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Abstract

The negative binomial distribution (NBD) and negative binomial processes have been 

used as natural models for events occurring in fields such as accident proneness; acci

dents and sickness; market research; insurance and risk theory. The fitting of negative 

binomial processes in practice has mainly focussed on fitting the one-dimensional dis

tribution, namely the NBD, to data. In practice, the parameters of the NBD are 

usually estimated by using inefficient moment based estimation methods due to the 

ease in estimating moment based estimators in comparison to maximum likelihood 

estimators.

This thesis develops efficient moment based estimation methods for estimating pa

rameters of the NBD tha t can be easily implemented in practice. These estimators, 

called power method estimators, are almost as efficient as maximum likelihood esti

mators when the sample is independent and identically distributed. For dependent 

NBD samples, the power method estimators are more efficient than the commonly 

used method of moments and zero term method estimators.

Fitting the one-dimensional marginal distribution of negative binomial processes to 

data  gives partial information as to the adequacy of the process being fitted. This thesis 

further develops methods of statistical inference for data  generated by negative bino

mial processes by comparing the dynamical properties of the process to the dynamical 

properties of data. For negative binomial autoregressive processes, the dynamical prop

erties may be checked by using the autocorrelation function. The dynamical properties 

of the gamma Poisson process are considered by deriving the asymptotic covariance 

and correlation structures of estimators and functionals of the gamma Poisson process 

and verifying these structures against data.

The adequacy of two negative binomial processes, namely the gamma Poisson pro

cess and the negative binomial first-order autoregressive process, as models for con

sumer buying behavior are considered. The models are fitted to market research data  

kindly provided by ACNielsen BASES.
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Chapter 1 

Introduction

Negative binomial processes have been used as a natural model for events occurring 

in continuous or discrete time in many fields. Negative binomial processes have been 

successfully applied in the modeling of, for example: accident proneness (Greenwood 

and Yule (1920)); accidents and sickness (Lundberg (1964)); market research (Ehren- 

berg (1988)); risk theory (Grandell (1997)) and more recently in clinical trials (Cook 

and Wei (2003)).

The fitting of negative binomial processes in practice has mainly focussed on the 

fitting of the corresponding one-dimensional marginal distribution of the process, i.e. 

the negative binomial distribution (NBD), to data. Param eter estimation for the NBD 

using maximum likelihood has been considered independently by Fisher (1941) and 

Haldane (1941) and moment based estimators for the NBD have been considered by 

Anscombe (1950). Moment based estimators were considered due to the computational 

difficulties of maximum likelihood estimators. W ith the computational power available 

today, the computation of maximum likelihood estimators is no longer an issue. In 

many practices, however, the use of moment based estimators is still predominant (see 

e.g. Ehrenberg (1988)) even though maximum likelihood estimators are asymptotically 

the most efficient in the class of all asymptotically normal estimators.

1
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A number of negative binomial processes have been presented in literature (see e.g. 

Barndorff-Nielsen and Yeo (1969); McKenzie (1986); Grandell (1997)). The fitting of 

the NBD to data  over a fixed time interval therefore provides partial indication as 

to the adequacy of the theoretical process being fitted. Ehrenberg (1988) somewhat 

addressed the problem of assessing the goodness of fit of a particular negative binomial 

process, known as the gamma Poisson process, by comparing observed and expected 

frequencies as well as comparing the fit of numerous statistical measures computed 

in two different time intervals. No statistical tests were, however, presented to test 

whether the statistical measures computed in the two time intervals were (statistically) 

significantly different. The comparison of statistical measures computed in two different 

time intervals by Ehrenberg (1988) was mainly empirical.

Aim

The aim of this thesis is to further develop methods of statistical inference for data 

generated by negative binomial processes. This thesis will concentrate on methods of 

statistical inference tha t are efficient and methods tha t can be practically applied in 

the field of market research and other similar fields of practice.

The negative binomial processes considered will be restricted to the gamma Poisson 

process and the negative binomial first-order autoregressive process. Using empirical 

evidence, Ehrenberg (1988) has shown that the gamma Poisson process is suitable 

for modeling the number of purchases of various products by households within a 

population. The negative binomial first-order autoregressive process is a simple process 

in the family of autoregressive processes and will be used as a source of comparison 

against the gamma Poisson process.
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Overview of the thesis

Chapter 2 provides a detailed background to the thesis. The chapter begins with a 

description of the numerous ways in which the NBD may be derived and parameterized. 

This will present the primary set of parameters upon which inference is to be made. 

The chapter then reviews methods of parameter estimation in the form of maximum 

likelihood and general moment based estimators.

The <5-method of obtaining the asymptotic normal distribution of various functionals 

of asymptotically normal statistics is described. By checking the covariance structure 

of functionals of data  to the covariance structure of corresponding functionals of the 

proposed statistical distribution or process, it is possible to verify whether data  could 

be generated from tha t distribution or process.

A concise description of two negative binomial processes, namely the gamma Pois

son process and the negative binomial first-order autoregressive process, follows. The 

derivation of the processes are im portant when studying the statistical properties of es

timators. The chapter finishes with some methods tha t are currently used in literature 

to fit and assess goodness of fit of negative binomial processes.

Chapters 3 and 4 further develop methods of statistical inference for data  gener

ated by negative binomial processes with application to market research data  in mind. 

Chapter 3 investigates the problem of efficiently fitting the NBD using moment based 

estimators. Chapter 3 works on the basis tha t maximum likelihood can be difficult to 

implement in practice. Chapter 4 analyzes the dynamical behavior of negative bino

mial processes by considering the covariance of statistics computed in different time 

intervals. Checking the covariance structure of functionals of the data to the covariance 

structure of functionals of the theoretical model gives a method for testing goodness 

of fit.
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Chapter 5 applies the results of Chapters 3 and 4 to market research data  kindly 

provided by ACNielsen BASES. The data comprises of raw transaction data  obtained 

from the scanning of individual items by a panel of 34,647 households representative of 

the United States for the duration of the year 2000. Since the data has been collected by 

the use of scanners, the database contains a comprehensive list of products purchased 

by each household. This list includes the epochs when a product is purchased and 

the number of products purchased at each epoch, thus allowing the NBD and negative 

binomial processes to be fit to the data.

Finally, Chapter 6 draws conclusions on statistical inference for the NBD and neg

ative binomial processes with particular emphasis made on fitting these models to 

market research data. The standard methodology described in literature of fitting the 

NBD is compared to the methodology suggested in Chapters 3 and 4. A discussion is 

then presented on further possible research stemming from the research conducted in 

this thesis.



Chapter 2

Background

This chapter reviews methods of fitting the negative binomial distribution (NBD) and 

negative binomial processes. Section 2.1 introduces the NBD and presents ways in 

which the distribution may be parameterized. The derivations of the NBD tha t are 

presented provide indication of the many settings in which the NBD may be used. 

The natural settings of the NBD often allow natural interpretations for the numerous 

parameters of the NBD. Various well known methods of estimating negative binomial 

parameters are presented and the efficiency of these estimation methods are given.

Section 2.2 modifies the approach of the ^-method to derive the asymptotic normal 

distribution of a general class of moment based estimators, and also of various function

als of data, computed using data  from a specified distribution. Testing goodness of fit 

of the NBD or negative binomial processes can be consequently achieved by verifying 

covariance structures of functionals of raw data to covariance structures of functionals 

of the model being fitted.

Section 2.3 introduces two types of negative binomial processes: the gamma Pois

son process and the negative binomial first-order autoregressive processes (or simply 

the NBD INAR(l) process) and finally Section 2.4 reviews methods of fitting these 

processes to observed data.

5
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2.1 The negative binom ial distribution

The NBD is a two parameter distribution that has been used in the modeling of various 

types of events. For example, the NBD has been used to model: accident proneness and 

sickness (see e.g. Yule (1910); Lundberg (1964)); the frequency of accidents (see e.g. 

Greenwood and Yule (1920); Arbous and Kerrich (1951)); animal populations (see e.g. 

Kendall (1948); Anscombe (1949)), market research (see e.g. Goodhardt, Ehrenberg, 

and Chatfield (1984); Ehrenberg (1988)) and risk theory (see e.g. Grandell (1997)).

The ability of the NBD to model a diverse range of events arises from the fact 

th a t the NBD can be derived, using natural assumptions, in a number of different 

ways. The various derivations of the NBD leads to numerous ways in which the NBD 

may be parameterized and these are presented in Section 2.1.1. Methods of estimating 

parameters of the NBD have also varied according to the field in which the NBD is ap

plied. Natural methods of estimating the NBD parameters include using the standard 

method of moments, the zero term method and the maximum likelihood method. Com

mon methods of estimating NBD parameters are discussed in Section 2.1.2. Finally, 

the efficiency of these estimation methods are discussed in Section 2.1.3

2.1.1 D erivations and param eter representations

Inverse binomial sampling. Yule (1910) derived the NBD as a waiting time distribution. 

He considered a model for the time, more specifically the age in years, at which deaths 

occur within a population. Suppose tha t death per individual occurs at the exposure of 

k fatal accidents and tha t the event of a fatal accident occurring at discrete time points 

of fixed length is independent and identically Bernoulli distributed with the probability 

of a fatal accident given by p. The probability of death occurring at discrete time points 

x ( x  =  0 , l , 2 , . . . )  beyond the /c’th  time point from time zero is then given by the NBD.
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Let X  be a random variable from the NBD then the probabilities of the NBD are

-p/ 1 - \ 3c — 0) 1, 2, . . .
=  P(X =  *) = ( 1

v ’ k =  1, 2, 3 , . . . ,  p > 0.

The NBD, in the case where k is integer, is known as the Pascal distribution.

Heterogenous Poisson sampling. Greenwood and Yule (1920) later showed, using en

tirely different arguments to inverse binomial sampling, that the distribution of the 

number of accidents encountered by individuals may also be modeled by the NBD. 

Suppose tha t the number of accidents follow a Poisson distribution with mean Aj for 

individual j .  Assume that these means A j, within the population of individuals, follow 

the gamma distribution with probability density function given by

=  a  >  ° ’ k  >  ° ’ y  > ° ’

then the distribution of the number of accidents registered by different individuals 

chosen at random follows the NBD with

*  = r ^ / w ^ a V ( £ - y ,  * = 0 , 1 , 2 ’ -
J 0_ x. x.T(k) \ l + d j  \ l + a j  ^ > 0, a > 0.

The NBD parametrization in this setting was also used by Fisher (1941) who thoroughly 

investigated estimation properties of these parameters using maximum likelihood and 

moment based estimators and applied the model to the number of ticks found in sheep.

Urn models. Eggenberger and Polya (1923) considered the probability of choosing 

white balls, in a sequence of trials, from a single urn containing black and white balls. 

Suppose that there are initially N p  white balls and N (  1 — p) black balls in an urn 

containing a total of N  balls. Additionally, each time a ball is chosen, assume tha t 

the ball is replaced together with N v  balls of the same color. Then the probability 

of obtaining x  white balls in a sequence of n  trials is given by the Polya-Eggenberger
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distribution with probabilities

( : ) n JI: o ( p + ^ ) n ; x 1d - p + ^ )

n ^ o U + j " )

x = 0, 1, 2, . . .
Px =

0 < p < l ,  0, n =  0, l , 2, . . .  ,

where v is such th a t N v  is a non-negative integer. Note tha t the probabilities do 

not depend on the to tal number of balls N  in the urn at the first trial. Assume that 

linin^oonp =  m  and th a t lim ^oo nv  =  m / k , then the probability of obtaining x  white 

balls in an infinite number of trials is NBD with

This distribution is sometimes known as the Polya distribution. If v  =  0 then a 

sequence of i.i.d. trials is obtained. The probability of obtaining x  white balls in a finite 

number of trials is then binomially distributed with mean np and variance np(l  —p). 

Additionally, if limn^oo np = m  then the probability of obtaining x  white balls in an 

infinite number of trials is Poisson distribution with mean m.

Consumer buying behavior. In the case of market research, where the NBD is used to 

model the frequency of consumer purchases, the NBD is often parameterized by two 

alternative, but highly interpretable, ‘repeat-buying’ measures called the penetration 

and mean purchase frequency. Let px (x = 0 , 1, . . . )  denote the probabilities of the 

NBD and let A  be a NBD random variable then the penetration, b, and the purchase 

frequency, w , are defined by

The NBD probabilities cannot be explicitly presented in terms of the parameters b 

and w. To obtain the NBD probabilities, the equations above for b and w must first 

be solved in terms of (m, k) (see Eq. (2.1.1)). Note tha t for the NBD to be a valid 

distribution, it must be the case th a t w > — log(l — b)/b.

x  =  0, 1, 2, . . .

k > 0, m > 0.

b = 1 — po and w =  E (A |A  ^ 1) 0 ^  b ^  1, w > 1.
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Figure 2.1: a, m, p and k versus (b,w ').

A closed NBD parameter space. In this thesis an alternative parametrization denoted 

by (b,w ') with w' = 1/w  is considered. Its appeal lies in the fact that the correspond

ing parameter space is within the unit square (b,w ') € [0, l]2, which makes it easier to 

make a visual comparison of different characteristics of NBD parameters for all NBD 

parameter values. Examples of characteristics include: plotting the efficiency of esti

mators; plotting the coefficient of variation of estimators or, more generally, plotting 

the covariances of estimators with respect to other estimators.

Fig. 2.1 shows the contour levels of a, m, p and k within the (6, u/)-param eter 

space. The NBD is only defined for the parameter pairs (6, w') € (0,1) x (0,1) such 

that w ' < —6/  log(l — b) (shaded region in Fig. 2.1). The relationship w' = —b/ log(l — b) 

represents the limiting case of the distribution as k —+ oo, when the NBD converges 

to the Poisson distribution with mean m. The NBD is not defined on the axis w' =  0 

(where m  =  oo) and is degenerate on the axis 6 =  0 (as po = 1).

It is clear from Fig. 2.1 that the parameter pairs (a, A;), (m, k), (p,k),  (b,w) and 

(6, it/) all have a one-to-one relationship. This simplifies the comparison of the estima

tors for NBD parameters since only one of the parameter pairs needs to be estimated.
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NBD parameter pair relationships. The parameter k  is the shape parameter of the NBD 

and the parameters a and p are scale parameters of the NBD. The parameter m  is the 

mean of the NBD. The param eters a , m  and p are related through the equations

k TTt
p = ------- — and a =  — a > 0 , m > 0 , p > 0 , k > 0.

m  -f k k

The parameters b and w have an indirect influence on the shape and scale of the 

distribution. The parameters b and w can be obtained from the pair (ra, k) by solving 

the equations

6 = 1 _ ( 1 +  ^ ) - fc and w = ™.  (2.!.!)

To avoid confusion with the NBD parameterizations in this thesis, the notation de

scribed in Table 2.1 will be used. The use of multiple notations will allow simplifications 

in formulae used later in the thesis. For example, it is much simpler to compare effi

ciency of estimators of different estimation methods using the parametrization (a , k ). 

The NBD(m, k) notation, where the first parameter m  refers to the mean and the 

second parameter k refers to the shape of the distribution, will be used throughout 

the thesis. If there is ambiguity in the NBD(m, k) notation, the parameterization 

NBDm(m, k) will be used.

Parameterization Probabilities Parameter constraints

NBD(ra, k) 

NBD0(a, k) 

NBD P(p,k)  

NBD„(6, w) 

NBD,„'(6, w')

r(fc+x)  ̂ r m
x\r(k) \ k) \m+k)
r(kte) ( 1 / a \ x 
i!r(fc) \l-|-a/ \l-+a/

re-parameterize 

re-parameterize

m  > 0 , k > 0 

a ^  0, k > 0 

O ^ p ^ l ,  A: > 0 

0 ^ 6 ^  1, w > 1 

0 ^ 6 < 1, 0 < w' < 1

Table 2.1: Table of NBD probabilities distributions
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2.1.2 Param eter estim ation  for i.i.d. N B D  sam ples

The estimation of NBD param eters given an i.i.d. sample has been considered indepen

dently by Fisher (1941) and Haldane (1941) who used maximum likelihood (ML) and 

by Anscombe (1950) who used general moment based methods. This section reviews 

estimation methods for the parameter pair (ra, k) given an i.i.d. NBD sample of size 

N  with observations (xi, x2, . . . ,  xjv). The parameter pair (m, k) is statistically con

venient since the maximum likelihood estimator and natural moment based estimators 

for the pair (m, k) are asymptotically uncorrelated given an i.i.d. NBD sample.

Exponential families. Note tha t in general the NBD does not fit into the exponential 

family. If the NBD was in the family of exponential distributions then it would be 

possible to find complete sufficient statistics as estimators for m  and k. For fixed k , 

however, the NBD does fit into the exponential family and the statistic x = jj J2iLi x % 

is a complete minimal sufficient statistic for m.

Willson, Folks, and Young (1986) have shown using the result of Lehmann and 

Scheffe (1950, Theorem 6.3) tha t if k is unknown, then the set of all order statistics 

of the sample is minimal sufficient. Willson et al. (1986) have, however, also shown 

tha t the set of all order statistics of the sample is not complete, so that the search for 

a minimum variance unbiased estimator for k  is not straightforward. In fact, Wang 

(1996) has shown tha t an unbiased estimator for k  does not exist.

The log-likelihood function. The log-likelihood function for a vector x  = (xi , x2, . . . ,  x w), 

where each Xi (i =  1 , 2 , . . . ,  Â ) are i.i.d. NBD(m, A;), is

=  X J  ^l°gr(A;+Xj) —log(xj!)-f a;* log j  -TVlog ( r { k )  ( l  +  ̂ )  ^  •
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Maximum likelihood estimators. The ML estimator for m is given by the sample mean

where N  is the sample size and n, denotes the observed frequency of i =  0 , 1, 2, . . .  

within the sample. Equation (2.1.2) can be solved using numerical methods.

Note tha t the maximum likelihood estimator for the parameter k requires knowledge

due to difficulties in collecting data  or due to problems such as ownership of raw data. 

Instead, it is often the case tha t market research companies are easily able to request 

and obtain statistics associated with consumer purchases. Moment based estimators 

are, therefore, an im portant alternative to estimating the NBD parameters.

Moreover, in market research, analyzing consumer purchase data  often requires 

investigating data  over different time periods of varying lengths (see e.g. Ehrenberg 

(1988)). Fitting the NBD to such data  using the ML approach will require calculation of 

the rii from raw transaction data  for each analysis period. Since it is very uneconomical 

to store and very difficult to obtain such raw transaction data, ML estimation is hardly 

ever used in the practice of market research.

In Section 2.4.2 the problem of estimating NBD parameters from a dependent 

sample is investigated. The dependency in the observations makes it extremely difficult 

to analytically solve the ML equations in order to obtain ML estimators. Moment based 

estimators in this situation provide a simple alternative to ML estimators and may be 

preferred even when all the frequencies are available.

however there is no closed form solution for kML, the ML estimator of k. The estimator 

kML is defined as the solution, in z, to the equation

of the frequencies n*. In market research it is difficult to obtain these frequencies either
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Generalized moment based estimators. Moment based estimation methods were con

sidered by Anscombe (1950), as an alternative to ML estimators, on the basis that the 

ML estimator for k required the solution of the ‘tedious’ equation given by Eq. (2.1.2). 

The increase in computational power today makes the difficulty of solving an equation 

such as Eq. (2.1.2) obsolete. However, as discussed above, there are situations in which 

moment based estimators may still be preferred to ML estimators.

The estimation of the parameter pair (m, k) requires the choice of two sample 

moments. A natural choice for the first moment is the sample mean x  which is both 

an efficient and an unbiased estimator for the parameter m. An additional moment is 

then required to estimate k. Denote this moment by /  =  T Xwli f i x d- The estimator 

for k  is obtained by equating the sample moment /  to its expected value E /(X ) , with 

m  replaced by m =  x, and solving the corresponding equation /  =  E f ( X )  for k.

Anscombe (1950) considered various statistics f j  =  T  YliLi f j ( x i) f°r the estimation 

of k  and these functions are shown in Table 2.2. In Table 2.2 the function I [x=0] 

denotes the indicator function of the event x  =  0 so that I[x=o\ = 1 if x  =  0 and 

/ |x=0] =  0 otherwise. Note tha t Ja = jj ^ 1 depends on an additional param eter c 

(c >  0, c ^  1). If c =  0, then defining ( f l =  1 if xi = 0 and ( f l =  0 if £/ ^  0, it is clear 

tha t f 4 =  J2 and the two moment based estimation methods become equivalent.

f ( x )____________________

f i (x )  = x 2 

y^^) ^  [̂1=0]

M x ) = x+T

f 4(x) = <? ( c > 0 , c ^ l )

x

E / ( * ) __________

m(m +  1) +  x

- k
m (k —1)

k - 1

(1 + ^ )
m

E /(X )  =  /

Z2 _  j_
N  2 s l = 1 x l

X
1 + X /

—  —  _L _ _ 1
- 1 )  N  1^1= 1  1 +

& = i- c
c  N  2^1= 1  c i

X b E £ i * iN

Table 2.2: Moments and moment estimators for the NBD
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Method name f M ) k Estimator or equation for k

Method of moments (MOM) A M icM O M
X2

x 2 —x 2 —x

Zero term method (ZTM) M x ) k Z T M p ~ o = ( i + f r
Factorial method (FM) M x ) K u *(-„ -  ,(/-!) I1 U J 2
Power method (PM) M x ) k

P M ( c )
C *  _  ( i  +  * 1 2 z £ l )

Table 2.3: Moment based estimators for the NBD parameter k

The estim ator for m  is always x  irrespective of the additional function f j  (x) chosen 

for estimating the parameter pair (m , k ). Anscombe (1950) proved that if f ( x )  is any 

integrable convex or concave function on the non-negative integers then E f ( X )  with m  

substituted by x  is a monotone function in k. Estimating the parameter k by solving 

the equation /  =  E f { X )  will therefore have at most one solution.

Table 2.3 shows the moment based estimators for k, denoted by k , for the different 

functions f j{x)  presented in Table 2.2. Although an explicit formula exists for kMOM, no 

analytical solution exists for kZTM, kFM or kPM{c). Since there is at most one solution for 

kZTM, kFM and kpM(c), these estimators may be obtained by using numerical algorithms 

to solve the corresponding equations given in Table 2.3 for z. Note tha t the PM 

estimator for k  is equal to the ZTM estimator if the additional PM parameter c = 0 

and tends to the MOM estimator as c —► 1.

For each estimation method in Table 2.3 and the ML method there is, for any m  > 0 

and k > 0, a positive but small probability th a t the estimator for k will be negative even 

though the sample may be NBD. For the MOM it is clear tha t k MOM is negative when 

x 2 — x 2 <x .  For the PM, the estimator kPM{c) is negative when cx  < exp(—x (l — c)). 

In literature (see e.g. Anscombe (1950); Ehrenberg (1988)) it is common to set k = oo 

whenever a negative estimate for k is obtained; however the setting of k = oo is not 

fully justified in the literature. This topic is investigated further in Section 3.3.2.
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2.1.3 Efficiency o f estim ators

The variances of the ML estimators are the minimum possible asymptotic (as A —>oo) 

variances attainable in the class of all asymptotically normal estimators and therefore 

provide a lower bound for the asymptotic variance of moment based estimators. Fisher 

(1941) and Haldane (1941) independently derived an expression for the asymptotic 

covariance m atrix for the ML estimators by taking the inverse of the Fisher information 

matrix. The asymptotic variance of the moment based estimators and asymptotic 

covariances between moment based estimators for (m, k) were derived by Anscombe 

(1950) using the so-called (5-method (see e.g. Serfling (1980), Chapter 3).

Maximum likelihood estimators. The asymptotic normalized variances of m  and k are

lim Ar Var(m)  =  A;a(l +  a), (2.1.3)
N —k x )

=  J ™ , N  Var =
2 k(k  +  l)(a  +  1)‘

n2 ( l  j .  O V °° (-9 -  V_1 J!r(fc+2) \a ^  f  z 2^j= 2 \ a+i) (j+i)r(k+j+i) J

where a =  m / k .  Using the inverse of the Fisher information matrix, the asymptotic

normalized covariance between the estimators is lim;v-+oo N  Cov(m, kML) = 0 and hence

the ML estimators are asymptotically uncorrelated.

Generalized moment based estimators. The asymptotic normalized variance of m  = x  

is given by Eq. (2.1.3). The asymptotic normalized variance for general moment based 

estimators of k for a given function /(•)  is

E f \ X )  -  [Ef ( X ) Y  -  ( m +  f )  [& E f ( X )]2 
lim N  Var ( k ) =  ------------------------------- i  5— -̂----------------- .

N~*° K J [ m ® f ( x )}2

Using the (5-method the asymptotic normalized covariance between moment based es

tim ators rh and k is lim^v—oo AT Cov(x, k) = 0.
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The asymptotic normalized variances of k M O M  > Z T M and k

jlim TVVar
TV—»ooM O M

2A:(/c+l)(a+l)2

V Z T M  ( ^ T m |

^ « ( C) =  ( L m<«,)

Z T M

(a+l)**2 — (a+1)2 — /ca(a+l) 
[(a+1) lo g (a + l)-a ]2

(1+ a  — ac2) kr2k+2 — r 2 — ka( a+l ) ( l  — c)2 
[r log(r) — r +  l ]2

where r  =  1 +  a — ac. The asymptotic normalized variance of kFM is difficult to 

express explicitly and for an expression of the variance see Anscombe (1950, p. 369). 

Since, amongst the class of moment based estimators considered, the estimator for m  

is the same and the asymptotic covariance between the estimators of k and m  is zero, 

the most efficient estimation method is determined by the method that minimizes the 

variance of k.

The efficiency of estimating k, relative to ML, using the MOM and ZTM was plotted 

by Anscombe (1950) over the parameter space 0.04 ^  m  ^  400 and 0.1 ^  k  ^  100. A 

comparison of the efficiencies of the MOM, ZTM, PM and FM estimators was made, 

although no contours of the efficiency of the PM and FM estimators were plotted. 

Anscombe (1950) noted tha t the PM and FM estimators are nowhere uniformly more 

efficient than the more efficient of the MOM and ZTM estimators.

Fig. 2.2(a) shows ZTM estimates for NBD parameters when fitting the NBD to the 

number of purchases made by households for 46 different categories and the top 50 

brands within each category. The estimator kZTM < 3 for all the products considered. 

For large values of k  the Poisson distribution serves as a very good approximation to 

the NBD. Since this thesis is primarily concerned with market research data, and the 

Poisson distribution serves as a good approximation for the NBD for large values of k , 

this thesis will be primarily concerned with estimation of NBD parameters in areas of 

the parameter space which is of practical importance in market research.
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Figure 2.2: (a) ZTM estimators for NBD parameters when fitting the NBD to 46 categories and the 50 top brands within each category
for consumer purchases. Data courtesy of ACNielsen BASES, (b) Contour levels of the efficiency of FM (rUL/vF„), MOM (vML/vMOM),
PM at c = 0.5 (i\ iL/vrM(0.5)) and ZTM (uA,L/vZTJW) estimators relative to ML.
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Fig. 2.2(b) shows contour levels of the efficiency for the FM , MOM, PM at c =  0.5 

and ZTM estimators relative to the ML estimator. It is clear from Fig. 2.2(b) that 

Anscombe’s statem ent concerning the inefficiency of the PM and FM methods is clearly 

untrue. For example, in the case m  =  5 and k =  1, it is easy to compute tha t the 

efficiencies for the FM, MOM, PM at c =  0.5 and ZTM, relative to ML, are 0.96, 

0.56, 0.97 and 0.71 respectively. The FM and PM at c =  0.5 methods are clearly more 

efficient than the MOM and ZTM methods for the parameters m  = 5 and k = 1. 

Choosing the more efficient estimator amongst the MOM and ZTM estimators was 

suggested by Anscombe (1950); this method still only achieves 73% efficiency with 

respect to the PM estimator at c =  0.5 in the case m  = 5 and k = 1.

Anscombe (1950) noted that the PM estimator is equivalent to the ZTM estimator 

when c = 0 and tends to the MOM estimator as c —► 1. The PM estimator therefore 

generalizes both the MOM and ZTM estimators. Fig. 2.2(b), therefore, in effect shows 

the efficiency levels of the PM estimator computed at c =  0 (ZTM), c =  0.5 (PM (0.5)) 

and c =  1 (MOM). For each value of c, it appears tha t the PM is efficient in different 

regions of the parameter space. This raises the question as to whether there exists an 

optimum value of c for each pair of NBD parameters (m, k) and how efficient the PM 

estimator would be when computed using the optimum value of c.

The MOM and ZTM estimators are, nevertheless, much simpler to implement in 

practice as the statistics required (namely the mean, variance and number of zero 

events) for estimation are either regularly collected or easy to compute. The ZTM is 

especially popular since the number of zero buyers can be computed in various ways, 

this includes either i) direct calculation of zero buyers from raw data if the size of the 

population is known or ii) estimation of zero buyers from consumer surveys or by the 

use of supermarket retail data.
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2.2 A sym ptotic properties o f a general estim ator

Section 2.1 considered the asymptotic distribution of maximum likelihood estimators 

and a class of moment based estimators called power method estimators. The power 

method estimators include the case of method of moments and zero term method 

estimators. This section considers the asymptotic distribution of a general class of 

estimators for a vector of parameters 0 = (0i , . . . ,  0d)T where the estimators satisfy the 

equation G{{0, /<) =  0 (i =  1 , . . . ,  d), using d statistics /*, with Gi(0 , /*) =  E / j ( f ; 0 ) —fi. 

The covariance m atrix of the limiting normal distribution of the estimators is derived. 

The construction of the limiting normal distribution of the estimator of 0  satisfying 

the general equation Gi(0,  /*) =  0 with Gi(0,  /*) =  E/j(C; 0) — fi is useful in th a t the 

limiting distribution for estimators of any combination of parameters can be derived.

In the case of the NBD, for example, the joint distribution of the vector of pa

rameters ( m , k MOM, k PM(c),kZTM)T may be derived. When considering the estima

tion of parameters from a process, the general scheme of estimation allows the joint 

distribution of estimators computed in different time intervals to be derived. Take, 

for example, a negative binomial process where the distribution of events over differ

ent time intervals is NBD. Using the general methodology discussed in this section, 

it is possible to derive the limiting normal distribution of the vector of parameters 

( ^ ( c ) ,  k^ ( c) , . . . ,  kplfic))7 , where k^M(c) is the PM(c) estimator for k computed in 

the i ’th  time interval.

The results of this section are a particular case of the results on M- and Z-estimators 

as noted in van der Vaart (1998, Chapters 3-5). This section considers the possibility 

of applying these results in the case where the distribution is discrete and in particular 

negative binomially distributed.
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2.2.1 General m ethod  o f estim ation

Let £ be a random variable taking values in some set Z  and let £ have probability 

mass function p(z; 0), z  E Z ,  where 0  =  (0\ , . . . ,  0d)T (d >  1) is a vector of parameters 

taking values in some set 0 C R d with non-empty interior in t(0 ). Define the vector 

/  =  ( /i ,  • • •, fd)T € lRd such that : Z  x Q —► R (i =  1 , . . . ,  of) are some functions 

which are smooth enough and possibly depend on 0. Let { z i , . . .  , z ^ }  be a sample 

of values of C and set /  =  ( / i , . . . ,  f d)T E R d with }{ =  -L 0)- Finally,

assume th a t E /j =  E /,(C ;0); which is indeed true in the case where the sample is 

i.i.d. and also true in the case where are observed values indexed by

time obtained from an ergodic time series. A general estimator 0 = (0i , . . .  ,0d)T for 

0* = (0J, . . . ,  0j)T E int(©), the true parameter values of the sampling distribution, is 

then defined to be the solution to the equations

Gi{9,f l) = 0 t =  l , . . . , d ,  (2.2.1)

where Gi{0 , / ,)  = E/i(C; *) ~  /*■

Example 2.2.1. f i (z ;0)  = a  log (p(z\0))/d0i  implying E/<(C;0) =  0,

Example 2.2.2. f i (z ;0)  = fi(z)  so tha t the functions fi do not depend on 0,

Example 2.2.3. f i ( z ;0 ) =  zl implying E fi((' ,0) = EC,

Note tha t the system of Eqs. (2.2.1) may be represented in vector form as

G ( 0 , / )  =  (C M *, A )  G d(0 , Td))T =  0 . (2 .2 .2 )

For each i, the Gi(0,  /*) may be represented as <3,(0, fi) =  9i(zh *) =  9u where

gi(z, 0) =  E/i(C; 0) -  fi(z\ 0).
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2.2.2 A sym ptotic norm ality of estim ators

The following theorem summarizes the multivariate version of the so-called 6-method 

(see e.g. Serfling (1980, Chapter 3)) and the implicit function theorem (see e.g. 

Schwartz (1967)). The results can also be found in van der Vaart (1998, Chapters 3-5).

Theorem 2.2.1. Assume that the function G  is invertible as a function of 0 in some 

neighbourhood o f (0 * ,E /)  and let 0 be the solution of G ( 0 , f )  = 0 . Assume that 

E \dgi ( ( ,0 ) /8 0 j \ < oo fo r  a l l i , j .  Additionally, assume that the estimator 0 is a consis

tent estimator o f 0  and y / N ( f  — K f )  is asymptotically normally distributed Af(0, B /) ,  

where B /  =  E( /  -  E/ ) ( /  -  Ef ) T = ||Cov(/j(C; 0), /j(C; 9))\\fj = l . Then as N  -> oo,

' /N ib  -  0*) 4  N{0,  V  (B / )  V T) (2.2.3)

Pwhere =*► is convergent in distribution and

dG (0, f )
V  = lim

N-* oo 80 6=0* J

-1
(2.2.4)

Proof According to the weak law of large numbers as N  —► oo, /  —► E/  in probability 

and for any 0  there exists the weak limit

limN—+00

which is a non-random matrix.

9 G (0 , f )
= lim

90 N—>oo
1 N

1=1

9gi(zi,0)
ae,

Since G  is invertible as a function of 0 in the neighbourhood of (0*,E / ) ,  for N  

large enough the inverse ( exists in the neighbourhood of 0*. Using the firstV de J
order Taylor expansion Eq. (2.2.2) is approximated by

G { 0 J ) ^ G { 0 * J )  +
dG (0, f )

80
(0 - 0*) =  0 . (2.2.5)

0 = 0 *

According to the well known 6-method (see e.g. Serfling (1980)) the asymptotic dis

tribution of 0  is the same as the asymptotic distribution of 0 , which is the solution to
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Eq. (2.2.5). Solving Eq. (2.2.5) we obtain

r - » . W
6 = 6 '

The asymptotic distribution of y/N(0  — 0*) can be related to the asymptotic dis

tribution of y/NG(0*,  f )  using Slutsky’s theorem which allows the replacement of

dG(0,  f )
with V  =

0= 0 *

lim
N -*  o o do 0= 0 *.

and we obtain th a t the asymptotic distributions of y / N (0—0* ) and v ( V N G { 0 ' , f i j  

coincide. Note tha t y / N ( f  —E f )  =  y / N G ( 0 , / )  and therefore y /NG(0,  f )  is asymptot

ically normally distributed Af(0 ,0 / ) .  This implies tha t \ f N ( 0  — 0*) is asymptotically 

normally distributed M ( 0, V ( O f ) V T). □

2.2.3 Exam ples o f estim ation  m ethods

Example 2.2.4. Maximum likelihood. The functions are of the form f i ( z \0 )  = 

d\og(p(z; O))/d0i (i =  1, . . . ,  d) so th a t E /i =  E f i ( ( ;0 )  =  0 and

D / = E Wi  logp^ ; logp^ ; ^ = m ,

V - 1 =  -  lim
N —> OO W 3 h f ^ ^ ogp{z i ' e)

J 1 = 1

= — lim
N — > o o

d2
log p(zr,0)N  f -  dOjdOii=i J

where 1(0) is the Fisher information matrix. The covariance m atrix of the maximum 

likelihood estimators is therefore D0 =  I (0)~l I (0) I (0 )~l =  I (0)~l .

E x am p le  2.2.5. G en e ra l m e th o d  o f m o m en ts . The functions fi  are of the form 

f i ( z , 0) = f i(z) (i =  1, . . . ,  d) so tha t the functions fi do not depend on the unknown 

parameters 0. This implies

d E f (  C)
P / = ||Cov(/i (C ),/j (C))ll and V ~ l = dO

E x a m p le  2 .2 .6 . S ta n d a rd  m e th o d  o f m o m en ts: f i ( z ,0)  =  z1 (i = 1, . . . ,  d) im

plying D /  =  ||ECt+J — ECE£J ||.
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2.3 N egative binom ial processes

The aim of this section is to provide a concise description of two negative binomial 

processes, namely the gamma Poisson process and the negative binomial first-order 

autoregressive process. The derivation of these processes are im portant when studying 

the statistical properties of estimators computed from data generated by these pro

cesses. Practical examples where these processes have been used in literature are also 

presented.

This section begins with some definitions im portant in the studying of stochas

tic processes. Section 2.3.2 then defines the gamma Poisson process while Section

2.3.3 defines negative binomial first-order autoregressive processes or in short the NBD 

INAR(l) processes.

2.3.1 D efinitions and notation

A stochastic process {A'(t) : t G T } is a set of random variables indexed by time t. 

In this thesis, only stochastic processes where X( t )  takes values on the non-negative 

integers and the set T  =  [0, oo) or T  =  {0 ,1, 2 , . . . }  will be considered. In the case 

T  =  [0, oo), {A (t) : t € T} is a continuous time stochastic process and in the case 

T  =  {0,1, 2, . . .},  {X (t) : t G T} is a discrete time stochastic process.

Let X  =  (X { t \ ) , . . . ,  A (tn)) be a vector of time indexed random variables and let 

x  =  ( s i , . . .  , x n) be a vector of non-negative integers then the distributional proper

ties of a non-negative integer-valued stochastic process {A (t) : t G T}, with T  =  

{ t i , . . .  , t n}, are defined by its finite-dimensional distributions (f.d.d.’s)

¥ ( X  = x ) = P ( X ( ^ )  =  x i , . . . ,  X ( t n) = x n) n = 1 ,2 , . . .  .
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H om ogeneity and stationarity

A process is called homogenous in space if the f.d.d.’s are invariant under shifts in 

the state space. A process is called homogenous in time or strictly stationary if the 

f.d.d.’s are invariant under shifts in time i.e. if the process {X( t )  : t € T}, with 

T  =  { t i , . . . ,  tn} satisfies

P ( X ( t i )  =  x i , . . . , X ( t n) = x n) = P(X (*i + h) = x i , . . . , X ( t n + h) = x n)

for all n =  1, 2 , 3 , . . .  and h > 0. A process is called weakly stationary if E X  (t \ ) =  K X (t2) 

and Cov ( X ( t \ ) , X ( t 2)) = Cov (X( t i  +  h), X ( t 2 +  h)) for all t i , t 2 and h > 0. A process 

homogenous in both space and time is simply known as a homogenous process.

Types of processes

Renewal processes. Let T0 =  0, Tn = W\ +  W2 +  . . .  +  Wn (n ^  1) and let Wi 

(i — be i.i.d. non-negative random variables, then a renewal process Z  =

{Z(t )  : t G T} is the process defined by Z(t) = max{n : Tn ^  t}.

Autoregressive processes. A process X  (t ) is said to be an autoregressive process of the

order r if the process satisfies

r

X (t ) =  ^   ̂ct iX(t — i) +  £i 
i=1

where =  1, . . .  , r  are constants and et forms a sequence of uncorrelated random 

variables.

Markov processes. A  process is called a Markov process if, given U ^  ti+i (i =  1 , . . . ,  n), 

P (X (*n) = x n\X(t i )  = x u . . . , X ( t n- i )  = x n- 1) = F ( X ( t n) = x n\X( tn_i) =  xn_i) .
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2.3.2 T he gam m a Poisson process

The gamma Poisson process is a count process that falls into the class of immigration, 

birth and death processes or mixed Poisson processes. The class of mixed Poisson 

processes has been thoroughly studied by Lundberg (1964) and Grandell (1997). Some 

im portant results on mixed Poisson processes will now be presented.

M ixed Poisson processes

Let Z  =  (Z ( t i ), Z (t2), • • •, Z( tn)) be a random vector with 0 =  tQ ^  t\ ^  ^  tn

representing an increasing sequence of time points, let x  = (x\, x2, . . . ,  x n) be a vector 

of non-negative integers with 0 =  xq ^  x\  ^  . . .  x n and let A > 0 be the intensity of a 

process, then given the multivariate Poisson distribution

P ( Z  = x \A  = A) =  n  exp (-A (t<+1 -  U)), (2.3.1)
i=0 \x i+1 x i)-

the mixed Poisson process is consequently defined as a process {Z(t)  : t G {£1, £2> • • • »^n}} 

whose f.d.d.’ s are

roc
P ( Z  =  x ) =  /  P ( Z  =  x|A  =  \ ) d U A{\-,0). (2.3.2)

J  o-

Here Ua ( \ ; 0 ), commonly known as the structure distribution, is the distribution func

tion for the random variable A with support (0, oo) and 0  is a vector of unknown 

parameters. Grandell (1997, p. 27) noted that any distribution for A, with support on 

the interval (0, oo), that is infinitely divisible may be used for £/a(A;0). [A random 

variable A is said to be infinitely divisible (see e.g. Feller (1966, p. 176)) if and only 

if A can be represented as the sum of n  independent random variables with identical 

distribution function Un for every n .] Note that the mixed Poisson process conditioned 

upon A =  A, so that the value of A is fixed, is simply a pure Poisson process with 

stationary and independent increments whose f.d.d.’s are given by Eq. (2.3.1).
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The gamma Poisson process. The gamma Poisson process is a mixed Poisson process 

whose structure distribution U\(X]0)  is the gamma distribution with probability den

sity function

g(A; a, k) = a > 0, A: >  0, A > 0.

The f.d.d. of the gamma Poisson process is the multivariate NBD with probabilities 

P  (Z  =  *) =  j T  ( n  exp (-A  (tm  -  u ) ) \  <?( A; a, k) dX

r (k + x n ) f y r  (tj+1 -  tj)Xi+' x> \ ax"
F (fc) \r=o (x < + i - x>)' )  ( l  + atn)x'‘+k '

The one dimensional distribution of the process is the NBD with probabilities

' ^ ’ " ' - w l r T s s H T T k ) '  ' - 0 ' 1' 2   < 2 3 ■', ,

Note that the gamma Poisson process is homogenous neither in time nor space since the 

f.d.d. of the process may not be represented as a function of tj+1 —tj (j = 0, . . . ,  n — 1) 

nor Xj+i — Xj (j = 0, . . . ,  n — 1) respectively.

Birth and immigration processes

For any t ^  0 and h > 0, let x t be a non-negative integer with x t+h ^  x t and let 

Xxt(t) ^  0 for any x t , then an immigration, birth and death process {Z(t)  : t G [0, oo)} 

is a process such that

1)Z(0) =  0 and Z ( t ) ^ Z ( t  + h)\

2) F ( Z ( t + h ) - Z ( t )  =  x t+h- x t \Z(s)  =  x s, Z(t)  =  x t)

= ¥ ( Z ( t + h )  — Z{t)  =  x t+h — Xt\Z(t) = x t) for 0 < s < t;

3 )P  ( Z { t + h ) - Z ( t )  = x t+h- x t \Z(t) = x t) =<
f l - \ Xt(t)h+o{h), \ i x t+h- x t  = Q 
Xxt(t)h +  o(h), if x t+h — x t = 1 .

if xt+h- x t  > 1



Chapter 2 27

It is clear from these properties tha t the birth and immigration process is also a Markov 

process. Property 3) is called the transition probability and defines the distributional 

behavior of the count process Z(t).

The gamma Poisson process. The gamma Poisson process may be characterized within 

the class of birth and death processes (see e.g. Grandell (1997, p. 62)) as having the 

intensity

fn° °  \ Xt+1e ~ xtf ( \ ) d \  a (k  +  x t )
K M  =  E < W O I Z W  =  *> =  =  1 + ^ t  ■

The m ixed Poisson process for consumer buying behavior.

The analysis of modeling consumer buying behavior using the gamma Poisson process 

was originally considered by Ehrenberg (1988). Consumer purchase occasions represent 

the rate of recurrence with which households purchase products. Let (zi ( t i ) , . . . ,  zi(tn)} 

represent the number of purchase occasions for household I up to times {£i,£2, • • •, tn} 

and let zi(0) =  0 (i.e. there are zero purchases at time zero for household /). Assume 

that the purchasing process of a household follows a Poisson process with mean A/ over 

a unit time interval. The distribution of purchases for a fixed household is then given 

by Eq. (2.3.1).

If the intensity A/ varies between individuals so that A/ has the distribution function 

U a ( X ’, 0 )  then, for fixed time points { t i , . . . , £ n}> t h e  number of purchase occasions 

{zi{t\ ) , . . . ,  zi(tn)} for a random household follows the mixed Poisson distribution given 

by Eq. (2.3.2). It is assumed tha t purchasing across households are independent events. 

The mixed Poisson process, when A1 is gamma distributed, was applied to consumer 

buying behavior by many authors (see e.g. Goodhardt et al. (1984); Ehrenberg (1988)).
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2.3.3 N egative binom ial first-order autoregressive processes

First-order autoregressive integer-valued processes, or INAR(l) processes, were inde

pendently constructed by McKenzie (1986, 1988) and Al-Osh and Alzaid (1987) in 

an effort to introduce a discrete-valued process analogous to the continuous valued 

first-order autoregressive, or AR(1), process with a stationary marginal distribution.

The AR(1) process and self-decomposability. The AR(1) process is a Markov process. 

Let 7r  denote the marginal distribution of the process { X t’, t  G  Z} and let X n be a 

random variable with distribution 7r, then the AR(1) process is a discrete time process 

X t th a t satisfies

Xt  = &Xt-1 +  €f

Here X t~i and et are mutually independent random variables from a continuous dis

tribution, et is a sequence of uncorrelated random variables for t 6 Z and the value of 

a  satisfies a  € (0 ,1). Here =  means equivalence in distribution. The existence of an 

A R(1) process with a stationary marginal distribution requires self-decomposability of 

the marginal distribution such tha t its characteristic function (f>x„ (t ) = Eeltx* satisfies 

the equation

<t>xM = (<*<)&(<; a ) a  G  (0,1), t G  R, (2.3.5)

where <p£(t\a)  = Eett£ is the characteristic function of e depending on a. Steutel and 

van Harn (1979) noted that the construction of discrete valued A R(1) processes is made 

difficult by the fact no non-degenerate discrete random variable satisfies Eq. (2.3.5). 

In response, they presented a discrete analogue of self-decomposability that allows the 

construction of discrete-valued process that resembles the AR(1) processes.
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Discrete self-decomposability. A non-negative integer-valued random variable X  is said 

to be discrete self-decomposable (see Steutel and van Harn (1979)) if for every a  G (0,1) 

the random variable X  can be written as

X  = a ° X  + X a. (2.3.6)

Here the random variables a  o X  and X a are independent. The ‘o’ operator is called

the thinning operator and a  o X  is defined as

x
a o X ^ ^ U j ,  (2.3.7)

j  =1

where the Uj  are i.i.d. Bernoulli random variables with P { U j  =  1 )  =  a  and P ( U j  =

0) =  1 — a.  Note tha t the random variable a  o X  conditioned upon X  = x  follows

a binomial distribution with mean x a  and variance xa(  1 — a).  Using this definition 

of a  o X  the probability generating function (PGF) of the random variable a  o X  is 

G aox{c)  =  G x( l  — ot +  ac) and Eq. (2.3.6) may therefore be expressed as

Gx (c) =  Gx ( 1 -  a  +  ac)GXa(c) (2.3.8)

where GxQ(s) is the PGF of X a.

The INAR(l) process. Al-Osh and Alzaid (1987) and McKenzie (1988) defined a non

negative integer-valued process { X t, t  € Z} to be an INAR(l) process if the process 

satisfies the equation

X t = a  O X ,- !  + et , (2.3.9)

where a  o X t~i and et are mutually independent discrete random variables and the 

Et form a sequence of uncorrelated random variables for t G Z. The value of a  must

satisfy a  G (0,1) for the process to be stationary. It is assumed that the X t and et

have finite means and variances.
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The INAR(l) process X t with marginal distribution 7r will have a stationary marginal

T> T)distribution, i.e. X t = X t~\ =  X * for all t G  Z, if and only if the random variable X n 

is discrete self-decomposable and satisfies Eq. (2.3.8) so that

G x M  = G x A 1 - a  + Q!s)G£(s;a) a  G  (0,1). (2.3.10)

The autocorrelation function of an INAR(l) process was derived by both Al-Osh 

and Alzaid (1987) and McKenzie (1988). Due to the discrete self-decomposability of 

the IN A R(l) process, implying stationarity, the autocorrelation function only depends 

on the time interval between events and is in fact identical to the autocorrelation 

function of an AR(1) process. Let X t be an INAR(l) process with finite first and 

second moments then the autocorrelation function at lag u is given by

„rv v  \ E(Xt  — E X t) (X t+u — E X t+u) | | / o o i i \p{Xu X t+U) = -------- = = = = = ------- =  p{u) =  a 1 u G  Z. (2.3.11)
x/V ar(A t)Var(Af+u)

Further developments o f discrete valued processes. McKenzie (1986, 1988) has consid

ered integer-valued autoregressive (INAR) and moving-average (INMA) processes with 

Poisson and NBD marginal distributions. The INAR(l) process has been generalized 

to the INAR(p) process by Al-Osh and Alzaid (1990) and Du and Li (1991). Both 

authors discuss similarities and differences between the INAR(p) and AR(p) processes. 

Du and Li (1991), in particular, show that the INAR(p) process is ergodic. Latour 

(1997, 1998) generalizes the INAR(p) process by allowing a general thinning operator, 

similar to Eq. (2.3.7), where the Bernoulli random variables in the thinning operation 

are substituted by any non-negative integer-valued random variables with finite mean 

and variance. Methods of estimation have so far only utilized the methods described 

by Al-Osh and Alzaid (1987). The problem of estimation will be discussed in more 

detail in Section 2.4.2. In this thesis only the INAR(l) process will be considered.
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Negative binomial first-order autoregressive processes

Two different negative binomial first-order autoregressive processes will now be intro

duced. These processes were constructed by McKenzie (1986) as discrete analogues to 

gamma autoregressive processes. The processes differ in tha t a NBD INAR(l) process 

can be constructed by considering a , the thinning parameter, as either deterministic 

or stochastic.

The N B D  IN A R (l)  process w ith deterministic thinning

The first NBD INAR(l) process obtained by McKenzie (1986) was derived by consid

ering the standard form of the IN A R(l) process defined by Eq. (2.3.9) with a  fixed. 

Note that if the process X t has a NBD(m, k) marginal distribution then X n is discrete 

self-decomposable since the PGF of X n can be written in the form of Eq. (2.3.10) with

G x„ (c)  G x w( l - a + a c )  G e(c; a)

The generating function of the error distribution, Ge(c;a),  presented in this equation 

is indeed a well defined PGF. McKenzie (1986) noted that the PGF of the et was 

of an obscure form and did not specify the distribution of the errors. A method for 

generating a random variable from the distribution of eti however, was presented, since 

it was shown tha t the errors could be represented in the form of a compound Poisson 

process given by

p
et = ^ ( a y‘) o Yi a  € (0 ,1 ) .  (2.3.13)

J =1

Here P  is Poisson distributed with mean —k log a , the Ui are uniformly distributed on 

(0,1) and the Y* are NBD(m/k,  1) random variables. The random variables N , Ui and 

Yi, i —  1 , 2 , . . . ,  N  are all independent of each other.
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The N B D  IN A R (l)  process w ith stochastic thinning

As an alternative to the NBD INAR(l) process with deterministic thinning, McKenzie 

(1986) proposed a process whereby the errors also have a NBD distribution. Assume 

tha t there exists a non-negative integer-valued autoregressive process X t with i.i.d. 

stochastic thinning parameters A t supported on the interval (0,1), then the INAR(l) 

process with stochastic thinning is defined by

Xt  = At  o X t ~i +  £ti (2.3.14)

where for fixed t the A t, X t~\ and et are independent random variables. If the process 

X t defined by Eq. (2.3.14) is to be a stationary process then the PGF of X n must 

satisfy

GxAc) =  [  GxA 1 ~ y  +  yc)dFA{y)G£(c] a ), (2.3.15)
Jo

where Fa {v ) is the cumulative distribution function (c.d.f.) of A t.

McKenzie (1986) derived a stationary NBD INAR(l) process with stochastic thin

ning by letting X t be NBD(m, k ) and letting A t follow a Beta distribution defined by

y l~l ( l  — y ) ^ ~ *

B( l , k  -  I) ’ 1 > ° ’ k ~ l >  ° ’ ° < V < 1’

where B(p,q)  = T(p)r (q) /T(p  +  q) is the beta function. The NBD INAR(l) process

with stochastic thinning can be represented in terms of Eq. (2.3.15) by

Gx * (c )  f  G Xl, { \ - y + y c ) d F A {y) Ge (c; a)

The generating function of the error distribution may be represented in the form

G£(C; Q) = ^  +  ^ 1 - V f c ) ( i - C) y ^ >

from which it becomes clear that the errors are NBD(m (l — l / k ) , k  — /).
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Long-range dependent processes

A process is often said to be long-range dependent or have long-memory if the process 

has non-summable correlations or if the spectral density has a pole at the origin. There 

are various statistical definitions of long-memory and they are not all equivalent. A 

thorough review on long-range dependence has been made by Beran (1994) and more 

recently by Doukhan, Oppenheim, and Taqqu (2003).

Barndorff-Nielsen (1998) constructed a stationary long-memory normal-inverse Gau

ssian (NIG) process in continuous time by the superposition (or aggregation) of short- 

memory Ornstein-Uhlenbeck type processes with NIG marginal distributions. For suit

able parameters of the individual short-memory NIG processes, each with the same 

autocovariance function, the aggregated process was shown to have long-memory with 

autocovariance function of the form

R(u)  ~  L(u)u~2̂ ~ h \  H e ( 0 .5 ,1), u G K as u —* oo, (2.3.16)

where H  is the long-memory (or Hurst) parameter and L(u ) is a slowly varying function.

In particular, a stationary process X t has long memory, if there exist constants 

H € (0.5,1) and cp > 0 such that the correlation function p(u) of the process X t 

satisfies

lim p{u) /  \cp u2H~2] = 1.
u—+oo J

If the above condition is satisfied then H is called the Hurst parameter. Alternatively, a 

stationary process X t has long memory, if for some « € (0,1) and c/ > 0, the spectral 

density /(A) of X t satisfies

lim /(A )/ [ c , |A r ]  =  1.
A — » o o
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2.4 F itting negative binomial processes

This section reviews well known methods of fitting the negative binomial processes con

sidered in Section 2.3. Methods of fitting these processes have often relied on fitting 

the marginal distribution to data. Since there are different processes with negative bi

nomial marginal distributions, an adequate fit of the NBD to data provides only partial 

indication about the adequacy of the process. Methods of fitting the gamma Poisson 

process and INAR(l) processes are discussed in sections 2.4.1 and 2.4.2 respectively.

2.4.1 F ittin g  th e gam m a Poisson process

The gamma Poisson process has the feature tha t the one-dimensional marginal distri

bution of the process is NBD whose parameter parameter k remains constant in time 

and whose mean m  increases linearly with time. Here m  and k are parameters of the 

NBD for a unit time interval. In literature the fit of the gamma Poisson process has 

mainly focussed on fitting the one-dimensional marginal distribution to the data  (see 

Greenwood and Yule (1920); Lundberg (1964); Grandell (1997)). In the work of Ehren

berg (1988), however, a more detailed investigation into the adequacy of the gamma 

Poisson process as a model for consumer buying behavior is presented.

Using household panel data Ehrenberg (1988) verified that consumer purchase occa

sions could be successfully modeled by the gamma Poisson process. Consumer purchase 

occasions represent the rate of recurrence with which households purchase products. 

An advantage of panel data is that multiple realizations of the gamma Poisson process 

are observed. In the case of market research, when collecting household panel data, 

the number of purchases are recorded for many customers over a specific time period. 

Each customer, therefore, has their own realization and this information can be used 

to test adequacy of the gamma Poisson process.
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Ehrenberg (1988) tested the adequacy of the gamma Poisson process by fitting 

the NBD to observed data  over time intervals of different length and comparing the 

observed and expected frequencies of consumer purchase occasions. In addition Ehren

berg (1988) considered the behavior of various repeat buying measures commonly used 

in market research. Ehrenberg (1988) used the multivariate NBD (Eq. (2.3.3)) to con

sider how repeat buying measures associate between two non-overlapping time intervals 

and compared the theoretical and observed patterns.

A description of repeat buying measures follows. The repeat buying measures 

considered by Ehrenberg (1988) are then described under the heading of single-period 

repeat buying theory and multi-period repeat buying theory. Single-period repeat 

buying theory considers how repeat buying measures develop as time increases whereas 

multi-period repeat buying theory considers the relationship between repeat buying 

measures in different time intervals.

Repeat buying measures

The single-period repeat buying measures are functionals of the one-dimensional margin

al distribution that have a natural interpretation in the field of market research. As

sume, for simplicity, that the marginal distribution is NBD. These measures are often 

estimated in practice by using intuitive methods where probabilities are replaced by 

observed proportions. Such estimators may, however, be biased. Let A  be a random 

variable from the NBD and let px denote the probabilities of the NBD.

Penetration. The simplest measure of consumer buying behavior is the penetration 

of a product, which represents the probability that an individual makes at least one 

purchase in a given time period. The penetration is defined by

b = l - p 0, 0 < 6 < 1 .  (2.4.1)
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When estimating the NBD parameters by the zero term method, popular in the field of 

market research, the penetration is estimated by the frequency of non-zero buyers. In 

practice, estimation of penetration using the zero term method can cause problems due 

to the ambiguity in the definition of a zero buyer; indeed it is difficult to distinguish 

between zero buyers who are potential buyers and zero buyers who will never purchase 

the product in their lifetime.

Purchase frequency. The purchase frequency of an item represents the mean number 

of purchase occasions of the population who purchase an item at least once in the 

analysis period. The purchase frequency w is

772
w = E ( X \ X  ^  1) =  J , T O  1. (2.4.2)

Measured repeat. The r-th  (r =  1 ,2 ,3 , . . . )  measured repeat of a product represents 

the proportion of households who bought a product at least r  +  1 times out of those 

households who bought the product at least r  times. Theoretically, the r-th  measured 

repeat is

Repeats per repeater. The r-th  (r =  1,2 ,3, . . . )  repeats per repeater of a product 

represents the mean purchase frequency of the households who bought a product at 

least r  + 1  times. The mean purchase frequency is usually shifted by the value r  so that 

the minimum possible purchase frequency is always one. The r-th  theoretical repeats 

per repeater is
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Single-period repeat buying

In single-period repeat buying analysis the length of time, t > 0, over which data  is

analyzed may be taken to be variable. Equation (2.3.4) showed the one-dimensional

measures as a function of time can therefore be easily obtained. Let X ( t ) be a random 

variable from the gamma Poisson process observed over a time interval of length t and 

let px denote the probabilities of the NBD as given by Eq. (2.3.4).

Penetration. The penetration b(t) as a function of time is

The penetration is a non-linear non-decreasing function of t as t increases. Since no 

purchases may be made at time intervals of length t = 0 units, we have 6(0) =  0. At 

time t =  oo the penetration 6(oo) =  1 and the model presumes tha t given an infinite 

amount of time the whole population will make at least one purchase of the item.

Purchase frequency. The purchase frequency w(t)  is

distribution of the gamma Poisson process as a function of time. The repeat buying

b(t) = 1 -  P (X (t) =  0) =  1 -  (1 +  at)~k 0 <  bit) sj 1. (2.4.5)

(2.4.6)

As a function of time w(t)  is a strictly increasing function.

Measured repeat. The measured repeat is

(2.4.7)

Repests per repeater. The theoretical repeats per repeater is

E ( X ( t ) - r \ X ( t ) > r  + l) =
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M ulti-period repeat buying

In the analysis of multi-period repeat buying, Ehrenberg (1988) considered the asso

ciation between market measures in two different non-overlapping time intervals. The 

association is made simply by using the two-dimensional distribution of the gamma 

Poisson process which can be obtained from Eq. (2.3.3). Although the time intervals 

do not necessarily have to be of equal length, Ehrenberg (1988) mainly considered 

equal length time periods due to the simplification in theoretical formulae.

Ehrenberg (1988) considered how market measures for purchases in the combination 

of two non-overlapping intervals relate to market measures for purchases in two different 

time-periods of equal length. Since the time-periods are of equal length, the NBD 

parameters are identical in each of the two individual time periods. Therefore, without 

loss of generality, it may be assumed th a t purchases follow the NBDa(a, k) distribution 

in each of the individual time periods.

Penetration in two equal length time-periods. Let br denote the probability that a con

sumer buys in both periods and let consumer buying behavior follow a gamma Poisson 

process such that purchases are NBDa(a, k) in the two individual time-periods of equal 

length, then

br = 1 — 2(1 -f a) k -j- ( i -j- 2a)

Note that br is not equivalent to the penetration in the two combined periods and 

the representation used by Ehrenberg (1988) can be therefore be misleading. The 

probability that a consumer buys in only one of the two intervals is bn = b — br where 

b = 1 — (1 -I- a)~k and b is the penetration in an individual time period. Ehrenberg 

(1988) used bn to check frequencies of new buyers tha t did not purchase in the first 

time period but did purchase in the second time period.
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Purchase frequency in two equal length time-periods. The mean purchase frequency, wr, 

of consumers that purchase in both periods is

wr = br/ m r, where m r = m  ( l — (1 +  a )_fc_1)

and the mean purchase frequency, wn of consumers that purchase in only one period is

wn = bn/ m n, where m n = m (l +  a)_/c_1.

Conditional trend analysis

To consider a more detailed fit of the gamma Poisson process to data Ehrenberg (1988)

considered the use of “conditional trend analysis” . Here, two consecutive periods are

taken and the distribution of purchases in the second period are analyzed conditional

upon the number of purchases observed in the first time period.

Let the distribution of purchases for a random individual in the first time interval be

NBDa(a, k). Ehrenberg (1988) noted tha t given y purchases are made in the first time

interval, the probability mass function of purchases made in the second time interval,

on the assumption of time intervals of equal length, is

td> l ?(+ \ l r/ f + \ \ T ( f c  + y  +  x)  f l  +  2 a \  k̂+v  ̂ (  a \  xP (Z( t2) =  x \Z(t l ) = y ) =  r {k  + y)xt j  j  * =  0 , 1 ,2 ........

which is the NBDa(a /( l  +  a), k +  y) distribution.

The observed and expected market measures in the second period can be compared 

conditional upon the observed frequency of purchases in the first period. The market 

measures in the second period, conditional upon the fact that y purchases are made in 

the first period are given by Eqs. (2.4.2)-(2.4.4) with the parameter pair (a, k) in these 

formulae replaced by the parameter pair (a /( l  +  a), k  +  y). For example, let by and wy 

represent the conditional measures then
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2.4.2 F itting  the IN A R (l)  process

The fitting of the INAR(l) process was first considered by Al-Osh and Alzaid (1987) 

in the case when the marginal distribution of the process is Poisson distributed. The 

model was fit to da ta  simulated from an INAR(l) process. In practice, the Poisson 

INAR(l) process has been applied by Franke and Seligmann (1993) and Silva and 

Oliveira (2005) in the case of epileptic seizure counts employing the methods described 

by Al-Osh and Alzaid (1987). The INAR model has also been applied by Gourieroux 

and Jasiak (2004) in the case of car insurance claims.

Al-Osh and Alzaid (1987) proposed to determine the adequacy of the INAR(l) 

process by verifying that the empirical autocorrelation function has the equivalent 

theoretical form

. . E( Xf  — EXt)(Xt+u — EXt-i-u) . . | | 7 / \
p( Xt, X t+U) = ■-  y  -=L\. r- - . — =  p{u) = a |u|, u e  Z. 2.4.9

v/V ar(X 1)Var(X(+„)

Since the autocorrelation function of the INAR(l) process is identical to the auto

correlation function of the AR(1) process, the problem of estimating a  has been well 

documented (see e.g. Brockwell and Davis (2002)). On estimating the parameter a , 

the problem is then reduced to that of estimating the parameters of the marginal 

distribution of the process.

In addition, Al-Osh and Alzaid (1987) considered the problem of estimating the 

mean parameter A of the Poisson INAR(l) process using three different types of esti

mators. The first two types of estimators, called the Yule-Walker estimator and the 

conditional least squares estimator, use moment based methods and are asymptotically 

equivalent (see Freeland and McCabe (2005)). The third method of estimation uses 

the maximum likelihood approach. It will be assumed tha t (aq, x 2, . . . ,  x N) is a sample 

of size N  from an INAR(l) process X t.
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Yule-Walker estimators The Yule-Walker method estimates parameters of a time series 

by equating the theoretical autocorrelation function to the empirical autocorrelation 

function. The autocorrelation function of an INAR(l) process is given by p(u) = 

qIuI, u G Z. The parameter a  of the INAR(l) process may therefore be estimated by 

the equation

P M  =  &“ =  “  6 Z. (2-4-10)

where x — YltLo x t • Note tha t multiple estimates for a  may be obtained using different 

values of the lag u. Using the properties of the thinning operator, the expected value 

of the errors is E[£t] =  E[Yf] — aEfXt-x]. The estimated value of o, denoted by d, may 

therefore be used to obtain estimates for the observations of the uncorrelated errors 

by computing et — ~  a x t~\ for t = 1 , 2 ,N .  The distribution of the errors may

then be used to estimate the distributional parameters of the process. In the case of

the Poisson INAR(l) process with thinning parameter a  and X ^  having mean A, the 

value of A is estimated by A =  S t l i  bi

conditional least squares estimators The conditional least squares estimators are de

rived by minimizing the sum of squares of X t conditioned upon the value of X t~\. The 

estimators for an INAR(l) process are therefore derived by minimizing the function

N  N  N

£  ( X t - a X ^ - E M ) 2 =  £  -  a )E [X t] f .
t= 2 t—2 t= 2

with respect to a  and the distributional parameters. The parameter estimates for the 

Poisson INAR(l) process are

£ £ W « - * b i ( £ £ 2* t E £ U * « -i)  - i  "  \a  = ------------------------------   -5----   and A =  — > x t -  a y  x t_i .

The conditional least squares estimators and the Yule-Walker estimators, at u = 1, are 

asymptotically equivalent for the Poisson INAR(l) process.
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Conditional maximum likelihood estimators The conditional maximum likelihood esti

mators are obtained by maximizing the likelihood function given an initial value X\ 

for the sample. Let x  =  (xi, x 2, . . . ,  be an observed sample from an INAR(l) 

process and let 0  be the set of parameters for the INAR(l) process then the likelihood 

function is

N
L(x; 0 ) =  P(X! =  x O j J l P W  =  =  * t-i)

t—2 
N

= P(X i =  Xi) j j p  (a O Xt - 1  + £t = Xt)
t=2
N min(xt,xt-i)yv / v

=  P (X 1 = x 1) J J  J 2  ( x t-i  j a r (i _  Q.)I,- 1_rp(g( =  xt — r). (2.4.11)
t—2 r—0 V r  /

Denote F( Xt = x t \Xt- i  = x t~\) = PXt-i,xt (t ~  then Al-Osh and Alzaid (1987) 

defined the conditional maximum likelihood function, given the value of x \ } to be

N  N  min(xt , 2 i - i )  , v

L (x |*i; 6 ) =  n p *.-..*.(< —1-0 =  1 1  E  ( X(_1 jQ r ( l —a )I '_1_rP(et =  x t — r).
t= 2 t= 2 r=0 \  r  /

(2.4.12)

Al-Osh and Alzaid (1987) used a method described by Sprott (1983) to maximize the 

conditional maximum likelihood function for a sample generated by a Poisson INAR(l) 

process. The conditional maximum likelihood function for a Poisson INAR(l) process 

with thinning parameter a  and EpCr] =  A is

N  min(xt,x t—l) —Afl—q) \ \ x t — t /  \

‘ W - i i  » > - n  g  5----------------------------------------------------------------- (2.4.13)

Sprott (1983) noted that with the computational power available it is possible to 

numerically maximize the likelihood function. Brannass (1994) noted that maximum 

likelihood estimation for the NBD INAR(l) model is difficult due to the complex form 

of the maximum likelihood equations even in the case of an i.i.d. NBD sample (i.e. in 

the case a  = 0).
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Chapter sum m ary and discussion

Negative binomial processes have been used as models in fields such as accident prone

ness, accidents and sickness, market research, risk theory and more recently in clinical 

trials. This thesis concentrates on the efficient fitting of the NBD and negative binomial 

processes to observed data, with application to market research data in mind.

Fitting the NBD. The NBD can be parameterized in numerous ways and the first 

problem in the estimation of NBD parameters is the choice of parameters to be esti

mated. The NBD parameters all have a one-to-one relationship and it therefore suffices 

to estimate just one of the parameter pairs. Since parameter estimates of m  and k are 

asymptotically uncorrelated for natural moment based estimators and maximum likeli

hood estimators (m is the mean and k is the shape parameter of the NBD), estimation 

in literature has justifiably focussed on the estimation of (m, k).

In practice, maximum likelihood estimators are difficult to implement and, depend

ing upon the NBD parameter values, the standard moment based estimators currently 

used can be inefficient. Chapter 3 will investigate problems related to the efficient 

estimation of NBD parameters using moment based estimators for i.i.d. NBD samples.

Parameter estimation in the case when the sample follows the INAR(l) processes 

has been considered by Al-Osh and Alzaid (1987). The methods suggested by Al-Osh 

and Alzaid (1987) require estimating the moments of the error distribution. The error 

distribution in the case of the NBD INAR(l) process is complex. The INAR(l) process 

is an ergodic process. It should therefore be possible to equate moments of a single 

observed realization to the moments of the stationary distribution in order to estimate 

parameters of the process. Chapter 3 will also consider efficient estimation of NBD 

parameters for NBD INAR(l) samples.
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Negative binomial processes. Numerous negative binomial processes have been consid

ered in literature. These include the gamma Poisson process, which falls into the class 

of mixed Poisson processes, and the negative binomial INAR(l) process, which falls 

into the class of integer-valued first-order autoregressive processes. The two classes 

of processes mentioned have the common feature that the marginal distribution of 

the process is negative binomial. Chapter 4 will deal with statistical inference for the 

gamma Poisson process and the negative binomial INAR(l) process. The two processes 

will be considered separately as they both come from different families of processes (the 

families of renewal processes and autoregressive processes respectively).

Ehrenberg (1988) has considered the goodness of fit of the gamma Poisson process 

to consumer buying data by empirically comparing various market research measures 

computed over varying time intervals. The gamma Poisson process is not an ergodic 

process. In the case of market research, however, multiple realizations of the process 

are observed thus enabling valid statistical inference to be made from data  generated by 

the gamma Poisson process. Chapter 4 will consider statistical inference of the gamma 

Poisson process by investigating the joint asymptotic distribution of various statistics or 

estimators computed from data generated in different time intervals. The methodology 

discussed in Section 2.2 will be used to compute that asymptotic distribution of the 

statistical pairs.

The most common method of statistical inference of autoregressive processes is to 

consider the autocorrelation function of the time series (time domain analysis) or to 

consider the spectral density of the process (frequency domain analysis). Long-range 

dependence has been of great interest in literature (see e.g. Beran (1994); Doukhan et 

al. (2003)). Chapter 4 will consider developing the NBD INAR(l) models by extend

ing the NBD INAR(l) models to NBD INAR(l) models with long-range dependence.
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Developing discrete-valued time series models with long-range dependence will provide 

possible models for integer-valued data observing long-range dependence.

Application to market research data. Chapter 5 will analyze market research data  and 

assess suitability of the gamma Poisson process and the NBD INAR(l) process to the 

market research data  kindly provided by ACNielsen BASES. Ehrenberg (1988) has 

empirically verified goodness of fit of the gamma Poisson process to consumer buying 

behavior through the use of the Chi-squared test statistic and empirically compared 

observed and expected values of numerous market research measures. In this chapter 

the goodness of fit of the gamma Poisson process will be verified by using the tradi

tional Chi-squared technique as well as the statistical inference procedures developed 

in Chapter 3 and Chapter 4.



Chapter 3 

The power m ethod for estim ating  
parameters of the NBD

This chapter investigates the efficiency of the power method (PM) estimator for in

dependent and dependent INAR(l) samples and considers the implementation of PM 

estimators in practice. Section 3.1 investigates the efficiency of PM estimators for 

i.i.d. NBD samples. Section 3.2 investigates the PM for estimating NBD parameters 

from NBD INAR(l) samples. Finally, Section 3.3 considers the implementation of PM 

estimators in practice.

Only estimation of the NBD parameter pair (m, k) will be considered since maxi

mum likelihood (ML) estimators and all natural moment based estimators for (ra, k) 

are asymptotically uncorrelated given an i.i.d. NBD sample. For dependent samples, 

the parameter pair (m, k) is no longer uncorrelated due to dependence in sample obser

vations. Nevertheless, the parameter pair (ra, k ), as opposed to other parameter pairs, 

will be considered for simplicity.

The choice of an optimum estimation method in this thesis is determined by the 

method whose estimators minimize the determinant of the covariance matrix. The 

covariance matrix of the ML estimators provides a lower bound for the covariance 

m atrix of all asymptotically normal, and hence moment based, estimators.

46
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3.1 Efficient m om ent estim ators for i.i.d. sam ples

Anscombe (1950) proved th a t the ML estimator and all natural moment based es

timators for the parameter pair (m,k) ,  when estimating from i.i.d. NBD samples, 

are asymptotically uncorrelated so tha t limiv_>00 Cov(ra, k ) =  0. The parameter m  

is always efficiently estimated by m  = x  for both ML and moment based estimation 

methods. The most efficient moment based method of estimation for parameters of 

an i.i.d. NBD sample is therefore determined by the method whose estimator for k 

achieves the lowest asymptotic variance. The asymptotic normalized variance for the 

ML estimator of k  is

l- a t  \ r  ( i  \  2 k ( k  +  l)(a +  l ) 2 .
«« l =  llm N  Var ( kML) = — 7-------- — —-----— i ilr/k.2) \  . (3-1-1)N —*oo \  /  2 11 _L O V ^ °°  (  a 1 j!r(fc+2) \

a  ^  t -  ^  2 ^ = 2  \ a + l )  ( j + l ) T ( k + j + l ) )

where a — m/ k .  This variance vML is a lower bound for the asymptotic normalized 

variance of all asymptotically normal estimators.

The asymptotic normalized variances for the method of moments (MOM), zero 

term method (ZTM) and power method (PM) estimators of k  are

UMOM =  l J i ^ W Var(k » l’» )  =  2fc*t + a / a + ^  1 (3 1 -2>

w w  -  j a . ™ .  ( K . „ )  -  » M )

where r  =  1 +  a — ac. The variance of k  for the factorial method is difficult to express

explicitly; an expression of the variance is given in Anscombe (1950, p. 369).

Behavior of the ML estim ator for k

Before investigating the efficiency of the PM estimator, the limits of the efficiency 

levels of moment based estimators is considered by considering the behavior of the 

asymptotic normalized variance of the ML estimator for k.
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Figure 3.1: Contour levels of (a) vML and (b) y / v^ l / k .

Fig. 3.1(a) shows contour levels of the asymptotic normalized variance, vML, for kML. 

It is clear that vML increases as k  —> oo and the NBD converges to the Poisson dis

tribution. For large values of k, the Poisson distribution is a good approximation to 

the NBD and the probabilities of the NBD will therefore be dominated by the mean 

m  of the distribution; in such cases, the probabilities of the NBD will be insensitive to 

changes in the value of k.

Fig. 3.1(b) shows contour levels of the coefficient of variation yJvML/ k , thereby 

indicating areas of the NBD parameter space where estimation of k is difficult even 

for ML. Assume th a t k  is fixed but m  is allowed to vary, then Fig. 3.1(b) indicates that 

a smaller m  would require larger sample sizes in comparison to a large m  in order to 

obtain a fixed precision of the ML estimator for k.

In consideration of the results shown in Fig. 3.1 and the fact that in the practice 

of market research large values of k appear to be rarely observed (see e.g. Fig. 2.2(a) 

where no products with kZTM > 3 were observed), it seems sensible to concentrate on 

efficient estimation of parameters in areas of the parameter space where k < 3.
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3.1.1 Efficiency o f th e  M O M /Z T M  estim ator

The MOM and ZTM estimators are commonly used in practice for the estimation of 

NBD parameters given i.i.d. NBD samples. These estimators, however, achieve low 

efficiency levels in certain regions of the NBD parameter space when compared to 

ML. Fig. 3.2(a) shows the efficiency of the MOM/ZTM estimator, the more efficient 

method amongst the MOM and ZTM estimators relative to the ML estimator, given by 

vml, /  m n̂{uMOM> vztm }• The green and red shading in the figure respectively represents 

areas where the MOM and ZTM are the more efficient in comparison to each another.

Fig. 3.2(b) shows ZTM estimates of the NBD parameters for 46 different categories 

and the top 50 brands within each category with data courteously provided by AC- 

Nielsen BASES. Fig. 3.2(b) indicates that the NBD parameters for numerous products 

are inefficiently estimated, with efficiency levels sometimes reaching below 70% when 

compared to ML. In the practice of market research, where MOM and ZTM estimators 

axe commonly used, parameter estimates for large values of m  and small values of k 

may be inefficient.

W _______________  w
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Figure 3.2: (a) Efficiency of the more efficient amongst the MOM and ZTM estimator 
K i / minK ojw .% M }) (b) Contour levels of vML/m\n{vMOM, vZTMj together with ZTM 
estimators for NBD parameters when fitting the NBD to the top 50 brands in each category 
and 46 categories in consumer buying behavior. Data courtesy of ACNielsen BASES.
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3.1 .2  Efficiency o f th e  pow er m eth od  estim ator

The computation of the PM estimator for k depends on an additional parameter c; the 

PM estimator is equal to the ZTM estimator if c =  0 and tends to the MOM estimator 

as c —♦ 1. Fig. 2.2(a) showed contour levels of the efficiency of the MOM, ZTM and 

PM(0.5) estimators in the (ra, k) parameter space. All three methods of estimation 

achieved high levels of efficiency in different regions of the NBD parameter space. This 

raises the question as to whether efficient estimators can be obtained by choosing an 

appropriate value of c depending upon the parameters (m, k).

Denote the PM estimator for k computed at c as the PM(c) estimator. Fig. 3.3 

shows the relative asymptotic efficiency, vPM(c)/vML, of the PM(c) estimators for k 

with respect to the ML estimator for k for different parameter values (m , k ). The 

values of the efficiency are plotted against the power method parameter c € (0, 1). 

Note that vPM(0) = vZTM and vPM(l) =  Fig. 3.3 shows that there exists a range

of values of c* such that vPM(c*) < min{vZTM,vMOM}.

1.137

ZTM MOM

00 02 04 08

4.0

ZTM

04 0602

C 6
7Ti =  0.5 m =  2

Figure 3.3: vPM(c)/vML versus c for different parameter values (m,k).
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Note that for these cases there exists a single optimum c,

Co =  argmince(01)t>PM(c), (3.1.5)

where vPM(c0) /v ML «  1, so that the PM(c0) estimator is almost as efficient as the 

ML estimator for k. The proof that a single optimum c exists for all NBD parameter 

values requires proving the convexity of the function vPM(c) in c. The complex form 

of the function vPM(c), however, makes it difficult to prove that the function is indeed 

a convex function. An attem pt to prove the convexity of the function vPM(c) was 

unfortunately unsuccessful.

In ad m issa b ility  o f th e  M O M /Z T M

The inadmissability of the MOM and ZTM estimators is now proven in that there 

always exists a c € (0,1) such that vPM(c) < min{vZTM,v MOM} for all NBD parameter 

values. The proof basically relies on the fact that vPM(c) is a continuous function for 

c € [0, 1] and that the gradient of vPM(c) < 0 at c =  0 and the gradient of vPM(c) > 0 

at c =  1 for all NBD parameter values.

T h e o re m  3.1.1. (Savani &; Zhigljavsky, 2006) The M O M /ZTM  estimator is inadmis

sible in the class o f PM  estimators in the following sense: for any fixed m  and k there 

exists c„  with 0 <  c. < 1, such that vPM(c,) < m m {vZTU,v„ OM}, where vMOM, vZTU 

and vPM(-) are the normalized asymptotic variances of k as defined in Eqs. (3.1.2), 

(3.1.3) and (3.1.4) fo r the MOM, ZTM  and PM  respectively.

Proof Let m  and k be fixed and set a = m /k . Note tha t 0 < a, k, m  < oo.

i) Inadmissability o f MOM. A Taylor expansion of vPM(c) in the neighborhood of 

c =  1 gives

_ c) +  o ((1 - c). ) . 0 , 1.
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In view of (3.1.2) this implies uPAf(l) =  vMOM. Additionally, the derivative of vPM(c) at 

c =  1 is
8k{k +  l ) ( l  d* a )"

, 3ac=  1dc

which is strictly positive for all m  and k. Hence, there always exists d  such that 

0 <  d  <  1 and vpJ d )  < vPU(l) = vMOM.

ii) Inadmissability of  ZTM.  A Taylor expansion of vPM(c) in the neighborhood of 

c =  0 gives
/■tai (/-A

+  O (c2) , c —> 0. (3.1.6)
, \ /„. 9vpp,(c)

*W(c) =  «p„(0) +  c
d c  c=0

Equation (3.1.3) and (3.1.4) directly imply tha t vPM(0) = vZTM. The derivative of 

vPM (c) at c =  0 can be written as

9vPU(c)
dc

— o ( , ^ ( 1 + a )  [^ (l+ a )lo g (l+ a)-a (A ;+ l)]+ a(A ;+ l)-A ;lo g (H -a ) 
c=o  al j ( ( l+ a ) lo g ( l+ a ) - a )3

2a(a d- 1) [A; log(l +  a)]
E ^ l o g ^ a ) ^ ), (3.1.7)[/i(a)]3 log(l +  a) j ^ 2 j

where h(d) =  (1 +  a) log(l +  a) -  a and hj(a) = [(j -  I )a d -  j] log(l +  a) -  aj. The 

infinite series in (3.1.7) is derived by a Taylor expansion of (1 +  a)k (at k =  0) in the

numerator. Lemma 3.1.1 implies th a t h(a) > 0 and hj(a) > 0 for all a > 0 and all

j  ^  2. All the terms in the infinite series in (3.1.7) are therefore positive for all k and 

a. This implies first, tha t the series is absolutely convergent for all k and a and second, 

that the derivative (3.1.7) is negative for all k and a. Hence, there always exists c" 

such that 0 < c" < 1 and vPM(c") < vPM($) =  vZTM.

Let d  and d' be particular values as above. Define

f d  if u ^  v
c* = \ „ 7c z™ Z  MOM (3.1.8)

(  C V Z T M  ^  ^ M O M

then we obviously have vPM(c+) < min{uZTM, vMOM}. □
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Lem m a 3.1.1. The functions

h(a) =  (1 4- a) log(l 4- a) — a and hj(a) = [(j — l)a +  j] log(l 4- a) -  aj 

are positive for all a > 0 and j  ^ 2.

Proof We have h(0) =  0 and /i'(a) =  log(l4-a) > 0  for all a > 0 ,  implying that h(a)> 0  

for all a > 0. Similarly, for all j  ^ 2 we have hj(0) =  0 and h'-(a) =  (j — 2) log(l4-a) 4- 

/ i(a ) /( l4-a) > 0 for all a > 0, implying that h j(a )> 0 for all a >0  and j  ^  2. □

Efficiency o f th e  PM (c„) e s tim a to r

Consider the PM estimator computed at cQ =  ajgmincG(01)?;PM(c). It is difficult to ex

press c0 analytically since the solution, with respect to c, of the equation dvPM (c)/dc =  0 

is intractable. Fig. 3.3 showed, for various values of the NBD parameters (m , k ), that 

the function vPM (c) is a convex function in c. If the function vPM (c) is a convex func

tion in c for all parameter values, then the equation dvPM(c)/dc =  0 may be solved 

numerically to compute the optimum value of c.

to
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(a) Contour levels for cc (b) vUL/ v p u (c0)

Figure 3.4: Optimum values of the power method parameter c and efficiency of the 
power method estimator computed at optimum c for all admissible values of NBD 
parameters.
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Fig. 3.4(a) shows contour levels of cQ within the NBD parameter space. The contour 

levels are plotted from values of cQ obtained by numerical minimization of vPM (c) for 

a fine grid of values of b and w' < —b/ log(l — b). The fact that the contour lines vary 

smoothly over the parameter space indicate no erratic jumps in the value of cQ and 

therefore that the function vPM (c) may well have only one minimum.

Note that c —> 0 as b —>0, in this case the probability of observing a zero event 

tends to one; the ZTM is therefore asymptotically efficient when the NBD is degenerate. 

Furthermore, c —> 1 as k —> oo; the MOM is therefore asymptotically efficient when 

the NBD converges to the Poisson distribution. The asymptotic efficiency vML/ v PM(c0) 

is shown in Fig. 3.4(b). The PM(c0) estimator achieves an efficiency of greater than 

0.96 for the majority of the (6, u/)-param eter space.

3.1.3 A pproxim ating optim um  c

Fig. 3.3 showed that there is a range of values c* such that vPM(c+) < min{uZTM, vMOM}. 

Moreover, for the parameter values shown in Fig. 3.3, the function vPM(c) appears to 

be a smooth and convex function in c. Approximations to the value of cQ should 

therefore provide efficient NBD estimators for the parameter k. Although the level of 

efficiency will be reduced for the PM estimator computed at an approximated c0, using 

approximations to cQ will have the advantage of being simple in that the estimators do 

not require the solution of dvPM(c)/dc =  0 in c to compute cG.

Two different types of approximations will be considered. Set approximations re

quire collection of the statistics cx  =  cXi f°r fixed values of c belonging to

some set A ; this method is a generalization of the MOM/ZTM method suggested by 

Anscombe (1950). Alternatively, approximations of cQ can be obtained using regression 

methods.
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S et ap p ro x im a tio n s  for cQ

In the computation of the combined MOM/ZTM estimator for k , the more efficient 

estimator amongst the MOM and ZTM estimator is chosen. The MOM/ZTM estimator 

can therefore be thought of as a PM estimator computed at an approximated cQ by 

choosing the value of c G {0, 1} such that vPM(c) =  min{vPM(0), vPM(l)}.

A generalization of the MOM/ZTM estimator is achieved by extending the set of 

possible values of c such that vPM (c) is minimized. Denote by A  the set of values of c 

tha t will be used to approximate c0, then the value of c0 is approximated by cA such that 

cA = argminceAvPM(c). Fig. 3.5 shows the asymptotic efficiency of vPM(c0) /v PM(cA), 

where c^ =  argmince^vPM(c), for the combined MOM/ZTM estimator (A =  {0 ,1}) and 

two different sets A =  {0, l}  and A — {0, §, | ,  l} .

Fig. 3.5(a) shows that the asymptotic normalized efficiency of the MOM/ZTM esti

mator relative to the PM(c0) estimator lies in the interval (0,1) for all parameter values 

of the NBD. This indicates that the PM(c0) estimator is always more efficient than the 

MOM/ZTM estimator. Areas of red shading represents regions where vZTM < vMOM 

and areas of green shading represents regions where vMOM < vZTM. Asymptotically the 

MOM/ZTM estimator becomes efficient in the following sense: if either m  or a = m / k  

is fixed then vML/ v MOM —► 1 as /c —► oo and vML/ v ZTM —> 1 as k —» 0. The com

bined MOM/ZTM estimator can have efficiency levels as low as 0.7 and below when 

compared to the PM(c0) estimator.

Fig. 3.5(b) and Fig. 3.5(c) show tha t extending the set A  improves the efficiency 

of the estimation method. These estimators are just as simple as the combined 

MOM/ZTM estimator, apart from the fact that the collection of extra statistics cx  = 

jj YliLi ^  f°r aN c€  A  is required. It is clear that greater efficiency levels can be ob

tained by further extending the set A  at the expense of computing additional statistics.



Figure 3.5: Contour levels for v p m ( c0 ) / v p m ( c a ) where c a
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argminceAuPAf (c) for the sets (a) A  =  {0,1}, (b) A = {0, l}  and
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R egression  app rox im ations for cQ

The value of cQ is obtained by numerical minimization of vPM(c). Using knowledge of 

these numerical values over the whole parameter space, regression techniques can be 

used to obtain an approximation for cQ. Note that the values of cQ are a continuous 

function of the parameter space {b,w'). The regression approximation is obtained as 

follows. For a grid of values of w' € (0,1) a regression equation of the form cB = 

0o{w')b +  0\{w')b2 is obtained. The coefficients 0o{w') and 0\(w’) are then plotted 

against w' and regression is used to obtain the coefficients 0o{w') and 0\(w').

Fig. 3.6(a) shows values of cG, depicted by the ‘+ ’ symbol, plotted against b for 

different values of fixed w' together with a quadratic regression approximation given 

by cB = Po(w')b +  0\(w')b2 fitted using the ordinary least squares method. The R2 

value for the regression is approximately 0.998 for each fixed value of w' indicating a 

good fit for the approximation. Fig. 3.6(b) shows that the efficiency of the PM(c^) 

estimator is very close to the efficiency of the PM(c0) estimator.

(a) (b)

Figure 3.6: (a) Quadratic regression: cB =  0o(w')b + 0\{w')b2 to approximate values 
of c0 (+) for fixed values of w' and (b) contour levels of vPM{c0) /vPM{cB).
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(a) „ (b)
+  + + Po + + + P i  A)   Pi

Figure 3.7: (a) Po and Pi versus w' where Pq and p \ are the regression coefficients in 
Cb =  A)(w')5 +  p\(w')b2. (b) Values of Pq and /?i approximated by Pq =  0.4206 +  
0.8065u/ — 2.9790u/2 +  3.644u/3 and Pi =  0.509 — 1.6594u/ +  4.3075U/2 respectively.

Fig. 3.7 shows the regression coefficients P q ( w ' )  and Pi(w') plotted against w'. Both 

regression coefficients are continuous functions of w' for w' £ (0,1). For 0 < w' < 0.6 

the values of Pq and pi behave like cubic and quadratic functions of w' respectively. 

For 0.6 < w' < 1 the values of Pq and Pi increase at an exponential rate as w' increases. 

The values of Pq and pi are now regressed for values of w' £ (0,0.6]. The choice of 

restricting the interval of regression to 0 < w' < 0.6 is arbitrary. It will be shown that 

even with this restriction, an efficient estimator can still be obtained.

Fig. 3.7(b) shows the coefficients P q ( w ' )  and Pi(w’) approximated by regressing on 

values of w' £ (0,0.6]. The values of P q { w ' )  and Pi{w') for w' > 0.6 are then computed 

by extrapolating from the fitted regression models. The approximated values of cD, 

denoted by c^, are shown in Fig. 3.8(a). The values of lie in the interval (0,1) for 

all parameter values of the NBD. The efficiency of the PM(cg) estimator for k with 

respect to the PM(c0) estimator is shown in Fig. 3.8(b). The efficiency is at least 0.99 

(white contour) for the majority of the (5, u/)-parameter space.
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Figure 3.8: (a) Cq and (b) vPM(c0) /vPM(c&) where c& = (30b + /3\b2 with fio = 0.4206 +  
0.8065u/ -  2.9790ft/2 +  3.644ft/3 and f t  =  0.509 -  1.6594w' +  4.3075ft/2.

S ensitiv ity  of efficiency to  changes in  c

All of the results shown in Section 3.1.3 indicate that efficient NBD estimators for the 

parameter k can be obtained by using the PM estimator computed at a suitable value 

of c. The PM(c0) estimator, where cQ =  argminc€(01)ftPM(c), is required to obtain the 

most efficient PM estimator. The value of cQ can be approximated extremely well by 

using regression techniques. Using the regression technique mentioned in Section 3.1.3 

a negligible loss of efficiency is seen for the majority of NBD parameter values. Finally, 

a much simpler approximation can be made by the use of set approximations to cQ. 

The loss of efficiency for set approximations depends on the set A.

The approximations have the advantage that they do not require the solution of 

dvPM(c)/dc = 0 in c to compute cQ. The fact that different approximations of cQ exist, 

to give highly efficient PM estimators relative to the PM(c0) estimator, show the in

sensitive nature of the PM(c) estimator to small changes in c. This insensitive nature 

is important when implementing the PM estimator to efficiently estimate k in the case, 

as in practice, when the NBD parameters are unknown (see Section 3.3.1).
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3.2 M om ent estim ators for N B D  IN A R (l) samples

This section considers the problem of parameter estimation given a NBD INAR(l) 

sample with deterministic thinning. The estimation of the parameter a  is well docu

mented in literature (see e.g. Brockwell and Davis (2002)) and our primary concern is 

in estimating the distributional parameters; a  will therefore assumed to be known.

3.2.1 Standard IN A R (l)  estim ators

The moment based estimators and the maximum likelihood estimators considered by 

Al-Osh and Alzaid (1987) use the distribution of the errors for the INAR(l) process. Al

though the probability generating function of the errors for the NBD INAR(l) process 

is known (see McKenzie (1986)), the distribution was never written down explicitly.

Proposition 3.2.1. Let X t be a NBD IN A R (l)  process with thinning parameter a  and 

marginal distribution N B D (m ,k), then £* has a negative-binomial geometric distribu

tion, N B D -G (k ,k /(k + m a ),a ) with probability mass function

x  =  0, 1 . . .  .

Proof Note that the generating function of the errors can be written as

=  (  f c + m ( l - c )  \ ~ k k ( k a + m a ( l - c ) \ ~ k k (  f c ( l - a )

£ \ / c + r a a ( l  — c ) )  \  f c + m a ( l - c )  )  \  k + m a ( l  — c ) j

=  Q* ( i - ( i - Q ) ( - ^ U i - - ^ cy iy \  (3.2.i)
y  \ A ;  +  r a a : /  y  k + m a  J  I

This is of the form of the generating function of the negative-binomial geometric NBD- 

G (p,i/,0) distribution (see Wimmer and Altmann (1990, pp. 459-460)) given by

G(c) = e* (1 -  (1 -  9)i/(l -  (1 -  ^ c ) - 1) ' ^ .

Here 0 < i/ ^  1, O < 0 ^ 1  and p >  0. □
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The negative-binomial geometric distribution is a compound Poisson distribution 

in direct agreement with the result by McKenzie (1986) (see Eq. 2.3.13). Note that the 

generating function of et can be written in the form Ge(c) =  exp{A (G^c)  — 1)} with

A =  —feloga and G,(c) =  (lo g a )"1 log ^ l - ( l - a )  ( ^ )  ( l - ^  c )  j .

Here G^(c) is the generating function of the logarithmic-geometric distribution (see 

Wimmer and Altmann (1990, pp. 388-389)) with

m = = f '  (j +* -  iN\ { k V  ( ma y  a - o ) * ,
\  x J  \ k + m a  J  \ k + m a  )  —k loga

Generating random variables from the negative-binomial geometric NBD-G(/i, v, 9) is

made simple by the fact that the distribution is equivalent to the NBDp(ẑ , r) distri

bution where r is itself a random variable with a NBDp(0, m ) distribution. The errors 

therefore have the distribution

The maximum likelihood estimator. Let x  =  ( x i ,  X 2 , . . . ,  %n ) be an observed sample 

from an INAR(l) process and let 0  be the set of parameters for the INAR(l) process 

then the likelihood function is

N  m in (x i,x i_ i) . v

L(x; 0 )  =  P(A:1 = x 1) J ]  - a ) Xt- ' - rn s t = x t - r ) .  (3.2.3)
t= 2 r=0 V r /

The likelihood function for the NBD INAR(l) process requires the distribution of 

errors, i.e. the negative binomial geometric distribution. Since the likelihood function 

is complex, it is difficult to obtain the Fisher information matrix and hence analytically 

analyze the efficiency of moment based estimators with respect to maximum likelihood 

estimators.
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Nevertheless, parameter estimates from an NBD INAR(l) sample can be obtained 

by maximizing the likelihood function using global optimization algorithms. Simulation 

results will therefore provide some indication as to the efficiency of moment based 

methods of estimation with respect to maximum likelihood estimation. These results 

are shown in Section 3.3.

Standard INAR(l) moment based estimators. For the standard INAR(l) moment based 

estimators considered by Al-Osh and Alzaid (1987), the thinning parameter a  is esti

mated from the autocorrelation function of the INAR(l) process. (The same method 

is applied in the case of estimating the corresponding parameter for continuous AR(1) 

processes.) Since the autocorrelation function of the INAR(l) process is identical to 

tha t of the AR(1) process, the problem of estimating a  is well documented in many 

textbooks (see e.g. (Brockwell &; Davis, 2002)). Once a  is estimated by d, Al-Osh 

and Alzaid obtain a sequence of estimators i t using the equation et = x t — a x t- \ .  

Note that the £t are no longer integer-valued although the distribution of et is discrete. 

Standard moment based estimation methods are then used to estimate the parameters 

of the marginal distribution of the error process. The distribution of the errors for the 

NBD INAR(l) process is not simple and this makes inference about the estimators of 

(m, k) difficult.

Since the INAR(l) process is a stationary and ergodic process (see e.g. Du and 

Li (1991)), the expected value of the sample moments for an observed realization are 

equivalent to the expected value of the sample moments of the stationary distribution. 

It therefore seems reasonable to use the moments of the observed realization to estimate 

the distributional parameters of the process; in this way the method will not need to 

use the complex structure of the distribution of the innovation process. Moreover, the 

power method estimators may be used to obtain efficient estimators.
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3.2.2 Efficiency of the power m ethod estim ator

Since the INAR(l) process is a stationary and ergodic process, the expected value of 

the sample moments for an observed realization are equivalent to the expected value 

of the sample moments of the stationary distribution. An unbiased estimator for m  

is therefore m  = x = jj  The PM estimator kPM for the shape parameter of

the NBD distribution is computed by solving, in 2, the equation cx  = S t l i  c** =

Although computing moment based estimators for a NBD INAR(l) process and an

i.i.d. NBD sample are identical, the fact tha t the values of x t are correlated for INAR(l) 

samples implies that the covariance matrices of the estimators of (m, k) are different. 

The asymptotic distribution of the estimators (m, kPM) can be derived by using a 

multivariate version of the so-called (5-method (see e.g. Serfling (1980)). Using the 5-

method if ^x, is asymptotically normally distributed then the estimators (m, kPM^

are also asymptotically normally distributed. In this section the asymptotic covariance 

matrix for the statistics ^x, is derived. The covariance matrix of ^m, A;PM^ is 

consequently obtained.

T h e o rem  3.2.2. (Savani & Zhigljavsky, 2006) Let {xf; t =  1 , 2 , . . . ,  N }  be a sample re

alization from an INAR (l)  process X t with stationary distribution ir. Let f  = (x, c* )7 , 

f  = ^x, c* ) with x  =  T J2tLi x t and °x  =  jf J2tLi c**> with c > 0 and 1. Then 

f  has an asymptotic normal distribution given by lim;v_+00 y / N ( f  — E/) V(0,D/)

with covariance matrix

D /  =  E ( /  -  E / ) ( /  -  E f ) T =  ( CV*_  Cx T )  • (3-2.4)
\  X , c x  cx  J
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Here

Vx  = jirn^ N  Var (X) =  J  Var[X ’'l ’ (3.2.5)

V-j =  lim N  Var fcx )
c N —kx) \  /

N —l

= Var (c*’ ) +  2 Um £  ( l  -  £ )  {Gx „ (c [1 -  a r +  cfc]) GE(c; a r) -  G ^  (c)} ,

(3.2.6)

Cx ^  = lim AT C o v (V ,c* ) = Cov (V*cx’ )

N —l

+  ton 5 3  ( l  -  {£1 [* „  (1 -  a r +  a rc)x ’ J GE(c; a r) -  E[X*]Gx „(c)}
r= 1 

N - 1

+  U m  E  ( X -  ^ )  t G x -  < c  I 1  -  « r  +  « r c ] )  -  o r E [ X ^ ] G x , { c ) } .  ( 3 . 2 . 7 )

r = l

Proof. See Appendix A.I. □

Note that the asymptotic distribution of /  =  ^x, cx ĵ derived in Theorem 3.2.2 

holds for any INAR(l) process and not just the NBD INAR(l) process. Fig. 3.9 shows 

95% asymptotic bivariate normal confidence ellipses for E f ,  centered at zero, given by 

the equation

( /  -  E f f  £>-* ( /  -  E f )  <  X o . 9 5 ( 2 )  =* 5.99.

As a  increases the correlation between the statistics x  and cx  clearly increases irre

spective of the value of the PM parameter c.

Fig. 3.10 shows estimates /  — E f  obtained from 1000 simulations from a NBD 

INAR(l) process together with corresponding 95% asymptotic bivariate normal confi

dence ellipses. The parameters used for the NBD INAR(l) process are m  =  1, k = 2, 

N  =  1000, a  E {0,0.25,0.5,0.75} and the PM estimator cx  is computed using the
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C oro llary . Let {x t\ t = 1 , 2 , ,  N }  be a sample realization from a NBD INAR(l)  

process X t with NBD parameters (m ,k ). Let 0 = (m ,k PM)T be the power method 

estimators, with fixed c, 0 < c < 1, obtained from the NBD IN A R ( l )  sample, then 0 

has an asymptotic normal distribution given by \imx-^oo y/~N {6 — E0^j ~  Af(0, £ Q(c)) 

with

-  ( £ ;  dd S )  (< £ , % *) (%; d *s ) T ' ™

Here is the derivative of f ( v )  with respect to v and is evaluated at the

point (m, k) = (m , k). The asymptotic normalized variances Vx, and Cx  are given 

by Eqs. (3.2.5), (3.2.6) and (3.2.7) respectively. The matrix o f partial derivatives is

c ~ i  9 ^
k , x  k , c x  J \ o g ( g )  - g + l  g  log ( g )  - g + 1

where g = 1 +  a — ac and a =  m /k .

Note that as a particular case, when a  = 0, the asymptotic normalized variances 

given by Eq. (3.2.8) collapse to the asymptotic normalized variances of estimators for 

m  and k given in Section 2.1.3.

Fig. 3.11 shows 95% asymptotic bivariate normal confidence ellipses for E 0 , cen

tered at zero. For a  = 0, i.e. in the case of an i.i.d. NBD sample, the estimators rh 

and kPM are clearly uncorrelated. For a  G (0,1), however, there is a positive corre

lation between the estimators m  and kPM. As a  increases the volume of the ellipse 

also increases. Since the estimators for m  and k  are correlated, a comparison of the 

efficiency of estimation methods may no longer be made by comparing just the variance 

of kPM. A traditional method for comparing the efficiency of correlated estimators is 

by minimizing the determinant of the covariance matrix.
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Figure 3.11: 95% asymptotic bivariate normal confidence ellipses for E 0  (0 = 
centered at zero, for a NBD INAR(l) sample with m  =  1, k = 2, 

a  € {0,0.25,0.5,0.75}.

In Fig. 3.11 there is no clear observable difference between the PM estimators 

computed at c = 0 and c =  0.5. This suggests the possibility that the volume of 

the ellipse may be insensitive to certain changes in the value of c. The insensitivity 

of the volume of the ellipse to changes in c implies the possibility of using simple 

approximations to c to obtain efficient PM estimators. Note that the estimator for m  

is identical for both PM estimators computed at c =  0 and c =  0.5 and therefore the

ellipses are likely to be very similar.

As a more informative indicator of efficiency, Fig. 3.12 shows the determinant of the 

asymptotic normalized covariance matrix £ Q(c) (see Eq. (3.2.8)) plotted against c for 

two different NBD parameter pairs (m, k) G {(1,0.5), (1,2)} and a  G {0,0.25,0.5,0.75}. 

For the NBD parameter pairs shown, the optimal values of c are never equal to 0 or 1. 

Moreover, there is an optimum c, denoted by ca that minimizes d e t(£ Q(c)). For the 

parameter pair m  = 1 and k = 2 there is actually a difference between the values of 

the determinant for c =  0 and c = 0.5 which is not apparent in Fig. 3.11.
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Figure 3.12: Determinant of the covariance matrix £ Q(c), for (ffi, &PM), versus c.

Fig. 3.13 shows contour levels of cQ, the value of c G (0,1) that minimizes det(EQ(c)), 

within the (5, u/)-parameter space. The contour levels of ca are similar as a  increases 

highlighting the insensitive nature of ca to changes in a. This is useful in that, if the 

value of a  is unknown or not accounted for, then the loss in efficiency when using the 

standard PM(c0) estimator as opposed to the PM(cQ) estimator will be small.

Fig. 3.13 also shows contour levels of efficiency, defined by d e t(£ 0(co ))/det(£Q(cQ)) 

for a  G {0.25,0.5,0.75,0.95}. The figure shows the loss in efficiency when using a 

NBD INAR(l) sample with thinning parameter a  relative to an i.i.d. NBD sample. 

As a  increases the efficiency of estimating (m , k ), with respect to estimating from an

i.i.d. sample using the PM(c0) estimator, decreases.

More importantly, however, Fig. 3.13 shows the efficiency of estimating (m, k) using 

the PM(c0) estimator with respect to the PM(cQ) estimator for a NBD INAR(l) sample 

with thinning parameter a. The efficiency is defined by d e t(£ a (ca ) ) /d e t(£ a (c0)) and 

shows the loss in efficiency in estimation when assuming an i.i.d. sample when in fact 

the sample is obtained from a NBD INAR(l) process. The loss of efficiency, even when 

a  = 0.95 is at most 10% for the majority of the NBD (6, u/)-param eter space.
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3.2.3 Approxim ating optim um  c

Fig. 3.13 showed that cQ =  argmince(0 ^  det(EQ(c)) changes slowly as a  increases when 

estimating parameters from a NBD INAR(l) sample. Approximations to the value of 

cQ should therefore provide efficient NBD estimators for the parameter k. Two set 

approximations are considered. Let A be a set of values of c, then the value of ca is 

approximated by cQ)A = argmincGA det(Ea (c)) and ca>A =  argminceA det(E0(c)). Note 

tha t c0)A is obtained by minimizing the determinant for the correct value of a  and c 

minimizes the determinant in the case of a = 0. The two sets used for A  are A = {0,1}, 

which is the combined MOM/ZTM method, and A =

Fig. 3.14 and Fig. 3.15 show the efficiency of two set approximations to cQ when 

the sample is NBD INAR(l). The efficiency levels of det(Ea (cQ))/d e t(E Q(cQjA)) and 

det(EQ(ca ))/d e t(E a (cQ)A)) are shown for the sets A = {0,1} and A  =  { |,  | ,  | ,  | ,  1}. 

For both sets, the efficiency of the estimator decreases marginally as a  increases to 1. 

Additionally, the choice of cQ)A by cQ)A =  argminceA det(E0(c)) leads to small losses 

in efficiency. These figures again highlight the insensitive nature of cQ to changes in 

the value of a  for all NBD parameter values and thus the ability for the PM estimator 

computed at values of c close to cQ to retain high efficiency at different values of a.

In practice the parameter values are unknown; it is therefore not possible to compute 

the value of ca nor any approximation to ca such as cQ)A =  argminceA det(EQ(c)) 

or Ca,A = argminceA det(E0(c)). As a result, the PM(ca) estimator for k cannot be 

computed. Using the set approximation, it is still possible to compute estimators of k 

using the PM(c) estimator for every c G  A; the only problem is that it is not possible 

to determine the optimum estimator for k since cQtA is unknown. The problem of 

implementing the PM estimators in practice is considered in the next section.
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3.3 Practical im plem entation o f the power m ethod

This section considers the difficulties of implementing the PM tha t may arise in prac

tice. One of the major problems is that the optimum value of the power method 

parameter c requires knowledge of the distributional parameters; the distributional pa

rameters and optimum c are obviously unknown in practice. Section 3.3.1 considers the 

possibility of estimating cQ, the optimum value of the power method parameter c for a 

NBD INAR(l) sample with a  € [0,1). In practice it is possible for the estimator of k 

to be negative, Section 3.3.2 further investigates the validity of setting k = oo in such 

situations. Section 3.3.3 provides simulation results on using the maximum likelihood 

estimators and moment based estimators for i.i.d. NBD and NBD INAR(l) samples.

3.3.1 Com puting efficient P M  estim ators in practice

In order to obtain efficient PM estimators for NBD INAR(l) samples, or i.i.d. samples in 

the case a  =  0, the optimum value of ca tha t minimizes det(SQ(c)) given in Eq. (3.2.8) 

must be computed. The value of cQ, however, depends on the parameters (m, k) which 

are unknown in practice. This section investigates the use of preliminary, possibly 

inefficient, NBD estimators to estimate cQ. Denote the preliminary inefficient NBD 

estimators by m  and fc, then the following estimators for ca and approximated cQ will 

be considered

ca =  argminc6(0>1) det(EQ(c; m, A;)), (3.3.1)

£4 =  argminceA det(EQ(c; rh,k)), A  G { 0 ,1 /5 ,2 /5 ,3 /5 ,4 /5 ,1 }  , (3.3.2)

c j =  (o.42+0.81u/—2.98u/2+3.64ui'3j  6 + (o .5 1 -1 .6 6 w '+ 4 .3 h i/2)  b2, (3.3.3)

where b = 1 — (1 +  rh/k)~k and w' =  b/m.  The two simplest and natural choices for 

the preliminary estimators are the MOM or ZTM estimators.
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Fig. 3.16 shows 95% confidence ellipses of the MOM and ZTM estimators for various 

values of (m, k) within the (6, u/)-parameter space together with contour levels of cQ for 

a  € {0,0.25,0.5,0.75}. The ellipses have been constructed assuming a NBD INAR(l) 

sample of size N  =  1000 with a  € {0,0.25,0.5,0.75}. The ellipses show the variability 

that would be expected in the estimated values of cQ given a significance level of 

0.05. The confidence ellipses become larger as either N  decreases, a  increases or the 

significance level decreases.

«!

1.1

1.1

l.l

a  =  0

a  =  0.5 a  =  0.75

Figure 3.16: 95% confidence ellipses for NBD estimators when using (a) MOM (red) 
and (b) ZTM (black) using a sample size of N  = 1000. It is assumed that N  is large 
enough for convergence of the distribution of estimators to the normal distribution.
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Fig. 3.16 indicates that, for the majority of NBD parameter values in the (b,w')~ 

parameter space, the inefficient NBD estimator should provide an estimator of ca close 

enough to ca so that the PM estimator achieves a negligible loss of efficiency relative to 

the PM(cq) estimator. The variability in estimated values of ca depends on the sample 

size Nj  the value of a  and the method used in estimating cQ.

Robustness

The robustness of using the P M( c) estimator, where c is one of the estimators defined 

in (3.3.1), (3.3.2) or (3.3.3), is investigated by considering the loss of efficiency caused 

by using the PM (c) estimator as opposed to the PM(cQ) estimator. The loss of effi

ciency depends on the preliminary estimators used to compute the estimator c. The 

ZTM estimators are convenient since both ZTM estimators for (m, k) and (b, w') are 

asymptotically uncorrelated for i.i.d. samples. The PM estimators for (b,w') are in 

general correlated for other methods (such as the MOM, for example).

The notation Ea (c; m, k) and EQ(c; m, k) will be used to differentiate between mini

mizing det(EQ(c)) using the values (m, k) and preliminary estimates (m, k) respectively. 

The efficiency of the PM (c) estimator for k with respect to the PM(cQ) estimator is 

given by det(EQ(cQ; m, k ) ) / det(EQ(c; m, k)). Note that the estimator c is computed 

using the preliminary NBD estimators (rh,k).

To investigate the robustness of using the PM(c) estimator, the lowest efficiency 

attainable in the estimation of (m, k) using the PM(c)  estimator will be considered, 

when estimating cQ from preliminary estimators (m, k) that lie within an asymptotic 

95% confidence ellipse centered at the true values (m , k ). The lowest efficiency, for a 

significance level of 0.05, is given by det(EQ(cQ; m, k ) ) / det(E Q(cJ; m, k)) where = 

argmax-e^ d e t(E a (c;m, k)) and C  is the set of all possible estimators c obtained from 

preliminary estimators (m, k) that lie within the 95% confidence ellipse.
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eff = 0.9960

(a) (b)

Figure 3.17: Asymptotic confidence ellipses for NBD estimators (rh,k) when using (a) 
ZTM and (b) MOM to estimate (rh,k). The value ‘eff’ indicates the lowest value of 
vPM(c0\m ,k ) / v PM(c0\m,k),  where c0 =  argmincG(01)UPM (c; rh, k), amongst all (rh, k) 
within the confidence ellipse.

Fig. 3.17(a) and (b) show examples of the robustness for the case m  =  2 and 

k = 0.5 when using (a) ZTM and (b) MOM estimators as preliminary estimators for 

the estimation of cQ. A sample size of TV =  1000 is assumed. An asymptotic 95% 

confidence ellipse is shown for the preliminary estimators (m, k) of (m, k) within the 

(6, u/)-parameter space together with contour levels of c0. The lowest efficiency occurs 

at the boundary of the ellipse and is 0.996 (m =  1.90, k =  0.43, cQ =  0.36) when using 

preliminary ZTM estimators and 0.995 (m  =  1.92, k =  0.40, cQ = 0.35) when using the 

preliminary MOM estimators.

The lowest efficiency attainable depends on the significance level, the size of the 

sample and the preliminary estimator used. Increasing the sample size naturally re

duces the size of the confidence ellipse for (rh, k) providing a more accurate estimator 

for cQ and the estimation method becomes more robust. The PM(c) estimator also 

appears more robust when the significance level is increased.
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Fig. 3.18 shows, for all NBD parameter values, the lowest efficiency attainable when 

estimating k using the PM at c with preliminary ZTM and MOM estimators that 

lie within a 95% asymptotic confidence ellipse centered at the true values (m, k) for 

i.i.d. NBD samples of size N  =  1000. A graph is shown for each estimator c defined by 

Eqs. (3.3.1), (3.3.2) and (3.3.3). Ignoring the boundaries of the NBD parameter space 

(i.e. considering areas where k < 3), the PM estimators with c defined by Eqs. (3.3.1), 

(3.3.2) and (3.3.3) achieve a lowest efficiency of at least 0.98 for the majority of the 

NBD (6, u/)-parameter space.

(A) (B) (C)
to

04

o o

0l0 0.5

(a) (b) (c)

Figure 3.18: Lowest possible efficiency of the PM(c) estimator when using preliminary 
ZTM ((A),(B) and (C)) and MOM ((a), (b) and (c)) estimators for (m, k) that lie 
within a 95% confidence ellipse of the true values. The sample size is i.i.d. NBD 
(a =  0) with N  =  1000. The estimators c axe obtained from (a) equation (3.3.1), (b) 
equation (3.3.2) and (c) equation (3.3.3).
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3.3.2 D egenerate sam ples

In literature (see e.g. Anscombe (1950)) it is often assumed that, when an invalid 

estimator for k (k ^  0) is obtained, the Poisson distribution may be fitted and the 

estimator for k is set to k = oo. Recall that the MOM estimator for k is kMOM = 

x 2/ ( x 2 — x 2 — x). It is clear that the MOM estimator for k  will be negative when 

s2 < x, where s2 = x 2 — x 2. The PM estimator (kPM) and ZTM estimator (kZTM) 

for k are respectively obtained by solving the equations cx  = (1 +  x (l — c) /z)~z and 

p0 = (1 +  x / z )~ z with respect to z. Negative estimators for kPM and kZTM are obtained 

when c* < exp(—x (l — c)) and po < exp(—x) for the PM and ZTM respectively.

Fig. 3.19 shows the probability of obtaining an invalid estimator k in the case when 

the sample size is 10000. The probabilities are obtained from the joint asymptotic 

normal distribution of the statistics used in the computation of k. It must be noted 

that the assumption of asymptotic normality is important and that, for k very small, 

the NBD is highly skewed and convergence to the asymptotic distribution is very slow. 

The value of N  required for approximate convergence to the normal distribution for 

the distribution of k may be larger than tha t shown in Fig. 3.19. To investigate invalid 

estimators it is much simpler to consider the results of the simulation study in the 

following section.

Fig. 3.19 indicates that the probability of obtaining an invalid estimator k  increases 

as the NBD converges to the Poisson distribution. The Poisson approximation to the 

NBD therefore seems reasonable. Nevertheless, positive probabilities are observed for 

all values of k shown in the picture, allbeit with very small probability. In practice, 

care must be taken. If estimators of market research measures (e.g. penetration or 

purchase frequency) are sensitive to changes in the value of k, then setting k = oo may 

provide completely wrong inference on estimators for the market research measures.



(a) (b) ( c )

Figure 3.19: Probability of obtaining a degenerate sample with sample size N  = 10000 using (a) MOM, (b) PM (c =  0.5) and 
(c) ZTM.
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3.3.3 Simulation results

This section considers the results of a simulation study comprising R  = 1000 sample 

runs of the NBD distribution with sample size N  =  10000 for various parameters 

(m, k) with m  G  {0.1,0.5,1,5,10} and k G  {0.01,0.25,0.5,1,3,5}. The purpose of the 

simulations are to analytically confirm the results of the previous sections and also 

to investigate the behavior of the maximum likelihood estimators for NBD INAR(l) 

samples which are difficult to analytically analyze.

Table 3.1 shows the empirical coefficient of variation =  y / N y j ^  ^2?=1{ki — k )2/ k  

for the ML, MOM, ZTM and PM(c0) estimators against the theoretical coefficient of 

variation =  y/vML/ k (see Fig. 3.1 (b)) when estimating from an i.i.d. NBD sample. 

A value of =  oo indicates that hi < 0 or ki =  oo for at least one sample. For all 

samples with < oo the PM(c0) estimator has a consistently lower than both the 

MOM and ZTM estimators. The largest percentage difference between the PM(c0) 

estimator and the combined MOM/ZTM method occurs when k = 1 and m  = 10 when 

the value of ki  is increased by a factor of 26% by using the MOM/ZTM method.

Table 3.2 shows the coefficient of variation =  y/~N^ ^ 2 f =1(ki — k)2/ k  for the 

ML and PM(c) estimators and Table 3.3 shows the coefficient of variation = 

Z *  i  (rhi — m ) 2/ m  for ML estimators in the case where the sample is NBD 

INAR(l) with a  = 0.5. These tables compare estimators computed on the false as

sumption that the data is i.i.d. NBD against estimators computed using the fact that 

the true distribution of the sample is a NBD INAR(l) sample with a  = 0.5. For an

i.i.d. NBD sample, the ML estimator for m  is the sample mean and the ML estimator 

for k is given by Eq. (2.1.2). For an INAR(l) NBD sample, the ML estimators are 

computed by maximizing the likelihood function given by Eq. (3.2.3). In Table 3.2 a 

value of k = oo indicates that ki <  0 or k{ =  oo for at least one sample.



k = 0.01 k = 0.25 k = 0.5
m s / v ML / k MLE ZTM PM MOM V^Ai J k MLE ZTM PM MOM y/vML/ k MLE ZTM PM MOM
0.1 8.27 8.78 8.78 8.78 15.21 10.05 10.38 10.38 10.38 11.50 14.01 15.34 15.34 15.34 16.25
0.5 5.90 5.91 5.91 5.91 13.70 3.56 3.62 3.63 3.62 4.76 4.14 4.06 4.11 4.07 4.86
1 5.28 5.30 5.30 5.30 13.86 2.66 2.65 2.67 2.65 4.00 2.85 2.85 2.92 2.86 3.60
5 4.41 4.48 4.48 4.48 13.75 1.77 1.80 1.83 1.81 3.34 1.70 1.77 1.89 1.78 2.66
10 4.15 4.19 4.20 4.19 13.74 1.59 1.61 1.66 1.61 3.30 1.51 1.51 1.70 1.53 2.56

k — 1 k = 3 Jfe =  5
m yJVuJk MLE ZTM PM MOM y/VuJk MLE ZTM PM MOM s / ^ u J k MLE ZTM PM MOM
0.1 21.55 oo oo oo oo 50.40 oo oo oo oo 78.86 oo oo oo oo
0.5 5.51 5.52 5.68 5.53 6.00 11.21 11.88 12.55 11.88 12.07 16.89 19.92 22.26 20.00 19.90
1 3.49 3.51 3.65 3.52 4.07 6.30 6.63 7.45 6.63 6.82 9.14 9.28 10.73 9.29 9.38
5 1.79 1.81 2.07 1.83 2.38 2.36 2.41 3.78 2.41 2.67 2.94 2.96 5.63 2.96 3.09
10 1.55 1.58 2.02 1.60 2.22 1.86 1.80 4.25 1.81 2.07 2.16 2.14 7.41 2.15 2.34

Table 3.1: Comparison of V N y ~ k ) 2/ k  against y/vML/ k  for the ML, ZTM, PM(c0) and MOM estimators using

R  = 1000 i.i.d. samples of the NBD distribution with sample size N  = 10000. A value of oo indicates that ki <  0 or ki = oo for 
at least one sample. All values are given to 2 decimal places.

00

C
hapter 

3



k = 0.01 k = 0.25 k == 0.5
Assuming i.i.d. a = 0.5 Assuming i.i.d. a == 0.5 Assuming i.i.d. a == 0.5

sample sample sample
m MLE PM(c0) MLE PM(co.5) MLE PM(c0) MLE PM(co.5) MLE PM (c0) MLE PM(co.5)
0.1 15.30 15.30 12.56 15.04 20.99 20.96 17.06 21.14 32.55 32.48 25.6 32.59
0.5 13.24 13.24 12.20 13.16 5.37 5.35 4.02 5.33 6.59 6.52 4.30 6.77
1 13.16 13.16 11.97 12.84 4.35 4.34 3.29 4.60 4.18 4.15 3.14 4.14
5 3.41 3.42 2.80 3.31 2.90 2.90 2.27 2.84
10 3.25 3.26 2.57 3.11 2.78 2.78 2.09 2.66

k = 1 k = 3 k = 5
Assuming i.i.d. 

sample
a = 0.5 Assuming i.i.d. 

sample
a == 0.5 Assuming i.i.d. 

sample
a == 0.5

m MLE PM(c0) MLE P M ( co.5 ) MLE PM(c0) MLE PM(co.5) MLE PM(c0) MLE P M ( co.5)

0.1 77.97 76.71 37.48 77.63 2122.57 oo 1383.75 OO 2463.90 oo 2408.02 oo
0.5 13.66 13.60 11.38 13.92 32.65 32.70 26.84 32.66 63.03 62.30 34.86 62.30
1 5.77 5.68 3.86 6.04 21.30 21.27 18.45 21.35 30.60 30.66 25.74 30.63
5 2.79 2.76 2.16 2.75 3.78 3.72 2.80 3.91 5.04 4.99 3.97 5.16
10 2.62 2.61 1.92 2.56 2.86 2.81 2.06 2.91 3.37 3.34 2.45 3.45

Table 3.2: Comparison of y / N y  ^  ]CiLi (̂ * — k)2/ k  using the ML and PM(cop<) estimators when assuming (incorrectly) that 
the sample is i.i.d. against the estimators obtained when the sample is NBD INAR(l) with a  =  0.5. Here R  =  1000 samples 
of NBD INAR(l) realizations distribution with series length N  =  10000. A value of oo indicates that ki <  0 or ki =  oo for at 
least one sample. All values are given to 2 decimal places.
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Table 3.2 shows that the coefficient of variation of the estimator for k , computed 

by maximizing the true likelihood equation (Eq. (3.2.3)), is clearly much lower than 

the coefficient of variation of the PM(co.5) estimator as well as the ML and PM(c0) 

estimators computed under the assumption tha t the data is i.i.d. NBD. The empirical 

coefficient of variation of the PM(c0) and PM(co.s) estimators are similar. It has already 

been noted in Section 3.2.2 tha t using the PM(c0) estimator leads to a small loss of 

efficiency in comparison to using the correct PM(co.s) estimator (see Fig. 3.13).

The numerical results in Table 3.3 show that the coefficient of variation for the 

estimator of m  when maximizing the true likelihood function (Eq. (3.2.3)) is lower 

than the coefficient of variation of the maximum likelihood estimator for m  of an

i.i.d. NBD sample (i.e. the sample mean). This further indicates that the sample mean 

does not maximize the likelihood function given by Eq. (3.2.3).

k = 0.01 k = 0.25 ?r II p cn

m Assuming i.i.d. a = 0.5 Assuming i.i.d. a =  0.5 Assuming i.i.d. a = 0.5
sample sample sample

0.1 17.45 17.17 6.30 5.64 5.97 4.96
0.5 17.86 17.68 4.28 4.04 3.49 3.29
1 16.63 16.20 3.74 3.66 2.97 2.79
5 3.59 3.57 2.61 2.58
10 3.37 3.35 2.52 2.50

k = 1 k = 3 k = 5
m Assuming i.i.d. 

sample
a = 0.5 Assuming i.i.d. 

sample
a = 0.5 Assuming i.i.d. 

sample
a  =  0.5

0.1 6.53 5.92 7.15 6.39 6.56 5.91
0.5 2.84 2.61 2.90 2.67 2.79 2.59
1 2.51 2.37 1.97 1.83 1.86 1.75
5 1.96 1.93 1.20 1.20 1.09 1.07
10 1.83 1.81 1.12 1.11 1.00 0.98

Table 3.3: Comparison of y / N y  ^  S i l i l 7™* — ^ ) 2/ m using the ML estimators when 
assuming (incorrectly) that the sample is i.i.d. against the estimators obtained when 
the sample is NBD INAR(l) with a  = 0.5. Here R  =  1000 samples of NBD INAR(l) 
realizations distribution with series length N  =  10000. All values are given to 2 decimal 
places.
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(b) m =  0.1 k =  0.25
w

(b) m  =  0.1 k =  1

(b) ra =  1 A; =  1 (b) m =  1 A: =  5 (b) m =  5 A: =  1

Figure 3.20: (a) ZTM preliminary estimators for m  6 {0.1,0.5,1,5,10} and
A; € {0.01,0.25,0.5,1,5} in space, (b) ZTM preliminary estimators with cor
responding 95% confidence ellipse.

Fig. 3.20 shows preliminary ZTM estimates, (b,w'), for different NBD parameters 

within the (5, w') parameter space. For each parameter pair, ZTM estimates for 1000 

different NBD samples of size N  =  10000 are shown. When comparing the ZTM 

estimates in Fig. 3.20 (a) to values of cQ in Fig. 3.4(b) it is clear that, even with the 

variation in the estimates (b,w '), the variation in the corresponding estimated values 

of ca will be small in most regions of the (b, it/)-space. The regions where cQ is sensitive 

to small changes in (5, w') and the corresponding maximum possible loss of efficiency 

in these regions was shown in Fig. 3.18. The maximum possible loss of efficiency was 

based on a 95% confidence ellipse. Fig. 3.20 (b) shows examples of preliminary ZTM 

estimates within the corresponding theoretical 95% confidence ellipses for (5, it/). These 

pictures are typical for each of the parameter pairs considered in Fig. 3.20(a).
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Conclusion

This chapter has considered moment based estimators as alternatives to the maximum 

likelihood estimator for estimating parameters of an i.i.d NBD sample and a NBD 

INAR(l) sample. The reason for considering moment based estimators is that, in the 

practice of market research, the maximum likelihood method is difficult to implement 

and moments are easier to obtain.

In the practice of market research it is common to use the standard method of 

moments estimator and the zero term method estimator as the alternative to the 

maximum likelihood method when estimating parameters of an i.i.d. NBD sample. 

These estimators are, however, inefficient in certain regions of the NBD parameter 

space. Importantly, this inefficient region of the parameter space includes areas where 

zero term method estimates of NBD parameters occur when fitting the NBD to the 

number of purchases of a product made by households at category level.

The power method for estimating the NBD parameters includes as particular cases 

the method of moments and the zero term method. The power method estimator for 

the NBD parameter k requires the choice of an additional parameter c. For c =  0, the 

power method estimator is equivalent to the zero term method estimator and as c —> 1 

the power method estimator tends to the method of moments estimator.

The power method estimator is more efficient than the method of moments and 

zero term method estimator upon suitable choice of c except in the limiting cases as 

b —► 0 (which is when c —> 0) and as k —► oo (which is when c —► 1); in these cases the 

efficiency of the power method is equivalent to the efficiency of the zero term method 

and method of moments respectively. In the case of an i.i.d. NBD sample, it is in fact 

proven that there always exists a c (c € (0,1)) such tha t the power method estimator 

is more efficient than either the method of moments or zero term method estimators.
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The optimum value of c depends on the NBD parameters m  and k and must be 

computed by numerical minimization of the expression for the variance of the estimator 

for k given an i.i.d. NBD sample or minimization of the determinant of the covariance 

matrix of estimators of m and k given a NBD INAR(l) sample. In the case of an

i.i.d. NBD sample, computing the power method estimator at this optimum value of c 

provides estimators of k almost as efficient as the maximum likelihood estimator for k. 

For a NBD INAR(l) sample, however, simulation results show that maximizing the 

likelihood function for the NBD INAR(l) model provides more efficient estimates for 

the NBD parameters in comparison to estimating the NBD parameters using the power 

method at optimum c. Nevertheless, the power method estimators at optimum c are 

still more efficient than the method of moments and zero term method estimators.

Simple approximations to the optimum value of c for the power method estimator 

have been proposed. These approximations lead to very small losses in efficiencies 

when estimating k  relative to the power method estimator computed at the optimum 

value of c. Each of the approximations provide slightly different values of c; this shows 

the insensitive nature of the efficiency of estimating k using the power method to small 

changes in c.

The insensitive nature of the efficiency of the power method estimator for k to small 

changes in the value c in the region of the optimum value of c, enables the power method 

to be robustly implemented in practice. In practice, preliminary estimators that are 

possibly inefficient may be used to estimate the value of c; the estimated value of c can 

then be used to find an updated more efficient estimator for the NBD parameter k. 

Note that this procedure may be used iteratively until the value of estimated c or the 

estimates of the parameters converges. Simulation results, however, have shown that, 

even on the first iteration, efficient estimators for k  can be obtained.
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Analyzing the dynamical behavior 
of negative binomial processes

This chapter considers the dynamical behavior of negative binomial processes by consid

ering the correlation between statistical measures computed in varying time intervals. 

Analyzing the dynamical behavior of the mixed Poisson process with a negative bino

mial marginal distribution differs to analyzing the dynamical behavior of the negative 

binomial first-order autoregressive integer-valued process, which includes the sequence 

of i.i.d. NBD random variables.

The mixed Poisson process is not an ergodic process and therefore analyzing a 

single fixed realization does not represent the behavior of the process in the ensemble 

of realizations. In the case of panel data, many realizations are observed and it is 

therefore possible to check the appropriateness of fitting a mixed Poisson process by 

considering the covariances between statistics of the marginal distribution computed 

in different time intervals.

The NBD INAR(l) process is an ergodic process and the suitability of the INAR(l) 

process as a model for observed data can be confirmed by considering the autocorre

lation function of the process. In addition to time domain analysis, where autocorre

lation functions are considered, one may also consider spectral domain analysis of the

INAR(l) process by considering the spectral frequencies of the process.

87
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4.1 M ixed Poisson processes

This section considers the dynamical behavior of mixed Poisson processes by consid

ering the covariances between statistics and estimators in two different time intervals. 

The gamma Poisson process is considered as a particular example in Section 4.2, where 

the correlation between commonly used market research measures is also considered.

Background

Recall the definition of a mixed Poisson process. Define the multivariate Poisson dis

tribution as

P  ( Z  = *|A =  A) =  n  [A(t| ^  ~  exp (—A(ti+1 - U ) ) ,

where A > 0 is the intensity, Z  = Z ( t2) , . . . ,  Z( tn)} is a random vector, the

set x  =  {rr0, x\,  x2, . . . ,  xn} is a set of non-negative integers such that 0 =  xq ^  x\  ^  

. . .  ^  xn and 0 = t0 ^  ^  ^  tn represents an increasing sequence of time

points. The mixed Poisson process is then defined as a process whose finite-dimensional 

distributions are
roo

P {Z  = x ) =  /  P ( Z  =  x|A  =  \ ) d U A(\;0) .
J  o-

Here C/a (A; 0) is the distribution function for the random variable A and 0  is a vector 

of unknown parameters. The function C/a(A;0) is commonly known as the structure 

distribution of the mixed Poisson process.

In this section the asymptotic distributions of different statistics and estimators 

computed in two different, possibly overlapping, time intervals, using data from mixed 

Poisson processes, are derived. Section 4.1.1 considers the covariance of various statis

tics computed in two different time intervals. The joint asymptotic distribution of 

estimators are then derived in Section 4.1.2 using the results of Theorem 2.2.1 and 

Section 4.1.1.
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4.1.1 Covariance of statistics

The simple case of computing the covariance of statistics computed in non-overlapping 

intervals is first considered. The results are then generalized to the case of statistics 

computed in overlapping intervals.

Non-overlapping intervals

Note that since the Poisson process is a stationary process that is homogenous in time, 

considering covariances of two statistics computed over the intervals [ti, £2) and [£3, £4) 

with 0 <  £i < t2 <  £3 < £4 is equivalent to considering covariances of the same statistics 

over the time intervals [0, t) and [£, t +  s), so that ti = 0, t2 =  £3 =  t and = t +  s. 

Consider the covariance between the statistics

where {^i(0, t ) , . . . ,  2jv(0, t)} and {zi(t, t +  s ) , . . . ,  zx(t ,  t 4- s)} are i.i.d. data from a

vector of parameters 0.

Note that for fixed u and v the observations zi(u, u + v) (I = 1 , . . . ,  N)  are mutually 

independent. For fixed I, the observations zj(0, t ) and zi(t, t+s)  are independent Poisson 

distributed with means A it and A/s respectively. Here A* is random for I = 1 , . . . ,  N,  

but is the same for fixed I as time varies. The samples {zi(0, t ) , . . . ,  zN(0, £)} and 

{z\(t, t +  s ) , . . . ,  zx(t ,  t +  s)} are dependent since, for each Z, z/(0, t) and zi(t , t +  s) are 

Poisson distributed with a common A/. Let (UiV be a random variable whose distribution 

is identical to the distribution of the i.i.d. random variables zi(u,v) (I = 1 , . . . ,  TV), the

and

mixed Poisson process observed over two adjacent time intervals [0,t)  and [t,t +  s) 

respectively (t, s > 0). Here </> and ^  are some functions possibly dependent upon the
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N E

= —  E 
N

N

number of events occurring in the time interval [u, v). Then

TVCov [0o>t, $ t , t + s ]  = Cov [0(Co,t)> ^(Cm+«)] • (4-1.1)

Indeed,

NCov  [0 o , t , $ t , t + s ]  =  NE(4>0it -  E 0 o, t ) ( 0 t , t+ s  ~  e V > m + s )  

l ^ [ 0 ( z i(O,i))-E^(2i(O,t))]Jx

1 N
Tr z 2  [V>(Z((<, t + s))-Elj>(zi(t, t +  s ))]

1 = 1

X  [0(^(0, t)) -  E(j)(zi(Q, *))] [0(zz(£, t + s ) ) -  E0(zz(t, t +  s))]
. 1=1

N

+ X *)) -  *))] bPWt, t + s)) -  ^ M t ,  t + s))]
3*1

i  N
=  — X E [̂ (̂ (°> *)) -  E<K*z(0, t))] [‘ip(zi(t, t +  s)) -  E 0(zz(*, t +  s))]

1=1

=  E  [0(C o,t) -  E 0(C o ,t)] [ 0 (Cm + s ) -  E ^ (C t ,t+ s ) ]

=  Cov[0(CO)t),0(Ct,t+S)].

The covariances of pairs of statistics, commonly used in the estimation of NBD 

parameters, are derived below. These statistics are the method of moments statistics 

(za , z&) for some a  > 0 and (3 > 0; the power method statistics (z, cz) for some c ^  1, 

general power method statistics (c f ,^ )  for some Ci ^  1 and c2 ^  2 and finally the 

functionals used in maximum likelihood (^ -  logp[0,t)(z; 0), log p[t>t+s)(z; 0)). Let 

I[z=o\ be the indicator function such that I [z=0j =  1 if z = 0 and I[z=o] =  0 otherwise. 

Define cz =  1 when z — 0 and cz = 0 otherwise, then the zero term method statistics 

(z, I[z=o]) are equivalent to the power method statistics (z, cz) for c =  0.
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Let £(c) =  Ee-cA be the Laplace transform of the random variable A with its 

derivative £{c)  =  ^ E e -cA =  —E[Ae_cA]. Additionally, let P[u,v)(z'i 0) denote the mixed 

Poisson distribution over the time interval [u , v). Then the covariances for the statistics 

discussed above are:

C ase 1. </>(z) — za , /tp(z) = z13:

Cov[0(Co,t),^(CM+«)] =  EfjLa(Xt)fjL0(Xs) -  Epa( \ t )E p p ( \ s ) ,

where iia(v) =  E/c“ is the a -th  moment of a Poisson random variable kv with 

intensity v.

C ase la .  (f)(z) =  z ^ { z )  = z:

Cov [0(Co,t), = ECo,tCt,t+s ~  ECottEC«,t+a =  E A 2£s -  EAtEAs =  t sVar A.

C ase lb .  </>(z) =  z , ,ip(z) =  z 2:

Cov [0(Co,t)i V>(Ct,t+s)] = ^Co,tClt+s ~  ^Co,tEClt+s =  i s 2 Cov [A, A2] +  t sVarA. 

C ase 2. <j>{z) = z,ip(z) =  <?:

Cov [0(Co,t), ^(Ct,t+«)] =  ECo,iCc‘-,+* -  ECo,tEcc' ’*+' =  EA ie-As<1̂  -  EAt Ee"*5̂

=  - t  [£ '( s ( l—c)) +  EA £ ( s ( l - c ) ) ] .

C ase 3. <j)(z) =  c ^ ^ ( z )  = ĉ :

Cov [^(Colt), ^(Ct,i+.)] =  E c f -  E 4 0’*E4M+'

=  Ee-A^ 1_Cl̂ e-As 1̂_C2̂ — Ee_A^ 1_Cl̂ Ee_As 1̂_C2̂

=  C([t{ 1 -  ci) +  s ( l  -  ca)]) -  C(t( 1 -  c i))£ (s(l -  c2)).
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C ase  4. </>(z) =  logp[0|t)(z; 0), ip{z) =  logp[t)t+s)(z; 0)]:

d d
Cov [^(Co.t), ^(Q,t+s)\ =  E —  logp^CCo.t; 0 ) ^ :  logP[t,t+S)(0,t+s; 0)

_  H? 1 ^  //* A\ ® „ //*

— V  P{[0,t),[M+a)}(^.^;^) <9 ( . Q\ ® ( . a\5 ^  P[o,o(w; 0) u ’ <90/Im+s) v '

where P{[o,t),[t,t+s)} is the joint probability mass function of the random variables

£o,t and Ct,t+s- The derivative ^:P[u,v){z\ 0) can be computed using the formula

9  „ / " ( A ( t ) - u ) ) 2exp(-A(D-K))
*) -  ^  7o_ -----------------^ ------------------df/A(A, 0)

-  1 f™
v - u j 0_

O verlapp ing  in te rv a ls

This section considers covariances of statistics in the most general case when the inter

vals are possibly overlapping. This includes the cases when the intervals do not overlap 

and also when the intervals coincide. Consider the covariance of the statistics

1 N 1 N 
h i te  = J r Z Z t M t u h ) )  and ipt2M = j z  $ 3 # Z |(t2 ,* 4 )),

1=1 1=1

where {zi(ti ,  t3) , . . . ,  zx(t \ ,  £3)} and {z i( t2, £4)1 • • • > zn{^2 : t*)} are data  from a mixed 

Poisson process observed over two, possibly overlapping, intervals [£1,^3) and [t2 , t 4) 

with 0 <  t\ <  2̂ <  £3 <  t4. Since the zi(u,u +  v) for I =  1 , . . . ,  AT are mutually 

independent, the covariances of the statistics can be simplified to

JVCov [<?(l,(,,-0(2,(4] = C o v [0 « tljts),^(Ct1,t4)]. (4-1.2)

Computing these covariances for different functions (f) and ^  can be further simplified 

by using the fact that the Poisson process has stationary and independent increments.
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Case l'a. (f>(z) =  z, z ) =  z:

cov[0(Ct1)t3),'0(Ci2,t4)] =  ^Ctut3it2,t4 -

=  E ( C t i , t 2 +  C t2)t 3 ) ( C t 2 ,t3 +  C t3 ,t4 )  ~  ( ® C t i , t 2 +  E C t 2 ,t3 ) ( E C t 2 ,t3 +  E C t 3 ,t4 )  

=  C o v ( C t l t t 2 , C t2 ,t3 )  +  C o v ( C t l j t a , Ct3>t 4 )  +  C o v ( C t 2 .t3 , C t3>t4 )  +  V a r ( C * 2)t 3 )

and using the results of Case 1

Cov[0(Ctlll3), ^(Ct2,t4)] =  (ts ~  h )  EA 4- (£3 -  ^ ) 2VarA

4- [(£2 — £i)(£3 — £2) +  (£2 ~  £i)(£4 — £3) +  (£3 — £2)(£4 — £3)] VarA 

=  (£4 -  h ) { h  ~  £i)VarA 4- (£3 -  £2)EA.

Case l'b. 0(z) =  2?, >̂(2 ) =  z 2:

C o v [< /> (ftl jt3) ,  '0 (C t2,t4 )] =  ECf1.t3Ct2.t4 — E C t i ,t3E C 22)t4

=  E ( C t i , t 2  +  C t2 , t 3 ) ( C t 2 >t3  +  C t3 >t4)2 ~  ( E C t i , t 2  4- E C t 2 , f 3 ) E ( C t 2 , t 3  4- C t3 . t 4 ) 2  

=  C o v ( C t 1 )t 2 , C 22 , t 3 )  +  2 C o v ( C t a . t 2 , C t3 . t 3 C t3 . t 4 )  +  C o v ( C t 1 )t 2 , C t3 , t 4 )  

4- Cov(Ct2>t3, C22,t3) 4- 2Cov(Ct2)t3, Ct3.t3Ct3.t4) +  Cov(Ct2)t3, C23,t4)

and using the results of Case 1

Cov[0(Ct1)t3), ^>(Ct2,t4)\ = (̂ 4 — t2)2(h  ~  £i)Cov(A, A2) 4- (£4 — £2)^3 — £i)VarA

4- 2(£4 — £2) (£3 — £2)EA2 +  (£3 — £2)EA.

Case 2'. <f)(z) =  z,tp(z) =  c*:

Cov[0(Ctllt3), '0(Ct2,t4)] =  E 0 1)f3cCt2.t4 _  ECt1)f3Ecc‘2-‘4

=  E ( C t i , t 2 4 -  C t2 , t 3 ) c C t2 ’ t4  —  E ( C t 1>t 2 +  C t2 , t 3 ) E c Ct2 .‘ 4

=  Cov (Cti,t2? cCt2'‘4) +  ECt2, t 3 ĉ *2’*3c^<3,t4 -  ECt2)t3EcCt2-*4.
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Using the result of Case 2

C o =  -(*2 -  h )  [£ '((t4 -  i2) ( l - c ) )  +  EA £((f4 -  t2) ( l - c ) ) ] . 

Similarly,

=  E a  [ E  (Ct2,t3Cc‘2'13 |A  =  A) E  ( c ^  |A  =  A )]

=  Ea [(Ac(ts -  t2)e_A^3_l2^1_c))

=  c(t3 -  t2)EA [ A e - ^ - 4̂ 1-*)]

=  -c(<3 -  t2) C  ( ( * 4  -  t2) ( l - c ) )  .

Noting that E C ^ E c ^ -^  =  (tf3 — £2)EA,C ((£4 — t2)(1 —c))» the above results are 

combined to give

C°v[Cti,t3>cCt2’t4] =  ~{t2 -  h )  [C'((t4 -  t2) ( l - c ) )  + EA£(( t4 -  t2) ( l -c ) )]

-  c(t3 -  t2) C  ((t4 -  t2) { l - c ) )  -  (t3 -  t2)EAC({t4 -  t2) ( l - c ) )

= — [(t2 — t\) +  c(t3 — t2)] C'((t4 — t2) ( l —c)) — (t3 — ti)EAC((t4 — £2X1 — c)).

Case 3'. < f > ( z )  =  cf,^(z) =  ĉ :

C o v [ ^ ( C t 1,(3 ) , V ’ (C t2 , ( J ]  =  E c i ‘ 1 , ,3 C 2 2 '’4 -  E c i ' 1 ,‘3 E c 2  2 ’’4 

=  e 4 ,-*2(c1c2)«-*34‘3’*4 - Ec,‘1,,3Ec^2’‘4

=  Ee_A^2~*1)(1- cl)e-A(t3-*2)(l-ClC2)e-A(t4-^3)(l-C2) _  Jge-A(t3-tl)(l-Ci)jg’e-A(f4-t2)(l-C2)

=  C ((t4—t\) — (t2—t\)c\ — (t3—t2)c\c2 — {t4—t3)c2) — C {(t3—£i)(l—Ci)) C {{t4—t2)(l—c2)).

If t\ — 0, t2 =  £3 =  t and t4 = t +  s the results of Section 4.1.1 are obtained, i.e. the 

covariances over non-overlapping intervals, in all three cases.
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C ovariance betw een  s ta tis tic s  in  th e  sam e tim e  in te rv a l

Consider the particular case when t\ = t<i =  0 and 3̂ =  £4 =  t so that the statistics are 

computed in the same time interval. The covariances between statistics in overlapping 

intervals can then be simplified as follows:

Var(Co,t) =  t2VarA +  tEA.

(This formula is given in Grandell (1997, p. 14).)

Case lb. (j){z) = z, tp(z) = z 2 :

Cov[G),t, Co.tl =  £3Cov[A, A2] +  £2VarA +  2£2EA2 +  tEA.

Case 2. <f>(z) = z,ip(z) =  c2 :

Cov[Co ,t ,cCot] =  - t [ cC ' ( t ( l - c ) )  +  E A £ (t( l-c ) )] .

Case 3. (f>(z) =  cl,ip(z) = cf :

Cov[c*’\  4 0’1] =  C (t( 1 -  C,C2)) -  C (t(l -  Cl)) C (t( 1 -  c2) ) .

C ase la . <j)(z) =  z, 'ip(z) =  2::

Consider also

C ase 4. Any suitable (f>(z) (so that the expectations below exist)

and ip(z) =  J - lo g p [Ojt)(z ;0 ) :
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4.1.2 Covariances of estim ators

Let 0 ^  and 0 ^  be estimators of 0  in the intervals [£1 ,^ 3 ) and [£2 ,^4 ) constructed 

using the general scheme of Section 2.2.1 with the sets of functions 0)}?=i and

{ f i 2\ z 'iO)}t= i> respectively. Assume that Theorem 2.2.1 applies to 0  ̂  ̂ and 0  ̂  ̂ so

that both estimators are asymptotically normal and let V^2\  and D /^2̂
 ̂(1) ~ (2) ,—  -

be the matrices associated with 0  and 0  . Using Theorem 2.2.1, V N ( f  — IE/) is

asymptotically normal A/*(0, B /) ,  where

f ( z . m  =  (  f m W )  \  -f = (  / w  )  E f = (  E / (1)(Cii,(3;®) \
/ (  ’ } f  I / ® ) ’ f  ( e / < 2>(C,2,(4; 0 )  )

and

/  D / (1> C ( / « , / < 2>)\ f
f  ~  \ C ( f w , f (2))T O f ®  )  (4-L3)

with

C ( / «  / (2)) =  Cov(/4(l)(Ch 0) ,  / f ( C t2 ,i4 ; 0) )
d

i,3= 1

The components of the matrix C ( / ^ , / ^ )  are computed using the results of Sec

tion 4.1.1.

Consider the problem of estimating the vector 0* =  ^ 0 ^ ,  0 ^  with the estimator 

0 * =  ( 0  ̂ \  0  ̂ ^  , where 0 ^  and 0 ^  are two different copies of 0. The fact th a t 0 ^  

and 0 ^  are two different copies of 0 implies that the matrix of partial derivatives V , 

defined by Eq. (2.2.4) with 0 *  substituted for 0*, has a block diagonal structure

V - C 7  v ° „ ) .  M .M )

Using Theorem 2.2.1, y/~N(0* — 0*) is asymptotically normal V (D /)V T), where 

D /  and V  are defined by Eqs. (4.1.3) and (4.1.4). The asymptotic covariance matrix 

is therefore

V ( D f ) V r = {  v (1) ® f (1) ( v w r  V « C  (fm, f (2) ( V<2Y )
V  ^  y (2) ( C ^ ( l ) y f ( 2 ^ r ^ ( l ) ^ T  y { 2 ) 2) ( y ( 2 ) j T  J  ■ ( 4 . 1 . 5 )
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4.2 The gamma Poisson process

The gamma Poisson process is a mixed Poisson process whose structure distribution 

£/a(A;0) is the gamma distribution with probability density function

g(A; a, k) =  Afe~le~A/a, a > 0, k > 0, A > 0.

The finite-dimensional distribution of the gamma Poisson process is

fOO 1
o-/ n

\ i = 0
P (z, =  x)  =  I ( | |   exP -  U)) ) g(A; a , A;) dA

r(A: +  r c „ )  / ^  (ti+i -  U)Xi+1 Xi \  a anr M  ^ “ ,0 ^  ^  +  a*n)Xn+fc ’

The one-dimensional distribution of the gamma-Poisson process is the negative bino

mial distribution (NBD) with probabilities

Px = r ( Z ( t 1) = x) = T(-k + x}  ( — -— V  (  atl V .
r(A:)x! \  1 -I- a t i )  \ l  + a t i )

Four methods are considered in the estimation of (m, k). The estimators m  and k 

are obtained as the solutions to the equations f i  — E /i =  0 and f 2 — E /2 =  0, where 

/ i  =  jr S / I i  / i ( zb ty and h  = jf S / I i  / 2(^; m, k) and { z \ , . . . ,  zN} is an i.i.d. NBD 

sample. The methods are defined by the functions f u  / 2 which are as follows:

•  Maximum likelihood (M L): f i  (z .mtk) = a i o g ^ 1) h{z.mtk) =  a i o g ^ a .

•  Standard method of moments (MOM): f i (z )  =  z, f 2(z) = z 2\

•  Zero term method (ZTM): f i (z )  = z, f 2(z) = 1 ii z = 0  and 0 otherwise;

•  Power method (PM): Jx(z) = z, f 2(z) = cz for some c ^  1;
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4.2.1 Covariance of statistics

This section considers the covariance of the statistics 4> and {jj for the following pairs 

of functions:

/  (f)(z) \   ̂ f  (  z \  f  z \  f  z \  f  cf
V i>\z )

For the gamma distributed random variable A with density g(A; a, k) =  Xk 1e A/a/ (a*T(A;)) 

with a > 0 ,  A: > 0, A > 0  the following moments and expectations are required:

EA“ =  — ^ (a  =  1 ,2 ,3 , . . .) ,  Var A =  a2k, C(c) =  (1 +  ac)~k,
T(k)

C'(c) = —ak( 1 +  ac)_fc_1, Cov(A, A2) =  2a?k(k +  1).

The covariances between statistics in non-overlapping and overlapping intervals follow 

from the results in Section 4.1.

Non-overlapping intervals [0, t) and [t , t + s)

Case la . <f>(z) =  2 , /ip(z) =  2 :

Cov [</>, = tsa2k.

Case lb . (j)(z) = z,Tp(z) =  z2:

Cov [(/>, ip] = tsa2k( 1 +  2as(k 4-1)).

Case 2. <f>{z) =  z , /tjj(z) =  c*:

Cov [</>, =  — tsa2fc(l +  a s (l —c))-fc-1(l —c).

Case 3. <j>(z) =  cf,^ (2 ) =  c|:

Cov [0, ?/;] =  ( l+ a i ( l - c i )  +  a s (l — c2))~k — ( l+ a £ ( l — Ci))~k ( l+ a s ( l  — c2))~k . 

Note that in the case of C\ =  C2 =  c

Cov [0, -0] =  (1 +  a(t +  s )( l —c))_fc — (1 +  at(l  — c))~k (1 +  as(l — c))~k .
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O verlapp ing  in terva ls  [ti,ts) an d  [£2,£4) w ith  0 <  £1 < t2 < £3 < U 

C ase la .  <p(z) =  z, ip(z) = z:

Cov [4>, ip] ~  (U ~  £2) (£3  -  t \)a2k  +  ak(t3 -  t2).

C ase lb .  <f>(z) =  z,ip(z) =  z2:

Cov [</>, ip] =  2 (£4  -  t2)2(t3 -  ti)a3k(k  +  1) +  (£4 -  £2) (£3  -  t i )a2k  

+  2(£4 ~  £2) ( £ 3  — t2)a2k(k  H- 1) +  ( £ 3  — t2)ak.

C ase 2. (p(z) =  2, ip(z) =  c*:

rz .n  _  ak(l  ~  c)[fe  -  £2) +  a(£3 -  £i)(£4 -  £2)]
C0V ~  (l +  a(£4 - £ 2) ( l - c ) ) ^  •

C ase 3. <p(z) =  =  d*:

Cov [</>, ip] =  (1 +  a [(£2~ £ i)(l —Ci) +  (£3—£2)(1 —CjC2) +  (£4 —£3)(1 —c2)])

— (1 +  a(t3 — £i)(l — Ci)) k (1 +  a (£4 — £2)(1 — c2)) k .

Note that for the case t2 =  £1 and £4 =  £ 3  the covariances are obtained for statistics 

computed in the same time interval. Let £2 =  £1 =  0 and £4 =  £ 3  =  £ then

C ase la .  <p{z) =  z,tp(z) =  z:

Cov [0, ip] = kat{ 1 +  at).

C ase lb .  (p(z) =  z,ip(z) =  z 2:

Cov [0, =  kat( 1 +  a£) (2(A; +  l)a£ +  1).

C ase 2. 0(z) =  z,ip(z) =  cr2:

Cov [<£, =  —akt(  1 — c)(l +  at) (1 +  a£(l — c))_fc_1.
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C ase 3. <p(z) = c^,xp(z) = c%:

Cov [0, -0] =  (1 +  a t ( l - c lC2) ) -k -  (1 +  at( 1 -  c ,))- * (1 +  at(l  -  c2))~k .

Fig. 4.1 and Fig. 4.2 show bivariate plots of various statistics (p and xp computed in 

different time intervals for 1000 replications of the gamma Poisson process with sample 

size N=1000. A 95% confidence ellipse based on the covariance m atrix (4.1.3) and 

constructed under the assumption of asymptotic normality is also shown. Figures are 

shown for the two cases of overlapping and non-overlapping time intervals and confirm 

the results of this section.

Fig. 4.3 and Fig. 4.4 show correlations p(<£, xp) = p(<p,xp) (follows from Eq. (4.1.1) 

and Eq. (4.1.2)) for various functions <p and xp in the case of overlapping and non

overlapping time intervals. These correlations will be useful when computing the cor

relations between estimators and market research measures of the gamma Poisson 

process computed in different time intervals. Note that given data from the gamma 

Poisson process, computing the correlations between statistics in different time inter

vals can give some indication as to the region of the parameter space in which the 

parameters lie.

Fig. 4.5 and Fig. 4.6 show the correlations p(</>, xp) =  p(</>, xp) (for various functions <p 

and xp) in the case m  = 1 and k = 1 as a function of varying time for both overlapping 

intervals and non-overlapping intervals. In the case of overlapping intervals, for the 

statistics shown, the absolute value of the correlation decreases linearly as the amount 

of overlap decreases. As would be expected, if the statistics computed in each time 

interval are the same then the correlation tends to 1 as the proportion of overlap goes 

to 1. The adequacy of the gamma Poisson process as a model for data can be checked 

by comparing the empirical covariances of statistics obtained from data in varying time 

intervals to the expected gamma Poisson covariances of statistics.
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(a) <j>(z) = z , ip(z) = z (b) <j>{z) =  z, z2 (c) <t>(z) = z,̂ (z) =  0.5* (d) </>(z) =  0.252, =  0.75J

Figure 4.1: 1000 points of ~ 4̂>) versus y/Nfy  — Ê >) computed for various functions (f)(z) and ip(z) when sampling from the
gamma Poisson process with m =  1, k =  1 with samples of size N =  1000 in the case t  =  1, s = 1. A 95% confidence ellipse based on the 
covariance matrix (4.1.3) and constructed under the assumption of asymptotic normality is also shown.

J o in t  d i s t r i b u t i o n s  o f  s t a t i s t i c s :  O v e r la p p in g  in t e r v a l s  [ti,t3), [£2 , £4 )

(a) <f>(z) = z (b) 4>{z) = (c) <j>(z) = z, il>(z) =  0.5* (d) 0(z) =  0.25*, ̂ (z) =  0.75!

Figure 4.2: 1000 points of -  E<f>) versus -/N(4> - Et ]>)computed for various functions and 4>(z) when sampling from the
gamma Poisson process with m = l ,k  = I with samples of size N =  1000 in the case t\ =  0,^2 = M 3 =  2,t4 =  3. A 95% confidence 
ellipse based on the covariance matrix (4.1.3) and constructed under the assumption of asymptotic normality is also shown.

C
hapter 

4



(a) </>(z) =  z r ip(z ) =  2 (b) 4>{z) =  -2, 'ip(z) = z2 (c) </>(z) =  z, 'ip(z) = 0.52 (d) <j>(z) =  0.25z, ip{z) = 0.75"

Figure 4.3: Correlation p(<̂ (Co,«), (̂Ct,t-i-s)) = Cov [<£(Co,t), /-y/Var</>(Co,*)Var̂ (CM+s) plotted for all NBD parameter values for
various functions (f> and xfj in the case t = 1 and s =  1 when sampling from the gamma Poisson process.

C orrelations betw een sta tis tics: O verlapping in tervals [t\,ts)y [£2^ 4)

(a) 0 (2 ) =  2 , 0 (2 ) =  2 (b) 0 (2 ) =  2 , 0 (2 ) =  z2 (c) 0 (2 ) =  2 , 1/1(2 ) =  0.5* (d) 0(z) =  0.25*, 0(z) =  0.75!

Figure 4.4: Correlation p(0(Ct1,t3),0(Cta,t4)) =  Cov [0(0,,t3), 0 « i2,i4)) / \/Vs.Ttp((;h:t3)Va.rJp((hM) plotted for all NBD parameter values 
for various functions (f> and in the case t\ =  0, £2 =  1? £3 =  2, £4 = 3 when sampling from the gamma Poisson process.

Correlations between statistics: Non-overlapping intervals [0, t), [t,t + s)
C

hapter 
4



Correlations between statistics: Non-overlapping intervals [0, £), [£, t + s)
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(a) 0(z) = z , tp(z) =  2 (b) <p(z) = z, xp{z) =  z2 (c) <p{z) = z, ip(z) =  c2 (d) <p{z) =  0.252, ip(z) =  c2

Figure 4.5: Correlation p(<£(Co,t)5 VKCm+s)) = Cov [<£(Co,t)> t,t+s)] /\/Var</>(Co,t)Var^(Ct,t+s) plotted against s for various functions <p
and ip in the case t = 1 when sampling from the gamma Poisson process with m = 1 and k = 1.

C orre la tions betw een sta tis tics: O verlapping  in tervals [t\,ts),
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(a) <p(z) =  z, ^(z) =  z (b) 4>(z) =  z, ip(z) =  z5

Figure 4.6 
against the

= z, y \ z )  — z (p\z) — z, y \ z )  — z (c) 0(.z) =  z, ip(z) =  c2 (d) </>(z) =  0.252, 'tp(z) =  c2

: Correlation p(^(Cti,t3)i V’(C«s,6«)) =  Cov [<̂ (Cti,t3)» / y/Vai<p(Ctl,t3) Var^(Ct2M) > where *3 -  *1 =  <4 -  *2 =  1 plotted
overlap £3 — £2 for various functions <p and ip when sampling from the gamma Poisson process with m =  1 and k =
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4.2.2 Covariances of estim ators

This section considers the covariances between estimators of the gamma Poisson pa

rameter pair (ra, k ) when the parameters are estimated using the method of moments 

(MOM), power method (PM) and zero term method (ZTM) computed over two dif

ferent time intervals. The estimator for m  is identical for all three methods and is 

given by

 r  z A u . v )  v > u >  0
N (v ~ u ) ^

when using observations observed over the interval [u,  v ) .  The MOM, PM and ZTM 

use the respective statistics

N  /  „ x x JV

M O M
-  1 V '  (  zi(u ’v )
-  N  2 ^  \

i=i z f ( u , v ) P M { c ) = - YN  î=i

Z i ( u , v )
cf i ( u , v )

and f ZTM = ^ Y (  rZ,{U' V) ) ’N  W  V / [̂ («,v)=0] J
(4.2.1)

where the parameter c > 0 ( c 7̂ 1) i s a  constant and I[Zl(u,v)=o] is the indicator function 

with I[Zl(u,u)=o] =  1 if zi(u,v) = 0 and I[Zl(u,v)=o] =  0 otherwise. The covariances of 

the statistics f MOM, f PM(c) and / ZTM were discussed in the previous section. In the 

computation of covariances between parameter estimates only the m atrix of partial 

derivatives V  defined by Eq. (4.1.4) is required. The covariance matrices for the esti

mators (ra, k )  can then be computed using Eq. (4.1.5) The m atrix of partial derivatives 

for the MOM, PM and ZTM are respectively

V - l
M O M

0r i
tl+2at(fc+l) i

a2t2 a2f2 -

v z lZ T M

0

y - i
P M ( c )

(Hat)fc + ]

c—1 -fc+1
r log(r)-r-t-l r log(r)-H-l

(1-fat) log(l-fat)—at (l-fat) log(l-fat)—at

where r  =  1 +  a t ( l  — c)  and t  =  v  — u.
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O

/  rht \  
h

rhs
\  k3 J

The covariance matrices for estimators (m, k) computed in different time intervals 

are analytically simple only in the case of non-overlapping intervals for the MOM, PM

and ZTM. The covariance matrix of the MOM estimators is

0 a2k 0

Q 2k(k+vpi+at)2 0 2 k { k  + l)

a?k 0 os

0 2 k ( k  + l)  0 

and the covariance matrix for the PM and ZTM estimators is

0 a2k 0

0 *W (c;t) 0 02,4

a2k 0 2Ml±£fl o

2fc(fc+l)(l+a s )4 
7171--------

(4.2.2)

(  rht \
h

rhs 
\  ks J

0 D.4,2 VPM (C> S)

(4.2.3)

D 2,4 — ^4,2 —

^ M(Ci U) =

n k+lrgk+l ^  _|_ rg _  ^  k _ T t r s _  ( l  _  c )2 a2t  s

(rt log (rt) -  rt +  1) (rs log (rs) -  rs +  1)

(1+ au — auc2) kr^k+2 — r* — kau (1+ au) (1 — c)2
[ru log(ru) -  ru +  l]2

where ru =  \  + au{l — c). For the ZTM the matrix D can be computed using (4.2.3) 

with c =  0.

Fig. 4.7 and Fig. 4.8 show bivariate plots of various estimators 9(t) and 6(s) com

puted in different time intervals for 1000 replications of the gamma Poisson process 

with sample size N=1000 with m  — 1 and k = 1. A 95% confidence ellipse based 

on the covariance matrix (4.2.3) and constructed under the assumption of asymptotic 

normality is also shown. Figures are shown for the two cases of overlapping and non

overlapping time intervals and confirm the results of this section.

Fig. 4.9 and Fig. 4.10 show correlations between p{0(t), f?(s)), where 6(t) and 6(s) are 

different estimators of the same parameter 9* computed using data in non-overlapping 

and overlapping time intervals. For fixed time intervals, the correlations for estimators 

of m  and k increases as w increases for the MOM, PM and ZTM estimators.
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Fig. 4.11 shows correlations between p(9{t), 9(s)) against the time interval s, where 

9(t) and 9(s) are different estimators of the same parameter 9* computed using data 

in non-overlapping intervals in the case when t =  1, m  =  1 and k = 1. The correlation 

p{9(t), 9(s)), in the case where 9* =  m  and 9* is the MOM estimator for k, increases to 

a constant as the length of the second time interval increases. For any set of parameter 

values (a, k), where a =  m / k , it is straightforward to show using (4.2.2) that

^ p ( r h ( t ) , m ( s ) )  =  ( —-— J —     and lim p ( m ( t ) , m ( s ) )  =  \d s ^  \ \ i + asJ  2y/ ( l + a t ) ( l + a s ) t s  —  J V V 1 + a t '
so that the derivative is positive for all a >  0, k >  0 and the correlation tends to a

constant as s  —> oo for the ML, MOM, PM and ZTM estimator of m.  For the MOM

it is straightforward to show using (4.2.2) that

^ -p ( k { t ) , k(s) )  =  j-  rr and lim p{k( t ) ,  k ( s ) )  =
ds ’ (1 +  at)(l  +  as)2 «-»oo ’ 1 +  a t ’

so that the derivative is positive for all a > 0, k > 0. Therefore, the correlation 

p(k(t), k(s)) for MOM estimators of k is also strictly increasing and tends to a con

stant. There is no simple equivalent limiting form for the covariance between the PM 

estimators for k.

Fig. 4.12 shows correlations between p(9(t),9(s)), where t = t3 — ti = 1 and s = 

t4 —12 =  1 for ti < t2 ^  £3 < £4, against the length of overlap ts — t2. Here 9(t) and 9(s) 

are different estimators of the same parameter 9* computed using data  in overlapping 

time intervals of length t = t3 — t\ = 1 and s =  t4 — t2 = 1, in the case when m  = 1 

and k = 1. For the MOM, PM and ZTM methods, the correlation of estimators of m  

and k  increase as the length of the overlap increases. For any fixed length of s and t 

and any set of parameter values (a, k), as the length of the overlap tends to zero, the 

correlations are equivalent to the correlations in non-overlapping intervals of the same 

length s and t.
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Figure 4.7: 1000 points of y/N(6(t) — 0*(t)) versus \/rN(6(s) -  0*(s)) computed from data in the time intervals [0 , t) and [t, t +  s) 
respectively when sampling from the gamma Poisson process with m =  1, k =  1 and samples of size N  =  1000 in the case t  =  1, s =  1. 
A 95% confidence ellipse based on the covariance matrix (4.1.5) and constructed under the assumption of asymptotic normality is also 
shown.
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Figure 4.8: 1000 points of \/N(9(t) -  6*(t)) versus \/N(6(s) -  9*(s)) computed from data in the time intervals [ti,t3) and [*2^ 4) 
respectively when sampling from the gamma Poisson process with m = l ,k  =  1 and samples of size N  =  1000 in the case t\ =  0,^2 =  
1, £3 =  2, £4 =  3. A 95% confidence ellipse based on the covariance matrix (4.1.5) and constructed under the assumption of asymptotic 
normality is also shown.
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(a) 6' = m  (b) 0* =  k(MOM) (o) 0* =  (PM(0.5)) (d) 0* (ZTM)

Figure 4.9: Correlation p(9(t),9(s)) =  Cov[0(£),0(s)]/yVar [#(£)] Var[0(s)], where 9{t) and 9{s) are different estimators of the same 
parameter 9* computed using data in the time intervals [0, t), [£, t + s) respectively. Correlations are plotted for all NBD parameter 
values in the case t =  1 and s =  1 when sampling from the gamma Poisson process.

C orrelations betw een estim ato rs: O verlapping in tervals \ti,ts) and  [t2, £4)

(a) 0* =  m  (b) 9* = k (MOM) (c) 9* =  k (PM(0.5)) (d) 9* = k (ZTM)

Figure 4.10: Correlation p(9(t),9(s)) =  Cov[<?(£), 0(s)]/yVax[0(t)]Var[<?(s)], where 9{t) and ^(s) are different estimators of the same 
parameter 9* computed using data in the time intervals [̂ 1,^3) and [t2, h)  respectively. Correlations are plotted for all NBD parameter 
values in the case t\ = 0,<2 = 1,*3 = 2,^4 = 3 when sampling from the gamma Poisson process.
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Figure 4.11: Correlation p(0(t),0(s))  = Cov[0(t),0(s)]/^Var[0(t)]Var[0(s)] versus s, where 0{t) and 0{s) are different estimators of the
same parameter 0* computed using data in the time intervals [0,£), [£, £ +  s) respectively. Correlations are plotted for m — 1 and k =  1 
in the case t =  1 when sampling from the gamma Poisson process.
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C orrela tions betw een  estim ato rs: O verlapping in tervals

Figure 4.12: Correlation p(0(t)J(s)) Cov[0(t), 0(s)]/^/var[0(t))Var[0(s)] versus overlap 13 — £2, where 6(t) and 0(s) are different
estimators of the same parameter 0* computed using data in the time intervals [ti,ts) and [£2^ 4) respectively. Correlations are plotted 
for m =  1 and k =  1 in the case £ 3  — t\ =  £ 4  — £2 =  1 when sampling from the gamma Poisson process.
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4.2.3 Correlations between market research measures

Section 4.1 considered the covariances of statistics and estimators for mixed Poisson 

processes and Section 4.2 considered results for the specific case of the gamma Poisson 

process. In market research, the purpose of estimating the parameters of the gamma 

Poisson process is to be able to predict the market research measures discussed in 

Section 2.4.1. Using the results of Section 2.2 it is possible to compute the correlations 

between these measures in two different time intervals.

Market research measures for mixed Poisson processes

Let X  (t ) denote the one-dimensional marginal distribution of the mixed Poisson pro

cess. The following market research measures will be considered:

1. Penetration

b0(t) = 1 -  P(X(£) =  0), 0 ^  b(t) ^  1;

2. Purchase frequency

w(t) = K (X(t) \X (t)  ^  1), w(t) ^  1;

3. Measured repeat

A -M  =  P ( X ( i )  >  r  +  l |X (t)  >  r) =  0  <  pr(t) <  1;

4. Repeats per repeater

a,r(t) =  E ( * ( t )  -  r |X ( t )  >  r  +  1) =  -  r, <*(*) ^  1.

In practice and in literature there is ambiguity in the definition of the market measures. 

It is unclear as to whether the measures refer to observed values or expected values 

of the underlying sampling distribution. In this thesis the market research measures 

are considered to be those obtained from the underlying sampling distribution. The 

measures are therefore functions of the moments of the distribution of X(t).
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Let 0 = ( 0 i , , Od)T denote the vector of parameters for the one-dimensional 

marginal distribution of X(t) .  The theoretical market research measures are straight

forward to compute from knowledge of the one-dimensional marginal distribution of

covariances of the market research measures will therefore depend on the estimation 

method used to estimate the parameter vector 0 .

Computing the covariance matrix

vations was considered in Chapter 3. The asymptotic normal distribution of estimators

the covariance of market measures computed in two different time intervals when the 

underlying process is gamma Poisson. Let rnt and kt be parameter estimates of the 

gamma Poisson process using data observed over a time interval of length t. The mar

ket research measures of penetration, mean purchase frequency, measured repeat and 

repeats per repeater are respectively given by

X  (t ). The market measures may be estimated by using different estimators 0  of 0. The

The asymptotic normal distribution of different estimators of (m, k) using maximum 

likelihood and generalized moment based estimators given a sample of i.i.d. NBD obser-

of (m, k) computed in two different intervals was considered in Section 4.2. Using the 

results of these sections and the theory given in Section 2.2 it is possible to derive

i - e ;_oP ( * w =.7)

where
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It should be noted that for finite sample sizes (3r(t) and ujr(t) are biased estimators

of Pr(t) and u r(t) respectively. They are, however, asymptotically unbiased and the

asymptotic distributions of the estimator will therefore remain unaffected.

Since the estimators for m  and k are asymptotically uncorrelated, the asymptotic

normalized covariance matrix is of the form

Var(ra*) 0 Cov(m t ,m s) 0

0 V ar(4) 0 Cov(fct , ks)

Cov(m t ,m s) 0 Var(ms) 0

0 Cov(kt ,k s) 0 Var (ks)

(  rht \
kt
rhs

\  ks )
lim N

N —> oo

(4.2.4)

In the computation of covariances between the same market measures computed in 

different time intervals, only the matrix of partial derivatives V  defined by Eq. (4.1.4) 

is required. The matrices of partial derivatives are

V - 1 =
0T

b[i ,t\ b[2,t] 0 0
0 0 6[i)S] b[2,s]

, v - 1 = W[l,t] W[2 ,t\ 0  0

0  0  w [l,s] ™[2,s) .

A m ] P[2,t] 0 0 V -1 = u [2,t) 0 0
0 0 A m ] P[2,») . ' u T

.  0 0 U>[ijS] 6J[2,s] _

(4.2.5)

where

b[i,u] — u ( 1 H-
m tu - k t - 1

b[2,u] -  ( 1 +
m tu
~kT

—kt — 1
i , m t \  . rrit%L. /  m t \  m tu
l o g { 1 + k ) + ^ r l o g { 1 + h ) + ^ r

t (—k — m t + kb + bmt +  mtbk)
W [l,u\ =  - .2  / ,  , TT(—1 + b) {k 4- mt)

W[2,u
bmt (A: In +  In (^ jr* ) m t — mt)

(—1 +  b)2 (k +  mt)

( l -  E ] Z lP j (u ) )  £;Pr(u) + Pr(u) Y^jZ l £^Pj{u)  
%.u| =  -------------------- 7----------- ;--------T2--------------------

( i  -  E  S f t ( « ) )

( i -  ^P r{u )+ P r{u )  EjZi mPj(u)
P&M =  ------------------- 7------------;--------T2-------------------

( l  -  E J=oP i w )
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f 1 -  £ j = 0pK“ ))  ( u  -  E ; = o ^ f t ( “ ))  +  (™“ -  EJ=o j p A u ) )  E j=o £ ;p A u)
72

( i  -  E 5 =op5(“ ))

( i  -  £J=op}(“ ))  ( -  £ j = o i-§kPAu ) )  +  ( * «  -  E ,r=oiP i(“ ) )  £ J = 0 &?}(«)
a'[2,«] = -------------------------------------- 7-------------------- T2---------------------------------------

( i  -  £J=o ?}(«))

H e r e

0 ~ / \ 0  — mu)k  _  . .
^ (u) =  m(m« +  fc)^ (M) and

M ft(u ) = +  i )  -  * ( * )  -  i ° g  ( i  +  - j r )
m u  — ?

+ £#(«)m u  +  /c

and ^(-) is the digamma function. Let D^j] be the elements of the m atrix (4.2.4) and 

let V[ij] denote the elements of one of the diagonal matrix of partial derivatives as 

given in Eq. (4.2.5). Then V is of the form

y - 1  =  &[lJt]&[ils]lD[i,3] +  b[2,t}b{2,sp[2A] '

6 [  fe[l1t]&[lls]IJ)[l,3] +  b[2,t]b[2>s}lB)[2A} ^ fi>a]3D>[3f3] +  b[2,s]^M

H ypothesis testing

The construction of the joint asymptotic normal distributions of statistics and func

tionals of data whose underlying distribution is the gamma Poisson process, and also 

mixed Poisson processes in general, has the important consequence that the limiting 

distribution can be used in the testing of various hypotheses. For example, suppose 

we have a vector of estimators 9  =  (^(J), ^(2), . . . ,  0(n)) of the vector of parameters with 

identical entries 6, computed in time intervals 1,2 , . . . ,  n. Then it is possible to check 

whether the vector of estimators falls within the confidence ellipsoid of the correspond

ing n-dimensional asymptotic normal distribution of 6 for a specified significance level. 

In performing the hypothesis test, it will be im portant to consider the power of the 

test so that the test minimizes the probability of a Type 1 error.
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4.3 The N BD  IN A R (l) process

This section considers the dynamic properties of the INAR(l) process by considering 

the correlations and spectral representations of the INAR(l) process. The INAR(l) 

process is an ergodic process. The correlations of statistics computed in an ensemble 

of realizations therefore represents the correlations of statistics computed from a single 

realization of the process by using the autocorrelation function. As well as considering 

the autocorrelation function (time domain analysis), the spectral representation of the 

process is also considered (see e.g. Priestley (1981)). Spectral domain analysis considers 

the decomposition of time series into frequency components and is commonly used in 

the detection of long-range dependence.

Background

The INAR(l) process with deterministic thinning. Recall the definition of an INAR(l) 

process. A non-negative integer-valued process { X t;t G  Z} is said to be an INAR(l) 

process if the process satisfies the equation

Xt = oi o Xt~i +  £*, (4.3.1)

where a o X t~\ and et are mutually independent random variables from a discrete 

distribution and the et form a sequence of uncorrelated random variables for t £ Z. 

The value of a  must satisfy a  G  (0,1) for the process to be stationary. It is assumed that 

the X t and et have finite means and variances. The INAR(l) process X t with marginal 

distribution 7r will have a stationary marginal distribution, i.e. X t = X t~\ = X n for 

all t G  Z, if and only if the random variable X n is discrete self-decomposable so that

G x A s) = - a  + as)G e(s',a) a  G  (0,1). (4.3.2)
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The INAR(l) process with stochastic thinning. The INA R(l) process with stochastic 

thinning was introduced by McKenzie (1986) in the special case where the marginal dis

tribution of the process is NBD. Assume that there exists a non-negative integer-valued 

autoregressive process X t with i.i.d. stochastic thinning parameters A t supported on 

the interval (0,1), then the INAR(l) process with stochastic thinning is defined by

Xt  =  At o X t-1 4* £t, (4.3.3)

where for fixed t the A t , X t- \  and et are independent random variables. If the process 

X t defined by (4.3.3) is to be a stationary process then the PGF of X n must satisfy

Gx J c ) =  [  Gbc^l -  y + yc)dFA{y)G£(c\ a), (4.3.4)
Jo

where Fa (v) is the cumulative distribution function (c.d.f.) of A t.

McKenzie (1986) derived a stationary NBD INAR(l) process with stochastic thin

ning by letting X t be NBD(m, k) and letting A t follow a Beta distribution defined by

y l  — l / " l    y \ k  — l—l

fA , (y )= B ( l ,k  — l) ■ * > o , * - i > o , o < „ < i ,

where B(p,q) = r(p )T (q)/r(p  H- q) is the beta function. The NBD INAR(l) process

with stochastic thinning can be represented in terms of Eq. (4.3.4) by

( c )  Jq G x „ ( 1 —y+yc)dFA(y) Ge (c; a )

The generating function of the error distribution may be represented in the form

Ge(C; Q ) = (  1 + ’n ( 1 - l / m - c ) y ^

from which it becomes clear that the errors are NBDm(m (l -  l/k ), k -  I).
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4.3.1 The N B D  IN A R (l) process w ith  m ixed thinning

A more general NBD INAR(l) process can be derived as a mixture of the two processes 

described by Eqs. (4.3.1) and (4.3.3).

D efin ition  4.3.1. Let X t be a stationary non-negative integer-valued autoregressive 

process of the first-order with innovation process e* (uncorrelated for t ^ s), indepen

dent of X t- Assume that both processes have finite means and variances. Additionally

let a  6 (0,1) be a deterministic thinning parameter and A t (independent of a )  be i.i.d. 

stochastic thinning parameters with c.d.f. FA concentrated on the interval (0,1). Then 

the INAR(l) process with mixed deterministic and stochastic thinning is defined by

Xt = cxAt o X t -1 +  St- (4.3.6)

The generating function of the process (4.3.6) is given by

Gx (c) = (  Gx ( 1 - y a  + yac) dFA(y) Ge(c). (4.3.7)
Jo

P ro p o sitio n  4.3.1. Let the process X t have a NBD(m ,k) marginal distribution then 

X t may be represented as a process with mixed deterministic and stochastic thinning 

with A t ~  Beta(i/, k — v) and et ~  NBD(raa, k — v) * NBDG(fc, k /(k + m a ) ,a ) .

Proof. The proof of the proposition is obtained directly from proving Eq. (4.3.7). Sup

pose X t has a NBD(m, k) distribution then

J  Gx ( 1 -  yoL +  yac)dFA(y) Ge(c)

_  f  m a (  1 — c ) \  u /  m a (  1 — c) \   ̂ k (  A; +  m (l — c) \  k
\  k  /  \  "*" k  )  \ k  +  m a ( l  — c ) J
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P ro p o s itio n  4.3.2. Let X t be an IN A R (l)  process with mixed deterministic and 

stochastic thinning with thinning parameters given by a  and A t where At has dis

tribution function Fa - Assume that the process has finite first and second moments, 

then the autocorrelation function of the process at lag u is given by

p{X t , X t+U) =  p(u) =  (aE[A ]) M , u € Z. (4.3.8)

Proof. Let A\ and A 2 be two random variables with c.d.f. concentrated on (0,1) then it 

is straightforward to show that for any non-negative integer X , the thinning operation 

Ai o A 2 o X  = A iA 2 o X . Note that using an iterative technique the process X t in 

(4.3.6) may be written in terms of X t- U as

fu—\ \  t i - 1  / j - 1

X t  — ( J J  otAt-i  j o X t- U +  I J J  otAt-i  j o e t_j  +  e t .
. i = 0  /  j = 1 \ i = 0

(4.3.9)

The autocovariance function at lag u is

R(u) = Cov[Xt , X t- u] = Cov
fu —1

=  Cov
fu— 1

u-1 / j - l
oiAt-i  J I OcAt-i J o£t_j-\-£t, X t - u

.4=0 /  j = 1 \4=0
~4i—1 /  j  — 1

1 1  CX.At—i I OX t—ui X t—u
.4=0

+  Cov E n OtAt-i J 0£t-j-\~£t, X t - ul j= l  \ i= 0
= E

41—1

Y [  OtAt-i
4=0

Var [Xt_ J  +  0 =  (aE[A])u Var [Xt_ J  , u e Z + .

Note that for any t > s the pair (£tlX s) are uncorrelated. Additionally, using the 

stationarity property of the process, the variances are invariant under shifts in time 

so that Var[Xt_ J  =  Var[X*]. The autocorrelation function of the process then follows 

directly. □

Note that by taking a  = 1, the autocorrelation function of the process with random 

thinning (see Eq. (4.3.3)) is E[A]^, u e  Z.
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4.3.2 Integer valued processes w ith  long m em ory

This section derives a long-memory non-negative integer-valued process using the ap

proach of Barndorff-Nielsen (1998) by the aggregation, X t =  > °f a sequence

of stationary and independent INAR(l) processes (77 =  0 ,1,2 , . . . ) .  Here X ^  are 

of the form

= avox^\ + s[”\  n = 1, 2 ,... t e z .

Conditions required in order to construct long-memory processes with Poisson and 

NBD marginal distributions are presented followed by some simulation results of the 

autocovariance function and spectral density.

Proposition 4.3.3. Let X t = be the aggregation of independent IN A R (l)

processes with each X ^  having mean pxr, < 0 0  and variance cr^ < 0 0  with thinning 

parameter a v. I f  o 2Xt) and are of the form

=  „ i+2(i -H) ’ a v =  exp{-c2 /»?} (4.3.10)

with some positive constants ci, C2 and 0.5 < H  < 1, then on the assumption that 

E[Xt] =  the limiting aggregated processes X t is a well defined process

in the L 2 sense with long-memory (or Hurst) parameter H. The autocovariance function 

and the spectral density of the process are given by Eqs. (4.3.12) and (4.3.13) below.

Proof Note that the aggregated process has a finite mean (by assumption) and finite 

variance, which for any H  G (0.5,1) is given by

0 0  0 0

Var[*(] =  £ < 4 ,  =  £  - i r l h T )  <  (4-3.11)
77=1 77=1

The long-memory of the process is proved by showing th a t the aggregated process has

an autocovariance function of the form R(u) ~  A \(u)u~T with r  G (0,1) as u —* 0 0
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and spectral density of the form f(u>) ~  A 2(u)\lj\ k with k E  (0,1) as u  —► 0, where 

both Ai  and A 2 are slowly varying functions.

The autocovariance function. Let (u) represent the autocovariance function of the 

individual INAR(l) processes, then under the conditions of (4.3.10), the covariance of 

the aggregated process at lag u =  t — s is given by

o o  o o  o o  o o

R(u) = ' £ R m (u) = ^ C o v ^ u a  =  £ 4 ,  «M =  £  e - '* * '"
T]=l T)= 1 77=1 r)—l

~  f°°  Cl e-M«/x dx = Cl  f HC2 z2(l- H)- l e-*dz
x W ( l - H ) e  d X  ( | U |C2)2(1 - H ) J o

d r ( 2( i - / / ) )  c  . ,
~  (|u |c2)2<1-" )  _  |u |2(1-" )  88 00 (4.3.12)

where C  is a constant, u E Z and H  E (0,1). Note that a substitution of z = \u\c2 /  x  

was made to the integral in the third line of the proof. If H  E  (0.5,1) then Eq. (4.3.12) 

satisfies the definition of long-memory given in Eq. (2.3.16).

The spectral density. Barndorff-Nielsen (1998) constructed a long-memory process 

with the same autocovariance function R(u) as (4.3.12) but in continuous time so that 

u  E  R .  The corresponding spectral density f c { w ) ,  w G l  therefore exists and may be 

obtained directly from the autocovariance function (4.3.12) (see Priestley (1981, pp. 

210-226)). The identity f ( u )  =  S s l - o o / c ^  ^ 7 r s )  where —  n  <  u> <  n  may then 

be used to find the spectral density of the discrete time process with autocovariance 

structure of the form (4.3.12).

Let / C(cj) denote the spectral density of a continuous time process {X t ; t E  R}, then 

the spectral density for a process with autocovariance function of the form (4.3.12)
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under the conditions of proposition 4.3.3 is derived on re-writing R(u) as

oo oo 1 /*

*(“) = E  7) = E  /
T7=l 1 1)—\ 0()Q +  V ™

/ OO f  “I C O  -a i  \  /• O O

„ (ajo) E  “ i « ? 5 v  j '“ ** - m L u‘-),'~du'
Hence the spectral density of the aggregated process in continuous time with autoco

variance function R(u ), u € R of the form (4.3.12) has spectral density / c(u;) given by

1 -1 -i
/ \ 1 ^1^2 1 1 t o ,

f c y d )  2~ /  j 2 (1—H) ~ 2  i 2 2 ’ ^  ^
° X  ^ 1  ^  V  C 2  w  V

The equivalent spectral density for the discrete time process f ( u )  is therefore

/m = E  +2;rs)= Ex( J v  7T
s = —oo

• oo 1

E ^jj2(i—H) c 2 _|_ 2irs)2rj2

—tv < lj < 7T. (4.3.13)

Note that the spectral density has a pole at the origin for H  6 (0.5,1). Consider 

the individual terms in s of the spectral density (4.3.13), then the spectral density at 

s =  0, u  =  0 is given by

1 C ^
/ ( ° ) L o  =  ^ 2  E  rfiJ-H)  =  °°> Cl’ C2 >  0> for H  €  (°-5' ^  •

X 77=1 '

The spectral density can be simplified on interchanging the summation to give

f (u ) = —  V '  Cl 1____________1 -  exp{—2C2/ 77}__________
o \  f,i+2(i-H) 2tt 1 -  2 exp{—C2/ 77} cos a; +  exp{ — 2c2/r;}

_  1 ^  ci 1 cosh(c2/2r;) sinh(c2/277)
ax  171+2(1_//) 2tt cosh(c2/2r7) — cos(w/2)2 ’ 7r _  ^  < 7r.

□
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E xam ple: Long m em ory  P oisson  processes

This example constructs a stationary long-memory process with a Poisson marginal 

distribution with mean A, autocovariance function of the form (4.3.12) and spectral 

density of the form (4.3.13) by the aggregation of independent Poisson INAR(l) pro

cesses.

P ro p o s itio n  4.3.4. Let { X ^ ; 77 =  1 ,2 ,...}  be a sequence of stationary and in

dependent Poisson IN A R (l)  processes with mean Xn and thinning parameter a v = 

exp{—C2/ 77} (c2 > 0) where

X" = C(l +  2 ( l - i / ) ) j y 1+2<1- " ) ’ •f f € (°-5>1)

and C(s) =  1 V 7/5 75 the Riemann-Zeta function. Then the aggregated process

X t =  Y ^ i  has long-memory with Hurst parameter H  and a Poisson marginal

distribution with mean X and autocovariance function

X ^ e x p { —C2M /7?}
R{u) =

C(l +  2(1 - H ) ) ^  7,1+211-*) '
u €  Z

and spectral density

f(u>) =
C2

ttC(1 +  2(1 -  / / ) ) E Y — _______________________________- ___________________

^2(1 h )  -I- { w  -f- 27rs)2rj2 -7T <  UJ <  7T.

Proof The proposition is easily proved by using properties of generating functions. 

Note that the Poisson distribution is infinitely-divisible and hence the aggregated pro

cess X t =  as a sum of independent Poisson INAR(l) processes, is well

defined on the assumption that X t is L 2 convergent. Assume that the X ^  follow a 

Poisson distribution with mean Xv then using the fact tha t GXt (c) =  115)11 Gx w (c)
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and the form of a2 (v) in (4.3.10), we require for any t e Z

exp (—A(1 -  c)) =  exp ( -  A7?(l -  c) J =  exp ( -
TJ=1 . U v

Cl
1+2(1—/I) ( 1 - C )

This implies that the constant C\ and the parameter Â  must be of the form

A I v - [ i + 2 ( i - H ) \
Cl = A„ =  A

z ~ i  i ;  •

□

It is clear from the form of Â  that the aggregated long-memory process is a sum 

of weighted Poisson processes whose mean and variance tend to zero in the limit as 

k —> oo.

Simulation results. Figure 4.13 shows part of a realization of a simulated long-memory 

Poisson INAR(l) process of length t =  20000 with Hurst parameter H  =  0.8, A =  5 and 

constant C2 =  0.1. Note that the constant C\ is restricted on specifying the marginal 

distribution of the long-memory process. The simulations show both the short term 

(t = 100) and long term (t = 10000) behaviour of the process.
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Figure 4.13: Long Memory Poisson INAR(l) Realization 

Figure 4.14 shows the autocorrelation function and periodogram in logarithmic scale
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of the simulated long-memory process, with the solid line showing the theoretical value 

of the autocorrelation function and spectral density respectively.

'zk

I •: i ■I *. i i

Figure 4.14: Autocorrelation function & periodogram

E xam ple: Long m em ory  N B D  processes

This example constructs a stationary long-memory process with a negative binomial, 

NBD(m, k), marginal distribution with autocovariance function of the form (4.3.12) 

and spectral density of the form (4.3.13) by the aggregation of independent NBD 

INAR(l) processes.

P ro p o sitio n  4.3.5. Let { X ^ ; rj =  1 ,2 ,. . .} be a sequence of stationary and inde

pendent NBD(m, kjj) IN A R (l) processes with thinning parameter a  ̂ =  exp{—c^/rj} 

(c2 > 0). Additionally let kv be of the form

fc, =  C(l + 2 ( 1 - / / ) ) ? 7i+2(>-«)’ H e (°-5>1)

where ((s) = Xlfcii the Riemann-Zeta function. Then the aggregated process

X t = Yl™=i has long-memory with Hurst parameter H  and a NBD(m, k) marginal 

distribution with covariance function

_  m ( ,  , m \  S2'  e x p { -c 2|u|/77} ^
R{u) -cTi +  2(1 -  h Y) (  + T“ € Z
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and spectral density

c2/  M  = < ( 1  +  2(1 -  H)) JE
S = — OO

• oo 1

E ^ -7T <  U) <  7T.^  ^2(1-//) c2 _(_ _(_ 2tTs )2T]2

Proof. The proposition is easily proved by using properties of generating functions. 

Note that the NBD distribution is infinitely-divisible and hence the aggregated process 

X t =  X tV\  as a sum of independent NBD INAR(l) processes is well defined on 

the assumption that X t is L2 convergent. Assume tha t the X ^  follow a NBD(ra, kv) 

distribution then the form of <J2xW) in (4.3.10) implies th a t for any t G Z

k 2
< w = m ( 1+£ )  =

Cl  A C ___________ Cl

771+2(1 - h ) * m ( m  +  k )  r]1+2^ ~ H ^

Furthermore using the fact that GXt (c) = &x w (c)> the value of kv is obtained as

1 +
m (l — c) 

k =  1 +
m (l — c ) \  ^ = 1^

k
k 2 Cl

= >  k  1 77^ ( 777, +  k)  77 1 + 2 ( 1 - - f O
TJ=1 T]=l L V ' ' J

^ - [ 1+ 2(1 -H)J 

E oo=i - r i - w i -n ) !  J  •

□

It is clear from the form of that the aggregated long-memory process is also a 

sum of weighted NBD processes whose mean and variance tend to zero in the limit as 

k  —> 00.

Simulation results. Figure 4.15 shows part of a realization of a simulated long-memory 

NBD INAR(l) process of length t =  20000 with Hurst parameter H  = 0.8, m  =  5, 

k =  5 and constant c<i =  0.1. Note that the constant Ci is restricted on specifying 

the marginal distribution of the long-memory process. The simulations show both the 

short term (t =  500) and long term (t =  10000) behaviour of the process.
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T im e (t)
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Figure 4.15: Long Memory NBD INAR(l) Realization

Figure 4.16 shows the autocorrelation function and periodogram in logarithmic scale 

of the simulated long-memory process, with the solid line showing the theoretical value 

of the autocorrelation function and spectral density respectively.

•1 -2

Figure 4.16: Autocorrelation function & periodogram
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Chapter 5 

Models for consumer buying 
behavior

This chapter considers the NBD and related processes discussed in Chapters 2, 3 and 4 

as possible models for use in market research. The data analyzed has been courteously 

provided by ACNielsen BASES. The transaction data comprises a panel of 34,647 indi

vidual households representative of the United States. The database contains records 

of every transaction, through the scanning of individual items, of each household for the 

duration of the year 2000. Each record contains the following information: household 

identification number; category of product purchased; brand of product purchased and 

date of purchase. The NBD models are fit to the number of purchases made by house

holds for 46 different categories and the top 50 brands of each category. The products 

range from goods purchased regularly such as food and drink to longer lasting products 

such as cosmetics and household goods.

The transaction data is an ideal source as the data  can either be represented in the 

form of panel data, analyzing the number of purchases across many households, or as 

a single time-series of longitudinal data, analyzing the to tal number of purchases of 

a particular brand or category. The mixed Poisson processes are suitable models for 

panel data whereas the INAR(l) processes are suitable models for a single realization 

of longitudinal data with serial dependence.

126
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The event that will be modeled by the negative binomial processes will be consumer 

purchase occasions. A single consumer purchase occasion is said to occur if a household 

purchases a given product on any single day during the analysis period. The number 

of purchase occasions in a time interval therefore represents the number of days a 

household purchased the product within that time interval.

Section 5.1 considers the NBD as a suitable marginal distribution for consumer 

purchase occasions. The power method of estimation is used to estimate parameters 

of the NBD and the estimator is compared to the traditional method of moments and 

zero term method estimators. Sections 5.2 and 5.3 respectively consider the gamma 

Poisson process and the INAR(l) process as models for consumer purchase occasions 

by analyzing the covariances and correlations of functionals of the data computed in 

different time intervals.

5.1 The N BD  model

The gamma Poisson process and the NBD INAR(l) process both have the NBD as 

their one-dimensional marginal distribution of the process. This is regardless of the 

fact that the gamma Poisson process and the NBD INAR(l) process are count and 

stationary processes respectively and therefore model different types of events.

Fig. 5.1 shows bar charts of observed frequencies and expected frequencies for two 

different types of category purchases (detergents and cereals) during time intervals 

of length 13, 26 and 52 weeks. The expected frequencies are computed under the 

assumption that the data follow the NBD. The NBD parameters are estimated by 

using the power method at optimum value of c using zero term method estimators as 

preliminary estimators. The NBD visually seems to be a good model for consumer 

purchase occasions for these two categories.



30

I 20

10

0

Detergents t = 13 weeks
50 Expected

II

30

2 0

10

0

Cereal t = 13 weeks

40

30

*  25

10

0

lipictiO ■ ■  Otmiit

0 -2  3 -5  0 -0  5 - 1 1  1 2 -1 0  1 5 -1 2  1 0 -2 0  2 1 -2 3  2 4 -2 6  2 7 -2 5  30

Oonaumar purrOi—  nnr— fcw

Detergents t = 26 weeks
50

40

30

20

10

0

Cereal t = 26 weeks

Expected

I

10

0
0 -4  5 - 0  1 0 -1 4  1 5 -1 1  2 0 -2 4  2 5 -2 0  3 0 -3 4  3 5 -3 0  4 0 -4 4  4 5 -4 0  SO ♦

Detergents t = 52 weeks
Expected m m  observed

0 -1  0 -1 ?  1 8 -2 4  2 7 -3 5  3 4 -4 4  4 5 -5 3  5 4 -4 2  4 3 -7 1  7 2 -8 0  8 1 -8 0  00

Cereal t = 52 weeks

Figure 5.1: NBD fits for two different categories (detergents and cereals) for time intervals of lengths 13, 26 and 52 weeks.
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5.1.1 The Chi-squared goodness o f fit test

As an initial goodness of fit test for the NBD, a comparison of observed and expected 

frequencies is made by using the Chi-squared goodness of fit test. The p-values are 

computed with I — 3 degrees of freedom where I denotes the number of frequency groups 

used in the computation of the Chi-squared statistic.

The plots in Fig. 5.1 have so far considered consumer purchases starting from week 1 

up until weeks 13, 26 and 52. The panel data, however, consists of subjects observed 

continuously for a period of 1 year. Let t denote the time interval under consideration, 

then for t < 52 it is possible to select multiple t-weekly intervals by selecting different 

starting time points from which consumer purchase counts begin to be observed. The 

Chi-squared goodness of fit test is applied to multiple time intervals of length t. The 

NBD fit is replicated for each length of time interval t by incrementing the starting 

point of each time interval by one week during the one year analysis period. It must 

be noted, however, that for each replication at each interval length t the Chi-squared 

values will not be independent; the only exception is for the 1-week data  where the 

NBD will be fitted to data observed in non-overlapping time intervals.

Fig. 5.2 shows plots of p-values from the Chi-squared goodness of fit test versus 

the length of time interval during which consumer counts are observed. The plots are 

shown for the detergent and cereal categories. The p-value axis has been re-scaled on 

the logarithmic scale. The geometric mean of the p-values is also plotted. The p-values 

for fitting the NBD to category level data are less than 0.01 for the majority of time 

periods and interval lengths chosen. The geometric mean of the p-values for brand level 

data depend on the individual brand and also on the interval length over which data 

is analyzed. As a relative comparison, the NBD seems to be a more suitable model for 

brand level purchasing as opposed to category level purchasing.
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Figure 5.2: Chi-squared goodness of fit test when fitting the NBD, using the PM at c-optimum with preliminary ZTM estimators, 
to category and brand level purchasing in two different categories (detergents and cereals) for vary length time intervals.
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Fig. 5.3 shows means of NBD parameter estimates w'(t) =  ^  w'j{t) plotted 

against b(t) =  ^  where R  denotes the number of replications of the esti

mator for time intervals of length t = 1 ,2 , . . . ,  13. The NBD parameters are estimated 

using the PM at optimum c with preliminary ZTM estimators. Points are shown for 

the 46 different categories and the major brand within each category. The means of the 

NBD parameter estimates are taken over the replications obtained from the 1-weekly 

increments. The points are colored according to the corresponding mean p-value when 

implementing the Chi-squared goodness of fit.

It is evident that the p-value varies according to the value of the estimated param

eter w'. The p-value increases as w' increases for both brands and categories, with the 

exception of areas of the parameter space where the coefficient of variation { y / v ^ / k )  

is large (i.e. when b < 0.05 and w' > 0.95).
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Figure 5.3: Plots of w'(t) =  ^  Y lf= i w'j(t) against b(t) =  ^  Y lf= \ h  where R  denotes 
the number of replications and t =  1,2, . . . ,1 3  denotes the length of time interval. 
Points are colored by the corresponding mean Chi-squared p-value. Points are shown 
when fitting the NBD to 46 different categories and the major brand within each 
category.
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5.1.2 Single period repeat buying m easures

Market measures for a general marginal distribution. In practice and in literature there 

is ambiguity in the definition of the market research measures. It is unclear as to 

whether the measures refer to observed values or values of the underlying sampling 

distribution. In this thesis the market research measures are considered to be those 

obtained from the underlying sampling distribution. Let X  be a random variable from 

the one-dimensional distribution of purchases and let px denote the probabilities of 

purchasing x  =  0 ,1 ,2 , . . .  products in the chosen time interval. The measures are 

then functions of the moments of the distribution of X .  The penetration (6), purchase 

frequency (w), measured repeat (j3r) and repeats per repeater (ur) are defined by the 

equations

771
6 = 1 — po, 0 ^  6 ^  1; w = E (X \X  ^  1) =  —, w ^  1;

b

(3r = V ( X > r  + l \ X > r )  = ----- = ^ T -7 -------~ r r  =  1 ,2 , . . .  and
l ~ £ , r=o V( X = j )  
i  -  E ' j Z l n x = j)

+  r - 1 , 2 ..........

In practice, the goodness of fit of the marginal distribution has relied upon being 

able to closely match the empirical market research measures to the market research 

measures estimated from the fitted distribution. The empirical market research mea

sures are computed using the formulae

I -  1 n o
TV’ W V  1 v >r_i a Ur ~  1 V r r ‘ (5.1.1)
iV b 1 ~ 2 ^ j = 0  N- l - 2 ^ j = 0 N

The empirical measured repeat and repeats per repeater are therefore computed by 

replacing the probability P(X  =  j )  with its sample equivalent r i j / N  where rij, (j = 

1,2, . . . )  are observed frequencies of j  within the sample and N  is the size of the sample.
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The NBD as a marginal distribution for repeat buying measures. For purchases of cate

gory and the major brand within each category respectively, Fig. 5.4 and Fig. 5.5 show 

values of the NBD estimated market research measures (6, w, Pi and cJi) against the 

empirical values of the market research measures (6, w , Pi and cJi) defined by (5.1.1). 

Points are shown for each replication when fitting the NBD to 1-weekly data  through 

to 13-weekly data in 1-week increments. The figures show data  for all 46 categories. A 

line regressing the theoretically estimated measures on the empirical measures is shown 

along with a line corresponding to the 45° diagonal.

The estimated market research measures are computed using estimators for m  and k 

obtained from the MOM/ZTM estimators and the PM estimator computed at opti

mum c with ZTM preliminary estimators. Note that, in the case of the MOM/ZTM 

estimator, if the ZTM estimator is deemed to be more efficient then b = b and therefore 

w = w, so that the ratios for the penetration and mean purchase frequency will be 

equal to 1.

The NBD estimated points plotted against the empirical points for penetration (b 

vs. b) and mean purchase frequency (w vs. w) lie very close to the diagonal for con

sumer purchases of both category and the major brand within each category. There is, 

however, a tendency for the NBD estimates computed using the MOM/ZTM to slightly 

deviate from the diagonal as both penetration and purchase frequency increases; this 

is not the case for the NBD estimated penetration and purchase frequency obtained by 

using the PM at optimum c. The points for measured repeat and repeats per repeater 

(r =  1 and r = 2) also lie close to the diagonal for category purchases. For the pur

chases of the major brand within each category the fit of measured repeat and repeats 

per repeater become worse as r  increases from r =  1 to r = 2 with outliers becoming 

increasingly present.
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5.2 The gamma Poisson m odel

The gamma Poisson model for consumer buying behavior was suggested by Ehrenberg 

(1988) who confirmed, using empirical evidence, th a t consumer purchase occasions 

could be successfully modeled using the gamma Poisson process. This section expands 

on and furthers this work by investigating the PM estimators and incorporating the 

asymptotic distributions of estimators derived in Section 4.2 into the analysis.

The one-dimensional distribution of the gamma Poisson process when considering 

events in a time interval of length t is NBD(ra£, k). Section 5.2.1 compares parameter 

estimates and estimates of market research measures computed from different time 

intervals of length t when normalized to a unit time interval. A comparison is also made 

between the traditional MOM/ZTM and the more efficient PM method of estimation. 

The asymptotic distributions of estimators and estimated market research measures 

are used to test whether there are significant differences between measures computed 

by the MOM/ZTM and PM methods.

Section 5.2.2 considers how well parameter estimates of the single period market 

research measures extrapolate to different lengths of time intervals. In practice, it is 

important to know the minimum length of time interval over which purchases need to 

be observed in order that the gamma Poisson process can be reliably used to forecast 

market research measures.

Section 5.2.3 assesses goodness of fit of the gamma Poisson process by considering 

the correlations between observed market research measures computed in different time 

intervals to the correlations that would be expected under the gamma Poisson model. 

Although the gamma Poisson process is not an ergodic process, multiple realizations of 

consumer purchases are observed over households and this allows the verification of the 

covariance structure of market research measures computed in different time intervals.
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5.2.1 Single period measures w ith  varying tim e

The one-dimensional distribution of the gamma Poisson process is

k mt X x  =  0,1, 2 , . . .
F(Z(t)  = x) = k + mt

(5.2.1)
k > 0, m  > 0.

The process stipulates that the number of events within a time interval of length t

is NBD(rat,k). The mean, mt, of the one-dimensional distribution increases linearly 

with time whereas the shape parameter k remains constant.

Fig. 5.6 shows MOM/ZTM and PM estimators (computed at optimum c using 

ZTM preliminary estimators) for m  and k when fitting the NBD to consumer purchase 

occasions of cereals and detergents at different lengths of time intervals t. The estimator 

for m  is the normalized sample mean rht = x / t , where x  is the sample mean of purchase 

occasions in a time interval of length t. Replications for each time interval t are obtained 

by incrementing the starting point of the time intervals by 1 week. A 95% lower and 

upper confidence bound computed using the results of Section 4.2 and the mean for 

each estimator is also shown by solid lines. For fixed t, the confidence bounds have 

been computed using the mean of the estimators for m  and k over the replications.

Fig. 5.6 shows the estimators for m  and k  converging to a constant as t increases. 

The variation of the estimators at each fixed t appears to decrease as t increases. It is 

important to note that this may be a cause of the dependence in observations and the 

reduction in the number of observations as the length of the time interval increases. For 

many of the values of £, a large number of points for m t lie outside the 95% confidence 

interval for both detergents and cereals at top brand and category level. This indicates 

significant differences in the estimators for m  over different time intervals. For t > 4, 

the estimators for k lie within the 95% confidence bounds indicating no significant 

differences in the shape parameter for varying time intervals.



I "

! I 
‘ - • •

iiTYri Mnjil i i iu

Detergents m = x / t  
versus t

aa-
u

ta
u

u
u

a»
u

Mn  m m u

Detergents k versus t

1H 
1-
1=

I H I H H H I I H I

Cereal m =  x / t  versus t Cereal k versus t

I
1
I

a a a n u n n » m a» M

Detergents (top brand) 
m  = x / t  versus t

Detergents (top brand) k 
versus t

I
1
I

«  • u n m M M

Cereal (top brand) 
m  = x / t  versus t

I

• a

Cereal (top brand) k 
versus t

Figure 5.6: Estimators for the NBD parameters m  and k using the MOM/ZTM method and the PM c-optimum method, with 
preliminary ZTM estimators, when estimated from different length time intervals t. The solid lines indicate the mean and 
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The estimators for k in small time intervals clearly differ to estimators for k in larger 

time intervals. In small time intervals either the gamma Poisson process does not hold 

or the estimator for k is poorly estimated; indeed, at category level purchasing, for t < 4 

the estimators for k are significantly different to estimators for t ^  4. Ehrenberg (1988) 

suggested that the gamma Poisson process does not hold in small time intervals as the 

Poisson process assumption of independent purchasing in consecutive time intervals by 

each household is unlikely to be true in practice. A possible cause of k being poorly 

estimated may be the zero term problem where there is ambiguity in the definition of 

a zero buyer (for a description of the problem see Section 2.4.1).

At the category level for large time intervals, there is also a significant difference 

between the MOM/ZTM estimators of k and the PM estimators computed at opti

mum c using ZTM preliminary estimators. For both cereal and detergent categories 

the MOM/ZTM estimator for k is persistently lower than the PM estimator for k. In 

Section 2.1.2 it was noted that the estimators for k are biased; it is therefore possible 

that the two estimation methods have different amounts of bias when estimating k. 

Alternatively, there may again be the zero term problem.

To investigate the difference between the MOM/ZTM and PM estimators for k , the 

ratios of NBD estimated market research measures to the empirical market research 

measures is considered. Note that for the MOM/ZTM method, if the ZTM method 

is deemed to be more efficient, then the NBD estimated penetration and purchase 

frequency are equal to the empirical penetration and purchase frequency. The ratios of 

NBD estimated market research measures to the empirical market research measures 

for penetration and purchase frequency will therefore equal 1. As a result, the ZTM 

gives no additional information in terms of goodness of fit of the gamma Poisson process 

when comparing the empirical and NBD estimated penetration and purchase frequency.
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Fig. 5.7 shows ratios of NBD estimated market research measures to the empirical 

market research measures by estimation method for the detergent and cereal categories. 

A 95% lower and upper confidence bound computed using the results of Section 4.2 

and the mean over the replications for each estimator are also shown by solid lines. For 

fixed t , the confidence bounds have been computed using the mean of the estimators 

for m  and k over the replications.

Since the penetration and purchase frequency ratios equal 1, the ZTM estimator 

has been used for the cereal category and for t ^  3 in the detergents category. When 

fitting the NBD to data in practice, it is unclear as to whether the zero counts should 

refer to potential buyers of the product or all non-buyers of the product. The empirical 

penetration used in these figures considers all buyers in the population tha t did not 

purchase a product during the time interval as zero buyers. This empirical penetration 

may, however, be incorrect. This problem is referred to as the zero term problem. The 

penetration and purchase frequency for the cereals category is therefore not considered.

In the case of detergents, the ratios for penetration and purchase frequency are 

closer to 1 using the PM estimators in comparison to using the MOM/ZTM estimator. 

The ratios are significantly closer to one for larger time intervals. The confidence 

intervals for penetration includes the value 1 and the confidence intervals for purchase 

frequency are closer to 1 than that of the MOM/ZTM method.

For longer time intervals, the PM estimator also persistently achieves a ratio closer 

to 1 for the ratio of NBD estimated measured repeat and repeats per repeater to 

the empirical measured repeat and repeats per repeater respectively. The fact that 

the ratios for measured repeat and repeats per repeater are closer to 1 in the cereal 

category, suggests that the empirical penetration in the cereal category may not be the 

empirical penetration required when fitting the NBD to data.



tm

\m
•m

Detergents - 6/6

j l l H l l l l l i l i l l

tM

“ I
: i
o n  : 

M l •

PM at C-OPTMUM

!-
I
r
L

Detergents - w/w Detergents - (3i/(3\ Detergents - w\/u\

Cereal - b/b

m

8

na «  c - optmuh

Cereal - w/w

\m

Ml

Cereal - 0\/0\

m v*

l *
I -
! -
I*ir
! “
i „

M«C-OFIMUM

Cereal - w\/u\

Figure 5.7: Ratios of NBD estimated market research measures to empirical market research measures by estimation method. 
The NBD estimated measures are computed using the MOM/ZTM method and the PM method at c-optimum with preliminary 
ZTM estimators. The solid lines indicate the mean and corresponding 95% confidence bounds.

C
hapter 

5



Chapter 5 142

5.2.2 Extrapolating market research m easures

The gamma Poisson fits have so far analyzed estimators in the time interval in which 

they were computed. The extrapolation of estimators to different length time intervals 

is now considered to assess the ability of the gamma Poisson process to forecast mea

sures for time periods of different lengths. Let X(t)  be a NBD(mt, k) random variable. 

The penetration (b{t)), purchase frequency (w(t)), measured repeat (/3r(t)) and repeats 

per repeater (wr{t)) as functions of time are given by

b(t) =  1 -  P(X(«) =  0) =  1 -  ( l  +

w(t) = E(X(t ) \X( t )  >  1) =  w(t) > 1;

1 -  E v -n lW * ) =  j )
0r{t) =  P(X (t) 2  r  +  1|X(*) >  r) =  , V  0 ^  A W  <  1;

i - E j = o p ( X w  =  j )

M  1 G V W . N  I V M s  , I N  3  P ( X  W =  J )Wr(t) =  E(X(<) -  r\X(t )  3* r  +  1) =  —----  Jr m t v t  . nr- -  r, wr(t) > 1.
1 -  E j = o W )  =  J)

(5.2.2)

Fig. 5.8 shows plots of the market research measures b(t), /3\(t), w(t) and o;i(t) 

computed in time intervals t of different lengths. In addition, extrapolated curves 

using the relationships of (5.2.2) are also plotted. Each extrapolated curve is produced 

using the parameters m(t) = ± J2?=i ™j(t) and k(t) = ^  Xlf=i where R  denotes 

the number of replications of the estimator for time intervals of length t = 1 , 2 , . . . ,  26. 

Each replication is obtained by incrementing the time interval by one week.

It is clear from Fig. 5.8 that estimating parameters of the gamma Poisson process in 

small time intervals leads to incorrect extrapolations of the market research measures 

when varying time. In the case of detergents and cereals a poor fit of the empirical 

market research measures is obtained when the gamma Poisson parameters are esti

mated from time intervals of length 1 and 2 weeks. This reinforces the fact that the 

gamma Poisson process may not hold for small time intervals.

m t \
, 0 < & ( * ) < ! ;
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The extrapolated curves for penetration, purchase frequency, measured repeat and 

repeats per repeater are almost identical when estimated using time intervals of length 

greater than 3 weeks. This indicates that it is not necessary to observe purchasing be

havior for individuals over long time intervals, even though the extrapolation improves 

as the length of the time interval increases. For time intervals greater than 3 weeks, 

the degree of improvement decreases as the time interval increases. It is therefore pos

sible to use time intervals as small as 3 weeks to reliably compute extrapolated market 

research measures.

5.2.3 Correlations between market research m easures

Sections 5.2.1 and 5.2.2 have both considered fitting the one-dimensional NBD to counts 

of consumer purchase occasions. Fitting the one-dimensional distribution implies that 

purchase counts can occur in any random order across households. For example, it is 

possible that a fixed household has a high purchasing intensity in one period and a low 

purchasing intensity in the next period. As long as the intensities of purchasing in each 

time period is gamma distributed and household purchases are Poisson distributed, 

then the one-dimensional distribution of purchases will be NBD. Sections 5.2.1 and 5.2.2 

have therefore only confirmed that the NBD (mi, k) relationships for market research 

measures hold in practice.

The mixed Poisson processes, however, assume tha t the intensity A is fixed for 

each individual across all time periods. The fact that A is fixed for each individual 

is highlighted by the multivariate NBD. This section examines the fit of the two- 

dimensional NBD by applying the results of Section 4.2 and considering the joint 

asymptotic distributions of statistics and estimators computed in two different time 

intervals when fitting the gamma Poisson process to purchases of cereals and detergents.
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Computing covariances between estimators in two different time intervals requires 

replications of estimators. The replications cannot be obtained by incrementing the 

time intervals by 1 week, as in the previous section. The gamma Poisson process is 

not an ergodic process and therefore the correlations between estimators obtained by 

considering different time intervals in a single realization are not equivalent to the 

correlations between estimators in the ensemble of realizations.

In the case of panel data, however, realizations of consumer purchase occasions are 

observed for each household. Replications of statistics or estimators can be obtained 

by taking sub-samples of the overall population and computing statistics or estimators 

for each sub-sample. In this thesis, the 34,467 households comprising the panel are 

randomly split into sub-samples of size 500 households.

Fig. 5.9 and Fig. 5.10 shows normalized estimators of the gamma Poisson param

eters m  and k computed in consecutive non-overlapping time intervals of length 12 

weeks. In addition to the estimators, two 95% confidence ellipses constructed using 

the covariance matrix (4.2.2) for estimators of m  and k  in non-overlapping time inter

vals are also shown. The values m  and k required to construct the ellipses are replaced 

by PM estimators m and k computed at optimum c using preliminary ZTM estimators. 

The solid confidence ellipse uses the estimators m  and k  obtained by fitting the NBD 

to the whole 52-week period, whereas the dotted confidence ellipse uses the mean of 

the estimators rh and k obtained by fitting the NBD to each time period shown.

The estimators for k are captured well by the 95% theoretical confidence ellipses 

for both detergent and cereal categories. Note that in the detergent category a number 

of observations for estimators of k lie well outside the confidence ellipse and may be 

labeled as potential outliers of the model. The estimators for k in the cereal category 

are much more highly correlated than estimators for k  in the detergents category.
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Figure 5.9: Correlations between estimators when fitting the gamma Poisson process 
to purchases of detergents at category level. Bivariate plots show estimators computed 
in different time periods together with corresponding 95% confidence ellipses computed 
under the assumption of asymptotic normality.
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Figure 5.10: Correlations between estimators when fitting the gamma Poisson process 
to purchases of cereals at category level. Bivariate plots show estimators computed in 
different time periods together with corresponding 95% confidence ellipses computed 
under the assumption of asymptotic normality.
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In both detergent and cereal categories, the ellipsoidal shape of the estimators for 

m  is captured well by the theoretical 95% confidence ellipse. The ellipses are, however, 

often shifted to one side of the data. This is indicative of non-stationarity in the mean 

of the data as highlighted in Section 5.2.1 which noted significant differences in the 

estimator for m  in different time periods. The estimators for m  are correlated implying 

that households with high intensities in one period are likely to have high intensities 

in all time periods.

Fig. 5.11 and Fig. 5.12 shows normalized estimators of the gamma Poisson param

eters b and w computed in consecutive non-overlapping time intervals of length 12 

weeks. Two 95% confidence ellipses constructed using the results of Section 4.2.3 are 

also shown. The values m  and k required to construct the ellipses are replaced by PM 

estimators m and k computed at optimum c using preliminary ZTM estimators. The 

solid confidence ellipse uses the estimators rh and k  obtained by fitting the NBD to 

the whole 52-week period, whereas the dotted confidence ellipse uses the mean of the 

estimators m  and k  obtained by fitting the NBD to each time period shown.

The 95% theoretical confidence intervals for estimators of both b and w capture the 

ellipsoidal shape of the data. In certain periods, however, the ellipses are again shifted 

to one side of the data. This is most likely to be caused by the significant differences 

in estimators for m  in the different time periods.

In practice, it may be the case that market research measures are computed sep

arately for different time periods. For example, the penetration of a product may be 

computed separately for the first six months and the second subsequent six months in 

the year. From the figures shown, however, the market research measures are clearly 

correlated. More accurate estimators may therefore be obtained by computing esti

mates from fitting the joint two-dimensional NBD.
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Figure 5.11: Correlations between estimators when fitting the gamma Poisson process 
to purchases of detergents at category level. Bivariate plots show estimators computed 
in different time periods together with corresponding 95% confidence ellipses computed 
under the assumption of asymptotic normality.
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Correlations between estimators of b in different time intervals

Correlations between estimators of w in different time intervals.

Figure 5.12: Correlations between estimators when fitting the gamma Poisson process 
to purchases of cereals at category level. Bivariate plots show estimators computed in 
different time periods together with corresponding 95% confidence ellipses computed 
under the assumption of asymptotic normality.
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5.3 The N BD  IN A R (l) m odel

The gamma Poisson process assumes that, for a fixed household, consumer purchase 

occasions in non-overlapping time intervals are independent events. The assumption 

of independence is likely to be true for events in “long” time intervals, but is unlikely 

to be true for events occurring in short time intervals. Indeed, it is unlikely that a 

consumer will purchase a product in the time interval immediately after purchasing 

the product. Of course, the definition of long and short time intervals depends on the 

product in consideration.

The NBD INAR(l) process is a suitable model for realizations with serial depen

dence and could be introduced to model the number of purchases in short time intervals. 

Recall that the non-negative integer-valued process { X t\ t G  Z} is an INAR(l) process 

if the process satisfies the equation

x>X t  =  cx o X t - i  +  St,

where a o X t~\ and s t are mutually independent random variables from a discrete 

distribution and the et form a sequence of uncorrelated random variables for £ G  Z. Here 

a °  X  =  J2f= i Uj  where the Uj  are i.i.d. Bernoulli random variables with P ( U j  =  1) =  a  

and P ( U j  =  0) =  1 —a. The value of a  must satisfy a  G  (0,1) for the process to be 

stationary. The INAR(l) model for the current time period stochastically retains a 

proportion of the event in the previous time period and observes some random input.

The INAR(l) model, however, is not natural in the case of consumer purchase 

occasions since purchasing in different time intervals are new events. (The INAR(l) 

model is, for example, natural in the case of stock levels of a product within a store. 

The stock level in a time period can be represented as a retention of stock from the 

previous time period plus the addition of stock obtained during the current period.)
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5.3.1 T he I N A R (l)  m od el for th e  n um ber o f  consum ers

In the models considered so far, the event modeled has been the number of purchases 

made by consumers within a given time interval. In this section the analysis is con

cerned with the number of buyers who purchase a product. Consider the number of 

buyers that purchase a particular category. The number of buyers may be considered 

to be a retention of a proportion of the customers in the previous time period plus new 

customers. Such a situation could be modeled well by the INAR(l) process where X t 

denotes the number of customers and a  possibly denotes the level of loyalty.

Fig. 5.13 shows the autocorrelation function of the time series of the number of buy

ers of detergents and cereals observed in weekly increments. The shaded area indicates 

values of 0 ±  1.96cr/ at each lag I where ai is the standard deviations of the estimated 

correlation. Correlation bars outside the shaded are therefore represent significant au

tocorrelation. Fig. 5.13 indicates that there is significant lag-1 autocorrelation of about 

0.4 for both detergent and cereal categories. The remaining correlations for higher lags 

are insignificant. This indicates that an INAR(l) model could be appropriate for mod

eling the number of buyers in the detergents and cereal categories.

1 1 1 2  1 I 1 4  1 S 1 I I 7 1 I V 2 0

Detergents Cereals

Figure 5.13: Autocorrelation functions for the number of buyers of detergents and 
cereal categories in different weeks.



Chapter 6 

Conclusions and further work

This thesis has considered two themes in developing statistical inference for negative 

binomial processes. The first theme has been to consider more efficient moment based 

estimators for estimating parameters of the NBD than the standard method of moments 

and zero term method estimators. The second theme has been to assess adequacy of 

negative binomial processes by considering the dynamical behavior of the processes. 

The dynamical behavior of the processes has been assessed by verifying the correlation 

structure of estimators and statistics computed from data  in two different time intervals 

to the correlation structure that would be expected given the process being fitted.

Parameters of negative binomial processes are often estimated by fitting the neg

ative binomial distribution to data. Maximum likelihood estimators are difficult to 

implement in practice since the estimator for the negative binomial parameter k re

quires frequency counts and these are difficult to obtain. Instead, it is easier for market 

research companies to request statistics of the data  and therefore moment based esti

mators are popular in the field of market research. The standard method of moments 

estimator and zero term method estim ator are, however, inefficient in certain regions 

of the NBD parameter space. Importantly, many parameter estimates when fitting the 

NBD to purchases of a category reside in this inefficient area of the parameter space.

153
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Fitting the negative binomial distribution only provides partial indication to the 

suitability of negative binomial processes for data. Ehrenberg (1988), to an empirical 

extent, considered assessing suitability of the gamma Poisson process for market re

search data, more precisely the modeling of consumer purchase occasions, by assessing 

relationships between market research measures computed in different time intervals 

and also the growth of market research measures as a function of time. These measures, 

however, were only assessed empirically and no m ethod of checking the significance of 

the fits were presented.

6.1 Conclusion and discussion

In this thesis more efficient moment based estimation methods have been considered in 

the form of power method estimators. Statistically assessing the adequacy of negative 

binomial processes have been considered by deriving the limiting covariance m atrix of 

estimators of the negative binomial distribution and also the limiting covariance matrix 

of estimators of parameters in negative binomial processes.

6.1.1 The power m ethod estim ators

The power method estimators depend on the param eter c. The power method estimator 

tends to the method of moments estim ator as c —► 1 and is equivalent to the zero term 

method estimator when c — 0. Upon suitable choice of the parameter c the power 

method estimator can be almost as efficient as the maximum likelihood estimator 

when the sample is i.i.d. NBD. Moreover, upon suitable choice of c, the power method 

estimator is always more efficient than  the method of moments estimator and zero 

term method estimator. The optimum choice of c th a t minimizes the variance of the 

estimator for the NBD parameter k however depends on the NBD parameter values.
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In practice, since the NBD param eters are unknown, it appears as though the power 

method estimators may be difficult to  implement. The optimum value for c, however, 

may be estimated using preliminary, possibly inefficient, estimators. The optimum 

value of c changes smoothly within the NBD (6, u/)-param eter space. Estimating 

optimum c using preliminary NBD param eter estimates, for most NBD parameter 

values within the (b, u/)-param eter space, will give estimates of c close enough to the 

value of optimum c to obtain an updated more efficient power method estimate for the 

parameter k.

In market research, simple estimators for the NBD parameters are required. The 

insensitivity of the efficiency of power m ethod estimators to small changes in c further 

allows the construction of simple estimators, by approximating optimum c, tha t can be 

more easily implemented in practice. The approximations and estimations for optimum 

c are robust in areas of the parameter space where the coefficient of variation of the 

maximum likelihood estimator for k is low. The robustness of the estimators are shown 

in Fig. 3.18, by indicating the maximum possible loss of efficiency in estimating the 

NBD parameters, with respect to estimating using optimum c, with probability 0.95.

6.1.2 F itting the N B D

The fit of the NBD at different time intervals is consistently rejected by the Chi-square 

test for purchases at category level. The fit of the NBD is not rejected, to the same 

extent as category level purchasing, for purchases of products at brand level. It is 

known (see e.g. Berkson (1938); Neyman (1949)) th a t for fixed significance level and 

fixed observed and expected frequencies, the power of the Chi-square test tends to one 

as the sample size increases. The Chi-square test is therefore not an ideal test for large 

sample sizes.
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For both category level purchasing and brand level purchasing the NBD visually 

seems to be a good fit. Moreover, the observed market research measures when com

pared to the empirical market research measures agree extremely well, especially for 

category level purchasing. For brand level purchasing, more outliers are observed when 

comparing empirical and NBD estimated market research measures.

The ^-method has been used to construct asymptotic normal distributions of esti

mators of the NBD and also estimators of market research measures. The distributions 

have been computed as a by-product of considering the distribution of estimators of 

the gamma Poisson process computed in two different time intervals. The asymptotic 

distributions allows the construction of asymptotic confidence intervals for the estima

tors and therefore allows us to test whether the MOM/ZTM and the PM estimators are 

significantly different from each other and also if they are different from the empirical 

measures.

The empirical market research measures are estimated well by the NBD estimated 

market research measures when estimating the NBD parameters using the standard 

MOM/ZTM method and the PM at optimum c using ZTM preliminary estimators. 

The estimators for both MOM/ZTM and PM are very similar.

Using the asymptotic distribution of estimators for k and the asymptotic distribu

tion of estimators for market research measures, the MOM/ZTM and PM methods can 

be shown to provide significantly different estimates when fitting the NBD to category 

level purchasing in large time intervals. The PM is shown to provide closer estimates 

for market research measures to the empirical measures than the MOM/ZTM method. 

The exception is in the case of penetration and purchase frequency when the ZTM of 

estimation is used; here the empirical and NBD estimated penetration and purchase 

frequencies are equal by definition of the estimator.
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6.1.3 F itting negative binom ial process

This thesis has considered two negative binomial processes, namely the gamma Pois

son process and the NBD INAR(l) process. The gamma Poisson process and the 

NBD INAR(l) process belong to different families of processes (that of renewal and 

autoregressive processes respectively). Assessing the adequacy of the two processes as 

a model for data therefore require different methods of inference.

Assessing the adequacy of the gamma Poisson process

The first method of assessing the adequacy of the gamma Poisson process extends the 

work of Ehrenberg (1988) by considering market research measures which, when esti

mated using data from a single time interval, have the ability to accurately extrapolate 

measures for time intervals of different lengths. The data  analysis considered in this 

thesis showed that market research measures extrapolate well to all lengths of time 

periods when using parameter estimates obtained by fitting the NBD to time intervals 

of greater than three weeks for both cereal and detergent categories.

The second method verifies that estimators, computed using data  in two different 

time intervals, fall within the corresponding asymptotic confidence ellipse th a t would 

be expected for estimators computed using data generated from a gamma Poisson pro

cess. The advantage of this method, over the method of assessing how well the NBD 

extrapolates to different lengths of time intervals, is th a t computing measures using 

the two-dimensional NBD requires individuals to retain the same Poisson (purchasing) 

intensity in both time intervals. Verifying the fit of the one-dimensional NBD to differ

ent length time intervals does not require the restriction th a t individuals must retain 

the same intensity in two time intervals; the only requirement is that the distribution 

is NBD where m  increases linearly in time and k  remains constant.
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The estimators for the NBD parameters ra, k, b and w when computed in two 

non-overlapping intervals all observe the ellipsoidal shape of the asymptotic confidence 

ellipse when fitting the gamma Poisson process to both cereal and detergent categories. 

However, for estimators of m  and w, which are primarily location parameters, the 

ellipses are often shifted to one side of the data. A possible cause of this could be that 

there is a trend in the mean of the data.

Assessing the adequacy of the IN A R (l)  process

The assessment of the adequacy of the INAR(l) process considers the autocorrelation 

function of the process. In a similar fashion to the case of continuous valued first- 

order autoregressive processes, the INAR(l) process has an exponentially decaying 

autocorrelation function of the form p(u) =  at lag u =  {0, ±1, ±2 , . . . } .  Using the 

approach of Barndorff-Nielsen (1998), it is possible to construct long-memory integer 

valued processes by the aggregation, X t =  X ^ \  of a sequence of stationary

and independent INAR(l) processes (77 =  0 ,1 ,2 , . . . ) .  The aggregated series has 

long-memory if X ^  has mean p x v < 00 and variance =  C \ / < 00 

with thinning parameter a v = exp{—c2 /  rj} for some positive constants C\ and c2 with 

Hurst parameter 0.5 < H < 1. As examples, a long-memory Poisson process and a 

long-memory NBD process were constructed.

The INAR(l) process was suggested as a possible model for the number of con

sumers of a product; the number of consumers in a subsequent time period can be 

thought of as a retention of customers from the previous time period plus the addition 

of new customers. The autocorrelation functions of the number of consumers in both 

cereal and detergent categories show th a t there is significant lag-1 autocorrelation. The 

estimate of a  for both categories is about 0.4 suggesting tha t about 40% of consumers 

that purchase in one time interval will also purchase in the next time interval.
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6.2 Further work

This section considers further work and additional questions raised by this thesis. The 

topics are split into the three subsections of power method estimators, fitting the NBD 

and fitting negative binomial processes.

6.2.1 The power m ethod estim ators

The power method estimators have been shown to be almost as efficient as maximum 

likelihood estimators for i.i.d. NBD samples. For NBD INAR(l) samples it is difficult 

to analytically obtain the Fisher information matrix and therefore to obtain analytical 

expressions for the covariance matrix for maximum likelihood estimators of m  and k. 

Simulation results, however, show that the maximum likelihood estimators are much 

more efficient than the power method estimators. Note tha t the power method esti

mators are still more efficient than the standard method of moments and zero term 

method estimators.

W hat is surprising, however, is that simulation studies maximizing the likelihood 

function for NBD INAR(l) samples show that the estimator for m  is not equivalent to 

the sample mean of the data. The power method estimators assume th a t the estimator 

for m  is efficiently estimated by the sample mean. Further study is required to check 

whether using a more efficient estimator for the sample mean to estimate m  will provide 

more efficient power method estimators for the NBD parameters m  and k.

6.2.2 F itting the N B D

The zero term problem has not been fully investigated in this thesis. Since the number 

of zero buyers are latent, it is difficult to determine what the number of zero buyers 

should be when fitting the NBD. Further study is required to check goodness of fit
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of the NBD with varying number of zeros in the data. Note tha t the power method 

estimators may be iteratively used to estimate the number of zero buyers by updating 

the frequency of observed zeros with estimated zeros obtained by fitting the NBD using 

the power method. The process may be repeated until param eter estimates converge.

The NBD has been shown to provide a good fit for the da ta  in terms of adequately 

estimating market research measures. Often, when considering frequency charts of 

consumer purchase occasions, long tails are observed indicating a small but significant 

presence of heavy buyers. Further study is required to check how much of an effect 

these heavy buyers have on fitting the NBD to consumer purchase occasions.

6.2.3 F itting negative binom ial process

This thesis has so far considered fitting the two-dimensional NBD to data  in order to 

assess adequacy of the gamma Poisson process. Using the methodology used in this 

thesis, it should be possible to derive joint distributions of estimators computed in 

multiple (greater than two) time intervals and to use the joint distribution to verify 

whether the vector of estimators fall within the asymptotic confidence ellipsoid of 

estimators whose underlying process is gamma Poisson. This should provide a stronger 

indication of how well the assumption of constant intensity for each household holds 

in practice.

The asymptotic distributions of estimators computed in two different time intervals 

have shown that the estimators are in fact correlated. The strength of the correlation 

depends on the NBD parameter values. In practice, therefore, it is not sensible to 

compute estimators in separate time intervals as though the estimators in the two time 

intervals were independent. For example, it may be the case th a t the mean of consumer 

purchase occasions is estimated separately for the year 2005 and the year 2006. The
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moments of the two-dimensional NBD, in the case where the estimators are correlated, 

could be used to provide more accurate estimators for the year 2006.

Note that the joint asymptotic normal distributions of estimators computed from 

data generated by the gamma Poisson process allows testing of the hypothesis as to 

whether two estimators come from the same gamma Poisson process. This could aid 

in outlier detection. In this thesis the households were placed into sub-groups of size 

500 households. For example, when computing estimators in two consecutive time 

intervals, some estimators for k in the detergent category fell far outside the confidence 

ellipse. This could have been a result of an outlier or outliers within the particular 

sub-group.
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Appendix A

A .l Asym ptotic distributions of statistics com puted  
from IN A R (l) samples

T h eo rem  A .1.1 . Let {xt \ t = 1 , 2 , . . . ,  N } be a sample realization from an IN A R (l)
T  — /  ----- --  I'

process X t with stationary distribution n. Let f  = ( x , ^ )  , f  = l x , c x ) with 

x = jj J2tLi x t and °X ~  n  S t l i  ^  t c > 0 and c 7̂  1. Then f  has an asymptotic 

normal distribution given by limw—oo V N ( f  — E / )  ~  Af(0,  D /)  with covariance matrix

O f  =  E ( /  -  E / ) ( /  -  E f ) T =  ( CV* _  J . (A.1.1)
\  X , c x  cx  J

Here

Vx =  Jim  N  Var (X )  =  )  Var[A-r], (A-!-2)

=  lim N  Varfcx>)
c N —+oo \  J

N —l

= Var (c*') +  2 Jim £  ( ^ ^ f )  i G (c I1 ~  “ r +  G^  <*) ~ Gx M  -
r = l

(A .l.3)

Cx,Z* = Cov( a , c * )  =  Cov (A ^c*')
N - 1

+  J™  E  0  -  J f )  { E  [ a -  (1 -  «r +  <*rc)x ' ]  G £ (c; o ' )  -  £[*„]G*.(c)}
r = l
N - l

+ jJ™, E  (* -  J )  { ° x .  (c [1 -  « r +  « rc]) -  a rE[Xn]Gx „(c)}. (A. 1.4)
r = l
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The proof of Theorem A. 1.1 uses the statistical properties of the thinning operator 

and the form of the INAR(l) process. Recall tha t the thinning operation a  o A is 

defined as

x
a o  X  = Y ^ Z j  a 6 ( 0 , l ) ,

3 = 1

where the Z j  are i.i.d. Bernoulli random variables with P ( Z j  =  1 )  =  a  and P ( Z j  =  0 )  =  

I —a. From the definition of the thinning operator above it follows that

E[a oX ] = olE[X] and E[ f {X) {a  o X)] = a E[ Xf ( X) ] ,

where all expectations are assumed to be finite.

Since the INAR(l) process is a stationary process we have for any s ^  t

E[f (X, )}  =  E[ f { X t)\ =  E[f(X„)\ .

From the definition of the INAR(l) process we note that the dependence between any 

two random variables X t and X s from the same INAR(l) process with s > t can be 

written as

s—t—l
X s ?= a s t o X i +  'y ] oP o es- j  . 

j=o

Finally we note that since X t = a  o X t- i  +  £t the expected value of the errors are

E[et] =  E[Xt] -  E[a o X t. x] = (1 -  a) E[ Xv].

This result and many more relationships between the moments of the £v and the 

moments of X n can be obtained using the relationship

G x M  =  ^ * ( 1  ~  ol +  ac)Ge{c\ a).
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Proof of Theorem A .1.1. 

Proof for Var(X)

Var(X) =  Var ( i  £  X , ) =  j =  (  £  Var(X() +  £  Cov(Xt, X.) 1
\  t= l /  I t= 1 J

=  ^  |w V ar[X ,] +  2 -  r K V a r ^ ]

I v a r [ ^ ] | l  +  2 g ( l - ^ ) ^ |
N

lim Vax(X) = ( )  Var(X„). □
N -*  oo \  1  —  Oi

Proof for Var(cx )

Note that

E  [cx ‘<?'\ =  E  [cx ,+x ‘] = E  cx,+a’ ‘°Xl] E  [cE i=° laio£>-ij
S—t— 1

=  Gx* (c(l — a s-< +  a s_4c)) Ge{\ — oP +  a Jc; a )
j=o

s—t—1
=  G x. (c(l -  a*-* +  a - * C)) f l  7T  " TT* — ~  °f_+  <*c)

GXn (1 -  a  +  a ( l  — a *  +  ol̂ c ) )

=  Gxx (c(l -  a 5" ' +  a s- lc)) Ge(c; a 5" 4)

therefore

Var(cx ) =  Var ( j i  E c* ')  =  T p  (  E  Var(c* ‘) +  E  C°v (c* ', Cx>)
\  t=l /  I t=1 &s

1 f N
= ^   ̂W a r  [cx*] +  J 2  (E  [<?'<?'] -  E  [cXt] E  W*'])

t^s 
TV— 1

E  jiVVar [c*'] + 2 £ ( W - r )  (Gx ,  ( c ( l - a r + a rc)) G£(c; a r) -  G ^ (c )) |
r = l

lim iVVar(cx ) =  Var (c*w)

T V - 1

+ 2 j™  E  ( * - £ )  {G *. (c [1 - a r + a r c ] )  G £ ( c ;  o') -  < £ .(c)} . □
r = l
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Proof for Cov(X, cx )

Note that for t < s

E  [X,cx ‘] = E
S—t—l

a a 1 o X t +  5 2  or3 ° es- j  I cXt
i=o

s - t - l

=  E  [c* (a3- ‘ o X ()] +  E  [cx ‘] £  £  [a3 o e._,]
j=o

=  a s- ‘E  [c**X,] +  (1 -  a s~‘)E  [c*‘] E \ X t)

=  a ’- 'E  [cx’ X„] +  (1 -  a s" ‘) £  [c*']  E  [Xn] ,

Cov (X „ c*1) =  a s- ‘Cov (X „  cx*)

and

E  [Xtcx ‘] = E  X tca’~‘°Xt j E  [cEUo~lai°*-i]

=  E
S—t—l

A t ( l - a - ‘ +  a* -‘c)* '] n  G£,_j ( l - a 3 +QJ'c)
j = 0

= E  [x„ (1 -  a*-1 +  a - 'c ) * ']  G£(c; a s“‘)

Cov (X,, c**) =  E  [x„ (1 -  a*-1 + a - 'c ) * * ]  G£(c; a 8”*) -  E  [X„] E  [cx ']

therefore

Cov ( * .  c* ) =  -^2 I  £  Cov (Xt, c* ') +  Cov(Xt) c*‘) +  5 2  Cov(*f, c* ’) }
I  t = l  t< s  t> s  J

1 f * _1
< TVCov +  5 3 (Af -  r )a TCov ( X n,cXn)
I  r = l

A 2
A T - 1

+  ^ ( X - r )  ( tf  [x* ( l - a - ' + a - ' c ) ^ ]  G£(c; o^ - t) - E [ X T] E [ c x ']
r= 1

lim NCov ( X , ? )  =  r i ~  Cov (X „  c* ')

N - l

+  £  ( J - J )  ( *  [*» ( l - a r + « rC)X”l G£(c; a 8) -  £[X*] £  [c**]) .
r = l

□
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B.3 Extrapolation o f market research m easures to  different length tim e intervals
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B.4 Correlations betw een market research m easures com puted in two 26-week tim e intervals
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Correlations betw een market research m easures com puted in two 26-week tim e intervals
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Correlations betw een market research m easures com puted  in two 26-week tim e intervals
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Correlations betw een market research m easures com puted in tw o 26-week tim e intervals
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Correlations between market research measures computed in two 26-week tim e intervals



B.5 A utocorrelation function for th e tim e series o f the num ber o f consum ers in a category
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