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A bstract

Selberg’s upper bound method provides rather good results in certain 

circumstances. We wish to apply ideas from this upper bound method to that of the 

lower bound sifting problem.

The sum G(x)  arises in Selberg’s method and in this account we study the related 

sum H z(x). We provide an asymptotic estimate for the sum Hz(x) by investigating 

the residual sum I z(x) = Hz(oo) — Hz(x) and transferring back to Hz(x).

We obtain a lower bound for the sum which counts the number of a G A  with the 

logarithmic weight log p/  log z attached to the smallest prime factor of the number a 

subject to the condition v(D, A) < R  combining ideas from Selberg’s A2A" method 

with Richert’s weights. v(D, A) counts the number of prime factors p of a number a 

according to multiplicity when p > D but counting each p at most once when p < D.
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Chapter 1

Introduction

Sieve theory is a set of general techniques in number theory, designed to count, or 

more realistically to estimate the size of, sifted sets of integers. The first known 

sieve technique is that of Eratosthenes. He used a brute force method which 

involved starting with a list of odd numbers and deleting all the multiples of 3, then 

deleting all the multiples of 5, and so on.

1 % l 0 0

7 0 0 28 11 2 8

13 X 28 28 17 2 8

19 % r 22 28 23 M

% 28 22 28 29 28

31 28 28 X 28 28

Modern sieve methods were, it appears, introduced in the hope that certain 

conjectures (such as Goldbach’s) could be proved. While the original aims of sieve

1
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theory are largely unachieved, there have been some partial successes. For example, 

the Twin-Prime Conjecture stated below has yet to be proven, but partial 

approaches to it have been obtained.

C onjecture 1.0.1.

There are infinitely many prime twins: numbers p and p + 2 both of which are prime.

However, Chen’s Theorem states that there are infinitely many primes p such that 

p +  2 is either a prime or almost prime (the product of two primes).

Modern day sieve methods are more sophisticated and include the Brun sieve, 

Rosser’s Sieve and the Selberg sieve. In this account we concentrate on the Selberg 

Sieve which is simpler to understand and implement than other sieve methods. 

Although it is perhaps more elementary than other methods, Selberg’s sieve still 

provides us with rather good results in certain circumstances. Selberg’s upper 

bound method is described in Chapter 3. This method provides satisfactory results 

but only provides us with an upper bound. One of the objectives of this thesis is to 

apply Selberg’s ideas to the lower bound sifting problem.

In Chapter 2 we introduce some definitions and notation which will be used 

throughout. We also introduce the concept of the sieve arguments which we shall 

use in later chapters.

In Chapter 3 we describe Selberg’s Upper Bound Method, [21]. We state it here as 

some of the results will be used in later chapters and it also provides a level of 

understanding of what we are doing.
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The sum G(x) which arises in Selberg’s upper bound method is of particular 

interest. In Chapter 4 we use Rankin’s trick to provide an asymptotic estimate of a 

related sum H z(x), where we have extended the sum to include values at prime 

powers.

We wish to use the ideas arising in Selberg’s upper bound method to produce a 

satisfactory lower bound method. In Chapter 5 we obtain a lower bound for the sum

T  w fa”)
aeA

u ( D , a ) < R

which counts the numbers a with the logarithmic weight log p/  log z attached to the 

smallest prime factor of the number a subject to the condition v{D , a) < R. v(D, a) 

counts the number of prime factors p of a number a according to multiplicity when 

p > D but counting each p at most once when p < D,

V(D, a) = T  1 + 5Z L
p < D  p , a
p\a p a \a-,p>D

We achieve this by combining Selberg’s A2A-  method from [22], with Richert’s 

weight [20], with U =  1, V  =  0. The lower bound for the sum

T  w
o,EA

v ( D , a ) < R

leads us to a lower bound for the number of a in A,  counted with constant weight 1, 

subject to the same condition on the prime factors of a. In other words, we obtain a 

lower bound for the number of a G A  having at most R  prime factors.



Chapter 2

Prerequisites

2.1 Introduction

This chapter is used to introduce the background material required for the 

remainder of this thesis. In particular, we introduce the concepts of sifting limit /3Ki 

level of a sieve D , and sifting density k . Specifically, the sifting density of the 

multiplicative function p plays an important role in sieve theory.

We will require the following hypotheses and definition throughout this thesis. 

H ypothesis 2.1.1.

Assume 0 < p(p) < p when p\P(z).

H ypothesis 2.1.2.

Assume p{p) = 0 when p \ P ( z ) .

4
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D efinition 2.1.3.

Define the expression V(P(z))  by

„ ( P W) = £  Af(^£(d) = n ( l - * £ > ) .  (2.1.1)
d\ P( z )  p \ P ( z )  '  '

2.2 Fundamentals

We use this section to introduce various notations which will be used without 

reference throughout. Theorem 2.2.7 provides an estimate for S(A,  P(z)).  When 

suitable functions A+ and A-  have been constructed, the problem of estimating 

S( A, P( z ) )  is then reduced to that of estimating the sums V ± and R± .

D efinition 2.2.1.

Denote by A  a finite set of integers. Then we define by Ad those a in A  which are 

divisible by d:

Ad = {a € A  : a =  0(mod d)}. (2.2.1)

D efinition 2.2.2.

We denote the product of primes less than z by

P(z) = \ [ p .  (2.2.2)
P < Z



Topics in the Theory o f Arithmetic Functions 6

D efinition 2.2.3.

Write

S(A)  =  £  M(d)
d\A

where \i is the Mobius function defined by 

/i(l) =  1

p(pip2 . . . p r) =  (—l) r if p i , . . .  ,p r are distinct primes

p(<2) =  0 if p2\d for some prime p.

D efinition 2.2.4.

Define S (A, P( z ) )  by

(2.2.3)

(2.2.4)

so that S(A,  P(z))  is the number of a in A  not divisible by any prime from the 

product P{z).  Then we have

S{A,  P(z)) = Y T
a £ A  d\a

= Y  A d ) \ A d\. (2.2.5)
d\P{z)

D efinition 2.2.5.

When Ad, X , D  and p(d) are specified, define the remainder r^(d)  by

\Ad\ = + r^{d) if d\P(z) ,d < D. (2 .2 .6 )
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For equation (2.2.6) to be useful we require A" and the multiplicative function p to

be chosen so that the remainder term, r^(d),  is comparatively small.

D efinition 2.2.6.

We consider functions and Aj with the properties

AJ(d) when A\P(z).  (2.2.7)
d\A d\A d\A

When (2.2.7) holds, we say that A+, A-  are upper and lower sifting functions of level

D  for the product P ( z ), where D  satisfies

A%{d) 7̂  0 = > d < D .  (2.2.8)

Theorem  2.2.7.

When A  satisfies (2.2.6) and X± satisfies (2.2.7) we obtain

X V ~ ( D ,  P{z))  +  R~(D,  P(z))  < S { A , P(z)) < X V +{D, P{z))  + R +{D, P(z))

(2.2.9)

where S  is as in (2.2.4),

V ± ( D , P ( z ) ) =  J 2  (2.2.10)
d\P<z)

and

R ±(D,P(z))  = £  A%(d)rA(d).
i \P(z)

( 2 .2 .11 )
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P roof

Take A = (a, P(z))  in (2.2.7) and sum over a £ A.  We obtain

£  £  A5(<i) < S(A, P(z ) )  < £  £  A +D(d)
a £ A  d\a a e A  d\a

d\P(z )  d\P(z )

£  \ c ( d ) \ A d\ < S ( A , P ( z ) ) <  £  Xi{d) \Ad\.
d\P(z )  d \ P(z )

Using (2.2.6) this gives (2.2.9) as required.

We normalise our constructions so that

A±(l) =  1 (2.2.12)

throughout. We will prove in Theorem 3.3.1 that, for the Aj appearing in Selberg’s 

upper bound construction at (2.2.7),

|A^(d)| < 1 for all d. (2.2.13)

Corollary 2.2.8 then follows by estimating the terms involving r^(d) in (2.2.11) by 

the following “trivial treatm ent” of the remainder term:

£  ^%{d)rA{d) < £  \rA(d)\- (2.2.14)
d\P{z)  d\P(z )

d < D
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Corollary 2.2.8.

Suppose (2.2.7), (2.2.13) and (2.2.6) hold. Then

X V ~ ( D ,  P(z)) — \rA(d)\ < S( A, P( z ) )  < X V +(D,P(z))  + £  \rA(d)\.
d\ P( z )  d\P(z )
d < D  d < D

(2.2.15)

2.3 Level of Distribution

The level of distribution is a number D  for which the r-terms in Corollary 2.2.8 are 

insignificantly small. Choose e > 0, and say that A  has level D  if

^ 2  \rA{d)\ < e X  (2.3.1)
d < D

when (2.2.6) applies, with an appropriately chosen p.

2.4 Sifting D ensity

Here we introduce the sifting density, /c, for the multiplicative function p. This is a 

very important concept as many of the results appearing in the latter stages of this 

thesis require knowledge about the function p.
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D efinition 2.4.1.

Say that n is a sifting density (or dimension of the sieve) for the function p if there 

exists a constant L > 1 (depending on k) such that

n  ( i - — r <V(p(z)) P|F(7)/pW V p > V lo g r o /  V log*"
(2.4.1)

It should be noted that this does not define a sifting density k uniquely; if (2.4.1) 

holds for k =  k,q then it holds when n > kq. It is sometimes necessary to make the 

following assumption bounding p(jp) from both sides, in which case «, if it exists, 

will be specified uniquely by p.

D efinition 2.4.2.

Say that k is a two-sided sifting density for p if it satisfies Definition 2.4.1 and, 

additionally, there exists L' > L such that

V(P(z))  \  logwJ \ \ogw

In the situations which arise in this thesis it will be more convenient to replace the 

hypothesis in Definition 2.4.1 by a slightly stronger one. Let g(d) be the 

multiplicative function defined for squarefree d by specifying

9(P) = - - )  ' (2.4.3)
P ~ P(P)

for primes p and g(d) = 0 if p2\d.
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Then in place of (2.4.1) we may specify a constant A > 1 such that

g(p) logp < /slog — +  A  when 2 < w < z. (2.4.4)
w < p < z

When z —> w =  p, we obtain g(p) logp < A, so that (2.4.3) gives

p(p)

and p(p) is bounded away from p.

2.5 Sifting Limit

Suppose that the function p has a finite sifting density. We wish to characterise 

those pairs D , z for which V~{D,P(z) )  > 0 so that the lower bound in (2.2.9) is 

non-trivial. We are interested in the infimum of those s for which the desired 

inequality

V~( zs,P{z))  > 0 (2.5.1)

holds. Consider the class C of those p which satisfy (2.4.4).

D efinition 2.5.1.

The sifting limit /3(k) is the infimum over C of those s for which (2.5.1) holds (for 

some function depending on p, that obeys (2.2.7)).

<
<

A
log p (p -  p (p ))

p
1 +  A~1 log p



Chapter 3

Selberg’s Upper Bound M ethod

3.1 Introduction

Here we take the opportunity to introduce Selberg’s Upper Bound Method. 

Although the material in this chapter previously appeared in Chapter 2 of [8], we 

include it here as it helps to explain the relevance of the methods appearing in later 

chapters. As the methods in later chapters stem from Selberg’s ideas many of the 

results appearing here will be used throughout.

The problem of constructing a satisfactory upper bound sieve is that of satisfying 

the right hand inequality of (2.2.7) while keeping the level of support D  on which 

A +(d) ^  0 satisfactorily small. This ensures that the effect of the remainder term 

r^(d)  does not become excessively large.

12
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So we have to satisfy

S ( a ,P ( z ) )<  X+d ^ - (3.1.1)
d\ (a,P(z) )

In Selberg’s upper bound method this requirement is guaranteed by arranging that 

the sum over d is a square:

Selberg’s result requires Hypothesis 2.1.1, 0 < p(p) < p, and the definition of r^(d)  

in terms of Ad and p, given by (2.2.6). The question of estimating the sum G(x) 

arises. This is done by using information about the sifting density of p to obtain an 

appropriate bound on G{x).

D efinition 3.2.1.

The multiplicative function p* is defined by

with A(l) =  1. (3.1.2)

3.2 The Sifting Argument

p"{p) = p - p ( p ) - (3.2.1)

We then define the function g by

otherwise.

if n is squarefree
(3.2.2)
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We note that the function g is multiplicative since both p and p* are multiplicative. 

We shall denote

G (x ) = (3-2-3)
n < x

The following theorem is from [21] although the proof is not the same as that 

appearing here.

Theorem  3.2.2.

Suppose (2.2.6) holds:

\Ad\ = X ^ f -  + rA(d) if d\P(z) ,d < D.  (3.2.4)
a

Then

s [a ' p ) - g { 7 d ) + e ( d , p )  (3 '2 ’5)

where G is given by (3.2.3),

E ( D , P )  = ^ r -  Y ,  \ ( d i ) \ ( d 2 )rA([du d2}), (3.2.6)
di<VD

di \P

and the real numbers A(d) are given, for some C ^  0, by

W } .PLd)  -  C/j,(d) Y ,  g(h) i ( p ( d ) ? 0 ,  (3.2.7)
h =0( mod  d) 

h < y / D , h \ P

with A(d) =  0 if p(d) = 0.
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Taking d = 1 in (3.2.7) shows

C  = X 1 L .  (3 .2 .8 )
G{sfD)

The usual normalisation in Theorem 3.2.2 is to make A(l) =  1.

The value of A(d) when p(d) =  0 is irrelevant to the coefficient of X  in Theorem 

3.2.2. The choice A(d) = 0 for these d is the most efficient one when the error term 

E ( D , P)  is taken into consideration.

Since g is as in (3.2.2), substituting h =  dk in (3.2.7) gives

X ( d )  =  C ^ ( d ) - ^ -  £  g ( k ) .  ( 3 .2 .9 )

P [a) (M)=i
k <y /D/ d- ,k \ P

We will need the following identity, in which the numbers A(d) may be arbitrary, 

subject only to a restriction that they are supported on an interval 1 < d < y/D, so 

that all the sums appearing in Lemma 3.2.3 are finite.

Lemma 3.2.3.

Denote

V/+(A) =  £ £ l ^ l L g M * i M  (3.2.10)
d i \ P d 2\P *■ l j

where [.,.] in its usual notation denotes the least common multiple. Then

v + w  =  £  (3 '2 ' n )
h < y / D  V J 
p( h)^0
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where

x w =  E
d = 0 (m od/i)

m p ( d )
d

(3.2.12)

Moreover

m p ( d )
d

= p(k)x(kd). (3.2.13)

P roof

Firstly, we observe that {d\, d2){di, d2\ — d\d2, where (.,.) denotes the greatest 

common divisor. Using this in equation (3.2.10) gives

X(dl )p{dl) A(d2)p(d2) (du d2)

d\ d 2 
p({d\  ,d2) ) #0

d\ d2 p((du d2))

We observe that (d\, d2) is squarefree so we may express the last fraction here as 

£ h |( d .A p /s W  since

/
p{f) =  n

p \i

v
p{p)

=  n b +
p\f x

= E — •

p *(p )
p(p)
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So we obtain

T / + m  —  M d i ) p ( d i )  A ( d 2 ) p ( d 2 )  sr^ 1
W  -  2 ^ 2 ^  d d g(h)

d x d2 1 1 h \ { d x M )  ’
p((dx,d2))? 0

E l v X(di)p(di) A(d2)p(d2)
g(h) ^  di ^  ~d2

h < y / D  d i= 0(m od  h) d2= 0 (mod h)
p { h ) ^  0

x 2(h)
9(h) 

h < V D  J
p(/i)#0

which is (3.2.11), where x(h) is as in (3.2.12). Lastly using (3.2.12) we obtain

^ 2  p(k)x(kN) = ^ 2 p ( k )
X (d)p(d)

d
kN\ d

X (d)p(d) 
d

k N l —d

= E
m N —d k\m

A (N)p(N)  
N

which is (3.2.13). Here we used the characteristic property

V V d )  =
if i4 =  1

(3.2.14)
if not

of the Mobius function which appeared previously in (2.2.3).

The following proof appears in Section 2.1 of [8]. We include it here for the purpose 

of providing a full account.
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P roof of Theorem  3.2.2

Suppose, for the moment that A(d) are arbitrary real numbers supported on 

squarefree d < \/~D. The starting point is the inequality

m S ( a , P ( z ) ) <  (  £  A(d) \ . (3.2.15)
^ d \ ( a , P ( z ) )  '

This holds because if (a, P{z)) — 1 then S(a,P(z) )  = 1 and both sides of (3.2.15) 

take the value A2(1), but if (a , P ( z )) > 1 then S(a,P(z ) )  = 0 and the right side is 

non-negative.

The right side of (3.2.15) can be written

E  £  X(di)\(d2) =  E  A(di)A(d2) E  L
d i \ ( a , P{ z ) )  d 2\{a,P(z) )  d i \ P ( z )  d2 |P (z )  [di,d2]|a

On summing over a in A  and expressing the result in terms of p this gives

A2( 1 ) 5 ( A P W ) <  E  E  A M A W E  E  l
d i |P ( z ) ) d 2 |P(z))  a £ A  [di,d2]|a

Using (2.2.6) we obtain

V (1 )5 (A F W ) < E  E  K d 1) Hd2) ( x f>f 1’ f + r A([du d2])
* i p W ) * i  v [dl ' d2j

< X V +(X) + \ 2{1 )E(D,P) ,  (3.2.16)

with V + as in (3.2.10) and E( D, P)  as stated in (3.2.6).
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In discussing V + we may streamline the notation by using the convention that 

p(d) =  0 if d \ P ( z ), together with a natural one that terms with p(d) = 0 are not to 

be included in summations over d. This will save a certain amount of repetition of 

the conditions d\P(z) or p(d) ^  0, where these are implied. Similarly, the conditions 

d < s / D , fi2(d) = 1 need not be explicit in a sum involving A (d).

Theorem 3.2.2 will follow by choosing x(k) so as to minimise, for given A(1), the 

expression (3.2.11) for the quantity V +. The constraint

Y ,  p(k)x(k) = A(l) (3.2.17)
k < y / D

is now required by (3.2.13).

The following argument is attributed to P. Turan (see [7] or [18]). Recall Cauchy’s 

inequality

( ahbh)  -  IZ ah T , bh’
'  h < H  '  h < H  h < H

which holds with equality when there is a constant C  with a h  

h < H.  This is an immediate consequence of the identity

I  ( H  ahh -  akbh) = al bl -  ( ahbh
 ̂ h < H  '  h < H  k < H  ^ h < H
k < H

(3.2.18) 

=  Cbh whenever
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Apply Cauchy’s inequality to the condition (3.2.17) in a way that relates to (3.2.11):

A,(1|. ( ^
k<\ /D

k<VD  ^  1 7 K k < S D  

< V +{\)G{y/D), (3.2.19)

where G(yrD) is as stated in (3.2.3).

Equality occurs in (3.2.19) if

x(k) = Cp(k)g(k) when k < V~D, (3.2.20)

in which case (3.2.16) gives the conclusion (3.2.5) required in Theorem 3.2.2. This 

situation is attained if we make A(d) satisfy (3.2.13) with these x(k), so that

=  C y  n(k)fj.(kd)g(kd)
k < \ f D / d

=  CF{d) 2̂ 9W '
h = 0(mod d) 

h < \ / D

This is the value stated in (3.2.7), in which the implied condition h\P(z) was 

written explicitly. This completes the proof of Theorem 3.2.2.
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3.3 The Numbers A(d)

Theorem 3.3.1 below will give a convenient property of the numbers A(d) appearing 

in Theorem 3.2.2. Observe from (3.2.1) that for squarefree d

The following inequality appears in [28].

Theorem  3.3.1.

The numbers A(d) described in Theorem 3.2.2 satisfy the inequality

|A(d)|  <  |A(1)| .  (3.3.2)

P roof

Let C be the constant (3.2.8), so that

A(1) =  C  Y ,  s ( h ) .
h<VD

We need the inequality

|A ( i ) |  >  \ c \ J 2 g ( f )  g H -
f\d (n,d) = 1

n < y / D / d

(3.3.3)
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With the identity (3.3.1) this gives

|A(1)i ^  w J i )  £  9{n)
9  [CL) (n,d) = 1 

n < \ l D / d

=  |A(d)| ,

by the expression (3.2.9) for A(d). This proves Theorem 3.3.1. 

Corollary 3.3.2.

In Theorem 3.2.2, the error term satisfies

E ( D , P ) <  £  \rA{{du d2\
d i < \ / D  
di \ P ( z )

P roof

E (D , p ) = H di )H d2 )rA{[di,d2]) from (3.2.6).
di<y/~D

di\P

Since |A(d)| < |A(1)| from Theorem 3.3.1 we have

E (D ,P )  <  Mi! £  \rA([du d2})\
di<VD

<
di \P

\rA({du d2}
di<\/D
d i \ P ( z )

(3.3.4)

(3.3.5)

as required.
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3.4 An Estim ate for Gz(x)

Consider the incomplete sum

=  (3 A 1 )
d < x

where gz is multiplicative and satisfies

9 z ( n )  =
g(n) if p\n => p < z\

^0 otherwise.

Recall that g(p) = p(p)/(p — p(p)) and can be written as

We note that Gz(x) increases with z, so that

G(x) =  Gx(x) > Gz(x) when z < x. (3.4.2)

From Theorem 3.2.2 we require a lower bound for G(y/D).  From (3.4.2) we can see 

that a lower bound for Gz(\/rD) will provide us with a lower bound for G(y/D).

We denote

Gz{ oo) =  9{d) ;
d\P{z)

so that Gz{x) — Gz(oo) whenever x > P(z).
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Observe that

Gz(x) < G,(oo) =  n  (! +  9(P)) = II f1 - 1 =  w h ) )  (3-43)
p\ P( z )  p \P( z )  V y  \  \

where V(P(z))  is as in (2.1.1).

This gives a useful connection between the sum Gz(x) and the product V(P(z)).

For Theorem 3.4.1 we require Hypothesis 2.1.1, 0 < p(p) < p , and an upper bound

B(z) < B- where B{z)  = - 1 — V  P^  X°gP. (3.4.4)log p

Theorem  3.4.1.

Suppose that (3.4.4) holds, where z > 2, and write z = D l/S. Then Gz(y/~D), as 

defined by (3.4.1), satisfies

1 -  exp (~ tM § 8)) < G ( y / p ) <  1 (34 5)
V{P{z)) ~ Uz[VV) ~  V(P(z))  ’ [ }

where, for each v > 0,

v f t
ifB{v) =  m ax{0,v\og — -  v + B]  = / log — dt. (3.4.6)

&  J B < t < v  &

Theorem 3.4.1 will follow from (3.4.3) and Lemma 3.4.2.
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Lemma 3.4.2.

Suppose that B(z) is as defined in (3.4.4), and denote

I z(x) =  Gz{oo) -  Gz(x) = ^ 2  9{d), (3.4.7)
d > x

d\ P(z )

and write x =  zv. Then for each v > 0

r (T) ^ exp(-VB(«)) ,,
h(x )  -  V(P(z))  ' (3'4'8)

where 'ips is as in (3.4.6).

P roof

Lemma 3.4.2 follows using Rankin’s trick, which appears in [11] and [23]. Take 

s > 0. Then

^  -  j?  H  9(d)# = n  i l + PC3{p))-
d\P(z )  p \ P( z )

Hence, for V(P(z))  as defined in (2.1.1) we obtain

1 +  P£P(P)

<

P ~ P(P)

±  n  ( i + f  <„■ -  d )
p\P(z )  V F  '

p \ P( z )

We may choose e = c /logz, provided c > 0. Observe that (e* -  l ) / t  increases when 

t  >  0 .
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Hence when p < z

p£ — I eciogp/iogz _   ̂ ec — 1 
elogp  c logp /logz “  c

When z = x l!v use of (3.4.4) now gives

h (x )v{P {z ) )  < exp logp)

< exp(—cv +  B(ec — 1)).

The optimal choice of c satisfies v =  Bec, i.e. c =  logu — log 5 , provided v > B. If 

v < B  then the best permissible choice is c = 0. This gives (3.4.8) as required by 

Lemma 3.4.2.

P roof of Theorem  3.4.1

The upper bound for Gz(y/D) in (3.4.5) is provided immediately from (3.4.3). The 

lower bound for Gz{yfD) is provided by noting that (3.4.7), (3.4.3) and (3.4.8) give

^  / x ^  / x r / x 1 — exp(—iPe M )
Gz ( x )  =  Gz(oo) — Iz(x) > V(P(z))  ’

and taking x =  \J~D. Since x — zv and z — D l/S we obtain

logx logx su =  ----- =  s------— =  - .
log 2 logD 2

This completes the proof of (3.4.5).



Chapter 4 

Sums of M ultiplicative Functions 

Over Friable Integers

4.1 Introduction

We would like to use ideas from Selberg’s upper bound method to seek a lower 

bound sieve. In this chapter we look at one method of achieving this goal which 

involves the use of Buchstab’s Identity

S(A ,P(z ) )  = S ( A , P ( w ) ) ~  J 2  S(A„,P(p)) ii w < z. (4.1.1)
w < p < z

p\p

From this expression it is clear that an upper bound for the second sum appearing 

on the right would lead us to a lower bound for the sum on the left. Successive 

iterations of this process will provide improved upper and lower bound sieve results.

27
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The object of this chapter is to study the sums of multiplicative functions over 

integers whose prime factors are relatively small. Such integers are referred to as 

friable integers. We aim to find a lower bound for the sum

Hz(x) = hz(n) (4.1.2)
l < n < x

where hz(n) > 0 for all n. hz is multiplicative and satisfies

h(n) if p\n => p < z
hz(n) =

0 otherwise.

Throughout this chapter we use the notation

(4.1.3)

and we will be interested in the case z < x, i.e. s > 1.

The method of proof we use in this chapter arises from a combination of ideas from 

Greaves [9] and Song [24]. Greaves obtained the following result

-  CT(S)
Gz( oo)

s e ~ f pB ( s ) +0 ( A)

<     when 5 > 1, (4.1.4)
log z

where g is a multiplicative function which is non-zero only for squarefree integers 

and satisfies

^ p ( p )  logp < /clog?;7^(r;) when v > 1, (4.1.5)
p <  V

where rj(v) satisfies \rj(v)| < A  when v > 1.
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Gz is the sum

Gz(x ) = ^ 2  (4.1.6)
n < x

p |n=>p<z

and a is the continuous function defined by requiring

d f a ( s ) \  + w ( s - l 1  =  0 ,f  s # 0
ds \ sK J sK+l 

where <r(s) =  0 if 5 < 0,

e - 7 *
<7(5) =  CsK when 0 < s < 1; C = —----- — (4.1.8)

+  1)

In this account, we extend the results from [9] to the context where g(pk) is not 

assumed to be 0 when k > 2.

Tenenbaum proved in [27) that for 0 < 6 < 1 the result

^ f \ = a { s )  + o (  1 )  (4.1.9)
Hz(oo) y(log Z y - s J

is valid for h supported on all n using a more analytic method. Prior to this Song 

proved that

H z(zs) f  log(5 +  1) \  ,
77 / \ = <r(s) +  O ;  4.1.10
Hz{OO) y ( g z )  J  y '

by making a similar extension to a result of Halberstam [24]. Song studied the sum 

Hz(zs) whereas here we shall investigate the residual sum Iz (zs) where

I z(x) = Hz(00) -  Hz(x) =  y ^ h z(n)
n > x

and then transfer back to Hz(zs).

(4.1.11)
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The first stage in the proof which appears in Section 4.4 is to obtain an integral 

equation for I z(x) derived by a procedure attributed to Chebychev. We then use 

Rankin’s trick to obtain an initial upper bound for I z(zs). Section 4.6 contains a 

change of variables which leads us to investigate the inner product between and r

defined in (4.6.11) and (4.2.8) respectively. In Section 4.7 we discuss the inductive

argument which is taken from [9]. This inductive argument and the information 

gathered about the size of the inner product (£2, r)(s) is then used to prove 

Theorem 4.3.4.

4.2 The Function a(s)

We define <r(s), which is used in the main result, to be the continuous solution of 

the differential-difference equation

d / a ( s ) \  ko(s — 1) „ .
r - 2 =  ° (4.2.1)

and

if s < 0;
(4.2.2)

when 0 < s < 1

0cx(s) = <
C k s k

where CK is the constant

CK = e_7K/T(« +  1), (4.2.3)

k is as in (4.3.1), 7 is Euler’s constant and T is Euler’s Gamma function.
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Observe that (4.2.1) can be rewritten as

so'(s) = k ( o ( s ) — a(s — 1)) if s ^  0 (4.2.4)

which can be integrated to give

sa(s) = / o(u)du + K / a{u)du for all s. (4.2.5)
Jo J s - l

Lemma 4.2.1.

The continuous expression o(s) defined by (4.2.1) and (4.2.2) increases when s > 0 

and satisfies

a(s) = l + 0(e~sl0^ )  (4.2.6)

where the implied constant may depend on k .

A proof of this lemma can be found in Lemma 7.1.1 of [8].

The continuous function i(s) = 1 — a(s) arises as the leading term in an 

approximation to I z(x). Using the properties of a(s) described above we then have

—sz(s) =  k — / i(u)du — k i(u)du.
Jo J s - l

Letting s —> oo shows

roo

/ i(u)du = At, 
Jo
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thus
roo rs

si(s) +  / i(u)du — k, I i{u)du. (4.2.7)
Js  J s - l

Equation (4.2.7) has an “adjoint” satisfying

■^(sr(s)) = —Kr(s) + Kr(s + 1). (4.2.8)
ds

This equation has a solution for positive s,

r(s) = J  exp ^ — sx +  k J  — ~ —d t j d x , (4.2.9)

for which r(s) ~  1/s  as s —> oo.

Define an “inner product”

(R,r)(s) = sr(s)R(s) — k (  r(x  +  l)R(x)dx.  (4.2.10)
J s - l

The inner product (i,r)(s) is constant but we will instead look at the inner product 

between iz and r and show that this is suitably small for our purposes.

Remark 4.2.2.

Note that

( l,r )(s )  =  sr(s) — k (  r{t-\-T)dt
J s - l

= 1. (4.2.11)

This follows from (4.2.8) and since sr(s) ~  1 as s —» oo.
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4.3 Assum ptions

Let h be a multiplicative function such that h(n) > 0 whenever n > 1. 

follows we assume that h satisfies the following conditions:

There exist constants 6, 0 < 5 < 1, and k, > 0 such that

h(p) logp — k, log z +  r](z) for z > 1
p < z

where

■q(v)
<c (logu)1 6 for v > 1; 

=  0 if v < 1,

and there exist constants b > 0, A a > 0 and 0 < a < 1/2 such that

^ 2  h (Pk) log Pk < b
p , k >  2 
p < z

and

^  h(pk)pka < A a.
p ,k >2
p < z

In what

(4.3.1)

(4.3.2)

(4.3.3)

(4.3.4)
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Rem ark 4.3.1.

Note that (4.3.3) is a consequence of (4.3.4) because

(4.3.5)

where cQ =  supx>1 \o g x /x a1/2.

The definition of I z(x) raises a convergence question about Hz(0 0 ), where H z is as 

defined in (4.1.2).

From (4.3.4) the sum over prime powers is convergent and since

we can see that it is indeed convergent. Thus the definition of I z(x) given in (4.1.11) 

is certainly valid.

Rem ark 4.3.2.

The multiplicative function p arises when h(p) is expressed in the form

For the proof of Lemma 4.5.1 we need to assume Hypothesis 2.1.1, 0 < p(p) < p and 

the upper bound (3.4.4),
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B(z) < B, (B > 1), where B(z)  =  f —  V  '°g ;'
loS 2 ^  P

We remind the reader of the function 'ip defined in (3.4.6)

[

g
f | slog— — s + B  if s > B;

^ b {s) =  I  log— dt = '  B
B 0 otherwise.

The following result will be useful throughout this chapter.

Lemma 4.3.3.

For ips defined in (4.3.7) we have

exp(—'ipB(t)) < e x p (- ,0B(s) + (s — t) logs) for s > 1 

provided that t < s.

Proof

From (4.3.7) we can see that for t < s

f s tf e ( s )  -  f c ( i)  =  j  log —dt

< ( s - t )  log

< (s — t) log s.

Accordingly we obtain

exp ^ -  'ipBit)^ < exp ^ -  'ips(s) +  (s -  t) log s

as required.
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We denote the expression V(P(z))  appearing in Definition 2.1.3 by

iw j -n t1-*?)- (4 '3 '9)
P < Z

Observe that

V(P(z)) = I D  + h ^  (4.3.10)

Using this notation our main result is as follows.

Theorem  4.3.4.

Suppose that h is multiplicative, h(n) > 0, and h satisfies (4.3.1), (4.3.2), (4.3.3) 

and (4.3.4). Then the sum Hz(zs) defined in (4.1.2) satisfies

I I  ( z s \  /  s E - l f - i p B ( s ) / 3 + 0 ( B )
nzKZ } = a {s) +  O  ------r.----- rr-------  1 when 1 < s < ^  (4.3.11)
Hz( oo) V (log^)

where the implied constant may depend on n and A a , B  satisfies (4.3.6), 

ca = 2/(ea) and where

f 1 log A acc 
E = max <2, — h

3 log z a!2

4.4 Preliminary Lemmas

In this section we obtain the integral equation using a fairly straightforward 

procedure which is analogous to that used in [24] and [9].
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Remark 4.4.1.

Note that by applying (4.3.1) for z = p and z =  p — 1, and then taking the 

difference, we obtain

h(p)\ogp <  (logp)1-5 (4-4.1)

h(p) <  (log p)~6 (4.4.2)

and using the notation of Stieltjes integrals we get

E M p X lo g p )1 * =  f  (logt) 6d (  h (p) l° g p )
p < z  2 < p < t  '

<C J  (\ogt)~6d(K\ogt +  77(f)) from (4.3.1).

Using (4.3.2) and integrating gives

' Z n m o g p ) 1- 6 <  (logz ) l~6. (4.4.3)
P < Z

Lemma 4.4.2.

The sum I z(x) defined in (4.1.11) satisfies the integral equation

r°° dt f x dt
Iz(x) \o g x +  Iz(t)— = k I z( t)— + A z(x) (4.4.4)

J x  t  J x / z  t

where

A z{x) = YZ hz{m)(r}(z) -  r )(x/m)j  -  YZ hz(m)hz(p) logp
m > x / z  m p > x

p \ m

+  Y Z  hz(m)hz(pk)\ogpk. (4.4.5)
m p k > x  

p\ m, p,k>  2
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Proof

Since we have that logn =  5^pfc|jn

I z(x) \ogx = hz(n) log ^  -f ^ 2  hz(n ) 1qS71
n > x  n > x

= ^ 2 h z(n ) \o g -  +  ^ 2 h z(n) ]T lo g p

We observe that

n
n > x  n > x  p k \\n

= y Z h z{n)\o g -  +  y 2  hz{m)hz{pk)\ogph 
— nn > x  m p k > x

p\ m

^ 2  hz {n) lo g -  =  £  hz (n) log -
71/ OC

n > x

= E  /  M » ) j
x < t < n

which gives

Thus we can write

r oo ,3+
- J 2 h z(n) log* = /  (4-4.6)

n > x

poo  7 /

7z(x )lo g x +  / /*(£)— =  hz(m)hz(pk) log/A (4.4.7)
J  X  t m p k > x  

pfm

The sum on the right of (4.4.7) can be split up as follows:

J 2  hz(m)hz(pk)\ogpk = hz(m)hz(p ) \ogp- i -^2  hz(m)hz(pk) logpk
m p k > x  m p > x  m p k > x

p\m p\m p \ m, p,k>  2

=  ^ 2  hz{m)hz( p ) \o g p -  hz(m)hz(p)\ogp
m p > x  m p > x

p\m

+  *22 hz(m)hz(pk)\ogpk. (4.4.8)
m p k > x  

p\m, p,k>  2
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The first sum on the right is

hz(m)hz(p)\ogp = £  hz(m) h(p)\ogp
m p > x  m > x / z  x / m < p < z

h z ( m )

x / z < m < x

%
/clog — b v(z) -  rj(x/m)

x / m

m > x

/c log z +  rj(z)

by (4.3.1), and since p(x/m) = 0 when m  > x we obtain

Y 2  hz(m)hz(p)\ogp = k Y 2  hz(m ) \o g —— + /c ^  (m) log z
m p > x  x / z < m < x  ' m > x

m > x / z

Momentarily ignoring the last term in this we get

K M m ) l° g —r  +  /c hz(m) log z
jC j %

x / z < m < x  m > x

=  K V ]  (m) log —  k h-2 (m) log +  /c (m) log z
*—Jl X Z ' X z

m > x / z  m > x  ' m > x

= k ^ 2  M m ) l° g —T -  ^ y 2  hz(m) log —
m ^ /z  X! Z £>x

=  —/c hz(m) log—— b /c hz(m) log —
m > x / z  m > x
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which after comparison with (4.4.6) gives

r°° dt r°° dt 
Y  hz(m)hz(p)\ogp = n j  I z(t)— -  k  / Iz{t) —
n p > x  x ! z  x

+  Y 2  hz{m)(^n(z) -T](x /m)^ .  (4.4.9)
m > x / z

Combining (4.4.7), (4.4.8) and (4.4.9) we have deduced the result as stated:

7°° dt f x dt 
I z(x) \ogx + Iz(t)— = k I z (t)— + A z(x). (4.4.10)

J  X t  j  x / z  t

4.5 An Upper Bound for I z (x)

Here we obtain an upper bound for I  fix)  by applying Rankin’s trick. Although the 

result we obtain via this method is rather weak, it is useful in the proofs of Lemmas 

4.6.1 and 4.6.2.

Lemma 4.5.1.

The expression defined in (4.1.11) satisfies

/.(X ) <  for * <

where B satisfies (4.3.6), ips is as in (4.3.7) and L a =  exp(,4a) with Aa as in

(4.3.4).
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P roof

Firstly, denote

^p(^) =  HPk)PkX f°r some A > 0.
k> 2

We have

Jz(x) =
n > x

-  n f1 + h ( p ) p * + t  h ^ p
p < z  A ^ > 2

- ^ n (*+h ^ p X +tp(a))
by Rankin’s Trick

so that for V{P(z))  as in (4.3.9),

h{x)v(P(z)) < - L j j ( i  + / , (py + rp( A ) ) ( i - ^ )
p < z  '  / V P /

X ' n
P < Z  L

i + h ( P)px ) [ i - ^ y ^ + t p(a ) ( i  p{p)
p p

Now from Remark 4.3.2, we have h(p) = p{p)/{p -  p(p)) so that
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In view of the fact that log (1 +  x) < x we get

We may choose A =  d/logz ,  provided d > 0. Observing that (el -  1 ) / t  increases 

when t > 0, then for p < z we have,

p x — I  g d lo g p /  log z  _  j  e d — 1

Alogp dlogp/ logz ~ d

When x — zs we have

< exp(—ds +  B(ed — 1)).

By differentiating we can see that the optimal choice of d satisfies s = Bed, provided 

s > B. If s < B  then the best permissible choice is d = 0 since A > 0. Therefore,
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Consequently,

I z(x)V(P(z))  < e x p ( - ^ s ) ) e x p  ^ ] T t , , ( A ) ( i  -  ^ ) ) .

<  exp(-i/'s(s))exp ( ^ T P(A)) since (1 -  p(p)/p) < 1.
'  P < Z  '

< exp(~ipB(s)) exp ( h (pk)Pk
P < Z

k> 2

If we assume that s < B z a , then as a consequence of (4.3.4) we have that

I z(x)V{P(z)) < exp(-'0fi(s))exp(A Q)

< La exp(-'ipB{s)).

Consequently

exp (-ipB{s))
V(P(z))

4.6 Change of Variables

In this section we look at the integral equation obtained in Lemma 4.4.2. The first 

thing we need to do is to obtain an asymptotic estimate for the third sum appearing 

in the definition of A z(x), (4.4.5). The result of this appears in Lemma 4.6.1. We 

then define a change of variables which will enable us to use the integral equation 

from Lemma 4.4.2 to provide information about the size of an inner product 

involving f , which arises in the change of variables. The size of this inner product is 

the foundation of the proof of Theorem 4.3.4.
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Lemma 4.6.1.

The last sum appearing in the term A z(x) of Lemma 4.4.2 satisfies

hz(m)hz(pk)\ogpk <C Hz(oo)sDae when s < z a (4.6.1)
m p k > x  

p\ m, p,k>2

where Da =  log A aca/ logza!2, A a is as in (4.3.4) and ca = 2/(ea).

P roof

By following the same argument as Remark 4.3.1 we observe

5 > 2(p*)iogp* < (4-6-2)
p k > t  p k > t
k > 2 k>2

„ 1
^  a fa/2 Cq (4.6.3)

where ca = supx>1 lo g x /W 2 =  2/(ea).

To evaluate the sum we consider two cases. First we look at those m  such that 

m  < T, where a suitable T  > 0 will be chosen later. This gives

hz(m)hz(pk)\ogpk < y ^ / i z(m) hz(pk) l o g /
m p k > x  m < T  p k > x / m

k > 2 , m < T  k >  2

^  I I  by (4.6.2)
m < T

*  ^ Q/2£ M m ) .
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So we have

hz(m)hz(pk) logpk < ^ ^ T a/2Hz(oo). (4.6.4)
m p k > x

k > 2 , m < T

We now consider the contribution from those m >  T.

Y 2  hz(m)hz(pk)\ogpk < ^ 2  hz{pk)\ogpk ^  hz(m)
m p k > x  P,k>  2 m > T

k > 2 , m > T

< J 2 h^ P h) l°SPhh (T )
p ,k > 2

which after appealing to (4.3.3) gives

hz(m)hz{pk)logpk < bIz(T). (4.6.5)
m p k > x  

k > 2 , m > T

Using (4.3.10) and the result from Lemma 4.5.1 we obtain 

hz{m)hz(pk)\ogpk < bLaH z(oo)exp ( ^ -
m p k > x

k > 2 , m > T

provided (log T ) / (log z) < B z a. If we choose T  < zs then this condition is satisfied 

and Lemma 4.3.3 shows that

exp -  -0
( 5 £ ) )  - -  ^ ( s ) + ( *  -  5̂ ) iog
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This gives

Y :  hz(m)hz{pk)\ogpk < bLaHz(oo) exp ^ --0 s (s )  +  logs^ . (4.6.6)
m p k > x  

k > 2 , m > T

Combining (4.6.4) and (4.6.6) we obtain for all m,

l ° g /  «  (4.6.7)
m p k > x

k >2

+  bLae x p ( -  'i/jb(s) +  “  7 ^ ) logs) ••

Now we need to choose a suitable 0 < T  < zs so that both terms on the right hand 

side of this equation have the same order of magnitude with respect to s. Choose T  

so that it satisfies

A a C a r r a / 2  f  l o g  Za /2  (  l o g ^ QCa \ 1
— —T  1 — exp <  --------r.—  -----  -  ipB\s) +-i -------77T l°g s f • (4.6.8)x a/2 \  log za/2 +  log s \  log0Q/2 J j

Since x — zs as in (4.1.3), this says

logT _  logA aca 1 (  logA aca
log z S log za!2 log za/2 +  log s \  B log za/2 S

Now the exponent in (4.6.7) takes the form
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Consequently (4.6.7) gives

1 lh(m.)hj,pk) log '{/
»>m p K > X

k> 2

~  n , LT \ (  lo§ Z<X' 2 (  I f \ , \ogAaca \<  (1 +  bLa) exp  ------- jz—  ----- -  wb{s) +    j7T log s
v 1 * \ logZa!2 + logs V logza/2 J

Since s < za we have

log za/2 1
^ b (s) < - - iPb (s)log za/2 4- log s 3

which gives

hz(m)hz(pk) logp* <  exp f  -  logs)
m p k > x  \  /Hz( m p K >  

k>2
<  e ~ M s ) / 3s Da ?

and Lemma 4.6.1 follows provided we can show that T  < z s. From (4.6.8) it is clear 

that to do this we need to prove that

r logzQ/2 (  log A aca \  \
6XP 1 log Z“/2 + lo g s  (  -  ^ (S) +  l0g S)  /  < ^
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If we take logarithms and rearrange we obtain

log A aca . . . log zQ/2
log s -  log A aca <   Tjy— , (s)

log za!2 +  log s a a log za/2 +  log s
(  logs \  log Za/2 . N

logAQcQ(-------- 7-—  ---------1) <--------- —̂ —  -----iPb (s)-
\  log Zal2 +  log s J log Za/2 +  log s

So T < z s provided

log A aca < 'iPb (s)

A q,Cq,

which is clearly true since 'iPb (s ) > 0. This can be seen from the definition of 'ips in 

(4.3.7).

Using the following change of variables

x = z s, t = zu, Iz(x) = iz(s), A z( x ) = ‘dz(s) (4.6.9)

we rewrite the integral equation (4.4.4) as

r°° rs $ (s)
siz (s) + / iz(ujdu =  k / iz(u)du + —— . (4.6.10)

Js  J s - 1  log2
Note that by ignoring the entry tfz(s) in (4.6.10) we obtain the equation appearing

in (4.2.7).

If we now write

iz(s) -  H z(ce)(i(s) + (4.6.11)
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then proving Theorem 4.3.4 is equivalent to showing that

f z(s) <  sE~1 exp ^ +  O(B)^  .

We will use information about the inner product (£z,r)(s) to gain information about 

£z(s) and subsequently prove Theorem 4.3.4.

Lemma 4.6.2.

The inner product (fz,r)  satisfies

(£z,r)(s) <C sEr(s)e~^B^ ^  for s < B z a

where
/  1 logAacQE = max < 2, -  +

3 log za/2 J ’

satisfies (4.6.11), r satisfies (4.2.9), B satisfies (4.3.6), 'ips is as in (4.3.7) and the 

inner product is defined by (4.2.10).

Proof

From (4.6.10), (4.2.7) and (4.6.11) we obtain an integral equation for f z(s),

r°° rs $ (s)
s £ z { s ) +  ^z{u)du = K £z(u)du +  - A - — 1 . (4.6.12)

Js  J s - 1  H z(oo)(\ogzy-6

Using the notation of Stieltjes integrals, (4.2.8) and since
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we observe that

r o o  r c c

/ ur(u)d£z(u) = —sr(s)(z(s) — / £z(u)(—K,r(u) + k r(u + l))du
J  s J  s

From (4.6.12), (4.6.13) and (4.2.10) we have, 

f°° dti (u) r°° f
J ,  H ^ o o i i l o g z y - 1 =  J s r ( u ) ( u d & ( u ) - K { * ( u ) d u  +  K t * ( u -

= -sr(s)£2(s) +  K r(u+  l)£z(u)d,u 
Js- 1

=  - ( t z , r ) ( s ) .

Reverting back to the original variables (4.6.9) we have

'(u)d'dz(u) = J  r ^ ^ J d A z(t) =  T -  I2 + h
»oo

r(

where

jl  = Jx r ( l o g z ) d (  52
»oo

m > t / z

I r ( l M ^ ) d (  5 2  hz(m)hz(p)\ogp\  
X \  © /  \  mp>t /  

p \ m

h  =
=  L  r ( l S j ) d (  5 2

m p k > t  
p \ m , p , k >  2

(4.6.13)

l)d a )

(4.6.14)

(4.6.15)

(4.6.16)

(4.6.17)

(4.6.18)
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Firstly, we look at I\. From (4.6.16) we get

h  = f  r ( i ~ ) d (  H  hz{m)(ri(z) -  ri(t/m))
Jx \  6 /  \ m>t/z

_  / lo g £ \  ^  hz(m)(ri(z)-r)(x/m))

+ J  T  h*(m ) W z )  -  »?(</m )) d r ( j ~ ~ )
m > t / z

from which we can determine

1 - 6 (4.6.19)

The sum in the d expression of / 2 can be expressed in such a way that / 2 becomes

ipk + 1 > t ,p f i
k > l , p < z

r ( l o g f )  ^  hz(l)h(pk)h(p)\ogp
l pk+ 1>x,p \ l  

k > l , p < z
r oo

+ /  hz(l)h(pk)h(p)\ogp
x  ipk+ l >t ,p\ i  

k > l , p < z

dr
logt_ 
logz

From above and using the fact that the d expression in (4.6.17) is < 0 we obtain

—r ^  hz(l)h(pk)h{p) log p < I2 < 0. (4.6.20)
lpk+ 1>x,p] l

k > l , p < z
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We now have

5 1  hz(l)h2{p)\ogp+ ^ 2  hz(l)h(pk)h(p)\ogp
^  lp2> x  lpk+1>x,p\ l

p \ l , p<z  k > 2 , p < z

Applying (4.4.1) to this we obtain

< r

k > 2 , p < z

logx
/ * ^ ) ( 1°S 2:)1 * +  Y 1  hz(l)h{pk)\ogpk^ using (4.4.3)log 2:, v ... .

lpk > x /  
k > 2 , p < z

<< r ( 5S )  { ( l0 g z ) I " 4^ S y + i? 2 ( 0 ° ) (s  -

for s < B z a after appealing to Lemmas 4.3.3, 4.5.1 and 4.6.1. 

Thus we have achieved

I h \  < r(s)H X oo)|s2e-',’B(s)(log^)1_,5 +  s 1/3sD«e-,,’flW/3|

<C r(s)i/2(oo)s^e_^B(̂ /3(log2:)1_ ,̂ (4.6.21)

where E  = max{2, Da +  |} .
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We now turn our attention to the d expression in / 3. From (4.6.18) we have

h  =  ~ Y  r ^ ^ j T \ h z{m)h,(pk) \ogpk.
m p k > t

p \ m,p,k>2

Using the fact that r  is a decreasing function and the result from Lemma 4.6.1 we 

have

l^ l <  r(s) ^ 2  hz{m)hz(pk)\ogpk
m p k >t

p\m,p,k>2

<  r{s)sDae~^B ŝ^ 3 H z{oo). (4.6.22)

Substituting (4.6.19), (4.6.21) and (4.6.22) into (4.6.15) and referring to (4.6.14) we

conclude

FU(oc)(log2:)1_J(£2,r)(s) <C |/i| +  \I2\ +  | /3|

<C r(s) ^ I z(zs~l )(\og z ) l~6 +  sDaHz(oo)e- ^B̂ / 3

+s'EiLz(oo)e”^B̂ ^ 3(log2;)1~(5̂ .

Using Lemma 4.5.1, (4.3.10) and the fact that E  > D a we obtain

( *r ) (8)  «  ex^ ~ ^ S ~ ^  + 8Er(s)e-*BW 3Kz>r){s) «  ^ (oo) y {P{z)) + s W

<  sEr(s)e- ^ (s)/3^ - ^  +  l^ ,

again using (4.3.7) to express e_^s(s_1) in terms of e~^B<̂s\  Therefore we have

(£z,r)(s) <C sEr(s)e~1pB̂ /3 (4.6.23)

as required.
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4.7 The Inductive Argument

The proof of Theorem 4.3.4 requires us to take information known about the size of 

(6sjr )(s) and transfer it to <57* (s). This can be done using the result from Lemma 

4.7.4. The inductive argument used here is almost identical to that used in [9].

Lemma 4.7.1.

Assume that Q(s) is continuous in s > 0 apart from simple jump discontinuities. 

Suppose that c > 0, Q(s) < csK~s when 0 < s < 1, where « > 0, 0 < 5 < 1 and 

(Q,r)(s) < 0 when 1 < s < S. Then Q(s) < csK~5 for all 0 < s < S.

P roof

We first prove the case c = 0 by contradiction. Suppose that Q(s) > 0 for some 

1 < s < S. Denote by si the infimum of all such s. Then we have 1 < si < S  and 

Q (si+) > 0.

Since we have assumed that (Q, r)(s) < 0 we obtain

sr(s)Q(s) < ^ f  r(x + 1 )Q(x)dx when 1 < s < S. (4-7.1)
J s -  1

We now consider two cases. If Q is continuous at then taking s = S\ gives 

Q(s i) < 0, a contradiction.

On the other hand, if Q is discontinuous at Si then

p s  i

5 ir(si)Q (si+ ) < n / r(x +  l)Q(x)dx < 0. (4.7.2)
Jsi-l
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Hence Q (si+) < 0, so that in fact Q(«i+) =  0, since Q (si+ ) > 0 as already noted. 

Now (4.7.2) implies Q(x) = 0 whenever Si — 1 < x  < Si. This contradicts the 

definition of Si, so that the suggested discontinuity at s i cannot arise. This 

establishes the case c = 0 of Lemma 4.7.1.

Note that when c is positive and s > 1,

Denote Q*(t) = Q(t) — ctK 6. Then (Q*,r)(s) < 0 and Q* satisfies the hypotheses 

previously expressed for Q in the case c = 0. The corresponding conclusion nowr

c r(x  +  1)kxk 6dx < cr(s) kxk 6dx < cr(s)sK +̂1

since r decreases.

With (4.7.1) this shows

sr(s)(Q(s) — csK 6) < k r(x +  l)(Q(x) — cxK 6)dx.
s —1

gives Q(s) — csK 6 < 0 whenever 0 < s < S. This establishes Lemma 4.7.1.

Lemma 4.7.2.

Suppose U+(s) > 0, and that U+ is bounded and integrable on the finite interval 

[0,5]. Define u(x) = U+(x)e^x^ 3, where 4>(x) = x \ogx  — Dx for some constant 

D > 0. Then

if se D exceeds a suitable constant depending on k .
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P roof

Use the fact that </>'(x) = logx + 1 — D increases with x. Consequently

(f>(s) — 4>(x) < (s — x)(f)f(s) if s — 1 < x < s. Here u(x) > 0, and the expression to be

estimated in Lemma 4.7.2 does not exceed

* e-*W/3 f  e(4,(s)-*(x))liu{x)dx <  - e ~ m / 3  [  e*(s)_#(l)u(x)dx
S J 5 — 1 S J s - 1

< —e~^s^ 3 f  e^s~x^ ' ^ d x  sup u(x)
S J s — 1  s —l < x < s

-  A H  \ e ~ 4>iS)l3 S U PS(p \ S J s —l < x < s

provided s > eD~l , so that (f)'(s) > 0. However

K e 4>'(s) nsel~D nel~D 1
s(/)'(s) s(logs +  1 — D) logs +  1 — D  < 2

if logs — D  is large enough, so Lemma 4.7.2 follows.

Lemma 4.7.3.

Suppose that h(s) is bounded above on each interval (0, 5i). I f

h(s) < 1 +  i  sup h(x) when 0 < s < S,
^ s—l <x<s

then h(s) is bounded above on 0 < s < S.

P roof

Let h*(s) = sup0<x<sh(x). Then h*(s) < 1 +  This says that h*(s) < 2, so

Lemma 4.7.3 follows.
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Lemma 4.7.4.

Suppose that Uz(s) is continuous in s > 0 apart from single jump discontinuities, 

and that there is a constant c > 0 such that Uz(s) < csK~6 when 0 < s < 1. Assume 

that B  > 1 is as in (4.3.6) and

(Uz, r)(s) < sr(s)f(s)e~^B(ŝ 3 when 1 < s < S,  (4.7.3)

where 'iPb (s) is as in (4.3.7), r satisfies (4.2.8), f (s )  > 1, and f(s)  increases as s 

increases. Then

Uz(s) < f (s )  exp ^ +  0(B)^j when 1 < s < S.

Proof

First consider s in the range 1 < s < c0B  where c0 is a suitable constant. For s in 

this range we can see from (4.3.7) that ipn{s) = 0 ( B )  so we need to prove that 

U z ( s q ) < f ( s 0)e°(B') for s0 < c0B. Define Q(s) = Uz(s) — Ci/(s0) when 0 < s < s0, 

and take Q(s) = 0 if s > s0. We can see that by choosing c\ — e°^B\  for 1 < s < s0 

we have

(Q,r)(s)  =  {Uz,r)(s) -  c1f ( s 0)(l ,r) (s)

< sr(s ) f (s0)eo{B) -  c i f ( s 0) using (4.2.11)

< 0.

From Lemma 4.7.1 we get Q(s0) < cs£~s, so that

Uz(s0) < c s KQ- 6 + cl f ( s 0) = f(so)e°W

since 1 < sq < c0B , as required.
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Define U+(x) =  max{Uz(x), 0}, so that U+(x) > 0. When s > c0B , the hypothesis 

of Lemma 4.7.4 gives

sr(s)Uz(s) < k f  U+(x)r(x +  1 )dx +  sr(s) f(s)e~^B ŝ̂ 3.
J s - 1

Since r decreases,

sUz(s) < k f  U+(x)dx +  sf(s)e~^B ŝ^ 3. (4-7.4)
J s - l

In Lemma 4.7.2 take D — 1 +  log B  so that 0(s) +  B = tPb (s) when s > B  and 'ipB is 

as in (4.3.7). Now (4.7.4) gives

< 7 /  , 7^Wdx + f(s)e~m/3 when s > B• (4-7-5)

Define h by U+(s)/e~Bl/3 = h(s)e~^s^ 3f(s).  Thus h(s) > 0. Then

u(x)/e~B/3 = h(x) f (x)  in Lemma 4.7.2, with which (4.7.5) gives

h(s) f(s)e~<l){s)/3 < e"0(s)/3 ( f (s)  +  \  sup h{x ) f (x ) \ ,
\  ^ s —1<X<S /

provided s > c2eD, for a suitable constant c2 =  c2(«). But /(&) increases with x, so 

this gives

/i(s) < 1 +  i  sup h(x),
£  s —l < x < s

when s > c2eiT
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With Lemma 4.7.3, this gives U+(s) <C e B/3 ^ s)/3/(s )  when s > c0B , where 

c0 =  C2e. Since £/z(s) < U+(s), this completes the proof of Lemma 4.7.4.

4.8 Proof of Theorem 4.3.4

The proof is of an inductive type. The use of Lemma 4.7.4 will require that our 

result should be already known when 0 < s < 1. Here we begin by quoting the fact 

that the case s =  1 of Theorem 4.3.4 was established by Song [24], namely,

H M , c . U  + 0 < 1
Hz{ oo) V V (loS

When 0 < s < 1 write w = zs, and note that H z(w) = Hw(w). Then from the case 

s = 1 of Theorem 4.3.4 we get

# ,(* •) _  Hw(w) = c  Q ( 4 g l )
Hw( oo) Hw( oo) V V (logic)

Now we need to find H z(oo)/Hw(oo).

I ^  = n  ( i+ % )+ e ^ ))
w < p < z  k > 2

— exp log(l +  h(p) +  ^ 2 h { p k))
w < p < z  k > 2

= exp E  {h(P) + J 2 h (pk) + ° ( h2(p))}
w < p < z  k > 2

since
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By partial summation

E  Mp)
W < p < z

^ 2  % ) iogp
W < p < z

r i

i

' w < t < z

r i

log p  

d ( K \ og t  +  7] (t))

d(nlogt  +  0 ((lo g t)1 *))
w < t < z log t

= K log ( 1 +  O
log w w < t < z t(\ogt) 1+5

dt

The integral in the O-term is

w < t < z t(\ogt) 1+5 dt =
logt

(log t ) l+6 
1

t(log t) 1+5

(log tn)(

so that

V  /l (P) =  « i o g t e N) + o ( - r ^  £+ vioĝ y v('ogw < p < z
W)(

From (4.3.3) we get

E  E m/ )  = E  M/)i°g/
w < p < z k > 2 w < p < z  

k >  2

logp*

<
login

p , k >  2  

p < z

<
2 login
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Resulting from equation (4.4.2) we obtain

£  h2(p) =  J 2  h ^ l° Z p S l
w < p < z  w < p < z

«  £  h ( p ) l o g p  |̂  (4.8.2)
W < p < z  y

Using (4.3.1), we have by partial summation

^ 2  h(p) l ogp
w < p < z

(log p) i+a

Thus we have

(log
l- ^ r s ( « log * +  »,(*)) -  log w + V(w)

( \ o g w ) 1+6

+k{i+5)L  t ( t o ^ + o (t(teif)i'+«)t ( \ o g t ) l+s 

«(1 +  5)
(logz)5 (logu;)J 

+ 0 ' 1

1
t(log t)1+2(5

z

.(log t ) 6_

(log w) 26

y '  h ip ) logp -___  =  — - _______ K ^  + 6) (  1________ —
vkv<z (l°gp)1+* Oog*)* (log w)6 8 V (l°g^)5 (log w)6
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Substituting this into (4.8.2) we obtain

E  fc2(P) « TwT
W < p < z

Therefore we now have

(log w)

<C , —rr since w = zs. (4.8.3)
(slog^T

H z(oo)
Hw(oo)

exp j  AC log -  +  O (  7— —̂rr
6 s V(s l ° g ^

exp O

so that

H zs(oo) „ (  —C3 . / A n A \= s exp , ^  . (4.8.4)
Hz{ oo) V (s log^)5

From (4.8.1) and (4.8.4) it follows that

Hzi'Z5) =  CKsK( l  + o (  , , X ( l  + ( ) f  1
Hz{ oo) \  \ s 6(\ogz)6 J J \  \ s 6(\ogz)6

(  sK~6 \
= a(s) +  O I   rj J when 0 < s < 1.

V (iog*)v

Thus we have found £g(s) <C sK~6 when 0 < s < 1. We now see that applying 

Lemma 4.7.4 with Uz(s) = ±f*(s), f (s )  = sE~1 and referring to Lemma 4.6.2 gives

£z(s) «  sE 1 exp ^ -  ^ b (s) +  0 ( B ) J for s < B z a.
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Consequently we obtain

H ^  r u n / ' 8',7(s) + 0 '
f i z (oo J

- l e - iPB ( s ) / 3 + 0 ( B )

(log z)6

which is the statement claimed in Theorem 4.3.4.



Chapter 5

W eighted Sieves

5.1 Introduction

Another way of utilising Selberg’s ideas involves attaching a logarithmic weight to 

the prime factors of the number a in a suitable sequence A.

where Ai is any suitable sifting function and A is subject to the constraint A(l) =  1. 

By attaching the weight we are allowing numbers with a small number of prime 

factors to survive the sifting process as opposed to numbers without small prime 

factors.

Selberg [22] used the sifting function defined by

(5.1.1)

d\P(z) d \P{z )

Ai(l) =  1, Ai(p) =  - 1  when p\P(z) (5.1.2)

64
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and Ai(d) =  0 otherwise to obtain a positive lower bound for the sum W  (D , P ( z )), 

where D = z s, valid for

S > 2 k + 5S' (5.1.3)

The sum W~(D, P(z))  is described in (5.1.9). In [8], Greaves used a less precise 

asymptotic analysis to provide a slightly weaker inequality than (5.1.3), namely

s > 2k +  c \J k log k (5.1.4)

where c > 2\/2 and k > «o(c),  for some kq(c) depending only upon c.

Here we use a similar method to that of Greaves to do a corresponding analysis 

when Ai is the sifting function defined by

Ai(l) =  1 and Ai(p) =  — ^1 — if 2 < p < z, (5.1.5)

with Ai(d) =  0 otherwise.

This choice of Ai appears to have been first used by Ankeny and Onishi [1], and it 

has also been used by Richert [20]. We, however, use Richert’s weight in its simplest 

form, with U = 1 and V = 0.

This gives a new sifting function A~ for which

m (a) =  =  Ai(^ i)A(<̂ 2)A(d3)
d\a [di,d,2,d3]=d

subject to the constraint

(5.1.6)
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A (d) is given by

p(h)g(h)y(h) =  ^ Md)p(d)
d

(5.1.7)
d=0(m od/i)

for

1 if h < £ /z

y(h) =
log 2

if £ /z  < h < £ (5.1.8)

0 if h > £ .
\

R em ark 5.1.1.

Note tha t for the constraint (5.1.6) to be satisfied we require A(l) =  1. If the 

definition of A(d) given in (5.1.7) does not satisfy this requirement then we would 

need to scale the function y(h) accordingly.

We need to estimate

d \P( z )

where A-  is a sifting function of level D.

Section 5.2 restates some notation and results from Chapters 2 and 3 which will be

a € A  with the weight w(qa) attached to the smallest prime factor, qa, of the 

number a. The first stage of the proof of Theorem 5.3.3 appears in Section 5.4

(5.1.9)

useful in later sections. In Section 5.3 we describe a lower bound for the number of
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where we obtain a positive lower bound for the sum W  (Z), P(z)).  This sum occurs 

as the main term in our estimation of the sum

bound for W  (D,P(z))  from Section 5.4.

5.2 N otation  and Prelim inary Lemmas

In this section we introduce some notation and results which will be useful in 

subsequent sections. First of all, we reintroduce the following notation which has 

already appeared in Chapters 2 and 3.

Define B(z)  and iPb (v) to satisfy, respectively

ci£.A
v { D , a ) < R

The results claimed in Section 5.3 are then proved in Section 5.5 using the lower

B(z) < B ; where p(p) log? (5.2.1)

and

max{0, v log

(5.2.2)

H ypothesis 5.2.1.

The function p satisfies

Y  logp < /clogz + 0(1).
p < z  P

(5.2.3)
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We remind the reader that the function p* defined in Definition 3.2.1 is given by

P*(p) = P ~  p (p )- (5-2.4)

Because p* is multiplicative this defines p*(d) for squarefree d. Then the function g 

is given by

9{n) =

1

p(n)/p*(n) if n  is squarefree;
(5.2.5)

0 otherwise.

The following result was proven in Chapter 3 and appears as Lemma 3.4.2. 

Lemma 5.2.2.

Suppose that B ( z ) as defined in (5.2.1) holds> and denote

I z(x) =  Gz{oo) -  Gz(x) =  ^ 2  9(d) , (5.2.6)
d > x

d \ P{ z)

and write x — zv. Then for each v > 0

where is as in (5.2.2).

5.3 A Lower Bound for ' f2w (<la)

In this section we describe the results obtained by combining Richert’s weight with 

Selberg’s A2A-  sieve. This result is described in Theorem 5.3.3.
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Lem m a 5.3.1.

For A defined by (5.1.7) we have

|A(rf)| < |A(1)|. 

P roof

From (5.1.7) we have

y(h)g(h)y(h) = £  M M

which gives

d
d=0(m od h)

A(d) =  T ,  9 (h)y(h).
/ i=0(mod d) 

h<£
We can see from (5.3.2)

•M1) =  ^ g W v W .
h<£

For given d , a squarefree number h may be written uniquely as h = /n ,  

and (n, d) =  1. Hence

Y^9{h)y{h)  =  9( f)g(n)y( fn )
h,<£ (n,d) = 1

f \ d ] f n < £

=  ^ 2 9( f)  T ,  9(n)y( fn)
f \ d  (n,d )—1

n<Z/f

z  J 2 s ( f )  J 2  g{n)y{fn)  since f  < d.
f \ d  (n,d) = 1

n < i / f

(5.3.1)

(5.3.2)

(5.3.3) 

where f \d
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Thus we have

I ' M 1 )! =  -  E 5̂ ) E  9 (n)y{fn).  (5.3.4)
h.<£ f \ d  (n,d) — 1

n < i / f

Now since y is a decreasing function, and f  < d, we have y ( fn )  < y(dn) so that

I V 1 )! > $N(/) E  9Wv(nd).
f \ d  (n,d) — 1

n < Z / f

Now

E 5 ( / )  =  I K 1 +  ^ - (p) x d
f \d p\d P ~ P ( P ) J  P*id)

so that

E 3 {n)y{nd)
P  [ a > ( n , d ) =l  

n < £ / d

=  - 4 k  E  9 {h)y{h)pT T l
p{d)

h < i

= y i )  E  9(h)y(h)
/i=0(mod d) 

h<£,

=  |A(«i)l

as required.
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We introduce the convenient notation

w{p) =  1 +  M p ) =  (5.3.5)

Lemma 5.3.2.

Suppose m(a) is as in (5.1.1), with as in (5.1.5). Define

v(D,a) = J 2 1 +  L (5'3'6)
p < D  p , a
p\a p a \a-,p>D

Suppose g is chosen so that a < D 9, and that g < R /s .  Let qa denote the smallest

prime factor of a. Suppose also m(a) > 0. Then v(D,a)  < R  and m{a) < a2ew(qa),

for some e —> 0.

P roof

When m(a) > 0 we find

»<(>-E(>-g))(EW>)' (*.3.7)

Now since

^ A ( d ) ')  > 0  (5.3.8)
d\a

d<£

this leads to

p < z
p\a
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Since 1 — log p f  log z < 0 for p > z, we have

0 < 1 

0 < 1

If we extend this sum over

0 < 1 

0 < 1

From (5.3.6) and since a < D 9 and D = zs,

0 < 

v(D, a) < 

is(D,a) < 

i /(D,a) <

Now we require to show that m(a) < a2ew(qa).

logz
S g + l

R  +  1 since g =  R / s  

R.

E F -g f)-  E
p < D

p\a

E
p < D
p\a

p,a
pa \a\p>D

p,a  
Pa la iP>-0

■ M e
7 x p < D

logp 
log z

log P 
log z +

pa

E
p , a

P° I0!

- e  - g ?  - e  ■-§;
p < z  x °  7 z < p < D  x °  7
p\a p\a

y T ' m )
p\a

all prime factors of a we obtain

logp \  
log z )
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m(a) =
p < z
p\a

=  1 - 1  +

<

+ E

d\a 
d < £

log plog qa
log Z ’' V log z

°  Qa < P < Z  X &

{ l o g  Qa

V i ° g 2

p|a
2

X > (« o
d\a

d < £

d\a
d < £

since logp /logz  — 1 < 0. Now, we have from Lemma 5.3.1 that |A(d)| < |A(1)| < 1 

which gives
/

m(a) <

<

for some e —> 0.

The details of the last step here can be found in Appendix B. This gives

as required.

m(a) < a2<Lw{qa) (5.3.10)
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Theorem  5.3.3.

Suppose that the function p satisfies (5.2.3). Write z =  D l/S, and assume

s > 2 k  — 2k A  +  c y / k  log k , (5.3.11)

where c is a constant satisfying c > 2y/2 and

\Z21og2
A  —y —, 1 — as k  —y oo. (o.3.12)

y/K lOg K

Then for some e > 0 we have

£  (5-3 -13)a e A  \  \  J) \  \  /  /
u { D , a ) < R

Rem ark 5.3.4.

Note th a t e —y 0 as D 9 —y oo.

Rem ark 5.3.5.

Note th a t Theorem 5.3.3 counts the numbers a with the weight w(qa) attached to 

the smallest prime factor, qa.
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5.4 An Identity for the Main Term

To prove the result claimed in Theorem 5.3.3 we need to find a positive lower bound 

for the sum W~(D, P(z))  given by (5.1.9), which appears as the main term in our 

estimate of

w fa*)-
aeA

v { D , a ) < R

We obtain the following lower bound by using an analogous method to that 

appearing in Section 7.3 of [8].

Theorem  5.4.1.

Suppose that the function p satisfies (5.2.3). Write z = D l/S, and assume

s (1 — A)2k +  c \Jk log k , (5.4.1)

where c is a constant satisfying c > 2y/2 and A satisfies

Then there exists a sieve of level D for which

> 0,

provided k > k q ( c ) for a certain Ko(c) depending only upon c, where W~(D, P(z)) is 

given by (5.1.9.)
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The following lemma taken from [8] is the starting point for our proof. 

Lem m a 5.4.2.

Denote

p([di,d2,d3})
W - ( D ,P ( z ) )  =  ^ ^ ^ A 1(d.)A(d2)A(d,)^  11 2’ 

d, *  d3 [di,d2,ds

where [di, d2, d3\ denotes the least common multiple of d\, d2 and d3. Let p* and 

g = p/p* be as in (5.2.4) and (5.2.5) and define x(h), y(h) so that

P(h)g(h)y(h) = x{h) =  ^  x (d)p(d) _ (5.4.3)
d=0(modh)

Then

di ! 1 {h,d\)=1 ' k\di '

P roof

Begin by writing

W ~(D  P(z)) = Y  A\u2)A\u3)pdl ^3j; (5 4 4 )
d. di d2 d3 fd2’d3i

where p^  (d) is defined for squarefree d =  [cfe, ^3] so that

p{d\) pdl (d) =  p([di,d]) =  /o([rfi,rf])(rfi,rf) 
d\ d [d\,d] did
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When p(d\) i=- 0 this implies

Pdi ( d ) =
p([du d])(di,d) 

P{d 1)
p \ d \  p \ d \  

p \ d  p \ d

which is satisfied if pdl is the multiplicative function for which

Pd! ( p )  =
P  if P \ d i ]

p i p )  if P \ d i-

Thus the “conjugate” function pdi satisfies pdl(p) = p — pdiip) =  0 if p\d\. 

pdl{h) /  0 only when (h,di) = 1. Furthermore

Pdi (h )
Pd , (h )

0 if (fi, di) > 1;

p*(h)/p(h) if (h , di) =  1 and p(h) ^  0.

Note also from (5.4.5) that when p(d) /  0

pdl(d) (du d)
P{d) P((du d)) k^ d ) p (k ) '= E

Lemma 3.2.3 and (5.4.6) now show that the inner sum in (5.4.4) is

E E
d2 dz

\{d2) \ (d ?i)pdl {[d2,dz})
[d2, <̂3]

_  x d i  ( h )

v £ o =1 9(h )

where

XiAh) = E
d=0(mod/i)

X(d)pdl(d)
= E

d = 0 ( m o d h )

A(d)p{d) ^  p*(k)
d . '. . .  d . p(/c)

(5.4.5) 

so that

(5.4.6)

(5.4.7)

(5.4.8)



Topics in the Theory o f Arithmetic Functions 78

the last step following from (5.4.7). Thus, when (h ,d i) =  1 as in (5.4.8),

/ j \ P*W Hd)p{d)
E  — r ~

k\di  d =0 ( mo dh k)

p'(k)  
p(k)k\di '

p(h)p(h)

= K h )g (h )^2 f i { k )y (h k ) ,
k\di

where y is as in (5.4.3). With (5.4.8) this gives

^ ^ x(d2)x(d3)Pd([d2,d3\) =  ^  g{h)( ^ m ym)\  (5.4.9)

d2 d3 i 2 ’ ( M i ) = l  '  *:|di '
p ( h) ^0

so that (5.4.4) gives the identity for W~(A) enunciated in Lemma 5.4.2.

Lem m a 5.4.3. 7

Let Ai be defined as in (5.1.5). Then using the result from Lemma 5.4.2 we have

W~(D, P(z))  =  Ei +  E2, (5.4.10)

where

Ei =  ^ ~2g{h)y2(h) (5.4.11)
h

s2 = - E (1_ wf)^r E swf#)-#)) • (5.4.12)
p|P(z)V l 0 S Z '  P  (M)=l v y
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Proof

w - {d , p (z)) =  ^  g{h)( ^ ) y m )
di  1 ( M )  =  1 *|di

E ^ w m d

+ E  — A1 (p) E  s (h ) (y (h )  -  y(ph)\
p \ P( z )  P  ( h j >)=1 v  '

From (5.1.5) we have that Ai(l) =  1 and Ai(p) = —(1 — lo g p /lo g z). This gives 

W - ( D ,P ( z ) )  = J ^ g { h ) y \ h )
h

p|P(z) V 6 /  P (/l)p)=1 \

We define the function y(fi) introduced in Lemma 5.4.2 to be

y(h) = {

i

_  , log Z/h
log z

if h < £ /z  

if £ /z  < h < £ 

if h > £ .

(5.4.13)

The proof of the following lemma is taken from [8] and will be used in the proof of 

Theorem 5.4.1.
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Lemma 5.4.4.

The function y(h) described above satisfies

y(h) — y(ph) = 0  if p < z and h < ^ / z 2

and

0 < y(h) — y(ph) < if p < z and £ / z2 < h < f.
log 2;

P roof

Observe from (5.4.13) that

y(h) — y{ph) =  0 if p < z and h < £ /z2.

If p < z and t;/z2 < h < f  then
X

o < y ( h ) - y ( p h )  < ,

for y(h) — y(ph), if not zero, satisfies

if h < a z < p h
y(h) — y(ph) =  < °&z

W m - w / P h )
K log 2; ' ~



Topics in the Theory of Arithmetic Functions 81

P roof of Theorem  5.4.1

The construction used for Theorem 5.4.1 employs the very simple Ai(di) given in 

(5.1.5), so that Ai(1) =  1 and Ai(p) =  —(1 — logp /  logz) for primes p < z. For the 

major input A(d) we will require

A(d) /  0 only if d < £ = y / D / z , d\P(z). (5.4.17)

Then the sifting function

A " ( d ) =  E  A i (d i )A (d 2)A(d3) (5.4.18)
[di ,d.2,d3}=d

is of level D,  as required by Theorem 5.4.1.

Now, using only that y(h) = 1 when h < £ / z 2

E i '=  ^ 9 { h ) y 2{h) 
h

>  E  s(h)y2[h)
h < £ / z 2 
h \ P ( z )

>  E  9
h < i / z 2 
h\P(z)

-  (np(7)_/z(? ) ) '
We now look at

E 2 =  -  E  E  9 ( h ) ( y [ h ) - y ( p h ) \  .
P tp (z )  P  '  1 0 g  2 ' ( „ , „ ) = !  V )
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We want to find a lower bound for E2 and we shall do this by obtaining an upper 

bound for — E2.

-a - E »«.)(»<«-»&*))’
p \ P ( z )  F  X 5 7  (h,P) =  1 X 7

h< £, h \ P( z )  
2* E E 9(h) using Lemma 5.4.4

p \ P( z )  y  X t / z 2< h < Z
h \P {z )

< E * £ H ( - &)(£)'.(*)
where Iz is as in (5.2.6). Since logp/logz < 1 we have that

( - S X S H

T' ,  1 p (p ) 1° S P t (  f  
h2 < I  L

which gives

4 p logz z I 2:2
p\ P(z )  y  6  V

<  ( 5 .4 .21 )

(5.4.22)

where B(z)  is as in (5.2.1).

We note that this bound is rather approximate and can be improved (see Appendix 

A). We use the weaker bound here in an effort to keep the method as simple as 

possible. Thus we have
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Thus we obtain

w -(D ,P i„ )  > I - & > / , ( !

1 r (  H \  f ,  , B(z)
> V(P(z))  / z U 2 ' | 1  +

From Lemma 5.2.2 we obtain

W ~(D ,P (z ) )  > ( l  -  ( l  +  ^ ) e - * sW )  (5.4.23)

where
l o g ^ / z 2 s  — 5

v  =
log z 2

Since l /V (P ( z ) )  is always positive, W~(D, P(z)) > 0 whenever

since f  is as in (5.4.17). (5.4.24)

l +  (5.4.25)

We will prove (5.4.25) by induction on v.  Firstly we assume that v  < 2 k . By (5.2.3) 

we have

B(z) < k + 0 [ A —  I (5.4.26)
'.log z .'

and since s  > (1 — A ) 2 k  +  C \Jk  log k  then v  > B(z)  as soon as k  is large enough. 

Note from (5.2.2) when v > B  that

d'lpsiv) _  v
dB B
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If B  > ac, then
^ b ( v ) -  M>k ( v ) >  J _  £  >

B — K ~  AC

Thus from (5.4.26) we have

If B  < ac then tPb (v) > ipK(v).

Thus we obtain

4 /  \  4 \ lo g z

< (l + A e - ^ i l  + O
4 J \  \  log 2

Since iPb (v) is as defined in (5.2.2) this gives

From (5.4.24) we have

ac 2 ac

Then

* 1  — / z

V  S  ~  0  I  7— 1 T h.

/ i-t-n
logxdrr =  (1 -f h) log(l +  h) — h 

( h - h2 h3-  (l + ^ - y  + y - ' - J  -  A

, h2 h3 ,2 /i3
"  * - y +  y - ' "  + /* - y  + -.--/»

= i / i 2 + 0(h3).

. (5.4.27)

(5.4.28)
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The last step follows since
v 2 ac

1 + h = -  < —  =  2.
AC AC

In Theorem 5.4.1 we have

s > 2k _  2 -  v / lo s(1 + ,t/4 ))  +

We observe tha t h is positive provided tc is large enough and

logK /log(l +  /c/4)^ < c /logK (5.4.29)
AC V AC /  2 V AC

which is clearly satisfied since c > 2\/2.

Since

and referring to equation (5.4.27) it remains to show that
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Now since c > 2\/2, we have

C - W  M +  K/ 4 ) ]  >
2 \ K, \ V AC V AC J V AC V AC

lo g ( l  +  ac/4)
AC

AC

Taking squares gives

2 log(l +  k/ 4) < yiogK  ^ ^ / l o g / c  ^ / log(l +  /c/4)^

y c ¥ n

Rearranging and exponentiating we obtain

explf(7£,/§r _ 2̂(^_xî nnT))\ô iô 3/2'
2 V V 2 V ac V V a c  V AC / / \ \ AC

>  ( l  +  j )  (5.4.32)

which provides

x  ( 1 +  J  ) <  1 (5 .4 .33)

as required.

This conclusion persists when v > 2ac since iPb {v) increases with v.
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5.5 Proof of Theorem 5.3.3

From Lemma 5.3.2, we have that m(a) < a2ew(qa). Noting that a < D 9 and D = z s 

we obtain

m (a) < z2sgew(qa) where e —> 0 as a -> oo (5.5.1)

which leads us to

Now

Since

we obtain

! > ( * . )  > 2 2s5e£ m ( a ) .
a e A

Y m (a ) = ££>
ttE-4 gG-A d \cL

= E A"(d) £ x
d\ P{ z)  a e A d

= Y  *~(d)\Ad\.
d\ P(z )

\Ad\ = X ^  +  rA(d)

(5.5.2)

(5.5.3)

£ m ( a )  > X  Y
d\ P(z )

A
d -  £ A (d)rA(d)

=  X W - { D , P { z ) ) ~  Y
d \ P ( z )

d|P(z)

A"(d)r^(rf) (5.5.4)
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Using the results from Theorem 5.4.1 and Lemma 5.3.2 we obtain

A (d)rA(d) (5.5.5)

v ( D , a ) < R

Since |A“ (d)| < 1 we can estimate the terms involving \r^(d)\ by the following 

“trivial treatm ent” of the remainder term:

^  A (d)rA(d) < ^ 2  M cQ I
d \P( z )

(5.5.6)
d \ P{ z )
d < D

from which it follows that

£  , 5 -5 -7)
v { D  , a ) < R

valid for

5 > (1 — A)2k  +  C \ J R  log ft, 

where c is a constant satisfying c > 2\/2 and A  satisfies

Note that

log ^1 +  = log |  ^ 1  +  ^  |  =  log k +  log ^ +  log ^1 +  ^  . (5.5.8)
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So

A I log/c /  log(l +  /c/4)
y / 2  V K V AC

log ac / log ac — 2  log 2  +  0 ( 1 / ac)

AC V AC

tog* J j _  / 1 _ 2 1 o g 2 + 0
AC 1 y log AC \  AC log AC

Now, as ac —> oo we have

' l_2Iog2 /  1 _ \  _  log2
log AC \  AC log AC /  log AC \  AC log AC

which gives

„  ^ M +0( 1 )
\ / k log K \K S/2logK J

which completes the proof of Theorem 5.3.3.

(5.5.9)

(5.5.10)

(5.5.11)
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In (5.4.19) we have treated the factor

to a rather rough approximation. This can be improved by partial summation as 

opposed to taking (1 — x)x  at its worst value, where x = logp/  log 2.

Let

P < Z

then by partial summation we have

(A.0.2)
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Now using (5.2.3) we have

=  £
p(p) logp 1

P  l 0 S P
log*

<  K +  K —— — d t  + O
J  t<z

< /c(l +  log log 2).
tlog2* " Vlog^

Substituting this into (A.0.3) we obtain

Integration gives

3 log2 t 2 log t
t log3 z t log2 2

< - * £ -  f  ]̂ c
log 2: J t <z  t log 2: Jt<z t

3 k  f  log21 log log t
log3 2: Jt<z t

2 k  f  log t log log t
log z j t<z t

d

ZlogpX2 Z _  logpX 3/c log3 2; 2 k  log2 2:
p\nz) P \ loS * /  V logz )  log3 2: 3 log2 2: 2

3K log3 z log log z 3K log'
log3 z 3 log3 z 9

2 k  log2 z  log log z 2 k  

log2 z 2 log2 z

(A.0.4)

z

log2 z
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so we have

/*c
— K log log Z +  ~

< (A.0.5)

So we can replace the factor B ( z ) / 4 in (5.4.21) by /c/6. This means that we can 

choose A  in Theorem 5.3.3 almost as large as

y/2 log y/E
A  ~  —  ■■

VK lOg K
(A.0.6)



A ppendix  B

First we define the notation

d(n) = X>
d\n

The following result appears in [12].

T heorem  B .0.1.

logd(n) log log n 
hrn -------   =  log 2;

n->oo log Tl

that is, if a  > 0, then

d(n) < 2̂ 1+Q)logn/ loglogn

for all n > no(a) and

d(n) > 2d - a)logn/ logloen

for an infinity of values of n.

(B.0.1)

(B.0.2)

(B.0.3)

(B.0.4)

93
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From this we obtain

(1 +  a) log 2
logd(n) < —;— :--------logn

log log n

so that for all n > no(a) we have

d(n) < n tn

where

_  (1 + a) log 2 
n log log n

We note that since log logn —» oo as n —> oo, we have that en —> 0 as n —> oo

(B.0.5)

(B.0.6)

(B.0.7)
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