
Compact Information Technology Enabled Systems

For

Intelligent Process Monitoring

By

Qaisar Ahsan

May 2006

Intelligent Process Monitoring & Management Centre

Cardiff School of Engineering

Cardiff University

UMI Number: U584875

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584875
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Acknowledgements

Praise be to GOD ALMIGHTY, the Creator and Sustainer, who made me capable enough

to complete this thesis. I am also thankful to:

My supervisors, Dr. Roger I. Grosvenor and Mr. Paul W. Prickett for their knowledge,

expert guidance and patience whilst assisting me throughout the research.

Mr. Waseem Amer, Miss Asma Jalal, and Dr. Alun Jennings for their companionship,

support, and wealth o f knowledge during the research work.

Ministry of Science & Technology, Govt, o f Pakistan for their financial support, without

which I would not have been able to engage this course.

My family, for its continued support allowing me to further my life long education.

ABSTRACT

The use of computers in industrial process applications is ever-increasing. Initially used

to provide help to the machine operator, their application has evolved through automatic

process control to monitoring of process health and performance. The latter, together with

the quality control of the end product directly affect plant economics and ultimately the

financial viability o f the company. The research reported in this thesis is a contribution

towards providing a cost-effective method o f calculating a measure o f the current health

of a process and predicting any maintenance issues that may arise in the near future.

Embedded systems are utilised and the monitoring system is designed to work

automatically with a minimal input from the operator. This eliminates the need for

peripherals such as keyboards, mice, and monitors thus reducing the overall system price

and footprint. User interfaces are provided via the Internet and mobile phones giving

remote access to multiple users. Single chip microcontrollers are at the heart of the

embedded system rather than microprocessors, thereby reducing the relative system cost

and size at the expense of localised processing power. The microcontrollers are

distributed in a hierarchical network to attain the required processing power whilst

minimising data storage and communications and to improve signal-to-noise ratios. The

Controller Area Network (CAN) bus was selected, and used for the inter-microcontroller

communications, for its robust performance in noisy environments.

In the developed system architecture, each microcontroller node acquires one of the

required process sensor signals and applies initial signal processing. A novel sweeping

filter technique is developed to perform frequency analysis using the microcontrollers.

The processed data from all nodes are then combined using situation-based criteria to

reach conclusions often not evident from single sensor data. The Internet-based system is

provided with the capability to upload any monitoring software or updates. Plug & play

capability of the monitoring nodes is also provided so that the system can be seamlessly

adapted to new or changed applications. The design and development of the system are

detailed along with its deployment on various applications. Fault detection, isolation, and

prediction were achieved on batch and continuous processes. A machine tool application

proved the frequency analysis and network traffic reduction capabilities. On-line

monitoring o f an industrial valve was also performed.

CONTENTS

DECLARATION

ACKNOWLEDGEMENTS

ABSTRACT

CONTENTS

ACRONYMS

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1. INTRODUCTION 1

CHAPTER 2. RESEARCH MOTIVATION 5

CHAPTER 3. LITERATURE REVIEW 10

3.1 Introduction 10

3.2 General condition monitoring 11

3.3 Techniques & their appropriate application 14

3.4 Monitoring with controller signal 25

3.5 Distributed systems for monitoring 34

3.6 Compact monitoring systems 42

3.7 Examples o f web-enabled monitoring 50

3.8 Commercial services 55

3.9 Summary 58

CHAPTER 4. SIGNAL ACQUISITION AND ANALYSIS 59

4.1 Monitoring system overview 59

4.2 Processing element selection 62

4.3 PIC microcontrollers 63

4.3.1 PIC 18F458 microcontroller 64

4.4 Signal acquisition 66

4.4.1 One analogue signal per MCU 66

iv

4.4.2 Digital signal acquisition 66

4.4.3 Analogue signal acquisition 68

4.4.4 Eight bit ADC results 69

4.4.5 Data storage 70

Signal analysis 71

4.5.1 Time domain analysis 71

4.5.2 Frequency domain analysis 72

4.5.3 Circuit design 79

Summary 81

CHAPTER 5. DISTRIBUTED MONITORING SYSTEM 82

5.1 Fieldbus 83

5.1.1 Controller area network 83

5.1.2 CAN in PIC 18F458 87

5.2 Synchronization and user interface 88

5.2.1 80C390 microcontroller as SUIN 89

5.2.2 Tiny InterNet Interface (TINI) 91

5.2.3 Brief introduction to protocols 93

5.2.4 Human interface 94

5.2.5 Mobile phone interface 96

5.3 Fault detection and isolation 96

5.4 CAN bus messages 98

5.4.1 Node identification 99

5.4.2 Message priority 101

5.4.3 Power-up sequence 101

5.4.4 Process monitoring 103

5.5 Plug & play 104

5.6 Software models for FENs and SUIN 105

5.6.1 Data acquisition mode 106

5.6.2 Monitoring mode 107

5.6.3 Software update mode 109

5.7 Network traffic reduction 111

5.9 Fault reporting by SMS 113

5.8 Summary 114

V

CHAPTER 6. PIPE BLOCKAGE DETECTION 116

6.1 Bytronic process rig 116

6.2 Batch process 117

6.3 Process monitoring 118

6.4 Fault simulation 120

6.5 Monitoring decisions 126

6.6 Monitoring results 132

6.7 Summary 137

CHAPTER 7. MULTIPLE FAULTS ISOLATION 140

7.1 Fault isolation 140

7.1.1 Leakage fault simulation 141

7.1.2 Leakage and blockage faults isolation 144

7.2 Multi-loop process monitoring 147

7.2.1 Continuous process monitoring 147

7.2.2 Batch process monitoring 151

7.2.3 Combined loop monitoring 155

7.3 Summary 156

CHAPTER 8. TOOTH BREAKAGE DETECTION 157

8.1 Tooth breakage detection theory 157

8.2 Sweeping filter application 159

8.2.1 Monitoring signals 159

8.2.2 Possible approaches 161

8.2.3 Threshold establishment 163

8.3 Monitoring decisions 166

8.4 Summary 168

CHAPTER 9. AIR FLOW PROCESS MONITORING 169

9.1 Process rig 169

9.2 Air flow process 171

9.3 Monitoring signals 173

9.4 Diaphragm condition monitoring 174

9.5 Pipe blockage monitoring 177

VI

9.6 Fault isolation 180

9.7 Summary 182

CHAPTER 10.DISCUSSION 184

CHAPTER 11. CONCLUSIONS & FUTURE WORK 193

11.1 Conclusions 193

11.2 Future work 194

REFERENCES 196

APPENDIX A. Transducers and sensing techniques 205

APPENDIX B. Microcontrollers’ details 206

APPENDIX C. System related details 217

APPENDIX D . List o f Publications from this work 231

vii

ACRONYM S

ACF

ADC

AE

AES

AMS

ANN

API

AR

ARMA

ASK

BDD

BP

CAN

CCPN

CGI

CLPA

CLPM

CM A

CN

CPU

CRC

CSMA/CA

DAMADICS

DAME

DDG

DLC

DMC

Autocovariance Function

Analogue to Digital Converters

Acoustic Emission

Advanced Encryption Standard

Asset Management Solutions

Artificial Neural Network

Application Programmer Interface

AutoRegressive

AutoRegressive Moving Average

Amplitude Shift Keying

Binary Decision Diagrams

BackPropagation

Controller Area Network

Complex Choice Petri Net

Common Gateway Interface

Closed Loop Performance Assessment

Closed Loop Performance Monitoring

Control/Monitoring Agents

Control Nodes

Central Processing Unit

Cyclic Redundancy Code

Carrier Sense Multiple Access with Collision Avoidance

Development and Application o f Methods for Actuator Diagnosis in

Industrial Control Systems

Distributed Aircraft Maintenance Environment

Data Dependence Graph

Data Length Code

Distributed Measurement and Control

DSP Digital Signal Processor

DTMF Dual Tone Multiple Frequency

DWT Discrete Wavelet Transform

EDF Earliest Deadline First

EOF End o f Frame

EP Embedded Processor

ETA Event Tree Analysis

FDD Fault Detection and Diagnosis

FDI Fault Detection and Isolation

FEN Front-End Node

FFT Fast Fourier Transform

FIFO First-In First-Out

FIR Finite Impulse Response

FN Fieldbus Nodes

FS fieldbus server

FTA Fault tree analysis

FTP File Transfer Protocol

GPRS Global Packet Radio Service

GSM Global System for Mobile Communication

GSS Ground Support System

HART Highway Addressable Remote Transducer

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transmission Protocol Secure

HUMS Health and Usage Monitoring Systems

LC Inter-Integrated Circuit

IAE Integrated Accumulated Error

ICD In-Circuit Debugger

ICSP InCircuit Serial Program

IDE Integrated Development Environment

IFS Intermission Frame Space

HR Infinite Impulse Response

IMP Integrated Mail Processors

IP Internet Protocol

IPMM Intelligent Process Monitoring and Management

ISAPI Internet Server Application Programming Interface

ISP Internet Service Provider

ISR Interrupt Service Routine

JDBC Java DataBase Connectivity

JVM Java Virtual Machine

KBS Knowledge Based System

KPI Key Performance Indicators

LAMDA Learning Algorithm for Multivariate Data Analysis

LAN Local Area Network

M2M Machine To Mobile, Mobile To Machine

MAC Media Access Control

MAC Multiply-and-ACcumulate

MC Message Centre

MCM Motor Condition Monitor

MCU Microcontroller Unit

MIPS Million Instructions Per Second

MSPC Multivariate Statistical Process Control

MSPM Multivariate Statistical Process Monitoring

MSSP Master Synchronous Serial Port

MVC Minimum Variance Control

NCAP

NN

Network Capable Application Processor

Neural Network

ODBC Open DataBase Connectivity

OLPI Overall Loop Performance Index

OSI Open System Interconnection

PC Personal Computer

PCA Principal Component Analysis

PCB Printed Circuit Board

PDA Personal Digital Assistant

PDU Protocol Data Unit

PIC Peripheral Interface Controller

PLC Programmable Logic Controllers

PLS Partial Least Squares

PSN Programming and Supervision Node

PWM Pulse Width Modulation

Q Quality factor

QPT Qualitative Process Theory

QSA Qualitative Shape Analysis

QSIM Qualitative SIMulation

RMU Remote Measurement Unit

RISC Reduced Instruction Set Computer

RTOS Real-Time Operating Systems

S&H Sample & Hold

SBC Single Board Computer

SBR Sequencing Batch Reactor

SCADA Supervisory Control And Data Acquisition

SDG Signed Digraphs

SEVA Self Validating

SFR Special Function Register

SIM Subscriber Identification Module

SIMM Single Inline Memory Module

SISO Single-Input Single-Output

SME Small to Medium Enterprise

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SNR Signal to Noise Ratio

SOF Start o f Frame

SOFM Self-Organizing Feature Map

SPC Statistical Process Control

SPI Serial Peripheral Interface

SQL Structured Query Logic

SSI Server Side Includes

STIM Smart Transducer Interface Module

SUIN Synchronizing & User Interface Node

TCG Temporal Causal Graphs

TCP Transport Control Protocol

TINI Tiny InterNet Interface

TPM Total Productive Maintenance

TTY TeleTYpewriter

UML Unified Modelling Language

US ART Universal Synchronous Asynchronous Receiver Transmitter

USB Universal Serial Bus

VPN Virtual Private Network

WAP Wireless Application Protocol

WEP Wired Equivalent Privacy

WPA Wi-Fi Protected Access

XML extensible Markup Language

LIST OF FIGURES

Figure 3.1 Validation as a combination of technologies 27

Figure 3.2 Typical behavior o f a control valve with 29

static friction

Figure 3.3 Smart sensor 35

Figure 3.4 Modular system configuration with standard I/O 38

Figure 3.5 Controller performance assessment scheme 40

Figure 3.6 System architecture 44

Figure 3.7 Proposed architecture for system-wide FDI 45

Figure 4.1 Hardware architecture of proposed distributed 61

monitoring system

Figure 4.2 Computing hierarchy of proposed distributed 61

monitoring system

Figure 4.3 Basic parts o f an ADC 68

Figure 4.4 Block diagram of sweeping filter system 74

Figure 4.5 MAX264 filter block diagram 75

Figure 4.6 Detection o f lOOmV 20Hz sine wave 77

Figure 4.7 H igher am plitude sine wave detection 77

Figure 4.8 Detection o f lOOmV 20Hz sine wave with 78

Q values of 8, 16, and 64

Figure 4.9 Harmonic detection for Q 8, 16, and 64 78

Figure 4.10 Multiple frequency detection 79

Figure 4.11 Time based analysis circuit 80

Figure 4.12 Frequency based analysis circuit 80

Figure 5.1 The developed monitoring system with 83

hardware layers

Figure 5.2 CAN Bus 84

Figure 5.3 Extended CAN data message bits 86

Figure 5.4 CAN protocol implementation in PIC 18F458 88

Figure 5.5 CAN message identifier 98

Figure 5.6 Message from node 1 to node 2 100

Figure 5.7 Broadcast message from node 1 100

Figure 5.8 Some example identifiers of CAN messages 102

Figure 5.9 CAN message sequence at system power-up 103

Figure 5.10 CAN message sequence after FEN time-out 103

Figure 5.11 M essages during process m onitoring 104

Figure 5.12 M essage sequence when a new FEN boots-up 105

Figure 5.13 FEN software model with data acquisition 106

mode elaborated

Figure 5.14 SUIN software model with data acquisition 107

mode elaborated

Figure 5.15 SUIN software model for Internet access to data 107

Figure 5.16 FEN software model with monitoring 108

mode elaborated

Figure 5.17 SUIN software model with monitoring 109

mode elaborated

Figure 5.18 FEN software model with software update 110

mode elaborated

Figure 5.19 SUIN software model with software update 111

mode elaborated

Figure 5.20 Hardware arrangements for SMS generation 114

Figure 6.1 Bytronic process rig 117

Figure 6.2 Control and monitoring signals in batch process 118

Figure 6.3 Typical normal condition signals 120

Figure 6.4 Typical control signals (power) for partial 121

blockages

xv

Figure 6.5 Typical tank level signals for partial blockages 122

Figure 6.6 Typical flow rate signals for partial blockages 123

Figure 6.7 Ripples effect o f blockage 125

Figure 6.8 Turbulence effect of blockage 125

Figure 6.9 Power running sum values for normal and 128

40% blockage cases

Figure 6.10 Power running sum values at 30 sec time 128

Figure 6.11 Flow and level running sum values at 30 sec time 129

Figure 6.12 Threshold determination for power FEN 130

Figure 6.13 Blockage extent and its detectability with 131

selected thresholds

Figure 6.14 Threshold determination for level FEN 133

Figure 6.15 Threshold determination for flow FEN 134

Figure 6.16 Monitoring results on web page 138

Figure 7.1 Leakage and blockage faults arrangement 141

in batch process

Figure 7.2 Signals for leakage fault only 142

Figure 7.3 Enlarged flow and level signals 142

xvi

Figure 7.4 Power signal in normal and leakage conditions 143

Figure 7.5 Fault isolation processing 146

Figure 7.6 Continuous process 148

Figure 7.7 Fault detection procedure in continuous loop 149

Figure 7.8 SUIN reporting process condition 150

Figure 7.9 Continuous process monitoring signals 150

Figure 7.10 Partial availability 151

Figure 7.11 Decision making with partial availability 152

Figure 7.12 Detection o f unexpected process conditions 152

Figure 7.13 Batch process 153

Figure 7.14 Level signal shows delay in batch completion 154

for leakage

Figure 7.15 SUIN reporting process condition 155

Figure 8.1 Frequency spectrum calculated with FFT 158

Figure 8.2 R current profile for X-axis drive signal 160

with new and broken tooth cutters

Figure 8.3 R currents during cutting in X-axes 161

Figure 8.4 Varying signal strength for new cutter 162

xvii

164

165

167

170

170

172

173

176

176

177

178

179

180

181

Tool rotation frequency (8.33Hz) for R and S

signals at different times

Tooth passing frequency (25Hz) for R and S

signals at different times

Frequency profiles for various depths of cut

Process rig

Process rig working schematic

Linearization of control command

Normal condition signals

Monitoring signals for normal process

Chamber pressure Signals for various

diaphragm conditions

Developed circuit boards

Signals with outlet pipe pressure sensor

Signals with partial pipe blockage (flow sensor)

Developed decision making logic

Signals with partial pipe blockage fault

LIST OF TABLES

Table 3.1 Comparison of diagnostic techniques 24

Table 4.1 8-bit PIC microcontroller families’ characteristics 64

Table 4.2 Achieved timings for various time domain 73

analysis techniques

Table 5.1 Comparison of TINI with other Internet enabled 92

embedded devices

Table 5.2 Protocols and acronyms 94

Table 5.3 List o f used messages types 99

Table 6.1 Signal description for process variables 117

Table 6.2 Monitoring node identification numbers 119

Table 6.3 Further signal conditioning for MCU interfacing 119

Table 6.4 Mean values o f acquired signals 127

Table 6.5 Variance values of acquired signals 127

Table 6.6 SUIN rule base 135

Table 6.7 SUIN monitoring decisions 135

xix

Table 6.8 Blockage level detection with FEN processing 136

and SUIN integration

Table 7.1 Statistical measurement for monitored signals 143

Table 7.2 Running sums for fault isolation 145

Table 7.3 Running sum values for level signal 154

Table 9.1 Control signal generation 172

Table 9.2 Monitoring signals 173

Table 9.3 SUIN decision table 182

xx

Chapter 1

INTRODUCTION

The ever-increasing and market led competition for better quality and lower prices is

putting an enormous pressure on the manufacturing industry. The industry aim is to run

process plants at their optimum level of performance to ensure the sustained quality o f the

end product. This is often hand-in-hand with attempts to reduce maintenance and running

costs. These two contradictory demands may put a manufacturing operation in jeopardy.

Researchers are increasingly using computers and information technology to address

these problems. However, the complexity and scale of modern industrial plants often still

makes it impossible or impractical to check the health of every component in a plant.

Time-based maintenance is often employed rather than the more economic condition-

based maintenance. There is a great need for automatic systems that monitor the plant and

let the maintenance staff know when a problem is detected.

It may still be a very difficult task for maintenance staff to diagnose the real cause of the

problem once an automatic system detects it. Monitoring systems are required that not

only report a performance degradation but can also direct the maintenance staff towards a

specific remedial action. Ideally, the automatic system will provide a prediction of each

component's failure so that optimally timed maintenance activity can be planned whilst

the plant continues to run efficiently to produce quality products all the time. Such a

system would need to acquire signals from all the plant components with respect to all of

their variables such as temperature, pressure, demand, etc. These signals would be

considered relative to the particular specifications of the component and the working

environmental conditions. The massive computational requirement is still impractical,

even with current technology and computational power. The amount of knowledge (or

comprehensive algorithms) required to interpret all this data may also not be available.

This situation justifies the continuing research activities in the area.

The need for process monitoring stems from economic benefits and any expensive

solution would be counter-productive. Low-cost monitoring solutions are therefore

required that can be achieved with the current technology. The approach taken in this

research is to reduce the number of additional sensors and to estimate the process and it's

1

component’s status largely from the signals already available in the system. This reduces

the cost o f additional sensors and associated items such as cabling. Signal interfacing and

input/output capabilities are required to connect the field signals with the digital

processing system. The modem generation o f microcontrollers were deemed to be useful

devices in this context. A microcontroller is sometimes described as a ‘single chip

computer’ as it contains on-chip memory and peripheral devices such as timers, counters

and data ports. Communication modes are also supported so that the microcontroller may

exchange information with its surrounding world. The microcontrollers, however, do not

have the high processing power associated with today’s high-end microprocessors. The

delicate balance between the processing capability and the cost is investigated in this

research.

The last decade has seen significant improvements in telecommunication facilities. An

important development in this respect is the evolution o f the Internet. It is an excellent

medium for engineers to employ for remote monitoring applications. A monitoring

system should ideally have Internet connectivity whereby it can provide remote access to

the results. The monitoring system developed in the current work provides these facilities,

using commonly available software.

The data from a process under continuous monitoring may become huge, especially if it

contains analogue signals sampled at high rate. There may be several variables of interest

from a maintenance point o f view and putting all o f the data for all o f the variables on the

Internet may not be feasible. The storage and communication o f data is thus a

consideration of paramount importance. There are technical constraints on the bandwidth

o f communication channels and large scale data transfers may have a financial impact for

small companies. It was therefore considered not to be a practical solution to transfer all

the data from a remote plant on the Internet for a maintenance engineer to examine.

Rather, it was judged that the data acquisition system should provide some pre-processing

and provide only the monitoring system results on the Internet rather than raw data. Raw

data may be communicated remotely, on request, only if the monitoring system detects an

abnormal process condition and is unable to diagnose it from its existing capabilities.

Such data would then be provided to a higher tier o f the monitoring system, or for expert

analysis at some other location. The research motivation for the current study is more

fully reported in chapter 2.

2

A literature review is provided in chapter 3, encompassing work reported towards various

aspects o f condition monitoring. Many approaches and techniques have been researched

and are considered. The review also discusses various application areas. It summarises

and introduces the numerous techniques developed and reports on some commercial

applications and devices.

Keeping in mind the requirements for the various monitoring methods proposed within

the reviewed research, a compact and hierarchical monitoring architecture is proposed in

chapter 4. The suitability o f embedded systems in process monitoring is discussed with

currently available technologies. A distributed network o f 8-bit microcontrollers was

deemed appropriate and reasons for this selection are described. The acquisition of

signals and their analysis in time and frequency domains are provided. A new frequency

analysis technique, designated as the sweeping filter technique, is introduced. This

enables 8-bit microcontrollers to perform frequency analysis in real-time.

The interconnection between various nodes in the proposed monitoring system is

described in chapter 5. A Controller Area Network (CAN) bus is used for such

connections and the reasons for this selection are detailed. A specialised node provides

system synchronisation and the user interface via the Internet and mobile phone

connectivity. Communication messages on this peer to peer network are detailed in this

chapter and various software modes are explained. The chapter also explains the

implementation of a plug and play functionality in the monitoring system. Measures are

also taken to reduce network traffic while integrating information produced at various

acquisition nodes. Overall this chapter gives a complete blue-print o f the proposed

system.

Chapter 6 introduces the deployment and testing of the proposed system on an

application. Partial pipe blockage and tank leakage faults were introduced in a batch

process to analyse the monitoring system’s performance for fault detection. The chapter

provides the implementation details o f the work, the node and hierarchy details and the

experimentation performed to confirm the proper functionality o f the system. The

detection and isolation o f multiple faults in a process is elaborated in chapter 7. Data

gathered by the monitoring system was analysed by the author and different symptoms

3

were identified for different faults. The monitoring system then used this knowledge, in

its monitoring mode, and successfully isolated the faults. Multiple faults were also

isolated successfully in a multi-loop process where one loop was dependant upon the

other one. Details o f locating different fault symptoms with the proposed monitoring

system are provided in this chapter along with the achieved results.

An analysis based on time series data was used in the fault detection and isolation in the

above mentioned processes. Chapter 8 provides an example o f the deployment of the

monitoring system on a different type o f application. Its performance in the frequency

domain was evaluated on machine-tool signals. Spectral differences between a new cutter

and a broken tooth cutter in machine tool signals were already known from previous

research. The monitoring system was deployed to detect such spectral differences using a

novel sweeping filter technique and its details are provided in this chapter.

Chapter 9 explains the monitoring o f an air-flow process involving an industrial

pneumatic valve. Such valves are widely used in industry for automatic process control.

The monitoring system successfully detected and isolated multiple faults introduced in

the process such as diaphragm condition deterioration and partial blockage of air flow

path. Finally, chapter 10 discusses the results obtained from the various implementations

of the monitoring system and chapter 11 draws conclusions and sketches the roadmap for

future research.

4

Chapter 2

RESEARCH MOTIVATION

Industrial automation has been on a rapid rise in recent years. The industry is in search of

optimum profitability and has aspired to near perfect manufacturing in this quest.

Manufacturing equipment is produced to a very high standard and new process plant (or

an entire factory) starts shipping quality products once it is properly commissioned. To

maintain an on-going high level of quality is, however, an altogether different issue.

Various components o f plant/process experience the unavoidable wear and tear through

daily usage. The mechanical friction, electronic aging, rusting, corrosion, variations in

temperature and pressure, etc. affects the production equipment and it loses its initial

performance capability over time.

Replacement o f components is often undertaken on a time based schedule where

components are expected to work above a threshold quality level for a certain period of

time. It is difficult to precisely predict this life span o f a component as it depends on its

use as well as the production quality level o f its manufacturing plant. Various components

from same production batch would have differing life spans in practice. Precise

knowledge o f the conditions that a part experiences is required to reliably predict the

failure time.

The economic impact o f being able to obtain accurate knowledge about the health of the

process and machines is vast. In particular, for the process industries, Trenchard et al

(2002) mention that only one third o f surveyed control loops are performing

satisfactorily. Horch (2000) states that one o f the most important problems with process

industry control loops is the widespread presence o f oscillations. Hagglund (1995)

observes that the main reason for these oscillations is the bad health o f the actuators in the

loop. Annual losses due to such undetected problems may rise to millions. Trenchard et al

(2002) provided some quantitative values, for example for an industry where $ 100K was

saved by detecting several valves that did not require scheduled maintenance. Another

company claimed to improve plant run-time by 20% due to performance improvement

obtained through efficient monitoring (Matrikon, ProcessDoctor web site).

Venkatasubramanian et al (2003) state that the annual losses due to the lack o f condition-

5

based maintenance and the resultant safety hazards may reach $20 billion for the

American petrochemical industry. Similar losses in the UK range up to $27 billion per

year (Venkatasubramanian et al, 2003). It has been claimed that improvements of 20% to

30% in process efficiency have been achieved using intelligent condition-based

monitoring (Emerson process management, customer proven web site).

It is quite common that field visits by maintenance staff determine that the component is

healthy and does not require any maintenance. Hartley (2002) recalls that 63% of the field

visits to transmitters in a large chemical company were routine checks where no problems

were found. A typical field visit costs around $300 and such useless trips can actually out-

cost the capital cost o f the component. The knowledge o f a healthy component is

therefore as important as that o f a faulty one. Automation World (web site) indicates that

the cost for removing a valve from a process is $2000 to $3000 no matter whether the

valve is good or bad.

Considering the size and complexity o f a modem process plant, it is very difficult for

maintenance staff to manually check the condition o f all components. Data acquisition

systems are used to acquire the data for the variables o f interest and typically data trends

are able to be viewed by the control room staff. It is however very difficult to locate a

fault merely by looking at the data trends. Expert knowledge is required for this analysis,

which is usually not at hand because o f the shortage o f engineers (Schafer and Cinar,

2004). Venkatasubramanian et al (2003) state that because of the complexity of modern

process plants, it is not always possible for operators to provide a proper response to

every fault condition and about 70% of the industrial accidents are caused by human

errors in these circumstances. Thus, they identified the need to develop automated fault

detection and diagnosis systems to tackle this problem. An automated system is required

to provide monitoring results, thereby reducing and ideally minimising the load on the

engineers. A detailed review o f the research in the development o f automatic monitoring

systems is provided in chapter 3. In spite o f all o f this research, the development of

effective and automated diagnostics is still considered, by Harris (2004) for example, as

an unresolved technical challenge, especially for multivariate systems.

Potentially this means that a continuous monitoring system is needed, measuring all the

process and environment variables all o f the time. This is a gigantic task even with the

6

latest state-of-the-art computers. Logistically, sensors are needed to detect various process

variables, along with a cabling network to connect the sensor signals to the processing

computers. The situation thus provides scope for the development o f a monitoring system

that could provide the current process health status with few additional sensors. This

system would comprehend the holistic situation from only the key parameters and would

be able to match them with fault symptoms. A departure from the nominal behaviour in a

signal indicates a performance degradation which would be investigated by the

monitoring system towards determining a root cause. Such a system can provide the

information about the proper time to replace a plant component. The system should

identify the faulty sub-section in the plant and may ideally provide information about

each component.

A practical solution to this requirement is a system that can track the signals from a few

available sensors in the process and evaluate the other process conditions indirectly. If

such a system can be developed, only then it is possible to reliably let a component work

in the process plant, or replace it with full confidence that a replacement was really

required. Such a system is feasible in economic terms only if the money spent is worth

the saving it provides; or if it results in a competitive advantage in the market by shipping

better quality products all the time.

A significant amount o f research has been reported but industry is still facing numerous

problems in achieving comprehensive process monitoring. The detection o f a fault is still

an issue, especially for soft faults where the process is still likely to be running but with

degraded performance levels. Finding the root cause of the problem is also an issue. The

availability o f signals, mounting and connecting sensors in the plant, the hardware

architecture o f the monitoring system, etc. are all issues that need to be considered. There

is a fine compromise between missing a fault condition and generating false alarms.

Clarke (1999) identified that between half and three-quarters o f shut-down time is due to

false alarms caused by lack o f confidence o f the process operatives in the measurement

information provided. Many researchers have tackled these issues in the local sense but

have not yet established comprehensive systems. The few systems that claim to provide

efficient solutions are often too costly to be widely deployed in industry on a large scale.

Big multinationals may afford such complicated monitoring solutions but it is almost

impossible for small to medium enterprises (SMEs) to install these expensive systems.

7

The Mattec Corporation (Mattec corporation THE-MAN-A-ger web site), for example,

claims to provide a low-cost solution where the basic unit price is about $15000. Such

solutions are therefore not commonly adopted in industry.

Another issue is the generality of the monitoring system. It is difficult to provide a

generic solution because each process plant is essentially a unique one. Similar process

plants may be using different types o f sensors to measure the same variables. Each

process may have different set points and thresholds according to the requirements of that

particular plant. A monitoring system should therefore be able to adapt to such plant

related changes easily. A generic solution can be taken by any company as the company

is still not bound to any one service provider. Paulonis and Cox (2003) for example, state

that lack o f generality was an important reason for their company’s decision to develop its

own monitoring system rather than going for a commercially available one.

The common availability o f the Internet these days makes it sensible that it should be

exploited for remote monitoring. Eisenreich and Demuth (2003) urge the use o f the

Internet as an easily available communication medium predicting a trend towards Internet

appliances, i.e. electronic devices connected to the Internet. Potentially then the process

manager can check the plant performance from anywhere in the world and take

appropriate management decisions. Decisions do not remain pending only because the

manager is not in the office. It is also useful where the office is located remotely from the

plant. Such connectivity reportedly provided better plant management which in turn

improved profitability. The use o f generic software was again favoured over proprietary

software. The use o f common Internet browsers, such as Internet Explorer, was deemed to

be effective as any computer can then be used for browsing the process information.

The total price o f the monitoring solution obviously plays a very important role in the

decision about whether such a system will be installed or not. The system should be

compact and use low-cost components to make it a cost-effective solution. The

developments in microcontrollers over the last few years have made them much more

powerful than a small chip was traditionally expected to be. Bolic et al (2001) suggest

that today’s microcontrollers are a feasible option for low-cost distributed systems. These

microcontrollers integrate signal acquisition and communication facilities with a limited

8

processing capability on the same chip. The compactness of the solution results in lower

overall cost and is potentially very attractive for monitoring systems.

Another benefit o f microcontroller-based monitoring systems is their relatively small

physical size. A limited number of peripheral components are required to build such

solutions and small printed circuit board designs are achievable. The reduction in size

provides an ease o f installation in the factory environment. Small sized modules can be

easily placed close to the required monitored part, often reducing any potential noise

interference problems. The acquisition o f cleaner signals provides the potential for

improved fault detection and reduces uncertainty. This helps in reducing false alarms and

generates more confidence about the system performance.

The need for a monitoring system with all the above mentioned capabilities is still a

research challenge. The amount of money involved and the widespread applications of

such a system in diverse fields of industry thus provided the research motivation to

investigate into the possibility o f developing a complete monitoring solution fulfilling the

requirements o f diverse industrial processes. This thesis provides the details o f such an

investigation, the recommended solutions, the existing technologies to be utilised and a

discussion o f new techniques and technologies.

9

Chapter 3

LITERATURE REVIEW

3.1 INTRODUCTION

This chapter provides a review of monitoring techniques and applications from a wide

range o f research publications. Monitoring is defined as to observe, supervise, or keep

under review; to keep under observation; to measure or test at intervals, especially for the

purpose o f regulation or control (Oxford English dictionary web site).

The scope of the research in this thesis is limited to engineering processes in industry.

Section 3.2 reviews monitoring examples and set the scene regarding applications.

Section 3.3 examines monitoring techniques and provides examples o f their use.

Published review papers are also included in this section. These are used to discuss the

suitability o f given techniques for particular process types. Section 3.4 then provides a

detailed review o f the narrower field within which controller signals are utilized in

process monitoring. Control engineering is a well established field and there is a

significant amount o f work available for control loop performance assessment (CLPA).

There is an emerging trend to link the degradation in loop performance with process

health and the resulting control loop performance monitoring (CLPM) approach can

provide very important information. This section explores the various aspects of this

emerging field.

The role o f distributed systems in monitoring is increasing and thus section 3.5 reviews

various approaches for tackling problems specific to distributed process monitoring.

Distributed systems are more efficient for geographically distant sensor data acquisition

and provide hierarchical process facilities. Section 3.6 covers compact systems, where a

compact system is defined (in this thesis) as a small yet comprehensive system that can be

easily placed in a process plant. It is essentially an embedded system, preferably based on

a microcontroller unit (MCU) with very little hardware other than the MCU. The small

number o f components may also decrease energy consumption and the MCU itself may

go in power-down mode whenever possible if implemented with appropriate intelligence.

10

The Internet provides a range o f services such as web-hosting, live media streaming,

email, news-groups, file transfers, remote terminals, etc. Commonly used browsers are

well understood and easily used by non-technical people. The development of document

structures, components, and containers of the Internet may be complicated but is easy to

use. These features have made the Internet a preferred mode o f communication. The use

of the Internet for monitoring applications is accordingly on the rise. Section 3.7 covers

and reviews this aspect. Finally, section 3.8 briefly describes a selection of commercially

available monitoring systems. It includes complete monitoring solutions as well as the

data acquisition systems provided by various companies who process the acquired data

and provide the results to their respective clients.

3.2 GENERAL CONDITION MONITORING

This section demonstrates the diversity o f applications where monitoring techniques are

being employed. Process performance monitoring provides technical and economic

advantages and its benefits are manifold. Various fields of industry are therefore

interested in process monitoring and there are researchers making efforts to improve

process performance by applying various techniques. Plesnyaev and Pazderin (2003), for

example, applied monitoring techniques in the Russian electrical power industry where a

large number o f consumers resort to meter tampering in order to reduce energy bills. A

method for improving the accuracy and validity o f the measured data on energy

consumption was presented based on the mathematical modelling o f energy flows using

state estimation techniques.

Yang et al (2003, A) applied monitoring techniques to a metal forming process. They

proposed a friction source location detection system using three acoustic emission (AE)

sensors positioned at the metal forming tool. Multiple signals generated by the distributed

AE sensors were acquired and analyzed using frequency analysis techniques such as Fast

Fourier Transform (FFT) and Discrete Wavelet Transform (DWT). The deviations o f the

arrival time o f the AE signals were used for friction source location using a pre­

constructed source-location database.

11

Studzinski (2004) described the use o f monitoring techniques in environmental

engineering. Three examples were quoted for modelling and maintaining environmental

processes using computers. The first example considered a wastewater treatment plant

where a computer aided system was developed to support decision making by the process

operator. The development o f the models and their adaptive validation was possible only

with an efficient monitoring system, and such an automatic system was installed. Their

second example considered an integrated computer system developed to support

operational decision making in a communal water network. The system had three

modules cooperating with each other and water pressure and flow were measured at nine

points. The data transmission from the deployed system to the computer was

accomplished using GSM telephony. The third example was developed to provide

missing data for atmospheric parameters such as environmental temperature. A model

was produced using a neural network whose output closely matched the real temperature

data. The model output data was used by the expert systems in a case where actual data

was not recorded due to a power failure.

Tokatli et al (2005) described the use o f process monitoring in the food industry. Product

safety is controlled in many food processing operations by checking the end product by

microbiological and chemical methods. A major problem with this approach is the

associated delays. Tokatli et al considered this method expensive because the product

might have been shipped to retailers before any contamination detection. The cost of

recalling the product from the market adds to the economic loss caused by the problem.

Real-time monitoring o f critical control points in the process was suggested using

multivariate statistical methods for the early detection o f the problem. Separate fault

diagnosis methods were used once a fault was detected. A discrepancy was observed in

that multivariate statistical charts did not indicate the variable causing the fault. A model-

based fault diagnosis technique, referred to as a parity space technique, was used to

monitor a high-temperature short-time pasteurization pilot plant in this study. Plant

sensors and actuators were interfaced with a computer using a data acquisition system.

The actual sensor measurement values were modified by adding numbers to them for

generating sensor faults.

12

Kimmich et al (2005) reported on fault detection for modem diesel engines using signal

and process model-based methods. Appropriate signal processing o f measurable signals

generated residuals and symptoms using these models in this modular design. The

algorithms were implemented on a rapid control prototyping system with

Matlab/Simulink. The differences between the signal and the reference model generated

the residuals. Further processing on these residuals gave the symptoms which indicated

faults by considering variations from thresholds. Several faults were temporarily

introduced in the engine to check the algorithms. They used semi-physical models where

dominant characteristics were modelled physically and secondary effects with neural

networks.

Patton (2005) described the monitoring o f an electro-pneumatic valve in a sugar juice

evaporation plant as part o f a Development and Application o f Methods for Actuator

Diagnosis in Industrial Control Systems (DAMADICS) project. A range o f actuator faults

were considered and the necessity o f advanced diagnostics was emphasized for fault

detection and isolation. Benchmarking was considered a useful approach in fault

detection and multiple benchmarks were described. Examples included are benchmarks

based on simulation o f the actuator behaviour (in normal and faulty states) and also a data

driven approach based on process data acquired from the evaporation and steam boiler

stations.

Hawkins (2004) considered the pros and cons o f using Health and Usage Monitoring

Systems (HUMS) in defence applications. It was stated that condition monitoring dates

back to 19th century and a bewildering array o f monitoring techniques have emerged. The

most prominent condition monitoring example within the UK ministry of defence is the

installation of HUMS to the Chinook and Merlin helicopter fleets. These systems, which

have been in gestation for many years, were deemed to be beginning to deliver

dependable safety-related management information. Confidence in these systems is still

below the desired level but the future deployment o f HUMS to the Sea King, Puma, and

Lynx fleets was reported as a certainty. Adherence to open standards was also deemed

important in defence applications monitoring. It was observed that web-enabled HUMS

environment is a rapidly developing field.

13

3.3 TECHNIQUES & THEIR APPROPRIATE APPLICATION

Process and condition monitoring is becoming an important part in today’s industrial

setup. A number o f monitoring techniques have been developed over the years and

applied to various applications. These techniques range in complexity and specialised

modifications have been suggested to the techniques for particular applications. Various

methods have been tried in different combinations in order to overcome the modem

industrial processes’ complexity. Fault tree analysis (FTA) is one o f the commonly used

techniques for fault detection and isolation (FDI). A top level event is specified in the tree

and all o f the associated elements in the system that could cause that top level event to

occur are identified (Relex software web site,FTA). Raaphorst et al (1995) considered a

fault tree based diagnosis system for modem trains. They considered that fault tree

generation, consistency checking, and maintenance for such a complex system were very

difficult tasks for humans to perform. Accordingly, they proposed the use of an expert

system with case-based-reasoning as the inferring mechanism. The fault tree was

implemented using a graph structure where input nodes were associated to fault

symptoms. Existing symptoms posed questions to the network and the answers provided

were used for fault code matching. Three train modes, driving, on-platform, and stand-by,

were defined and diagnosis was attempted accordingly.

Andrew and Dunnett (2000) considered the use o f Event Tree Analysis (ETA) in FDI.

ETA is a visual representation o f all the events which can occur in a system (Relex

software web site, ETA). They considered traditional FTA methods inaccurate and

inefficient especially for nontrivial situations with dependencies amongst the branch point

events. They proposed use of Binary Decision Diagrams (BDD) where a ‘1’ branch

showed occurrence and a ‘0’ branch showed the non-occurrence o f an event. This

technique was stated to provide quicker results with increased accuracy.

Hu et al (2003) consider fault source location very important as about 80% of downtime

is spent on locating the source and only 20% is consumed in the actual repair. They

consider FTA as a mature and efficient method that identifies the cause o f a system fault

hierarchically from the system level to the part/component level. They combined FTA

with sequential and logical diagnostic models to achieve good results in fault source

14

indication for systems based on programmable logic controllers (PLC). The sequential

model comprised of the states the system undergo sequentially whereas the logical model

provided fault source indication by matching the actual controller’s signals against the

expected ones using the digital sources. The two models were used as complementary to

each other and not as the alternates to one another. A failure in a machining centre was

investigated with this approach as a case study and the system correctly diagnosed the

cooling system as the root cause. The cooling oil pipeline was blocked and the system

could not provide high enough pressure making the motor drive behavior abnormal.

Isermann (1997) supported the use of heuristic approaches for fault diagnosis stating that

the underlying physical laws for a process are either often not known (in analytical form)

or are too complicated for calculations. He provided an introduction to the field of Fault

Detection and Diagnosis (FDD) emphasizing that a monitoring system cannot provide

useful alarms unless it does more than checking the measured variables against

thresholds. He argued that the monitoring system should calculate features and hence

generate fault symptoms. Classification methods are then proposed for the mapping of

symptom vectors into fault vectors. He also provided a detailed review of techniques for

fault detection. It was observed that binary variables based FTA did not prove successful

because o f the continuous nature o f faults and symptoms. Approximate reasoning

methods were therefore considered more appropriate.

Au et al (2004) described a monitoring technique that uses the time difference between

successive arrivals o f an acoustic emission signal. Statistical distribution analyses were

adopted and applied to monitor bearing conditions. The time difference between

successive acoustic emissions signals (above a certain threshold) provided a measure that

was able to detect wear in the bearings. Kaewkongka et al (2004) applied and tested this

technique for bearing monitoring and claimed good results.

The Intelligent Process Monitoring and Management group at Cardiff School of

Engineering (IPMM group web site) have developed and refined a Petri-net based process

and condition monitoring approach. Petri nets were originally deployed as a dynamic

graphical tool to show the current status o f the process to the operator. Davey et al (1996)

applied this technique for a machine tool failure diagnosis. Normal times were associated

with each event and time-out exceptions were used to indicate a fault. A program was

15

developed for monitoring the machining cycles. The fault cause was diagnosed by

analyzing the event that caused the time-out. The authors claim that this method is very

effective and provides rapid, accurate and appropriate fault condition information. They

state that the process can be managed using an expert system which was also developed

by a partner working on the same DTI funded project.

Turner et al (2001) describe use of Profibus fieldbus for process monitoring and control.

Process parameters are communicated to a personal computer (PC) acting as bus master.

The controller implemented on the PC controlled a batch process on a laboratory test rig.

Object oriented programming was used and graphical user interface was provided. They

stated that controller-signal monitoring is a useful technique to enable fault detection.

Also within the IPMM work, Prickett (1997) proposed and reported a link between the

Petri net monitoring system and maintenance management tools. He suggested that events

history can lead to the diagnosis of particular failures and fault isolation should be based

on the particular signal that prevented an event from happening. This approach was tested

on a machine tool failure diagnosis. He considered it possible to detect variations in the

manufacturing cycle that may not initially stop the machine but will often do so if left

uncorrected. Production downtime can be significantly reduced using this approach. The

overall lost production time in a single year was estimated at almost 450,000 hours in a

study and around 35% of the reported faults in that period related to causes where

operator recovery under a TPM initiative was possible. The 35% reduction in the

downtime will have huge economic benefits in this scenario.

An evolution in approach by the IPMM group was indicated by Frankowiak et al (2001)

who stated that the cost o f monitoring systems has often prevented their wide spread

adoption. The commercially available low-cost 8-bit microcontrollers were therefore

suggested as primary components for process monitoring applications. An

implementation o f a Petri net modelling technique using 8-bit microcontrollers was

reported. The resulting system comprised o f 24 digital, 4 analogue, and 2 pulse inputs and

was implemented with a Microchip™ Peripheral Interface Controller (PIC)

microcontroller as the front-end device. The PIC communicated with a PC via a serial

communication port. A dedicated application in the PC submitted the gathered event

information to a remote server-side database with time and date stamping. The PC

provided Ethernet connectivity to the remote database (as it was considered a challenge to

16

provide Internet access protocols and monitoring tasks running on the same system).

They suggested using two separate inter-communicating systems for these two tasks as

the most promising way forward. The developed system initially used the RS-232C serial

port protocol for communication between the PIC and the PC but subsequently Controller

Area Network (CAN) bus communication were determined to be a better option.

Additional knowledge about process parameters may be invaluable for monitoring but

extra sensors would be required for that. Companies generally tend to avoid this because

of the additional cost and installation issues. Grosvenor and Prickett (2003) evaluated this

situation on the basis o f experiences learnt from various machine tool monitoring

projects. They cited MSc projects within the IPMM research group and established that it

is timely to incorporate more sensor inputs into the distributed monitoring systems.

Several possible monitoring applications were identified where this approach would be

beneficial.

Amadi-Echendu et al (1992) used frequency components analysis in detecting faults in

flow processes. They included a pulsator assembly in the water flow loop and observed

the signals from a flow sensor for normal as well as perturbed flow. They observed a

difference in the frequency components for the two cases although the time series plots

looked similar. Similar results were obtained by changing the pump types and their

number of blades. It was also observed that such differences appear at frequencies higher

than those used for control purposes, which are generally suppressed. The sensors used in

this study were slightly modified to gain access to the unconditioned signals. Higham and

Perovic (2001) stated that sensor signals are typically filtered to suppress frequencies

greater than 5Hz in order to provide a stable signal to process controller. They advocated

the use of wide-band sensor signals for monitoring so that the information-rich higher

frequency components can also be used. They analysed un-filtered signals from pressure

and flow sensors in flow loops using various types o f pumps. They observed differences

in characteristic frequency peaks for normal and various abnormal conditions including

cavitations, partial blockages, and incipient faults. They considered it feasible to identify

the type o f fault and its level o f severity by using this method. They claimed that their

conclusion is applicable, in a generic way, to a wide variety o f circumstances.

17

Another commonly used method for process monitoring is Statistical Process Control

(SPC) where numerous control charts check process parameters against tolerance ranges.

Out-of-tolerance behavior from any chart raises a monitoring alarm. Goulding et al

(2000) recognized the presence o f highly correlated variables in a typical process plant

and urged researchers to use the correlations. They recommended the use of Multivariate

Statistical Process Control (MSPC) techniques in FDI, as they provide better monitoring

capabilities than univariate SPC by examining process parameters in a cumulative way.

They warned that the word ‘control’ in MSPC may be misleading as the major thrust of

the technology is for fault detection and isolation. Two MSPC techniques, namely

Principal Component Analysis (PCA) and Partial Least Squares (PLS), were used in their

research for fault detection in continuous processes. They found PLS suitable whenever

plant variables could be partitioned into cause and effect variables. They favoured the

joint analysis o f cause and effect stating that its benefits had been observed practically.

PLS was therefore used to predict the process outputs from input values. The prediction

errors were then analyzed using PCA, which reduced computational effort by converting

large number o f process variables into a smaller number of principal components without

losing significant information. A four-input, four-output plant with three feedback loops

was used to initially test the techniques. The performance o f these techniques was

evaluated by introducing faults in the plant. Simulation and industrial data from a reactor

in a chloro-carbon production plant was later used to evaluate the effectiveness of MSPC

in FDI. They stated that PLS may provide a better indication o f a changing process

condition than PCA.

Lennox et al (2001) developed a condition monitoring system for a fed batch

fermentation system. Linear procedures, such as conventional PCA and PLS, have limited

effectiveness to non-linear batch fermentation problems. Multiway MSPC was therefore

used to remove non-linearity in batch data. Fault detection and isolation was performed

using multiway PCA. Multiway PLS was used for final product composition estimation,

which was in turn used to classify a batch among various low and high yield batches. A

warning was issued when the PLS model predicted that the current batch would not

produce the required results. Lennox et al suggested the use of an Artificial Neural

Network (ANN) in the future as soft sensors with MSPC techniques to provide a suitable

controller for this application.

18

Isermann and Balle (1997) explored the suitability o f various techniques in FDI for

various types o f applications. This was undertaken on the basis o f a review o f 165

publications between 1991 and 1995. According to this review, electrical and mechanical

processes are more investigated than others; with DC motor as the target of the most

applications. 70% of applications used observer-based (OB) or parameter-estimation (PE)

methods; 50% sensor faults were detected by OB methods. OB methods were preferred

for actuator faults. The detection of process faults was mostly carried out with PE

methods; nearly 50% of publications used them in such applications. For processes with

non-linear models, OB methods were most frequently applied, with PE and neural

network (NN) also playing important roles. For processes with linear or linearized

models, OB and PE methods were often employed. Isermann and Balle concluded that

OB and PE methods were the most frequently applied methods for fault detection

whereas fault isolation was often carried out using classification methods for which the

use o f NN methods is growing. They also provided the definitions for the commonly used

terms in FDI in order to enable people to use consistent terminology. Different definitions

are given for seemingly similar terms such as fault, failure, malfunction, and error.

The use o f neural network provides a relatively simple way to deal with non-linear

processes. A neural network comprises o f at least one hidden layer which is implemented

through some non-linear function. The weights o f the links between the layers are

adjusted on the basis of actual data obtained from the process. The neural network is

therefore trained without knowing the exact mathematical details o f the process. Tansel et

al (2000) investigated the use of a backpropagation (BP) type neural network in

monitoring tool wear in a micro-end-milling operation. They investigated the relationship

between tool usage and the cutting force by presenting data to a NN in two different

encodings. One o f the encodings was based on simple force-variation and the second

encoding was based on a more complicated segmental-average. Experiments were

performed on aluminum and steel to include the effects o f the material being cut on the

process. They observed that the optimization o f the NN parameters was extremely

difficult for micro-milling but extensive training would create a compact and

representative model. They claimed to get excellent wear estimations using this approach.

Ruiz et al (2004) described the monitoring of a pilot sequencing batch reactor (SBR),

which is a complex process used in waste water treatment plants. It has highly non-linear

19

and time-varying behavior and is subject to significant disturbances. MPCA was used for

situation assessment to detect abnormal batch behaviors. The information obtained from

MPCA alone was not found sufficient and automatic fuzzy classification was also used

for better situation assessment. The procedure used in this study combined numeric and

symbolic classification algorithms with fuzzy logic and hybrid connectives.

Rengaswami et al (2001), while observing that there are very few papers explicitly

dealing with the problem of detecting faults in control loops, described a qualitative

approach for detecting sinusoidal, square and triangular oscillations in a control loop.

Friction and hysteresis in control valves are the most common reasons for such

oscillations and detection o f oscillation type leads to cause determination. They proposed

Qualitative Shape Analysis (QSA) for detecting an oscillation and its type in a control

signal. Variations in the signal were checked for any o f the pre-defined primitive shapes.

Three basic primitive shapes were defined as Increasing (In), Decreasing (Dn), and

Steady (S), and their regular repetition was detected as an oscillation. The primitive

identification problem for noisy data was solved by using a feed-forward neural network

recovering shapes from data with up to 20% noise. A time window was defined in which

the presence o f a primitive was checked. The window width was considered very

important for correct primitive detection and it was shown to depend on the particular

application. These primitive shapes, when combined together, provided a signal profile. A

profile consisted o f the primitive type followed by the number o f consecutive time

windows for which it was detected. The algorithm pattern-matched the detected

oscillation to decide its shape. Square oscillations were easy to detect being

predominantly composed o f primitive S followed by sudden In or Dn primitives. The

alternate repetitions o f In and Dn primitives showed triangular oscillation. An oscillation

was considered sinusoidal if it was detected but not identified as a square or a triangular

one. The algorithm was checked on simulation results as well as on the actual industrial

data and provided satisfactory performance for all the test cases. Rengaswami et al

claimed that their approach worked quite fast and was suitable for real-time applications.

Various quantitative methods have been applied to FDI for exact analysis. Many soft

techniques were also used providing monitoring solutions in fuzzy situations. Both

methods have their own advantages and disadvantages. Biswas et al (1997) advocated

using combined qualitative and quantitative systems for FDI. Their proposed system uses

20

qualitative methods at the first stage to reduce the number of variables, or potential fault

candidates, and then applied quantitative methods on the reduced set. The use of

qualitative methods was urged as development o f fault models for continuous physical

systems was considered very difficult because o f the very large range of possible

behaviors. The process was assumed to be in a steady state in this methodology and

residuals were calculated from the observed and the nominal plant behaviors. The

residuals were marked (0), (+), or (-) for normal, above-normal, and below-normal

behavior respectively. Fault candidates were then generated by employing a heuristic best

first search technique in the tree structure o f the hypothesis space. Multiple fault

candidates thus generated were then refined by the quantitative method of transforming

the analytic model into a set o f linear equations and looking for hypothesis contradictions.

The candidates with no contradictions were reported as the possible reasons for the fault.

The algorithm was implemented in C and executed on ground-station-based Unix

workstations for finding faults in the thermal bus system of the space station Freedom.

FDI was ground-based because of the limited processing power on-board. Measurement

data was available to ground station every 30 seconds.

Kerkeni et al (2003) considered the monitoring problem from a software point o f view

and proposed an agent-oriented framework for complex monitoring systems. Various

autonomous entities, called agents, were defined in the system that controlled and

monitored well defined subsets o f the production system at a given abstraction level.

Multiple agents shared information with each other through intelligent blackboards. A

blackboard had a shared memory area for its associated agent where required local and

remote information was stored in a data structure. An intelligent blackboard with updated

data informed all other blackboards in the system about the update, thus maintaining

consistency in the system. A central information system containing the global view was

also updated. The system was defined in a hierarchical way where father and child

Control/Monitoring Agents (CMAs) communicate with each other through the intelligent

blackboard. The bottom most CMAs in the hierarchy were interfaced with the physical

agents. The monitoring results were stored on the blackboards under various contexts

such as production, processing, physical resources etc. The proposed system was

developed on a multi-agent Java-based platform and JDBC was used for connection to the

information system.

21

Soderholm and Parida (2004) emphasize the need to interlink the stakeholder

requirements and the key performance indicators (KPI) in performance measurement. A

conceptual framework was provided for this purpose with examples in the context o f a

modem fourth generation combat aircraft. The combat aircraft is taken as the example

because it is a highly complex and safety critical system with stringent requirements on

low life cycle costs. The JAS 39 Gripen aircraft, for example, consists of more than 20

subsystems for flight control, weapons, hydraulics, display, etc. These systems

communicate with each other and together they build a system with a theoretically

infinite number o f possibilities. Such complex technical systems often have a rather long

life time and the requirements on these systems change over time due to the technical

development and changes in the needs o f the stakeholders. The proposed stakeholder

based health management system framework established traceability between stakeholder

requirements and corresponding health measurements which support requirements

validation, verification, continuous improvement, and modification. Soderholm and

Parida considered it very important that all stakeholders know the health status precisely

as incorrectly performed maintenance might result in unwanted effects. They urged that

an on-board health management system must be connected to the other information

systems.

Venkatasubramanian et al (2003 A, B, C) provides a very detailed review of monitoring

methods used in various kind of applications. They stress the importance of FDD citing

failure examples causing huge human and property losses. Minor accidents in industry

occurring on day to day basis accumulate to huge annual sums such as $20 billions for the

American petrochemical industry. Similar losses in the British economy range up to $27

billions every year. Because o f the complexity o f modem process plants, it is not always

possible for operators to provide a proper response to every fault condition. About 70% of

the industrial accidents are caused by human errors in these circumstances. They urge the

need to develop automated FDD systems to tackle this problem. Ten most desirable

characteristics for such a system were listed including reliability, robustness, quick

response, and adaptability. It was noticed that these features are contradictory to each

other and cannot all be provided at optimal level simultaneously; a good compromise

between these was however desired. They classified the FDD techniques in three broad

areas, i.e., quantitative model based techniques, qualitative model based search strategies,

22

and non-model based techniques that use only the historical data o f the process. Each part

of this three part series o f papers concentrate on one o f these methods.

The first part provided a detailed review of work done on quantitative model based

techniques and described various such techniques. It discussed analytical redundancy,

residual generation and evaluation, parity relations, Kalman filters, and parameter

estimation approaches in detail. Directional residuals and structured residuals were stated

as two enhanced residual generating techniques that have attracted much attention. These

techniques provide a set o f residuals that collectively behave differently for different

faults and hence provide an indication o f a particular fault. Various limitations for

quantitative model-based approaches are also reported such as the need of accurate

modelling, the problem with non-linear processes, and the detection of faults that have

not been modelled.

The second part provided a review o f qualitative models and search strategies used in the

area. Signed digraphs (SDG) were considered very efficient in the graphical

representation o f qualitative models; where SDG is a graph with signed directed arcs

from ‘cause’ nodes to ‘effect’ nodes. A cause-effect graph is obtained from SDG

containing only the nodes showing abnormal behavior, thus indicating the fault reason.

Several extensions to standard SDG were also reported including FTA, which uses

different logic nodes rather than the predominant use o f an OR node by SDG. Qualitative

physics or common sense reasoning is another approach used in qualitative FDD. A

review was provided covering the work from several researchers using several techniques

in this area including qualitative simulation (QSIM) and qualitative process theory (QPT).

A system may be divided into sub-systems to reduce the complexity o f the problem.

‘Structural’ and ‘functional’ decompositions were regarded as the two most popular

hierarchical decomposition techniques. The techniques for the search in fault diagnosis

space were classified as either topographic or symptomatic. Topographic searches

perform malfunction analysis using a template o f normal operation whereas symptomatic

searches look for symptoms to direct the search to the fault location.

The third part reviews techniques and implementations concentrated on the use of

historical process data. Various features are extracted from the data and used for FDD.

Feature extraction may be done using qualitative techniques, such as expert systems or

23

trend modeling methods, or statistical or non-statistical quantitative methods. A neural

network is an important example o f a non-statistical method whereas PCA, PLS, and

pattern classifiers are important statistical techniques in this respect. Suitable

classification and process trend analysis can detect faults earlier and lead to quick control.

Qualitative trend representation can pave the way for efficient data compression. Zero-

crossing o f trends was considered to be an important sign o f change in trend. Some

research was reported trying to combine multivariate statistical methods and model-based

approaches. An application combining neural network with wavelets was also described.

K-means clustering was recognized as the most popular clustering algorithm whereas

back propagation was considered the most popular supervised learning technique in

neural networks. The relative advantages and disadvantages o f the described techniques

were provided and are presented here as Table 3.1.

Q uick detection &

diagnosis
Y 7 7 Y Y Y Y

Isolability Y X X Y Y Y Y

Robustness Y Y Y Y Y Y Y

N ovelty identifiability 7 Y Y X 7 Y Y

C lassification error X X X X X X X

Adaptability X Y Y X ? X X

Explanation facility X Y Y Y Y X X

M odelling requirement 7 Y Y Y Y Y Y

Storage & computation Y 7 9 Y Y Y Y

M ultiple fault

identifiability
Y Y Y X X X X

Table 3.1: Comparison of diagnostic techniques (Venkatasubramanian et al C, 2003)

Venkatasubramanian et al observed the scarcity o f literature on industrial applications of

diagnostics systems and identified the proprietary nature of in-house developments as a

possible reason. They considered easy deployment and adaptability to future requirements

as necessary for industrial solutions. The development o f hybrid monitoring systems was

favored as none o f the techniques sufficiently covers all the requirements on its own. A

brief review o f hybrid solutions was also provided including the blackboard-based DKit

architecture which is adopted by Honeywell ASM Consortium for its next generation

intelligent control systems called AEGIS and MSEP. They also observed that researchers

generally treat diagnosis and control as separate problems, in spite of their close

24

connection, and suggested their integration for real progress in this area. Several

important challenges were also highlighted for future research such as reasoning without

assuming accurate models, ability to cope with data explosion, implementational issues

for large scale industrial applications, etc.

3.4 MONITORING WITH CONTROLLER SIGNALS

This section concentrates upon approaches based upon process controller signals and

identifies how such signals may be used to distinguish between normal and abnormal

process conditions. The premise is that, as the controller signals vary to control the

process under faulty conditions or in response to disturbances, monitoring the actions of

the controller will indicate the current health o f the process. A review of the use of

controller signals in process monitoring is given in this section. It also gives a brief

introduction to the rapidly developing Closed Loop Performance Assessment (CLPA)

techniques and the integration o f such techniques with traditional FDI.

Harris (1989) considered the issue o f assessing control loop performance benchmarking.

He suggested that an estimate o f the best possible control can be obtained by fitting a

univariate time series to process data collected under routine control if the process time

delay is known. The performance o f any control loop can therefore be assessed on the

basis o f how close it is to the theoretically best achievable performance. The theoretically

best performance can be assessed using the minimum variance control (MVC). Such a

controller is not used practically because o f the extensive control action it exerts on the

actuators resulting in their excessive wear. However, its calculations are beneficial for the

sake o f comparison to what performance the actually implemented controller is achieving.

MVC performance can thus be used as a benchmark and the ratio of actual loop variance

to the MVC loop variance is usually referred to as the Harris index. The minimum value

of the Harris index is unity and is the best possible performance from a controller. Any

performance improvement is not possible by re-tuning the controller in this case and a

process change is required for an increase in process efficiency. Larger values of Harris

index shows that improvements can be achieved by re-tuning the controller. The paper

heralded a new era in loop performance analysis that has subsequently developed in

various ways.

25

Horch (2000) reviews developments and improvements based on this work. He states that

the concept has been extended to feedforward loops by Desborough and Harris (1992,

1993). Tyler and Morari (1995,1996) have modified the idea to apply it to unstable and

non-minimum phase processes and have used statistical likelihood ratio tests. Lynch and

Dumont (1996) used a Laguerre network to evaluate the performance index. The initial

idea covered single input single output loops but this has been extended to multivariable

loops by others such as Harris et al (1996), Huang et al (1997), and Ettaleb (1999).

Bezergianni & Georgakis (2000) compared the actual control with both minimum

variance control and open loop control for their performance index. The evaluation of

such performance indices requires knowledge o f any process dead-time. Horch (2000)

introduced event-triggered estimation for process dead-time estimation from normal

operating data.

Desforges et al (2002) advocated interaction between the process controller and the

condition monitoring system. They emphasized the need for continuing process operation

under identified fault conditions and suggested a two level hierarchy at sensor and

process levels. Self validating (SEVA) sensors, providing status signal as well as data,

were supported at the sensor level monitoring. A SEVA sensor would self-sense a fault

and decide whether the fault is permanent or not. It continues to provide data, based on an

estimate from previous data, until a decision is reached about its fault. At sensor fault

confirmation, process level condition monitoring would start generating estimated data,

which is likely to be more accurate in the medium term. The process can thus continue

under an identified sensor fault. Desforges et al reported the development of a toolbox

with advanced multivariate statistical process monitoring (MSPM) methods tailored to the

process control environment. The system was claimed to be successful in identifying

sensor and process faults in a case study on a simulated fluid catalytic cracking unit.

Fu and Dumont (1995) reported an implementation of their algorithm to evaluate a

control loop performance linking it with the problem cause. They modified a previously

available program to calculate the loop oscillation index by using oscillation period

estimation. The algorithm was claimed to be successful in detecting the oscillating loop

by using minimum achievable output variance and the oscillation index. The

performances o f two loops with strong interaction were evaluated in a simulation and one

of the loops was found problematic. It also correctly indicated that the problem was not

26

due to poor controller tuning but because o f the poor health o f a controlled valve. In a

separate application, the algorithm picked a poor performing loop out o f the 22 loops

monitored in a mill trial. The algorithm was claimed to provide fast on-line evaluation

and that the detection o f the problem source was possible.

Clarke (1999) highlighted the importance of the generic validation o f information

provided by the sensors, actuators and the control loops and its reporting to the next

higher level. He observed that economic pressures are de-skilling the maintenance work

force and therefore suggested that an automatic information validation process should be

built into the components. He observed that embedded microcomputers are of use for

sensor validations and recommended information sharing on generic standards such as

fieldbus. This would reduce economic limitations on manufacturers and the product can

be used in several applications by various companies. Sensors would communicate the

validity index along with the data they sense. He proposed four status levels for a sensor:

clear; dazzled; blurred; and blind. This validity information can be used to switch the

modes o f the loop controller, if required. Sensor validation leads to the structure of a

‘SEVA’ sensor whose synergy can be represented by the intersection o f the circles as

shown in figure 3.1. The importance o f the actuator validation was also highlighted, being

the mechanism actually implementing the controller decisions. It was considered

important to provide validation results to the respective higher level for decisions in a

broader sense. Clarke observed that some crude form of validation was already being

built in the sensors but actuator and loop validations were still in their infancy.

/ O n-line \
M etrology /u n c e r ta in ty \ M icroprocessor

SEVA

Internal
D iagnostics

Fault
Com pensation

Fault Detection

Figure 3.1: Validation as a com bination o f technologies (Clarke, 1999)

27

Gustafson and Graebe (1998) concentrated on detection o f the loop performance

degradation. Particular attention was paid on detecting whether an observed deviation

from nominal performance was due to a disturbance or due to what they termed ‘a control

relevant system change’. The system was perturbed by sinusoids o f the frequencies of

interest with amplitude well above the expected noise level. The prior knowledge of the

frequencies o f interest was therefore very important and a useful discussion was provided

on this topic. The stability margins were defined in terms of a computationally convenient

clover like region for their algorithm rather than the conventional circle. These stability

margins were monitored rather than parameter drifts or jumps in the algorithm. The

algorithm was successfully tested on simulation data as well as in real-time on a DC

motor. The implementation was done on a TMS320C30 digital signal processor (DSP)

based dSPACE real-time system. The algorithm requires an injection of an exogenous

signal that perturbs the normal operating conditions and is, therefore, of a limited use

only.

Hagglund (1999) proposed an index for detecting sluggish control loops. He observed

that in case o f sluggish loop response, both the control signal and the process output drift

in the same direction for a very long time. An idle index was therefore suggested to detect

such situations by studying the correlation between the two signal increments (or

decrements). The time periods when the correlations between the signal increments were

positive, t p o s , and negative, t n e g , were calculated and the idle index, Ii, was computed as Ii

= (t p o s - t n e g) / (t p o s + tneg)- The value for Ii would be close to +1 for sluggish loops and

close to zero for reasonably well tuned loops. The values close to -1 generally showed

well tuned loops but were also observed for sluggish loops with oscillation. The presence

of oscillation in the loop should therefore be detected separately. Another limitation of the

idle index was observed with loops with overshoots where the index was not reliable.

Hagglund (1995) described possible reasons for oscillations in control loops and

considered friction in actuator valves as the most common reason. He proposed an

integrated accumulated error (IA E) index for oscillation detection using the magnitude of

absolute error for detecting load disturbances. Load disturbance was declared when the

integrated value o f the absolute error between successive zero crossings was greater than

threshold value (IA E|jm). This load disturbance detection procedure was then used to

detect oscillation in the loop. Oscillation detection was announced if the frequency of the

28

load disturbance detection became greater than a threshold value, say n|jm disturbances

detected in tsup supervision time. The method can detect an oscillation irrespective of its

shape as only the zero-crossing time in taken into account. On oscillation detection,

further tests may be conducted on process valve to confirm its health.

Considering widespread presence o f oscillations as the most important problem in process

industry, and high static friction in valves as an important reason for that, Horch (2000)

reviewed the methods for automatic detection of static friction in the actuators. Figure 3.2

explains the phenomenon o f oscillation generation as a result o f static friction. The cross­

correlation between controller signal and the process output was used to distinguish

whether a detected oscillation was caused by the valve friction or not in a non-integrating

plant. Another method using the second derivative o f the process output provided the

same information for integrating plants.

to \f4ft t o

f)
i.yi.i.. j

k.—L..
S» tS9 9M 3M M M

time [si

Figure 3.2: Typical behavior o f a control valve with static friction. Top: Measure flow

(solid) and flow set point (dashed). Bottom: Control signal (Horch, 2000)

Horch (2000) observed that Harris index may provide misleading results for oscillatory

control loops. He suggested to detect the oscillation first, if possible, or otherwise using

autoregressive (AR) modeling rather than autoregressive moving average (ARMA)

modeling. Once the oscillation was detected and removed from the time series, the

modified method was used to distinguish between oscillations generated within the loop

or induced from external sources. This knowledge directs the maintenance staff towards

the root cause o f the problem. Another method for this distinguishing was proposed when

a simple process model was available. Using the model and an estimate o f the controller,

the ultimate frequency was calculated and compared to the actual oscillation frequency.

29

Thornhill et al (2001) discussed the detection o f a root cause loop for a plant-wide

oscillation among several control loops in the plant. They investigated the effectiveness

o f detecting non-linearity in the control loops for finding the root cause loop as the valve

static friction is a non-linear process. The dynamic behavior o f physical processes gives a

low-pass filtering affect and therefore reduces non-linearity in loops away from the root

cause. A loop with maximum non-linearity is therefore the prime candidate for being the

root cause. Two possible non-linear measures were used and their respective effectiveness

was compared. The first measure used a distortion factor, D, which was calculated from

powers in the controller signal and its fundamental component. The second measure, N,

was the non-linearity statistics calculated from time series trend. Any time series with N >

1 was classed as non-linear. Larger values o f N showed more non-linearity in the loop.

Both measures were found useful in a case study on a hot water flow valve in a stirred

tank pilot plant. However, N was found more responsive than D. Similar results were

found in an industrial study where N measure showed better performance in the presence

of noise.

Xia and Howell (2003) defined control loop status monitoring as near-real-time

declaration of what a loop was actually doing at that time. They qualitatively classified

control loops in seven categories according to their current statuses. Various statistics

were defined to identify a PI or PID control loop status out o f the seven categories. These

statistics were based on the variances in deterministic parts in a measured time series for
thcontroller signal, output signal, and noise. A 30 order d-step ahead AR model with least

square estimation was used to estimate the deterministic components from the time series.

Each status was assigned a number to calculate a quantitative index. A loop with poor

performance would have a higher index than a good one and the loop with the highest

index in a group would be the first candidate for attention. Current status information was

also used to narrow down the number of possible faults to be investigated. This approach

was considered suitable for PI and PID loops only and not for proportional or open

control loops.

Schafer and Cinar (2004) noticed that the availability of a small number o f control

engineers makes the analysis of raw data virtually unmanageable and urged automatic

detection o f problems. They favoured the classification among possible root causes to

reduce the processing required. They proposed a performance measure based on the ratio

30

of historical and achieved performance for monitoring. The diagnosis procedure was

started when a decrease in performance was indicated and the ratio of design and

achieved performance was suggested for problem diagnosis. They tabulated the possible

root causes in two main groups which contained further sub-groups for detailed diagnosis.

A group was first established for the fault and the root cause was searched in that group

according to the given procedure. A commercially available knowledge based system was

used to monitor an evaporator in a case study. The software modules were developed in

Matlab from where C code was generated. This study focused on Model Predictive

Control (MPC) systems and diagnosis was limited to distinguishing between root cause

problems associated with the controller and problems that were not caused by the

controller. The diagnostic sequence assumed that only one source cause could occur at

one time to reduce complexity.

Mosca and Agnoloni (2003) suggested continuous control loop monitoring so that

performance degradation is detected as early as possible. A measure is therefore required

for performance analysis which can indicate a problem without perturbing normal

operating conditions. They aimed to find such a measure under typical control system

conditions where set-point changes are infrequent and the process, actuators and sensors

are noisy. A statistic was proposed and computed as the ratio between the norm of an I/O

regression vector and the maximum absolute value of a nominal output prediction error. It

was claimed to detect the divergence trends very quickly enabling the operator to

promptly switch to a more suitable controller. They warned that as a single scalar-valued

measure, this test should only be used as an early warning system. Other more elaborate

tests could be initiated for detailed investigation upon receiving this early warning.

Kendra and Cinar (1997) emphasized the use o f frequency domain techniques for

controller performance assessment. They stated that time averaged measures provide little

information about the performance o f the system. A system-identification based method

was proposed for assessing the performance of multivariable closed loop systems using

measures that coincide with classical and modem frequency domain design

specifications. In particular, two parameters ‘Sensitivity’ and ‘Complementary

sensitivity’ were proposed (in s domain form). These parameters were obtained by

exciting the reference input with a zero-mean random binary sequence and observing the

process output and error responses. A closed-loop model was thus obtained. Comparison

31

between the model performance and the design specifications then provided the

performance measure. Matlab system-identification toolbox was used to assess the

performance.

Thornhill et al (2003, A) reported the detection o f a plant-wide oscillation in an Eastman

Chemical company plant and the isolation of its root cause. Detection was achieved using

data-driven analysis o f routine plant data stored in a database. The plant had 15 control

loops and information was available on the set points, process variables and controller

outputs. Plant data was sampled every 20 seconds and time trends were available for

visual inspection, which showed the presence o f an oscillation with a period of nearly 2

hours. The oscillation affected many process variables and controller outputs and was

considered a plant-wide oscillation. A non-linearity index was used to detect the root

cause for this oscillation among all the oscillating loops. A root mean square (rms) value

of error from non-linear prediction using matching o f nearest neighbors in an m-

dimensional phase space known as an embedding was used. The embedded matrix, Y,

contains E columns and has successive rows o f the same data with a time delay. In case of

oscillation, later rows o f Y will be similar to the earlier rows and are called near

neighbors. An earlier row can thus provide a prediction for a later row. It was

recommended that 25 to 35 samples per cycle, S, are taken into account and that data for

at least 10 cycles are used. Consistent and robust results were claimed using E = S and H

= E where H-step ahead predictions were used. A value o f 8 was considered as a cautious

and robust selection for the number o f nearest neighbors. Surrogate data was derived from

these pre-processed time trends and used for the non-linearity tests. Non-linearity index,

N, was defined as a three-sigma statistic and non-linearity was inferred when N > 1. The

loop with the highest non-linearity index was the prime candidate as root cause. Process

knowledge about inter-effecting loops was also used to confirm the result. Other loops

with high values on N were also investigated. Combination o f process knowledge and

non-linearity test indicated that maintenance was required for a particular valve. Further

testing of the valve confirmed the result and valve was scheduled for maintenance at next

plant shutdown.

Thornhill et al (2003, B) presented an automated method for oscillation detection in a

control loop. Regularity o f zero crossing o f a filtered autocovariance function (ACF) of

time series data was used. The ACF was used in order to avoid noise induced zero

32

crossings in the time series. An oscillation was considered regular if the standard

deviation of the period was less than one third o f the mean value. Only the oscillations

with large magnitudes were considered to avoid noise effects. The presence of multiple

frequency oscillations would disturb the regularity o f zero crossings and affect the

detection. Thornhill et al used digital filters to separate various frequency bands to avoid

this disturbance. They observed that frequencies close to the filter boundaries can cause

false detections and recommended rechecking such results using different filter

boundaries. Manual selection for filter boundaries was used in developing the technique

although an iterative automated algorithm was also provided. The technique was initially

devised using a pilot plant data and was proven for an industrial data set.

Burkett and Thornhill (2002) provided an end-user’s view about industrial multivariable

control and addressed the question o f its performance assessment. They reviewed the use

of multivariable control in BP Chemicals with special emphasis on MPC. It was noted

that MPC is useful in petrochemical, refining, and polymer production industries but its

benefits could still be improved in many ways. The monitoring and benchmarking of

these controllers were suggested to improve plant-model mismatches and problem

diagnosis. It was also stated that diagnostics tools were very limited in SISO systems.

Commercially available tools for the monitoring o f industrial MPC typically use

performance measures such as up-time and availability, constraints active, percentage o f

time against constraints, LP targets, model prediction errors, an overall dynamic

performance indicator, and checking o f controlled and manipulative variable limits.

Hartley (2002) provided another end user’s view o f process monitoring stating that many

companies have reported paybacks o f only a few months for strategically placed

vibration-monitoring systems. He emphasized the early detection of anomalies in the

plant and proposed adopting complementary approaches for increased plant availability

and efficiency. He considered that the knowledge of an instrument’s health was equally

important as the knowledge about its failure and examined industrial data which gave the

probabilities of component failures. He noticed that rotating equipments was the least

reliable type o f instrument in industry and that transmitters were the most reliable. It was

observed that about 20% of any maintenance budget was still spent on the inspection of

transmitters. He emphasized on using automated process and condition monitoring to

reduce such work. Hartley favored the use o f smart field devices over centralized

33

approaches for this purpose. He stated that smart field devices consisted of sensor and

electronics modules, and considered how more and more tasks are being accomplished in

the electronics section. Hartley described the PlantWeb™ architecture as an example of

such an automated process and condition monitoring system. He described PlantWeb™

as a system for enhanced measurement, advanced diagnostics and control in the field. It

was built on the network o f intelligent field devices, scalable control and systems

platform, and used integrated modular software. Hartley defined asset management as

maintaining product equipment properly so as to deliver maximum performance and

service life at minimal cost. He reported the use of Asset Management Solutions (AMS)

software, which is based on HART and fieldbus. AMS was claimed to be the leading PC-

based software for providing on-line diagnostics for equipment and process monitoring. It

was claimed that smart field devices reduce process variability and result in better asset

management.

3.5 DISTRIBUTED SYSTEMS FOR MONITORING

The quest for effective monitoring systems is resulting in new and unique solutions. A

major development in the field is to make different processing elements collaborate with

each other to solve a problem. Modem computers have efficient communication facilities

and networking speeds now allow data transport in real time, although some volume

limitations still apply. These distributed systems provide several benefits and researchers

have explored their use in monitoring applications. This section provides various

solutions to the problems related specifically to the distributed monitoring systems.

Ehrlich et al (1997) described a generic model for distributed data acquisition

architecture. They stated that distributed architectures become attractive as soon as the

instrumentation domain size and the number o f measurement points increase. They

provided a comparison o f the system cost based on centralized and distributed systems

and considered the cost o f system controller (or centralized DAS), measurement point(s),

and wiring as important factors. It was observed that wiring length can be greatly reduced

in a distributed architecture. The generic model described a smart sensor, system

controller, and communication network as three major system components. Ehlrich et al

defined a smart sensor as a microsystem located in the vicinity (around 10 cm) of a

34

transducer or a group of transducers dedicated to conditioning, sampling, calculation, and

communication. Figure 3.3 depicts a smart sensor as proposed in this model. The system

controller provides management tasks in the network including data storage and user

interface. A Data Dependence Graph (DDG) produced a data flow under the event-based

control o f smart sensors where both local and external event were used. The model

performance was checked by simulating its components on a single computer.

Coverage'
area

t

Conditioning
and sampling

\

Processing
Unit

Communication
interface

 Acquisition
points

Figure 3.3: Smart sensor (modification from Ehrlich, 1997)

Nieva and Weggmann (2002) provided a conceptual model o f a generic data acquisition

system. “The conceptual model is a formal definition of a system, from the object

perspective, that shows the relevant concepts and relationships that make up the system.

Using a conceptual model of a system makes it easier to understand the system, because

the model only focuses on the main aspects o f the system by hiding low-level details”.

The model was presented in unified modelling language (UML) and contained various

packages. The ‘device items’ package represented a real world device and a ‘device

models’ package characterized a set o f device items. Monitoring criteria were defined for

device models and device items and included in the generic model as separate packages.

Operational-level and knowledge-level concepts were distinguished in the model using

different UML representations for them. Further UML diagrams were used to elaborate

model concepts such as observations and monitoring reports, mapping policy, time

condition, etc. A unique global identifier was associated with each device model and

device item. Nieva and Weggmann stated that a generic DAS model must provide a plug

35

and play facility and they included an auto-configuration scheme in their model. The

generic DAS model can be used to implement a real DAS and an example was provided

where a DAS for railway equipment was developed. The provided conceptual model

specified only the static concepts of a system and further work was ongoing for the

dynamic behaviour o f a generic DAS using role-based use-case modelling.

Jennings et al (2001, A), within IPMM research group, considered the problem of getting

required processing power to analyze data obtained from the acquisition system. They

proposed to use the computers available on the local area network (LAN) for processing

while they were idle. A PC in screen saver mode was considered idle. This distributed

data processing system comprised o f task manager and task processor modules. The task

processor module was installed on the PCs as screen saver. It was launched by the

operating system when there was no user activity observed for a certain time. The module

then connected to SQL server via an ODBC driver and obtained the first job from a task

list. The processing tasks were divided into small jobs so that the computer would

become available to a normal user on any keyboard or mouse activity. The jobs were

designed to finish between 7 to 20 seconds, but this time could be reduced. This

performance was measured using Windows NT on Pentium 2, 450 MHz, 64 MB memory

computers and better computers would reduce the processing times significantly.

Increases o f 37% in CPU usage and 36% in memory usage were observed in the study. A

significant increase in server CPU load was observed with increased number of

workstations on LAN.

Kandasamy et al (2005) stated that embedded systems are being increasingly used in

safety critical mechanical and hydraulic systems and multiple processors are available in

such distributed systems. Steer-by-wire is an example o f such systems where a traditional

steering system is replaced by a microprocessor-controlled networked system without any

mechanical backup. Such advanced vehicle control applications are typically realized as

real-time distributed systems where sensors, actuators, and processors interact through a

common communication bus. It is important to detect faulty actuators quickly before the

system reaches an unsafe condition. Kandasamy et al addressed distributed failure

diagnosis under resource and deadline constraints and proposed cost reductions using

software-based redundancy rather than hardware-based. They developed a software-based

approach where multiple processors agreed on the fault status o f an actuator using

36

multiple and possibly diverse behavioural models. The use o f multiple independent

detection points provided redundancy and faults were quickly detected even with a faulty

detection subsystem. This provided the information about the failure o f a monitoring

subsystem as well, which would be removed from future decision making. Tasks were

duplicated on various processors to provide this redundancy. Only the very critical failure

modes were monitored in this study to reduce computational overhead. They did not

address recovery action once a faulty actuator is shut down considering it a user

responsibility.

Mittal et al (2003) observed that several algorithms have been proposed for real-time

multi-hop networks but not much work has been done for real-time multiple access

networks. They cited several schemes for real-time communication in multiple access

networks but regarded them as suitable only for soft real-time cases. They considered that

probabilistic collision resolution protocols were not suitable for hard real-time

communication. Accordingly, they proposed two guarantee based protocols for real-time

channel establishment to support periodic and aperiodic messages. It was assumed that

channel access was time-slotted and transmission could start only at the beginning of a

slot. Both protocols worked in two phases where resources were reserved in the first

phase and transmission was done in the second phase. The first protocol, called the

earliest deadline first (EDF), calculated the deadline for any given message and scheduled

messages according to the earliest deadline, pre-empting any other scheduled messages if

required. The second protocol, called the BUS protocol, was a modification of a

backplane bus scheduling algorithm, used by several hardware modules communicating

through a backplane bus under centralized control. No centralised control was required in

the modified BUS protocol. The performance of the two protocols was compared. It was

observed that the EDF protocol offers higher schedulability than the BUS protocol as it

accommodates a higher number o f periodic messages. The BUS protocol provided faster

response to aperiodic messages.

Suzudo et al (2003) recognized the problem of software module integration. The need for

software portability adds to the complexity of the task. Different modules in an

application may be written in different languages and run on different hardware platforms

with different operating systems. TCP/IP is an important communication protocol for

distributed systems but several languages do not provide any built-in support for it.

37

Variations in development tools usually make it very difficult to put all the enabling

components together in one working application without modifications. Suzudo et al

proposed the use of standard input/output (keyboard/monitor) to alleviate this problem.

Each module would read from a keyboard and write to a monitor only. Their idea

stemmed from the way a user controls all the tasks on the desktop PC. A super-humanly

fast operator was required to synchronize all the modules in a monitoring system. An

operating system like tool, Expect, was used to do it automatically, which was available

as free software. Expect functions can be called from C/C++ and Tel languages. Tel is a

portable interpreter language suitable for relatively small programs. Tel and Expect were

used to develop a neural network based anomaly detection system. The neural network

program, written in Fortran, was already available as high reliability software but did not

provide a TCP/IP Application Programmer Interface (API). Each module was therefore

designed using the above concept and figure 3.4 shows the resultant.

plant
signals

data
acquisition
module
written in C

neural
network
module written
in FORTRAN— j —

1
1
I

 I__

graphical
user interface
module
written in Java

— ? —

Expect functions

operator

administration
program
written inTcl

standard I/O stream

Figure 3.4: Modular system configuration with standard I/O (Suzudo et al, 2003).

Mounce et al (2003) considered data fusion from sensors measuring flow and pressure in

a treated water distribution system. About 20% to 30% of transported water was reported

lost through pipe leakages in UK during 1990s. Flow sensors were therefore mounted on

the pipes recording the water flow every 15 minutes. The data from the sensors was used

to audit in-flow and out-flow of water for leakage detection. The sensors’ data was

manually collected from the field and was thus available after several days in most cases.

A supervisory control and data acquisition (SCADA) system was considered in this study

to reduce the delay. Use of an artificial neural network (ANN) was proposed to detect the

leakage. A number of ANNs, arranged in parallel and hierarchical fashion, were required

38

in complex water distribution systems. The ANNs were trained using time series data

collected from the sensors for several weeks or months. Pressure sensors were also used

in the system and data from 14 pressure loggers were combined in test trials. Pipe bursts

were simulated by opening outlet valves and system performance was evaluated. The

resultant three dimensional pressure drop map was reported successful in the accurate

indication of fault location.

Alheraish (2004) considered a mobile phone as a commonly used device and urged its use

as a widely available remote user interface. He reported commercial availability of

Mobile-to-Machine (M2M) engines that interface computers with Global System for

Mobile Communication (GSM). An M2M engine contains Subscriber Identification

Module (SIM) and provides mobile services such as Dual Tone Multiple Frequency

(DTMF), Global Packet Radio Service (GPRS), and Short Message Service (SMS).

DTMF sends multiple frequency tones for a key pressed and is used in telephone banking

etc. It takes time in seconds and was therefore not considered suitable for automatic

machine to machine operations. GPRS is an always-on service providing mobile access to

the Internet and email etc. Alheraish used SMS messages (more commonly known as text

messaging) that can send up to 160 alphanumeric characters. A generic design was

provided for a control system that gets input commands from a remote user through the

M2M engine. The user sent the desired state of a controlled device through SMS to an

M2M engine, which converted the message into hexadecimal code. This code was then

communicated to a local process controller over an RS-232 serial port. Alheraish

favoured microcontrollers for such implementations but used a PC for his test system.

Controllers were implemented for an on-off lamp and 3-speed fan as examples of a

system having many practical applications in industry, business maintenance, customer

service, and security.

High end distributed monitoring systems use large-scale wide-area computer networks.

An example of such systems is Distributed Aircraft Maintenance Environment (DAME)

project (Fletcher et al, 2004). It provides a Grid based environment for aero-engine

condition monitoring where engine data is captured, stored and used for fault diagnosis

and prognosis. Engine data is captured during the flight by on-wing monitoring system,

‘"QUICK”, and stored on-board. The QUICK monitoring system is the result o f the

collaboration between Rolls-Royce and Oxford University and performs analysis of data

39

derived from continuous monitoring of broadband engine vibration for individual

engines. Known conditions and situations can be determined automatically by QUICK

and its associated Ground Support System (GSS). A remote expert system analyzes

current and historic data for less well-known conditions. Data is therefore captured from

the aircraft’s on-wing system once the aircraft has landed on the airport. Each aircraft

flight can produce up to 1 Gigabyte of data per engine. Considering the size of fleet, this

data is in order o f Terabytes per year and is captured in a distributed way at different

airports. Storage of this data requires vast repositories that may be distributed across

many geographic and operational boundaries. Processing of this data requires a

distributed diagnostic infrastructure whose requirements were captured and developed via

use case analysis in collaboration with the industrial partners. The “DAME” diagnostic

infrastructure provides a GRID based environment where users in different organisations

and locations can access this distributed data and work together using a variety of tools

and processes to determine a diagnosis. The infrastructure includes several specialist

software packages for diagnosis involving techniques and tools for signal analysis,

advanced pattern matching, case based reasoning, data visualization, and very fast

searches on extremely large data sets. It provides a workflow manager for systematic FDI

progression from simple to complex faults. It also incorporates complex scenarios

resulting from specialists’ need of additional tests to confirm a diagnosis.

Another large-scale PC based distributed system was reported by Paulonis and Cox

(2003) providing information about thousands of control loops in various Eastman

Chemical Company plants worldwide. The system comprises of various blocks such as a

data interface, computation engine, web server, and User interface. Each block may

consist of several computers for large systems. Figure 3.5 shows the schematic diagram

of the complete system.

n n > -
DCS 1

DCS 2

LAN I

U se r A

Web Server
<S>

f to Server

A ppH ostX
w/Data Interlace

App Host Y
w/Data Interlace

® Computation Database
Engine

Email
System User 6

Figure 3.5: Controller performance assessment scheme (Paulonis and Cox, 2003).

40

Processing power at each control system was used to collect and push data to an

assessment system. The computation engine performed various checks including time

series trends, setpoint crossings, closed loop impulse response, power spectrum, extended

horizon performance index, oscillation detection, and cross-correlation between error and

output. The generated results were written in a database in numeric and text formats.

Interested users browsed via a provided web interface and navigated through the system

using hyperlinked web pages. In addition, a user could subscribe to a variety of reports

generated by the system on a daily and monthly basis. These reports were sent to the

subscribing users via HTML emails. A report was generated for tuning changes daily as a

change in tuning, being easy and cheap, is usually attempted as a first remedial measure

for solving a problem. However a change in tuning may not be the best response to an

event, and the daily report therefore promptly notifies management as it takes place. A

user can pull up a web page for the problematic loop by clicking on its hyperlink provided

in the reporting email and check for details. A detailed monthly performance report was

also generated containing performance indicators for various loops. The worst performing

loops in the process area were thus identified enabling technical staff to concentrate on

them. Another monthly report provided loop statuses of similar loops in various plants so

that a plant manager could compare his/her plant’s performance with others’.

These reports were found beneficial in locating process problems and their extents. For

example, a loop in a process was found to be in a ‘fair’ state o f performance. It was a

critical loop expected to perform better and was investigated further. Contents of the

detailed report suggested a hardware problem. A quick check o f the valve in the loop

showed adequate supply pressure and reasonable output pressure and the valve “looked

OK”. However, in an in-depth check, the valve showed hysteresis and poor calibration

and was scheduled for maintenance in next shutdown. Paulonis and Cox claimed that

results obtained from the system showed that many of the poor performing loops had

hardware problems with valves, positioners, and tranducers. This changed the mindset in

the company and increased emphasis was reported on loop hardware maintenance. They

claimed 66% reduction in troubleshooting time in the company. Off-class production in

one process area was reduced by 53% and standard deviation had been reduced by 38%.

Although large monitoring systems have been implemented and reported to be successful,

there are still monitoring issues requiring further research. For example, Paulonis and Cox

41

discarded an available “LoopScout” software package because it worked on Honeywell

control systems only. This shows the requirement o f a generic monitoring system that can

work in all situations. Small to medium enterprises (SMEs) do not have specialist

departments to construct big monitoring systems and require ready-made solutions. They

can only afford generic systems that are configured to their specific requirements at

installation time and may be updated from time to time. Specific configuration o f a

generic system would always be required but the main system components should either

remain the same or should be modular and easy to change. Another issue with this system

is the requirement o f expert engineers to decide what maintenance action is required.

This, once again, is possible only in big companies having their own control engineer

employed specifically to locate maintenance issues from the generated reports and

acquired time series trends etc. Low cost generic and modular solutions are thus required

for SMEs that can provide automatic guidance alarms toward specific maintenance

actions. Research reported in this thesis considers such requirements and a cost effective

generic solution is proposed and developed for SMEs.

3.6 COMPACT MONITORING SYSTEMS

A compact system is defined in this thesis as a small sized system that can be placed

anywhere in the process plant. It is preferable if the monitoring system can be embedded

in the main processing system without consuming additional space on the plant floor.

Embedded modules provide ease of installation and work close to the sensors improving

the Signal to Noise Ratio (SNR). Researchers have developed embedded modules

working in collaboration with a PC and an increasing trend in the literature can be seen

towards total system implementation through embedded modules only without any

additional computer on the shop floor.

Feng et al (2002) emphasized the use o f PC technology in an embedded environment.

They stated that PC technologies are commonly understood and are easier to use thus

reducing development cost and time. The requirements of an embedded system are

different from a desktop PCs as more real-time operations with greater reliability are

required. Feng et al reviewed some common operating systems with an eye on real-time

capabilities and identified some real-time operating systems (RTOS). They tabulated a

42

comparison between Windows 95/98, Windows CE, Linux, QNX, and DR-DOS

operating systems. DOS was observed to be the most popular operating system for

embedded applications with more than three million copies of DR-DOS sold since 1997.

RTOS are, however, more expensive than their normal counterparts, except Linux which

is freely available. The availability of hardware supporting PC technologies in embedded

systems was also discussed. Various available options, such as PC/104, compactPCI, and

SBC (single board computer), were detailed. The ease of using high level languages with

networking protocols available as built-in libraries was found encouraging for quick

development times. They observed that use o f such tools reduce software development

cost significantly which was otherwise the most costly part of an embedded system.

Several processors may be connected to solve a complex problem giving rise to a

distributed system o f hybrid multiprocessors. Ethernet was favored over serial connection

for inter-processor communication because o f its higher bandwidth and the wide

availability o f its protocol implementations. Real-Time Ethernet and Real-Time Publish

Subscribe were quoted as examples o f newly emerging real-time Ethernet protocols. They

proposed the implementation of HTTP servers in the embedded systems in addition to the

work these systems are currently doing and supported the use o f embedded PCs as a

hardware platform for such embedded systems. The security of these Internet connected

embedded systems is an important issue and Feng et al recommended the use of proxy

servers to protect them from unauthorized access. This would also enable the system to

use private Internet Protocol (IP) addresses instead o f a public IP address for each

embedded device. They stated that “to control or monitor the embedded system through a

proxy server that runs an HTTP server and has access to the embedded system behind it,

both Common Gateway Interface (CGI) and Internet Server Application Programming

Interface (IS API) interfaces can be used” for Windows based servers. The IS API

extension was considered more powerful than CGI having much better performance.

De Frutos and Giron-Sierra (2002) reported a distributed system implementation

comprising of a PC and various distributed nodes on embedded PCs. The idea was to use

the processing power o f an embedded PC while using the ease of programming an Intel-

compatible system. Flashlite boards by JKmicrosystems were used to implement the

distributed nodes. The board was based on V25 NEC microprocessor with 512 Kbytes of

RAM and 256 Kbytes o f flash memory. It provided six digital inputs, six digital outputs,

an eight-channel 12-bit Analog to Digital (A/D) converter and two 12-bit Digital to

43

Analog (D/A) converters. The program was written on the PC and then downloaded to the

node. Object oriented programming was used for the system where a user interface was

designed using visual tools for PC monitors. The PC was connected to a Bus Control Unit

through a modem on a RS-232 port. The bus control unit connected the PC with the

embedded nodes attached to the bus. A baud rate of 1200 was used for the system but

higher baud rates were possible. Figure 3.6 shows the system connectivity model with an

embedded node block diagram.

C on tro l
bus

block

C o m m u n ica tio n system
by M od em

Control
fvstem

a

D ata
a cq u is itio n

system

Figure 3.6: System architecture (De Frutos and Giron-Sierra, 2002).

Dassanayake et al (2001) proposed another layer between the distributed front end nodes

and the PC making it a three layered system. This gives three levels for FDI namely

component, machine, and system levels. Physical devices under control and monitoring

were connected to Fieldbus Nodes (FN). An FN performs FDI at the component level by

producing alarms when a signal value goes out o f a set tolerance range. The tolerance

range was provided to an FN by the corresponding upper layer Embedded Processor (EP).

Several FNs were connected to an EP through a fieldbus.

An EP in the middle layer performed the machine level FDI on all the assets connected

under it. It checked the consistency of an alarm and consistent alarms were passed on to

the PC. They proposed to use a PC for Maintenance Information System (MIS)

performing system level FDI. Several EPs were connected to a PC through the Ethernet.

The MIS, on receiving an alarm, activated a direct high-speed data acquisition link to the

faulty asset across the Ethernet and fieldbus routed through the EP. Features were

44

extracted from acquired data to identify symptoms. A neural network procedure was used

to generate a recognized fault code. Figure 3.7 explains the proposed three layered

architecture.

__vy

&

Component
 Level

u . u.

Ethernet
Machine
. JLevel

Fieldbus
Node
(FN)

Fieldbus
Node
(FN)

Fieldbus
Node
(FN)

Fieldbus
Node
(FN)

Fieldbus
Node
(FN)

Fieldbus
Node
(FN)

Embedded
Processor

(EP)

Embedded
Processor

(EP)

Maintenance Information System
System (MIS) Level

Figure 3.7: Proposed architecture for system-wide FDI (Dassanayake et al, 2001).

Fault detection and isolation for an automatic door was implemented on the proposed

system. A digital signal processor (DSP) was used to control the motor responsible for

moving the door and a microcontroller was used to provide its interface with fieldbus.

The FN generated alarm when the motor drew over-current. A decentralized periphery

fieldbus protocol was used to provide the alarm to EP. The EP calculated the controller

effort index and the controller performance index by simple summation, subtraction and

square operations. Upper and lower threshold values were applied to these indices for

fault detection. Various system parameters were used as health indicating symptoms

including time constant, damping, and peak response. A symptom vector was created

from these symptoms and a self-organizing feature map (SOFM) neural network was

trained accordingly to provide the FDI on MIS layer.

45

Installation of a monitoring system requires considerable effort. It included the mounting

of sensors, their interfacing with the acquisition system, and cabling. Researchers have

presented various ideas to make such an installation easier. Wemeck and Abrantes (2004)

proposed the use of live-line techniques for easy installation of power-distribution

monitoring system. They described a quickly installable monitoring system for the

temporary measurements o f voltage and current in high-voltage power distribution

systems. The portable system used live-line techniques and could be installed in the field

in less than 10 minutes. The transducers provided the signals to an 8-bit microcontroller,

87C51, over a fiber optic link. The microcontroller calculated the voltage and current for

three phases as well as the power factor and displayed it instantaneously. It also stored

mean values every 5 minutes which remained available till the expiry of the system

battery (typically ten days). Collected data from the installed system was either

transferred to a notebook in the field or to a PC when the system was brought back to the

office.

Valdastri et al (2004) explored the use o f radio frequency for wireless data acquisition for

monitoring systems. They described an implantable telemetry platform system for in vivo

monitoring o f physiological parameters. A microcontroller, rfPIC 12F675F, interfaced

with up to three transducers acquired the signals and transmitted them on a radio

frequency. The signals were checked against threshold values and transmission was

performed only for out o f tolerance signal values. The telemetry transmission was

obtained by using a carrier frequency o f 433.92 MHz and an amplitude-shift keying

(ASK) modulation. The microcontroller remained in low-power mode during normal

signal values. This preservation o f power and the small overall size (less than 1 cm3)

made the system suitable for implantation in the human body. A transmission range of

more than 5m was reported to be achievable from inside the human body. A wireless

receiver connected the signal to a PC through a RS-232C serial link where it could be

further processed or displayed. Physiological monitoring could thus be undertaken

without restricting the patient’s movements. The results were displayed on a graphical

user interface developed in LabView. The system was implemented with pressure sensors

and implanted in pigs. Its performance parameters, such as the transmission range and

battery lifetime, were tested for gastric pressure monitoring of the pigs and met the design

specifications.

46

Connecting all the modules o f a distributed monitoring system using a digital

communication bus saves clumsy cabling on the factory floor and is a cheaper alternative.

Multiple modules may try to access this shared medium simultaneously causing conflicts

and some measures are necessary to ensure the proper functionality under real-time

constraints. Livani et al (1999) considered the use of CAN bus in dynamic, distributed,

real-time systems. They considered it suitable for complex real-time applications because

of its advanced built-in features. Higher level protocols are also available for CAN bus

and were considered for distributed monitoring systems. They classified the activities on

the bus as hard real-time, soft real-time, and non-real-time. They observed that fixed

priority assignments are applied in the most common CAN based communication systems

which are not very suitable for hard real-time demands. A flexible mechanism is therefore

required using the CAN bus protocol at the lower layers o f the network. Various methods

for achieving the intended behaviour were considered and a hybrid scheduling

mechanism was proposed. This mechanism combined the determinism of a Time Division

Multiple Access (TDMA) method and the flexibility o f dynamic Least Laxity First (LLF)

resource scheduling. Each message was assigned a deadline and needed to be delivered

within that time. The priority of a message was based on this deadline as well as its time

in the queue. The priority of a message increased with the waiting time in this dynamic

scheme. This hybrid scheduling mechanism achieved a higher resource utilization by

reusing the redundant reserved times for non-critical communication. They aimed to

exploit the inexpensive availability of 8-bit microcontrollers to implement the overall

system and guaranteed up to 2754 hard real-time messages per second using their

approach. An 8-bit microcontroller with 20MHz clock was expected to complete the

required computations in 13 micro seconds with processing overhead limited to

approximately 4% at 1 Mbps bus speed.

Bolic et al (2001) supported the use of microcontrollers over PC’s for compact systems.

They argued that although a PC is a good choice in most cases, there are applications

where its power and resources are not required and smaller size and low cost solutions are

more important. They proposed the use o f 8-bit microcontrollers in such scenarios. They

reported a microcontroller based distributed system for measurement and control

applications consisting of one central node as master and multiple slave nodes. All the

nodes were connected with an RS-485 serial bus. Slave nodes performed control tasks

whereas the master node provided bus control and a user interface. Each slave node had

47

generalized control software whose parameters were defined by the user at run-time. It

was stated that the same software suffices for all slave nodes and in all control conditions.

The user interface consisted of four input keys and an alphanumeric display containing

two 16-character lines. An options menu was displayed and the user selected various

options for the settings of a particular slave node. The user chose a parameter value from

the predefined list and was able to increment or decrement it before the final selection.

The inter-node communication was based on a reduced OSI model consisting o f physical,

transport, and application layers. A detailed communication set up was explained where

each node was assigned an address before connecting it to the system. The central node

polls for all the 127 possible slave nodes on the system at regular intervals, detecting any

new node available on the bus. Any new node can thus be connected to the system

without disturbing other nodes. The user can then program the parameters for this new

node and it becomes operational. The master node was implemented on AT89C55 and

slave nodes on AT89C4051 microcontrollers.

Manders et al (2002) reported the implementation of a distributed measurement and

control (DMC) application using components meeting the IEEE 1451 standard. It is a

standard for smart transducers interface for sensors and applications that defines further

components to accomplish various system tasks. IEEE 1451.1 specifies a Network

Capable Application Processor (NCAP) which is an object-oriented information model

representing the interface of an abstract transducer to a network. The standard IEEE

1451.2 defines a Smart Transducer Interface Module (STIM) that provides the plug and

play capabilities at the transducer level. Manders et al presented an online model-based

fault detection and isolation system for a multitank fluid system by implementing IEEE

1451 components. Six transducer nodes, each containing an STIM and an NCAP module,

were defined in the system and communicated with each other over Ethernet. A STIM

module was implemented on a microcontroller as suggested by the Microchip application

note AN214 [Microchip web site, AN214]. An embedded Ethernet controller was used

for NCAP as it provided the functionality as a built-in feature implemented through

custom hardware. An off-the-shelf real-time embedded operating system (VxWorks) was

used with a publish-subscribe mechanism implemented over IP/multicast. The fluid

system consisted of three interconnected tanks with level, flow, and pressure sensors,

control valves, and a fluid pump. One transducer node was dedicated to each tank and the

main node subscribed to the data published by the other transducer nodes. The residuals

48

between the observed and the nominal behaviour were mapped into a symbolic form. The

hypothesis generation algorithm, using temporal causal graphs (TCG), computed a set of

possible fault candidates. The fault candidates were further refined using qualitative

methods to reach a decision. The object oriented byte-compiled/interpreted language

“Python” was used for software development. The experiments were devised in such a

way that the dynamics o f the model never exceeded first order behaviour. They observed

that due to the various limitations on the network code and the data publishing rate, the

effective sampling rate o f the system was limited to one sample per second. Another

problem affecting fault detection adversely was the system’s inability to time stamp the

acquired data accurately. This reduced the system’s sensitivity towards faults and the

experiments were devised with sufficiently large faults in the system to overcome these

problems.

Lee and Hsiung (2004) considered the importance o f software in embedded systems.

They stated that embedded software now accounts for as much as 70% of total system

functionality reducing overall cost and providing flexibility towards up-grading and ease

of maintenance. Higher dependency on software also means more complicated software

which may be difficult to synthesize and debug. They proposed the use of graphical

modelling tools for embedded code generation and verification. They used Complex

Choice Petri Net (CCPN) in their proposed synthesis and prototyping system because of

its high expressiveness. Possible events were modelled in the form of Petri net places and

transitions, providing a straight forward means o f developing error-free codes. A 89C51

microcontroller based circuit was implemented for testing the generated code with an

FPGA providing hardware emulation for various applications. The proposed system

effectiveness was shown through two sample applications, namely, a vehicle parking

management system and a motor speed control system. They also proposed the use of

multiple threads in embedded software, rather than the commonly used single thread

approach, as it preserves user conceivable concurrencies among the tasks. A real-time

operating system would be required for scheduling multiple concurrent tasks in an

embedded system.

Frankowiak et al (2005) provided a detailed review of developments in the important

elements that make up a monitoring system. They considered sensor-based and non­

sensor-based approaches and discussed the use o f intelligence in this context. Various

49

monitoring methodologies were explained and evaluated on a cost and performance

criteria. Effects o f progress in technology were considered in this field and centralised

and distributed system implementations were reviewed with PC, DSP, and

microcontroller technologies. The role of the Internet in future monitoring was stated to

be very important and remote performance monitoring was favoured.

3.7 EXAMPLES OF WEB-ENABLED MONITORING

Internet connectivity is widely available these days and its use is popular with technical as

well as non-technical people. It provides an easy method of communication resulting in

remote data access. The data can be processed remotely by powerful computers and the

results are displayed via an easy to understand graphical user interface. This section looks

at research related to web-enabled monitoring systems.

Bonastre et al (2001) reported the development of a distributed expert system, which they

claimed to be the first one in analytical chemistry. The system consisted o f four Control

Nodes (CN) and a Programming and Supervision Node (PSN) communicating with each

other on CAN bus. The PSN was implemented on a PC and provided an Internet

connection to the system. The control nodes performed their relative control functions

and informed the PSN about the change by updating the global variables. The PSN then

informed other CNs about the changes. It also decided the frequency of analysis,

compiled status reports and displayed them on the Internet as secure web pages. The

system was tested on a wort fermentation process in a laboratory experimental plant. As

the time gap between analyses in such applications run in hours, the system was claimed

to give good results in real-time. The described system provides the monitoring results of

various chemicals in the process and leaves the fault detection and diagnosis to the

humans. A more useful system would provide some suggestions or guidance towards

some specific faults or maintenance issues rather than just reporting the status of the

chemicals.

Yang et al (2003, B) observed that most o f the research work on Internet-based process

control has resulted in small scale demonstrations mostly developed in Java. They

concentrated on developing guidelines or systematic design methods for such systems as

50

little work has so far been done in this regard. They aimed to develop a methodology for

the design of Internet-based control systems for process plants. They concentrated on

adding an additional Internet control layer on top o f the existing layers rather than

engineering a total replacement. This approach was applied to a water tank system

teaching rig to evaluate the methodology. The system was implemented using Java

applets and Labview virtual instruments. They claimed that a server push mechanism was

used with Internet Explorer to increase communication efficiency and to reduce server

loading. As a matter o f fact, Internet Explorer does not support server push technology

[(Musciano and Kennedy, 2000), (Cunningham and Cunningham Inc web site)].

Apparently client-pull technology was embedded in the dynamic web pages to refresh the

web page at regular pre-defined intervals. This may have created the impression of server

push being used which is actually a different technology.

Bucci and Landi (2003) proposed a distributed architecture for industrial applications

using three hierarchical communication levels: the fieldbus, the intranet, and the Internet.

Remote measurement units (RMUs) formed the front end of the system that acquired the

signal and provided it to a fieldbus server (FS) after necessary processing. Each RMU

consisted of three modules each responsible for one task, i.e. signal acquisition,

processing, and the fieldbus interface. The FS acted as master for communication with

RMUs and obtained data from each o f them sequentially. The RMUs did not

communicate with each other although they were connected on the same bus. An RMU

implementation was based around a 32-bit microcontroller from Hitachi with external

memory. The board had a size of 220 x 110 mm2 and costed about $100. It was attached

with a 20 x 4 lines display and a 16-key keyboard as local user interface. Several RMUs,

or WMUs for wireless connection, connected with a fieldbus server constituted a

measurement site. An FS handled data storage, analysis, display, report generation, and

data sharing for a measurement site. Several measurement sites were interconnected using

a LAN where personal computers provided the required processing power and

management applications. The LAN had a measurement server performing advanced data

logging, supervisory control and analysis. A Gateway computer was used to connect the

LAN to the Internet providing the security. The system was designed with an aim to

support dynamic web pages managed by an Apache server so that remote users could

access the latest information. The fieldbus interface was based on the RS-485 protocol

with a data transfer rate up to 38400 bps. The system performance was evaluated, for

51

power quality in an electrical distribution network and for management o f a water

distribution system, and was found to be well suited for such applications in terms of cost

and performance.

Eady (2004) discussed the issue of TCP/IP stack implementation on microcontroller

based systems. The resources in a microcontroller are very limited and the TCP/IP stack

required for communicating on the Internet puts a heavy burden on these resources. Eady

described the options for the microcontrollers in this regard and emphasized that a

simplistic TCP/IP stack might suffice for small systems. The stack should be a modular

one and only the modules required for a specific application should be included. He

detailed the use o f CMX-MicroNet, which is a TCP/IP stack designed for use with

microcontrollers. It supports up to 127 UDP or TCP sockets. Its price for small system

developers may be an issue, however, as it starts from $5500.

Insam (2004) explored the development o f fast Ethernet access from an 8-bit

microcontroller stating that “it’s difficult enough to get a 10-Mbps Ethernet controller

working anywhere near full speed when paired with a small microcontroller”. Getting the

speed of 100-Mbps is far more difficult. He considered the use of FPGA for this reason

but dropped the idea after some analysis. He supported the use of microcontroller in

embedded systems over FPGA as its software development is more result-effective on a

par-to-par comparative basis. The FPGAs were used in the system though to provide

faster communication in block data transfers. Insam explained various differences in the

10 and 100 Mbps Ethernet standards but expressed satisfaction that there were few

differences between writing the IP code for both systems. An 8951 microcontroller was

used with the SMSC LAN91C111 Ethernet controller and ACEX EP1K50 family FPGA

for the development.

Stipanicev and Marasovic (2003) reported the use of an 8-bit microcontroller as a web

server providing dynamic web pages. They suggested that small systems do not need the

full power of a desktop PC to display their results to a remote user on the Internet.

Greenhouse monitoring and control was provided as an example o f such systems. Various

sensors in the greenhouse provide condition information and necessary control actions

can be initiated by remote user by selecting suitable options on the displayed web page.

Switching a “wetting” system on or off is an example for such control actions. A

52

DS80C390 microcontroller based embedded computer, TINI, was connected to the

Internet using Point-to-Point protocol through a modem and hosted dynamic web pages.

The TINI was connected to various sensors and actuators in the system on a one-wire

network. The system was tested for up to 30 sensors and was reported to be successful.

The TINI recorded the information provided by the sensors in its file system and served

this information to the interested user. The web pages were constructed on the fly to

provide latest information. The TINI has a multitasking operating system supporting

multiple threads. It also has a rich library supporting network protocols from Java APIs.

The program was therefore constructed as multiple servlets running in parallel. Data was

archived in a local file, but memory restrictions apply to the embedded system. It was

suggested that stored information should be pushed to some other computer as emails

using Simple Mail Transfer Protocol (SMTP). System security was provided by enabling

user ID and password mechanism.

Al-Habaibeh et al (2003) described the development of a diagnostic system for royal mail

automatic sorting machines designated as Integrated Mail Processors (IMP). IMPs are

complex electromechanical systems including enormous number of rollers, bearings,

belts, gears, motors, electronic systems, etc. The Royal mail delivers about 82 million

items of mail and parcel post every day. Accordingly, IMPs do an enormous amount of

work and generate a lot o f heat. A microcontroller based monitoring system was

developed to check the generated heat and any abnormal patterns were detected for FDI.

Infrared imagers were interfaced with microcontrollers connected to the Internet. PIC

16F877 microcontrollers were used in this application with the PICDEM.NET module

from Microchip Ltd used to provide Internet connectivity. UDP/IP protocol was used to

relay acquired data on Ethernet for processing by remote computers. The use of

microcontrollers provided a low-cost acquisition system in this application.

Yang and Eagleson (2003) described a temperature control and monitoring application

through the Internet. A remote user provided a desired value of temperature and a

microcontroller based embedded system set the temperature in a tube accordingly.

Heating and cooling were provided by a lamp and a fan respectively. The software was

designed using unified modeling language (UML) classes and was implemented in C++

language. An HTTP server presented a web page to the remote user to input desired

temperature. The dynamic web page also displayed the current temperature of the tube.

53

Server Side Includes (SSI) were used with HTML code to implement these features. A

SMTP handler was also implemented and the system sent alarm emails for out-of-control

situations.

A system on the Internet is vulnerable as it is accessible to hackers and intruders. Proper

security is required against unauthorized users to minimize malicious attacks. Hackers

may intrude into an Internet control system and change the settings for process controller

causing undesirable effects. Axelson (2004) discussed network security issues for small

embedded systems, which do not have enough processing power and memory resources

to employ full-blown security encryption techniques. He stated that a firewall may be the

first line of defence and an embedded system may be behind a firewall provided by the

company LAN. Besides security reasons, this is often the case of network implementation

in a company. The firewall provides security by hiding the local processors’ IP addresses

from the Internet and by allowing only the required services. Restricted access, based on

username and password authentication, was urged by Axelson to provide further security,

or in case a firewall was not available/suitable for the application. This kind of

authentication can be implemented using simple HTML code with a HTTP POST request.

This method does not encrypt the password though and anybody having access to the

network traffic can see it. Use of some encryption technique was considered a better

option therefore. Axelson stated that a server can also limit the number of tries from a

single IP address in order to prevent a determined hacker trying different username and

password combinations. Axelson stated that encryption used in basic authentication is the

Base64 Content-Transfer-Encoding method described in RFC 1521. Digest authentication

was considered more secure but more complex to implement. He also described how

these techniques work and provided information about the support available for them in C

and Java compilers for small embedded systems. Another security issue with these

techniques is that password protection is applied on user identity only and not on the

requested resource itself. Resource data encryption is required separately, if deemed

necessary. He proposed the Advanced Encryption Standard (AES) as a suitable

encryption method for small systems. Another recommended method is to use a firewall

device with support for a Virtual Private Network (VPN). This method relieves small

devices firmware from security issues. Another method of attack by some malicious users

is to enter Server Side Include (SSI) directives in the authentication form fields, making

the server do unwanted things. Axelson proposed disabling SSI directives in normal

54

HTML pages to prevent this kind of attack. The server would allow only secure SHTML

pages for SSI directives in that case. Axelson observed Secure Socket Layer (SSL), used

in online banking, as the most common security method. He considered SSL very secure

but requiring resources beyond most of the small embedded systems. For wireless

networks, Wi-Fi Protected Access (WPA) was considered more secure than Wired

Equivalent Privacy (WEP).

3.8 COMMERCIAL SERVICES

This section provides some examples o f commercially available systems providing

process and condition monitoring as aids to improve process effectiveness. It shows that

the technology is still not mature enough to be widely deployed as ready-made systems.

Keyif et al (2004) described a commercially available monitoring system to check the

health of an electrical motor. Motor condition monitor (MCM) was claimed to be a result

of 20 years o f research and can detect developing faults in plants with motor-based

machinery. It takes motor supply voltage and current as the only inputs and provides

output as one o f the five statuses. It can also provide information about the frequency

contents o f the acquired signals. The results are available on a display panel as well as on

a serial port which may be interfaced with a computer. It detects signal pattern difference

between existing and nominal signals where the nominal signal is obtained using a model.

MCM makes this nominal model during its initial learning phase. It is available as an

easy-to-install box o f size 90x90x195mm. Keyif et al also provided some examples where

this patented monitoring technology was successful in picking up developing faults.

Walchem Corporation’s WebAlert is a remote monitoring device that web-enables

already installed equipment (Walchem corporation web site). It has an embedded web

server which allows it to function like a website. It can be connected with up to six

4~20mA and two digital signals providing data logging facilities. The data from these

signals can be acquired and displayed on the website in real-time. It provides Internet

connection via Ethernet or modem. To access its web page, a user has to first login at the

Walchem corporation web site by entering his user ID and password. WebAlert then

connects to the local Internet Service Provider (ISP) and logs onto the Internet. The user

55

then enters another set o f user ID and password to access the data (Walchem corporation

WebAlert web site). The web site also claims that it is capable o f sending alarms as SMS

messages to mobile phones but does not explain when and how.

Divan et al (2004) described a web-enabled near-real-time monitoring system for power

quality and reliability. It collects power events and sends event data via the Internet to

system database servers using a modem. Powerful computers at the central server take up

much o f the processing workload. The sensing unit was implemented on a Texas

Instruments C54x DSP that communicated at 14400 bits/sec and had an HTTP/TCP/IP

stack. The system was claimed to be designed and tested for scaling to over 50000 such

sensors. The users are offered a variety o f options to configure their displays according to

their requirements. Java 2 platform enterprise edition was used and sensing unit software

can be upgraded through the modem. Sensing units were manufactured on a commercial

scale and over 1000 production monitors were reportedly deployed in US and Canada.

The system recorded about 120000 events in the first 2 years o f deployment. Divan et al

claimed that this ultra-low-cost solution was probably the cheapest commercially

available option with less than $500 cost (SoftSwitching Technologies web site).

ProHelp® EPM is the real-time production and process monitoring system from Mattec

Corporation (Mattec corporation web site). It is capable o f monitoring up to 4096

machines and supporting hundreds of users simultaneously. It covers industries such as

plastic injection molding, extrusion, blow molding, metal stamping, die casting, printing,

painting, assembly, etc. It runs on Windows 2000 or higher and uses Microsoft SQL

server 2000. ProHelp EPM provides email and voice alarms when a machine is either

down or is out o f specifications (Mattec corporation ProHelp web site). Mattec’s

ProStat® SPC/SQC, a real-time statistical process control software, is fully integrated in

ProHelp EPM providing enhanced functionality and ease of use. Another version of

software, ProHelp Millenium, runs on UnixWare, a PC-based version of Unix.

THE-MAN-A-ger© is another production monitoring system from Mattec. It is

considered low-cost by the company as the base price is less than $10,000 (Mattec

corporation THE-MAN-A-ger web site). The user has to provide a PC with Windows

2000 and SQL server 2000 whose price is not included in the package. THE-MAN-A-ger

can monitor cycle time, run-time, downtime and scrap levels for up to 64 machines in

56

real-time if several ‘data concentrators’ are used. A data concentrator is the machine

interface unit that can be connected to a maximum of 12 machines.

Aspen Watch™ is a controller information system from Aspen Tech for performance

monitoring and extracting useful information from large volumes o f data (Aspentech web

site). The complete data is stored in a database in an uncompressed way. It is therefore

possible to reconstruct any controller action and events can be fully investigated. The data

can be monitored remotely through a high speed connection such as ISDN. It also

provides a graphical user interface to display trends and visualizations. It highlights the

statistical performance o f the controller over time and compares it with the best possible

performance. It calculates the performance parameters on-line and generates reports

which can be retrieved by the user on-demand. The software runs on the Windows NT

operating system. An additional benefit up to 10% is claimed by using Aspen Watch.

Honeywell’s Loop Scout tool collects configuration, event, and time-series operating data

from the process plant and suggests maintenance and engineering actions to resolve the

worst-performing loop (Honeywell process solutions web site). It helps increasing plant

production rates and reduces the time to identify and address poorly performing control

loops. The ‘Loop scout overview’ provides aggregate performance benchmarks for unit-

wide or site-wide evaluation. The ‘loop scout detail’ provides individual loop metrics and

diagnostics (Honeywell Loop Scout overview web site). Another service, Alarm Scout,

automatically collects performance data on a system’s alarms and events and stores it

locally. An operator then performs a login at the alarm scout website and upload the data.

The service analyzes the data and generates an alarm status report which is sent to key

stakeholders in emails. The alarm scout service works only on the Honeywell systems

such as GUS/APP node, PlantScape, and Experion PKS (Honeywell Alarm Scout web

site).

Matrikon’s ProcessDoc is a control loop performance assessment and monitoring tool that

claims to provide improved overall operability and stability of process units, increased

throughput, reduced maintenance costs and improved product quality without additional

capital investments or IT infrastructure (Matrikon web site). It claims to achieve a 5%

increase in plant performance through improved control and a 30% reduction in

maintenance cost through a condition monitoring approach. It provides the continuous

57

online monitoring of processes in real-time. It claims to detect performance losses

automatically and prepares reports accordingly. It also provides tools to diagnose the

problem causing the performance loss and to fix the problem. Matrikon ProcessDoctor

web site states the ProcessDoc uses proven technologies and mentions several success

stories. The quoted examples include a $100,000 increase in annual revenue for a major

refinery, a 20% increase in run-time for a polymer producing plant, a 28% reduction of

variance in the grinding area and 34% reduction in variance in flotation area in a large

copper mining operation, and an annual cost saving of around $400,000 in a large pulp

and paper mill. The Matrikon clients list includes companies such as BP, Saudi Aramco,

Bayer Polymers, GE Plastics, Mitsubishi Chemical, Newcrest Mining, NRG Energy, Al-

pac, etc.

Emerson’s Plant Web is the digital plant architecture that uses predictive intelligence to

improve plant performance (Emerson Process Management, Plant Web web site). It

enables the user to detect process and equipment problems even before they occur

(Emerson Process Management, Results web site). It provides a networked approach

using the Foundation fieldbus and employing standards at every level. It is engineered to

efficiently gather and manage information from intelligent field devices. The details of

the PlantWeb and its associated asset management software can be found in Hartley

(2002).

3.9 SUMMARY

This review has shown that monitoring systems are still limited, mainly to the data

acquisition systems that present the acquired system to human experts for decision

making. The ready-made systems that provide complete monitoring solutions by reliably

identifying the developing faults in the processes are almost non-existent. There is a huge

requirement for a generic system that can be widely deployed in various process plants

and industries. The system should be a low-cost one so that it can be deployed by small to

medium enterprises (SMEs) as well as big companies. A modular design would be

required for the generic system so that only the required components be included in the

installed system. This would reduce the total system cost as well. The ease of upgrading

the system with changing time is another desired feature in such a system.

58

Chapter 4

SIGNAL ACQUISITION & ANALYSIS

The need for a generic, low-cost, and modular monitoring system was confirmed as a

result o f the review o f existing monitoring systems and research in the previous chapter.

This chapter presents the basis on which a low-cost compact monitoring system was

developed. The motivation for selecting a distributed network o f nodes over a centralized

approach will also be reported. The chapter also details the signal acquisition

requirements and those o f the subsequent time and frequency domain analyses for such a

monitoring system.

4.1 MONITORING SYSTEM OVERVIEW

In general, a monitoring system requires current information about the process to enable

monitoring decisions to be made. This information must be obtained via sensors

measuring various system variables which have usually been interfaced to the processing

system through the use o f cables. The cabling system can be an expensive part of a

centralized processing system and can cause logistical problems in establishing the

system. The prevalent industrial noise will also need to be addressed. In recent times the

trend has been to replace the analogue signal wiring ‘mess’ with an organized digital

communication bus (generally known as a fieldbus). All sensors communicate on the

same bus with time-shared access. Sensor signals are converted into digital format close

to the source before noise can significantly affect them. The author has selected

Controller Area Network (CAN) bus as the digital communication medium between

various nodes o f the proposed distributed monitoring system partly due to its superior

performance in noisy environments and also because o f its availability in embedded

microcontrollers.

In general, some digital electronics are required to convert an analogue sensor signal into

digital format and then to communicate this information on the fieldbus. There will be

advantages if the size o f this conversion electronics can be minimized. For the system

developed in this research, microcontrollers were identified as compact devices,

sometimes called ‘one-chip’ computers, which integrate facilities and yet provide limited

59

processing power. In particular, the author has used low-cost 8-bit microcontrollers in a

distributed monitoring system, thereby providing an additional benefit o f front-end

processing capabilities. Figure 4.1 summarizes the hardware architecture of the

distributed monitoring system design. Thus a signal can be checked for basic

characteristics at acquisition and an immediate decision on the normality of the signal is

made possible. For example, a simple threshold check on signal amplitude can often be

sufficient to distinguish normal and abnormal behavior. Information from several such

microcontrollers is combined to reach robust conclusions when multiple signal

information is required. This combined information formed the second processing layer in

the developed distributed monitoring system. A hierarchy was accordingly evolved for

processing layers where the front-end (acquisition) nodes (FEN) constitute the first or

bottom layer. It is expected, from previous experiences in the IPMM group, that up to

80% faults may be detected at this level. A further 16% faults may be detected at second

layer o f hierarchy where information from various front-end nodes (FEN) is combined.

At the third or top layer of hierarchy, specialized computers may be used to determine the

remaining 4% o f faults. It was decided that the user interface should be dealt with by a

special node, which conveys user commands to other nodes, thus ensuring system

synchronization in addition to presenting results to the user. This node was called the

Synchronizing & User Interface Node (SUIN). Internet and mobile phone connectivity

was also deemed as needing to be as part o f the user interface in this research.

Figure 4.2 represents the hierarchical philosophy which can be summarized as follows:

The approach taken in this study was to check the health o f an acquired signal at the first

hierarchical layer (FEN nodes). A quick normal/abnormal check is made and data is

discarded for normal signals. Any detected abnormality is communicated to the second

layer where the health status of all available signals are combined to robustly determine

the cause of any detected abnormality. Detailed analysis may then be conducted by the

third layer of the hierarchy (on server-side computers with much greater processing

power) for cases where second layer processing proves inconclusive. This research

concentrates on the development of the first and second layers and on consideration for

data presentation to the third layer for processing when required. The processing required

at the third layer is thus considered beyond the scope of this research and requires higher

level software.

60

User Interfaces

Ethernet Connectivity

Mobiles
Devices

GSM
Connectivity

Layer 2

CAN Bus

Layer 1

FEN-1 FEN-2 FEN-3 FEN-N

Figure 4.1: Hardware architecture of proposed distributed monitoring system.

Server Side Processing4% Data Analysis

SUIN & FENs

16% Data Analysis

FENs

First FirstFirst First

Third Layer

Second Layer

Information Sharing

80% 80% 80% 80%
Data Analysisjpata AnalysisData Analysis^ Data Analysis^

Figure 4.2: Computing hierarchy of proposed distributed monitoring system.

Fundamentally then, sensors and transducers provide the basic information about a

process and its performance and health and form the lowest level (starting point) of any

monitoring system. A compilation of transducers and sensing techniques was available

within the IPMM research group, as provided by Frankowiak (2004), and reproduced in

this thesis as Appendix A. Also detailed information about temperature, level, and flow

sensors had been compiled by a previous research group member and can be found in

Sharif (1999). These sources were usefully considered by the author when designing the

proposed system.

4.2 PROCESSING ELEMENT SELECTION

Standard Personal Computers (PCs) provide excellent processing capabilities with good

memory resources. A standard PC is not expensive but when it is combined with signal

acquisition card(s) and associated real-time software, the resulting costs are much higher

than the base price. Normally it is not recommended that a standard PC is installed on a

process plant / factory floor because o f a lack of robustness. Industrialised PCs are

available for industrial environments but at higher prices. The physical footprint of a PC

typically consisting o f a Central Processing Unit (CPU), monitor, keyboard and mouse

may also be an issue. The author therefore considered PCs not to be a good option for

process monitoring applications and decided to use embedded systems. An embedded

system can be dedicated to a particular task and does not need the generality of a PC. It

will have a reduced number o f components, smaller system size, and lower overall cost.

Having decided upon the embedded route, the choice o f embedded PC’s, microprocessor

based systems and single chip microcontroller systems needed to be considered. A

guiding principle was the desired need to minimize the number o f components, and thus

the footprint of any acquisition and front end node at the deployed monitoring function. A

microprocessor-based embedded system required additional components for memory,

peripheral devices, and I/O ports. The resulting circuit board is much smaller than a PC

but it is still cumbersome to place these boards close to the sensor. A microcontroller

contains all the peripherals, required for a small system, on a single chip and its use

greatly reduces system size and associated cost. The compactness of size provided the

opportunity to place the circuit board close to the sensor providing better signal

62

acquisition and analysis opportunity. The author therefore employed microcontrollers in

this research.

Limited Silicon area on a single chip limits the possible features in a microcontroller. The

amount of memory built into a microcontroller has increased in the last few years but is

still very much restricted. Built-in peripheral devices, ports, and memory do not leave

ample Silicon area to implement very powerful processing engines in microcontrollers; 8-

bit processing engines are generally built in the microcontrollers. These 8-bit

microcontrollers thus provide small low-cost circuits albeit at a fraction of a normal

microprocessor’s processing power. These microcontrollers are traditionally used in Input

/ Output (I/O) applications where a lot o f I/O activity is supported with a little processing.

The newer generation o f microcontrollers, however, provides relatively higher processing

capabilities because o f improvements in architecture and clock speeds.

The acquisition of various process signals may give rise to a distributed system of

microcontrollers communicating with each other and integrating information to form a

holistic view of the process status. The author reviewed various available MCUs from

various companies in order to select the most appropriate one for signal acquisition,
T i l

processing, and onward communication o f results. Microchip’s PIC (Peripheral

Interface Controller) 18F458 MCU was selected because of its built-in ADC, digital I/O

ports, memory, and various communication interfaces including CAN. In the following

section 4.3, a general introduction to various PIC families along with a more specific

insight to the capabilities of the PIC 18F458 microcontroller, is provided.

4.3 PIC MICROCONTROLLERS

Microchip Inc. have developed a large number of commercially available

microcontrollers and its Peripheral Interface Controller (PIC) series offers a wide range of

options to the design engineer [Microchip web site]. The PIC MCUs are available with

permutations o f maximum clock speed, internal memory size, instruction width,

peripheral devices, interfacing protocols, etc. It is now possible to get an IC that has the

optimum features for a particular application, yet being general-purpose so as not to

63

hinder the design views of the engineer. These features make PIC microcontrollers a very

popular choice worldwide and Microchip is a leading supplier o f 8-bit devices

(Embedded Star web site). According to the yearly Gartner Dataquest rankings,

Microchip was placed 20th in worldwide unit shipments in 1990 and rose steadily to

number one by 2002. Table 4.1 shows some characteristics of various 8-bit PIC

microcontroller families.

Fam ily PIClOx PIC12x PIC14x PIC16x PlC 18x
Size (Pins) 6-8 8 28 14-80 18-84
Max Speed (MHz) 4-8 4-20 20 10-40 40-48
Program Memory (Bytes) 384-768 768-3584 7168 768-14336 0-131072
Data Memory (Bytes) 16-24 25-128 192 24-368 256-3968
Number o f I/O Pins 4 6 20 6-53 16-72
ADC Resolution (Bits) 0-8 0-10 8 0, 8,10,12 10
Number o f Timers 2 2-4 3 2-4 3-6
Serial I/O None None None USART, I2C,

SPI, USB
USART, I2C,
SPI, CAN, USB

Table 4.1: 8-bit PIC microcontroller families’ characteristics [compiled from the

Microchip web site]

4.3.1 PIC 18F458 Microcontroller

The author selected the PIC 18F458 MCU as the front-end node for the distributed

monitoring system. This selection was based on the fact that PIC 18F458 contained the

maximum of the features required for the proposed system. It was, at the time of

selection, the best microcontroller available in the PIC series and provided digital and

analogue signal acquisition capabilities and appropriate communication facilities. Both

rising and falling edge detection is possible for individually selectable digital I/O pins and

certain pins can generate interrupts on a change of voltage signal. The PIC 18F458

contains a built-in 10-bit successive approximation ADC with a maximum sampling rate

of 3OK samples per second. Up to 8 input channels can be connected to ADC under

software control and reference voltages can be selected either internally or externally.

Four timer modules are available to generate sampling rate, pulse width modulation

(PWM) signal, time based interrupts etc. Other interrupt modes are also available,

importantly including ones generated by CAN message reception and ADC conversion

completion. The PIC 18F458 can work with clock frequencies up to 40 MHz and most of

64

its instructions operate consistently at four clocks per instruction cycle, resulting in a

maximum execution speed o f 10 million instructions per second (MIPS). A built-in

hardware multiplier performs 8x8 operations in one instruction cycle and enhances the

mathematical processing capabilities of this 8-bit microcontroller.

PIC 18F458 microcontrollers use Harvard architecture, where memory is divided

distinctly into ‘Program’ and ‘Data’ memories. Coded programs of up to 16K instructions

in length can be stored in the 32 KB built-in flash memory in this RISC (Reduced

Instruction Set Computer) architecture. The program memory can be written to using a

low voltage InCircuit Serial Program™ (ICSP™) option as well as under the program

being executed inside the microcontroller. The self programming capability provides the

possibility o f software upgrading (eventually via the Internet in the developed system)

and is very useful. The 1536 bytes RAM and 256 bytes EEPROM constitute the built-in

data memory and are used to store program variables and long term temporary variables,

such as configuration settings, respectively. In addition, the PIC 18F458 contains a

number o f special function registers (SFRs) which deal with various peripheral devices

and interrupts reducing the need for RAM storage space for variables. The RAM is

divided in various banks and bank switching is required to access a certain bank. This

limitation is however softened with an ‘Access RAM’ area that is accessible irrespective

of the current bank selection.

The microcontroller provides several options for serial communication. These include an

addressable Universal Synchronous Asynchronous Receiver Transmitter (USART) (that

can be used to implement RS-232 standard for communication with a PC COM port), a

built-in Master Synchronous Serial Port (MSSP) module (that provides Serial Peripheral
T \> l T*K/I

Interface (SPI) and Inter-Integrated Circuit (I C) protocols) and a built-in Controller

Area Network (CAN) controller (used in this research for inter-node communications).

The Microchip schematic block diagram for a PIC 18F458 microcontroller is provided in

appendix B for reference.

The author used assembly language when developing software programs for the

microcontroller. Microchip’s MPLAB software was used as an Integrated Development

Environment (IDE). MPLAB integrates the editor, assembler, linker, simulator, and

microcontroller programmer facilities. It provided debugging support with breakpoints,

65

software watches, memory maps, single-step and animate execution modes. The MPLAB

In-Circuit Debugger 2 (ICD2) provided emulation support for testing the software on the

target hardware circuits. A PICDEM 2 PLUS demo board was used with the ICD2 for all

the initial development and testing of acquisition and analysis routines. This board

provided digital and analogue input ports, input switches, LEDs, a buzzer, and a 2 line

LCD display.

4.4 SIGNAL ACQUISITION

As stated, PIC 18F458 microcontrollers were used in this research to acquire process

signals and as the heart o f a general purpose node interfaceable with several types of

sensors and transducers. The usage, as an acquisition tool, for discrete and analogue

signals is explained in the following sections.

4.4.1 One Analogue Signal per MCU

As recounted in the monitoring system overview (section 4.1), the use o f microcontrollers

results in compact circuit boards for the front-end node (FEN) signal acquisitions. The

compactness provides the opportunity to locate the circuit board close to the source.

Indeed, the current generation of 8-bit microcontrollers when implemented with surface

mount technology is so small that their circuit boards may be placed inside the sensor

assembly. The author therefore determined that each microcontroller should acquire only

one analogue signal in the developed FEN node, although it is capable of acquiring

several signals simultaneously. The sensors used in this research did not contain MCUs in

them and (non surface mount) FENs were located close to them. The further reduction in

physical size of an embedded MCU (and the elimination o f the requirement o f converting

the physical parameter into 4~20mA format, for example) was outside the current remit

and is discussed in chapter 10.

4.4.2 Digital Signal Acquisition

Digital signals provide information about discrete events in the process such as a switch

on/off or the start/end of a batch process. This information is generated by transducers

typically as different voltage or current formats (in different applications) and appropriate

signal conditioning is required to make them TTL compatible (0 to 5 volts) before their

66

interfacing with the MCU. The change in signal can be detected by polling the input pin

or by generating an interrupt. The selected MCU handled interrupts on both rising and

falling edges. A global flag enables the MCU interrupt system and individual interrupts

can be masked or unmasked as required by the situation. High and low priorities can be

assigned to various interrupt sources according to their nature and urgency. The PIC

18F458 supports only one Interrupt Service Routine (ISR) for each priority level and the

programmer has to check various flags to ascertain the cause of an interrupt. This adds a

burden for the software developer and makes interrupt responses slower than systems

with more advanced interrupt handling capabilities.

Often it is necessary to detect the time between two monitored process events. With the

PIC MCU system, this was achieved by starting a timer at the first event occurrence and

stopping it on detection o f the second event. A pre-set time was specified (take unit of 0.1

seconds) and the timer count automatically incremented. The timer count multiplied by

the pre-set time period gave the total time elapsed between the two events. In alarm

setting scenarios, the timer count was checked against a time-out value, specified in the

ISR. If a time-out was detected a conclusion was made that the second event failed to

occur. The MCU was operated at its maximum clock frequency o f 40MHz and the

interrupt rate was slowed down via 16 bit timer register initializations. These lead to an

interrupt every 6.5536 millisecond. The interrupt rate could be further decreased by

assigning various values for prescalers and postscalers with the available timers, which

divide the input/output timer frequency by a scalar value.

The acquisition of pulse train type signals was possible simply by accumulating the

number o f rising or falling edges within a predefined duration. The MCU timer modules

were used in their counter mode for such acquisition and incremented on every edge

detection on their respective input pin. Often the accumulated number of edges were

recorded over a 1 second interval and provided frequency value. Shorter accumulation

periods were also used as appropriate.

Pulse Width Modulation (PWM) is another commonly used technique in sensors and

transducers where the pulse rate of the signal remains constant but the duty cycle changes

between a minimum and maximum according to the sensed information. There is no

direct PWM input port available in the PIC 18F458. However, the basic time period of

67

the signal can be calculated by measuring the time between two successive rising (or

falling) edges. The pulse width times for 0% and 100% duty cycle signals were also

measured by detecting times between a rising edge and the following falling edge (or vice

versa). The timer module was then initialized in such a way that the need for floating

point division was eliminated, making the system simpler and faster. This method

provided a quick detection o f the duty cycle with resolution of 1%.

4.4.3 Analogue Signal Acquisition

Most signals in the process industry, typically representing flow, pressure, level, or

temperature measurements are analogue in nature. These signals have to be converted

into their digital equivalents before processing by a computer or microcontroller.

Analogue to Digital Converters (ADC) provide this transformation. Analogue to digital

conversion may be viewed conceptually as a three-stage process: sampling, quantisation,

and coding as shown in figure 4.3. Full signal information xa(t) can be regenerated from

samples x(n) according to Shannon’s theorem if the sampling frequency is at least double

the highest signal frequency. The difference between the unquantised sample x(n) in

figure 4.3 and the quantised output xq(n) is called the quantisation error and is

irreversible. The precision of an ADC therefore depends on the number of quantisation

levels. Further details can be found in Proakis & Manolakis (1996).

A/D converter

01011x(n) Xq(n
Quantise CoderSampler

Analogue Discrete-time Quantised Digital
signal signal signal signal

Figure 4.3: Basic parts of an ADC (Proakis and Manolakis, 1996)

The PIC 18F458 microcontroller contains a 10-bit 5 volt range ADC, that works on the

principle o f successive approximations. One quantisation step is therefore equal to

68

5000/210 = 4.88 mV. The ADC accepts unipolar inputs within the range of 0 to 5 volts. A

Sample & Hold (S&H) circuit freezes the input at the sampling instant. The frozen

sample is then converted to a 10-bit binary number. The maximum throughput of PIC

18F458 ADC is approximately 30K samples per second. Eight MCU pins can be

configured as analogue inputs and can be connected to the S&H circuitry under software

control. Eight analogue signals can therefore be acquired sequentially.

It is important to sample the analogue signal at consistent intervals. A timer interrupt was

thus used to trigger the analogue to digital conversion. The 10-bit ADC result was

automatically stored in a combination o f the two 8-bit Special Function Registers (SFR)

from where the ISR moved it to a data memory buffer. The successive results were stored

in contiguous memory locations and were available for onward processing.

4.4.4 Eight bit ADC Results

The selected MCU acquires analogue signals with 10-bit resolution but its processing

engine works on 8-bit numbers. Processing of 10-bit numbers effectively needs 16-bit

calculations requiring longer code and processing times. An easier approach can be to use

only the most significant 8-bits data from ADC result. The author tested this approach

whereby the most significant 8-bits only were used. The remaining two bits were ignored,

thereby reducing the software overhead. It was observed that the acquired signals were

less clear with reduced resolution but remained sufficient for the intended rough

estimation of signal health. It was still possible to differentiate between signals from

normal and abnormal process states. The findings from previous studies for PIC based

analogue signal acquisition systems had also indicated the same results (Ahsan 2002,

Amer 2002).

As the approach taken in this study is to discard normal signal data, a first layer check can

be implemented based on the limited resolution 8-bit data and an initial decision of

normal/abnormal status can be made within a front-end node. Information from several

front-end nodes is combined at the second layer o f hierarchy to ascertain the likely cause

o f a detected abnormality. For cases where the second hierarchical layer is unable to

reach a conclusion, the third layer server-side o f hierarchy may be instigated and all

69

nodes set to transmit data to the third layer. Each FEN would not be processing the

acquired data in such cases and would simply forward the acquired signal data.

4.4.5 Data Storage

Data resulting from acquired signals is further processed to find out the fault symptoms

and features hidden within it. Data acquired from digital sources is easily stored and

requires only small structures in data RAM. The storage of analogue data, on the other

hand, requires a larger space. The first choice for data storage in the PIC 18F458 was its

internal RAM. The microcontroller has 1536 bytes of RAM and the storage space

available for signal data storage is therefore very limited. One approach is to process the

data quickly so that it can be disposed off before being over-written by new data.

Discarding the data quickly without resource to any other storage media was the approach

taken in this research. Also the decision to store only the 8 most significant bits of any

ADC signals effectively reduced the data memory requirement by 50%. It was therefore

possible to store signal data for twice the duration that was possible with 10-bit data. The

MCU data memory is divided and bank switching is required for direct memory access.

The author therefore used indirect memory addressing to manage data storage. This

resulted in efficient data storage coding via the use of the three available 12-bit pointers

in the MCU with pre- and post- increment, post-decrement, and base plus index options

for faster execution.

For circumstances where the PIC’s built-in RAM is not sufficient, other types of built-in

memory can be used. The MCU contains 256 bytes o f eeprom memory, which has the

primary purpose of storing long time temporary variables such as configuration settings

but can also be written to under software control. Ahsan (2002) evaluated eeprom as

storage memory for a PIC 16F877 MCU and found it to be implementable but slower

than RAM. Ahsan (2002) also deemed it feasible to store data in flash program memory

as the MCU can write to its own program memory under software control. The program

memory consists of 16384 words and can provide reasonable data storage in cases where

ample space is left unused by the program code. Typical cell endurance of 1M cycles for

eeprom and 100K for flash memory (PIC 18FXX8 Data Sheet, 2001) makes it possible to

store data in these memories which are actually not designed for data storage. These

options provide additional storage space inside the microcontroller without using external

memory. Adding external RAM increases the system size and cost and was therefore

70

avoided in this research, but is possible and its details for PIC based monitoring are

provided by Amer (2002).

4.5 SIGNAL ANALYSIS

Analysis routines were developed in both time and frequency domains so that the hidden

fault symptoms in signals can be located. Various time domain methods for monitoring

applications were evaluated for 8-bit microcontrollers in light of their limited processing

capabilities. The author developed a new technique for frequency analysis which was

suitable for 8-bit MCUs because o f its lower mathematical complexity.

4.5.1 Time Domain Analysis

Analogue signals require more processing than digital ones. Time domain analysis for an

analogue signal can be divided in two types. In the first type, every new sample of the

signal is analysed as soon as it is acquired. In the second type, several samples are stored

in a buffer before they are processed together. This kind of processing may be repeated in

a real-time system on every new sample obtained after the first calculation. This therefore

becomes a moving window calculation approach.

A sample from an analogue signal can be checked as soon as it is acquired. Its value can

be matched with some expected value to determine the deviation o f the physical signal.

Such deviations may be used to indicate a non-nominal status when they are outside

defined upper and lower threshold values. Threshold crossing on the positive/negative

side usually indicates different faults and should be used to establish fault isolation. The

threshold levels o f course need to be ascertained, based on process knowledge and

history. In the current research, the FEN needs to acquire data and present it to the

developer for detailed analysis during a system study. Possible or expected faults may be

introduced in the process and their impact on the signal recorded and analysed so that

fault resolution can be achieved. The signals for the monitoring system development were

initially generated from power supplies and later on via an analogue output interface card

in a computer. Various signals were generated in Matlab and output using a signal

generation card to test the analysis routines. The author did not regard isolated instances

of threshold crossing as evidence of abnormality in this research. A single threshold

71

crossing can be a response to external noise rather than a persistent fault o f the type being

identified here. The number o f samples to be included depends on the application

sensitivity and the selected threshold value, and is therefore application dependant. A

code variable is used to count the number of samples showing persistent behaviour and is

compared to a user configurable preset value. Any persistent abnormality is reported to

the second layer of hierarchy where other evidence of abnormality can also be taken into

account before raising an alarm.

Thresholds can also be applied on processed data such as mean value or running sum. The

author developed code to calculate the sum, running sum, mean value, variance, and trend

detection on a predefined number o f samples for which calculation was attempted.

Acquired data was temporarily stored in a buffer for such computations and was

overwritten by new data once the calculation results were found to be within threshold

limits. A flag was set in cases o f abnormality detection and this status was communicated

to the second hierarchical layer. The moving average of the acquired data was also

calculated over a predefined number o f samples.

The PIC 18F458 microcontroller was operated at its maximum speed of 40 MHz. With its

pipelined architecture, this results in 0.1 psecond time per instruction cycle. The codes

written for the analysis were checked for timings, based on the instruction cycles they

needed to execute. The achieved timings for various time domain analysis techniques are

shown in table 4.2.

4.5.2 Frequency Domain Analysis

Time series data analysis provides a useful insight into the process health status yet

several aspects cannot be covered with time series analysis alone. There may be certain

scenarios where a frequency domain analysis o f a signal may be more fruitful than the

time domain analysis. The presence or absence o f a particular frequency component may

indicate a fault in the system. The power content o f these frequency components may be

checked against predefined thresholds to generate fault symptoms. The Fast Fourier

Transform (FFT) is a widely employed technique for frequency analysis but is generally

considered too computationally expensive for 8-bit microcontrollers. Microchip provide a

FFT method for the 8-bit PIC17C42 microcontroller (Palacherla, 1997). Lacoste (1998)

72

Feature Input O utput Tim e

Summation N 8-bit samples (N< 255) 16-bit 2+7*N Instruction cycles
3.7ps for N=5

Running sum 8-bit sample 24-bit 6 Instruction cycles fixed, 0.6ps

Mean value N 8-bit samples (N< 255) 8-bit quotient,
8-bit remainder

217+7*N Instruction cycles
25.2 |is for N=5 (3.7ps for
sum +21.5ps for division)

Variance N 8-bit samples (N< 255)
8-bit Mean value

24-bit 10+22*N Instruction cycles
12ps for N=5

Window sum 8-bit sample 16-bit 10 Instruction cycles, lp s

Trends 8-bit sample Flag 18 Instruction cycles maximum
1.8|is maximum

Moving
average

16-bit window sum
Number o f samples

8-bit 227 Instruction cycles fixed
22.7ps

Table 4.2: Achieved timings for various time domain analysis techniques

implemented FFT on a PIC 17C756 microcontroller but its resolution was very low

(64Hz) which had some applicability to audio applications. The windowing required

before applying FFT is also considered to be a computationally expensive task.

Microchip’s new 16-bit microcontrollers, called dsPICs, have a software library for

windowing and FFT routines but are limited to 256-points which may still not provide

satisfactory results.

Another way to detect the presence of a certain frequency component in a signal is to use

a narrow bandpass filter with the pass band centred at the target frequency. Bandpass

filters can be implemented as analogue or digital filters. Microchip provides an

application note for implementing Finite Impulse Response (FIR) and Infinite Impulse

Response (IIR) digital filters using its 18x series of PIC microcontrollers (Ramu, 2002).

On investigation however it was observed that the given implementation is resource

intensive especially concerning the use o f pointers for indirect memory addressing. All

three available pointers were used in the implementation and the monitoring system,

proposed in this research, would require pointers for communication tasks. Another

limitation for implementing digital filters was their memory requirements, especially for

FIR filters.

73

The author has therefore developed a sweeping filter technique, for frequency analysis

using a programmable analogue filter (Ahsan et al, 2004). Figure 4.4 shows the block

diagram of the sweeping filter system. Signal acquisition applications generally have an

anti-aliasing filter at the input stage which was replaced with a programmable filter in this

technique. The signal was provided to a precision programmable analogue filter

controlled by the microcontroller in bandpass filter mode. The microcontroller swept the

range of frequencies o f interest, band by band, and determined signal strength in each

band. It acquired the filtered signal for one time-period for maximum frequency in a

particular band. It determined the maximum and minimum amplitude values in the

acquired data and thus calculated the peak to peak amplitude difference. This amplitude

difference was taken as a measure o f signal strength for the frequency component in that

band. The width of the band thus became the resolution of the frequency analysis. The

microcontroller then shifted the programmable filter settings to the next band centre-

frequency and repeated the process. The entire frequency range of interest was swept in

this way generating a total profile of the signal.

Si gnal Signal
Conditioning

Circuit

Clock

Programmable
Filter

A i i A
✓ 7 , 5

/ /
Mode Gain Control Word

MICROCONTROLLER

PWM PWM
Generator Timer

Sampling
Timer

ADC
Storage
Memory Processing

Digital
Output
Ports

Results
 ►

Figure 4.4: Block diagram o f sweeping filter system.

74

Maxim’s MAX264 precision programmable analogue filter IC was used in this research

(MAX263-MAX268 Data sheet). It contained two second order filters, configurable as

low-pass, high-pass, band-pass, or notch filters individually. These could also be

cascaded to provide 4th order filtering. They were controlled by the same programmable

gain, mode, and frequency control inputs, as shown in figure 4.5.

CLXn L T Z * A
(•OKI NOTCH)*5V

Q LOGIC MODE

Mloe

Figure 4.5: MAX264 filter block diagram [MAX263-MAX268 Data sheet]

The actual cut-off frequency for a bandpass filter is a function of clock rate, frequency

control word, and the operating mode of the filter. The MCU controlled all these

parameters and a resolution of 1 Hz bandwidth was achieved for the normal frequency

range of interest. The PWM module in the microcontroller provided accurate clock rates

to the filter IC reducing load on the 8-bit processing engine. The actual filter response

deviates from the ideal one, especially for lower gain and input-clock/cut-off frequency

ratio, but the deviation being predictable was eliminated.

A range of signals were generated to test the sweeping filter approach. A lOOmV peak to

peak amplitude sine wave of 20Hz frequency was used as an input signal and figure 4.6

depicts the sweeping filter output. The calculated difference (maximum - minimum)

provided the relative strengths (peak to peak) of various frequency components in the

signal. The filter was configured for 1Hz bandwidth with a quality factor (Q) o f 16. The

75

input signal was correctly analysed and a peak at 20Hz frequency can be seen in figure

4.6. The neighbouring frequency bands showed relatively higher strengths because o f the

filter band but were lower than the 20Hz principal component. A peak strength value of

60 was achieved in this test but a higher value may be desired to achieve better decision

making. That can be achieved by using higher amplitude input signals. Effects of input

signal amplitude on the acquired peak value can be seen in figure 4.7 where wider peaks

are visible due to increased strengths in all components. Signal amplitude beyond a

certain voltage caused filter saturation and peak suppression in the output was observed

for 500mV input as shown in figure 4.7. The maximum possible number attainable with

8-bit computations is 255 theoretically but practical constraints reduced the achievable

upper limit.

Another factor affecting sweeping filter performance was filter quality factor (Q) which is

the ratio o f centre-frequency to bandwidth and can be programmed from 1 to 64 for a

MAX264 filter IC in 128-steps (MAX263-MAX268 Data sheet). Figure 4.8 shows the

effect o f Q on achieved strength value with a 1 OOmV sine wave input. Larger separation

between principal and neighbouring components can be seen with increasing Q. This

provided better decision making opportunities by providing larger range for threshold

placing. Increased Q value caused filter saturation at lower input voltages and actual

parameter selection had to be a compromise.

Square wave inputs were provided to the sweeping filter in order to observe its harmonics

detection behaviour. Figure 4.9 shows results for a 10Hz square wave input signal with

lOOmV amplitude. The microcontroller successfully detected the fundamental frequency

of the periodic waveform as well as the expected harmonics at 30Hz. The harmonics

strength was lower than the fundamental component, as expected. This showed the

sweeping filter’s capability to isolate multiple frequencies present in a signal. Care was

however required about the minimum separation between frequency components. Band

overlapping may occur for two close-by components enhancing the total signal strength

for components between them. Figure 4.10 shows this limitation where input signal

contained 20 and 24 Hz components at lOOmV amplitude. The microcontroller showed

high strength values for both components but the in-between components showed false

strengths.

76

St
re

ng
th

(p

ea
k

to
p

ea
k

).
St

re
ng

th

(p
ea

k
to

pe
ak

).
60

50

40

30

20

10

0
5 10 15 20 25 30 35 40

Frequency (Hz)

Figure 4.6: Detection of lOOmV 20Hz sine wave

250

200

150

100

50

0
15 20 25 35 405 10 30

Frequency (Hz)

—♦—lOOmV —*-2 0 0 m V —A—300mV -H -400m V -* -5 0 0 m V

Figure 4.7: Higher amplitude sine wave detection

77

Q.
O

£|Cfic
I
<35

120

100

80

60

40

20

0
5 10 15 20 25 30 35 40

Frequency (Hz)

-Q8 -Q16 -Q64

Figure 4.8: Detection of lOOmV 20Hz sine wave with Q values o f 8, 16, and 64

120

9oO.
O
C3
aJZ
obc<u

100

80

60

40

20

0
10 15 20 25

Frequency (Hz)

30 35 40

-Q8 ■Q16 -Q64

Figure 4.9: Harmonic detection for Q 8, 16, and 64

78

120

100

&
0
a
aJZmc
1
on

20

0
5 10 15 20 25 30 35 40

Frequency (Hz)

Figure 4.10: Multiple frequency detection

60

The detected strength o f a particular frequency component, when compared with a

predetermined threshold, determine the presence or absence of that component and can be

used for monitoring decision making. Such detections are also possible during a sweep as

each band results are calculated independently. This approach is particularly effective in

applications where the frequencies of interest are already known. The filter can be set to

sweep only those particular frequencies, rather than the whole range, to speed up the

detection process.

4.5.3 C ircuit Design

Interface circuits were designed to test the proposed acquisition and analysis methods.

The circuit board developed for testing time domain analysis is shown in figure 4.11. The

circuit contained external memory where accumulated data and processed results were

stored. A serial link was provided to transmit the memory contents to a PC where

processed results were verified. The link was also used to present acquired data to the

developer for threshold determination. The data thus gathered was also used for a

frequency domain analysis on the computer before the sweeping filter technique was

developed. A CAN bus interface was also provided on the PCB. In a later generalized

design, the input signal was connected to a set of jumpers that connected the signal to the

79

appropriate MCU pin. A choice was available to connect the signal to a digital input port,

analogue input channel, timer/counter input, or external interrupt input. Another circuit

was designed for frequency domain analysis using the sweeping filter technique and

shown in figure 4.12. It was assumed in both circuits that necessary conditioning had

already been done and the signal was connected to the microcontroller directly. Suitable

input switches and output LEDs were also connected to these circuits to control program

flow and display various tests outputs.

Figure 4.11: Time based analysis circuit

Figure 4.12: Frequency based analysis circuit

80

4.6 SUMMARY

The need for a low-cost generic monitoring system was identified via the literature review

in chapter 3. A distributed and hierarchical monitoring system was proposed in this

chapter as a generic solution. Cost-effectiveness is attained by using 8-bit

microcontrollers. One MCU was dedicated to each process signal, thus placing it close to

the sensor (or ideally inside the sensor assembly). A general overview of such a system

was provided in this chapter along with signal acquisition and analysis details. The

limited resources o f the 8-bit MCUs constrained the signal analysis levels and simple

computations on sampled 8-bit A/D data were used. Small subroutines were seen to be

effective for time domain analysis but problems were faced in attempting frequency

domain analysis. A novel sweeping filter technique was therefore developed and good

results were achieved. It is believed that programmable filter chips have not previously

been used before for industrial signal frequency analysis in collaboration with

microcontrollers and this aspect provided innovation in this research.

The feasibility o f a monitoring system based on 8-bit microcontrollers was established in

this chapter. This provided the base or first layer of hierarchy in the overall monitoring

system. Several first layer nodes were connected with each other and with a

synchronising and user interface node to establish the second layer of this hierarchy. The

details of node connectivity to form a working system are provided in the next chapter.

81

Chapter 5
DISTRIBUTED MONITORING SYSTEM

A brief introduction to the concept of a distributed monitoring system with hierarchical

layers was provided in chapter 4 along with details of the signal acquisition and analysis

by front-end nodes. Individual results emerge from all first level FENs in the hierarchy of

the distributed monitoring system. These results are combined at the second

computational layer o f the hierarchy to form a holistic view of the process at any point in

time. A communication medium, CAN bus, was provided between the FENs and other

network devices for information exchange. One node on the CAN bus was used to

provide the user interface. This node can accept a user command and communicate it to

the FENs. It provided synchronization o f the system and was called the Synchronization

& User Interface Node (SUIN). It also presented the monitoring decision results to a user,

who may be at a remote location. This chapter details how the system was set up for

individual FENs to communicate with each other and with SUIN. It also introduces the

integration of results and possible decision making processes.

The SUIN was developed using an 8-bit microcontroller (for similar reasons to those

explained for FENs in chapter 4). The SUIN forms the second layer in the hardware

hierarchy as shown in figure 5.1. The computational hierarchy second layer may however

be between the SUIN and FENs in this development to allow flexibility in the way they

collaborate to reach a conclusion for a particular application. Implementation details are

provided in this chapter. The SUIN was developed to communicate with the user(s) over

the Internet. Multiple application layer protocols, such as Telnet or HTTP, are used for

this purpose and run on top of the TCP/IP stack. A brief introduction to these protocols is

provided in section 5.2.3. The developed code can serve multiple remote users

simultaneously. The author believes that no real-time process monitoring system has

previously been reported based on a 8-bit microcontrollers’ decision making powers. The

reported monitoring system is an attempt to find as many as possible faults at the first and

second layers (implemented solely on 8-bit microcontrollers) although it allows the use of

a server-side PC or other high power processor at the top third layer which can then be

dedicated to specialized and high level processing.

82

Remote user Third layer processor

T h ird layerIn te rn e t

Rem ote developer E thernet

S e c o n d la y er

CAN Bus

F irst layer
FEN NFEN 2

SUIN

FEN 1

i i r
Signal 1 S ignal 2 Signal N

Figure 5.1: The developed monitoring system with hardware layers

5.1 FIELDBUS

Fieldbus is the general name for any shared digital communication medium used to

connect various instrumentation in the field. There is no general consensus about what a

fieldbus specifically means but it has to be an all-digital communication network. Various

protocols for fieldbus are available such as Profibus, DeviceNet, Foundation fieldbus and

CANOpen. A fieldbus protocol specifies the physical medium for communication and the

associated messaging in a data link layer. It also specifies some higher level protocols

required for applications using it. Controller Area Network (CAN) bus is a widely

deployed communication medium used in noisy environments (automotive, industrial)

that defines physical and data link layers. Higher layer protocols are added to it to form

fieldbuses such as CANOpen and DeviceNet. The CAN bus was selected to connect

network nodes in this research.

5.1.1 Controller Area Network

The Controller Area Network (CAN) bus communicates digital messages over a

differential pair o f wires. It was initially designed by Bosch for motor cars where

83

electronic devices are spread all over the body (Robert Bosch web site). This causes a

complex wiring loom and CAN is an effective protocol to reduce this clumsiness.

Another important aspect in cars is the noisy environment where ignition switching,

generator, spark plugs, etc. produce a lot of noise. The CAN protocol was designed in

order to work reliably in such severe conditions. The industrial environment is

traditionally very noisy and CAN’s noise immunity gives additional benefit in this

environment. CAN has developed into a mature industrial standard over the years and

was internationally standardized in 1993 as ISO 11898 for serial data communication

(CAN in Automation: Home, web site). Several standards are available for various CAN

variants such as Fault Tolerant CAN and Time Triggered CAN.

A reduction in wiring complexity is a major advantage of CAN which works on two-wire

balanced system with CAN High (CANH) and CAN Low (CANL) wires. A logic 0 bit is

transmitted on the bus as ‘dominant’ bit where the CAN high (CANH) wire goes to

+3.5V and the CAN low (CANL) wire goes to +1.5V. A logic 1 bit is transmitted as a

‘recessive’ bit with both wires at +2.5V level. The ISO standard specifies twisted pair

wires but other physical media, like radio and optical links, have also been used

successfully. CAN provides a maximum throughput of 1Mbps at a distance up to 40

meters (130 ft). Longer cable lengths are possible at reduced data rates, such as 1km at 50

Kbps (CAN in Automation: CAN Dictionary, web site). Figure 5.2 shows the wiring

connections between CAN nodes. The bus works in ‘logic AND’ i.e. a dominant bit

overwrites a recessive bit. Two nodes may try to transmit a recessive and a dominant bit

at the same time and the discrepancy is used for bus arbitration.

CAN L

C A N H

1000Meters {Max}
Bus Length

 — ■

UTParSTP

Difleieiitial
Driver/Receiver

GND
120 ft

Termination
Resistor

Tx

Rx

GND

Tx

Rx

GND

Figure 5.2: CAN Bus (Leroy Davis, web site)

84

CAN defines message types, arbitration rules for bus access, and methods for fault

detection and confinement. It is a broadcast type bus and every node transmits on the

same line. The messages do not contain any explicit address and are said to be content-

addressed. All nodes o f the bus receive all the messages and pick up the related message

using local filters. Bus arbitration is based on message identifiers where lower identifiers

have higher priority on the bus. Each transmitter starts transmitting its message when it

finds the bus is in idle state. Several transmitters may start transmission at the same time.

Each node monitors the bus state while transmitting and aborts on finding a discrepancy

between sent voltage level and the actual voltage level on bus. It then starts receiving the

incoming message transmitted by some other node. Bus arbitration is thus undertaken

with a ‘Carrier Sense Multiple Access with Collision Avoidance’ (CSMA/CA) access

control mechanism.

The original CAN standard contained an 11 -bit identifier as an arbitration field. Later on,

this field was extended to 29 bits on customer demand. A reserved bit in the control field

differentiates the two CAN standards. The 11-bit standard is now known as CAN 2.0A

and the 29-bit standard is called CAN 2.0B or ‘extended CAN’ (Kvaser, web site). Up to

8 data bytes can be attached with an identifier in a CAN message.

A data message on a CAN bus contains several fields in order to accomplish bus

arbitration, synchronization, and information transmission. Figure 5.3 shows the

sequential flow of the bits in an extended CAN data message. The message starts with a

Start o f Frame (SOF) bit followed by a 11 or 29 bit identifier field. Control bits in the

message indicate which type of identifier is being used and the Data Length Code (DLC)

bits specify how many bytes of data are attached within the message. A message may

contain 0 to 8 data bytes. 15-bit Cyclic Redundancy Code (CRC) is also included in the

message (for error control) followed by ACK and End o f Frame (EOF) bits. More

detailed protocol descriptions are available at (PHYTEC, web site). The Intermission

Frame Space (IFS) gives the number of bit-times required for the bus to be idle before a

node can start sending its message after a previous message on the bus. The IFS for

extended CAN is greater than standard CAN for error protection reasons. A standard

CAN message also has higher priority in bus arbitration than extended one.

85

1 29 bits 1 1 1 4 bits Up to 64 bits (0 to 8 Bytes) 15 bits 1 1 1 7 bits 3
C A

s R I R A C
Idle 0 Identifier T D R DLC DATA CRC C C K EOF IFS

F R E K
D D

Arbitration Field Control Field

SOF Start o f frame
RTR Rem ote transmission request Dom inant for standard

R ecessive for remote
IDE Identifier extension Dom inant for standard

R ecessive for extended
R Reserved
DLC Data length code
CRC C yclic redundancy code
CRC D CRC delim iter A lw ays recessive
ACK A cknow ledge Dominant for ok

R ecessive for error
ACK D ACK delim iter A lw ays recessive
EOF End o f frame A lw ays recessive
IFS Intermission frame space A lw ays recessive

Figure 5.3: Extended CAN data message bits

In summary, CAN protocols provide excellent error handling. A Cyclic Redundancy

Check (CRC) is added with each frame and frame formation and acknowledged errors are

checked. The transmitter checks the bus status during transmission and any discrepancy is

detected immediately. Bit stuffing is used if five consecutively transmitted bits have the

same logic level. The stuffed bit has a level complimentary to the transmitted ones and is

removed by the receiver. Bit stuffing provides edge synchronization and avoids excessive

dc components on the bus but prolongs the transmission time. The worst-case

transmission time o f an 8-byte frame with an 11-bit identifier is 134 bit times, i.e. 134

microseconds at 1 Mbits/sec baud rate (Leroy Davis, web site). After transmission of an

erroneous message that has been aborted, the sender automatically re-attempts

transmission. The CAN protocol also provides a statistically-based mechanism to

distinguish sporadic errors from permanent errors and local failures at a node. A faulty

node can switch itself off and does not then negatively affect the whole system (CAN in

Automation: CAN protocol, 2005).

As stated, the author selected CAN bus for inter-node communication in this research

because o f its superior performance in noisy environments. A number of aspects were

considered and the selection reasons are summarised below:

86

• Only an unshielded twisted pair of wires is required reducing cabling cost.

• Differential communication provides immunity to noise.

• Multiple error checking systems make it robust.

• Filters available in the CAN protocol discard un-related network traffic and the

processor is disturbed only when a message of its interest is received.

• Reasonable data rates are possible at reasonable bus lengths.

• CAN is a time tested and widely accepted proven protocol.

• CAN enabled devices are already in successful use in industry.

• No upper limit is imposed on number of possible nodes on the bus.

• CAN controller hardware is available inside 8-bit MCUs reducing circuit size,

cost, and interface load on the processing engine.

A maximum possible data rate o f 1 Mbps is permissible under CAN protocols for bus

lengths up to 40m. This may be sufficient for many monitoring applications but a 125

Kbps data rate was selected to allow longer bus lengths and a more generally applicable

system. The reduction in bus speed was eventually compensated in the developed design

by reducing the network load by taking first level decisions at acquisition nodes. Other

measures for reducing network traffic are explained later.

5.1.2 CAN in PIC 18F458

The PIC 18F458 has a built-in CAN controller and only an external transceiver is

required to connect the MCU with the CAN bus. The built-in CAN controller has three

transmit and two receive buffers. A message from a higher priority buffer is sent on the

bus before a lower priority one. It is thus possible to send an urgent message in front of

queued up messages. Figure 5.4 shows a simplified diagram for CAN protocol

implementation in the PIC 18F458.

The CAN engine receives all transmitted messages and filters the messages’ identifiers in

order to select the messages to store in the receive buffers. Two acceptance filters are

available for receive buffer 0 (RXBO) and four for receive buffer 1 (RXB1). It is possible

to check only specific bits in the identifier and an acceptance mask is available for each

receive buffer. A node can therefore filter out the messages o f interest to it from all the

bus traffic. The processor is thus not disturbed by excessive network traffic. The PIC

87

M essage queue control

CRC register

Transmit buffer 0, 1 ,2

M essage assem bly bufferTransmit buffer sequencer

Error counter

Protocol finite state machineB it tim ing generator

M ask &
Filters

RXBO

M ask &
Filters

RXB1

RECEIVERTRANSMITTER

PROTOCOL ENGINE

Tx Rx

Figure 5.4: CAN protocol implementation in PIC 18F458

18F458 can transmit and receive messages with both standard and extended identifiers

and can be configured to use only one o f them if required. It can also be configured to

receive all messages or only valid messages. The MCU has the overflow reception

capability and a message intended for RXBO can be stored in RXB1 when RXBO is

already full. A received message is thus protected from overwriting providing enough

free time for the MCU to shift the first received message to RAM.

5.2 SYNCHRONIZATION AND USER INTERFACE

In the developed monitoring system the Synchronization and User Interface Node (SUIN)

was central to the distributed system. The SUIN takes a user’s command and

communicates it to networked acquisition nodes (FENs) ensuring that the whole system

works in unison. It is also responsible for displaying monitoring results to users in real

time. The SUIN was designed to provide access to a remote user and/or developer via the

Internet. Its connection to FENs via the CAN bus was also used to obtain process signal

information from the FENs. Thus, the SUIN was not directly interfaced with sensors and

did not require a microcontroller with built-in signal acquisition hardware. The

microcontroller selected for the SUIN needed to support CAN and have the ability to

handle a burst of messages without any message being over-written by the next received

88

message. This was required because all FENs would communicate with it asynchronously

and may try to send messages at the same time. This scenario was considered to be highly

likely in case o f an abrupt fault occurance when several FENs would detect abnormal

conditions at around the same time.

It was decided that only limited number of output signal interfaces would be required for

local annunciation and that the primary user interface was a remote one via the Internet.

The SUIN microcontroller needed to have the capability to interact via the Internet

through either an Ethernet or telephone modem connection. Another important

consideration for this node was its memory requirements. While dealing with several

FENs and remote users simultaneously, the microcontroller would almost certainly

require a larger memory than typically built into the current generation of

microcontrollers. The MCU architecture should therefore support external memory

without significant software overheads. The author selected a Dallas Semiconductor 8-bit

microcontroller (DS80C390) to provide the SUIN functionality. The details of this 8-bit

microcontroller and reasons for its selection are provided in the following section 5.2.1.

5.2.1 80C390 Microcontroller as SUIN

Dallas Semiconductor’s 80C390 is an 8-bit microcontroller that provides an extension of

the very popular Intel 8051 family o f microcontrollers (Dallas Semiconductor, web site).

It improves on the 8051 MCU’s 12 clocks per instruction cycle to 4 clocks per instruction

cycle and can work with clock frequencies up to 40 MHz. A single cycle instruction can

therefore be executed in 0.1 microseconds and the MCU can work at up to 10 MIPS.

The MCU contains two built-in CAN controllers with dedicated memory for multiple

Message Centres (MC). A CAN controller in the MCU can be configured to work with

standard or extended CAN. Message Centres (MCs) are used for message transmission

and reception by each controller. A controller has 15 MCs and 14 of them can be

configured either for transmission or reception. The fifteenth MC has different hardware

and is designated as a First-In First-Out (FIFO) buffered receive-only MC to help prevent

data overruns. 512 bytes of RAM is reserved for these message centres. This memory is

in addition to the built-in SRAM and scratch pad memory. The author has utilized the

high number o f MCs to receive any bursts of messages without any message loss. One

message centre was dedicated to each FEN and simultaneous messages from different

89

FENs were received in different MCs. This method ensured that no unread message could

be over-written by another message. Separate handshaking and timing control for each

FEN ensured proper message reception. This capability was identified as an essential one

for SUIN functionality and played an important role in the selection of this

microcontroller.

The Dallas Semiconductor 80C390 MCU contains 4 KB built-in SRAM and 256 bytes of

RAM as scratch pad area in addition to the memory dedicated to the CAN message

centres. The MCU architecture also supports easy interfacing to external memory and a

22-bit program counter can access up to 8 MB memory (4MB for program and 4MB for

data). Two 8-bit ports are dedicated to the external memory interface. The memory

arrangements thus met the identified SUIN requirements.

Other attractive features included a hardware math accelerator providing fast execution of

32- and 16-bit multiply and divide operations. The accelerator output from the multiply

and divide operation is automatically added to a 40-bit accumulator providing multiply-

and-accumulate (MAC) and divide-and-accumulate functions which are useful in DSP

operations. The math accelerator also provides a normalize function that converts 4-bytes

unsigned binary integers into floating point format. The MCU also contains dual data

pointers with increment/decrement features to speed block data memory moves. These

features were found useful later on when the author developed Java codes for the SUIN.

Other useful MCU features include four 8-bit I/O ports (other than the two used for

external memory), two serial ports, three 16-bit timers/counters and support to 16

interrupt sources including 6 external sources. Appendix B shows the block diagram of

80C390 microcontroller.

Easy Internet access had been identified as another important requirement for the SUIN.

Popular methods o f interfacing a processor with the Internet either use an Ethernet

controller or a telephone modem with dial-up connection. The author was unable to find

any microcontroller with any of these two options at the time of the SUIN MCU

selection, although microcontrollers with built-in Ethernet controller circuitry emerged

soon afterwards. An example of such microcontrollers is 80C400 MCU where Dallas

Semiconductor replaced one CAN controller of 80C390 MCU with an Ethernet

controller. The 80C390 MCU however contained ample resources to communicate on the

90

Internet. A commercially available embedded system, Tiny InterNet Interface (TINI), that

included an Ethernet controller interfaced to a 80C390 microcontroller was sourced and

selected for the SUIN platform in this research.

5.2.2 Tiny InterNet Interface (TINI)

TINI is a platform developed by Dallas Semiconductor that consists of a TINI stick and a

TINI socket (Eisenreich and Demuth, 2003). The stick contains the 80C390

microcontroller with an Ethernet controller, memory, and real-time clock interfaced to it.

It is available as a small PCB in shape o f a 72-pin module (similar to a 72-pin Single

Inline Memory Module (SIMM)). The TINI socket holds this stick and provides

connecters so that it can communicate with the outside world. Revision D of the TINI

stick provided 1MB RAM and 512 KB flash memory and worked with a 36.864 MHz

clock. A LAN91C96 Ethernet controller was used to interface the MCU with Ethernet.

This has a 10-Base-T protocol and a maximum connection speed of 10 Mbps. The

complete TINI hardware set was purchased for £67. Table 5.1 provides a comparison of

TINI with some other Internet enabled embedded devices (commercially available at the

time of its selection). It can be seen from the table that although Internet access was not

rare for embedded devices the provision o f CAN with Internet access was not generally

available at that time.

The purchased TINI contained a loader program in its flash memory which was used to

upload other software. Dallas Semiconductor provided a PC program, JavaKit, to

communicate with the loader through a serial port. A provided file, tini.tbin, contained the

basic firmware and was uploaded in the stick memory using JavaKit. This firmware

provided boot-up code to the TINI and included Java Virtual Machine (JVM) and

Application Program Interface (API). The JVM provided access to core Java packages

such as java.lang, java.io, and java.net. and APIs were used in application programs

developed for process monitoring. The firmware supported multi-users access and multi­

tasking was possible with programs having their own threads.

A Unix-like shell, Slush, was installed in the TINI memory. This provided a command

prompt environment where user could enter commands. A user has to login, with a

username and password, to access the system resources Telnet, TTY, or FTP servers. It

was possible to assign permissions and privileges to different users, as with Unix.

91

Device Processor
Memory

Flash/RAM

Internet

protocols

Serial

ports

Preferred

language

Network

connection
Price

EtherNut
Atmel

Atmega 103
128K/32K

TCP/IP

HTTP
RS232 c lObase-T $125

N etl8 6
AMD

AM I 86-EX
512K/512K

TCP/IP

HTTP
RS232

c
Assem bly

lObase-T $420

OT731
Microchip

PIC16F877
128K/368B

TCP/IP

UDP, PPP

RS232

RJ11
Assem bly

2400 baud

Modem
$299

Picoweb
Atmel

AT90S8515
8K/512K

TCP/IP

HTTP
RS232 Assem bly lObase-T $149

Rabbit

TCP/IP

Rabbit

microprocessor
512K/128K TCP/IP, HTTP SMTP, FTP

RS232

RS485
C lObase-T $199

Siteplayer
Philips

8051
48K/768B

TCP/IP

HTTP
- SiteObjects lObase-T $99

Snijder

EJC
ARM7TDMI 8M B/8M B

TCP/IP, HTTP

SMTP, FTP TELNET, POP3

RS232 RS485

I2C

TTL

Java lObase-T ?

SX Evak Kit
Scenix

SX52BD
32K/?

TCP/IP, HTTP

SMTP, DHCP
RS232 C lObase-T $199

TINI
Dallas Semiconductor

80C390
512K/512K

TCP/IP, FTP, TELNET,

DHCP, HTTP, SMTP

RS232

CAN

I2C

Java 10 base-T $85

Table 5.1: Comparison o f TINI with other Internet enabled embedded devices (compiled from Eisenreich and Demuth, 2003).

Java was the preferred language for TINI code development. Complete Java is not

supported for the TINI platform and resource intensive features such as serialization and

reflections are not fully implemented. Numerous useful features were however available

including multi-threaded programs and network support. The codes in this research work

were written with Standard Edition o f Java version 2 (J2SE) compiler, using only the

features implementable on TINI. The resulting Java bytecodes were converted to TINI

executable code using TINIConverter software. The converted code was uploaded to the

TINI and was stored in its file system. The file system provided an organized manner of

storage and supported separate sub-folders for each user.

5.2.3 Brief Introduction to Protocols

Communication, especially on the Internet, uses a large number of protocols to implement

various facilities with various options. This has resulted in a large number of protocols

each having its acronym. This section provides a brief introduction to various protocol

acronyms that were used in this research. CAN has already been explained and is not

covered in this section. Table 5.2 provides an introduction, including the port numbers

used by certain servers. A port is a 16-bit number typically associated with a particular

application layer service (Eisenreich and Demuth, 2003). The table also includes some

acronyms used in mobile communications used in this research. Further details of Internet

communication and protocols can be found in books such as Stallings (2004) and

Tanenbaum & Steen (2002). Global networks use very complex technologies and a

layered architecture is used for them. Tanenbaum (1996) provides detail o f seven layers

used in International Standards Organization’s Open System Interconnection (OSI) model

for networks. The Internet is practically working on a TCP/IP protocol suite which covers

transport and network layers o f OSI model. Application programs use the reliable

communication service provided by the TCP/IP suite. A reduced set of the OSI model is

also available for devices with low memory resources. This model covers the two lower

layers and an application layer (Frankowiak, 2004). The author connected the SUIN to

the Ethernet using a TCP/IP suite so that standard application layer programs could be

used. FEN codes were developed using the reduced OSI model as they only have the

memory built-in the MCUs. The robust CAN bus covers the two lower layers in the

implementation and application layer on top of it takes care of the remaining issues.

93

ACRONYM DESCRIPTION

Ethernet Ethernet refers to the family o f LAN products covered by IEEE 802.3 standard and is the

most popular standard for LAN (Cisco, web site).

FTP File Transfer Protocol manages uploading and downloading o f files. FTP server listens on

port 21 for client requests (Bentham, 2000).

GPRS General Packet Radio Service provides always-on access to network and is suitable for non

real-time Internet usage (Rappaport, 2002).

GSM Global System for Mobile communication is a universal digital cellular system with modem

network features extended to mobile users (Rappaport, 2002).

HTML Hyper Text Markup Language contains predefined mark up tags that tells web browser how

to display the web page (W3schools: HTML, web site).

HTTP Hyper Text Transfer Protocol provides a web page in response to a browser request. HTTP

server listens on port 80 for client requests (Bentham, 2000).

HTTPS Hyper Text Transmission Protocol Secure provides secure web pages with encryption.

HTTPS server listens on port 443 for client requests (Apple computers, web site).

IP Internet Protocol delivers packets obtained from TCP to intended destination through any

available path (W3schools: TCP/IP, web site).

SIM Subscriber Identity Module is a memory device that stores user identification number and

other user-related information for GSM (Rappaport, 2002).

SMS Short Messaging Service sends alphanumeric pages o f up to 160 characters between users in

real-time (Rappaport, 2002).

SMTP Simple Mail Transfer Protocol handles emails. SMTP server listens on port 25 for client

requests (Bentham, 2000)

TCP Transport Control Protocol is used for communication between applications running on

different computers connected through Internet. It sets up full duplex communication that

continues until one o f the applications puts an end to it. It breaks data into packets and hand

them over to IP for transmission (W3schools: TCP/IP, web site).

TELNET TELephone NETworking provides remote access for program execution. TELNET server

listens on port 23 for client requests (Bentham, 2000)

TTY TeleTYpewriter provides access for program execution through serial port and was

developed for text telephone services (NOAA, web site).

XML extensib le Markup Language contains user defined mark up tags and compliments HTML

(W 3schools: XML, web site).

Table 5.2: Protocols and acronyms

5.2.4 Human Interface

TINI provides three servers for user access to its resources namely Telnet, TTY, and FTP.

The author added a fourth one as an HTTP server. Telnet is an application layer protocol

94

on top o f TCP/IP stack designed to provide a remote user with a command line

environment. A remote user can access the TINI file system from his/her PC using the

password protected Telnet server. A program on a PC, usually Telnet.exe, presents a

logged in user with command line prompt. The user can then start/stop the execution of

any program on the TINI and can also use Slush commands (if permissions set). Telnet is

a powerful tool and access to this was restricted to the system developer/manager only.

The TTY server was shutdown (using a Slush command) since this is designed for serial

connection to a local PC rather than a remote access.

The FTP server can also be invoked by Internet Explorer software and files can be

downloaded from the TINI in a more user friendly way. Internet Explorer however does

not upload files to the TINI. A user cannot start/stop the programs on the TINI using FTP

but he/she can still replace good code with bad code either maliciously or by mistake. The

author therefore did not set such permission for ordinary users and reserved it for system

developer/manager access only. A policy to enable the FTP server only when required

was implemented.

The author did not consider the provided servers as safe media for presenting monitoring

results to ordinary users. He therefore developed a HTTP server to host web pages

showing the latest process status. Any user can access the web pages using a standard

web browser, such as Internet Explorer or Netscape Navigator. No username or password

is required to access such web pages and any interested person can see the results. Secure

web pages that require user login and encryption use HTTPS protocol. The author

considered this protocol too heavy for an 8-bit microcontroller already loaded with CAN

communication and decision making. He recommended a small dynamic web page

containing only the necessary information in coloured text and backgrounds. Use of

graphics cause more data traffic and was therefore avoided. The SUIN code, developed in

Java, generated HTML description for dynamic web page on-the-fly according to various

process variables’ status. Self-updating web pages were developed that refreshed

themselves regularly ensuring that the user gets the latest information. The refresh rate

(typically 10 seconds) of the page was included in the generated HTML code. Colours in

the web page were used to grab user attention and background colours differentiated in

normal and faulty conditions as well as under-control faults causing performance

deterioration.

5.2.5 Mobile Phone Interface

A monitoring alarm is supposed to be sent to appropriate personnel for immediate action.

The SUIN does update the web page code immediately on detection of an alarm

condition. The user, however, cannot see the updated web page until it is refreshed

because web browsers, such as Internet Explorer, do not allow any unrequested data to be

sent to them. They work on ‘puli’ technology and discard ‘push’ items. The web page

refresh rate should thus be sufficiently fast. A fast refresh rate however puts burden on

SUIN resources and a compromise is required. The SUIN can push information to

computers over the Internet but specialized software would then be required on the

viewers’ PCs. The aim o f this research was to use generally available software with no

need for proprietary software. A user can thus check the process status from anywhere in

the world on any computer. Another limitation with web pages is that a user may not be

close to a computer at the time o f alarm generation. The monitoring system should thus

have an alternate means to push alarm information to concerned personnel and mobile

phone technology was selected for that purpose.

Mobile phones can now be considered as widely used devices supporting text, image, and

voice communication with Internet access on GPRS and WAP. The monitoring system

was connected to a mobile phone network using a Machine-to-Mobile (M2M) engine

based on Sony Ericsson GR47 mobile device (that provided voice, SMS, MMS, and

GPRS facilities with a SIM interface) in the developed system. An 8-bit microcontroller

was connected to the M2M engine using serial communication and AT (attention) modem

commands extended by Sony-Ericsson for its mobile phones. Complete functionality of a

mobile phone can be controlled with the extended commands. The function used in this

research was to send SMS messages only. A PIC 18F458 MCU was dedicated to deal

with mobile communication. The PIC MCU contained several predefined text messages

with destination phone numbers. It received information from the SUIN to send a specific

message and acted accordingly.

5.3 FAULT DETECTION AND ISOLATION

The monitoring problem was divided into clear and simple logical decisions in order to

reduce the computational overheads. This required a clear understanding of the process in

96

terms of any inter-relations of its signals. To achieve this, “normal” data was gathered

from a healthy process under optimum conditions, and presented to the developer for

analysis. Various faults were then intentionally introduced into the process and the

resulting raw data was again captured. Fault finding procedures were then formulated

based on this experimental gained process knowledge and were then embedded in the

network nodes. This approach eliminated the requirement for any mathematical models of

the process.

All process parameters o f interest were individually acquired by a FEN mounted close to

the sensor. Each FEN was programmed to apply the most suitable analysis method to its

acquired signal such that it can then classify subsequent behavior as normal or abnormal.

The various nodes combine the results from their fault finding procedures and can make

process-related monitoring decisions at the first levels for the majority of cases. Any data

determined as “normal” was not presented for off-line processing, unless the system was

specifically put in data acquisition mode. This eliminated the need for data storage media.

The abnormality checks in each FEN could be applied to raw data, its calculated running

sum, or its calculated running mean value for example. Thresholds were defined for each

signal and signals were continuously compared, as appropriate, to either or both the upper

and lower bounds. Out of bounds results indicated either a fault or a disturbance.

Disturbances were generally expected to be of short duration and were noted but

ultimately ignored by the FEN. The longer term abnormalities were reported by the

detecting FEN to appropriate other FENs through a CAN message. Any FEN receiving

such a message checked its own status and forwarded the combined information as an

alarm message to the SUIN. The SUIN used this combined status information to isolate

the fault cause according to the knowledge rules provided at the time o f installation. The

SUIN updates the process status in its results file as soon as a change is detected. The

interested user can check the monitoring results on the Internet at any time. If a specific

combination of signal conditions occurs, which was not considered during the system

study the system will not be able to detect the fault cause and such a condition will be

reported to the user. An engineer can then perform detailed analysis on data obtained by

putting the monitoring system in data acquisition mode. The resulting newly gathered

knowledge will then be integrated in the existing code so that the system can

automatically deal with similar situations in the future.

97

5.4 CAN BUS MESSAGES

The monitoring system design consists of a SUIN and a number of FENs communicating

through CAN bus connections and protocols. Each FEN performs its duty according to

the signal it acquires. The SUIN is used to start/stop the monitoring process by conveying

user commands to the FENs. It also generates a holistic view of the process being

monitored, by gathering information from FENs, and provides it to the user via the

Internet. The SUIN determines the number of active FENs in the system at boot-up and

keeps an eye on new arrivals or departures of FENs. It thus provides plug & play

capabilities to the system enabling it to function in changing situations. All nodes o f this

distributed system send CAN messages to each other to share information. The devised

message structure for such communication used the extended CAN protocol with a 29-bit

identifier. 4 bits were used for source node identification and another 4 for destination

node identification. Their placement in the identifier is shown by the S and D bits

respectively in figure 5.5. Further, the structure reserved 8 bits for message types, shown

as T bits in figure 5.5, to allow up to 256 different message types. The 15 message types

used in the monitoring system development to date are listed in Table 5.3. The details of

these message types and their roles are described in the following subsections. In the 29-

bit identifier eight additional bits indicated message sub-types (shown as M bits in figure

5.5). The sub-types were used to indicate message number during bulk data transfers. A

missed number in this field indicated a message loss to the receiving node which would

then generate a re-send request. The five remaining bits in the identifier were unused and

thus available for future system enhancements. The unused bits were assigned logic 0 in

the implementation.

T7 t 6 t 5 t 4 t 3 t 2 T, T0 X X X X X s 3 S2 S, So D3 d 2 D, D0 m 7 M6 m 5 m 5 m 3 m 2 M, M0

28 0

T Message type
X Don’t care
S Source node identification number
D Destination node identification number
M Message Sub-type (message number)

Figure 5.5: CAN message identifier

98

M essage Type Code O riginator Receiver Purpose

START Olh SUIN All FENs Start monitoring

ACK 03h FEN SUIN Acknowledge START

ERR 07h FEN SUIN Abnormal signal detected

OK 08h FEN SUIN Normal signal detected

EVENT 09h FEN FEN Event detected

REBOOT 02h FEN SUIN FEN powered-up

WELCOME 04h SUIN FEN N ew FEN start monitoring

ACQ 06h SUIN All FENs Start data acquisition

DATA OAh FEN SUIN 8 bytes o f data

NEXT OBh SUIN FEN Send next data

UPDATE 05h SUIN FEN Update software

CODE OCh SUIN FEN 8 bytes o f code

A C K C O D E ODh FEN SUIN Acknowledge CODE

RESEND OEh FEN SUIN M issing code request

RESENT OFh SUIN FEN M issing code resent

Table 5.3: List o f used messages types

5.4.1 Node Identification

Network nodes work asynchronously on independent clocks and send messages to each

other for collaboration. Messages from each node compete with each other for bus access

according to the identifier in the message header. Each node therefore must use unique

identifiers that do not exactly match with any message generated by any other node on the

network. The author therefore assigned a unique identification number to each node with

this being used as the source node identification field in all message identifiers it

generates. Four bits were reserved for the node identification number. This puts an upper

limit of 16 nodes on the CAN bus, although the actual implementation allowed only 13

nodes. The actual implementation limit is due to the availability of only 14 similar

message centres in the 80C390 MCU. The first MC was used for receiving broadcast

messages as will be explained in next paragraph. The second MC was used for

transmitting SUIN messages, and the remaining 12 MCs were dedicated to receiving

messages from 12 FENs. This made total o f 13 nodes (1 SUIN and 12 FENs).

Each generated message contained the intended 4-bit destination node identification

number. Any message transmitted on the CAN bus can essentially be received by all

99

other nodes. The nodes’ receive filters were however set in such a way that they only

received messages when the destination node identification number matched either their

identification number or was zero. Any message sent to destination 0 was accepted by all

nodes and thus acted as a broadcast message. This scheme reduced the load on receiving

nodes’ processing engines as they processed only the messages intended for them. Any

node can seek information from other nodes in this scheme even if the node with

information was not initially set up to serve the seeking node. Having decided on this

coding arrangement there would have then only been 3 bits remaining if the standard 11 -

bit CAN identifier was used. The need to use the extended CAN protocol (with 29-bit

identifier field) was thus established.

To summarise, the following example confirms the use o f the source and destination

identifiers. If node 1 sends a message to Node 2, the node identification field would

contain S3S2SiSo= 0001 and D3D2DiDo= 0010 bit. In general terms, with X depicting

unknown bits for message type and sub-type and unused bits set as 0, the resulting

message would contain the identifier described in figure 5.6. Alternatively if node 1 was

to send a broadcast message then destination bits D3D2DiDo= 0000 would be set. The

resulting identifier (keeping the above given style) would then be as described in figure

5.7.

S3 S2 S| Sq D3 D2 D| Do

X X X X X X X X 0 0 0 0 0 0 0 0 1 0 0 1 0 X X X X X X X X

28 0

Figure 5.6: Message from node 1 to node 2

Sj S2 S| So D3 D2 D| Do

X X X X

2 8

Figure 5.7: Broadcast message from node 1

100

5.4.2 Message Priority

A message is transmitted on CAN bus with the most significant bit o f the identifier first.

The bus arbitration is based on the contents o f the identifier with logic 0 having a priority

over logic 1 bit. The message with least number in message type, T bits in figure 5.5,

therefore has the highest priority in the developed scheme. This scheme ensures that an

important message has higher priority than others irrespective o f its originating node. The

author decided to assign higher priority to source node, S bits, than destination node, D

bits, as can be seen in figure 5.5. A source node with a lower identification number has

higher priority in this scheme. Identification number 0 is not assigned to any node

because it is used for broadcast messages. The next highest priority identification number,

1, was assigned to the SUIN as it synchronizes the distributed system and should be able

to interrupt other nodes. The remaining identification numbers were assigned to various

FENs. Message sub-type has the lowest priority in the identifier and will never practically

affect bus arbitration. Figure 5.8 provides some example identifiers showing message

priority resolution. Higher priority identifiers are shown earlier than lower priority ones.

5.4.3 Power-up Sequence

Figure 5.9 shows the CAN message sequence at system power-up. Each FEN waits to

receive a START message from the SUIN whereas the SUIN waits for a user to login

using telnet and to issue a command. Automatic execution of the monitoring program at

power-up is also possible. The SUIN broadcasts the START message on the CAN bus. A

receiving FEN immediately starts its monitoring task and also sends an ACK message

back to the SUIN. All ACK messages from FENs compete for bus access and would be

received by the SUIN one by one in quick succession. The SUIN assigns different

message centres for receiving messages from different sources and the messages do not

overwrite each other even if not dealt with quickly. The source identification number bits

are used to filter and store received messages in the appropriate MC. The SUIN checks

the number o f received ACK messages and thus determines the number of active FENs in

the system. It also checks the sources of these messages and hence knows which

monitoring inputs are available in a holistic scenario.

If the user does not start the monitoring program on the SUIN within a specified time, the

FENs do not get the START message within their time-out period and assume the system

to be already functional. They then send a REBOOT message to the SUIN. This provides

101

T7 T6 Ts T4 T3 T2 T, To S3 S2 S | Sq D3 D2 D | D0 M7 M6 M 5 M4 M3 M2 Ml M0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

28 0

Message type 1 (START), source node 1 (SUIN), destination node 0 (broadcast), message

sub-type 0

T7 T6 Ts T4 T3 T2 T, To S3 S2 S, So D3 D2 D , Dq M7 M6 M 5 m 4 m 3 M2 M! m 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

28 0

Message type 3 (ACK), source node 2 (FEN), destination node 1 (SUIN), message sub-

type 0

T7 T6 Ts T4 Tj T2 T, To S3 S2 Si Sq D3 D2 D, Dq m 7 m 6 m 5 m 4 m 3 M2 M| m 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

28 0

Message type 3 (ACK), source node 3 (FEN), destination node 1 (SUIN), message sub-

type 0

T7 T6 T5 T4 T3 T2 T, T o S3 S2 S | So D3 D2 D, D q m 7 m 6 m 5 m 4 m 3 M2 M) m 0

0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1

28 0

Message type 7 (ERR), source node 4 (FEN), destination node 1 (SUIN), message sub-

type 5

T7 T6 T, T4 T3 T2 T, To S3 S2 S, Sq D3 D2 Di Dq M7 M6 M5 M4 M3 M2 M | M0

0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0

28 0

Message type 7 (ERR), source node 7 (FEN), destination node 1 (SUIN), message sub-

type 0

T7 T6 T5 T4 T3 T2 T, To S3 S2 S| So D3 D2 D| Dq M7 Mo M 5 M4 M3 M2 M | Mq

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

28 0

Message type 8 (OK), source node 2 (FEN), destination node 1 (SUIN), message sub-type

0

Figure 5.8: Some example identifiers o f CAN messages

102

SUIN FENs

F E N N

FEN 3

FEN 2

Start
monitoringBroadcast

ACKs
Multiple messages

FEN 1

Calculate available FENs
and update user interface

STA RT

Figure 5.9: CAN message sequence at system power-up

plug & play capability to the system as will be explained in section 5.5. The FENs then

remain in an infinite loop listening on the CAN bus for a message from the SUIN. Figure

5.10 shows the messaging when a monitoring program is executed on SUIN after FEN

time-out period.

SUIN FENs

Multiple messages = = = = = REBOOTS

STA R T Broadcast Start monitoring

Calculate available FENs

.......... L-""

Multiple messages = = = = =and update user interface ACKs

Figure 5.10: CAN message sequence after FEN time-out

5.4.4 Process Monitoring

An FEN determines whether the behaviour of its process signal input is normal or not.

Accordingly, it sends either an OK or an ERR message to the SUIN. The SUIN receives

all such messages from all FENs and evaluates the whole process health status. The SUIN

is implemented on an 8-bit microcontroller and performing that many tasks in real-time is

103

difficult. The monitoring system therefore works on a peer to peer network paradigm and

the FENs can send messages to each other when an abnormality is detected. FEN groups

resolve the problem and provide the results to the SUIN which only then combines the

information from these groups. This scheme reduces the load on the SUIN as it acts as a

synchronizer only rather than a master. Figure 5.11 shows an example where a FEN

detected an error which was later removed and normal signal was detected again. Node 2,

for example, would send ERR message to SUIN as 00000111-00000-0010-0001-

00000000 and OK message as 00001000-00000-0010-0001-00000000.

SUIN FEN

Update status fo r user __________________
interface, Write in log file *

Update status fo r user
interface, Write in log file *

Figure 5.11: Messages during process monitoring

5.5 PLUG & PLAY

A plug-and-play facility was designed into the monitoring system. It can cope with a

varying number of FENs being available for process monitoring. The SUIN takes care of

changing node availability as certain FENs are switched on or off (or become inoperative)

during process monitoring. A new FEN may be added to the already running monitoring

system. The new FEN would wait for a START message initially and will not get it

because the SUIN is not aware of its existence at this stage. The FEN would then send a

REBOOT message to the SUIN, which then responds with a WELCOME message. A

WELCOME message acts like a START message but is sent only to the newly connected

FEN rather than as a broadcast message. The FEN acts on this message in the same way

as to a START message and starts process monitoring. It also sends back an ACK

message which completes the plug & play addition of the new FEN to the system. Figure

5.12 summarises the messaging sequence in this case. Consider a case when node 4, for

example, is switched on and sends REBOOT message. SUIN will respond it with

WELCOME message with identifier 00000100-00000-0001-0100-00000000.

104

SUIN FEN

R EB O O T

W EL C O M E -» Start monitoring

Calculate available FENs
m m m m m ^ ^ m m A C < J /

and update user interface

Figure 5.12: Message sequence when a new FEN boots-up

The SUIN also keeps track o f available FENs through the messages they send to it. The

absence o f any message for a predefined time-out period is taken as a node’s

unavailability. It is therefore removed from the plug & play information and is not

considered a part of the system any longer. The system then adapts itself to work with the

remaining resources. An active FEN thus has to send a message to the SUIN within the

required time. It actually re-sends the last process status (OK or ERR) message according

to its acquired signal’s health status.

The plug-and-play facility also helps when a node turns faulty as the SUIN can then adopt

a reduced functionality model comprising the remaining nodes only. This is useful in

processes where some optional plant components are switched off when not required.

Such process changes do not require modifications to the monitoring system which can be

set to detect modules that are switched on as the plant requirements change.

5.6 SOFTWARE MODELS FOR FENs AND SUIN

The proposed system can work in three different modes, namely the data acquisition

mode, monitoring mode, and software update mode. The system presents raw data to the

remote developer for analysis in the data acquisition mode. It provides remote users with

monitoring results and process health in the monitoring mode. The software update mode

is used to remotely upgrade the software on the nodes.

105

5.6.1 Data Acquisition Mode

The remote user starts the data acquisition program on the SUIN to gather raw signal data

obtained by the FENs. The SUIN broadcasts an ACQ command to the FENs. Each FEN

then starts signal acquisition and stores data in a circular buffer in its memory. A CAN

message can take up to 8 data bytes and the FEN sends the DATA message to the SUIN

once 8 bytes are gathered. The FEN includes the message number in the identifier so that

the SUIN can arrange the received data correctly. The FEN waits for the NEXT message

from SUIN before sending the next DATA message. This ensures that no data is

overwritten in the SUIN. Figure 5.13 shows the FEN software model with the data

acquisition mode elaborated. The corresponding software model for the SUIN is shown in

figure 5.14. The SUIN dedicates a separate MC for receiving messages from each FEN

and stores the acquired data in separate software buffers for each FEN. Data from a buffer

is transferred to the file system when the buffer size reaches a certain limit. The resulting

files are transferred to remote users over the Internet separately. Figure 5.15 shows the

model for this software.

SUIN

Receive

Transmit

Circular Storage
Buffer

Message Controller

Signal Acquisition

64/Pi

H ardw are Signal

I'D A T A

Sample flag

ACQ

NEXT

Software update
mode

Monitoring
mode

Message

START /W ELCO M E

UPDATE

Front End Node

Figure 5.13: FEN software model with data acquisition mode elaborated

106

DATA

DATA

ACQNEXT

DATA

D»^_AcquisHi^n_Pr<>graiii_
SUIN

Receive'
Node

^Sorter/

Message
Centre for

FEN 2

Transmit

Message
Centre for

FEN 12

Message
Centre for
. FEN 1 .

FEN

Telnet
Server

FTP
Server

HTTP
Server

Acquisition
Controller

Data Storage

Message
Generator

Monitoring
Program

Software
Update

Program

Figure 5.14: SUIN software model with data acquisition mode elaborated

Remote
PC

Telnet
Server

FTP
Server

HTTP
Server

In te rn e t access m ode

Requeat

Data
Provider

Data
Storage

SUIN

Figure 5.15: SUIN software model for Internet access to data

5.6.2 Monitoring Mode

The remote developer analyses the data acquired in the data acquisition mode and

finalizes the threshold values and the required processing method for each FEN. The

107

developer then configures the system accordingly and starts the program in the

monitoring mode. Figure 5.16 shows the software model for the FEN with its monitoring

mode elaborated. Figure 5.17 shows the corresponding model for the SUIN. The SUIN

starts the monitoring process after checking the FENs availability. All FENs acquire their

respective signals and apply processing to them. A FEN decides about its acquired

signal’s health and generates an ‘ok’ or ‘error’ result. The result is communicated to the

SUIN. The FEN keeps on checking the signal status and sends messages as soon as it

detects a status change. The SUIN gets such messages from all FENs and has a holistic

view of the complete process. FENs can also send EVENT messages to each other such

that a group o f FENs can produce a partial view of the total picture and provide collective

results to the SUIN. This FEN collaboration reduces the computational load on the SUIN

which also takes care o f the user interface. Source and destination identification numbers

are used in message identifiers to implement this FEN to FEN communication. On

detecting an event or error a FEN can send its data/status to another (predefined) FEN.

The receiving FEN then combines its own information with the received information and

sends it to the SUIN. Each OK or ERR message contains a code in its message sub-type

part of an identifier in such cases which is decoded by the SUIN.

Software update
mode

Power up
H ardw are Signal

UPDATE

START/!
WELCdMISignal acquisition

& Processing
Message Receive

EVENT

SUINACQERR OK EVENT

ACKMessage
Generator

Data acquisition
mode

Initialize Transmit

REBOOT

Monitoring mode

Front End Node

Figure 5.16: FEN software model with m onitoring mode elaborated

108

Message
Centre for

FEN 1

Plug & Play
Module

Software
Update

Program
Message

Centre for
FEN 2

Results

Telnet
Server ' Status

Process Status
Module

FEN16 /Receive^
Node

\S o r te r /

FTP
Server

Message
Centre for

FEN 12

HTTP
Server

Data
Acquisition

Program
Initialize

'START
'W ELCOM E

Message
Generator

Transmit

SUIN Monitoring Program

Figure 5.17: SUIN software model with monitoring mode elaborated

5.6.3 Software Update Mode

The proposed monitoring system has the capability to upload newer versions of code

from the Internet under remote developer control. The developer can upload new SUIN

and FEN codes to the SUIN using FTP protocol. The code for the SUIN is in the form of

an executable program file that can be started like any other program. The new code for

each FEN is delivered to the SUIN as a data file stored in the SUIN file system. The

remote developer will start a program on the SUIN that will upload new code to each

FEN using CAN messages. Figure 5.18 shows the FEN software model with its software

update mode elaborated. The corresponding figure for the SUIN is shown in figure 5.19.

The program sends an UPDATE message containing the FEN memory address to which

the code should be placed along with the total length of code being sent. The program

sends sequential CODE messages to the destination FEN containing 8 bytes of code.

Instruction opcodes for PIC 18F458 are 16-bit wide and 2 bytes are required to transfer

one instruction code. One CAN message can therefore takes code for 4 instructions.

Message sequence numbers are used, in message sub-type field, so that the received code

can be correctly arranged in the FEN. Any missing message can therefore be detected and

a RESEND message is generated. The SUIN then sends the missing message again. Each

109

message is acknowledged by the receiving FEN by sending an ACK_CODE message

containing the received message number in the message sub-type field. The SUIN re­

sends a message for which it does not receive an acknowledging message. Re-sent

messages use a different message type to originally sent messages and FENs can

therefore detect a message received twice. The PIC 18F458 has the capability to write to

its own flash program memory under its own software control. A FEN uses this capability

and updates its code during run-time.

The code is written to program memory only when the whole promised code is received

from the SUIN. The PIC 18F458 has more program memory than its internal data

memory where the new code is stored initially. It means that the complete code may not

be transferred in one go and several sets of code transfer may have to be executed. This is

achieved by using the starting address and code length in each set and full code is

transferred eventually. The boot-up code and CAN communication codes are not updated

remotely. This is a precautionary measure against communication or power failure where

a node may not be able to receive or program complete code in flash memory. A node

should be able to function correctly on next boot-up and new code may be uploaded to it

again.

Monitoring
mode

START/W ELCOM E

UPDATE

CODE
29/Message

sorterRESENT

A CK.CODERESEND
ACQ

Data acquisition
mode

Software update mode

Front End Node

SUIN

Receive

TransmitF la sh
Memory

Storage
Buffer

Message
G enerator

Programming
Controller

Figure 5.18: FEN software model with software update mode elaborated

110

Monitoring
Program

Code File

Message
Centre for

FEN1

Telnet
Server Message

Centre for
FEN 2

FTP
Server

Programming
Controller

ACK_CODE FENReceive^
Node

v S orter/RESEND

HTTP
Server

UPDATE CO RESENT
64

Message
Centre for

FEN 12Data
Acquisition

Program

Message
Generator

T ransmit

Software Update Program
SUIN

Figure 5.19: SUIN software model with software update mode elaborated

5.7 NETWORK TRAFFIC REDUCTION

Excessive traffic on communication lines in a distributed network causes bottlenecks and

severe performance degradation. It was therefore essential to minimize network traffic

ensuring smooth functionality. Periods o f transmission of raw data caused maximum

traffic on the network. The total throughput of the communication channels thus put an

upper limit on the achievable FEN sampling rates in data acquisition mode. Accordingly,

the author controlled the network traffic volume by carefully selecting the signals’

sampling rates. Reliability was the most important aspect in the software update mode

and the author ensured the secure delivery of every message using CAN bus error control

mechanisms topped with acknowledgments and re-send requests. The software update

mode did not require any real-time response from the network and posed no traffic

problems.

The monitoring mode presented the most complicated situations where any event could

occur at any time. It was not possible to accurately predict the network response and

traffic in this mode. A fault detected by multiple FENs simultaneously could result in

111

excessive traffic with congestion, delays, and missed events. The author used interrupts

with very short ISRs for quick event handling. The timer interrupt was used to generate

accurate sampling times and also it initiated any required analogue to digital conversion

process. Completion o f the conversion process generated another interrupt and its ISR

read and stored the results. The processor utilized the conversion time for performing

other tasks. CAN message reception generated another interrupt in the FEN that

transferred the message contents to a 16-message storage buffer, to be processed later in a

subroutine. The PIC 18F458 MCU had only two interrupt service vectors and the author

assigned higher priority interrupt vector to CAN so that no messages are lost. All other

interrupts were serviced through the low priority vector where various flags ascertained

the interrupt source. Computations were done in subroutines in the time between the

interrupts. Pseudo-codes for the interrupts and associated subroutines are given in

appendix C. Other measures employed in this research to reduce network traffic are given

below.

• Processed results, rather than raw data, were transmitted on CAN bus.

• FENs collaborated with each other and the combined information was sent to the

SUIN. This avoided bottlenecks that would be caused by sending everything to

one node.

• In case a node observes an abnormal situation, it is highly likely that it will detect

the same on next acquisition sample. A node was restricted from sending the same

message again unless a certain predefined time was elapsed.

• Short messages were used with the majority having no data bytes attached.

Information was included in message identifiers as message type and sub-types.

For example, ERR messages included a code in message sub-type combining

information from more than one FEN.

• Routine status messages from a FEN were used to detect its continuous

availability and no special messaging was used.

• A FEN sending no message within time-out period was automatically considered

unavailable and no messages were generated for it.

• Urgent messages were assigned higher priority to ensure their quick delivery.

• Destination identification was included in message header so that unconcerned

nodes were not disturbed.

112

5.8 FAULT REPORTING BY SMS

Monitoring results in this research were primarily displayed on a dynamic web page for

any remote user. An inattentive or otherwise occupied user may miss a monitoring alarm

by not paying attention to the web site all the time. Mobile phone connectivity was added

to the monitoring system to communicate with remote users. The monitoring system

could thus distribute SMS messages to important remote users as real-time alarms. The

message receiving tone from the mobile phone would alert the identified receiver who

could then take action necessary for fault mitigation. Once alerted, he can also check the

full monitoring results by accessing the dynamic web page again through the mobile

phone. SMS messages were generated only on the first time detection of a fault. Persistent

faults were not reported on mobile phones repeatedly as that would annoy the receiver

besides escalating phone bills.

Figure 5.20 outlines the hardware arrangements in the distributed monitoring system for

SMS generation. A Sony Ericsson GR47 is a GSM/GPRS radio device that provides

connectivity to mobile phone network through a SIM and is optimized for M2M

communications (Sony Ericsson web site: GR47/GR48). Comtech’s pWEB LITE module

hosted GR47 and provided a serial connection for other devices to communicate with it

(Sony Ericsson web site: Where to buy). The author connected the PIC 18F458 MCU to

GR47 using this serial connection and communicated modem AT (ATtention) commands

to it. The MCU was thus in a position to initiate and receive mobile communications and

had access to Sony Ericsson’s extended AT command set (Developer Guidelines, 2005)

for modem features such as SMS, MMS, and Internet access. The monitoring system did

not require incoming messages and phone calls and all incoming services were barred. A

shareware software was used to convert error messages (ASCII characters) into Protocol

Data Unit (PDU) format for SMS (USB Developer web site, 2005) and the resulting PDU

codes were stored in the PIC MCU along with predefined phone numbers.

Mobile phone connectivity was added to the monitoring system towards the end o f the

reported research and was not fully integrated into the system. SMS messaging was not

used with the research reported in chapter 6, 7, and 8. It was used only for air flow

process monitoring reported in chapter 9 and was tested as an add-on feature. Parallel port

was used for communication between the SUIN and the new node (the PIC

113

microcontroller responsible for SMS generation) for initial development. The new node

will communicate on the CAN bus after its full integrated in the system. Node

identification number 14, previously unused, would be assigned to the new node. One

message centre in the SUIN was previously left unused and would receive messages from

this new node.

FENs

Figure 5.20: Hardware arrangements for SMS generation.

5.9 SUMMARY

Details of the first and second hierarchy layers of an 8-bit microcontroller based

distributed monitoring system were provided in this chapter. The nodes of the system

communicated using a CAN bus and via the Ethernet (Internet) to either the remote

system developer or to monitoring system users. The capability to send urgent messages

to remote users on their mobile phones was also provided. The first and second hierarchy

layers were implemented solely on 8-bit microcontrollers and it is believed to be the first

reported microcontroller-based system providing monitoring results from sensors to

remote users. It provided specific monitoring results based on time and frequency

analyses on discrete and continuous signals and was considered to be unique.

The messages communicated between various system nodes were provided in detail to

explain the operation of the features of the deployed system including; plug & play, fault

detection, and isolation. The microcontrollers were not able to simultaneously provide all

114

Mobile
Network

SUIN PIC

C A N /
n *•/> i u i

MCU Serial

f SIM

GR47

Antenna

liWeb LITE M2M

the required features because o f their limited resources and the system operation was

divided into three separate modes. Software models for these modes were described in

this chapter for both the SUIN and the FENs. Measures enabling real-time operation by

reducing network traffic were also detailed.

The functional aspects of the hierarchical and distributed monitoring system were

explained in this chapter. The developed system was deployed on a number of process

applications to evaluate its performance in real-time and their details are provided in the

next chapters.

115

Chapter 6

PIPE BLOCKAGE DETECTION

A distributed monitoring system was implemented according to the methodology

described in earlier chapters. This chapter describes details of the application and testing

of the monitoring system for detecting pipe blockages in a laboratory-based process rig.

In summary, process signals were acquired via the FENs and were communicated over

Internet. During system development, the signals were analysed for fault symptoms to

determine the appropriate processing method(s) for the FENs. Threshold levels were also

determined for each signal and were then programmed into the respective FENs.

Subsequently, the FENs provided their results to the SUIN where their combinations were

then automatically processed to identify and confirm a fault condition. The holistic

information available to the SUIN was also used to determine the extent of any pipe

blockage. Also, as an example of a remote user interface, the monitoring results were

made available via dynamic web pages. These presented the extent of a fault as a low,

medium, or high level. The example application and the results obtained are presented in

more detail in the following sections.

6.1 BYTRONIC PROCESS RIG

A laboratory test rig from Bytronic was used to emulate a batch process in this research.

Figure 6.1 shows the Bytronic test rig and highlights its salient features. The rig contained

a lower level sump and an upper level storage tank. A centrifugal pump transferred water

from the sump to the tank and its speed was controlled from a PC. The sensors signals

that were used were a water level sensor (tank mounted) and a flow sensor (mounted in

the connecting pipe). Manual valves in the connecting pipe were used to emulate faults

such as partial blockages and leakages. A solenoid valve, controlled by the PC, was

provided to empty the tank water back into the sump. A manual valve was also provided

for the same purpose and could emulate leakage from the tank.

The test rig thus provided a variety of physical signal types in voltage, current, and pulsed

signal formats (as summarised in table 6.1). It was therefore ideal to enable the evaluation

of FEN suitability for interfacing with various kinds of physical signals. All sensor and

116

Level sensor connection Flow rate sensor

Solenoid Valve Sump Pump

Figure 6.1: Bytronic process rig

Manual
Valve 1

Manual
Valve 3

Manual
Valve 2

Process variable Description Level

Pump power Analogue Oto 10 V

Solenoid valve control Digital 0V / 24V

Water flow rate Pulse rate 0V/ 15 V

Water level Current loop 4 to 20mA

Table 6.1: Signal description for process variables

control signals for the rig were connected to a Siemens ET200M distributed I/O system

(SIMATIC, 1998). The distributed I/O system had been added to the standard Bytronic

test rig in previous studies and provided a convenient link between the test rig and the

controlling PC. Profibus was used as the communication medium between the PC and the

ET200M and batch type control was programmed via a LabWindows interface.

6.2 BATCH PROCESS

Some of the previous work with the modified Bytronic rig is reported by Hopkins (2001).

He developed a PC application emulating a chemical batch process where water was

transferred from lower level sump to higher level tank under feedback control. The level

117

sensor in the tank provided the feedback signal to the controller which controlled the

pump speed and hence the delivered flow rate. Water was pumped into the tank until it

was filled to its full capacity and then was emptied by opening the solenoid valve. The

operator could specify the desired number of batch cycles to be completed.

The application developed by Hopkins (2001) used a very simple controller algorithm.

The pump operated at full power until the tank was 70% full. The pump power was then

reduced in steps at every 10% increment of tank fill. This controller was replaced in this

research by one making better use of the feedback signal. The controller changed the

pump power dynamically to fill the tank according to a certain pattern. 70% pump power

was used for the first 4 seconds, enabling flow to be established in the pipe. The

controller then started working in feedback mode. The pump was stopped when the tank

full signal became true and then the solenoid valve was opened to drain water back into

the sump. Figure 6.2 explains the signals used in the batch process for both control and

monitoring purposes.

Level Signal

Tank

Power Signal Flow Signal

Sum p
Solenoid]

ValveS,
Blockage SimulationPumn

Flow Meter Valve Control

Monitoring

Controller

Figure 6.2: Control and monitoring signals in batch process

6.3 PROCESS MONITORING

It was decided to deploy the distributed monitoring system to locate pipe blockage faults

during the existing batch cycles and control regimes (as described above). Signals were

acquired directly from the existing sensors and control elements. They were simply

118

conditioned to limit them to a 0 - 5 volt range as required for MCU interfacing. The water

level signal was also converted into this range from its original 4-20mA current loop.

Each conditioned signal was connected to a FEN; three FENs acquired pump power, flow

rate and tank level signals. The coordinating SUIN was connected to the Ethernet system

provided at Cardiff University. It was therefore possible to monitor the process

application and transmit the results to a remote user. Unique identification numbers were

assigned to all monitoring nodes and these were used to specify source or destination

nodes in the CAN messages. Table 6.2 summarizes the assignments used.

Node ID # N ode type Acquired signal Description Level

1 SUIN - - -

2 FEN Pump power Analogue voltage 0 to 5 V

3 FEN Water flow rate Pulse rate OV / 5 V

4 FEN Water level Analogue voltage 0 to 5 V

Table 6.2: Monitoring node identil Ication numbers

Table 6.3 provides the details of actually acquired signals and the conditioning applied to

them, the levels being determined and set after some initial testing of the process control

system.

Process
variable

Signal
range

Further conditioning Resulting signal
range

Pump
power 0.7 to 5 V 0.7 volts subtracted by diode 0 to 4.3 V

Water flow
rate 0 to 2.2 V Signal amplified with gain 2 by op-amp 0 to 4.4 V

Water level 1.6 to 2.4 V 1.6 volts subtracted by op-amp summer. Remaining
signal amplified with gain 6 by another op-amp 0 to 4.5 V

Table 6.3: Further signal conditioning for MCU interfacing

The process was run and monitored over a number of batch cycles in normal (fault-free)

conditions. The monitoring system was operated, during this phase, in data acquisition

mode to capture full data sets for all monitored signals. Figure 6.3 shows typical normal

condition signals for (a) pump power, (b) tank water level, and (c) pipe flow-rate for a

batch cycle. For brevity these signals will be referred to as ‘Power’, ‘Level’, and ‘Flow’

119

respectively in the rest of the thesis. In each case in figure 6.3 the Y-axis shows the actual

values (8-bit A-to-D results) acquired by respective FENs. No further computations were

done to the acquired numbers (to convert to units or percentages, for example) as it was

easier for FEN application programs to deal with raw 8-bit numbers. Figure 6.3(d)

combines all these signals on a single plot for comparison.

Controller
' working '

1*0

100TD Initial
set pointm

60

Pump
~ on

Pump40

0
0 40 60 10 100 130 140 160 180

Time (sec)

(a) Power signal

Pump Pump
off” *on

200

3 iso

Controller
working

0 20 120 140 16040 80 100 180

Time (sec)

(b) Level signal

B
X>§acT3
3cro<

Pump on
100 Controller

working*0

60

40

20

0
20 12040 80 100 140

Pumpoff '
u

-C
E

3CTO

Level
200

PowerISO

100

30

Flow
0
o 40 12060 80 100 140 160 180

Time (sec)

(c) Flow signal

Time (sec)

(d): Signals correlation

Figure 6.3: Typical normal condition signals

6.4 FAULT SIMULATION

Partial pipe blockage was used as a test fault. A rotary manual valve (manual valve 1 in

figure 6.1) was partially closed to various degrees to simulate partial blockage faults.

Figure 6.4 shows the results obtained for 5 levels of simulated blockages. The blockage

percentages assume a linear characteristic for the rotary valve. The tests were repeated

several times to confirm the consistency of the results. The partial pipe blockages caused

120

disruption to the water flow and reduced the tank fill rate, as can be seen from the

increasing cycle times. The controller attempted to compensate by applying increased

pump power (to maintain the required water level in the tank at any given time). Thus the

pump power increased gradually with blockage severity, again as shown in figure 6.4.

l _ 200 -)

3 iso 3 ISO

-a

Time (sec) Time (Sec)

No blockage 10% blockage

u . 200 U. 200

3 150

Time (Sec) Time (Sec)

30% blockage 50% blockage

200

3 150

Time (Sec) Time (Sec)

70% blockage 90% blockage

Figure 6.4: Typical control signals (power) for partial blockages

121

Figure 6.5 presents the tank level results. The observed insensitivity o f this signal to

partial blockages is due to the compensating controller efforts. The increased overall

cycle time is, however, apparent. It was deemed that detection of increased controller

activity provided a mechanism for fault detection in this example application.

3 iso

Time (sec) Time (sec)

No blockage 10% blockage

Urn 200

a-

Time (sec) Time (sec)

30% blockage 50% blockage

3 iso

Time (sec)Time (sec)

90% blockage70% blockage

Figure 6.5: Typical tank level signals for partial blockages

1 2 2

The third acquired and monitored signal, the flow rate signal, proved to be o f more

interest than expected. Prior to testing, a gradual reduction in flow rate was expected with

increased blockage levels, and indeed this was observed for pipe blockages up to 50%.

However, for larger blockages, the acquired data typically showed both increased

magnitude and fluctuations, as shown in Figure 6.6.

250

U- 200 is
JO

0 —T - , --------------------- ----- ,--------------- -r----------,

0 20 40 60 SO |Q0 120 140 160 ISO

Time (sec)

No blockage

u , 200 <D
JO

i J
C"O

o
o 20 40 60 SO 100 120 140 160 ISO

Time (sec)

30% blockage

3 150

0 20 40 80 100 120 140 160 ISO

Time (sec)

70% blockage

250 1
Urn 200M
CT3

0 20 40 60 SO 100 120 140 160 180

Time (sec)

10% blockage

201) J

C•o
2 100

cro
< 50

0
200 40 SO 100 120 140 160 ISO

Time (sec)

50% blockage

250

0 20 40 60 SO 100 120 140 160 ISO

Time (sec)

90% blockage

Figure 6.6: Typical flow rate signals for partial blockages

123

The proposed explanation for this behaviour is as follows: A pipe blockage reduces its

effective cross-sectional area. The pump operating at a given power level will thus

attempt to deliver the same flow of water through the pipe. Any reduction in water

volume accumulating in the tank was compensated by increased pump power. Thus the

same volume of water passed through the pipe irrespective of the blockage. The change in

cross-sectional area of pipe however affected the velocity of incompressible fluid (water)

according to the relationship

a 1v 1 = a 2v 2

where Ai and A2 are the two cross-sectional areas of pipe and V\ and V2 are fluid

velocities at these cross-sectional areas (Tullis, 1989). The blockage thus caused an

increase in water velocity in the pipe. The pipe cross-section again increased after the

blocked area, providing convergent-divergent nozzle effects. A detailed discussion of

such effect can be found in Ward-Smith (1980). The flow sensor was placed close to the

blockage simulating valve and was an impeller type flow rate sensor with six blades

(Bytronic International Ltd). The rotating blades cut an infra-red beam thereby generating

pulses corresponding to flow. The con-div nozzle effect at the higher blockage levels

increased the water velocity to a level where it caused an increase in the impeller

rotational speed. This, in turn, was communicated to FEN as increased flow. The situation

was further complicated by the presence of a right angled bend between blockage and the

flow sensor. The bend caused different centrifugal forces on different sections of flowing

water according to their speeds and further disturbed the flow (Ward-Smith, 1980).

Increased fluctuations in the power signal were observed with the progression of blockage

levels. This can be explained as follows. A blockage reduced flow causing slower tank

filling. The controller increased pump power to attempt to maintain the desired filling

rate. The increased water-flow through the blockage point caused additional turbulence.

The incoming water flow into the tank then caused ripples of increased magnitude on the

surface, as can be seen in figure 6.7. These ripples caused increased fluctuation in the

level signal and this was then reflected in the power (controller) signal. Figure 6.8

confirms this behaviour when the power, level, and flow signal trends are shown together.

The effect o f flow turbulence can be seen to be increasing with increased blockage levels.

124

(a) Normal (b) 50% blockage

Figure 6.7: Ripples effect of blockage

Power

Power

Power

Power Power

Figure 6.8: Turbulence effect o f blockage

Time (sec)

No blockage

Level

0 20 40 60 80 100 120 140 160 180

Time (sec)

_______ 50% blockage___________

Urn 200

£

E
3 130
C

~ afis_ 100

*3
O '
o

< 30

_________30% blockage
230

Time (sec)

____________10% blockage
230

6-c
E
3
C

Time (sec)

Time (sec)

6-C
E

0 20 40 60 80 100 120 140 160 180

Time (sec)

_______ 70% blockage___________

200
U

-C

E
3 130
C

" O

B 100

3
c r
o

<
30

90% blockage

1_ 200 - 8
X>

I’lH'.C!

125

6.5 MONITORING DECISIONS

The next stage o f research with the process rig application was to analyse the results

obtained and to develop fault detection algorithms for deployment on the distributed

monitoring system. The observable differences were not easily translated because of

varying control strategies during a batch cycle and increased signal fluctuations under

fault conditions. Further, relatively simple algorithms were required to be consummate

with the numerical manipulation capabilities of the PIC MCUs. Simple statistical methods

such as mean, variance, and running sum were considered therefore. Fault symptoms

obtained with these techniques are described below with running sum found as the most

suitable technique.

Table 6.4 summarizes the variations in the computed mean values for each of the 3

acquired signals with increasing blockage severity. The means were calculated on the

tank filling part o f the cycle only. The mean value o f the pump power signal increased

with blockage severity. However the sensitivity was low and very strict thresholds were

required to detect the marginal differences. Since such strict thresholds could generate

excessive false alarms the mean-power was not considered suitable for fault detection.

The calculated mean-level effectively remained constant for pipe blockages up to 50%, as

expected. The mean-level however sharply decreased for higher blockage levels. This

was attributed to the delay in batch completion caused by excessive blockage. Normal

batch completion times had been observed to be up to 133 seconds and a batch with 70%

blockage completed in 138 seconds, for example. Mean-level was thus found suitable

only for detecting severe blockages causing out-of-control situation. Mean-flow also

remained virtually constant for blockages up to 50%. Higher blockage levels caused an

apparent sharp increase in mean-flow for the reason discussed in section 6.4. These high

values did not depict the actual process situation and were ignored. Mean values of the

signals were therefore not used for monitoring.

Table 6.5 shows the variance results for power, level and flow signals in various

conditions. Power signal variance increased significantly for blockages compared to for

normal conditions and thus provided better fault indications. However, it did not show a

126

gradual rise with increased blockages and was not useful for identifying fault extents.

Level and flow variances also provided roughly the same results.

Blockage Mean power Mean level Mean flow

0 % (normal case) 119 120 63

10% 121 119 63

30% 124 121 62

50% 125 123 59

70% 126 115 79

90% 181 106 93

Table 6.4: Mean va ues o f acquired signals (no units used for ADC output numbers)

Blockage Variance power Variance level Variance flow

0 % (normal case) 252 3123 128

10% 281 3010 138

30% 409 3183 171

50% 403 3459 169

70% 371 3354 388

90% 819 3801 1397

Table 6.5: Variance values o f acquired signals (no units used for ADC output numbers)

Another problem with mean and variance was the requirement for the entire signal

acquisition before the start o f calculations. It was therefore not possible to generate an

alarm during a batch. An alternate approach of calculating a running sum for each signal

was therefore investigated. The running sum of a signal was attained by adding every new

sample value (number from the ADC) to the sum of all previous sample values in a batch.

Analysis o f the determined running sum profiles showed better fault detection features

and was adopted in this research.

Any increase in pump power, for example, affected every sample and its cumulative

effect became visible much earlier than with other techniques. The difference in the

corresponding values under different fault conditions became distinguishable quickly

because of the involvement o f large numbers. A gradual increase in difference of running

127

sum values for normal and 40% blockage cases is shown in figure 6.9 where, for

example, a difference of approximately 1000 (22133 for normal and 23134 for blockage

case)was observed at 30 seconds into the batch cycle time. Figure 6.10 combines results

from separate tests with various blockage extents and describes the power running sum

values attained at 30 seconds batch cycle time. Values attained at 30 seconds batch cycle

time in figure 6.9 are shown in figure 6.10 for reference. Figure 6.11 provides similar

plots for flow and level running sums.

25000

23134
22133

40% BlockageE1GO
GOCac
3Oi NormalU,u
i
oQ

0 5 10 15 20 25 30 35

Time (sec)

Figure 6.9: Power running sum values for normal and 40% blockage cases

27000

c3 24000

23134

22133

21000
0 10 20 30 40 50 60 70 80 90

% Blockage

Figure 6.10: Power running sum values at 30 sec time

128

12500 i l

200 10 40 50 60 HO

% Blockage % Blockage

Figure 6.11: Flow and level running sum values at 30 sec time

Results initially based on running sums at every sample generated false alarms because of

the fluctuations. The method was thus modified and the running sum totals were

compared to the selected thresholds every 5 seconds. This approach minimised the false

alarms and increased the monitoring reliability. The author monitored running sums at

every 5 seconds for various blockage conditions and established thresholds at these

monitoring points. A separate threshold was required for every monitoring point because

of non-linearity in the process. This led to a total of 27 monitoring points for each of the 3

signals. The thresholds were defined in each FEN as a look-up table. Also to prevent

overflow errors 24 bits (3 bytes in memory) were assigned for running sum storage. Each

threshold value was also stored in 24 bits format and for the specific batch tests. A total of

81 bytes of data eeprom memory was required.

Typical running sum values for power signal in various cases and the established

threshold are shown in figure 6.12, which again shows the combined results obtained

from various tests. The figure 6.12(a) depicts values for first seven monitoring points.

Figure 6.12(b) shows values up to 25th monitoring point where only every fifth value is

shown for brevity.

Since the controller algorithm used held the pump power constant for first 4 seconds of

any batch the first monitoring check (after 5 seconds) was not expected to detect any

blockage. This was confirmed and the value of the first threshold was set to signal an ‘ok’

result in all cases. For example, the threshold at 10 seconds was selected to be a value of

9000, this being approximately 200 above the nominal fault-free running sum value. This

equated to a tolerance of roughly 2% for pump power. This was chosen to minimize false

129

t=5 sec t=l 0 sec t=15 sec t=20 sec t=25 sec t=30 sec t=35 sec

2 5'

gI
001

[F-

0.5, h

Normal 10% 20% 30% 40% 60% 80% 90%
Blockage

(a) Typical running sums and thresholds for first 7 monitoring points

t=25 sec t=50 sec t=75 sec t=100 sec t=125 sec
x 10

Normal 10% 20% 30% 40% 50% 60% 70% 80% 90%
Blockage

(b) Typical running sums and thresholds for up to 25th monitoring point

Figure 6.12: Threshold determination for power FEN

130

alarms. The monitoring system detected blockages in excess o f 40% (with this 2%

tolerance level) at the second monitoring point (i.e. only 10 seconds into the batch cycle),

as can be seen again in figure 6.12(a). Blockages below 40% were also detectable with

this regime but not with sufficient reliability. The reliability of detecting lower level

blockages increased with threshold tests further into the batch cycle. For example a 30%

blockage was reliably detected at sixth monitoring point (after 30 seconds). Figure 6.13

shows detectability of various fault extents against batch cycle time with the selected

thresholds. All thresholds are normalised to zero in the figure and any positive value

depicts blockage detection.

0.15

« 0.05

t= 5 sec
t= 10 sec
t= 15 sec
t= 20 sec
t= 25 sec
t?= 30 sec
t= 35 sec

'formal 10% 20% 30% 40% 50%
Blockage

60% 70% 80% 90%

Figure 6.13: Blockage extent and its detectability with selected thresholds

The running sum for level signal FEN showed a different trend with values decreasing for

progressive blockages. Thresholds were thus selected below fault-free case values.

Typical running sums in various blockage levels and the selected threshold are shown in

figure 6.14. The first threshold (5 seconds) was very conservatively selected and could

only distinguish the extreme case of 90% blockage. Blockages in excess o f 60% were

detected after 10 seconds (2nd monitoring point). A 40% blockage became detectable by

131

the threshold trigger at 25 seconds. A 20% blockage was generally not detectable before

40 seconds into the batch cycle.

A blockage typically affected water flow as soon as the batch started and the running sum

for the flow signal FEN successfully detected 40, 50, and 90 percent blockages at the first

monitoring point. There were difficulties observed with this FEN in that flow rates falsely

showed high values when the blockage exceeded 50%. Reliable data was available for

blockages only up to this level and thresholds were set accordingly. Typical running sums

and selected thresholds are shown in figure 6.15 for level FEN for blockage levels up to

50%.

6.6 MONITORING RESULTS

The 3 individual FENs were thus established, using the multiple threshold running sum

technique to detect the presence or otherwise o f fault symptoms. These were then

communicated to SUIN which integrated this information to finalise the results. Table 6.6

provides the rule base used by SUIN which discriminated between FEN results obtained

before and after 30 seconds batch cycle time. High level blockages were quickly

discemable at the SUIN from the power and level FENs. As previous stated the

difficulties with the flow FEN were such that it provided ok signal in these cases. The

exception to this decision rule (error | error |ok) was for the 90% blockage case which was

initially detected as a medium level fault. Medium level blockages (40-50%) were

identified when all three FENs indicated an error. Quick and reliable detection for low

level blockages (up to 30%) proved to be more difficult because of the dynamic nature of

the process. It took the signals at least 30 seconds to differentiate between low blockage

cases and normal behaviour. Blockages detected after 30 seconds of batch start were

therefore considered low level.

An interesting case was the situation where power and flow FENs indicated errors but

level FEN decision was ok. The controller put extra effort to maintain level in such cases.

It can be taken as the first indication of a low level blockage and also as the initial

132

—e— 1=5 sec —B— 1=10 sec —*— t=l 5 sec — •— 1=20 sec — 1— t=25 sec —♦— 1=30 sec —9— 1=35 sec

12000

10000

8000

S 6000

4000

80% 90%50% 60% 70%Normal 30% 40%10% 20%
Blockage

(a) Typical running sums and thresholds for first 7 monitoring points

t=25 sec —S — 1=50 sec — «— 1=75 sec — 1— 1=100 s e c — i— t= 1 2 5 sec

30% 50% 60% 70% 80% 90%40%
Blockage

(b) Typical running sums and thresholds for up to 25th monitoring point

Figure 6.14: Threshold determination for level FEN

133

-t=5 sec ■t^lOsec -b=15 sec -t=20 sec ■ t=25 sec ■t=30 sec ■b=35 sec

15000

10000

5000

40% 50%Normal 10% 20%
Blockage

(a) Typical running sums and thresholds for first 7 monitoring points

t=125 secfc=25 sec ^ 5 0 sec b=75 sec — — 1=100 sec
x 10

45

3.5

10% 20% 30% 40% 50%
Blockage

(b) Typical running sums and thresholds for up to 25th monitoring point

Figure 6.15: Threshold determination for flow FEN

134

detection of medium level faults. This condition was however observed to be causing

intermittent detections in 10% blockage cases. The decision rule (error | ok | error) was

therefore taken as normal situation in this research, which delayed blockage detections

but increased system reliability. It also enabled a simplified rule base where low level

blockages were detected only after 30 seconds batch cycle time. Combination of faults

reported to SUIN other than established by the decision rules of table 6.6, for example

only one FEN reporting an error, were discarded as a false alarm due to noise effects or

out-lying data.

Signal status Fault reported

Power Level Flow Before 30s After 30s

ok X X Normal Normal

X ok X Normal Normal

error error error Medium Low

error error ok High Low

Table 6.6: SIJIN rule base (X == Don’t care)

The monitoring system was tested with known blockage levels and Table 6.7 briefly

describes the obtained results. Complete detail o f FEN processed signals and SUIN

integrated results are depicted in table 6.8 where progressive detection of blockage levels

is evident.

Fault case
Signal status

Fault reported
Power Level Flow

Normal ok ok ok Nil

60, 70, 80% & 90%
(after 10s)

error error ok High

40, 50% &
90% (before 10s)

error error error Medium

10, 20, 30%
(after 30s) error error ok/error Low

Table 6.7: SUIN monitoring decisions

135

Monitoring
Point &

Time

Thresholds for Blockage Levels (percentage)
Power
Level
Flow

0 10 20 30 40 50 60 70 80 90

1. 5 sec 4800 Ok Ok Ok Ok Ok Ok Ok Ok Ok Ok
500 Ok Ok Ok Ok Ok Ok Ok Ok Ok Error

2000 Ok Error Ok Ok Error Ok Ok Ok Ok Error
2. 10 sec 9000 Ok Error Ok Ok Error Error Error Error Error Error

1700 Ok Ok Ok Ok Ok Ok Error Error Error Error
4500 Ok Error Ok Ok Error Error Ok Ok Ok Error

3. 15 sec 12600 Ok Error Ok Ok Error Error Error Error Error Error
3000 Ok Ok Ok Ok Ok Ok Error Error Error Error
6500 Ok Error Ok Ok Error Error Ok Ok Ok Ok

4. 20 sec 16000 Ok Error Ok Ok Error Error Error Error Error Error
4650 Ok Ok Ok Ok Ok Error Error Error Error Error
8500 Ok Error Ok Error Error Error Ok Ok Ok Ok

5. 25 sec 19200 Ok Error Error Error Error Error Error Error Error Error
6450 Ok Ok Ok Ok Error Error Error Error Error Error

10200 Ok Error Ok Ok Error Error Ok Ok Ok Ok
6. 30 sec 22400 Ok Error Error Error Error Error Error Error Error Error

8600 Ok Ok Error Error Error Error Error Error Error Error
11800 Ok Error Ok Error Error Error Ok Ok Ok Ok

7. 35 sec 25500 Ok Error Error Error Error Error Error Error Error Error
10600 Ok Ok Ok Error Error Error Error Error Error Error
13400 Ok Ok Ok Ok Error Error Ok Ok Ok Ok

8 40 sec 28600 Ok Error Error Error Error Error Error Error Error Error
13100 Ok Ok Error Error Error Error Error Error Error Error
15000 Ok Error Ok Ok Error Error Ok Ok Ok Ok

9. 45 sec 31700 Ok Error Error Error Error Error Error Error Error Error
15700 Ok Ok Error Error Error Error Error Error Error Error
16600 Ok Error Ok Ok Error Error Ok Ok Ok Ok

10. 50 sec 34800 Ok Error Error Error Error Error Error Error Error Error
18500 Ok Ok Error Error Error Error Error Error Error Error
18150 Ok Error Ok Ok Error Error Ok Ok Ok Ok

11. 55 sec 37850 Ok Error Error Error Error Error Error Error Error Error
21500 Ok Ok Error Error Error Error Error Error Error Error
19750 Ok Error Ok Ok Error Error Ok Ok Ok Ok

12. 60 sec 40900 Ok Error Error Error Error Error Error Error Error Error
24700 Ok Ok Error Error Error Error Error Error Error Error
21300 Ok Error Ok Ok Error Error Ok Ok Ok Ok

13. 65 sec 44200 Ok Error Error Error Error Error Error Error Error Error
28150 Ok Ok Error Error Error Error Error Error Error Error
23050 Ok Error Ok Error Error Error Ok Ok Ok Ok

14. 70 sec 47600 Ok Error Error Error Error Error Error Error Error Error
32000 Ok Error Error Error Error Error Error Error Error Error
24600 Ok Error Ok Ok Error Error Ok Ok Ok Ok

15. 75 sec 50900 Ok Error Error Error Error Error Error Error Error Error
35700 Ok Ok Error Error Error Error Error Error Error Error
26450 Ok Error Ok Error Error Error Ok Ok Ok Ok

16 80 sec 54350 Ok Error Error Error Error Error Error Error Error Error
39850 Ok Error Error Error Error Error Error Error Error Error
28450 Ok Error Ok Error Error Error Ok Ok Ok Ok

17. 85 sec 57800 Ok Error Error Error Error Error Error Error Error Error
44200 Ok Error Error Error Error Error Error Error Error Error
30300 Ok Error Ok Error Error Error Ok Ok Ok Ok

18. 90 sec 61350 Ok Error Error Error Error Error Error Error Error Error
48800 Ok Error Error Error Error Error Error Error Error Error
32200 Ok Error Ok Error Error Error Ok Ok Ok Ok

19. 95 sec 64900 Ok Error Error Error Error Error Error Error Error Error
53600 Ok Error Error Error Error Error Error Error Error Error
34000 Ok Error Ok Error Error Error Ok Ok Ok Ok

20. 100 sec 68600 Ok Error Error Error Error Error Error Error Error Error
58700 Ok Error Error Error Error Error Error Error Error Error
36000 Ok Error Ok Error Error Error Ok Ok Ok Ok

21. 105 sec 72350 Ok Error Error Error Error Error Error Error Error Error
64050 Ok Error Error Error Error Error Error Error Error Error
38000 Ok Error Ok Error Error Error Ok Ok Ok Ok

22. llOsec 76200 Ok Error Error Error Error Error Error Error Error Error
69500 Ok Error Error Error Error Error Error Error Error Error
40100 Ok Error Ok Error Error Error Ok Ok Ok Ok

23. 115 sec 80200 Ok Error Error Error Error Error Error Error Error Error
75500 Ok Error Error Error Error Error Error Error Error Error
42400 Ok Error Ok Error Error Error Ok Ok Ok Ok

24 120 sec 84350 Ok Error Error Error Error Error Error Error Error Error
81500 Ok Error Error Error Error Error Error Error Error Error
44740 Ok Error Ok Error Error Error Ok Ok Ok Ok

25. 125 sec 88800 Ok Error Error Error Error Error Error Error Error Error
87800 Ok Error Error Error Error Error Error Error Error Error
47000 Ok Error Ok Error Error Error Ok Ok Ok Ok

26. 130 sec 92800 Ok Error Error Error Error Error Error Error Error Error
94200 Ok Error Error Error Error Error Error Error Error Error
49500 Ok Error Ok Error Error Error Ok Ok Ok Ok

27. 135 sec 92950 Ok Error Error Error Error Error Error Error Error Error
100500 Ok Error Error Error Error Error Error Error Error Error
50500 Ok Error Ok Error Error Error Ok Ok Ok Ok

SUIN colour codes: Normal F Low Medium 1] High F

Table 6.8: Blockage level detection with 7EN processing and SUIN integration

136

In this fashion the SUIN integrated the 3 FEN information and provided an overall

monitoring result. At this stage of application testing the plug-and-play concepts were not

introduced. The deployed monitoring system for the Bytronic process rig thus assumed all

3 nodes to always be available. Normal, low-level fault, medium-level fault, or high-level

fault statuses were reported to remote users using developed dynamic web pages. These

were established such that any user could access SUIN home page by entering its IP

address or web page address onto a standard web browser, such as Internet Explorer. The

monitoring results web page was set to refresh every 10 seconds. Also it was designed to

be a small web page containing only text. This was used to reduce the Internet traffic load

on the SUIN and to be commensurate with the limited memory of the SUIN. Another

benefit of the small web page was that it was accessible from mobile phones and PDAs.

Examples of the tested web pages and a brief insight into the layout design follows.

A user will typically not be continuously viewing the web page to locate a process fault.

The web page was thus designed to grab an indifferent user’s attention with colours used

for this purpose. A light green background colour was used to indicate normal conditions.

The SUIN changed the web page background colour to light grey on detecting a low level

blockage. The foreground colours were also changed to maintain ease of reading. Light

blue and red background colours were used to show medium and high level blockages

respectively. Figure 6.16 shows the web page appearance for each of the four possible

statuses.

6.7 SUMMARY

The proposed monitoring system was deployed on the process test rig as a first

application and to test and develop and prove the concept. Various degrees o f pipe

blockage fault were simulated by closing a manual valve. It was noted that blockages

caused disturbances in the water flow, thereby affecting flow and level sensor readings.

The process controller was programmed to adjust pump power in order to attempt to

restore desired water level in the tank and thus the simulated faults were also detectable

via the pump power signal. Three FENs monitored power, level, and flow signals and

located the fault by matching the processed signal with carefully determined multiple (in

137

- inlxl
File Edit View Favorites Tools ” Links

Bytronic Rig Process Status a

A v a ila b le FENs; : 2,3,4

Pmnp p ow er H igh
W ater f lo w : L ow
Tank le v e l : L ow

B lo ck a g e d etec tio n : L O W

A

JnJ x|
File Edit View Favorites Tods ” Links » v
Bytronic Rig Process Status

A

A vailab le FENs; : 2,3 ,4

Pmnp p ow er : N onn ai
W ater f lo w : N on n ai
Tank le v e l : N onnai

B lo ck a g e d e tec tio n : N IL

A
(a) Normal (b) Low level blockage

3 W elco m e to IP MM - M icrosoft In - In I x
File Edit View Favorites Tools “ Links w Sf*

 "
Bytronic Rig Process Status

A v a ila b le FE N s 2,3.4

Pump p o w er H id i
W ater f lo w L ow
Tank le-' e l L ow

B lo c k a g e d e tec tio n : M E D IU M

Id
(c) Medium level blockage

3 W elcom e to IPMM M icrosoft In d o J d
File Edit View Favorites Tools >y Links ”

B vtionic Rio P iocess S ta tus

A vailab le FENs : 2 ,3 ,4

Pmnp p ow er : High
W ater f lo w : N onnai
Tank lev e l : L ow

B lo ck a g e d etec tio n : H IG H

(d) High level blockage

Figure 6.16: Monitoring results on web page

Id

time) thresholds. The first layer decisions by the FENs were integrated by the SUIN

operating at second hierarchy layer. The combined information proved useful in

classifying the fault extent as being low, medium, or high level. The first layer FEN nodes

were proved as suitable data acquisition devices and of being capable of providing simple

first layer processing. In isolation each FEN was able to discriminate between normal and

faulty operation. The second layer computations, based on first layer results, provided

integrated and robust information about process health. The results were provided on

Internet as a dynamic web page and were open for viewing to all interested users. The

web page was kept up-to-date via its auto-refresh feature. The web page was also

accessible to mobile Internet users.

138

The detection of a single process fault has been described in this chapter. The extent of

the detected fault was also categorised (low, medium, or high blockage level) by

combining the ok/error results from individual signal node results. Thus the developed

system proved to be useful for fault detection and prediction. The detection of a fault

using the resource limited 8-bit microcontrollers was considered an accomplishment,

especially when the real-time results were available on the Internet. The system was then

tested for its fault isolation capabilities by simulating multiple process faults. The details

of these tests are provided in the next chapter.

139

Chapter 7

MULTIPLE FAULTS ISOLATION

The monitoring system was next deployed on the Bytronic rig in order to evaluate its

performance in isolating different faults. A batch process was monitored for two types of

faults, namely leakage and blockage. The blockage simulation was as described in the

previous chapter. Leakage from the tank was added as the second process fault. Data

acquired and processed by the hierarchical monitoring system was used to differentiate

between the two faults. Another application was developed to evaluate the monitoring

system’s performance for multi-loop processes. In this mode, the process rig ran a

continuous process and a batch process simultaneously. This chapter details these two

applications and presents the achieved results.

7.1 FAULT ISOLATION

The monitoring o f a batch process with pipe blockage faults, emulated on the Bytronic

process rig, was explained in the previous chapter and was used as the first single fault

detection application. A leakage in the tank was then introduced in the same process as a

second possible fault. Figure 7.1 shows the schematic process diagram, the leakage and

blockage arrangements along with the control and monitoring signals. A manual valve,

labelled ‘leakage simulation’ in figure 7.1 was used to produce leakage from the tank.

The valve was not easily set and large volume changes resulted from slight alterations.

The leakage rate quickly became larger than the incoming water flow rate, this resulting

in uncontrollable situations. It was felt that a leakage fault in a real industrial process

would realistically only provide a small trickle from leakage point and not a full liquid

flow. The manual valve was therefore opened only slightly causing a small trickle which

was barely detectable. It was not possible to repeat the exact leakage by repositioning of

manual valve setting. It was also not possible to reliably ascertain the fault level in any

exact quantitative way. The extent of leakage was not investigated and only fault presence

detection was tested.

140

Level S ignal

Power Signal

Sump

Pum

--------------(

Monitoring

Tank

Flow Signal

Solenoid
V a l v e \ y Leakage

SimulationBlockage Simulation

Flow Meter Valve Control

Power Signal Controller

Figure 7.1: Leakage and blockage faults arrangement in batch process

The monitoring system was deployed as before and the 3 signals showed the same

characteristics for norm al conditions. During the system study stage the nodes were set to

acquire full raw data and only the leakage fault was introduced to the system.

7.1.1 Leakage Fault Simulation

A small leakage was introduced in the water tank and the monitoring signals were

acquired. The water level in the tank had an expected slower rise than normal because of

the leakage during the first four seconds o f the batch cycle (with the controller set to

deliver constant pum p power). Then the controller sensed the actual level signal and

started generating appropriate power control. The lower than normal feedback signal

resulted in a higher than normal power signal. The detection o f this increased controller

action again provided the opportunity for fault detection in an otherwise controlled

process. The increased pump power actually achieved and maintained the desired rate of

tank filling by, in effect, compensating for flow losses due to the leakage. Figure 7.2

shows the combined plot for the three monitored signals.

141

250

Level

200

D
-g 150
5

Power

g. 100o<

F lo w

1400 20 40 60 80 100 120 160

Tim e (sec)

Figure 7.2: Signals for leakage fault only

The power signal pattern with the leakage fault present is overall quite similar to the

normal case but did have some important differences. A second peak in flow was clearly

visible after the starting transient. The effect of the leakage on the flow and level signals

can be more clearly seen in figure 7.3. Figure 7.3a shows the level and flow signals at the

start of batch for the leakage fault case. Figure 7.3b, for comparison, shows the normal

signals. The controller (in operational mode) sensed the decreased level and increased the

pump power, and hence the flow in response. A delay was observed between the start of

controller action and the flow response. The increase in flow also caused a sharp increase

in the level signal.

105

Flow

c r

Level

4 8 12 16 20

Flow

85

65

FT 45

Level
25

4 8 12 16 20

Time (sec) Time (sec)

(a) Leakage fault (b) Normal case
Figure 7.3: Enlarged flow and level signals

142

The pump power signal over the first 20 seconds o f the batch was larger in the leakage

case, but with a similar trend to the normal case, as seen in Figure 7.4. The process started

with high pump power which decreased once the controller took over. This was an

established behaviour also for blockage faults and the evaluation o f statistical measures

was required to distinguish effects. Table 7.1 provides the statistical measurement for

monitored signals in both cases.

160

Leakage

140

G

3cro< 120

Normal

100
8 12 16 204

Time (sec)

Figure 7.4: Power signal in normal and leakage conditions

Signal Statistic Normal Leakage

Power

Running sum 92535 94563

Mean 119 121

Variance 252 304

Level

Running sum 93924 93498

Mean 120 120

Variance 3124 3194

Flow

Running sum 49368 50682

Mean 63 65

Variance 128 159

Table 7.1: Statistical measurement for monitored signals

143

The increased controller effort under leakage conditions was visible from the statistical

measures for the power signal. Both its mean and running sum showed increased power

usage, as expected. The knock-on effect of increased flow was verified by increased mean

and running sum values for flow signal. The level signal measures were almost the same

as normal. This was due to the controller effectively achieved its function of maintaining

a correct water level in the tank.

There was also increased variance in all the signals. This can be explained as follows.

Water leakage from the tank was compensated by the controller actions and thus

increased pump power and water flow. No blockage was introduced in the pipe at that

stage (i.e. single leakage fault testing) but the pipe configuration still caused increased

turbulence (there were four right angled bends between the pump and the tank). The

turbulence, in turn, increased the variance in flow measurements and caused increased

ripples in water surface, as previously explained. The ripples causing increased variance

in the level signal, and this was the feedback signal in the control loop the effects tended

to propagate themselves.

7.1.2 Leakage and Blockage Faults Isolation

The author observed that the controller increased pump power and hence flow rate in

response to both leakage and blockage faults. Blockage faults produced resistance to flow

and hence the decreased flow signal values were of prime consideration in blockage

detection. Conversely the lack o f a reduction in the flow signals could isolate the leakage

fault.

The small leakage introduced caused a small loss in water volume and the controller

quickly recovered the situation and only a small increase of flow was evident. Indeed, it

was very difficult to distinguish this flow increase from the flow in the normal case. A

different approach for leakage fault detection was therefore developed. The initial 4

seconds when the controller was set at a fixed level was utilized. During this time (with

no blockage fault present) the usual volume of water reached the tank. A portion o f this

volume was lost due to leakage and the level signal showed lower values. Individual

samples did not provide any reliable fault determination and resort was again made to

running sums. The running sum of the level signal was matched with the threshold at 5

144

seconds batch time (as for blockage detection). The controller started working in

feedback mode after 4 seconds but inertia and delays in the system meant that the level

signal was unaffected at this first monitoring point at 5 seconds batch time. The system

showed almost the same water level for normal and low to medium blockage cases. A

lower running sum of the level signal thus indicated the presence o f either the leakage

fault or high level blockage fault. A threshold value, based on the acquired experimental

data, was still established in order to initiate a fault indication.

The level monitoring FEN, on detecting the fault, generated an ‘event’ message and sent

it to the flow monitoring FEN. The second layer of computational hierarchy was thus

involved in isolating a leakage fault from a high blockage one. The flow monitoring FEN

compared its own running sum with a threshold on receiving the event message. It

combined its own information with the received information and sent it to SUIN as an

error message containing the correct fault situation. The SUIN was thus able to convey

the proper fault situation to remote users. Table 7.2 provides running sum values for level

and flow signals at first monitoring point for fault isolation. The author established 735

and 2500 as threshold values for level and flow FENs respectively for leakage detection.

Figure 7.5 elaborates fault isolation procedure carried at the first monitoring point (5

seconds batch cycle time).

C ondition Level Flow

Normal 796 2266

Leakage 672 2294

10% blockage 775 2036

20% blockage 778 2278

30% blockage 766 2130

40% blockage 785 1774

50% blockage 796 1666

60% blockage 744 3168

70% blockage 572 3094

80% blockage 628 2892

90% blockage 291 1614

Table 7.2: Running sums for fault isolation

145

Level FEN Flow FEN SUIN Power FEN

’ower>4800'Level<500?, Iow<2000?,
Yes NoYes No Yes No
Msg: Error Msg:OKMsg:OKMsg: Error Msg:OKMsg: Error

Send MessageSend M essage Blockage
DecisionSend M essage Stop

Time=5sec?.No

Yes

Level<735?
No

Yes
No

Message?

iYes
Send M essage =

low<25007.Stop
Yes No

Msg:OKMsg:Error
Decision M essage Types

Event Message
OK/Error Message

Msg1 Msg2 j Result

OK 1̂ Error j L eakage

Error) X INo L eakage

Send M essage
Msg2

Stop

Figure 7.5: Fault isolation processing

The leakage FEN generated an event message to the flow FEN on detecting the running

sum to be below threshold (735). The flow FEN, in response, generated an ‘integrated’

error message to the SUIN after checking its own threshold for leakage (2500). The SUIN

then combined the information from the two flow FEN messages to decide about the

leakage fault. This procedure provided blockage fault indication as well, which was not

used and the previously reported method was adopted. It was interesting to note that only

one threshold value was used in level and flow FENs each to detect leakage as opposed to

27 values for blockage detection. The power monitoring FEN played no role in leakage

detection and isolation.

Running sum values at other times were also considered for leakage fault detection and

isolation. Level and flow running sum values calculated at 6 and 7 seconds provided

wider range for thresholds but with delayed results. Further delay in decision making

made the situation worse as the controller effects complicated the proceedings. 5 seconds

146

batch cycle time was thus finalised providing early results and ease o f programming, as it

matched timings with blockage detection procedure.

Only a small change in FEN software was required for the additional functionality using

the same hardware. Modularity o f the developed code ensured that only a small

subroutine for processing the acquired samples was amended minimizing the programmer

effort. Changes required in Java code for the SUIN were also minimal and only the results

integration part and web page text strings were amended. Easy code upgrading was

previously identified as one of the essential requirements for a generalised monitoring

system and the developed system exhibited this capability in this example application.

7.2 MULTI-LOOP PROCESS MONITORING

The Bytronic process rig was again used to check the monitoring system performance in a

multi-loop environment. Two control loops were implemented on the process rig such

that it operated in continuous and batch process modes simultaneously. The controller in

the continuous loop was set to maintain a constant flow in the pipe between the pump and

the tank. The batch process was set to allow storage of the incoming water and then to

empty the tank once a pre-defined level was reached. The process repeated itself

indefinitely. The two processes were interlinked with the controlled water batch flow

from the continuous process being the input to batch process. Thus, a fault in the

continuous process also disturbed the batch process. The distributed monitoring system

was deployed to monitor both processes. The deployed monitoring system again consisted

of three FENs and a SUIN, and the logic rules developed considered the loop interactions.

7.2.1 Continuous Process Monitoring

As stated, the continuous process objective was to maintain a pre-defined flow in the

pipe. The pump power was the controlled variable and the flow signal was the feedback.

A blockage type fault was simulated on this loop by closing a manual valve between the

pump and the flow sensor. A relatively large deadband was set within the controller

algorithm to cater for flow signal fluctuations caused by water turbulence. Two FENs

147

acquired power and flow signals for monitoring purposes. Figure 7.6 summarizes the

control and monitoring arrangements for this loop.

Blockage
simulationFlow

meterPump
To figure 7.13

Flow
Signal

Power
Signal

Monitoring

Controller

Figure 7.6: Continuous process

The nominal values were observed for the monitored signals when the process was in

steady state. The pipe blockage faults led to increased pump power and this was used to

provide fault indication. Mean power values were computed and it was found that the

mean pump power remained virtually constant at a given constant flow. The threshold

value was set on this basis and the method was found to be more suitable than the running

sum or other statistical methods. The threshold values of 150 and 66 for power and flow

signals respectively were used. These were values of 10 above and below the typically

steady state power and flow values respectively.

The final deployed decision architecture set the two FENs monitoring this control loop to

collaborate with each other to find the fault extent. Figure 7.7 describes the detection

procedure. When the power monitoring FEN detected a fault it sent an event message to

the flow monitoring FEN. On receiving this message, the flow monitoring FEN checked

its own status and combined the two signals’ information. The effect of a process delay

148

was allowed for since water flow did not change instantly with a change in pump power.

A delay of 2.5 seconds (15 samples) was used in the flow FEN before it checked status

and combined information with the received power information. If the fault was

confirmed the flow FEN then sent the SUIN an ‘integrated’ error message. The SUIN

performed the role o f communicating the fault extent to remote users. It parsed the

received error message for combined information o f power and flow and updated its web

page for mild or severe pipe blockage fault accordingly, as shown in figure 7.8 (when

batch process monitoring reported normal conditions).

Power FEN Flow FEN SUIN

Flow<Threshold?,
No

Yes

Msg:OK

’ower>threshold‘
Send MessageNo

Yes
Stop

Send OK Message

Stoi

No
Send

Event Message = “ ►■‘̂ M essage?

Y e s ^ ^
Delay =

15 samples.

Decision MakingStop

:low<Threshold2.
No

Yes
Message Types
Event Message
OK/Error Message

Msg: ErrorMsg:Error(lntegrated)

Send Message

Stop,

Figure 7.7: Fault detection procedure in continuous loop

Monitoring was started when the process was in steady state condition and figure 7.9a

shows the acquired signals for normal operation. Mild blockage faults were reacted to by

the controller and increased pump power with normal flow was observed, as shown in

figure 7.9b. This combination was taken as a mild fault indication. Severe pipe blockages

also caused drop in flow being beyond the extent to which the controller to compensate.

Figure 7.9c shows the signals for the severe blockage condition. The decreased flow, (and

maximum power) was taken as indication of severe blockage in the pipe.

149

b J , ici xi
Rte Edit View Favorites Tools Help Links » | S f File Edit View Favorites Tools Help Links ” S f

........., ... ' E E " ' ' d
Multi-Loop Process Status Multi-Loop Process Status

Available F E N s : 2.3.4 Available FENs : 2,3,4

Pump p o w er. Normal Pump pow er: High
Water flow : Normal Water flow: Normal
Continuous Pr ocess : Nonnai Continuous Piocess : Mild Pipe blockage

Tank Level: Normal Tank Level: Normal
Batch Pr ocess : Nonnai Bareli Pr ocess : N onnai

I d d
3 W elco m e to IPMM - M icrosoft In te r n e t Ex..._______________________ - Inlxl
Fie Edit View Favorites Tools He ** ! Links ” =*,*

M ulti-Loop Process Statue

Available F E N s: 2,3.4

Pump power High
Water flow : Low
Continuous Process : Severe pipe blockage

Tank Level: Normal
B atch Process : N onnai

Id

Figure 7.8: SUIN reporting process condition

£
3 i» c

T3
£ 100

*3
CT

< »

250

Pow er
u . 2005

X>

3 150C

P ow er

100

3cr o so
Flow

F low
0030 5 10 15 20 25 30

Tim e (sec)

(a) Normal conditions
Time (sec)

(b) Mild blockage
250

200

P ow er
ISO

F low
100

'33-O< 50

o0 5 10 15 20 25 30

Tim e (sec)

(c) Severe blockage

Figure 7.9: Continuous process monitoring signals

150

As mild blockages did not reduce flow the power monitoring FEN was used to initiate the

event message to trigger the decision making process. The detection o f mild blockage

faults was therefore reliant on the power FEN. If the power FEN was not available (or

faulty) then even with plug-and-play capabilities the monitoring system would not be able

to distinguish the level of fault. However, the user was informed about power FEN

unavailability (and hence reduced functionality) as shown in figure 7.10 (when the batch

process monitoring reported normal conditions). It was still possible to detect severe

blockage faults using only the flow monitoring FEN. In this case the flow FEN worked

independently and initiated an error message directly to SUIN when flow signal dropped

below the threshold value, as shown in figure 7.11 (modification of figure 7.7). This

scenario was confirmed by switching off the power FEN and adjusting the manual valve

to create a severe blockage. The SUIN had plug and play information (and thus node

availability) and reported this situation as severe pipe blockage faults.

______________________________ i; ^ lajxi
File Edit View Favorites Tools Help | Links * j S f \

— — — — = — --------------------- Tj
Multi-Loop Process Status

Available FENs : 3,4

Pump pow er: Not Available
Water flow : Normal
Continuous Process : Patial Results OK

Tank Level: Normal
Batch Process : Normal

________________________________ _zJ

Figure 7.10: Partial availability

However, decision making logic was not provided to the SUIN for all possible

permutations. The SUIN updated its web page for ‘unexpected condition’ when faced

with such a situation. An example o f this was created by producing a blockage fault and

increasing the power FEN threshold value. Figure 7.12 shows the resulting web page.

Maintenance staff, thus warned, can take appropriate actions including a new analysis of

data acquired by the monitoring system.

7.2.2 Batch Process M onitoring

Batch control was used to successfully fill and empty the tank. A batch started when the

controller issued a close command to the solenoid valve. The tank was then filled to a

3 Welcome to IPMM - Microsoft In te rne t Explorer

151

Power FEN

3ow9r>thrssholc

Send OK Message

Send
Event Messagfi

Stop

Message Types
Event M essage = = ►
OK/Error M essage = = = = = = = ►

Flow FEN

low<Threshold
No

Yes

i:OKig:Erroi

MessagekSend

Stoi

Delay -

w<Threshold?

Y es _
No

Msg: Er i or(l ntegrated) (Msg: Error

Send Message

SUIN

Decision Making

Figure 7.11: Decision making with partial availability

3 W elcom e to IPMM - M icrosoft In ternet ExpL U bJ*J
Fie Edit View Favorites Tools Help [Links ” ! m? \

Multi-Loop Piocess Status

Available F E N s: 2,3,4

Pump p o w er: Normal
Water flow : Low
Continuous Process : Unexpected condition

Tank Level Normal
Batch Pi ocess : Nonnai

Ld

Figure 7.12: Detection o f unexpected process conditions

pre-defined level. When sensed the solenoid valve was opened and the water was released

into the outlet pipe. Figure 7.13 shows the control and monitoring arrangements. The

FEN used for monitoring acquired the level signal and checked control commands to the

solenoid valve. A leakage fault in the tank was simulated by opening a manual valve at

the bottom of the tank. Digital control o f the solenoid valve was used in conjunction with

the level signal as the feedback.

152

The duration of all batches was found to be consistent when there was a steady incoming

water stream. The batch completion timing was thus a good representation of a nominal

process. The monitoring FEN was set-up in a timer mode. The observed nominal batch

completion time (under normal conditions) was 38 seconds and a time-out value o f 38.5

seconds was defined for fault detection. This was a simple implementation with the PIC

MCU. The FEN started a timer at batch start and generated an interrupt if the time-out

value was reached. This was an indication of the fault and generated an error message to

the SUIN. When a batch completed before time-out the FEN stopped and reset timer and

sent an ok message to the SUIN. Figure 7.14 shows the level signal profiles for both

normal and leakage cases.

Monitoring

Valve

signal

Controller

Level signal

Tank

■From figure 7.6

Solenoid
Valve

Leakage
Simulation

Figure 7.13: Batch process

In practice, the resolution of 0.5 seconds between conditions did not provide good results.

Processes, such as this one, may show different timings in different batches. The

monitoring system generated several false alarms with this threshold value. A higher

threshold value was tried but the system was then unable to consistently detect the fault.

Actual processes in industry use much larger tanks and the filling and emptying will take

more time and potentially provide better opportunity to establish robust thresholds.

153

180

150 Normal

<o
g 120 -
3
C

T 3<U
i—

Leakage
3
O 'O<

60

0 5 10 15 20 25 30 35 40 5045 55

T im e (sec)

Figure 7.14: Level signal shows delay in batch completion for leakage

Another problem was that detection was only possible after batch cycle completion. A

second approach was investigated with the level signal now used directly. The raw level

signal variations did not show any useful difference between normal and leakage

conditions, as is apparent from figure 7.14. The tank filled slower in the leakage case but

running sum values did not display any useable patterns when thresholds were based on

attaining certain levels. The difference in the number o f samples over which running sum

was calculated caused this behaviour and thus the running sums were re-calculated, now

based on the batch timings. Computations were done on same number of samples this

time and level running sum provided better results. Table 7.3 shows these results

calculated at various normalised times within the batch cycle. The selected running sum

was at 50% of the expected batch finish time and a threshold value 4960 was used to

distinguish between normal and leakage conditions. This was configured in the decision

making process as an early warning and generated an error message to the SUIN. The

initial fault detection was subsequently confirmed by the previous timer based methods

and results were posted on the web page as shown in figure 7.15 (when continuous

process monitoring indicated normal conditions).

Batch tim e Normal Leakage Difference

25% (9.5 sec) 1835 1795 40

50% (19 sec) 5009 4907 102

75% (28.5 sec) 9517 9323 194

100% (38 sec) 15363 15040 323

Table 7.3: Running sum values for level signal

154

3 W elco m e to IPMM - M icro so ft I n te r n e t E x p lo re r

File Edit View Favorites Tools Help

Multi-Loop Process Status

Available F E N s: 2,3,4

Pump pow er: Normal
Water flow : Normal
Continuous Process : Normal

Tank Level: Normal
Batch Process : Normal

Ld

5 W e lc o m e to IPMM - M icro so ft I n te r n e t Explorer

File Edit View Favorites Tools Help Links

-Ini xl
B F I

M ulti-Loop Process Status

Available F E N s: 2,3,4

Pump pow er. Normal
Water flow : Normal
Continuous Process : Normal

Tank Level: Low
Batch Process : Leakage in Tank

Id

Figure 7.15: SUIN reporting process condition

In principle, a blockage in the tank outlet pipe could be detected in a similar fashion. It

was observed that a batch takes approximately 25 seconds to empty the tank. The

continuation of a timer method and a 50% emptying time running sum would be feasible,

but was not tested in the current work.

7.2.3 Combined Loop M onitoring

The two control loops on the process rig were interconnected with the water level in the

tank being a function of the continuous process output. Water flow to the tank remained

constant irrespective o f the batch state and water continued to flow into the tank during

the batch tank emptying phase. A fault in continuous process would therefore affect the

batch process. A flow reducing problem (such as blockage) in the pipe also reduced the

tank filling rate. The batch process monitoring FEN would then report it as a fault with

the batch process, which was not the real case. This problem was resolved at second layer

of computational hierarchy. The decision making was referred such that the SUIN only

updated its web page for continuous system faults when both control loops

simultaneously agreed on fault conditions.

More elaborate monitoring could be achieved by linking the flow rate (in the continuous

process) to the water level fill rate (in the batch process) and hence the setting of

thresholds. The various times required to fill the tank (at various flow rates) would have

to be obtained through experimentation and the time-out values could then be determined.

It would therefore become possible to reliably detect faults in the batch process even

when faulty continuous process conditions are present. False alarm generation by the

batch monitoring FEN would potentially cease and the system would detect multiple

faults simultaneously. This approach however was not tested in the current work.

155

7.3 SUMMARY

The distributed monitoring system was again deployed on the process rig to test its

capabilities in fault isolation. Blockage and leakage faults were simulated on a batch

process and different fault symptoms were established for both faults. A fault isolation

strategy was accordingly developed and implemented into the monitoring system.

Running sum values of power, level, and flow signals were used and the FENs

collaborated with each other (at the second computational hierarchy layer) to reduce load

on the SUIN. The peer to peer communication between the FENs was thus found

beneficial. Slightly different codes were used in the FENs to implement the devised

strategy. The generalised nature o f FEN code made this possible without disturbing the

main code and functional arrangements.

The effectiveness o f plug & play capabilities of the system, and its limitations, were

investigated by deploying the monitoring system on a continuous flow process. The

system continued working when the power FEN was switched off but with reduced

functionality. Unavailability o f an expected FEN was reported to the user. Unexpected

conditions were also reported to the user via its web page when the system detected a

combination o f signals not anticipated in the system study phase.

Faults in interconnected control loops were also investigated using a continuous flow and

a batch process together. The continuous process output (flow) was used as the batch

process input. The monitoring system successfully detected a leakage fault in the batch

process and mild blockages in the continuous process. It was however unable to locate a

batch process fault when the continuous process reported severe blockage, as this fault

affected batch process performance. A procedure to resolve this problem was conceived

but not tested and implemented. The monitoring system’s capabilities and limitations

were thus determined for multi-loop processes.

The system’s capabilities were thus evaluated with signal analysis in time domain. Its

performance was next evaluated for frequency domain analysis by deployment on a

machine tool. The details are provided in the next chapter.

156

Chapter 8

TOOTH BREAKAGE DETECTION

This chapter reports work designed to evaluate the monitoring system’s capabilities

particularly in the frequency domain. The system was deployed on a machine tool to

detect either tooth breakage. Knowledge of the machine tool and its monitoring was

already available in the IPMM research group and had identified differences in frequency

spectra for a new cutter and for a cutter with one broken tooth. The author applied

sweeping filter technique (described in chapter 4.5.2) in combination with the monitoring

system to implement a simple, low resolution frequency analysis. The performance of the

system is detailed and discussed in this chapter. The need for multiple signal monitoring

was again established and the benefits o f the distributed monitoring system were

emphasized. The work described was focused on monitoring system performance

evaluation and was not intended to provide a complete solution to the complex problem

of machine tool tooth breakage detection.

8.1 TOOTH BREAKAGE DETECTION THEORY

The Kondia B500 machine tool used has been the centre of previous research within the

IPMM group which had identified machine signals via a machine audit (Jennings et al,

2001 B). Suitable interface arrangements were already in place and a large database of

previously acquired signals was available for offline signal analysis and calibration

purposes.

The previous research indicated the expected changes in the key signal frequency

components when a tool breakage occurred. Johns (1998) identified two key frequencies

in the axis drive motor current signal corresponding to ‘tool rotation’ and ‘tooth passing’

frequencies. The former depended on the spindle rotational speed used in cutting. The

latter was the frequency at which cutting teeth entered the workpiece and was dependant

on number o f cutter teeth. For the tests for this work the case where the milling process

was performed with a spindle rotating speed of 500 rpm and 4 tooth cutters was used. The

tool rotation frequency was 8.33Hz under these conditions. Four teeth per revolution

157

caused a tooth passing frequency o f 4*8.33=33.33Hz. Numerous other frequency

components (harmonics etc) are typically present in machine signals for various reasons

but were not considered in this research. When one of the 4 cutter teeth broke, the

remaining 3 teeth produced a different frequency pattern. The tool rotation frequency

remained as 8.33Hz but tooth passing frequency changed to 8.33*3=25Hz. Imbalance

effects caused other frequency variations. For example, one of the teeth now has to cut

extra metal to compensate for the broken tooth. This makes extra cutting effort for the

tooth after the broken one occurs once per revolution, resulting in a 8.33Hz frequency

component. The appearance of this component was ideal for detection purposes.

In other IPMM based work (Johns, 1998) a Wadkin v4-6 machine tool, whose axis drive

system was controlled by dc motors, was used. Kondia B500 machine tool, however, used

three phase ac motors for axes drives. The axes drive current signals were therefore tested

to ensure consistency when using the stored signal and frequency analysis databases.

Figure 8.1 shows the FFT derived frequency spectra for the X-axis drive motor current

signals for new and broken tooth cutter conditions. The tooth passing frequency was

visible in both cases and the change in the strength of the tool revolution frequency

component (8.33Hz) was also observed. The emergence of the changed tooth passing

frequency component (25Hz) on breakage showed presence of three teeth rather than

four. The increase in strength o f this component thus indicated tooth breakage. The initial

FFT analysis thus confirmed the presence of both frequencies of interest with the ac

motor signals in the Kondia machine. These set the specifications for the deployment of

the distributed monitoring system and in particular for the set-up of the sweeping filters.

I2UXI 12<KM» 1

IIXXKI ^

MOO

ob
C (,(*><) u u*
Cn

4000

2000

13 17 21 25 29 33 5 9 13 17 21 25 29 33

F requency (H z) Frequency (H z)

(a) New cutter (b) Broken tooth cutter

Figure 8.1: Frequency spectrum calculated with FFT

158

8.2 SWEEPING FILTER APPLICATION

Machine tool tooth breakage detection is a complex issue with a number of variables

involved. A large body of research has been done in this field and its details are beyond

the scope of this thesis. The author took a simplified approach and concentrated on only

one out o f several potential issues. The research reported in this chapter was aimed at

detecting tooth breakage as a hard fault (a sudden event that need to be diagnosed in real

time) to prove the monitoring system’s capabilities. The spindle rotational speed was

fixed at 500 rpm and the axis feed rate at 100 mm per minute. The same metal was used

in all tests and only four teeth cutters were used. Cases of simultaneous breakage of

multiple teeth were not considered. The monitoring system was deployed to detect

changes in the frequency spectrum resulting from tooth breakage and successful detection

proved its capabilities. However, it should not be considered as a complete solution for

tooth breakage detection in real-life. Several other variables, such as rotational speed,

depth of cut, material, etc, must usually be considered. The proposed monitoring system

has potential to be useful but to complete a full solution would require more research than

described in this chapter. Another aspect o f this application was the higher amount of data

generated and monitoring system’s capability o f tackling this data was also observed.

8.2.1 Monitoring Signals

The Kondia B500 machine tool can move in X, Y, and Z axes. Three 3-phase induction

motors controlled the movements in these axes. Previous arrangements were available to

acquire motor current signals for two phases for each of these 3-phase motors. The tapped

signals were called ‘R ’ and ‘S’ and were out of phase by 120°. These were available via

the interface in analogue voltage form with a full range from -10 to +10 volts. The signals

were further conditioned for connection to the monitoring system to ensure a span within

range of 0 to +5 volts. The conditioned signals were connected for frequency analysing to

the previously described FENs using the sweeping filter technique.

The author considered only horizontal milling (and disregarded Z-axes signals) in this

research. R and S current signals were analysed for both X and Y axes although cutting

was restricted to X-axis directions. Thus, four current signals were interfaced via four

FENs with the SUIN integrating these outputs and provided combined monitoring results.

159

Cutting tests were performed under the selected conditions and the 8.33 and 25Hz

frequencies were of interest. Each FEN was accordingly set up and swept a frequency

range from 6Hz to 28Hz and calculated a measure of signal strength in each 1Hz

frequency band within the range. Acquisition was run for 640ms to allow the signal to

become relatively settled and to assure consistent filtering. The analogue filter was not

fully settled in that time but its output provided enough amplitude difference to reliably

indicate the strength measure for each band. The same filter settings were used for all

bands thus making their results comparable (a fully settled analogue filter would provide

higher filtered signal strengths for the same signal with the sweeping filter technique but

would take a longer time). The acquisition time was a required compromise between

detectable strengths and detection times.

The filter settings were stored in each FEN memory as a table and the built-in PWM

generator (in the PIC 18F458) generated appropriate filter control frequencies according

to the table. The filter output was acquired at each stage by the MCU and the maximum

and minimum values were determined. The difference between them provided the

strength measure for each frequency component. The processing requirements had again

been decided upon to match the PIC MCU capabilities. The system study used the

monitoring system in a mode where the total profile of the signal was obtained. Clear

differences in acquired signal strengths were observed for new and broken tooth cutters.

The R current signal for X-axes drive is shown in figure 8.2, as an example, for both

cutter conditions. New and broken tooth cutters are also shown.
250

ffr 'is*!

14 16 18 20

Frequency (H z)

Figure 8.2: R current profile for X-axis drive signal with new and broken tooth cutters

160

Y-axis drive currents were also monitored in the same fashion and no clear pattern was

observed in them since cutting was done only in X-axis. There was no movement in Y-

axis and its motor was not loaded. The Y-axis FENs were included for completeness and

would became important if other than single axis directional milling was to be monitored.

The obtained Y axis spectra (not shown) confirmed that these nodes were, as expected,

insensitive to X axis milling.

The lack of cutting information in axes drive currents other than the cutting axis was also

confirmed from time series plots acquired during the system study. For example, figure

8.3 shows time series data for X and Y axes (R motors currents) with cutting in the X-axis

only. The time series plot in figure 8.3a has a 1.5 seconds period component. This was

consistent with the feed rate o f lOOmm/min combined with 10mm ball screw pitch and a

8-pole axis drive motor (Jennings, 2001 B). Figure 8.3b confirms no movement in Y-axis.

T im e (se c) T im e (sec)

(a) X-axes current (b) Y-axes current

Figure 8.3: R currents during cutting in X-axes

8.2.2 Possible A pproaches

When the cutting tests (at set conditions) were repeated to check the consistency of fault

detection it was observed that variable results were obtained. A broken tooth did create

strong frequency components, particularly at the two frequencies o f interest. A new cutter

usually showed low strengths across the frequency sweep but with some wideband

variability. Figure 8.4 shows X-axis drive R current profile from two (time-separated)

sweeps in the same experiment with a new cutter. The wideband profile showed the same

161

pattern in both cases but with a relatively large offset in the overall signal strength levels.

This caused problems in threshold determination. The reason for this behaviour was not

properly understood and was beyond the scope of this thesis.

150

6 8 10 12 14 16 18 20 22 24 26 28

Frequency (H z)

Figure 8.4: Varying signal strength for new cutter

The solution considered thus required analysis of the spectrum pattern. As previously

stated tooth breakage caused increase in tool rotation frequency strength and a reduced

tooth passing frequency. As seen in figure 8.2 a new cutter would be detected as having

virtually constant signal strengths across the considered frequency range. A broken tooth

cutter would have strength peaks at the frequencies of interest. The approach required a

sweep of the entire frequency range or, if a reduction in computation times was required,

across a more focused range of frequencies.

The hierarchical decision making process was again utilised via the use of multiple

signals for tooth breakage detection. Two FENs performed independent analysis on the R

and S current signals (for the appropriate cutting axis). The 2 FEN results were compared

between themselves and provided a combined conclusion to the SUIN. Threshold values

were established via a system calibration phase (details in section 8.2.3 following) for

each signal for both frequencies o f interest. Each FEN performed frequency analysis only

for the two focused frequency sweeps, centred at 8.33 Hz and 25Hz in this case. A higher

than threshold strength in a signal component indicated tooth breakage. Each FEN was

1 6 2

programmed to generate a broken tool alarm only when thresholds were exceeded at both

frequencies.

8.2.3 Threshold Establishment

Cutting experiments were performed in the X-axis direction only and the appropriate R

and S motor drive current signals were analysed. One FEN employed the sweeping filter

technique on the R signal and the other simultaneously performed the same on S signal.

The filter was programmed to sweep only the 2 frequencies o f interest for each FEN and

the resulting frequency profiles were captured for further analysis. The threshold values at

two frequencies were determined with emphasis on using same values for both R and S

signals. These combination thresholds were set (fairly conservatively) at 70 and 95 for

tool rotation (8.33Hz) and tooth passing (25Hz) frequencies respectively.

The two frequencies o f interest were repeatedly swept during a cutting test. Each

completed sweep was immediately followed by the next sweep throughout the cutting

run. Figure 8.5(a) depicts the obtained strength values for tool rotation frequency from

first ten sweeps during a test where a broken tooth cutter was used. It was observed that

both R and S signals consistently exceeded the set threshold and provided indication of

the fault. Figure 8.5(b) provides results from a similar test undertaken with a new cutter.

Strength values for both R and S signals frequently (but not consistently) exceeded the set

threshold confirming the previously observed uncertainty introduced by the ‘global’

frequency strength variations for new cutter. It was also observed that both signals

crossed the threshold at different times and no simultaneous threshold violation was

observed. The FENs performed similar analysis on tooth passing frequency during the

same sweeps and the results obtained during the same cutting test are presented in figure

8.6. Signal strengths for both R and S currents consistently exceeded the set threshold for

broken tooth cutter and uncertainty was observed with new cutter. Once again, the two

signal never crossed the threshold simultaneously. This consistent behaviour from both

signals for both frequencies o f interest provided fault detection opportunity.

163

250

200

150

^ 100

50

0

DOcn>

3 4 5 6

Sweep number (time).

(a) Broken tooth cutter

10

250 n

200 -

55 100 -

50 -

0 2 3 4 5 6 7 8 9 10

Sweep number (time),

(b) New cutter

R current: ♦ S current: ♦ Threshold:

Figure 8.5: Tool rotation frequency (8.33Hz) for R and S signals at different times

164

250 n

200 -

S 150 -
00
c<L>

5 100 -

5 0 -

0 21 3 4 5 6 7 8 9 10

Sweep number (time),

(a) Broken tooth cutter

250 n

200 -

& 150’
ob

5 0 -

0 2 3 4 5 6 7 8 9 10

Sweep number (time),

(b) New cutter

R current: ♦ S current: ♦ Threshold:

Figure 8.6: Tooth passing frequency (25Hz) for R and S signals at different times

165

8.3 MONITORING DECISIONS

As stated the thresholds were set in such a way that a broken tooth cutter would always

generate an alarm. The variability in new cutter sweeping filter results was the remaining

area to be catered for in the setting o f the decision making logic. It was decided that both

FENs would share information with each other and only when they unanimously agreed

(2 signals x 2 thresholds) would the alarm state be conveyed to SUIN for onward delivery

to remote users. The monitoring decisions taken for tooth breakage detection, under the

given constraints, are thus summarised as follows:

• Separate sets o f FENs required for cutting in separate axes (X axis only tested).

• Only tool rotation and tooth passing frequencies monitored by each FEN.

• Threshold for tool rotation frequency (8.33Hz) strength was set at 70.

• Threshold for tooth passing frequency (25Hz) strength was set at 95.

• Below threshold values indicate new cutter; higher values indicate tooth breakage.

• A FEN generated event message to its counterpart only when both frequency

thresholds were violated.

• A FEN receiving alarm message would check its own status; the message is

discarded if own status is ok.

• Error signal sent to SUIN only when both FENs agree on tool breakage.

• SUIN updated its web page for tooth breakage when the 2 FENs monitoring an

axes agreed on breakage.

Further experim ents were then conducted to confirm that the sweeping filter approach in

the distributed m onitoring system would work in various conditions. Milling tests were

performed w ith varying depths of cut to investigate the monitoring system response.

Cutting at 0.5, 1, 1.5, and 2 mm depths was performed (with the previously established

threshold settings in operation). Other machining parameters remained constant and the

frequencies o f interest remained the same. The monitoring system was able to

successfully distinguish between new and broken tooth cutters in almost all o f these

experiments. For discussion purposes, the system was run in monitoring mode to provide

full result sets. The frequency profiles are collated and presented in figure 8.7.

166

Frequency (H z) Frequency (Hz)
____________ (c) 1.5mm____________________________________ (d) 2.0mm__________

R current: —■— N ew ♦ Broken S current: — Ne w —♦ — Broken Threshold: +

250 i

250

200

Frequency (Hz)
(a) 0.5mm

Frequency (Hz)
(b) 1.0 mm

Figure 8.7: Frequency profiles for various depths of cut

As can be seen from the profile to thresholds comparisons, the monitoring system

successfully detected tooth breakage for the 1.0, 1.5 and 2.0 mm depths of cut. It was

unable to consistently detect tooth breakage for the 0.5mm depth of cut. In this case the

tooth passing frequency strength was sometimes observed below threshold and the FENs

(set to require all 4 threshold tests to be true for broken tooth) did not generate an event or

error message. This limitation was mainly due to the use o f fixed (conservatively set)

thresholds. The thresholds had been set in order to minimize false alarms and were prone

to error in marginal cases. A lower threshold value would potentially detect tooth

breakage with a 0.5 mm depth o f cut. Possibly an additional FEN could be used to

provide a depth o f cut measure and its input to the monitoring system might allow the

threshold values to be determined dynamically. The monitoring system has the capability

to include more FENs and would support such enhancements. The addition of a depth of

cut measure FEN was not tested in the current research.

167

8.4 SUMMARY

The monitoring systems’s performance for frequency domain analysis was tested by

detecting known frequency components in a set of milling machine signals. Threshold

values (for signal strengths) were determined and set for frequencies o f interest. Only

unanimous decisions from both FENs were conveyed to the SUIN. The system user was

informed about faults when tooth breakage was reported by any axes drive monitoring set

o f FENs. The system successfully differentiated between new and broken tooth cutters

during experimental testing. It demonstrated the feasibility o f 8-bit MCUs as frequency

analysis tools in real-time applications.

The research conducted in this work was specifically aimed at evaluating the performance

o f the proposed monitoring system in the frequency domain. Machine tool monitoring is a

complex topic in its own right. The selected experiments were carefully planned to ensure

the presence or absence o f certain frequency components and numerous real-life variables

remained fixed in this research. A complete tooth breakage detection system would

consider effects from all such parameters and was beyond the scope of this research. The

proposed monitoring system, however, could potentially be a useful part of a complete

tooth breakage detection system. It allows flexibility and provides multi-dimensional

analysis capabilities and the hierarchy allows robust decision making.

This application also highlighted network traffic reduction achieved by processing the

signals at the first hierarchy layer (close to the source). A relatively higher sampling rate

was required for frequency analysis and the signals were acquired at 100 samples per

second. Six signals at this rate generated 51.84 MB of raw data in a day. This raw data

(with network overheads) would have been transmitted on the network in a centralised

processing system. The distributed hierarchical system processed this raw data at the

source thus considerably reducing the network traffic.

The next test applied to the monitoring system was to check its performance for industrial

systems. A process rig was used for this purpose that contained a commercial digital

valve controller mounted on an industrial valve. The details of the monitoring system’s

deployment on this air flow process rig are provided in the next chapter.

168

Chapter 9

AIR FLOW PROCESS M ONITORING

This chapter describes the deployment and testing of the developed system on a

commercial Digital Valve Controller (DVC) in order to ascertain its performance for

industrial systems. The DVC has its own valve monitoring procedures that may be

accessed through the PC based software supplied with it. However, the DVC, and hence

the process valve to which it is fitted, must be taken out o f active service for the

diagnostics to be run. The DVC was used with a process valve to control the flow rate of

air in a pipeline and the aim was to supplement the supplied diagnostic capabilities. The

distributed monitoring system was used whilst the DVC maintained the normal set point

control function. Two typical faults, namely deteriorating valve diaphragm condition and

partial pipe blockage, were investigated. Different symptoms were identified for these

faults and the monitoring system successfully determined either fault cause. A fault in

supply air pressure (reduction) was also diagnosed. These, along with details of the user

interfaces used, are described in the following sections.

9.1 PROCESS RIG

In this section o f research the monitoring system was deployed on a process flowline

containing an industrial control valve. Such valves are widely used for automatic flow

control, especially in the petrochemical industry. A brief but useful introduction to

pneumatic valve functionality can be found in Kempley (1980). The process rig is shown

in figure 9.1. The DVC controlled the valve position under a Highway Addressable

Remote Transducer (HART) protocol. HART provides digital communication capability

on 4 to 20 mA analogue current loop lines and its details can be found in HCF LIT 34

(1999). A working schematic o f the process rig is described in figure 9.2. The desired

valve position was transmitted to the DVC which ensured correct valve positioning via its

feedback mechanism. A 16-bit microprocessor embedded in the DVC generated the

control commands. A pneumatic relay converted these into drive pressures on the valve

actuator. The actuator moved the valve position, which was fedback to the

microcontroller. Valve calibration and PID control parameters for this closed-loop control

were already stored in the DVC memory.

169

Figure 9.1: Process rig

Manual
valve

Vent hole Pi :

Pressure
sensor

in

Chamber
Pressure

signal

Desired position, flow,
inlet, outlet, and chamber

pressure signals

t w u
Monitoring

System

Inlet_
air

Upper diaphragm
casing Computer

S i ---------

Control
command

Feec
back

DVC

^ HART

4~20m A loop l\
n

Desired position \ /

Air supply

Process
Controller

Manual valve
Ti - Outlet

air

Pressure Inlet pipe Outlet pipe^ Pressure Flow
sensor Pressure Pressure sensor sensor

► Flow
signal

Figure 9.2: Process rig working schematic

170

The DVC worked in ‘Instrument’ and ‘Control’ modes. Instrument mode specified

whether the valve was ‘Out-of-service’ or ‘In-service’. The DVC reacted to digital HART

commands in the Out-of-service mode and off-line diagnostic routines and valve health

checks, requiring specific valve movements, were performed. Changes to Control mode

settings were also allowed in this mode. When the valve was in the in-service mode the

desired position was communicated to the DVC through digital data in the ‘digital’

control mode and through the 4 to 20 mA analogue current in the ‘analogue’ control

mode. The DVC mode selection was controlled (over HART) by devices such as a hand­

held HART Communicator or a HART-enabled PC. The process rig used a PC with

installed VLink2000 software to provide such facilities. The PC serial port was connected

to the DVC via a serial-to-HART converter. Further details o f the DVC, valve and the

existing process rig can be found in Sharif (1999). Any air leakage through a faulty valve

diaphragm reduced the effective actuator pressure and affected correct valve positioning.

The VLink2000 software could be used to perform off-line diagnostics but required the

process operation to be stopped. With the distributed monitoring system on-line

evaluation o f the diaphragm condition became possible.

The process rig was designed to control the valve in the in-service analogue mode.

Current derived from a 24 volt power supply, via a resistance box, provided the desired

set point to the DVC. The control valve was mounted on a pipe with a pressurised air

supply at the pipe inlet. The other end o f the pipe was open to atmosphere. Sensors were

mounted in the pipe run and provided signals for air flow and inlet and outlet pressures.

Pressure developed in upper diaphragm casing, referred to as the chamber pressure in the

following text, was available from another sensor mounted on top of the valve. Fault

simulation was possible by manually blocking the pipe and the valve vent hole.

9.2 AIR FLOW PROCESS

The control profile cycle used in the tests consisted o f the valve being fully opened and

then closed. The valve was held at its extreme positions for sufficient time for the signals

to attain a steady state. To provide an automatic procedure for the required valve

movement cycles a PIC 18F458 microcontroller was used as an open loop controller (of

the control current to the DVC). The PIC MCU changed loop resistance via a

171

programmable digital potentiometer IC AD7376, using a Serial Peripheral Interface (SPI).

Figure 9.3a depicts the determined non-linear performance. Adjusted MCU commands

were used to compensate for this in order to attain linear characteristics. The AD7376 had

limited resolution and this led to only 15 valve positions between fully open and fully

closed. Table 9.1 shows the adjusted data commands sent by the MCU and the generated

control signal is shown in figure 9.3b.

ssz
8
crz

v&

30 40 50 60

T im e (sec)

8 12 16

Current (m A)

(a) DVC nonlinear behaviour (b) Generated control signal

Figure 9.3: Linearization of control command

MCU com m and Resistance (H) C u rren t (mA)

42 3404 4

35 2865 4.75

28 2326 5.75

23 1941 6.75

20 1710 7.75

17 1479 8.75

15 1325 9.75

13 1171 11

11 1017 12.25

10 940 13.25

9 863 14.25

8 786 15.5

7 709 17

6 632 19

5 555 20

Table 9.1: Control signal generation

Normal conditions were taken as 4 bar supply air pressure, 1.4 bar supply air pressure at

DVC input, new diaphragm, and no blockage in pipe.

172

9.3 MONITORING SIGNALS

The process rig contained sensors for measuring inlet air pressure, air flow in the pipe,

and chamber pressure above the diaphragm. These sensor signals were interfaced to three

FENs and another FEN was interfaced with the desired analogue valve position command

signal. The pipe outlet pressure was also monitored via a fifth FEN. Table 9.2 provides

details o f these monitoring signals.

Process variable Description Level

Inlet air pressure Analogue voltage Oto 15 V

Chamber pressure Analogue voltage Oto 15 V

Desired valve position Control signal 4 to 20 mA

Air flow Analogue current 4 to 20 mA

Outlet air pressure Analogue current 4 to 20 mA

Table 9.2: Monitoring signals

Operational amplifiers (OP27) were used to provide signal isolation. Each 4 - 2 0 mA

current signal was converted into a voltage using a RCV420 IC. During the system study

the monitoring system was set to present the acquired signals for analysis. Figure 9.4

shows acquired profiles for each signal under normal operating conditions for one process

cycle.

250
Inlet pipe pressure

200

Flow

Control signal

Chamber pressure

700 10 20 30 40 50 60

T im e (sec)

Figure 9.4: Normal condition signals

173

A small decrease in the inlet pipe pressure was observed whilst full air flow was being

delivered. This was a practical constraint o f the air supply system. It was also observed

that maximum flow was established before the valve was fully opened. Although it was

possible to establish the minimum valve opening required for full flow the control signal

used in the reported research however moved the valve stem between the extreme

positions of fully closed and fully open.

9.4 DIAPHRAGM CONDITION MONITORING

The diaphragm condition is an important factor for correct valve positioning. Normal

wear and tear causes deterioration in the diaphragm condition over time. A leaking

diaphragm will cause some air pressure to be lost. This causes pressure reduction on the

actuator and a lesser valve opening is achieved for the same DVC command. The DVC

would compensate on detecting the reduced opening through its feedback mechanism and

the process would then remain in a normal state. Thus, often the incipient diaphragm fault

is hidden by the feedback control system. Eventually severe diaphragm deterioration

hampers valve opening and when detected the process has to be shutdown for diaphragm

replacement to take place. Time based valve maintenance is typically performed to avoid

this situation and the process is shutdown at predetermined times irrespective of the

actual diaphragm condition. Online diaphragm monitoring can minimize such process

shutdowns.

The DVC provided control commands for the pneumatic valve in the form o f air pressure

and the rig had no sensor to measure this signal directly. Valve position feedback was

also not available as is generally the case with such valves. The author therefore used an

upper chamber (above diaphragm) pressure signal for diaphragm condition monitoring.

Sharif (1999) had previously proposed a method of diaphragm condition monitoring by

blocking the valve vent hole and observing the rate o f increase in the chamber pressure.

The valve was kept fully open during his tests offline. The author modified Sharif s

method and monitored diaphragm condition online.

174

The chamber pressure signal, for new and deteriorated diaphragms was acquired. The

deterioration of the diaphragm condition was simulated by making pin holes in it. After

some initial testing with the chamber pressure transducer fitted, but with the vent hole

still open to atmosphere, it was decided to monitor this signal with the vent hole blocked

off. The monitoring system would control a solenoid valve for producing the temporary

vent hole blockages during a test. This would also provide the monitoring system with the

capability to perform such tests on a user demand. In the absence o f this automated

arrangement, the vent hole was manually blocked in this research over one process cycle.

The chamber pressure was then observed to gradually increase with time for both new

and faulty diaphragms. The relative sensitivity of tests with open and blocked vent hole

for the signals collected in system calibration mode can be seen in Figure 9.5. When

tested with a severe fault (large hole) in the diaphragm the chamber pressure rose very

quickly and valve failed to open at all. This confirmed that a severe diaphragm fault

would cause process disruption. The monitoring system was therefore required to

generate an alarm before such severe diaphragm degradations developed. It was

concluded that the vent hole can be blocked (for short duration testing) without

hampering the normal process operation and this method was adopted.

Figure 9.6 shows chamber pressure for new, pin-holed, and large-holed diaphragms

where the increase in this signal with fault severity is clearly visible. The same control

signal was used for all cases and similar flow was obtained from new and pin-holed

diaphragms, due to controller compensatory action. However, the increased chamber

pressure for the large -holed diaphragm effectively disabled valve motion and no flow

was observed.

Over a number o f calibration tests it was observed that the acquired chamber pressure

signal had a maximum value o f 72 (ADC units) with a new diaphragm in place. The

threshold value established for the FEN was set at 75 to detect diaphragm degradation.

With a pin-holed diaphragm in place the pressure crossed this threshold between 15 to 19

seconds into the process cycle. The observed maximum value for pin-holed diaphragms

over a set o f repeated tests was 84. The monitoring system thus detected diaphragm

deterioration before it started affecting the process. Use o f multiple threshold values

would quantize the level of diaphragm deterioration but was not tested in this research.

175

250
Inlet pipe pressure

200 1

Flow

a- 100
Control signal

Chamber pressure

30 40 50 600 10 20

Tim e (sec)

(a) Open vent hole
250

Inlet pipe pressure

200

Flow

£ 150

c r 100
Control signal

Chamber pressure

600 10 20 30 40 50

Tim e (sec)

(b) Blocked vent hole

Figure 9.5: Monitoring signals for normal process

250

200

Large-hole

£ 150

Pin-hole
100

50

New

0
0 10 20 30 40 50 60

Tim e (sec)

Figure 9.6: Chamber pressure signals for various diaphragm conditions

176

Diaphragms with relatively large scale leakage faults lead to a reduction in the controlled

air flow through the pipe. It was recognized that pipeline blockage faults would also have

similar effects. The detection o f partial pipe blockage faults presented in the following

section and the fault isolation studies are then presented in section 9.6.

9.5 PIPE BLOCKAGE MONITORING

Partial blockage faults were investigated for the air flow process. A blockage fault was

simulated by partially closing a manual valve. Control and flow signals were acquired

along with pressure signals at pipe inlet, pipe outlet and above the diaphragm (chamber).

Five FENs were thus required for five monitoring signals but in developing the plug &

play capability the manufactured circuits only allowed for four FENs at this stage of

development. Figure 9.7 shows the developed circuit boards where mounting of only four

FENs was possible on the signal conditioning (base) board.

Figure 9.7: Developed circuit boards

The pipe outlet signal was excluded (after some initial tests) for the blockage fault tests,

only due to the limits on the hardware available at the time of testing. Figure 9.8 shows

177

the results of the initial tests (with flow being the excluded signal) for normal and

blockage cases. The pressure increase in the outlet pipe with a partial blockage present is

clearly visible. Figure 9.9 then shows the signals acquired in the blockage fault case with

flow forming the fourth FEN rather than outlet pipe pressure. The effect o f the blockage

is, as expected, reduced flow, when compared to figure 9.4 (with same control signal).

From figure 9.4 and figure 9.9 the typical flow reduction during mid-cycle is o f the order

of 16%. Thus either flow or outlet pressure signals could provide an indication of a partial

blockage fault. The pressure signal was dependant on blockage location and any blockage

between the valve and the sensor could not be detected. The flow signal was unaffected

by fault location and was adopted into the monitoring scheme.

250 -I

Inlet pressure

200 H

IE
=5c
“Ou

Control signal

§■ 100o
<

Chamber
pressureOutlet pressure50

30 40 50 600 10 20

Time (sec)

(a) Normal case

250 -I

Inlet pressure

200

Control signal

§■ 100 o
<

Chamber
pressureOutlet pressure

70605030 400 10 20

Time (sec)

(b) Partial blockage case

Figure 9.8: Signals with outlet pipe pressure sensor

178

250

Inlet pipe pressure

200 -

Control signal

£ 150

o - 100

Flow

50
Chamber pressure

0 10 20 30 40 50 60

T im e (sec)

Figure 9.9: Signals with partial pipe blockage (flow sensor)

The flow signal typically attained values over a ‘baseline’ value of 120 in normal

conditions once the flow was established. For the given process settings full flow was

usually attained about 5.5 seconds after the process cycle start. This corresponded to a

control signal FEN value of 40. It was decided to use 35 as a control FEN threshold value

to effectively act as a trigger to enable blockage fault detection to commence.

Figure 9.10 describes the decision making logic developed as the monitoring scheme. A

control signal FEN generated an event message to the flow FEN when its threshold

indicating developed flow was exceeded. The flow FEN then checked its acquired values

relative to a threshold o f 120. It only generated an error message to SUIN on detecting 4

successive samples below the threshold. The multiple sample checking was performed in

order to eliminate noise-generated false alarms. The SUIN informed the user about a

blockage fault on receiving an error message from the flow FEN (in combination with the

ok message from the inlet pressure FEN). This combination was needed to confirm that

an absence of inlet air supply had not caused the symptoms. The inlet pressure FEN could

report such a case in isolation and directly from itself to the SUIN. A threshold value of

190 was used for the inlet pressure FEN. The control signal FEN generated another event

message when the acquired signal dropped below the threshold towards the end of the

process cycle. The flow FEN then stopped monitoring until receiving another start

monitoring event from the control FEN. The control FEN stop monitoring event typically

occurred 48.5 seconds into the process cycle. A sub-message field in the CAN message

header was used to differentiate between start and stop event messages.

179

Control FEN Flow FEN SUIN Inlet Pressure FEN

.Command<352,
Yes No

Yessure<190'
No No

Flow<120? Yes

Yes

No
N=4?

Yes

Stop

Stop

Message Types
Event Message
OK/Error Message

Stop

, Send Error
Message

Send Error
Message

Send Event
Message

Send Ok
Message

Decision Making

Figure 9.10: Developed decision making logic

9.6 FAULT ISOLATION

The blockage faults reported in the previous section were from tests with the vent hole

open to atm osphere. Prior to determining the fault isolation capabilities it was necessary

to study the effects o f a blocked vent hole on the signals used for pipe blockage detection.

The vent hole w as blocked for one valve cycle and the acquired monitoring signals for

new, pin-hole and large-hole diaphragms are shown in figure 9.11.

W ith the existing FEN/SUIN thresholds and decision logic still in place, the results

obtained w ith a new diaphragm detected flow reduction combined with an ok message

from the cham ber pressure FEN. This was taken as indication o f partial pipe blockage

fault. No flow w as observed for a diaphragm with a large hole (figure 9.1 lc) as no valve

m ovem ent w as possible. The FENs would report this extreme situation as simultaneous

diaphragm and pipe blockage faults. The SUIN would not be able to distinguish effects as

it receives the sam e messages from the FENs in both cases.

180

A
cq

ui
re

d
nu

m
be

r.
A

cq
ui

re
d

nu
m

be
r.

A
cq

ui
re

d
nu

m
be

r.

250
Inlet pipe pressure

Control signal

Chamber pressure

20 30 40 50

Time (sec)
(a) New diaphragm

70

250

Inlet pipe pressure

200 •

Control signalFlow

150

100

Chamber pressure

7050 6010 20 30 400
Time (sec)

(b) Pin-hole diaphragm

Inlet pipe pressure

200

Chamber pressure

150

Control signal

Flow

50 604020 300 10

Time (sec)
(c) Large-hole diaphragm

Figure 9.11: Signals with partial pipe blockage fault

181

The author then devised the following monitoring strategy to counter this problem.

Monitoring was started with an open vent hole and the pipe blockage fault was

investigated first. The vent hole was then closed for a short time and the diaphragm fault

was investigated. At the end o f both tests the SUIN presented the fault status to any

remote user. The vent hole was re-opened again and pipe blockage monitoring resumed.

The diaphragm monitoring tests would be repeated periodically so that any slow

deterioration could be detected over time. The two faults were tested under different

conditions and this simplified the required isolation logic. Any flow reduction detected

when the vent was open was interpreted as a pipe blockage fault. Table 9.3 summarizes

SUIN monitoring decisions based on received messages from FENs. The control FEN

always generated an ok signal to the SUIN and this was used only as an availability

confirmation. Its part in the process monitoring regime was limited to generating event

messages to the flow FEN so that pipe blockage detection is made when appropriate

conditions prevail.

Chamber

pressure

Inlet

pressure

Flow

signal

Control

signal

SUIN decision

ok ok ok ok Normal conditions

ok ok error ok Pipe blockage fault

ok error X ok Low supply pressure

error ok X ok Diaphragm fault

error error X ok Diaphragm fault + Low supply

pressure

Table 9.3: SUIN decision table (X = Don’t care)

9.7 SUMMARY

Diaphragm condition deterioration significantly affects performance of industrial

processes. The monitoring system was deployed to detect such deteriorations under

normal process conditions. Chamber pressure, inlet pipe pressure and flow signals were

monitored along with the control signal by four FENs and a SUIN. Pin holes were made

in valve diaphragm to simulate condition deterioration. The monitoring system detected

the deterioration before any significant process performance loss and thus provided fault

prediction. A blockage in pipe was identified as another potential flow reducing problem

182

and fault sym ptom s were devised for it as well. The monitoring system was presented

with both faults individually and it successfully isolated the two faults. Thus the

distributed m onitoring system based on 8-bit microcontrollers was proved useful in fault

detection, isolation, and prediction for real time industrial problems.

183

Chapter 10

DISCUSSION

The research reported in this thesis made the following contributions towards knowledge:

• A novel sweeping filter technique was developed that enabled 8-bit

microcontrollers to perform frequency analysis in real-time. Smart use of

resources in this technique made it possible for 8-bit microcontrollers to process

data, using techniques including frequency analysis, and to communicate the

results.

• An effective methodology was developed for inter-node communication via a

CAN bus where information was shared in real-time without overloading the

network or the microcontrollers.

• A method was provided to implement a plug & play capability in the system

without overloading the resources. The developed system automatically detected

the available FENs. Although the partial unavailability o f FENs impaired the

system it was designed to continue to work although at a reduced functionality.

• Individual microcontrollers may be very limited in resources but much higher

capabilities were achieved in the overall distributed system with their combined

power. Effective process monitoring with fault detection, isolation, and prediction

was achieved for a number o f applications.

• A significant reduction in network load was achieved by processing data at the

first hierarchy layer. Reductions will be o f the order o f giga bytes for applications

involving analogue signals or frequency analysis.

• The results were provided on dynamic web pages via an embedded web server.

Multiple remote users could access the results through computers, PDAs, and

mobile phones simultaneously. Urgent alarm messages were communicated via

SMS to the identified remote user’s mobile phone.

184

• The system was implemented on easily installable compact circuit boards that

were developed at a low cost. It was based on modular hardware and software

units providing ease of deployment to new applications.

The strengths and weaknesses o f the distributed hierarchical monitoring system were

evaluated through its deployment for

■ blockage and leakage fault detection and isolation in a batch process

■ blockage fault detection in a continuous process

■ fault isolation in a multi-loop (a batch and a continuous) processes

■ tooth breakage detection in a machine tool

■ diaphragm condition deterioration detection in an industrial valve

■ fault isolation for flow reduction in an air flow process.

The system correctly detected and isolated the faults in all the test cases. The successful

identification o f fault level extents provided fault prediction and the opportunity to plan

and schedule maintenance activities accordingly.

The investigations in this research were aimed at providing a cost effective generalised

monitoring system that has the scope for wide deployment by SMEs. A review of various

monitoring techniques and their applications was conducted and it was established that

controller signals can provide an initial indication o f a developing fault. Implementational

issues were considered for various monitoring techniques in light o f currently available

technologies. The cost o f PC based solutions was considered too high when all system

constituent components (ADC cards, cabling) were included and a distributed network of

8-bit microcontrollers was deemed more suitable for the identified objectives. A

hierarchical approach was taken towards individual situation assessment and each signal

was evaluated by simple threshold checks for normal/abnormal behaviour. Any

abnormality was reported to the second hierarchy layer where all first layer results were

combined for total situation assessment. The combination of individual FEN results and

their timings was used for fault detection and isolation. For conditions where no

monitoring decision was possible at the first or second hierarchy layer it was proposed

that the situation could be reported to the third layer for specialised processing and

detailed analysis. The focus of this research was on the first and second layers which were

expected to detect and isolate a large majority of faults. Computations at these layers

185

were restricted to simple but very effective methods because o f the limited processing

capabilities of 8-bit MCUs.

It was established by the literature review that no previously developed system provided

monitoring results based solely on 8-bit microcontrollers. Such microcontrollers were

previously mainly used as data acquisition devices and for command implementations

with little intelligence. Any complete systems reported in the literature were limited to

standalone applications where different MCUs did not collaborate with each other for

total situation assessment. The author considers the research reported here as novel and

significant because the 8-bit MCUs used combine their processed results intelligently to

reach monitoring decisions. The decisions are also communicated to remote users over

the Internet and mobile phones. It was a challenge to provide acquisition, processing, and

communication tasks on a single microcontroller especially for analogue signals because

of the magnitude o f the data and processing required.

Compact circuit boards were developed by keeping the chip count low and not using any

external memory. The limited memory resources o f a microcontroller posed problems but

efficient memory utilization and measures taken to reduce communication overheads

provided a feasible solution. First level processing was performed at the acquisition nodes

and only the results were communicated on a CAN bus. The use o f 8-bit microcontrollers

in this research reduced the cost significantly. The system developed in this research

eliminated the need o f data transmission on the CAN bus by indicating the

normal/abnormal status o f each parameter. Information was shared among the nodes and

a decision was made on the basis o f all available signal statuses.

Assembly language was used in the FENs to achieve high control over memory

allocations and fast code executions. Minimal code size and fast execution were achieved.

The complete control made available within the assembly language was preferred over

the ease o f using a high level language. Real-time operating systems are available for

embedded devices but were not used for the FENs for similar reasons.

The situation in the SUIN was different as it involved complex tasks such as

communicating via the Internet. The development o f codes for the Internet protocols

(TCP/IP, FTP, Telnet etc.) from scratch would be a very time consuming and tedious

186

task. Debugging the developed code would be another time consuming and intensive

activity. It was therefore decided to utilise already developed and tested codes. Shareware

codes which were available as Java APIs were used. An asynchronous message passing

architecture was used for inter-node communication on the CAN bus. Code development

becomes easier in an object oriented language under such an event-based environment.

Java was thus a suitable choice for the SUIN programming. A real-time multi-tasking

operating system was considered a necessity for the SUIN to synchronise its various

activities and such a shareware operating system was used. The use of shareware codes

would also help in reducing overall software cost when a system is made commercially

available.

The system developed in this research provided useful results in a number of applications

where time and frequency domain analysis was conducted on microcontrollers. The

system detected deviations from nominal behaviour based on the established fault

symptoms. The detection o f fault severity provided the opportunity for failure prediction

and the associated planning o f a maintenance schedule. These factors would enhance

process quality and productivity culminating in increased economic benefits and market

advantages. In this effect, the developed system has a wide scope for future deployments

in industry.

A major issue for any system is its ease o f deployment to new applications. Easily

deployable small-sized circuits were designed with modular software to make application

porting easier. The developed system provided this ease o f deployment in the sense that

only a small fraction o f code needed replacing for a specific application. A large part of

the software for the FENs (assembly language) and SUIN (Java) remained unaffected

with an application change. Small subroutines were developed covering various possible

amendments and whole subroutines were replaced. The details o f monitoring system’s

unaltered aspects and the application related alterations are as follows:

Unaltered aspects:

• The FEN (with new signal conditioning) and the SUIN hardware.

• Code architectures.

• Interrupt structure.

187

• Code for CAN bus access.

• Code for Internet access.

Alterations:

• Subroutine replacements in FENs were only required according to:

■ Signal format in hardware (analogue, pulse rate, etc.).

■ Pre-processing (raw value, running sum, trend etc.).

■ Threshold crossing criteria (low/high).

• Changes were required in SUIN decision making logic.

• A new SUIN web page design was required.

The requirement o f a system study phase for every new application, no matter how

similar it is to a previous application, is the tedious part o f new deployments. A suitable

processing method for each signal is determined by the engineer after careful analysis.

This study is required for calibration, threshold establishment, and fault symptom

location. It does however optimize the deployed system to that particular process

implementation. Such optimization cannot be achieved through general process models

and commissioning would be required for model-based approaches as well. The system

study phase eliminates the requirement o f mathematical models, which are, in themselves,

difficult to obtain for real processes.

Thresholds were established through experimental data in this research as no

mathematical model processing was deemed feasible with 8-bit microcontrollers. This

provided the additional benefit that no prior process knowledge was required for system

deployment. An engineer well versed with the monitoring system would be able to deploy

the system on any application without detailed knowledge o f the process. Any prior

process knowledge can be incorporated for establishing fault symptoms but is not an

essential requirement. Such benefits more than compensated for the requirement of a

system study phase.

An advantage provided by the system is its ability to provide online data during the

system study phase. Gathered data can be made available via the Internet to a remote

developer who can analyse it from his office. No site visits are thus required by the

188

developer for signal analysis. Engineer’s site visits are often costly and considerable

money and time savings can be achieved by eliminating this requirement. The availability

o f data over the Internet also provides global access making signal analysis possible for

plants operating in other countries as well. This international access can provide further

economic benefits.

The monitoring system provided specific monitoring results from the first and second

hierarchical layers thus reducing any data traffic on the Internet (after the system study

phase). Without this feature much greater levels o f data would need to be transported. The

tooth breakage detection system, for example, produced data in excess of 50MB per day

(100 samples per second per node) or 1.5GB per month. Many signals require higher

sampling rates for their frequency analysis where data reduction would be even more

significant. Further traffic reduction would be achieved for more elaborate processes with

more signals involved. Local processing thus saved network costs and massively reduced

any required PC based server-side processing.

The reported system was equipped with a plug & play capability and showed its

robustness with a degree o f adaptability to the partial availability of a FEN. Reduced

inputs hamper the system functionality but it continues working and provides any

possible monitoring decisions. This feature is useful for future expansion as well since

any new FEN would be detected by the SUIN and incorporated in the monitoring scheme.

A new decision table could be uploaded to the SUIN via FTP for this. The plug & play

capability in the developed system was achieved using smart but simple means and no

heavy protocols were used. This was again in line with the use o f resource limited

microcontrollers.

It is also possible to upload new codes to the SUIN via the Internet. The SUIN can

provide new FEN codes to appropriate PIC microcontrollers via the CAN bus. Both the

SUIN and the FEN implementations are based on flash memories that can be re-written

after system installation. A new software version can be loaded in the monitoring system

within minutes in this way without taking the system offline. This ensures that software

upgrades can be used without affecting the normal process and without involving

hardware. A possible example o f software update requirement is the case where the

system reports a previously unanticipated situation. New analysis may be conducted in

189

such cases generating new knowledge. The new knowledge would then be incorporated in

the system and improvement would be achieved without any site visit or process

shutdown.

The SUIN communicates with FENs to manage plug & play activities and also performs

FD1 duties. Providing web access to remote users loads the microcontroller and thus very

small web pages were designed. The use of graphics in a web page provides a better

quality o f service but it was not deemed appropriate in the current stage o f development.

More powerful microcontrollers will emerge in future and enhanced graphics may then be

used. The system may then provide overall equipment effectiveness, downtime/uptime,

productivity, etc. to users in the form o f graphs and pie charts. Such features were

considered too resource intensive at this stage. A newly available version of the TINI is

based on the DS80C400 microcontroller. This has a built-in Ethernet controller and

provides faster Internet access at 100 Mbps. Such technological enhancements provide

system improvement opportunities and must be availed.

Technology is bound to develop; new and more powerful microcontrollers are already

emerging in the market. The architecture and methodology proposed in this research will

remain valid with new developments. It will become possible to apply more elaborate

processing techniques on the acquired data with new microcontrollers. The accurate

diagnosis o f more faults may then be determined and at earlier times. The proposed

architecture would benefit from the future technologies rather than diminishing with time.

Microchip dsPIC series microcontrollers are an example of improved microcontrollers

becoming available since the start o f this research. These 16-bit microcontrollers have an

on-chip DSP engine. These microcontrollers are also supported with a DSP routines

library from the manufacturer. Any future implementations may take advantage o f such

new developments within the framework o f the proposed architecture.

A new trend in machine connectivity is introduced by the M2M concept. Embedded

systems can now communicate with remote users on their mobile phones. A user may get

reports from a monitoring system or issue commands (new set points, for example) to

control remote processes. It is expected that M2M will gain rapid popularity in future for

various monitoring and control applications. A very basic set up was tested in this

research sending SMS only. Full mobile phone features can be used for two-way

190

communication using voice, data, and text services. The list o f possible features includes

automated voice alerts, emails, user subscriptions, report on demand, etc. It will again be

a challenge to include such elaborated services using resource limited microcontrollers.

Any system connected to the Internet remains under security threats. Providing secure

connection for small devices is a challenge because the established security measures are

too resource intensive for current microcontrollers. The security in the developed system

was provided via a username and password based login which is effectively a base level

protection. Any communication between the monitoring system and remote logged-in

user can be tapped into on the Internet. Encryption techniques used to protect resources

against such tapings are too computationally extensive to be implemented on 8-bit

microcontrollers. Better security measures are therefore required before the commercial

use o f the proposed system. System security has become more important because codes in

the microcontrollers are now programmed in flash memories which can be altered as well.

Flash memory provides ease o f later software updates but also creates threat from

hackers. The development o f appropriate security measures were deemed outside the

scope o f this research but would be required for wide spread deployment o f the system.

CAN is a time tested protocol under noisy environments and was selected for its reliable

communication over a pair o f wires. It provides physical and data link layer protocols and

requires higher layer software to be built on it. Several higher layer protocols are

available for CAN but were not used in this research. Such protocols cover many aspects

that are not needed for process monitoring and their implementation would consume

significant resources. A simplified approach was therefore taken in this research and only

the required features were implemented. This light version o f the application layer

communication enabled the microcontrollers to meet acquisition, processing, and

communication requirements simultaneously.

General purpose microcontrollers were used as front end nodes in this research. It was

observed that a FEN did not utilize all available features in a general purpose MCU. Only

a few external pins were used and most of the parallel ports remained unused. The most

powerful PIC microcontroller (available at the start o f this research) was used to avail the

best possible performance but an actual implementation can be attained on a smaller sized

MCU having a lower pin count. Similarly, no communication interface was required other

191

than CAN and other interfaces remained redundant. It may be considered that a

microprocessor may be designed specifically for sensor applications that contain only the

required features. The Silicon area vacated by these unused peripherals may be utilised to

build additional on-chip memory, processing power, and/or ADC resolution.

These small microcontrollers may be built inside the sensor assemblies and a sensor

would thus provide its signal intelligently and only on the CAN bus. Such a sensor with

built-in decision-making power would convert the physical parameter directly into MCU-

compatible signal and no additional signal conditioning circuits would be required. This

will further reduce the overall system cost. The sensor market consists o f billions of items

and huge saving can be achieved in this way. This creates a big business opportunity and

business worth billions o f pounds. The effectiveness of CAN-only intelligent sensors has

been proved in this research for monitoring applications. Further research is needed to

ensure that control applications could also benefit from such sensors because a process

controller would also be using the same sensors as the monitoring system. Large scale

deployment o f such sensors is envisaged once their suitability for control applications is

confirmed.

192

Chapter 11

CONCLUSIONS & FUTURE WORK

11.1 CONCLUSIONS

Investigations were performed in search of a generalised, widely deployable and low-cost

monitoring system. Various possible approaches were considered and a distributed

hierarchical monitoring system based on 8-bit microcontrollers at its first and second

hierarchy layers was implemented. The system was deployed on a number of processes

and insight was gained from the research. The following contributions towards

knowledge were made through this work.

• Developm ent o f a generic monitoring system based on 8-bit microcontrollers.

• D evelopm ent o f a novel sweeping filter technique for frequency analysis.

• Im plem enting plug & play capability using a light protocol.

• Developm ent o f detailed message structure for network traffic reduction.

• The developed system’s performance was evaluated for batch and continuous

processes, for a machine tool application, and for on-line monitoring of an

industrial valve.

The following conclusions were drawn from this research.

• Effective process monitoring with fault detection, isolation, and prediction can

be achieved with distributed microcontroller-based system where decisions are

based on a hierarchical integration of individual signal statuses.

• The current generation of 8-bit microcontrollers have enough processing and

communication power to realize an effective monitoring system. The

hierarchical approach enables the system to utilize PC based resources when

needed.

193

• 8-bit microcontrollers can perform frequency analysis in real-time using

programmable analogue filters. The developed sweeping filter technique has

increased their effectiveness in a monitoring system.

• Plug and play feature can be implemented on 8-bit microcontrollers. This

enables them to be combined in a modular and adaptable distributed system.

• Significant reduction in network load is achieved by processing data at the first

hierarchy layer. The savings may easily go to the order of giga bytes for

applications involving analogue signals or frequency analysis.

• Appropriate measures are required for online system security, especially for flash

memory based systems. Current security algorithms are devised mainly for PC

applications. This mind set need to be changed and improvement in small

systems security is required.

• Embedded system’s connection with the Internet and mobile phone networks

provides better remote user interfaces. A whole new range o f online embedded

services can be expected in near future.

11.2 FUTURE WORK

The developed monitoring system was deployed on various process applications and it

was shown to be able to successfully detect and isolate various faults. Further

improvements can be achieved by incorporating the following features in the system.

Process signals were analysed with one simulated fault at a time. Various faults were

isolated based on the knowledge gained through these experiments. The cumulative

effects of multiple faults were not investigated. Several kinds of process parameter

deterioration might be present at any given time and further study is required to detect

and isolate simultaneous faults. This should be set against the fact that the monitoring

system will identify individual faults and the sequence in which they occur - hence

making multiple fault diagnosis a simpler process.

194

A very basic M2M functionality was provided in the system. Further work is required for

fully integrated M2M. New CAN message types are required for communication with this

specialised node. The M2M node may be communicating with FENs directly and further

research is required to assess the usefulness of such communications in the process

monitoring context.

The availability o f new microcontrollers should be exploited. Future FENs may utilize

dsPIC rather than PIC microcontrollers. Now available dsPIC MCUs provide the same

features on a single chip but also provide enhanced processing capabilities due to the

built-in DSP engine. It would be possible to implement digital filters in these 16-bit

microcontrollers while keeping the acquisition and communication features intact. It

would thus become possible to detect more faults on the first hierarchy layer. Similarly, a

new version o f TINI can be used as a SUIN for faster Internet access. The DS80C400

microcontroller can work up to 75 MHz clock and would thus provide much higher

execution speed. The architecture provided in this research would thus provide even

better results with future technologies.

The acquired sensor signal may be checked for correctness at its acquisition. The self

validating sensors (SEVA) approach may be used where the acquired signal is compared

with an anticipated (modelled) signal. The comparison result is subsequently used to rate

the confidence level on the acquired signal. Validating sensor signals is a field in itself

and is being researched separately. New developments in this field may be checked for

any possible implementation on microcontrollers. The use o f validation results, if

possible, will provide additional reliability to the monitoring system.

195

REFERENCES

A h san , Q. Developm ent o f a Low Cost Analog Signal Acquisition System. M Sc Thesis (2002). Cardiff
S ch o o l o f Engineering, Cardiff University, UK.

A h san , Q ., Amer, W., Grosvenor, R. I. and Prickett, P. W. Sweeping Filter Technique for Frequency
A n a ly sis . In proceedings o f Quality, Reliability, and Maintenance (QRM) 2004, 5th International
C on feren ce , Oxford University, UK. Professional Engineering Publishing Ltd, Bury St Edmunds and
L on don UK . pp 185-188. ISBN 1 86058 440 3.

A l-H ab aib eh , A ., Whitby, D. R., Parkin, R. M., Jackson, M. R., Mansi, M. and Coy, J. The Development o f
an Internet-based Mechatronic System for Remote Diagnostic o f Machinery using Embedded Sensors.
International Conference on Mechatronics, 2003. pp 297-302.

A lh era ish , A. D esign and Implementation o f Home Automation System. IEEE Transactions on Consumer
E lectron ics. V ol. 50, N o. 4, Novem ber 2004 ,1087-1092 .

A m ad i-E chend u , J. E., Zhu, H. and Atherton, D. P. Development o f Intelligent Flowmeters through Signal
P rocessin g . IFAC SICICA 92, Malaga, Spain, (May 1992), 23-28.

A m er, W. D esign o f a PIC Microcontroller Based Analogue Acquisition and Processing System. MSc
T h esis (2 0 0 2). Cardiff School o f Engineering, Cardiff University, UK.

A n d rew s, J. D. and Dunnett, S. J. Event-Tree Analysis Using Binary Decision Diagrams. IEEE
T ransactions on Reliability, Vol. 49, No. 2, June 2000, 230-238.

A u , Y . H. J., K aewkongka, T., Harris, A ., Rakowski, R. T. and Jones, B. E. Bearing Condition Monitoring
b ased on the Inter-Arrival Time Distribution o f Accoustic Emission Events - Theory. Quality, Reliability
and M aintenance Conference (2004), pp 67-70.

A x e lso n , J. N etw ork Security for Small Systems. Circuit Cellar, Issue 172, Novem ber 2004. pp 62-69.

B entham , J. 2000 . TCP/IP Lean: Web Servers for Embedded Systems. Group West Publishers, Berkeley,
C A . ISB N 1-929629-11-7 .

B ezerg ian n i, S. and Georgakis, C. Controller Performance Assessment based on Minimum and Open-Loop
O utput Variance. Control Engineering Practice, 8, 2000, 791-797.

B isw a s, G ., Kapadia, R. and Yu, X. W. Combined Qualitative-Quantitative Steady-State Diagnosis o f
C ontin uou s-V alued System s. IEEE Transactions on System, MAN, and Cybernetics - Part A: Systems and
H um ans, V ol. 27, N o. 2, March 1997.

B o lic , M ., Drndarevic, V. and Samardzic, B. Distributed Measurement and Control System Based on
M icrocontrollers with Automatic Program Generation. Sensors and Actuators A, 2001, 90, 215-221.

B on astre , A ., Ors, R. and Peris, M. Distributed Expert Systems as a N ew Tool in Analytical Chemistry.
T rends in Analytical Chemistry, 2001, 20(5), 263-271.

B u cc i, G. and Landi, C. A Distributed Measurement Architecture for Industrial Applications. IEEE
T ransactions on Instrumentation and Measurement. Vol. 52, No. 1, February 2003. pp 165-174.

Burkett, R. J. and Thornhill, N. F. The Assessment o f Performance o f Multivariable Controllers. Seminar
on C ontrol Loop Performance Assessment, London, November 2002, 11/1-11/3.

B ytron ic International Ltd. Documentation for the Bytronic Process Control Unit (IBM version). The
C ourtyard, reddicap Trading Estate, Sutton Coldfield, West Midlands, B75 7BU, England.

196

Clarke, D. W. Sensor, Actuator and Loop Validation. Advances in Control Technology, IEE Colloquium on
A dvances in Control Technology. 25th May 1999, London, pp 1/1 - 1/10.

Dassanayake, H.P.B., Roberts, C. and Goodman, C.J. An Architecture for System-wide Fault Detection and
Isolation. Proceedings o f the Institute o f Mechanical Engineers, 2001, 215(1), 37-46.

D avey, A., Grosvenor, R., Morgan, P. and Prickett, P. Petri-net Based Machine Tool Failure and Diagnosis.
In Proceedings: COM ADEM ’96, 16-18 July, Sheffield - UK, 1996, 723-731.

De Frutos, J. A. and Giron-Sierra, J. M. Design o f a Distributed System Architecture Including an
Automatic Code Generator. Microprocessors and Microsystems, 2002, 26, 207-213.

Desborough, L. and Harris, T. Performance Assessment Measures for Univariate Feedback Control. The
Canadian Journal o f Chemical Engineering, 70, 1992, 1186-1197.

Desborough, L. and Harris, T. Performance Assessment Measures for Univariate Feedforward/Feedback
Control. The Canadian Journal o f Chemical Engineering, 71, 1993, 605-916.

D esforges, M. J., M arjanovic, O., Lennox, B. and Sandoz, D. J. Prototype for Hierarchical Process
Condition M onitoring. Computing and Control Engineering Journal, (Oct 2002), 254-258.

Developer Guidelines: AT Commands. 3rd edition. 2005. Publication number EN/LZT 108 7729, R3B.
Sony Ericsson M obile Communications AB, SE-221 88 Lund, Sweeden.

Divan, D., Luckjiff, G. A ., Brumsickle, W. E., Freeborg, J. and Bhadkamkar, A. A Grid Information
Resource for N ationw ide Real-Time Power Monitoring. IEEE Transactions on Industry Applications. Vol.
40, No. 2, March/April 2004 . pp 699-705.

Eady, F. TCP/IP Stack Solution: A Detailed Look at the CMX-MicroNet. Circuit Cellar, Issue 172,
Novem ber 2004. pp 54-61.

Ehrlich, J., Zerrouki, A. and Dem ssieux, N. Distributed Architecture for Data Acquisition: a Generic
Model. In Proceedings: IEEE Instrumentation and Measurement Technology Conference. Ottawa - Canada,
1 9 -2 1 May 1997, 1180-1185.

Eisenreich, D., and Dem uth, B. Designing Embedded Internet Devices: A practical guide to hardware and
software design using the TINI microcontroller. Elsevier (2003). ISBN: 1-878707-98-1

Ettaleb, L. Control Loop Performance Assessment and Oscillation Detection. PhD Thesis, 1999. Dept, o f
Electrical and Computer Engineering, Faculty o f Applied Science, The University o f British Columbia.
Vancouver, Canada.

Feng, X., V elinsky, S. A. and Hong, D. Integrating Embedded PC and Internet Technologies for Real-Time
Control and Imaging. IEEE/ASM E Transactions on Mechatronics. Vol. 7, No. 1, March 2002. pp 52-60.

Fletcher, M., Austin, J. And Jackson, T. Distributed Aero-Engine Condition Monitoring and Diagnosis on
the GRID: DAM E. Comadem 2004. pp 185-194.

Frankowiak, M. R. Intelligent Distributed Process Monitoring and Management System. PhD Thesis
(2004). Cardiff School o f Engineering, Cardiff University, UK.

Frankowiak, M., Grosvenor, R. and Prickett, P. A Review o f the Evolution o f Microcontroller-based
Machine and Process Monitoring. International Journal o f Machine Tools and Manufacture, 45, 2005, 573-
582.

Frankowiak, M. R., Grosvenor, R. I., Prickett, P. W., Jennings, A. D. and Turner, J. R. Design o f a PIC
based Data Acquisition System for Process and Condition Monitoring. Comadem 2001, Manchester, pp
481-488. ISBN 0080440363.

197

Fu, Y. and Dumont, G. A. On-Line Evaluation o f Control Loop Performance. IEEE Control Applications
Conference, 1995. pp 655-656.

Goulding, P. R., Lennox, B., Sandoz, D. J., Smith, K. J. and Marjanovic, O. Fault Detection in Continuous
Processes using Multivariate Statistical Methods. International Journal o f Systems Science, 31 (11), 2000,
1459-1471.

Grosvenor, R. I. and Prickett, P. W. Intelligent Process Monitoring and Management - Time for a Return to
Sensor-Based Methods? In Proceedings o f Sensors and their Applications, XII, September 2003. pp 497-
502. IOP Publishing Ltd.

Gustafsson, F. and Graebe, S. F. Closed-Loop Performance Monitoring in the Presence o f System Changes
and Disturbances. Automatica, Vol 3 4 (1998), No. 11, 1311-1326.

Hagglund, T. Automatic Detection o f Sluggish Control Loops. Control Engineering Practice, 7 (1999),
1505-1511.

Hagglund, T. A. Control Loop Performance Monitor. Control Eng. Practice, Vol 3 (1995), No. 1 1, 1543-
1551.

Harris, T. J. A ssessm ent o f Control Loop Performance. Canadian Journal o f Chemical Engineering, 67,
1989, 856-861.

Harris, T. J. Observations and Thoughts on Controller Assessm ent and Performance Monitoring (2004).
[Assessed on 1 1th Feb 2005] at http://www.appsci.queensu.ca/tjh/publications/ControlSystems2004.pdf.

Harris, T. J., Boudreau, F. and Macgregor, J. F. Performance Assessm ent o f Multivariable Feedback
Controllers. Automatica, Vol. 32, No. 11, 1996, 1505-1518.

Hartley, J. Field Based System s, Asset Management and Advanced Diagnostics, Seminar on Control Loop
Performance A ssessm ent, London, Novem ber 2002, 10/1-10/6.

Hawkins, F. Condition M onitoring in D efence - The Chalenges Ahead. Comadem 2004, pp 25-35.

HCF LIT 34. (1999). Application Guide. HART Communication Foundation, 9390 Research Boulevard,
Suite 1-350, Austin, Texas, 78759 USA.

Higham, E. H. and Perovic, S. Predictive Maintenance o f Pumps based on Signal Analysis o f Pressure and
Differential Pressure (F low) Measurements. Transactions o f the Institute o f Measurement and Control 23, 4
(2001). pp 226-248.

Hopkins, A. Virtual Instrumentation o f a Process Rig, MSc Thesis, 2001, School o f Engineering, Cardiff
University, UK.

Horch, A. Condition M onitoring o f Control Loops. PhD Thesis (2000). School o f Electrical Engineering,
Royal Institue o f Technology, Stockholm, Sweden. ISBN 91-7170-638-0.

Hu, W., Starr, A.G. and Leung, A.Y.T. Operational Fault Diagnosis o f Manufacturing Systems. Journal o f
Material Processing Technology, 133,2003, 108-117.

Huang, B., Shah, S. L. and Kwok, E. K. Good, Bad or Optimal? Performance Assessment o f Multivariable
processes. Automatica, Vol. 33, No, 6, 1997, 1175-1183.

Insam, E. Interface Ethernet and Embedded Systems. Circuit Cellar, Issue 172, Novem ber 2004. pp 44-53.

Isermann, R. Supervision, Fault-Detection and Fault-Diagnosis Methods - An Introduction. Control
Engineering Practice, Vol. 5, No. 5, 1997, 639-652.

Isermann, R. and Balle, P. Trends in the Application o f Model-Based Fault Detection and Diagnosis o f
Technical Processes. Control Engineering Practice, Vol 5 (1997), No. 5, 709-719.

198

http://www.appsci.queensu.ca/tjh/publications/ControlSystems2004.pdf

Jennings, A. D., Kennedy, V. R., Prickett, P. W., Turner, J. R. and Grosvenor, R. I. (2001, A). A
Distributed Data Processing System for Process and Condition Monitoring. 14th COM ADEM , (2001), 375-
381, ISBN 0080440363.

Jennings, A. D., Prickett, P. W. and Grosvenor, R. I. (2001, B). Machine Tool Audit: Kondia B500 M illing
Machine. 2001, School o f Engineering, Cardiff University, UK.

Johns, C. M achine Tool A xis Signals for Tool Breakage Monitoring. PhD Thesis (1998). Cardiff School o f
Engineering, Cardiff University, UK.

Kaewkongka, T., Au, Y. H. J., Harris, A., Rakowski, R. T. and Jones, B. E. Bearing Condition Monitoring
based on the Inter-Arrival Time Distribution o f Acoustic Emission Events - Experiment. Quality,
Reliability and M aintenance Conference (2004), pp 71-74.

Kandasamy, N ., H ayes, J. P. and Murray, B. T. Time Constrained Failure Diagnosis in Distributed
Embedded System s: Application to Actuator Diagnosis. IEEE Transactions on Parallel and Distributed
Systems, Vol. 16, N o . 3, March 2005, 258-270.

Kempley, J. 1980. V alve Users Manual: A technical reference book on industrial valves for the control o f
fluids. British V alve Manufacturers Association. Mechanical Engineering Publications Ltd, London. ISBN:
0 85298 4286.

Kendra, S. J. and Cinar, A. Controller Performance Assessm ent by Frequency Domain Techniques. J. Proc.
Cont. Vol. 7, N o. 3, 1997. pp 181-194.

Kerkeni, I. T., Arantes, L. And Moalla, M. An Agent-Oriented Architecture for F.M.S. Control/Monitoring.
IEEE Conference on Control Applications, CCA 2003, Istambul, Turkey, June 2003. IEEE Society Press.
Pp 1024-1028.

Keyif, I., Kapucu, A . R., Durakbasa, T., Eldem, V., Gokmen, B., Wetherilt, J. and Stratton, D. MCM: A
new Technology for M otor Condition Monitoring. Comadem 2004. pp 70-79.

Kimmich, F., Schwarte, A. And Isermann, R. Fault Detection for M odem Diesel Engines using Signal- and
Process m odel-based M ethods. Control Engineering Practice, 13, 2005, 189-203.

Lacoste, R. PIC Spectrum - Audio Spectrum Analyzer. Circuit Cellar, (1998), Issue 98.

Lee, T. and H siung, P. Embedded Software Synthesis and Prototyping. IEEE Transactions on Consumer
Electronics. V ol. 50 , N o. 1, February 2004, 386-392.

Lennox, B., M ontague, G. A ., Hiden, H. G., Kom feld, G. and Goulding, P. R. Process Monitoring o f an
Industrial Fed-Batch Fermentation. Biotechnology and Bioengineering, 74 (2), (2001), 125-135.

Livani, M. A ., Kaiser, J. and Jia, W. Scheduling Hard and Soft Real-Time Communication in a Controller
Area Network. Control Engineering Practice, 7 (1999), 1515-1523.

Lynch, C. B. and D um ont, G. A. Control Loop Performance Monitoring. IEEE Transaction on Control
Systems T echnology, V ol. 4, N o. 2, March 1996. pp 185-192.

Manders, J., Barford, L.A. and Biswas, G. An Approach for Fault Detection and Isolation in Dynamic
Systems from Distributed Measurements. IEEE Transaction on Instrumentation and Measurement, 2002,
51(2), 235-240.

Mittal, A ., Manimaran, G. and Murthy, C. S. R. Dynamic Real-Time Channel Establishment in Multiple
Access Bus N etw orks. Computer Communications, 26 (2003), Issue 2, 113-127.

Mosca, E. & A gnoloni, T. Closed-Loop Monitoring for Early Detection o f Performance Losses in
Feedback Control System s. Automatica, Vol 39, Issue 12 (2003), 2071-2084.

199

M ounce, S. R., Khan, A., Wood, A. S., Day, A. J., Widdop, P. D. and Machell, J. Sensor-Fusion o f
Hydraulic Data for Burst Detection and Location in a Treated Water Distribution System. Information
Fusion, 4, 2003 ,217-229 .

M usciano, C. and Kennedy, B. HTML & XHTML: The Definitive Guide. 4 th Edition. O ’Reilly &
A ssociates Inc. USA. pp 450. ISBN: 0-596-00026-X .

N iem eyer, P. and Knudsen, J. Learning Java. First edition, 2000, O ’Reilly & Associates Inc, Sebastopol,
CA 95472. ISBN 1-56592-718-4

N ieva, T. and W egmann, A. A Conceptual Model for Remote Data Acquisition Systems. Computers in
Industry, 2 0 0 2 ,4 7 ,2 1 5 -2 3 7 .

Patton, R. A Benchmark Study Approach to Fault Diagnosis o f Industrial Process Control Systems. IEE
Seminar on Control Loop Assessment and Diagnosis. 16 Jun 2005. pp 61-79.

Paulonis, M. A. and Cox, J. W. A Practical Approach for Large-Scale Controller Performance Assessment,
Diagnosis, and Improvement. Journal o f Process Control, 13 (2003), 155-168.

PIC 18FXX8 Data Sheet (2001). Microchip Technology Incorporated., USA.

Plesnyaev, E. A. and Pazderin, A. V. Data Acquisition System Faults Detection. IEEE Conference on
Control Applications, Istanbul, Turkey, June 2003. pp 1390-1394.

Prickett, P. A Petri-net Based Machine Tool Maintenance Management System. Industrial Management and
Data System s, 97(4), 1997, 143-149.

Proakis, J. G. and M anolakis, D. G. (1996). Digital Signal Processing, principles, algorithms and
applications, 3rd ed, Prentice Hall Inc. ISBN 0-13-394289-9.

Rappaport, T. S. 2002. W ireless Communications: Principles and Practice. Second edition. Prentice Hall
Inc. USA. ISBN 0-13-042232-0.

Raaphorst, A .G .T, Netten, B.D. and Vingerhoeds, R.A. Automated Fault-Tree Generation for Operational
Fault Diagnosis. In proceeding: Electric Railways in a United Europe, IEE, 27-30 March, 1995, 173-177.

Rengaswamy, R. Hagglund, T and Venkatasubramanian, V. A. Qualitative Shape Analysis Formalism for
Monitoring Control Loop Performance. Engineering Application o f Artificial Intelligence, 14 (2001), 23-

Ruiz, M., Colom er, J., Colprim, J. and Melendez, J. Multivariate Statistical Process Control for Situation
Assessm ent o f a Sequencing Batch Reactor. Control Conference 2004, University o f Bath, UK. ID -115.

Schafer, J and Cinar, A. Multivariable MPC System Performance Assessment, Monitoring and Diagnosis.
Jounnal o f Process Control, 14 (2004), 113-129.

Sharif, M. A. M. Application o f Intelligent Instrumentation in Process Plant Condition Monitoring and
Fault Diagnosis. PhD Thesis (1999). Cardiff School o f Engineering, Cardiff University, UK.

SIMATIC (1998). SIMATIC S5/PC/505 Automation Systems. Siemens Catalog ST50.

Soderholm, P. and Parida, A. Health Management o f Complex Technical Systems. Comadem 2004, 214-
221

Stallings, W. 2004. Computer Networking with Internet Protocols and Technology. Pearson Education Inc.
NJ. ISBN 0-13-191155-4

Stipanicev,D. and Marasovic, J. Networked Embedded Greenhouse Monitoring and Control. IEEE
Conference on Control Applications, Istanbul, Turkey, June 2003. pp 1350-1355.

200

Studzinski, J. Application o f Monitoring Technologies in Environmental Engineering. Quality, Reliability
and Maintenance Conference 2004. pp 43-46.

Suzudo, T., Nabeshima, K. and Takizawa, H. Software Integration for monitoring Systems with High
Flexibility. Progress in Nuclear Energy, Vol 43 (2003), No. 1-4, 405-411.

Tanenbaum, A. S. 1996. Computer Networks. 3rd edition. Prentice Hall Inc. NJ. ISBN: 0-13-394248-1.

Tanenbaum, A. S. and Steen, M. V. 2002. Distributed Systems: Principles and Paradigms. Prentice Hall Inc.
NJ. ISBN 0-13-088893-1

Tansel, I. N ., Arkan, T. T., Bao, W. Y., Mahendrakar, N ., Shisler, B., Smith, D. And McCool, M. Tool
Wear Estimation in Micro-Machining. Part I: Tool Usage-Cutting Force Relationship. International Journal
o f M achine Tools and Manufacture, 40,2000,599-608.

Thornhill, N . F., C ox, J. W. and Paulonis, M. A. (2003, A). Diagnosis o f Plant-wide Oscillation through
Data-driven A nalysis and Process Understanding. Control Engineering Practice, 11, 2003, 1481-1490.

Thornhill, N . F., Huang, B. and Zhang, H. (2003, B). Detection o f Multiple Oscillations in Control Loops.
Journal o f Process Control, 13, 2003, 91-100.

Thornhill, N. F., Shah, S. L. and Huang, B. Detection o f Distributed Oscillations and Root-Cause
Diagnosis. CH EM FAS4, Cheju Island, Korea. 7-8 July 2001.

Tokatli, F., Cinar, A. and Schlesser, J. E. HACCP with Multivariate Process Monitoring and Fault
Diagnosis Techniques: Application to a Food Pasteurization Process. Food Control, 16 ,2005 , 411-422.

Trenchard, A., D esborough, L. and Miller, R. Managing Control Systems as Assets. IEE seminar on
Control Loop Performance Assessm ent, 26th N ov 2002, London, 1/1-1/3.

Tullis, J. P. Hydraulics o f Pipelines: Pumps, Valves, Cavitation, Transients. W iley-Interscience Publication,
USA. ISBN: 0 -471-83285-5 .

Turner, J. R., Jennings, A. D., Prickett, P. W. and Grosvenor, R. I. The design and Implementation o f a
Data Acquisition and Control System using Fieldbus Technologies. Comadem 2001, Manchester. Pp 391 -
398. ISBN 0080440363.

Tyler, M. and Morari, M. Performance Assessm ent for unstable and nonminimum-phase systems. In IFAC
Workshop on O n-line Fault Detection and Supervision in the Chemical Process Industries. Newcastle upon
Tyne, England. 1995.

Tyler, M. and Morari, M. Performance Monitoring o f Control Systems using Likelyhood Methods.
Automatica, 32 (8), 1996, 1145-1162.

Valdastri, P., M enciassi, A ., Arena, A., Caccamo, C. and Dario, P. An Implantable Telemetry Platform
System for In V ivo M onitoring o f Physiological Parameters. IEEE Transactions on Information Technology
in Biom edicine. Vol. 8, N o. 3, September 2004. pp 271-278.

Venkatasubramanian, V., Rengaswamy, R., Yin, K. and Kavuri, S. N. A Review o f Process Fault Detection
and Diagnosis. Part I: Quantitative Model-based Methods. Computers and Chemical Engineering, 27, 2003,
293-311.

Venkatasubramanian, V., Rengaswamy, R., and Kavuri, S. N. A Review o f Process Fault Detection and
Diagnosis. Part II: Qualitative Models and Search Strategies. Computers and Chemical Engineering, 27,
2003, 313-326.

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N. and Yin, K. A Review o f Process Fault Detection
and Diagnosis. Part III: Process History based Methods. Computers and Chemical Engineering, 27, 2003,
327-346.

201

Ward-Smith, A. J. Internal Fluid Flow: The fluid dynamics o f flow in pipes and ducts. 1980. Clarendon
press, Oxford. ISBN 0 19 856325 6.

W em eck, M. M. and Abrantes, A. C. S. Fiber-Optic-based Current and Voltage Measuring System for
High-Voltage Distribution Lines. IEEE Transactions on Power Delivery. Vol. 19, No. 3, July 2004. pp 947-
951.

Xia, C. and Howell, J. Loop Status Monitoring and Fault Localisation. Journal o f Process Control, 13
(2003), 679-691.

Yang, M., Manabe, K., Hayashi, K., Miyazaki, M. and Aikawa, N. (2003,A). Data Fusion o f Distributed
AE Sensors for the Detection o f Friction Sources during Press Forming. Journal o f Materials Processing
Technology, 13 9 ,2 0 0 3 ,3 6 8 -3 7 2 .

Yang, S. H., Chen, X. and Alty, J. L. (2003, B). Design Issues and Implementation o f Internet-Based
Process Control System s. Control Engineering Practice, 11, 2003, 709-720.

Yang, H. and Eagleson, R. (2003). Design and Implementation o f an Internet-Based Embedded Control
System. IEEE Conference on Control Applications, Vol 1, 23-25 Jun 2003.

WEB REFERENCES

Apple Computers, U sing m od_ssl on Mac OS X [WWW]
<URL:http://developer.apple.com/intemet/serverside/modssl.html> [Accessed 10 N ov 2005]

Aspentech. Aspen Watch [WWW]
<URL:http://www.aspentech.com/includes/product.cfm?ProductID=87 > [Accessed on 1st May 2005]

Automation World. N ew s [WWW]
<URL:http://www.automationworld.com/articles/Departments/21 l.htm l> [Accessed 14 March 2003].

CAN in Automation: CAN Dictionary, [WWW]
<URL:http://www.can-cia.org/can/can_dictionary2.pdf> [Accessed 27 N ov 2002]

CAN in Automation: Controller Area Network (CAN) - Protocol, [WWW]
<URL:http://www.can-cia.org/can/protocol> [Accessed 27 N ov 2002]
CAN in Automation: Home, [WWW]
<URL:http://www.can-cia.org> [Accessed 27 N ov 2002]

Cisco Systems, Documentation [WWW]
<URL:http://www.cisco.com /univercd/cc/td/doc/cisintwk/ito_doc/ethem et.htm #wpl020549> [Accessed 3
Apr 2005]

Cunningham and Cunningham Inc. Microsoft Internet Explorer [WWW]
<URL:http://c2.com/cgi/wiki?M icrosoftIntemetExplorer> [Accessed on 9th May 2004],

Dallas Semiconductor, 80C390 Dual CAN High-Speed Microprocessor data sheet, DS80C390.pdf
[Accessed 8 May 2003]

Electronics Talk. PIC micro tops 8bit market. [WWW]
<URL:w w w .electronicstalk.com /news/ari/aril45.htm l> [Accessed on 19th Novem ber 2003].

Embedded Star. M icrochip Rolls Out Four Billionth PIC Microcontroller. [WWW]
<URL:http://www.embeddedstar.com/press/content/2005/9/embedded 18912.htm 1> [Accessed on 26th
Decem ber 2005].

Emerson Process Management. Customer Proven - Chemical [WWW]
<URL:http://plantweb.emersonprocess.com/Customer/Chemical_index.asp> [Accessed 7 June 2003].

202

http://developer.apple.com/intemet/serverside/modssl.html
http://www.aspentech.com/includes/product.cfm?ProductID=87
http://www.automationworld.com/articles/Departments/21
http://www.can-cia.org/can/can_dictionary2.pdf
http://www.can-cia.org/can/protocol
http://www.can-cia.org
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ethemet.htm%23wpl020549
http://c2.com/cgi/wiki?MicrosoftIntemetExplorer
http://www.electronicstalk.com/news/ari/aril45.html
http://www.embeddedstar.com/press/content/2005/9/embedded
http://plantweb.emersonprocess.com/Customer/Chemical_index.asp

Emerson Process Management, Plant Web [WWW]
<URL:http://plantweb.emersonprocess.com/Whatis_PlantWeb/index.asp> [Accessed on 1st May 2005]

Emerson Process Management, Results [WWW]
<URL:http://plantweb.emersonprocess.com/home/index.asp> [Accessed on 1st May 2005]

Honeywell AlarmScout [WWW]
<URL:http://www.loopscout.com/alarmscout> [Accessed on 2nd May 2005]

Honeywell LoopScout [WWW]
<URL:http://www.loopscout.com > [Accessed on 2nd May 2005]

Honeywell LoopScout Overview [WWW]
<URL:http://www.loopscout.com /Info/LSOverview_01Jan03_42.pdf> [Accessed on 2nd May 2005]

Honeywell Process Solutions [WWW]
<URL:hpsweb.honeywell.com /Cultures/en-
US/Products/AssetApplications/AssetM anagement/LoopScout/default.htm> [Accessed on 2nd May 2005]

IPMM group, Cardiff University [WWW]
<URL:w w w.processw atch.cf.ac.uk> [Accessed on 11th April 2005].

KVASER Advanced CAN Solutions, The CAN Protocol [WWW]
<URL:http://www.kvaser.se/can/protocol/index.htm > [Accessed 5 Dec 2002]

Leroy Davis, CAN Bus [WWW]
<URL:http://www.interfacebus.com /Design_Connector_CAN.htm l> [Accessed 8 Dec 2002]

Matrikon [WWW]
<URL:www.m atrikon.com > [Accessed on 3rd May 2005]

Matrikon ProcessDoctor [WWW]
<URL:http://www.matrikon.com/products/processdoc/success_stories.asp> [Accessed 15 Mar 2005]

Mattec Corporation [WWW]
<URL:w w w.m attec.com > [Accessed on 30th April 2005]
Mattec Corporation ProHelp [WWW]
<www.m attec.com /service/updates/phepm 620.htm > [Accessed on 30th April 2005]

Mattec Corporation TH E-M AN-A-ger [WWW]
<URL:www.mattec.com/products/manager/index.htm> [Accessed on 30th April 2005]

M A X 263-M A X 268 Data sheet. Maxim Integrated Products. [WWW]
<URL:http://www.m axim -ic.com /quick_view2.cfm /qv_pk/l 186> [Accessed on 12th June 2003].

Microchip Technology Inc. [WWW]
<URL:http://www.m icrochip.com > [Accessed on 5th October 2002].

Microchip Technology Inc. Fischer, R. L. and Burch, J. AN214. [WWW]
<URL:http://wwl.m icrochip.com /downloads/en/AppNotes/00214a.pdf> [Accessed on 19th November
2005]

NO AA, Glossary o f Section 508 Terms [WWW]
<URL:www.cio.noaa.gov/itmanagement/508_Glossary.htm l> [Accessed 15 Dec 2005]

Oxford English Dictionary. [WWW]
<URL:http://dictionary.oed.com/cgi/entry/00314100?query_type=word&queryword=monitor&first=l&ma
x_to_show=10&sort_type=alpha&search_id=mwqt-cfQU2Y-3504&result_place=3> [Accessed on 8th
April 2005].

203

http://plantweb.emersonprocess.com/Whatis_PlantWeb/index.asp
http://plantweb.emersonprocess.com/home/index.asp
http://www.loopscout.com/alarmscout
http://www.loopscout.com
http://www.loopscout.com/Info/LSOverview_01Jan03_42.pdf
http://www.processwatch.cf.ac.uk
http://www.kvaser.se/can/protocol/index.htm
http://www.interfacebus.com/Design_Connector_CAN.html
http://www.matrikon.com
http://www.matrikon.com/products/processdoc/success_stories.asp
http://www.mattec.com
http://www.mattec.com/service/updates/phepm620.htm
http://www.mattec.com/products/manager/index.htm
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/l
http://www.microchip.com
http://wwl.microchip.com/downloads/en/AppNotes/00214a.pdf
http://www.cio.noaa.gov/itmanagement/508_Glossary.html
http://dictionary.oed.com/cgi/entry/00314100?query_type=word&queryword=monitor&first=l&ma

Palacherla, A. Implementation o f Fast Fourier Transforms. Microchip Application Notes A N 542 (1997).
[WWW]
<URL:http://www. microchip. com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2048> [Accessed
on 13th May 2003].

PHYTEC America, CAN TECHNOLOGY [WWW]
<URL:http://www.sfe-dcs.com /CAN/CAN_Nets.htm l> [Accessed 11 Dec 2002]

Ramu, B. K. A. Implementing FIR and IIR Digital Filters using PIC 18 Microcontrollers. Microchip
Application N otes A N 852 (2002). [WWW].
<URL:http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2048&fragment6_
N extR ow =201> [Accessed on 20th May 2003].

Relex Software. What is Event Tree Analysis [WWW]
<URL:http://www.relexsoftware.com/resources/eventtree.asp> [Accessed on 10th April 2005].

Relex Software. What is Fault Tree Analysis [WWW]
<URL:http://www.relexsoftware.com/resources/faulttree.asp> [accessed on 10th April 2005].

Robert Bosch Gm bH, Controller Area Network [WWW]
<URL:http://www.semiconductors.bosch.de/de/20/can/index.asp> [Accessed 28 N ov 2002]

SoftSwitching Technologies [WWW]
<URL:www.softsw itch.com /igrid-general.htm > [Accessed 29th March 2005]

Sony Ericsson. G R 47/G R 48 [WWW]
<URL:http://www.sonyericsson.com /spg.jsp?cc=gb& lc=en& ver=4002& tem plate=ppl_l& zone=pp& lm =pp
l& pid=10086> [A ccessed on 22 nd N ov 2005].

Sony Ericsson.W here to Buy [WWW]
<URL:http://www.sonyericsson.com /spg.jsp?cc=gb& lc=en& ver=4002& tem plate=phl_2& zone=ph& pid=l
0086> [A ccessed on 29th N ov 2005].

USB D eveloper w eb site. [WWW]
<URL:http://www.usbdeveloper.com /GSM Page/gsm page.htm> [Accessed on 10th Dec 2005].

W 3schools: HTML, Introduction to HTML. [WWW]
<URL:http://www.w3schools.com /htm l/htm l_intro.asp> [Accessed 18 May 2004]

W 3schools: TCP/IP, Introduction to TCP/IP. [WWW]
<URL:http://www.w3schools.com /tcpip/tcpip_intro.asp> [Accessed 7 May 2004]

W 3schools: XM L, XM L Tutorial. [WWW]
<URL:http://www.w3schools.com /xm l/default.asp> [Accessed 21 Jul 2004]

Walchem Corporation [WWW]
<URL:w w w .w alchem .com > [Accessed on 5th May 2005]

Walchem Corporation WebAlert [WWW]
<URL:www.walchem .com/walchem /literature/Brochures/webalert.pdf> [Accessed on 5th May 2005]

204

http://www
http://www.sfe-dcs.com/CAN/CAN_Nets.html
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2048&fragment6_
http://www.relexsoftware.com/resources/eventtree.asp
http://www.relexsoftware.com/resources/faulttree.asp
http://www.semiconductors.bosch.de/de/20/can/index.asp
http://www.softswitch.com/igrid-general.htm
http://www.sonyericsson.com/spg.jsp?cc=gb&lc=en&ver=4002&template=ppl_l&zone=pp&lm=pp
http://www.sonyericsson.com/spg.jsp?cc=gb&lc=en&ver=4002&template=phl_2&zone=ph&pid=l
http://www.usbdeveloper.com/GSMPage/gsmpage.htm
http://www.w3schools.com/html/html_intro.asp
http://www.w3schools.com/tcpip/tcpip_intro.asp
http://www.w3schools.com/xml/default.asp
http://www.walchem.com
http://www.walchem.com/walchem/literature/Brochures/webalert.pdf

APPENDIX A
Transducers and sensing techniques (Frankowiak, 2004)___________________

Physical phenom ena M easurem ent method Sensing technique

Pressure
• Strain gauges
• Variable capacitance
• Linear var. diff. transformer
• Piezo-electric effect

• Pressure applied to the strain gauge, resulting in a resistance change;
• Capacitance changes due to movement o f a dielectric caused by pressure;
• Transformer core moves due to pressure;
• Output voltage resulting from applied pressure.

Temperature • Thermocouple
• Thermistor
• Pyrometer

• Electromotive force due to dissimilar metallic junctions;
• Resistance variation due to temperature changes;
• Heat wavelength radiation.

Flow • Orifice plate
• Venturi tube
• Pilot tube
• Turbine
• Magnetic
• Ultrasonic

• Differential pressure due to restriction in the flow area;
• Diff. pressure due to smooth and gradual reduction in tube diameter;
• Differential pressure between static pressure and fluid flow;
• Turbine rotor generates a electrical signal proportional to the flow rate;
• Changes in the inductive voltage in a coil due to flow rate variations;
• Measurement o f acoustic wavelength changes due to flow rate variations.

Level • ON/OFF switches
• Continuous level

• Beam breaking, capacitance, conductivity and float type level switches;
• Capacitance (dielectric variation), differential pressure (level column),

ultrasonic (wavelength reflection) and radioactive (absorbed radiation).
Displacement • Angular and linear • Potentiometers, capacitance (parallel metal plates), inductive coil

(permeable core), pulse counting, encoders and ON/OFF switches.
Velocity • Linear

• Angular
• Time measurement based on pulse sensing;
• Pulse sensing, electro-mechanical and digital tacho-generators.

Vibration • Magnetic • Permanent magnet within a coil field, generating electrical signal.
Acceleration • Strain gauges

• Piezo-electric crystal
• Changes in resistance due to applied forces;
• Voltage variations due to strain in the crystal.

Force • Weight
• Force/torque

• Load cells based on strain gauges principle;
• Strain gauge and magnetic permeability changes due to tension variation.

APPENDIX B
PIC 18F458 Microcontroller

Schematic Block Diagram

i
2t |TabSePointer<21>

21
I

inc/dec logic

N
21

KJ=*=

51

jPCLATUtPOATHl

1 PCU | PCH | PCI]
Program County

Aodress Latch
Program Memory
up to 52 Kbytes

Data Latch

,
131 Level StaciT|

5L
Otea latch

Data RAM
up to 1530 Kbytes

Address Latch

^TiT
/ Addr*ss<12> \

%

y.
Table Latch I

7T
16
=?*= =Oj ROM Latch j-

♦•{PxxxteK

FSRO
7 SRT

pankb:?

FSR2

I
tno'dec
logic

12

EIR

CSC2/CLKO/RA6
OSC1 i'CLKI ^

E3<5=s>
TIOSI
T10S 0

Instruction
Decode &

Control

TTTTT

r f i
Iproohi proolI

I 8x8M ^
51

Timing
Generation

4X
PLL <3=S

Precision
Band Gap
Reference

Power-up
Timer

OscMtaior
Surt-upTmer

Power-on
Reset

Watchdog
Timer

Brown-out
Reset

Test Mode
Select

Band Gap

IT

[f f l 1 w
j r

T6
\ ALJ<8> /

£

MCLR Voo.Vae

PB OR
PLVD TmerO Timert Timer2

? ft ft

Timers

3E
10-bit
ADC

Data E EPROM

3E

PORTA

PORTB

PORTC

PORTD

U j
PORTE

RAO/ANO/CVref
RA1/AN1
RA2/AN2A/MF-
RA3/AN3>'Vr£f+
RA4<T0CKI
RA5/AN4/SSA.VDIN
OSC2ICLKOJRA6

RBOANTO
RB1i’INT1
RB2ICANTX/1NT2
RB3ICANRX
RB4
RB5-T»GM
RBWPGC
RBTi'PGD

RC0/T1OSOT1CKI
RC1/T10SI
RC2/CCP1
RC3/SCK/SCL
RCA.'SDUSDA
RC5ISDO
RC0/TXICK
RC7/RXIDT

RDO-PSPO-CIIN*
ROL'PSPl'CIIN-

I RD2/PSP2fC2IN*
[RD3.'PSP3'C2IN-
RD4.PSPA€CCP1(P1A
RD6’PSP5iP1B
RD0.‘PSP6.-P1C
RD7/PSP7,'P1D

RE0iANS«5
RE1/AN6WR.X10UT
RE2/AN 7.*CS/C20UT

Parallel
Slave Port

3E
Comparators CCP1 Enhanoed

CCP USART

I
Synchronous

Serial Port

1
CAN Module

206

Microcontroller Features

High-Performance RISC CPU:
• Linear program memory addressing up to

2 Mbytes
• Linear data memory addressing to 4 Kbytes
• Up to 10 MIPS operation
• DC - 40 MHz clock input
• 4 MHz-10 MHz oscillator/dock input with

PLL active
• 16-bit wide instructions, 8-bit wide data path
• Priority levels for interrupts
• 8 x 8 Single-Cycle Hardware Multiplier

Peripheral Features:
• High current sink/source 25 mA/25 mA
• Three external interrupt pins
• TimerO module: 8-bit/ 16-bit timer/counter with

8-bit programmable prescaler
• Timerl module: 16-bit timer/counter
• Timer2 module 8-bit timer/counter with 8-bit

period register (time base for PWM)
• Timer3 module 16-bit timer/counter
• Secondary oscillator clock option - Timer1/Timer3
• Capture/Compare/PWM (CCP) modules;

CCP pins can be configured as:
- Capture input: 16-bit, max resolution 6.25 ns
- Compare: 16-bit, max resolution 100 ns (Tcy)
- PWM output: PWM resolution is 1 to 10-bit

Max PWM freq @:8-bit resolution = 156 kHz
10-bit resolution = 39 kHz

• Enhanced CCP module which has all the features
of the standard CCP module, but also has the
following features for advanced motor control:
- 1, 2 or 4 PWM outputs
- Selectable PWM polarity
- Programmable PWM dead time

• Master Synchronous Serial Port (MSSP) with two
modes of operation:
- 3-wire SPI™ (Supports all 4 SPI modes)
- I2C™ Master and Slave mode

• Addressable USART module:
- Supports interrupt-on-address bit

Advanced Analog Features:
• 10-bit, up to 8-channel Analog-to-Digital Converter

module (A/D) with:
- Conversion available during Sleep
- Up to 8 channels available

• Analog Comparator module:
- Programmable input and output multiplexing

• Comparator Voltage Reference module
• Programmable Low-Voltage Detection (LVD) module:

- Supports interrupt-on-Low-Voltage Detection
• Programmable Brown-out Reset (BOR)

CAN bus Module Features:
• Complies with ISO CAN Conformance Test
• Message bit rates up to 1 Mbps
• Conforms to CAN 2.0B Active Spec with.

- 29-bit Identifier Fields
- 8-byte message length
- 3 Transmit Message Buffers with prioritization
- 2 Receive Message Buffers
- 6 full, 29-bit Acceptance Filters
- Prioritization of Acceptance Filters
- Multiple Receive Buffers for High Priority

Messages to prevent loss due to overflow
- Advanced Error Management Features

Special Microcontroller Features:
• Power-on Reset (POR), Power-up Timer (PWRT)

and Oscillator Start-up Timer (OST)
• Watchdog Timer (WDT) with its own on-chip RC

oscillator
• Programmable code protection
• Power-saving Sleep mode
• Selectable oscillator options, including:

- 4x Phase Lock Loop (PLL) of primary oscillator
- Secondary Oscillator (32 kHz) clock input

• In-Circuit Serial Programming™ (ICSP™) via two pins

Flash Technology:
• Low-power, high-speed Enhanced Flash technology
• Fully static design
• Wide operating voltage range (2.0V to 5.5V)
• Industrial and Extended temperature ranges

207

Pin Diagram

MCLR/Vpp
RAO/ANO/Cvref

RA1/AN1
RA2/AN2/VREF-

RA3/AN3/VREF+
RA4/T0CKI

RA5/AN4/SS/LVDtN
RE0/AN5/RD

R E 1 /AN 6/W R /C 10 U T
R E 2/A N 7/C S/C 20U T

Vdd
V ss

OSC1/CLKI
OSC2/CLKO/RA6

RCO/T1 0 S O /T 1 CKt
R C 1/T 10S I
RC2/CCP1

RC3/SCK/SCL
RDO/PSPO/C1IN+
R D 1/PSP1/C 1IN -

E
■+*E

-*-E

1 40 :
2 3 9 :
3 38 :
4 37
5 36
6 35
7 34
8 3 3 33
9 o o 32
10 00 00 31
11 ■n *T1 30
12 pt fc 29
13 00 00 28
14 27
15 26
16 25
17 24
18 23
19 22
20 21

RB7/PGD
RB6/PGC

RB4
— RB3/CANRX

RB2/CANTX/INT2
—♦ RB1/INT1
— RBO/INTO
 Vdd
 Vss

R D 7/PSP7/P1D
— R D 6/PSP6/P1C
— ► R D 5/PSP5/P1B
— RD4/PSP4/ECCP1/P1A
— *> RC7/RX/DT
— •* RC6/TX/CK

□ *— ». RC5/SDO
3 •+— ► RC4/SDI/SDA
3 * — ► RD3/PSP3/C2IN-

— ► RD2/PSP2/C2IN+

Pipelined Execution of Code

OSC2/CLKO I
(RC Mode)

Internal
Phase
Clock

PC* 4

I Fetch INST (PC)
Execute INST (PC ~ 2) Fetch INST (PC ♦ 2)

I Execute INST (PC) Fetch INST (PC 4)
l Execute INST (PC ♦ 2)

208

Program Memory Map

PC<20:0>
CALL, RCALL, RETURN ft
RETFIE'RETLW

Stack Level 1

Stack Level 31

Reset Vector

High Priority interrupt Vector

Low Priority Interrupt Vector

On-Chip
Program Memory

Read *0’

0000h

0008h

0018h

7FFFh
8000h

IFFFFFh
200000h-L-

8
8.(/>

4)
2
0)

209

Data Memory Map

BSR<30>

- 0 0 0 0

- 0 0 0 1

- 0010

- 0011

- 0100

- 0101

= 0110
 ►

- 1110 ►

- 1 1 1 1
 ►

Data Memory Map

BankO

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

OOh

FFh
OOh

FFh
OOh

FFh
OOh

FFh

OOh

FFh

Bank 6
to

Bank 14

Access RAM

GPR

GPR

GPR

GPR

GPR

GPR

000h
05Fh
060h
OFFh
100h

1FFh
200h

2FFh
300h

3FFh
400h

4FFh
500h

5FFh
600h

Bank 15
OOh

FFh

Unused o -n
Read ‘OOh*

SFR

SFR

EFFh
FOOh
F5Fh
F60h
FFFh

Access Bank

Access Bank low
(GPR)

Access Bank high
(SFR)

OOh

5Fh
60h

FFh

When a = o,
the BSR is ignored and the
Access Bank is used.

The first 96 bytes are
general purpose RAM
(from Bank 0).

The next 160 bytes are
Special Function Registers
(from Bank 15).

When a = l ,
the BSR is used to specify
the RAM location that the
instruction uses.

210

CAN Buffers and Potocol Engine

BUFFERS

Message
Request

Message
Queue
Control

TXREQ TXBO
TXABT
TXLARB MESSAGE
TXERR
TXBUFF

TXREQ TX81
TXABT
TXLARB MESSAGE
TXERR
TXBUFF

TXREQ TXB2
TXABT
TXLARB MESSAGE
TXERR
TXBUFF

Transmit Byte Sequencer

Accept

Accept
Acceptance Mask

RXMO4 t
Acceptance Filter

RXFO -►

i t
Acceptance Filter

RXF1

RXBO

Acceptance Mask
RXM1

Y f

Identifier

Acceptance Fitter
RXM2

I ZI
Acceptance Filter

RXF3

ZE I
Acceptance Filter

RXF4

1 f
Acceptance Fitter

RXF5

RXB1

Data and Data and , L
1 Identifier Identifier ‘

Message Assembly Buffer

Identifier

PROTOCOL
ENGINE

Transmit Shift Receive Shift

Comparator

CRC Register

Transmit
Logic

Protocol
FSM

Bit Timing
Generator

Bit Timing
Logic

Transmit Receive
Error Error

Counter Counter

FtXERRCNT

Bus-Off

Err-Pas

TXERRCNT

▼
TX RX

2 1 1

CAN Filter/Mask Truth Table

Mask
bit n Filter bit n

Message
Identifier
bit n001

Accept or
Reject
bit n

0 X X Accept
l 0 0 Accept
l 0 1 Reject
l 1 0 Reject
l 1 1 Accept

Legend: x = don’t care

A/D Block Diagram

CH S2CH S0

AN7<1)

AN6<1>

AN5W

AN4

AN3

AN2

AN1

ANO

VSS

N ote 1: C hannels AN5 through AN7 are not available on PIC 18F2X8 devices.

2: All I/O pins have diode protection to Vdd and VSS.

Vain

(Input Voltage)

10-bit
Converter

A/D

Reference
voltage

VREF+

Vref-

PCFGO
I VDD

‘ 0^_X
-Cr^O-

O -

e rr

O-

V
V
V
V
V
V
V

111

110

101

100

Oil

010

001

000

■ E l

■ E

E l

2 1 2

P4.0 - P4.7
(EXPANDED ADDR/CHIP ENABLES) P5.0 - P5.7

PORTSPORT 4 CAN MSG.
CENTER

RAM
Z

CANO
MODULE

Z~S

CAN 1
MODULE

Z

Port Latch
z

Port Latch
Z

4K x 8
SRAMINTERRUPT LOGIC

B REGISTERACCUMULATOR MATH
ACCELERATOR

UNITSTACK
POINTER

DPTR1

 ■■■■y

DPTRO

PC ADRRREG.TIMED
ACCESS

256 BYTES
SFR SRAM

INSTR. REG

_ O S C . FAIL
f] DETECT

CLOCKS AND
MEMORY
CONTROL Vcc POWER MONITORRESET

CONTROLOSCILLATOR WATCHDOG TIMER

C/5
Oar
«
3
as<-►

g
o -o
a r

as
QfQ
*■*as
3

D
S80C

390
M

icrocontroller

Microcontroller Features

FEATURES
■ 80C 52 com patible

- 8051 instruction-set compatible
- Four 8-bit I/O ports
- T luee 16-bit timer/counters
- 256 bytes scratchpad RAM

■ H igh-Speed Architecture
- 4 clock s/m ach ine cycle (8051=12)
- Runs D C to 40 M H z clock rates
- Frequency m ultiplier reduces EMI
- S in g le-cyc le instruction in 100 us

16 /32-b it math coprocessor
■ 4 kB internal SR A M usable as

program /data/stack m em ory
■ Enhanced m em ory architecture

- A ddresses up to 4 M B external
- D efaults to true 8051 m em ory com patibility
- U ser-enabled 22-b it program/data counter
- 16-B it/22-b it paged/22-bit contiguous

m odes
- U ser-selectab le m ultip lexed / non­

m ultip lexed m em ory interface
- O ptional 10 bit stack pointer

■ T w o full-function C A N 2 .0B controllers
- 15 m essage centers per controller
- Standard 11 -bit or extended 29-bit

identification m odes
- Supports D ev iceN et. S D S . and higher layer

C A N protocols
- D isab les transmitter during autobaud
- SIESTA lo w pow er m ode

Tw o full-duplex hardware serial ports
Programmable IrDA clock
High integration controller includes
- Power-fail reset
- Early-warning power-fail interrupt
- Programmable w atchdog timer
- O scillator-fail detection
16 total interrupt sources with 6 external
Available in 64-pin QFP. 68-pin PLCC

214

TINI Stick Memory Map

OOOOOOh

080000h

lOOOOOh

180000h

280000h

300000h
308000h

320000h

800000h

BFFFFFh

TINI Flash ROM Map
o

64K

192K

448K

5 1 2 K

Boot Loader

Firmware (tini.hex)

API (tiniapi.hex)

Primary Java Application

Flash ROM 1 (512K)

Flash ROM 2

Image o f SRAM 0

SRAM 0 (512K)

SRAM 1 (512K)

Image o f SRAM 1

SMC Ethernet Controller
Available peripheral code & data space

_________Real Time Clock_________

Available peripheral
code & data space

Unused

215

in
-

TINI Stick

TINI Socket

O fll l l M

■irtTI

TINI Sick Mounted on Socket

216

APPENDIX C
System Related Details

FEN RAM Memory Map

OOOOh

0080h

01 OOh

0500h

05CFh

0600h

OFOOh

OFFFh

Program Variables (128 bytes)

Eeprom Data Buffer (128 bytes)

Signal Acquisition Data Buffer
(1024 bytes)

CAN M essage Buffer
(208 bytes)

Unused (48 bytes)

Unimplemented

Special Function Registers

217

FEN Program Memory Map

Boot up code

Interrupt (High priority)

Interrupt (Low priority)

Initialisation code

Main Loop

____________Write Eeprom subroutine__________

____________ Read Eeprom subroutine___________

_______________ Delay subroutine_______________

High priority interrupt service routine (for CAN)

Low priority interrupt service routine (for Sampling)

Process CAN subroutine

Maths & Stats subroutines library

P rocessSam ple subroutine

Software Update mode subroutine

Data Acquisition mode subroutine

M onitoring mode subroutine (Changed with applications)

OOOOh
0008h

0018h
001 Eh

0800h

OAOOh

OCOOh

OEOOh

lOOOh

1800h

2000h

3000h

5000h

5200h

5800h

6000h

7FFFh

Memory currently used.

Unused memory left for application
specific modifications and future
extensions.

FEN Pseudo-codes for interrupts and associated

subroutines

CAN Interrupt

Store message in a circular buffer.

Increment stored-messages counter.

CAN Routine

While stored-messages counter > 0

Process next CAN message.

Decrement stored-message counter.

TMRO Interrupt

Timer 0 is used to generate sampling time interrupts. Its ISR is selected according to

the nature o f the signal to be acquired.

For Analogue voltage signals:

Start A/D conversion.

For Frequency signals:

Transfer pulse-count to accumulator.

Subtract previous count from the current count.

Adjust result in case o f overflow.

Store the result in a * circular data buffer.

ADC Interrupt

Transfer the conversion result to a * circular data buffer.

*The circular data buffer mentioned in TMRO and ADC interrupts is the same because

only one o f the two interrupts will be active on one node.

219

FEN Main Loop
Main

;Check if a new CAN message is available
MOVF CAN_RCount,W
CPFSEQ C A N W C ou nt
CALL C A N P R O C

;Check if a new sample is available
;FSR0 and FSR1 (writer and reader)
MOVF FSR0H,W
CPFSEQ FSR1H
GOTO N ew S a m p le
MOVF FSR0L,W
CPFSEQ FSR1L
GOTO N ew S a m p le
GOTO N o_Sam ple ;No new sample available for processing

N ew S a m p le
;Process the new sample
CALL Process_Sam ple

N o S a m p le
GOTO Main

2 2 0

CAN Bus Connections

DS80C390 PIC18F458
COTX CORX CANTX CANRX

+5V

NC

21

1

20

4

TXD RXD

VCC RS

PCA 82C250
VREF GND

CANL CANH

CANH

+5V

NC

35

1

36

4

TXD RXD

VCC RS

PCA 82C250

VREF GND

CANL CANH

>120Q 120 0

CANL

+5V

NC

CANL CANH

VCC RS

PCA 82C250

VREF GND

TXD RXD

1 4

35 36
CANTX CANRX

PIC 18F458

2 2 1

FEN CAN Initialisations

BCF
BSF

TRISB,2
TRISB,3

;Setting for CAN control registers
MOVLW H'80'
MOVW F C A N C O N
CLRF C A N ST A T
CLRF C O M STA T

;CANTX
;CANRX

;Configuration mode

;Setting for CA N I/O control register
MOVLW H'20' ;Disable CAN capture (Don't use RC2 pin)
M OVW F CIOCON ;Tx pin High when inactive

;Setting for C A N baud rate Registers for 125000 bps for 40 MHz oscillator
MOVLW
MOVWF
MOVLW
MOVW F
MOVLW
MOVW F

;Setting for CAN
;Transmit Buffer
MOVLW
M OVW F
M OVLW
M OVW F
MOVLW
MOVW F
MOVLW
MULLW

MOVF
AD DLW
MOVW F
M OVLW
MOVW F
MOVLW
MOVW F

H'49' ;Tq = (2* l)/F osc, Prescaler is 10 for 40 MHz crystal
B R G C O N 1 ;Sync jump width time = 2*Tq
H'AB' ;Propagation time = 4*Tq, Sample once
B R G C O N 2 ;Phase se g l time = 6*Tq
H'04' ;Phase seg2 time = 5*Tq
B RG CO N3 ;CAN not used for wake-up

transmit registers
0
H '031
TX BO CO N ,BANK ED
H'06'
T X B 0SID H , BA N K ED
H'08'
T X B 0S1D L, BANK ED
N odeN um
D'16'

;(lower
PRO DL,W
D'01'
T X B 0E ID H , BA N K ED
H'00'
T X B 0E ID L ,B A N K E D
H'00'
T X B 0D L C , BAN K ED

;Priority level 3 (highest priority)
;EID28-EID21

;Extended identifier and EID20-EID16
;NodeNum defined for each node
;M ultiply node number with 16

nibble --> higher nibble in PRODL register)
;M ove result in W
;Make SUIN the destination
;EID15-EID8

;EID7-EID0

;Setting for CAN receive registers
;Receive Buffer 0
M OVLW H'40'
M OVW F RXBOCON

;TXRTR bit clear, 0 data bytes

;Receive valid m essages with extended identifier

;Set R eceive Mask 0 to check only the destination node number (sam e for all FENs)
MOVLW H'00'
MOVW F R X M 0SID H ,B A N K E D ;E1D28-EID21
MOVLW H'00'
MOVW F R X M 0SID L ,B A N K E D ;EID20-EID16
MOVLW H'OF'
MOVW F R X M 0EIDH ,BA N K E D ;EID15-E1D8
MOVLW H'00'
M OVW F R X M 0EIDL ,B AN K E D ;EID7-EID0

;Set R eceive Filter 0 to accept m essages for current node only

2 2 2

MOVLW H'00'
MOVWF RXFOSIDH, BANKED ;E1D28-EID21
MOVLW H'08'
MOVW F RXFOSIDL,BANKED ;Extended identifier, EID20-E1D16
MOVLW NodeNum ;Current node
MOVWF RXFOEIDH,BANKED ;EID15-EID8
MOVLW H’00'
MOVWF RXFOEIDL, BANKED ;EID7-EID0

;Set R eceive Filter 1 to accept broadcast messages (same for all FENs)
MOVLW H’00'
MOVWF RXF1SIDH,BANKED ;EID28-EID21
MOVLW H'08'
MOVWF RXF1SIDL,BANKED ;Extended identifier, EID20-EID16
MOVLW H'00' ;For broadcast message
MOVW F RXF1EIDH,BANKED ;EID15-EID8
MOVLW H'00’
MOVWF RXF1EIDL,BANKED ;EID7-EID0

CLRF
CLRF
LFSR

C A N R C ou n t
CANJW Count
FSR2,400H

;CAN interrupt configuration
BCF PIR3,RXB0IF
MOVLW 0 1 H
MOVW F IPR3
MOVLW 01H
MOVW F PIE3

;Start address o f CAN buffer for , 12 bit operation

;Clear to initialize
;Set high priority for RXBO interrupt

;Enable RXBO interrupt

BSF RCON,IPEN ;Enable interrupt priorities
MOVLW 0C0H ;Enable all high & low priority interrupts globally
MOVW F INTCON

MOVLW H'00'
MOVWF CANCON ;Normal mode for CAN

SUIN CAN Initialisations

static CanBus myCanBus;

static CanFrame myFrameT = new CanFrame(); //Broadcast transmission

static CanFrame myFrameR = new CanFrame(); //Reception

System.out.println("Configuring CANBUSO");

try {

// Create a new CanBus object for CAN bus 0 o f TINI

myCanBus = new CanBus(CanBus.CANBUSO);

// Set up the CANBUS speed (125 Kbps)

myCanBus.setBaudRatePrescaler(7);

myCanBus.setTSEGl(13);

myCanBus.setTSEG2(7);

myCanBus.setSynchronizationJumpWidth(1);

myCanBus.setTransmitQueueLimit(2);

// Define 29 bit mask

myCanBus.set29BitGlobalIDM ask(0x0000FE00); //Global mask for MC 2 - 1 4

myCanBus.enableController();

System.out.println("Enabling M essage Center 1 for transmission & 2 - 14 for reception.");

myCanBus.setM essageCenterM essageIDM askEnable(i, true); //true means enabling the mask

myCanBus.set29BitMessageCenterArbitrationID(i, 0x00000000 | (i « 12)); //ID

myCanBus.enableMessageCenter(i);

}

//(M C 15 has its own mask)

myCanBus.setMessageCenterTXMode(1);

for(int i=2; i<15;i++) {

myCanBus.setMessageCenterRXM ode(i);

//Transmit only

//R eceive m essage from Node i

catch(Exception e) {

System.out.println(e + Unable to set up CAN bus");

// CAN BUS set up completed here

224

Some Useful Slush Commands

C om m and Description

date Set the system date and time

del Remove the named file

ftp Connect to a remote FTP server

help Display usage information for Slush commands

ipconfig Configures and displays the network settings

java Executes a Java program

kill Kill the identified process

Is List the contents of the current directory

md Make the named directory

netstat Displays all TCP connections

passwd Set the password for the specified user

pwd Present working directory

rd Remove the named directory

sendmail Send email to designated recipients

startserver Start up the specified server

stopserver Shut down the specified server

useradd Add a new user account

userdel Delete the specified user account

who List all currently logged in users

225

Some Useful AT Commands

C om m and Description

AT Attention command

AT&F Set to factory default

AT+CHUP Flang up call

AT+CLCK Lock facility (including all incoming barring services ‘AC’)

AT+CLIP Enable/disable calling line identification (CLI)

AT+CMAR Master reset

AT+CMGF Select message format

AT+CMGS Send message

AT+CMSS Send message from storage

AT+CSCS Select character set

AT+CSIL Silent mode

AT+CSQ Signal strength

226

Time Analysis Circuit Diagrams

GND

GND 1C*

VCC GND
TXD

RXD
CANL

IPMM Data Acq V*r 1.00PCA82C250

TITLE: final

RED:Document Number:

[Sheet: 1 /1Date: 1 0 /0 4 /2 8 0 6 19:05:87

Frequency Analysis Circuit Diagram

i*—w-

x—

■ar

«—

S?PuF

FEN Circuit Diagram

+1

+3
: a x : t
c.ot : C ANB

R4
:k3

TPt

1 2
* S:buL3 S :iu tl3 , 3 4

0 -----p.
3 6
7 «

HEADER 4X2

SI

HEADER 10X 2G X D

v d e VCC

V3ND

+3
J

Vdcr O—K
SW SPDT r

GND
1
v ss

R l
1K3

AVI

jP2
Sigaai

CONJ

TICKI

XL

n
GND

KC vcc

GKD Feut

- J

CMh.i

13

5=

ci
* > H h GKD

O.lsF

C2

*s |— l b * GKD
C .la F

M CLRV pp R B 'P G D
RAO A N frC vt.f RB6 PGC
RA1AN1 RB3PGM
RA 2AN 2V REF- RB-»
RA 3A X 3V REF* RB3CAKRX
RA 4T0C K I RB2CAKTX1KT2
RAI A N4SSLV DIN
RIO A X H 2
RE I A K R JT R C l OUT
R I2 AN? CS C2CUT

OSC1CLK1

RB1TKT1UMHII

RD? P S P 7P 1D
RD6 PSP6 PIC
RDJ PSP5 P1B

CSC2 CLKO RA6 RE 4 PSP4 IC C P I P I A
RCCTIOSOTICXI
R C 1TIO SI
r c : c c p i
RC3 SCK SCL
RDO-PSPO C1IK-
RE1 PSP1C1IN-

R C 7R X D T
R C 6T X C K

RC3 SDC
RC4 SD1SDA

RD3 PSP3C2IK -
RT2 PSP2 C2D4*

jSp

r i t e Hr
S2

3?y 36“
SW SPDT

7
GXD

P IC 1IF4IS

C3

iH H * ®
O.lttF

GKD

GXD’ TXDR t
CAKH
CAKL
Vrrf RXD

P C A S 2C 250

Backplane Circuit Diagram

ccn:

I I d

o ? : -

5 LuF c.i.r

Meuat <i clot* to mpply p m U7 «i pom'ali

X

lu F T i n

c ^ C l

0.1 uF 0 luF

GKD

+ U

1110 fill1p<0R DK7

r E* D2 03
.% S D * * L E D

V
GKD GND

’f ?

r
■V

;4

0=
c ck :

4-20mA Loop

3 5 =

—

IN*
IN-
RCVFB
REF FB
REF IN
REF TRIM

RCV OUT
REF OUT

CT
NC
NC

REF KR
RCV420

la F T ia t

<o

11 2 •—X u _ .
1v 3 4

a—ViS 6
1 7 *
1 9 10

S=£
*—X

3
4

-fr+3
->+13

HEADER 3X2 CON4
-4— > GND
H >RCVCO?ON2 GND '— > REF C 04

GKDL,GKD GKD

T oV«f-ToufT<>5«
-£ S S L

IR L
t L

V akl
\ : a n h
X iU iL ,
\ k m U _

\kmiLe
\ i -u u d i_

1 2
3 4
J «
7 1
9 10
U 12
13 14
13 10
17 11
19 20

/ ‘ -=l
_ = , y \ : . v . 'i L

« iu a / Si.tr. o■■»aX \il5MlL—i_y SiigatL,

• —X

HEADER 10X2

V.AKI-
S£AKH_
\ i i t n
SiiiiiLL-*
S i.f f l t l i

\ T» ■ 14

< «

1 2
3 4
3 <
7 t
9 10
11 12
13 14
13 1«
17 11
19 20

0 laF

sSijnilA Q
. - c

1 2
3 4
3 6
7 S
9 10
11 12
13 14
13 :«
17 i t
19 20

Q r 4K1 /
C AN" /

-iLui /v Siwiuy
8i|uli/
S .O ..U /

HEADER 10X2

_ ^ y \ = _
i r - y V .A X =_CANX \:ANH_
i m / Siac.

e _ _ A i n y \ L l£ = L _ o
c --------

VI its ill
_Si*ay S iii i i lA

p * r.NTVSr.>c-̂ ~~̂

1 2
3 4
3 <
7 t
9 10
11 12
13 14
13 1«
17 IS
19 20

c.yy.H.
JauL

o_Sihsi13/0 Japuii/
•—X

_ / :

f . v n / V i K :

R13
120

HEADER 10X2 HEADER 10X2

T tn u u i t <
CAN! it i

xsr
Six*
A4

D i m

n^ u T
G4YBC& Bactylane

I Im iS

12-Apr-2000 a:____________
■ ■fptrGfov C isbllll liab u i

APPENDIX D
List of Research Papers

Published papers

1. Q. Ahsan, W. Amer, R. I. Grosvenor, A. D. Jennings, P. W. Prickett and M. R.

Frankowiak. Design of a Process and Condition Monitoring System using PIC

based Analogue Data Acquisition. In proceedings o f COMADEM, 27-29

August 2003, 16th International Congress on Condition Monitoring and

Diagnostic Engineering Management. Vaxjo, Sweeden. Vaxjo University

Press, Sweeden. ISBN 91-7636-376-7, pp 227-235.

2. W. Amer, Q. Ahsan, R. I. Grosvenor, A. D. Jennings and P. W. Prickett. PIC

Micro-controller based Machine Tool Monitoring System. In proceedings of

COMADEM, 27-29 August 2003, 16th International Congress on Condition

Monitoring and Diagnostic Engineering Management. Vaxjo, Sweeden. Vaxjo

University Press, Sweeden. ISBN 91-7636-376-7, pp 219-225.

3. Q. Ahsan, W. Amer, R. I. Grosvenor and P. W. Prickett. Sweeping Filter

Technique for Frequency Analysis. In proceedings o f Quality, Reliability, and

Maintenance (QRM), 1-2 April 2004, 5th International Conference. Oxford

University, UK. Professional Engineering Publishing Limited, Bury St

Edmunds and London, UK. ISBN 1 86058 440 3, pp 185-188.

4. W. Amer, Q. Ahsan, R. I. Grosvenor and P. W. Prickett. Machine Tool Signal

Analysis Using Sweeping Filter Technique. In proceedings of Quality,

Reliability, and Maintenance (QRM), 1-2 April 2004, 5th International

Conference. Oxford University, UK. Professional Engineering Publishing

Limited, Bury St Edmunds and London, UK. ISBN 1 86058 440 3, pp 189-

192.

231

5. Q. Ahsan, R. I. Grosvenor and P. W. Prickett. A Reduced Traffic Software

Model for Distributed Monitoring Systems. In proceedings o f COMADEM

2004, 17th International Congress on Condition Monitoring and Diagnostic

Engineering Management. Cambridge, UK. Central Printing Services,

University o f Birmingham, UK. ISBN 0-954 1307-1-5, pp 204-213.

6. Q. Ahsan, R. I. Grosvenor and P. W. Prickett. Distributed Control Loop

Performance Monitoring Architecture. In proceedings o f Control Conference,

6-9 September 2004. University o f Bath, UK. ISBN 0 86197 130 2.

7. Q. Ahsan, R. A. Siddiqui, R. I. Grosvenor and P. W. Prickett. Adaptable

eMonitoring System for Multi-Loop Processes. In proceedings of

COMADEM 31st August - 2nd September 2005, 18th International Congress on

Condition Monitoring and Diagnostic Engineering Management. Cranfield,

UK. Cranfield University Press, UK. ISBN 1 871315 91 3, pp 211-220.

8. R. A. Siddiqui, Q. Ahsan, R. I. Grosvenor and P. W. Prickett. The Role of

Emerging Technologies in E-Monitoring. In proceedings o f COMADEM 31st

August - 2nd September 2005, 18th International Congress on Condition

Monitoring and Diagnostic Engineering Management. Cranfield, UK.

Cranfield University Press, UK. ISBN 1 871315 91 3, pp 263-271.

9. Q. Ahsan, W. Amer, R. I. Grosvenor and P. W. Prickett. A Compact

Monitoring System for Process Valves. In proceedings o f 10th IEEE

International Conference on Emerging Technologies and Factory Automation,

19-22 September 2005. Catania, Italy. ISBN 0-7803-9402-X, pp 1043-1046.

10. W. Amer, Q. Ahsan, R. I. Grosvenor and P. W. Prickett. Machine Tool

Condition Monitoring System using Tooth Rotation Energy Estimation

(TREE) Technique. In proceedings o f 10th IEEE International Conference on

Emerging Technologies and Factory Automation, 19-22 September 2005.

Catania, Italy. ISBN 0-7803-9402-X, pp 529-536.

232

11. Q. Ahsan, W. Amer, R. Siddiqui, M. Al-Yami, R. I. Grosvenor and P. W.

Prickett. Distributed Process Monitoring and Management. In proceedings of

IEEE International Conference on Engineering and Intelligent Systems, 22-23

April 2006. Islamabad, Pakistan, pp 336-341.

Accepted papers for publication

1. Q. Ahsan, R. I. Grosvenor and P. W. Prickett. Distributed On-line System for

Process Plant Monitoring. Accepted for Publication in Journal o f Process

Mechanical Engineering, Part E, Proc IMechE Vol 220, 2006.

Submitted papers for publication

1. R. A. Siddiqui, W. Amer, Q. Ahsan, R. I. Grosvenor and P. W. Prickett. Multi­

band Infinite Impulse Response Filtering using Microcontrollers for e-

Monitoring Applications. Submitted to Journal o f Microprocessors and

Microsystems.

