 20) 0.14
MINES - - 8.25 (i, 82) 0.005 0 .2 2  (i, si) 0.64 0.28(1,69) 0.60
DBH 0-08 (if 5g) 0.78 0 .0 2  (i, 82) 0 .8 8 4.08 (i, so) 0.05 5.47(i,48) 0 .0 2

PATCH 1 -24 (lj 6) 0.31 0 .0 1  a  ,6) 0.93 2 2 .1 1  (i,n) 0.0006 25.56(i, 36) < .0 0 0 1

MINES * EDGE - - 1-03(1, 76) 0.31 9*98 (i, 77) 0 .0 0 2 0.69(i, 48) 0.41
PATCH * EDGE 0 .0 0  (i, 8) 1 .00 2.52 (i, 19) 0.13 0 .0 2  (,, ,3) 0.90 0.01(i, 13) 0.93
DBH* EDGE 0.01 (1,77) 0.92 4.10(i,g2) 0.05 2 .2 2  (i, so) 0.14 0.52(i, si) 0.47

Table 2. The influence of inter-specific parasitoid density on percentage parasitism of R. fagi by three parasitoid species. Results of Type 1 F- 
tests from GLMM with binomial error distribution and Logit link.

C. braconius 
(% parasitism)

P. longulus 
(% parasitism)

C. nephereus 
(% parasitism)

C. braconius (n) 
P. longulus (n) 
C. nephereus (n)

F  (df) P

0.70(1,85) 0.41 
0.32(1,77) 0.57

F  (df) P
0.42(,,85) 0.52

0.40 (i, 82) 0.53

F  (df) P
0.36 (i, 75) 0.55 
0.15(,,85) 0.70
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Fig. 1 Partial residual percentage parasitism of R. fagi on a linear predictor scale by (a) C. 

nephereus, (b) P. longulus in response to F. sylvatica trunk diameter, and (c) C. braconius in 

response to the interaction between F. sylvatica trunk diameter and tree position (woodland 

interior and edge). Fitted line from GLMM with parasitism modelled as the proportion of 

parasitoids per sub-sample of twenty leaves using a binomial error distribution and Logit link 

function.

Fig. 2 Partial residual percentage parasitism of R. fagi on a linear predictor scale by (a) P. 

longulus and (b) C. nephereus in response to habitat patch canopy area (m2). Fitted line from 

GLMM with parasitism modelled as the proportion of parasitoids per sub-sample of twenty 

leaves using a binomial error distribution and Logit link function.

Fig. 3 Partial residual percentage parasitism of R. fagi on a linear predictor scale by (a) C. 

braconius in response to host density (Ln R. fagi +1) and (b) P. longulus in response to the 

interaction between host density (Ln R. fagi +1) and F. sylvatica tree position (woodland 

interior and edge). Fitted line from GLMM with parasitism modelled as the proportion of 

parasitoids per sub-sample of twenty leaves using a binomial error distribution and Logit link 

function.
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Fig. 1
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Fig. 2
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