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ABSTRACT

The use of computers in industrial process applications is ever-increasing. Initially used 

to provide help to the machine operator, their application has evolved through automatic 

process control to monitoring of process health and performance. The latter, together with 

the quality control of the end product directly affect plant economics and ultimately the 

financial viability o f the company. The research reported in this thesis is a contribution 

towards providing a cost-effective method o f calculating a measure o f the current health 

of a process and predicting any maintenance issues that may arise in the near future. 

Embedded systems are utilised and the monitoring system is designed to work 

automatically with a minimal input from the operator. This eliminates the need for 

peripherals such as keyboards, mice, and monitors thus reducing the overall system price 

and footprint. User interfaces are provided via the Internet and mobile phones giving 

remote access to multiple users. Single chip microcontrollers are at the heart of the 

embedded system rather than microprocessors, thereby reducing the relative system cost 

and size at the expense of localised processing power. The microcontrollers are 

distributed in a hierarchical network to attain the required processing power whilst 

minimising data storage and communications and to improve signal-to-noise ratios. The 

Controller Area Network (CAN) bus was selected, and used for the inter-microcontroller 

communications, for its robust performance in noisy environments.

In the developed system architecture, each microcontroller node acquires one of the 

required process sensor signals and applies initial signal processing. A novel sweeping 

filter technique is developed to perform frequency analysis using the microcontrollers. 

The processed data from all nodes are then combined using situation-based criteria to 

reach conclusions often not evident from single sensor data. The Internet-based system is 

provided with the capability to upload any monitoring software or updates. Plug & play 

capability of the monitoring nodes is also provided so that the system can be seamlessly 

adapted to new or changed applications. The design and development of the system are 

detailed along with its deployment on various applications. Fault detection, isolation, and 

prediction were achieved on batch and continuous processes. A machine tool application 

proved the frequency analysis and network traffic reduction capabilities. On-line 

monitoring o f an industrial valve was also performed.
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Chapter 1

INTRODUCTION

The ever-increasing and market led competition for better quality and lower prices is 

putting an enormous pressure on the manufacturing industry. The industry aim is to run 

process plants at their optimum level of performance to ensure the sustained quality o f the 

end product. This is often hand-in-hand with attempts to reduce maintenance and running 

costs. These two contradictory demands may put a manufacturing operation in jeopardy. 

Researchers are increasingly using computers and information technology to address 

these problems. However, the complexity and scale of modern industrial plants often still 

makes it impossible or impractical to check the health of every component in a plant. 

Time-based maintenance is often employed rather than the more economic condition- 

based maintenance. There is a great need for automatic systems that monitor the plant and 

let the maintenance staff know when a problem is detected.

It may still be a very difficult task for maintenance staff to diagnose the real cause of the 

problem once an automatic system detects it. Monitoring systems are required that not 

only report a performance degradation but can also direct the maintenance staff towards a 

specific remedial action. Ideally, the automatic system will provide a prediction of each 

component's failure so that optimally timed maintenance activity can be planned whilst 

the plant continues to run efficiently to produce quality products all the time. Such a 

system would need to acquire signals from all the plant components with respect to all of 

their variables such as temperature, pressure, demand, etc. These signals would be 

considered relative to the particular specifications of the component and the working 

environmental conditions. The massive computational requirement is still impractical, 

even with current technology and computational power. The amount of knowledge (or 

comprehensive algorithms) required to interpret all this data may also not be available. 

This situation justifies the continuing research activities in the area.

The need for process monitoring stems from economic benefits and any expensive 

solution would be counter-productive. Low-cost monitoring solutions are therefore 

required that can be achieved with the current technology. The approach taken in this 

research is to reduce the number of additional sensors and to estimate the process and it's
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component’s status largely from the signals already available in the system. This reduces 

the cost o f additional sensors and associated items such as cabling. Signal interfacing and 

input/output capabilities are required to connect the field signals with the digital 

processing system. The modem generation o f microcontrollers were deemed to be useful 

devices in this context. A microcontroller is sometimes described as a ‘single chip 

computer’ as it contains on-chip memory and peripheral devices such as timers, counters 

and data ports. Communication modes are also supported so that the microcontroller may 

exchange information with its surrounding world. The microcontrollers, however, do not 

have the high processing power associated with today’s high-end microprocessors. The 

delicate balance between the processing capability and the cost is investigated in this 

research.

The last decade has seen significant improvements in telecommunication facilities. An 

important development in this respect is the evolution o f the Internet. It is an excellent 

medium for engineers to employ for remote monitoring applications. A monitoring 

system should ideally have Internet connectivity whereby it can provide remote access to 

the results. The monitoring system developed in the current work provides these facilities, 

using commonly available software.

The data from a process under continuous monitoring may become huge, especially if it 

contains analogue signals sampled at high rate. There may be several variables of interest 

from a maintenance point o f view and putting all o f the data for all o f the variables on the 

Internet may not be feasible. The storage and communication o f data is thus a 

consideration of paramount importance. There are technical constraints on the bandwidth 

o f communication channels and large scale data transfers may have a financial impact for 

small companies. It was therefore considered not to be a practical solution to transfer all 

the data from a remote plant on the Internet for a maintenance engineer to examine. 

Rather, it was judged that the data acquisition system should provide some pre-processing 

and provide only the monitoring system results on the Internet rather than raw data. Raw 

data may be communicated remotely, on request, only if  the monitoring system detects an 

abnormal process condition and is unable to diagnose it from its existing capabilities. 

Such data would then be provided to a higher tier o f the monitoring system, or for expert 

analysis at some other location. The research motivation for the current study is more 

fully reported in chapter 2.
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A literature review is provided in chapter 3, encompassing work reported towards various 

aspects o f condition monitoring. Many approaches and techniques have been researched 

and are considered. The review also discusses various application areas. It summarises 

and introduces the numerous techniques developed and reports on some commercial 

applications and devices.

Keeping in mind the requirements for the various monitoring methods proposed within 

the reviewed research, a compact and hierarchical monitoring architecture is proposed in 

chapter 4. The suitability o f embedded systems in process monitoring is discussed with 

currently available technologies. A distributed network o f 8-bit microcontrollers was 

deemed appropriate and reasons for this selection are described. The acquisition of 

signals and their analysis in time and frequency domains are provided. A new frequency 

analysis technique, designated as the sweeping filter technique, is introduced. This 

enables 8-bit microcontrollers to perform frequency analysis in real-time.

The interconnection between various nodes in the proposed monitoring system is 

described in chapter 5. A Controller Area Network (CAN) bus is used for such 

connections and the reasons for this selection are detailed. A specialised node provides 

system synchronisation and the user interface via the Internet and mobile phone 

connectivity. Communication messages on this peer to peer network are detailed in this 

chapter and various software modes are explained. The chapter also explains the 

implementation of a plug and play functionality in the monitoring system. Measures are 

also taken to reduce network traffic while integrating information produced at various 

acquisition nodes. Overall this chapter gives a complete blue-print o f the proposed 

system.

Chapter 6 introduces the deployment and testing of the proposed system on an 

application. Partial pipe blockage and tank leakage faults were introduced in a batch 

process to analyse the monitoring system’s performance for fault detection. The chapter 

provides the implementation details o f the work, the node and hierarchy details and the 

experimentation performed to confirm the proper functionality o f the system. The 

detection and isolation o f multiple faults in a process is elaborated in chapter 7. Data 

gathered by the monitoring system was analysed by the author and different symptoms
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were identified for different faults. The monitoring system then used this knowledge, in 

its monitoring mode, and successfully isolated the faults. Multiple faults were also 

isolated successfully in a multi-loop process where one loop was dependant upon the 

other one. Details o f locating different fault symptoms with the proposed monitoring 

system are provided in this chapter along with the achieved results.

An analysis based on time series data was used in the fault detection and isolation in the 

above mentioned processes. Chapter 8 provides an example o f the deployment of the 

monitoring system on a different type o f application. Its performance in the frequency 

domain was evaluated on machine-tool signals. Spectral differences between a new cutter 

and a broken tooth cutter in machine tool signals were already known from previous 

research. The monitoring system was deployed to detect such spectral differences using a 

novel sweeping filter technique and its details are provided in this chapter.

Chapter 9 explains the monitoring o f an air-flow process involving an industrial 

pneumatic valve. Such valves are widely used in industry for automatic process control. 

The monitoring system successfully detected and isolated multiple faults introduced in 

the process such as diaphragm condition deterioration and partial blockage of air flow 

path. Finally, chapter 10 discusses the results obtained from the various implementations 

of the monitoring system and chapter 11 draws conclusions and sketches the roadmap for 

future research.
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Chapter 2

RESEARCH MOTIVATION

Industrial automation has been on a rapid rise in recent years. The industry is in search of 

optimum profitability and has aspired to near perfect manufacturing in this quest. 

Manufacturing equipment is produced to a very high standard and new process plant (or 

an entire factory) starts shipping quality products once it is properly commissioned. To 

maintain an on-going high level of quality is, however, an altogether different issue. 

Various components o f plant/process experience the unavoidable wear and tear through 

daily usage. The mechanical friction, electronic aging, rusting, corrosion, variations in 

temperature and pressure, etc. affects the production equipment and it loses its initial 

performance capability over time.

Replacement o f components is often undertaken on a time based schedule where 

components are expected to work above a threshold quality level for a certain period of 

time. It is difficult to precisely predict this life span o f a component as it depends on its 

use as well as the production quality level o f its manufacturing plant. Various components 

from same production batch would have differing life spans in practice. Precise 

knowledge o f the conditions that a part experiences is required to reliably predict the 

failure time.

The economic impact o f being able to obtain accurate knowledge about the health of the 

process and machines is vast. In particular, for the process industries, Trenchard et al 

(2002) mention that only one third o f surveyed control loops are performing 

satisfactorily. Horch (2000) states that one o f the most important problems with process 

industry control loops is the widespread presence o f oscillations. Hagglund (1995) 

observes that the main reason for these oscillations is the bad health o f the actuators in the 

loop. Annual losses due to such undetected problems may rise to millions. Trenchard et al 

(2002) provided some quantitative values, for example for an industry where $ 100K was 

saved by detecting several valves that did not require scheduled maintenance. Another 

company claimed to improve plant run-time by 20% due to performance improvement 

obtained through efficient monitoring (Matrikon, ProcessDoctor web site). 

Venkatasubramanian et al (2003) state that the annual losses due to the lack o f condition-
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based maintenance and the resultant safety hazards may reach $20 billion for the 

American petrochemical industry. Similar losses in the UK range up to $27 billion per 

year (Venkatasubramanian et al, 2003). It has been claimed that improvements of 20% to 

30% in process efficiency have been achieved using intelligent condition-based 

monitoring (Emerson process management, customer proven web site).

It is quite common that field visits by maintenance staff determine that the component is 

healthy and does not require any maintenance. Hartley (2002) recalls that 63% of the field 

visits to transmitters in a large chemical company were routine checks where no problems 

were found. A typical field visit costs around $300 and such useless trips can actually out- 

cost the capital cost o f the component. The knowledge o f a healthy component is 

therefore as important as that o f a faulty one. Automation World (web site) indicates that 

the cost for removing a valve from a process is $2000 to $3000 no matter whether the 

valve is good or bad.

Considering the size and complexity o f a modem process plant, it is very difficult for 

maintenance staff to manually check the condition o f all components. Data acquisition 

systems are used to acquire the data for the variables o f interest and typically data trends 

are able to be viewed by the control room staff. It is however very difficult to locate a 

fault merely by looking at the data trends. Expert knowledge is required for this analysis, 

which is usually not at hand because o f the shortage o f engineers (Schafer and Cinar, 

2004). Venkatasubramanian et al (2003) state that because of the complexity of modern 

process plants, it is not always possible for operators to provide a proper response to 

every fault condition and about 70% of the industrial accidents are caused by human 

errors in these circumstances. Thus, they identified the need to develop automated fault 

detection and diagnosis systems to tackle this problem. An automated system is required 

to provide monitoring results, thereby reducing and ideally minimising the load on the 

engineers. A detailed review o f the research in the development o f automatic monitoring 

systems is provided in chapter 3. In spite o f all o f this research, the development of 

effective and automated diagnostics is still considered, by Harris (2004) for example, as 

an unresolved technical challenge, especially for multivariate systems.

Potentially this means that a continuous monitoring system is needed, measuring all the 

process and environment variables all o f the time. This is a gigantic task even with the
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latest state-of-the-art computers. Logistically, sensors are needed to detect various process 

variables, along with a cabling network to connect the sensor signals to the processing 

computers. The situation thus provides scope for the development o f a monitoring system 

that could provide the current process health status with few additional sensors. This 

system would comprehend the holistic situation from only the key parameters and would 

be able to match them with fault symptoms. A departure from the nominal behaviour in a 

signal indicates a performance degradation which would be investigated by the 

monitoring system towards determining a root cause. Such a system can provide the 

information about the proper time to replace a plant component. The system should 

identify the faulty sub-section in the plant and may ideally provide information about 

each component.

A practical solution to this requirement is a system that can track the signals from a few 

available sensors in the process and evaluate the other process conditions indirectly. If 

such a system can be developed, only then it is possible to reliably let a component work 

in the process plant, or replace it with full confidence that a replacement was really 

required. Such a system is feasible in economic terms only if the money spent is worth 

the saving it provides; or if  it results in a competitive advantage in the market by shipping 

better quality products all the time.

A significant amount o f research has been reported but industry is still facing numerous 

problems in achieving comprehensive process monitoring. The detection o f a fault is still 

an issue, especially for soft faults where the process is still likely to be running but with 

degraded performance levels. Finding the root cause of the problem is also an issue. The 

availability o f signals, mounting and connecting sensors in the plant, the hardware 

architecture o f the monitoring system, etc. are all issues that need to be considered. There 

is a fine compromise between missing a fault condition and generating false alarms. 

Clarke (1999) identified that between half and three-quarters o f shut-down time is due to 

false alarms caused by lack o f confidence o f the process operatives in the measurement 

information provided. Many researchers have tackled these issues in the local sense but 

have not yet established comprehensive systems. The few systems that claim to provide 

efficient solutions are often too costly to be widely deployed in industry on a large scale. 

Big multinationals may afford such complicated monitoring solutions but it is almost 

impossible for small to medium enterprises (SMEs) to install these expensive systems.
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The Mattec Corporation (Mattec corporation THE-MAN-A-ger web site), for example, 

claims to provide a low-cost solution where the basic unit price is about $15000. Such 

solutions are therefore not commonly adopted in industry.

Another issue is the generality of the monitoring system. It is difficult to provide a 

generic solution because each process plant is essentially a unique one. Similar process 

plants may be using different types o f sensors to measure the same variables. Each 

process may have different set points and thresholds according to the requirements of that 

particular plant. A monitoring system should therefore be able to adapt to such plant 

related changes easily. A generic solution can be taken by any company as the company 

is still not bound to any one service provider. Paulonis and Cox (2003) for example, state 

that lack o f generality was an important reason for their company’s decision to develop its 

own monitoring system rather than going for a commercially available one.

The common availability o f the Internet these days makes it sensible that it should be 

exploited for remote monitoring. Eisenreich and Demuth (2003) urge the use o f the 

Internet as an easily available communication medium predicting a trend towards Internet 

appliances, i.e. electronic devices connected to the Internet. Potentially then the process 

manager can check the plant performance from anywhere in the world and take 

appropriate management decisions. Decisions do not remain pending only because the 

manager is not in the office. It is also useful where the office is located remotely from the 

plant. Such connectivity reportedly provided better plant management which in turn 

improved profitability. The use o f generic software was again favoured over proprietary 

software. The use o f common Internet browsers, such as Internet Explorer, was deemed to 

be effective as any computer can then be used for browsing the process information.

The total price o f the monitoring solution obviously plays a very important role in the 

decision about whether such a system will be installed or not. The system should be 

compact and use low-cost components to make it a cost-effective solution. The 

developments in microcontrollers over the last few years have made them much more 

powerful than a small chip was traditionally expected to be. Bolic et al (2001) suggest 

that today’s microcontrollers are a feasible option for low-cost distributed systems. These 

microcontrollers integrate signal acquisition and communication facilities with a limited
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processing capability on the same chip. The compactness of the solution results in lower 

overall cost and is potentially very attractive for monitoring systems.

Another benefit o f microcontroller-based monitoring systems is their relatively small 

physical size. A limited number of peripheral components are required to build such 

solutions and small printed circuit board designs are achievable. The reduction in size 

provides an ease o f installation in the factory environment. Small sized modules can be 

easily placed close to the required monitored part, often reducing any potential noise 

interference problems. The acquisition o f cleaner signals provides the potential for 

improved fault detection and reduces uncertainty. This helps in reducing false alarms and 

generates more confidence about the system performance.

The need for a monitoring system with all the above mentioned capabilities is still a 

research challenge. The amount of money involved and the widespread applications of 

such a system in diverse fields of industry thus provided the research motivation to 

investigate into the possibility o f developing a complete monitoring solution fulfilling the 

requirements o f diverse industrial processes. This thesis provides the details o f such an 

investigation, the recommended solutions, the existing technologies to be utilised and a 

discussion o f new techniques and technologies.
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Chapter 3

LITERATURE REVIEW

3.1 INTRODUCTION

This chapter provides a review of monitoring techniques and applications from a wide 

range o f research publications. Monitoring is defined as to observe, supervise, or keep 

under review; to keep under observation; to measure or test at intervals, especially for the 

purpose o f regulation or control (Oxford English dictionary web site).

The scope of the research in this thesis is limited to engineering processes in industry. 

Section 3.2 reviews monitoring examples and set the scene regarding applications. 

Section 3.3 examines monitoring techniques and provides examples o f their use. 

Published review papers are also included in this section. These are used to discuss the 

suitability o f given techniques for particular process types. Section 3.4 then provides a 

detailed review o f the narrower field within which controller signals are utilized in 

process monitoring. Control engineering is a well established field and there is a 

significant amount o f work available for control loop performance assessment (CLPA). 

There is an emerging trend to link the degradation in loop performance with process 

health and the resulting control loop performance monitoring (CLPM) approach can 

provide very important information. This section explores the various aspects of this 

emerging field.

The role o f distributed systems in monitoring is increasing and thus section 3.5 reviews 

various approaches for tackling problems specific to distributed process monitoring. 

Distributed systems are more efficient for geographically distant sensor data acquisition 

and provide hierarchical process facilities. Section 3.6 covers compact systems, where a 

compact system is defined (in this thesis) as a small yet comprehensive system that can be 

easily placed in a process plant. It is essentially an embedded system, preferably based on 

a microcontroller unit (MCU) with very little hardware other than the MCU. The small 

number o f components may also decrease energy consumption and the MCU itself may 

go in power-down mode whenever possible if implemented with appropriate intelligence.
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The Internet provides a range o f services such as web-hosting, live media streaming, 

email, news-groups, file transfers, remote terminals, etc. Commonly used browsers are 

well understood and easily used by non-technical people. The development of document 

structures, components, and containers of the Internet may be complicated but is easy to 

use. These features have made the Internet a preferred mode o f communication. The use 

of the Internet for monitoring applications is accordingly on the rise. Section 3.7 covers 

and reviews this aspect. Finally, section 3.8 briefly describes a selection of commercially 

available monitoring systems. It includes complete monitoring solutions as well as the 

data acquisition systems provided by various companies who process the acquired data 

and provide the results to their respective clients.

3.2 GENERAL CONDITION MONITORING

This section demonstrates the diversity o f applications where monitoring techniques are 

being employed. Process performance monitoring provides technical and economic 

advantages and its benefits are manifold. Various fields of industry are therefore 

interested in process monitoring and there are researchers making efforts to improve 

process performance by applying various techniques. Plesnyaev and Pazderin (2003), for 

example, applied monitoring techniques in the Russian electrical power industry where a 

large number o f consumers resort to meter tampering in order to reduce energy bills. A 

method for improving the accuracy and validity o f the measured data on energy 

consumption was presented based on the mathematical modelling o f energy flows using 

state estimation techniques.

Yang et al (2003, A) applied monitoring techniques to a metal forming process. They 

proposed a friction source location detection system using three acoustic emission (AE) 

sensors positioned at the metal forming tool. Multiple signals generated by the distributed 

AE sensors were acquired and analyzed using frequency analysis techniques such as Fast 

Fourier Transform (FFT) and Discrete Wavelet Transform (DWT). The deviations o f the 

arrival time o f the AE signals were used for friction source location using a pre­

constructed source-location database.
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Studzinski (2004) described the use o f monitoring techniques in environmental 

engineering. Three examples were quoted for modelling and maintaining environmental 

processes using computers. The first example considered a wastewater treatment plant 

where a computer aided system was developed to support decision making by the process 

operator. The development o f the models and their adaptive validation was possible only 

with an efficient monitoring system, and such an automatic system was installed. Their 

second example considered an integrated computer system developed to support 

operational decision making in a communal water network. The system had three 

modules cooperating with each other and water pressure and flow were measured at nine 

points. The data transmission from the deployed system to the computer was 

accomplished using GSM telephony. The third example was developed to provide 

missing data for atmospheric parameters such as environmental temperature. A model 

was produced using a neural network whose output closely matched the real temperature 

data. The model output data was used by the expert systems in a case where actual data 

was not recorded due to a power failure.

Tokatli et al (2005) described the use o f process monitoring in the food industry. Product 

safety is controlled in many food processing operations by checking the end product by 

microbiological and chemical methods. A major problem with this approach is the 

associated delays. Tokatli et al considered this method expensive because the product 

might have been shipped to retailers before any contamination detection. The cost of 

recalling the product from the market adds to the economic loss caused by the problem. 

Real-time monitoring o f critical control points in the process was suggested using 

multivariate statistical methods for the early detection o f the problem. Separate fault 

diagnosis methods were used once a fault was detected. A discrepancy was observed in 

that multivariate statistical charts did not indicate the variable causing the fault. A model- 

based fault diagnosis technique, referred to as a parity space technique, was used to 

monitor a high-temperature short-time pasteurization pilot plant in this study. Plant 

sensors and actuators were interfaced with a computer using a data acquisition system. 

The actual sensor measurement values were modified by adding numbers to them for 

generating sensor faults.

12



Kimmich et al (2005) reported on fault detection for modem diesel engines using signal 

and process model-based methods. Appropriate signal processing o f measurable signals 

generated residuals and symptoms using these models in this modular design. The 

algorithms were implemented on a rapid control prototyping system with 

Matlab/Simulink. The differences between the signal and the reference model generated 

the residuals. Further processing on these residuals gave the symptoms which indicated 

faults by considering variations from thresholds. Several faults were temporarily 

introduced in the engine to check the algorithms. They used semi-physical models where 

dominant characteristics were modelled physically and secondary effects with neural 

networks.

Patton (2005) described the monitoring o f an electro-pneumatic valve in a sugar juice 

evaporation plant as part o f a Development and Application o f Methods for Actuator 

Diagnosis in Industrial Control Systems (DAMADICS) project. A range o f actuator faults 

were considered and the necessity o f advanced diagnostics was emphasized for fault 

detection and isolation. Benchmarking was considered a useful approach in fault 

detection and multiple benchmarks were described. Examples included are benchmarks 

based on simulation o f the actuator behaviour (in normal and faulty states) and also a data 

driven approach based on process data acquired from the evaporation and steam boiler 

stations.

Hawkins (2004) considered the pros and cons o f using Health and Usage Monitoring 

Systems (HUMS) in defence applications. It was stated that condition monitoring dates 

back to 19th century and a bewildering array o f monitoring techniques have emerged. The 

most prominent condition monitoring example within the UK ministry of defence is the 

installation of HUMS to the Chinook and Merlin helicopter fleets. These systems, which 

have been in gestation for many years, were deemed to be beginning to deliver 

dependable safety-related management information. Confidence in these systems is still 

below the desired level but the future deployment o f HUMS to the Sea King, Puma, and 

Lynx fleets was reported as a certainty. Adherence to open standards was also deemed 

important in defence applications monitoring. It was observed that web-enabled HUMS 

environment is a rapidly developing field.
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3.3 TECHNIQUES & THEIR APPROPRIATE APPLICATION

Process and condition monitoring is becoming an important part in today’s industrial 

setup. A number o f monitoring techniques have been developed over the years and 

applied to various applications. These techniques range in complexity and specialised 

modifications have been suggested to the techniques for particular applications. Various 

methods have been tried in different combinations in order to overcome the modem 

industrial processes’ complexity. Fault tree analysis (FTA) is one o f the commonly used 

techniques for fault detection and isolation (FDI). A top level event is specified in the tree 

and all o f the associated elements in the system that could cause that top level event to 

occur are identified (Relex software web site,FTA). Raaphorst et al (1995) considered a 

fault tree based diagnosis system for modem trains. They considered that fault tree 

generation, consistency checking, and maintenance for such a complex system were very 

difficult tasks for humans to perform. Accordingly, they proposed the use of an expert 

system with case-based-reasoning as the inferring mechanism. The fault tree was 

implemented using a graph structure where input nodes were associated to fault 

symptoms. Existing symptoms posed questions to the network and the answers provided 

were used for fault code matching. Three train modes, driving, on-platform, and stand-by, 

were defined and diagnosis was attempted accordingly.

Andrew and Dunnett (2000) considered the use o f Event Tree Analysis (ETA) in FDI. 

ETA is a visual representation o f all the events which can occur in a system (Relex 

software web site, ETA). They considered traditional FTA methods inaccurate and 

inefficient especially for nontrivial situations with dependencies amongst the branch point 

events. They proposed use of Binary Decision Diagrams (BDD) where a ‘1’ branch 

showed occurrence and a ‘0’ branch showed the non-occurrence o f an event. This 

technique was stated to provide quicker results with increased accuracy.

Hu et al (2003) consider fault source location very important as about 80% of downtime 

is spent on locating the source and only 20% is consumed in the actual repair. They 

consider FTA as a mature and efficient method that identifies the cause o f a system fault 

hierarchically from the system level to the part/component level. They combined FTA 

with sequential and logical diagnostic models to achieve good results in fault source
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indication for systems based on programmable logic controllers (PLC). The sequential 

model comprised of the states the system undergo sequentially whereas the logical model 

provided fault source indication by matching the actual controller’s signals against the 

expected ones using the digital sources. The two models were used as complementary to 

each other and not as the alternates to one another. A failure in a machining centre was 

investigated with this approach as a case study and the system correctly diagnosed the 

cooling system as the root cause. The cooling oil pipeline was blocked and the system 

could not provide high enough pressure making the motor drive behavior abnormal.

Isermann (1997) supported the use of heuristic approaches for fault diagnosis stating that 

the underlying physical laws for a process are either often not known (in analytical form) 

or are too complicated for calculations. He provided an introduction to the field of Fault 

Detection and Diagnosis (FDD) emphasizing that a monitoring system cannot provide 

useful alarms unless it does more than checking the measured variables against 

thresholds. He argued that the monitoring system should calculate features and hence 

generate fault symptoms. Classification methods are then proposed for the mapping of 

symptom vectors into fault vectors. He also provided a detailed review of techniques for 

fault detection. It was observed that binary variables based FTA did not prove successful 

because o f the continuous nature o f faults and symptoms. Approximate reasoning 

methods were therefore considered more appropriate.

Au et al (2004) described a monitoring technique that uses the time difference between 

successive arrivals o f an acoustic emission signal. Statistical distribution analyses were 

adopted and applied to monitor bearing conditions. The time difference between 

successive acoustic emissions signals (above a certain threshold) provided a measure that 

was able to detect wear in the bearings. Kaewkongka et al (2004) applied and tested this 

technique for bearing monitoring and claimed good results.

The Intelligent Process Monitoring and Management group at Cardiff School of 

Engineering (IPMM group web site) have developed and refined a Petri-net based process 

and condition monitoring approach. Petri nets were originally deployed as a dynamic 

graphical tool to show the current status o f the process to the operator. Davey et al (1996) 

applied this technique for a machine tool failure diagnosis. Normal times were associated 

with each event and time-out exceptions were used to indicate a fault. A program was

15



developed for monitoring the machining cycles. The fault cause was diagnosed by 

analyzing the event that caused the time-out. The authors claim that this method is very 

effective and provides rapid, accurate and appropriate fault condition information. They 

state that the process can be managed using an expert system which was also developed 

by a partner working on the same DTI funded project.

Turner et al (2001) describe use of Profibus fieldbus for process monitoring and control. 

Process parameters are communicated to a personal computer (PC) acting as bus master. 

The controller implemented on the PC controlled a batch process on a laboratory test rig. 

Object oriented programming was used and graphical user interface was provided. They 

stated that controller-signal monitoring is a useful technique to enable fault detection. 

Also within the IPMM work, Prickett (1997) proposed and reported a link between the 

Petri net monitoring system and maintenance management tools. He suggested that events 

history can lead to the diagnosis of particular failures and fault isolation should be based 

on the particular signal that prevented an event from happening. This approach was tested 

on a machine tool failure diagnosis. He considered it possible to detect variations in the 

manufacturing cycle that may not initially stop the machine but will often do so if  left 

uncorrected. Production downtime can be significantly reduced using this approach. The 

overall lost production time in a single year was estimated at almost 450,000 hours in a 

study and around 35% of the reported faults in that period related to causes where 

operator recovery under a TPM initiative was possible. The 35% reduction in the 

downtime will have huge economic benefits in this scenario.

An evolution in approach by the IPMM group was indicated by Frankowiak et al (2001) 

who stated that the cost o f monitoring systems has often prevented their wide spread 

adoption. The commercially available low-cost 8-bit microcontrollers were therefore 

suggested as primary components for process monitoring applications. An 

implementation o f a Petri net modelling technique using 8-bit microcontrollers was 

reported. The resulting system comprised o f 24 digital, 4 analogue, and 2 pulse inputs and 

was implemented with a Microchip™ Peripheral Interface Controller (PIC) 

microcontroller as the front-end device. The PIC communicated with a PC via a serial 

communication port. A dedicated application in the PC submitted the gathered event 

information to a remote server-side database with time and date stamping. The PC 

provided Ethernet connectivity to the remote database (as it was considered a challenge to

16



provide Internet access protocols and monitoring tasks running on the same system). 

They suggested using two separate inter-communicating systems for these two tasks as 

the most promising way forward. The developed system initially used the RS-232C serial 

port protocol for communication between the PIC and the PC but subsequently Controller 

Area Network (CAN) bus communication were determined to be a better option.

Additional knowledge about process parameters may be invaluable for monitoring but 

extra sensors would be required for that. Companies generally tend to avoid this because 

of the additional cost and installation issues. Grosvenor and Prickett (2003) evaluated this 

situation on the basis o f experiences learnt from various machine tool monitoring 

projects. They cited MSc projects within the IPMM research group and established that it 

is timely to incorporate more sensor inputs into the distributed monitoring systems. 

Several possible monitoring applications were identified where this approach would be 

beneficial.

Amadi-Echendu et al (1992) used frequency components analysis in detecting faults in 

flow processes. They included a pulsator assembly in the water flow loop and observed 

the signals from a flow sensor for normal as well as perturbed flow. They observed a 

difference in the frequency components for the two cases although the time series plots 

looked similar. Similar results were obtained by changing the pump types and their 

number of blades. It was also observed that such differences appear at frequencies higher 

than those used for control purposes, which are generally suppressed. The sensors used in 

this study were slightly modified to gain access to the unconditioned signals. Higham and 

Perovic (2001) stated that sensor signals are typically filtered to suppress frequencies 

greater than 5Hz in order to provide a stable signal to process controller. They advocated 

the use of wide-band sensor signals for monitoring so that the information-rich higher 

frequency components can also be used. They analysed un-filtered signals from pressure 

and flow sensors in flow loops using various types o f pumps. They observed differences 

in characteristic frequency peaks for normal and various abnormal conditions including 

cavitations, partial blockages, and incipient faults. They considered it feasible to identify 

the type o f fault and its level o f severity by using this method. They claimed that their 

conclusion is applicable, in a generic way, to a wide variety o f circumstances.
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Another commonly used method for process monitoring is Statistical Process Control 

(SPC) where numerous control charts check process parameters against tolerance ranges. 

Out-of-tolerance behavior from any chart raises a monitoring alarm. Goulding et al 

(2000) recognized the presence o f highly correlated variables in a typical process plant 

and urged researchers to use the correlations. They recommended the use of Multivariate 

Statistical Process Control (MSPC) techniques in FDI, as they provide better monitoring 

capabilities than univariate SPC by examining process parameters in a cumulative way. 

They warned that the word ‘control’ in MSPC may be misleading as the major thrust of 

the technology is for fault detection and isolation. Two MSPC techniques, namely 

Principal Component Analysis (PCA) and Partial Least Squares (PLS), were used in their 

research for fault detection in continuous processes. They found PLS suitable whenever 

plant variables could be partitioned into cause and effect variables. They favoured the 

joint analysis o f cause and effect stating that its benefits had been observed practically. 

PLS was therefore used to predict the process outputs from input values. The prediction 

errors were then analyzed using PCA, which reduced computational effort by converting 

large number o f process variables into a smaller number of principal components without 

losing significant information. A four-input, four-output plant with three feedback loops 

was used to initially test the techniques. The performance o f these techniques was 

evaluated by introducing faults in the plant. Simulation and industrial data from a reactor 

in a chloro-carbon production plant was later used to evaluate the effectiveness of MSPC 

in FDI. They stated that PLS may provide a better indication o f a changing process 

condition than PCA.

Lennox et al (2001) developed a condition monitoring system for a fed batch 

fermentation system. Linear procedures, such as conventional PCA and PLS, have limited 

effectiveness to non-linear batch fermentation problems. Multiway MSPC was therefore 

used to remove non-linearity in batch data. Fault detection and isolation was performed 

using multiway PCA. Multiway PLS was used for final product composition estimation, 

which was in turn used to classify a batch among various low and high yield batches. A 

warning was issued when the PLS model predicted that the current batch would not 

produce the required results. Lennox et al suggested the use of an Artificial Neural 

Network (ANN) in the future as soft sensors with MSPC techniques to provide a suitable 

controller for this application.
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Isermann and Balle (1997) explored the suitability o f various techniques in FDI for 

various types o f applications. This was undertaken on the basis o f a review o f 165 

publications between 1991 and 1995. According to this review, electrical and mechanical 

processes are more investigated than others; with DC motor as the target of the most 

applications. 70% of applications used observer-based (OB) or parameter-estimation (PE) 

methods; 50% sensor faults were detected by OB methods. OB methods were preferred 

for actuator faults. The detection of process faults was mostly carried out with PE 

methods; nearly 50% of publications used them in such applications. For processes with 

non-linear models, OB methods were most frequently applied, with PE and neural 

network (NN) also playing important roles. For processes with linear or linearized 

models, OB and PE methods were often employed. Isermann and Balle concluded that 

OB and PE methods were the most frequently applied methods for fault detection 

whereas fault isolation was often carried out using classification methods for which the 

use o f NN methods is growing. They also provided the definitions for the commonly used 

terms in FDI in order to enable people to use consistent terminology. Different definitions 

are given for seemingly similar terms such as fault, failure, malfunction, and error.

The use o f neural network provides a relatively simple way to deal with non-linear 

processes. A neural network comprises o f at least one hidden layer which is implemented 

through some non-linear function. The weights o f the links between the layers are 

adjusted on the basis of actual data obtained from the process. The neural network is 

therefore trained without knowing the exact mathematical details o f the process. Tansel et 

al (2000) investigated the use of a backpropagation (BP) type neural network in 

monitoring tool wear in a micro-end-milling operation. They investigated the relationship 

between tool usage and the cutting force by presenting data to a NN in two different 

encodings. One o f the encodings was based on simple force-variation and the second 

encoding was based on a more complicated segmental-average. Experiments were 

performed on aluminum and steel to include the effects o f the material being cut on the 

process. They observed that the optimization o f the NN parameters was extremely 

difficult for micro-milling but extensive training would create a compact and 

representative model. They claimed to get excellent wear estimations using this approach.

Ruiz et al (2004) described the monitoring of a pilot sequencing batch reactor (SBR), 

which is a complex process used in waste water treatment plants. It has highly non-linear
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and time-varying behavior and is subject to significant disturbances. MPCA was used for 

situation assessment to detect abnormal batch behaviors. The information obtained from 

MPCA alone was not found sufficient and automatic fuzzy classification was also used 

for better situation assessment. The procedure used in this study combined numeric and 

symbolic classification algorithms with fuzzy logic and hybrid connectives.

Rengaswami et al (2001), while observing that there are very few papers explicitly 

dealing with the problem of detecting faults in control loops, described a qualitative 

approach for detecting sinusoidal, square and triangular oscillations in a control loop. 

Friction and hysteresis in control valves are the most common reasons for such 

oscillations and detection o f oscillation type leads to cause determination. They proposed 

Qualitative Shape Analysis (QSA) for detecting an oscillation and its type in a control 

signal. Variations in the signal were checked for any o f the pre-defined primitive shapes. 

Three basic primitive shapes were defined as Increasing (In), Decreasing (Dn), and 

Steady (S), and their regular repetition was detected as an oscillation. The primitive 

identification problem for noisy data was solved by using a feed-forward neural network 

recovering shapes from data with up to 20% noise. A time window was defined in which 

the presence o f a primitive was checked. The window width was considered very 

important for correct primitive detection and it was shown to depend on the particular 

application. These primitive shapes, when combined together, provided a signal profile. A 

profile consisted o f the primitive type followed by the number o f consecutive time 

windows for which it was detected. The algorithm pattern-matched the detected 

oscillation to decide its shape. Square oscillations were easy to detect being 

predominantly composed o f primitive S followed by sudden In or Dn primitives. The 

alternate repetitions o f In and Dn primitives showed triangular oscillation. An oscillation 

was considered sinusoidal if  it was detected but not identified as a square or a triangular 

one. The algorithm was checked on simulation results as well as on the actual industrial 

data and provided satisfactory performance for all the test cases. Rengaswami et al 

claimed that their approach worked quite fast and was suitable for real-time applications.

Various quantitative methods have been applied to FDI for exact analysis. Many soft 

techniques were also used providing monitoring solutions in fuzzy situations. Both 

methods have their own advantages and disadvantages. Biswas et al (1997) advocated 

using combined qualitative and quantitative systems for FDI. Their proposed system uses
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qualitative methods at the first stage to reduce the number of variables, or potential fault 

candidates, and then applied quantitative methods on the reduced set. The use of 

qualitative methods was urged as development o f fault models for continuous physical 

systems was considered very difficult because o f the very large range of possible 

behaviors. The process was assumed to be in a steady state in this methodology and 

residuals were calculated from the observed and the nominal plant behaviors. The 

residuals were marked (0), (+), or (-) for normal, above-normal, and below-normal 

behavior respectively. Fault candidates were then generated by employing a heuristic best 

first search technique in the tree structure o f the hypothesis space. Multiple fault 

candidates thus generated were then refined by the quantitative method of transforming 

the analytic model into a set o f linear equations and looking for hypothesis contradictions. 

The candidates with no contradictions were reported as the possible reasons for the fault. 

The algorithm was implemented in C and executed on ground-station-based Unix 

workstations for finding faults in the thermal bus system of the space station Freedom. 

FDI was ground-based because of the limited processing power on-board. Measurement 

data was available to ground station every 30 seconds.

Kerkeni et al (2003) considered the monitoring problem from a software point o f view 

and proposed an agent-oriented framework for complex monitoring systems. Various 

autonomous entities, called agents, were defined in the system that controlled and 

monitored well defined subsets o f the production system at a given abstraction level. 

Multiple agents shared information with each other through intelligent blackboards. A 

blackboard had a shared memory area for its associated agent where required local and 

remote information was stored in a data structure. An intelligent blackboard with updated 

data informed all other blackboards in the system about the update, thus maintaining 

consistency in the system. A central information system containing the global view was 

also updated. The system was defined in a hierarchical way where father and child 

Control/Monitoring Agents (CMAs) communicate with each other through the intelligent 

blackboard. The bottom most CMAs in the hierarchy were interfaced with the physical 

agents. The monitoring results were stored on the blackboards under various contexts 

such as production, processing, physical resources etc. The proposed system was 

developed on a multi-agent Java-based platform and JDBC was used for connection to the 

information system.
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Soderholm and Parida (2004) emphasize the need to interlink the stakeholder 

requirements and the key performance indicators (KPI) in performance measurement. A 

conceptual framework was provided for this purpose with examples in the context o f a 

modem fourth generation combat aircraft. The combat aircraft is taken as the example 

because it is a highly complex and safety critical system with stringent requirements on 

low life cycle costs. The JAS 39 Gripen aircraft, for example, consists of more than 20 

subsystems for flight control, weapons, hydraulics, display, etc. These systems 

communicate with each other and together they build a system with a theoretically 

infinite number o f possibilities. Such complex technical systems often have a rather long 

life time and the requirements on these systems change over time due to the technical 

development and changes in the needs o f the stakeholders. The proposed stakeholder 

based health management system framework established traceability between stakeholder 

requirements and corresponding health measurements which support requirements 

validation, verification, continuous improvement, and modification. Soderholm and 

Parida considered it very important that all stakeholders know the health status precisely 

as incorrectly performed maintenance might result in unwanted effects. They urged that 

an on-board health management system must be connected to the other information 

systems.

Venkatasubramanian et al (2003 A, B, C) provides a very detailed review of monitoring 

methods used in various kind of applications. They stress the importance of FDD citing 

failure examples causing huge human and property losses. Minor accidents in industry 

occurring on day to day basis accumulate to huge annual sums such as $20 billions for the 

American petrochemical industry. Similar losses in the British economy range up to $27 

billions every year. Because o f the complexity o f modem process plants, it is not always 

possible for operators to provide a proper response to every fault condition. About 70% of 

the industrial accidents are caused by human errors in these circumstances. They urge the 

need to develop automated FDD systems to tackle this problem. Ten most desirable 

characteristics for such a system were listed including reliability, robustness, quick 

response, and adaptability. It was noticed that these features are contradictory to each 

other and cannot all be provided at optimal level simultaneously; a good compromise 

between these was however desired. They classified the FDD techniques in three broad 

areas, i.e., quantitative model based techniques, qualitative model based search strategies,
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and non-model based techniques that use only the historical data o f the process. Each part 

of this three part series o f papers concentrate on one o f these methods.

The first part provided a detailed review of work done on quantitative model based 

techniques and described various such techniques. It discussed analytical redundancy, 

residual generation and evaluation, parity relations, Kalman filters, and parameter 

estimation approaches in detail. Directional residuals and structured residuals were stated 

as two enhanced residual generating techniques that have attracted much attention. These 

techniques provide a set o f residuals that collectively behave differently for different 

faults and hence provide an indication o f a particular fault. Various limitations for 

quantitative model-based approaches are also reported such as the need of accurate 

modelling, the problem with non-linear processes, and the detection of faults that have 

not been modelled.

The second part provided a review o f qualitative models and search strategies used in the 

area. Signed digraphs (SDG) were considered very efficient in the graphical 

representation o f qualitative models; where SDG is a graph with signed directed arcs 

from ‘cause’ nodes to ‘effect’ nodes. A cause-effect graph is obtained from SDG 

containing only the nodes showing abnormal behavior, thus indicating the fault reason. 

Several extensions to standard SDG were also reported including FTA, which uses 

different logic nodes rather than the predominant use o f an OR node by SDG. Qualitative 

physics or common sense reasoning is another approach used in qualitative FDD. A 

review was provided covering the work from several researchers using several techniques 

in this area including qualitative simulation (QSIM) and qualitative process theory (QPT). 

A system may be divided into sub-systems to reduce the complexity o f the problem. 

‘Structural’ and ‘functional’ decompositions were regarded as the two most popular 

hierarchical decomposition techniques. The techniques for the search in fault diagnosis 

space were classified as either topographic or symptomatic. Topographic searches 

perform malfunction analysis using a template o f normal operation whereas symptomatic 

searches look for symptoms to direct the search to the fault location.

The third part reviews techniques and implementations concentrated on the use of 

historical process data. Various features are extracted from the data and used for FDD. 

Feature extraction may be done using qualitative techniques, such as expert systems or
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trend modeling methods, or statistical or non-statistical quantitative methods. A neural 

network is an important example o f a non-statistical method whereas PCA, PLS, and 

pattern classifiers are important statistical techniques in this respect. Suitable 

classification and process trend analysis can detect faults earlier and lead to quick control. 

Qualitative trend representation can pave the way for efficient data compression. Zero- 

crossing o f trends was considered to be an important sign o f change in trend. Some 

research was reported trying to combine multivariate statistical methods and model-based 

approaches. An application combining neural network with wavelets was also described. 

K-means clustering was recognized as the most popular clustering algorithm whereas 

back propagation was considered the most popular supervised learning technique in 

neural networks. The relative advantages and disadvantages o f the described techniques 

were provided and are presented here as Table 3.1.

Q uick detection & 

diagnosis
Y 7 7 Y Y Y Y

Isolability Y X X Y Y Y Y

Robustness Y Y Y Y Y Y Y

N ovelty  identifiability 7 Y Y X 7 Y Y

C lassification error X X X X X X X

Adaptability X Y Y X ? X X

Explanation facility X Y Y Y Y X X

M odelling requirement 7 Y Y Y Y Y Y

Storage & computation Y 7 9 Y Y Y Y

M ultiple fault 

identifiability
Y Y Y X X X X

Table 3.1: Comparison of diagnostic techniques (Venkatasubramanian et al C, 2003)

Venkatasubramanian et al observed the scarcity o f literature on industrial applications of 

diagnostics systems and identified the proprietary nature of in-house developments as a 

possible reason. They considered easy deployment and adaptability to future requirements 

as necessary for industrial solutions. The development o f hybrid monitoring systems was 

favored as none o f the techniques sufficiently covers all the requirements on its own. A 

brief review o f hybrid solutions was also provided including the blackboard-based DKit 

architecture which is adopted by Honeywell ASM Consortium for its next generation 

intelligent control systems called AEGIS and MSEP. They also observed that researchers 

generally treat diagnosis and control as separate problems, in spite of their close
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connection, and suggested their integration for real progress in this area. Several 

important challenges were also highlighted for future research such as reasoning without 

assuming accurate models, ability to cope with data explosion, implementational issues 

for large scale industrial applications, etc.

3.4 MONITORING WITH CONTROLLER SIGNALS

This section concentrates upon approaches based upon process controller signals and 

identifies how such signals may be used to distinguish between normal and abnormal 

process conditions. The premise is that, as the controller signals vary to control the 

process under faulty conditions or in response to disturbances, monitoring the actions of 

the controller will indicate the current health o f the process. A review of the use of 

controller signals in process monitoring is given in this section. It also gives a brief 

introduction to the rapidly developing Closed Loop Performance Assessment (CLPA) 

techniques and the integration o f such techniques with traditional FDI.

Harris (1989) considered the issue o f assessing control loop performance benchmarking. 

He suggested that an estimate o f the best possible control can be obtained by fitting a 

univariate time series to process data collected under routine control if the process time 

delay is known. The performance o f any control loop can therefore be assessed on the 

basis o f how close it is to the theoretically best achievable performance. The theoretically 

best performance can be assessed using the minimum variance control (MVC). Such a 

controller is not used practically because o f the extensive control action it exerts on the 

actuators resulting in their excessive wear. However, its calculations are beneficial for the 

sake o f comparison to what performance the actually implemented controller is achieving. 

MVC performance can thus be used as a benchmark and the ratio of actual loop variance 

to the MVC loop variance is usually referred to as the Harris index. The minimum value 

of the Harris index is unity and is the best possible performance from a controller. Any 

performance improvement is not possible by re-tuning the controller in this case and a 

process change is required for an increase in process efficiency. Larger values of Harris 

index shows that improvements can be achieved by re-tuning the controller. The paper 

heralded a new era in loop performance analysis that has subsequently developed in 

various ways.
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Horch (2000) reviews developments and improvements based on this work. He states that 

the concept has been extended to feedforward loops by Desborough and Harris (1992, 

1993). Tyler and Morari (1995,1996) have modified the idea to apply it to unstable and 

non-minimum phase processes and have used statistical likelihood ratio tests. Lynch and 

Dumont (1996) used a Laguerre network to evaluate the performance index. The initial 

idea covered single input single output loops but this has been extended to multivariable 

loops by others such as Harris et al (1996), Huang et al (1997), and Ettaleb (1999). 

Bezergianni & Georgakis (2000) compared the actual control with both minimum 

variance control and open loop control for their performance index. The evaluation of 

such performance indices requires knowledge o f any process dead-time. Horch (2000) 

introduced event-triggered estimation for process dead-time estimation from normal 

operating data.

Desforges et al (2002) advocated interaction between the process controller and the 

condition monitoring system. They emphasized the need for continuing process operation 

under identified fault conditions and suggested a two level hierarchy at sensor and 

process levels. Self validating (SEVA) sensors, providing status signal as well as data, 

were supported at the sensor level monitoring. A SEVA sensor would self-sense a fault 

and decide whether the fault is permanent or not. It continues to provide data, based on an 

estimate from previous data, until a decision is reached about its fault. At sensor fault 

confirmation, process level condition monitoring would start generating estimated data, 

which is likely to be more accurate in the medium term. The process can thus continue 

under an identified sensor fault. Desforges et al reported the development of a toolbox 

with advanced multivariate statistical process monitoring (MSPM) methods tailored to the 

process control environment. The system was claimed to be successful in identifying 

sensor and process faults in a case study on a simulated fluid catalytic cracking unit.

Fu and Dumont (1995) reported an implementation of their algorithm to evaluate a 

control loop performance linking it with the problem cause. They modified a previously 

available program to calculate the loop oscillation index by using oscillation period 

estimation. The algorithm was claimed to be successful in detecting the oscillating loop 

by using minimum achievable output variance and the oscillation index. The 

performances o f two loops with strong interaction were evaluated in a simulation and one 

of the loops was found problematic. It also correctly indicated that the problem was not
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due to poor controller tuning but because o f the poor health o f a controlled valve. In a 

separate application, the algorithm picked a poor performing loop out o f the 22 loops 

monitored in a mill trial. The algorithm was claimed to provide fast on-line evaluation 

and that the detection o f the problem source was possible.

Clarke (1999) highlighted the importance of the generic validation o f information 

provided by the sensors, actuators and the control loops and its reporting to the next 

higher level. He observed that economic pressures are de-skilling the maintenance work 

force and therefore suggested that an automatic information validation process should be 

built into the components. He observed that embedded microcomputers are of use for 

sensor validations and recommended information sharing on generic standards such as 

fieldbus. This would reduce economic limitations on manufacturers and the product can 

be used in several applications by various companies. Sensors would communicate the 

validity index along with the data they sense. He proposed four status levels for a sensor: 

clear; dazzled; blurred; and blind. This validity information can be used to switch the 

modes o f the loop controller, if required. Sensor validation leads to the structure of a 

‘SEVA’ sensor whose synergy can be represented by the intersection o f the circles as 

shown in figure 3.1. The importance o f the actuator validation was also highlighted, being 

the mechanism actually implementing the controller decisions. It was considered 

important to provide validation results to the respective higher level for decisions in a 

broader sense. Clarke observed that some crude form of validation was already being 

built in the sensors but actuator and loop validations were still in their infancy.

/  O n-line \
M etrology /u n c e r ta in ty \ M icroprocessor

SEVA

Internal
D iagnostics

Fault
Com pensation

Fault Detection

Figure 3.1: Validation as a com bination o f  technologies (Clarke, 1999)
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Gustafson and Graebe (1998) concentrated on detection o f the loop performance 

degradation. Particular attention was paid on detecting whether an observed deviation 

from nominal performance was due to a disturbance or due to what they termed ‘a control 

relevant system change’. The system was perturbed by sinusoids o f the frequencies of 

interest with amplitude well above the expected noise level. The prior knowledge of the 

frequencies o f interest was therefore very important and a useful discussion was provided 

on this topic. The stability margins were defined in terms of a computationally convenient 

clover like region for their algorithm rather than the conventional circle. These stability 

margins were monitored rather than parameter drifts or jumps in the algorithm. The 

algorithm was successfully tested on simulation data as well as in real-time on a DC 

motor. The implementation was done on a TMS320C30 digital signal processor (DSP) 

based dSPACE real-time system. The algorithm requires an injection of an exogenous 

signal that perturbs the normal operating conditions and is, therefore, of a limited use 

only.

Hagglund (1999) proposed an index for detecting sluggish control loops. He observed 

that in case o f sluggish loop response, both the control signal and the process output drift 

in the same direction for a very long time. An idle index was therefore suggested to detect 

such situations by studying the correlation between the two signal increments (or 

decrements). The time periods when the correlations between the signal increments were 

positive, t p o s ,  and negative, t n e g ,  were calculated and the idle index, Ii, was computed as Ii 

=  ( t p o s  -  t n e g )  /  ( t p o s  + tneg)- The value for Ii would be close to +1 for sluggish loops and 

close to zero for reasonably well tuned loops. The values close to -1 generally showed 

well tuned loops but were also observed for sluggish loops with oscillation. The presence 

of oscillation in the loop should therefore be detected separately. Another limitation of the 

idle index was observed with loops with overshoots where the index was not reliable.

Hagglund (1995) described possible reasons for oscillations in control loops and 

considered friction in actuator valves as the most common reason. He proposed an 

integrated accumulated error (IA E) index for oscillation detection using the magnitude of 

absolute error for detecting load disturbances. Load disturbance was declared when the 

integrated value o f the absolute error between successive zero crossings was greater than 

threshold value (IA E|jm). This load disturbance detection procedure was then used to 

detect oscillation in the loop. Oscillation detection was announced if the frequency of the
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load disturbance detection became greater than a threshold value, say n|jm disturbances 

detected in tsup supervision time. The method can detect an oscillation irrespective of its 

shape as only the zero-crossing time in taken into account. On oscillation detection, 

further tests may be conducted on process valve to confirm its health.

Considering widespread presence o f oscillations as the most important problem in process 

industry, and high static friction in valves as an important reason for that, Horch (2000) 

reviewed the methods for automatic detection of static friction in the actuators. Figure 3.2 

explains the phenomenon o f oscillation generation as a result o f static friction. The cross­

correlation between controller signal and the process output was used to distinguish 

whether a detected oscillation was caused by the valve friction or not in a non-integrating 

plant. Another method using the second derivative o f the process output provided the 

same information for integrating plants.
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Figure 3.2: Typical behavior o f a control valve with static friction. Top: Measure flow 

(solid) and flow set point (dashed). Bottom: Control signal (Horch, 2000)

Horch (2000) observed that Harris index may provide misleading results for oscillatory 

control loops. He suggested to detect the oscillation first, if possible, or otherwise using 

autoregressive (AR) modeling rather than autoregressive moving average (ARMA) 

modeling. Once the oscillation was detected and removed from the time series, the 

modified method was used to distinguish between oscillations generated within the loop 

or induced from external sources. This knowledge directs the maintenance staff towards 

the root cause o f the problem. Another method for this distinguishing was proposed when 

a simple process model was available. Using the model and an estimate o f the controller, 

the ultimate frequency was calculated and compared to the actual oscillation frequency.
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Thornhill et al (2001) discussed the detection o f a root cause loop for a plant-wide 

oscillation among several control loops in the plant. They investigated the effectiveness 

o f detecting non-linearity in the control loops for finding the root cause loop as the valve 

static friction is a non-linear process. The dynamic behavior o f physical processes gives a 

low-pass filtering affect and therefore reduces non-linearity in loops away from the root 

cause. A loop with maximum non-linearity is therefore the prime candidate for being the 

root cause. Two possible non-linear measures were used and their respective effectiveness 

was compared. The first measure used a distortion factor, D, which was calculated from 

powers in the controller signal and its fundamental component. The second measure, N, 

was the non-linearity statistics calculated from time series trend. Any time series with N > 

1 was classed as non-linear. Larger values o f N showed more non-linearity in the loop. 

Both measures were found useful in a case study on a hot water flow valve in a stirred 

tank pilot plant. However, N was found more responsive than D. Similar results were 

found in an industrial study where N measure showed better performance in the presence 

of noise.

Xia and Howell (2003) defined control loop status monitoring as near-real-time 

declaration of what a loop was actually doing at that time. They qualitatively classified 

control loops in seven categories according to their current statuses. Various statistics 

were defined to identify a PI or PID control loop status out o f the seven categories. These 

statistics were based on the variances in deterministic parts in a measured time series for
thcontroller signal, output signal, and noise. A 30 order d-step ahead AR model with least 

square estimation was used to estimate the deterministic components from the time series. 

Each status was assigned a number to calculate a quantitative index. A loop with poor 

performance would have a higher index than a good one and the loop with the highest 

index in a group would be the first candidate for attention. Current status information was 

also used to narrow down the number of possible faults to be investigated. This approach 

was considered suitable for PI and PID loops only and not for proportional or open 

control loops.

Schafer and Cinar (2004) noticed that the availability of a small number o f control 

engineers makes the analysis of raw data virtually unmanageable and urged automatic 

detection o f problems. They favoured the classification among possible root causes to 

reduce the processing required. They proposed a performance measure based on the ratio
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of historical and achieved performance for monitoring. The diagnosis procedure was 

started when a decrease in performance was indicated and the ratio of design and 

achieved performance was suggested for problem diagnosis. They tabulated the possible 

root causes in two main groups which contained further sub-groups for detailed diagnosis. 

A group was first established for the fault and the root cause was searched in that group 

according to the given procedure. A commercially available knowledge based system was 

used to monitor an evaporator in a case study. The software modules were developed in 

Matlab from where C code was generated. This study focused on Model Predictive 

Control (MPC) systems and diagnosis was limited to distinguishing between root cause 

problems associated with the controller and problems that were not caused by the 

controller. The diagnostic sequence assumed that only one source cause could occur at 

one time to reduce complexity.

Mosca and Agnoloni (2003) suggested continuous control loop monitoring so that 

performance degradation is detected as early as possible. A measure is therefore required 

for performance analysis which can indicate a problem without perturbing normal 

operating conditions. They aimed to find such a measure under typical control system 

conditions where set-point changes are infrequent and the process, actuators and sensors 

are noisy. A statistic was proposed and computed as the ratio between the norm of an I/O 

regression vector and the maximum absolute value of a nominal output prediction error. It 

was claimed to detect the divergence trends very quickly enabling the operator to 

promptly switch to a more suitable controller. They warned that as a single scalar-valued 

measure, this test should only be used as an early warning system. Other more elaborate 

tests could be initiated for detailed investigation upon receiving this early warning.

Kendra and Cinar (1997) emphasized the use o f frequency domain techniques for 

controller performance assessment. They stated that time averaged measures provide little 

information about the performance o f the system. A system-identification based method 

was proposed for assessing the performance of multivariable closed loop systems using 

measures that coincide with classical and modem frequency domain design 

specifications. In particular, two parameters ‘Sensitivity’ and ‘Complementary 

sensitivity’ were proposed (in s domain form). These parameters were obtained by 

exciting the reference input with a zero-mean random binary sequence and observing the 

process output and error responses. A closed-loop model was thus obtained. Comparison
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between the model performance and the design specifications then provided the 

performance measure. Matlab system-identification toolbox was used to assess the 

performance.

Thornhill et al (2003, A) reported the detection o f a plant-wide oscillation in an Eastman 

Chemical company plant and the isolation of its root cause. Detection was achieved using 

data-driven analysis o f routine plant data stored in a database. The plant had 15 control 

loops and information was available on the set points, process variables and controller 

outputs. Plant data was sampled every 20 seconds and time trends were available for 

visual inspection, which showed the presence o f an oscillation with a period of nearly 2 

hours. The oscillation affected many process variables and controller outputs and was 

considered a plant-wide oscillation. A non-linearity index was used to detect the root 

cause for this oscillation among all the oscillating loops. A root mean square (rms) value 

of error from non-linear prediction using matching o f nearest neighbors in an m- 

dimensional phase space known as an embedding was used. The embedded matrix, Y, 

contains E columns and has successive rows o f the same data with a time delay. In case of 

oscillation, later rows o f Y will be similar to the earlier rows and are called near 

neighbors. An earlier row can thus provide a prediction for a later row. It was 

recommended that 25 to 35 samples per cycle, S, are taken into account and that data for 

at least 10 cycles are used. Consistent and robust results were claimed using E = S and H 

= E where H-step ahead predictions were used. A value o f 8 was considered as a cautious 

and robust selection for the number o f nearest neighbors. Surrogate data was derived from 

these pre-processed time trends and used for the non-linearity tests. Non-linearity index, 

N, was defined as a three-sigma statistic and non-linearity was inferred when N > 1. The 

loop with the highest non-linearity index was the prime candidate as root cause. Process 

knowledge about inter-effecting loops was also used to confirm the result. Other loops 

with high values on N were also investigated. Combination o f process knowledge and 

non-linearity test indicated that maintenance was required for a particular valve. Further 

testing of the valve confirmed the result and valve was scheduled for maintenance at next 

plant shutdown.

Thornhill et al (2003, B) presented an automated method for oscillation detection in a 

control loop. Regularity o f zero crossing o f a filtered autocovariance function (ACF) of 

time series data was used. The ACF was used in order to avoid noise induced zero
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crossings in the time series. An oscillation was considered regular if  the standard 

deviation of the period was less than one third o f the mean value. Only the oscillations 

with large magnitudes were considered to avoid noise effects. The presence of multiple 

frequency oscillations would disturb the regularity o f zero crossings and affect the 

detection. Thornhill et al used digital filters to separate various frequency bands to avoid 

this disturbance. They observed that frequencies close to the filter boundaries can cause 

false detections and recommended rechecking such results using different filter 

boundaries. Manual selection for filter boundaries was used in developing the technique 

although an iterative automated algorithm was also provided. The technique was initially 

devised using a pilot plant data and was proven for an industrial data set.

Burkett and Thornhill (2002) provided an end-user’s view about industrial multivariable 

control and addressed the question o f its performance assessment. They reviewed the use 

of multivariable control in BP Chemicals with special emphasis on MPC. It was noted 

that MPC is useful in petrochemical, refining, and polymer production industries but its 

benefits could still be improved in many ways. The monitoring and benchmarking of 

these controllers were suggested to improve plant-model mismatches and problem 

diagnosis. It was also stated that diagnostics tools were very limited in SISO systems. 

Commercially available tools for the monitoring o f industrial MPC typically use 

performance measures such as up-time and availability, constraints active, percentage o f 

time against constraints, LP targets, model prediction errors, an overall dynamic 

performance indicator, and checking o f controlled and manipulative variable limits.

Hartley (2002) provided another end user’s view o f process monitoring stating that many 

companies have reported paybacks o f only a few months for strategically placed 

vibration-monitoring systems. He emphasized the early detection of anomalies in the 

plant and proposed adopting complementary approaches for increased plant availability 

and efficiency. He considered that the knowledge of an instrument’s health was equally 

important as the knowledge about its failure and examined industrial data which gave the 

probabilities of component failures. He noticed that rotating equipments was the least 

reliable type o f instrument in industry and that transmitters were the most reliable. It was 

observed that about 20% of any maintenance budget was still spent on the inspection of 

transmitters. He emphasized on using automated process and condition monitoring to 

reduce such work. Hartley favored the use o f smart field devices over centralized
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approaches for this purpose. He stated that smart field devices consisted of sensor and 

electronics modules, and considered how more and more tasks are being accomplished in 

the electronics section. Hartley described the PlantWeb™ architecture as an example of 

such an automated process and condition monitoring system. He described PlantWeb™ 

as a system for enhanced measurement, advanced diagnostics and control in the field. It 

was built on the network o f intelligent field devices, scalable control and systems 

platform, and used integrated modular software. Hartley defined asset management as 

maintaining product equipment properly so as to deliver maximum performance and 

service life at minimal cost. He reported the use of Asset Management Solutions (AMS) 

software, which is based on HART and fieldbus. AMS was claimed to be the leading PC- 

based software for providing on-line diagnostics for equipment and process monitoring. It 

was claimed that smart field devices reduce process variability and result in better asset 

management.

3.5 DISTRIBUTED SYSTEMS FOR MONITORING

The quest for effective monitoring systems is resulting in new and unique solutions. A 

major development in the field is to make different processing elements collaborate with 

each other to solve a problem. Modem computers have efficient communication facilities 

and networking speeds now allow data transport in real time, although some volume 

limitations still apply. These distributed systems provide several benefits and researchers 

have explored their use in monitoring applications. This section provides various 

solutions to the problems related specifically to the distributed monitoring systems.

Ehrlich et al (1997) described a generic model for distributed data acquisition 

architecture. They stated that distributed architectures become attractive as soon as the 

instrumentation domain size and the number o f measurement points increase. They 

provided a comparison o f the system cost based on centralized and distributed systems 

and considered the cost o f system controller (or centralized DAS), measurement point(s), 

and wiring as important factors. It was observed that wiring length can be greatly reduced 

in a distributed architecture. The generic model described a smart sensor, system 

controller, and communication network as three major system components. Ehlrich et al 

defined a smart sensor as a microsystem located in the vicinity (around 10 cm) of a
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transducer or a group of transducers dedicated to conditioning, sampling, calculation, and 

communication. Figure 3.3 depicts a smart sensor as proposed in this model. The system 

controller provides management tasks in the network including data storage and user 

interface. A Data Dependence Graph (DDG) produced a data flow under the event-based 

control o f smart sensors where both local and external event were used. The model 

performance was checked by simulating its components on a single computer.

Coverage'
area

t

Conditioning 
and sampling

\

Processing
Unit

Communication
interface

   Acquisition
points

Figure 3.3: Smart sensor (modification from Ehrlich, 1997)

Nieva and Weggmann (2002) provided a conceptual model o f a generic data acquisition 

system. “The conceptual model is a formal definition of a system, from the object 

perspective, that shows the relevant concepts and relationships that make up the system. 

Using a conceptual model of a system makes it easier to understand the system, because 

the model only focuses on the main aspects o f the system by hiding low-level details”. 

The model was presented in unified modelling language (UML) and contained various 

packages. The ‘device items’ package represented a real world device and a ‘device 

models’ package characterized a set o f device items. Monitoring criteria were defined for 

device models and device items and included in the generic model as separate packages. 

Operational-level and knowledge-level concepts were distinguished in the model using 

different UML representations for them. Further UML diagrams were used to elaborate 

model concepts such as observations and monitoring reports, mapping policy, time 

condition, etc. A unique global identifier was associated with each device model and 

device item. Nieva and Weggmann stated that a generic DAS model must provide a plug
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and play facility and they included an auto-configuration scheme in their model. The 

generic DAS model can be used to implement a real DAS and an example was provided 

where a DAS for railway equipment was developed. The provided conceptual model 

specified only the static concepts of a system and further work was ongoing for the 

dynamic behaviour o f a generic DAS using role-based use-case modelling.

Jennings et al (2001, A), within IPMM research group, considered the problem of getting 

required processing power to analyze data obtained from the acquisition system. They 

proposed to use the computers available on the local area network (LAN) for processing 

while they were idle. A PC in screen saver mode was considered idle. This distributed 

data processing system comprised o f task manager and task processor modules. The task 

processor module was installed on the PCs as screen saver. It was launched by the 

operating system when there was no user activity observed for a certain time. The module 

then connected to SQL server via an ODBC driver and obtained the first job from a task 

list. The processing tasks were divided into small jobs so that the computer would 

become available to a normal user on any keyboard or mouse activity. The jobs were 

designed to finish between 7 to 20 seconds, but this time could be reduced. This 

performance was measured using Windows NT on Pentium 2, 450 MHz, 64 MB memory 

computers and better computers would reduce the processing times significantly. 

Increases o f 37% in CPU usage and 36% in memory usage were observed in the study. A 

significant increase in server CPU load was observed with increased number of 

workstations on LAN.

Kandasamy et al (2005) stated that embedded systems are being increasingly used in 

safety critical mechanical and hydraulic systems and multiple processors are available in 

such distributed systems. Steer-by-wire is an example o f such systems where a traditional 

steering system is replaced by a microprocessor-controlled networked system without any 

mechanical backup. Such advanced vehicle control applications are typically realized as 

real-time distributed systems where sensors, actuators, and processors interact through a 

common communication bus. It is important to detect faulty actuators quickly before the 

system reaches an unsafe condition. Kandasamy et al addressed distributed failure 

diagnosis under resource and deadline constraints and proposed cost reductions using 

software-based redundancy rather than hardware-based. They developed a software-based 

approach where multiple processors agreed on the fault status o f an actuator using
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multiple and possibly diverse behavioural models. The use o f multiple independent 

detection points provided redundancy and faults were quickly detected even with a faulty 

detection subsystem. This provided the information about the failure o f a monitoring 

subsystem as well, which would be removed from future decision making. Tasks were 

duplicated on various processors to provide this redundancy. Only the very critical failure 

modes were monitored in this study to reduce computational overhead. They did not 

address recovery action once a faulty actuator is shut down considering it a user 

responsibility.

Mittal et al (2003) observed that several algorithms have been proposed for real-time 

multi-hop networks but not much work has been done for real-time multiple access 

networks. They cited several schemes for real-time communication in multiple access 

networks but regarded them as suitable only for soft real-time cases. They considered that 

probabilistic collision resolution protocols were not suitable for hard real-time 

communication. Accordingly, they proposed two guarantee based protocols for real-time 

channel establishment to support periodic and aperiodic messages. It was assumed that 

channel access was time-slotted and transmission could start only at the beginning of a 

slot. Both protocols worked in two phases where resources were reserved in the first 

phase and transmission was done in the second phase. The first protocol, called the 

earliest deadline first (EDF), calculated the deadline for any given message and scheduled 

messages according to the earliest deadline, pre-empting any other scheduled messages if 

required. The second protocol, called the BUS protocol, was a modification of a 

backplane bus scheduling algorithm, used by several hardware modules communicating 

through a backplane bus under centralized control. No centralised control was required in 

the modified BUS protocol. The performance of the two protocols was compared. It was 

observed that the EDF protocol offers higher schedulability than the BUS protocol as it 

accommodates a higher number o f periodic messages. The BUS protocol provided faster 

response to aperiodic messages.

Suzudo et al (2003) recognized the problem of software module integration. The need for 

software portability adds to the complexity of the task. Different modules in an 

application may be written in different languages and run on different hardware platforms 

with different operating systems. TCP/IP is an important communication protocol for 

distributed systems but several languages do not provide any built-in support for it.
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Variations in development tools usually make it very difficult to put all the enabling 

components together in one working application without modifications. Suzudo et al 

proposed the use of standard input/output (keyboard/monitor) to alleviate this problem. 

Each module would read from a keyboard and write to a monitor only. Their idea 

stemmed from the way a user controls all the tasks on the desktop PC. A super-humanly 

fast operator was required to synchronize all the modules in a monitoring system. An 

operating system like tool, Expect, was used to do it automatically, which was available 

as free software. Expect functions can be called from C/C++ and Tel languages. Tel is a 

portable interpreter language suitable for relatively small programs. Tel and Expect were 

used to develop a neural network based anomaly detection system. The neural network 

program, written in Fortran, was already available as high reliability software but did not 

provide a TCP/IP Application Programmer Interface (API). Each module was therefore 

designed using the above concept and figure 3.4 shows the resultant.
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Figure 3.4: Modular system configuration with standard I/O (Suzudo et al, 2003).

Mounce et al (2003) considered data fusion from sensors measuring flow and pressure in 

a treated water distribution system. About 20% to 30% of transported water was reported 

lost through pipe leakages in UK during 1990s. Flow sensors were therefore mounted on 

the pipes recording the water flow every 15 minutes. The data from the sensors was used 

to audit in-flow and out-flow of water for leakage detection. The sensors’ data was 

manually collected from the field and was thus available after several days in most cases. 

A supervisory control and data acquisition (SCADA) system was considered in this study 

to reduce the delay. Use of an artificial neural network (ANN) was proposed to detect the 

leakage. A number of ANNs, arranged in parallel and hierarchical fashion, were required
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in complex water distribution systems. The ANNs were trained using time series data 

collected from the sensors for several weeks or months. Pressure sensors were also used 

in the system and data from 14 pressure loggers were combined in test trials. Pipe bursts 

were simulated by opening outlet valves and system performance was evaluated. The 

resultant three dimensional pressure drop map was reported successful in the accurate 

indication of fault location.

Alheraish (2004) considered a mobile phone as a commonly used device and urged its use 

as a widely available remote user interface. He reported commercial availability of 

Mobile-to-Machine (M2M) engines that interface computers with Global System for 

Mobile Communication (GSM). An M2M engine contains Subscriber Identification 

Module (SIM) and provides mobile services such as Dual Tone Multiple Frequency 

(DTMF), Global Packet Radio Service (GPRS), and Short Message Service (SMS). 

DTMF sends multiple frequency tones for a key pressed and is used in telephone banking 

etc. It takes time in seconds and was therefore not considered suitable for automatic 

machine to machine operations. GPRS is an always-on service providing mobile access to 

the Internet and email etc. Alheraish used SMS messages (more commonly known as text 

messaging) that can send up to 160 alphanumeric characters. A generic design was 

provided for a control system that gets input commands from a remote user through the 

M2M engine. The user sent the desired state of a controlled device through SMS to an 

M2M engine, which converted the message into hexadecimal code. This code was then 

communicated to a local process controller over an RS-232 serial port. Alheraish 

favoured microcontrollers for such implementations but used a PC for his test system. 

Controllers were implemented for an on-off lamp and 3-speed fan as examples of a 

system having many practical applications in industry, business maintenance, customer 

service, and security.

High end distributed monitoring systems use large-scale wide-area computer networks. 

An example of such systems is Distributed Aircraft Maintenance Environment (DAME) 

project (Fletcher et al, 2004). It provides a Grid based environment for aero-engine 

condition monitoring where engine data is captured, stored and used for fault diagnosis 

and prognosis. Engine data is captured during the flight by on-wing monitoring system, 

‘"QUICK”, and stored on-board. The QUICK monitoring system is the result o f the 

collaboration between Rolls-Royce and Oxford University and performs analysis of data
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derived from continuous monitoring of broadband engine vibration for individual 

engines. Known conditions and situations can be determined automatically by QUICK 

and its associated Ground Support System (GSS). A remote expert system analyzes 

current and historic data for less well-known conditions. Data is therefore captured from 

the aircraft’s on-wing system once the aircraft has landed on the airport. Each aircraft 

flight can produce up to 1 Gigabyte of data per engine. Considering the size of fleet, this 

data is in order o f Terabytes per year and is captured in a distributed way at different 

airports. Storage of this data requires vast repositories that may be distributed across 

many geographic and operational boundaries. Processing of this data requires a 

distributed diagnostic infrastructure whose requirements were captured and developed via 

use case analysis in collaboration with the industrial partners. The “DAME” diagnostic 

infrastructure provides a GRID based environment where users in different organisations 

and locations can access this distributed data and work together using a variety of tools 

and processes to determine a diagnosis. The infrastructure includes several specialist 

software packages for diagnosis involving techniques and tools for signal analysis, 

advanced pattern matching, case based reasoning, data visualization, and very fast 

searches on extremely large data sets. It provides a workflow manager for systematic FDI 

progression from simple to complex faults. It also incorporates complex scenarios 

resulting from specialists’ need of additional tests to confirm a diagnosis.

Another large-scale PC based distributed system was reported by Paulonis and Cox 

(2003) providing information about thousands of control loops in various Eastman 

Chemical Company plants worldwide. The system comprises of various blocks such as a 

data interface, computation engine, web server, and User interface. Each block may 

consist of several computers for large systems. Figure 3.5 shows the schematic diagram 

of the complete system.
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Figure 3.5: Controller performance assessment scheme (Paulonis and Cox, 2003).

40



Processing power at each control system was used to collect and push data to an 

assessment system. The computation engine performed various checks including time 

series trends, setpoint crossings, closed loop impulse response, power spectrum, extended 

horizon performance index, oscillation detection, and cross-correlation between error and 

output. The generated results were written in a database in numeric and text formats. 

Interested users browsed via a provided web interface and navigated through the system 

using hyperlinked web pages. In addition, a user could subscribe to a variety of reports 

generated by the system on a daily and monthly basis. These reports were sent to the 

subscribing users via HTML emails. A report was generated for tuning changes daily as a 

change in tuning, being easy and cheap, is usually attempted as a first remedial measure 

for solving a problem. However a change in tuning may not be the best response to an 

event, and the daily report therefore promptly notifies management as it takes place. A 

user can pull up a web page for the problematic loop by clicking on its hyperlink provided 

in the reporting email and check for details. A detailed monthly performance report was 

also generated containing performance indicators for various loops. The worst performing 

loops in the process area were thus identified enabling technical staff to concentrate on 

them. Another monthly report provided loop statuses of similar loops in various plants so 

that a plant manager could compare his/her plant’s performance with others’.

These reports were found beneficial in locating process problems and their extents. For 

example, a loop in a process was found to be in a ‘fair’ state o f performance. It was a 

critical loop expected to perform better and was investigated further. Contents of the 

detailed report suggested a hardware problem. A quick check o f the valve in the loop 

showed adequate supply pressure and reasonable output pressure and the valve “looked 

OK”. However, in an in-depth check, the valve showed hysteresis and poor calibration 

and was scheduled for maintenance in next shutdown. Paulonis and Cox claimed that 

results obtained from the system showed that many of the poor performing loops had 

hardware problems with valves, positioners, and tranducers. This changed the mindset in 

the company and increased emphasis was reported on loop hardware maintenance. They 

claimed 66% reduction in troubleshooting time in the company. Off-class production in 

one process area was reduced by 53% and standard deviation had been reduced by 38%.

Although large monitoring systems have been implemented and reported to be successful, 

there are still monitoring issues requiring further research. For example, Paulonis and Cox
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discarded an available “LoopScout” software package because it worked on Honeywell 

control systems only. This shows the requirement o f a generic monitoring system that can 

work in all situations. Small to medium enterprises (SMEs) do not have specialist 

departments to construct big monitoring systems and require ready-made solutions. They 

can only afford generic systems that are configured to their specific requirements at 

installation time and may be updated from time to time. Specific configuration o f a 

generic system would always be required but the main system components should either 

remain the same or should be modular and easy to change. Another issue with this system 

is the requirement o f expert engineers to decide what maintenance action is required. 

This, once again, is possible only in big companies having their own control engineer 

employed specifically to locate maintenance issues from the generated reports and 

acquired time series trends etc. Low cost generic and modular solutions are thus required 

for SMEs that can provide automatic guidance alarms toward specific maintenance 

actions. Research reported in this thesis considers such requirements and a cost effective 

generic solution is proposed and developed for SMEs.

3.6 COMPACT MONITORING SYSTEMS

A compact system is defined in this thesis as a small sized system that can be placed 

anywhere in the process plant. It is preferable if  the monitoring system can be embedded 

in the main processing system without consuming additional space on the plant floor. 

Embedded modules provide ease of installation and work close to the sensors improving 

the Signal to Noise Ratio (SNR). Researchers have developed embedded modules 

working in collaboration with a PC and an increasing trend in the literature can be seen 

towards total system implementation through embedded modules only without any 

additional computer on the shop floor.

Feng et al (2002) emphasized the use o f PC technology in an embedded environment. 

They stated that PC technologies are commonly understood and are easier to use thus 

reducing development cost and time. The requirements of an embedded system are 

different from a desktop PCs as more real-time operations with greater reliability are 

required. Feng et al reviewed some common operating systems with an eye on real-time 

capabilities and identified some real-time operating systems (RTOS). They tabulated a
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comparison between Windows 95/98, Windows CE, Linux, QNX, and DR-DOS 

operating systems. DOS was observed to be the most popular operating system for 

embedded applications with more than three million copies of DR-DOS sold since 1997. 

RTOS are, however, more expensive than their normal counterparts, except Linux which 

is freely available. The availability of hardware supporting PC technologies in embedded 

systems was also discussed. Various available options, such as PC/104, compactPCI, and 

SBC (single board computer), were detailed. The ease of using high level languages with 

networking protocols available as built-in libraries was found encouraging for quick 

development times. They observed that use o f such tools reduce software development 

cost significantly which was otherwise the most costly part of an embedded system. 

Several processors may be connected to solve a complex problem giving rise to a 

distributed system o f hybrid multiprocessors. Ethernet was favored over serial connection 

for inter-processor communication because o f its higher bandwidth and the wide 

availability o f its protocol implementations. Real-Time Ethernet and Real-Time Publish 

Subscribe were quoted as examples o f newly emerging real-time Ethernet protocols. They 

proposed the implementation of HTTP servers in the embedded systems in addition to the 

work these systems are currently doing and supported the use o f embedded PCs as a 

hardware platform for such embedded systems. The security of these Internet connected 

embedded systems is an important issue and Feng et al recommended the use of proxy 

servers to protect them from unauthorized access. This would also enable the system to 

use private Internet Protocol (IP) addresses instead o f a public IP address for each 

embedded device. They stated that “to control or monitor the embedded system through a 

proxy server that runs an HTTP server and has access to the embedded system behind it, 

both Common Gateway Interface (CGI) and Internet Server Application Programming 

Interface (IS API) interfaces can be used” for Windows based servers. The IS API 

extension was considered more powerful than CGI having much better performance.

De Frutos and Giron-Sierra (2002) reported a distributed system implementation 

comprising of a PC and various distributed nodes on embedded PCs. The idea was to use 

the processing power o f an embedded PC while using the ease of programming an Intel- 

compatible system. Flashlite boards by JKmicrosystems were used to implement the 

distributed nodes. The board was based on V25 NEC microprocessor with 512 Kbytes of 

RAM and 256 Kbytes o f flash memory. It provided six digital inputs, six digital outputs, 

an eight-channel 12-bit Analog to Digital (A/D) converter and two 12-bit Digital to

43



Analog (D/A) converters. The program was written on the PC and then downloaded to the 

node. Object oriented programming was used for the system where a user interface was 

designed using visual tools for PC monitors. The PC was connected to a Bus Control Unit 

through a modem on a RS-232 port. The bus control unit connected the PC with the 

embedded nodes attached to the bus. A baud rate of 1200 was used for the system but 

higher baud rates were possible. Figure 3.6 shows the system connectivity model with an 

embedded node block diagram.
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Figure 3.6: System architecture (De Frutos and Giron-Sierra, 2002).

Dassanayake et al (2001) proposed another layer between the distributed front end nodes 

and the PC making it a three layered system. This gives three levels for FDI namely 

component, machine, and system levels. Physical devices under control and monitoring 

were connected to Fieldbus Nodes (FN). An FN performs FDI at the component level by 

producing alarms when a signal value goes out o f a set tolerance range. The tolerance 

range was provided to an FN by the corresponding upper layer Embedded Processor (EP). 

Several FNs were connected to an EP through a fieldbus.

An EP in the middle layer performed the machine level FDI on all the assets connected 

under it. It checked the consistency of an alarm and consistent alarms were passed on to 

the PC. They proposed to use a PC for Maintenance Information System (MIS) 

performing system level FDI. Several EPs were connected to a PC through the Ethernet. 

The MIS, on receiving an alarm, activated a direct high-speed data acquisition link to the 

faulty asset across the Ethernet and fieldbus routed through the EP. Features were
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extracted from acquired data to identify symptoms. A neural network procedure was used 

to generate a recognized fault code. Figure 3.7 explains the proposed three layered 

architecture.
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Figure 3.7: Proposed architecture for system-wide FDI (Dassanayake et al, 2001).

Fault detection and isolation for an automatic door was implemented on the proposed 

system. A digital signal processor (DSP) was used to control the motor responsible for 

moving the door and a microcontroller was used to provide its interface with fieldbus. 

The FN generated alarm when the motor drew over-current. A decentralized periphery 

fieldbus protocol was used to provide the alarm to EP. The EP calculated the controller 

effort index and the controller performance index by simple summation, subtraction and 

square operations. Upper and lower threshold values were applied to these indices for 

fault detection. Various system parameters were used as health indicating symptoms 

including time constant, damping, and peak response. A symptom vector was created 

from these symptoms and a self-organizing feature map (SOFM) neural network was 

trained accordingly to provide the FDI on MIS layer.
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Installation of a monitoring system requires considerable effort. It included the mounting 

of sensors, their interfacing with the acquisition system, and cabling. Researchers have 

presented various ideas to make such an installation easier. Wemeck and Abrantes (2004) 

proposed the use of live-line techniques for easy installation of power-distribution 

monitoring system. They described a quickly installable monitoring system for the 

temporary measurements o f voltage and current in high-voltage power distribution 

systems. The portable system used live-line techniques and could be installed in the field 

in less than 10 minutes. The transducers provided the signals to an 8-bit microcontroller, 

87C51, over a fiber optic link. The microcontroller calculated the voltage and current for 

three phases as well as the power factor and displayed it instantaneously. It also stored 

mean values every 5 minutes which remained available till the expiry of the system 

battery (typically ten days). Collected data from the installed system was either 

transferred to a notebook in the field or to a PC when the system was brought back to the 

office.

Valdastri et al (2004) explored the use o f radio frequency for wireless data acquisition for 

monitoring systems. They described an implantable telemetry platform system for in vivo 

monitoring o f physiological parameters. A microcontroller, rfPIC 12F675F, interfaced 

with up to three transducers acquired the signals and transmitted them on a radio 

frequency. The signals were checked against threshold values and transmission was 

performed only for out o f tolerance signal values. The telemetry transmission was 

obtained by using a carrier frequency o f 433.92 MHz and an amplitude-shift keying 

(ASK) modulation. The microcontroller remained in low-power mode during normal 

signal values. This preservation o f power and the small overall size (less than 1 cm3) 

made the system suitable for implantation in the human body. A transmission range of 

more than 5m was reported to be achievable from inside the human body. A wireless 

receiver connected the signal to a PC through a RS-232C serial link where it could be 

further processed or displayed. Physiological monitoring could thus be undertaken 

without restricting the patient’s movements. The results were displayed on a graphical 

user interface developed in LabView. The system was implemented with pressure sensors 

and implanted in pigs. Its performance parameters, such as the transmission range and 

battery lifetime, were tested for gastric pressure monitoring of the pigs and met the design 

specifications.
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Connecting all the modules o f a distributed monitoring system using a digital 

communication bus saves clumsy cabling on the factory floor and is a cheaper alternative. 

Multiple modules may try to access this shared medium simultaneously causing conflicts 

and some measures are necessary to ensure the proper functionality under real-time 

constraints. Livani et al (1999) considered the use of CAN bus in dynamic, distributed, 

real-time systems. They considered it suitable for complex real-time applications because 

of its advanced built-in features. Higher level protocols are also available for CAN bus 

and were considered for distributed monitoring systems. They classified the activities on 

the bus as hard real-time, soft real-time, and non-real-time. They observed that fixed 

priority assignments are applied in the most common CAN based communication systems 

which are not very suitable for hard real-time demands. A flexible mechanism is therefore 

required using the CAN bus protocol at the lower layers o f the network. Various methods 

for achieving the intended behaviour were considered and a hybrid scheduling 

mechanism was proposed. This mechanism combined the determinism of a Time Division 

Multiple Access (TDMA) method and the flexibility o f dynamic Least Laxity First (LLF) 

resource scheduling. Each message was assigned a deadline and needed to be delivered 

within that time. The priority of a message was based on this deadline as well as its time 

in the queue. The priority of a message increased with the waiting time in this dynamic 

scheme. This hybrid scheduling mechanism achieved a higher resource utilization by 

reusing the redundant reserved times for non-critical communication. They aimed to 

exploit the inexpensive availability of 8-bit microcontrollers to implement the overall 

system and guaranteed up to 2754 hard real-time messages per second using their 

approach. An 8-bit microcontroller with 20MHz clock was expected to complete the 

required computations in 13 micro seconds with processing overhead limited to 

approximately 4% at 1 Mbps bus speed.

Bolic et al (2001) supported the use of microcontrollers over PC’s for compact systems. 

They argued that although a PC is a good choice in most cases, there are applications 

where its power and resources are not required and smaller size and low cost solutions are 

more important. They proposed the use o f 8-bit microcontrollers in such scenarios. They 

reported a microcontroller based distributed system for measurement and control 

applications consisting of one central node as master and multiple slave nodes. All the 

nodes were connected with an RS-485 serial bus. Slave nodes performed control tasks 

whereas the master node provided bus control and a user interface. Each slave node had
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generalized control software whose parameters were defined by the user at run-time. It 

was stated that the same software suffices for all slave nodes and in all control conditions. 

The user interface consisted of four input keys and an alphanumeric display containing 

two 16-character lines. An options menu was displayed and the user selected various 

options for the settings of a particular slave node. The user chose a parameter value from 

the predefined list and was able to increment or decrement it before the final selection. 

The inter-node communication was based on a reduced OSI model consisting o f physical, 

transport, and application layers. A detailed communication set up was explained where 

each node was assigned an address before connecting it to the system. The central node 

polls for all the 127 possible slave nodes on the system at regular intervals, detecting any 

new node available on the bus. Any new node can thus be connected to the system 

without disturbing other nodes. The user can then program the parameters for this new 

node and it becomes operational. The master node was implemented on AT89C55 and 

slave nodes on AT89C4051 microcontrollers.

Manders et al (2002) reported the implementation of a distributed measurement and 

control (DMC) application using components meeting the IEEE 1451 standard. It is a 

standard for smart transducers interface for sensors and applications that defines further 

components to accomplish various system tasks. IEEE 1451.1 specifies a Network 

Capable Application Processor (NCAP) which is an object-oriented information model 

representing the interface of an abstract transducer to a network. The standard IEEE 

1451.2 defines a Smart Transducer Interface Module (STIM) that provides the plug and 

play capabilities at the transducer level. Manders et al presented an online model-based 

fault detection and isolation system for a multitank fluid system by implementing IEEE 

1451 components. Six transducer nodes, each containing an STIM and an NCAP module, 

were defined in the system and communicated with each other over Ethernet. A STIM 

module was implemented on a microcontroller as suggested by the Microchip application 

note AN214 [Microchip web site, AN214]. An embedded Ethernet controller was used 

for NCAP as it provided the functionality as a built-in feature implemented through 

custom hardware. An off-the-shelf real-time embedded operating system (VxWorks) was 

used with a publish-subscribe mechanism implemented over IP/multicast. The fluid 

system consisted of three interconnected tanks with level, flow, and pressure sensors, 

control valves, and a fluid pump. One transducer node was dedicated to each tank and the 

main node subscribed to the data published by the other transducer nodes. The residuals
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between the observed and the nominal behaviour were mapped into a symbolic form. The 

hypothesis generation algorithm, using temporal causal graphs (TCG), computed a set of 

possible fault candidates. The fault candidates were further refined using qualitative 

methods to reach a decision. The object oriented byte-compiled/interpreted language 

“Python” was used for software development. The experiments were devised in such a 

way that the dynamics o f the model never exceeded first order behaviour. They observed 

that due to the various limitations on the network code and the data publishing rate, the 

effective sampling rate o f the system was limited to one sample per second. Another 

problem affecting fault detection adversely was the system’s inability to time stamp the 

acquired data accurately. This reduced the system’s sensitivity towards faults and the 

experiments were devised with sufficiently large faults in the system to overcome these 

problems.

Lee and Hsiung (2004) considered the importance o f software in embedded systems. 

They stated that embedded software now accounts for as much as 70% of total system 

functionality reducing overall cost and providing flexibility towards up-grading and ease 

of maintenance. Higher dependency on software also means more complicated software 

which may be difficult to synthesize and debug. They proposed the use of graphical 

modelling tools for embedded code generation and verification. They used Complex 

Choice Petri Net (CCPN) in their proposed synthesis and prototyping system because of 

its high expressiveness. Possible events were modelled in the form of Petri net places and 

transitions, providing a straight forward means o f developing error-free codes. A 89C51 

microcontroller based circuit was implemented for testing the generated code with an 

FPGA providing hardware emulation for various applications. The proposed system 

effectiveness was shown through two sample applications, namely, a vehicle parking 

management system and a motor speed control system. They also proposed the use of 

multiple threads in embedded software, rather than the commonly used single thread 

approach, as it preserves user conceivable concurrencies among the tasks. A real-time 

operating system would be required for scheduling multiple concurrent tasks in an 

embedded system.

Frankowiak et al (2005) provided a detailed review of developments in the important 

elements that make up a monitoring system. They considered sensor-based and non­

sensor-based approaches and discussed the use o f intelligence in this context. Various
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monitoring methodologies were explained and evaluated on a cost and performance 

criteria. Effects o f progress in technology were considered in this field and centralised 

and distributed system implementations were reviewed with PC, DSP, and 

microcontroller technologies. The role of the Internet in future monitoring was stated to 

be very important and remote performance monitoring was favoured.

3.7 EXAMPLES OF WEB-ENABLED MONITORING

Internet connectivity is widely available these days and its use is popular with technical as 

well as non-technical people. It provides an easy method of communication resulting in 

remote data access. The data can be processed remotely by powerful computers and the 

results are displayed via an easy to understand graphical user interface. This section looks 

at research related to web-enabled monitoring systems.

Bonastre et al (2001) reported the development of a distributed expert system, which they 

claimed to be the first one in analytical chemistry. The system consisted o f four Control 

Nodes (CN) and a Programming and Supervision Node (PSN) communicating with each 

other on CAN bus. The PSN was implemented on a PC and provided an Internet 

connection to the system. The control nodes performed their relative control functions 

and informed the PSN about the change by updating the global variables. The PSN then 

informed other CNs about the changes. It also decided the frequency of analysis, 

compiled status reports and displayed them on the Internet as secure web pages. The 

system was tested on a wort fermentation process in a laboratory experimental plant. As 

the time gap between analyses in such applications run in hours, the system was claimed 

to give good results in real-time. The described system provides the monitoring results of 

various chemicals in the process and leaves the fault detection and diagnosis to the 

humans. A more useful system would provide some suggestions or guidance towards 

some specific faults or maintenance issues rather than just reporting the status of the 

chemicals.

Yang et al (2003, B) observed that most o f the research work on Internet-based process 

control has resulted in small scale demonstrations mostly developed in Java. They 

concentrated on developing guidelines or systematic design methods for such systems as
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little work has so far been done in this regard. They aimed to develop a methodology for 

the design of Internet-based control systems for process plants. They concentrated on 

adding an additional Internet control layer on top o f the existing layers rather than 

engineering a total replacement. This approach was applied to a water tank system 

teaching rig to evaluate the methodology. The system was implemented using Java 

applets and Labview virtual instruments. They claimed that a server push mechanism was 

used with Internet Explorer to increase communication efficiency and to reduce server 

loading. As a matter o f fact, Internet Explorer does not support server push technology 

[(Musciano and Kennedy, 2000), (Cunningham and Cunningham Inc web site)]. 

Apparently client-pull technology was embedded in the dynamic web pages to refresh the 

web page at regular pre-defined intervals. This may have created the impression of server 

push being used which is actually a different technology.

Bucci and Landi (2003) proposed a distributed architecture for industrial applications 

using three hierarchical communication levels: the fieldbus, the intranet, and the Internet. 

Remote measurement units (RMUs) formed the front end of the system that acquired the 

signal and provided it to a fieldbus server (FS) after necessary processing. Each RMU 

consisted of three modules each responsible for one task, i.e. signal acquisition, 

processing, and the fieldbus interface. The FS acted as master for communication with 

RMUs and obtained data from each o f them sequentially. The RMUs did not 

communicate with each other although they were connected on the same bus. An RMU 

implementation was based around a 32-bit microcontroller from Hitachi with external 

memory. The board had a size of 220 x 110 mm2 and costed about $100. It was attached 

with a 20 x 4 lines display and a 16-key keyboard as local user interface. Several RMUs, 

or WMUs for wireless connection, connected with a fieldbus server constituted a 

measurement site. An FS handled data storage, analysis, display, report generation, and 

data sharing for a measurement site. Several measurement sites were interconnected using 

a LAN where personal computers provided the required processing power and 

management applications. The LAN had a measurement server performing advanced data 

logging, supervisory control and analysis. A Gateway computer was used to connect the 

LAN to the Internet providing the security. The system was designed with an aim to 

support dynamic web pages managed by an Apache server so that remote users could 

access the latest information. The fieldbus interface was based on the RS-485 protocol 

with a data transfer rate up to 38400 bps. The system performance was evaluated, for

51



power quality in an electrical distribution network and for management o f a water 

distribution system, and was found to be well suited for such applications in terms of cost 

and performance.

Eady (2004) discussed the issue of TCP/IP stack implementation on microcontroller 

based systems. The resources in a microcontroller are very limited and the TCP/IP stack 

required for communicating on the Internet puts a heavy burden on these resources. Eady 

described the options for the microcontrollers in this regard and emphasized that a 

simplistic TCP/IP stack might suffice for small systems. The stack should be a modular 

one and only the modules required for a specific application should be included. He 

detailed the use o f CMX-MicroNet, which is a TCP/IP stack designed for use with 

microcontrollers. It supports up to 127 UDP or TCP sockets. Its price for small system 

developers may be an issue, however, as it starts from $5500.

Insam (2004) explored the development o f fast Ethernet access from an 8-bit 

microcontroller stating that “it’s difficult enough to get a 10-Mbps Ethernet controller 

working anywhere near full speed when paired with a small microcontroller”. Getting the 

speed of 100-Mbps is far more difficult. He considered the use of FPGA for this reason 

but dropped the idea after some analysis. He supported the use of microcontroller in 

embedded systems over FPGA as its software development is more result-effective on a 

par-to-par comparative basis. The FPGAs were used in the system though to provide 

faster communication in block data transfers. Insam explained various differences in the 

10 and 100 Mbps Ethernet standards but expressed satisfaction that there were few 

differences between writing the IP code for both systems. An 8951 microcontroller was 

used with the SMSC LAN91C111 Ethernet controller and ACEX EP1K50 family FPGA 

for the development.

Stipanicev and Marasovic (2003) reported the use of an 8-bit microcontroller as a web 

server providing dynamic web pages. They suggested that small systems do not need the 

full power of a desktop PC to display their results to a remote user on the Internet. 

Greenhouse monitoring and control was provided as an example o f such systems. Various 

sensors in the greenhouse provide condition information and necessary control actions 

can be initiated by remote user by selecting suitable options on the displayed web page. 

Switching a “wetting” system on or off is an example for such control actions. A
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DS80C390 microcontroller based embedded computer, TINI, was connected to the 

Internet using Point-to-Point protocol through a modem and hosted dynamic web pages. 

The TINI was connected to various sensors and actuators in the system on a one-wire 

network. The system was tested for up to 30 sensors and was reported to be successful. 

The TINI recorded the information provided by the sensors in its file system and served 

this information to the interested user. The web pages were constructed on the fly to 

provide latest information. The TINI has a multitasking operating system supporting 

multiple threads. It also has a rich library supporting network protocols from Java APIs. 

The program was therefore constructed as multiple servlets running in parallel. Data was 

archived in a local file, but memory restrictions apply to the embedded system. It was 

suggested that stored information should be pushed to some other computer as emails 

using Simple Mail Transfer Protocol (SMTP). System security was provided by enabling 

user ID and password mechanism.

Al-Habaibeh et al (2003) described the development of a diagnostic system for royal mail 

automatic sorting machines designated as Integrated Mail Processors (IMP). IMPs are 

complex electromechanical systems including enormous number of rollers, bearings, 

belts, gears, motors, electronic systems, etc. The Royal mail delivers about 82 million 

items of mail and parcel post every day. Accordingly, IMPs do an enormous amount of 

work and generate a lot o f heat. A microcontroller based monitoring system was 

developed to check the generated heat and any abnormal patterns were detected for FDI. 

Infrared imagers were interfaced with microcontrollers connected to the Internet. PIC 

16F877 microcontrollers were used in this application with the PICDEM.NET module 

from Microchip Ltd used to provide Internet connectivity. UDP/IP protocol was used to 

relay acquired data on Ethernet for processing by remote computers. The use of 

microcontrollers provided a low-cost acquisition system in this application.

Yang and Eagleson (2003) described a temperature control and monitoring application 

through the Internet. A remote user provided a desired value of temperature and a 

microcontroller based embedded system set the temperature in a tube accordingly. 

Heating and cooling were provided by a lamp and a fan respectively. The software was 

designed using unified modeling language (UML) classes and was implemented in C++ 

language. An HTTP server presented a web page to the remote user to input desired 

temperature. The dynamic web page also displayed the current temperature of the tube.
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Server Side Includes (SSI) were used with HTML code to implement these features. A 

SMTP handler was also implemented and the system sent alarm emails for out-of-control 

situations.

A system on the Internet is vulnerable as it is accessible to hackers and intruders. Proper 

security is required against unauthorized users to minimize malicious attacks. Hackers 

may intrude into an Internet control system and change the settings for process controller 

causing undesirable effects. Axelson (2004) discussed network security issues for small 

embedded systems, which do not have enough processing power and memory resources 

to employ full-blown security encryption techniques. He stated that a firewall may be the 

first line of defence and an embedded system may be behind a firewall provided by the 

company LAN. Besides security reasons, this is often the case of network implementation 

in a company. The firewall provides security by hiding the local processors’ IP addresses 

from the Internet and by allowing only the required services. Restricted access, based on 

username and password authentication, was urged by Axelson to provide further security, 

or in case a firewall was not available/suitable for the application. This kind of 

authentication can be implemented using simple HTML code with a HTTP POST request. 

This method does not encrypt the password though and anybody having access to the 

network traffic can see it. Use of some encryption technique was considered a better 

option therefore. Axelson stated that a server can also limit the number of tries from a 

single IP address in order to prevent a determined hacker trying different username and 

password combinations. Axelson stated that encryption used in basic authentication is the 

Base64 Content-Transfer-Encoding method described in RFC 1521. Digest authentication 

was considered more secure but more complex to implement. He also described how 

these techniques work and provided information about the support available for them in C 

and Java compilers for small embedded systems. Another security issue with these 

techniques is that password protection is applied on user identity only and not on the 

requested resource itself. Resource data encryption is required separately, if deemed 

necessary. He proposed the Advanced Encryption Standard (AES) as a suitable 

encryption method for small systems. Another recommended method is to use a firewall 

device with support for a Virtual Private Network (VPN). This method relieves small 

devices firmware from security issues. Another method of attack by some malicious users 

is to enter Server Side Include (SSI) directives in the authentication form fields, making 

the server do unwanted things. Axelson proposed disabling SSI directives in normal
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HTML pages to prevent this kind of attack. The server would allow only secure SHTML 

pages for SSI directives in that case. Axelson observed Secure Socket Layer (SSL), used 

in online banking, as the most common security method. He considered SSL very secure 

but requiring resources beyond most of the small embedded systems. For wireless 

networks, Wi-Fi Protected Access (WPA) was considered more secure than Wired 

Equivalent Privacy (WEP).

3.8 COMMERCIAL SERVICES

This section provides some examples o f commercially available systems providing 

process and condition monitoring as aids to improve process effectiveness. It shows that 

the technology is still not mature enough to be widely deployed as ready-made systems.

Keyif et al (2004) described a commercially available monitoring system to check the 

health of an electrical motor. Motor condition monitor (MCM) was claimed to be a result 

of 20 years o f research and can detect developing faults in plants with motor-based 

machinery. It takes motor supply voltage and current as the only inputs and provides 

output as one o f the five statuses. It can also provide information about the frequency 

contents o f the acquired signals. The results are available on a display panel as well as on 

a serial port which may be interfaced with a computer. It detects signal pattern difference 

between existing and nominal signals where the nominal signal is obtained using a model. 

MCM makes this nominal model during its initial learning phase. It is available as an 

easy-to-install box o f size 90x90x195mm. Keyif et al also provided some examples where 

this patented monitoring technology was successful in picking up developing faults.

Walchem Corporation’s WebAlert is a remote monitoring device that web-enables 

already installed equipment (Walchem corporation web site). It has an embedded web 

server which allows it to function like a website. It can be connected with up to six 

4~20mA and two digital signals providing data logging facilities. The data from these 

signals can be acquired and displayed on the website in real-time. It provides Internet 

connection via Ethernet or modem. To access its web page, a user has to first login at the 

Walchem corporation web site by entering his user ID and password. WebAlert then 

connects to the local Internet Service Provider (ISP) and logs onto the Internet. The user
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then enters another set o f user ID and password to access the data (Walchem corporation 

WebAlert web site). The web site also claims that it is capable o f sending alarms as SMS 

messages to mobile phones but does not explain when and how.

Divan et al (2004) described a web-enabled near-real-time monitoring system for power 

quality and reliability. It collects power events and sends event data via the Internet to 

system database servers using a modem. Powerful computers at the central server take up 

much o f the processing workload. The sensing unit was implemented on a Texas 

Instruments C54x DSP that communicated at 14400 bits/sec and had an HTTP/TCP/IP 

stack. The system was claimed to be designed and tested for scaling to over 50000 such 

sensors. The users are offered a variety o f options to configure their displays according to 

their requirements. Java 2 platform enterprise edition was used and sensing unit software 

can be upgraded through the modem. Sensing units were manufactured on a commercial 

scale and over 1000 production monitors were reportedly deployed in US and Canada. 

The system recorded about 120000 events in the first 2 years o f deployment. Divan et al 

claimed that this ultra-low-cost solution was probably the cheapest commercially 

available option with less than $500 cost (SoftSwitching Technologies web site).

ProHelp® EPM is the real-time production and process monitoring system from Mattec 

Corporation (Mattec corporation web site). It is capable o f monitoring up to 4096 

machines and supporting hundreds of users simultaneously. It covers industries such as 

plastic injection molding, extrusion, blow molding, metal stamping, die casting, printing, 

painting, assembly, etc. It runs on Windows 2000 or higher and uses Microsoft SQL 

server 2000. ProHelp EPM provides email and voice alarms when a machine is either 

down or is out o f specifications (Mattec corporation ProHelp web site). Mattec’s 

ProStat® SPC/SQC, a real-time statistical process control software, is fully integrated in 

ProHelp EPM providing enhanced functionality and ease of use. Another version of 

software, ProHelp Millenium, runs on UnixWare, a PC-based version of Unix.

THE-MAN-A-ger© is another production monitoring system from Mattec. It is 

considered low-cost by the company as the base price is less than $10,000 (Mattec 

corporation THE-MAN-A-ger web site). The user has to provide a PC with Windows 

2000 and SQL server 2000 whose price is not included in the package. THE-MAN-A-ger 

can monitor cycle time, run-time, downtime and scrap levels for up to 64 machines in
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real-time if several ‘data concentrators’ are used. A data concentrator is the machine 

interface unit that can be connected to a maximum of 12 machines.

Aspen Watch™ is a controller information system from Aspen Tech for performance 

monitoring and extracting useful information from large volumes o f data (Aspentech web 

site). The complete data is stored in a database in an uncompressed way. It is therefore 

possible to reconstruct any controller action and events can be fully investigated. The data 

can be monitored remotely through a high speed connection such as ISDN. It also 

provides a graphical user interface to display trends and visualizations. It highlights the 

statistical performance o f the controller over time and compares it with the best possible 

performance. It calculates the performance parameters on-line and generates reports 

which can be retrieved by the user on-demand. The software runs on the Windows NT 

operating system. An additional benefit up to 10% is claimed by using Aspen Watch.

Honeywell’s Loop Scout tool collects configuration, event, and time-series operating data 

from the process plant and suggests maintenance and engineering actions to resolve the 

worst-performing loop (Honeywell process solutions web site). It helps increasing plant 

production rates and reduces the time to identify and address poorly performing control 

loops. The ‘Loop scout overview’ provides aggregate performance benchmarks for unit- 

wide or site-wide evaluation. The ‘loop scout detail’ provides individual loop metrics and 

diagnostics (Honeywell Loop Scout overview web site). Another service, Alarm Scout, 

automatically collects performance data on a system’s alarms and events and stores it 

locally. An operator then performs a login at the alarm scout website and upload the data. 

The service analyzes the data and generates an alarm status report which is sent to key 

stakeholders in emails. The alarm scout service works only on the Honeywell systems 

such as GUS/APP node, PlantScape, and Experion PKS (Honeywell Alarm Scout web 

site).

Matrikon’s ProcessDoc is a control loop performance assessment and monitoring tool that 

claims to provide improved overall operability and stability of process units, increased 

throughput, reduced maintenance costs and improved product quality without additional 

capital investments or IT infrastructure (Matrikon web site). It claims to achieve a 5% 

increase in plant performance through improved control and a 30% reduction in 

maintenance cost through a condition monitoring approach. It provides the continuous
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online monitoring of processes in real-time. It claims to detect performance losses 

automatically and prepares reports accordingly. It also provides tools to diagnose the 

problem causing the performance loss and to fix the problem. Matrikon ProcessDoctor 

web site states the ProcessDoc uses proven technologies and mentions several success 

stories. The quoted examples include a $100,000 increase in annual revenue for a major 

refinery, a 20% increase in run-time for a polymer producing plant, a 28% reduction of 

variance in the grinding area and 34% reduction in variance in flotation area in a large 

copper mining operation, and an annual cost saving of around $400,000 in a large pulp 

and paper mill. The Matrikon clients list includes companies such as BP, Saudi Aramco, 

Bayer Polymers, GE Plastics, Mitsubishi Chemical, Newcrest Mining, NRG Energy, Al- 

pac, etc.

Emerson’s Plant Web is the digital plant architecture that uses predictive intelligence to 

improve plant performance (Emerson Process Management, Plant Web web site). It 

enables the user to detect process and equipment problems even before they occur 

(Emerson Process Management, Results web site). It provides a networked approach 

using the Foundation fieldbus and employing standards at every level. It is engineered to 

efficiently gather and manage information from intelligent field devices. The details of 

the PlantWeb and its associated asset management software can be found in Hartley 

(2002).

3.9 SUMMARY

This review has shown that monitoring systems are still limited, mainly to the data 

acquisition systems that present the acquired system to human experts for decision 

making. The ready-made systems that provide complete monitoring solutions by reliably 

identifying the developing faults in the processes are almost non-existent. There is a huge 

requirement for a generic system that can be widely deployed in various process plants 

and industries. The system should be a low-cost one so that it can be deployed by small to 

medium enterprises (SMEs) as well as big companies. A modular design would be 

required for the generic system so that only the required components be included in the 

installed system. This would reduce the total system cost as well. The ease of upgrading 

the system with changing time is another desired feature in such a system.
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Chapter 4

SIGNAL ACQUISITION & ANALYSIS

The need for a generic, low-cost, and modular monitoring system was confirmed as a 

result o f the review o f existing monitoring systems and research in the previous chapter. 

This chapter presents the basis on which a low-cost compact monitoring system was 

developed. The motivation for selecting a distributed network o f nodes over a centralized 

approach will also be reported. The chapter also details the signal acquisition 

requirements and those o f the subsequent time and frequency domain analyses for such a 

monitoring system.

4.1 MONITORING SYSTEM OVERVIEW

In general, a monitoring system requires current information about the process to enable 

monitoring decisions to be made. This information must be obtained via sensors 

measuring various system variables which have usually been interfaced to the processing 

system through the use o f cables. The cabling system can be an expensive part of a 

centralized processing system and can cause logistical problems in establishing the 

system. The prevalent industrial noise will also need to be addressed. In recent times the 

trend has been to replace the analogue signal wiring ‘mess’ with an organized digital 

communication bus (generally known as a fieldbus). All sensors communicate on the 

same bus with time-shared access. Sensor signals are converted into digital format close 

to the source before noise can significantly affect them. The author has selected 

Controller Area Network (CAN) bus as the digital communication medium between 

various nodes o f the proposed distributed monitoring system partly due to its superior 

performance in noisy environments and also because o f its availability in embedded 

microcontrollers.

In general, some digital electronics are required to convert an analogue sensor signal into 

digital format and then to communicate this information on the fieldbus. There will be 

advantages if the size o f this conversion electronics can be minimized. For the system 

developed in this research, microcontrollers were identified as compact devices, 

sometimes called ‘one-chip’ computers, which integrate facilities and yet provide limited
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processing power. In particular, the author has used low-cost 8-bit microcontrollers in a 

distributed monitoring system, thereby providing an additional benefit o f front-end 

processing capabilities. Figure 4.1 summarizes the hardware architecture of the 

distributed monitoring system design. Thus a signal can be checked for basic 

characteristics at acquisition and an immediate decision on the normality of the signal is 

made possible. For example, a simple threshold check on signal amplitude can often be 

sufficient to distinguish normal and abnormal behavior. Information from several such 

microcontrollers is combined to reach robust conclusions when multiple signal 

information is required. This combined information formed the second processing layer in 

the developed distributed monitoring system. A hierarchy was accordingly evolved for 

processing layers where the front-end (acquisition) nodes (FEN) constitute the first or 

bottom layer. It is expected, from previous experiences in the IPMM group, that up to 

80% faults may be detected at this level. A further 16% faults may be detected at second 

layer o f hierarchy where information from various front-end nodes (FEN) is combined. 

At the third or top layer of hierarchy, specialized computers may be used to determine the 

remaining 4% o f faults. It was decided that the user interface should be dealt with by a 

special node, which conveys user commands to other nodes, thus ensuring system 

synchronization in addition to presenting results to the user. This node was called the 

Synchronizing & User Interface Node (SUIN). Internet and mobile phone connectivity 

was also deemed as needing to be as part o f the user interface in this research.

Figure 4.2 represents the hierarchical philosophy which can be summarized as follows: 

The approach taken in this study was to check the health o f an acquired signal at the first 

hierarchical layer (FEN nodes). A quick normal/abnormal check is made and data is 

discarded for normal signals. Any detected abnormality is communicated to the second 

layer where the health status of all available signals are combined to robustly determine 

the cause of any detected abnormality. Detailed analysis may then be conducted by the 

third layer of the hierarchy (on server-side computers with much greater processing 

power) for cases where second layer processing proves inconclusive. This research 

concentrates on the development of the first and second layers and on consideration for 

data presentation to the third layer for processing when required. The processing required 

at the third layer is thus considered beyond the scope of this research and requires higher 

level software.
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Fundamentally then, sensors and transducers provide the basic information about a 

process and its performance and health and form the lowest level (starting point) of any 

monitoring system. A compilation of transducers and sensing techniques was available 

within the IPMM research group, as provided by Frankowiak (2004), and reproduced in 

this thesis as Appendix A. Also detailed information about temperature, level, and flow 

sensors had been compiled by a previous research group member and can be found in 

Sharif (1999). These sources were usefully considered by the author when designing the 

proposed system.

4.2 PROCESSING ELEMENT SELECTION

Standard Personal Computers (PCs) provide excellent processing capabilities with good 

memory resources. A standard PC is not expensive but when it is combined with signal 

acquisition card(s) and associated real-time software, the resulting costs are much higher 

than the base price. Normally it is not recommended that a standard PC is installed on a 

process plant / factory floor because o f a lack of robustness. Industrialised PCs are 

available for industrial environments but at higher prices. The physical footprint of a PC 

typically consisting o f a Central Processing Unit (CPU), monitor, keyboard and mouse 

may also be an issue. The author therefore considered PCs not to be a good option for 

process monitoring applications and decided to use embedded systems. An embedded 

system can be dedicated to a particular task and does not need the generality of a PC. It 

will have a reduced number o f components, smaller system size, and lower overall cost.

Having decided upon the embedded route, the choice o f embedded PC’s, microprocessor 

based systems and single chip microcontroller systems needed to be considered. A 

guiding principle was the desired need to minimize the number o f components, and thus 

the footprint of any acquisition and front end node at the deployed monitoring function. A 

microprocessor-based embedded system required additional components for memory, 

peripheral devices, and I/O ports. The resulting circuit board is much smaller than a PC 

but it is still cumbersome to place these boards close to the sensor. A microcontroller 

contains all the peripherals, required for a small system, on a single chip and its use 

greatly reduces system size and associated cost. The compactness of size provided the 

opportunity to place the circuit board close to the sensor providing better signal
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acquisition and analysis opportunity. The author therefore employed microcontrollers in 

this research.

Limited Silicon area on a single chip limits the possible features in a microcontroller. The 

amount of memory built into a microcontroller has increased in the last few years but is 

still very much restricted. Built-in peripheral devices, ports, and memory do not leave 

ample Silicon area to implement very powerful processing engines in microcontrollers; 8- 

bit processing engines are generally built in the microcontrollers. These 8-bit 

microcontrollers thus provide small low-cost circuits albeit at a fraction of a normal 

microprocessor’s processing power. These microcontrollers are traditionally used in Input 

/ Output (I/O) applications where a lot o f I/O activity is supported with a little processing. 

The newer generation o f microcontrollers, however, provides relatively higher processing 

capabilities because o f improvements in architecture and clock speeds.

The acquisition of various process signals may give rise to a distributed system of 

microcontrollers communicating with each other and integrating information to form a 

holistic view of the process status. The author reviewed various available MCUs from 

various companies in order to select the most appropriate one for signal acquisition,
T i l

processing, and onward communication o f results. Microchip’s PIC (Peripheral 

Interface Controller) 18F458 MCU was selected because of its built-in ADC, digital I/O 

ports, memory, and various communication interfaces including CAN. In the following 

section 4.3, a general introduction to various PIC families along with a more specific 

insight to the capabilities of the PIC 18F458 microcontroller, is provided.

4.3 PIC MICROCONTROLLERS

Microchip Inc. have developed a large number of commercially available 

microcontrollers and its Peripheral Interface Controller (PIC) series offers a wide range of 

options to the design engineer [Microchip web site]. The PIC MCUs are available with 

permutations o f maximum clock speed, internal memory size, instruction width, 

peripheral devices, interfacing protocols, etc. It is now possible to get an IC that has the 

optimum features for a particular application, yet being general-purpose so as not to
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hinder the design views of the engineer. These features make PIC microcontrollers a very 

popular choice worldwide and Microchip is a leading supplier o f 8-bit devices 

(Embedded Star web site). According to the yearly Gartner Dataquest rankings, 

Microchip was placed 20th in worldwide unit shipments in 1990 and rose steadily to 

number one by 2002. Table 4.1 shows some characteristics of various 8-bit PIC 

microcontroller families.

Fam ily PIClOx PIC12x PIC14x PIC16x PlC 18x
Size (Pins) 6-8 8 28 14-80 18-84
Max Speed (MHz) 4-8 4-20 20 10-40 40-48
Program Memory (Bytes) 384-768 768-3584 7168 768-14336 0-131072
Data Memory (Bytes) 16-24 25-128 192 24-368 256-3968
Number o f  I/O Pins 4 6 20 6-53 16-72
ADC Resolution (Bits) 0-8 0-10 8 0, 8,10,12 10
Number o f  Timers 2 2-4 3 2-4 3-6
Serial I/O None None None USART, I2C, 

SPI, USB
USART, I2C, 
SPI, CAN, USB

Table 4.1: 8-bit PIC microcontroller families’ characteristics [compiled from the

Microchip web site]

4.3.1 PIC 18F458 Microcontroller

The author selected the PIC 18F458 MCU as the front-end node for the distributed 

monitoring system. This selection was based on the fact that PIC 18F458 contained the 

maximum of the features required for the proposed system. It was, at the time of 

selection, the best microcontroller available in the PIC series and provided digital and 

analogue signal acquisition capabilities and appropriate communication facilities. Both 

rising and falling edge detection is possible for individually selectable digital I/O pins and 

certain pins can generate interrupts on a change of voltage signal. The PIC 18F458 

contains a built-in 10-bit successive approximation ADC with a maximum sampling rate 

of 3OK samples per second. Up to 8 input channels can be connected to ADC under 

software control and reference voltages can be selected either internally or externally. 

Four timer modules are available to generate sampling rate, pulse width modulation 

(PWM) signal, time based interrupts etc. Other interrupt modes are also available, 

importantly including ones generated by CAN message reception and ADC conversion 

completion. The PIC 18F458 can work with clock frequencies up to 40 MHz and most of
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its instructions operate consistently at four clocks per instruction cycle, resulting in a 

maximum execution speed o f 10 million instructions per second (MIPS). A built-in 

hardware multiplier performs 8x8 operations in one instruction cycle and enhances the 

mathematical processing capabilities of this 8-bit microcontroller.

PIC 18F458 microcontrollers use Harvard architecture, where memory is divided 

distinctly into ‘Program’ and ‘Data’ memories. Coded programs of up to 16K instructions 

in length can be stored in the 32 KB built-in flash memory in this RISC (Reduced 

Instruction Set Computer) architecture. The program memory can be written to using a 

low voltage InCircuit Serial Program™ (ICSP™) option as well as under the program 

being executed inside the microcontroller. The self programming capability provides the 

possibility o f software upgrading (eventually via the Internet in the developed system) 

and is very useful. The 1536 bytes RAM and 256 bytes EEPROM constitute the built-in 

data memory and are used to store program variables and long term temporary variables, 

such as configuration settings, respectively. In addition, the PIC 18F458 contains a 

number o f special function registers (SFRs) which deal with various peripheral devices 

and interrupts reducing the need for RAM storage space for variables. The RAM is 

divided in various banks and bank switching is required to access a certain bank. This 

limitation is however softened with an ‘Access RAM’ area that is accessible irrespective 

of the current bank selection.

The microcontroller provides several options for serial communication. These include an 

addressable Universal Synchronous Asynchronous Receiver Transmitter (USART) (that 

can be used to implement RS-232 standard for communication with a PC COM port), a 

built-in Master Synchronous Serial Port (MSSP) module (that provides Serial Peripheral
T \> l  T*K/I

Interface (SPI ) and Inter-Integrated Circuit (I C ) protocols) and a built-in Controller 

Area Network (CAN) controller (used in this research for inter-node communications). 

The Microchip schematic block diagram for a PIC 18F458 microcontroller is provided in 

appendix B for reference.

The author used assembly language when developing software programs for the 

microcontroller. Microchip’s MPLAB software was used as an Integrated Development 

Environment (IDE). MPLAB integrates the editor, assembler, linker, simulator, and 

microcontroller programmer facilities. It provided debugging support with breakpoints,
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software watches, memory maps, single-step and animate execution modes. The MPLAB 

In-Circuit Debugger 2 (ICD2) provided emulation support for testing the software on the 

target hardware circuits. A PICDEM 2 PLUS demo board was used with the ICD2 for all 

the initial development and testing of acquisition and analysis routines. This board 

provided digital and analogue input ports, input switches, LEDs, a buzzer, and a 2 line 

LCD display.

4.4 SIGNAL ACQUISITION

As stated, PIC 18F458 microcontrollers were used in this research to acquire process 

signals and as the heart o f a general purpose node interfaceable with several types of 

sensors and transducers. The usage, as an acquisition tool, for discrete and analogue 

signals is explained in the following sections.

4.4.1 One Analogue Signal per MCU

As recounted in the monitoring system overview (section 4.1), the use o f microcontrollers 

results in compact circuit boards for the front-end node (FEN) signal acquisitions. The 

compactness provides the opportunity to locate the circuit board close to the source. 

Indeed, the current generation of 8-bit microcontrollers when implemented with surface 

mount technology is so small that their circuit boards may be placed inside the sensor 

assembly. The author therefore determined that each microcontroller should acquire only 

one analogue signal in the developed FEN node, although it is capable of acquiring 

several signals simultaneously. The sensors used in this research did not contain MCUs in 

them and (non surface mount) FENs were located close to them. The further reduction in 

physical size of an embedded MCU (and the elimination o f the requirement o f converting 

the physical parameter into 4~20mA format, for example) was outside the current remit 

and is discussed in chapter 10.

4.4.2 Digital Signal Acquisition

Digital signals provide information about discrete events in the process such as a switch 

on/off or the start/end of a batch process. This information is generated by transducers 

typically as different voltage or current formats (in different applications) and appropriate 

signal conditioning is required to make them TTL compatible (0 to 5 volts) before their

66



interfacing with the MCU. The change in signal can be detected by polling the input pin 

or by generating an interrupt. The selected MCU handled interrupts on both rising and 

falling edges. A global flag enables the MCU interrupt system and individual interrupts 

can be masked or unmasked as required by the situation. High and low priorities can be 

assigned to various interrupt sources according to their nature and urgency. The PIC 

18F458 supports only one Interrupt Service Routine (ISR) for each priority level and the 

programmer has to check various flags to ascertain the cause of an interrupt. This adds a 

burden for the software developer and makes interrupt responses slower than systems 

with more advanced interrupt handling capabilities.

Often it is necessary to detect the time between two monitored process events. With the 

PIC MCU system, this was achieved by starting a timer at the first event occurrence and 

stopping it on detection o f the second event. A pre-set time was specified (take unit of 0.1 

seconds) and the timer count automatically incremented. The timer count multiplied by 

the pre-set time period gave the total time elapsed between the two events. In alarm 

setting scenarios, the timer count was checked against a time-out value, specified in the 

ISR. If a time-out was detected a conclusion was made that the second event failed to 

occur. The MCU was operated at its maximum clock frequency o f 40MHz and the 

interrupt rate was slowed down via 16 bit timer register initializations. These lead to an 

interrupt every 6.5536 millisecond. The interrupt rate could be further decreased by 

assigning various values for prescalers and postscalers with the available timers, which 

divide the input/output timer frequency by a scalar value.

The acquisition of pulse train type signals was possible simply by accumulating the 

number o f rising or falling edges within a predefined duration. The MCU timer modules 

were used in their counter mode for such acquisition and incremented on every edge 

detection on their respective input pin. Often the accumulated number of edges were 

recorded over a 1 second interval and provided frequency value. Shorter accumulation 

periods were also used as appropriate.

Pulse Width Modulation (PWM) is another commonly used technique in sensors and 

transducers where the pulse rate of the signal remains constant but the duty cycle changes 

between a minimum and maximum according to the sensed information. There is no 

direct PWM input port available in the PIC 18F458. However, the basic time period of
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the signal can be calculated by measuring the time between two successive rising (or 

falling) edges. The pulse width times for 0% and 100% duty cycle signals were also 

measured by detecting times between a rising edge and the following falling edge (or vice 

versa). The timer module was then initialized in such a way that the need for floating 

point division was eliminated, making the system simpler and faster. This method 

provided a quick detection o f the duty cycle with resolution of 1%.

4.4.3 Analogue Signal Acquisition

Most signals in the process industry, typically representing flow, pressure, level, or 

temperature measurements are analogue in nature. These signals have to be converted 

into their digital equivalents before processing by a computer or microcontroller. 

Analogue to Digital Converters (ADC) provide this transformation. Analogue to digital 

conversion may be viewed conceptually as a three-stage process: sampling, quantisation, 

and coding as shown in figure 4.3. Full signal information xa(t) can be regenerated from 

samples x(n) according to Shannon’s theorem if the sampling frequency is at least double 

the highest signal frequency. The difference between the unquantised sample x(n) in 

figure 4.3 and the quantised output xq(n) is called the quantisation error and is 

irreversible. The precision of an ADC therefore depends on the number of quantisation 

levels. Further details can be found in Proakis & Manolakis (1996).

A/D converter

01011x(n) Xq(n
Quantise CoderSampler

Analogue Discrete-time Quantised Digital
signal signal signal signal

Figure 4.3: Basic parts of an ADC (Proakis and Manolakis, 1996)

The PIC 18F458 microcontroller contains a 10-bit 5 volt range ADC, that works on the 

principle o f successive approximations. One quantisation step is therefore equal to
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5000/210 = 4.88 mV. The ADC accepts unipolar inputs within the range of 0 to 5 volts. A 

Sample & Hold (S&H) circuit freezes the input at the sampling instant. The frozen 

sample is then converted to a 10-bit binary number. The maximum throughput of PIC 

18F458 ADC is approximately 30K samples per second. Eight MCU pins can be 

configured as analogue inputs and can be connected to the S&H circuitry under software 

control. Eight analogue signals can therefore be acquired sequentially.

It is important to sample the analogue signal at consistent intervals. A timer interrupt was 

thus used to trigger the analogue to digital conversion. The 10-bit ADC result was 

automatically stored in a combination o f the two 8-bit Special Function Registers (SFR) 

from where the ISR moved it to a data memory buffer. The successive results were stored 

in contiguous memory locations and were available for onward processing.

4.4.4 Eight bit ADC Results

The selected MCU acquires analogue signals with 10-bit resolution but its processing 

engine works on 8-bit numbers. Processing of 10-bit numbers effectively needs 16-bit 

calculations requiring longer code and processing times. An easier approach can be to use 

only the most significant 8-bits data from ADC result. The author tested this approach 

whereby the most significant 8-bits only were used. The remaining two bits were ignored, 

thereby reducing the software overhead. It was observed that the acquired signals were 

less clear with reduced resolution but remained sufficient for the intended rough 

estimation of signal health. It was still possible to differentiate between signals from 

normal and abnormal process states. The findings from previous studies for PIC based 

analogue signal acquisition systems had also indicated the same results (Ahsan 2002, 

Amer 2002).

As the approach taken in this study is to discard normal signal data, a first layer check can 

be implemented based on the limited resolution 8-bit data and an initial decision of 

normal/abnormal status can be made within a front-end node. Information from several 

front-end nodes is combined at the second layer o f hierarchy to ascertain the likely cause 

o f a detected abnormality. For cases where the second hierarchical layer is unable to 

reach a conclusion, the third layer server-side o f hierarchy may be instigated and all
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nodes set to transmit data to the third layer. Each FEN would not be processing the 

acquired data in such cases and would simply forward the acquired signal data.

4.4.5 Data Storage

Data resulting from acquired signals is further processed to find out the fault symptoms 

and features hidden within it. Data acquired from digital sources is easily stored and 

requires only small structures in data RAM. The storage of analogue data, on the other 

hand, requires a larger space. The first choice for data storage in the PIC 18F458 was its 

internal RAM. The microcontroller has 1536 bytes of RAM and the storage space 

available for signal data storage is therefore very limited. One approach is to process the 

data quickly so that it can be disposed off before being over-written by new data. 

Discarding the data quickly without resource to any other storage media was the approach 

taken in this research. Also the decision to store only the 8 most significant bits of any 

ADC signals effectively reduced the data memory requirement by 50%. It was therefore 

possible to store signal data for twice the duration that was possible with 10-bit data. The 

MCU data memory is divided and bank switching is required for direct memory access. 

The author therefore used indirect memory addressing to manage data storage. This 

resulted in efficient data storage coding via the use of the three available 12-bit pointers 

in the MCU with pre- and post- increment, post-decrement, and base plus index options 

for faster execution.

For circumstances where the PIC’s built-in RAM is not sufficient, other types of built-in 

memory can be used. The MCU contains 256 bytes o f eeprom memory, which has the 

primary purpose of storing long time temporary variables such as configuration settings 

but can also be written to under software control. Ahsan (2002) evaluated eeprom as 

storage memory for a PIC 16F877 MCU and found it to be implementable but slower 

than RAM. Ahsan (2002) also deemed it feasible to store data in flash program memory 

as the MCU can write to its own program memory under software control. The program 

memory consists of 16384 words and can provide reasonable data storage in cases where 

ample space is left unused by the program code. Typical cell endurance of 1M cycles for 

eeprom and 100K for flash memory (PIC 18FXX8 Data Sheet, 2001) makes it possible to 

store data in these memories which are actually not designed for data storage. These 

options provide additional storage space inside the microcontroller without using external 

memory. Adding external RAM increases the system size and cost and was therefore

70



avoided in this research, but is possible and its details for PIC based monitoring are 

provided by Amer (2002).

4.5 SIGNAL ANALYSIS

Analysis routines were developed in both time and frequency domains so that the hidden 

fault symptoms in signals can be located. Various time domain methods for monitoring 

applications were evaluated for 8-bit microcontrollers in light of their limited processing 

capabilities. The author developed a new technique for frequency analysis which was 

suitable for 8-bit MCUs because o f its lower mathematical complexity.

4.5.1 Time Domain Analysis

Analogue signals require more processing than digital ones. Time domain analysis for an 

analogue signal can be divided in two types. In the first type, every new sample of the 

signal is analysed as soon as it is acquired. In the second type, several samples are stored 

in a buffer before they are processed together. This kind of processing may be repeated in 

a real-time system on every new sample obtained after the first calculation. This therefore 

becomes a moving window calculation approach.

A sample from an analogue signal can be checked as soon as it is acquired. Its value can 

be matched with some expected value to determine the deviation o f the physical signal. 

Such deviations may be used to indicate a non-nominal status when they are outside 

defined upper and lower threshold values. Threshold crossing on the positive/negative 

side usually indicates different faults and should be used to establish fault isolation. The 

threshold levels o f course need to be ascertained, based on process knowledge and 

history. In the current research, the FEN needs to acquire data and present it to the 

developer for detailed analysis during a system study. Possible or expected faults may be 

introduced in the process and their impact on the signal recorded and analysed so that 

fault resolution can be achieved. The signals for the monitoring system development were 

initially generated from power supplies and later on via an analogue output interface card 

in a computer. Various signals were generated in Matlab and output using a signal 

generation card to test the analysis routines. The author did not regard isolated instances 

of threshold crossing as evidence of abnormality in this research. A single threshold
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crossing can be a response to external noise rather than a persistent fault o f the type being 

identified here. The number o f samples to be included depends on the application 

sensitivity and the selected threshold value, and is therefore application dependant. A 

code variable is used to count the number of samples showing persistent behaviour and is 

compared to a user configurable preset value. Any persistent abnormality is reported to 

the second layer of hierarchy where other evidence of abnormality can also be taken into 

account before raising an alarm.

Thresholds can also be applied on processed data such as mean value or running sum. The 

author developed code to calculate the sum, running sum, mean value, variance, and trend 

detection on a predefined number o f samples for which calculation was attempted. 

Acquired data was temporarily stored in a buffer for such computations and was 

overwritten by new data once the calculation results were found to be within threshold 

limits. A flag was set in cases o f abnormality detection and this status was communicated 

to the second hierarchical layer. The moving average of the acquired data was also 

calculated over a predefined number o f samples.

The PIC 18F458 microcontroller was operated at its maximum speed of 40 MHz. With its 

pipelined architecture, this results in 0.1 psecond time per instruction cycle. The codes 

written for the analysis were checked for timings, based on the instruction cycles they 

needed to execute. The achieved timings for various time domain analysis techniques are 

shown in table 4.2.

4.5.2 Frequency Domain Analysis

Time series data analysis provides a useful insight into the process health status yet 

several aspects cannot be covered with time series analysis alone. There may be certain 

scenarios where a frequency domain analysis o f a signal may be more fruitful than the 

time domain analysis. The presence or absence o f a particular frequency component may 

indicate a fault in the system. The power content o f these frequency components may be 

checked against predefined thresholds to generate fault symptoms. The Fast Fourier 

Transform (FFT) is a widely employed technique for frequency analysis but is generally 

considered too computationally expensive for 8-bit microcontrollers. Microchip provide a 

FFT method for the 8-bit PIC17C42 microcontroller (Palacherla, 1997). Lacoste (1998)
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Feature Input O utput Tim e

Summation N 8-bit samples (N< 255) 16-bit 2+7*N Instruction cycles 
3.7ps for N=5

Running sum 8-bit sample 24-bit 6 Instruction cycles fixed, 0.6ps

Mean value N 8-bit samples (N< 255) 8-bit quotient, 
8-bit remainder

217+7*N  Instruction cycles 
25.2 |is for N=5 (3.7ps for 
sum +21.5ps for division)

Variance N 8-bit samples (N< 255) 
8-bit Mean value

24-bit 10+22*N Instruction cycles 
12ps for N=5

Window sum 8-bit sample 16-bit 10 Instruction cycles, lp s

Trends 8-bit sample Flag 18 Instruction cycles maximum 
1.8|is maximum

Moving
average

16-bit window sum 
Number o f  samples

8-bit 227 Instruction cycles fixed 
22.7ps

Table 4.2: Achieved timings for various time domain analysis techniques

implemented FFT on a PIC 17C756 microcontroller but its resolution was very low 

(64Hz) which had some applicability to audio applications. The windowing required 

before applying FFT is also considered to be a computationally expensive task. 

Microchip’s new 16-bit microcontrollers, called dsPICs, have a software library for 

windowing and FFT routines but are limited to 256-points which may still not provide 

satisfactory results.

Another way to detect the presence of a certain frequency component in a signal is to use 

a narrow bandpass filter with the pass band centred at the target frequency. Bandpass 

filters can be implemented as analogue or digital filters. Microchip provides an 

application note for implementing Finite Impulse Response (FIR) and Infinite Impulse 

Response (IIR) digital filters using its 18x series of PIC microcontrollers (Ramu, 2002). 

On investigation however it was observed that the given implementation is resource 

intensive especially concerning the use o f pointers for indirect memory addressing. All 

three available pointers were used in the implementation and the monitoring system, 

proposed in this research, would require pointers for communication tasks. Another 

limitation for implementing digital filters was their memory requirements, especially for 

FIR filters.
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The author has therefore developed a sweeping filter technique, for frequency analysis 

using a programmable analogue filter (Ahsan et al, 2004). Figure 4.4 shows the block 

diagram of the sweeping filter system. Signal acquisition applications generally have an 

anti-aliasing filter at the input stage which was replaced with a programmable filter in this 

technique. The signal was provided to a precision programmable analogue filter 

controlled by the microcontroller in bandpass filter mode. The microcontroller swept the 

range of frequencies o f interest, band by band, and determined signal strength in each 

band. It acquired the filtered signal for one time-period for maximum frequency in a 

particular band. It determined the maximum and minimum amplitude values in the 

acquired data and thus calculated the peak to peak amplitude difference. This amplitude 

difference was taken as a measure o f signal strength for the frequency component in that 

band. The width of the band thus became the resolution of the frequency analysis. The 

microcontroller then shifted the programmable filter settings to the next band centre- 

frequency and repeated the process. The entire frequency range of interest was swept in 

this way generating a total profile of the signal.

Si gnal Signal
Conditioning

Circuit

Clock

Programmable
Filter

A  i i  A
✓ 7 ,  5

/ /
Mode Gain Control Word

MICROCONTROLLER

PWM PWM
Generator Timer

Sampling
Timer

ADC
Storage
Memory Processing

Digital
Output
Ports

Results 
 ►

Figure 4.4: Block diagram o f sweeping filter system.
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Maxim’s MAX264 precision programmable analogue filter IC was used in this research 

(MAX263-MAX268 Data sheet). It contained two second order filters, configurable as 

low-pass, high-pass, band-pass, or notch filters individually. These could also be 

cascaded to provide 4th order filtering. They were controlled by the same programmable 

gain, mode, and frequency control inputs, as shown in figure 4.5.

CLXn L T Z *  A 
(•OKI NOTCH)*5V

Q LOGIC MODE

Mloe

Figure 4.5: MAX264 filter block diagram [MAX263-MAX268 Data sheet]

The actual cut-off frequency for a bandpass filter is a function of clock rate, frequency 

control word, and the operating mode of the filter. The MCU controlled all these 

parameters and a resolution of 1 Hz bandwidth was achieved for the normal frequency 

range of interest. The PWM module in the microcontroller provided accurate clock rates 

to the filter IC reducing load on the 8-bit processing engine. The actual filter response 

deviates from the ideal one, especially for lower gain and input-clock/cut-off frequency 

ratio, but the deviation being predictable was eliminated.

A range of signals were generated to test the sweeping filter approach. A lOOmV peak to 

peak amplitude sine wave of 20Hz frequency was used as an input signal and figure 4.6 

depicts the sweeping filter output. The calculated difference (maximum - minimum) 

provided the relative strengths (peak to peak) of various frequency components in the 

signal. The filter was configured for 1Hz bandwidth with a quality factor (Q) o f 16. The
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input signal was correctly analysed and a peak at 20Hz frequency can be seen in figure 

4.6. The neighbouring frequency bands showed relatively higher strengths because o f the 

filter band but were lower than the 20Hz principal component. A peak strength value of 

60 was achieved in this test but a higher value may be desired to achieve better decision 

making. That can be achieved by using higher amplitude input signals. Effects of input 

signal amplitude on the acquired peak value can be seen in figure 4.7 where wider peaks 

are visible due to increased strengths in all components. Signal amplitude beyond a 

certain voltage caused filter saturation and peak suppression in the output was observed 

for 500mV input as shown in figure 4.7. The maximum possible number attainable with 

8-bit computations is 255 theoretically but practical constraints reduced the achievable 

upper limit.

Another factor affecting sweeping filter performance was filter quality factor (Q) which is 

the ratio o f centre-frequency to bandwidth and can be programmed from 1 to 64 for a 

MAX264 filter IC in 128-steps (MAX263-MAX268 Data sheet). Figure 4.8 shows the 

effect o f Q on achieved strength value with a 1 OOmV sine wave input. Larger separation 

between principal and neighbouring components can be seen with increasing Q. This 

provided better decision making opportunities by providing larger range for threshold 

placing. Increased Q value caused filter saturation at lower input voltages and actual 

parameter selection had to be a compromise.

Square wave inputs were provided to the sweeping filter in order to observe its harmonics 

detection behaviour. Figure 4.9 shows results for a 10Hz square wave input signal with 

lOOmV amplitude. The microcontroller successfully detected the fundamental frequency 

of the periodic waveform as well as the expected harmonics at 30Hz. The harmonics 

strength was lower than the fundamental component, as expected. This showed the 

sweeping filter’s capability to isolate multiple frequencies present in a signal. Care was 

however required about the minimum separation between frequency components. Band 

overlapping may occur for two close-by components enhancing the total signal strength 

for components between them. Figure 4.10 shows this limitation where input signal 

contained 20 and 24 Hz components at lOOmV amplitude. The microcontroller showed 

high strength values for both components but the in-between components showed false 

strengths.
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Figure 4.6: Detection of lOOmV 20Hz sine wave
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Figure 4.9: Harmonic detection for Q 8, 16, and 64
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The detected strength o f a particular frequency component, when compared with a 

predetermined threshold, determine the presence or absence of that component and can be 

used for monitoring decision making. Such detections are also possible during a sweep as 

each band results are calculated independently. This approach is particularly effective in 

applications where the frequencies of interest are already known. The filter can be set to 

sweep only those particular frequencies, rather than the whole range, to speed up the 

detection process.

4.5.3 C ircuit Design

Interface circuits were designed to test the proposed acquisition and analysis methods. 

The circuit board developed for testing time domain analysis is shown in figure 4.11. The 

circuit contained external memory where accumulated data and processed results were 

stored. A serial link was provided to transmit the memory contents to a PC where 

processed results were verified. The link was also used to present acquired data to the 

developer for threshold determination. The data thus gathered was also used for a 

frequency domain analysis on the computer before the sweeping filter technique was 

developed. A CAN bus interface was also provided on the PCB. In a later generalized 

design, the input signal was connected to a set of jumpers that connected the signal to the
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appropriate MCU pin. A choice was available to connect the signal to a digital input port, 

analogue input channel, timer/counter input, or external interrupt input. Another circuit 

was designed for frequency domain analysis using the sweeping filter technique and 

shown in figure 4.12. It was assumed in both circuits that necessary conditioning had 

already been done and the signal was connected to the microcontroller directly. Suitable 

input switches and output LEDs were also connected to these circuits to control program 

flow and display various tests outputs.

Figure 4.11: Time based analysis circuit

Figure 4.12: Frequency based analysis circuit
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4.6 SUMMARY

The need for a low-cost generic monitoring system was identified via the literature review 

in chapter 3. A distributed and hierarchical monitoring system was proposed in this 

chapter as a generic solution. Cost-effectiveness is attained by using 8-bit 

microcontrollers. One MCU was dedicated to each process signal, thus placing it close to 

the sensor (or ideally inside the sensor assembly). A general overview of such a system 

was provided in this chapter along with signal acquisition and analysis details. The 

limited resources o f the 8-bit MCUs constrained the signal analysis levels and simple 

computations on sampled 8-bit A/D data were used. Small subroutines were seen to be 

effective for time domain analysis but problems were faced in attempting frequency 

domain analysis. A novel sweeping filter technique was therefore developed and good 

results were achieved. It is believed that programmable filter chips have not previously 

been used before for industrial signal frequency analysis in collaboration with 

microcontrollers and this aspect provided innovation in this research.

The feasibility o f a monitoring system based on 8-bit microcontrollers was established in 

this chapter. This provided the base or first layer of hierarchy in the overall monitoring 

system. Several first layer nodes were connected with each other and with a 

synchronising and user interface node to establish the second layer of this hierarchy. The 

details of node connectivity to form a working system are provided in the next chapter.
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Chapter 5
DISTRIBUTED MONITORING SYSTEM

A brief introduction to the concept of a distributed monitoring system with hierarchical 

layers was provided in chapter 4 along with details of the signal acquisition and analysis 

by front-end nodes. Individual results emerge from all first level FENs in the hierarchy of 

the distributed monitoring system. These results are combined at the second 

computational layer o f the hierarchy to form a holistic view of the process at any point in 

time. A communication medium, CAN bus, was provided between the FENs and other 

network devices for information exchange. One node on the CAN bus was used to 

provide the user interface. This node can accept a user command and communicate it to 

the FENs. It provided synchronization o f the system and was called the Synchronization 

& User Interface Node (SUIN). It also presented the monitoring decision results to a user, 

who may be at a remote location. This chapter details how the system was set up for 

individual FENs to communicate with each other and with SUIN. It also introduces the 

integration of results and possible decision making processes.

The SUIN was developed using an 8-bit microcontroller (for similar reasons to those 

explained for FENs in chapter 4). The SUIN forms the second layer in the hardware 

hierarchy as shown in figure 5.1. The computational hierarchy second layer may however 

be between the SUIN and FENs in this development to allow flexibility in the way they 

collaborate to reach a conclusion for a particular application. Implementation details are 

provided in this chapter. The SUIN was developed to communicate with the user(s) over 

the Internet. Multiple application layer protocols, such as Telnet or HTTP, are used for 

this purpose and run on top of the TCP/IP stack. A brief introduction to these protocols is 

provided in section 5.2.3. The developed code can serve multiple remote users 

simultaneously. The author believes that no real-time process monitoring system has 

previously been reported based on a 8-bit microcontrollers’ decision making powers. The 

reported monitoring system is an attempt to find as many as possible faults at the first and 

second layers (implemented solely on 8-bit microcontrollers) although it allows the use of 

a server-side PC or other high power processor at the top third layer which can then be 

dedicated to specialized and high level processing.
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Figure 5.1: The developed monitoring system with hardware layers

5.1 FIELDBUS

Fieldbus is the general name for any shared digital communication medium used to 

connect various instrumentation in the field. There is no general consensus about what a 

fieldbus specifically means but it has to be an all-digital communication network. Various 

protocols for fieldbus are available such as Profibus, DeviceNet, Foundation fieldbus and 

CANOpen. A fieldbus protocol specifies the physical medium for communication and the 

associated messaging in a data link layer. It also specifies some higher level protocols 

required for applications using it. Controller Area Network (CAN) bus is a widely 

deployed communication medium used in noisy environments (automotive, industrial) 

that defines physical and data link layers. Higher layer protocols are added to it to form 

fieldbuses such as CANOpen and DeviceNet. The CAN bus was selected to connect 

network nodes in this research.

5.1.1 Controller Area Network

The Controller Area Network (CAN) bus communicates digital messages over a 

differential pair o f wires. It was initially designed by Bosch for motor cars where
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electronic devices are spread all over the body (Robert Bosch web site). This causes a 

complex wiring loom and CAN is an effective protocol to reduce this clumsiness. 

Another important aspect in cars is the noisy environment where ignition switching, 

generator, spark plugs, etc. produce a lot of noise. The CAN protocol was designed in 

order to work reliably in such severe conditions. The industrial environment is 

traditionally very noisy and CAN’s noise immunity gives additional benefit in this 

environment. CAN has developed into a mature industrial standard over the years and 

was internationally standardized in 1993 as ISO 11898 for serial data communication 

(CAN in Automation: Home, web site). Several standards are available for various CAN 

variants such as Fault Tolerant CAN and Time Triggered CAN.

A reduction in wiring complexity is a major advantage of CAN which works on two-wire 

balanced system with CAN High (CANH) and CAN Low (CANL) wires. A logic 0 bit is 

transmitted on the bus as ‘dominant’ bit where the CAN high (CANH) wire goes to 

+3.5V and the CAN low (CANL) wire goes to +1.5V. A logic 1 bit is transmitted as a 

‘recessive’ bit with both wires at +2.5V level. The ISO standard specifies twisted pair 

wires but other physical media, like radio and optical links, have also been used 

successfully. CAN provides a maximum throughput of 1Mbps at a distance up to 40 

meters (130 ft). Longer cable lengths are possible at reduced data rates, such as 1km at 50 

Kbps (CAN in Automation: CAN Dictionary, web site). Figure 5.2 shows the wiring 

connections between CAN nodes. The bus works in ‘logic AND’ i.e. a dominant bit 

overwrites a recessive bit. Two nodes may try to transmit a recessive and a dominant bit 

at the same time and the discrepancy is used for bus arbitration.

CAN L
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 — ■
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Rx
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Figure 5.2: CAN Bus (Leroy Davis, web site)
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CAN defines message types, arbitration rules for bus access, and methods for fault 

detection and confinement. It is a broadcast type bus and every node transmits on the 

same line. The messages do not contain any explicit address and are said to be content- 

addressed. All nodes o f the bus receive all the messages and pick up the related message 

using local filters. Bus arbitration is based on message identifiers where lower identifiers 

have higher priority on the bus. Each transmitter starts transmitting its message when it 

finds the bus is in idle state. Several transmitters may start transmission at the same time. 

Each node monitors the bus state while transmitting and aborts on finding a discrepancy 

between sent voltage level and the actual voltage level on bus. It then starts receiving the 

incoming message transmitted by some other node. Bus arbitration is thus undertaken 

with a ‘Carrier Sense Multiple Access with Collision Avoidance’ (CSMA/CA) access 

control mechanism.

The original CAN standard contained an 11 -bit identifier as an arbitration field. Later on, 

this field was extended to 29 bits on customer demand. A reserved bit in the control field 

differentiates the two CAN standards. The 11-bit standard is now known as CAN 2.0A 

and the 29-bit standard is called CAN 2.0B or ‘extended CAN’ (Kvaser, web site). Up to 

8 data bytes can be attached with an identifier in a CAN message.

A data message on a CAN bus contains several fields in order to accomplish bus 

arbitration, synchronization, and information transmission. Figure 5.3 shows the 

sequential flow of the bits in an extended CAN data message. The message starts with a 

Start o f Frame (SOF) bit followed by a 11 or 29 bit identifier field. Control bits in the 

message indicate which type of identifier is being used and the Data Length Code (DLC) 

bits specify how many bytes of data are attached within the message. A message may 

contain 0 to 8 data bytes. 15-bit Cyclic Redundancy Code (CRC) is also included in the 

message (for error control) followed by ACK and End o f Frame (EOF) bits. More 

detailed protocol descriptions are available at (PHYTEC, web site). The Intermission 

Frame Space (IFS) gives the number of bit-times required for the bus to be idle before a 

node can start sending its message after a previous message on the bus. The IFS for 

extended CAN is greater than standard CAN for error protection reasons. A standard 

CAN message also has higher priority in bus arbitration than extended one.
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IFS Intermission frame space A lw ays recessive

Figure 5.3: Extended CAN data message bits

In summary, CAN protocols provide excellent error handling. A Cyclic Redundancy 

Check (CRC) is added with each frame and frame formation and acknowledged errors are 

checked. The transmitter checks the bus status during transmission and any discrepancy is 

detected immediately. Bit stuffing is used if  five consecutively transmitted bits have the 

same logic level. The stuffed bit has a level complimentary to the transmitted ones and is 

removed by the receiver. Bit stuffing provides edge synchronization and avoids excessive 

dc components on the bus but prolongs the transmission time. The worst-case 

transmission time o f an 8-byte frame with an 11-bit identifier is 134 bit times, i.e. 134 

microseconds at 1 Mbits/sec baud rate (Leroy Davis, web site). After transmission of an 

erroneous message that has been aborted, the sender automatically re-attempts 

transmission. The CAN protocol also provides a statistically-based mechanism to 

distinguish sporadic errors from permanent errors and local failures at a node. A faulty 

node can switch itself off and does not then negatively affect the whole system (CAN in 

Automation: CAN protocol, 2005).

As stated, the author selected CAN bus for inter-node communication in this research 

because o f its superior performance in noisy environments. A number of aspects were 

considered and the selection reasons are summarised below:
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• Only an unshielded twisted pair of wires is required reducing cabling cost.

• Differential communication provides immunity to noise.

• Multiple error checking systems make it robust.

• Filters available in the CAN protocol discard un-related network traffic and the 

processor is disturbed only when a message of its interest is received.

• Reasonable data rates are possible at reasonable bus lengths.

• CAN is a time tested and widely accepted proven protocol.

• CAN enabled devices are already in successful use in industry.

• No upper limit is imposed on number of possible nodes on the bus.

• CAN controller hardware is available inside 8-bit MCUs reducing circuit size,

cost, and interface load on the processing engine.

A maximum possible data rate o f 1 Mbps is permissible under CAN protocols for bus 

lengths up to 40m. This may be sufficient for many monitoring applications but a 125 

Kbps data rate was selected to allow longer bus lengths and a more generally applicable 

system. The reduction in bus speed was eventually compensated in the developed design 

by reducing the network load by taking first level decisions at acquisition nodes. Other 

measures for reducing network traffic are explained later.

5.1.2 CAN in PIC 18F458

The PIC 18F458 has a built-in CAN controller and only an external transceiver is 

required to connect the MCU with the CAN bus. The built-in CAN controller has three 

transmit and two receive buffers. A message from a higher priority buffer is sent on the 

bus before a lower priority one. It is thus possible to send an urgent message in front of 

queued up messages. Figure 5.4 shows a simplified diagram for CAN protocol 

implementation in the PIC 18F458.

The CAN engine receives all transmitted messages and filters the messages’ identifiers in 

order to select the messages to store in the receive buffers. Two acceptance filters are 

available for receive buffer 0 (RXBO) and four for receive buffer 1 (RXB1). It is possible 

to check only specific bits in the identifier and an acceptance mask is available for each 

receive buffer. A node can therefore filter out the messages o f interest to it from all the 

bus traffic. The processor is thus not disturbed by excessive network traffic. The PIC
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Figure 5.4: CAN protocol implementation in PIC 18F458

18F458 can transmit and receive messages with both standard and extended identifiers 

and can be configured to use only one o f them if required. It can also be configured to 

receive all messages or only valid messages. The MCU has the overflow reception 

capability and a message intended for RXBO can be stored in RXB1 when RXBO is 

already full. A received message is thus protected from overwriting providing enough 

free time for the MCU to shift the first received message to RAM.

5.2 SYNCHRONIZATION AND USER INTERFACE

In the developed monitoring system the Synchronization and User Interface Node (SUIN) 

was central to the distributed system. The SUIN takes a user’s command and 

communicates it to networked acquisition nodes (FENs) ensuring that the whole system 

works in unison. It is also responsible for displaying monitoring results to users in real 

time. The SUIN was designed to provide access to a remote user and/or developer via the 

Internet. Its connection to FENs via the CAN bus was also used to obtain process signal 

information from the FENs. Thus, the SUIN was not directly interfaced with sensors and 

did not require a microcontroller with built-in signal acquisition hardware. The 

microcontroller selected for the SUIN needed to support CAN and have the ability to 

handle a burst of messages without any message being over-written by the next received
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message. This was required because all FENs would communicate with it asynchronously 

and may try to send messages at the same time. This scenario was considered to be highly 

likely in case o f an abrupt fault occurance when several FENs would detect abnormal 

conditions at around the same time.

It was decided that only limited number of output signal interfaces would be required for 

local annunciation and that the primary user interface was a remote one via the Internet. 

The SUIN microcontroller needed to have the capability to interact via the Internet 

through either an Ethernet or telephone modem connection. Another important 

consideration for this node was its memory requirements. While dealing with several 

FENs and remote users simultaneously, the microcontroller would almost certainly 

require a larger memory than typically built into the current generation of 

microcontrollers. The MCU architecture should therefore support external memory 

without significant software overheads. The author selected a Dallas Semiconductor 8-bit 

microcontroller (DS80C390) to provide the SUIN functionality. The details of this 8-bit 

microcontroller and reasons for its selection are provided in the following section 5.2.1.

5.2.1 80C390 Microcontroller as SUIN

Dallas Semiconductor’s 80C390 is an 8-bit microcontroller that provides an extension of 

the very popular Intel 8051 family o f microcontrollers (Dallas Semiconductor, web site). 

It improves on the 8051 MCU’s 12 clocks per instruction cycle to 4 clocks per instruction 

cycle and can work with clock frequencies up to 40 MHz. A single cycle instruction can 

therefore be executed in 0.1 microseconds and the MCU can work at up to 10 MIPS.

The MCU contains two built-in CAN controllers with dedicated memory for multiple 

Message Centres (MC). A CAN controller in the MCU can be configured to work with 

standard or extended CAN. Message Centres (MCs) are used for message transmission 

and reception by each controller. A controller has 15 MCs and 14 of them can be 

configured either for transmission or reception. The fifteenth MC has different hardware 

and is designated as a First-In First-Out (FIFO) buffered receive-only MC to help prevent 

data overruns. 512 bytes of RAM is reserved for these message centres. This memory is 

in addition to the built-in SRAM and scratch pad memory. The author has utilized the 

high number o f MCs to receive any bursts of messages without any message loss. One 

message centre was dedicated to each FEN and simultaneous messages from different
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FENs were received in different MCs. This method ensured that no unread message could 

be over-written by another message. Separate handshaking and timing control for each 

FEN ensured proper message reception. This capability was identified as an essential one 

for SUIN functionality and played an important role in the selection of this 

microcontroller.

The Dallas Semiconductor 80C390 MCU contains 4 KB built-in SRAM and 256 bytes of 

RAM as scratch pad area in addition to the memory dedicated to the CAN message 

centres. The MCU architecture also supports easy interfacing to external memory and a 

22-bit program counter can access up to 8 MB memory (4MB for program and 4MB for 

data). Two 8-bit ports are dedicated to the external memory interface. The memory 

arrangements thus met the identified SUIN requirements.

Other attractive features included a hardware math accelerator providing fast execution of 

32- and 16-bit multiply and divide operations. The accelerator output from the multiply 

and divide operation is automatically added to a 40-bit accumulator providing multiply- 

and-accumulate (MAC) and divide-and-accumulate functions which are useful in DSP 

operations. The math accelerator also provides a normalize function that converts 4-bytes 

unsigned binary integers into floating point format. The MCU also contains dual data 

pointers with increment/decrement features to speed block data memory moves. These 

features were found useful later on when the author developed Java codes for the SUIN. 

Other useful MCU features include four 8-bit I/O ports (other than the two used for 

external memory), two serial ports, three 16-bit timers/counters and support to 16 

interrupt sources including 6 external sources. Appendix B shows the block diagram of 

80C390 microcontroller.

Easy Internet access had been identified as another important requirement for the SUIN. 

Popular methods o f interfacing a processor with the Internet either use an Ethernet 

controller or a telephone modem with dial-up connection. The author was unable to find 

any microcontroller with any of these two options at the time of the SUIN MCU 

selection, although microcontrollers with built-in Ethernet controller circuitry emerged 

soon afterwards. An example of such microcontrollers is 80C400 MCU where Dallas 

Semiconductor replaced one CAN controller of 80C390 MCU with an Ethernet 

controller. The 80C390 MCU however contained ample resources to communicate on the
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Internet. A commercially available embedded system, Tiny InterNet Interface (TINI), that 

included an Ethernet controller interfaced to a 80C390 microcontroller was sourced and 

selected for the SUIN platform in this research.

5.2.2 Tiny InterNet Interface (TINI)

TINI is a platform developed by Dallas Semiconductor that consists of a TINI stick and a 

TINI socket (Eisenreich and Demuth, 2003). The stick contains the 80C390 

microcontroller with an Ethernet controller, memory, and real-time clock interfaced to it. 

It is available as a small PCB in shape o f a 72-pin module (similar to a 72-pin Single 

Inline Memory Module (SIMM)). The TINI socket holds this stick and provides 

connecters so that it can communicate with the outside world. Revision D of the TINI 

stick provided 1MB RAM and 512 KB flash memory and worked with a 36.864 MHz 

clock. A LAN91C96 Ethernet controller was used to interface the MCU with Ethernet. 

This has a 10-Base-T protocol and a maximum connection speed of 10 Mbps. The 

complete TINI hardware set was purchased for £67. Table 5.1 provides a comparison of 

TINI with some other Internet enabled embedded devices (commercially available at the 

time of its selection). It can be seen from the table that although Internet access was not 

rare for embedded devices the provision o f CAN with Internet access was not generally 

available at that time.

The purchased TINI contained a loader program in its flash memory which was used to 

upload other software. Dallas Semiconductor provided a PC program, JavaKit, to 

communicate with the loader through a serial port. A provided file, tini.tbin, contained the 

basic firmware and was uploaded in the stick memory using JavaKit. This firmware 

provided boot-up code to the TINI and included Java Virtual Machine (JVM) and 

Application Program Interface (API). The JVM provided access to core Java packages 

such as java.lang, java.io, and java.net. and APIs were used in application programs 

developed for process monitoring. The firmware supported multi-users access and multi­

tasking was possible with programs having their own threads.

A Unix-like shell, Slush, was installed in the TINI memory. This provided a command 

prompt environment where user could enter commands. A user has to login, with a 

username and password, to access the system resources Telnet, TTY, or FTP servers. It 

was possible to assign permissions and privileges to different users, as with Unix.
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Device Processor
Memory

Flash/RAM

Internet

protocols

Serial

ports

Preferred

language

Network

connection
Price

EtherNut
Atmel 

Atmega 103
128K/32K

TCP/IP

HTTP
RS232 c lObase-T $125

N etl8 6
AMD  

AM I 86-EX
512K/512K

TCP/IP

HTTP
RS232

c
Assem bly

lObase-T $420

OT731
Microchip 

PIC16F877
128K/368B

TCP/IP 

UDP, PPP

RS232

RJ11
Assem bly

2400 baud 

Modem
$299

Picoweb
Atmel

AT90S8515
8K/512K

TCP/IP

HTTP
RS232 Assem bly lObase-T $149

Rabbit

TCP/IP

Rabbit

microprocessor
512K/128K TCP/IP, HTTP SMTP, FTP

RS232

RS485
C lObase-T $199

Siteplayer
Philips

8051
48K/768B

TCP/IP

HTTP
- SiteObjects lObase-T $99

Snijder

EJC
ARM7TDMI 8M B/8M B

TCP/IP, HTTP 

SMTP, FTP TELNET, POP3

RS232 RS485 

I2C 

TTL

Java lObase-T ?

SX Evak Kit
Scenix

SX52BD
32K/?

TCP/IP, HTTP 

SMTP, DHCP
RS232 C lObase-T $199

TINI
Dallas Semiconductor 

80C390
512K/512K

TCP/IP, FTP, TELNET, 

DHCP, HTTP, SMTP

RS232

CAN

I2C

Java 10 base-T $85

Table 5.1: Comparison o f TINI with other Internet enabled embedded devices (compiled from Eisenreich and Demuth, 2003).



Java was the preferred language for TINI code development. Complete Java is not 

supported for the TINI platform and resource intensive features such as serialization and 

reflections are not fully implemented. Numerous useful features were however available 

including multi-threaded programs and network support. The codes in this research work 

were written with Standard Edition o f Java version 2 (J2SE) compiler, using only the 

features implementable on TINI. The resulting Java bytecodes were converted to TINI 

executable code using TINIConverter software. The converted code was uploaded to the 

TINI and was stored in its file system. The file system provided an organized manner of 

storage and supported separate sub-folders for each user.

5.2.3 Brief Introduction to Protocols

Communication, especially on the Internet, uses a large number of protocols to implement 

various facilities with various options. This has resulted in a large number of protocols 

each having its acronym. This section provides a brief introduction to various protocol 

acronyms that were used in this research. CAN has already been explained and is not 

covered in this section. Table 5.2 provides an introduction, including the port numbers 

used by certain servers. A port is a 16-bit number typically associated with a particular 

application layer service (Eisenreich and Demuth, 2003). The table also includes some 

acronyms used in mobile communications used in this research. Further details of Internet 

communication and protocols can be found in books such as Stallings (2004) and 

Tanenbaum & Steen (2002). Global networks use very complex technologies and a 

layered architecture is used for them. Tanenbaum (1996) provides detail o f seven layers 

used in International Standards Organization’s Open System Interconnection (OSI) model 

for networks. The Internet is practically working on a TCP/IP protocol suite which covers 

transport and network layers o f OSI model. Application programs use the reliable 

communication service provided by the TCP/IP suite. A reduced set of the OSI model is 

also available for devices with low memory resources. This model covers the two lower 

layers and an application layer (Frankowiak, 2004). The author connected the SUIN to 

the Ethernet using a TCP/IP suite so that standard application layer programs could be 

used. FEN codes were developed using the reduced OSI model as they only have the 

memory built-in the MCUs. The robust CAN bus covers the two lower layers in the 

implementation and application layer on top of it takes care of the remaining issues.
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ACRONYM DESCRIPTION

Ethernet Ethernet refers to the family o f  LAN products covered by IEEE 802.3 standard and is the 

most popular standard for LAN (Cisco, web site).

FTP File Transfer Protocol manages uploading and downloading o f  files. FTP server listens on 

port 21 for client requests (Bentham, 2000).

GPRS General Packet Radio Service provides always-on access to network and is suitable for non 

real-time Internet usage (Rappaport, 2002).

GSM Global System for Mobile communication is a universal digital cellular system with modem  

network features extended to mobile users (Rappaport, 2002).

HTML Hyper Text Markup Language contains predefined mark up tags that tells web browser how 

to display the web page (W3schools: HTML, web site).

HTTP Hyper Text Transfer Protocol provides a web page in response to a browser request. HTTP 

server listens on port 80 for client requests (Bentham, 2000).

HTTPS Hyper Text Transmission Protocol Secure provides secure web pages with encryption. 

HTTPS server listens on port 443 for client requests (Apple computers, web site).

IP Internet Protocol delivers packets obtained from TCP to intended destination through any 

available path (W3schools: TCP/IP, web site).

SIM Subscriber Identity Module is a memory device that stores user identification number and 

other user-related information for GSM (Rappaport, 2002).

SMS Short Messaging Service sends alphanumeric pages o f  up to 160 characters between users in 

real-time (Rappaport, 2002).

SMTP Simple Mail Transfer Protocol handles emails. SMTP server listens on port 25 for client 

requests (Bentham, 2000)

TCP Transport Control Protocol is used for communication between applications running on 

different computers connected through Internet. It sets up full duplex communication that 

continues until one o f  the applications puts an end to it. It breaks data into packets and hand 

them over to IP for transmission (W3schools: TCP/IP, web site).

TELNET TELephone NETworking provides remote access for program execution. TELNET server 

listens on port 23 for client requests (Bentham, 2000)

TTY TeleTYpewriter provides access for program execution through serial port and was 

developed for text telephone services (NOAA, web site).

XML extensib le Markup Language contains user defined mark up tags and compliments HTML 

(W 3schools: XML, web site).

Table 5.2: Protocols and acronyms

5.2.4 Human Interface

TINI provides three servers for user access to its resources namely Telnet, TTY, and FTP. 

The author added a fourth one as an HTTP server. Telnet is an application layer protocol
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on top o f TCP/IP stack designed to provide a remote user with a command line 

environment. A remote user can access the TINI file system from his/her PC using the 

password protected Telnet server. A program on a PC, usually Telnet.exe, presents a 

logged in user with command line prompt. The user can then start/stop the execution of 

any program on the TINI and can also use Slush commands (if permissions set). Telnet is 

a powerful tool and access to this was restricted to the system developer/manager only. 

The TTY server was shutdown (using a Slush command) since this is designed for serial 

connection to a local PC rather than a remote access.

The FTP server can also be invoked by Internet Explorer software and files can be 

downloaded from the TINI in a more user friendly way. Internet Explorer however does 

not upload files to the TINI. A user cannot start/stop the programs on the TINI using FTP 

but he/she can still replace good code with bad code either maliciously or by mistake. The 

author therefore did not set such permission for ordinary users and reserved it for system 

developer/manager access only. A policy to enable the FTP server only when required 

was implemented.

The author did not consider the provided servers as safe media for presenting monitoring 

results to ordinary users. He therefore developed a HTTP server to host web pages 

showing the latest process status. Any user can access the web pages using a standard 

web browser, such as Internet Explorer or Netscape Navigator. No username or password 

is required to access such web pages and any interested person can see the results. Secure 

web pages that require user login and encryption use HTTPS protocol. The author 

considered this protocol too heavy for an 8-bit microcontroller already loaded with CAN 

communication and decision making. He recommended a small dynamic web page 

containing only the necessary information in coloured text and backgrounds. Use of 

graphics cause more data traffic and was therefore avoided. The SUIN code, developed in 

Java, generated HTML description for dynamic web page on-the-fly according to various 

process variables’ status. Self-updating web pages were developed that refreshed 

themselves regularly ensuring that the user gets the latest information. The refresh rate 

(typically 10 seconds) of the page was included in the generated HTML code. Colours in 

the web page were used to grab user attention and background colours differentiated in 

normal and faulty conditions as well as under-control faults causing performance 

deterioration.



5.2.5 Mobile Phone Interface

A monitoring alarm is supposed to be sent to appropriate personnel for immediate action. 

The SUIN does update the web page code immediately on detection of an alarm 

condition. The user, however, cannot see the updated web page until it is refreshed 

because web browsers, such as Internet Explorer, do not allow any unrequested data to be 

sent to them. They work on ‘puli’ technology and discard ‘push’ items. The web page 

refresh rate should thus be sufficiently fast. A fast refresh rate however puts burden on 

SUIN resources and a compromise is required. The SUIN can push information to 

computers over the Internet but specialized software would then be required on the 

viewers’ PCs. The aim o f this research was to use generally available software with no 

need for proprietary software. A user can thus check the process status from anywhere in 

the world on any computer. Another limitation with web pages is that a user may not be 

close to a computer at the time o f alarm generation. The monitoring system should thus 

have an alternate means to push alarm information to concerned personnel and mobile 

phone technology was selected for that purpose.

Mobile phones can now be considered as widely used devices supporting text, image, and 

voice communication with Internet access on GPRS and WAP. The monitoring system 

was connected to a mobile phone network using a Machine-to-Mobile (M2M) engine 

based on Sony Ericsson GR47 mobile device (that provided voice, SMS, MMS, and 

GPRS facilities with a SIM interface) in the developed system. An 8-bit microcontroller 

was connected to the M2M engine using serial communication and AT (attention) modem 

commands extended by Sony-Ericsson for its mobile phones. Complete functionality of a 

mobile phone can be controlled with the extended commands. The function used in this 

research was to send SMS messages only. A PIC 18F458 MCU was dedicated to deal 

with mobile communication. The PIC MCU contained several predefined text messages 

with destination phone numbers. It received information from the SUIN to send a specific 

message and acted accordingly.

5.3 FAULT DETECTION AND ISOLATION

The monitoring problem was divided into clear and simple logical decisions in order to 

reduce the computational overheads. This required a clear understanding of the process in
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terms of any inter-relations of its signals. To achieve this, “normal” data was gathered 

from a healthy process under optimum conditions, and presented to the developer for 

analysis. Various faults were then intentionally introduced into the process and the 

resulting raw data was again captured. Fault finding procedures were then formulated 

based on this experimental gained process knowledge and were then embedded in the 

network nodes. This approach eliminated the requirement for any mathematical models of 

the process.

All process parameters o f interest were individually acquired by a FEN mounted close to 

the sensor. Each FEN was programmed to apply the most suitable analysis method to its 

acquired signal such that it can then classify subsequent behavior as normal or abnormal. 

The various nodes combine the results from their fault finding procedures and can make 

process-related monitoring decisions at the first levels for the majority of cases. Any data 

determined as “normal” was not presented for off-line processing, unless the system was 

specifically put in data acquisition mode. This eliminated the need for data storage media.

The abnormality checks in each FEN could be applied to raw data, its calculated running 

sum, or its calculated running mean value for example. Thresholds were defined for each 

signal and signals were continuously compared, as appropriate, to either or both the upper 

and lower bounds. Out of bounds results indicated either a fault or a disturbance. 

Disturbances were generally expected to be of short duration and were noted but 

ultimately ignored by the FEN. The longer term abnormalities were reported by the 

detecting FEN to appropriate other FENs through a CAN message. Any FEN receiving 

such a message checked its own status and forwarded the combined information as an 

alarm message to the SUIN. The SUIN used this combined status information to isolate 

the fault cause according to the knowledge rules provided at the time o f installation. The 

SUIN updates the process status in its results file as soon as a change is detected. The 

interested user can check the monitoring results on the Internet at any time. If a specific 

combination of signal conditions occurs, which was not considered during the system 

study the system will not be able to detect the fault cause and such a condition will be 

reported to the user. An engineer can then perform detailed analysis on data obtained by 

putting the monitoring system in data acquisition mode. The resulting newly gathered 

knowledge will then be integrated in the existing code so that the system can 

automatically deal with similar situations in the future.
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5.4 CAN BUS MESSAGES

The monitoring system design consists of a SUIN and a number of FENs communicating 

through CAN bus connections and protocols. Each FEN performs its duty according to 

the signal it acquires. The SUIN is used to start/stop the monitoring process by conveying 

user commands to the FENs. It also generates a holistic view of the process being 

monitored, by gathering information from FENs, and provides it to the user via the 

Internet. The SUIN determines the number of active FENs in the system at boot-up and 

keeps an eye on new arrivals or departures of FENs. It thus provides plug & play 

capabilities to the system enabling it to function in changing situations. All nodes o f this 

distributed system send CAN messages to each other to share information. The devised 

message structure for such communication used the extended CAN protocol with a 29-bit 

identifier. 4 bits were used for source node identification and another 4 for destination 

node identification. Their placement in the identifier is shown by the S and D bits 

respectively in figure 5.5. Further, the structure reserved 8 bits for message types, shown 

as T bits in figure 5.5, to allow up to 256 different message types. The 15 message types 

used in the monitoring system development to date are listed in Table 5.3. The details of 

these message types and their roles are described in the following subsections. In the 29- 

bit identifier eight additional bits indicated message sub-types (shown as M bits in figure 

5.5). The sub-types were used to indicate message number during bulk data transfers. A 

missed number in this field indicated a message loss to the receiving node which would 

then generate a re-send request. The five remaining bits in the identifier were unused and 

thus available for future system enhancements. The unused bits were assigned logic 0 in 

the implementation.

T7 t 6 t 5 t 4 t 3 t 2 T, T0 X X X X X s 3 S2 S, So D3 d 2 D, D0 m 7 M6 m 5 m 5 m 3 m 2 M, M0

28 0

T Message type 
X Don’t care
S Source node identification number 
D Destination node identification number 
M Message Sub-type (message number)

Figure 5.5: CAN message identifier
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M essage Type Code O riginator Receiver Purpose

START Olh SUIN All FENs Start monitoring

ACK 03h FEN SUIN Acknowledge START

ERR 07h FEN SUIN Abnormal signal detected

OK 08h FEN SUIN Normal signal detected

EVENT 09h FEN FEN Event detected

REBOOT 02h FEN SUIN FEN powered-up

WELCOME 04h SUIN FEN N ew  FEN start monitoring

ACQ 06h SUIN All FENs Start data acquisition

DATA OAh FEN SUIN 8 bytes o f  data

NEXT OBh SUIN FEN Send next data

UPDATE 05h SUIN FEN Update software

CODE OCh SUIN FEN 8 bytes o f  code

A C K C O D E ODh FEN SUIN Acknowledge CODE

RESEND OEh FEN SUIN M issing code request

RESENT OFh SUIN FEN M issing code resent

Table 5.3: List o f used messages types

5.4.1 Node Identification

Network nodes work asynchronously on independent clocks and send messages to each 

other for collaboration. Messages from each node compete with each other for bus access 

according to the identifier in the message header. Each node therefore must use unique 

identifiers that do not exactly match with any message generated by any other node on the 

network. The author therefore assigned a unique identification number to each node with 

this being used as the source node identification field in all message identifiers it 

generates. Four bits were reserved for the node identification number. This puts an upper 

limit of 16 nodes on the CAN bus, although the actual implementation allowed only 13 

nodes. The actual implementation limit is due to the availability of only 14 similar 

message centres in the 80C390 MCU. The first MC was used for receiving broadcast 

messages as will be explained in next paragraph. The second MC was used for 

transmitting SUIN messages, and the remaining 12 MCs were dedicated to receiving 

messages from 12 FENs. This made total o f 13 nodes (1 SUIN and 12 FENs).

Each generated message contained the intended 4-bit destination node identification 

number. Any message transmitted on the CAN bus can essentially be received by all
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other nodes. The nodes’ receive filters were however set in such a way that they only 

received messages when the destination node identification number matched either their 

identification number or was zero. Any message sent to destination 0 was accepted by all 

nodes and thus acted as a broadcast message. This scheme reduced the load on receiving 

nodes’ processing engines as they processed only the messages intended for them. Any 

node can seek information from other nodes in this scheme even if the node with 

information was not initially set up to serve the seeking node. Having decided on this 

coding arrangement there would have then only been 3 bits remaining if the standard 11 - 

bit CAN identifier was used. The need to use the extended CAN protocol (with 29-bit 

identifier field) was thus established.

To summarise, the following example confirms the use o f the source and destination 

identifiers. If node 1 sends a message to Node 2, the node identification field would 

contain S3S2SiSo= 0001 and D3D2DiDo= 0010 bit. In general terms, with X depicting 

unknown bits for message type and sub-type and unused bits set as 0, the resulting 

message would contain the identifier described in figure 5.6. Alternatively if node 1 was 

to send a broadcast message then destination bits D3D2DiDo= 0000 would be set. The 

resulting identifier (keeping the above given style) would then be as described in figure 

5.7.

S3 S2 S| Sq D3 D2 D| Do

X X X X X X X X 0 0 0 0 0 0 0 0 1 0 0 1 0 X X X X X X X X

28 0

Figure 5.6: Message from node 1 to node 2

Sj S2 S| So D3 D2 D| Do

X X X X

2 8

Figure 5.7: Broadcast message from node 1
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5.4.2 Message Priority

A message is transmitted on CAN bus with the most significant bit o f the identifier first. 

The bus arbitration is based on the contents o f the identifier with logic 0 having a priority 

over logic 1 bit. The message with least number in message type, T bits in figure 5.5, 

therefore has the highest priority in the developed scheme. This scheme ensures that an 

important message has higher priority than others irrespective o f its originating node. The 

author decided to assign higher priority to source node, S bits, than destination node, D 

bits, as can be seen in figure 5.5. A source node with a lower identification number has 

higher priority in this scheme. Identification number 0 is not assigned to any node 

because it is used for broadcast messages. The next highest priority identification number, 

1, was assigned to the SUIN as it synchronizes the distributed system and should be able 

to interrupt other nodes. The remaining identification numbers were assigned to various 

FENs. Message sub-type has the lowest priority in the identifier and will never practically 

affect bus arbitration. Figure 5.8 provides some example identifiers showing message 

priority resolution. Higher priority identifiers are shown earlier than lower priority ones.

5.4.3 Power-up Sequence

Figure 5.9 shows the CAN message sequence at system power-up. Each FEN waits to 

receive a START message from the SUIN whereas the SUIN waits for a user to login 

using telnet and to issue a command. Automatic execution of the monitoring program at 

power-up is also possible. The SUIN broadcasts the START message on the CAN bus. A 

receiving FEN immediately starts its monitoring task and also sends an ACK message 

back to the SUIN. All ACK messages from FENs compete for bus access and would be 

received by the SUIN one by one in quick succession. The SUIN assigns different 

message centres for receiving messages from different sources and the messages do not 

overwrite each other even if not dealt with quickly. The source identification number bits 

are used to filter and store received messages in the appropriate MC. The SUIN checks 

the number o f received ACK messages and thus determines the number of active FENs in 

the system. It also checks the sources of these messages and hence knows which 

monitoring inputs are available in a holistic scenario.

If the user does not start the monitoring program on the SUIN within a specified time, the 

FENs do not get the START message within their time-out period and assume the system 

to be already functional. They then send a REBOOT message to the SUIN. This provides
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T7 T6 Ts T4 T3 T2 T, To S3 S2 S | Sq D3 D2 D | D0 M7 M6 M 5 M4 M3 M2 Ml M0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

28 0

Message type 1 (START), source node 1 (SUIN), destination node 0 (broadcast), message

sub-type 0

T7 T6 Ts T4 T3 T2 T, To S3 S2 S, So D3 D2 D , Dq M7 M6 M 5 m 4 m 3 M2 M! m 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

28 0

Message type 3 (ACK), source node 2 (FEN), destination node 1 (SUIN), message sub-

type 0

T7 T6 Ts T4 Tj T2 T, To S3 S2 Si Sq D3 D2 D, Dq m 7 m 6 m 5 m 4 m 3 M2 M| m 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

28 0

Message type 3 (ACK), source node 3 (FEN), destination node 1 (SUIN), message sub-

type 0

T7 T6 T5 T4 T3 T2 T, T o S3 S2 S | So D3 D2 D, D q m 7 m 6 m 5 m 4 m 3 M2 M ) m 0

0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1

28 0

Message type 7 (ERR), source node 4 (FEN), destination node 1 (SUIN), message sub-

type 5

T7 T6 T, T4 T3 T2 T, To S3 S2 S, Sq D3 D2 Di Dq M7 M6 M5 M4 M3 M2 M | M0

0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0

28 0

Message type 7 (ERR), source node 7 (FEN), destination node 1 (SUIN), message sub-

type 0

T7 T6 T5 T4 T3 T2 T, To S3 S2 S| So D3 D2 D| Dq M7 Mo M 5 M4 M3 M2 M | Mq

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

28 0

Message type 8 (OK), source node 2 (FEN), destination node 1 (SUIN), message sub-type

0

Figure 5.8: Some example identifiers o f CAN messages
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SUIN FENs

F E N N

FEN 3

FEN 2

Start
monitoringBroadcast

ACKs
Multiple messages

FEN 1

Calculate available FENs 
and update user interface

STA RT

Figure 5.9: CAN message sequence at system power-up

plug & play capability to the system as will be explained in section 5.5. The FENs then 

remain in an infinite loop listening on the CAN bus for a message from the SUIN. Figure 

5.10 shows the messaging when a monitoring program is executed on SUIN after FEN 

time-out period.

SUIN FENs

Multiple messages = = = = = REBOOTS

STA R T Broadcast Start monitoring

Calculate available FENs

.......... L-""

Multiple messages = = = = =and update user interface ACKs

Figure 5.10: CAN message sequence after FEN time-out

5.4.4 Process Monitoring

An FEN determines whether the behaviour of its process signal input is normal or not. 

Accordingly, it sends either an OK or an ERR message to the SUIN. The SUIN receives 

all such messages from all FENs and evaluates the whole process health status. The SUIN 

is implemented on an 8-bit microcontroller and performing that many tasks in real-time is
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difficult. The monitoring system therefore works on a peer to peer network paradigm and 

the FENs can send messages to each other when an abnormality is detected. FEN groups 

resolve the problem and provide the results to the SUIN which only then combines the 

information from these groups. This scheme reduces the load on the SUIN as it acts as a 

synchronizer only rather than a master. Figure 5.11 shows an example where a FEN 

detected an error which was later removed and normal signal was detected again. Node 2, 

for example, would send ERR message to SUIN as 00000111-00000-0010-0001- 

00000000 and OK message as 00001000-00000-0010-0001-00000000.

SUIN FEN

Update status fo r  user __________________
interface, Write in log file  *

Update status fo r  user 
interface, Write in log file  *

Figure 5.11: Messages during process monitoring

5.5 PLUG & PLAY

A plug-and-play facility was designed into the monitoring system. It can cope with a 

varying number of FENs being available for process monitoring. The SUIN takes care of 

changing node availability as certain FENs are switched on or off (or become inoperative) 

during process monitoring. A new FEN may be added to the already running monitoring 

system. The new FEN would wait for a START message initially and will not get it 

because the SUIN is not aware of its existence at this stage. The FEN would then send a 

REBOOT message to the SUIN, which then responds with a WELCOME message. A 

WELCOME message acts like a START message but is sent only to the newly connected 

FEN rather than as a broadcast message. The FEN acts on this message in the same way 

as to a START message and starts process monitoring. It also sends back an ACK 

message which completes the plug & play addition of the new FEN to the system. Figure 

5.12 summarises the messaging sequence in this case. Consider a case when node 4, for 

example, is switched on and sends REBOOT message. SUIN will respond it with 

WELCOME message with identifier 00000100-00000-0001-0100-00000000.
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SUIN FEN

R EB O O T

W EL C O M E   -»  Start monitoring

Calculate available FENs
m m m m m ^ ^ m m  A C < J /

and update user interface

Figure 5.12: Message sequence when a new FEN boots-up

The SUIN also keeps track o f available FENs through the messages they send to it. The 

absence o f any message for a predefined time-out period is taken as a node’s 

unavailability. It is therefore removed from the plug & play information and is not 

considered a part of the system any longer. The system then adapts itself to work with the 

remaining resources. An active FEN thus has to send a message to the SUIN within the 

required time. It actually re-sends the last process status (OK or ERR) message according 

to its acquired signal’s health status.

The plug-and-play facility also helps when a node turns faulty as the SUIN can then adopt 

a reduced functionality model comprising the remaining nodes only. This is useful in 

processes where some optional plant components are switched off when not required. 

Such process changes do not require modifications to the monitoring system which can be 

set to detect modules that are switched on as the plant requirements change.

5.6 SOFTWARE MODELS FOR FENs AND SUIN

The proposed system can work in three different modes, namely the data acquisition 

mode, monitoring mode, and software update mode. The system presents raw data to the 

remote developer for analysis in the data acquisition mode. It provides remote users with 

monitoring results and process health in the monitoring mode. The software update mode 

is used to remotely upgrade the software on the nodes.
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5.6.1 Data Acquisition Mode

The remote user starts the data acquisition program on the SUIN to gather raw signal data 

obtained by the FENs. The SUIN broadcasts an ACQ command to the FENs. Each FEN 

then starts signal acquisition and stores data in a circular buffer in its memory. A CAN 

message can take up to 8 data bytes and the FEN sends the DATA message to the SUIN 

once 8 bytes are gathered. The FEN includes the message number in the identifier so that 

the SUIN can arrange the received data correctly. The FEN waits for the NEXT message 

from SUIN before sending the next DATA message. This ensures that no data is 

overwritten in the SUIN. Figure 5.13 shows the FEN software model with the data 

acquisition mode elaborated. The corresponding software model for the SUIN is shown in 

figure 5.14. The SUIN dedicates a separate MC for receiving messages from each FEN 

and stores the acquired data in separate software buffers for each FEN. Data from a buffer 

is transferred to the file system when the buffer size reaches a certain limit. The resulting 

files are transferred to remote users over the Internet separately. Figure 5.15 shows the 

model for this software.

SUIN

Receive

Transmit

Circular Storage 
Buffer

Message Controller

Signal Acquisition

64/Pi

H ardw are Signal

I'D A T A

Sample flag

ACQ

NEXT

Software update 
mode

Monitoring
mode

Message

START /W ELCO M E

UPDATE

Front End Node

Figure 5.13: FEN software model with data acquisition mode elaborated
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DATA

DATA

ACQNEXT

DATA

D»^_AcquisHi^n_Pr<>graiii_
SUIN

Receive'
Node

^Sorter/

Message 
Centre for 

FEN 2

Transmit

Message 
Centre for 

FEN 12

Message 
Centre for 
. FEN 1 .

FEN

Telnet
Server

FTP
Server

HTTP
Server

Acquisition
Controller

Data Storage

Message
Generator

Monitoring
Program

Software
Update

Program

Figure 5.14: SUIN software model with data acquisition mode elaborated

Remote
PC

Telnet
Server

FTP
Server

HTTP
Server

In te rn e t  access m ode

Requeat

Data
Provider

Data
Storage

SUIN

Figure 5.15: SUIN software model for Internet access to data

5.6.2 Monitoring Mode

The remote developer analyses the data acquired in the data acquisition mode and 

finalizes the threshold values and the required processing method for each FEN. The
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developer then configures the system accordingly and starts the program in the 

monitoring mode. Figure 5.16 shows the software model for the FEN with its monitoring 

mode elaborated. Figure 5.17 shows the corresponding model for the SUIN. The SUIN 

starts the monitoring process after checking the FENs availability. All FENs acquire their 

respective signals and apply processing to them. A FEN decides about its acquired 

signal’s health and generates an ‘ok’ or ‘error’ result. The result is communicated to the 

SUIN. The FEN keeps on checking the signal status and sends messages as soon as it 

detects a status change. The SUIN gets such messages from all FENs and has a holistic 

view of the complete process. FENs can also send EVENT messages to each other such 

that a group o f FENs can produce a partial view of the total picture and provide collective 

results to the SUIN. This FEN collaboration reduces the computational load on the SUIN 

which also takes care o f the user interface. Source and destination identification numbers 

are used in message identifiers to implement this FEN to FEN communication. On 

detecting an event or error a FEN can send its data/status to another (predefined) FEN. 

The receiving FEN then combines its own information with the received information and 

sends it to the SUIN. Each OK or ERR message contains a code in its message sub-type 

part of an identifier in such cases which is decoded by the SUIN.

Software update 
mode

Power up
H ardw are Signal

UPDATE

START/!
WELCdMISignal acquisition 

& Processing
Message Receive

EVENT

SUINACQERR OK EVENT

ACKMessage
Generator

Data acquisition 
mode

Initialize Transmit

REBOOT

Monitoring mode

Front End Node

Figure 5.16: FEN software model with m onitoring mode elaborated
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Node 

\S o r te r /

FTP
Server

Message 
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HTTP
Server

Data
Acquisition

Program
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'START
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Message
Generator

Transmit

SUIN Monitoring Program

Figure 5.17: SUIN software model with monitoring mode elaborated

5.6.3 Software Update Mode

The proposed monitoring system has the capability to upload newer versions of code 

from the Internet under remote developer control. The developer can upload new SUIN 

and FEN codes to the SUIN using FTP protocol. The code for the SUIN is in the form of 

an executable program file that can be started like any other program. The new code for 

each FEN is delivered to the SUIN as a data file stored in the SUIN file system. The 

remote developer will start a program on the SUIN that will upload new code to each 

FEN using CAN messages. Figure 5.18 shows the FEN software model with its software 

update mode elaborated. The corresponding figure for the SUIN is shown in figure 5.19. 

The program sends an UPDATE message containing the FEN memory address to which 

the code should be placed along with the total length of code being sent. The program 

sends sequential CODE messages to the destination FEN containing 8 bytes of code. 

Instruction opcodes for PIC 18F458 are 16-bit wide and 2 bytes are required to transfer 

one instruction code. One CAN message can therefore takes code for 4 instructions. 

Message sequence numbers are used, in message sub-type field, so that the received code 

can be correctly arranged in the FEN. Any missing message can therefore be detected and 

a RESEND message is generated. The SUIN then sends the missing message again. Each
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message is acknowledged by the receiving FEN by sending an ACK_CODE message 

containing the received message number in the message sub-type field. The SUIN re­

sends a message for which it does not receive an acknowledging message. Re-sent 

messages use a different message type to originally sent messages and FENs can 

therefore detect a message received twice. The PIC 18F458 has the capability to write to 

its own flash program memory under its own software control. A FEN uses this capability 

and updates its code during run-time.

The code is written to program memory only when the whole promised code is received 

from the SUIN. The PIC 18F458 has more program memory than its internal data 

memory where the new code is stored initially. It means that the complete code may not 

be transferred in one go and several sets of code transfer may have to be executed. This is 

achieved by using the starting address and code length in each set and full code is 

transferred eventually. The boot-up code and CAN communication codes are not updated 

remotely. This is a precautionary measure against communication or power failure where 

a node may not be able to receive or program complete code in flash memory. A node 

should be able to function correctly on next boot-up and new code may be uploaded to it 

again.

Monitoring
mode

START/W ELCOM E

UPDATE

CODE
29/Message

sorterRESENT

A CK.CODERESEND
ACQ

Data acquisition 
mode

Software update mode

Front End Node

SUIN

Receive

TransmitF la sh
Memory

Storage
Buffer

Message
G enerator

Programming
Controller

Figure 5.18: FEN software model with software update mode elaborated
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Figure 5.19: SUIN software model with software update mode elaborated 

5.7 NETWORK TRAFFIC REDUCTION

Excessive traffic on communication lines in a distributed network causes bottlenecks and 

severe performance degradation. It was therefore essential to minimize network traffic 

ensuring smooth functionality. Periods o f transmission of raw data caused maximum 

traffic on the network. The total throughput of the communication channels thus put an 

upper limit on the achievable FEN sampling rates in data acquisition mode. Accordingly, 

the author controlled the network traffic volume by carefully selecting the signals’ 

sampling rates. Reliability was the most important aspect in the software update mode 

and the author ensured the secure delivery of every message using CAN bus error control 

mechanisms topped with acknowledgments and re-send requests. The software update 

mode did not require any real-time response from the network and posed no traffic 

problems.

The monitoring mode presented the most complicated situations where any event could 

occur at any time. It was not possible to accurately predict the network response and 

traffic in this mode. A fault detected by multiple FENs simultaneously could result in
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excessive traffic with congestion, delays, and missed events. The author used interrupts 

with very short ISRs for quick event handling. The timer interrupt was used to generate 

accurate sampling times and also it initiated any required analogue to digital conversion 

process. Completion o f the conversion process generated another interrupt and its ISR 

read and stored the results. The processor utilized the conversion time for performing 

other tasks. CAN message reception generated another interrupt in the FEN that 

transferred the message contents to a 16-message storage buffer, to be processed later in a 

subroutine. The PIC 18F458 MCU had only two interrupt service vectors and the author 

assigned higher priority interrupt vector to CAN so that no messages are lost. All other 

interrupts were serviced through the low priority vector where various flags ascertained 

the interrupt source. Computations were done in subroutines in the time between the 

interrupts. Pseudo-codes for the interrupts and associated subroutines are given in 

appendix C. Other measures employed in this research to reduce network traffic are given 

below.

• Processed results, rather than raw data, were transmitted on CAN bus.

• FENs collaborated with each other and the combined information was sent to the 

SUIN. This avoided bottlenecks that would be caused by sending everything to 

one node.

• In case a node observes an abnormal situation, it is highly likely that it will detect 

the same on next acquisition sample. A node was restricted from sending the same 

message again unless a certain predefined time was elapsed.

• Short messages were used with the majority having no data bytes attached. 

Information was included in message identifiers as message type and sub-types. 

For example, ERR messages included a code in message sub-type combining 

information from more than one FEN.

• Routine status messages from a FEN were used to detect its continuous 

availability and no special messaging was used.

• A FEN sending no message within time-out period was automatically considered 

unavailable and no messages were generated for it.

• Urgent messages were assigned higher priority to ensure their quick delivery.

• Destination identification was included in message header so that unconcerned 

nodes were not disturbed.

112



5.8 FAULT REPORTING BY SMS

Monitoring results in this research were primarily displayed on a dynamic web page for 

any remote user. An inattentive or otherwise occupied user may miss a monitoring alarm 

by not paying attention to the web site all the time. Mobile phone connectivity was added 

to the monitoring system to communicate with remote users. The monitoring system 

could thus distribute SMS messages to important remote users as real-time alarms. The 

message receiving tone from the mobile phone would alert the identified receiver who 

could then take action necessary for fault mitigation. Once alerted, he can also check the 

full monitoring results by accessing the dynamic web page again through the mobile 

phone. SMS messages were generated only on the first time detection of a fault. Persistent 

faults were not reported on mobile phones repeatedly as that would annoy the receiver 

besides escalating phone bills.

Figure 5.20 outlines the hardware arrangements in the distributed monitoring system for 

SMS generation. A Sony Ericsson GR47 is a GSM/GPRS radio device that provides 

connectivity to mobile phone network through a SIM and is optimized for M2M 

communications (Sony Ericsson web site: GR47/GR48). Comtech’s pWEB LITE module 

hosted GR47 and provided a serial connection for other devices to communicate with it 

(Sony Ericsson web site: Where to buy). The author connected the PIC 18F458 MCU to 

GR47 using this serial connection and communicated modem AT (ATtention) commands 

to it. The MCU was thus in a position to initiate and receive mobile communications and 

had access to Sony Ericsson’s extended AT command set (Developer Guidelines, 2005) 

for modem features such as SMS, MMS, and Internet access. The monitoring system did 

not require incoming messages and phone calls and all incoming services were barred. A 

shareware software was used to convert error messages (ASCII characters) into Protocol 

Data Unit (PDU) format for SMS (USB Developer web site, 2005) and the resulting PDU 

codes were stored in the PIC MCU along with predefined phone numbers.

Mobile phone connectivity was added to the monitoring system towards the end o f the 

reported research and was not fully integrated into the system. SMS messaging was not 

used with the research reported in chapter 6, 7, and 8. It was used only for air flow 

process monitoring reported in chapter 9 and was tested as an add-on feature. Parallel port 

was used for communication between the SUIN and the new node (the PIC
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microcontroller responsible for SMS generation) for initial development. The new node 

will communicate on the CAN bus after its full integrated in the system. Node 

identification number 14, previously unused, would be assigned to the new node. One 

message centre in the SUIN was previously left unused and would receive messages from 

this new node.

FENs

Figure 5.20: Hardware arrangements for SMS generation.

5.9 SUMMARY

Details of the first and second hierarchy layers of an 8-bit microcontroller based 

distributed monitoring system were provided in this chapter. The nodes of the system 

communicated using a CAN bus and via the Ethernet (Internet) to either the remote 

system developer or to monitoring system users. The capability to send urgent messages 

to remote users on their mobile phones was also provided. The first and second hierarchy 

layers were implemented solely on 8-bit microcontrollers and it is believed to be the first 

reported microcontroller-based system providing monitoring results from sensors to 

remote users. It provided specific monitoring results based on time and frequency 

analyses on discrete and continuous signals and was considered to be unique.

The messages communicated between various system nodes were provided in detail to 

explain the operation of the features of the deployed system including; plug & play, fault 

detection, and isolation. The microcontrollers were not able to simultaneously provide all
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the required features because o f their limited resources and the system operation was 

divided into three separate modes. Software models for these modes were described in 

this chapter for both the SUIN and the FENs. Measures enabling real-time operation by 

reducing network traffic were also detailed.

The functional aspects of the hierarchical and distributed monitoring system were 

explained in this chapter. The developed system was deployed on a number of process 

applications to evaluate its performance in real-time and their details are provided in the 

next chapters.
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Chapter 6

PIPE BLOCKAGE DETECTION

A distributed monitoring system was implemented according to the methodology 

described in earlier chapters. This chapter describes details of the application and testing 

of the monitoring system for detecting pipe blockages in a laboratory-based process rig. 

In summary, process signals were acquired via the FENs and were communicated over 

Internet. During system development, the signals were analysed for fault symptoms to 

determine the appropriate processing method(s) for the FENs. Threshold levels were also 

determined for each signal and were then programmed into the respective FENs. 

Subsequently, the FENs provided their results to the SUIN where their combinations were 

then automatically processed to identify and confirm a fault condition. The holistic 

information available to the SUIN was also used to determine the extent of any pipe 

blockage. Also, as an example of a remote user interface, the monitoring results were 

made available via dynamic web pages. These presented the extent of a fault as a low, 

medium, or high level. The example application and the results obtained are presented in 

more detail in the following sections.

6.1 BYTRONIC PROCESS RIG

A laboratory test rig from Bytronic was used to emulate a batch process in this research. 

Figure 6.1 shows the Bytronic test rig and highlights its salient features. The rig contained 

a lower level sump and an upper level storage tank. A centrifugal pump transferred water 

from the sump to the tank and its speed was controlled from a PC. The sensors signals 

that were used were a water level sensor (tank mounted) and a flow sensor (mounted in 

the connecting pipe). Manual valves in the connecting pipe were used to emulate faults 

such as partial blockages and leakages. A solenoid valve, controlled by the PC, was 

provided to empty the tank water back into the sump. A manual valve was also provided 

for the same purpose and could emulate leakage from the tank.

The test rig thus provided a variety of physical signal types in voltage, current, and pulsed 

signal formats (as summarised in table 6.1). It was therefore ideal to enable the evaluation 

of FEN suitability for interfacing with various kinds of physical signals. All sensor and
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Level sensor connection Flow rate sensor

Solenoid Valve Sump Pump

Figure 6.1: Bytronic process rig

Manual 
Valve 1

Manual 
Valve 3

Manual 
Valve 2

Process variable Description Level

Pump power Analogue Oto 10 V

Solenoid valve control Digital 0V / 24V

Water flow rate Pulse rate 0V/ 15  V

Water level Current loop 4 to 20mA

Table 6.1: Signal description for process variables

control signals for the rig were connected to a Siemens ET200M distributed I/O system 

(SIMATIC, 1998). The distributed I/O system had been added to the standard Bytronic 

test rig in previous studies and provided a convenient link between the test rig and the 

controlling PC. Profibus was used as the communication medium between the PC and the 

ET200M and batch type control was programmed via a LabWindows interface.

6.2 BATCH PROCESS

Some of the previous work with the modified Bytronic rig is reported by Hopkins (2001). 

He developed a PC application emulating a chemical batch process where water was 

transferred from lower level sump to higher level tank under feedback control. The level
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sensor in the tank provided the feedback signal to the controller which controlled the 

pump speed and hence the delivered flow rate. Water was pumped into the tank until it 

was filled to its full capacity and then was emptied by opening the solenoid valve. The 

operator could specify the desired number of batch cycles to be completed.

The application developed by Hopkins (2001) used a very simple controller algorithm. 

The pump operated at full power until the tank was 70% full. The pump power was then 

reduced in steps at every 10% increment of tank fill. This controller was replaced in this 

research by one making better use of the feedback signal. The controller changed the 

pump power dynamically to fill the tank according to a certain pattern. 70% pump power 

was used for the first 4 seconds, enabling flow to be established in the pipe. The 

controller then started working in feedback mode. The pump was stopped when the tank 

full signal became true and then the solenoid valve was opened to drain water back into 

the sump. Figure 6.2 explains the signals used in the batch process for both control and 

monitoring purposes.

Level Signal

Tank

Power Signal Flow Signal

Sum p
Solenoid]

ValveS,
Blockage SimulationPumn

Flow Meter Valve Control

Monitoring

Controller

Figure 6.2: Control and monitoring signals in batch process 

6.3 PROCESS MONITORING

It was decided to deploy the distributed monitoring system to locate pipe blockage faults 

during the existing batch cycles and control regimes (as described above). Signals were 

acquired directly from the existing sensors and control elements. They were simply

118



conditioned to limit them to a 0 - 5 volt range as required for MCU interfacing. The water 

level signal was also converted into this range from its original 4-20mA current loop. 

Each conditioned signal was connected to a FEN; three FENs acquired pump power, flow 

rate and tank level signals. The coordinating SUIN was connected to the Ethernet system 

provided at Cardiff University. It was therefore possible to monitor the process 

application and transmit the results to a remote user. Unique identification numbers were 

assigned to all monitoring nodes and these were used to specify source or destination 

nodes in the CAN messages. Table 6.2 summarizes the assignments used.

Node ID # N ode type Acquired signal Description Level

1 SUIN - - -

2 FEN Pump power Analogue voltage 0 to 5 V

3 FEN Water flow rate Pulse rate OV / 5  V

4 FEN Water level Analogue voltage 0 to 5 V

Table 6.2: Monitoring node identil Ication numbers

Table 6.3 provides the details of actually acquired signals and the conditioning applied to 

them, the levels being determined and set after some initial testing of the process control 

system.

Process
variable

Signal
range

Further conditioning Resulting signal 
range

Pump
power 0.7 to 5 V 0.7 volts subtracted by diode 0 to 4.3 V

Water flow  
rate 0 to 2.2 V Signal amplified with gain 2 by op-amp 0 to 4.4 V

Water level 1.6 to 2.4 V 1.6 volts subtracted by op-amp summer. Remaining 
signal amplified with gain 6 by another op-amp 0 to 4.5 V

Table 6.3: Further signal conditioning for MCU interfacing

The process was run and monitored over a number of batch cycles in normal (fault-free) 

conditions. The monitoring system was operated, during this phase, in data acquisition 

mode to capture full data sets for all monitored signals. Figure 6.3 shows typical normal 

condition signals for (a) pump power, (b) tank water level, and (c) pipe flow-rate for a 

batch cycle. For brevity these signals will be referred to as ‘Power’, ‘Level’, and ‘Flow’
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respectively in the rest of the thesis. In each case in figure 6.3 the Y-axis shows the actual 

values (8-bit A-to-D results) acquired by respective FENs. No further computations were 

done to the acquired numbers (to convert to units or percentages, for example) as it was 

easier for FEN application programs to deal with raw 8-bit numbers. Figure 6.3(d) 

combines all these signals on a single plot for comparison.
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Figure 6.3: Typical normal condition signals

6.4 FAULT SIMULATION

Partial pipe blockage was used as a test fault. A rotary manual valve (manual valve 1 in 

figure 6.1) was partially closed to various degrees to simulate partial blockage faults. 

Figure 6.4 shows the results obtained for 5 levels of simulated blockages. The blockage 

percentages assume a linear characteristic for the rotary valve. The tests were repeated 

several times to confirm the consistency of the results. The partial pipe blockages caused
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disruption to the water flow and reduced the tank fill rate, as can be seen from the 

increasing cycle times. The controller attempted to compensate by applying increased 

pump power (to maintain the required water level in the tank at any given time). Thus the 

pump power increased gradually with blockage severity, again as shown in figure 6.4.
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u .  200 U. 200

3  150

Time (Sec) Time (Sec)
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200

3  150

Time (Sec) Time (Sec)

70% blockage 90% blockage

Figure 6.4: Typical control signals (power) for partial blockages
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Figure 6.5 presents the tank level results. The observed insensitivity o f this signal to 

partial blockages is due to the compensating controller efforts. The increased overall 

cycle time is, however, apparent. It was deemed that detection of increased controller 

activity provided a mechanism for fault detection in this example application.
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Figure 6.5: Typical tank level signals for partial blockages
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The third acquired and monitored signal, the flow rate signal, proved to be o f more 

interest than expected. Prior to testing, a gradual reduction in flow rate was expected with 

increased blockage levels, and indeed this was observed for pipe blockages up to 50%. 

However, for larger blockages, the acquired data typically showed both increased 

magnitude and fluctuations, as shown in Figure 6.6.
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Figure 6.6: Typical flow rate signals for partial blockages
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The proposed explanation for this behaviour is as follows: A pipe blockage reduces its 

effective cross-sectional area. The pump operating at a given power level will thus 

attempt to deliver the same flow of water through the pipe. Any reduction in water 

volume accumulating in the tank was compensated by increased pump power. Thus the 

same volume of water passed through the pipe irrespective of the blockage. The change in 

cross-sectional area of pipe however affected the velocity of incompressible fluid (water) 

according to the relationship

a 1v 1 = a 2v 2

where Ai and A2 are the two cross-sectional areas of pipe and V\ and V2 are fluid 

velocities at these cross-sectional areas (Tullis, 1989). The blockage thus caused an 

increase in water velocity in the pipe. The pipe cross-section again increased after the 

blocked area, providing convergent-divergent nozzle effects. A detailed discussion of 

such effect can be found in Ward-Smith (1980). The flow sensor was placed close to the 

blockage simulating valve and was an impeller type flow rate sensor with six blades 

(Bytronic International Ltd). The rotating blades cut an infra-red beam thereby generating 

pulses corresponding to flow. The con-div nozzle effect at the higher blockage levels 

increased the water velocity to a level where it caused an increase in the impeller 

rotational speed. This, in turn, was communicated to FEN as increased flow. The situation 

was further complicated by the presence of a right angled bend between blockage and the 

flow sensor. The bend caused different centrifugal forces on different sections of flowing 

water according to their speeds and further disturbed the flow (Ward-Smith, 1980).

Increased fluctuations in the power signal were observed with the progression of blockage 

levels. This can be explained as follows. A blockage reduced flow causing slower tank 

filling. The controller increased pump power to attempt to maintain the desired filling 

rate. The increased water-flow through the blockage point caused additional turbulence. 

The incoming water flow into the tank then caused ripples of increased magnitude on the 

surface, as can be seen in figure 6.7. These ripples caused increased fluctuation in the 

level signal and this was then reflected in the power (controller) signal. Figure 6.8 

confirms this behaviour when the power, level, and flow signal trends are shown together. 

The effect o f flow turbulence can be seen to be increasing with increased blockage levels.
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Figure 6.7: Ripples effect of blockage
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6.5 MONITORING DECISIONS

The next stage o f research with the process rig application was to analyse the results 

obtained and to develop fault detection algorithms for deployment on the distributed 

monitoring system. The observable differences were not easily translated because of 

varying control strategies during a batch cycle and increased signal fluctuations under 

fault conditions. Further, relatively simple algorithms were required to be consummate 

with the numerical manipulation capabilities of the PIC MCUs. Simple statistical methods 

such as mean, variance, and running sum were considered therefore. Fault symptoms 

obtained with these techniques are described below with running sum found as the most 

suitable technique.

Table 6.4 summarizes the variations in the computed mean values for each of the 3 

acquired signals with increasing blockage severity. The means were calculated on the 

tank filling part o f the cycle only. The mean value o f the pump power signal increased 

with blockage severity. However the sensitivity was low and very strict thresholds were 

required to detect the marginal differences. Since such strict thresholds could generate 

excessive false alarms the mean-power was not considered suitable for fault detection. 

The calculated mean-level effectively remained constant for pipe blockages up to 50%, as 

expected. The mean-level however sharply decreased for higher blockage levels. This 

was attributed to the delay in batch completion caused by excessive blockage. Normal 

batch completion times had been observed to be up to 133 seconds and a batch with 70% 

blockage completed in 138 seconds, for example. Mean-level was thus found suitable 

only for detecting severe blockages causing out-of-control situation. Mean-flow also 

remained virtually constant for blockages up to 50%. Higher blockage levels caused an 

apparent sharp increase in mean-flow for the reason discussed in section 6.4. These high 

values did not depict the actual process situation and were ignored. Mean values of the 

signals were therefore not used for monitoring.

Table 6.5 shows the variance results for power, level and flow signals in various 

conditions. Power signal variance increased significantly for blockages compared to for 

normal conditions and thus provided better fault indications. However, it did not show a
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gradual rise with increased blockages and was not useful for identifying fault extents. 

Level and flow variances also provided roughly the same results.

Blockage Mean power Mean level Mean flow

0 % (normal case) 119 120 63

10% 121 119 63

30% 124 121 62

50% 125 123 59

70% 126 115 79

90% 181 106 93

Table 6.4: Mean va ues o f acquired signals (no units used for ADC output numbers)

Blockage Variance power Variance level Variance flow

0 % (normal case) 252 3123 128

10% 281 3010 138

30% 409 3183 171

50% 403 3459 169

70% 371 3354 388

90% 819 3801 1397

Table 6.5: Variance values o f acquired signals (no units used for ADC output numbers)

Another problem with mean and variance was the requirement for the entire signal 

acquisition before the start o f calculations. It was therefore not possible to generate an 

alarm during a batch. An alternate approach of calculating a running sum for each signal 

was therefore investigated. The running sum of a signal was attained by adding every new 

sample value (number from the ADC) to the sum of all previous sample values in a batch. 

Analysis o f the determined running sum profiles showed better fault detection features 

and was adopted in this research.

Any increase in pump power, for example, affected every sample and its cumulative 

effect became visible much earlier than with other techniques. The difference in the 

corresponding values under different fault conditions became distinguishable quickly 

because of the involvement o f large numbers. A gradual increase in difference of running
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sum values for normal and 40% blockage cases is shown in figure 6.9 where, for 

example, a difference of approximately 1000 (22133 for normal and 23134 for blockage 

case)was observed at 30 seconds into the batch cycle time. Figure 6.10 combines results 

from separate tests with various blockage extents and describes the power running sum 

values attained at 30 seconds batch cycle time. Values attained at 30 seconds batch cycle 

time in figure 6.9 are shown in figure 6.10 for reference. Figure 6.11 provides similar 

plots for flow and level running sums.
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Figure 6.9: Power running sum values for normal and 40% blockage cases
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Figure 6.10: Power running sum values at 30 sec time
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Figure 6.11: Flow and level running sum values at 30 sec time

Results initially based on running sums at every sample generated false alarms because of 

the fluctuations. The method was thus modified and the running sum totals were 

compared to the selected thresholds every 5 seconds. This approach minimised the false 

alarms and increased the monitoring reliability. The author monitored running sums at 

every 5 seconds for various blockage conditions and established thresholds at these 

monitoring points. A separate threshold was required for every monitoring point because 

of non-linearity in the process. This led to a total of 27 monitoring points for each of the 3 

signals. The thresholds were defined in each FEN as a look-up table. Also to prevent 

overflow errors 24 bits (3 bytes in memory) were assigned for running sum storage. Each 

threshold value was also stored in 24 bits format and for the specific batch tests. A total of 

81 bytes of data eeprom memory was required.

Typical running sum values for power signal in various cases and the established 

threshold are shown in figure 6.12, which again shows the combined results obtained 

from various tests. The figure 6.12(a) depicts values for first seven monitoring points. 

Figure 6.12(b) shows values up to 25th monitoring point where only every fifth value is 

shown for brevity.

Since the controller algorithm used held the pump power constant for first 4 seconds of 

any batch the first monitoring check (after 5 seconds) was not expected to detect any 

blockage. This was confirmed and the value of the first threshold was set to signal an ‘ok’ 

result in all cases. For example, the threshold at 10 seconds was selected to be a value of 

9000, this being approximately 200 above the nominal fault-free running sum value. This 

equated to a tolerance of roughly 2% for pump power. This was chosen to minimize false
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Figure 6.12: Threshold determination for power FEN
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alarms. The monitoring system detected blockages in excess o f 40% (with this 2% 

tolerance level) at the second monitoring point (i.e. only 10 seconds into the batch cycle), 

as can be seen again in figure 6.12(a). Blockages below 40% were also detectable with 

this regime but not with sufficient reliability. The reliability of detecting lower level 

blockages increased with threshold tests further into the batch cycle. For example a 30% 

blockage was reliably detected at sixth monitoring point (after 30 seconds). Figure 6.13 

shows detectability of various fault extents against batch cycle time with the selected 

thresholds. All thresholds are normalised to zero in the figure and any positive value 

depicts blockage detection.
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Blockage
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Figure 6.13: Blockage extent and its detectability with selected thresholds

The running sum for level signal FEN showed a different trend with values decreasing for 

progressive blockages. Thresholds were thus selected below fault-free case values. 

Typical running sums in various blockage levels and the selected threshold are shown in 

figure 6.14. The first threshold (5 seconds) was very conservatively selected and could 

only distinguish the extreme case of 90% blockage. Blockages in excess o f 60% were 

detected after 10 seconds (2nd monitoring point). A 40% blockage became detectable by
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the threshold trigger at 25 seconds. A 20% blockage was generally not detectable before 

40 seconds into the batch cycle.

A blockage typically affected water flow as soon as the batch started and the running sum 

for the flow signal FEN successfully detected 40, 50, and 90 percent blockages at the first 

monitoring point. There were difficulties observed with this FEN in that flow rates falsely 

showed high values when the blockage exceeded 50%. Reliable data was available for 

blockages only up to this level and thresholds were set accordingly. Typical running sums 

and selected thresholds are shown in figure 6.15 for level FEN for blockage levels up to 

50%.

6.6 MONITORING RESULTS

The 3 individual FENs were thus established, using the multiple threshold running sum 

technique to detect the presence or otherwise o f fault symptoms. These were then 

communicated to SUIN which integrated this information to finalise the results. Table 6.6 

provides the rule base used by SUIN which discriminated between FEN results obtained 

before and after 30 seconds batch cycle time. High level blockages were quickly 

discemable at the SUIN from the power and level FENs. As previous stated the 

difficulties with the flow FEN were such that it provided ok signal in these cases. The 

exception to this decision rule (error | error |ok) was for the 90% blockage case which was 

initially detected as a medium level fault. Medium level blockages (40-50%) were 

identified when all three FENs indicated an error. Quick and reliable detection for low 

level blockages (up to 30%) proved to be more difficult because of the dynamic nature of 

the process. It took the signals at least 30 seconds to differentiate between low blockage 

cases and normal behaviour. Blockages detected after 30 seconds of batch start were 

therefore considered low level.

An interesting case was the situation where power and flow FENs indicated errors but 

level FEN decision was ok. The controller put extra effort to maintain level in such cases. 

It can be taken as the first indication of a low level blockage and also as the initial
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Figure 6.14: Threshold determination for level FEN
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Figure 6.15: Threshold determination for flow FEN
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detection of medium level faults. This condition was however observed to be causing 

intermittent detections in 10% blockage cases. The decision rule (error | ok | error) was 

therefore taken as normal situation in this research, which delayed blockage detections 

but increased system reliability. It also enabled a simplified rule base where low level 

blockages were detected only after 30 seconds batch cycle time. Combination of faults 

reported to SUIN other than established by the decision rules of table 6.6, for example 

only one FEN reporting an error, were discarded as a false alarm due to noise effects or 

out-lying data.

Signal status Fault reported

Power Level Flow Before 30s After 30s

ok X X Normal Normal

X ok X Normal Normal

error error error Medium Low

error error ok High Low

Table 6.6: SIJIN  rule base (X == Don’t care)

The monitoring system was tested with known blockage levels and Table 6.7 briefly 

describes the obtained results. Complete detail o f FEN processed signals and SUIN 

integrated results are depicted in table 6.8 where progressive detection of blockage levels 

is evident.

Fault case
Signal status

Fault reported
Power Level Flow

Normal ok ok ok Nil

60, 70, 80% & 90%  
(after 10s)

error error ok High

40, 50% & 
90% (before 10s)

error error error Medium

10, 20, 30% 
(after 30s) error error ok/error Low

Table 6.7: SUIN monitoring decisions
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Monitoring 
Point & 

Time

Thresholds for Blockage Levels (percentage)
Power
Level
Flow

0 10 20 30 40 50 60 70 80 90

1. 5 sec 4800 Ok Ok Ok Ok Ok Ok Ok Ok Ok Ok
500 Ok Ok Ok Ok Ok Ok Ok Ok Ok Error

2000 Ok Error Ok Ok Error Ok Ok Ok Ok Error
2. 10 sec 9000 Ok Error Ok Ok Error Error Error Error Error Error

1700 Ok Ok Ok Ok Ok Ok Error Error Error Error
4500 Ok Error Ok Ok Error Error Ok Ok Ok Error

3. 15 sec 12600 Ok Error Ok Ok Error Error Error Error Error Error
3000 Ok Ok Ok Ok Ok Ok Error Error Error Error
6500 Ok Error Ok Ok Error Error Ok Ok Ok Ok

4. 20 sec 16000 Ok Error Ok Ok Error Error Error Error Error Error
4650 Ok Ok Ok Ok Ok Error Error Error Error Error
8500 Ok Error Ok Error Error Error Ok Ok Ok Ok

5. 25 sec 19200 Ok Error Error Error Error Error Error Error Error Error
6450 Ok Ok Ok Ok Error Error Error Error Error Error

10200 Ok Error Ok Ok Error Error Ok Ok Ok Ok
6. 30 sec 22400 Ok Error Error Error Error Error Error Error Error Error

8600 Ok Ok Error Error Error Error Error Error Error Error
11800 Ok Error Ok Error Error Error Ok Ok Ok Ok

7. 35 sec 25500 Ok Error Error Error Error Error Error Error Error Error
10600 Ok Ok Ok Error Error Error Error Error Error Error
13400 Ok Ok Ok Ok Error Error Ok Ok Ok Ok

8 40 sec 28600 Ok Error Error Error Error Error Error Error Error Error
13100 Ok Ok Error Error Error Error Error Error Error Error
15000 Ok Error Ok Ok Error Error Ok Ok Ok Ok

9. 45 sec 31700 Ok Error Error Error Error Error Error Error Error Error
15700 Ok Ok Error Error Error Error Error Error Error Error
16600 Ok Error Ok Ok Error Error Ok Ok Ok Ok

10. 50 sec 34800 Ok Error Error Error Error Error Error Error Error Error
18500 Ok Ok Error Error Error Error Error Error Error Error
18150 Ok Error Ok Ok Error Error Ok Ok Ok Ok

11. 55 sec 37850 Ok Error Error Error Error Error Error Error Error Error
21500 Ok Ok Error Error Error Error Error Error Error Error
19750 Ok Error Ok Ok Error Error Ok Ok Ok Ok

12. 60 sec 40900 Ok Error Error Error Error Error Error Error Error Error
24700 Ok Ok Error Error Error Error Error Error Error Error
21300 Ok Error Ok Ok Error Error Ok Ok Ok Ok

13. 65 sec 44200 Ok Error Error Error Error Error Error Error Error Error
28150 Ok Ok Error Error Error Error Error Error Error Error
23050 Ok Error Ok Error Error Error Ok Ok Ok Ok

14. 70 sec 47600 Ok Error Error Error Error Error Error Error Error Error
32000 Ok Error Error Error Error Error Error Error Error Error
24600 Ok Error Ok Ok Error Error Ok Ok Ok Ok

15. 75 sec 50900 Ok Error Error Error Error Error Error Error Error Error
35700 Ok Ok Error Error Error Error Error Error Error Error
26450 Ok Error Ok Error Error Error Ok Ok Ok Ok

16 80 sec 54350 Ok Error Error Error Error Error Error Error Error Error
39850 Ok Error Error Error Error Error Error Error Error Error
28450 Ok Error Ok Error Error Error Ok Ok Ok Ok

17. 85 sec 57800 Ok Error Error Error Error Error Error Error Error Error
44200 Ok Error Error Error Error Error Error Error Error Error
30300 Ok Error Ok Error Error Error Ok Ok Ok Ok

18. 90 sec 61350 Ok Error Error Error Error Error Error Error Error Error
48800 Ok Error Error Error Error Error Error Error Error Error
32200 Ok Error Ok Error Error Error Ok Ok Ok Ok

19. 95 sec 64900 Ok Error Error Error Error Error Error Error Error Error
53600 Ok Error Error Error Error Error Error Error Error Error
34000 Ok Error Ok Error Error Error Ok Ok Ok Ok

20. 100 sec 68600 Ok Error Error Error Error Error Error Error Error Error
58700 Ok Error Error Error Error Error Error Error Error Error
36000 Ok Error Ok Error Error Error Ok Ok Ok Ok

21. 105 sec 72350 Ok Error Error Error Error Error Error Error Error Error
64050 Ok Error Error Error Error Error Error Error Error Error
38000 Ok Error Ok Error Error Error Ok Ok Ok Ok

22. llOsec 76200 Ok Error Error Error Error Error Error Error Error Error
69500 Ok Error Error Error Error Error Error Error Error Error
40100 Ok Error Ok Error Error Error Ok Ok Ok Ok

23. 115 sec 80200 Ok Error Error Error Error Error Error Error Error Error
75500 Ok Error Error Error Error Error Error Error Error Error
42400 Ok Error Ok Error Error Error Ok Ok Ok Ok

24 120 sec 84350 Ok Error Error Error Error Error Error Error Error Error
81500 Ok Error Error Error Error Error Error Error Error Error
44740 Ok Error Ok Error Error Error Ok Ok Ok Ok

25. 125 sec 88800 Ok Error Error Error Error Error Error Error Error Error
87800 Ok Error Error Error Error Error Error Error Error Error
47000 Ok Error Ok Error Error Error Ok Ok Ok Ok

26. 130 sec 92800 Ok Error Error Error Error Error Error Error Error Error
94200 Ok Error Error Error Error Error Error Error Error Error
49500 Ok Error Ok Error Error Error Ok Ok Ok Ok

27. 135 sec 92950 Ok Error Error Error Error Error Error Error Error Error
100500 Ok Error Error Error Error Error Error Error Error Error
50500 Ok Error Ok Error Error Error Ok Ok Ok Ok

SUIN colour codes: Normal F Low Medium 1 ] High F

Table 6.8: Blockage level detection with 7EN processing and SUIN integration
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In this fashion the SUIN integrated the 3 FEN information and provided an overall 

monitoring result. At this stage of application testing the plug-and-play concepts were not 

introduced. The deployed monitoring system for the Bytronic process rig thus assumed all 

3 nodes to always be available. Normal, low-level fault, medium-level fault, or high-level 

fault statuses were reported to remote users using developed dynamic web pages. These 

were established such that any user could access SUIN home page by entering its IP 

address or web page address onto a standard web browser, such as Internet Explorer. The 

monitoring results web page was set to refresh every 10 seconds. Also it was designed to 

be a small web page containing only text. This was used to reduce the Internet traffic load 

on the SUIN and to be commensurate with the limited memory of the SUIN. Another 

benefit of the small web page was that it was accessible from mobile phones and PDAs. 

Examples of the tested web pages and a brief insight into the layout design follows.

A user will typically not be continuously viewing the web page to locate a process fault. 

The web page was thus designed to grab an indifferent user’s attention with colours used 

for this purpose. A light green background colour was used to indicate normal conditions. 

The SUIN changed the web page background colour to light grey on detecting a low level 

blockage. The foreground colours were also changed to maintain ease of reading. Light 

blue and red background colours were used to show medium and high level blockages 

respectively. Figure 6.16 shows the web page appearance for each of the four possible 

statuses.

6.7 SUMMARY

The proposed monitoring system was deployed on the process test rig as a first 

application and to test and develop and prove the concept. Various degrees o f pipe 

blockage fault were simulated by closing a manual valve. It was noted that blockages 

caused disturbances in the water flow, thereby affecting flow and level sensor readings. 

The process controller was programmed to adjust pump power in order to attempt to 

restore desired water level in the tank and thus the simulated faults were also detectable 

via the pump power signal. Three FENs monitored power, level, and flow signals and 

located the fault by matching the processed signal with carefully determined multiple (in
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Id

time) thresholds. The first layer decisions by the FENs were integrated by the SUIN 

operating at second hierarchy layer. The combined information proved useful in 

classifying the fault extent as being low, medium, or high level. The first layer FEN nodes 

were proved as suitable data acquisition devices and of being capable of providing simple 

first layer processing. In isolation each FEN was able to discriminate between normal and 

faulty operation. The second layer computations, based on first layer results, provided 

integrated and robust information about process health. The results were provided on 

Internet as a dynamic web page and were open for viewing to all interested users. The 

web page was kept up-to-date via its auto-refresh feature. The web page was also 

accessible to mobile Internet users.
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The detection of a single process fault has been described in this chapter. The extent of 

the detected fault was also categorised (low, medium, or high blockage level) by 

combining the ok/error results from individual signal node results. Thus the developed 

system proved to be useful for fault detection and prediction. The detection of a fault 

using the resource limited 8-bit microcontrollers was considered an accomplishment, 

especially when the real-time results were available on the Internet. The system was then 

tested for its fault isolation capabilities by simulating multiple process faults. The details 

of these tests are provided in the next chapter.
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Chapter 7

MULTIPLE FAULTS ISOLATION

The monitoring system was next deployed on the Bytronic rig in order to evaluate its 

performance in isolating different faults. A batch process was monitored for two types of 

faults, namely leakage and blockage. The blockage simulation was as described in the 

previous chapter. Leakage from the tank was added as the second process fault. Data 

acquired and processed by the hierarchical monitoring system was used to differentiate 

between the two faults. Another application was developed to evaluate the monitoring 

system’s performance for multi-loop processes. In this mode, the process rig ran a 

continuous process and a batch process simultaneously. This chapter details these two 

applications and presents the achieved results.

7.1 FAULT ISOLATION

The monitoring o f a batch process with pipe blockage faults, emulated on the Bytronic 

process rig, was explained in the previous chapter and was used as the first single fault 

detection application. A leakage in the tank was then introduced in the same process as a 

second possible fault. Figure 7.1 shows the schematic process diagram, the leakage and 

blockage arrangements along with the control and monitoring signals. A manual valve, 

labelled ‘leakage simulation’ in figure 7.1 was used to produce leakage from the tank. 

The valve was not easily set and large volume changes resulted from slight alterations. 

The leakage rate quickly became larger than the incoming water flow rate, this resulting 

in uncontrollable situations. It was felt that a leakage fault in a real industrial process 

would realistically only provide a small trickle from leakage point and not a full liquid 

flow. The manual valve was therefore opened only slightly causing a small trickle which 

was barely detectable. It was not possible to repeat the exact leakage by repositioning of 

manual valve setting. It was also not possible to reliably ascertain the fault level in any 

exact quantitative way. The extent of leakage was not investigated and only fault presence 

detection was tested.
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Figure 7.1: Leakage and blockage faults arrangement in batch process

The monitoring system was deployed as before and the 3 signals showed the same 

characteristics for norm al conditions. During the system study stage the nodes were set to 

acquire full raw data and only the leakage fault was introduced to the system.

7.1.1 Leakage Fault Simulation

A small leakage was introduced in the water tank and the monitoring signals were 

acquired. The water level in the tank had an expected slower rise than normal because of 

the leakage during the first four seconds o f the batch cycle (with the controller set to 

deliver constant pum p power). Then the controller sensed the actual level signal and 

started generating appropriate power control. The lower than normal feedback signal 

resulted in a higher than normal power signal. The detection o f this increased controller 

action again provided the opportunity for fault detection in an otherwise controlled 

process. The increased pump power actually achieved and maintained the desired rate of 

tank filling by, in effect, compensating for flow losses due to the leakage. Figure 7.2 

shows the combined plot for the three monitored signals.
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Figure 7.2: Signals for leakage fault only

The power signal pattern with the leakage fault present is overall quite similar to the 

normal case but did have some important differences. A second peak in flow was clearly 

visible after the starting transient. The effect of the leakage on the flow and level signals 

can be more clearly seen in figure 7.3. Figure 7.3a shows the level and flow signals at the 

start of batch for the leakage fault case. Figure 7.3b, for comparison, shows the normal 

signals. The controller (in operational mode) sensed the decreased level and increased the 

pump power, and hence the flow in response. A delay was observed between the start of 

controller action and the flow response. The increase in flow also caused a sharp increase 

in the level signal.
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Figure 7.3: Enlarged flow and level signals
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The pump power signal over the first 20 seconds o f the batch was larger in the leakage 

case, but with a similar trend to the normal case, as seen in Figure 7.4. The process started 

with high pump power which decreased once the controller took over. This was an 

established behaviour also for blockage faults and the evaluation o f statistical measures 

was required to distinguish effects. Table 7.1 provides the statistical measurement for 

monitored signals in both cases.

160
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Figure 7.4: Power signal in normal and leakage conditions

Signal Statistic Normal Leakage

Power

Running sum 92535 94563

Mean 119 121

Variance 252 304

Level

Running sum 93924 93498

Mean 120 120

Variance 3124 3194

Flow

Running sum 49368 50682

Mean 63 65

Variance 128 159

Table 7.1: Statistical measurement for monitored signals
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The increased controller effort under leakage conditions was visible from the statistical 

measures for the power signal. Both its mean and running sum showed increased power 

usage, as expected. The knock-on effect of increased flow was verified by increased mean 

and running sum values for flow signal. The level signal measures were almost the same 

as normal. This was due to the controller effectively achieved its function of maintaining 

a correct water level in the tank.

There was also increased variance in all the signals. This can be explained as follows. 

Water leakage from the tank was compensated by the controller actions and thus 

increased pump power and water flow. No blockage was introduced in the pipe at that 

stage (i.e. single leakage fault testing) but the pipe configuration still caused increased 

turbulence (there were four right angled bends between the pump and the tank). The 

turbulence, in turn, increased the variance in flow measurements and caused increased 

ripples in water surface, as previously explained. The ripples causing increased variance 

in the level signal, and this was the feedback signal in the control loop the effects tended 

to propagate themselves.

7.1.2 Leakage and Blockage Faults Isolation

The author observed that the controller increased pump power and hence flow rate in 

response to both leakage and blockage faults. Blockage faults produced resistance to flow 

and hence the decreased flow signal values were of prime consideration in blockage 

detection. Conversely the lack o f a reduction in the flow signals could isolate the leakage 

fault.

The small leakage introduced caused a small loss in water volume and the controller 

quickly recovered the situation and only a small increase of flow was evident. Indeed, it 

was very difficult to distinguish this flow increase from the flow in the normal case. A 

different approach for leakage fault detection was therefore developed. The initial 4 

seconds when the controller was set at a fixed level was utilized. During this time (with 

no blockage fault present) the usual volume of water reached the tank. A portion o f this 

volume was lost due to leakage and the level signal showed lower values. Individual 

samples did not provide any reliable fault determination and resort was again made to 

running sums. The running sum of the level signal was matched with the threshold at 5
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seconds batch time (as for blockage detection). The controller started working in 

feedback mode after 4 seconds but inertia and delays in the system meant that the level 

signal was unaffected at this first monitoring point at 5 seconds batch time. The system 

showed almost the same water level for normal and low to medium blockage cases. A 

lower running sum of the level signal thus indicated the presence o f either the leakage 

fault or high level blockage fault. A threshold value, based on the acquired experimental 

data, was still established in order to initiate a fault indication.

The level monitoring FEN, on detecting the fault, generated an ‘event’ message and sent 

it to the flow monitoring FEN. The second layer of computational hierarchy was thus 

involved in isolating a leakage fault from a high blockage one. The flow monitoring FEN 

compared its own running sum with a threshold on receiving the event message. It 

combined its own information with the received information and sent it to SUIN as an 

error message containing the correct fault situation. The SUIN was thus able to convey 

the proper fault situation to remote users. Table 7.2 provides running sum values for level 

and flow signals at first monitoring point for fault isolation. The author established 735 

and 2500 as threshold values for level and flow FENs respectively for leakage detection. 

Figure 7.5 elaborates fault isolation procedure carried at the first monitoring point (5 

seconds batch cycle time).

C ondition Level Flow

Normal 796 2266

Leakage 672 2294

10% blockage 775 2036

20% blockage 778 2278

30% blockage 766 2130

40% blockage 785 1774

50% blockage 796 1666

60% blockage 744 3168

70% blockage 572 3094

80% blockage 628 2892

90% blockage 291 1614

Table 7.2: Running sums for fault isolation
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Figure 7.5: Fault isolation processing

The leakage FEN generated an event message to the flow FEN on detecting the running 

sum to be below threshold (735). The flow FEN, in response, generated an ‘integrated’ 

error message to the SUIN after checking its own threshold for leakage (2500). The SUIN 

then combined the information from the two flow FEN messages to decide about the 

leakage fault. This procedure provided blockage fault indication as well, which was not 

used and the previously reported method was adopted. It was interesting to note that only 

one threshold value was used in level and flow FENs each to detect leakage as opposed to 

27 values for blockage detection. The power monitoring FEN played no role in leakage 

detection and isolation.

Running sum values at other times were also considered for leakage fault detection and 

isolation. Level and flow running sum values calculated at 6 and 7 seconds provided 

wider range for thresholds but with delayed results. Further delay in decision making 

made the situation worse as the controller effects complicated the proceedings. 5 seconds
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batch cycle time was thus finalised providing early results and ease o f programming, as it 

matched timings with blockage detection procedure.

Only a small change in FEN software was required for the additional functionality using 

the same hardware. Modularity o f the developed code ensured that only a small 

subroutine for processing the acquired samples was amended minimizing the programmer 

effort. Changes required in Java code for the SUIN were also minimal and only the results 

integration part and web page text strings were amended. Easy code upgrading was 

previously identified as one of the essential requirements for a generalised monitoring 

system and the developed system exhibited this capability in this example application.

7.2 MULTI-LOOP PROCESS MONITORING

The Bytronic process rig was again used to check the monitoring system performance in a 

multi-loop environment. Two control loops were implemented on the process rig such 

that it operated in continuous and batch process modes simultaneously. The controller in 

the continuous loop was set to maintain a constant flow in the pipe between the pump and 

the tank. The batch process was set to allow storage of the incoming water and then to 

empty the tank once a pre-defined level was reached. The process repeated itself 

indefinitely. The two processes were interlinked with the controlled water batch flow 

from the continuous process being the input to batch process. Thus, a fault in the 

continuous process also disturbed the batch process. The distributed monitoring system 

was deployed to monitor both processes. The deployed monitoring system again consisted 

of three FENs and a SUIN, and the logic rules developed considered the loop interactions.

7.2.1 Continuous Process Monitoring

As stated, the continuous process objective was to maintain a pre-defined flow in the 

pipe. The pump power was the controlled variable and the flow signal was the feedback. 

A blockage type fault was simulated on this loop by closing a manual valve between the 

pump and the flow sensor. A relatively large deadband was set within the controller 

algorithm to cater for flow signal fluctuations caused by water turbulence. Two FENs
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acquired power and flow signals for monitoring purposes. Figure 7.6 summarizes the 

control and monitoring arrangements for this loop.

Blockage
simulationFlow

meterPump
To figure 7.13

Flow
Signal

Power
Signal

Monitoring

Controller

Figure 7.6: Continuous process

The nominal values were observed for the monitored signals when the process was in 

steady state. The pipe blockage faults led to increased pump power and this was used to 

provide fault indication. Mean power values were computed and it was found that the 

mean pump power remained virtually constant at a given constant flow. The threshold 

value was set on this basis and the method was found to be more suitable than the running 

sum or other statistical methods. The threshold values of 150 and 66 for power and flow 

signals respectively were used. These were values of 10 above and below the typically 

steady state power and flow values respectively.

The final deployed decision architecture set the two FENs monitoring this control loop to 

collaborate with each other to find the fault extent. Figure 7.7 describes the detection 

procedure. When the power monitoring FEN detected a fault it sent an event message to 

the flow monitoring FEN. On receiving this message, the flow monitoring FEN checked 

its own status and combined the two signals’ information. The effect of a process delay
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was allowed for since water flow did not change instantly with a change in pump power. 

A delay of 2.5 seconds (15 samples) was used in the flow FEN before it checked status 

and combined information with the received power information. If the fault was 

confirmed the flow FEN then sent the SUIN an ‘integrated’ error message. The SUIN 

performed the role o f communicating the fault extent to remote users. It parsed the 

received error message for combined information o f power and flow and updated its web 

page for mild or severe pipe blockage fault accordingly, as shown in figure 7.8 (when 

batch process monitoring reported normal conditions).

Power FEN Flow FEN SUIN
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Msg:OK

’ower>threshold‘
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Yes
Stop

Send OK Message

Stoi

No
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Msg: ErrorMsg:Error(lntegrated)

Send Message

Stop,

Figure 7.7: Fault detection procedure in continuous loop

Monitoring was started when the process was in steady state condition and figure 7.9a 

shows the acquired signals for normal operation. Mild blockage faults were reacted to by 

the controller and increased pump power with normal flow was observed, as shown in 

figure 7.9b. This combination was taken as a mild fault indication. Severe pipe blockages 

also caused drop in flow being beyond the extent to which the controller to compensate. 

Figure 7.9c shows the signals for the severe blockage condition. The decreased flow, (and 

maximum power) was taken as indication of severe blockage in the pipe.
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As mild blockages did not reduce flow the power monitoring FEN was used to initiate the 

event message to trigger the decision making process. The detection o f mild blockage 

faults was therefore reliant on the power FEN. If the power FEN was not available (or 

faulty) then even with plug-and-play capabilities the monitoring system would not be able 

to distinguish the level of fault. However, the user was informed about power FEN 

unavailability (and hence reduced functionality) as shown in figure 7.10 (when the batch 

process monitoring reported normal conditions). It was still possible to detect severe 

blockage faults using only the flow monitoring FEN. In this case the flow FEN worked 

independently and initiated an error message directly to SUIN when flow signal dropped 

below the threshold value, as shown in figure 7.11 (modification of figure 7.7). This 

scenario was confirmed by switching off the power FEN and adjusting the manual valve 

to create a severe blockage. The SUIN had plug and play information (and thus node 

availability) and reported this situation as severe pipe blockage faults.

______________________________ i;  ^ lajxi
File Edit View Favorites Tools Help | Links * j  S f  \

— — — — = — --------------------- Tj
Multi-Loop Process Status

Available FENs : 3,4

Pump pow er: Not Available
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Tank Level: Normal
Batch Process : Normal

________________________________ _zJ

Figure 7.10: Partial availability

However, decision making logic was not provided to the SUIN for all possible 

permutations. The SUIN updated its web page for ‘unexpected condition’ when faced 

with such a situation. An example o f this was created by producing a blockage fault and 

increasing the power FEN threshold value. Figure 7.12 shows the resulting web page. 

Maintenance staff, thus warned, can take appropriate actions including a new analysis of 

data acquired by the monitoring system.

7.2.2 Batch Process M onitoring

Batch control was used to successfully fill and empty the tank. A batch started when the 

controller issued a close command to the solenoid valve. The tank was then filled to a

3  Welcome to  IPMM - Microsoft In te rne t Explorer
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pre-defined level. When sensed the solenoid valve was opened and the water was released 

into the outlet pipe. Figure 7.13 shows the control and monitoring arrangements. The 

FEN used for monitoring acquired the level signal and checked control commands to the 

solenoid valve. A leakage fault in the tank was simulated by opening a manual valve at 

the bottom of the tank. Digital control o f the solenoid valve was used in conjunction with 

the level signal as the feedback.
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The duration of all batches was found to be consistent when there was a steady incoming 

water stream. The batch completion timing was thus a good representation of a nominal 

process. The monitoring FEN was set-up in a timer mode. The observed nominal batch 

completion time (under normal conditions) was 38 seconds and a time-out value o f 38.5 

seconds was defined for fault detection. This was a simple implementation with the PIC 

MCU. The FEN started a timer at batch start and generated an interrupt if the time-out 

value was reached. This was an indication of the fault and generated an error message to 

the SUIN. When a batch completed before time-out the FEN stopped and reset timer and 

sent an ok message to the SUIN. Figure 7.14 shows the level signal profiles for both 

normal and leakage cases.

Monitoring

Valve

signal

Controller

Level signal

Tank

■From figure 7.6

Solenoid
Valve

Leakage
Simulation

Figure 7.13: Batch process

In practice, the resolution of 0.5 seconds between conditions did not provide good results. 

Processes, such as this one, may show different timings in different batches. The 

monitoring system generated several false alarms with this threshold value. A higher 

threshold value was tried but the system was then unable to consistently detect the fault. 

Actual processes in industry use much larger tanks and the filling and emptying will take 

more time and potentially provide better opportunity to establish robust thresholds.
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Figure 7.14: Level signal shows delay in batch completion for leakage

Another problem was that detection was only possible after batch cycle completion. A 

second approach was investigated with the level signal now used directly. The raw level 

signal variations did not show any useful difference between normal and leakage 

conditions, as is apparent from figure 7.14. The tank filled slower in the leakage case but 

running sum values did not display any useable patterns when thresholds were based on 

attaining certain levels. The difference in the number o f samples over which running sum 

was calculated caused this behaviour and thus the running sums were re-calculated, now 

based on the batch timings. Computations were done on same number of samples this 

time and level running sum provided better results. Table 7.3 shows these results 

calculated at various normalised times within the batch cycle. The selected running sum 

was at 50% of the expected batch finish time and a threshold value 4960 was used to 

distinguish between normal and leakage conditions. This was configured in the decision 

making process as an early warning and generated an error message to the SUIN. The 

initial fault detection was subsequently confirmed by the previous timer based methods 

and results were posted on the web page as shown in figure 7.15 (when continuous 

process monitoring indicated normal conditions).

Batch tim e Normal Leakage Difference

25% (9.5 sec) 1835 1795 40

50% (19 sec) 5009 4907 102

75% (28.5 sec) 9517 9323 194

100% (38 sec) 15363 15040 323

Table 7.3: Running sum values for level signal
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In principle, a blockage in the tank outlet pipe could be detected in a similar fashion. It 

was observed that a batch takes approximately 25 seconds to empty the tank. The 

continuation of a timer method and a 50% emptying time running sum would be feasible, 

but was not tested in the current work.

7.2.3 Combined Loop M onitoring

The two control loops on the process rig were interconnected with the water level in the 

tank being a function of the continuous process output. Water flow to the tank remained 

constant irrespective o f the batch state and water continued to flow into the tank during 

the batch tank emptying phase. A fault in continuous process would therefore affect the 

batch process. A flow reducing problem (such as blockage) in the pipe also reduced the 

tank filling rate. The batch process monitoring FEN would then report it as a fault with 

the batch process, which was not the real case. This problem was resolved at second layer 

of computational hierarchy. The decision making was referred such that the SUIN only 

updated its web page for continuous system faults when both control loops 

simultaneously agreed on fault conditions.

More elaborate monitoring could be achieved by linking the flow rate (in the continuous 

process) to the water level fill rate (in the batch process) and hence the setting of 

thresholds. The various times required to fill the tank (at various flow rates) would have 

to be obtained through experimentation and the time-out values could then be determined. 

It would therefore become possible to reliably detect faults in the batch process even 

when faulty continuous process conditions are present. False alarm generation by the 

batch monitoring FEN would potentially cease and the system would detect multiple 

faults simultaneously. This approach however was not tested in the current work.
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7.3 SUMMARY

The distributed monitoring system was again deployed on the process rig to test its 

capabilities in fault isolation. Blockage and leakage faults were simulated on a batch 

process and different fault symptoms were established for both faults. A fault isolation 

strategy was accordingly developed and implemented into the monitoring system. 

Running sum values of power, level, and flow signals were used and the FENs 

collaborated with each other (at the second computational hierarchy layer) to reduce load 

on the SUIN. The peer to peer communication between the FENs was thus found 

beneficial. Slightly different codes were used in the FENs to implement the devised 

strategy. The generalised nature o f FEN code made this possible without disturbing the 

main code and functional arrangements.

The effectiveness o f plug & play capabilities of the system, and its limitations, were 

investigated by deploying the monitoring system on a continuous flow process. The 

system continued working when the power FEN was switched off but with reduced 

functionality. Unavailability o f an expected FEN was reported to the user. Unexpected 

conditions were also reported to the user via its web page when the system detected a 

combination o f signals not anticipated in the system study phase.

Faults in interconnected control loops were also investigated using a continuous flow and 

a batch process together. The continuous process output (flow) was used as the batch 

process input. The monitoring system successfully detected a leakage fault in the batch 

process and mild blockages in the continuous process. It was however unable to locate a 

batch process fault when the continuous process reported severe blockage, as this fault 

affected batch process performance. A procedure to resolve this problem was conceived 

but not tested and implemented. The monitoring system’s capabilities and limitations 

were thus determined for multi-loop processes.

The system’s capabilities were thus evaluated with signal analysis in time domain. Its 

performance was next evaluated for frequency domain analysis by deployment on a 

machine tool. The details are provided in the next chapter.
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Chapter 8

TOOTH BREAKAGE DETECTION

This chapter reports work designed to evaluate the monitoring system’s capabilities 

particularly in the frequency domain. The system was deployed on a machine tool to 

detect either tooth breakage. Knowledge of the machine tool and its monitoring was 

already available in the IPMM research group and had identified differences in frequency 

spectra for a new cutter and for a cutter with one broken tooth. The author applied 

sweeping filter technique (described in chapter 4.5.2) in combination with the monitoring 

system to implement a simple, low resolution frequency analysis. The performance of the 

system is detailed and discussed in this chapter. The need for multiple signal monitoring 

was again established and the benefits o f the distributed monitoring system were 

emphasized. The work described was focused on monitoring system performance 

evaluation and was not intended to provide a complete solution to the complex problem 

of machine tool tooth breakage detection.

8.1 TOOTH BREAKAGE DETECTION THEORY

The Kondia B500 machine tool used has been the centre of previous research within the 

IPMM group which had identified machine signals via a machine audit (Jennings et al, 

2001 B). Suitable interface arrangements were already in place and a large database of 

previously acquired signals was available for offline signal analysis and calibration 

purposes.

The previous research indicated the expected changes in the key signal frequency 

components when a tool breakage occurred. Johns (1998) identified two key frequencies 

in the axis drive motor current signal corresponding to ‘tool rotation’ and ‘tooth passing’ 

frequencies. The former depended on the spindle rotational speed used in cutting. The 

latter was the frequency at which cutting teeth entered the workpiece and was dependant 

on number o f cutter teeth. For the tests for this work the case where the milling process 

was performed with a spindle rotating speed of 500 rpm and 4 tooth cutters was used. The 

tool rotation frequency was 8.33Hz under these conditions. Four teeth per revolution
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caused a tooth passing frequency o f 4*8.33=33.33Hz. Numerous other frequency 

components (harmonics etc) are typically present in machine signals for various reasons 

but were not considered in this research. When one of the 4 cutter teeth broke, the 

remaining 3 teeth produced a different frequency pattern. The tool rotation frequency 

remained as 8.33Hz but tooth passing frequency changed to 8.33*3=25Hz. Imbalance 

effects caused other frequency variations. For example, one of the teeth now has to cut 

extra metal to compensate for the broken tooth. This makes extra cutting effort for the 

tooth after the broken one occurs once per revolution, resulting in a 8.33Hz frequency 

component. The appearance of this component was ideal for detection purposes.

In other IPMM based work (Johns, 1998) a Wadkin v4-6 machine tool, whose axis drive 

system was controlled by dc motors, was used. Kondia B500 machine tool, however, used 

three phase ac motors for axes drives. The axes drive current signals were therefore tested 

to ensure consistency when using the stored signal and frequency analysis databases. 

Figure 8.1 shows the FFT derived frequency spectra for the X-axis drive motor current 

signals for new and broken tooth cutter conditions. The tooth passing frequency was 

visible in both cases and the change in the strength of the tool revolution frequency 

component (8.33Hz) was also observed. The emergence of the changed tooth passing 

frequency component (25Hz) on breakage showed presence of three teeth rather than 

four. The increase in strength o f this component thus indicated tooth breakage. The initial 

FFT analysis thus confirmed the presence of both frequencies of interest with the ac 

motor signals in the Kondia machine. These set the specifications for the deployment of 

the distributed monitoring system and in particular for the set-up of the sweeping filters.

I2UXI 12<KM» 1

IIXXKI ^

MOO

ob
C (,(*><) u u*
Cn

4000 

2000

13 17 21 25 29 33 5 9 13 17 21 25 29 33

F requency (H z) Frequency (H z)

(a) New cutter (b) Broken tooth cutter

Figure 8.1: Frequency spectrum calculated with FFT
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8.2 SWEEPING FILTER APPLICATION

Machine tool tooth breakage detection is a complex issue with a number of variables 

involved. A large body of research has been done in this field and its details are beyond 

the scope of this thesis. The author took a simplified approach and concentrated on only 

one out o f several potential issues. The research reported in this chapter was aimed at 

detecting tooth breakage as a hard fault (a sudden event that need to be diagnosed in real 

time) to prove the monitoring system’s capabilities. The spindle rotational speed was 

fixed at 500 rpm and the axis feed rate at 100 mm per minute. The same metal was used 

in all tests and only four teeth cutters were used. Cases of simultaneous breakage of 

multiple teeth were not considered. The monitoring system was deployed to detect 

changes in the frequency spectrum resulting from tooth breakage and successful detection 

proved its capabilities. However, it should not be considered as a complete solution for 

tooth breakage detection in real-life. Several other variables, such as rotational speed, 

depth of cut, material, etc, must usually be considered. The proposed monitoring system 

has potential to be useful but to complete a full solution would require more research than 

described in this chapter. Another aspect o f this application was the higher amount of data 

generated and monitoring system’s capability o f tackling this data was also observed.

8.2.1 Monitoring Signals

The Kondia B500 machine tool can move in X, Y, and Z axes. Three 3-phase induction 

motors controlled the movements in these axes. Previous arrangements were available to 

acquire motor current signals for two phases for each of these 3-phase motors. The tapped 

signals were called ‘R ’ and ‘S’ and were out of phase by 120°. These were available via 

the interface in analogue voltage form with a full range from -10 to +10 volts. The signals 

were further conditioned for connection to the monitoring system to ensure a span within 

range of 0 to +5 volts. The conditioned signals were connected for frequency analysing to 

the previously described FENs using the sweeping filter technique.

The author considered only horizontal milling (and disregarded Z-axes signals) in this 

research. R and S current signals were analysed for both X and Y axes although cutting 

was restricted to X-axis directions. Thus, four current signals were interfaced via four 

FENs with the SUIN integrating these outputs and provided combined monitoring results.

159



Cutting tests were performed under the selected conditions and the 8.33 and 25Hz 

frequencies were of interest. Each FEN was accordingly set up and swept a frequency 

range from 6Hz to 28Hz and calculated a measure of signal strength in each 1Hz 

frequency band within the range. Acquisition was run for 640ms to allow the signal to 

become relatively settled and to assure consistent filtering. The analogue filter was not 

fully settled in that time but its output provided enough amplitude difference to reliably 

indicate the strength measure for each band. The same filter settings were used for all 

bands thus making their results comparable (a fully settled analogue filter would provide 

higher filtered signal strengths for the same signal with the sweeping filter technique but 

would take a longer time). The acquisition time was a required compromise between 

detectable strengths and detection times.

The filter settings were stored in each FEN memory as a table and the built-in PWM 

generator (in the PIC 18F458) generated appropriate filter control frequencies according 

to the table. The filter output was acquired at each stage by the MCU and the maximum 

and minimum values were determined. The difference between them provided the 

strength measure for each frequency component. The processing requirements had again 

been decided upon to match the PIC MCU capabilities. The system study used the 

monitoring system in a mode where the total profile of the signal was obtained. Clear 

differences in acquired signal strengths were observed for new and broken tooth cutters. 

The R current signal for X-axes drive is shown in figure 8.2, as an example, for both 

cutter conditions. New and broken tooth cutters are also shown.
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Figure 8.2: R current profile for X-axis drive signal with new and broken tooth cutters
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Y-axis drive currents were also monitored in the same fashion and no clear pattern was 

observed in them since cutting was done only in X-axis. There was no movement in Y- 

axis and its motor was not loaded. The Y-axis FENs were included for completeness and 

would became important if other than single axis directional milling was to be monitored. 

The obtained Y axis spectra (not shown) confirmed that these nodes were, as expected, 

insensitive to X axis milling.

The lack of cutting information in axes drive currents other than the cutting axis was also 

confirmed from time series plots acquired during the system study. For example, figure

8.3 shows time series data for X and Y axes (R motors currents) with cutting in the X-axis 

only. The time series plot in figure 8.3a has a 1.5 seconds period component. This was 

consistent with the feed rate o f lOOmm/min combined with 10mm ball screw pitch and a 

8-pole axis drive motor (Jennings, 2001 B). Figure 8.3b confirms no movement in Y-axis.

T im e (se c )  T im e (sec )

(a) X-axes current (b) Y-axes current

Figure 8.3: R currents during cutting in X-axes

8.2.2 Possible A pproaches

When the cutting tests (at set conditions) were repeated to check the consistency of fault 

detection it was observed that variable results were obtained. A broken tooth did create 

strong frequency components, particularly at the two frequencies o f interest. A new cutter 

usually showed low strengths across the frequency sweep but with some wideband 

variability. Figure 8.4 shows X-axis drive R current profile from two (time-separated) 

sweeps in the same experiment with a new cutter. The wideband profile showed the same
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pattern in both cases but with a relatively large offset in the overall signal strength levels. 

This caused problems in threshold determination. The reason for this behaviour was not 

properly understood and was beyond the scope of this thesis.

150

6 8 10 12 14 16 18 20 22 24 26 28

Frequency (H z)

Figure 8.4: Varying signal strength for new cutter

The solution considered thus required analysis of the spectrum pattern. As previously 

stated tooth breakage caused increase in tool rotation frequency strength and a reduced 

tooth passing frequency. As seen in figure 8.2 a new cutter would be detected as having 

virtually constant signal strengths across the considered frequency range. A broken tooth 

cutter would have strength peaks at the frequencies of interest. The approach required a 

sweep of the entire frequency range or, if a reduction in computation times was required, 

across a more focused range of frequencies.

The hierarchical decision making process was again utilised via the use of multiple 

signals for tooth breakage detection. Two FENs performed independent analysis on the R 

and S current signals (for the appropriate cutting axis). The 2 FEN results were compared 

between themselves and provided a combined conclusion to the SUIN. Threshold values 

were established via a system calibration phase (details in section 8.2.3 following) for 

each signal for both frequencies o f interest. Each FEN performed frequency analysis only 

for the two focused frequency sweeps, centred at 8.33 Hz and 25Hz in this case. A higher 

than threshold strength in a signal component indicated tooth breakage. Each FEN was
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programmed to generate a broken tool alarm only when thresholds were exceeded at both 

frequencies.

8.2.3 Threshold Establishment

Cutting experiments were performed in the X-axis direction only and the appropriate R 

and S motor drive current signals were analysed. One FEN employed the sweeping filter 

technique on the R signal and the other simultaneously performed the same on S signal. 

The filter was programmed to sweep only the 2 frequencies o f interest for each FEN and 

the resulting frequency profiles were captured for further analysis. The threshold values at 

two frequencies were determined with emphasis on using same values for both R and S 

signals. These combination thresholds were set (fairly conservatively) at 70 and 95 for 

tool rotation (8.33Hz) and tooth passing (25Hz) frequencies respectively.

The two frequencies o f interest were repeatedly swept during a cutting test. Each 

completed sweep was immediately followed by the next sweep throughout the cutting 

run. Figure 8.5(a) depicts the obtained strength values for tool rotation frequency from 

first ten sweeps during a test where a broken tooth cutter was used. It was observed that 

both R and S signals consistently exceeded the set threshold and provided indication of 

the fault. Figure 8.5(b) provides results from a similar test undertaken with a new cutter. 

Strength values for both R and S signals frequently (but not consistently) exceeded the set 

threshold confirming the previously observed uncertainty introduced by the ‘global’ 

frequency strength variations for new cutter. It was also observed that both signals 

crossed the threshold at different times and no simultaneous threshold violation was 

observed. The FENs performed similar analysis on tooth passing frequency during the 

same sweeps and the results obtained during the same cutting test are presented in figure 

8.6. Signal strengths for both R and S currents consistently exceeded the set threshold for 

broken tooth cutter and uncertainty was observed with new cutter. Once again, the two 

signal never crossed the threshold simultaneously. This consistent behaviour from both 

signals for both frequencies o f interest provided fault detection opportunity.
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Figure 8.5: Tool rotation frequency (8.33Hz) for R and S signals at different times
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8.3 MONITORING DECISIONS

As stated the thresholds were set in such a way that a broken tooth cutter would always 

generate an alarm. The variability in new cutter sweeping filter results was the remaining 

area to be catered for in the setting o f the decision making logic. It was decided that both 

FENs would share information with each other and only when they unanimously agreed 

(2 signals x 2 thresholds) would the alarm state be conveyed to SUIN for onward delivery 

to remote users. The monitoring decisions taken for tooth breakage detection, under the 

given constraints, are thus summarised as follows:

• Separate sets o f  FENs required for cutting in separate axes (X axis only tested).

• Only tool rotation and tooth passing frequencies monitored by each FEN.

• Threshold for tool rotation frequency (8.33Hz) strength was set at 70.

•  Threshold for tooth passing frequency (25Hz) strength was set at 95.

• Below threshold values indicate new cutter; higher values indicate tooth breakage.

• A FEN generated event message to its counterpart only when both frequency 

thresholds were violated.

• A FEN receiving alarm message would check its own status; the message is 

discarded if  own status is ok.

• Error signal sent to SUIN only when both FENs agree on tool breakage.

•  SUIN updated its web page for tooth breakage when the 2 FENs monitoring an 

axes agreed on breakage.

Further experim ents were then conducted to confirm that the sweeping filter approach in 

the distributed m onitoring system would work in various conditions. Milling tests were 

performed w ith varying depths of cut to investigate the monitoring system response. 

Cutting at 0.5, 1, 1.5, and 2 mm depths was performed (with the previously established 

threshold settings in operation). Other machining parameters remained constant and the 

frequencies o f  interest remained the same. The monitoring system was able to 

successfully distinguish between new and broken tooth cutters in almost all o f these 

experiments. For discussion purposes, the system was run in monitoring mode to provide 

full result sets. The frequency profiles are collated and presented in figure 8.7.
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Figure 8.7: Frequency profiles for various depths of cut

As can be seen from the profile to thresholds comparisons, the monitoring system 

successfully detected tooth breakage for the 1.0, 1.5 and 2.0 mm depths of cut. It was 

unable to consistently detect tooth breakage for the 0.5mm depth of cut. In this case the 

tooth passing frequency strength was sometimes observed below threshold and the FENs 

(set to require all 4 threshold tests to be true for broken tooth) did not generate an event or 

error message. This limitation was mainly due to the use o f fixed (conservatively set) 

thresholds. The thresholds had been set in order to minimize false alarms and were prone 

to error in marginal cases. A lower threshold value would potentially detect tooth 

breakage with a 0.5 mm depth o f cut. Possibly an additional FEN could be used to 

provide a depth o f cut measure and its input to the monitoring system might allow the 

threshold values to be determined dynamically. The monitoring system has the capability 

to include more FENs and would support such enhancements. The addition of a depth of 

cut measure FEN was not tested in the current research.
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8.4 SUMMARY

The monitoring systems’s performance for frequency domain analysis was tested by 

detecting known frequency components in a set of milling machine signals. Threshold 

values (for signal strengths) were determined and set for frequencies o f interest. Only 

unanimous decisions from both FENs were conveyed to the SUIN. The system user was 

informed about faults when tooth breakage was reported by any axes drive monitoring set 

o f FENs. The system successfully differentiated between new and broken tooth cutters 

during experimental testing. It demonstrated the feasibility o f 8-bit MCUs as frequency 

analysis tools in real-time applications.

The research conducted in this work was specifically aimed at evaluating the performance 

o f the proposed monitoring system in the frequency domain. Machine tool monitoring is a 

complex topic in its own right. The selected experiments were carefully planned to ensure 

the presence or absence o f certain frequency components and numerous real-life variables 

remained fixed in this research. A complete tooth breakage detection system would 

consider effects from all such parameters and was beyond the scope of this research. The 

proposed monitoring system, however, could potentially be a useful part of a complete 

tooth breakage detection system. It allows flexibility and provides multi-dimensional 

analysis capabilities and the hierarchy allows robust decision making.

This application also highlighted network traffic reduction achieved by processing the 

signals at the first hierarchy layer (close to the source). A relatively higher sampling rate 

was required for frequency analysis and the signals were acquired at 100 samples per 

second. Six signals at this rate generated 51.84 MB of raw data in a day. This raw data 

(with network overheads) would have been transmitted on the network in a centralised 

processing system. The distributed hierarchical system processed this raw data at the 

source thus considerably reducing the network traffic.

The next test applied to the monitoring system was to check its performance for industrial 

systems. A process rig was used for this purpose that contained a commercial digital 

valve controller mounted on an industrial valve. The details of the monitoring system’s 

deployment on this air flow process rig are provided in the next chapter.
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Chapter 9

AIR FLOW  PROCESS M ONITORING

This chapter describes the deployment and testing of the developed system on a 

commercial Digital Valve Controller (DVC) in order to ascertain its performance for 

industrial systems. The DVC has its own valve monitoring procedures that may be 

accessed through the PC based software supplied with it. However, the DVC, and hence 

the process valve to which it is fitted, must be taken out o f active service for the 

diagnostics to be run. The DVC was used with a process valve to control the flow rate of 

air in a pipeline and the aim was to supplement the supplied diagnostic capabilities. The 

distributed monitoring system was used whilst the DVC maintained the normal set point 

control function. Two typical faults, namely deteriorating valve diaphragm condition and 

partial pipe blockage, were investigated. Different symptoms were identified for these 

faults and the monitoring system successfully determined either fault cause. A fault in 

supply air pressure (reduction) was also diagnosed. These, along with details of the user 

interfaces used, are described in the following sections.

9.1 PROCESS RIG

In this section o f research the monitoring system was deployed on a process flowline 

containing an industrial control valve. Such valves are widely used for automatic flow 

control, especially in the petrochemical industry. A brief but useful introduction to 

pneumatic valve functionality can be found in Kempley (1980). The process rig is shown 

in figure 9.1. The DVC controlled the valve position under a Highway Addressable 

Remote Transducer (HART) protocol. HART provides digital communication capability 

on 4 to 20 mA analogue current loop lines and its details can be found in HCF LIT 34 

(1999). A working schematic o f the process rig is described in figure 9.2. The desired 

valve position was transmitted to the DVC which ensured correct valve positioning via its 

feedback mechanism. A 16-bit microprocessor embedded in the DVC generated the 

control commands. A pneumatic relay converted these into drive pressures on the valve 

actuator. The actuator moved the valve position, which was fedback to the 

microcontroller. Valve calibration and PID control parameters for this closed-loop control 

were already stored in the DVC memory.
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Figure 9.1: Process rig
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Figure 9.2: Process rig working schematic
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The DVC worked in ‘Instrument’ and ‘Control’ modes. Instrument mode specified 

whether the valve was ‘Out-of-service’ or ‘In-service’. The DVC reacted to digital HART 

commands in the Out-of-service mode and off-line diagnostic routines and valve health 

checks, requiring specific valve movements, were performed. Changes to Control mode 

settings were also allowed in this mode. When the valve was in the in-service mode the 

desired position was communicated to the DVC through digital data in the ‘digital’ 

control mode and through the 4 to 20 mA analogue current in the ‘analogue’ control 

mode. The DVC mode selection was controlled (over HART) by devices such as a hand­

held HART Communicator or a HART-enabled PC. The process rig used a PC with 

installed VLink2000 software to provide such facilities. The PC serial port was connected 

to the DVC via a serial-to-HART converter. Further details o f the DVC, valve and the 

existing process rig can be found in Sharif (1999). Any air leakage through a faulty valve 

diaphragm reduced the effective actuator pressure and affected correct valve positioning. 

The VLink2000 software could be used to perform off-line diagnostics but required the 

process operation to be stopped. With the distributed monitoring system on-line 

evaluation o f the diaphragm condition became possible.

The process rig was designed to control the valve in the in-service analogue mode. 

Current derived from a 24 volt power supply, via a resistance box, provided the desired 

set point to the DVC. The control valve was mounted on a pipe with a pressurised air 

supply at the pipe inlet. The other end o f the pipe was open to atmosphere. Sensors were 

mounted in the pipe run and provided signals for air flow and inlet and outlet pressures. 

Pressure developed in upper diaphragm casing, referred to as the chamber pressure in the 

following text, was available from another sensor mounted on top of the valve. Fault 

simulation was possible by manually blocking the pipe and the valve vent hole.

9.2 AIR FLOW PROCESS

The control profile cycle used in the tests consisted o f the valve being fully opened and 

then closed. The valve was held at its extreme positions for sufficient time for the signals 

to attain a steady state. To provide an automatic procedure for the required valve 

movement cycles a PIC 18F458 microcontroller was used as an open loop controller (of 

the control current to the DVC). The PIC MCU changed loop resistance via a
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programmable digital potentiometer IC AD7376, using a Serial Peripheral Interface (SPI). 

Figure 9.3a depicts the determined non-linear performance. Adjusted MCU commands 

were used to compensate for this in order to attain linear characteristics. The AD7376 had 

limited resolution and this led to only 15 valve positions between fully open and fully 

closed. Table 9.1 shows the adjusted data commands sent by the MCU and the generated 

control signal is shown in figure 9.3b.

ssz
8
crz

v&

30 40 50 60

T im e (sec)

8 12 16 

Current (m A )

(a) DVC nonlinear behaviour (b) Generated control signal

Figure 9.3: Linearization of control command

MCU com m and Resistance (H) C u rren t (mA)

42 3404 4

35 2865 4.75

28 2326 5.75

23 1941 6.75

20 1710 7.75

17 1479 8.75

15 1325 9.75

13 1171 11

11 1017 12.25

10 940 13.25

9 863 14.25

8 786 15.5

7 709 17

6 632 19

5 555 20

Table 9.1: Control signal generation

Normal conditions were taken as 4 bar supply air pressure, 1.4 bar supply air pressure at 

DVC input, new diaphragm, and no blockage in pipe.
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9.3 MONITORING SIGNALS

The process rig contained sensors for measuring inlet air pressure, air flow in the pipe, 

and chamber pressure above the diaphragm. These sensor signals were interfaced to three 

FENs and another FEN was interfaced with the desired analogue valve position command 

signal. The pipe outlet pressure was also monitored via a fifth FEN. Table 9.2 provides 

details o f these monitoring signals.

Process variable Description Level

Inlet air pressure Analogue voltage Oto 15 V

Chamber pressure Analogue voltage Oto 15 V

Desired valve position Control signal 4 to 20 mA

Air flow Analogue current 4 to 20 mA

Outlet air pressure Analogue current 4 to 20 mA

Table 9.2: Monitoring signals

Operational amplifiers (OP27) were used to provide signal isolation. Each 4 - 2 0  mA 

current signal was converted into a voltage using a RCV420 IC. During the system study 

the monitoring system was set to present the acquired signals for analysis. Figure 9.4 

shows acquired profiles for each signal under normal operating conditions for one process 

cycle.
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Figure 9.4: Normal condition signals
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A small decrease in the inlet pipe pressure was observed whilst full air flow was being 

delivered. This was a practical constraint o f the air supply system. It was also observed 

that maximum flow was established before the valve was fully opened. Although it was 

possible to establish the minimum valve opening required for full flow the control signal 

used in the reported research however moved the valve stem between the extreme 

positions of fully closed and fully open.

9.4 DIAPHRAGM CONDITION MONITORING

The diaphragm condition is an important factor for correct valve positioning. Normal 

wear and tear causes deterioration in the diaphragm condition over time. A leaking 

diaphragm will cause some air pressure to be lost. This causes pressure reduction on the 

actuator and a lesser valve opening is achieved for the same DVC command. The DVC 

would compensate on detecting the reduced opening through its feedback mechanism and 

the process would then remain in a normal state. Thus, often the incipient diaphragm fault 

is hidden by the feedback control system. Eventually severe diaphragm deterioration 

hampers valve opening and when detected the process has to be shutdown for diaphragm 

replacement to take place. Time based valve maintenance is typically performed to avoid 

this situation and the process is shutdown at predetermined times irrespective of the 

actual diaphragm condition. Online diaphragm monitoring can minimize such process 

shutdowns.

The DVC provided control commands for the pneumatic valve in the form o f air pressure 

and the rig had no sensor to measure this signal directly. Valve position feedback was 

also not available as is generally the case with such valves. The author therefore used an 

upper chamber (above diaphragm) pressure signal for diaphragm condition monitoring. 

Sharif (1999) had previously proposed a method of diaphragm condition monitoring by 

blocking the valve vent hole and observing the rate o f increase in the chamber pressure. 

The valve was kept fully open during his tests offline. The author modified Sharif s 

method and monitored diaphragm condition online.
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The chamber pressure signal, for new and deteriorated diaphragms was acquired. The 

deterioration of the diaphragm condition was simulated by making pin holes in it. After 

some initial testing with the chamber pressure transducer fitted, but with the vent hole 

still open to atmosphere, it was decided to monitor this signal with the vent hole blocked 

off. The monitoring system would control a solenoid valve for producing the temporary 

vent hole blockages during a test. This would also provide the monitoring system with the 

capability to perform such tests on a user demand. In the absence o f this automated 

arrangement, the vent hole was manually blocked in this research over one process cycle. 

The chamber pressure was then observed to gradually increase with time for both new 

and faulty diaphragms. The relative sensitivity of tests with open and blocked vent hole 

for the signals collected in system calibration mode can be seen in Figure 9.5. When 

tested with a severe fault (large hole) in the diaphragm the chamber pressure rose very 

quickly and valve failed to open at all. This confirmed that a severe diaphragm fault 

would cause process disruption. The monitoring system was therefore required to 

generate an alarm before such severe diaphragm degradations developed. It was 

concluded that the vent hole can be blocked (for short duration testing) without 

hampering the normal process operation and this method was adopted.

Figure 9.6 shows chamber pressure for new, pin-holed, and large-holed diaphragms 

where the increase in this signal with fault severity is clearly visible. The same control 

signal was used for all cases and similar flow was obtained from new and pin-holed 

diaphragms, due to controller compensatory action. However, the increased chamber 

pressure for the large -holed diaphragm effectively disabled valve motion and no flow 

was observed.

Over a number o f calibration tests it was observed that the acquired chamber pressure 

signal had a maximum value o f 72 (ADC units) with a new diaphragm in place. The 

threshold value established for the FEN was set at 75 to detect diaphragm degradation. 

With a pin-holed diaphragm in place the pressure crossed this threshold between 15 to 19 

seconds into the process cycle. The observed maximum value for pin-holed diaphragms 

over a set o f repeated tests was 84. The monitoring system thus detected diaphragm 

deterioration before it started affecting the process. Use o f multiple threshold values 

would quantize the level of diaphragm deterioration but was not tested in this research.

175



250
Inlet pipe pressure

200 1

Flow

a- 100
Control signal

Chamber pressure

30 40 50 600 10 20

Tim e (sec)

(a) Open vent hole
250

Inlet pipe pressure

200

Flow

£  150

c r  100
Control signal

Chamber pressure

600 10 20 30 40 50

Tim e (sec)

(b) Blocked vent hole 
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Diaphragms with relatively large scale leakage faults lead to a reduction in the controlled 

air flow through the pipe. It was recognized that pipeline blockage faults would also have 

similar effects. The detection o f partial pipe blockage faults presented in the following 

section and the fault isolation studies are then presented in section 9.6.

9.5 PIPE BLOCKAGE MONITORING

Partial blockage faults were investigated for the air flow process. A blockage fault was 

simulated by partially closing a manual valve. Control and flow signals were acquired 

along with pressure signals at pipe inlet, pipe outlet and above the diaphragm (chamber). 

Five FENs were thus required for five monitoring signals but in developing the plug & 

play capability the manufactured circuits only allowed for four FENs at this stage of 

development. Figure 9.7 shows the developed circuit boards where mounting of only four 

FENs was possible on the signal conditioning (base) board.

Figure 9.7: Developed circuit boards

The pipe outlet signal was excluded (after some initial tests) for the blockage fault tests, 

only due to the limits on the hardware available at the time of testing. Figure 9.8 shows
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the results of the initial tests (with flow being the excluded signal) for normal and 

blockage cases. The pressure increase in the outlet pipe with a partial blockage present is 

clearly visible. Figure 9.9 then shows the signals acquired in the blockage fault case with 

flow forming the fourth FEN rather than outlet pipe pressure. The effect o f the blockage 

is, as expected, reduced flow, when compared to figure 9.4 (with same control signal). 

From figure 9.4 and figure 9.9 the typical flow reduction during mid-cycle is o f the order 

of 16%. Thus either flow or outlet pressure signals could provide an indication of a partial 

blockage fault. The pressure signal was dependant on blockage location and any blockage 

between the valve and the sensor could not be detected. The flow signal was unaffected 

by fault location and was adopted into the monitoring scheme.
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Figure 9.8: Signals with outlet pipe pressure sensor
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Figure 9.9: Signals with partial pipe blockage (flow sensor)

The flow signal typically attained values over a ‘baseline’ value of 120 in normal 

conditions once the flow was established. For the given process settings full flow was 

usually attained about 5.5 seconds after the process cycle start. This corresponded to a 

control signal FEN value of 40. It was decided to use 35 as a control FEN threshold value 

to effectively act as a trigger to enable blockage fault detection to commence.

Figure 9.10 describes the decision making logic developed as the monitoring scheme. A 

control signal FEN generated an event message to the flow FEN when its threshold 

indicating developed flow was exceeded. The flow FEN then checked its acquired values 

relative to a threshold o f 120. It only generated an error message to SUIN on detecting 4 

successive samples below the threshold. The multiple sample checking was performed in 

order to eliminate noise-generated false alarms. The SUIN informed the user about a 

blockage fault on receiving an error message from the flow FEN (in combination with the 

ok message from the inlet pressure FEN). This combination was needed to confirm that 

an absence of inlet air supply had not caused the symptoms. The inlet pressure FEN could 

report such a case in isolation and directly from itself to the SUIN. A threshold value of 

190 was used for the inlet pressure FEN. The control signal FEN generated another event 

message when the acquired signal dropped below the threshold towards the end of the 

process cycle. The flow FEN then stopped monitoring until receiving another start 

monitoring event from the control FEN. The control FEN stop monitoring event typically 

occurred 48.5 seconds into the process cycle. A sub-message field in the CAN message 

header was used to differentiate between start and stop event messages.
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9.6 FAULT ISOLATION

The blockage faults reported in the previous section were from tests with the vent hole 

open to atm osphere. Prior to determining the fault isolation capabilities it was necessary 

to study the effects o f  a blocked vent hole on the signals used for pipe blockage detection. 

The vent hole w as blocked for one valve cycle and the acquired monitoring signals for 

new, pin-hole and large-hole diaphragms are shown in figure 9.11.

W ith the existing FEN/SUIN thresholds and decision logic still in place, the results 

obtained w ith a new diaphragm detected flow reduction combined with an ok message 

from the cham ber pressure FEN. This was taken as indication o f partial pipe blockage 

fault. No flow  w as observed for a diaphragm with a large hole (figure 9.1 lc) as no valve 

m ovem ent w as possible. The FENs would report this extreme situation as simultaneous 

diaphragm  and pipe blockage faults. The SUIN would not be able to distinguish effects as 

it receives the sam e messages from the FENs in both cases.
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The author then devised the following monitoring strategy to counter this problem. 

Monitoring was started with an open vent hole and the pipe blockage fault was 

investigated first. The vent hole was then closed for a short time and the diaphragm fault 

was investigated. At the end o f both tests the SUIN presented the fault status to any 

remote user. The vent hole was re-opened again and pipe blockage monitoring resumed. 

The diaphragm monitoring tests would be repeated periodically so that any slow 

deterioration could be detected over time. The two faults were tested under different 

conditions and this simplified the required isolation logic. Any flow reduction detected 

when the vent was open was interpreted as a pipe blockage fault. Table 9.3 summarizes 

SUIN monitoring decisions based on received messages from FENs. The control FEN 

always generated an ok signal to the SUIN and this was used only as an availability 

confirmation. Its part in the process monitoring regime was limited to generating event 

messages to the flow FEN so that pipe blockage detection is made when appropriate 

conditions prevail.

Chamber

pressure

Inlet

pressure

Flow

signal

Control

signal

SUIN decision

ok ok ok ok Normal conditions

ok ok error ok Pipe blockage fault

ok error X ok Low supply pressure

error ok X ok Diaphragm fault

error error X ok Diaphragm fault + Low supply 

pressure

Table 9.3: SUIN decision table (X = Don’t care)

9.7 SUMMARY

Diaphragm condition deterioration significantly affects performance of industrial 

processes. The monitoring system was deployed to detect such deteriorations under 

normal process conditions. Chamber pressure, inlet pipe pressure and flow signals were 

monitored along with the control signal by four FENs and a SUIN. Pin holes were made 

in valve diaphragm to simulate condition deterioration. The monitoring system detected 

the deterioration before any significant process performance loss and thus provided fault 

prediction. A blockage in pipe was identified as another potential flow reducing problem
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and fault sym ptom s were devised for it as well. The monitoring system was presented 

with both faults individually and it successfully isolated the two faults. Thus the 

distributed m onitoring system based on 8-bit microcontrollers was proved useful in fault 

detection, isolation, and prediction for real time industrial problems.
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Chapter 10

DISCUSSION

The research reported in this thesis made the following contributions towards knowledge:

• A novel sweeping filter technique was developed that enabled 8-bit 

microcontrollers to perform frequency analysis in real-time. Smart use of 

resources in this technique made it possible for 8-bit microcontrollers to process 

data, using techniques including frequency analysis, and to communicate the 

results.

• An effective methodology was developed for inter-node communication via a 

CAN bus where information was shared in real-time without overloading the 

network or the microcontrollers.

• A method was provided to implement a plug & play capability in the system 

without overloading the resources. The developed system automatically detected 

the available FENs. Although the partial unavailability o f FENs impaired the 

system it was designed to continue to work although at a reduced functionality.

• Individual microcontrollers may be very limited in resources but much higher 

capabilities were achieved in the overall distributed system with their combined 

power. Effective process monitoring with fault detection, isolation, and prediction 

was achieved for a number o f applications.

• A significant reduction in network load was achieved by processing data at the 

first hierarchy layer. Reductions will be o f the order o f giga bytes for applications 

involving analogue signals or frequency analysis.

• The results were provided on dynamic web pages via an embedded web server. 

Multiple remote users could access the results through computers, PDAs, and 

mobile phones simultaneously. Urgent alarm messages were communicated via 

SMS to the identified remote user’s mobile phone.
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• The system was implemented on easily installable compact circuit boards that

were developed at a low cost. It was based on modular hardware and software

units providing ease of deployment to new applications.

The strengths and weaknesses o f the distributed hierarchical monitoring system were 

evaluated through its deployment for

■ blockage and leakage fault detection and isolation in a batch process

■ blockage fault detection in a continuous process

■ fault isolation in a multi-loop (a batch and a continuous) processes

■ tooth breakage detection in a machine tool

■ diaphragm condition deterioration detection in an industrial valve

■ fault isolation for flow reduction in an air flow process.

The system correctly detected and isolated the faults in all the test cases. The successful 

identification o f fault level extents provided fault prediction and the opportunity to plan 

and schedule maintenance activities accordingly.

The investigations in this research were aimed at providing a cost effective generalised 

monitoring system that has the scope for wide deployment by SMEs. A review of various 

monitoring techniques and their applications was conducted and it was established that 

controller signals can provide an initial indication o f a developing fault. Implementational 

issues were considered for various monitoring techniques in light o f currently available 

technologies. The cost o f PC based solutions was considered too high when all system 

constituent components (ADC cards, cabling) were included and a distributed network of 

8-bit microcontrollers was deemed more suitable for the identified objectives. A 

hierarchical approach was taken towards individual situation assessment and each signal 

was evaluated by simple threshold checks for normal/abnormal behaviour. Any 

abnormality was reported to the second hierarchy layer where all first layer results were 

combined for total situation assessment. The combination of individual FEN results and 

their timings was used for fault detection and isolation. For conditions where no 

monitoring decision was possible at the first or second hierarchy layer it was proposed 

that the situation could be reported to the third layer for specialised processing and 

detailed analysis. The focus of this research was on the first and second layers which were 

expected to detect and isolate a large majority of faults. Computations at these layers

185



were restricted to simple but very effective methods because o f the limited processing 

capabilities of 8-bit MCUs.

It was established by the literature review that no previously developed system provided 

monitoring results based solely on 8-bit microcontrollers. Such microcontrollers were 

previously mainly used as data acquisition devices and for command implementations 

with little intelligence. Any complete systems reported in the literature were limited to 

standalone applications where different MCUs did not collaborate with each other for 

total situation assessment. The author considers the research reported here as novel and 

significant because the 8-bit MCUs used combine their processed results intelligently to 

reach monitoring decisions. The decisions are also communicated to remote users over 

the Internet and mobile phones. It was a challenge to provide acquisition, processing, and 

communication tasks on a single microcontroller especially for analogue signals because 

of the magnitude o f the data and processing required.

Compact circuit boards were developed by keeping the chip count low and not using any 

external memory. The limited memory resources o f a microcontroller posed problems but 

efficient memory utilization and measures taken to reduce communication overheads 

provided a feasible solution. First level processing was performed at the acquisition nodes 

and only the results were communicated on a CAN bus. The use o f 8-bit microcontrollers 

in this research reduced the cost significantly. The system developed in this research 

eliminated the need o f data transmission on the CAN bus by indicating the 

normal/abnormal status o f each parameter. Information was shared among the nodes and 

a decision was made on the basis o f all available signal statuses.

Assembly language was used in the FENs to achieve high control over memory 

allocations and fast code executions. Minimal code size and fast execution were achieved. 

The complete control made available within the assembly language was preferred over 

the ease o f using a high level language. Real-time operating systems are available for 

embedded devices but were not used for the FENs for similar reasons.

The situation in the SUIN was different as it involved complex tasks such as 

communicating via the Internet. The development o f codes for the Internet protocols 

(TCP/IP, FTP, Telnet etc.) from scratch would be a very time consuming and tedious
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task. Debugging the developed code would be another time consuming and intensive 

activity. It was therefore decided to utilise already developed and tested codes. Shareware 

codes which were available as Java APIs were used. An asynchronous message passing 

architecture was used for inter-node communication on the CAN bus. Code development 

becomes easier in an object oriented language under such an event-based environment. 

Java was thus a suitable choice for the SUIN programming. A real-time multi-tasking 

operating system was considered a necessity for the SUIN to synchronise its various 

activities and such a shareware operating system was used. The use of shareware codes 

would also help in reducing overall software cost when a system is made commercially 

available.

The system developed in this research provided useful results in a number of applications 

where time and frequency domain analysis was conducted on microcontrollers. The 

system detected deviations from nominal behaviour based on the established fault 

symptoms. The detection o f fault severity provided the opportunity for failure prediction 

and the associated planning o f a maintenance schedule. These factors would enhance 

process quality and productivity culminating in increased economic benefits and market 

advantages. In this effect, the developed system has a wide scope for future deployments 

in industry.

A major issue for any system is its ease o f deployment to new applications. Easily 

deployable small-sized circuits were designed with modular software to make application 

porting easier. The developed system provided this ease o f deployment in the sense that 

only a small fraction o f code needed replacing for a specific application. A large part of 

the software for the FENs (assembly language) and SUIN (Java) remained unaffected 

with an application change. Small subroutines were developed covering various possible 

amendments and whole subroutines were replaced. The details o f monitoring system’s 

unaltered aspects and the application related alterations are as follows:

Unaltered aspects:

• The FEN (with new signal conditioning) and the SUIN hardware.

• Code architectures.

• Interrupt structure.
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• Code for CAN bus access.

• Code for Internet access.

Alterations:

• Subroutine replacements in FENs were only required according to:

■ Signal format in hardware (analogue, pulse rate, etc.).

■ Pre-processing (raw value, running sum, trend etc.).

■ Threshold crossing criteria (low/high).

• Changes were required in SUIN decision making logic.

• A new SUIN web page design was required.

The requirement o f a system study phase for every new application, no matter how 

similar it is to a previous application, is the tedious part o f new deployments. A suitable 

processing method for each signal is determined by the engineer after careful analysis. 

This study is required for calibration, threshold establishment, and fault symptom 

location. It does however optimize the deployed system to that particular process 

implementation. Such optimization cannot be achieved through general process models 

and commissioning would be required for model-based approaches as well. The system 

study phase eliminates the requirement o f mathematical models, which are, in themselves, 

difficult to obtain for real processes.

Thresholds were established through experimental data in this research as no 

mathematical model processing was deemed feasible with 8-bit microcontrollers. This 

provided the additional benefit that no prior process knowledge was required for system 

deployment. An engineer well versed with the monitoring system would be able to deploy 

the system on any application without detailed knowledge o f the process. Any prior 

process knowledge can be incorporated for establishing fault symptoms but is not an 

essential requirement. Such benefits more than compensated for the requirement of a 

system study phase.

An advantage provided by the system is its ability to provide online data during the 

system study phase. Gathered data can be made available via the Internet to a remote 

developer who can analyse it from his office. No site visits are thus required by the
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developer for signal analysis. Engineer’s site visits are often costly and considerable 

money and time savings can be achieved by eliminating this requirement. The availability 

o f data over the Internet also provides global access making signal analysis possible for 

plants operating in other countries as well. This international access can provide further 

economic benefits.

The monitoring system provided specific monitoring results from the first and second 

hierarchical layers thus reducing any data traffic on the Internet (after the system study 

phase). Without this feature much greater levels o f data would need to be transported. The 

tooth breakage detection system, for example, produced data in excess of 50MB per day 

(100 samples per second per node) or 1.5GB per month. Many signals require higher 

sampling rates for their frequency analysis where data reduction would be even more 

significant. Further traffic reduction would be achieved for more elaborate processes with 

more signals involved. Local processing thus saved network costs and massively reduced 

any required PC based server-side processing.

The reported system was equipped with a plug & play capability and showed its 

robustness with a degree o f adaptability to the partial availability of a FEN. Reduced 

inputs hamper the system functionality but it continues working and provides any 

possible monitoring decisions. This feature is useful for future expansion as well since 

any new FEN would be detected by the SUIN and incorporated in the monitoring scheme. 

A new decision table could be uploaded to the SUIN via FTP for this. The plug & play 

capability in the developed system was achieved using smart but simple means and no 

heavy protocols were used. This was again in line with the use o f resource limited 

microcontrollers.

It is also possible to upload new codes to the SUIN via the Internet. The SUIN can 

provide new FEN codes to appropriate PIC microcontrollers via the CAN bus. Both the 

SUIN and the FEN implementations are based on flash memories that can be re-written 

after system installation. A new software version can be loaded in the monitoring system 

within minutes in this way without taking the system offline. This ensures that software 

upgrades can be used without affecting the normal process and without involving 

hardware. A possible example o f software update requirement is the case where the 

system reports a previously unanticipated situation. New analysis may be conducted in
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such cases generating new knowledge. The new knowledge would then be incorporated in 

the system and improvement would be achieved without any site visit or process 

shutdown.

The SUIN communicates with FENs to manage plug & play activities and also performs 

FD1 duties. Providing web access to remote users loads the microcontroller and thus very 

small web pages were designed. The use of graphics in a web page provides a better 

quality o f service but it was not deemed appropriate in the current stage o f development. 

More powerful microcontrollers will emerge in future and enhanced graphics may then be 

used. The system may then provide overall equipment effectiveness, downtime/uptime, 

productivity, etc. to users in the form o f graphs and pie charts. Such features were 

considered too resource intensive at this stage. A newly available version of the TINI is 

based on the DS80C400 microcontroller. This has a built-in Ethernet controller and 

provides faster Internet access at 100 Mbps. Such technological enhancements provide 

system improvement opportunities and must be availed.

Technology is bound to develop; new and more powerful microcontrollers are already 

emerging in the market. The architecture and methodology proposed in this research will 

remain valid with new developments. It will become possible to apply more elaborate 

processing techniques on the acquired data with new microcontrollers. The accurate 

diagnosis o f more faults may then be determined and at earlier times. The proposed 

architecture would benefit from the future technologies rather than diminishing with time. 

Microchip dsPIC series microcontrollers are an example of improved microcontrollers 

becoming available since the start o f  this research. These 16-bit microcontrollers have an 

on-chip DSP engine. These microcontrollers are also supported with a DSP routines 

library from the manufacturer. Any future implementations may take advantage o f such 

new developments within the framework o f the proposed architecture.

A new trend in machine connectivity is introduced by the M2M concept. Embedded 

systems can now communicate with remote users on their mobile phones. A user may get 

reports from a monitoring system or issue commands (new set points, for example) to 

control remote processes. It is expected that M2M will gain rapid popularity in future for 

various monitoring and control applications. A very basic set up was tested in this 

research sending SMS only. Full mobile phone features can be used for two-way
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communication using voice, data, and text services. The list o f possible features includes 

automated voice alerts, emails, user subscriptions, report on demand, etc. It will again be 

a challenge to include such elaborated services using resource limited microcontrollers.

Any system connected to the Internet remains under security threats. Providing secure 

connection for small devices is a challenge because the established security measures are 

too resource intensive for current microcontrollers. The security in the developed system 

was provided via a username and password based login which is effectively a base level 

protection. Any communication between the monitoring system and remote logged-in 

user can be tapped into on the Internet. Encryption techniques used to protect resources 

against such tapings are too computationally extensive to be implemented on 8-bit 

microcontrollers. Better security measures are therefore required before the commercial 

use o f the proposed system. System security has become more important because codes in 

the microcontrollers are now programmed in flash memories which can be altered as well. 

Flash memory provides ease o f later software updates but also creates threat from 

hackers. The development o f appropriate security measures were deemed outside the 

scope o f this research but would be required for wide spread deployment o f the system.

CAN is a time tested protocol under noisy environments and was selected for its reliable 

communication over a pair o f wires. It provides physical and data link layer protocols and 

requires higher layer software to be built on it. Several higher layer protocols are 

available for CAN but were not used in this research. Such protocols cover many aspects 

that are not needed for process monitoring and their implementation would consume 

significant resources. A simplified approach was therefore taken in this research and only 

the required features were implemented. This light version o f the application layer 

communication enabled the microcontrollers to meet acquisition, processing, and 

communication requirements simultaneously.

General purpose microcontrollers were used as front end nodes in this research. It was 

observed that a FEN did not utilize all available features in a general purpose MCU. Only 

a few external pins were used and most of the parallel ports remained unused. The most 

powerful PIC microcontroller (available at the start o f this research) was used to avail the 

best possible performance but an actual implementation can be attained on a smaller sized 

MCU having a lower pin count. Similarly, no communication interface was required other
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than CAN and other interfaces remained redundant. It may be considered that a 

microprocessor may be designed specifically for sensor applications that contain only the 

required features. The Silicon area vacated by these unused peripherals may be utilised to 

build additional on-chip memory, processing power, and/or ADC resolution.

These small microcontrollers may be built inside the sensor assemblies and a sensor 

would thus provide its signal intelligently and only on the CAN bus. Such a sensor with 

built-in decision-making power would convert the physical parameter directly into MCU- 

compatible signal and no additional signal conditioning circuits would be required. This 

will further reduce the overall system cost. The sensor market consists o f billions of items 

and huge saving can be achieved in this way. This creates a big business opportunity and 

business worth billions o f pounds. The effectiveness of CAN-only intelligent sensors has 

been proved in this research for monitoring applications. Further research is needed to 

ensure that control applications could also benefit from such sensors because a process 

controller would also be using the same sensors as the monitoring system. Large scale 

deployment o f such sensors is envisaged once their suitability for control applications is 

confirmed.
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Chapter 11

CONCLUSIONS & FUTURE WORK

11.1 CONCLUSIONS

Investigations were performed in search of a generalised, widely deployable and low-cost 

monitoring system. Various possible approaches were considered and a distributed 

hierarchical monitoring system based on 8-bit microcontrollers at its first and second 

hierarchy layers was implemented. The system was deployed on a number of processes 

and insight was gained from the research. The following contributions towards 

knowledge were made through this work.

• Developm ent o f a generic monitoring system based on 8-bit microcontrollers.

• D evelopm ent o f a novel sweeping filter technique for frequency analysis.

• Im plem enting plug & play capability using a light protocol.

• Developm ent o f detailed message structure for network traffic reduction.

• The developed system’s performance was evaluated for batch and continuous 

processes, for a machine tool application, and for on-line monitoring of an 

industrial valve.

The following conclusions were drawn from this research.

• Effective process monitoring with fault detection, isolation, and prediction can 

be achieved with distributed microcontroller-based system where decisions are 

based on a hierarchical integration of individual signal statuses.

• The current generation of 8-bit microcontrollers have enough processing and 

communication power to realize an effective monitoring system. The 

hierarchical approach enables the system to utilize PC based resources when 

needed.
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• 8-bit microcontrollers can perform frequency analysis in real-time using 

programmable analogue filters. The developed sweeping filter technique has 

increased their effectiveness in a monitoring system.

• Plug and play feature can be implemented on 8-bit microcontrollers. This 

enables them to be combined in a modular and adaptable distributed system.

• Significant reduction in network load is achieved by processing data at the first 

hierarchy layer. The savings may easily go to the order of giga bytes for 

applications involving analogue signals or frequency analysis.

• Appropriate measures are required for online system security, especially for flash 

memory based systems. Current security algorithms are devised mainly for PC 

applications. This mind set need to be changed and improvement in small 

systems security is required.

• Embedded system’s connection with the Internet and mobile phone networks 

provides better remote user interfaces. A whole new range o f online embedded 

services can be expected in near future.

11.2 FUTURE WORK

The developed monitoring system was deployed on various process applications and it 

was shown to be able to successfully detect and isolate various faults. Further 

improvements can be achieved by incorporating the following features in the system.

Process signals were analysed with one simulated fault at a time. Various faults were 

isolated based on the knowledge gained through these experiments. The cumulative 

effects of multiple faults were not investigated. Several kinds of process parameter 

deterioration might be present at any given time and further study is required to detect 

and isolate simultaneous faults. This should be set against the fact that the monitoring 

system will identify individual faults and the sequence in which they occur -  hence 

making multiple fault diagnosis a simpler process.
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A very basic M2M functionality was provided in the system. Further work is required for 

fully integrated M2M. New CAN message types are required for communication with this 

specialised node. The M2M node may be communicating with FENs directly and further 

research is required to assess the usefulness of such communications in the process 

monitoring context.

The availability o f new microcontrollers should be exploited. Future FENs may utilize 

dsPIC rather than PIC microcontrollers. Now available dsPIC MCUs provide the same 

features on a single chip but also provide enhanced processing capabilities due to the 

built-in DSP engine. It would be possible to implement digital filters in these 16-bit 

microcontrollers while keeping the acquisition and communication features intact. It 

would thus become possible to detect more faults on the first hierarchy layer. Similarly, a 

new version o f TINI can be used as a SUIN for faster Internet access. The DS80C400 

microcontroller can work up to 75 MHz clock and would thus provide much higher 

execution speed. The architecture provided in this research would thus provide even 

better results with future technologies.

The acquired sensor signal may be checked for correctness at its acquisition. The self 

validating sensors (SEVA) approach may be used where the acquired signal is compared 

with an anticipated (modelled) signal. The comparison result is subsequently used to rate 

the confidence level on the acquired signal. Validating sensor signals is a field in itself 

and is being researched separately. New developments in this field may be checked for 

any possible implementation on microcontrollers. The use o f validation results, if 

possible, will provide additional reliability to the monitoring system.
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APPENDIX A
Transducers and sensing techniques (Frankowiak, 2004)___________________

Physical phenom ena M easurem ent method Sensing technique

Pressure
• Strain gauges
• Variable capacitance
• Linear var. diff. transformer
• Piezo-electric effect

• Pressure applied to the strain gauge, resulting in a resistance change;
• Capacitance changes due to movement o f a dielectric caused by pressure;
•  Transformer core moves due to pressure;
• Output voltage resulting from applied pressure.

Temperature •  Thermocouple
• Thermistor
• Pyrometer

• Electromotive force due to dissimilar metallic junctions;
• Resistance variation due to temperature changes;
• Heat wavelength radiation.

Flow • Orifice plate
•  Venturi tube
• Pilot tube
• Turbine
• Magnetic
•  Ultrasonic

• Differential pressure due to restriction in the flow area;
• Diff. pressure due to smooth and gradual reduction in tube diameter;
• Differential pressure between static pressure and fluid flow;
• Turbine rotor generates a electrical signal proportional to the flow rate;
•  Changes in the inductive voltage in a coil due to flow rate variations;
• Measurement o f acoustic wavelength changes due to flow rate variations.

Level • ON/OFF switches
• Continuous level

• Beam breaking, capacitance, conductivity and float type level switches;
•  Capacitance (dielectric variation), differential pressure (level column), 

ultrasonic (wavelength reflection) and radioactive (absorbed radiation).
Displacement • Angular and linear • Potentiometers, capacitance (parallel metal plates), inductive coil 

(permeable core), pulse counting, encoders and ON/OFF switches.
Velocity •  Linear

• Angular
• Time measurement based on pulse sensing;
• Pulse sensing, electro-mechanical and digital tacho-generators.

Vibration •  Magnetic • Permanent magnet within a coil field, generating electrical signal.
Acceleration • Strain gauges

• Piezo-electric crystal
•  Changes in resistance due to applied forces;
• Voltage variations due to strain in the crystal.

Force •  Weight
• Force/torque

• Load cells based on strain gauges principle;
• Strain gauge and magnetic permeability changes due to tension variation.



APPENDIX B
PIC 18F458 Microcontroller

Schematic Block Diagram
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Microcontroller Features

High-Performance RISC CPU:
• Linear program memory addressing up to 

2 Mbytes
• Linear data memory addressing to 4 Kbytes
• Up to 10 MIPS operation
• DC -  40 MHz clock input
• 4 MHz-10 MHz oscillator/dock input with 

PLL active
• 16-bit wide instructions, 8-bit wide data path
• Priority levels for interrupts
• 8 x 8  Single-Cycle Hardware Multiplier

Peripheral Features:
• High current sink/source 25 mA/25 mA
• Three external interrupt pins
• TimerO module: 8-bit/ 16-bit timer/counter with 

8-bit programmable prescaler
• Timerl module: 16-bit timer/counter
• Timer2 module 8-bit timer/counter with 8-bit 

period register (time base for PWM)
• Timer3 module 16-bit timer/counter
• Secondary oscillator clock option -  Timer1/Timer3
• Capture/Compare/PWM (CCP) modules;

CCP pins can be configured as:
- Capture input: 16-bit, max resolution 6.25 ns
- Compare: 16-bit, max resolution 100 ns (Tcy)
- PWM output: PWM resolution is 1 to 10-bit 

Max PWM freq @:8-bit resolution = 156 kHz
10-bit resolution = 39 kHz

• Enhanced CCP module which has all the features 
of the standard CCP module, but also has the 
following features for advanced motor control:
- 1, 2 or 4 PWM outputs
- Selectable PWM polarity
- Programmable PWM dead time

• Master Synchronous Serial Port (MSSP) with two 
modes of operation:
- 3-wire SPI™ (Supports all 4 SPI modes)
- I2C™ Master and Slave mode

• Addressable USART module:
- Supports interrupt-on-address bit

Advanced Analog Features:
• 10-bit, up to 8-channel Analog-to-Digital Converter 

module (A/D) with:
- Conversion available during Sleep
- Up to 8 channels available

• Analog Comparator module:
- Programmable input and output multiplexing

• Comparator Voltage Reference module
• Programmable Low-Voltage Detection (LVD) module:

- Supports interrupt-on-Low-Voltage Detection
• Programmable Brown-out Reset (BOR)

CAN bus Module Features:
• Complies with ISO CAN Conformance Test
• Message bit rates up to 1 Mbps
• Conforms to CAN 2.0B Active Spec with.

- 29-bit Identifier Fields
- 8-byte message length
- 3 Transmit Message Buffers with prioritization
- 2 Receive Message Buffers
- 6 full, 29-bit Acceptance Filters
- Prioritization of Acceptance Filters
- Multiple Receive Buffers for High Priority 

Messages to prevent loss due to overflow
- Advanced Error Management Features

Special Microcontroller Features:
• Power-on Reset (POR), Power-up Timer (PWRT) 

and Oscillator Start-up Timer (OST)
• Watchdog Timer (WDT) with its own on-chip RC 

oscillator
• Programmable code protection
• Power-saving Sleep mode
• Selectable oscillator options, including:

- 4x Phase Lock Loop (PLL) of primary oscillator
- Secondary Oscillator (32 kHz) clock input

• In-Circuit Serial Programming™ (ICSP™) via two pins

Flash Technology:
• Low-power, high-speed Enhanced Flash technology
• Fully static design
• Wide operating voltage range (2.0V to 5.5V)
• Industrial and Extended temperature ranges
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Pin Diagram

MCLR/Vpp 
RAO/ANO/Cvref 

RA1/AN1 
RA2/AN2/VREF- 

RA3/AN3/VREF+ 
RA4/T0CKI 

RA5/AN4/SS/LVDtN  
RE0/AN5/RD  

R E 1 /AN 6/W R /C 10 U T  
R E 2/A N 7/C S/C 20U T  

Vdd  
V ss

OSC1/CLKI 
OSC2/CLKO/RA6 

RCO/T1 0 S O /T 1 CKt 
R C 1/T 10S I  
RC2/CCP1  

RC3/SCK/SCL  
RDO/PSPO/C1IN+ 
R D 1/PSP1/C 1IN -

E
■+*E

-*-E

1 40 :
2 3 9 :
3 38 :
4 37
5 36
6 35
7 34
8 3 3 33
9 o o 32
10 00 00 31
11 ■n *T1 30
12 pt fc 29
13 00 00 28
14 27
15 26
16 25
17 24
18 23
19 22
20 21

RB7/PGD
RB6/PGC

RB4
— RB3/CANRX

RB2/CANTX/INT2 
—♦  RB1/INT1
—  RBO/INTO
 Vdd
 Vss

R D 7/PSP7/P1D
—  R D 6/PSP6/P1C  
— ► R D 5/PSP5/P1B  
— RD4/PSP4/ECCP1/P1A  
— *> RC7/RX/DT 
— •* RC6/TX/CK

□  *— ». RC5/SDO  
3 •+— ► RC4/SDI/SDA  
3 * — ► RD3/PSP3/C2IN- 

— ► RD2/PSP2/C2IN+

Pipelined Execution of Code

OSC2/CLKO I  
(RC Mode)

Internal
Phase
Clock

PC* 4

I Fetch INST (PC)
Execute INST (PC ~ 2) Fetch INST (PC ♦ 2)

I Execute INST (PC) Fetch INST (PC 4)
l Execute INST (PC ♦ 2)
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Program Memory Map

PC<20:0>
CALL, RCALL, RETURN ft 
RETFIE'RETLW

Stack Level 1

Stack Level 31

Reset Vector

High Priority interrupt Vector

Low Priority Interrupt Vector

On-Chip 
Program Memory

Read *0’

0000h 

0008h 

0018h

7FFFh 
8000h

IFFFFFh 
200000h-L-

8
8.(/>

4)
2
0)
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Data Memory Map

BSR<30>

-  0 0 0 0

-  0 0 0 1  

-  0010

-  0011  

-  0100  

-  0101

=  0110  
 ►

-  1110  ►

-  1 1 1 1  
 ►

Data Memory Map

BankO

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

OOh

FFh
OOh

FFh
OOh

FFh
OOh

FFh

OOh

FFh

Bank 6 
to

Bank 14

Access RAM 

GPR

GPR

GPR

GPR

GPR

GPR

000h 
05Fh 
060h 
OFFh 
100h

1FFh
200h

2FFh 
300h

3FFh
400h

4FFh
500h

5FFh
600h

Bank 15
OOh

FFh

Unused o -n 
Read ‘OOh*

SFR

SFR

EFFh
FOOh
F5Fh
F60h
FFFh

Access Bank

Access Bank low 
(GPR)

Access Bank high 
(SFR)

OOh

5Fh
60h

FFh

When a = o,
the BSR is ignored and the 
Access Bank is used.

The first 96 bytes are 
general purpose RAM 
(from Bank 0).

The next 160 bytes are 
Special Function Registers 
(from Bank 15).

When a = l ,
the BSR is used to specify 
the RAM location that the 
instruction uses.
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CAN Buffers and Potocol Engine

BUFFERS

Message
Request

Message
Queue
Control

TXREQ TXBO
TXABT
TXLARB MESSAGE
TXERR
TXBUFF

TXREQ TX81
TXABT
TXLARB MESSAGE
TXERR
TXBUFF

TXREQ TXB2
TXABT
TXLARB MESSAGE
TXERR
TXBUFF

Transmit Byte Sequencer

Accept

Accept
Acceptance Mask 

RXMO4 t
Acceptance Filter

RXFO -►

i  t
Acceptance Filter

RXF1

RXBO

Acceptance Mask 
RXM1

Y  f

Identifier

Acceptance Fitter 
RXM2

I ZI
Acceptance Filter 

RXF3

ZE I
Acceptance Filter 

RXF4

1  f
Acceptance Fitter 

RXF5

RXB1

Data and Data and , L
1 Identifier Identifier ‘

Message Assembly Buffer

Identifier

PROTOCOL
ENGINE

Transmit Shift Receive Shift

Comparator

CRC Register

Transmit
Logic

Protocol
FSM

Bit Timing 
Generator

Bit Timing 
Logic

Transmit Receive
Error Error

Counter Counter

FtXERRCNT

Bus-Off

Err-Pas

TXERRCNT

▼
TX RX

2 1 1



CAN Filter/Mask Truth Table

Mask 
bit n Filter bit n

Message 
Identifier 
bit n001

Accept or 
Reject 
bit n

0 X X Accept
l 0 0 Accept
l 0 1 Reject
l 1 0 Reject
l 1 1 Accept

Legend: x  = don’t care

A/D Block Diagram

CH S2CH S0

AN7<1)

AN6<1>

AN5W

AN4

AN3

AN2

AN1

ANO

VSS

N ote 1: C hannels AN5 through AN7 are not available on PIC 18F2X8 devices. 

2: All I/O pins have diode protection to Vdd and VSS.

Vain

(Input Voltage)

10-bit
Converter

A/D

Reference
voltage

VREF+

Vref-

PCFGO 
I VDD 

‘ 0^_X
-Cr^O-

O -

e rr

O-

V
V
V
V
V
V
V

111

110

101

100

Oil

010

001

000

■ E l

■ E

E l

2 1 2



P4.0 -  P4.7 
(EXPANDED ADDR/CHIP ENABLES) P5.0 -  P5.7
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Microcontroller Features

FEATURES
■ 80C 52 com patible

-  8051 instruction-set compatible
-  Four 8-bit I/O ports
-  T luee 16-bit timer/counters
-  256  bytes scratchpad RAM

■ H igh-Speed  Architecture
-  4 clock s/m ach ine cycle (8051=12)
-  Runs D C  to 40 M H z clock rates
-  Frequency m ultiplier reduces EMI
-  S in g le-cyc le  instruction in 100 us 

16 /32-b it math coprocessor
■ 4 kB internal SR A M  usable as 

program /data/stack m em ory
■ Enhanced m em ory architecture

-  A ddresses up to 4 M B external
-  D efaults to true 8051 m em ory com patibility
-  U ser-enabled  22-b it program/data counter
-  16-B it/22-b it paged/22-bit contiguous 

m odes
-  U ser-selectab le m ultip lexed  / non­

m ultip lexed  m em ory interface
-  O ptional 10 bit stack pointer

■ T w o full-function  C A N  2 .0B  controllers
-  15 m essage centers per controller
-  Standard 11 -bit or extended 29-bit 

identification m odes
-  Supports D ev iceN et. S D S . and higher layer 

C A N  protocols
-  D isab les transmitter during autobaud
-  SIESTA  lo w  pow er m ode

Tw o full-duplex hardware serial ports
Programmable IrDA clock
High integration controller includes
-  Power-fail reset
-  Early-warning power-fail interrupt
-  Programmable w atchdog timer
-  O scillator-fail detection
16 total interrupt sources with 6 external 
Available in 64-pin QFP. 68-pin PLCC
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TINI Stick Memory Map

OOOOOOh

080000h

lOOOOOh

180000h

280000h

300000h
308000h

320000h

800000h  

BFFFFFh

TINI Flash ROM Map
o

64K

192K

448K

5 1 2 K

Boot Loader

Firmware (tini.hex)

API (tiniapi.hex)

Primary Java Application

Flash ROM 1 (512K) 

Flash ROM 2 

Image o f  SRAM 0

SRAM 0 (512K)

SRAM 1 (512K)

Image o f  SRAM 1

SMC Ethernet Controller 
Available peripheral code & data space

_________Real Time Clock_________

Available peripheral 
code & data space

Unused
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in
-

TINI Stick

TINI Socket

O fll l l M

■irtTI

TINI Sick Mounted on Socket
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APPENDIX C
System Related Details

FEN RAM Memory Map

OOOOh 

0080h  

01 OOh

0500h

05CFh

0600h

OFOOh

OFFFh

Program Variables (128 bytes) 

Eeprom Data Buffer (128 bytes)

Signal Acquisition Data Buffer 
(1024 bytes)

CAN M essage Buffer 
(208 bytes)

Unused (48 bytes)

Unimplemented

Special Function Registers
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FEN Program Memory Map

Boot up code 

Interrupt (High priority) 

Interrupt (Low priority) 

Initialisation code

Main Loop

____________Write Eeprom subroutine__________

____________ Read Eeprom subroutine___________

_______________ Delay subroutine_______________

High priority interrupt service routine (for CAN)

Low priority interrupt service routine (for Sampling)

Process CAN subroutine

Maths & Stats subroutines library

P rocessSam ple subroutine 

Software Update mode subroutine

Data Acquisition mode subroutine

M onitoring mode subroutine (Changed with applications)

OOOOh 
0008h 

0018h  
001 Eh

0800h

OAOOh

OCOOh

OEOOh

lOOOh

1800h

2000h

3000h

5000h

5200h

5800h

6000h

7FFFh

Memory currently used.

Unused memory left for application 
specific modifications and future 
extensions.



FEN Pseudo-codes for interrupts and associated 

subroutines

CAN Interrupt

Store message in a circular buffer.

Increment stored-messages counter.

CAN Routine

While stored-messages counter >  0 

Process next CAN message.

Decrement stored-message counter.

TMRO Interrupt

Timer 0 is used to generate sampling time interrupts. Its ISR is selected according to 

the nature o f the signal to be acquired.

For Analogue voltage signals:

Start A/D  conversion.

For Frequency signals:

Transfer pulse-count to accumulator.

Subtract previous count from  the current count.

Adjust result in case o f  overflow.

Store the result in a * circular data buffer.

ADC Interrupt

Transfer the conversion result to a * circular data buffer.

*The circular data buffer mentioned in TMRO and ADC interrupts is the same because 

only one o f  the two interrupts will be active on one node.
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FEN Main Loop
Main

;Check if  a new CAN message is available
MOVF CAN_RCount,W
CPFSEQ C A N W C ou nt
CALL C A N P R O C

;Check if  a new sample is available 
;FSR0 and FSR1 (writer and reader)
MOVF FSR0H,W
CPFSEQ FSR1H
GOTO N ew S a m p le
MOVF FSR0L,W
CPFSEQ FSR1L
GOTO N ew S a m p le
GOTO N o_Sam ple ;No new sample available for processing

N ew S a m p le
;Process the new sample 
CALL Process_Sam ple

N o S a m p le
GOTO Main
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CAN Bus Connections

DS80C390 PIC18F458
COTX CORX CANTX CANRX

+5V

NC

21

1

20

4

TXD RXD

VCC RS

PCA 82C250
VREF GND

CANL CANH

CANH

+5V

NC

35

1

36

4

TXD RXD

VCC RS

PCA 82C250

VREF GND

CANL CANH

>120Q 120 0

CANL

+5V

NC

CANL CANH

VCC RS

PCA 82C250

VREF GND

TXD RXD

1 4

35 36
CANTX CANRX

PIC 18F458
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FEN CAN Initialisations

BCF
BSF

TRISB,2
TRISB,3

;Setting for CAN control registers 
MOVLW  H'80'
MOVW F C A N C O N
CLRF C A N ST A T
CLRF C O M STA T

;CANTX
;CANRX

;Configuration mode

;Setting for CA N I/O control register
MOVLW  H'20' ;Disable CAN capture (Don't use RC2 pin)
M OVW F CIOCON ;Tx pin High when inactive

;Setting for C A N  baud rate Registers for 125000 bps for 40 MHz oscillator
MOVLW
MOVWF
MOVLW
MOVW F
MOVLW
MOVW F

;Setting for CAN
;Transmit Buffer
MOVLW
M OVW F
M OVLW
M OVW F
MOVLW
MOVW F
MOVLW
MULLW

MOVF
AD DLW
MOVW F
M OVLW
MOVW F
MOVLW
MOVW F

H'49' ;Tq = (2* l)/F osc, Prescaler is 10 for 40 MHz crystal
B R G C O N 1 ;Sync jump width time = 2*Tq
H'AB' ;Propagation time =  4*Tq, Sample once
B R G C O N 2 ;Phase se g l time = 6*Tq
H'04' ;Phase seg2 time = 5*Tq
B RG CO N3 ;CAN not used for wake-up

transmit registers 
0
H '031
TX BO CO N ,BANK ED  
H'06'
T X B 0SID H , BA N K ED  
H'08'
T X B 0S1D L, BANK ED
N odeN um
D'16'

;(lower
PRO DL,W
D'01'
T X B 0E ID H , BA N K ED  
H'00'
T X B 0E ID L ,B A N K E D  
H'00'
T X B 0D L C , BAN K ED

;Priority level 3 (highest priority) 
;EID28-EID21

;Extended identifier and EID20-EID16  
;NodeNum  defined for each node 
;M ultiply node number with 16 

nibble -->  higher nibble in PRODL register) 
;M ove result in W 
;Make SUIN  the destination 
;EID15-EID8

;EID7-EID0

;Setting for CAN receive registers 
;Receive Buffer 0 
M OVLW  H'40'
M OVW F RXBOCON

;TXRTR bit clear, 0 data bytes

;Receive valid m essages with extended identifier

;Set R eceive Mask 0 to check only the destination node number (sam e for all FENs) 
MOVLW  H'00'
MOVW F R X M 0SID H ,B A N K E D  ;E1D28-EID21
MOVLW  H'00'
MOVW F R X M 0SID L ,B A N K E D  ;EID20-EID16
MOVLW  H'OF'
MOVW F R X M 0EIDH ,BA N K E D  ;EID15-E1D8
MOVLW  H'00'
M OVW F R X M 0EIDL ,B AN K E D  ;EID7-EID0

;Set R eceive Filter 0 to accept m essages for current node only
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MOVLW H'00'
MOVWF RXFOSIDH, BANKED ;E1D28-EID21
MOVLW H'08'
MOVW F RXFOSIDL,BANKED ;Extended identifier, EID20-E1D16
MOVLW NodeNum ;Current node
MOVWF RXFOEIDH,BANKED ;EID15-EID8
MOVLW H’00'
MOVWF RXFOEIDL, BANKED ;EID7-EID0

;Set R eceive Filter 1 to accept broadcast messages (same for all FENs)
MOVLW H’00'
MOVWF RXF1SIDH,BANKED ;EID28-EID21
MOVLW H'08'
MOVWF RXF1SIDL,BANKED ;Extended identifier, EID20-EID16
MOVLW H'00' ;For broadcast message
MOVW F RXF1EIDH,BANKED ;EID15-EID8
MOVLW H'00’
MOVWF RXF1EIDL,BANKED ;EID7-EID0

CLRF
CLRF
LFSR

C A N R C ou n t
CANJW Count
FSR2,400H

;CAN interrupt configuration  
BCF PIR3,RXB0IF
MOVLW  0 1 H
MOVW F IPR3
MOVLW  01H
MOVW F PIE3

;Start address o f  CAN buffer for , 12 bit operation

;Clear to initialize
;Set high priority for RXBO interrupt 

;Enable RXBO interrupt

BSF RCON,IPEN ;Enable interrupt priorities
MOVLW 0C0H ;Enable all high & low priority interrupts globally
MOVW F INTCON

MOVLW H'00'
MOVWF CANCON ;Normal mode for CAN



SUIN CAN Initialisations

static CanBus myCanBus;

static CanFrame myFrameT = new CanFrame(); //Broadcast transmission

static CanFrame myFrameR = new CanFrame(); //Reception

System.out.println( "Configuring CANBUSO");

try {

// Create a new CanBus object for CAN bus 0 o f  TINI 

myCanBus = new CanBus( CanBus.CANBUSO );

// Set up the CANBUS speed (125 Kbps) 

myCanBus.setBaudRatePrescaler( 7 );  

myCanBus.setTSEGl( 13 ); 

myCanBus.setTSEG2( 7 ); 

myCanBus.setSynchronizationJumpWidth( 1 );

myCanBus.setTransmitQueueLimit(2);

// Define 29 bit mask

myCanBus.set29BitGlobalIDM ask(0x0000FE00); //Global mask for MC 2 - 1 4

myCanBus.enableController();

System.out.println( "Enabling M essage Center 1 for transmission & 2 -  14 for reception.");

myCanBus.setM essageCenterM essageIDM askEnable( i, true ); //true means enabling the mask 

myCanBus.set29BitMessageCenterArbitrationID( i, 0x00000000 | (i «  12)); //ID  

myCanBus.enableMessageCenter( i );

}

//(M C 15 has its own mask)

myCanBus.setMessageCenterTXMode( 1 ); 

for(int i=2; i<15;i++) { 

myCanBus.setMessageCenterRXM ode( i );

//Transmit only

//R eceive m essage from Node i

catch( Exception e) {

System.out.println(e + Unable to set up CAN bus");

// CAN BUS set up completed here
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Some Useful Slush Commands

C om m and Description

date Set the system date and time

del Remove the named file

ftp Connect to a remote FTP server

help Display usage information for Slush commands

ipconfig Configures and displays the network settings

java Executes a Java program

kill Kill the identified process

Is List the contents of the current directory

md Make the named directory

netstat Displays all TCP connections

passwd Set the password for the specified user

pwd Present working directory

rd Remove the named directory

sendmail Send email to designated recipients

startserver Start up the specified server

stopserver Shut down the specified server

useradd Add a new user account

userdel Delete the specified user account

who List all currently logged in users
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Some Useful AT Commands

C om m and Description

AT Attention command

AT&F Set to factory default

AT+CHUP Flang up call

AT+CLCK Lock facility (including all incoming barring services ‘AC’)

AT+CLIP Enable/disable calling line identification (CLI)

AT+CMAR Master reset

AT+CMGF Select message format

AT+CMGS Send message

AT+CMSS Send message from storage

AT+CSCS Select character set

AT+CSIL Silent mode

AT+CSQ Signal strength
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FEN Circuit Diagram
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Backplane Circuit Diagram
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