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A bstract

Microarray technology allows the measurement of gene transcription 
on a genome wide scale. Signal processing approaches to the analysis 
of data from microarray time course experiments are the focus of this 
thesis.

Firstly, spectral estimation methods are explored as a method for 
the detection of cell-cyclic elements within microarray data. High reso­
lution data-dependent filterbank methods are proposed as an improve­
ment to the traditional periodogram approach. A spectral estimator 
is then designed specifically to deal with the errors in the sampling 
times inherent in microarray experiments, which is based on the robust 
Capon beamformer. A beamforming inspired approach is shown to 
yield a more robust, and higher resolution, estimate of the magnitude 
spectrum of the whole data set than the previous spectral estimation 
approaches.

Blind source separation is examined as a method for recovering 
sources which represent fundamental cellular processes. The linear 
mixing model is compared to its transpose form, and a dual form, 
in terms of their finite sample performance with real microarray data. 
Second order methods are proposed to recover sources which are spatio- 
temporally uncorrelated and may be more suitable with microarray 
data.

Both the spectral and blind source separation techniques are shown 
to yield useful feature extraction measures for microarray data cluster­
ing. The spectral feature extraction allows the clustering of cell-cyclic 
genes into a single functional group. Finally, sparse source separation 
is introduced as a possible blind separation technique with microarray 
data.
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Statement of Originality

Chapters 2, 3 and 4 in this thesis comprise original work to the au­
thor’s best knowledge, except where otherwise stated and referenced.
In particular, the following are novel.

Chapter 2: Spectral estimation and beamforming for cell cycle detection

1. The application of filterbank estimation methods to the spectral 
analysis of microarray data.

2. The derivation of a spectral estimator for use with mis-sampled 
microarray data, based on the robust Capon beamformer.

3. The application of a beamforming inspired method to gain a high 
resolution estimate of the frequency content of microarray data 
and the use of this method with non-uniformly sampled microar­
ray data.

Chapter 3: Independent component analysis for microarray data

1. The analysis of the finite data aspect of Independent Component 
Analysis of microarray data and its implications for separation 
performance.

2. The analysis of the validity of the dual assumption in the linear 
mixing model and an assessment of its performance.

3. The application of second order methods to microarray data in 
order to enforce spatiotemporal uncorrelatedness in the recov­
ered sources and an explanation of why this is more feasible than 
methods utilising higher order statistics.
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4. An analysis of the error in the linear mixing model of microarray 
data in terms of the spectrum of its residuals.

Chapter 4: Clustering of microarray data

1. The ability to cluster cell-cyclic genes into a single functional 
group, which is enabled by the use of a spectral feature extraction 
step.

2. The use of independent component analysis as a feature extrac­
tion step for clustering in the context of microarray data.

3. The application of sparse component analysis to microarray data 
and demonstration that it has the potential for high separation 
performance with the number of time points typically obtained 
in microarray experiments.
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between the PCA and ICA methods reflects the more 

accurate estimation of higher order statistics from the 

increased data  lengths afforded by the transposed data. 78

ix

data sets from [1] 44

values of m. 72



LIST OF TABLES X

3.4 Table of 0 PMI(Y) for the alpha data over a range of m  

for PCA, JADE and FastICA algorithms, using the dual 

model form Y  =  Bh 79

3.5 Table of mean square error values for the transpose and 

non-transpose model form. 84

4.1 Performance Index values for a range of clustering schemes, 

over 200 Monte Carlo trials. Kmeans clustering was 

used, with different initial centroids in each trial, m = 3 

sources were used in the ICA and PCA approaches. 96



List of Figures

1.1 DNA composition and structure (reproduced from [3]).

The composition of the DNA strands from base nucleotides 

is shown, along with the pairing of complementary nu­

cleotides to create the double helix structure. 3

1.2 The genetic code, showing the mapping between different 

codons and their respective amino acids. For example, 

the first codon in the top left box of the table is UUU, 

and this maps to the amino acid Phe (Phenylalanine).

The next codon down is UUC, which also maps to Phe. 6

1.3 Eucaryotic gene activation (reproduced from [3]). The 

looping formulation of the DNA is shown, which allows 

close contact between the regulatory sequences and the 

promoter sites and hence allows the regulatory sequences

to control transcription. 10

1.4 Enlarged subsection of microarray image of a two chan­

nel array. One channel is commonly assigned to red and 

the other green, and the two channels superimposed on

a single image. 11

xi



LIST OF FIGURES xii

2.1 Ensemble average power spectrum estimates from the 

alpha data, with the Periodogram, Amplitude Spectrum 

Capon and Power Spectrum Capon estimators. The fil­

ter length for the PSC and ASC methods was 7. Note

the distinct peak in the cell cycle location. 27

2.2 Power spectrum estimates of an example gene (YGR065C) 

in the alpha data using the PSC and ASC estimators for 

a range of filter lengths. A spectrum with sharper peaks 

is indicative of a higher resolution estimate. The increase

in resolution with filter length is clear. 28

2.3 Ensemble average power spectrum estimates for the al­

pha data using the PSC and ASC estimators for a range 

of filter lengths. The effect of filter length on the ensem­

ble average is varied. 29

2.4 Spectrum estimates of selected genes by robust Capon

and classical Capon and periodogram methods. The es­

tim ated cell cycle frequency is circled. Both axes are 

normalised. 35

2.5 Uniform linear array diagram with the assumption that

the source is in the far-field, so tha t the wavefront which 

traverses the array can be assumed planar. 37

2.6 Power spectrum of alpha data using the standard beam-

former and the ensemble average periodogram. The two 

estimates are coincident. 40



LIST OF FIGURES X ll l

2.7 Power spectrum of alpha data using the standard beam- 

former, the Capon beamformer and the ensemble average 

Capon estimate. The ability of the Capon beamformer 

to take advantage of the robust covariance matrix es­

tim ate afforded by the beamforming formulation allows 

the use of a longer filter length and results in a higher 

resolution estimate. 42

2.8 Magnitude of filter responses for the Capon and standard

beamformers at the estimated cell cycle frequency. 43

2.9 Power spectrum estimate from the standard beamformer

with zero row mean cdc28 data and non zero row mean 

cdc28 data. 45

2.10 Power spectrum estimate from the standard beamformer 

and the diagonally loaded Capon beamformer with zero

row mean alpha data. 47

2.11 Power spectrum estimate from the Capon beamformer 

and the diagonally loaded Capon beamformer with non 

zero row mean alpha data. 48

2.12 Power spectrum estimate from diagonally loaded Capon

beamformer with non-uniformly sampled cdcl5 data. This 

dataset clearly contains a very dominant cell-cyclic com­

ponent. 51

2.13 for all genes in the alpha data, sorted in descending 

order for both the standard and diagonally loaded Capon 

beamformer. 54



LIST OF FIGURES xiv

2.14

3.1

3.2

3.3

3.4

3.5

f lp £ [0.9,1] for all genes in the alpha data, sorted in 

descending order for both the standard and diagonally 

loaded Capon beamformer. 54

Diagram showing the structure of Q z (M). ki are the au- 

tocumulants, i.e. the kurtosis values of the i-th source. • 

represents the cross-cumulants for which i ^  j  and hence 

are explicitly minimised in the JADE contrast function, 

o represents crosscumulants for which i — j  and hence 

are not explicitly minimised in the JADE criterion, but 

are represented elsewhere in the cumulant set. 66

Estimates of sources for m  = 3 using the JADE algo­

rithm on the alpha data. 0PMI (Y) =  0.061. 70

Estimates of sources for m = 3 from PCA of the alpha 

data. 0 PMI (Y) =  0.093. 71

Estimates of m = 5 sources from JADE on the alpha 

data. Note the distinct cyclic profile of the fourth source. 73 

Estimates of m  =  5 sources from PCA on the alpha data. 73



LIST OF FIGURES X V

3.6 Plot shows the mean value of 0PMI(Y) for three sources;

uniform, Laplacian and Gaussian, for a range of sample 

sizes from 10 to 10000. Also shown are the individual 

contributions from the second and fourth order terms 

of </>PM1(Y). Means and standard deviations were ob­

tained over 1000 Monte Carlo runs. The mean value of 

0 PMI(Y) is seen to drop rather slowly as sample size in­

creases. The error bars denote one standard deviation 

away from the mean. The standard deviation too, drops 

as the sample size is increased. Clearly, the fourth order 

component is contributing most significantly to both the 

mean and variance at the lower sample sizes. 76

3.7 Estimates of m  = 5 sources Y  =  Bt from the alpha

data. The source profiles are similar to the temporal 

model form, in Figure 3.4, and so the dual assumption 

may have some merit. 80

3.8 Estimates of m  =  5 sources from SOBI on the alpha

data, with K  = 7 lags. A distinctive cell cyclic source is 

shown in the second source. 83

3.9 First 30 eigenvalues of R x for the alpha data. 85

3.10 Ensemble average power spectra of the actual data X,

and the matrix of residuals Y for m = 5 on the alpha 

data. The power spectrum of the residual data is domi­

nated by the high frequency noise region. 86



LIST OF FIGURES xvi

4.1 Summary of the clustering process. The feature extrac­

tion step acts on the data to produce an L dimensional 

vector of features x • The feature extraction attem pts to 

represent the data in the most separable form, either by 

discarding data which does not aid to discrimination be­

tween clusters or by a transformation of the data into a 

more separable form. C is the matrix of cluster centroids. 89

4.2 The plots show the frequency domain cluster centroids 

from the alpha data using K-means clustering with a 

Fourier preprocessing step for K  = 4, L = 128, and a 

Euclidean distance measure. The centroids appear to be 

very interesting biologically and seem to represent dis­

tinct functional groupings: A distinct cell cyclic group, a 

high frequency noise group, a group with a distinct low 

frequency component and a group which seems to be 

a broadband coloured noise component. The ability to 

identify a cell cyclic functional group using a clustering 

routine is enabled by the Fourier preprocessing step. 93

4.3 Benchmark profiles of salient underlying cellular pro­

cesses, generated from sets of genes representative of 

those processes, which were selected using domain knowl­

edge (from [4]). 95



LIST OF FIGURES X V II

4.4 The Mean PI of the two stage SCA algorithm with syn­

thetic da ta  against sample size, m  = 5 sources and 

P = 100 sensors were used with a randomly generated 

mixing m atrix and perfectly sparse sources. 20 Monte 

Carlo trials were used to obtain the mean values, with 

the error bars denoting the variance. The PI falls to zero 

very quickly against sample size, in contrast to the ICA 

approaches in chapter 3, which typically require thou­

sands of samples for the PI to approach zero. 99

4.5 m = 5 sources generated from the alpha dataset of [1] 

using SCA. The components are certainly markedly dif­

ferent from those generated by ICA as in Figure 3.4.

The enforcement of sparsity gives the sources a rather 

jagged appearance. This is unlikely to be accurate for

all sources, though is rather plausible for noise components. 100

4.6 m  = 5 sources generated by K-means clustering of the



Contents

IN T R O D U C T IO N 1

1.1 Fundamental biology 1

1.1.1 The DNA molecule 1

1.1.2 DNA replication 2

1.1.3 From DNA to Protein 4

1.1.4 Gene regulation 7

1.2 DNA Microarray technology 9

1.2.1 Data quality issues in microarray experiments 12

1.2.2 Microarray data preprocessing 14

1.2.3 Time course experiments 14

1.3 Signal processing in genomics 15

1.4 Thesis outline 16

2 S P E C T R A L  E S T IM A T IO N  A N D  B E A M F O R M IN G  F O R  

C E L L  C Y C L E  D E T E C T IO N  18

2.1 The cell cycle 18

2.2 Cell cycle studies in the literature 19

2.3 Spectral estimation for cell cycle detection 21

2.3.1 Filterbank spectral estimation methods 21

2.3.2 Detection of cell cyclic components using spectral 

estimators 26

xviii



Contents x i x

2.3.3 Robust Capon approach 29

2.4 Beamforming methods for cell cycle detection 34

2.4.1 The standard beamformer 39

2.4.2 The Capon beamformer 41

2.4.3 Removing zero frequency values 44

2.4.4 Non-uniform sampling 49

2.5 Assessment of the cell-cyclic content of individual genes 50

2.6 Conclusions 55

3 IN D E P E N D E N T  C O M P O N E N T  A N A LYSIS FOR M I­

C R O A R R A Y  DATA 56

3.1 Review of Independent Component Analysis for microar­

ray data 56

3.2 Introduction to ICA 58

3.2.1 Statistical principles 58

3.2.2 Linear mixing model formulation 59

3.2.3 The JADE algorithm 61

3.3 Independent component analysis of microarray data 67

3.3.1 Generating independent time series 67

3.3.2 Operating on the transpose of the data 75

3.3.3 Duality in the transpose form 79

3.3.4 Second order methods 81

3.3.5 Model error 83

3.4 Conclusions 86

4 C L U ST E R IN G  OF M ICRO ARRAY DATA 88

4.1 Clustering in microarray data analysis 88

4.2 Frequency domain feature extraction for microarray data 91



Contents 0

4.3 ICA feature extraction 92

4.4 Sparse component analysis 97

4.5 Conclusions 103

5 C O N C L U SIO N S A N D  F U T U R E  W O RK  104

5.1 Conclusions 104

5.2 Future work 107



Chapter 1

INTRODUCTION

1.1 Fundamental biology

Inside every cell of alm ost1 every organism is DNA (deoxyribonucleic 

acid). In eucaryotes (more complex organisms) DNA is tightly packaged 

into chromosomes and contained within the cell nucleus. Procaryotes 

(single celled organisms, mainly bacteria) have no cell nucleus and their 

DNA is contained within the cell cytoplasm. This DNA encodes the 

genetic information of the organism. The genetic information of a whole 

organism is known as a genome and provides a blueprint for the function 

of the organism.

1.1.1 The DNA molecule

The DNA molecule is composed of two polynucleotide chains, fixed 

together by hydrogen bonds in the famous double helix structure [5], 

shown in Figure 1.1. Each polynucleotide chain is composed of many 

nucleotides. Each nucleotide is composed of a five carbon sugar and 

a phosphate group which are common to each nucleotide, and a base 

which may be either adenine, cytosine, guanine or thymine. These 

bases are denoted (A,C,G,T) and their symbols are also used to identify

’Some retroviruses actually store their genetic information as RNA (ribonucleic 
acid).

1
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the corresponding nucleotide. These four symbols are the fundamental 

base-4 alphabet for our representation of genetic information. Each 

base pairs only with one other base; A always pairs with T, and G 

always pairs with C. Because of this, the nucleotide sequence in one 

polynucleotide chain completely determines the sequence in the other, 

they are thereby said to be complementary. The polarity of the DNA 

chain (and hence nucleotide sequence) is indicated by defining one end 

of the DNA molecule as the 5’ end and the other as the 3’ end. By 

convention, nucleotide sequences are usually given in the order 5’-3\

1.1.2 DNA replication

When cells divide the DNA they contain must be replicated accurately 

if excessive mutation is not to occur. As suggested in [5] the double 

helix structure of DNA is ideal for replication. The complementary 

nature of the nucleotide sequences allows one polynucleotide chain to 

identify uniquely its complementary partner. Each strand can there­

fore be used as a template for the synthesis of a new strand. The task 

of DNA replication is performed by a cluster of proteins, known as a 

replication machine. Initiator proteins prise the two strands apart by 

breaking the hydrogen bonds. The positions at which this occurs are 

known as replication origins and are indicated by a particular sequence 

of nucleotides. A whole genome has many of these replication origins, 

greatly speeding up the process of replication. This concurrent replica­

tion strategy results in many replication forks along the DNA strand. 

The central component of the replication machine is called DNA poly­

merase which synthesises the new DNA strand using one of the parent 

strands as a template. The replication machine also includes a proof
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Figure 1.1. DNA composition and structure (reproduced from [3]). 
The composition of the DNA strands from base nucleotides is shown, 
along with the pairing of complementary nucleotides to create the dou­
ble helix structure.
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reading system for checking whether the newly formed DNA is correct. 

The accuracy of replication is such that, on average, only one mistake 

is made per 107 bases and error checking reduces this further to one in 

109 .

1.1.3 From DNA to Protein

The potential physical characteristics of an organism are defined by 

its DNA. The process by which this base-4 linear code dictates the 

function of an organism as complex as a human is protein synthesis. 

Proteins determine the structure and function of cells and are involved 

in almost all biological activity. Protein synthesis can be summarised 

as DNA makes RNA makes protein, a premise so ingrained that it 

has become known as the Central Dogma of Molecular Biology. The 

simplicity of this statement masks the complexity of the actual process.

Firstly, the DNA is transcribed into RNA (ribonucleic acid). RNA is 

of a similar form to DNA except that RNA is a single stranded molecule. 

Also, during the transcription process thyamine (T) becomes uracil (U) 

which still pairs with adenine (A) so the complementarity properties 

of DNA are retained. The actual transcription is carried out by RNA 

polymerases. Transcription is similar to the replication process of DNA 

except that the DNA strand is used as a template for the production of 

RNA. Many RNA polymerases can work simulataneously on one stretch 

of DNA so the transcription process can be rapid. Unlike DNA replica­

tion there is no proof reading mechanism in transcription so the error 

rate is higher at about one error per 104 base pairs. This relatively high 

error rate is tolerable as RNA is created only temporarily as a step to­

wards protein synthesis. DNA contains special sequences of nucleotides
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called promoter regions which signal to the RNA polymerase where to 

start and stop transcription. Upon finding a promoter site, the RNA 

polymerase begins transcription and continues along the DNA until a 

stop site is reached. In complex organisms, such as humans, the genes 

can be interspersed by long non-coding regions of up to 105 bases. The 

freshly transcribed RNA is called the primary transcript to distinguish 

it from RNA in other stages of processing.

Eucaryotic genes have their coding regions (exons) interupted by 

long non-coding stretches of DNA (introns). The primary transcript 

includes these introns. In fact, in humans, the preponderance of introns 

means that only 5 percent of RNA in the primary transcript directly 

codes for protein. The introns are removed in a process called RNA 

splicing and the resulting exons joined together to give a continuous 

coding RNA, known as messenger RNA (mRNA). The RNA segments 

cut from the primary transcript can actually be reconstructed in varying 

permutations to allow the creation of different proteins from the same 

gene. Hence, one gene can produce any one of a domain of similar 

proteins. The mRNA resulting from the splicing procedure is ready for 

translation for production of a specific protein2.

The translation procedure maps the four letter code of the mRNA 

into the linear sequence of amino acids which define a protein. The 

rules for this translation are known as the genetic code, shown in Fig­

ure 1.2. The mRNA is read in groups of three. One group of three 

nucleotides is called a codon and codes directly for a specific amino 

acid. There are 20 common amino acids used to build proteins and 

43 =  64 possible codons. All of the possible codons are in use and

2Some procaryotic mRNA is actually able to code for multiple proteins.
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Figure 1.2. The genetic code, showing the mapping between different 
codons and their respective amino acids. For example, the first codon 
in the top left box of the table is UUU, and this maps to the amino 
acid Phe (Phenylalanine). The next codon down is UUC, which also 
maps to Phe.
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so some amino acids must be specified by more than one codon. In 

fact, some amino acids are represented by up to six codons and oth­

ers by only one. This many to one mapping has been shown to be 

near optimal in the sense that the final protein formed is robust to er­

rors in the mRNA [6]. One codon (AUG) is known as the start codon 

and denotes the starting point for protein construction. Three codons 

(UAA, UAG, UGA) are recognised as stop codes to halt protein trans­

lation. The resultant amino acid chain then folds into the complex 

three dimensional structure of the protein. In most cases this folding is 

spontaneous, though some proteins are guided though the folding pro­

cess by molecules called chaperones. Currently, the prediction of three 

dimensional protein shape from the one dimensional amino acid chain 

is achieved by exhaustive search though the possible permutations to 

find the permutation with the lowest energy required to hold it. This 

is computationally very intensive and a reliable analytical method for 

determining protein shape (which defines its function) from a given 

amino acid sequence is something of a holy grail within the structural 

genomics community.

1.1.4 Gene regulation

Identical DNA is contained within every cell in the human body and 

yet the diversity in cell characteristics is huge. This is possible through 

the regulation of gene expression. When a gene is expressed, the protein 

that the gene codes for is actually produced by the cell. Gene regulation 

is the control of gene expression to produce the proteins needed by the 

body in the correct quantities at the correct time. Gene regulation 

is a complex network of processes which is not yet fully understood.



Section 1.1. Fundamental biology 8

However, it is known that regulation can occur at four stages during 

protein synthesis:

1. Transcription, control of when a particular gene is transcribed 

from DNA into RNA.

2. RNA processing, control of the splicing process from the primary 

transcript RNA to mRNA.

3. Translation, control of when a particular gene is translated from 

RNA into protein.

4. Protein control, activating and deactivating proteins.

Wasted intermediary products are minimised by performing regula­

tion early in the protein synthesis process. Because of this, RNA tran­

scription regulation is the primary control mechanism for most genes 

and this is the area we will focus on.

The promoter region of a gene always contains an initiation site, 

which is where the transcription of the DNA into RNA by the RNA 

polymerase begins, and a general promoter region immediately up­

stream from the initiation site. This promoter region contains sites that 

the RNA polymerase requires to bind to the DNA. These are required 

by every gene for transcription to occur and so cannot be a regulatory 

mechanism. However, there are other sequences which can be as short 

as five base pairs which are scattered further upstream from the pro­

moter region that are present in almost all genes but in differing config­

urations. These are the regulatory sequences. Some of these respond to 

a single biochemical signal and have a binary effect, effectively switch­

ing a gene on or off. These are common in bacteria. More complex
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organisms tend to have longer, multiple sequences which act in a com­

binatorial fashion to dictate the rate of transcription. These regulatory 

sequences, or motifs, are recognised by one or more regulatory proteins 

that act as the agent to control expression. These regulatory sequences 

and their corresponding proteins can either act as activators to encour­

age transcription or repressors to discourage transcription. In addition 

to these regulatory proteins, eucaryotes require the presence of a group 

of proteins known as general transcription factors which are thought to 

play a role in positioning the RNA polymerase and pulling apart the 

two DNA strands. Analysis of the regulatory process in eucaryotes is 

complicated by the fact that regulatory motifs can occur thousands of 

base pairs upstream of the promoter region. This is feasible because the 

DNA loops over itself, allowing relatively close contact between both 

the promoter region and the regulatory sequences. Figure 1.3 shows this 

looping, and other aspects of eucaryotic gene transcription activation. 

The gene regulation process is very complex and detailed identification 

of the gene regulation network is beyond current technology. However, 

measurement of gene mRNA levels in response to simple physical or 

biochemical stimuli is possible using DNA microarrays.

1.2 DNA Microarray technology

Microarrays provide a systematic, high-throughput method of measur­

ing relative mRNA levels of thousands of genes concurrently. The pos­

sible uses of microarrays in genomics are diverse because the generality 

of the microarray hardware imposes few constraints on experiment de­

sign.

The objective is to measure mRNA levels under given experimental
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gene regulatory sequences

TATA box

d gene regulatory 
^pro te in s

upstream promoter

*  s

general
transcription
factors

RNA
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j start of 
transcription

F igu re  1.3. Eucaryotic gene activation (reproduced from [3]). The 
looping formulation of the DNA is shown, which allows close contact 
between the regulatory sequences and the promoter sites and hence 
allows the regulatory sequences to control transcription.

conditions. These experimental conditions could be the application of 

heat, an external chemical or an internal cell messenger agent. Samples 

can be arranged in order to give the response of one gene to multiple 

stimuli or the response of all the genes in a genome to a single stim­

uli, or a hybrid of the two. This flexibility means that the experiment 

design stage is crucial if useful results are to be obtained. Usually, 

DNA representing a single gene is assigned to each spot. In the case 

of cDNA (complementary DNA) arrays3, for each sample spot on the 

array, mRNA is sampled from the cell populations under two different 

experimental conditions. One condition could be the active application 

of some stimuli and the other a measure of the cells in a reference state. 

This then undergoes reverse transcription into cDNA. Each cDNA sam-

3also known as two channel arrays.
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pie is then labelled with a different colour flourescent dye (fluor). These 

are then mixed, causing hybridization with the DNA samples already 

on the spot. A laser then measures the flourescence of each spot to 

determine the ratio of fluors and hence the relative abundance of the 

sequence of the specific gene in the two mRNA samples. Thus, the 

relative transcription levels of each gene are known for a given stimuli. 

Figure 1.4 shows a section of microarray grid typical of the layout of two 

channel arrays. Another type of microarray technonology is typified by

•  a •  c * ©
♦

+ • c * + 0 *
. . c •  o O •  o

(l o f *  Q o  O D 7 V  ' G O  • •  9 9

•  i «  t  i D i d  * C b # ( i O a

F igure  1.4. Enlarged subsection of microarray image of a two channel 
array. One channel is commonly assigned to red and the other green, 
and the two channels superimposed on a single image.

the Affymetrix (Santa Clara, USA) approach, whereby oligo probes are 

synthesized in situ on the array by photolithography. Another in situ 

approach was pioneered by Agilent (Palo Alto, USA) which uses inkjet 

printing technology to build oligonucleotide probes directly onto the 

array. Whether this in situ approach is used, or the two channel tech­

nology, the aim is identical; to measure gene transcription activity on 

a large scale.
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As previously noted, control of transcription level is the primary 

gene regulation method. It should be noted that, as stated in the cen­

tral dogma of molecular biology, the final product of gene expression is 

a protein, which is not measurable using microarrays. Although tech­

nology in this area is developing rapidly (see [7] for an overview of 

proteomic technologies), it is not yet possible to measure protein on 

a genome-wide scale and so the measurement of mRNA with microar­

rays is currently the best estimate of gene expression on a genome-wide 

scale. Nevertheless, the term ‘gene expression’ is often used in rela­

tion to microarray experiments and this should be assumed to refer to 

transcription levels.

For a further introduction to microarrays, see [8-10]. A review of 

different microarray technologies can be found in [11].

1.2.1 Data quality issues in microarray experiments

Microarray data are the product of a long experimental pipeline. A 

typical simplified data collection process would be:

• Plan experiment.

•  Grow, or otherwise obtain, cells under the relevant environmental 

conditions.

• Sample cell culture and hybridise on a microarray.

• Place microarray in scanner and read in fluorescence values to 

obtain microarray images.

• Use image processing software on the microarray images to as­

sess the spot locations and assign a value to the expression level 

depending on the spot brightness.
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The process of data collection is subject to noise at every stage. 

Some common sources of noise include:

• Cell culture impurity or cross contamination.

•  Human imprecision in the sampling and hybridisation procedure.

•  Microarray scanning imprecision.

• Imperfect image processing of microarray images.

These major sources of noise result in data that are considerably more 

noisy than that usually used in many signal processing applications. 

The noise characteristics of microarray data are not widely understood 

although some initial work has been done to model the noise [12]. 

In [13], replicate experiments (Affymetrix based) were performed to 

isolate noise sources. They found that noise originating from the sam­

ple preparation stage was relatively small and could be modelled by a 

small constant component. Hybridization noise was found to be more 

significant, with noise dependent on the expression level and showing 

some Poisson-like characteristics. This study concentrates on a few of 

the more easily quantified sources of noise but serves to demonstrate 

tha t the characteristics of microarray noise are not trivial and any sig­

nal processing technique must reflect this.

Given the high degree of uncertainty in microarray data, microarray 

experiments should be performed in parallel so that some measure of the 

variance in the output can be obtained. However, large scale microarray 

experiments are expensive and so parallelism is inevitably constrained 

by cost. As the cost of microarray experiments decreases, parallelism 

should become more common and provide more reliable data than are 

currently available.
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Even if noiseless measurements were possible, the analysis of mi­

croarray data would still present a considerable challenge. Each set of 

data provides a snapshot of the process of gene regulation at limited 

instants in time, for specific environmental conditions. Gene regulation 

is controlled by complex biological processes which are understood only 

in parts. In contrast to many signal processing applications, generative 

models for the data are unavailable, except in the most basic qualitative 

forms.

1.2.2 Microarray data preprocessing

Microarray data, as generated by image processing software must be 

preprocessed before it can be reliably used. Data from cDNA microar­

rays are usually given as a log ratio between the mRNA levels of the 

two cell populations. A log ratio is used to ensure numerical symmetry 

between upregulated and downregulated genes. A base two logarithm 

is most usually used and hence values of —1 and -1-1 represent two fold 

down and up regulated genes, respectively.

More extensive normalisation is often performed to compensate for 

differences between microarrays and even across the surface of each 

microarray. For a review of microarray normalisation see [14].

1.2.3 Time course experiments

A single microarray allows the measurement of the transcription levels 

of P  genes at an instant in time. This can be used to give an instanta­

neous snapshot of the transcriptional state of a set of genes. In order 

to measure the dynamic behaviour of gene transcription it is necessary 

to sample cell populations over time and, for each time point, measure
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the transcription levels of all P  genes with a microarray. Such an ex­

periment is called a time course experiment and provides insight into 

transcription levels over time. The results of such a time course ex­

periment can be expressed as a matrix of expression levels X  G KPxN, 

given N  microarrays, each representing a point in time, and P  genes 

per microarray. Each row of X  hence represents the transcription lev­

els of one particular gene over time. This kind of time course data is 

naturally of particular interest from a signal processing point of view, 

and will be the focus of this thesis.

Missing values are common in microarray time course data, pri­

marily because of poor spot quality in the microarray images. Vari­

ous methods have been suggested to interpolate missing values [15-17]. 

Throughout this thesis genes with more than a quarter of the values 

missing in a time course are discarded and the remainder of the miss­

ing values are calculated with a cubic spline interpolant. A cubic spline 

interpolant allows smooth and robust interpolation, without resorting 

to assumptions of a particular generative model [18].

1.3 Signal processing in genomics

Many signal processing techniques have been applied to the analysis of 

microarray data, including clustering [4,19,19,20], spectral analysis [21], 

independent component analysis [22-24], and network modelling [25]. 

Microarray data analysis represents a significant challenge to signal 

processing techniques4. Amongst the issues for the development of

4This has motivated a philosophy which draws upon four cornerstone concepts 
in signal processing; i.e. parametric and non-parametric methods, together with 
supervised and unsupervised learning. The expectation is that the current best 
solutions for microarray data analysis will result from a fusion of such ideas and 
this is indeed the heart of the methodology in Chapter 4.
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successful algorithms are:

• Robustness to significant uncertainties in generative models.

• Robustness to variable data quality, missing data, non-uniform 

sampling and short data lengths.

• The incorporation of limited probabalistic domain knowledge into 

algorithms.

• The fusion of diverse data.

• Analysis of massively multi-variable datasets.

• Efficient implementations of algorithms to work with vast datasets.

1.4 Thesis outline

This thesis is split into three primary contribution chapters, fn chap­

ter 2, filter bank spectral estimation is introduced as a method for de­

tecting cell cyclic elements within gene expression data. A method for 

dealing explicitly with temporal mis-sampling, and other noise sources 

is then developed from the robust Capon estimator. Methods derived 

from beamforming are then discussed, including how to cope with the 

non-uniform sampling often found in microarray data.

Chapter 3 introduces blind source separation techniques for microar­

ray analysis. Different ways of blindly extracting sources which repre­

sent underlying cellular processes are discussed, including transpose 

forms and second order methods. The different methods are analysed 

in terms of limited sample size performance and model error.

Chapter 4 analyses how the two previous spectral estimation and 

blind source separation approaches can be used to enhance the clus-
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tering of microarray data. Sparsity is then introduced as a possible 

criterion for source separation and parallels are drawn with cluster­

ing approaches. Finally, conclusions on the thesis work are drawn and 

promising topics for future study highlighted.



Chapter 2

SPECTRAL ESTIMATION 

AND BEAMFORMING FOR 

CELL CYCLE DETECTION

2.1 The cell cycle

A cell reproduces by duplicating its genetic material and then dividing 

in two [3]. Cells have a finite life and so this division and growth is 

necessarily regular to maintain a cell population. This natural process 

of cell division and growth is called the cell cycle. The control of the 

cell cycle is part of the gene regulatory process and so the cell cycle can 

manifest itself as a cyclic element in the transcription activity of some 

genes. Genes exhibiting this cyclic activity could be either regulators of 

the cell cycle, genes whose transcription is directly affected by the cell 

cycle, or genes whose transcription is affected by other genes connected 

to the cell cycle.

An important early application of microarray time course experi­

ments has been to identify genes with cyclic elements. In order for cell 

cyclic elements to be detected in time courses the cell culture must be 

synchronised to the same point in the cell cycle, i.e. every cell in the

18
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cell culture should start the time course at the same stage in the cell 

cycle. W ithout this synchronisation, the cells within each time point 

sample would be in varying stages of the cell cycle, and the microarray 

measurement would record an average value of transcription activity of 

cells spread over different stages in the cell cycle.

The validity of this type of study has been debated, primarily 

through the work of Professor Stephen Cooper 1 (University of Michi­

gan USA). In particular, the ability of whole culture treatment methods 

to synchronise cells is questioned. It is also doubted whether the cyclic 

components observed in the microarray data are actually due to the cell 

cycle or are a reaction of the cells to the shock of the attempted syn­

chronisation. These issues are reviewed in [26] and detailed more fully 

in the references therein. This doubt over the results obtained should 

not discourage research into the detection of cell cyclic components as 

other experimental methods exist and more reliable data will become 

available. In fact, a later study addressed the issue of synchronisation 

and provided evidence of good population synchrony [27].

2.2 Cell cycle studies in the literature

In one study, which became something of a benchmark for subsequent 

research, Spellman et al. [1] identified 800 genes which could be cell cy­

cle regulated from the Saccharomyces cerevisiae (budding yeast) genome. 

The Fourier transform was used to obtain the frequency content of 

the genes’ expression time series and thereby rank them according to 

the magnitude of the Fourier transform at the estimated cell cycle fre­

quency. It should be noted that the decision which genes were actually

1 http://www-personal.umich.edu/'cooper/

http://www-personal.umich.edu/'cooper/
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cell cycle regulated was rather arbitary because of the lack of any ob­

vious cut-off point in the ranking of possible cell cyclic genes. The 

methods and analysis used in this study, along with that of [28], were 

widely cited and clearly influential in subsequent work. In particular, 

the use of the Fourier transform in [1] to identify periodic elements in 

profiles was used in much of the later work.

Later studies used human cell lines to attem pt to identify cell cyclic 

genes in the human genome [29,30]. A further study on the fission yeast 

Schizosaccharomyces pombe, revealed a similar proportion of genes in­

volved in the cell cycle to that of earlier studies on the budding yeast 

Saccharomyces cerevisiae. This study was also notable for using inde­

pendent time series replicates, which allow a measure of data quality. 

Two recent studies also found similar numbers of cell cycle regulated 

genes in fission yeast [27,31]. The later work of A. Oliva et. al. [27] is 

notable as it uses a relatively high number of time points; up to 52 are 

used in one experiment.

The most common technique used by biologists analysing time course 

microarray data is clustering. However, clustering is of limited value 

in the identification of cell cyclic elements because the times of peak 

expression (or phases) vary widely between genes. Therefore, genes 

which exhibit perfect cell cyclic behaviour are not clustered together 

unless their phases happen to be coincident. In practice, the phases are 

sufficiently widely distributed that the boundaries between clusters is 

rather arbitrary.

In addition to the primary data producing studies, work has been 

done into the analysis methods of gene cell cycle data. Proposed meth­

ods of cell cycle detection generally fall within two categories: Fourier
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based methods and model based methods. In [21], the periodogram was 

used to obtain the spectra of the gene expression series and Fisher’s g 

statistic used to identify a cut off point for genes deemed cell cycle 

regulated. In [32], an improved Fourier based technique is suggested to 

cope with errors caused by phase variation in short data lengths.

A model based approach was used in [33-35]. A model cell cycle is 

defined and then an intelligent search algorithm ranks the genes’ dis­

tance from this reference. In model based (and clustering) approaches, 

the problem of variable cell cycle phases must be addressed. In Fourier 

based analysis, the amplitude and phase information are effectively de­

coupled.

2.3 Spectral estimation for cell cycle detection

2.3.1 Filterbank spectral estimation methods

The estimation of the spectrum of microarray data presents specific 

challenges. In particular, the data sequence is typically short (just 

18 samples were taken in the alpha experiment from [1]) and negli­

gible prior information is known about the generative model or noise 

characteristics. The lack of model knowledge of the generative process 

precludes the use of a parametric estimator. The filter-bank class of 

non-parametric spectral estimators has received significant attention 

lately [36]. The filter bank approach is based on the filtering of the 

data with a bandpass filter, centred at a given frequency at which the 

spectrum is to be estimated. The power in the filter output is then 

divided by its bandwidth to obtain an estimate of the spectrum at that 

frequency.
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Consider a data sequence {y {t)}^=01 of length N. The power in the 

filter output is given by:

4>(u>) = E  [ |h " y L (t) |2]

=  h5 E [yL (O y"  (0] ho.

=  h " R 1,hu,

(2.3.1)

(2.3.2)

(2.3.3)

where E  [•] is the expectation operator, is the coefficient vector of 

an L-tap finite impulse response bandpass filter, centered at frequency 

cj, is the data covariance matrix, defined as =  E  (t) (t)H

and

y /. (<) = y( t )  . . .  y{ t  + L -  l) (2.3.4)

rp
for t = 0 , . . . ,  M  — 1, where M  =  iV — L +  1, (•) denotes the transpose 

operator and (•)H the Hermitian transpose.

The classical periodogram can be couched in filterbank terms, and 

is equivalent to applying the filter [37]

K> =
a L
V l

(2.3.5)

where the filter length is equal to the number of samples, L = N  and 

is defined as the Fourier vector

(2.3.6)

and i = \ / —l. Note that this method is a non-adaptive, or data- 

independent, method in the sense that the design of hw does not de­

pend on the data sequence { j/M ltlo 1, This interpretation of the pe-
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riodogram can be easily shown to be equal to the more traditional 

expression [37]

4>p e r {u ) = h^R yh^ (2.3.7)

=  (t ) y N (t)H aN (2.3.8)

=  ^ l a wyw(<)|2 (2-3.9)

where aj^y/v (£) is nothing but a vector expression for the value of the 

Discrete Fourier Transform (DFT) at uj. The periodogram can therefore 

be efficiently computed over a uniform frequency grid using the Fast 

Fourier Transform (FFT). This is effectively the method used by most 

of the literature concerned with cell cycle detection.

The performance of the periodogram, in terms of resolution and 

variance, can be improved through the use of data adaptive methods 

to design the bandpass filters. The classical Capon, or Power Spectrum 

Capon (PSC), estimator, is one such method [38,39]. The PSC min­

imises the power in the filter output whilst enforcing unit gain at the 

frequency of interest, giving the minimisation problem:

=  m in h ^ R h ^  subject to h%aL = 1 (2.3.10)Li

The solution is found through application of a Lagrangian formulation 

as [37]
R  13iL (u>) 

a" (w) R _Ia; ( o j )
h * =  A  a (2-3.11)

substituting (2.3.11) into (2.3.3) yields the power spectrum Capon es­

timate of 4> (u)

a£ ( u )  R_1aL ( u j )
4 > p s c  M  =  u ( ,N-p— t, (2.3.12)
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In [40], we proposed using the amplitude spectrum Capon (ASC) esti­

mator to identify cell-cyclic elements within gene expression data. This 

estimator improves on the accuracy of the PSC, making it particularly 

suited to the short data sequences of gene expression time series. The 

estimator is obtained by estimating the amplitude spectrum of data, 

which is modelled as

y (t) = aueluJ +  e (t) , t = 0 . . .  N  -  1 (2.3.13)

where a w is the complex amplitude of the generic sinusoid at u  and e (t ) 

is coloured noise representing the remainder of the signal. In vector 

form,

y l (t ) =

=  a.

y(t )  . . .  y{t  + L - l )

giut giuj{t+L— 1) +  e L (t)

= a uaL (u>) e'"1 +  eL (t )

(2.3.14)

(2.3.15)

(2.3.16)

for t = 0 , . . . ,  N  — 1, where e/, (t ) is a vector formed similarly to y i  (t) . 

We wish to minimise the effect of the noise term, whilst enforcing unit 

gain for the frequency of interest, giving the constrained optimisation

hw =  min h "  subject to h " a L =  1hu (2.3.17)

where CL = E  [eL (t) e"L (t)] is the covariance matrix of the noise term.
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However, we note that

R =  E  [yL (t) y £  («)] (2.3.18)

=  |a J 2aL M  a" (u) +  Qu; (2.3.19)

Qu; =  R  -  |a J 2aL M  (cj) (2.3.20)

where we have assumed that the noise is uncorrelated with the signal. 

Therefore,

Qo.hu, =  h" [R — | a j 2a/, (w) a![ H ]  ĥ , (2.3.21)

=  h^Rho, -  |o-^|2 (2.3.22)

Prom (2.3.22), we note that

min h f̂ Qhu; — min h ĵ Rh^ (2.3.23)
hw hu,

and hence, the minimisation (2.3.17) is equivalent to the minimisation 

in the classical Capon design, given in equation (2.4.11). The filter is 

thus given by (2.3.11), the filtered signal being

h ^ y t  (<) =  c*u.h"aL (u>) e*“" +  h " eL (t) (2.3.24)

=  Oo.e<u,‘ +  h " eL(t) (2.3.25)

The least-squares estimate of qw is

1 m —1

“ "  =  1 ^ ^  w  e' iu" -  h " Y “ (2-3-26)
t=o

The amplitude spectrum Capon estimate is obtained by the substitu­
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tion of the filter result (2.3.11) into equation (2.3.26), yielding

2.3.2 Detection of cell cyclic components using spectral estima­

tors

The method for the detection of cell cyclic elements is as follows:

1. Estimate the magnitude spectrum of the pth gene as (f)p {uj), for

A dominant peak in 0p occurs if a significant number of genes 

have cell cyclic components. This frequency location of this peak 

provides an estimate of the cell cycle frequency

3. Rank the P  genes according to their spectral amplitude at the 

estimated cell cycle frequency, i.e. (u;cc).

The use of the ensemble average for cell cycle frequency detec­

tion was first proposed explicitly in [21]. We test the performance of 

the spectral estimators on microarray data from the alpha experiment

2Note that this is not an ensemble in the strict statistical sense, unless each gene 
can be viewed as one realisation of a single underlying process.

4> A SC  ( ^ )  =  | d j 2 (2.3.27)

(2.3.28)

a g H R - ' Y ^  2 
a 1  (wJR-'at ( u j )

(2.3.29)

2. Estimate the ensemble average2 of the amplitude spectra:

p
(2.3.30)

p = i
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Figure 2.1. Ensemble average power spectrum estimates from the 
alpha data, with the Periodogram, Amplitude Spectrum Capon and 
Power Spectrum Capon estimators. The filter length for the PSC and 
ASC methods was 7. Note the distinct peak in the cell cycle location.

from [1]. In the context of the work in this Chapter the simulation 

studies are based on real microarray data as no theoretically justified 

quantative models are available for the production of synthetic datasets. 

The data length is N  = 18, with P = 6075 usable gene profiles.

Figure 2.1 shows the resulting ensemble average spectrum for the 

periodogram, PSC and ASC methods. The filter length for the PSC 

and ASC methods is 7. The figure displays the distinct peak expected 

from a dataset with a significant cell cyclic component. The three 

methods all place the peak in a similar location but the estimate of the 

remainder of the spectrum is rather more varied.

One of the issues with the PSC and the ASC estimators is the 

need to specify a filter length L. The filter length effectively governs 

a bias/variance tradeoff [41]. A longer filter length enables a higher 

resolution estimate at the expense of higher variance. Figure 2.2 shows
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Figure 2.2. Power spectrum estimates of an example gene (YGR065C) 
in the alpha data using the PSC and ASC estimators for a range of 
filter lengths. A spectrum with sharper peaks is indicative of a higher 
resolution estimate. The increase in resolution with filter length is clear.

the PSC and ASC estimates for a range of filter lengths on a single 

example cell cyclic gene. The increase in resolution with filter length is 

clear, with the ASC giving a higher resolution estimate than the PSC 

for a given filter length. Given a long filter length, both methods are 

capable of giving a very high resolution estimate [42]. However, with 

data lengths such as N  = 18 the variance is likely to be significant. A 

high filter length will place a precise peak, but the short data length 

and high noise could mean that this peak is misplaced. If this situation 

is replicated over the full set of gene profiles then the resulting ‘jitte r’ 

in the frequency location could have an unpredictable effect on the
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Figure 2.3. Ensemble average power spectrum estimates for the alpha 
data  using the PSC and ASC estimators for a range of filter lengths. 
The effect of filter length on the ensemble average is varied.

ensemble average. Figure 2.3 shows the effect on the ensemble average 

of the variation of filter length. The ASC clearly shows less variation in 

ensemble average with filter length but for a long filter length L = 10 

the peak is placed in a rather different location. Clearly, a poor choice 

of filter length could result in an erroneous estimate of the frequency 

location.

2.3.3 Robust Capon approach

One of the problems inherent in microarray data is timing errors. The 

cell populations in microarray time course experiments are sampled by 

hand and so the timing is imprecise. For example, in [1] the nominal
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sampling period in the alpha factor experiments was 7 minutes but 

errors were estimated at up to 20 seconds [43]. We design a spectral 

estimator to be robust to mis-sampling [44], based on the robust Capon 

beamformer.

The robust Capon beamformer (RCB) presented in [45,46] is able 

to determine the power in a signal of interest given imprecise knowl­

edge of the array steering vector. As the beamforming problem is di­

rectly analogous to spectral estimation, the steering vector uncertainty 

is equivalent to uncertainty in the Fourier vector in the case of spectral 

estimation. Here, we show that errors in temporal sampling can be

represented as an uncertainty disc around the Fourier vector. Let the

ideally sampled data be represented as

V (t) = au,elu>t +  n ( t ) , (2.3.31)

for t =  0 , . . . ,  N  — 1, where a u is the (complex) amplitude of a generic 

sinusoidal component at frequency u, where u  G [0, 2tt), and n (t ) is an 

additive zero mean coloured noise process containing component power 

at frequencies other thanu; (see, e.g., [36]). Introducing sampling errors, 

we rewrite (2.3.31) as

y (t) = Qu,ei“'<(+A‘> +  n  ( t ) , (2.3.32)

where A t is a random variable representing the sampling error at time t. 

Here, we make the natural assumption that { A * } ^ 1 are independent 

identically distributed (HD) variables, with A t ~  Af (0, o \) ,  where o \
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models the level of uncertainty in the sampling process. Let

Yl (0  = y( t )  y ( t  + l) . . .  y{t  + L -  1)
T

(2.3.33)

for t = 0 , . . . ,  ./V — L,

=  aL O  aA

a L =

aA =

 ̂ gtu; gia>(L—1)

T

with © denoting the Schur-Hadamard (elementwise) product. To form 

the uncertainty region created by the sampling uncertainty, we proceed 

to evaluate the expected value and the covariance matrix of a^. The 

expectation of a l is

aL = E  [at ]

=  aL © E  [aA] 

=  a LE  [eiu,A‘]

(2.3.34)

(2.3.35)

(2.3.36)

where we exploited the assumption that { A f } ^ 1 are IID. Noting that 

E  [elu;A‘] is the characteristic function of a zero-mean Gaussian random 

variable yields

(2.3.37)aL =  e 2 a L
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Similarly,

Ca = E (aL - a L)(aL -  aL)H

=  ( l  -  e - ^ )  i L (2.3.38)

This covariance model for the sampling uncertainties could be easily en­

hanced with additional prior knowledge from laboratory experiments. 

Based on the above derivation, we assume that a i  belongs to the un­

certainty ellipsoid

(aL ~ S i)  C41 (aL -  aL) <  1 (2.3.39)

where C§ is given by (2.3.38). Using (2.3.38), the hyperspherical un­

certainty region is given by

8ll ~  e 2 aL < e (2.3.40)

where e =  (3 ^1 — e~u2<7̂ ,  and ||-||2 denotes the Euclidean norm. Note 

that the radius of the hypersphere is a function of u  and The 

reliance on cr  ̂ is, of course, expected, but the presence of lj is also 

intuitive as the estimation of the spectral content at low frequency 

should be less affected by sampling errors than at higher frequencies. 

The extra scalar parameter (3 allows the uncertainty disc to be extended 

to give a more conservative estimate, which is useful for allowing extra 

unstructured uncertainty due to short data lengths and unknown noise 

characteristics. The robust Capon estimator [45,46] is then obtained
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using the solution to the constrained optimisation

m i n a ^ R  subject to a  L ~  a  L < € (2.3.41)

where R  is the (estimated) covariance matrix of the measured data. 

To eliminate the trivial solution =  0, it is assumed that WsllWI > e- 

In this case, the solution will lie on the boundary of the constraint, 

simplifying the problem to a minimization with equality constraint

m i n a ^ R  la i  subject to
s  L

aL -  a L =  e (2.3.42)

The solution to (2.3.42) is obtained using a Lagrange multiplier [45]

/  =  5 " R - 1Si  +  A a L  ~  a L — e (2.3.43)

The optimal solution a l  is found by differentiation of (2.3.43) with 

respect to aL, yielding the solution:

a t  =  a t  -  (I +  AR) 1 a L (2.3.44)

The Lagrange multiplier A is obtained by the solution of the constraint 

equation:

g (A) — (I +  AR)-1 a/, =  e (2.3.45)

A unique solution to (2.3.45) is obtained through gradient descent 

(see [45] for details and the formulation of upper and lower bounds). 

With the Lagrange multiplier determined, aL is given by (2.3.44). The 

robust Capon spectral estimate is given by using a L in place of aL in 

the classical power spectrum Capon estimator, i.e. the estimated power
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spectral density is obtained as

0 M =  1 , (2.3.46)
aL R ~ l aiL

The robust Capon estimator was tested on the alpha factor microarray 

data from [1]. The cell cycle frequency was estimated using the ensem­

ble average and the data pre-processed in the same manner as for the 

PSC and ASC methods, outlined in the previous section. The estimates 

given in Figure 2.4 show typical examples of genes which in [1] were 

judged to be cell-cycle regulated. In all cases, the robust Capon esti­

mator places a definite peak at the location of the estimated cell cycle 

frequency. The classical Capon tends to place a very sharp peak in the 

vicinity of the cell cycle frequency but the amplitude value at the cell 

cycle frequency can be relatively low. It is likely that the sharp peak 

is misplaced because of the significant uncertainty in the data. The 

periodogram has a broader peak, but this too is often misplaced and, 

as expected, suffers from spurious peaks due to the large sidelobes. The 

periodogram and classical Capon estimators both show more variation 

than the robust Capon estimator in the spectrum outside the region 

containing the estimated cell cycle.

2.4 Beamforming methods for cell cycle detection

In the previous section, we considered the use of data adaptive filter- 

bank spectral estimators. It is worth noting that the resulting set of 

L-tap filters, for each frequency, will differ for each gene - we are thus 

effectively designing P  filters for each and every frequency. We now 

proceed to instead form only a single filter for each frequency, i.e. for
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Figure 2.4. Spectrum estimates of selected genes by robust Capon 
and classical Capon and periodogram methods. The estimated cell 
cycle frequency is circled. Both axes are normalised.
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each particular frequency we suggest applying the same filter to all 

genes.

This conceptual difference gives several benefits: first, we can ex­

ploit all the P  genes to construct the frequency dependent filters, and 

secondly, each filter can be extended to N  taps in length. Previously, 

the filters were restricted to b e i <  |  long to ensure that the required 

covariance matrix be non-singular. However, if all the P  genes are used 

to form the filters, these can be extended to N  taps without loss of 

rank in the covariance matrix, yielding significantly higher resolution 

in the resulting spectral estimates.

Let h w denote the TV-tap data adaptive filter designed to minimise 

the power of the filter output, while passing the frequency of interest, 

uj undistorted, i.e.

=  argm in h ^ R h ^  subject to =  1 (2.4.1)
hu,

where R  is the covariance matrix of the considered gene. As R  is 

unknown, we form an estimate by averaging all the P  genes, i.e. R  =  

■p where xjt denotes a row vector containing the samples of

one gene, implicitly assuming that each gene has the same statistical 

properties. This is clearly not the case, and we will comment further on 

this assumption below. Examining (2.4.1) we note that this formulation 

is identical to the MVDR beamformer; clearly designing a single filter 

for each frequency, for all the genes results in a problem formulation 

identical to the traditional beamformer. Beamforming is the spatial 

equivalent of the spectral estimation problem. In this case, the data 

are obtained from a number of sensors typically located in a linear,
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d

Figure 2.5. Uniform linear array diagram with the assumption that 
the source is in the far-held, so that the wavefront which traverses the 
array can be assumed planar.

preferably uniform, array as shown in Figure 2.5. Hence, the problem 

of interest is to determine the direction of arrival (DOA) of sources, 

typically located far away from the array. In this case, the estimation 

of the power as a function of DOA, which can also be expressed as 

spatial frequency, is directly analogous to the estimation of power in the 

frequency location, u , in the case of spectral estimation. Thus, by using 

beamforming approaches designed to estimate the power distribution 

as a function of the spatial frequency, we will obtain an estimate of the 

distribution of power over the entire data set, providing an estimate 

equivalent to the previously discussed ensemble average. In our problem 

domain, we use the beamforming framework by treating each gene data 

vector as an A^-dimensional sample impinging on an array of N  sensors. 

Note that, whereas in the ensemble average approach we effectively had 

N  scalar samples, we now have P  vectorial samples. In our application, 

P N  and so we can expect significant benefits from this approach.
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We note that in the beamforming formulation, the impinging sources 

do not need to be stationary, i.e. each of the P  ./V-tap vectorial data 

samples are not required to have the same statistical properties; the 

resulting spatial spectral estimate will only indicate from which DOA 

power is impinging on the array - not when it does so. Indeed, the 

time dimension usually present in beamforming is instead replaced by 

a set of gene data - the ordering of which is entirely arbitary. Thus, in 

our case, we do not require the false assumption that all the P  genes 

share the same statistical properties. Our method will hence measure 

the frequency content of the entire dataset, not from which genes it 

originates. Hereafter, we denote the suggested approach a temporal 

beamformer to stress the similarities to the spatial beamformer in the 

array case.

To reflect the different problems, the following beamforming deriva­

tions will use 6, consistent with the beamforming approach, whilst plots 

will be in frequency, reflecting the trivial conceptual transformation to 

our original problem domain. The array covariance matrix can be ex­

pressed:

R x =  E  [XTX] (2.4.2)

where X  denotes the full P  x N  data matrix. The strength of this 

formulation is clear; an estimate of the covariance matrix will be highly 

robust because each of the P  genes is now viewed as a sample. The 

typically very high values of P  ensure an excellent quality covariance 

matrix estimate. The power in the direction of arrival (and hence fre­

quency in the original problem) onto the array can now be determined 

using a beamforming approach.
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2.4.1 The standard beamformer

The power in a given direction of arrival 6 can be estimated by filtering 

the incoming data with a spatial filter, h#. The power in the filter 

output for a given direction 6 can be expressed as

The filter can be designed in various ways; the filter used in the standard 

beamformer is the array steering vector, a#, normalised by the number 

of array sensors, i.e.

For a uniformly spaced array, the array steering vector is given by

Figure 2.6 shows the estimate of the power spectrum of the alpha 

data using the standard beamformer and the ensemble average peri­

odogram. It is worth stressing that the estimates for the ensemble 

average periodogram and the standard beamformer are identical. The 

ensemble average periodogram estimate is given by

4>(0) =  h"R xhtf (2.4.3)

(2.4.4)

a«= [l e2n6i . . .  e2̂ N~^]T (2.4.5)
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F ig u re  2.6. Power spectrum of alpha data using the standard beam- 
former and the ensemble average periodogram. The two estimates are 
coincident.
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which is equivalent to the standard beamformer solution:

4>(e) = ^ E [ X TX } ^  (2.4.10)

As mentioned previously, the strength in the beamforming formulation 

lies in the accuracy of the covariance estimate. However, as the stan­

dard beamformer filter design is invariant to the data this robustness is 

not fully exploited, yielding the same spectral estimates as the ensem­

ble average discussed in Section 2.3.2. A data adaptive method should 

be able to use the accurate covariance estimate afforded by the beam- 

forming approach to yield a filter that is, in some sense, optimal. One 

such method is now examined.

2.4.2 The Capon beamformer

The Capon beamformer3 seeks to minimise the power in the filter out­

put whilst passing power from the direction of interest undistorted. The 

optimisation is hence [37]

ha =  argmin h^R h# subject to =  1 (2.4.11)
he

The minimisation problem in (2.4.11) has the well known solution [37]

R 1a/i
he = „ w _7 (2.4.12

a £ R  la0

3Also known as the Minimum Variance Distortionless Response (MVDR) beam- 
former.
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Figure 2.7. Power spectrum of alpha data using the standard beam- 
former, the Capon beamformer and the ensemble average Capon esti­
mate. The ability of the Capon beamformer to take advantage of the 
robust covariance matrix estimate afforded by the beamforming formu­
lation allows the use of a longer filter length and results in a higher 
resolution estimate.

which, if inserted into (2.4.3), yields the Capon estimate of the spatial 

spectrum

( 2 4 1 3 >

It is interesting to note that the beamforming approach allows the use 

of a filter length equal to the full data length, yielding significantly 

higher resolution in the resulting spectral estimate4. Figure 2.7 shows 

the normalised estimates obtained from the Capon beamformer, along 

with the estimates from the standard beamformer, and the ensemble 

average Capon. As is clear from the figure, the Capon beamformer 

yields a higher resolution spectral estimate compared to the standard

4Note that, for the filterbank approaches discussed in Section 2.3.1, L is limited 
to L <  N/ 2  to ensure that the used covariance matrix estimate is non-singular. 
Here, we note that the covariance matrix estimate will be full rank even for L =  N.  
However, this is not always the case - see also the discussion in Section 2.4.3.
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F ig u re  2.8. Magnitude of filter responses for the Capon and standard 
beamformers at the estimated cell cycle frequency.

beamformer and its own ensemble average equivalent. In contrast to 

the ensemble average method, the use of a maximal filter length with 

an accurate covariance estimate allows a high resolution estimate of the 

power spectrum to be obtained. To illustrate the data dependence of 

the Capon filter, Figure 2.8 shows the magnitude response of the filter 

ha at the estimated cell cycle frequency. The Capon filter is shown 

to adapt to the data by placing sharp nulls in regions of significant 

interference. Notice that the Capon filter gain can be higher than the 

beamformer filter in (2.4.4). It is important to stress that it will only be 

so for frequencies containing little or no power, and the increased gain 

thus will not have any significant adverse effect on the resulting spectral 

estimates. Furthermore, the Capon filter will place deep nulls at the 

locations of power different from the frequency of interest, ensuring 

that these frequencies do not significantly affect the estimate.
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2.4.3 Removing zero frequency values

Gene expression profiles over time are not constrained to be zero mean, 

and the row means of the data matrix X  are generally non zero. The 

mean value of the case study data sets from [1] are given in Table 2.1. 

Naturally, this mean value is reflected as a zero frequency component

X Mean absolute values of row means
alpha 0.0097
cdcl5 0.3587
cdc28 0.1900

elu 0.0025

Table 2.1. Mean absolute values of row means for the case study data 
sets from [1]

in the power spectrum. The zero frequency component is of little in­

terest and may easily dominate the power spectrum. A trivial solution 

is to subtract the row mean from each row of X. Figure 2.9 shows 

the estimated power spectrum of the cdc28 data  using the standard 

beamformer, with and without first subtracting the row means from 

X. The significant zero frequency components in the cdc28 data are 

clear from the power spectrum, resulting in an erroneous cell-cycle fre­

quency estimate. Clearly, subtraction of the row mean from the data 

is necessary for accurate assessment of the power spectrum in data sets 

with significant row means, especially where the frequency of interest 

lies relatively close to zero. Removing the row mean would seem to be 

a simple solution to the problem of zero frequency components domi­

nating the spectrum. However, for the Capon beamformer doing so will 

present a problem. Subtraction of the row means results in the loss of 

a linearly independent component, and a corresponding drop in rank 

of the covariance matrix R. As seen in (2.4.13), the Capon solution
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F ig u re  2.9. Power spectrum estimate from the standard beamformer 
with zero row mean cdc28 data and non zero row mean cdc28 data.
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depends on R  being invertible, and hence full rank. Possible solutions 

to this problem will now be examined.

Generalised optimum approach and diagonal loading

As discussed in Section 2.4.2, the Capon beamformer is given by equa­

tion (2.4.13), which requires that R  is full rank. However, a more 

general solution, that does not assume full rank R  exists [47]. The 

general Capon solution is given by

(R  +  a#
he =  ~ b ^ — ^  (2 A 1 4 )aJ^ R  +  aaa*1) a*

where (•)* denotes the Moore-Penrose pseudo-inverse, i.e. A* =  (A ^A ) 

This solution works but is sensitive to the numerical tolerances used in 

the calculation of the pseudo inverse. However, it can be shown that 

this solution is equivalent to simply diagonally loading R  by a factor 

of A, yielding the solution [47]

-l

(R  +  A I)-1^  
a ?  (R  +  AI)—1 a#

he =  ' 7  (2.4.15)

The loading factor A is chosen to ensure tha t (R  +  AI) is sufficiently 

well conditioned to allow for numerically stable matrix inversion. How­

ever, in practice, the solution is fairly insensitive to the choice of A. 

Figure 2.10 shows the performance of the Capon beamformer with di­

agonal loading of A =  0.05 on the alpha data with zero mean rows. 

This has clearly achieved our objective in combining the high resolu­

tion Capon estimate with the elimination of the zero frequency com­

ponent. Note that the Capon beamformer given in (2.4.13) can not be 

computed for this case without diagonally loading due to the singular
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F ig u re  2.10. Power spectrum estimate from the standard beamformer 
and the diagonally loaded Capon beamformer with zero row mean alpha 
data.
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F ig u re  2.11. Power spectrum estimate from the Capon beamformer 
and the diagonally loaded Capon beamformer with non zero row mean 
alpha data.

covariance matrix.

However, it is natural to assume that the diagonal loading causes 

some loss of resolution in the Capon beamformer. Figure 2.11 shows the 

normalised power spectrum estimate of the Capon beamformer and the 

diagonally loaded Capon, with A =  0.05, using the alpha data which has 

non zero mean rows. Clearly, the diagonal loading has not significantly 

degraded the power spectrum. We conclude that the diagonally loaded 

Capon is able to cope with the rank deficient case caused by enforcing 

zero mean rows with negligible loss of resolution.

Forward-backward covariance matrix estim ate

The standard covariance estimate can be improved in the case where 

R  is centro-Hermitian [48], which means that

R  =  J R " J (2.4.16)
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where the exchange matrix

0 0 1

0 1 0
J  = (2.4.17)

1 0 0

R  will be centro-Hermitian for the case of uniformly sampled real data.

A suitable estimate for the case where R  is centro-Hermitian (and real) 

is the forward-backward estimate:

The forward-backward estimate has been shown to have half the asymp­

totic bias of the standard estimate in cases where R  is centro-Hermitian [48]. 

In addition it is full rank, even in cases where X  has enforced zero mean 

rows. Hence, for the case of uniform sampling, the forward-backward 

estimate of R  can be used which is invertible and avoids the need for 

diagonal loading.

2.4.4 Non-uniform sampling

The beamforming approach is able to estimate the spectrum given non- 

uniformly sampled data. This is equivalent to the non-linearly spaced 

array case, and requires only the adjustment of the steering vector. 

Writing the steering vector as

RFB = i ( R  + JRTJ) (2.4.18)

=  l  e i2-n0 ' ' e i 2 i r 9 ( N - l )  

  gi27T0A

(2.4.19)

(2.4.20)
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where A is the time index vector, given by 0 1 N -  1 in the

uniform sampling case. More generally, given a time vector:

t  = ti ^ 2  • • • In (2.4.21)

which can be non-uniformly sampled, the sampling periods are given

by

A t = ( t 2 — t i )  (£3 — £2) ••• ( t N  — t N - i ) (2.4.22)

The effective sampling time, 8t , is defined as

St = gcd [At] (2.4.23)

where gcd [•] denotes the greatest common divisor. The corresponding 

time index vector A can be defined recursively as

A-n
0 for n = 1

(2.4.24)
An_i +  for n =  2 to N

To demonstrate the method, Figure 2.12 shows the normalised spec­

trum of the cdcl5 data, which is non-uniformly sampled.

2.5 Assessment of the cell-cyclic content of individual genes

The beamforming method gives an accurate assessment of the frequency 

content of a microarray dataset. A dominant peak indicates the pres­

ence of an underlying periodic component. In our test data sets, this 

component is the cell cycle. The location of the dominant peak hence 

provides an estimate of the cell cycle frequency. We now present a
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coherent method for the assessment of the extent to which this compo­

nent is present in each gene. Our beamforming method has provided 

us with a set of filters h^. The time profile for each gene can now be 

filtered by at the cell cycle frequency The power in the filter 

output now yields an estimate of the power in an individual gene at 

the cell cycle frequency. The estimate of the power in the expression 

profile of the p ’th gene at the cell cycle frequency is hence given by

»-p =  ^ L ^ » W  (2.5.1)

These values can be ranked to give an estimate of the relative power 

present in each gene at the estimated cell cycle location. This measure 

clearly depends heavily on the variance of individual gene expression 

profiles. A gene profile with a high variance will rank higher than 

one with a low variance, though the sinusoidal component may not be 

as distinct. Normalising the rows of X  to unity variance solves this 

problem but many low amplitude gene profiles are biologically not sig­

nificant. A good approach is to compare the power in the filter output 

with that of several random permutations of the gene expression pro­

file [30], i.e. for each gene the time points are randomly permuted and 

the power in the filter output calculated. If the obtained power for each 

random permutation is consistently lower than the power of the true 

permutation then a sinusoidal component is deemed present with high 

confidence. The proportion of times that the true permutation yields 

the highest power is a measure of the confidence that the sinusoidal 

component is present. Hence, the power in the fc’th  random permuta­

tion of the expression profile of the p ’th  gene at the estimated cell cycle
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frequency is given by

„ P k  [xp] P k  1x̂ 1 
o»k = h » c 1 piN k (2.5.2)

where P*.[-] represents the random permutation of the A;-th trial. Given 

K  random permutations or trials, our measure of the extent to which 

the sinusoidal component is present in the p ’th  gene is denoted by ftp 

and given by

for k = I to K  (2.5.3)

ftp =  ftp +  iff op > ovM (2.5.4)

For example, a value of ftp =  1 means that the power in the true permu­

tation is greater than all other tested permutations, giving confidence 

that the sinusoidal component is present (given a high enough number 

of trials). A value of ftp =  0.5 means that the power in the true per­

mutation was greater than only half of other tested permutations, this 

would be the expected value for random data. Figure 2.13 shows ft 

for all genes in the alpha data, sorted in descending order for both the 

standard and diagonally loaded Capon beamformer. The increased 

selectivity of the Capon method is evident. The crucial region is in the 

range ftp G [0.9,1], which is where cell cyclic genes would be expected 

to lie. Figure 2.14 shows the scores in this region. This region high­

lights the increased selectivity of the Capon method. For example, if a 

score of ftp =  1 were demanded to give maximum confidence then the 

standard beamformer (itself equivalent to the Periodogram approach 

used in the literature) gives 256 genes whereas the Capon method gives 

only 56 genes. Similarly for ftp =  0.95 the standard approach gives
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1265 genes and the Capon approach 330 genes. These results corro- 

bate the findings of the analysis in the literature which claim that the 

number of cell cyclic genes is frequently overestimated [26,49].

2.6 Conclusions

The estimation of spectral information from sample sizes as short as 

those typically found in microarray time course experiments is clearly 

a challenging problem. Using current technology, sample sizes are too 

small to be able to conclude definitively which genes are actually cell- 

cycle regulated. With longer time series, use of filterbank spectral 

estimators with long filter lengths should enable accurate assessment of 

which gene are cell-cyclic. Nevertheless, worthwhile advances have been 

obtained in terms of the performance analysis of filterbank estimation 

methods and the subsequent development in the robustness to temporal 

mis-sampling. The use of a beamforming approach has been shown to 

yield a high resolution estimate of the spectral content of microarray 

data and to be suitable for use with non-uniformly sampled expression 

data.

Spectral estimation is suitable for identifying cyclic profiles, but 

many processes underlying gene expression are not necessarily cyclic. 

In order to detect these, a more general approach is needed. Blind 

Source Separation (BSS) allows the blind estimation of components, 

according to a variety of statistical criteria. In the following chapter 

we examine BSS as a technique for extracting fundamental components 

from gene expression data.



Chapter 3

INDEPENDENT 

COMPONENT ANALYSIS 

FOR MICROARRAY DATA

3.1 Review of Independent Component Analysis for microarray 

data

Independent Component Analysis (ICA) refers to the task of recovering 

statistically independent sources from a set of mixtures. ICA has been 

successfully applied to many problem domains, see [50] for an overview 

of biomedical applications. ICA has been applied to microarray data 

in a number of publications [22-24,51-55]. The ICA approach to mi­

croarray data analysis is attractive because of the technique’s ability to 

extract statistically independent sources blindly. Here, ‘blindly’ refers 

to the ability to estimate sources and mixing parameters using solely 

the output and a few key assumptions. This is useful in the study of 

microarray data because both the input and the mixing process are cer­

tainly unknown. The generation of statistically independent sources is 

also appealing as these could intuitively represent fundamental cellular 

processes.

56
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The first application of ICA to the microarray analysis problem is 

in [22,56]. ICA is used to classify genes into biologically relevant groups 

using no prior knowledge by generating independent components and 

measuring the proximity to each gene through correlation. It appears to 

use a dual formulation, shown in section 3.3.3, though this is not made 

explicit in the explanation. ICA was shown to outperform Principle 

Components Analysis (PCA) in comparison to handpicked benchmark 

profiles.

In [24], the FastICA algorithm [57] is used to find ‘modes’ of gene ex­

pression, apparently using a dual formulation. Constrained ICA is used 

in [58] to generate independent components given some prior knowledge 

of the genes’ relationship to each other. Whilst this may give more ac­

curate results, it rather negates one of the primary strengths of ICA; 

the lack of need for additional prior knowledge, and reduces it to a 

supervised method.

Nonlinear ICA is introduced in [51], as a possible improvement over 

the traditional linear mixing model, and is shown to give some benefits 

with smaller scale microarray experiments. The transpose model form 

is used, see section 3.3.2 for the significance of this.

In [52], the transpose model form is used to perform ICA in order 

to group genes relevant to the development of cancer. This study is 

slightly different in that the data are not time series data. Further 

work on the analysis of cancer data using ICA is done in [53].

ICA is compared to Analysis of Variance (ANOVA), Partial Least 

Squares (PLS) and PCA in [55] and found to be the best technique for 

grouping genes which belong to the same biological family.

The study in [59] is important as it explicity compares the temporal
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model form (section 3.3.1) with the tranpose model form (section 3.3.2). 

It also introduces a hybrid form, for trading off between independence 

in the temporal and transpose model forms.

3.2 Introduction to ICA

3.2.1 Statistical principles

The fundamental aim of ICA is to recover a set of statistically indepen­

dent sources, s G Rm, given data x G Mp generated by some function of 

the sources x =  /  (s). Sources are said to be independent if their joint 

Probability Density Function (pdf) can be factorised into the product 

of the marginal pdfs. Hence, for m  independent sources, the joint pdf 

can be written

m

q(s ) = (3-2-1)
z=i

where q (s) is the joint pdf and qi (s*) is the pdf of the z-th source. A 

measure of closeness between two pdfs, /  (s) and g (s) is given by the 

Kullback divergence

K { } \ g ) ±  j j { s ) \ o g U ^ \ d s  (3.2.2)

The Kullback divergence is an example of a contrast function, which 

are used as the objective functions of ICA. They must, in some sense, 

quantify the independence between sources and reach a minimum (or 

maximum) when source separation is achieved. It can be shown that 

the Kullback divergence is the contrast function associated with the
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maximum likelihood estimate of the sources [60]

0 ML [y] =  K  [y|s] (3.2.3)

where 0ML [y] is the maximum likelihood contrast function of the dis­

tribution of the estimated sources y G Km. In practical cases, direct 

use of the Kullback divergence is precluded by the lack of knowledge of 

the source density functions. ICA algorithms must explicitly or, more 

often, implicitly, estimate the source density functions. Practical con­

trast functions operate on finite sample data to give an estimate, in 

some sense, of the degree of independence between sources, with no 

prior knowledge, or limited prior knowledge of the source distributions. 

The ICA problem is intractable for arbitary functions x =  / ( s), it 

is, however, solvable for specific cases. We examine the linear mixing 

model.

3.2.2 Linear mixing model formulation

The data are represented by a matrix X  G MPxAr, with P  sensors 

(genes) and N  samples (time points). The rows of X  are henceforth 

assumed zero mean. The generative model for the data is linear mixing

X =  AS (3.2.4)

where A G RPxm is an unknown mixing matrix, assumed to have 

full column rank. S G R mxN is the unknown matrix of sources, whose 

rows represent m  statistically independent sources, no more than one 

of which is Gaussian distributed. Problems can be defined as underde­

termined (m > P), complete (m = P ), or overdetermined (P  > m). In
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general, underdetermined problems require special techniques or extra 

assumptions for a unique solution. In the case of microarray data, P  is 

so large that problems are generally overdetermined, though they could 

be regarded as complete in the case of transposed data with very few 

time points.

Given these assumptions, and a known data matrix X, the decom­

position can be solved up to two indeterminacies:

1. Permutation - The ordering of the sources is arbitrary and not 

guaranteed to be preserved, given that, for any row swap in S, X 

can be restored with the equivalent column swap in A.

2. Scaling - The amplitudes of the sources are indeterminate, given 

that any change in amplitude in the rows in S is trivially cor­

rected by the inverse change in amplitude in the corresponding 

columns of A. Note that this amplitude ambiguity includes possi­

ble changes of sign. In recognition that the scaling of the sources 

is entirely arbitary, the y axes of all source plots in this chapter 

are unsealed.

The solution can be written

Y  =  B X  (3.2.5)

where Y  G R mxN is an estimate of S, up to the permutation and scaling 

ambiguities and B G KmxP is the m  x P  estimated unmixing matrix.
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For a perfect estimate, the unmixing matrix is given by

B  =  A f (3.2.6)

=  (a t a ) " ' a 7 (3.2.7)

where A* denotes the Moore-Penrose pseudo inverse of A [61]. The

ambiguities in the ICA model prevent such an estimate. In practice, 

the best that can be achieved is

where P , in the errorless case, is a non-mixing (or permutation) matrix, 

i.e. a matrix with exactly one non-zero entry in each row and each 

column. This suggests that a natural Performance Index (PI) for testing 

ICA algorithms (assuming that the true mixing matrix is known) is the 

measurement of the extent to which P  =  B A  is a true non-mixing 

matrix [62]. One such non-negative PI is

The PI (P) —> 0 as P  approaches a pure non-mixing matrix.

3.2.3 The JADE algorithm

The JADE (Joint Approximate Diagonalisation of Eigenmatrices) al­

gorithm is an algebraic approach to ICA. The algorithm was first pre­

sented in [63], but several other publications are useful for a fuller 

understanding of the algorithm [60,64-66]. In this version of the algo­

rithm, the data are assumed real - as is always the case with microarray

B =  P A f (3.2.8)

max* |p,
(3.2.9)
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data. The algorithm then adopts a two stage approach to first whiten 

the zero mean data and then calculate a rotation matrix to minimise 

certain higher order correlations in the data. The estimated unmixing 

matrix is hence decomposed as

B =  U W  (3.2.10)

where W  is the spatial whitening matrix, and U  a rotation matrix. 

Independence implies uncorrelatedness1 so all ICA algorithms must 

whiten the data. In JADE, pre-whitening is an explicit step. The 

whitened data are given by

Z =  W X  (3.2.11)

The condition for white data is

R z =  W R XW T (3.2.12)

=  W E  [XX7]  W r  (3.2.13)

=  I (3.2.14)

The whitening matrix W  can be obtained using the eigenvalue decom­

position of the covariance matrix of X

R x = E  [X X 7]  =  E D E 7- (3.2.15)

where E is an orthogonal matrix of eigenvectors and D is a matrix 

with the eigenvalues on the leading diagonal and zeros elsewhere, i.e.

th o u g h  the converse is not true, except in the case of Gaussian random vari­
ables.
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diag(Ai. . .  A / v ) .  The whitener is then given by

W  =  D “ 2E (3.2.16)

If the number of sources is less than the number of sensors, then the 

(P — m)  least significant eigenvalues and corresponding eigenvectors 

are discarded to yield a n m x P  whitening matrix. The dimensionality 

of the whitened data Z is thus reduced to m  x N,  the dimensionality 

of the required matrix of sources. The problem is then reduced to 

that of finding U. The matrix U  is a rotation matrix as it relates two 

spatially white matrices S and W X  through the relation S =  U W X  

[63]. Following pre-whitening, the number of free parameters is reduced 

from P m  to m( m  — l)/2 .

The rotation matrix U  can be obtained using the joint diagonali- 

sation of fourth order cumulant matrices. The fourth order cumulants 

for zero mean real random variables Xj, x k, xi are

Cumulants involving two or more random variables are known as cross 

cumulants whilst cumulants of one variable are known as auto cumu­

lants. The fourth order autocumulant of a real, zero mean random

Cum (xi,Xj,Xk, xi) = E  [XiXjXkxi}

-  E  [xiXj] E  [xkxi\

-  E  [xiXk] E  [XjXi\

-  E  [XiXi} E  [xjXk\

(3.2.17)
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variable x  is known as the kurtosis and is defined as

k (x) =  C um  (x , x , x , x)
(3.2.18)

= E [ x 4] - 3 £ [ x 2] 2

Kurtosis is used as a measure of Gaussianity. Gaussian distributed 

variables have a kurtosis of zero and are known as mesokurtic. Super- 

Gaussian, or leptokurtic, distributions are characterised by sharp peaks 

with quickly decaying tails and have positive kurtosis. Sub-Gaussian, or 

platykurtic, distributions, are flatter with heavy tails and have negative 

kurtosis.

The true nature of cumulants is tensorial, however fourth order 

cumulants of a P  x N  matrix of data X  can be defined in a matrix 

notation that is more amenable to algebraic manipulation. For any M, 

the ij-th  entry of the P  x P  fourth order cumulant matrix Q x (M) can 

be defined by [66]

m
[Q (M)]y =  Cum (X4, X,-, X fc, X,) M fc, (3.2.19)

k,l=1

Hence, for zero mean data, the matrix Q x (M) can be calculated as

Q x (M) =  E  [(X r M X ) X X 7]  —R x tr (M R x ) - R x M R x - R x M t R x

(3.2.20)

where tr (•) denotes the trace of a matrix. Hence, the cumulants of our 

matrix of spatially white data Z G R.mxN, for any M  G Rmxm, are 

given by the m  x m  matrix

Q z (M) =  E  [(Zt M Z) ZZt ] -  tr (M) -  M  -  M r  (3.2.21)
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Q z (M) therefore represents a slice through the fourth order cumu- 

lant tensor of Z, the co-ordinates of which are defined by M. There 

exists a set Ad =  { M i . . .  M j }> of J  m  x m  matrices for which 

Q z (M) V M  G M. encapsulates all of the fourth order information in 

Z. This maximal set is obtained whenever A4 constitutes a basis for the 

linear space o f m x m  matrices [66]. An intuitive basis for the space M. 

is given by epe^ where ep is an m  dimensional column vector with 1 in 

the p-th entry and zero elsewhere. This ensures that only one element 

of any M  in M  is non zero and so the entries of Q z (M) are simply 

the cumulants of Z2. Figure 3.1 shows the structure of the resultant 

cumulant set using this basis.

The JADE criterion for minimising the fourth order correlation is 

given by

^ a d e {z ) =  £  ( 3 2 2 2 )

ijkl^iikl

This is equivalent to minimising the off-diagonal entries in Q z (M). 

Note that this criterion does not explicitly cover all cross cumulants in 

Q z (M), only those where i ^  j .  Figure 3.1 shows which cumulants are 

explicitly minimised in the criterion. Note, however, that the cumulant 

set is non redundant in the sense that individual cumulant values appear 

in multiple locations in the set and so all cross cumulants are minimised. 

The contrast function can hence be written

4,jade(Z )=  ^  Off (U TQ Z (Mj) U) (3.2.23)

where Off (•) is defined as the sum squared of off-diagonal elements in

2The original version of the JADE algorithm used eigenmatrices to achieve a 
more compact basis [63]. However, this basis is only accurate when the model can 
be guaranteed to hold exactly.
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Figure 3.1. Diagram showing the structure of QZ(M). /c* are the 
autocumulants, i.e. the kurtosis values of the z-th source. •  represents 
the cross-cumulants for which i ^  j  and hence are explicitly minimised 
in the JADE contrast function, o represents crosscumulants for which 
i = j  and hence are not explicitly minimised in the JADE criterion, 
but are represented elsewhere in the cumulant set.
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a matrix, i.e.

O f f t H ) ^ ^ ) 2 (3.2.24)

The diagonalisation of a matrix can be achieved using a Jacobi algo­

rithm, see e.g. [61], which uses successive rotations to minimise the off- 

diagonal elements. This technique can be extended to the joint diago­

nalisation of a matrix set [65]. The technique is numerically very robust 

and converges quickly. Note, however, that contrast function (3.2.23) 

is minimised but will be driven to zero only in the theoretical case of 

infinite sample statistically stationary data, and hence exact cumulant 

values.

3.3 Independent component analysis of microarray data

3.3.1 Generating independent time series

Given the P x N  data matrix X, with P  genes and N  samples, the 

standard ICA decomposition can be applied to find m  independent 

sources.
X  =  A  S

(3.3.1)
(P  x N) (P  x m) (m  x N)

The matrix of sources S represents m  sources, each comprising N  sam­

ples. The sources are then hoped to represent either fundamental pro­

cesses underlying the genes’ expression, or other independent time pro­

files common to multiple genes. The mixing matrix A gives a measure 

of the extent to which each source is present in each gene. The decom­

position can also be viewed as a clustering algorithm with a sample 

independence distance measure, subject to a linear mixing model. The 

rows of S would then represent the cluster centroids, and A represents
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the level of membership each gene has to a given cluster. The number 

of sources is not known a priori and is usually obtained heuristically 

on the basis of the biological plausability of the estimated sources.

The PI measure in equation (3.2.9) only applies when the true mix­

ing matrix, or equivalently, the true sources are known. This is clearly 

not the case for real microarray data and so the usual performance in­

dex cannot be used. The independence of the resulting sources can, 

however, be estimated. One measure is an estimate of the Mutual 

Information (MI) using second and fourth order cumulants [66].

< r (Y ) ^ £ ( R X )2 + - t  £  ( q Y , ) 2 (3.3.2)
i j / i i  ijkl^iiii

The first term is the sum of squared off diagonal terms in the covari­

ance matrix, the second is the sum of squared cross cumulants in the 

fourth order cumulant set. The weighting between the terms stems 

from the origin of the approximation in an Edgeworth expansion of the 

pdf [67]. In ICA algorithms that use explicit prewhitening, such as 

JADE, the first term is necessarily zero as the off-diagonal terms of the 

covariance matrix are driven to zero by the prewhitening step. In gen­

eral, the quantification of independence from finite data is notoriously 

challenging. Particular issues with </>MI (Y) are

1. The Edgeworth expansion from which the approximation is de­

rived is only valid for near-normal distributions [67]. As the 

sources estimated by ICA are as non-normal as possible, the 

weighting between terms in the expression for the evaluation of 

estimated sources is innaccurate as a true measure of indepen­

dence. It is still accurate in the sense that it is driven to zero for
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independent sources.

2. The second term is a fourth order quantity squared, rendering 

it highly sensitive to outliers. In fact, given a leptokurtic source 

with frequent high amplitude outliers, the term is almost com­

pletely dominated by outliers and becomes disproportionately 

large. Even with no obvious outliers the measure is still far more 

sensitive to values in the tails of a distribution than those around 

the mean.

In addition to these caveats, the measure is not invariant to m. As it 

is a pure addition of cumulants then it rises as m  grows. This means it 

cannot be used to compare results from different numbers of sources. 

In order to make a measure which is invariant to m, we propose using 

a pairwise measure of Mutual Information </>PMI(Y). This measure 

effectively calculates the mean value of the Mutual Information from 

all pairwise combinations of sources.

^ PM I(y) =  (3-3-3)

The data from the alpha dataset includes some high magnitude out­

liers. The reliance of the JADE contrast function and the 0PMI measure 

on fourth order quantities squared means that they are particularly 

susceptible to these outliers. In order for these not to dominate the 

results, absolute values of the alpha data were limited to 4. The total 

proportion of data affected is less than 0.04%. Figure 3.2 shows the 

estimated sources which result from applying JADE to the alpha data 

from [1]. Three sources were specified. Figure 3.3 shows the equiva­

lent sources from a principle components analysis for comparison. Note
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F ig u re  3.2. Estimates of sources for m =  3 using the JADE algorithm 
on the alpha data. </>PMI (Y) =  0.061.

that the principle components can be obtained simply by applying the 

whitening matrix obtained in the first stage of the JADE algorithm,

i.e. Y  =  W X . For both the ICA and PCA approaches, the second 

order component of </>PMI (Y) is zero. This is, of course, expected as the 

initial PCA step in JADE is designed to drive the covariance matrix 

diagonal. The fact that the second order correlation remains zero in the 

estimated JADE sources serves to demonstrate that the matrix derived 

in the second step of the JADE algorithm U  is indeed orthogonal and 

so preserves spatial whiteness.

The value of 0 PMI(Y) is lower for the sources estimated by JADE 

than by PCA. This is because the extra step in JADE reduces the 

fourth order order cross-correlation and so decreases the second term of 

0PMI(Y), making the sources more independent. The fact that the drop 

in 0 PMI(Y) between the PCA and JADE algorithms is not large hints
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F ig u re  3.3. Estimates of sources for m =  3 from PCA of the alpha 
data. <j>PMI (Y) =  0.093.
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m PCA JADE FastICA
3 0.093 0.061 0.060
4 0.114 0.099 0.103
5 0.138 0.093 0.218
6 0.103 0.090 N/A*

Table 3.1. Table of 0 PMI(Y) for the alpha data over a range of m  for 
PCA, JADE and FastICA algorithms. *The FastICA algorithm failed 
to converge in the case where m  = 6, minor convergence failures were 
also reported for other values of m.

at a key point in the ICA of microarray data: That the estimation of 

higher order statistics from limited data is challenging. The alpha data 

contains only N  = 18 timepoints, two orders of magnitude lower than 

the number of samples typically used to demonstrate the performance 

of ICA algorithms. Despite this, the decrease in the value of </>PMI(Y) 

following the second JADE step indicates that some benefit is being 

derived from the higher order statistics.

Table 3.1 shows the values of </>PMI(Y) for the alpha data as the num­

ber of sources m  varies. Values for another ICA algorithm, FastICA [57] 

are also given to show that the results are generally applicable. The 

values of 0 PMI(Y) in Table 3.1 are generally lower for the JADE algo­

rithm than the PCA algorithm, reflecting the former’s aim of generating 

independent, rather than merely uncorrelated, sources. The FastICA 

values are similar to JADE, in the cases where the algorithm success­

fully converged. The reduction in 0 PMI(Y) between the PCA and JADE 

algorithms is greatest at m  =  5, here the higher order statistics seem 

to have the most effect and so m  = 5 could be an interesting set of 

sources to examine.

The estimated components for m =  5 are shown for the JADE 

and PCA approaches in Figures 3.4 and 3.5 respectively. The fourth
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F ig u re  3.4. Estimates of m  = 5 sources from JADE on the alpha data. 
Note the distinct cyclic profile of the fourth source.
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F ig u re  3.5. Estimates of m  = 5 sources from PCA on the alpha data.
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m PCA JADE FastICA
3 0.014 0.013 0.013
4 0.015 0.008 0.009
5 0.085 0.026 0.026
6 0.164 0.033 N/A*

Table 3.2. Table of 0 PMI(Y) for the Plasmodium data from [2] over 
a range of m  for PCA, JADE and FastICA algorithms. The values 
are significantly lower than those in Table 3.1, reflecting the increased 
data length. In addition, the drop in 0 PMI(Y) between the PCA and 
ICA algorithms is more significant. *The FastICA algorithm failed to 
converge in the case where m  — 6.

source from JADE shows a distinctive cell cyclic component. The same 

distinct cyclic source does not feature in the PCA sources and so the 

higher order statistics stage of the JADE algorithm does appear to help 

here to reveal significant components in the alpha data. It appears that 

some benefit is being derived from the higher order statistics, though 

the small drop in the 0 PMI(Y) values between the PCA and ICA al­

gorithms in Table 3.1 is indicative of the limitations of higher order 

statistics in the face of small sample sizes.

In order to assess the effect of a slightly increased sample size on the 

values of 0PMI(Y), we examine data  from [2], which profiles the gene 

transcription of the malaria causing parasite Plasmodium falciparum. 

This study used N  = 48 time points, rather than N  = 18 for the 

alpha data in [1]. Table 3.2 shows the values of 0 PMI(Y) for a range 

of m. The values of 0 PMI(Y) are significantly lower than in Table 3.1 

because of the increase in sample size, from 18 to 48. In addition, the 

drop in the values of </>PMI(Y) between the PCA and ICA algorithms 

is more significant, reflecting the utility of higher order statistics with 

increasing sample size. The study in [2] is close to the maximum number 

of time points used in microarray experiments but further gains are to
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be expected when future technology, and cost reductions, enable more 

time measurements. To illustrate this, we give an example of how the 

estimation of 0 PMI(Y) varies with sample size using synthetic data.

In order to demonstrate how the estimation of sample statistics 

varies with sample size, Figure 3.6 shows the estimation of 0PMI(Y) 

for synthetic sources, one uniform, one Laplacian and one Gaussian, 

against a range of sample sizes. The mean value of </>PMI(Y) drops 

to zero only as the sample size approaches 104. The mean error and 

variance is shown separately for the second and fourth order terms of 

(f)pmi(Y). The fourth order term decreases far more slowly with sample 

size and the variance is especially high at small sample sizes. Comparing 

the sample sizes typical in microarray data with the estimation error in 

synthetic sources at small sample sizes, we can see why the estimation 

of sources from microarray data  is such a challenging scenario.

ICA is a useful technique in the analysis of microarray data, and 

shows demonstrable improvements over PCA, in terms of mutual in­

formation measurements and biological plausibility, but the estimation 

of higher order statistics clearly suffers from the lack of samples in the 

time dimension. To try and overcome this difficulty, we now examine 

operating on the transpose of the data.

3.3.2 Operating on the transpose of the data

Much of the literature on ICA of microarray data operates on the trans­

pose of the data [51-54,59]. The strength of this approach is clear; with 

the data matrix transposed, each of the P  genes is viewed as a sample. 

P  is typically in the thousands, so estimates of higher order statistics 

should be significantly more accurate then in the previous section. The
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F ig u re  3.6. Plot shows the mean value of </>PMI(Y) for three sources; 
uniform, Laplacian and Gaussian, for a range of sample sizes from 10 
to 10000. Also shown are the individual contributions from the second 
and fourth order terms of </>PMI(Y). Means and standard deviations 
were obtained over 1000 Monte Carlo runs. The mean value of 0PMI(Y) 
is seen to drop rather slowly as sample size increases. The error bars 
denote one standard deviation away from the mean. The standard 
deviation too, drops as the sample size is increased. Clearly, the fourth 
order component is contributing most significantly to both the mean 
and variance at the lower sample sizes.
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linear mixing model is hence

X  =  A S
(3.3.4)

(N  x P ) (N  x m) (m x P)

where : has been used to distinguish A and S from the mixing matrix 

and sources in the previous formulation. Note that X  =  X T. Each of 

the m  sources is now P  samples long, which should result in a more 

accurate estimation of the higher order statistics and hence a more ac­

curate decomposition, however this formulation is rather less intuititive 

as a generative model, though it can still be viewed as a model based 

clustering routine.

The demixing matrix B G M.mxN can now be estimated as

B =  JADE (x, m )  (3.3.5)

yielding the estimated sources Y  G RmxP as

Y  =  B X  (3.3.6)

Table 3.3 shows the values of </>PMI ^Y ^ , where Y  is an estimate of S 

from the transpose model form. The values are not directly comparable

to those of the standard model form in Table 3.1 because the distribu­

tions are rather more leptokurtic, yielding universally higher values of 

0pmi^y ^. However, the drop in 0 PMÎ Y^ between the PCA and ICA 

algorithms, in Table 3.3, shows that the vastly increased data length 

allows the higher order statistics based ICA algorithms to substantially 

outperform PCA.
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m PCA JADE FastICA
3 1.758 0.738 0.765
4 2.499 0.538 0.680
5 2.427 0.486 0.639
6 1.697 0.416 0.469

Table 3.3. Table of 0 PMI ^Y J for the alpha data over a range of m  for 
PCA, JADE and FastICA algorithms, using the transpose model form. 
The significant drop in </>PMÎ Y^ between the PCA and ICA methods 
reflects the more accurate estimation of higher order statistics from the 
increased data lengths afforded by the transposed data.
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m PCA JADE FastICA
3 0.085 0.061 0.059
4 0.091 0.105 0.130
5 0.110 0.200 0.220
6 0.082 0.180 0.161

T able 3.4. Table of 0 PMI(Y) for the alpha data over a range of m  
for PCA, JADE and FastICA algorithms, using the dual model form 
Y  = B f.

3.3.3 Duality in the transpose form

The transpose form provides independent sources S of length P. Intu­

itively, we would like sources th a t are length N  and so can be considered 

independent components underlying the set of length N  gene time se­

ries profiles. Such profiles do exist in the transpose model form; in the 

columns of A, but in general there is no guarantee that these will be 

independent. Models where both the rows of S and the columns of A 

are independent are said to be dual and a sensible strategy to recover 

the sources, given P  N ,  would be to estimate the separation matrix 

B using JADE from the transpose data matrix X  and then to estimate 

the length N  sources from the columns of A  =  B*, i.e. Y  =  (B^)T. 

This is effectively the technique used in [22,24,56], though it is not ex­

plicitly stated th a t the returned components will be independent only 

when the dual assumption holds true.

Figure 3.7 shows m  = 5 sources using this dual form from the alpha 

data. The sources are similar to the temporal model form in Figure 3.4, 

lending some support to the dual assumption.

Table 3.4 shows the values of 0 PM1(Y) for a range of m  for the 

PCA, JADE and FastICA algorithms. The values for the PCA algo­

rithm are somewhat lower than those from the ICA algorithms. In fact,
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F ig u re  3.7. Estimates of m  =  5 sources Y  =  Bt from the alpha 
data. The source profiles are similar to the temporal model form, in 
Figure 3.4, and so the dual assumption may have some merit.
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the sources estimated as Y  =  B* by the ICA algorithms are spatially 

correlated, leading to a non zero first term of </>PMI(Y). The rotation 

matrix applied in the second stage of the ICA algorithms destroys the 

second order decorrelation. Given that the algorithm is able to use 

P  samples, and the resulting values of 0 PM1(Y) are not significantly 

lower than those using the traditional model form with N  samples, as 

in Table 3.1, we conclude tha t the dual formulation is not necessarily 

totally accurate in terms of microarray data. However, the sources in 

Figure 3.7 indicate that the method can be used to return sources that 

are close to those from the temporal ICA model.

3.3.4 Second order m ethods

We now consider a second order method to return sources that are 

not necessarily independent, but spatio-temporally uncorrelated. The 

justification for this is twofold:

1. The estimation of second order statistics from limited data is a 

more realistic prospect than the estimation of higher order statis­

tics. As shown by synthetic data  in Figure 3.6, fourth order statis­

tics require significantly more data to estimate acurately than 

second order statistics. The small difference between </>PMI(Y) 

values for the PCA and ICA in Table 3.1 attests to the difficulty 

in estimating higher order statistics from real, limited sample size 

microarray data. Solutions involving a dual formulation seem not 

to give good results, probably reflecting a lack of duality in real 

microarray data.

2. The justification for seeking to extract independent components 

from microarray data  is unclear. Undoubtedly, there should be
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certain fundamental processes underlying the gene expression which 

are generated by independent processes. However, these are likely 

to be dynamic time processes and not simply values drawn from 

independent probability density functions. In the context of un­

derlying time processes, the ability to extract components which 

are spatio-temporally uncorrelated may actually be more attrac­

tive than those which are independent.

The SOBI (Second Order Blind Identification) algorithm is able to 

estimate sources which are spatio-temporally uncorrelated [69]. The 

algorithm is similar to the JADE algorithm in principle, but rather 

than diagonalising fourth order cumulant matrices, it diagonalises time 

lagged covariance matrices. The diagonalisation of time lagged covari­

ance matrices enforces spatio-temporal decorrelation at the given lags. 

For a set of K  time lags {Tl r2 . . .  t# } , the set of matrices to be 

diagonalised is therefore

^ = | r z ( t i ) R z ( t 2 )  . . .  R z (r*) } (3.3.7)

where R z (r) is defined as

R z (-r) =  * z W zT (4 + r ) (3.3.8)
t =  1

Note that R z (0) is effectively already diagonalised in the prewhitening 

stage of the algorithm. This is equivalent to jointly diagonalising the 

set {R z (0) . . .  R  Z (K)},  whilst assigning an infinite weight to the 

diagonalisation of the R z (0) covariance matrix.
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F igu re  3.8. Estimates of m  =  5 sources from SOBI on the alpha data, 
with K  =  7 lags. A distinctive cell cyclic source is shown in the second 
source.

Figure 3.8 shows the estimated sources recovered by the SOBI al­

gorithm for m = 5 sources. The sources are somewhat similar to those 

returned by JADE in Figure 3.4, a cell cyclic source is present in both.

3.3.5 Model error

The linear mixing model X  =  AS is unlikely to be a true genera­

tive model for the microarray data  as the gene regulatory process is a 

network of complex biological functions which is likely to involve non- 

linearity in some form. The estimated mixing matrix is given by

A =  B t (3.3.9)

The matrix of residuals, T  , is given by the difference between the 

actual data m atrix and the data matrix given by the estimated model,
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m MSE (X  -  B+BX) MSE ( x  -  B tB x )
3 0.051 0.049
4 0.041 0.039
5 0.033 0.031
6 0.027 0.026

Table 3.5. Table of mean square error values for the transpose and 
non-transpose model form.

i.e.

X  -  B fB X  for ICA,
T  =  X  -  A Y  =  { (3.3.10)

X  -  W tW X  for PCA.

In fact, the estimated data, and hence residuals, for the PCA and 

prewhitened ICA approaches are identical, because B*B =  W *W , this 

is readily verified by the following equivalences

B ’B =  (U W )' (U W ) (3.3.11)

=  W T (U TU W W T) _1U TU W , as U W  is rank m (3.3.12) 

=  W T (W W r ) " 1W , as U TU  =  I  (3.3.13)

=  W 'W  (3.3.14)

The Mean Square Error (MSE) in the estimated model is given by: 

MSE (T ) =  p L  £  t * (3.3.15)

Table 3.5 shows the values of M SE (T) for the transpose and non­

transpose case. The difference in the MSE values for the non-transpose 

and transpose case is negligible. The MSE for the dual formulation is 

identical to th a t of the transpose case, because it is simply a reformu­

lation of the transpose model.
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F ig u re  3.9. First 30 eigenvalues of R x for the alpha data.

The MSE decreases as the number of sources increases. The reason 

for this is clear, in PCA (and hence the first step of JADE) the reduction 

to m  sources is achieved through discarding the (P — m) least signifi­

cant eigenvectors and eigenvalues and projecting the data onto the m  

remaining eigenvectors. Unless the eigenvalues which are discarded are 

all zero, some information is necessarily lost. Figure 3.9 shows the 30 

most significant eigenvalues of R x for the alpha data. Note that there 

are only 18 non zero eigenvalues because X  is 6075 x 18 and so the rank 

of X cannot exceed 18.

There is no sudden drop in the eigenvalues and so the proportion of 

variance explained will tend slowly towards unity as m  —► rank (R x ) • 

The choice of m  is hence a tradeoff between the proportion of variance 

explained by the model, and corresponding MSE, and the validity of 

the returned sources. A further examination of the residual T  should 

help to determine whether any important information is being lost, or 

if the discarded information is largely noise.

h
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Figure 3.10. Ensemble average power spectra of the actual data X, 
and the matrix of residuals T for m  = 5 on the alpha data. The power 
spectrum of the residual data  is dominated by the high frequency noise 
region.

Figure 3.10 shows the ensemble average power spectrum of the resid­

ual data T, together with th a t of the actual data  for m  = 5 on the 

alpha data. The power spectrum in the residual is dominated by the 

high frequency noise region, indicating th a t the information lost by the 

discarded eigenvectors is largely noise.

3.4 Conclusions

The standard ICA model does seem to provide demonstrable improve­

ments over PCA even at low sample sizes, however sample size is clearly 

the limiting factor in performance - as tests with synthetic data indi­

cate. The dual formulation bypasses this limitation by transposing the 

data matrix but assumes independence in the columns of the mixing 

matrix, in addition, spatial uncorrelatedness is not enforced in the re­

covered sources. We highlight the effectiveness of second order methods
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to recover sources which are spatio-temporally uncorrelated. This ap­

proach is more practical with the short sample sizes available and the 

recovery of spatio-temporally uncorrelated sources is as at least as at­

tractive as those which are independent. The model error has been 

shown to be dependent on the magnitude of the eigenvalues discarded 

and, providing a sensible number of components is chosen, the discarded 

information is primarily high frequency noise.

The linear mixing model is not likely to be a true generative model 

for gene expression, however it does provide a first step towards a mul­

tiple input, multiple output model for gene expression. More advanced 

non-linear models can be used, but these generally require more data 

to estimate the parameters than the linear mixing model. As technol­

ogy develops to provide larger sample sizes, more advanced models of 

gene expression may become feasible to estimate using blind, or semi­

blind, techniques. In addition, as sample sizes become larger, the use 

of convolutive models may become practicable. These would allow the 

modelling of time lags in the generative model which are likely to be a 

factor in some parts of the gene regulatory process.

Given the current state of the art in microarray genomics, and cor­

responding low sample sizes, development of the generative model is 

challenging. In the next chapter we examine clustering, which is non- 

parametric in the sense tha t no underlying model is assumed. We show 

that clustering results can be improved through the use of spectral and 

BSS feature extraction steps. We also examine sparsity as a criterion 

for separation, which uses the same linear mixing model but requires 

rather less da ta  to achieve good performance.



Chapter 4

CLUSTERING OF 

MICROARRAY DATA

4.1 Clustering in microarray data analysis

Clustering is of prime importance in the analysis of microarray data (see 

e.g. [19,70]), and is a central feature of most microarray data analysis 

software packages. It allows the unsupervised grouping of thousands 

of gene profiles into a few clusters of similar profiles. The centroids of 

these clusters can then be examined and the time profiles explained by 

real biological processes, see for example [20]. In this way, thousands 

of gene profiles are decomposed into a few primary functional groups. 

This dimensional reduction allows biologists to concentrate on the key 

cellular processes apparent in a dataset. It also allows the discovery of 

the function of genes whose effects where previously unknown by com­

paring these genes with other, well characterised genes, in the same 

cluster. In this chapter, we examine how both the spectral estimation 

and the ICA work in the previous two chapters can be used as fea­

ture extraction steps to enhance clustering. We then introduce sparse 

component analysis as a method for source separation, show its advan­

tages over the BSS methods studied thus far and demonstrate that its

88
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F ig u re  4.1. Summary of the clustering process. The feature extraction 
step acts on the data  to produce an L dimensional vector of features 
X • The feature extraction attem pts to represent the data in the most 
separable form, either by discarding data which does not aid to dis­
crimination between clusters or by a transformation of the data into a 
more separable form. C  is the matrix of cluster centroids.

transpose form is equivalent to a standard cluster analysis of the data.

Given a P  genes by N  samples (usually time points) data matrix, 

X, the P  genes can be assigned to K  clusters. Each cluster is repre­

sented by a cluster centroid which represents the average profile within 

the cluster. The membership level of each gene to each cluster is then 

given by the distance from each gene to the nearest cluster centroid. 

The clustering process is summarised in Figure 4.1. Many clustering 

algorithms have been designed, each of which typically has many vari­

ants, see [71] for a further overview of classification and clustering.

The most well known clustering algorithm is called the K-means 

algorithm and would cluster X  (assuming no prior feature extraction 

step) into K  clusters as follows:

1. Generate K  initial cluster centroids. These can be provided on 

the basis of prior knowledge or randomly generated.

2. Assign each gene to the cluster with the closest centroid, as mea-
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sured by a given distance measure.

3. Recompute the cluster centroid as the ensemble average of all the 

genes assigned to tha t cluster.

4. Go back to step 2 and repeat until the centroids move less than 

a set tolerance threshold.

The K-means algorithm can be represented by

C =  kmeans(X,RT) (4.1.1)

where C € R KxN is a matrix of cluster centroids, each row of which rep­

resents a cluster centroid. The K-means method has been extensively 

studied in the literature and fast implementations exist [72].

The K-means algorithm requires the prior specification of the num­

ber of clusters K.  This can be taken from prior biological knowledge, 

or tuned heuristically on the basis of the biological plausibility of the 

cluster centroids. Other clustering methods, e.g. hierarchical cluster­

ing [19], or Quality Threshold (QT) clustering [73], may be used if prior 

specification of K  is not desirable. The K-means algorithm is determin­

istic for a given set of initial cluster centroids. However, for randomly 

generated initial centroids, it is advisable to run the algorithm multiple 

times to check the stability of the computed clusters, with respect to 

the initial centroids. The distance measure is critical to any clustering 

routine. It provides the actual criteron by which the closeness of gene 

expression profiles are measured and should be chosen to reflect the 

application. We now show th a t the clustering of cell-cyclic data  can 

be significantly enhanced by the use of magnitude spectrum feature 

extraction.
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4.2 Frequency domain feature extraction for microarray data

The clustering procedure outlined in the previous section operates di­

rectly on the gene expression profiles. This is problematic in the case

Two genes with perfectly cyclic profiles of identical frequency but sig-

This is clearly not desirable if one cluster is meant to represent a func­

tional group of cell cyclic genes. In practice, the spread of phases in the 

cyclic elements means that large number of clusters must be used to try 

and imperfectly approximate many different phases. The novel solution 

we propose to this problem is a Fourier based feature extraction step.

In this case the feature extraction function is simply the magnitude 

squared Fourier transform of the zero mean gene profile. In this way, 

the phase component of the profile is effectively discarded, allowing 

genes which could be cell cycle regulated to be clustered into the same 

functional group. Hence, the feature vector x  £ KlxL, corresponding 

to a given gene profile x  € R lxN can be defined elementwise as

note that any of the spectral estimators in Chapter 2 could be used 

as a feature extraction step, and use of the high resolution filterbank 

methods could provide benefits with longer length data.

Figure 4.2 shows the frequency domain centroids of clusters com­

puted using the K-means algorithm with K  = 4 and magnitude spec­

trum feature extraction on the alpha data. The centroids all appear to

of cell cyclic data because of the phase differences in the cyclic profiles.

nificantly differing phases would likely be placed in different clusters.

L 2

for 1 < k < L  (4.2.1)
n = l

where (n ) denotes the n-th  index of x, zero padded to length L. We
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represent biologically, or experimentally, valid functional groups: cell 

cycle related genes, high frequency noise, a low frequency component 

and a broadband coloured noise component. The clustering method is 

able to delineate the cell cyclic component from the lower frequency 

component which is evident in the twin peaks of the ensemble average 

periodogram in Figure 2.1. The lower frequency component is repre­

sentative of a slowly changing dynamic process, most likely a rising 

or falling profile, in response to the shock of the chemical agent used 

to synchronise the cell culture. The high frequency noise is likely to 

be measurement noise, whilst the broadband component is more likely 

to be an amalgamation of other noise, or low amplitude biological ef­

fects, occuring throughout the experimental process. Though this ex­

ample uses a K-means algorithm with a Euclidean distance measure, 

the Fourier feature extraction is equally applicable to other clustering 

algorithms and a sensibly chosen distance measure. In particular the 

use of QT clustering [73] with spectral feature extraction would allow 

the spread of the clusters to be controlled, enforcing smaller clusters 

of higher quality. The ability to group cell cyclic genes in a single 

functional group through a clustering routine is novel.

4.3 ICA feature extraction

In this section we show th a t ICA can also be used as a useful feature 

technique in gene clustering, as demonstrated in [74]. ICA is used to 

transform the gene profiles into a space of lower dimensionality whilst 

preserving the salient features. We show that this feature extraction 

step enhances the separability of the data and can produce clusters 

which are closer to those estimated using specific domain knowledge
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Figure 4.2. The plots show the frequency domain cluster centroids 
from the alpha data using K-means clustering with a Fourier prepro­
cessing step for K  = 4, L = 128, and a Euclidean distance measure. 
The centroids appear to be very interesting biologically and seem to 
represent distinct functional groupings: A distinct cell cyclic group, 
a high frequency noise group, a group with a distinct low frequency 
component and a group which seems to be a broadband coloured noise 
component. The ability to identify a cell cyclic functional group using 
a clustering routine is enabled by the Fourier preprocessing step.
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than a standard clustering process.

We decompose the data matrix X  using the standard linear mixing 

formulation as in Equation (3.2.2)

We note that the j -th row of A  represents the set of m  weighting co­

efficients which map the space of statistically independent components 

back to the j -th gene. The j -th  row of A  is hence a compact repre­

sentation of the j -th  row of X, with respect to the basis of statistically 

independent components. The j -th  row of A  now represents the feature 

vector for the j-th. gene. The clustering is then performed as

and the cluster centroids in the transformed domain © are transformed 

back into the original domain by

The same approach can be taken using the transpose formulation, 

given in Section 3.3.2. In this case, the approach is

X  =  AS (4.3.1)

0  =  kmeans (A, K ) (4.3.2)

C =  0 Y (4.3.3)

0  =  kmeans (4.3.4)

C  =  0 A T (4.3.5)

The dual approach may be useful where the number of timepoints is 

too low for the standard formulation to estimate higher order statistics
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Figure 4.3. Benchmark profiles of salient underlying cellular pro­
cesses, generated from sets of genes representative of those processes, 
which were selected using domain knowledge (from [4]).

effectively.

In order to test the performance of the ICA feature extraction step, 

data from [4] were used. This study monitored the gene expression 

of P = 6118 budding yeast genes over N  =  7 timepoints. Despite 

having a relatively low number of time points, this study is particularly 

suitable for performance assessment of the clustering feature extraction 

because benchmark profiles are provided. These benchmark profiles 

were generated by averaging small sets of genes which were known to be 

representative of certain cellular processes. These benchmark profiles 

hence represent target profiles against which we can test our clustering 

procedures.

The benchmark patterns are termed Metabolic, Earlyl, Earlyll, 

Early-mid, Middle, Mid-late and Late and are shown in Figure 4.3. 

The matrix of benchmark profiles is denoted C # £ R KxN, where each 

row of C B represents a benchmark profile.
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Method Mean PI PI Variance
Direct clustering 1.283 0.262

Dual ICA feature extraction 1.247 0.181
ICA feature extraction 1.278 0.276
PCA feature extraction 1.323 0.244

T able 4.1. Performance Index values for a range of clustering schemes, 
over 200 Monte Carlo trials. Kmeans clustering was used, with different 
initial centroids in each trial, m  = 3 sources were used in the ICA and 
PCA approaches.

The closeness between the profiles which are blindly estimated through 

clustering routines and the benchmark profiles is difficult to ascertain 

by eye. The quality of the blind estimation can be measured by the 

same PI, given in Equation (3.2.9), as is used to assess ICA perfor­

mance. The performance is measured as

< =  PI (c * ,TC T) (4.3.6)

Both C b and C are transposed to make the PI invariant to row swaps, 

which is necessary as the orders of both the benchmark profiles, and 

the cluster centroids, are arbitary.

The Pis of the feature extraction schemes are shown in Table 4.1. 

The dual ICA formulation achieved the best performance, with the 

lowest mean PI and lowest variance. This is to be expected with such 

few timepoints (N  = 7), as the number of timepoints increases, it is 

likely the performance of the standard ICA solution would overtake 

that of dual formulation ICA. The benefit of the ICA based feature 

extraction comes from the use of higher order statistics to extract the 

salient features from the data, whilst reducing the noise that hampers 

direct clustering of the data.
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4.4 Sparse com ponent analysis

In Chapter 3 we examined blind source separation (BSS) techniques 

where blind recovery of sources was performed under the assumption 

of statistical independence or spatiotemporal uncorrelatedness. We dis­

covered that the short data  length of gene expression data was typically 

the limiting factor in the performance of the blind source separation al­

gorithms. Here, we examine sparsity as a criteron for separation, which 

is the basis for a family of algorithms known as Sparse Component 

Analysis (SCA) [75]. The achievable separation performance of these 

algorithms is far less constrained by sample size than ICA algorithms, 

which are reliant on higher order statistics.

Given our data m atrix X  we assume a linear mixing model with m  

sources els in Section 3.3.1

X  =  A S (4.4.1)

except that here we assume tha t S is not statistically independent but 

instead sparse, i.e. each column of S has at least one zero value. In 

practice, the performance of SCA algorithms improves as the number of 

non-zero entries in each column of S tends to one. Given such a model, 

the unknown mixing m atrix A 1 and corresponding source matrix S can 

be estimated by a two step procedure, up to the same permutation and 

scale ambiguities as the ICA case.

The columns of the mixing matrix A are estimated as the normalised 

^ ls o  called a signal dictionary in the SCA literature.
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centroids of a clustering routine [76]. A  can therefore be estimated as

C =  kmeans (X, m)  (4.4.2)

A  =  C T (4.4.3)

We note that this estimate of A is suboptimal in the sense that the 

returned sources will not necessarily be the best global solution to 

(4.4.1) under a sparsity constraint2, but in general will give a good 

solution [77].

The sources can now be estimated by the following minimisation [77,

78]
m  N

min E E  \ s i j \  subject to A S =  X  (4.4.4)
i=i j = i

where |-| denotes the l l norm. This can be solved using the following 

dynamic programming solution with non-negative constraints

m
min (y,ij +  Vij) subject to [A, — A] [uj, v j] =  x (j)

t=i (4.4.5)

Uf >  0, Vj  >  0,

where j  = 1 , . . . ,  N,  u j represents the j- th  column of U, and S =  U —V.

The SCA literature is focussed primarily on the underdetermined 

case (i.e. m  > P ), which makes the use of the I1 norm method essential 

for a unique solution to the underdetermined equation AS =  X  for a 

known A and X. Our scenario is overdetermined (i.e. m  < P)  and 

so the unique solution can also be obtained using the /2 norm solution 

S =  A+X.

In order to illustrate the performance of the SCA algorithm on short

2The estimation of the globally optimum mixing matrix remains an open prob­
lem.
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F ig u re  4.4. The Mean PI of the two stage SCA algorithm with syn­
thetic data against sample size, m  — 5 sources and P  =  100 sen­
sors were used with a randomly generated mixing matrix and perfectly 
sparse sources. 20 Monte Carlo trials were used to obtain the mean 
values, with the error bars denoting the variance. The PI falls to zero 
very quickly against sample size, in contrast to the ICA approaches in 
chapter 3, which typically require thousands of samples for the PI to 
approach zero.

data lengths, Figure 4.4 shows the PI of synthetic data over a range 

of short sample sizes. It is clear from the plot that the sparse com­

ponent analysis problem requires only small sample sizes for excellent 

performance, in contrast to ICA.

Clearly, SCA is capable of good separation performance using the 

kind of data lengths typically generated in microarray time course ex­

periments. The caveat, of course, is that the sources must be sparse 

for the technique to be successful. It is certainly plausible that some 

underlying biological sources could be sparse, though perfect sparsity 

in all sources is unlikely. Figure 4.5 shows m  = 5 sources generated 

from the SCA algorithm on the alpha data from [1]. The rather jagged 

nature that the enforced sparsity gives the sources is unlikely to be
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F ig u re  4.5. m  = 5 sources generated from the alpha dataset of [1] 
using SCA. The components are certainly markedly different from those 
generated by ICA as in Figure 3.4. The enforcement of sparsity gives 
the sources a rather jagged appearance. This is unlikely to be accurate 
for all sources, though is rather plausible for noise components.
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correct for all sources, though some could certainly be plausible. It 

is likely th a t the assumption of sparsity is not an accurate one for all 

the processes underlying gene expression. However, in order for SCA 

to recover more plausible sources, sparsity can be enforced by the ap­

plication of suitable pre-processing. Wavelet approaches are common 

for this kind of pre-processing [75-77] and this is a promising topic for 

future research.

An alternative approach is to transpose the linear mixing model, as 

described in [75], to give

X T =  St A t (4.4.6)

We note that, in this formulation, Sr  is now recovered directly from 

the first stage of the SCA algorithm by simply clustering the data. The 

recovered sources are then nothing but the centroids of the computed 

clusters and so recovery of the sources can be achieved using a standard 

cluster analysis of the data. In this case, the columns of A r , i.e. the 

rows of A are assumed sparse. This is intuitive as a perfectly sparse 

A matrix is non-mixing and so each row of X  simply represents one 

of the five sources, allowing the linear mixing to be decomposed by a 

simple clustering routine. The extent to which A  is, in practice, sparse 

(and hence non-mixing) gives a measure of the quality of the clusters. 

Figure 4.6 shows m  = 5 sources computed from the alpha data using 

this method.
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F ig u re  4.6. m  = 5 sources generated by K-means clustering of the 
alpha data.
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4.5 Conclusions

We have shown how both spectral estimation and BSS methods can be 

used as effective feature extraction techniques to improve gene expres­

sion clustering. In the case of the spectral feature extraction step, the 

novel ability to generate a single cluster of cell-cyclic genes is provided. 

The BSS based feature extraction allows the discarding of noise com­

ponents and the transform ation of the data  into a space more amenable 

to clustering. Sparse component analysis is shown to yield good per­

formance with the data  lengths typical of microarray experiments and 

this may be a worthwhile avenue for future work.



Chapter 5

CONCLUSIONS AND 

FUTURE WORK

5.1 Conclusions

The analysis of microarray data  is in its infancy. Signal processing 

methods clearly have an im portant role to play in the analysis but clas­

sical, and cutting edge, signal processing techniques do not necessarily 

translate directly into successful methods for the analysis of microarray 

data. There are four primary reasons for this:

1. The da ta  tend to be high dimensional in the sensor domain but 

with very limited time samples. Classical signal processing algo­

rithms are typically designed with the opposite scenario in mind. 

The high number of sensors can lead to computational difficulties, 

whilst the limited time samples inhibit many estimation tech­

niques.

2. The generative model for the data is unclear. The process of 

gene expression is partially understood on a qualitative level but 

numerical models can only be approximated for very small and 

well defined sections of the biological system. This limits the 

utility of many parametric signal processing techniques.

104
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3. Microarray data  contain significant noise with largely unknown 

characteristics. Missing data  and outliers also hamper inference 

techniques.

4. The aim of most microarray studies is not well defined in a m ath­

ematical sense. Many studies tend to be exploratory experiments 

in which the aim is to gather knowledge about the relationships 

between genes, or their behaviour in certain environmental condi­

tions, whereas signal processing algorithms tend to have a definite 

m athem atical aim. The divergence between the knowledge sought 

by biologists and th a t which can be provided by tightly defined 

mathematical algorithms creates a challenge for the interpreta­

tion of results.

In addition to these technical considerations, the importance of hu­

man factors is not to be underestimated. The research fields of genomics 

and signal processing and statistics are traditionally distinct. The lack 

of mutual knowledge and understanding between the two disiplines is 

largely the reason why microarray data, often obtained at a cost of 

hundreds of thousands of pounds, are analysed using rudimentary sta­

tistical techniques. Often, the choice of which statistical analysis to use 

is governed solely by the options in the commercial microarray software 

package available rather than  an assessment of its suitability to answer 

the question at hand. In order for the data analysis of microarray 

data to catch up with the ever advancing methods of data acquisition, 

greater co-operation is required between research communities.

Despite the challenges of the research area, substantial progress has 

been made in the analysis of signal processing approaches to microar­

ray data  analysis. Spectral estimation has been shown to be a sound
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approach to the problem of cell-cyclic element detection and the robust 

Capon estimator for mis-sampled microarray data shows how spectral 

estimators can be designed to cope with microarray-specific data qual­

ity issues. The beamforming framework allows the estimation of the 

spectral content of a microarray dataset with a higher resolution than 

previously possible, and has been shown to work with non-uniformly 

sampled data. As more time samples become available, the higher res­

olution spectral estim ation techniques will be able to assess the cyclic 

content of genes with a high degree of accuracy.

Blind source separation techniques introduce the concept of a mix­

ing model to the problem and, despite the paucity of time samples, 

are shown to yield useful results. The standard ICA form is shown to 

yield benefits over PCA but the number of time points is the limiting 

factor. The dual form is shown to be not necessarily a perfectly ac­

curate model but can nonetheless give good results, particularly where 

very short data  lengths make the use of the standard form unfeasible. 

Second order m ethods are introduced, which may be a more realistic 

proposition than  those reliant on higher order statistics - a fact which 

has yet to be recognised in the literature. The ability of SOBI to use sec­

ond order statistics to extract components which are spatio-temporally 

uncorrelated is particularly attractive in gene expression analysis.

The use of both  spectral and BSS techniques has been shown to 

benefit gene clustering. In particular, the use of a spectral feature 

extraction step allows the novel clustering of cell-cyclic genes into a 

single functional group. The use of BSS to transform the data into a 

space th a t is more amenable to clustering is shown to improve clus­

tering results. Sparsity is introduced as a possible criterion for BSS of
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microarray da ta  and is shown to be effective with the number of time 

samples typically obtained in microarray studies.

5.2 Future work

There are many opportunities for future development of the work. With 

regard to the spectral estimation work for cell cycle detection, the avail­

ability of longer da ta  lengths from microarray experiments is more crit­

ical than the further development of the algorithms. The short data 

lengths mean th a t it is impossible to ascertain whether the gene in ques­

tion is truly cell-cyclic, or simply responding to the shock imposed by 

experimental conditions or is actually produced by chance. The avail­

ability of finely sampled data  over multiple cell cycle periods would 

enable the use of a high resolution spectral estimator to place a sharp 

cut-off between those genes which are truly cell cyclic and those which 

are not.

The BSS separation work has numerous avenues for development. 

The validity of the mixing model for gene expression should be further 

examined and the development of more realistic models pursued. The 

use of convolutive and nonlinear models is likely to approximate the 

biological reality of gene expression more closely than a linear mixing 

model but more sophisticated models invariably require greater quanti­

ties of data  for their accurate estimation and so these methods are not 

likely to be beneficial until longer time courses become available.

A more pressing source separation question, which should be fea­

sible using currently available data lengths, is the application of pre­

processing techniques to the sparse component analysis problem. We 

show th a t sparse component analysis is capable of excellent separation
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performance with the limited data  lengths typical of microarray exper­

iments but the assumption of sparseness cannot be guaranteed to hold. 

Approaches such as the wavelet transform can provide a sparse basis 

for separation and this kind of method may yield good results with 

microarray data.

Clustering is so widely used in microarray studies that further de­

velopment of clustering algorithms would be immediately beneficial to 

much current microarray based research. Research on feature extrac­

tion, similarity measures and the actual clustering algorithms them­

selves is all likely to be worthwhile, and immediately applicable to 

much recently available gene expression data. The design of a clus­

tering procedure should be done with reference to aims and data of a 

specific experimental study. In fact, this approach is advised for signal 

processing approaches to microarray data  in general. The challenging 

nature of the problem is such tha t application of known signal pro­

cessing methods to microarray data  can yield promising results, but 

these results are hard to assess. In order to advance the state of the 

art further, algorithmic approaches need to be designed with close co­

operation between biologists and data  analysts throughout the exper­

imental process in order to answer specific biological questions. With 

this in mind, a good maxim for signal processing researchers interested 

in genomic applications would be an adaptation of an old quote.

Ask not what genomics can do for you, ask what you 

can do for genomics.

W ith this kind of co-operation through the experimental process it 

is envisaged th a t signal processing will have a significant role to play
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in understanding the fundamental function of organisms on a genomic 

scale.
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