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A bstract

T he continuing  grow th and w idespread  popularity  o f  the internet m eans 

that the co llection  o f  useful data availab le  for public access is rapidly 

increasing  both in num ber and size. T hese  data are spread over distributed 

heterogeneous data  sources like trad itional databases or sources o f  various 

form s contain ing  unstructured  and sem i-structured  data. O bviously, the 

value o f  these data  sources w ould in m any cases be greatly enhanced if  the 

data they contain  could  be com bined  and queried in a uniform  m anner.

T he research  w ork  reported  in th is d issertation  is concerned with querying 

and in tegrating  a m ultip licity  o f  d istribu ted  heterogeneous structured data 

resid ing  in relational databases and sem i-structured data held in w ell- 

form ed X M L docum ents p roduced by internet applications or hum an- 

coded. In particular, we have addressed  the problem s of: (1) specifying the 

m appings betw een a global schem a and the local data sources' schem as, 

and reso lv ing  the heterogeneity  w hich  can occur betw een data m odels, 

schem as or schem a concepts; (2) p rocessing  queries that are expressed on 

a global schem a into local queries.

W e have proposed an approach to  com bine and query the data sources 

through a m ediation layer. Such a layer is intended to establish  and evolve 

an X M L M etadata K now ledge B ase (X M K B ) increm entally  w hich assists 

the Q uery P rocessor in m ediating  betw een user queries posed over the 

global schem a and the queries on the  underlying distributed heterogeneous 

data sources. It translates such queries into sub-queries -called local 

queries- w hich are appropriate  to each local data source. The X M K B is 

built in a bottom -up fashion by ex tracting  and m erging increm entally  the 

m etadata o f  the data sources. It holds the data source’s inform ation (nam es, 

types and locations), descrip tions o f  the m appings betw een the global 

schem a and the participating  data source schem as, and function nam es for 

handling sem antic and structural d iscrepancies betw een the representations.



To dem onstra te  ou r research, w e have designed and im plem ented a 

p ro to type system  called  SISSD  (System  to Integrate S tructured and Sem i

structured D atabases). The system  autom atically  creates a GUI tool for 

m eta-users (w ho do the m etadata in tegration) w hich they use to describe 

m appings betw een the global schem a and local data  source schem as. 

T hese m appings are used to produce the X M K B. T he SISSD  allow s the 

transla tion  o f  user queries into sub-queries fitting each participating data 

source, by explo iting  the m apping  inform ation  stored in the XM K B.

The m ajor results o f  the thesis are: (1) an approach that facilitates 

build ing  structured and sem i-structured  data  integration system s; (2) a 

m ethod for generating  m appings betw een  a global and local schem as' 

paths, and reso lv ing  the conflicts caused  by the heterogeneity  o f  the data 

sources such as nam ing, structural, and sem antic conflicts w hich, m ay 

occur betw een the schem as; (3) a m ethod  for translating queries in term s 

o f  a g lobal schem a into sub-queries in term s o f  local schem as. Hence, the 

presented approach show s that: (a) m apping  o f  the schem as' paths can 

only be partially  autom ated, since the logical heterogeneity  problem s need 

to be resolved by hum an ju d g m en t based  on the application requirem ents; 

(b) query ing  d istributed heterogeneous structured and sem i-structured data 

sources is possible.
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C H A P T E R  1

Introduction

1.1 M otivation  o f  the R esearch

Users and application program s in a w ide variety o f  businesses today are 

increasingly requiring  the in tegration  o f  m ultiple distributed autonom ous 

heterogeneous data sources [86, 130]. The continuing grow th and

w idespread popularity  o f  the In ternet m ean that the collection o f  useful 

data sources available  for public  access is rapidly increasing both in 

num ber and size. Furtherm ore, the value o f  these data sources w ould in 

m any cases be greatly  enhanced  if  the data they contain could be 

com bined, "queried" in a uniform  m anner (i.e. using a single query 

language and interface), and subsequently  returned in a m achine-readable 

form. For the foreseeable future, m uch data will continue to be stored in 

relational database system s because o f  the reliability, scalability , tools and 

perform ance associated w ith these system s [68, 133]. H ow ever, due to the 

impact o f  the web, there is an explosion in com plem entary  data 

availability: this data can be au tom atically  generated by w eb-based 

applications or can be hum an-coded [102]. Such data is called sem i

1



CHAPTER 1. INTRODUCTION

structured data, w hich m eans that although the data  m ay have som e 

structure, the structure is not regu lar or com plete as is the case w ith data 

held in traditional database m anagem ent system s (See [9] for a survey on 

sem i-structured data). In the dom ain  o f  sem i-structured data, the 

e x te n s ib le  M arkup Language (X M L ) is arguably the m ajor data 

representation language as well as data exchange form at. X M L has a W 3C 

specification [4] that allow s creation  and transform ation o f  a sem i

structured docum ent conform ing to its X M L syntax rules w hich has no 

referenced D TD  or X M L schem a. Such a docum ent has m etadata buried 

inside the docum ent and is called  a w ell-form ed X M L docum ent. The 

w ell-form ed X M L docum ents sim ply  m arkup pages w ith descriptive tags. 

It d oesn ’t need to  describe or explain  w hat these tags m ean. In other w ords 

a w ell-form ed X M L docum ent does not need a D TD  or X M L schem a, but 

is m ust conform  to the X M L syntax  rules. I f  all tags in a docum ent are 

correctly form ed and follow  X M L  guidelines, then a docum ent is 

considered as w ell-form ed. T he m etadata  content o f  an X M L docum ent 

enables autom ated processing, generation, transform ation and 

consum ption o f  the sem i-structured  data  in the docum ent by applications. 

M uch in teresting and useful data  can be published as a w ell-form ed X M L 

docum ent by w eb-based app lications or by hum an-coding.

Hence, build ing a data  integration system  that provides a unified m ethod 

o f  access to sem antically  and structurally  diverse data sources is highly 

desirable as it w ill be able to link structured data residing in relational 

databases and sem i-structured data  held in w ell-form ed X M L docum ents 

[73, 101]. These X M L docum ents can be XM L files on local hard drives 

or docum ents held on rem ote w eb servers. Such a data integration system  

will have to find structural transform ations and sem antic m appings that 

result in correct m erging o f  the data  and allow  users to query the resulting  

so-called m ediated schem a [100]. T his linking is a challenging problem  

since the pre-existing  databases concerned are typically  autonom ous and

2



CHAPTER 1. INTRODUCTION

located on heterogeneous hardw are and softw are platform s. This m eans it 

is necessary  to resolve conflicts caused  by the heterogeneity  o f  the data 

sources w hich can occur betw een data m odels, schem as or schem a 

concepts. C onsequently , m appings betw een entities in d ifferent sources 

representing  the sam e real-w orld  ob jects have to be defined. The m ain 

difficulty  in this process is that the related  data in different sources m ay be 

represented in d ifferent form ats and in incom patible ways. For instance, 

bibliographical databases o f  d ifferen t publishers m ay use different form ats 

for authors' o r editors' nam es (e.g. full nam e or separated first and last 

nam es), or d ifferent units for prices (e.g. dollars, pounds or euros). 

M oreover, the sam e expression m ay have a d ifferent m eaning, or the sam e 

m eaning m ay be specified by d ifferen t expressions. This m eans that 

syntactical data and m etadata a lone canno t provide sufficient sem antics for 

all potential in tegration purposes. A s a result, the data in tegration process 

is often very labour-in tensive and dem ands m ore com puting  expertise than 

m ost application  users have. T herefore , sem i-autom ated approaches are 

the m ost p rom ising  way forw ard, w here  m ediation engineers are given an 

easy to use tool to describe m appings betw een the integrated (integrated 

and m aster are used in terchangeably  in th is thesis) view  and local schem as. 

This produces an in tegrated schem a w hich  is a uniform  view  over all the 

participating local data sources [148]. In the thesis we use in terchangeably 

the term s m ediated, in tegrated, m aster and global to describe the global 

view  created by the in tegration process.

XM L is becom ing the de-facto  standard  form at to exchange inform ation 

over the internet. The advantages o f  X M L as an exchange m odel - such as 

rich expressiveness, clear notation and extensibility  - m ake it an excellent 

candidate to be a data  m odel for an integrated schem a. As the im portance 

o f  XM L has increased, a series o f  standards has grow n up around it, m any 

o f  w hich w ere defined by the W orld W ide W eb C onsortium  (W 3C). For 

exam ple, the X M L Schem a language provides a notation for defining new

3



CHAPTER 1. INTRODUCTION

types o f  X M L elem ents and X M L docum ents. X M L w ith its self

describ ing  hierarchical structure and associated language X M L Schem a 

provide the flexibility  and expressive pow er needed to accom m odate 

d istributed and heterogeneous data. A t the conceptual level, the data can 

be v isualized as trees or hierarchical graphs.

This thesis concentrates on the problem  o f  integrating and querying a 

m ultip licity  o f  d istributed heterogeneous structured data residing in 

relational databases and sem i-structured  data sources held as w ell-form ed 

X M L docum ents.

1.2 P roblem  Statem ent

A vast and grow ing am ount o f  heterogeneous data sources is available to 

institutions or com panies. A s a resu lt in tegration o f  such data sources in 

the public dom ain is inevitable. T herefore, integrating and querying 

heterogeneous data sources is a fundam ental problem  in data m anagem ent 

[25, 52]. The problem  is concerned w ith  build ing data integration system s, 

w hich provide a unified v iew  over heterogonous data sources. Such a 

unified view  is structured accord ing  to a so-called m edia ted  schem a  (often 

referred to as a global schem a), w hich  describes the contents o f  the data 

sources and exposes the aspects o f  the data that m ight be o f  interest to the 

user. The reason for th is is that one o f  the principle goals o f  a data 

integration system  is to free the user from having to know  about the 

specific data sources and their structure  in order to in teract w ith them  [35, 

119]. A m editated schem a is a v irtual representation o f  the data available 

to its user in the integrated system , (in the sense that the data in the local 

data sources need not conform  to its structure). As a consequence, the data 

integration system  m ust first reform ulate  a user query into a query that 

refers directly to the schem as in the data  sources. In order for the system  to 

be able to reform ulate a user query, it needs to have a set o f  data source 

descriptions, specify ing  the m apping betw een the elem ents in the data
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sources and the elem ents in the m ediated schem a. T hese descrip tions 

specify the relationship  betw een elem ents.

In th is context, provid ing  a reasonable structured and sem i-structured data  

in tegration fram ew ork for a user to effectively integrate and query 

distributed heterogeneous structured data  residing in relational databases 

and sem i-structured  data held in w ell-form ed X M L docum ents has becom e 

a challenge for database in tegration researchers. There is a lack o f  fully 

autom ated schem a-m apping  processes, and a high degree o f  logical 

heterogeneity  betw een the data  sources. A nother problem  im peding data 

in tegration is the query transla tion  process, w hich is one o f  the m ost 

im portant problem s in the design o f  a data  integration system , as it enables 

the system  to reform ulate a query posed  in term s o f  the global schem a into 

a set o f  queries, suited to the local da ta  sources. Thus, tools are needed to 

m ediate betw een user queries and heterogeneous data sources w hich 

transform  such queries into local queries. D oing these tasks m anually is 

not only tim e consum ing but also erro r prone. H ence, m ethods for 

sim plifying heterogeneous data  source integration w ould be o f  great 

theoretical and practical im portance. T herefore, our objective is to 

facilitate the task o f  a designer bu ild ing  an X M L data integration system . 

In general, build ing  data in tegration  system s requires the designer to 

address several issues [87]. In th is thesis, we concentrate on tw o basic 

issues:

1. Specifying the m appings betw een the global schem a and the local 

data sources.

2. Processing queries expressed against the global schem a into queries 

reflecting local schem as.

1.3 H ypothesis, A im s and O bjectives

In our research, the m ain focus is on integrating and querying distributed 

heterogeneous structured and sem i-structured data sources. O ur hypothesis is that:

5



CHAPTER 1. INTRODUCTION

It is possible to in tegrate and query the d istributed  

heterogeneous structured data resid ing in relational databases and  

sem i-structured  data held in w ell-form ed X M L  docum ents w hich can  

be found on a local hard drive or  rem ote w eb servers, by build ing in a 

bottom -up approach a dynam ic X M L  M etadata K now ledge Base  

(X M K B ) o f  data source m eta-data resolving structural and sem antic  

conflicts in the data that is used in rew riting a user query over a 

chosen view  into sub-queries w h ich  fit each local data source, by using  

the m apping inform ation stored in the X M K B .

This thesis show s how  to m ediate d istribu ted  heterogeneous structured and 

sem i-structured data  sources in a m ediation  architecture w hich enables 

users to query m ultip le structured and sem i-structured data sources in a 

uniform  m anner. Specifically , our goals are to:

1. Facilitate the designer effort involved in build ing structured and 

sem i-structured data  in tegration  system s.

2. D esign a system  capable o f  partially  autom ating the integration o f  

distributed heterogeneous structured  and sem i-structured data 

sources.

3. R esolve the logical heterogeneity , such as nam ing, structural, and 

sem antic conflicts w hich, m ay occur betw een the schem as. Thus a 

solution w hich overcom es the logical heterogeneity  problem  is 

needed.

4. Enable transparent querying  o f  all data sources participating in the 

integration system  w ithout the users needing a detailed know ledge 

o f  the underlying data sources, their location and their structure. 

Thus, form ulating a m ethod for translating  a user query into local 

queries is desired.
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1.4 A ch ievem en t o f  the R esearch

The im portance o f  this research lies in its dem onstration o f  the feasibility 

o f  build ing an X M L M etadata K now ledge Base (X M K B ), in a bottom -up 

fashion by extracting  and m erging  increm entally  the m etadata o f  the data 

sources, and its dem onstration o f  the benefit o f  this X M KB in m ediating 

user queries posed over the global schem a into local queries on the 

d istributed heterogeneous data sources, by translating such queries into 

sub-queries w hich are appropriate  to each local data source. The m ain 

contributions o f  this thesis are:

1. S ince fully autom atic schem a m apping generation is infeasible, a 

sem i-autom atic  approach is dem onstra ted  based on an assisting tool 

w hich reduces the designer effort required to build integration 

system s linking structured and sem i-structured data. A solution to 

overcom e the heterogeneity  problem  is form ulated. Tw o im portant 

tasks w ere developed to so lve the problem : (1) establishing 

appropriate m appings betw een the global schem a and the schem as 

o f  the local data sources; (2) users queried the distributed 

heterogeneous structured and sem i-structured  data sources in term s 

o f  the global schem a, w ith a m apping process and query translation 

process form ulated to transform  these queries into local queries.

2. A prototype system  is developed  to dem onstrate that the ideas 

explored in the thesis are sound and practical.

3. A bottom -up approach is used to establish and evolve the X M L 

M etadata K now ledge Base (X M K B ) increm entally  from the 

m etadata extracted from  the data sources.

4. Tools have been developed w hich can be used to overcom e conflicts, 

such as nam ing, structural, and sem antic conflicts w hich m ay occur 

betw een the schem as.
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5. A m apping is established betw een global schem a elem ents and each 

local data source schem a elem ents to link the elem ents w ith the 

sam e m eaning by using a unique index num ber generated 

autom atically  for the global schem a elem ents.

6. The design o f  the X M L M etadata  K now ledge B ase (X M K B ) to 

capture:

a) T he m apping inform ation  betw een the global schem a 

elem ents and the local data sources’ elem ents,

b) T he function nam es o f  the functions handling sem antic and 

structural d iscrepancies,

and to assist the Q uery P rocessor (Q P) in generating sub-queries for 

relevant local data  sources.

7. A softw are tool has been designed and built w hich extracts m etadata 

from  data sources to build the Schem a Structure D efinition (SSD ) 

for these data sources. T h is tool can be applied to relational 

databases, w ell-form ed X M L docum ents w hich have no referenced 

D TD s or X M L schem as, and also X M L docum ents with referenced 

D TD s or X M L schem as.

1.5 O rganization  o f  the T hesis

This section presents an overv iew  o f  the thesis' organization. The first 

chapter has presented an in troduction  to the research undertaken, 

m otivations, the hypothesis to be tested  and highlights the aim s and 

objectives o f  the research and its orig inal achievem ents.

C hapter 2: B ackground  a n d  survey o f  the sta te-o f-the-art

This chapter presents an overview  o f  the w ork in the field o f  integrating 

distributed heterogeneous data sources and how  it relates to this thesis.
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C hapter 3: X M L  a n d  re la ted  technologies

T his chapter presents an overview  o f  X M L and related technologies. 

C hapter 4: The S ISSD  data  in tegration  system

T his chapter introduces the m ain ideas o f  the thesis. It presents a b rie f 

descrip tion o f  the m otivation o f  th is w ork, and describes our approach and 

its system  architecture. In addition, it describes the logical heterogeneity  

problem , and introduces an application  exam ple w hich is used through out 

the thesis to show  how  the in tegration  is accom plished by the system .

C hapter 5: The m ediation p ro cess

This chapter details the m ediation  process w hich is the first part o f  our 

approach. It is a basic idea o f  the thesis, as it is proposed as a tool to 

overcom e the heterogeneity  problem s w hich m ay occur am ong the data 

sources.

C hapter 6: The query  transla tion  p ro cess

This chapter details the second im portan t point in the thesis that is the 

query transla to r process w hich is an integral part o f  the m ediation layer o f  

the system . It gives a b rie f  in troduction  to the query translation task in data 

integration system s, and presents the query translation process developed 

in this w ork. Finally, it g ives som e exam ples o f  query translations.

C hapter 7: The S ISSD  im plem entation

This chapter covers the im plem entation o f  the proposed architecture. It 

presents the im plem entation o f  the m etadata extracting process. It also 

presents the im plem entation o f  the processes used in creating an XM K B. 

In addition, it in troduces the developm ent o f  the query parsing and 

translating processes.
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C hapter 8: E valuation  & D iscussion

This chapter focuses on the evaluation  o f  the prototype system  and 

contains a critical assessm ent o f  our research approach and its contribution.

C hapter 9: Sum m ary, conclusion a n d  fu tu re  w ork

This chap ter concludes the thesis w ith a sum m ary o f  the accom plishm ents 

and issues to be considered in the future.
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B ackground and survey o f  the state-of-the-art

The integration o f  data  sources poses m any challenges due to differences 

in data m anagem ent system s, data  m odels, query and data m anipulation 

languages, data types, form at (structured , sem i-structured), representation, 

and sem antics. This chapter d iscusses related w ork and the basic issues 

affecting the in tegration o f  heterogeneous distributed data sources. Firstly, 

we give an overv iew  o f  the field o f  distributed heterogeneous databases. 

Secondly, since the m ain topic o f  th is w ork is querying and integrating 

data from  a netw ork o f  data sources, w e present the approaches for solving 

this problem . T hirdly, we give an overview  o f  data interoperability. N ext, 

we present a detailed survey on data  integration. F inally, we sum m arize 

related w ork on querying  and in tegrating heterogeneous data sources.
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2.1 D istributed  heterogeneous databases

A database in tegrates and stores related data in an organized m anner. A 

database system  (D B S) [48] consists o f  softw are, called a database 

m anagem ent system  (D B M S), one or m ore databases that it m anages, and 

any associated application  softw are utilizing the database contents. A 

D BM S is the softw are that handles all access to the database. A DBS m ay 

be either centralized or distributed. A centralized DBS consists o f  a single 

centralized D BM S m anaging a single database on the sam e com puter. A 

d istributed DBS consists o f  a single d istributed D BM S (D D B M S) 

m anaging m ultiple databases. T he databases m ay reside on a single 

com puter system  or on m ultip le  com puter system s that m ay differ in 

hardw are and system  softw are.

A D istribu ted  D atabase (DD B) is defined as a collection o f  m ultiple, 

logically interrelated data d istribu ted  over d ifferent com puters o f  a 

com puter netw ork  [23, 38, 45, 62, 122]. T he physical d istribution does not 

necessarily  im ply that the com puter system s are geographically  far apart; 

they could actually  be in the sam e bu ild ing  or even in the sam e room . It 

sim ply im plies that com m unication  betw een them  is done over a netw ork 

instead o f  through shared m em ory. Each node o f  the netw ork has 

autonom ous capability , perform s local applications and m ay participate in 

the execution o f  som e global applications that require accessing data at 

several sites. D istributed databases [64] em erged as a m erger o f  tw o 

technologies: (1) database technology , and (2) netw ork and data

com m unication technology. They also m et the requirem ent o f  

organizations interested in the decentralization o f  processing w hile 

achieving an integration o f  the inform ation resources at the logical level 

within their geographically  d istributed  system s o f  databases.

A particular property o f  a d istributed database is that it can be 

hom ogenous or heterogeneous [136]. A hom ogenous distributed database
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(sim ply called a  distributed database) is one in w hich all the physical 

com ponents run on the sam e d istributed  database m anagem ent system , and 

the d istributed database system  supports a single data m odel and query 

language w ith a single schem a.

C onversely , database system s that provide interoperation and varying 

degrees o f  integration am ong m ultip le  databases o f  different types have 

been term ed heterogeneous d istribu ted  database system s (sim ply called a 

heterogeneous database). They consist o f  database system s w hich differ 

physically  and logically, have d ifferen t data m odels, m anipulation 

languages, and schem as. D espite  these databases being independently 

created and m anaged they m ust cooperate  and interoperate. U sers need to 

access and m anipulate data from  several databases and applications m ay 

require data  from  a w ide variety  o f  the  independent databases. Therefore, a 

new  system  architecture is required  to m anipulate and m anage distinct and 

m ultiple databases, in a transparen t way.

T here are a num ber o f  factors that d ifferentiate  types o f  D D BM S. These 

factors characterize a set o f  m ultip le  D BSs in three orthogonal 

d im ensions: d istribu tion , heterogeneity , and autonom y  [32, 62, 121, 134- 

136]. T hese d im ensions characterize  system s in w hich m ultiple databases 

m ay be put together and be m anaged by m ultiple DBM S. W e introduce 

each o f  these d im ensions below .

The d istribution dim ension  specifies how  the data o f  a DD BS is 

distributed am ong m ultiple sites in a com puter netw ork.

H eterogeneity  is concerned w ith the differences betw een the local D BSs 

com prising the DD BS. T he types o f  heterogeneity  are caused by 

technological d ifferences and independent design. These m ay be classified 

as system  heterogeneity  and logical heterogeneity  [71]. System  

heterogeneity covers d ifferences in hardw are, operating system , database

13



CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

m anagem ent system  (including  data  m odels, languages, transaction 

m anagem ent) and com m unication  system s. Logical heterogeneity  covers 

d ifferences in the way the real w orld  is m odeled in the databases (i.e. 

d ifferences in schem a and data representation).

A utonom y refers to the distribution  o f  control, not o f  data. It indicates the 

degree to w hich individual D B Ss can operate independently [90]. 

A utonom y is a function o f  a num ber o f  factors such as w hether the 

com ponent system s exchange inform ation, w hether they can 

independently  execute transactions, and w ho is allow ed to m odify them . 

Several k inds o f  autonom y (design , com m unication, execution and 

association autonom y) can be identified  [136].

2.2 A  T axonom y for In tegrating  H eterogeneous D ata  

Sources

Integration o f  heterogeneous data  sources continues to receive m uch 

attention from  the research com m unity  [19, 42, 46, 47, 74, 104, 107, 150]. 

Inform ation system s integration is a com plex  problem  since inform ation 

system s com prise data, processes and applications. As a consequence their 

integration m ust be done at each level [53]. In the context o f  this thesis, 

we consider only data  in tegration. Since the m ain topic o f  this w ork is 

querying and integrating data from  a netw ork o f  data sources, we present 

other proposed solutions for this problem  and highlight their strengths and 

shortcom ings. W e then consider a particu lar approach, M ediation System s, 

and characterize it in m ore detail.

We first d istinguish betw een m ateria lized  and virtual approaches. They 

are called in [144] the eager  or in-advance  approach and the lazy  or on- 

dem and  approach. In the m aterialized approach, data com ing from the 

local data sources are integrated and stored in a single new  database. All 

queries then operate on this com prehensive database. W hile in the virtual
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approach, data rem ains in the local data  sources. Thus, queries operate 

directly  on the local data sources and data integration takes place during 

query processing by com bining results. As a consequence, the tw o 

approaches have the follow ing advantages and disadvantages:

•  In the m aterialized approach, data m ust first be prepared before 

queries can be subm itted. T he participating data sources are 

(m anually) analyzed; a static v iew  over the data is defined, the local 

data is used to populate a new  integrated database conform ing to the 

static v iew  and queries are form ulated  against this view . As a 

consequence, new  data sources cannot be easily integrated and m ade 

available for querying. T his approach  is suitable for applications 

w hich require specific, exact portions o f  the available data w hich are 

m ostly  static (for exam ple, financial transactions). A query is 

evaluated directly  using the m aterialized  database and as a result 

query processing can be optim ized  for this database. A dditionally, 

there is no need to access the underly ing  data sources, so connection 

costs are non-existent. H ow ever if  the local data is dynam ic, 

updating o f  the integrated DB is hard. A lso som e o f  the m aterialized 

data  m ay never be accessed.

•  For the virtual approach, a query m ust first be analyzed in order to 

find data sources w hich can answ er it, and then it is split into sub

queries w hich finally are ad justed  according to the query capabilities 

o f  each data source. As a consequence, query processing is 

dependent on the availability  o f  the data sources, their connection 

tim es and query perform ance. Q uery optim ization opportunities are 

lim ited and an im portant requirem ent for this approach is that data 

sources accept ad-hoc queries. Its m ain advantage is that new  data 

sources can be easily m ade available for querying. This approach is 

suitable for users w ith “ unpredictable needs” [144], i.e. i f  users have 

a variety o f  inform ation needs. It is suited to dynam ic databases as
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the processing occurs on the local data, and there is no need to 

preprocess data not required by a query.

In our w ork, we adopt the virtual approach to supporting a read-only data 

in tegration o f  distributed heterogeneous structured and sem i-structured 

data, w hich m eans a global schem a is created to be used for answ ering 

user queries, and not for updating data. Since the num ber o f  underlying 

data sources linked in the in tegration system  may increase or decrease at 

anytim e, and in a m aterialized approach data is im ported into a new  

integrated  repository , this type o f  dynam ic change can not be easily m ade. 

The data  requirem ent o f  the expected  users is unpredictable and likely to 

vary w ith the resources currently  linked. For these reasons, a virtual 

approach  is m ore suitable as it p roduces a scalable system  w ith respect to 

the dynam ic nature o f  the availab le  inform ation resources.

A nother classification o f  approaches fo r integrating heterogeneous data is 

based on the structure o f  the data. M ost data sources can usually be 

classified into one o f  three categories depending on the kind o f  data that 

they are prim arily  designed to handle:

1. T ext retrieval system s are concerned  with the m anagem ent and 

query-based retrieval o f  co llections o f  unstructured text docum ents.

2. S tructured database system s are concerned with the m anagem ent o f  

structured or strictly-typed  data, i.e., data that conform s to a w ell- 

defined schem a (e.g., data held in DBS m anaged by DBM Ss).

3. Sem i-structured databases are designed to efficiently  m anage data 

that only partially  conform s to a schem a, or w hose schem a can 

evolve rapidly (e.g. X M L docum ents) [9],

There are approaches w hich consider integrating ju s t one kind o f  data such 

as relational databases [28, 93], o r O bject-O riented databases [13, 59], or 

XM L docum ents [18, 120, 148], so query form ulation, processing and
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results accom m odate only that particu lar kind o f  data. On the other hand 

there has been a significant in terest in com bining, integrating, and in ter

operating betw een heterogeneous data  that belong to different classes o f  

data sources[86, 113]. The prim ary m otivation for m ost o f  the w ork in this 

area is that m any applications require  processing o f  data that belongs to 

m ore than one type. For instance, a m edical inform ation system  at a 

hospital m ust process doctor reports (free text docum ents) as well as 

patient records (structured relational data). S im ilarly, an order processing 

application m ight need to handle inventory  inform ation in a relational 

database as well as purchase orders received  as (sem i-structured) X M L 

docum ents [126].

Earlier w ork  on database in tegration  [12, 21, 65, 79, 96, 111, 140] 

focussed on the integration o f  w ell-structured databases, w ith fixed 

schem as, that support pow erful query languages. This thesis focusses on 

the integration o f  distributed heterogeneous structured and sem i-structured 

data sources. For the foreseeable future, m ost data will continue to be 

stored in relational database system s because o f  the reliability, scalability, 

tools and perform ance associated w ith  these system s. A dditionally , m uch 

interesting and useful data can be published  as a w ell-form ed X M L 

docum ent, this data  can be autom atically  generated by W eb-based 

applications or can be hum an-coded. Such data is called sem i-structured 

data due to its vary ing  degree o f  structure. It can also vary betw een static 

databases and ephem eral data  hav ing  a very short life. H ence, w ith the 

w eb’s increasing role as a data provider, building a data integration system  

that provides unified access to sem antically  and structurally  diverse data 

sources is highly desirable as it w ill link structured data residing in 

relational databases and sem i-structured data held in w ell-form ed X M L 

docum ents produced by Internet applications or hum an-coded.

Since w e are targeting  a system  for querying and integrating distributed 

heterogeneous structured and sem i-structured data sources, our w ork has
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a d o p t e d  a  m e d i a t i o n  a p p r o a c h .  T h e r e  h a v e  b e e n  s e v e r a l  i n t e g r a t i o n  

m e t h o d s  w h i c h  c o m b i n e  d a t a  f r o m  s e v e r a l  d a t a  s o u r c e s  s u c h  a s  u n i v e r s a l  

D B M S  ( U D B M S )  m e t h o d  [ 5 4 ,  9 5 ] ,  f e d e r a t e d  d a t a b a s e s  [ 3 4 ,  6 1 ,  1 1 1 ,  1 3 6 ] ,  

d a t a  w a r e h o u s e  [ 2 7 ,  4 1 ,  1 5 0 ] ,  m u l t i - d a t a b a s e s  [ 6 1 ,  7 1 ,  9 0 ,  9 4 ,  9 6 ,  1 0 9 - 1  1 1, 

1 3 4 ] ,  a n d  m e d i a t o r  m e t h o d  [ 2 0 ,  7 0 ,  9 9 ,  1 2 5 ,  1 3 8 ,  1 4 5 ] .  W h i l e  o t h e r  

m e t h o d s  a r e  a p p l i c a b l e  t o  i n t e g r a t i o n  o f  s t r u c t u r e d  h e t e r o g e n e o u s  d a t a  

w h i c h  i s  u s u a l l y  s t o r e d  u s i n g  a  D B M S ,  a  m e d i a t i o n  a p p r o a c h  i s  

a p p r o p r i a t e  t o  i n t e g r a t i o n  o f  u n s t r u c t u r e d ,  s e m i - s t r u c t u r e d ,  a n d  s t r u c t u r e d  

d a t a .

W e  n o w  o v e r v i e w  s o m e  i n t e g r a t i o n  a p p r o a c h e s  in  m o r e  d e t a i l  a s  c l a s s i f i e d  

in  F i g u r e  2 .1  [ 5 4 ] .  T h e r e  a r e  a d d i t i o n a l  f e a t u r e s  t h a t  c h a r a c t e r i z e  t h e s e  

a p p r o a c h e s  w h i c h  a r e  n o t  p r e s e n t e d  in  t h i s  f i g u r e ,  b u t  t h e s e  w i l l  b e  

d i s c u s s e d  in  t h e  f o l l o w i n g  s u b s e c t i o n .

materialized

Virtual Integrated 
Databases

Mediated Query 
systems

Multi-database 
Language Approach

Data Warehouse

Federated DBMS

Unrversal DBMS

Virtual Systems

(Meta) search Engines

Systems for integrating 
heterogeneous data 

sources

Figure 2.1: Classification o f  System s fo r  Integrating H eterogeneous D ata

Sources [54].
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2.2.1 U niversal D atabase M anagem ent System s

In a U D BM S approach data is m igrated from  the local system s to a unique 

separate D BM S. First, the global in tegrated schem a is defined and then 

data from  the local system s is im ported into the new  database and the local 

system  ceases to operate. In th is w ay queries can be form ulated against the 

new  database and results are p resented  to users. In this case, the 

underlying data sources are usually  also D BSs and the new  DBS m ust 

accom m odate all types o f  data availab le  in the underlying sources. Thus, 

the new  database m ust be able to handle  all (or m any) types o f  inform ation, 

i.e. it m ust be a universal DBS.

D uring the m igration process, da ta  from  the underlying system s are 

extracted, transform ed, integrated and stored in the central universal 

database. The m ain draw back o f  th is approach is that existing applications 

for the local system s will have to be rew ritten for the new  database 

structure as the local D Bs ceases to exist. M oreover, the process o f  data 

m igration can be very expensive; since the old data has to be transform ed 

and often sem antically  enriched for the new  system  (the new  database 

usually has a richer data m odel). N evertheless, m igration can be a good 

solution, for exam ple, w hen users o r applications need the w hole 

functionality  o f  a D BM S (not ju s t the query functionality) and the old 

system s' applications are no longer needed [22]. N ote that m igration is the 

only m aterialized approach in w hich native data is queried, and query 

optim ization on native data can be best achieved.

2.2.2 Data W arehouses

D ata w arehousing  is a m aterialized approach. Data from  the local data 

sources are im ported into one D BM S, the data w arehouse. The difference 

to the U D BM S is that the underlying data sources are still operational, so 

the data is in fact replicated deliberately  in at least two DB. First, the
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w arehouse schem a is defined, data  from  the underlying sources is 

processed  and stored in the data w arehouse. The w arehouse data is 

typically  not im ported in the sam e form  and volum e as it exists in the local 

data system s. It m ay be transform ed, cleaned and prepared for certain 

analysis tasks, like data m ining and O L A P (O nline A nalytical Processing). 

D ata w arehouses often do not m ake the  m ost recent data available, since a 

data w arehouse is usually not updated im m ediately after a local data 

source has changed because o f  the overheads associated w ith im m ediate. 

Thus, the w arehouse stores h istorical data, as required by O LA P and data 

m ining  applications.

A ccording  to [144] the data  w arehouse approach is suitable for the 

follow ing kinds o f  clients:

•  C lients w ho do not need the m ost recent data available, since a data 

w arehouse is usually not updated  im m ediately after a local data 

source has changed;

•  C lients w ho require h istorical, derived and specific inform ation - for 

this reason data m ay need to be transform ed, cleaned, aggregated 

and prepared for certain  analytical tasks, such as data m ining and 

O L A P (O nline A nalytical Processing); or

•  C lients w ho require high query perform ance - since large am ounts 

o f  com plex data m ust be queried; data w arehouses are optim ized for 

the dom inant business scenario  but are less than optim al for others.

2.2.3 M etasearch Engines

R egarding the querying o f  unstructured distributed sources, search engines 

and m etasearch engines have gained im portance in recent years, m ainly 

because o f  the developm ent o f  the W eb. Search engines are system s w hich 

accept as queries only natural language keyw ords (or sim ple com binations
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o f  them ) and return docum ents as answ ers. The m ain characteristic o f  

search engines is that data can be easily  m ade available for querying and 

queries can be form ulated in a sim ple way.

Search engines are characterized by:

•  search efficiency w hich m eans how  fast the results are returned, and

•  search effectiveness w hich indicates how  good the results are, or 

“the ability to retrieve w hat the user w ants to see” [129].

In o rder to achieve high effectiveness, search engines use heuristics for 

finding the m eaning o f  input queries and for retrieving docum ents w hich 

m ay m atch them . H ow ever, i f  w e consider a heterogeneous environm ent 

like the W eb, it is very difficult to find the right m eaning o f  queries and in 

such cases search engines perform  quite  poorly.

To increase effectiveness d ifferen t search engines are com bined to form 

m etasearch engines. T heir users form ulate queries against a uniform  

interface, w hich are processed (fo r exam ple, stop w ords are elim inated) 

and split into sub-queries w hich are then sent to the individual search 

engines. Finally, the results are collected , com bined and presented in a 

unified way. E xam ples are SavvySearch [57] and M etaC raw ler [131, 132]. 

M etasearch engines do not prepare the data to be queried. They sim ply use 

the query interfaces o f  the underly ing  search engines and prepare the input 

queries for them . They also need to im plem ent suitable heuristics for 

com bining the results from the d ifferent sources. M etasearch engines are 

thus exam ples o f  system s for querying  data available in a netw ork o f  data 

sources. H ow ever, the underlying sources m ust be unstructured and for 

this reason they are not suitable for querying sources w here the data is 

structured in any way and w ould be inappropriate w hen linking structured 

and sem i- structured data.
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2.2.4 V irtual Integration o f  D atabases

For m any years the virtual integration o f  data that is stored in different 

databases has been an active research topic. The approaches to enabling 

virtual integrated access to m ultip le  databases can be roughly classified in 

tw o categories: the federated datab ase system  [136] and the m ulti

database system  [110]. These approaches are suitable for structured data 

and support precise searches. In the  follow ing subsections, we overview  

these types.

2.2.4.1 F ederated database system s

In m any situations, data are m anaged or accessed exclusively through their 

DBS by applications w hich respect the m anagem ent system  boundaries o f  

the local system s, though m uch m ore pow erful applications can be created 

w hen these data are integrated. O ne possibility  o f  integrating tw o different 

databases is called a gatew ay. A gatew ay is a special program  that 

sim ulates access from  one database to another by coding protocols o f  

interaction. H ow ever this has its lim itations, such as the am ount o f  tim e 

needed to design the gatew ays and that data accessing through gatew ays 

m akes further data transparency d ifficu lt to achieve. A n alternative 

approach w ould be a m iddlew are architecture [48] w hich provides a 

transparent and uniform  view  o f  m ultip le  data sources and m aintains th is 

interface for database applications in case a new  data source becom es 

available. An exam ple o f  in tegrating m ultiple databases through a 

m iddlew are approach is the concept o f  Federated D atabase System  

(FD B S) [136]. A FD BS is a collection o f  distributed, heterogeneous and 

sem i-autonom ous D BSs integrated through a federation layer. One o f  the 

significant aspects o f  a FD BS is that its com ponent DBS can continue 

local operations and at the sam e tim e participate in a federation. D BSs 

participating in a FD BS are alw ays heterogeneous and distributed w ithin 

this FD BS. These participating D B Ss are called C om ponent D BSs
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(C D BS). A typical FD BS architecture is show n in [136]. T his architecture 

is called a five-level schem a architecture, as it is com posed o f  five schem a 

types:

•  Local schem a: schem a o f  each  local database that com prises the 

federation;

•  C om ponent schem a: local schem a translated  to the canonical m odel;

•  E xport schem a: subset o f  the com ponent schem a to be accessed by 

the federation;

•  Federated or G lobal schem a: schem a generated by the integration o f  

export schem as;

•  External schem a: global schem a view , available to a group o f  users 

and/or applications.

In FD BS, the am ount o f  integration does not have to be com prehensive as 

in global schem a integration, but depends on the needs o f  the users, as 

FD BS m ay be either tightly  o r loosely coupled system s. The integration o f  

com ponent D BSs m ay be m anaged e ither by the users o f  the federation or 

by the adm inistrators o f  the com ponent DBSs. In loosely coupled FD BSs, 

the federation schem a creation is done by the users, w hereas in tightly 

coupled FD BSs, the creation and m aintenance o f  federated schem a and 

access to export schem as is contro lled  by federation adm inistrators. Thus 

in loosely coupled approaches the linkage o f  term s is undertaken at query 

tim e by the user w hile in a tightly  coupled approach it is undertaken w hen 

the DB jo in s the federation.

2.2.4.2 M ulti-database system s

M ulti-database system s (M D B Ss) [111] provide access to m ultiple 

preexisting databases that support their ow n applications and end users.
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T he M D B S should be able to identify  data stored in d ifferent databases 

and support m ulti-database queries and updates by resolving data 

incom patibilities, perform ing query decom position, and executing m ulti

database transactions. This process can be w holly or partially  transparent 

to the end user. H ow ever, local system s m ust have full control over their 

data, and thus preserve their ow n autonom y.

M D B Ss m eet the need for o rganizations to interoperate their databases 

already in service by supporting new  global applications that access 

m ultip le databases. The fundam ental d ifference betw een M D BSs and 

D D B Ss relates to the definition o f  the global conceptual schema. In the 

case o f  logically integrated D D B Ss, the global conceptual schem a defines 

the conceptual view  o f  the entire  set o f  databases available, w hile in the 

case o f  d istributed M D BSs; it represents only a collection o f  local 

databases that are being linked for a specific purpose. Thus the definition 

o f  a global schem a is different in M D B Ss than in d istributed DD BSs. In a 

D D BS the global database is equal to the union o f  all the local databases, 

w hereas in the M D BS it is only a subset o f  the sam e union.

A M D BS allow s each local database system  to continue to operate 

independently. G lobal users access data  stored in various local database 

system s (LD BSs) and local users access data stored in a single LDBS. The 

basic M D BS architecture consists o f  a global transaction m anager which 

handles the execution o f  global transactions and is responsible for dividing 

them into sub-transactions for subm ission to the LDBSs participating in the 

M DBS. Global transactions are posed using the global view  constructed by 

integrating the local view s provided by each local database system .

2.2.5 Sum m ary o f  previous approaches

The approaches presented in the previous sections have the follow ing 

characteristics:
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•  they consider either structured or unstructured data,

•  but do not com bine structural heterogeneous data;

•  they offer either an exact or a fuzzy kind o f  search; and

•  for the structured underlying sources, they integrate data based on a 

com m on schem a.

How ever, when dealing with the large am ount o f  data available online 

which m ight be unstructured, sem i-structured or structured data, and the 

high num ber o f  users searching w ith different know ledge levels and aims, 

there is a need for a new  approach to querying heterogeneous data. Thus, 

new  techniques are needed for build ing  a system which allows integration 

o f  heterogeneous data in a w ay tha t could easily connect and disconnect 

underlying sources and support all k inds o f  users form ulating queries which 

integrate web available data w ith traditional structured data held in DBSs.

A solution to this problem  w as in troduced at the beginning o f  the 1990s by 

W iederhold [145], w hen he defined the concept o f  m ediator.

2.2.6 M ediation System

A m ediator is defined in [145] as: “ A m ediator is a softw are m odule that 

exploits encoded know ledge about certain  sets or subsets o f  data to create 

inform ation for a h igher layer o f  applications.”

W hen querying integrated heterogeneous data sources, m ediators have the 

prim ary task  o f  offering to the user a hom ogeneous integrated view  over 

the data. Thus m ediation deals w ith various types o f  heterogeneity , with 

data m ism atch and supports users in the form ulation o f  queries.

The typical m ediator architecture contains three layers, (see Figure 2.2). 

The upper layer (query in terface) is the user and application interface. The
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m iddle layer (m edia tor) contains application-specific m ediators, w hich use 

a unified data m odel. On the low er layer there are data sources with their 

corresponding  w rappers. W rappers are softw are m odules w hich translate 

the request com ing from  the m iddle layer to a query for a data source, and 

translate  the results returned from  sources into the unified data m odel 

representation o f  the system . C onsequently , they im plem ent a 

hom ogenization o f  the data sources, w hich m eans users o f  the interface are 

unaw are o f  heterogeneity  present at the data sources level.

System s based on the m ediation approach do not retrieve data from the 

data sources until the data is requested. A user query is decom posed by the 

m ediator com ponent— a softw are m odule responsible for creating a virtual 

in tegrated view  o f  the data sources in the system . The m ediator determ ines 

w hich data sources contain relevan t inform ation and queries those data 

sources. The m ediation approach guarantees that the retrieved data are 

alw ays up to date as it is accessing  the local data source itself. This 

approach is also know n as the lazy approach (or on-dem and, or virtual 

approach), i.e., the queries are unfolded and rew ritten at runtim e as they 

flow dow nw ards in the architecture from  the query interface to the data 

sources. Q uery processing in th is case is very sim ilar to the m etasearch 

engine case, w ith the difference that data  in the underlying sources m ay be 

heterogeneous in its representation , i.e. structured, sem i-structured or 

unstructured. The T SIM M IS Project at Stanford [42, 69] and the M IX  

project at U niversity o f  C alifornia at San D iego [20] em ploy this approach.

Since in m aterialized approaches data  is im ported into a new  repository 

(either a universal database o r a data w arehouse), changes can not be 

easily m ade to the local data source, a virtual approach is m ore suitable for 

a scalable system  w here the local data sources are dynam ic. H ow ever, 

there are m any factors w hich influence the scalability o f  a system  and not 

every virtual system  is scalable per se. Furtherm ore, i f  the underlying data 

sources are only structured data sources, a m aterialized approach or a
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f e d e r a t e d  d a t a b a s e  a p p r o a c h  o r  m u l t i - d a t a b a s e  a p p r o a c h  m a y  a l s o  b e  

s u i t a b l e .  I f  t h e  u n d e r l y i n g  d a t a  s o u r c e s  a r e  a l l  u n s t r u c t u r e d  t h e n  a  

m e t a s e a r c h  e n g i n e  a p p r o a c h  i s  s u i t a b l e .  H o w e v e r ,  i f  a l l  o r  s o m e  k i n d s  o f  

d a t a  ( s t r u c t u r e d ,  s e m i - s t r u c t u r e d  a n d  u n s t r u c t u r e d )  h a v e  t o  b e  q u e r i e d ,  

m e d i a t i o n  i s  t h e  o n l y  s u i t a b l e  a p p r o a c h  s i n c e  it  i s  t h e  o n l y  a p p r o a c h  

d e a l i n g  w i t h  d y n a m i c ,  s t r u c t u r a l l y  h e t e r o g e n e o u s  d a t a  s o u r c e s .

Query Output Data

Query Interface

User Layer

Mediator

Mediation Layer

data source ndata source 1 data source 2

Data Sources Layer

F igure 2.2: The three-tier m ediator architecture.

T h e  f o c u s  o f  t h i s  t h e s i s  i s  o n  q u e r y i n g  d y n a m i c  h e t e r o g e n e o u s  d a t a  

s o u r c e s ,  s i n c e  m a n y  u s e r s  a n d  a p p l i c a t i o n s  t o d a y  n e e d  j u s t  t h i s  

f u n c t i o n a l i t y .  T h u s  t h e  m e d i a t i o n  a p p r o a c h  c a n  b e  u s e d  in  o u r  s y s t e m .  

H o w e v e r ,  t h e r e  a r e  a  l o t  o f  a p p l i c a t i o n s  w h i c h  a l s o  n e e d  u p d a t e s  o n  t h e  

u n d e r l y i n g  d a t a  s o u r c e s  o r  e v e n  f u l l  d a t a b a s e  f u n c t i o n a l i t y  s u c h  a s  a c c e s s  

c o n t r o l ,  a n d  t r a n s a c t i o n  m a n a g e m e n t .  In  t h e s e  c a s e s ,  a p p r o a c h e s  s u c h  a s  

t h e  m a t e r i a l i z e d  a n d  f e d e r a t e d  d a t a b a s e  c a n  b e  u s e d  a n d  a r e  m o r e  

a p p r o p r i a t e .
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2.3 D ata in teroperability

In teroperability  is the m agic w ord that is expected to allow  heterogeneous 

data sources to talk  to each o ther and exchange inform ation in a 

m eaningful way. The data in teroperability  problem  occurs w hen this is 

hard to achieve and arises from  the fact that data, even w ithin a single 

dom ain o f  application, are availab le at m any different sites, in m any 

d ifferent schem as, and even in d ifferen t data form ats and m odels (e.g., 

relational and X M L). The in tegration and transform ation o f  such data has 

becom e increasingly im portant for m any m odem  applications that need to 

support their users m aking inform ed decisions based on data held in 

diverse database system s and data  sources. A s a rough classification, there 

are tw o basic form s o f  data in teroperability: data exchange  and data  

integration. D ata exchange (also know n as data translation) is the problem  

o f  m oving and restructuring  data  from  one (or m ore) data source 

schem a(s) into a target schem a. It appears in m any tasks that require data 

to be transferred betw een independent applications that do not necessarily 

agree on a com m on data form at. In contrast, data integration is the 

problem  o f  uniform ly querying m any d ifferent data sources through one 

com m on interface (target schem a). T here is no need to m aterialize a target 

instance in this case. Instead, the em phasis is on answ ering queries over 

the com m on schem a [92, 103]. A ccording  to this classification we classify 

our w ork as a data integration problem  as we use a virtual global schem a 

over different data sources and data  held in these data sources can be 

com bined and queried through this global schem a.

Data interoperability  [77, 83, 110] is the ability o f  distributed,

heterogeneous data sources, w hich are independently created and 

adm inistrated and have different sem antics and schem as to cooperate and 

interoperate in a transparent w ay to the user w hile m aintaining their 

autonom y and objectives. D ata interoperability  [84, 149] can be achieved
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by in tegration o f  existing data  in virtual databases, i.e. databases w hich are 

logically defined but not physically  m aterialized.

H ow ever, the integration o f  structured and sem i-structured data sources 

poses som e fundam ental challenges [81]. The heterogeneity  that may exist 

betw een a set o f  independently  designed  data sources is one o f  these 

challenges. D ata is stored w ithin d istinct heterogeneous data sources. This 

m eans the im portant kind o f  heterogeneity  in our context is structural 

heterogeneity  [54, 67].

2.4 H eterogeneity  o f  the data sources

I f  the contents o f  data sources are related  in som e way, they are still likely 

to show variety in m any aspects. These differences can m ake both the 

design and m odeling phase and the operation phase o f  a data integration 

system  very difficult. The m ajor issue in building a data integration system 

is resolving these differences betw een the data sources that may occur at 

different levels. This issue is generally  referred to as heterogeneity  o f  the 

data sources.

H eterogeneity  arises at d ifferent levels for various reasons. Firstly, an 

organization for various reasons, m ay adopt different platform s for its 

applications. It m ay choose d ifferen t hardw are, operating system s and 

d ifferent com m unication protocols. Secondly, as a result o f  advances in 

softw are and technology developm ents, different data sources m ay 

becom e available over tim e; these data  sources m ay have different data 

m odels, query languages and/or o ther facilities. Thirdly, the independent 

design o f  the com ponent databases m ay lead to sem antic heterogeneity , 

w here the designers o f  these databases m ay have different opinions about 

how  to m odel the sam e real w orld objects.

Broadly speaking, the heterogeneity  m ay be classified as System  

H eterogeneity  (low  level) and Logical H eterogeneity  (high level) [71].
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System  heterogeneity  com es from  adopting different platform s for the 

com puter installation. Platform  differences include: hardw are system s, 

operating system s, data m anagem ent system s and netw orking protocols. 

Logical heterogeneity  occurs w hen people use different approaches to 

m odel the sam e real w orld ob jects [21, 71, 97, 98]. Both types o f  

heterogeneity  result from the au tonom y o f  developm ent o f  system s.

R esearchers and developers have been w orking on resolving system  

heterogeneity  for m any years. T he causes o f  such heterogeneity are well 

understood [71, 97] and m ay not ex ist i f  the sam e hardw are, system  

softw are (e.g., operating system ) and com m unication protocols are used. 

W hile research on logical he terogeneity  started m ore recently, it still 

reflects m ore than 20 years o f  research [21].

D etecting and resolving logical heterogeneity  is acknow ledged to be a 

d ifficult problem , because it requ ires a good understanding o f  the data's 

m eaning, the inconsistencies p resen t in the data and the level o f  

incom plete inform ation. U nfortunately , it is not possible to fully capture 

real w orld sem antics by using availab le  data m odeling techniques [128]. 

T herefore nearly all the tools that deal w ith detecting and reconciling 

sem antic heterogeneity  depend on user interaction to com plem ent and 

validate their results [71, 97, 98, 137].

Schem a C onflicts

C o n flic t T ype D escrip tion
Table N am e 

C onflicts
Using d ifferent nam es for equivalent tables 
(Synonym ) or the sam e nam e for different 

tables(H om onym )
Table Structure 

C onflicts
One table contains m ore attributes than another table 

w ith equivalent concepts
Table C onstraint 

C onflicts
Incom patible key and update constraints

M ultiple Table 
C onflicts

U sing different num bers o f  tables to store inform ation
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A ttribute N am e 
C onflicts

U sing d ifferent nam es for equivalent attributes 
(Synonym ) or the sam e nam e for different attributes

(H om onym )
M ultiple
A ttribute
C onflicts

R epresenting a concept using m ore attributes in one 
database than another

T able versus 
A ttribute 
C onflict

R epresenting a concept as a table in one database and 
as a field in another

O ne-to-M any
E lem ent
C onflicts

This type o f  conflict arises w hen inform ation captured 
in one e lem ent in the global schem a is equivalent to 

that split into m ore than one elem ents in the local data
sources.

M any-to-O ne
Elem ent
C onflicts

This type o f  conflict occurs w hen m ore than one 
elem ent in the global schem a corresponding to one 

e lem ent in a local data source.
D ata C onflicts

D ata Type 
C onflicts

The sam e e lem ent m ay have incom patible type 
definitions in d ifferen t databases. For exam ple, social 

security num ber could be o f  type 'character' in one 
database and 'num eric' in another.

U nit C onflicts N um erical data  represented using different units.
Precision
C onflicts

This conflict occurs w hen tw o data sources use values 
from the dom ains o f  d ifferent cardinalities for the

sam e data.
Expression
C onflicts

This conflict arises w hen different expressions are 
used to represent the sam e data.

R epresentation
C onflicts

The sam e concept is represented by different 
constructs o f  the model.

G ranularity
C onflicts

D ata elem ents representing  m easurem ents d iffer in 
granularity  levels, e.g., sales per m onth or annual

sales.
D efault values 

conflict
This conflict arises w hen the default values o f  

sem antically  equivalent elem ents in different data 
sources are different.

Key C onflicts D ifferent keys are assigned to the sam e concept in 
different schem as.

Behavioral
Conflicts

These arise w hen different insertion/deletion policies 
are associated with the sam e class o f  objects in 

distinct schem as.
W rong data 

C onflicts
It occurs w hen equivalent attributes in different data 
sources, w hich are expected to have the sam e value, 

have different values.

F igure 2.3: Conflicts C lassification.
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V arious classifications o f  heterogeneities have been suggested in papers 

related to data integration, w ithout necessarily  providing full 

c lassifications. In an analysis o f  schem a integration m ethodologies [21, 

98], structural and sem antic d iversity  categories w ere specified as those 

involving nam ing conflicts and those involving structural conflicts.

F igure 2.3 show s a classification o f  conflicts that m ay exist betw een a set 

o f  independently  designed data sources. It is based on the classifications o f  

[21, 97, 98]. O ne o f  our goals in this research is to resolve the 

heterogeneity , such as nam ing, structural, and sem antic conflicts w hich, 

m ay occur betw een the schem as (see [16]). Thus a solution w hich 

overcom es the heterogeneity  prob lem  is needed. Later, we will describe 

how  our system  SISSD  can be used to  handle som e o f  conflicts identified 

in F igure 2.3 (see sections 4.4, 5.4.4 and 8.1.6).

2.5 D ata integration

D ata integration has received sign ifican t attention since the early days o f  

databases. M uch research has been devoted  to solving the problem  o f  data 

integration. W ith the popularity  o f  the Internet, access to data becom es 

independent o f  its physical storage location. A dditionally, users can access 

a variety o f  data sources that are related  in som e way to find out useful 

inform ation, but this is often cum bersom e. Therefore, integrating 

heterogeneous data sources so that users can easily access and com bine the 

data is an im portant challenge. M uch o f  the research on integration has 

focused on so-called data integration [80, 103]. Data integration is the 

process o f  com bining the data resid ing  at different sources, and providing 

the user w ith a unified view  o f  these data. Such a unified view  is 

structured according to a so-called global schem a, w hich provides the 

elem ents to express queries over the data o f  the integration system . Data 

integration is an im portant data m anagem ent application because it is a 

com m on user requirem ent. The m ain objective o f  a data integration system
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is to facilitate users in focussing on specifying 'w hat' data  they want, rather 

than on describ ing 'how ' to obtain data. To achieve this task, an integrated 

view  o f  the data stored in the underly ing  data sources should be provided. 

In data integration system s, users are interested m ainly in querying the 

integrated data rather than updating the  data through the integrated view.

The problem  o f  the d ifferences betw een data sources is o f  great 

im portance. U sually, the contents o f  data  sources are related in som e way, 

but show  diversity  in m any representational aspects. This diversity, which 

is usually referred to as heterogeneity  [136], causes the design o f  a data 

in tegration system  to be a challenge. H eterogeneity  is one o f  the m ost 

com plicated issues that are taken into consideration w hen building a data 

integration system . H ence, reso lv ing  the differences betw een the data 

sources is a crucial issue.

T here are different layers o f  heterogeneity  beginning from hardw are 

heterogeneities and continuing to d ifferences in the operating system s or 

com m unication protocols. On a h igher level there is logical heterogeneity, 

w hich refers to the degree o f  d issim ilarity  betw een the com ponent data 

sources that m ake up a data in tegration system . Logical heterogeneity is 

one o f  the m ost com plicated issues taken into consideration in a data 

integration system . It com es from  d ifferen t understanding and m odeling o f  

the sam e concept. Subsequently , the construction o f  a data integration 

system  m ust handle d ifferent m echanism s for attributing m eaning to the 

data (sem antic conflicts), for referencing  data (nam ing conflicts), and for 

storing data (structural conflicts). T he distinction betw een sem antic and 

structural heterogeneity  is not alw ays precise. Structural heterogeneity  

refers basically  to the structure o f  the data, w hile sem antic heterogeneity  

refers to the dom ain o f  concepts (their interpretation).
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B asically , to build a data integration system , relationships or m appings 

m ust be established betw een the data source schem as and the global 

schem a [35, 147],

D efin ition  2.5.1 (A  data-in tegration system )

A data-integration system  I  is a trip le  (G, S if Mj), w here G is a global 

schem a, Si is a set o f  n  source schem as, and Mj is a set o f  m  source-to- 

global m appings, such that for each source schem a S', there is a m apping 

Mj from  St to G, (1 < i<  n), (1 < j<  m).

A crucial issue in data integration is how  elem ents o f  the global schem a 

and elem ents o f  the data sources are m apped. Based on the direction o f  

m appings betw een a data source and global schem a, the approaches are 

classified into the so called global-as-view  (G A V ) and local-as-view  

(LA V ) approaches [80, 103]. The follow ing sections describe each o f  

these approaches. W e will further use the sym bol => that m eans an 

im plication relationship betw een the global and local schem as' elem ents 

exists.

2.6 G lobal-A s-V iew  (G A V ) approach

In a G lobal-A s-V iew  (G A V ) approach, a global schem a is defined in 

term s o f  a set o f  local source schem as. That is, the global schem a is 

defined as a view  over the local sources' schem as [20, 70, 75, 141].

In a G A V  approach, query reform ulation reduces to sim ple rule unfolding 

(standard execution o f  view s in ordinary databases). H ow ever, changes in 

data sources or adding a new  data source requires revision o f  the global 

schem a to take into account the changes, and requires a revision o f  the 

m appings betw een the global schem a and data source schem as. Thus, 

GA V is not scalable for large applications [24, 147].
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In recent years, m any system s have been developed in research projects on 

data integration using the G A V  technique. B elow  we discuss briefly w ell- 

know n research projects and pro to types o f  the better know n o f  these 

system s.

2.6.1 G A V  system s

•  TSIM M IS [42, 108, 124], one o f  the first GA V  system s and the 

m ost representative o f  the G A V  approach. This system  uses the 

O EM  (O bject Exchange M odel) to convey inform ation betw een the 

com ponents o f  the system . T he first basic com ponent o f  a m ediated 

system , the m ediator, is specified using M SL (M ediator 

Specification L anguage). It is a logic-based, object-oriented 

language that can be seen as a  v iew  definition language, targeted to 

the O EM  data m odel. The second com ponent is w rappers w hich are 

specified using a W SL (W rapper Specification Language). W SL is 

an extension o f  M SL, supporting  the description o f  source contents 

and source query capabilities.

•  M IX [20] M IX  stands for M ediation  Inform ation using XM L. It is a 

successor o f  T SIM M IS. T he basic  difference from TSIM M IS is that 

X M L is used as the language (i) to represent the global schem a and 

(ii) to exchange data betw een the m ediator and the XM L sources 

(instead o f  OEM ). The query language o f  M IX is X M A S (X M L 

M atching and Structure L anguage). XM AS uses features from  

several X M L query languages, queries are form ulated in term s o f  

the m ediated schem a, and are w ritten as X M AS queries that refer to 

the source view s exported by the w rappers. T hese queries are then 

sent to the w rapped sources for evaluation.

•  N im ble [55, 56] is a com m ercial system  sim ilar to M IX. N im ble 

integrates X M L sources. The architecture o f  the N im ble system  is

35



CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

based on a set o f  m ediated schem as, w hich are defined as view s 

over the schem as o f  the data sources. T he query language used by 

the N im ble system  is X M L-Q L. W hen a query is posed to the 

integration system , it is decom posed into m ultiple source queries 

based on the data sources. T he com piler translates each such query 

into an appropriate query language for the destination source.

•  C lio [117, 118] w as developed  by IBM  around 2000. C lio is a 

research prototype o f  a schem a m apping creation tool. The focus is 

on discovering queries that m ap values from the data sources to 

values in the global schem a. B oth source and global schem a are 

considered to be either relational or XM L. Clio produces a set o f  

m appings betw een the source schem a and the global schem a, given 

a set o f  high-level correspondences defined by the user. It also 

involves transform ing legacy data into a new  target schem a. Clio 

introduces an interactive schem a m apping paradigm , based on value 

correspondences. The user specifies how  a value o f  a target attribute 

can be created from  a set o f  values o f  source attributes using a 

query /brow sing GUI.

2.7 L ocal-A s-V iew  (L A V ) approach

In the L ocal-A s-V iew  (L A V ) approach, a global schem a is defined 

independently  o f  the local source schem as. Each source is described in 

term s o f  the global schem a relations. T hat is, the sources are described as a 

m aterialized view  o f  the global schem a [11, 36, 99, 103].

The LAV approach m akes it very sim ple to add or rem ove data sources 

from the system , but it also com plicates the query reform ulation task. It is 

scalable and better suited to integrating a large num ber o f  autonom ous 

read-only data sources accessible over com m unication netw orks.
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Furtherm ore the LA V  approach provides a flexible environm ent able to 

accom m odate the continual change and update o f  data source schem as.

In recent years, m any system s have been developed in various research 

projects on data integration using the LAV technique. W e discuss briefly 

the best know n research projects and prototypes o f  the m ore prom inent 

representative LAV system s.

2.7.1 LA V  system s

•  Inform ation M anifold [99, 104, 107] handles the problem  o f  data 

integration by providing a m echanism  to describe declaratively the 

contents and the query capabilities o f  inform ation sources. In the 

Inform ation M anifold system  the global schem a is relational. A 

source description is a conjunctive  query over the global schem a 

relations, w hich will be referred  to as a view . U ser queries, posed in 

Inform ation M anifold, are conjunctive queries like source 

descriptions. They are expressed  in term s o f  the global schem a 

relations.

•  Infom aster [58, 74] is an inform ation system  which provides 

integrated and uniform  access to m ultiple distributed, heterogeneous, 

structured sources. D ata available  in a source is also seen as a set o f  

relations, called site relations. Betw een site relations and interface 

relations, a set o f  base relations are defined. Interface relations are 

defined as view s on the base relations. U ser queries are expressed in 

term s o f  the interface relations. Q ueries are rew ritten in term s o f  the 

site relations.

•  A gora [113, 114] system  supports querying and integration o f  

heterogeneous relational and X M L inform ation sources. The global 

schem a is an X M L DTD and a virtual relational schem a is used as 

an interface betw een the sources and this schem a. Relational and
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X M L sources are m odeled as SQL queries over a relational global 

schem a. U sers form ulate X Q uery queries in term s o f  this global 

DTD. These queries are norm alized and translated into an SQL 

query over the generic relational schem a.

•  D D X M I [120, 148] (for D istributed D atabase X M L M etadata 

Interface) is a system  proto type that has been built to generate a tool 

to do the m etadata integration, producing a m aster DDXM I file, 

w hich is then used to generate  queries to local databases from the 

m aster queries. It builds on the X M L M etadata Interchange. 

D D X M I is a m aster file including  database inform ation. In this 

approach local sources w ere designed according to DTD definitions. 

Therefore, the integration p rocess is started from the D TD  parsing 

that is associated w ith each source.

2.8 R elated  W ork

D ata integration has received sign ifican t attention since the early days o f  

databases. In recent years, there have been m any research projects 

focussing on distributed heterogeneous data source integration. M ost o f  

them  are based on the com m on m ediator architecture [145] such as Garlic 

[37], the Inform ation M anifold [99], D isco [141], TSIM M IS [42], Y at [43], 

M ix [20], M edM aker [123] and A gora [113]. The goal o f  such system s is 

to provide a uniform  user in terface to query integrated view s over 

heterogeneous data sources. A user query is form ulated in term s o f  the 

integrated view , to execute a query, the system  translates it into sub

queries expressed in term s o f  the local schem as, sends the sub-queries to 

the local data sources, retrieves the results, and com bines them  into the 

final result provided to the user. M ainly, they can be classified into 

structural approaches and sem antic approaches.
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In structural approaches, local data sources are assum ed to be crucial. The 

integration is done by providing or autom atically generating a global 

unified schem a that characterizes the  underlying data sources. On the other 

hand, in sem antic approaches, integration is achieved by sharing a 

com m on ontology am ong the data  sources. A ccording to the m apping 

direction, the approaches are further classified into tw o categories: global- 

as-view  (G A V ) and local-as-view  (L A V ) [103]. In GA V approaches, each 

item in the global schem a is defined as a view  over the source schem as. In 

LA V  approaches, each item in each source schem a is defined as a view  

over the global schem a. The L A V  approach  is w ell-suited to supporting a 

dynam ic environm ent, w here data  sources can be added or rem oved from 

the data integration system  w ithout restructuring  the global schem a.

Projects and prototypes such as G arlic, TSIM M IS, M edM aker, and M ix are 

structural approaches and take a g lobal-as-view  approach. A com m on data 

model is used, e.g., OEM  (O bject Exchange M odel) in TSIM M IS and 

M edM aker. Mix uses XM L as the data model; an XM L query language 

XM AS was developed and used as the view definition language. M any 

efforts are being m ade to develop sem antic approaches, based on RDF 

(Resource D escription Fram ew ork) and K now ledge-based Integration [112]. 

Several ontology languages have been developed for data and knowledge 

representation to assist data integration from a sem antic perspective, such as 

F-logic [115] which is em ployed to represent knowledge in the form o f  a 

dom ain m ap used to integrate data sources at the conceptual level.

D D X M I [120, 148] builds on X M L M etadata Interchange. DD XM I is a 

m aster file including database inform ation, XM L path inform ation (a path 

for each node starting from  the root), and sem antic inform ation about 

XM L elem ents and attributes. A system  prototype has been built that 

generates a tool to do the m etadata integration, producing a m aster 

DD XM I file, w hich is then used to generate queries to local databases 

from m aster queries. In this approach local sources w ere designed

39



CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

according to DTD  definitions. T herefore, the integration process is based 

on D TD  parsing associated w ith each source. X IQ M  [18] is an approach to 

m ediating heterogeneous X M L data  sources. A tool is proposed for the 

X M L data integration system  to com bine and query X M L docum ents 

through a m ediation layer. This layer is intended to describe the m appings 

betw een the global X M L schem a and local heterogeneous X M L schem as. 

It produces a uniform  interface over the local XM L data sources and 

provides the required functionality  to query these sources in a uniform  

way. It involves tw o im portant units: the X M L M etadata D ocum ent 

(X M D ) and the Q uery Translator. X M D  is an X M L docum ent containing 

m etadata, in w hich the m appings betw een global and local schem as are 

defined. X M L Q uery T ranslator w hich  is an integral part o f  the system  is 

introduced to translate a global user query into local queries by using the 

m appings that are defined in X M D . T he X M L data sources are described 

by the X M L Schem a language.

W e classify our w ork as being in the structural category but we differ from 

the others such as G arlic, D isco, T SIM M IS, M ix, M edM aker and Yat by 

follow ing a local-as-view  (L A V ) approach as this approach is well-suited 

to supporting a dynam ic environm ent, w here data sources can be added or 

rem oved from  the system  w ithout restructuring the global schem a. It is 

better suited and scalable for in tegrating a large num ber o f  autonom ous 

read-only data sources accessible over com m unication netw orks. 

Furtherm ore the L A V  approach provides a flexible environm ent able to 

accom m odate the continual change and update o f  data source schem as, 

especially  suited to X M L docum ents on W eb servers w hich are not static 

and often subject to frequent update. Projects like Inform ation M anifold, 

A gora, DDXM I and X IQ M  are integration system s with a LAV 

architecture; how ever, in Inform ation M anifold the local and global 

schem as are relational, w hile in D D X M I and X IQ M  the local and global 

schem as are XM L. The A gora system  supports querying and integrating
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data sources o f  diverse form ats, including XM L and relational sources 

under an X M L global schem a, but assum es explicit schem as for X M L data 

sources. O ur w ork [14-16] focuses on querying and in tegrating distributed 

heterogeneous structured data resid ing  in relational databases and sem i

structured data held in X M L docum ents. The XM L docum ents that we are 

interested in are w ell-form ed X M L docum ents, w hile DD XM I targets 

X M L docum ents designed according  to DTD  definitions, and X IQ M  

targets X M L docum ents satisfy ing an X M L schem a. Thus we are dealing 

w ith all types o f  X M L docum ent unlike these system s. A lso our w ork 

differs from  D D X M I and X IQ M  by using an increm ental tool to build the 

X M L M etadata K now ledge B ase (X M K B ). This tool starts from an 

existing X M K B file and slightly m odifies it in light o f  m inor changes to 

data source schem a structures or w hen data sources are added or rem oved 

from  the system , instead o f  regenerating  it from  scratch. Thus it facilitates 

evolution reflecting the dynam ic nature o f  the data being targetted.
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C H A PT E R  3

X M L  and related technologies

M achine readable data files are tex t files or binary files. There has been an 

aim  to find a universal form at w hich com bines the features o f  both these 

types w ith rich inform ation storage capability. An early attem pt to 

com bine a universally  in terchangeable data form at w ith rich inform ation 

storage capabilities w as SG M L (S tandard  G eneralized M arkup Language) 

[8, 76]. This is a tex t-based  language that can be used to m ark up data by 

adding m eta-data in a w ay w hich is se lf  describing. SG M L w as designed 

to be a standard way o f  m arking up data for any purpose. It is a 

com plicated language that it is not well suited for data interchange over 

the W eb [31]. A very w ell-know n language, based on SG M L is H ypertext 

M arkup Language (H TM L) [2]. H ow ever, despite HTM L being incredibly 

successful, it was lim ited in its scope, as it is only intended for displaying 

docum ents in a brow ser. Therefore, XM L (ex ten sib le  M arkup Language) 

[4] w as created to address this lim itation. D evelopm ent o f  XM L started in 

sum m er 1996 by the setting up o f  an XM L W orking group by the W 3C
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(W orld W ide W eb C onsortium ) [1]. In m any aspects, H TM L gives a good 

introduction for understanding X M L: the ASCII representation o f  X M L 

data and HTM L share the sam e syntactical notions, w hich is part o f  

SGM L.

Since X M L is chosen to be a data m odel for our data integration system  

and in this thesis we used som e X M L related technologies we give in this 

chapter an overview  o f  XM L and som e related technologies.

W e start w ith an introduction to X M L. N ext, we present an overview  o f  

the D ocum ent Type D efinition (D T D ) gram m ar language and XM L 

Schem a language since these languages are used to describe the structure 

o f  an X M L docum ent. Then, w e introduce X M L A pplication 

Program m ing Interfaces, and finally  w e introduce XM L query languages.

3.1 X M L

W 3C is an open, public organization  w hose task is to develop technology 

and standards for the Internet. It has developed X M L standards for 

efficient inform ation exchange across the W eb. The basic concept behind 

XM L is that data should be self-describ ing  by m eans o f  tags associated 

with the data. X M L provides no predefined tags, instead it is a m eta

m arkup language w hich provides standards for users so that they can 

define their ow n tags, docum ent structure and the definition o f  the tag.

X M L [4] has quickly em erged as a standard for data representation and 

data exchange over the W eb. X M L is a subset o f  SGM L. It specifies a set 

o f  rules for putting data structures into a text file. A lthough X M L is text, it 

is not prim arily m eant to be read by hum ans but rather by m achines, w ith 

standardized XM L parsers. The pow er o f  XM L as a description language 

lies in the fact that an X M L docum ent contains self-describing, 

hierarchically  structured data, and it allow s association o f  m arkup term s 

with data elem ents. These m arkup term s serve as m etadata allow ing
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form alized description o f  the content and structure o f  the accom panying 

data. X M L appears to subsum e H T M L  and its successor X H TM L as the 

com m unication language for the Internet [66]. By associating m etadata 

term s w ith data elem ents, X M L has enabled docum ents to be 

com m unicated betw een organizations in a way that enables their sem antics 

to be com pletely understood both by hum an and m achine agents. In other 

w ords, ju s t as H TM L is used to render texts so that they can be processed 

by hum ans, X M L renders data structures so that they can be processed by 

com puters so that the processed docum ent can be presented on a hum an 

interface.

D ata in X M L are grouped into e lem ents delim ited by tags. The first line o f  

an X M L docum ent (see Figure 3.1) is a m andatory statem ent that tells the 

X M L processor1 that it is dealing w ith  X M L version 1.0 in this case [60], 

The rest o f  an X M L docum ent is com posed o f  tags and text. Every 

opening tag  m ust have a m atching  closing tag, and the tag m ust be 

properly nested. A tag  consists o f  tex t enclosed in a pair o f  angle brackets. 

A tag  is also called a m arkup. T he docum ent has a root elem ent that 

contains all other elem ents. A ny properly  nested piece o f  text o f  the 

follow ing form

<tag>  .......  </tag>

is called an XM L elem ent, and the nam e o f  that elem ent is the tag. Figure

3.1 is a sim ple exam ple o f  an X M L docum ent.

In th is figure, < bookstore> , < book>  ............   and </bookstore>  are tags.

The text betw een the opening and closing tag is called the content o f  the 

elem ent. E lem ents directly nested w ithin other elem ents are called 

children. XM L also defines the ancestor/descendant relationships am ong 

elem ents, w hich are im portant for querying X M L docum ents. An ancestor

1 The XML processor is a module that reads an XML document to find out its structure and contents.
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is a p a re n t , a grandparen t, etc., and a  descendant is a ch ild , a grandchild , 

etc.

<?xml version = "1.0n?> 
<bookstore>

<book category=,,WEB">
<isbn> 0-321-12226-7 </isbn> 

<title> Learning XML </title> 
<author> Erik T. Ray </author> 
<year> 2005 </year>
<price> 29.99 </price>
</book>
</bookstore>

F igure 3.1: A n  exam ple o f  a  sim ple X M L  document.

A n opening tag can have attributes. A n elem ent can have any num ber o f  

user-defined attributes. X M L attribu tes are useful in data representation as 

they offer a richer representation than  elem ents can offer. A ttribute values 

can only be strings, w hich strictly  lim its their usefulness, while XM L 

elem ents can have children elem ents, w hich m ake them  m uch m ore 

versatile. Som e features o f  attributes are-. First, the order o f  attributes in 

an elem ent does not m atter; second, an attribute can occur at m ost once in 

an elem ent, w hile elem ents w ith the sam e tag can be repeated; third, using 

attributes can lead to briefer representation. A useful feature o f  an X M L 

attribute is that it can be declared to have a unique value and can also be 

used to enforce a lim ited referential integrity. This can not be declared 

w ith elem ents alone in plain XM L. In the above exam ple, P rice  is defining 

as an a ttribute  in the elem ent Book.

There are tw o im portant concepts o f  XM L docum ents, w ell-form ed  and 

validity. W ell-form ed  deals w ith the physical structure referring to tags 

w hich are properly m atched and nested while, valid ity  focuses on the 

logical structure o f  elem ents.
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D efin ition  3.1: A n X M L docum ent is well form ed if  it has a root elem ent, 

every opening tag is follow ed by a m atching closing tag, the elem ents are 

properly nested, and any attribute can occur at m ost once in a given 

opening tag and its value m ust be provided.

A n X M L docum ent m ust be w ell-form ed to be processed. T hat is, it m ust 

be syntactically  correct. The valid ity  concept is provided by an XM L 

schem a gram m ar language w hich is in troduced in the next section.

O ur system  is designed to deal w ith  w ell-form ed XM L docum ents which 

conform  to the X M L syntax rules bu t have no referenced DTD  or XM L 

schem a. H ow ever, it can also deal w ith  X M L docum ents w hich have DTD 

or X M L schem a by bypassing the D T D  or the X M L schem a. It accesses 

the docum ent itse lf to extract its structure and uses our sim ple language 

X D SD L (X M L D ata Source D efin ition  Language) to describe the actual 

structure o f  the data source not the possib le  one described in the 

referenced DTD and X M L Schem a.

3.2 D T D  and X M L  Schem a

There are m any gram m ar languages that can describe the structure o f  an 

X M L docum ent. The m ost com m on are: D T D  [30] and X M L Schem a  [3]. 

X M L schem a is an optional docum ent-structure gram m ar w hich is used to 

m ake sure the X M L docum ent is valid. X M L docum ents can be defined 

according to a schem atic representation  defined in a DTD  or X M L 

Schem a. An XM L docum ent that conform s to a DTD or X M L Schem a is 

called a valid XM L docum ent.

3.2.1 DTD

D TD  is a set o f  rules for structuring an XM L docum ent. It is a context- 

free-gram m ar for the docum ent. The DTD describes a docum ent type by 

specifying which tags are allow ed, their attributes, and the allow ed nesting.
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Roughly, the D TD  corresponds to the schem a definition in relational or 

object-oriented databases. The schem a o f  an X M L docum ent m ay be 

defined by a DTD, w hich describes a gram m ar for sem i-structured 

docum ents.

The basic com ponents o f  a D TD  gram m ar are elem ents , attributes , and 

entities. The structure o f  the contents o f  elem ents is defined by

< \ E L E M E N T  content-m odel >

w here, a content-m odel in a D TD  m ay involve the follow ing types:

•  E M PT Y  type: a sim ple e lem ent w ith no content, but m ay have 

attributes.

•  A N Y  type: elem ents o f  th is type m ay have arbitrary content.

•  #PC D A TA  type: a sim ple e lem ent o f  only character data

•  Expression: a com posite elem ent w hich is a regular expression over 

elem ent nam es.

•  A com posite elem ent m ay be defined by the follow ing constructs:

— to define a sequence o f  ordered com ponent elem ents.

— “ | ”, to define alternatives o f  com ponent choice.

— an elem ent that can appear arbitrarily often.

— “+ ” , as but m ust appear at least once.

— “?” , optional elem ent can appear 0 or 1 tim es.

A ttributes can be associated to an elem ent. Each attribute has a nam e, a 

data type and optional constraints that restrict its perm itted values to an 

enum eration or a fixed value, or defines it as a required property. An
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elem ent w ith attributes is also considered to be a com posite elem ent. The 

allow ed attributes  o f  elem ents can be declared as:

•  #R EQ U IR ED : the attribute m ust be given for each instance o f  the 

elem ent type.

•  #IM PLIED : the attribute is optional.

•  #FIX ED  value', a value w hich is allow ed for the attribute type.

Figure 3.2 show s a D TD  that captures the X M L docum ent in Figure 3.1.

< ELEMENT bookstore (book)+>
< ELEMENT book(isbn , title , author , year , price)*>
< ATTLIST category CDATA #REQUIRED>
< ELEMENT isbn (#PCDATA)>
< ELEMENT title (#PCDATA)>
< ELEMENT author (#PCDATA)>
< ELEMENT year (#PCDATA)>
< ELEMENT price (#PCDATA)>

F igure 3.2: A D T D  o f  an X M L  docum ent in F igure 3.1.

3.2.2 X M L  Schem a

A lthough D TD s have served well for years as the prim ary m echanism  for 

describing structured inform ation in the SGM L and H TM L com m unities, 

they are considered too lim ited for m any data-interchange applications 

[31]. For exam ple, D TD s can only specify that elem ents are text strings. 

Furtherm ore, they are not form ulated in XM L syntax and provide only 

very lim ited support for types or nam e spaces. This led to the XM L 

Schem a being introduced to overcom e som e o f  the deficiencies o f  DTD 

[66]. X M L Schem a is a data definition language for X M L docum ents 

w hich has becom e a recom m endation o f  W 3C. X M L  Schem a D efinition  

(XSD) is an X M L-based gram m ar declaration for XM L docum ents. X M L
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Schem a allow s very precise defin ition for both sim ple and com plex data  

types, and allow s the derivation o f  new  type definitions.

The purpose o f  X M L schem a is to specify the structure o f  instance 

elem ents together w ith the data  type o f  each elem ent/attribute. 

D eclarations in X M L Schem a can have richer and m ore com plex internal 

structures than declarations in D TD s. T he m otivation for XM L Schem a is 

dissatisfaction w ith DTDs. It w as developed in response to the lim itations 

o f  the D TD  m echanism . X M L Schem a is seen as an advance over DTD. 

The integration w ith nam espaces is one o f  the im portant items m issing in 

DTDs. A D TD  can define any num ber o f  tags, but there is no way to 

associate tags w ith a nam espace. A n X M L  schem a docum ent describes the 

structure o f  X M L docum ents. It begins w ith a declaration o f  the 

nam espaces to be used in the schem a. Its m ain features are:

•  It uses the sam e syntax as used for an ordinary X M L Schema.

•  It is integrated with the nam espace m echanism  which m eans 

different schem a can be im ported from  different nam espaces and 

integrated into one schem a.

•  It provides built-in types, such as string, integer, and time.

•  It provides the m eans to define com plex types from sim ple ones.

•  It supports key and referential integrity constraints.

Figure 3.3 is an X M L schem a definition that captures the Figure 3.1 

docum ent.

The root elem ent o f  the X SD  is the < schem a> . W ithin the <schema>  

elem ent, the nam espace declaration should be included first, and then an 

<element>  declaration. W e declare bookstore  as an elem ent o f  a user- 

defined type that contains a sequence o f  ordered elem ents each o f  a new
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type. Each user-defined type can be declared as either a com plex type or 

sim ple type form.

To specify the cardinality o f  the elem ents, X M L Schem a uses standard 

m odifiers: m inO ccurs and m axO ccurs , that correspond to m inim um  and 

m axim um  values for the low er and upper bounds respectively in term s o f  

occurrence o f  the elem ent.

<?xml version="l.0" ?>
<xs:schema xmlns="http://www.w3.org/2001/XMLSchema">
<xs:element name = "bookstore">
<xs:complexType>
<xs:sequence>
<xs:element name = "book" maxOccurs = "unbounded">
<xs: complexType mixed="true">
<xs:sequence>
<xs:element name = "isbn" type = "string"/>
<xs:element name = "title" type = "string"/>
<xs:element name = "author" type = "string"/>
<xs:element name = "year" type = "integer"/>
<xs:element name = "price" type = "decimal"/>

</xs:sequence>
<xs:attribute name="category" use= "required" type="string"/>

</xs:complexType>
< / x s : e lement>

</xs:sequence>
</xs:complexType>

< / x s : element>
< / x s : schema>

F igure 3.3: A n  X M L schem a o f  an X M L docum ent in F igure 3.1.

3.3 X M L  application program m ing interfaces

X M L docum ents have to be parsed in order to be used by application 

program s. A pplication  P rogram m ing Interfaces (APIs) are used to process 

an X M L docum ent by accessing its internal structure. There are three 

m ajor standardized w ays for users to access the content o f  X M L 

docum ents: D O M , SAX, and JD O M .
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3.3.1 D O M

The D O M  (.D ocum ent O bject M odel) [6] is an application program  

interface (API) for X M L instances defined by W 3C. It is a tree structured- 

based API w hich converts the docum ent that defines an abstract data type 

w hich im plem ents the abstract X M L tree m odel for storing and m anaging 

XM L instances. DO M  is a set o f  Java interfaces which describe the 

facilities for a program m atic representation  o f  a parsed XM L docum ent. 

U sing D O M , the W eb docum ent is m odeled in an object-oriented  way. 

That is, the D O M  represents a W eb docum ent in term s o f  objects (the 

parts o f  the docum ent, such as elem en ts , attributes , text, etc.). A docum ent 

builder is used to read the X M L data  and construct a D O M  tree. Once a 

docum ent is read, its D O M  representation  has been created in m em ory, 

and the objects can be accessed and m anipulated.

An X M L docum ent is read by an X M L  processor (or X M L parser), w hich 

converts it into a parsed X M L docum ent, w hich is the internal 

representation o f  the hosting im plem entation (i.e., a DOM  

im plem entation). C lient applications access the parsed docum ent by m eans 

o f  the functions and m ethods defined in the D O M  API [146].

3.3.2 SA X

The S A X  (Sim ple A P I fo r  X M L)  is an event-driven  and seria l access API 

defined by X M L-D EV  group for accessing XM L docum ents [116]. Since 

SAX is sim ple, it is supported by m ost o f  the available X M L processors 

(parsers). A SAX parser does not create an in-m em ory tree representation 

o f  an XM L docum ent. It reads an input XM L docum ent and generates 

events , such as the start o f  an elem ent, the end o f  an elem ent, and so on. 

SAX is not an X M L processor as such, but it is a com m on interface 

im plem ented for m any different X M L processors.
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Once an X M L docum ent is input to the SAX parser, the first step o f  a 

SA X parser usually consists o f  splitting up the source docum ent into 

tokens. The m ost basic way to tokenize a docum ent is to use the 

occurrences o f  the brackets: < and > as an orientation. Furtherm ore, the 

program m er has som e control over low-level features like character sets 

that are used in the docum ent.

3.3.3 JD O M

JD O M  (Java D ocum ent O bject M odel)  is a new  and open source XM L 

API [88, 89]. It is lightw eight and fast, and is optim ized for the Java 

developer so that they can read, change, and write X M L data m uch m ore 

easily than before. JD O M  integrates well with both DO M  and SAX, and 

takes the best features from  them . It is designed to perform  quickly in a 

sm all-m em ory footprint. JD O M  also  provides a full docum ent view  w ith 

random  access but, surprisingly, it does not require the entire docum ent to 

be in m em ory. A dditionally , JD O M  supports easy docum ent m odification 

through standard constructors and norm al set m ethods. Therefore, JD O M  

has the ability to interoperate seam lessly with existing program  

com ponents built using SAX or D O M . JD O M  docum ents can be built 

from X M L files, D O M  trees, or SA X  events. It is also possible to create a 

JD O M  docum ent from  scratch. M oreover, it provides support for the X M L 

nam espaces and validation at the sam e tim e. W ith other X M P APIs, that is 

not possible.

3.4 X M L  query languages

This is an overview  o f  XM L query languages. Data extraction, 

transform ation, and integration are all w ell-understood databases problem s 

concerned with m anaging data. T heir solution relies on a query language, 

either relational (SQ L) or object-oriented (OQ L). These query languages 

do not apply im m ediately to X M L, because X M L data differs from
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traditional relational or object-oriented data. W e introduce XPath, X Q L 

X M L-Q L, and Q uilt and then present a b rie f introduction to X Q uery 

language.

3.4.1 X Path

Until recently, m ost query languages in the XM L w orld w ere based on 

X Path (X M L Path Language). W e describe XPath 1.0, and then give an 

overview  o f  the features o f  its successor X Path 2.0.

3.4.1.1 X Path 1.0

X Path 1.0 [44] is a specification that defines how  a specific item within an 

X M L docum ent can be located. T he prim ary purpose o f  XPath is to 

address parts o f  an X M L docum ent. X Path  m odels an X M L docum ent as a 

tree o f  nodes w hich includes elem ent nodes , attribute nodes , and text 

nodes. It is designed to be em ployed by m ost X M L query languages. It 

also provides basic facilities for m anipulation o f  strings, num bers, and 

Booleans in the logical structure o f  an X M L docum ent. X Path is intended 

to be sim ple and efficient. It is based on the idea o f  path expressions. An 

expression is evaluated to one o f  the fo llow ing basic value objects:

•  node-set (an unordered collection  o f  nodes w ithout duplicates),

•  boolean  (true or false),

•  num ber  (a floating-point num ber),

•  string  (a sequence o f  characters).

O ne im portant kind o f  XPath expression is the location path. A location 

path declaratively selects a set o f  nodes from a given X M L docum ent. The 

result o f  the evaluation o f  a location path is the node-set containing the
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nodes selected by the location path. The core rules o f  X Path are show n in 

Figure 3.4.

[1] LocationPath ::= RelativeLocationPath | AbsoluteLocationPath

[2] AbsoluteLocationPath ::= '/'RelativeLocationPath?

[3] RelativeLoctionPath ::= Step | RelativeLocationPath 7 Step

Figure 3.4: The core rules o f  XPath.

A location path can be w ritten in the follow ing form:

(pStepi T] S tep 2  T2  ....... Stepm Tm

w here (p can be the em pty sym bol or 7 ’, 7/ is 7 ’, Stept is a location step, 

such that: m > 1, and i e { 1 , ........., m } .

The input to every location step is a node-set, called the context (the input 

to the first step is the set containing only the docum ent node). From this 

set, a new  node-set (called the resu lt se t) is com puted w hich then serves as 

input for the next step. For this com putation, the input node set is 

processed, evaluating the location step for every node in it, appending its 

result set to the overall result, and proceeding with the next node. The 

location step is o f  the form:

axis :: nodetest [filter]*

w hich specifies that navigation goes along the given axis in the XM L 

docum ent. The first part o f  a step is the axis w hich specifies the tree 

relationship betw een the nodes selected by the location step and the 

current context node. The second part is the nodetest. It specifies the node
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type and the nam e o f  the nodes to be selected by the location step w hich 

satisfy the given filter. The third part is the filte r . The filter contains 

pred ica tes  over expressions. A predicate filters a node set w ith respect to 

an axis to produce a new  node set.

The sem antics o f  X Path expressions is defined in term s o f  node-sets, i.e., 

unordered forests. W hen evaluating individual steps, there is a tem porary 

node list (context). For every navigation step, the axis specifies the 

direction o f  navigation in the tree. A ll fo rw a rd  axes enum erate the nodes 

in docum ent order; on the other hand all backw ard  axes  enum erate them  in 

reverse docum ent order. For exam ple, term s o f  predicates over the 

expressions can be o f  the follow ing form s:

•  B ooleans over predicates,

•  A rithm etic expressions over num bers and string operations,

•  Function calls: used for instance to state conditions on the 

relationship betw een the current context node  and its context, for 

exam ple:

- Last(): returns n such that n is the size o f  the context,

- Position(): returns the index o f  the context node in the current 

context,

- Count{nodesety. returns the num ber o f  nodes in a nodeset,

- Id(ex/?r): returns the node(s) in the current XM L instances 

w hose id(s) result from  evaluating expr w ith respect to the 

context node.

Inside filters, relative  or absolute  location paths can be used. R elative 

location paths are evaluated with respect to the current context node. 

W here an absolute location path begins w ith “/” , w hich is sim ilar to the
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U N IX directory notation, they are evaluated w ith respect to the root node 

o f  the X M L docum ent.

The follow ing X Path query exam ple, finds the students w ho have taken 

the D atabase System s course w ithin the current docum ent:

//S tudent\C rsTaken/C rsN am e  = “D atabase System s  ”].

3.4.1.2 X Path 2.0

X Path 2.0 [26] is a superset o f  X Path  1.0. It uses the sam e axis as XPath 

1.0, follow ed by a node test, fo llow ed by a predicate. H ow ever, XPath is 

an expression language that allow s processing o f  values conform ing to its 

m odel, it supports sequences instead o f  node-sets. The result o f  an XPath 

expression m ay be a selection o f  nodes from  the input docum ents, or an 

atom ic value, or m ore generally any sequence allow ed by the data model. 

Thus, every X Path expression evaluates to a sequence. Here, the sequence 

can be defined as follows:

•  A sequence is an ordered collection o f  zero or m ore items.

•  An item is either an atom ic value or a node.

•  An atom ic value is a value in the value space o f  the XM L Schema.

•  A node is defined in the X Q uery and XPath 2.0 data model.

•  A sequence o f  exactly one item  is called a singleton sequence.

•  A sequence containing zero item s is called an em pty sequence.

There are m any differences betw een X Path 1.0 and its successor XPath 2.0. 

XPath 1.0 does not support explicit quantification, e.g. to concatenate the 

first and last nam es. The m ost basic additional features for XPath 2.0 are:

•  For-loop expression,

•  If-Then-Else conditions,

•  Functions,
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•  Q uantified expressions,

•  Logical expressions,

•  Processing Instructions, and

•  Schem a validation.

In total, although X Path 2.0 has m any additional features com pared to 

XPath 1.0, it also has som e lim itations. The basic one is that it returns 

X M L tree nodes and not an X M L docum ent. D espite its interesting 

features, X Path is not an expressive query language. Com pared with the 

relational algebra, a full jo in  operator is m issing (sem i-equijoins are in fact 

provided by the path operator, and filters). As a result XPath is a 

lightw eight X M L querying language. It is only an addressing m echanism  

w hich selects node sets in X M L docum ents. Its purpose is to provide the 

com m on addressing m echanism  for X M L, and to serve as a base for XM L 

querying and m anipulation languages and further concepts.

3.4.2 X Q L

The X M L Q uery Language (XQL) [7, 127] w as an early proposal for a 

sim ple querying language w hich w as designed specifically for XM L 

docum ents. It is a declarative rather than  procedural language.

The basic idea and syntax is to use paths and filters for navigation. 

Roughly, XQL is the fragm ent o f  an X Path which can be built w ithout 

using axis. A dditionally, union and intersection on results are allowed. An 

expression in XQ L is alw ays evaluated with respect to a search context. A 

search context is a set o f  nodes through which an expression m ay search to 

yield the value o f  the expression. All nodes in the search context have the 

sam e parent name. XQ L allow s a query to select betw een using the current 

context and the root context as the input context. A query prefixed with 7 ’ 

uses the root context, w hile ‘./’ is used for the current context. A query 

m ay use the 7 / ’ operator to indicate recursive descendent. The prefix ‘.//*
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allow s a query to perform  a recursive descent relative to the current 

context.

Som e XQ L queries are:

•  to find all author elem ents anyw here w ithin the current docum ent: 

//author

•  to find all title elem ents, one or m ore levels deep in the bookstore: 

hookstore/Ztitle

•  to find the form at attribute for all book elem ents: 

book/@ form at

•  to find all author elem ents that contain at least one degree and one 

publication: author [degree a n d  pub lica tion]

•  to find all authors containing a first-nam e child w hose text is 'John1: 

author [first-nam e! text () — 1J o h n '

The central extension, m aking X Q L  a query language  instead o f  a pure 

addressing m echanism , is the generation  o f  the result tree (instead o f  a 

node-set) as a projection o f  the input docum ent.

3.4.3 X M L -Q L

X M L-Q L  [50, 51] is another early language (1998, non-W 3C) that w as 

proposed as a query language for X M L data. It can express queries which 

extract pieces o f  data from X M L docum ents, as well as transform ations. In 

contrast to XQ L, X M L-Q L does not em ploy navigation and paths. The 

basic idea was influenced by the SQL query structure in that it partitions 

X M L-Q L queries into a selection part (W H ERE IN) and a construction 

part (CO NSTRU CT) it has the form:
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W HERE xm l-pa ttern i IN  url 

C O N ST R U C T xml-patterri2

w here, xm l-pattern i is m atched against an XM L instance given by the url. 

Therefore, every m atch yields variable  bindings w hich are used as jo in  

variables, and propagate the result. H ence, this is again an X M L pattern 

specifying the result. Sim ilarly to SQ L, the C O N STR U C T  part m ay 

contain nested X M L-Q L queries. H ere the IN  part applies, either to a url, 

or to the content o f  a variable w hich has been assigned in the WHERE  part.

The follow ing exam ple produces all authors o f  books w hose publisher is 

A ddison-W esley in the 'bib.xm l' docum ent.

WHERE <book>
<publisher> <name> Addison-Wesley </></>
<title> \$t </>
<author> \$a </>

</> IN "bib.xml" CONSTRUCT <result>
<author> \$a </> <title> \$t </>

< / >

The above query m atches every <book>  elem ent in the "bib.xml" XM L 

docum ent w hich has at least one <title>  elem ent, one <author>  elem ent, 

and one <publisher>  elem ent w hose nam e is "A ddison-W esley". For each 

such m atch it returns both <author>  and <title>  and groups them  in a 

new  <result>  elem ent.

X M L-Q L can m ap X M L data betw een DTDs and can integrate XM L data 

from different sources. T herefore, we can query several sources 

sim ultaneously and produce an integrated view  o f  their data. The query in 

Figure 3.5 is introduced in [49]. It produces all the pairs o f  nam es and 

social-security  num bers o f  the em ployees by querying the sources 

'w w w .a .b .c/data .xm l' and 'wwxv.irs.gov/taxpayers.xml'. The two sources 

are jo ined  on the social-security  num ber, w hich is bound to $ssn  in both
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expressions. The result contains only those elem ents that have both a nam e  

e lem ent in the first source and an incom e  elem ent in the second source.

WHERE <person>
<name></> ELEMENT_AS \$n 
<ssn> \$ssn </>

</> IN "www.a.b.c/data.xml", 
<taxpayer>
<ssn> \$ssn </>
<income> </> ELEMENT\_AS \$i 

</> IN www.irs.gov/taxpayers.xml 
CONSTRUCT <result> \$n \$i </>

F igure 3.5: The X M L -Q L  query.

3.4.4 T he Q uilt query language

Q uilt [39] is a query language for XM L. It is the base o f  X Q uery which 

will be discussed next. Q uilt is the first XM L query language that em beds 

XPath syntax into higher-level constructs sim ilar to SQ L/O Q L [17]. Q uilt 

can operate on flat structures, such as row s from  relational databases, and 

generate hierarchies based on the inform ation contained in these structures. 

It is able to express queries based on docum ent structure and to produce 

query results that either preserve the original docum ent structure or 

generate a new  structure. It can also express queries based on paren t/ch ild  

relationships or docum ent sequence, and can preserve these relationships 

or generate new  ones in the output docum ent.

Q uilt queries consist o f  a series o f  clauses that declaratively describe:

•  w hat inform ation is to be used,

•  w hich additional conditions apply, and

•  how  the result is to be constructed.
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The structure o f  Q uilt queries as a w hole is very sim ilar to X M L-Q L 

(JWHERE xm l-pattern  IN  url C O N ST R U C T xml-patterri). The m ain 

difference is that the extraction part in X M L-Q L also uses an XM L pattern 

w hich is m atched w hereas Q uilt uses iteration and collections over XPath 

expressions.

A sim ple form  o f  a Q uilt query consists o f  FOR, W H ERE, and RETU RN  

clauses. The F O R -clause  uses X Path  expressions for binding the values o f  

one or m ore variables. In general, an X Path expression evaluates to a set 

o f  nodes. The FO R -clause generates an ordered list o f  tuples, each 

containing a value for each o f  the bound variables. A tuple is generated for 

each possible way o f  binding the list o f  variables to nodes that satisfy their 

respective X Path expressions. W hen a node is bound to a variable, its 

descendant nodes are carried along w ith  it. The W H ER E-clause applies a 

filter to the tuples and retains only those tuples that satisfy a given search 

condition. The R ETU R N -clause then generates a new  docum ent structure 

using the values o f  the bound variables.

The follow ing exam ple finds every book w ritten by Crockett Johnson. The 

FO R -clause generates a list o f  b indings. First, the $b variable is bound to 

individual book elem ents in the docum ent found at the given URL. Then, 

the $a  variable is bound to individual au thor elem ents that are descendants 

o f  $b. The W H ER E-clause retains only those tuples o f  bindings in w hich 

the author is C rockett Johnson, and the RETU RN  clause uses the resulting 

values o f  $b to generate a list o f  books. By default, the ordering o f  book 

elem ents in the original docum ent is preserved.

FOR $b IN
document("http://www.biblio.com/books.xml")//book,
$a IN $b/author 

WHERE $a/firstname = "Crockett" AND $a/lastname = "Johnson"
RETURN $b
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A dditionally, Q uilt is supported w ith FO R -LET-W H ER E-R ETU R N - 

clause (F LW R -expressions) w hich is o f  the form:

FOR variable IN xpath-expr 
LET additional-variable: = xpath-expr 

(FOR | LET)*
WHERE filters 
RETURN xml-expr

Bounded variables can be defined by a FO R -clause to the elem ents which 

are iterating over the result set o f  X Path expressions. A dditional variables 

m ay be defined in the LET-clause, com puted  from  the ones defined in the 

FO R -clause. The variables in the FO R -clause iterate over the 

corresponding xpath-expr, w hereas the variables in the LET-clause are 

bound to the result o f  the corresponding xpath-expr. V ariables defined in 

the FO R -clause or LET-clause can then  be used in subsequent IN clauses. 

The result from the FO R -LET clauses is sequences o f  variable binding 

used in generating the result, using the X Path filter syntax. Then the 

R ETU R N -clause generates an X M L sub-tree for each variable binding.

The Q uilt language provides the usual operators used in database queries. 

Q uilt allow s for jo ins in the FO R -clause by specifying "var IN  xpath-expr"  

argum ents, or by a sequence o f  FO R -L E T  clauses. Each FO R-LET clause 

m ay contain references to variables defined before. A dditional jo in  

functionality is provided by using FL W R  expressions in the RETU RN  part. 

Here, also the inner FLW R  expression m ay access variables from the outer 

clause.

In Quilt, selection  functionality is explicitly provided by the W H ERE- 

clause, but also the X Path expressions (filters, extensional sem antics) 

provide functionality w hich is im plem ented in SQL by selection.

Projection  is supported by the definition o f  variables in the FO R-LET 

clauses, and m ainly by a FILTER  operator w hich extends the XPath 

syntax o f  the expression in the form:
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xpath - expri FILTER xpath - expr2

Results in a tree w hich contains exactly  the nodes o f  the result set o f  

xpa th -expr /, retaining the docum ent structure and order. N odes are taken 

w ithout attributes or sub-elem ents, i.e., only the tags are kept.

Q uilt is a subset o f  XQ uery. It provides the user w ith the ability to use 

built-in functions and user-defined functions. These are very im portant 

features w hich are used in our approach in order to resolve logical 

heterogeneity  problem s. The exam ples given in Section 6.5 show the 

im portance o f  such functions and how  they are used.

3.4.5 X Q uery

X Q uery  [29] is a potential standard X M L query language. It is a powerful 

X M L query language derived from  Quilt. W ith som e m inor revisions, 

Q uilt query language has becom e the X Q uery Language (Feb. 2001 

W orking draft). X Q uery is a full-featured query language. It has borrow ed 

features from  several other languages, including X Path 1.0, XQL, XM L- 

QL, SQL, and OQL. X Q uery is designed to m eet the requirem ents 

identified by W 3C X M L Q uery W orking Group. It is created to be a 

language in w hich queries are concise and easily understood. The 

requirem ent w as for both hum an-readable query syntax and X M L-based 

query syntax. It is defined as a superset o f  XPath. X Q uery version 1.0 is 

an extension o f  X Path 2.0. T herefore, any expression that is syntactically 

valid and executes successfully in both XPath 2.0 and X Q uery 1.0 will 

return the sam e result in both languages. The shortcom ing in XPath 2.0 is 

that it returns X M L tree nodes and not an XM L docum ent, w hen querying 

or navigating an XM L docum ent usually dem ands an XM L output. Hence, 

the ability to produce or restructure an XM L docum ent is valuable and is 

offered by XQ uery. Therefore, it covers the aspects o f  both docum ent- 

oriented and data-oriented docum ents. Q ueries in X Q uery often com bine
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inform ation from  one or m ore sources and restructure it to create a new  

result.

XQ uery expressions have som e sim ilarity  with SQL in their structure:

FOR variable-declaration 
WHERE condition 
RETURN result

The FO R -clause  plays the sam e role as the FRO M -clause  does in SQL, 

and the W H ERE-clause  is borrow ed from  SQL with the sam e functionality, 

and the RETU R N -clause  is sim ilar to SELECT.

For data integration, the docum ents to be integrated in general use their 

ow n nam espaces. X Q uery allow s access to the nam espace definitions and 

assigns them  to constants w hich can then be used for selecting navigation 

steps according to the nam espaces.

X Q uery is also a functional language in w hich a query is represented as an 

expression. The expression that is m ost com m only used for com bining and 

restructuring the X M L details is the F LW R -expression  w hich is the sam e 

as Quilt.

E xam ple 3.4.5 the follow ing exam ple o f  an X Q uery query returns the title 

o f  all books published in or before the year 2000 and the total num ber o f  

such books in the bibliography bib.xm l docum ent.

ebooks>
FOR $book IN document("bib.xml")/book
LET $titles = $book/title
WHERE $book/@year <= 2 000
RETURN
$book/title
<total> count($titles)</total> 
ebooks>
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In this query, we can see that X Q uery expressions are FLW R -expressions. 

Each FO R iteration binds the $book  variable. Then, the LET-clause binds 

the Stitle  variable w ithout iteration. Next, the FO R -LET clause filters 

using the predicate $book/@ year< = 2000 , in the W H ER E-clause. And 

finally, the RETU RN  clause generates the output. In this query, $book/title  

is an X Path expression, and <books>. . .< /books>  w raps the query result 

into a new  XM L docum ent.
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The SISSD  data integration system

This chapter introduces the project. W e give a b rie f introduction to the 

m otivation for this work. Then, we introduce our approach, followed by 

the proposed system  architecture. N ext, w e describe the heterogeneity 

problem , and then introduce an application exam ple which is used 

throughout the thesis to show  how  the integration is accom plished.

4.1 Introduction

Integrating and querying heterogeneous data sources is a fundam ental 

problem  in databases, w hich has been studied extensively in the last two 

decades both from a form al and a practical point o f  view  [103]. Recently, 

this research area has been driven by the need to integrate data sources on 

the W eb, m uch o f  the previous research on integration has focused on so 

called data integration  [103, 105]. Data integration is the problem  o f  

com bining the data residing at different sources usually in databases, and 

providing the user w ith a unified view  o f  these data, by m eans o f  a global
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(or m ediated) schem a, over w hich queries to the data integration system  

are expressed. A data integration system  has to free the user from needing 

to know  w hich sources contain the data o f  interest, how  such data are 

structured at the sources, and how  such data are to be m erged and 

reconciled to answ er user queries [35, 119, 147]. Regarding data

integration techniques we differentiate betw een the logical and physical 

stages. The first stage integrates schem as from m ultiple data sources. The 

result o f  this schem a integration process is the m ediated schem a  and 

m apping rules w hich define how  to m ap concepts in the data sources onto 

the m ediated schem a. D ata in tegration in the physical stage uses these 

m apping rules to transform  users' queries on the m ediated schem a into 

local queries [80].

In the research com m unity, to build data integration system s two 

approaches are used. These both use the follow ing tw o steps:

1. A ccept a query, determ ine the appropriate set o f  data sources to 

answ er the query, and generate the appropriate sub-queries for each 

data source.

2. O btain results from  the data sources, perform  appropriate translation, 

filtering, m erge the data, and return the final answ er to the user or 

application.

The first approach is referred to as a virtual approach , w here data rem ains 

in the local data sources. Thus, queries operate directly on the local data 

sources and data integration takes place during the query processing. This 

m eans data is extracted from the data sources only w hen queries are posed. 

This process also m ay be referred to as a m ediator-w rapper approach  

[145],

The second approach is called the m ateria lized  approach  [27], since data 

com ing from the local data sources are integrated and stored in a single
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new  database or warehouse. All queries then operate on this 

com prehensive database. In this approach:

1. D ata from each data source that m ay be o f  interest to the anticipated 

users is extracted in advance, translated and filtered as appropriate, 

and m erged with relevant data  from other data sources in a logical 

centralized repository.

2. W hen a query is posed, the query is evaluated directly at the 

repository w ithout accessing the original data sources.

This approach is referred to as data  w arehousing  since the repository 

serves as a w arehouse storing the data o f  interest. A data w arehouse is a 

decision support database that is extracted from  a set o f  data sources. The 

extraction process requires transform ing data from  the source form at into 

the data w arehouse form at [63].

The m ediator-w rapper approach is used to integrate data from different 

databases and other data sources. It is appropriate for data that changes 

rapidly, for clients with unpredictable needs, and for queries that operate 

over vast am ounts o f  data from  a very large num ber o f  inform ation 

sources (e.g., the W orld W ide W eb) [143]. It has tw o m ain com ponents: a 

m ediator and one w rapper for each data source. The w rappers are 

interfaces to data sources that translate data into a com m on data m odel 

used by the m ediator. The m ediator perform s the follow ing actions in the 

system :

1. R eceiving a query form ulated on the unified schem a from the user.

2. T ranslating this query into sub-queries to individual sources based 

on source descriptions.

3. Sending sub-queries to the w rappers o f  individual sources, w hich in 

turn transform  these sub-queries into queries suited to the source's 

data m odel and schem a.
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The construction o f  a m ediator can be classified into tw o m ain types, 

nam ely structural approaches and sem antic approaches. In structural 

approaches, local data sources are the m ain source o f  inform ation w hen 

the m ediated schem a is constructed. The integration is done by providing 

or sem i-autom atically generating a global unified schem a that 

characterizes the underlying data sources. On the other hand, in sem antic 

approaches, the integration is achieved by using a com m on ontology 

covering the dom ain o f  the data sources to identity the elem ents in the 

local schem a that should be linked.

O ur objective is to facilitate the designer in building structured and sem i

structured data integration system s. P roviding a reasonable fram ew ork for 

database integration designers to effectively integrate and query 

heterogeneous distributed structured and sem i-structured data has becom e 

another challenge for databases integration researchers [15]. The m ain 

difficulty in this task lies in the lack o f  a fully autom ated schem a-m apping 

process. The key problem  in creating this arises from  the existing high 

degree o f  logical heterogeneity betw een the source schem as. This m eans, 

it is necessary to resolve several conflicts caused by the heterogeneity o f  

the data sources w ith respect to the com m on data m odel, schem a or 

schem a concepts. Therefore, the m apping betw een entities from different 

sources representing the sam e real-w orld  objects has to be defined. This 

task is not easy since the data at different sources may be represented in 

different form ats and in incom patible ways. For exam ple, the 

bibliographical databases o f  different publishers m ay use different form ats 

for authors' or editors' nam es (e.g., full nam e or separated first nam e and 

last nam e), or different units o f  prices. M oreover, the sam e expression 

may have a different m eaning (hom onym  problem ), and the sam e m eaning 

m ay be specified by different expressions (synonym  problem ). This 

im plies that syntactical data and m etadata alone can not provide enough 

sem antics for all potential integration purposes. A nother difficulty
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im peding structured and sem i-structured data integration is the query 

translation process. This is one o f  the m ost im portant problem s in the 

design o f  a data integration system , in that the system  should be able to 

reform ulate the query that is posed in term s o f  the global schem a into a set 

o f  queries suited to the local data sources.

The data integration process is often  very labour-intensive and dem ands 

m ore com puting expertise than m ost application users have. Therefore, 

sem i-autom ated approaches seem  the m ost prom ising, w here m ediation 

engineers are given a tool w ith w hich to describe the m appings betw een 

the integrated schem a and local data source schem as, to produce a uniform  

view  over the local databases [120, 148].

4.2 An overview  o f  our approach

In general, building data integration system s requires addressing several 

different issues. In this thesis, we concentrate on two basic issues:

1. Establishing a K now ledge B ase to describe the m appings betw een 

the integrated view  (m aster view ) and the participating data sources.

2. Processing user queries expressed over the m aster view  into queries 

suited to the local data sources.

As, we are restricting our attention to integration system s which com bine 

structured data residing in relational databases and sem i-structured data 

held in w ell-form ed XM L docum ents. The system will provide the user 

with an integrated view  (m aster view ) over heterogeneous distributed 

structured and sem i-structured data sources; such an integrated view  will 

be best represented by XM L because the advantages o f  XM L as an 

exchange m odel, such as rich expressiveness, clear notation and 

extensibility. The system  will enable users to query its data sources in a 

uniform  way. A lthough fully autom atic data integration may not be 

possible in the dynam ic environm ent that we have considered, we should
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be able to achieve a high degree o f  autom ation w hich requires only som e 

hum an intervention by using sem antic m apping. Since a fully autom atic 

process for data integration is infeasible, we propose an approach that can 

be used as an assisting tool to reduce the total designer effort in building 

data integration system s. Therefore, the issues o f  establishing a suitable 

K now ledge Base and processing a user queries have to be addressed. A 

basic concept will be resolving the logical heterogeneity problem  w hich 

m ay occur am ong the schem a's elem ents. To achieve this task, we will 

follow  a m echanism  in w hich the correspondences am ong the schem as' 

elem ents are expressed through a set o f  m appings. These m appings are a 

pow erful tool for expressing the correspondences betw een the schem as, 

and capturing and overcom ing the heterogeneity  o f  the various data 

sources. M appings are usually able to bridge these differences.

The integration architecture we have adopted in the project is based on a 

m ediator architecture (see Figure 4.1). The system  prototype is called 

SISSD  (System  to Integrate Structured and Sem i-structured Databases). It 

requires the generation o f  a tool for a m eta-user (w ho does the m etadata 

integration) to describe m appings betw een the m aster view  and local data 

sources. It produces an X M L M etadata K now ledge Base (XM KB) to 

capture the m apping inform ation, w hich is then used to generate the sub

queries to local data sources from  user queries posed over the m aster view. 

These tasks are perform ed through a m ediation layer. Such a layer is 

introduced to m anage the follow ing:

1. E stablishing and evolving an XM L M etadata K now ledge Base 

(X M K B) increm entally to m aintain the m apping inform ation 

betw een the m aster view  and the local data sources participating in 

the integration system  [16].

2. Q uerying heterogeneous distributed structured and sem i-structured 

data sources in term s o f  the m aster view  [14].
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This is achieved in three steps. First, the data source m etadata is extracted 

and a Schem a Structure D efinition (SSD ) is built for each participating 

data source. The SSD is the description o f  the data source m etadata in 

XM L form at. W e do not aim  to capture all details o f  the data source 

m etadata, but rather to capture its essential features and abstract only the 

structure o f  the data source w hich m eets the basic requirem ents o f  our 

approach. This is achieved through an autom atic process that accesses the 

specified data source w ithout v io lating  its local autonom y. Then, its 

m etadata is detected and extracted to build  a local view  (Schem a Structure 

D efinition (SSD )) in XM L form at for th is data source. The resulting view  

describes the structure o f  the data source schem a using the XM L D ata 

Source D efinition Language (X D SD L).

The second step perform s the task  o f  the m ediation layer, by establishing 

and evolving an XM L M etadata K now ledge Base (X M K B ) increm entally 

to assist the Q uery Processor in m ediating user queries posed over the 

m aster view  to local queries over the distributed heterogeneous data 

sources. This translates such queries into sub-queries —also called local 

queries- w hich fit each local data source. This is achieved through a sem i

autom atic process that generates a tool to  assist a m eta-user to specify the 

m appings betw een the m aster v iew  and local data sources. W e introduce 

here the XM L M etadata K now ledge Base (X M K B) m odule as the basis o f  

a m ediation tool to overcom e the heterogeneity problem s betw een data 

sources. The X M K B m odule m aintains the m apping inform ation betw een 

the m aster view  and local data sources’ view s participating in the 

integration system . In fact, we m odel a Schem a Structure D efinition (SSD ) 

as a tree structure. Thus, each node is identified by its path in the tree, 

called a m aster p a th  for an elem ent o f  the m aster view  and a local pa th(s) 

for the corresponding elem ent(s) o f  a local Schem a Structure D efinition 

(SSD). The relationship betw een a m aster path and a local path is created 

as a m apping. This distinction betw een elem ents and paths is im portant,
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because an elem ent m ay occur several tim es in a schem a tree structure 

w ith different m eanings, while a path alw ays identifies a unique elem ent. 

Hence, for each path o f  the m aster view , the objective is to keep the set o f  

paths that have the sam e m eaning in the local schem as and a user-defined 

function if  it is needed to perform  specific operations to overcom e 

representational differences. Such a function is defined explicitly by the 

designer.

The third step is concerned w ith the query translation process which is an 

integral part o f  the system. A Q uery Processor m odule is developed for 

this process. It transform s a user query  into local queries w hich it then 

translates by order o f  this process using the m appings that are defined in 

the X M K B. In order to obtain local queries for a query issued against the 

m aster view , the system  m ust identify the data sources relevant to a given 

query. The basic idea is that w hen a query is posed against the m aster view , 

called a m aster query (global query), it is autom atically  rew ritten into sub

queries, called local queries , w hich are appropriate to each local data 

source’s form at using the inform ation stored in the XM KB. This task is 

accom plished by the Q uery Processor m odule. The X M KB contains the 

path inform ation and functions to be applied for each local source. The 

path expressions in a m aster query are parsed by the query parser and 

replaced by their correspondence paths in each local data source. This is 

achieved by consulting the X M K B to check if  there are correspondence 

paths for the given query. I f  not, a null query is generated for the 

corresponding path in the local query, w hich m eans that this query cannot 

be applied to that local data source. Each local query generated will be 

sent to its corresponding local source, w hich will execute the query and 

return the result for the m aster query.
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4.3 The SISSD  architecture and C om ponents

In this section, we present an overview  o f  the SISSD architecture and 

sum m arize the functions o f  its m ain com ponents. The architecture we 

adopted is show n in Figure 4.1. A t the bottom  layer there can be any 

num ber n o f  heterogeneous structured (e.g., relational database) and sem i

structured (e.g., XM L docum ent) data sources, w here n e { l ,  ........., m) .

The X M L docum ents can be a w ell-form ed XM L docum ent with no 

referenced DTD or XM L schem a, w here the associated m etadata are 

buried inside the data, and also can be X M L docum ents w ith referenced 

D TDs or XM L schem as. H ow ever, for our purposes it is the structure o f  a 

given X M L docum ent that is crucial for data integration. Therefore, we 

investigate issues related to abstracting the structure o f  an XM L 

docum ents in the cases w here the sources have no explicitly defined DTDs 

or X M L schem as. A t the top layer o f  our system  is the m aster view  which 

is used as a global interface to the participating local data sources. The 

advantages o f  XM L as an exchange m odel [72, 113] - such as rich 

expressiveness, clear notation and extensibility  - m ake it an excellent 

candidate to be a data model for the m aster view . At the m iddle layer, the 

architecture consists o f  the follow ing associated modules:

•  M e ta d a ta  E x tra c to r  (M D E ): The M DE needs to deal w ith 

heterogeneity at the hardw are, softw are and data m odel levels 

w ithout v iolating the local autonom y o f  the data sources. It interacts 

with the data sources v ia  JD B C  (Java Database C onnectivity) if  the 

data source is a relational database or via JX C (Java X M L 

Connectivity) if  the data source is an XM L docum ent. The M D E 

extracts the m etadata o f  all data sources and builds a Schem a 

Structure D efinition (SSD ) in XM L form for each data source. W e 

developed JXC using a JD O M  (Java D ocum ent O bject M odel) 

interface to detect and extract the schem a structure o f  w ell-form ed 

XM L docum ents that have no referenced DTD  or XM L schem a.
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JX C can also deal w ith X M L docum ents w ith referenced D TD s or 

X M L schem as.

•  Schem a Structures D efin ition (SSD): Typically, the heterogeneous 

data sources use different data  m odels to store their data (e.g. the 

relational model and X M L m odel). This type o f  heterogeneity is 

referred to as syntactic heterogeneity . The solution com m only 

adopted to overcom e syntactic heterogeneity  is to use a com m on 

data m odel and to m ap all schem as to this com m on model. XM L is 

a good candidate as a com m on data m odel for our integrated data 

m odel for tw o reasons: it can represent w ith ease any type o f  data 

w hether it is structured in som e w ay or not, X M L also fits the 

context o f  current web technologies and has rich and pow erful tool 

support [10, 33, 113]. The m etadata extracts generated from  the data 

sources by using this data m odel are referred to as Schem a Structure 

D efinitions (SSDs). W e define a sim ple language called XM L Data 

Source D efinition Language (X D SD L ) for describing and defining 

the relevant identifying inform ation abstracted from the data 

structure o f  a data source. T he X D SD L output is represented in 

X M L and is com posed o f  tw o parts. The first part provides a 

description o f  the data source nam e, location and type (relational 

database or X M L docum ent). The second part provides a definition 

and description o f  the data source structure and content. The 

em phasis is on m aking these descriptions readable by autom ated 

processors such as parsers and other X M L-based tools. This 

language can be used to describe the structure and content o f  

relational databases, w ell-form ed XM L docum ents w hich have no 

referenced DTD or XM L schem a, and XM L docum ents with 

referenced DTDs or XM L schem as.

•  Schem a Structure D efinition (SSD ) & M aster V iew  Parsing:

used for reading and parsing the Schem a Structure D efinition (SSD )
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and the m aster view  to check the syntactic correctness and test 

w hether it conform s to the X M L syntax rules (w ell-form ed).

•  Tree Structure G eneration: used to generate a tree structure for 

each data source SSD and the m aster view.

•  G U I G eneration: used to produce a convenient sim ple GUI form 

for each schem a tree. It is used as a tool to facilitate the generation 

o f  the paths m apping.

U s e r  Q u e r y  
(XML Q u e ry )

M aster V iew

Q u e ry  n

Q u e r y  2
Q u e ry  1

S c h e m a  S t r u c tu r e  
Defin it ion

M a s t e r  V iew

J D B C

JX C

R D B

XML
d o cu m en t

XML
d o c u m e n t

M etad ata
E xtractor

GUI
G e n e r a t io n

E l e m e n t  In d e x  
G e n e  ra tion

T r e e  S t r u c t u r e  
G e n e r a t io n

T r e e  S t r u c t u r e  
G e n e  ra tion

S c h e m a  S t r u c tu r e  
Defin it ion  P a r s i n g

M a s t e r  V ie w  
P a r s i n g

K n o w led g e  S e r v e r

Q uery P r o c e s s o r

GUI

XML M etadata  
K n o w led g e  B a s e  

(XMKB)

F igure 4.1: The SISSD  Architecture.
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•  E lem ent Index G eneration: generates autom atically a unique index 

num ber for each elem ent in the m aster view  tree structure.

•  K now ledge Server (KS): the central com ponent o f  the SISSD. It 

establishes, evolves and m aintains the XM L M etadata K now ledge 

Base (X M K B), w hich holds inform ation about the data sources’ 

structures and sem antics and provides the necessary functionality 

for its role in assisting the Q uery Processor (QP) module.

•  X M L M etadata K now ledge B ase (XM K B): contains know ledge 

about the data sources’ structures and form ats represented by XM L. 

It includes the data sources’ inform ation (nam e, type and location) 

participating in the in tegration system , the m etadata, defining the 

m appings betw een the m aster view  and Schem a Structure 

D efinitions (SSD s) o f  the local data sources, and the function nam es 

for handling sem antic and structural discrepancies.

•  Q uery Processor (QP): is responsible for receiving a user query 

(m aster query) over a m aster v iew  processing it and returning the 

result to the user. It m ediates betw een a user query posed over the 

m aster view  and the underly ing distributed heterogeneous data 

sources, to autom atically rew rite the query into sub-queries - called 

local queries - w hich fit each local data source.

4.4 H eterogeneity issues in the SISSD system

In section 2.4 different types o f  conflicts’ that may exist betw een a set o f  

independently designed data sources are identified. In this section we will 

show  how  the fundam ental types o f  these conflicts are resolved in the 

SISSD  system . W e choose these types as a representative o f  each group o f  

these conflicts identified in Figure 2.3. A t the end o f  this section we
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present the conflict types identified in Figure 2.3 and state the conflict 

types that can be handled by our system  SISSD.

•  N am ing  conflicts (Table nam e conflicts, A ttribute nam e conflicts): 

this type o f  conflict can occur betw een table nam es or attribute 

nam es w hen different designers use their ow n term inologies to 

describe real w orld concepts. This m ay lead to synonym  and 

hom onym  problem s. The form er occurs w hen tw o different nam es 

are used by different designers to describe the sam e concept. For 

exam ple one designer m ay represent a set o f  em ployees as elem ent 

EM PLO Y EE in one data source (say D S1), w hile another designer 

m ay represent the sam e set as elem ent W O R K ER  in another data 

source (say DS2). In our approach we resolve this type o f  conflict in 

the follow ing way. W e m ap elem ents that are synonym s to the 

elem ent w ith the sam e m eaning in the global schem a by assigning 

the sam e index num ber generated autom atically  for the global 

schem a elem ent (m ore explanation for m ore inform ation on how  

these index num bers are generated, see section 5.4.3) to the 

elem ents that are synonym s in the local schem a structures. A 

hom onym  occurs w hen the sam e nam e is used by different designers 

to represent unrelated concepts. For instance, the elem ent CO U RSE 

in D S 1 m ay denote a set o f  courses taken by a student, on the other 

hand the elem ent C O U RSE in DS2 m ay refer to the available dishes 

in a restaurant w here that student eats. Therefore to resolve this 

conflict the hom onym  elem ents are m apped to different elem ents in 

the global schem a by assigning different index num bers generated 

autom atically  for the global schem a elem ents to the elem ents that 

are hom onym s in the local schem a structures.

•  Unit conflicts: conflicts o f  this type arise w hen tw o sem antically 

sim ilar elem ents are represented using different units and m easures. 

For instance, em ployee salary in tw o data sources m ight be
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represented in UK pounds in one data source and in US dollars in 

the other. In our approach we resolve this type o f  conflict, by 

m apping elem ents having different units o f  m easurem ent to 

appropriate elem ents in the global schem a by assigning index 

num ber o f  that elem ent to the elem ents in the local schem a 

structures w hich correspond to it and defining transform er functions 

w hich convert data in the different units to the com m on unit 

subscribed to by the global schem a.

•  P recision conflicts: conflicts o f  this type arise when two

sem antically sim ilar elem ents are represented using different 

precisions. For exam ple, S tudent m ark takes an integer value from 1 

to 100 in D S1,w hile Student grade takes a string value o f  {A, B, C, 

D, F} in DS2. This type o f  conflict is usually reconciled by m eans 

o f  a m apping table as show n in Figure 4.2.

M arks G rades

81-100 A

61-80 B

41-60 C

21-40 D

1-20 F

Figure 4.2: M apping between M arks and  Grades.

In our approach we resolve this type o f  conflict, by m apping 

elem ents having differing precision in their m easurem ents to 

appropriate elem ents in the global schem a and defining transform er 

functions to convert data to the type o f  m easurem ent used by the 

global schem a. In this case, the functions m ay have to do a table 

lookup. In this lookup table an isom orphism  (m apping) is defined 

betw een the different precisions o f  m easurem ent.
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•  O ne-to-M any E lem ent conflicts: a special case o f  a conflict o f  type 

one-to-m any elem ents arises w hen inform ation captured in one 

elem ent in the global schem a is equivalent to the concatenation o f  

m ore than one elem ent in the local data sources. For exam ple, the 

nam e o f  person is broken into firs tn a m e  and lastnam e  in a local data 

source DS1, while it is sim ply nam e  in the global schem a. In our 

approach, this type o f  conflict is resolved by m apping the elem ents 

in the local data source into corresponding elem ents in the global 

schem a by assigning the index num ber generated autom atically for 

the global schem a elem ent to the elem ents in the local schem a 

structures w hich correspond to it and defining a function to 

concatenate the elem ents in the local data source to get the elem ent 

in the global schema.

• M any-to-O ne E lem ent conflicts: this type o f  conflict occurs when 

m ore than one elem ent in the global schem a corresponds to one 

elem ent in a local data source. For instance, the address inform ation 

m ay be represented as stree t, city , and postcode  elem ents in the 

global schem a, w hile a local data  source DS1 represents it as a 

single elem ent address. In our approach, we resolve this type o f  

conflict by m apping each elem ent containing inform ation about the 

address in the global schem a to the address elem ent in the local data 

source DS1. This m apping is done by assigning the index num bers 

generated autom atically for the global schem a elem ents which 

contain the inform ation o f  address to the elem ent address in the 

local data source DS1 separated by com m a (,) and assigning 

derivation functions to be associated with the index num bers 

assigned to the local data source elem ent to allow  these functions to 

extract the required inform ation from the local data source elem ent.

In Figure 4.3 we sum m arise the types o f  conflicts identified in Figure 2.3

that can be handled by our SISSD system  and w hich can ’t be.
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Schema Conflicts

C onflict Type H andled by SISSD

Table N am e Conflicts Yes
Table Structure C onflicts Yes

Table Constraint Conflicts N o
M ultiple Table C onflicts Yes
A ttribute N am e Conflicts Yes

M ultiple A ttribute C onflicts Yes
Table versus A ttribute C onflict Yes

O ne-to-M any E lem ent C onflicts Yes
M any-to-O ne Elem ent C onflicts Yes

Data Conflicts
D ata Type Conflicts Yes

U nit Conflicts Yes
Precision Conflicts Yes

Expression Conflicts Yes
Representation Conflicts Yes

G ranularity C onflicts Yes
D efault values conflict N o

Key Conflicts N o
Behavioral Conflicts N o
W rong data C onflicts N o

Figure 4.3: Sum m ary o f  C onflicts supported  by SISSD  system.

There are types in Figure 4.3 that we have given a yes to but have not 

described in this section how  the SISSD  system  handles them . This is 

because these types are m ore or less sim ilar to the cases described already.

4.5 An application exam ple

In order to clarify our approach, we introduce an exam ple w hich will be 

used throughout to illustrate the key ideas. In a data integration system , we 

have a set o f  preexisting data sources w hich form the application 's dom ain. 

Each o f  these data sources m ay use different schem as to structure their data. 

Therefore, each data source needs to be m apped to the relevant parts o f  the
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m ediated schem a. In our exam ple four publishers’ heterogeneous 

distributed data source sites are used. A lthough all these data sources 

contain inform ation about books, the data structures are different. O ur 

objective is to create a uniform  interface over these sites and provide the 

required functionality to query these data sources in a uniform  way. For 

instance, a teacher or a student m ay look for a text book for a specific 

course. In this case instead o f  posing her/his query to each data source 

individually, it is possible to pose the query to the unified view  over these 

different data sources.

Bookdata 
schema tree

Book

Title Author Price

Name

Books

Book

Title Author Year Price

(a): tree structure for bookdata source (b): tree structure for books source

Bib schema tree Bookstore schema tree

Book

BookArticle

Publisher PriceTtfe Author editor|
EditionIsbn

\  /  ! \
First Last First Affikation

Title Author year Title Year PublisherAuthorLast

(c): tree structure for bib source (d): tree structure for bookstore source

F igure 4.4: A p a r t o f  the tree structure o f  four data sources.
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In this application exam ple (see Figure 4.4), the referenced data source 

publishers are a relational database (bookstore.db) and three XM L 

docum ents (bib.xm l, bookdata.xm l, books.xm l). Each data source contains 

inform ation about available books, such as titles, authors, prices, and so on. 

Therefore, the structure o f  each site w as autom atically extracted and their 

Schem a Structure D efinitions (SSD s) w ere defined. The Schem a Structure 

D efinitions (SSD s) o f  the participating data sources are described by XM L 

Data Source D efinition Language (X D SD L). A part o f  the tree structures 

o f  these data sources are show n in F igure 4.4.
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The m ediation process

The m ediation o f  distributed heterogeneous structured and sem i-structured 

data sources is proposed as a tool to overcom e logical heterogeneity 

problem s w hich m ay occur w hen integrating data sources. It is a basic 

consideration o f  this thesis. By m ediation, we m ean m atching the schem a 

elem ents w hich are logically equivalent but are represented in different 

ways. In this chapter we introduce the m ediation process, which has the 

follow ing steps: (1) generate the Schem a Structure D efinition (SSD); (2) 

extract SSD com ponents and generate paths; (3) establish the m appings 

and generate the m ediation inform ation (XM KB).

5.1 G enerating Schem a Structure Definition (SSD)

O ur data integration system  SISSD supports the integration o f  distributed 

heterogeneous structured data residing in relational databases w ith sem i

structured data held in w ell-form ed X M L docum ents produced by internet 

applications. The SISSD is intended to establish and evolve an XM L
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M etadata K now ledge Base (X M K B ) increm entally to assist the Q uery 

Processor in m ediating betw een user queries posed over the m aster view  

and the local queries required to access the distributed heterogeneous data 

sources. The XM KB is established w hen the first data source is jo ined  to 

the SISSD  system. This is achieved by the sam e process as jo ins 

subsequent data sources, by adding their data to the XM KB. The first step 

in this process is to construct a Schem a Structure D efinition (SSD ) for this 

data source. For our purposes it is the structure o f  the given data source 

that is crucial for data integration. Therefore, we do not need all the details 

o f  the data source m etadata, but rather need to capture its essential features 

so as to abstract only the structure o f  the data source w hich m eets the basic 

requirem ents o f  our approach. Each data source’s Schem a Structure 

D efinition (SSD ) is described using the constructs o f  an X M L D ata Source 

D efinition Language (XD SDL). This is a sim ple schem a definition 

language w hich describes and defines the relevant identifying inform ation 

and the data structure o f  a data source. This language can be used to

describe the structure and content o f  structured data sources such as

relational databases and sem i-structured data sources such as the well- 

form ed XM L docum ents.

A data source is called structured if  it adheres to a w ell-defined schem a 

that defines its com position out o f  other data elem ents and the schem a has 

the follow ing properties:

• It is defined using a type system .

• It is defined a priori, i.e., before a data elem ent is stored.

• It is explicit, i.e., it is stored separately from the data.

• It is rigid, i.e., the data elem ent m ust alw ays conform  to the

structure.
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• It is exposed, i.e., it can be queried and used w hen querying data 

elem ents.

Exam ples o f  structured data are data stored in relational databases and 

other databases m anaged by a DBM S. A query to structured data elem ents 

is a structured query and is used to perform  a precise search. A structured 

query is based on the structure o f  the data elem ents and the type system  as 

defined in the schem a.

A data source is called sem i-structured if  it has a structure, but the 

structure is not rigid, and/or the structure definition (or parts o f  it) is not 

necessarily separated from the data elem ent, i.e. it m ay be implicit. The 

second issue is related to the w ay the schem a is defined. For relational 

databases, the schem a is defined separately, and the data is stored 

accordingly. For a sem i-structured data source, the schem a or parts o f  it 

m ight not (and cannot be) defined in this way, and m ay be "hidden” in the 

data them selves.

The SSD o f  a relational database is obtained by:

1. The nam es o f  all the tables defined in the DB schem a are retrieved.

2. These tables are defined as elem ents in the target Schem a Structure 

D efinition (SSD).

3. For each table, the attribute nam es are extracted and analysed, and 

then these attributes are defined as child elem ents o f  that table 

elem ent in the target Schem a Structure D efinition (SSD).

The structure o f  the XM L docum ent is autom atically detected in that each 

elem ent is found in the docum ent, w hich elem ents are child elem ents and 

the order o f  child elem ents is then determ ined. The XM L docum ent is read 

and the start tags for the elem ents are detected. Each start tag is checked, 

as to w hether it has child elem ents or not: if  it has then this elem ent is 

defined as a com plex elem ent in the target Schem a Structure D efinition
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(SSD ), otherw ise it is defined as a sim ple elem ent. The defined elem ents 

in the target Schem a Structure D efinition (SSD ) take the sam e name as the 

start tags.

Algorithm: SSD generation for well-formed XML document 
Input: well-formed XML document 
Output: SSD
S tep l: get the root R. If it has child nodes, get its list o f children, L.

a) get the first node in L, N. For every other node N ‘ in L that 
has the same tag as N  do:
•  copy and append the list o f  children o f N' to the list o f  

children o f  N.
• delete N ’ and its subtree.

b) get the next child from L and process it in the same way as 
the first child, N, in step (a).

Step2: R now has a new list o f  children Lnew. Apply step (1) to 
every node in

F igure 5.1: A lgorithm  to generate SSD  fo r  X M L  document.

The algorithm  in Figure 5.1 show s the m ain steps in the process for 

obtaining the SSD o f  a w ell-form ed X M L docum ent, where the m etadata 

are buried inside the data.

5.2 paths generation

The Schem a Structure D efinition (SSD ) is itse lf an XM L docum ent. It is a 

sequence o f  com ponents w here each com ponent is an elem ent o f  sim ple or 

com plex type. W e m odel SSD as a tree structure, w hose nodes are the 

com ponents o f  the corresponding SSD. Each com ponent corresponds to 

either the occurrence o f  a tag, or to the content o f  a tag, and so on. W e 

form ulate an SSD M odel, through w hich the SSD can be described. W e 

consider a set o f  nodes N  that can be represented as: E  for elem ent names. 

W e do not aim at a com plete form alization o f  all the details o f  the Schem a 

Structure Definition, but aim to capture its essential m odel features which
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m eet the basic requirem ents o f  our approach. W e consider the follow ing 

functions to be the basic set for characterizing an SSD:

•  root: 0  —► iV returns the unique root node o f  the docum ent,

•  children: N  —► [TV] returns the ordered list o f  children o f  a node, or 

the em pty list [ ] in the case o f  a lea f node,

•  tag: N  —* E  returns the unique tag  ( e.g. elem ent nam e) o f  a node.

An SSD M odel o f  a Schem a Structure D efinition is a tree that holds a set 

o f  nodes N  w hich can be a set E  o f  elem ent names. These elem ents are 

either sim ple type Ts or com plex type Tc, where

T = T s k j Tc

For exam ple in Figure 5.2, a book title is represented by the title elem ent 

(a sim ple type, i.e. Ts), while the author elem ent is defined as a com plex 

type (Tc).

E l e m e n t  b i b  
c o m p l e x T  y  p e  

E l e m e n t  b o o k  
c o m p l e x T  y p e  

E l e m e n t  t i t l e  
E l e m e n t  a u t h o r  

c o m p l e x T  y p e  
E l e m e n t  l a s t  
E l e m e n t  f i r s t  

E l e m e n t  e d i t o r  
c o m p l e x T y p e  

E l e m e n t  l a s t  
E l e m e n t  f i r s t  
E l e m e n t  a f f i l i a t i o n  

E l e m e n t  p u b l i s h e r  
E l e m e n t  p r i c e

F igure 5.2: The SSD  M odel structure fo r  the bib schem a structure.
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In order to locate the corresponding nodes o f  a source’s tree structures, we 

need to generate a unique path for each elem ent o f  the Schem a Structure 

D efinitions (SSDs). Due to the possible occurrence o f  the sam e nam e 

several tim es in the same schem a tree structure, this path uniquely 

identifies the node. Hence, nam ing conflicts can be easily resolved. This is 

achieved by form ing and then searching the SSD tree structure model o f  

each schem a and extracting out the com ponents o f  interest. The SSD path 

generation process is based on the SSD tree structure model discussed 

above. The algorithm  for schem a path generation is show n in Figure 5.3.

Algorithm: schema paths generation 
Input: SSD schema 
Output: SSD paths 
Stepl: parse SSD;
Step2: for each parsed SSD do

1. construct an SSD tree structure model M\
2. perform a depth-first traversal on M :

- extract the value o f each node in set E;
- give a unique number to each extracted value;
- construct a CHILD function C for the extracted values;

3. perform a depth-first traversal on C;
4. generate a unique path for each node in C; 

end do.

Figure 5.3: A lgorithm  to generate SSD  paths.

The process o f  schem a path generation is achieved by:

1. The SSD is parsed and its tree structure model formed.

2. The value o f  each node that belongs to the set E  is extracted and a 

unique num ber is given to each extracted value.

3. A CH ILD  function is constructed to obtain the children o f  each 

extracted value o f  each node.
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Figure 5.4 show s the constructed tree structure m odel w ith the unique 

num ber given to each node for the bib  data source. W e observe that the 

node book ( 1 . 1 ) is a com plex type, w ith an associated set o f  children (here 

represented as an array) [title 1 . 1 . 1 , author 1 . 1 .2 , editor 1.1.3, pub lisher  

1.1.4, p rice  1.1.5].

Elem ent bib 1
com plexType

Elem ent book 1.1
com plexType

E lem ent title 1.1.1
E lem ent author 1.1.2

com plexType
E lem ent last 1.1.2.1
E lem ent first 1.1.2.2

Elem ent editor 1.1.3
com plexType

Elem ent last 1.1.3.1
Elem ent first 1.1.3.2
Elem ent affiliation 1.1.3.3

Elem ent publisher 1.1.4
Elem ent price 1.1.5

F igure 5.4: The tree structure m odel fo r  bib SSD.

The tree structure m odel is navigated to generate the unique path for each 

node starting from the root. Figure 5.5 show s a part o f  the generated paths 

o f  the bib data source elem ents w ith their num bering. The num ber o f  digits 

in this unique num ber indicates the elem ent’s level in the tree. For 

exam ple the elem ent with unique num ber 1 . 1 .3 . 2  is on the fourth level.

5.3 paths correspondence

O ur integration system  is based on schem a m appings which are used to 

translate queries posed over the m aster view  into sub-queries - called local 

queries - w hich are appropriate to a local data sources. The goal o f  a
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schem a m apping is to capture structural and sem antic as well as 

term inological correspondences betw een schem as.

1 /bib
1.1 /bib/book
1.1.1 /bib/book/title
1.1.2 /bib/book/author
1.1.2.1 /b ib/book/author/last
1.1.2.2 /bib/book/author/flrst
1.1.3 /b ib/book/editor
1.1.3.1 /bib/book/editor/last
1.1.3.2 /bib/book/editor/flrst
1.1.3.3 /bib/book/editor/affiliation
1.1.4 /bib/book/publisher
1.1.5 /bib/book/price

F igure 5.5: The genera ted  p a th s o f  the bib data source.

The m ain aim o f  a data integration system  is to allow  a user to query 

distributed heterogeneous data sources. Its users can only view  the global 

schem as while the data is held in the local data sources. Thus, 

relationships or m appings from global schem a concepts to local data 

source schem a concepts m ust be established [109]. M appings are often 

specified as high-level, declarative assertions that state how  groups o f  

related elem ents in a data source schem a correspond to groups o f  related 

elem ents in the global schem a [149].

The schem a m apping is defined as a relation 2 x r, through which each 

com ponent o f  the global schem a is m apped to a corresponding com ponent 

o f  a local schem a. These m appings are established by identifying 

sem antically sim ilar concepts (i.e. schem a com ponents) in the schem as 

[139]. In our integration system  SISSD, these m appings are used to 

generate valid local queries. The schem a m apping process is not
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com pletely autom ated in our system , since this process required a hum an 

intervention to provide som e inform ation about how  different elem ents 

correspond to each other [14, 16].

In general, the m ajor difficulty o f  integrating different data sources is the 

establishm ent o f  m appings betw een the global schem a and the local data 

source schem as. W e believe that the developm ent o f  a schem a m apping 

should be based on hum an user (integrator) interaction. Since two sim ilar 

term s m ay refer to different concepts and thus m ay not have the sam e 

m eaning, only a skilled hum an user is able to guarantee the sem antic 

consistency o f  such a m apping. C onsequently , the interactions o f  hum an 

integrators are an essential part o f  the schem a analysis and m apping 

process [18].

The m ain approaches to establishing the m apping betw een each data 

source schem a and the global schem a, are classified into two categories: 

global-as-view  (G A V ) and local-as-view  (LA V ) [67, 80, 103].

In the GAV approach, each item in the global schem a is defined as a view  

over the data source schem as. The G A V  approach greatly facilitates query 

reform ulation as it sim ply becom es a view  unfolding process. H ow ever 

handling the addition or rem oval o f  a data source in a GAV approach is 

difficult as it requires m odification o f  the global schem a to take into 

account the changes.

In the LAV approach, each item in each data source schem a is defined as a 

view  over the global schem a. Thus each individual data source m ust 

provide a description o f  its schem a in term s o f  the global schem a, m aking 

it very sim ple to add or rem ove data sources, while m aking the query 

reform ulation process harder.

C learly both o f  these approaches have positive and negative consequences, 

but LAV is considered to be m uch m ore appropriate for large scale ad-hoc
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integration because o f  the low im pact changes to the data sources have on 

the system  m aintenance. A lso a LA V  approach provides a m ore flexible 

environm ent w hich can m eet u se rs’ evolving and changing inform ation 

requirem ents across the disparate data sources available over the global 

inform ation infrastructure (Internet). It is better suited and scalable which 

suits integrating a large num ber o f  autonom ous read-only data sources 

accessible over com m unication netw orks. Furtherm ore the LAV approach 

provides a flexible environm ent able to accom m odate continual change 

and update o f  data source schem as. This m akes it especially suitable for 

X M L docum ents on W eb servers, since these rem ote docum ents are not 

static and are often subject to frequent m odification. It is also better able to 

support a dynam ic environm ent, since it allow s data sources to be added to 

or rem oved from the integration system  w ithout the need to restructure the 

global schem a. H ow ever, GA V is the preferred approach w hen the set o f  

data sources being integrated is know n and stable [14, 85].

In SISSD, a local-as-view  m apping description is used to map betw een 

each data source schem a and the global schem a. This m akes handling the 

addition or rem oval o f  a data source easy. W hen generating the XM KB, 

the m apping direction is changed from  the original local-as-view  to a 

global-as-view , to m ake query rew riting straightforw ard. A global query 

from a user is then translated into local queries on data sources by looking 

up the corresponding paths in the XM K B. Hence the SISSD com bines the 

virtues o f  both the GA V and LA V  approaches.

In our approach, the designer specifies the global schem a (m aster view ), 

w here the basic notions in the application dom ain are described. The user 

can alternatively choose the Schem a Structure D efinition (SSD ) o f  any 

data source w hich m eets his/her requirem ents to be the m aster view , since 

finding the correspondences am ong the schem as' elem ents often depends 

on the application context. Hence, m atching tw o elem ents depend on 

deciding how  they correspond to each other, i.e. i f  they are logically
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equivalent. This can be determ ined w hen they refer to the sam e real-w orld 

entity, or can be inferred by perform ing specific operations. For exam ple, 

two elem ents that share the sam e nam e can refer to different real-w orld 

entities. The reverse problem  also often occurs in that two elem ents w ith 

different nam es actually refer to the sam e real-w orld entity. For these 

reasons and others, m atching is often  a subjective process, depending on 

the application. Hence, a skilled integrator is often involved in the 

m atching process because o f  the need to interpret the term s' sem antics and 

resolve problem s.

C onsequently in this project, the process o f  constructing the global schem a 

is not fully autom ated. The application dom ain involves a set o f  data 

sources that are associated w ith heterogeneous schem as. The integration is 

achieved through a virtual global schem a (m aster view ) that characterizes 

the underlying local data sources. W e often use an assum ption o f  paths 

instead o f  elem ents, because the Schem a Structure D efinitions are trees 

and each elem ent is identified uniquely by its path in the tree.

For a node x in a tree structure, the path P  to  the node x  is the sequence o f  

nodes from the root node o f  the tree to the node x  itself. The path to the 

first nam e o f  an author o f  a book could be:

P(first_nam e) — /book/author/full_nam e/first_nam e.

Thus to express a correspondence betw een a global path and a set o f  paths 

in a data source schem a, we need to study more deeply the sem antics o f  

paths. W e observe that each path considered can be described by a 

sentence in natural language, e.g.:

The f ir s t  nam e o f  the nam e o f  the author o f  a given book is John,

w here John is the content o f  the elem ent first-nam e  on the path from the 

root node to the first-nam e  node. Hence, as the first step in our data
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integration system  we need to m atch paths o f  the Schem a Structure 

D efinitions o f  new  data sources w ith paths o f  the global schem a to 

determ ine i f  they correspond.

D efinition 5.1.1 (corresponding paths)

Two paths P j and P 2  correspond, if  and only if, their respective 

inform ation capabilities are logically equivalent, i.e. ICap(Pi)<=> ICap(Pz). 

W e denote the correspondence relation w ith «.

It is clear that building such a fram ew ork is hard to autom ate. Therefore, 

any decision about the sem antic correspondence o f  paths or sets o f  paths 

will be based on an analysis by the integrator.

U sing the corresponding paths definition (D efinition 5.1.1) we m atch 

paths in the global and data source schem as if  they correspond. Thus if:

- Pi is a set o f  paths in the global schem a G.

- Pj is a set o f  local data source schem a paths.

- Sk is a set o f  local data sources.

Then, a set o f  paths can be m atched if  they satisfy any one o f  the 

follow ing conditions:

1. I f  Pi «  Pj, such that (0 < i, j  < n).

2. There is a function f : G(Pi) —* Sk(Pj), where G(Pt) « f  (S/^Pj)), such 

that ( 0  < i, j , k  < ri).

3. There is a function g  : S ^P j)  —► G(Pi), where Sk(Pj) «  g(G (P/)), such 

that ( 0  < i, j , k  < n).

Hence, the equivalent paths in schem as are determ ined by analyzing the 

inform ation capabilities o f  each elem ent path. Then, in order to resolve an
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identified type o f  heterogeneity conflict, functions f  or g  can be provided 

to perform  specific operations w hich m atch related elem ents despite the 

conflict. These functions are im plem ented as a user-defined function 

(UDF). In fact, a UD F definition is not provided during the global schem a 

construction stage, it is defined w hen developing the query translation 

m odule. It is explicitly defined by the designer based on an analysis o f  

path equivalences.

In our exam ple scenarios, the four Schem a Structure Definitions use 

different structures and our goal is to establish m appings betw een the 

global schem a elem ents and the local data sources’ SSD elem ents to 

capture structural and sem antic as well as term inological correspondences 

betw een the schem as. The analysis o f  the data sources' elem ents produces 

a set o f  correspondence assertions by using the above correspondence 

conditions.

C orrespondence 1 (C l): an analysis o f  the inform ation capabilities o f  the 

data sources presented in section 4.5, books Schem a Structure D efinition  

(SSD j) (see Figure 4.4(b)), bib (SSD 2)  (see Figure 4.4(c)), SCM FM A  

(SSD 3) (see Figure 4.4(d)) and bookdata (SSD 4)  (see Figure 4.4(a)) shows 

that they are logically equivalent. This is a case o f  nam ing conflicts in the 

definitions. Therefore, in order to resolve this conflict we need to establish 

a m apping betw een the global path and the corresponding path in the local 

SSD w hich has the sam e m eaning. The sam e num ber is specified for these 

paths and m ust be unique as it identifies the path. The correspondence 

assertion for these paths is as follows:

SSD  i/books tore  ~ SSD 2/bib  ~ SSD 2/b o o k  «  S S D fb o o kd a ta  => global/book

C orrespondence 2 (C2): the analysis o f  the inform ation capability o f  

/book/editor/full_nam e  in the global schem a (see Figure 5.13) shows that 

this path corresponds to both
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/bib /book/editor/last and /b ib/book/editor/first

in bib (SSDz). This is a case o f  structural conflicts in the definitions. In 

order to resolve this conflict, a function f  should be provided in w hich a 

concatenate operation is perform ed w hich m erges the first and the last 

nam e elem ents to get the full nam e. Then, as in C l, a unique num ber m ust 

be assigned to all o f  the correspondence paths. In this case the function is:

j{S S D 2/bib/book/editor/last, SSD  2/bib/book/editor/first) => 

global/book/editor/fu ll nam e

C orrespondence 3 (C3): in th is case, an author nam e o f  a book is 

represented in the global schem a as first-nam e and last-nam e while in the 

books Schem a Structure D efin ition  (SSD]), the SCM FM A (SSD 3)  and the 

bookdata (SSD4)  it is represented as full-nam e. In order to resolve this type 

o f  conflict, we need a unique num ber for these tw o paths in the global 

schem a w hich are the first-nam e path and the last-nam e path. Also, a 

function f  is needed for SSD], SSD 3 and SSD 4  w hich perform s an operation 

to split the full-nam e value so that it can answ er a global query for an 

au thor’s nam es. H ence, C3 is form ulated as:

f S S D j/bookstore/boofc/author) ^ f S S D 3/ scmfma/book/author) «  

j \S S D  4/bo  okdata/book/author/nam e) => 

global/book/author/full_nam e/first name, 

global/book/author/full name/last_name

5.4 C reating X M K B

In order to prepare the local queries for a query posed against the global 

schem a (m aster view ); the data sources relevant to a given query m ust be 

identified. For this task, the X M L  M etadata Know ledge B ase (XMKB) was 

developed to hold the correspondences betw een the com ponents o f  the 

data sources. For each com ponent o f  the m aster view , the objective is to
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record the set o f  com ponents having  the sam e m eaning in the local data 

source Schem a Structure D efinitions and to provide the discrepancy 

resolution function if  it is needed to m atch the inform ation. The X M KB is 

used in m ediation betw een the global and local schem as to overcom e 

heterogeneity conflicts in the data sources' schem as and thus to assist the 

Query Processor in m ediating betw een user queries posed over the m aster 

view  o f  the distributed heterogeneous data sources, when it translates such 

queries into sub-queries w hich suit a local data source, and to integrate the 

results from the data sources o f  the query. In the follow ing subsections, 

we:

1. D escribe the structure o f  the X M K B;

2. Present the generation process o f  the XM KB;

3. D escribe the m echanism  for generating index num bers for the 

m aster view  (global schem a) elem ents; and

4. D escribe the different types m apping betw een elem ents.

5.4.1 The Structure o f X M K B

The X M L M etadata K now ledge B ase (X M K B ) contains several types o f  

m etadata about each data source. The first o f  these types o f  m etadata is a 

structural and sem antic description o f  the contents o f  the data sources. It is 

an X M L docum ent com posed o f  tw o parts. The first part contains 

inform ation about data source nam es, types and locations. The second part 

contains m eta-inform ation about the relationships o f  paths in the data 

sources, and the function nam es for handling sem antic and structural 

discrepancies. In the SISSD  integration system we have developed a 

technique for sem i-autom atic creation o f  m appings betw een the m ediated 

schem a o f  the data integration system  and data sources. W e have defined a 

sim ple declarative m apping language called XM L M etadata K now ledge 

Base M apping Language (X M K B M L) for specifying the m apping 

betw een the virtual m aster view  elem ents and the Schem a Structure
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D efinitions (SSD s) elem ents o f  the data sources. The X M K BM L m apping 

specifications are written in XM L. X M K BM L, as a m arkup language in its 

ow n right, provides a vocabulary to describe XM KB m appings. The tw o 

m ain elem ents in this vocabulary are D S  information  and M ed  com ponent. 

The first one represents the data source’s inform ation (nam es, types and 

locations), w hile the second one represents the m apping itse lf it is created 

by linking the global paths and the corresponding local paths. Figure 5.6 

presents a sam ple o f  the X M L M etadata K now ledge Base (X M K B) and 

Figure 5.7 show s the syntax o f  the X M K B M L, given as an XM L schem a 

definition. The <D S_inform ation>  elem ent contains data source nam es, 

types and locations; its elem ent has an attribute called num ber which holds 

the num ber o f  data sources participating  in the integration system  (3 in the 

exam ple in Figure 5.6) and also has child elem ents called <D S_Location> . 

Each <DS_Location>  elem ent contains the data source name, its type 

(relational database or X M L docum ent) as an attribute value and the 

location o f  the data source as an elem ent value. This inform ation is used 

by the Query Processor to specify the type o f  sub-query to be generated 

(SQ L if  the data source type is a relational database or X Q uery if  it is an 

X M L docum ent) and the data source location that the system should 

subm it the generated sub-query to.

The <M ed_com ponent>  elem ent in Figure 5.6 contains the path m appings 

betw een the m aster view  elem ents and the local data source elem ents, and 

the function nam es for handling sem antic and structural discrepancies. The 

m aster view  elem ent paths are called <source>  elem ents, while the 

corresponding elem ent paths in the local data sources are called <target>  

elem ents. The <source>  elem ents in the XM KB docum ent have an 

attribute called path which contains the path o f  the m aster view  elem ents. 

These <source>  elem ents have child elem ents called <target>  which 

contain the corresponding paths for the m aster view  elem ent paths in each 

local data source, or null if  there is no corresponding path. The <target>
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e l e m e n t s  in  t h e  X M K B  d o c u m e n t  h a v e  t w o  a t t r i b u t e s .  T h e  o n e  i s  c a l l e d  

nam e  a n d  c o n t a i n s  t h e  n a m e  o f  t h e  l o c a l  d a t a  s o u r c e ,  w h i l e  t h e  s e c o n d  i s  

c a l l e d  fu n  a n d  c o n t a i n s  t h e  f u n c t i o n  n a m e  t h a t  i s  n e e d e d  t o  r e s o l v e  

s e m a n t i c  a n d  s t r u c t u r a l  d i s c r e p a n c i e s  b e t w e e n  t h e  m a s t e r  v i e w  e l e m e n t  

a n d  t h e  l o c a l  d a t a  s o u r c e  e l e m e n t  c o n c e r n e d ,  o r  n u l l  i f  t h e r e  i s  n o  

d i s c r e p a n c y  o r  n o  a v a i l a b l e  f u n c t i o n .

<?xml version='1.0* encoding^UTF-B' ?>
-  <XMKB>

-  <DSJnformation number=‘3'>
<DS_Location narre^books.xml' type='XML document">h t tp : / /www.w3schools.com/xqueryc/DS_Location> 
<DS_tocation name='bib.xmr type="XML docum ent“>C:\prototype\docc/DS_Location>
<DS_Location name^SCMFMA' type='Relational Database'>jdbc:orade:thin:®helot:1521:orade9</D5_tocation>  

</DSjnformation>
-  <Med_component>

-  <source path=7book,>
<target name=‘books.xm l' fun='Nuir>/bookstore/book</target>  
ctarget name='bib.xmr fun='Nulli‘> /b ib/book</target>
<target name="SCIV1FMA, fun='Null'>/scmfma/book</target>

</source>
-  <source path=7book/price,>

ctarget name='books.xml* fun=‘R ateE xdiange‘>/bookstore/book/price< /target>  
ctarget name^bib-xml" fun=“RateExchange‘> /b ib /book/pricec/target>  
ctarget name='SCMFMA' fun=,Null*>Nulk/target>

</source>
-  csource path=7book/author'>

ctarget name="books.xmr fun='Null">Nullc/target> 
ctarget name=,bib.xm r fun="Null“> /b ib /book/authorc/target>  
ctarget name=’SCMFMA' fun=’Nuir>Nullc/target>

</source>
-  csource path=7book/author/full_nam e'>

ctarget name="books.xmr fun=,Null,>Nullc/target> 
ctarget name="bib.xml" fun="Nullll>Mullc/target> 
ctarget name=,SCMFMA' fun=,Null">Null</target>

c/source>
-  csource pa th= 7book/author/fu ll_nam e/first_nam e,>

ctarget name=*books.xml" fun="firstName">/bookstore/book/authorc/target>  
ctarget name='bib.xmr fun=*Nulla> /b ib /book/author/firstc/target>  
ctarget name='SCMFMA' fun=firstNam e">/scm fm a/book/authorc/target>

c/source>

Figure 5.6: A sam ple XMKB.

5.4.2 T he  g en era tio n  process o f the  X M K B

T h e  b u i l d i n g  o f  t h e  X M K B  is  p e r f o r m e d  t h r o u g h  a  s e m i - a u t o m a t i c  p r o c e s s .  

X M K B  i s  g e n e r a t e d  b y  u s i n g  t h e  m a p p i n g s  b e t w e e n  t h e  m a s t e r  v i e w  a n d
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t h e  l o c a l  d a t a  s o u r c e  S S D s ,  a n d  it  i n c l u d e s  t h e  d a t a  s o u r c e ’ s  i n f o r m a t i o n  

( n a m e s ,  t y p e s  a n d  l o c a t i o n s ) ,  m e t a - i n f o r m a t i o n  a b o u t  t h e  r e l a t i o n s h i p s  o f  

p a t h s  ( a  p a t h  f o r  e a c h  n o d e  s t a r t i n g  f r o m  t h e  r o o t )  in  t h e  d a t a  s o u r c e s ,  a n d  

f u n c t i o n  n a m e s  f o r  h a n d l i n g  s e m a n t i c  a n d  s t r u c t u r a l  d i s c r e p a n c i e s .  T h e  

X M K B  is  b u i l t  in  a  b o t t o m - u p  f a s h i o n  b y  e x t r a c t i n g  a n d  m e r g i n g  

i n c r e m e n t a l l y  t h e  m e t a d a t a  o f  t h e  d a t a  s o u r c e s .

<?xml version='1.0" encoding="UTF-8" standalone="yes‘ ?>
<xs; schem a xmlns:xs=nh ttp : //w w w .w 3 .o r g /2 0 0 1 /X M L S c h e m a “ elemBntFormDefault='qualified“> 
-  <xs:elem ent name=“XMKB">

-  <xs:complexType>
-  <xs:sequence>

-  <xs:elem ent name=“DS_inform ation">
-  <xs:complexType>

-  <xs:sequence>
-  <xs:elem ent name=“DS_Location" maxOccurs=“unbounded">

-  <xs: complexType mixed="true">
<xs: attribute name=”nam e" type=“x s:s tr in g “ use="required" />
<xs:attribute name="type" type= " xs:str ing“ use="required" />  

</xs:com plexType>
</xs:elem ent>

< /xs:sequence>
<xs: attribute nam es’number" type=" xs:str ing“ use="required"/>

</xs;com plexType>
</xs:elem ent>

-  <xs: element nam e="M ed_com ponent">
-  <xs;complexType>

-  <xs:sequence>
-  <xs:elem ent name="source" m axO ccurs="unbounded“>

-  <xs:complexType>
-  <xs:sequence>

-  <xs:elem ent name="target* maxOccurs="unbounded">
-  <xs: complexType mixed="true,,>

<xs:attribute name="name" type=“xs:string" u se=“required"/>
<xs:attribute nam e=Bfun" type="xs:string" use="required" />  

</xs:com plexType>
</xs:e!em ent>

< /xs:seq uence>
<xs: attribute nam e="path“ type=" xs:str ing“ use=“required" />  

</xs:com plexType>
</xs:elem ent>

< /xs:sequence>
</xs:com plexType>

</xs:elem ent>
</xs:sequence>

</xs: complexT ype>
</xs:elem ent>

</xs:schem a>

Figure 5.7: The XM KB XML schema definition.

T h e  X M K B  is  a n  X M L  d o c u m e n t  t h a t  c o n t a i n s  t h e  m a p p i n g s  b e t w e e n  

r e l a t e d  h e t e r o g e n e o u s  s c h e m a s '  p a t h s  a n d  t h e  r e q u i r e d  u s e r - d e f i n e d  

f u n c t i o n s .  I t  c a n  b e  e x p r e s s e d  a s  f o l l o w :
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X M K B  = P A T H S FU NCTIO NS;

PATHS: G(P;) - >  Sj(Pk);

FU NCTIO NS: G (P ;) —  S fU D F );

Where UDF = function-name | null, G(P) is a set of global paths, Sj is a set of 
local sources, Pk is a set of source paths. Such that: i,j, k  e {/, ... n}.

It can be seen from this definition that the XM KB is expressed as a set o f  

m appings. A UDF (user-defined function )  nam e is provided when a 

function is explicitly defined by the designer to perform  a specific 

operation. The need to provide a U D F depends on the application context 

and the kind o f  heterogeneity conflict to be resolved. The exam ples in the 

next subsection show how  such a function is built. The output o f the 

m ediation process is an X M L docum ent containing the m apping o f  the 

source’s corresponding paths, a long w ith the function nam es (UDF).

Each data source (relational database o r XM L docum ent) has its own SSD 

in X M L form at constructed by the M eta-data Extractor (M DE). W e 

assum e that elem ents in local data sources do not contain attributes. This 

im plies that data source SDDs can be represented as n-ary trees. In the 

generation process o f  an X M K B , the basic idea is to establish the 

m appings betw een schem as paths. These m appings capture the 

heterogeneity o f  the various data sources. O ur approach involves m apping 

paths in the m aster view  to (sets of) paths in the local data source SSDs, 

though we often speak o f  elem ents instead o f  the paths that lead to these 

elem ents. We m atch an elem ent in the m aster view  with elem ents in the 

local data source SSDs, by generating an index num ber for each elem ent 

in the m aster view  tree and then assigning these index num bers to the 

elem ent(s) with the same m eaning in the local schem a structure trees. 

Hence elem ents w ith the sam e num ber have the sam e m eaning. By 

collecting together all elem ents w ith the sam e num bers, the source and 

target paths can be generated autom atically, and the X M KB can be easily
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constructed. An especially convenient special case is w here an elem ent in 

the m aster view  exactly m atches one in a local SSD, in that its field has 

the sam e m eaning as the one in the m aster view. E lem ents in local SSDs 

should not appear in the X M K B if  their m eaning does not relate to any 

elem ent in the m aster view.

C onstructing the X M KB m anually  is an error prone and tedious job , so 

m achine support is highly desirable. H ence, we have developed a system  

that autom atically  establishes and evolves an X M KB increm entally. This 

system  has been built to act as a tool w hich assists a m eta-user (who does 

the m etadata integration) to describe m appings betw een the m aster view  

and local data sources. This tool parses the m aster view  to generate 

autom atically a unique index num ber for each elem ent and parses local 

SSDs to generate a path for each elem ent, and produce a convenient GUI. 

By using the GUI, index num bers are assigned to m atch local elem ents to 

corresponding m aster elem ents and to specify the function nam es which 

are needed to resolve any heterogeneity  conflicts by perform ing specific 

operations. These functions can be built-in  or user-defined functions. The 

X M KB is then generated from the m appings by com bination over index 

num bers. The algorithm  in F igure 5.8 show s the m ain steps in the 

generation process o f  the XM KB.

For exam ple, Figure 5.9 presents part o f  a GUI for the local SSD show n in 

Figure 5.10. The first colum n in Figure 5.9 is used to assign the unique 

index num bers for m aster view  elem ents to the equivalent elem ents in the 

local SSD. E lem ents w ithout an equivalent index num ber are not included 

in the XM KB. The second colum n is used to specify the function nam es 

which are needed for handling sem antic and structural discrepancies.

This approach provides a flexible environm ent able to accom m odate the 

continual change and update o f  data source schem as, and is especially 

suitable for XM L docum ents on web servers since these rem ote
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docum ents are not static and are often subject to frequent update. The 

SISSD gives flexibility to rem ove any data source schem a from the 

X M KB and then add this data source again w ith an updated or altered 

schem a w ithout any other im pact on the XM KB or the need to regenerate 

it from  scratch.

Algorithm : XMKB generation process
Input: master view, data sources Schema Structure Definitions 

(SSDs)
Output: XML Metadata Knowledge Base (XMKB)
S tep l: generate a unique index number for each master view 

element;
Step2: V Schema Structure Definitions (SSDs) do 

generate path for each element; 
assign the index number for the equivalent local 

Schema Structure Definition (SSD) paths; 
specify a UDF name if  there is an operation required; 

end do;
Step3: collect local paths with their global path, according to the 

assigned Index numbers;
Step4: if the data source is the first one joining to the integration 

system 
then

establish an XMKB for capturing these mappings 
information;

else
update an XMKB for capturing these mappings 
information;

F igure 5.8: A lgorithm  fo r  X M K B  generation process.

5.4.3 Index num ber generation for the m aster view  elem ents

The generated index num bers for the m aster view  elem ents are used to 

m atch local elem ents to corresponding m aster elem ents. W e em ploy a 

m echanism  to generate such index num bers using JD O M  technology. By 

applying this m echanism , a unique index num ber is generated for each 

elem ent in the X M L docum ent w hatever the nesting com plexity o f  the
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d o c u m e n t .  T h i s  m e c h a n i s m  u s e s  J D O M  t o  r e a d  a n d  p a r s e  t h e  m a s t e r  v i e w  

a n d  g e n e r a t e  a  t r e e  s t r u c t u r e  f o r  it . B y  u s i n g  t h e  t r e e  s t r u c t u r e ,  t h e  r o o t  

e l e m e n t  n o d e  o f  t h e  m a s t e r  v i e w  i s  i d e n t i f i e d  a n d  t h e  n u m b e r  1 i s  a s s i g n e d  

t o  it. F o r  e a c h  e l e m e n t  in  t h e  m a s t e r  v i e w  i n c l u d i n g  t h e  r o o t  e l e m e n t ,  t h e  

c h i l d r e n  o f  t h i s  e l e m e n t  a r e  o b t a i n e d  a n d  t h e n  a s s i g n e d  a  s e q u e n t i a l  

n u m b e r  s t a r t i n g  f r o m  1 f o r  e a c h  c h i l d  t o  r e p r e s e n t  t h e  o r d e r  o f  t h e  c h i l d r e n  

f o r  t h a t  p a r e n t .  B y  c o m b i n i n g  t h e  n u m b e r  g i v e n  t o  e a c h  c h i l d  w i t h  t h e  

i n d e x  n u m b e r  o f  i t s  p a r e n t  s e p a r a t e d  b y  d o t  ( . )  w e  p r o d u c e  t h e  u n i q u e  

i n d e x  n u m b e r  o f  t h i s  c h i l d .  F o r  e x a m p l e ,  i f  t h e  r o o t  e l e m e n t  h a s  f o u r  c h i l d  

e l e m e n t s ,  t h e  i n d e x  n u m b e r  o f  t h e  f i r s t  c h i l d  e l e m e n t  w i l l  b e  1.1  a n d  t h e  

i n d e x  n u m b e r  o f  t h e  s e c o n d  c h i l d  e l e m e n t  w i l l  b e  1 .2 ,  a n d  s o  o n .  

F u r t h e r m o r e ,  i f  t h e  e l e m e n t  w i t h  i n d e x  n u m b e r  1 .2 .1  h a s  t w o  c h i l d r e n ,  t h e  

i n d e x  n u m b e r  f o r  t h e  f i r s t  c h i l d  w i l l  b e  1 . 2 . 1 . 1  a n d  t h e  i n d e x  n u m b e r  f o r  

t h e  s e c o n d  c h i l d  w i l l  b e  1 . 2 . 1 . 2 .  T h e  a l g o r i t h m  in  F i g u r e  5 . 1 1  s h o w s  t h e  

m a i n  s t e p s  in  t h e  g e n e r a t i o n  o f  t h e  i n d e x  n u m b e r s  f o r  t h e  m a s t e r  v i e w .

Data Source Nam e: bib.xml

Data Source Location: C:\prototype\doc

Data Source Type: XML document

bib

book

title

author

la s t

f i r s t

editor

l a s t

f i r s t

affiliation

publisher

price

Add

Add

Add

Add

Add

Add

Add

Add

Add

Add

Add

Submit Clear Cancel

F igure 5.9: A G U I fo r  Schem a Structure D efinition shown in F igure 5.10.
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<?xml version=" 1. encoding = " U T F - 0 "  ?>
— <schema_information>

— <data_source_information>
<name>bib.xml</name>
<location>C :\prototype\doc</location>  
<type>XML docum entc/type>  

</data_source_information>
— <structure>

— <element name = "bib">
— <element name=‘'book">

<element name="title" />
-  <element name="author">

<element name = "last" /:>
<element name = ,,first" />

</element>
-  <element name="editor">

<element name = "last" />
<element name="first" />
<element name="affiliotion" />

</element>
celement name="publisher" />
<element name="price" />  

c/element>
</element>

</structure>
</schema_information>

F igure 5.10: Schem a S tructure D efin ition  (SSD) o f  bib XM L document.

Algorithm-. Index num bers generation process for m aster view elements

Input: master view
Output: unique index number for each master view element 
S tep l: parse a given master view and generate a tree structure 

for it;

Step2: identify root element;
Step3: assign number 1 for the root element;
Step4: V elements in the master view do 

get all children o f this element;
assign sequential number starting from 1 for each child; 
combine the number given for each child with the 
index number o f its parent separated by dot;

end do;

F igure 5.11: A lgorithm  to gen era te  index numbers.
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book

/ —  author \ title editorprice

fuH name 
1.2.1

affiliation full name 
16.2

rst_name 
1.2.1.1

Figure 5.12: The m aster view tree structure with index numbers.

F i g u r e  5 . 1 2  s h o w s  t h e  t r e e  s t r u c t u r e  w i t h  t h e  i n d e x  n u m b e r s  o f  t h e  m a s t e r  

v i e w  s h o w n  in  F i g u r e  5 . 1 3 .

<?xml version="1.0" encoding="UTF-0" ?>
-  <element name=Mbook">

* <element name="price" />
-  <element name="author">

K-  <element name=,lfull_name">
<element name="first_name" />

<element name="last_name" />
</e lement>

</element>
<element name="title" />
<element name="year" />
<element name="publisher" />

-  <element name="editor">
<element name=Maffiliation" />
<element name="full_name" />

</e lement>
</element>

Figure 5.13: The M aster View.
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5.4.4 M apping cases between elem ents

W e can classify the cardinality o f  m apping cases as the num ber o f  paths 

that correspond to each other, i.e. the num ber o f  participating paths in each 

m apping. T he m apping betw een the correspondence paths can be 

expressed in the follow ing form:

GOP,) —  Sj(Pk);

Where G(P,) is a set o f global paths, Sj is a set o f local sources, Pk is a set of local 
paths, such that: i,j, k  e{7, ... n }.

The m apping cardinality  can then be expressed as follows:

• O ne to one m apping: i f  there 3! Pi e  G(P,) corresponding to 

3! Pk e  Sj(Pk).

•  O ne to  N  m apping: i f  there 3! P t e  G(Pi) corresponding to 

3 (Pk > 7) e  Sj(Pk).

•  N  to one m apping: i f  there 3 (T3, >7) e  G(Pi) corresponding to 

3 ! /> * e  Sj(Pk).

Several m apping cases w ere investigated in which conflicts may occur 

betw een the schem a paths. For exam ple, a local data source may represent 

author nam es as full nam es, w hile the m aster view  separates the first and 

last nam es. In this case, the answ er from  the local data source m ust be split 

up if  a query is to retrieve the first nam e o f  the author. W e introduce some 

exam ples to describe these m apping cases.

O ne to N m apping: this case occurs w hen there is a com ponent 

represented as one path in G(P,), but as m any paths in Sj(Pk). Hence, m ore 

than one path in Sj(Pk) has the sam e index num ber. For exam ple,
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Global schem a 

book •

editor

full name

affiliation • '

bib schem a (S S i)

bib •

book •

editor J0
/ I  X✓ / X

last

X

✓ '  /

firs*^ affiliation

&

<source path="/book/editor/full_nanie">
<target name=" books, xml" fiin="Nuir>Null</target>
<target nam e="bib.xm r fun="Merge">/bib/book/editor/l«st,/bib/book/editor/first</target> 
<target name="SCMFMA" fun="Nuir>Null</target>
<target name="bookdata.xml" fun--"Null">Null</target>

</source>

F igure 5.14: One to N  m apping example.

the m aster view  (global schem a) m ay represent an ed ito r’s nam e as a full 

nam e, w hile the local data source separates an edito r’s first and last names. 

To resolve this conflict a U D F  is needed to com bine the ed itor’s first and 

the last nam e elem ents to get the full nam e. The editor fu lln a m e  node in 

our exam ple global schem a tree is an exam ple o f  this case. Figure 5.14 

show s such a m apping. Here, in the bib schem a tree (S ^ )  the editor full 

nam e inform ation is represented by two separated paths 

SS 2 (/bib/book/editor/las f) for the last name o f  the editor and 

SS 2 {/bib/book/editor/fir sf) for the first nam e o f  the editor. At the sam e tim e, 

this inform ation is represented by one elem ent in the global schema. 

Hence, a UDF is provided, e.g. M ergeQ , which concatenates the first and 

last nam e elem ents to get the full nam e. The num ber o f  argum ents o f  this 

function is equal to the num ber o f  paths that appear in the bib schem a 

m apping path w hich correspond to G {book/editor/full name). We note 

there are two paths here:
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SS 2 {/bib/book/editor/last) and SS 2 (/bib/book/editor/first),

these in turn are concatenated to answ er a query for the 

G (P (book/ed ito r/fu llnam e))  inform ation.

N to one m apping: this case occurs i f  two or m ore paths in G(Pi) 

correspond to one path in S fP Q . H ence, a path in S fP Q  will have m ore 

than one index num ber and m ore than one function name. For example,

G (/book/author/fu ll nam e/first nam e) and 

G Q book/author/fu llnam e/last nam e)

in the global schem a correspond to

SSi(/bookstore/book/author) in the books schem a (S S j).

S S j(/scm fm a/bookJauthor) in the SC M FM A  schem a (SS 3 ).

SS 4 (/bookdata/book/author/nam e) in the bookdata schem a (SS/).

In this case, U D F  functions are needed to resolve the conflict, e.g., 

firstN am eQ  and lastNam e(). The task  o f  these functions are to split the 

author elem ent value in S S j , the author  e lem ent value in SS 3  and the nam e  

elem ent value in SS4, w hich contain  the author full nam e into separate 

f ir s t  nam e  and last name. F igure 5.15 show s that in the S S  1, SS 3 and SS 4  

source m apping, the paths / bookstore/book/author , /scm fm a/book/author  

and /bookdata/book/author/nam e  exist twice. Each one corresponds to 

m ore than one different global path in G(Pi). This case is a 2-to-O ne  

m apping case, in that the firstN am eQ  and lastNameO  functions should be 

associated w ith the corresponding global path specified by the designer as 

an argum ent for these functions, e.g. the values o f  the first_nam e  and 

last nam e  elem ents m ust be separated from the author  elem ent value in 

SSj ,  the author elem ent value in SS 3 and the nam e  elem ent value in SS4. 

The returned value o f  the firstN am eQ  and lastNameQ  functions depends
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on w hich global path expression invokes it. The im plem entation o f  this 

function is explicitly coded by the designer.

SCMFMA schem a {S S 3) 

scmfma 9

book 9

author

books schem a (S S , )  

bookstore 9

book

author / .

Global schem a

book ( ►

author <>

full_name 4
/y

^ f i r s t_ n a m e

i
\

XXXX
last_name

■'  9. ..........................

bookdata schema 
(S S ,)  

bookdata 9

book p

au thor.
f
|

i

n
<source path= 

<target name 
<target name 
<target name' 
<target name' 

</source> 
<source path=' 

<target name 
<target name 
<target name 
<target name: 

</source>

/book/author/full_name/fir*t_name">
="books.xmr fun="firstName">/book3tore/book/author</target> 
="bib.xmr fun="Null">/bib/book/author/first<7target>

="SCMFMA" fun="firstName">/»cmfmaA)ook/author</target> 
-"bookdate.xml" fun="firstName">/bookdata/book/author/name</target>

/book/author/full_nam e/last_nam e">
-”books.xml" fun="LastName">/bookstore/book/author</target> 
-"bib.xml" fun="NuU">/bib/book/author/last<Aarget>
=”SCM FMA" fun="LastName">/scmfma/book/author</target> 
=”bookdata.xm l” fun="LastName”>/bookdata/book/author/name</target>

F igure 5.15: N  to one m apping example.

One to one m apping w ith an operation: this case occurs i f  one path in 

G(Pi) corresponds to one path in Sj(Pk) but they use different reference 

system s. This is a granularity conflict, and a specific operation is required 

to resolve a sem antic difference am ong the two related elem ents. For 

exam ple, the price elem ent in SSj uses dollar currency, while in the global 

schem a the price elem ent is expressed in euro. To resolve this conflict 

som e conversion m echanism  is required which translates betw een the 

representations. In this exam ple a U D F  function is needed to perform  an 

exchange operation in order to get the price in euro, when a query is posed.
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Global schema

book

price (€)

ToEuroQ = mul(1.25)

books schema (SS]) 

bookstore •

book

price ($)

T
<source path="/book/price">

<target name="books.xmr fun="ToEuro">/bookstore/book/price</target>

</source>

F igure 5.16: E xam ple o f  one to one m apping with an operation.

H ence, the m apping betw een the G {/book/price) in the global schem a and 

the SSi{/bookstore/book/price) in the SS] schem a should be provided with 

the nam e o f  the U D F  for the exchange currency operation, e.g. ToEuroQ. 

The construction o f  this function is undertaken by the designer. This 

function should read the price elem ent value in SS] and return its 

equivalent am ount in euro. Figure 5.16 shows this m apping.

5.5 Sum m ary

In this chapter w e have proposed the m ediation o f  distributed 

heterogeneous structured and sem i-structured data sources as a tool to
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overcom e logical heterogeneity  problem s, w hich m ay occur when 

integrating data sources. A lso we have introduced the m ediation process, 

w hich has the follow ing steps: (1) generate the Schem a Structure 

D efinition (SSD); (2) extract SSD  com ponents and generate paths; (3) 

establish the m appings and generate the m ediation inform ation (XM KB).
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T he query translation process

In this chapter, w e deal w ith the second im portant aspect o f  the thesis, 

w hich is the Q uery Processor (Q P). The Query Processor (QP) is an 

integral part o f  the m ediation layer o f  the SISSD system. A b rief 

introduction concerning the query translation task in data integration 

system s is follow ed by a descrip tion  o f  the internal architecture o f  the 

Query Processor and its com ponents. Then the query translation process is 

introduced, follow ed by a b rie f  descrip tion o f  the translation process o f  

X Q uery FLW R expressions into SQL queries. Some exam ples o f  query 

translations are given.

6.1 Introduction

The m ain purpose o f  building data integration system s is to facilitate 

access to several data sources. The ability to correctly and efficiently 

process the queries on the integrated data lies at the heart o f  the integration 

system . The integration system  m ust contain a m odule that uses source
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descriptions w hen reform ulating user queries w hich are posed in term s o f  

the com posite global schem a, into sub-queries that refer directly to the 

schem as o f  the com ponent data sources [104, 106]. The user does not pose 

queries directly to the schem a in w hich the data is stored, since one o f  the 

principal goals o f  a data integration system  is to free the user from having 

to know  about the specific data sources and interact with each one 

separately. Instead, the user poses queries on the m ediated schema. The 

m ediated schem a is a set o f  virtual relations, in the sense that they are not 

actually stored anyw here [80]. In general, this query processing involves:

1. R eading the user query and parsing it.

2. U sing a query optim izer to produce an efficient query execution 

plan.

3. Executing this plan on the physical data.

W e are only concerned w ith query translation not query optim ization. W e 

propose a m ethod for query translation w hich targets distributed 

heterogeneous structured data resid ing  in relational databases and sem i

structured data held in w ell-form ed X M L docum ents, produced by Internet 

applications or by hum an-coding. T hese X M L docum ents can be XM L 

files on local hard drives or rem ote docum ents on W eb servers. It is 

im portant to develop a technique to seam lessly translate user queries over 

the m aster view  into sub-queries - called local queries - fitting the 

appropriate participating data sources. This is achieved by exploiting the 

m apping inform ation betw een the m aster (com posite) view  and the 

participating data source Schem a Structure D efinitions (SSD s) that are 

defined in the generated X M L M etadata K now ledge Base (X M K B) [14].

W e have chosen XM L to provide a unifying data m odel in the SI SSD data 

integration system , as this data m odel is general enough to accom m odate 

hierarchical and relational data sources [91]. W e expect, that a data
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integration query will typically be posed in XQ uery, the standard XM L 

query language being developed by the W 3C [5]. It is derived from Quilt, 

an earlier X M L query language designed by Jonathan Robie, IBM ’s Don 

C ham berlin - co-inventor o f  SQL - and D aniela Florescu, a well-known 

database researcher [40]. XQ uery is designed to be a language in which 

queries are concise and easily understood. It is also flexible enough to 

query a broad spectrum  o f  X M L inform ation sources, including both 

databases and docum ents. It can be used to query XM L data that has no 

schem a at all, o r conform s to a W 3C standard XM L Schema or a 

D ocum ent Type D efinition (DTD).

X Q uery is centered on the notion o f  expression; starting w ith constants 

and variables, expressions can be nested and com bined using arithmetic, 

logical and list operators, navigation prim itives, function calls, higher 

order operators like sort, conditional expressions, elem ent constructors, etc. 

For navigating in a docum ent, X Q uery uses path expressions, whose 

syntax is borrow ed from  the abbreviated syntax o f  XPath. The evaluation 

o f  a path expression on an X M L docum ent returns a list o f  information 

item s, w hose order is dictated by the order o f  elem ents within the 

docum ent (also called docum ent order).

O ur Query Processor (Q P) supports FL W R  (short for For-Let-W here- 

R etum ) expressions. This subset o f  X Q uery is used because it is powerful 

and m eets the requirem ents o f  our approach. The fo r - le t  clause m akes 

variables iterate over the result o f  an expression or binds variables to 

arbitrary expressions, the where  clause allow s specification o f  restrictions 

on the variables, and the return  clause can construct new  XM L elem ents 

as output o f  the query. In general, an X Q uery query consists o f  an optional 

list o f  nam espace definitions, follow ed by a list o f  function definitions, 

follow ed by a single query expression.
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6.2 The Q uery Processor architecture and Com ponents

In this section, we present an overv iew  o f  the Query Processor (QP) 

architecture and sum m arize the functions o f  the m ain com ponents. The 

architecture is show n in Figure 6.1. It consists o f  five com ponents: 

X Q uery Parser, X Q uery Rew riter, Q uery Execution, XQ uery-SQ L 

Translator, and Tagger. The core o f  the Q P and the prim ary focus o f  this 

chapter is the X Q uery Rewriter. This com ponent rew rites the user query 

posed over the m aster view  into sub-queries w hich fit each local data 

source, by using the m apping inform ation stored in the XM KB. The main 

role played by each o f  the com ponents in Figure 6.1 follows.

M aster View

X M L Metadata  
Knowledge Base  

(XM KB)

XQ uery query Query Result

* XQ uery

r

Parser

XQIS
r

XQ uery Rewriter

Query Q u er’n

XML Result

Query Execution

XQuery
address
docums

query 3d to XML 
it 1 d

XC 
ac d

uery query 
ressed to XML 
ument n

XQuer 
addre; 
to rel 
databA

f  query 
sed 

dtional

XQuery - SQL  
Translator

XQ uery Engine

XML Result

Tagger

SQL query Result Tuples

XML XML err

document 1 document n RDB

F igure 6.1: The QP Architecture.
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• X Q uery Parser: parses a given X Q uery FLW R expression in order 

to check it for syntactic correctness and ensure that the query is 

valid and conform s to the relevant m aster view. Also the parser 

analyses the query to generate an XQuery Internal Structure (X Q IS) 

which contains the XM L paths, variables, conditions and tags 

present in the query, before passing it to the XQuery Rewriter.

• XQ uery Rewriter: Takes the XQIS representation o f  a query, 

consults the XM KB to obtain the local paths corresponding to the 

m aster paths and function nam es for handling semantic and 

structural discrepancies, then produces sem antically equivalent 

XQ uery queries to fit each local data source. T hat is, wherever there 

is a correspondence betw een the paths in the m aster view  and local 

Schem a Structure D efinitions (SSD s) concerned (otherw ise the local 

data source is ignored).

• Q uery Execution: Receives the rew ritten X Q uery queries, consults 

the XM KB to determ ine each data source’s location and type 

(relational database or XM L docum ent), then sends each local query 

to its corresponding query engine, to  execute the query and return 

the results.

• X Q uery-SQ L Translator: Translates the XQIS representation o f  

an XQuery query addressed to a relational database into the SQL 

query needed to locate the result, then hands the query over to the 

relational database engine to execute it and return the result in 

tabular form at through the Tagger.

• Tagger: Adds the appropriate XM L tags to the tabular SQL query 

result to produce structured XM L docum ents for return to the user.
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6.3 The Q uery Translation process

The Query Processor (QP) com ponent is an im portant part o f  the 

m ediation layer o f  the SISSD system. Its task is the translation o f  m aster 

queries that are posed on the m aster view  into a set o f  local queries fitting 

each local data source. The QP gives flexibility to the user to choose the 

m aster view  that he/she w ants to pose his/her query over and then 

autom atically selects the appropriate XM KB that will be used to process 

any query posed over this m aster view . The m aster view  provides the user 

w ith the elem ents on w hich the query can be based. H ence, a user XQuery 

query w ritten in term s o f  the m aster view  is rew ritten into sub-queries 

w hich can be executed locally. W e introduce a m ethod for the query 

translation to produce queries for the distributed heterogeneous structured 

data residing in relational databases and sem i-structured data held in well- 

form ed X M L docum ents. This m ethod is based on the m apping 

inform ation betw een the m aster view  and the participating data source 

Schem a Structure D efinition (SSD), w hich are defined in the generated 

XM KB. Once the XM KB is generated, user queries can be issued on the 

m aster view  and easily evaluated. H ence, w hen a query is posed against 

the m aster view, the query translation process is accom plished as follows:

First, the given global query is parsed by the XQuery parser m odule to 

generate the XQuery Internal Structure (XQIS) which contains the global 

paths, variables, conditions and tag  present in the XQuery query, w hich is 

passed to the X Q uery Rewriter. X M KB is read and parsed by JD O M  to 

identify the num ber o f  local data sources that participate in the integration 

system , their location and type.

Second, for each elem ent path in the m aster query, there should be an 

attribute p a th  o f  elem ent <source>  in XM KB. I f  there is a non-em pty 

value for the corresponding local elem ents (<target>  elem ents in XM KB), 

then the corresponding local paths and the function nam es (an attribute fu n

119



CHAPTER 6. THE QUERY TRANSLATION PROCESS

o f  <target>  elem ent) is obtained from the XM KB. Then the global paths 

in the m aster query are replaced by their corresponding local paths 

(<target>  elem ents) obtained from  XM KB and the function nam es are 

added if  they are not null to generate a local query. It m ay happen that no 

local query is generated when the content o f  a local path for a specific 

local data source is null. This m eans the query cannot be applied to this 

local data source. Also, i f  the content o f  the function nam e (an attribute 

fu n  o f  <target>  elem ent) is null, th is indicates the translation is 

straightforw ard and no function is needed.

Third, the generated local X Q uery for a relational database is converted 

into SQL before passing it to the relational database engine for execution.

Finally, each (generated) local query is sent to the corresponding local 

data source engine for local execution.

Using the descriptions o f  the SISSD  Query Processor (QP) com ponent 

architecture (section 6.2) and the XM L M etadata Knowledge Base 

(X M K B) organization and contents (section 5.4.1), we are now in a 

position to sum m arize the query translation (rew riting) process carried out 

at the heart o f  our system  by the QP m odule. W e do so in algorithm ic form 

(see Figure 6.2). The algorithm  is both conceptually sim ple and generally 

applicable. W e have successfully im plem ented and tested it on a variety o f  

relational and XM L data source integration exam ples in our prototype 

SISSD system.

6.4 X Q uery-to-SQ L  translation process

The Query Processor (Q P) uses XQ uery FLW R expressions as the query 

language o f  the SISSD data integration system. Using FLW R expressions 

for querying a m aster view  m akes it easy to translate the sub-queries 

directed at relational databases into SQL queries since syntactically, 

FLW R expressions are sim ilar to SQL select statem ents and have sim ilar
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capabilities, only they use path expressions instead o f  table and colum n 

names.

Algorithm'. Master query translation process
Input'. M aster V iew , M aster X Q uery query q , and X M K B  
Output', local sub-queries q l , q 2 .. . t qn 
S te p l: parse q;
Step2: get global paths g l , g 2    gn  from M aster V iew ;
Step3: read XM K B;
Step4: identify the number o f  local data sources participating 
in the integration system , their locations and types;
Step5: for each data source Si do

for each global path ge  in q do
if the corresponding local path le not null then 

get le;
if the function nam e f e  not null then 

get fe; 
end if 

else
no query generated for this local data source 51 ; 

end if 
end for
replace g l  by 11 w ith f l ,  g2  by 12 w ith f2  gn by In w ith

fn, in qi;
if data source type is relational database then 

convert qi X Q uery into SQL; 
end for

Step6: execute the generated local query qi by sending it to the 
corresponding local data source engine, and return the result, with  
XM L tags added to SQL tables.

Figure 6.2: A lgorithm  fo r  the query translation process.

There is a conceptual difference betw een an XQuery FLW R expression's 

concept o f  iterating in the evaluation o f  an expression e2 for successive 

bindings o f  a variable $v (for $v in e l return e2) and the set- or table- 

oriented processing m odel o f  SQL. This is resolved by m apping for-bound 

variables like $v into tables containing all bindings and translating 

expressions independently o f  the variable scopes in which they appear. 

The resulting SQL code im plem ents iteration via equi-joins, a table 

operation, w hich RDBM S engines execute efficiently [78].
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The translation process o f  X Q uery FL W R  expression into an SQL query 

starts by parsing the X Q uery FL W R  expression to identify its path 

expressions. The path expression o f  the FO R  clause is the root path 

expression and the others are dependent path expressions. This translation 

is achieved by:

• First: the relation(s) corresponding to the path expression(s) o f  the 

FO R  clause are identified and put in the F R O M  clause o f  the SQL 

query.

• Second: i f  the X Q uery FLW R  expression contains a W HERE  clause 

then the condition is extracted and the path expression(s) in this 

condition are identified and replaced by the corresponding 

attribute(s), w hich are added to the W HERE  clause o f  the SQL 

query.

• Third: the attribute(s) corresponding to the path expression(s) in the 

R E T U R N  clause in the X Q uery FLW R  expression are identified and 

added to the SE L E C T  clause o f  the SQL query.

6.5 Q uery translation exam ples

In this section, w e introduce som e exam ples o f  global query translation. 

These exam ples will be used in testing  the system. W e discussed in section

6.3 the technique o f  the Q uery Processor to seam lessly translate user 

queries (X Q uery queries) over the m aster view  into sub-queries suited to 

an appropriate data source, by exploiting the m apping inform ation stored 

in the XM KB. To illustrate this process, four cases are investigated in the 

follow ing subsections: one-to-one M apping, function-involved in a one-to- 

one M apping, one-to-m any M apping, and m any-to-one M apping.

Figure 6.3 show s part o f  an X M KB w hich describes the data sources 

participating in the integration system  and their inform ation (nam es, types
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a n d  l o c a t i o n s ) .  It s h o w s  t h a t  t h e r e  a r e  f o u r  d a t a  s o u r c e s  p a r t i c i p a t i n g  in  t h e  

i n t e g r a t i o n  s y s t e m ,  o n e  o f  t h e m  i s  a  r e l a t i o n a l  d a t a b a s e  a n d  t h e  o t h e r  t h r e e  

a r e  X M L  d o c u m e n t s  ( o n e  o f  t h e s e  X M L  d o c u m e n t s  i s  a  r e m o t e  d o c u m e n t  

o n  a  w e b  s e r v e r  a n d  t h e  o t h e r  t w o  a r e  o n  t h e  l o c a l  h a r d  d r i v e ) .

<?xml version=”l,0" encoding=BUTF-8* ?>
- <XMKB>

-  <DS_information number="4">
<D5_Location n a m e - 'b o o k s .x m l11 type= 'X M L d o c u m e n t" > h t tp : / /w w w .w 3 s c h o o ls .c o m /x q u e ry < /D S _ L o c a t io n > 
<DS_Location nam e= "b ib .x m l' ty p e = aXML d o c u m e n t ‘> C :\p ro to ty p e \d o c < /D S _ L o c a tio n >
<DS_Location n am e-S C M F M A ' ty p e = ,sR e la tio n a l D a ta b a s e H> jd b c :o rac le :th in :@ h e lo t:1 5 2 1 :o ra c le 9 < /D S _ L o ca tio n >  
<DS_Location n a m e - 'b o o k d a ta .x m l8 ty p e = “XML d o c u m e n t"  > C :\p ro to ty p e \d o c < /D S _ L o c a tio n >

</DS_inform ation>
F igure 6.3: The p a r t o f  X M KB which m aintain da ta  sources information.

T h e  M a s t e r  v i e w  a n d  t h e  S c h e m a  S t r u c t u r e  D e f i n i t i o n s  ( S S D s )  o f  t h e  f o u r  

d a t a  s o u r c e s  ( b o o k s t o r e  r e l a t i o n a l  d a t a b a s e ,  b i b . x m l ,  b o o k d a t a . x m l  a n d  

b o o k s . x m l )  a r e  s h o w n  in  F i g u r e s  6 . 4  a n d  6 . 5 .

<?xml v e r s io n - 1!..0" ericoding="UTF-8" ?>
-  <element narne="book">

<element name="price" />
-  <element n a m e - 'author">

-  <element n am e= "fu l l_nam e  ">
<element n a m e - 'first_nameM />
<element n a m e - 'last_name" />

</element> 
</element>
<element name="title" />
<element name="year" />
<element name=“publisher" />

-  <element name="editor">
<element name="affiliation" />
<element nam e= "fu l l_ n am e11 />

</element>  
</element>

Figure 6.4: The M aster View.
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<?xml v e rs io n = ‘ 1.0* encod ing="U T F-8’ ?>
-  < sch em a_ in fo rm stio n >

-  < d a ta _ s o u rc e jn fo rm a tio n >
< n a m e > b o o k s .x m k /n a m e >
< lo c a tio n > h t t p : / / w w w .w 3 s c h o o l s . c o m /x q u e r y < / ! o c a t i o n > 
< type>X M L  d o c u m e n t< / ty p e >

< /d a ta _ so u rc e _ in fo rm a tio n >
-  < s tru c tu re >

- < e le -n en t n a m e s ’b o o k s t o r e ^
-  < e le m e r t  n a m e - 'b a o k '>

< e le m a n t n a m e = “tit le *  />
< e le m e n t n a m e = l'a u t h o r , />
< e le m e n t n a m e = "y e a r '' />
< e te m e n t n a tn 8 = “p r ic 8 , />

< /e ie m e n t>
< /e !e m e n t>

< /s tru c tu re >
< /s c h e r ra jn fo rm a tio n >

<?xm l v e r s i o n - '1.0“ encod ing= "U T F -B " ?>
-  < s c h e m a J n f o r m a t io n >

-  < d a ta _ s o u r c e _ in fo r m a tio n >
< n a m e > b o o k d a t a .x m k /n a m B >  
< lo c a t i o n > C : \ p r o t o t y p e \ d o c < / l o c a t i o n >  
< ty p e > X M L  d o c u m e n t < / t y p e >  

< /d a ta _ s o u r c e _ in f o rm a t io n >
-  < s t r u c tu r e >

-  < e la m e n t  n a m e = “b o o k d a t a “>
-  o l e m e n t  n a m e = " b o o k “>

< e le m e n t  n a m e = “t i t l e “ />
-  < e le m e n t n a m e = * a u th o r" >

< e le m e n t  n a m 8 = " n a m e ’ />  
< /e le m e n t>
< 8 le m e n t n a m e = |,p r ic e '' />  

< /e !e m e n t>
< /e le m e n t>

< / s t r u c tu r e >
< /s c h e m a J n f o n r a t i o n >

<?xml version= '1.0 ' encoding=“UTF-8" ?>
-  <schema_infomnation>

-  <data_source_information>
<name>SCMFMA</name>
<location> jdbc:oracle :th ln :® helot:1521:oracle9< /!ocation>
< ty p e > R e Ia tio n a l D a ta b a s e < /ty p e >

</data_source_information>
-  <structure>

-  <element nam e= 'scm fm a '>
-  <element name="article">

<element nam3=’title* />
<e!ement name=l,a u th o r l‘ />
<element nams="year" />

</e!ement>
-  <element narrt0='1book‘>

<element name="isbn" />  
celemant nam e="title“ />
<element nam e= ''author’ />
<elemant nama="year" />
<8lemant nam a="publishar” /> 
calernent nam a^ 'ed ition ’ />

</eiement>
-  o te m e n t nam e="publisher“>

<eiement nam e="nam e“ />
<element nam 8="address" />
<element nam e=*post_code" />
<element nams=“te le p h o n e ’ />
<eiement name="fax" />
<elament nama=‘em a il' />

</e!ement>
</e!ement>

</structure>
</schema_information>

F igure 6.5: Schem a S tructures o f  the fo u r  da ta  sources.

6.5.1 O ne-to -one  q u e ry  exam ple

Q I :  FO R $book IN  docum ent ("master. x m l’) /b o o k  WHERE
$book/publisher  =  "Morgen K au fm an n ” RETU RN < b o o k >  {$book/title} 
< /b o o k >

T h i s  i s  a  s i m p l e  m a p p i n g  c a s e .  In  t h i s  e x a m p l e ,  w e  w a n t  t o  l i s t  a l l  t h e  t i t l e s  

p u b l i s h e d  b y  M o r g e n  K a u f m a n n  p u b l i s h e r  w h i c h  a r e  a v a i l a b l e  in  t h e  f o u r  

d a t a  s o u r c e s .  T h e  F O R - c l a u s e  b i n d s  t h e  v a r i a b l e  $ b o o k  t o  t h e  B o o k  X M L

<?xm i version=T.O" encoding="UTF-8' ?>
-  < s c h e m a _ in fo rm a tio n >

-  < d a ta _ so u rc e _ in fo rm s t iD n >
<name>bib.xml</name> 
< lo c a t i o n > C : \p r o to t y p e \d o c < / l o c a t i o n >  
<type>XML d o c u m e n t  </type> 

</data_sourcejnformation>
-  < s t r u c tu r e >

-  <eiement name="bib">
-  < e le m e n t  n a m e = 'b o o k " >

< e le m e n t n a m e - ' t i t l e '  / >
-  < e le m e n t  n a m e = ''a u th o r “>

< e ie m e n t  n a m e = " la s t '' />
< e le m e n t  n 3 m e = T irs t"  />  

< /e !e m e n t>
-  < e !e m e n t n a m e = 'e d i to r " >

< e le m e n t n a m e = “la s t "  />
< e le m e n t  n a m e = "f irs t"  />
< e le m e n t  n a m e = " a f f i l ia t io n "  />  

< /e ie m e n t>
< e le m e n t n a m e = " p u b l i s h e r “ />  
< e le m e n t  n a m e - 'p r i c e "  />  

< /e le m e n t>
</element>

< /s t r u c tu r e >
< /s c h e m a _ in fc rm a tio n >
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e l e m e n t .  T h e  s t r i n g  w h i c h  f o l l o w s  t h e  I N  k e y w o r d  i s  a  p a t h  e x p r e s s i o n .  

T h i s  t r a n s l a t i o n  i s  p e r f o r m e d  b y  t h e  f o l l o w i n g  s t e p s :

S t e p  1: Q I  i s  p a r s e d  a n d  /book, $book/publisher  a n d  $book/title  a r e  

d e t e c t e d  a s  p a t h  e x p r e s s i o n s  w h i c h  r e p r e s e n t  g l o b a l  p a t h s .

S t e p  2 :  T h e  X M K B  is  i n v o k e d  t o  i d e n t i f y  t h e  n u m b e r  o f  l o c a l  d a t a  s o u r c e s  

p a r t i c i p a t i n g  in  t h e  i n t e g r a t i o n  s y s t e m ,  t h e i r  l o c a t i o n s  a n d  t y p e s  ( r e l a t i o n a l  

d a t a b a s e  o r  X M L  d o c u m e n t ) .  T h e  X M K B  c o n t a i n s  c o m p l e t e  p a t h  

m a p p i n g s .  F i g u r e  6 . 6  s h o w s  p a r t s  o f  X M K B  in  w h i c h  t h e s e  p a t h s  a p p e a r .

O b v i o u s l y ,  t h e  /book, /book /pu b lish er  a n d  book/title  a r e  g l o b a l  p a t h s  ( i . e .  

c o n t e n t  o f  a t t r ib u t e  pa th  o f  < so u rce>  e l e m e n t )  a s s o c i a t e d  w i t h  i t s  

c o r r e s p o n d i n g  l o c a l  p a t h s  v a l u e s  ( i . e .  < ta rg e t>  e l e m e n t  v a l u e ) .

<7xm l v e r s io n = '1 .0 “ e n c o d in g = "U T F -8 "  ?>
-  <XMKB>

-  < D S _ in fo rm a tio n  n u m b e r= ‘4 “>
< D S _ L o c a tio n  n a m e - 'b o o k s .x m l "  t y p e = “X M L d o c u m e n t " > h t t p : / / w w w . w 3 s c h o o l s . c o m / x q u e r y < / D S _ l o c a t i o n > 
< D S _ L o c a tio n  n a m e - 'b i b . x m r  ty p e = "X M L  d o c u m e n t " > C : \ p r o t o t y p e \ d o c < / D 5 _ L o c a t i o n >
< D S _ L o c a tio n  n a m e - 'S C M F M A ” ty p e = " R e la t i c m a l  D a t a b a s e " > j d b c : o r a c l e : t h i n : @ h e l o t : 1 5 2 1 : o r a c l e 9 < / D S _ L o c a t i o n >  
< D S _ L o c a tio n  n a m e = " b o o k d a t a .x m r '  t y p e = “XM L d o c u m e n t " > C : \ p r o t o t y p e \ d o c < / D S _ L o c a t i o n >

< /D 5 jn f b r m a t io n >
-  < M e d _ c o m p o n e n t>

-  c s o u r c e  p a th = " /b o o k " >
c t a r g e t  n a m e = “b o o k s . x m l '  f u n = * N u l l " > / b o o k s t o r e / b o o k < / t a r g e t >  
c t a r g e t  n a m 8 = “b i b .x m l '  f u n = , N u l l " > / b i b / b o o k < / t a r g e t >
< ta r g e t  n a m e = "S C M F M A ‘ fu n = " N u ll”> / s c m f m a / b o o k < / t a r g e t >
< ta r g e t  n a m e = “b o o k d a t a . x m l '  fun="IM ull‘> / b o o k d a t a / b o o k c / t a r g e t >

< /s o u r c e >
-  <source p a th = 7 b o o k /t i t le “>

< target name=‘books.xm l'' fun=“M u H "> /booksto re /book /title< /target>
< target nam e=‘b ib .x m r  fun="NuU“> /b ib /b o o k /tit le < /ta rg e t>
< target name="SCMFMA“ fun="Null'l> /sc m fm a /b o o k /tit le < /ta rg e t>
< target nam e=,'b o o k d a ta .x m r  fun=''ISIullB> /b o o k d a ta /b o o k /tit le < /ta rg e t>

< / s o u r c e >
-  < s o u r c e  p a th = '/b o o k /y e a r" >

c ta rg e t nam e="books.xm l“ fun=“N u ll"> /b o o k sto re /b o o k /y ea r< /ta rg e t>  
c ta rg e t name="bib.xml* fun="NuH''>IMullc/target> 
c ta rg e t name=“SCMFMA" fun="Null“> /sc m fm a /b o o k /y e a rc /ta rg e t>  
c ta rg e t nam e=’b o o k d a ta .x m r  fun="NullM>Null</target> 

c/source>
-  c s o u r c e  pa th = "/b o o k /p u b lish e r">

c ta rg e t n am e^b o o k s.x m l"  fun=“Null">Nullc/target> 
c ta rg e t nam e^bib .xm l*  fun="Null“> /b ib /b o o k /p u b lish e rc /ta rg e t>  
c ta rg e t nam e=“SCMFMA" fu n = ''N u ll"> /scm fm a/bQ ok /pub lisherc /target>  
c ta rg e t n a m e ^ b o o k d a ta .x m l’ fun="N uir>N ulk/target>  

c/source>

Figure 6.6: Som e p a r ts  o f  XM KB used to translate Q I.
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S t e p  3 :  a  l o c a l  q u e r y  i s  g e n e r a t e d  f o r  e a c h  < ta rg e t>  e l e m e n t  w h o s e  v a l u e  

i s  n o t  n u l l .  H e n c e ,  b y  n a v i g a t i n g  t h e  X M K B ,  f o r  e a c h  l o c a l  q u e r y ,  t h e  

g l o b a l  p a t h  i s  r e p l a c e d  b y  i t s  c o r r e s p o n d i n g  l o c a l  p a t h  o b t a i n e d  f r o m  t h e  

X M K B .  I f  t h e r e  i s  n o  c o r r e s p o n d i n g  l o c a l  p a t h ,  t h e n  n o  q u e r y  i s  g e n e r a t e d  

f o r  t h i s  d a t a  s o u r c e ,  w h i c h  m e a n s  t h i s  g l o b a l  q u e r y  c a n n o t  b e  a p p l i e d  t o  

t h i s  l o c a l  d a t a  s o u r c e .  O n  t h e  o t h e r  h a n d ,  i f  t h e  f u n c t i o n  r e p r e s e n t a t i o n  is  

n u l l  t h a t  m e a n s  t h e r e  i s  n o  f u n c t i o n  n e e d e d  f o r  t h i s  c a s e .

S t e p  4 :  t h e  g e n e r a t e d  l o c a l  X Q u e r y  q u e r y  f o r  t h e  r e l a t i o n a l  d a t a b a s e  is  

t h e n  c o n v e r t e d  i n t o  S Q L .  F i g u r e  6 . 7  s h o w s  t h e  g e n e r a t e d  l o c a l  q u e r i e s  

f r o m  t h e  g l o b a l  q u e r y  Q I .

i £  Q11RV PROCESSOR

MASTER VIEW
•Tcrnl version '1 (T encodm<j='UTF-8' ?> 
•element name=*book‘ »

•element name='price’/»
•element name=*authof»

•element name=’Ajll_name'» 
•element name=Ttrst_name’ ;> 
•element name=“last_nam07» 

•/element*
•/element*
•element name=Titie‘ /»
•element name=*year7»
•element name='publisher*/»
•element name=*editor*»

•element name='altlliatlon‘V»
•element name=*(Ull_name> 

•/element*
•/element*

ENTER YOUR XQUERY:
FOR IBook IN document fmastecxmO/book WHERE $book/publisher = ‘ Morgen Kauthiann* RETURN «book» (Jbook/tltte) «/book>

THE RESULT:
Sub-Query Generate For XML document httpj/wwww3schoois com/kquery/books ami i 
No matched Query Generated For This Dtad Source

Sub-Query Generate For XML document CAprototypetdortbibJcml is .
FOR Jbook IN documentC’ClprototrpeWoctbibjjnryblb/book WHERE tbooWpublisher="Morgen Kaufmann’  RETURN •book* ( $bookWe) </book*

Sub-Query Generate For Relational Database |dbc:oracle:thin:@helot1521 :orade9VSCMFMA Is : 
Select scmfma book title From scmfma book WHERE scmfrna book.publisher= Morgen Kaufrnann’

I
Sub-Query Generate For XML document C tprototypetdoctbookdatajcml Is 
No matched Query Generated For This Dtad Source

Get Master View Generate local Sub Query Resat  I___________  Exit

F igure 6. 7: The g en era ted  loca l queries fro m  Q I .
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6 .5 .2  F u n c tio n -in v o lv e d  o n e -to -o n e  q u ery  ex a m p le

Q 2 :  FO R $book IN  docum ent ("'master.xml")/book RE TU R N  < b o o k >  
{$book/title, $book/price} < /b o o k >

T h i s  i s  a  f u n c t i o n - i n v o l v e d  o n e - t o - o n e  m a p p i n g  c a s e .  T h e  q u e r y  w i l l  l i s t  

a l l  t h e  t i t l e s  a n d  p r i c e s  a v a i l a b l e  a t  t h e  f o u r  d a t a  s o u r c e s .  T h e  q u e r y  is  

p a r s e d  a n d  /book, $book/title  a n d  $book/price  a r e  d e t e c t e d  a s  p a t h  

e x p r e s s i o n s  w h i c h  r e p r e s e n t  g l o b a l  p a t h s .  T h e  X M K B  i s  i n v o k e d  t o  o b t a i n  

t h e  c o r r e s p o n d i n g  l o c a l  p a t h  a n d  t h e  f u n c t i o n  n a m e  ( i f  it n o t  n u l l )  f o r  e a c h  

g l o b a l  p a t h .  In  e a c h  l o c a l  q u e r y ,  t h e  g l o b a l  p a t h  i s  r e p l a c e d  b y  i t s  

c o r r e s p o n d i n g  l o c a l  p a t h  w i t h  t h e  f u n c t i o n  n a m e  i f  it i s  n o t  n u l l .  F i g u r e  6 . 8  

s h o w s  p a r t s  o f  X M K B  in  w h i c h  t h e s e  p a t h s  a p p e a r .

-  < so u rce  p a th = '/b o o k " >
c ta r g e t nam e="books.xm l"  Fun="Null“> /b o o k s t o r e /b o o k < / ta r g e t >  
c ta r g e t n a m e - 'b ib .x m r  fun=“l\iu ll" > /b ib /b o o k c /ta r g e t>  
c ta r g e t nam e=“SCMFMA“ fun=’Null‘> / s c m f m a /b o o k c / t a r g e t >  
c ta r g e t  n a m e = " b o o k d a ta .x m r  fu n = " N u ll" > /b o o k d a ta /b o o k c /ta r g e t>  

c /so u rc e >
-  c so u rce  p a th = Y b o o k /p r ic e ‘'>

c ta r g e t nam e=“b o o k s .x m l"  fu n = " R a te E x c h a n g e " > /b o o k s to r e /b o o k /p r ic e c /ta r g e t>  
c ta r g e t nam e= “b ib .x m r  fu n = " R a te E x c h a n g e " > /b ib /b o o k /p r ic e c /ta r g e t>  
c ta r g e t nam e= “SCMFIviA“ fun="Mull, > M u llc /targ et>
c ta r g e t  n a m e = " b o o k d a ta .x m r  fu n = " IM u ll" > /b o o k d a ta /b o o k /p r ic e c /ta r g e t>

c /so u rc e >

-  <source p a th = “/b o o k / t i t l e " >
c ta r g e t  n am e= " b o o k s .x m l11 fun="Nulll' > / b o o k s t o r e / b o o k / t i t l e < / t a r g e t >  
c t a rg e t  n a m e - 'b i b . x m r  fu n = " l \ lu H "> /b ib /b o o k / t i t l e c / ta rg e t>  
c t a rg e t  name="SCMFMA11 fun=“N u H " > / s c m f m a / b o o k / t i t l e c / t a r g e t >  
c t a rg e t  n a m e - 'b o o k d a t a .x m l"  fun="Null“> / b o o k d a t a / b o o k / t i t l e c / t a r g e t >  

c /source>

Figure 6.8: Som e p a r ts  o f  XM K B  used to translate Q2.

F i g u r e  6 . 9  s h o w s  t h e  r e s u l t s  g e n e r a t e d  b y  l o c a l  q u e r i e s  f o r  g l o b a l  q u e r y  

Q 2 .

6 .5 .3  O n e -to -m a n y  q u ery  e x a m p le

Q 3 :  FOR $ed i IN  docum ent ("m aster.xm T)/book WHERE $ed i/title  =  
“D a tabase  S ys te m s” RE TU R N  < ed ito r>  {$ ed i/ed it or/full_nam e}
< /ed ito r>
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T h i s  i s  a  m o r e  c o m p l e x  m a p p i n g  c a s e  t h a t  c a n  o c c u r ,  w h e n  t h e r e  i s  a  p a t h  

in  t h e  g l o b a l  s c h e m a  m a p p e d  t o  m a n y  p a t h s  in  a  l o c a l  s c h e m a .  Q 3  f i n d s  

t h e  e d i t o r ’ s  f u l l  n a m e  f o r  t h e  b o o k  t i t l e d  ‘ D a t a b a s e  S y s t e m s ’ . T h e  

t r a n s l a t i o n  p r o c e s s  i s  s i m i l a r  t o  t h e  t w o  p r e v i o u s  c a s e s  a n d  h a s  t h e  

f o l l o w i n g  s t e p s :

QUERY PROCESSOR

MASTER VIEW
*?xmlversion=‘ l. ( r  encodlng=*UTF-tr ?» 
<elemenl name=*book'»
•element name=*pnce7»
•element names'author"*
•element name=*full_name‘ >
•element name=Hr$t_name7* 
•element name="1ast_name*/> 

•/element*
•/element*
•element name=Ktle'/»
•element name=‘yea(7»
•element name='publi$her7»
•element name='editoi'»
•element name='a1T!liation‘ /»
•element name=*fUit_name'/> 

•/element*
•/element*

ENTER YOUR XQUERY:
FOR Ebook IN document f  master jcmO/book RETURN ‘ book* (Ebook/title, Ebook/pnce} «/book>

THE RESULT:
Sub-Query Generate for XML document hflpJNkww.w3$chools.com/kqueryJbooksjcml I s :
FOR Ebook IN documenlfhflpJNkww.w3schools.com/kquery/booksJcmrybookstore/book RETURN <book> { $book/We, RateE«change(Ebook/pnce) | ‘ /book*

Sub-Query Generate For XML document CAprotolypeVtocl&lbjcml is ;
FOR Ebook IN documenlfC AprolotypeWocU/lbwnn/bib/book RETURN «book> ( Ebook/We, RateEkchange(Ebook/pnce) 5 «/book»

Sub-Query Generate For Relational Database |dbc:oradeThin;@helotl 521:orade9tSCMFMA is 
No matched Query Generated For This Dtad Source

Sub-Query Generate For XML document C tprololypetdoclbookdata Jtml is :
FOR Ebook IN documentf CTprototypeWoctbookdata kmrybookdata/book RETURN «book> ( Ebook/titie, Ebook/pnce) </book»

Master View Generate Local Sub-OueryGet Reset Exit

F igure 6.9: The g en era ted  loca l queries from  Q2.

S t e p  1: Q 3  i s  p a r s e d  a n d  /book , $ ed i/title , a n d  $edi/editor/fu ll nam e  a r e  

d e t e c t e d  a s  p a t h  e x p r e s s i o n s  w h i c h  r e p r e s e n t  g l o b a l  p a t h s .

S t e p  2 :  T h e  X M K B  i s  i n v o k e d  t o  o b t a i n  t h e  c o r r e s p o n d i n g  l o c a l  p a t h  a n d  

f u n c t i o n  n a m e s  f o r  e a c h  g l o b a l  p a t h .  F i g u r e  6 . 1 0  s h o w s  p a r t s  o f  X M K B  in  

w h i c h  t h e s e  p a t h s  a p p e a r .
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-  <source path=7book">
<tarqet nam e-'books.xm l" fun="NuH">/bookstore/book</target>
<target name=,bib.xml* fun="Null">/bib/book</target> 
c target name^SCMFMA" fun='Null,> /scm fm a/b o o k < /ta rg e t>  
c targe t name=“b o o k d a ta .x m r fu n = 'N u ir> /b oo kd ata /bo ok c/ta rge t>  

c/source>

-  csource p ath = "/b o o k /title“>
ctarget nam e-'books.xm l" fyn="Nulll,> /b o o k s to re /b o o k /title c /ta rg e t>  
c target name="bib.xml' fu n="N uir> /b ib /book/titlec/target>  
c targe t name="SCMFMA" fun="N uir> /scm fm a/b oo k /titlec /ta rge t>  
c target name=“bookd ata .xm l“ fun="N ull"> /bookdata /book/titlec /target>  

c/source>
-  <source p a th = 7 b o o k /ed ito r* >

c ta rg e t nam e="books.xm l’ fan=,Null“> N ulk /ta rget>  
c ta rg e t name=’b ib .xm l!l fun=*NullR> /b ib /b o o k /e d ito r< /t3 rg e t>  
cta rg e t name="SCMFMA‘ fun="Mulll,>ISIullc/target> 
c ta rg e t n am e^ b o o k d a ta .x m l' fun=“Null‘>M ullc/target>

</source>
-  csource p a th = "/b o o k /e d ito r /a ff i lia tio n ,'>

c ta rg e t name=“b o o k s .x m r fun=’Nuir,> \'u llc /ta rge t>  
c ta rg e t nam e="bib.xm ls fu n = 'N u ll"> /b ib /b o o k /ed ito r/a ffilia tio n c /ta rg e t>  
c ta rg e t rtame=“SCMFMA' fun='Null,>N'ullc/target> 
c ta rg e t nam e= "bookdata.xm l' fun=“Null,> \u llc /ta rg e t>  

c/source>
-  csource path= ,/b o o k /e d i to r /fu l l_ n a m e ,>

c ta rg e t nam e-'books.xm l" fun=*Null">Mull</target>
c ta rg e t nam e="bib.xm l' fun="Merge,,> /b ib /b o o k /e d i to r / l a s t f/b ib /b o o k /e d ito r /f ir s t< /ta rg e t>
c ta rg e t name=''SCMFMA', fun=,lNulll,> N ulk /ta rget>  
c ta rg e t name=fb o o k d a ta .x m l' fun=“IMull'>Nullc/target> 

c/source>

F igure 6.10: Som e p a r ts  o f  X M K B  used to translate Q3.

S t e p  3 :  a  l o c a l  q u e r y  i s  g e n e r a t e d  f o r  e a c h  < ta rg e t>  e l e m e n t  t h a t

c o r r e s p o n d s  t o  a  p a t h  e x p r e s s i o n  d e t e c t e d  in  t h e  g l o b a l  q u e r y  p a t h s .  T h e  

c o n t e n t  o f  t h e  < ta rg e t>  e l e m e n t  c o r r e s p o n d i n g  t o  g l o b a l  p a t h

$edi/ed itor/fu ll nam e  in  t h e  X M K B  i s  n u l l  f o r  t h r e e  o f  t h e  d a t a  s o u r c e s .

T h i s  m e a n s  t h i s  g l o b a l  q u e r y  c a n n o t  b e  a p p l i e d  t o  t h e s e  d a t a  s o u r c e s .

H o w e v e r ,  f o r  t h e  f o u r t h  d a t a  s o u r c e ,  t h e  $edi/editor/fu ll nam e  g l o b a l  p a t h  

i s  m a p p e d  t o  t h e  l o c a l  p a t h s  B ib/book/ed itor/last  a n d  /b ib /b o o k /ed ito r /first . 

T h i s  m e a n s  t h e s e  p a t h s  h a v e  t h e  s a m e  i n d e x  n u m b e r  a n d  c o r r e s p o n d  t o  t h e  

p a t h  in  t h e  g l o b a l  s c h e m a .  A l s o ,  t h e  c o r r e s p o n d i n g  u s e r - d e f i n e d  f u n c t i o n  

( U D F )  c o n t e n t  i s  M erge  w h i c h  i s  a  U D F  f u n c t i o n  n a m e .  M erge  w a s
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e x p l i c i t l y  d e f i n e d  b y  t h e  i n t e g r a t o r  a s  t h e  r e s u l t s  f r o m  t h e s e  t w o  p a t h s  

s h o u l d  b e  m e r g e d  t o  g i v e  t h e  a p p r o p r i a t e  a n s w e r  f o r  t h i s  q u e r y .  F i g u r e

6 .1  1 s h o w s  t h e  l o c a l  q u e r i e s  g e n e r a t e d  f r o m  q u e r y  Q 3 .

QUERY PROCESSOR JflJ xj
MASTER VIEW

<?*ml versions O' encodm^'UTF-tT ?» 
•element name^'book’ *

<eiement name='price'/>
‘ element name='authoi*>
‘ element name=*tuli_name'>
•element name=‘tlrst_name’/» 
•element name='last_name‘/» 

•(element*
•/element*
•element nam e=W /»
•element name=‘yea('/>
•element name=*publisher'/>
•element names'editoi'*
•element name='atfiliabon‘ /»
•element name="Ml_name'/> 

•/element*
•/element*

BtTER YOUR XQUERY:
FOR Jedi IN document fmasterjcmrybook WHERE tedi/Me = Database Systems' RETURN <edrtor* tJedi/editor/fuil_name) </editor»

THE RESULT:
Sub-Query Generate For XML document http//wwww3schools com/rquery/books xml is 
No matched Query Generated For This Dtad Source

Sub-Query Generate For XML document C tprototypetdoctbib ami is
FOR leot IN documentCCAprototypeidoc\bibxmrybib/book WHERE $eduWle= "Database Systems' RETURN ‘ editor* ( Merge<$edi/editorflast, Jedi/editorflirsQ) ‘ /editor*

Sub-Oueiy Generate For Relational Database jdbc oracle.thin ghe lotl 521 :oracle9lSCMFMA Is : 

matched Query Generated For This Dtad Source

Query Generate For XML document C tprototypetdoctoookdatajanl is . 
matched Query Generated For This Dtad Source

Get Master View Generate Local Sub Query Reset Ex*

Figure 6.11: The g en era te d  loca l queries fro m  Q3.

6.5.4 M any-to -one  q u e ry  exam ple

Q 4 :  FOR $auth IN  docum ent ("m aster.xm l")/book w here Sauth/title  =  
"Data Structures" RETU RN  < a u th o r>  {$auth/author/full nam e/first name, 
$auth/author/full nam e/last nam e} < /au th or>

T h i s  q u e r y  s h o w s  a  c a s e  in  w h i c h  t w o  o r  m o r e  p a t h s  o f  t h e  g l o b a l  s c h e m a  

c o r r e s p o n d  t o  o n e  p a t h  in  a  l o c a l  s c h e m a .  T h e  q u e r y  l i s t s  t h e  a u t h o r ' s  l a s t
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a n d  f i r s t  n a m e s  f o r  b o o k s  w i t h  a  t i t l e  ' D a t a  S t r u c t u r e s ' .  T h e  f i r s tn a m e  a n d  

last nam e  e l e m e n t s  in  t h e  g l o b a l  s c h e m a  a r e  m a p p e d  t o  o n e  e l e m e n t  in  

s o m e  o f  t h e  l o c a l  s c h e m a s  ( s e e  F i g u r e  6 . 1 2 ) ,  i . e .  t w o  e l e m e n t  p a t h s  

c o r r e s p o n d  t o  o n e  e l e m e n t  p a t h .  T h u s ,  t o  t r a n s l a t e  t h i s  q u e r y  i n t o  t e r m s  o f  

t h e  l o c a l  s o u r c e s ,  a  s p e c i f i c  U D F  f u n c t i o n  i s  r e q u i r e d  t o  s e p a r a t e  t h e  f u l l -  

n a m e  i n t o  f i r s t - n a m e  a n d  l a s t - n a m e .  T h e  s t e p s  in  t h i s  t r a n s l a t i o n  a r e :

S t e p  1: Q 4  i s  p a r s e d  t o  d e t e c t  g l o b a l  p a t h  e x p r e s s i o n s  ( s e e  F i g u r e  6 . 1 2 ) :

/b o o k
$au th /title
$auth/author/full nam e/fir s t nam e 
$auth/author/full nam e/last nam e

-  < sou rce  p a th = 7 b o o k /a u th o r " >
c ta rg e t  nam 8=, b o o k s .x m r  fu n = 'N u ir> /b o o k s to re /b o o k /a u th o r< / ta r g e t>  
c ta rg e t  nam e=, b ib .x m l‘ fun=BNull, > /b ib / b o o k /a u th o r c / t a r g e i >  
c ta rg e t  nam e^'SCM FM A ' fun=,N ull,> / s c m f m a /b o o k /a u th o r c / t a r g e t>  
c ta rg e t  n a m e = 'b o o k d a ta .x m P  fun=“Null, > /b o o k d a ta /b o o k /a u th o r c / t a r g e t>  

c /so u rca >
-  c so u rce  p a th = 7 b o o k /a u th o r / f u l l_ n a m e " >

c ta rg e t  n a m e - 'b o o k s .x m l ' fun=“N u ir > /b o o k s to r e /b o o k /a u th o r c / t a r g e t>  
c ta rg e t  nam e=‘b ib .x m r  fun= 'N ull“> /b ib / b o o k /a u th o r c / t a r g e t >  
c ta rg e t  name=*SCMFMA' fun=,Null“> /s c m f m a /b o o k /a u th o r c / t a r g e t>  
c ta rg e t  n a m e = 'b o o k d a ta .x m l*  fun=“N u l l '> /b o o k d a ta /b o o k /a u th o r c / t a r g e t>  

c /so u rce >
-  c so u rce  p 3 th = 7 b o o k /a u th o r / f u l l_ n a m e /f i r s t_ n a m e * >

c ta rg e t  n a m e = 'b o o k s .x m l' f u n = f i r s t \ a m e '> /b o o k s to r e /b o o k /a u th o r c / t a r g e t>  
c ta rg e t  nam e=‘b ib .x m l ' fun=’r y u l l " > /b ib /b o o k /a u th o r / f i r s t c / ta rg e t>  
c ta rg e t  nam e=’SCMFMA“ fu n = f ir s tN a m e ‘> /s c m f m a /b o o k /a u th o r c / t a r g e t>  
c ta rg e t n a m e = 'b o o k d a ta  .xm l" fun= ‘f i r s tN a m e * > /b o o k d a ta /b o o k /a u th o r /n a m e < / ta r g e t>  

c /so u rce >
-  c so u rce  p a th = 7 b o o k /a u th o r / f u l l _ n a m e / I a s t_ n a m e , >

c ta rg e t  nam e=’b o o k s .x m l ' fu n = " L a s tN a m e " > /b o o k s to re /b o o k /a u th o r c / ta rg e t>  
c ta rg e t  n a m e = 'b ib .x m l‘ fun=,Null, > /b ib / b o o k /a u th o r / l a s t c / t a r g e t>  
c ta rg e t  nam e='SCM FM A ‘ fun=, L a s tN a m e '> / s c m f m a /b o o k /a u th o r c / t a r g e t>  
c ta rg e t  n a m e ^ b o o k d a ta .x m l ' fun=“L a s tN a m e ,> /b o o k d a ta /b o o k /a u th o r /n a m e c / t a r g e t>  

c /so u rce >

Figure 6.12: Som e p a r ts  o f  X M K B  used to translate Q3.

S t e p  2 :  T h e  X M K B  i s  r e a d  t o  o b t a i n  t h e  c o r r e s p o n d i n g  l o c a l  p a t h  a n d  

f u n c t i o n  n a m e  f o r  e a c h  g l o b a l  p a t h .

In  t h i s  t r a n s l a t i o n ,  n o  U D F  f u n c t i o n  i s  r e q u i r e d  f o r  t h e  b i b . x m l  d a t a  s o u r c e  

s i n c e  i t s  U D F  v a l u e  i s  n u l l .  W h i l e  f o r  t h e  o t h e r  t h r e e  d a t a  s o u r c e s ,  t h e  

c o r r e s p o n d i n g  f u n c t i o n  v a l u e s  a r e  JirstN am e  a n d  LastN am e  i n d i c a t i n g  t w o  

U D F  f u n c t i o n s  a r e  n e e d e d .  H e n c e ,  t h e  g l o b a l  p a t h s
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$au th /au thor/fu l I n am e/fir s t nam e  a n d  $auth /author/fu ll nam e/last nam e 

a r e  m a p p e d  t o  t h e  p a t h s  /b o o k sto re /b o o k /a u th o r  in  t h e  b o o k s . x m l  d a t a  

s o u r c e ,  /scm fm a/book /au th or  in  t h e  S C M F M A  d a t a  s o u r c e ,  a n d  t o  

/b o o k d a ta /b o o k /a u th o r/n a m e  in  t h e  b o o k d a t a . x m l  d a t a  s o u r c e .  T h u s ,  o n e  

l o c a l  p a t h  h o l d s  t w o  d i f f e r e n t  i n d e x  n u m b e r s ,  i . e .  it c o r r e s p o n d s  t o  t w o  

p a t h s  in  t h e  g l o b a l  s c h e m a .  In  a d d i t i o n ,  f o r  e a c h  o f  t h e s e  p a t h s  a  U D F  

f u n c t i o n  n a m e  w a s  e x p l i c i t l y  d e F i n e d  b y  t h e  d e s i g n e r .  T h e s e  f u n c t i o n s  a r e  

firs tN a m e  t o  r e t u r n  t h e  f ir s t-n a m e  a n d  L astN am e  t o  r e t u r n  t h e  last-nam e. 

H e n c e ,  t h e  fu ll-n a m e  v a l u e  i s  s e p a r a t e d  i n t o  First a n d  l a s t  n a m e s  in  o r d e r  t o  

g i v e  t h e  a p p r o p r i a t e  a n s w e r  f o r  t h i s  q u e r y .

S t e p  3 :  a  l o c a l  q u e r y  i s  g e n e r a t e d  f o r  e a c h  < ta rg e t>  e l e m e n t  w h o s e  v a l u e  

i s  n o t  n u l l .  T h e  l o c a l  q u e r i e s  g e n e r a t e d  f r o m  q u e r y  Q 4  a r e  s h o w n  in  F i g u r e  

6 . 1 3 .

Q llftY  PROCESSOR -  lol *1
MASTER VEW

•■>imiversion=*i 0* encodm<F*UTF-8* ?» 
•e lem en t nams="book*»
•elem en t name=*ortce*/»
•e lem en t nam e-'ardhor**

•elem en t name=*ftjll_name*»
•elem en t nam e*"#tst_name*/» 
•e le m e n t nam e=*iast_nem e7» 

•/elem ent*
•/elem ent*
•e lem en t name=*Stie*/»
•e lem en t name=*ireei'/»
•e lem en t name=*poblisher*/*
•elem en t name=*edltor*»
•e lem en t name=*afllltation*/*
•e lem en t name="ftiH_name*/» 

•/elem ent*
•/elem ent*

ENTER YOUR XOUERY:
FOR la u th  IN docum ent ("m aster w nrybookw tie re  lauth/trtle s  "Data S tructures' RETURN ‘ author* (lauth/aiithorrtjll_nam e/llr$t_n8m e. |au1h/author/rull_name/last_nam e) «/author»

THE RESULT:
Sub-Query G enerate For XML docum ent http //www w 3schools.com /yqueryfbooks.aril 1$ .
FOR lau th  IN documentChttpdwww w3 schools com /tquery/books *m rybook«tore/book WHERE |auth/tltlee"D aia S tructures' RETURN ‘ author* ( llrstN am eflauth/author). 
L astN am etlau tn /au thoc)) «/author»

Sub uuery  G enerate For XML docum ent C Iprototypeldoctblb «ml i s :
FOR lau th  IN docum entfC  IprotolypeldocUiib xm fybib/book WHERE lauthflrtle»'D ata Structures* RETURN ‘ author* { tauth/author/tlrst, lau th /au tho r/lae t} ‘/author*

Sub-Ouery G enerate For Relational D a tab ase  idbc oracle thin g h e io t  1521 orade9tSCMFMA Is
Select flrt* lam e(ecm fm a book a u th o r). Le*1N am e(scm fm a book author) From scm fm a book WHERE scm ltna book btle=T)ata Structures’

Sub-Ouery G enerate For XML docum ent C:\prototypeidoc\bookdata wni i s :
FOR la u th  IN docum entfC lprototypeldoclbookdata w nrybookdata/book WHERE tauth/Mlb=*Oata Structures* RETURN ‘ author* [ tlrstN am edauth /au thorfnam e), 
L astN am e(leu th /au thor/nam e)) ‘ /author*

Get M aster View Genet a te  Local S u b  Q uery

F igu re 6.13: The g e n e ra te d  lo ca l qu eries fro m  Q4.
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CH APTER 7

T he SISSD im plem entation

In this chapter, we present the im plem entation details o f  the SISSD system 

architecture, and tools that were used - Java, JD OM  API, JavaCC, and 

XQ uery as an XM L query language.

7.1 Introduction

The architecture o f  our prototype system  is shown in Figure 4.1. The m ain 

objective o f  building a prototype SISSD  is to demonstrate the feasibility o f  

creating the XM L M etadata K now ledge Base (XM KB) by extracting and 

m erging increm entally the m etadata o f  the data sources in the integration 

system, and to show that X M KB can be used to assist the Query Processor 

in m ediating betw een user queries posed over the m aster view  and the 

distributed data residing in local data sources. The SISSD architecture has 

three m ain com ponents: the M etadata Extractor (M D E), the XM L 

M etadata K now ledge Base (X M K B) and the Query Processor (QP). The 

system was created in three stages, one stage for each system  component:

133



CHAPTER 7. THE SISSD IMPLEMENTATION

■ 11 mm
H i

Met aOdta Extractor Knowledge Server Query Processor

Add Hew Data Source ► Step 1. Generate index nundier for integrated schema elements

Remove Data Source Step 2. Produce GUI tree for locaLvitema structure

Step 3. Generate Path Mappings

Step 4. Merge Path Mappings with KB

■ -V. vv /V .-. -v . - .y  -v  ••..••V, rv,-. .-.-v. v . v .y ,y  /.■ ••• v.~ • v. -.v. *■*•*. *V-~ * ‘, V/.'-VA’. ■ v--.»v

F igure 7.1: The m ain in terface o f  SISSD system .

1. C r e a t i n g  t h e  M D E  t o  e x t r a c t  m e t a d a t a  a n d  b u i l d  t h e  S c h e m a  

S t r u c t u r e  D e f i n i t i o n  ( S S D )  f o r  e a c h  d a t a  s o u r c e .

2 .  C r e a t i n g  t h e  S c h e m a  S t r u c t u r e  D e f i n i t i o n  ( S S D )  p a r s e r  a n d  t h e  

a s s o c i a t e d  m a p p i n g  p r o c e s s  t o  e s t a b l i s h  a n d  e v o l v e  t h e  X M L  

M e t a d a t a  K n o w l e d g e  B a s e  ( X M K B ) .

3 .  C r e a t i n g  t h e  Q P  t o  p a r s e  a n d  t r a n s l a t e  u s e r  q u e r i e s  i n t o  s u b - q u e r i e s  

w h i c h  f i t  e a c h  l o c a l  d a t a  s o u r c e .

A p p e n d i x  A  s h o w s  t h e  j a v a  c o d e  f o r  t h e  M a i n  I n t e r f a c e  o f  o u r  S I S S D  

p r o t o t y p e  s y s t e m  ( s h o w n  in  F i g u r e  7 . 1 ) .
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7.2 m e ta d a ta  ex tr a c t in g  p ro ce ss

T h i s  s e c t i o n  c o v e r s  t h e  i m p l e m e n t a t i o n  o f  t h e  M e t a d a t a  E x t r a c t o r  ( M D E )  

a n d  t h e  a s s o c i a t e d  S c h e m a  S t r u c t u r e  D e f i n i t i o n  ( S S D ) .  T h e  M D E  i n t e r a c t s  

w i t h  t h e  d a t a  s o u r c e s  in  t h e  i n t e g r a t i o n  s y s t e m  t o  e x t r a c t  t h e i r  m e t a d a t a  

a n d  b u i l d  t h e  S S D  f o r  e a c h  p a r t i c i p a t i n g  d a t a  s o u r c e .  F i g u r e  7 . 2  s h o w s  t h e  

S S D  o f  t h e  b i b  X M L  d o c u m e n t  s h o w n  in  F i g u r e  7 . 3 .

W e  h a v e  i m p l e m e n t e d  t h e  M D E  u s i n g  J D B C  [ 8 2 ,  1 4 2 ]  a n d  J D O M  

t e c h n o l o g y  [ 6 ,  8 8 ,  8 9 ] .  W e  u s e  J D B C  a s  t h e  A P I  t o  c o n n e c t  t o  a  r e l a t i o n a l  

d a t a b a s e  s y s t e m .  A s  a  r e s u l t ,  o u r  i m p l e m e n t a t i o n  w o r k s  w i t h  m o s t  

c o m m e r c i a l  r e l a t i o n a l  d a t a b a s e  s y s t e m s  i n c l u d i n g  D B 2 ,  O r a c l e  a n d  

M i c r o s o f t  S Q L  S e r v e r ,  a n d  o n  m o s t  h a r d w a r e  p l a t f o r m s .

<?xml version='T.O" encoding="UTF-B" ?>
-  <schema_information>

-  <data_source_information>
< n a m e > b ib .x m k / n a m e >  
< lo c a t io n > C : \p r o to ty p e \d o c < / lo c a t io n >  
<type>XML d o c u m e n t < / t y p e >  

</data_sourne_information>
-  <structure>

-  <element name="bib">
-  <element name = "book">

<element name="title" />
-  <element name="author">

<element name="last" />
<element name="first" />  

</element>
-  <element name="editor">

<element name="last" />
<element name="first" />
<element name="affiliation" />  

</e lement>
<element name=‘'publisher" />  
<element name="price" />

</e lement>
</element>

</structure>
</schema_information>

F igure 7.2: SSD  o f  bib XM L docum ent.
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W e  h a v e  d e v e l o p e d  J X C  ( J a v a  X M L  C o n n e c t i v i t y )  ( s e e  A p p e n d i x  C  f o r  

t h e  c o d e )  t o  b u i l d  t h e  S c h e m a  S t r u c t u r e  D e f i n i t i o n  ( S S D )  o f  a n  X M L  

d o c u m e n t .  T h i s  u s e s  a  J D O M  ( J a v a  D o c u m e n t  O b j e c t  M o d e l )  i n t e r f a c e  t o  

c o n n e c t  t o  t h e  X M L  d o c u m e n t ,  a n d  d e t e c t  a n d  e x t r a c t  i t s  m e t a d a t a  b u r i e d  

i n s i d e  t h e  d a t a .

<?xml v ers ion = “l,0" e n c o d in g = aUTF-8'' ?>
-  <bib>

-  <book>
<title>DATA ON THE W E B < /t i t le >

-  <author>
< la st> A B IT A B U L < /las t>
< f i r s t> S e r g e < / f ir s t>

< /a u th o r>

-  <editor>
< l a s t > B u n e m a n < / l a s t >
< f ir s t> P e te r < / f ir s t>
<affi l iation>Cardiff  S c h o o l  o f  C o m p u t e r  S c ie n c e < /a f f i l ia t io n >

</ed itor>
<p ub l ishe r> M orgen  K a u fm a n n < /p u b l i s h e r >

< p r ic e > 5 0 < /p r ic e >
< /b o o k >

-  <book>
<title>XML IN 2 4  H O U R S < /t i t le >

-  <author>
< la s t> A S H B A C H E R < /la s t>
<first>CHAR LES</first>

< /a u th o r>
-  <editor>

< l a s t > S u c i u < / l a s t >
< f ir s t> D a n < /f ir s t>
<aff i l iation>Cardiff  U n iv e r s i ty < /a f f i ! ia t io n >

< /ed itor>

P < publisher>SA M S</publisher>

< p r ic e > 2 4 < /p r ic e >

< /b o o k >
</b ib>

F igure 7.3: b ib XM L document.

T h e  M D E  a c c e s s e s  d a t a  s o u r c e s  w i t h o u t  m a k i n g  a n y  c h a n g e s  t o  t h e m .  A s  

t h e  M D E  r e q u i r e s  n o  c h a n g e s  t o  t h e  u n d e r l y i n g  d a t a  s o u r c e s  t o  a c c e s s  

t h e i r  m e t a d a t a ,  it  p r e s e r v e s  t h e i r  l o c a l  a u t o n o m y .

F o r  r e l a t i o n a l  d a t a b a s e s  t h e  M D E  e m p l o y s  J D B C  t o  a c c e s s  t h e  D B .  T h e  

M D E  a c c e p t s  t h e  i n f o r m a t i o n  n e c e s s a r y  t o  e s t a b l i s h  a  c o n n e c t i o n  t o
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r e t r i e v e  t h e  m e t a d a t a  o f  t h e  D B s  s c h e m a  a n d  u s e s  t h e  X M L  D a t a  S o u r c e  

D e f i n i t i o n  L a n g u a g e  ( X D S D L )  ( s e c t i o n  5 . 1 )  t o  b u i l d  t h e  t a r g e t  S c h e m a  

S t r u c t u r e  D e f i n i t i o n  ( S S D )  f o r  t h a t  D B ,  a n d  t h e  n e c e s s a r y  i n f o r m a t i o n  f o r  

a c c e s s ,  s u c h  a s  t h e  D B  l o c a t i o n  ( U R L ) ,  w h e r e  t o  s a v e  t h e  S S D ,  a n d  t h e  

U s e r  I D  a n d  P a s s w o r d .

,JO ]_xj

Save Schema Structure In File Name bib_ssdxml

Database Name 

Username

bookstore

scmfma

Password

Connect Clear Cancel

F igure 7.4: R ela tion a l D B  connection param eters.

F o r  X M L  d o c u m e n t s  t h e  M D E  e m p l o y s  J X C  t o  m a k e  t h e  a c c e s s .  T h e  

M D E  g e t s  t h e  i n f o r m a t i o n  n e e d e d  t o  e s t a b l i s h  a  c o n n e c t i o n  t o  a  w e l l -  

f o r m e d  X M L  d o c u m e n t  a n d  r e t r i e v e  t h e  m e t a d a t a  o f  i t s  s c h e m a  w h e r e  t h e  

m e t a d a t a  a r e  b u r i e d  i n s i d e  t h e  d a t a .  It t h e n  u s e s  X D S D L  t o  b u i l d  t h e  t a r g e t  

S S D  f o r  t h e  d o c u m e n t ,  a n d  t h e  i n f o r m a t i o n  f o r  a c c e s s ,  s u c h  a s  t h e  

d o c u m e n t  l o c a t i o n  ( U R L ) ,  w h e r e  t o  s a v e  t h e  S S D ,  a n d  t h e  d o c u m e n t  n a m e .

CONNECTION TO XML DOCUMENT

Save Schema Structure In File Name 

XML Document Location 

XML Document Name

book sscLxml

http://www.w3schools.com/xquery

books.xml

Connect Clear Cancel

F igure 7.5: XM L docu m en t connection param eters.
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O n c e  t h e  u s e r  h a s  s e l e c t e d  t h e  t y p e  o f  d a t a  s o u r c e  ( r e l a t i o n a l  d a t a b a s e  o r  

X M L  d o c u m e n t )  t h a t  i s  b e i n g  a c c e s s e d ,  t h e  S S D  i s  b u i l t  u s i n g  a  g r a p h i c a l  

u s e r  i n t e r f a c e ,  w h i c h  a l l o w s  t h e  u s e r  t o  s u b m i t  c o n n e c t i o n  p a r a m e t e r s .  T h e  

i n t e r f a c e s  f o r  a  r e l a t i o n a l  d a t a b a s e  a n d  X M L  d o c u m e n t  c o n n e c t i o n  

p a r a m e t e r s  a r e  s h o w n  in  F i g u r e  7 . 4  a n d  7 . 5  r e s p e c t i v e l y .  A p p e n d i x  B  a n d  

C  c o n t a i n  t h e  J a v a  c l a s s  u s e d  t o  e x t r a c t  a n d  b u i l d  t h e  S S D  f o r  a  r e l a t i o n a l  

d a t a b a s e  a n d  a n  X M L  d o c u m e n t ,  r e s p e c t i v e l y .

yiLLLi1 ■UliMI—’W
MetaOati Extractor Knowledge Sen«r Query Processor

1 book

1.1 price 

12 author

12.1 fu flnam

12.1.1 first _name

12.12 last name

1.3 title

1.4 year

1.5 publisher

1.6 editor

1.6.1 affflwbon 

1.62 full name

tadBER

Index Number for Integrated Schema Elements Generate Successfully

F igure 7.6: Index num bers g e n era te d  f o r  m aster view  shown in F igure 7. 7.

7.3 X M K B  es ta b lish in g  a n d  m a p p in g  p rocess

T h i s  s e c t i o n  c o v e r s  i m p l e m e n t a t i o n  o f  t h e  S S D  p a r s i n g  a n d  m a p p i n g  

p r o c e s s  t h a t  i s  u s e d  t o  e s t a b l i s h  a n d  e v o l v e  t h e  X M L  M e t a d a t a  K n o w l e d g e  

B a s e  ( X M K B ) .  It u s e s  t h e  a l g o r i t h m  d e s c r i b e d  in  F i g u r e  5 . 8  t o  e s t a b l i s h  a n  

X M K B  o r  t o  a d d  a  n e w  d a t a  s o u r c e  t o  a n  e x i s t i n g  X M K B .  F o u r  s t e p s  n e e d  

t o  b e  p e r f o r m e d .

T h e  f irs t step  i s  g e n e r a t i n g  a u t o m a t i c a l l y  a  u n i q u e  i n d e x  n u m b e r  f o r  t h e  

m a s t e r  v i e w  e l e m e n t s .  T h e  s y s t e m  u s e s  t h e  a l g o r i t h m  d e s c r i b e d  in  s e c t i o n  

5 . 4 . 3  t o  g e n e r a t e  t h e s e  i n d e x  n u m b e r s .  T h e  p a r s i n g  p r o c e s s  i s  p e r f o r m e d
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o n  t h e  m a s t e r  v i e w  t o  e x t r a c t  a n d  f o r m a t  t h e  X M L  s c h e m a  e l e m e n t s .  

J D O M  i s  u s e d  t o  r e a d  a n d  p a r s e  t h e  m a s t e r  v i e w  d o c u m e n t .  T h e  J D O M  

A P I  r e a d s  X M L  d o c u m e n t s  in  m e m o r y .  J D O M  is  a  t r e e - b a s e d ,  p u r e  J a v a  

A P I  w h i c h  p a r s e s ,  c r e a t e s ,  o r  m a n i p u l a t e s  X M L  d o c u m e n t s .  It p r o v i d e s  a  

f u l l  d o c u m e n t  v i e w  w i t h  r a n d o m  a c c e s s .  O n c e  a  d o c u m e n t  h a s  b e e n  

l o a d e d  i n t o  m e m o r y ,  w h e t h e r  b y  c r e a t i n g  it  f r o m  s c r a t c h  o r  b y  p a r s i n g  it  

f r o m  a  s t r e a m ,  it  c a n  b e  e a s i l y  p r o c e s s e d  b y  J D O M .  T h u s  t h e  e n t i r e  t r e e  o f  

a n  X M L  d o c u m e n t  i s  a v a i l a b l e  a t  a n y  t i m e .  J D O M  i t s e l f  d o e s  n o t  i n c l u d e  

a  p a r s e r .  I n s t e a d  it  d e p e n d s  o n  a  S A X  p a r s e r  [1 1 6 ] ,  w h i c h  c a n  b e  u s e d  t o  

p a r s e  d o c u m e n t s  a n d  b u i l d  J D O M  m o d e l s  f r o m  t h e m .

<?xml version-T.O" encoding="UTF-8" ?>
- <element name="book">

<element name-'price" />
-  <element name="author">

- <element name="full_name">
<element name- 'first_name" />
<element name="last_name" />

</element> 
</element>
<element name- ’title" />
<element narne-'year" />
<element name="publisher" />

- <element name- 'editor">
<element name- ’affiliation" />
<element name- ’fulLname" />

</element> 
</e!ement>

F igu re 7. 7: M aster view.

J D O M  p r o v i d e s  J a v a  s p e c i f i c  X M L  f u n c t i o n a l i t y .  A  n e w  b u i l d e r  i s  c r e a t e d  

t o  b u i l d  a  J D O M  t r e e .  In  t h i s  c a s e ,  a  SAX Builder  ( S A X  c l a s s )  h a s  b e e n  

u s e d  t o  b u i l d  a  J D O M  t r e e  o f  t h e  f o r m :

SA X B uilder bu ilder = new  SAXBuilder()
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J D O M  u s e s  t h e  d e f a u l t  v a l i d a t i n g  p a r s e r ;  a  c o n s t r u c t o r  i s  a v a i l a b l e  f o r  

s p e c i f y i n g  a n  a l t e r n a t i v e  v a l i d a t i n g  p a r s e r .  T h e  J D O M  c o d e  w r i t t e n  t o  

p a r s e  t h e  m a s t e r  v i e w ,  p r o d u c e  i t s  t r e e  s t r u c t u r e  a n d  t h e n  g e n e r a t e  t h e  

i n d e x  n u m b e r s  f o r  i t s  e l e m e n t s  c a n  b e  f o u n d  in  A p p e n d i x  D .  F o r  e x a m p l e ,  

F i g u r e  7 . 6  s h o w s  t h e  i n d e x  n u m b e r s  g e n e r a t e d  f o r  t h e  m a s t e r  v i e w  

e l e m e n t s  s h o w n  in  F i g u r e  7 . 7 .

Data Source Name: bib.xml

Data Source Location: C:\prototype'«doc 

Data Source Type: XML document

bib

book

title

author

last

first

editor

last

first

affiliation

publisher

price

Add

Add

Add

Add

J
Add

Add

Add

Add

Add

Add 1

Add

Submit Cancel

F igure 7.8: P a r t o f  the G U I f o r  SSD  show n in F igure 7.2.

T h e  second  s tep  p r o d u c e s  a  c o n v e n i e n t  G U I  f o r  e a c h  l o c a l  d a t a  s o u r c e  

S S D  a s  a n  a s s i s t a n t  t o o l  f o r  t h e  m a p p i n g s  g e n e r a t i o n .  T h e  J D O M  A P I  is  

u s e d  t o  r e a d  a n d  p a r s e  t h e  S S D .  O n c e  t h e  S S D  i s  p a r s e d ,  t h e  t r e e  s t r u c t u r e  

m o d e l  i s  f o r m e d  a s  a  J D O M  d o c u m e n t  o b j e c t  w h i c h  c o n t a i n s  a l l  t h e  

c o m p o n e n t s  o f  t h e  S S D .  A  G U I  i s  g e n e r a t e d  b a s e d  o n  t h e  S S D  t r e e  

s t r u c t u r e  m o d e l .  P a r t  o f  t h e  G U I  i s  s h o w n  in  F i g u r e  7 . 8  f o r  t h e  S S D  s h o w n  

in  F i g u r e  7 . 2 .  T h e  f i r s t  c o l u m n  s h o w s  t h e  p a t h  h i e r a r c h y .  T h e  s e c o n d  

c o l u m n  i s  u s e d  t o  a s s i g n  a  u n i q u e  i n d e x  n u m b e r  f o r  t h e  e q u i v a l e n c e  p a t h s ,

140



CHAPTER 7. THE SISSD IMPLEMENTATION

w h i l e  t h e  t h i r d  c o l u m n  i s  u s e d  t o  s p e c i f y  t h e  f u n c t i o n  n a m e s  w h i c h  r e s o l v e  

h e t e r o g e n e i t y  c o n f l i c t s  b y  p e r f o r m i n g  s p e c i f i c  o p e r a t i o n s .  T h e  G U I  is  

g e n e r a t e d  f o r  e a c h  S S D  t o  a s s i g n  a  u n i q u e  i n d e x  n u m b e r  t o  e a c h  p a t h  t h a t  

c o r r e s p o n d s  t o  a n  e q u i v a l e n t  g l o b a l  p a t h  a n d  a l s o  a  u s e r - d e f i n e d  f u n c t i o n  

n a m e  i f  it i s  n e e d e d .  F i g u r e  7 . 9  s h o w s  t h e  i n t e r f a c e  f o r  s u b m i t t i n g  i n d e x  

n u m b e r s  a n d  f u n c t i o n  n a m e s  f o r  t h e  m a p p i n g  b e t w e e n  a  m a s t e r  v i e w  ( o n  

t h e  l e f t  o f  t h e  f i g u r e )  a n d  t h e  S S D  s h o w n  in  F i g u r e  7 . 2 .  A p p e n d i x  E  

c o n t a i n s  t h e  J a v a  c o d e  f o r  p r o d u c i n g  a  G U I  a n d  c r e a t i n g  t h e  a s s i s t a n t  t o o l  

f o r  t h e  m a p p i n g  g e n e r a t i o n .

JaJxJ
MetaData Extractor Knowledge Server Query Processor

1 book Data Source Name: bib.xml

1.1 price Data Source Location: Cprotofypedoi

1.2 author Data Source Type: XML document

1.2.1 fid.name

12.1.1 tsst.name Mb L. _ J
12.12 last .name book L  J
1.3 title title Its 1
1.4 year author f t *  "  1

1.5 pubkslier last 112.12 1
1.6 editor hr st (l2.11
1.6.1 afTikdbon editor its
162 ful .name last iH 2  ]

hr st |162 I

afflation 16.1

publisher Its
price 111 .....1

■ 1 1  I

Add

Add

M.ig.

M ' r g ,

Add

  Add

Add 

Add 

. Add 
Add 

A dd 

Add 

Add 

Add

M erge

P 3 te f  x c h an g e

In d e x e s  N u m b ers  A ss ig n e d  S u c c e s s fu lly

OK

Sutaid! cm Cm e!

F igu re 7.9: In terface  f o r  su bm ittin g  index numbers.

T h e  th ird  s te p  g e n e r a t e s  t h e  m a p p i n g s  b e t w e e n  t h e  m a t e r  v i e w  p a t h s  a n d  

t h e  l o c a l  S S D  p a t h s  b a s e d  o n  i n f o r m a t i o n  s u b m i t t e d  u s i n g  t h e  G U I .  T h i s  i s  

d o n e  b y  c o l l e c t i n g  p a t h s  w i t h  t h e  s a m e  i n d e x  n u m b e r s  w h i c h  m e a n s  t h e y  

a r e  e q u i v a l e n t  p a t h s  w i t h  t h e  s a m e  m e a n i n g .  F i g u r e  7 . 1 0  s h o w s  a  p a t h

141



CHAPTER 7. THE SISSD IMPLEMENTATION

g e n e r a t e d  m a p p i n g .  A p p e n d i x  F  h a s  t h e  J a v a  c o d e  f o r  g e n e r a t i n g  t h e  p a t h  

m a p p i n g .

f t t K e r  In te rfa c e

MetaData Extractor Knowtedye Server Query Processor

algjxj

y-aaaa;,
Integrated Schema Element path

book

bookprice

bookautlror

bookauthorfuS_iume

.book/aulhoc fu l _nan te f t  st _natne

book'authortuljiameEastname

book title

book year

bookpubksher

book editor

bookerStor affiliation

bookedttor full name

Data Source Element path

bib book 

bib book.pt ice 

bib book author 

Nut

bib book author f»st 

bill book author last 

bibbookttle 

Nul

bib book pubkslier 

b *  booked* or 

bib bookiedd or .afrdtation 

bib tiookedrtor last, 

bib bookeditor first

Mapping Function

RateExchange

Merge

Figure 7.10: G en era ted  p a th s  mapping.

T h e  fo u rth  step  c o m b i n e s  d a t a  s o u r c e  i n f o r m a t i o n  ( n a m e ,  t y p e  a n d  

l o c a t i o n )  w i t h  t h e  p a t h  m a p p i n g  i n f o r m a t i o n  i n t o  a  m e d i a t i o n  l a y e r  h e l d  in  

t h e  X M L  M e t a d a t a  K n o w l e d g e  B a s e  ( X M K B ) .  A p p e n d i x  G  h o l d s  t h e  j a v a  

c o d e  f o r  m e r g i n g  t h e  m a p p i n g  i n f o r m a t i o n  w i t h  t h e  X M K B  a n d ,  in  

A p p e n d i x  H ,  t h e r e  i s  a  s a m p l e  o f  a n  X M K B  d o c u m e n t  w h i c h  c o n t a i n s  t h e  

m a p p i n g  i n f o r m a t i o n  f o r  t h e  f o u r  s c e n a r i o  d a t a  s o u r c e s .

Remove Data Source m:- xj

R e m o v e  D a ta  S o u r c e b o o k jx m l

oks.xml

bib.xm l

SCMEMA

bookdatnxm l

R e m o v e C a n c e l

F igure 7.11: Interface fo r  rem oving data  source.
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A  d a t a  s o u r c e  c a n  b e  r e m o v e d  f r o m  t h e  i n t e g r a t i o n  s y s t e m  t h r o u g h  t h e  

J D O M  A P I  u s i n g  t h e  i n t e r f a c e  s h o w n  in  F i g u r e  7 . 1 1 .  T h e  A P I  i s  u s e d  t o  

a c c e s s  t h e  X M K B  t o  o b t a i n  t h e  n u m b e r s  a n d  n a m e s  o f  t h e  d a t a  s o u r c e s  

c u r r e n t l y  in  t h e  i n t e g r a t i o n  s y s t e m  a n d  c r e a t e  t h i s  d i s p l a y .  T h e  u s e r  t h e n  

s e l e c t s  t h e  d a t a  s o u r c e  t o  b e  r e m o v e d  f r o m  t h e  X M K B  a n d  t h e  s y s t e m  

r e m o v e s  a l l  t h e  l o c a l  p a t h s  r e l a t e d  t o  t h i s  d a t a  s o u r c e  f r o m  X M K B  w i t h o u t  

t h e  n e e d  t o  r e g e n e r a t e  t h e  X M K B .  A p p e n d i x  I s h o w s  t h e  J a v a  c l a s s  w h i c h  

i m p l e m e n t s  t h i s  a c t i o n .

Ei' QUfcltV PRDCFSStTR
MASTER VIEW

*?xm l versior*=’ t O’  encodings'U T F-tT  ?»  
e le m e n t n a m e * 'b o o k "»

•e le m e n t nam e= 'pnce"/»
•e le m e n t n a m e = 'a u th o r»

•e le m e n t nam e=*tu#_nam e'>  
•e le m e n t n a m e ^ r s U u m e * /*  
•e le m e n t nam #= ‘ la st_ n am e 'f»  

• /e lem en t*
•/elem en t*
• e le m e n t nam e= 'W e '/>
• e le m e n t nam e=*yeai'/»
•e le m e n t nam e= 'p u b iish e /7 *
• e le m e n t nam e= 'editor*»

•e le m e n t nam es'afflB afton '/*  
•e le m e n t nam e= ‘fu ll_ n a m e >  

•/e lem en t*

•/elem en t*

ENTER YOUR XQUERY:
FO R tb o o k  IN d ocum en t fm a s te r  .xmO/book WHERE $bookf p ub lisher = 'M orgen  K au fm an n ' RETURN «book* (Jbook/tibe) </book*

T t t  RESULT:
ib-Ouery O enera te  For XML d ocum en t http Wrww w 3 sch o o ls  com /xquery/books xml i s : 
> m atched  Query G enera ted  For T his D tad Source

jSub-Query G enera te  For XML d ocum en t C tprototypetdoctbib xml is
FO R tb o o k  IN docu m en t^  C tprototvpetdoctbib xm rybib /book WHERE Jbook /pub lisher= 'M orgen  K aufm ann" RETURN •book* ( Jbook/btle |  «/book>

Sub-Query G enera te  For R elational D a ta b a se  jdbc oracle  thm  g h e lo t  1 521 .orade9tSC M F M A ls 
Select scm ftrta .book  lMe From scm tm a  book WHERE scm frna book.publi$her=M orgen  K au ttnann '

ub-Query O enera te  For XML d ocum en t C tpro to typeldoctbookdatajon l i s : 
o m atched  Query G enera ted  For T his D tad S ource

Get Master View Generate Local Sub-Query Reset Extf

Figure  7 . 12: E xam ple o f  a  g lo b a l query translation.

7.4  Q u er y  p a rse r  a n d  tra n s la t io n  p rocess

W h e n  a  u s e r  f o r m u l a t e s  a  q u e r y  in  t e r m s  o f  t h e  m a s t e r  v i e w  ( g l o b a l  

s c h e m a )  u s i n g  X Q u e r y  F L W R  e x p r e s s i o n s ,  t h e  q u e r y  i s  p a r s e d  b y  t h e
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query parser and the Query Processor generates the corresponding local 

queries. The system  uses the algorithm  described in section 6.3 to rew rite 

the user query as appropriate sub-queries for each local data source. For 

the XM L query parser process, we developed a simple parser called 

XQ uery F L W R  Expression P arser (XFEP) which parses, lexically 

analyses the query, and breaks the XQ uery FLW R Expression query into 

tokens w hich are classified. The X FEP parser is implemented in Java. 

Figure 7.12 show s an exam ple o f  global query translation.

X FEP parser is a parser generator and lexical analyzer generator for 

processing an X Q uery FL W R  Expression query. The XFEP parser 

generates error m essages, i f  the X Q uery FLW R Expression query input 

does not conform  to the syntactic rules o f  the language or to the form at o f  

the m aster view  (global schem a).

W hen the X FEP parser checks the X Q uery FLW R Expression query for 

syntactic correctness to ensure that the query is valid and conform s to the 

m aster view , the parser breaks the query into tokens according to the rules 

o f  the language. The parser analyzes this sequence o f  tokens to determ ine 

the structure o f  the query and to generate the X Q uery Internal Structure 

(XQIS) which contains the X M L paths, variables, conditions and tags 

present in the query. Once the X Q IS is generated the Query Processor 

(QP) consults the X M K B via the JD O M  API to produce the corresponding 

local queries for each local data source. A ppendix J contains the Query 

Processor and X FEP Parser code.
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CH APTER 8

Evaluation &  Discussion

This chapter is an assessm ent o f  the project. W e evaluate the functionality 

and flexibility o f  the system , and then discuss the suitability o f  its 

architecture and design. The X M K B construction process is then evaluated, 

followed by a discussion o f  the suitability o f  XM L as the canonical data 

model in our integration system.

8.1 Evaluation

This evaluation is against the hypothesis and objectives in chapter 1.

The main em phasis o f  our w ork was to investigate the feasibility o f  

building by a bottom -up approach an XM L M etadata K now ledge Base 

(XM KB) to assist with the incorporation o f  heterogeneous distributed 

structured data residing in relational databases and sem i-structured data 

held in well-form ed XM L docum ents into an integration system. This has 

been achieved by developing:
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1) The M DE to extract m etadata w hich is used to build the SSD o f  the 

data sources.

2) A tool for a m eta-user (the m etadata integrator) to describe 

m appings betw een the m aster view  and local SSD o f  data sources.

3) An XM L M etadata K now ledge Base (X M K B) to store this m apping 

information.

4) An architecture o f  software com ponents which builds this XM KB 

and exploits its knowledge to assist the Q uery Processor to m ediate 

betw een user queries posed over the m aster view o f  its 

heterogeneous data sources, and translate such queries into sub

queries suited to each local data source.

The efficiency and effectiveness o f  the outcom es o f  our research are 

m easured in term s o f  the:

•  Functionality o f  SISSD system  w ith regard to its role as an 

integration tool for a m eta-user and its role in helping users 

form ulate queries and receive output.

•  Flexibility o f  the SISSD system  with regard to its suitability to a 

dynamic environm ent, w here data sources can be added or rem oved 

w ithout the need to restructure the m aster view.

• The architecture o f  the SISSD  system  with regard to its design and 

role as an integration tool.

• Construction o f  the XM KB with regard to its structure and role as a 

central repository which stores the m appings information.

•  Choice o f XM L as the data model o f our data integration system, and 

the language to describe the SSD for the participating data sources.
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•  Capability o f SISSD system with regard to handling different types 

o f heterogeneity that m ay exist betw een a set o f data sources.

•  D ifferent uses o f  the system  and the types o f  user who can use it.

8.1.1 Functionality o f SISSD

The SISSD system  is a valuable integration tool for a m eta-user who does 

the m etadata integration o f  heterogeneous distributed structured data 

residing in relational databases and sem i-structured data held in well- 

form ed XM L docum ents produced by internet applications — in that it 

facilitates the efficient production o f  an XM L M etadata Knowledge Base 

(XM KB) from the extracted m etadata o f  the participating data sources. 

The generation o f  an XM KB is sim plified in the SISSD system by its 

graphical interface tool w hich guides a m eta-user step by step through the 

integration process via system  w indow s that hide low-level and tedious 

details while enabling the user to concentrate on the param eters that need 

to be supplied at each stage to describe m appings betw een the m aster view  

and local SSD data sources [16]. The XM KB contains the data source 

inform ation (name, type and location), m eta-inform ation about 

relationships o f  paths am ong data sources, and function names for 

handling sem antic and structural discrepancies.

The SISSD system is valuable to a user at run time, where it allows system 

users to form ulate their queries against the master view. The queries are 

then transform ed into queries against the underlying local data sources. A t 

the heart o f  our system  there is a Query processor (QP) m odule which 

m ediates user queries posed over the m aster view o f  the heterogeneous 

data sources, by autom atically translating such queries into sub-queries, 

which are suited to each participating data source and which will retrieve 

inform ation relevant to the query. The QP consults and exploits the 

m apping inform ation stored in the XM KB at several stages, to obtain the
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local paths corresponding to the m aster paths, to find the function nam es 

for handling sem antic and structural discrepancies, and then to produce 

sem antically equivalent queries to  fit each local data source.

In the QP we have created a query translation (rew riting) algorithm which 

is used by the QP m odule to achieve this task [14]. The algorithm is both 

conceptually simple and generally applicable. W e have successfully 

im plem ented and tested it on a variety o f  relational and XM L data source 

integration exam ples in our prototype SISSD system.

8.1.2 Flexibility o f SISSD system

The SISSD system is flexible in that its users can assem ble virtual m aster 

view s suited to their requirem ent. For the same set o f  data sources users 

m ay create different m aster view s, depending on their interest. It also 

preserves the local autonom y o f  the participating data sources, thus these 

data sources can be jo ined  to the system w ithout rebuilding or 

m odification to the local data source to prepare it for the SISSD.

The SISSD uses a local-as-view  approach to map between the m aster view  

and the local schem a structures. This approach is well-suited to a dynamic 

environm ent, where data sources can be added or removed from the 

system w ithout the need for a m ajor restructure o f  the m aster view. The 

inform ation required for the new  sources is easily added, and if  a source is 

rem oved only the inform ation related to it is deleted. Also, the LAV 

approach provides a m ore flexible environm ent to meet users’ evolving 

and changing inform ation requirem ents across the disparate data sources 

available over the global inform ation infrastructure (Internet) as tim e 

passes. It is better suited and scalable for integrating a large num ber o f  

autonom ous read-only data sources accessible over com m unication 

networks than integration system s created in traditional ways. Furtherm ore 

the LAV approach provides a flexible environm ent able to accom m odate
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the continual change and update o f  data source schemas. This m akes it 

especially suitable for XM L docum ents on W eb servers since these rem ote 

docum ents are not static and are often subject to frequent update. W hen 

generating the XM KB, the m apping direction is changed from the original 

local-as-view  to global-as-view , to m ake its use in the query rew riting 

stage straightforward. A m aster query from  a user is translated into queries 

to local data sources by looking up the corresponding paths in the XM KB. 

Hence the SISSD com bines both global-as-view  and local-as-view 

approaches taking advantage o f  the approach best suited to the task.

The SISSD also gives the flexibility to rem ove any data source schema 

from the XM KB and then add th is data source again with an updated or 

altered schem a w ithout any other im pact on the XM KB, or the need to 

regenerate it from scratch every tim e.

8.1.3 Architecture o f SISSD system

In a typical data integration system , users and com ponent data sources are 

scattered over a num ber o f  nodes o f  the com puter network, and users are 

provided with front-end interface(s) to access data stored in the different 

back-end data sources. The design architecture o f  the SISSD system 

(section 4.3) is based on a client-server model.

SISSD system has been developed as a collection o f  software modules. 

They are:

•  JXC (Java XM L Connectivity) which detects and extracts the 

Schem a Structure D efinition (SSD) o f  a well-form ed XM L 

document.

•  M DE (M etadata Extractor) which extracts the m etadata o f  all data 

sources and builds a Schem a Structure Definition (SSD) in XM L 

form for each data source.
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• M VP (M aster V iew Parser) w hich parses the m aster view  to 

generate a tree structure and then autom atically generates unique 

index num bers for its elem ents.

•  SSDP (Schem a Structure D efinition Parser) w hich parses the SSD 

o f  the data source to generate a tree structure and then produces the 

GUI for it.

• KS (K now ledge Server) w hich establishes, evolves and m aintains 

the XM L M etadata K now ledge Base (XM KB).

•  QP (Query Processor) w hich receives a user query over the m aster 

view  and autom atically rew rites it into sub-queries, fitting each local 

data source, and integrates the results o f  these sub-quires.

The SISSD system architecture is a collection o f  m odules. This m akes it 

easy to develop and incorporate new  m odules to enhance the functionality 

o f  the prototype. The m eta-users (integrators) interact with the software 

m odules in the SISSD system  through a GUI provided by the system. It 

serves as a com m on front-end for all users. This enables them to interact 

with the M DE, KS and QP m odules.

8.1.4 Construction o f the X M K B

The XM KB has been developed as a central repository which stores the 

data source’s inform ation (nam es, types and locations) and m etadata 

extracted from the data sources, in w hich the m appings betw een the 

m aster view  and Schem a Structures D efinition (SSD) o f  the data sources 

are defined, so that this inform ation can be used to support and improve 

the integration o f  distributed heterogeneous structured data residing in 

relational databases and sem i-structured data held in w ell-form ed XM L 

docum ents. The inform ation stored in this XM KB is available to the 

Query Processor (QP) to m ediate betw een user queries posed over the
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m aster view  and the distributed heterogeneous data sources, to 

autom atically rew rite such queries into sub-queries, fitting each local data 

source. This enables the Query Processor (QP) to reuse the know ledge 

held in the X M KB for other user queries posed over the m aster view. 

Typically, the know ledge held in the XM KB becom es available 

increm entally, as new  data sources jo in  the integration system. This m eans 

that the XM KB m ust be able to evolve. The XM KB has a simple, flexible 

and easy to understand structure w hich allows it to be evolved and 

m odified increm entally as new  data sources are added or rem oved from 

the system, w ithout the need to regenerate it from scratch. Its simple 

structure m akes it easy to construct it autom atically. The XM KB is 

how ever able to capture the structure and sem antics o f  the schem a 

elem ents o f  the data sources so that this inform ation can be used to resolve 

sem antic and structural discrepancies occurring in the data.

W e have developed a software m odule to autom atically generate a tool for 

a m eta-user (integrator) to define the sem antic relationships between the 

schem a’s elements. How ever, these sem antic relationships cannot be 

determ ined precisely using an autom atic procedure. Thus this task always 

requires some hum an intervention and is semi- autom atic for this reason.

8.1.5 Choice o f XM L as the data m odel

M any data m odels are based on som e form  o f  a labeled directed graph. 

One o f  the m ost popular is the O bject Exchange M odel or the OEM model. 

OEM  is a simple, self-describing nested object model [124]. However, the 

ex tensib le  M arkup Language (X M L) received significant attention from 

the database com m unity w hen the W 3C recom m ended it as a standard for 

data representation and exchange in the W orld W ide Web. XM L has a 

strong resem blance to sem i-structured data m odels and could easily 

represent structured, sem i-structured and unstructured data. We consider
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XM L to be an ideal candidate to provide a unifying data m odel in data 

integration systems for several reasons, namely:

1. XM L is flexible and pow erful enough to represent a wide variety o f  

data models without losing their semantics. This lossless sem antic 

conversion enables XM L to represent structured, sem i-structured 

and unstructured sources equally well.

2. Unlike OEM  m odels w hich lack a well-defined schema, XM L can 

represent schem a inform ation.

3. Its recom m endation as a standard by W3C and its backing by 

enterprises has resulted in rich  tool support for XML.

4. Standardization efforts have led to XM L query languages like XPath, 

and XQuery appearing.

5. XM L is not tied to any particular platform, architecture or 

organization.

In the SISSD system we w ant to represent the structure o f  a data source 

jo in ing  the integration system  as this is crucial for data integration. We 

have therefore defined a sim ple definition language called XM L Data 

Source Definition Language (X D SD L) which abstracts the structure o f  

schem a elem ents to build the Schem a Structure Definition (SSD) o f  the 

data source. This language uses a sim ple gram m ar sim ilar to the XM L 

Schem a Language but om its inform ation such as data types. Furtherm ore, 

this language describes the actual structure o f  a data source not the 

possib le  one as would be defined by a DTD and XM L Schem a Language 

definition. W e have developed a software module to autom ate the task o f  

building an SSD. Thus, by using this m odule a m eta-user (integrator) can 

construct a SSD sem i-autom atically, which captures the structure o f  a 

given data source.
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8.1.6 H andling different types o f heterogeneity

In the SISSD system  we are concerned with the higher level o f  

heterogeneity. This area can be further divided into three levels o f  

heterogeneity: syntactic heterogeneity , structural heterogeneity  and

semantic heterogeneity. This classification o f  heterogeneity is one o f  

several classifications o f  the different types o f  higher level o f  

heterogeneity that m ay exist betw een a set o f  independently designed data 

sources. W e chose this classification to show that our SISSD system can 

deal with different levels o f  heterogeneity (syntactic heterogeneity , 

structural heterogeneity  and sem antic heterogeneity) and provide solutions 

to the problem s at these different levels o f  interoperability. The conflict 

types identified in Figure 2.3 can be classified into one o f  these three 

levels o f  heterogeneity. In this section we show how  our SISSD system 

can handle these levels o f  heterogeneities.

Syntactic heterogeneity  refers to the encoding o f  the same concept in 

different data m odels (or natural languages); in other words using a 

different data m odel for storing sim ilar data, exam ples are systems using a 

relational and XM L model.

M ainly, syntactic heterogeneity addresses the problem  o f  using different 

data m odels. O ur approach is concerned with data sources that contain 

relational data and XM L data. This type o f  heterogeneity in our system 

can be resolved by using a Com m on D ata  M odel (CDM) and translating 

all data source schem as to this com m on model using transform ation rules 

that explain how  to translate schem as into the target data model. This task 

is done by the M etadata Extractor (M D E) (see section 4.3) that interacts 

with the data sources to extract the m etadata and m ap the schem as to this 

CDM . The chosen CDM  m ust be such that it is expressive enough to 

capture the m eaning o f  all local data models. The XM L data model is a

153



CHAPTER 8. EVALUATION & DISCUSSION

s u i t a b l e  C D M  a n d  h a s  b e e n  u s e d  f o r  t h i s  p u r p o s e  in  s e v e r a l  p r o j e c t s  [ 7 2 ,  

1 1 3 ]  a n d  w a s  c h o s e n  in  t h i s  p r o j e c t  a l s o .
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F igure 8.1: E xam ple o f  reso lv in g  stru ctu ra l heterogeneity.

S tructural h e tero g en e ity  a r i s e s  w h e n  t h e  s a m e  c o n c e p t  i s  r e p r e s e n t e d  

d i f f e r e n t l y ,  in  o t h e r  w o r d s  w h e n  e l e m e n t s  h a v e  t h e  s a m e  m e a n i n g ,  a r e  

m o d e l e d  w i t h  t h e  s a m e  d a t a  m o d e l ,  b u t  s t r u c t u r e d  a n d  r e p r e s e n t e d  in  a  

d i f f e r e n t  w a y .

In  d e a l i n g  w i t h  s t r u c t u r a l  h e t e r o g e n e i t y ,  t h e  m a i n  d i f f i c u l t y  i s  t h a t  t h e  d a t a  

in  d i f f e r e n t  s o u r c e s  m a y  b e  r e p r e s e n t e d  in  d i f f e r e n t  f o r m a t s  a n d  in  

i n c o m p a t i b l e  w a y s .  T h e r e f o r e ,  w e  h a v e  t o  p r o v i d e  a n  a p p r o p r i a t e  

m e c h a n i s m  t o  h a n d l e  t h i s  k i n d  o f  h e t e r o g e n e i t y  c o n f l i c t .  It c a n  h a p p e n  f o r  

e x a m p l e ,  w h e n  o n e  s o u r c e  r e p r e s e n t s  a u t h o r s '  n a m e s  a s  f u l l  n a m e s ,  w h i l e  

t h e  g l o b a l  s c h e m a  s e p a r a t e s  t h e  f i r s t  a n d  l a s t  n a m e s .  In  t h i s  c a s e ,  t h e  n a m e  

f r o m  t h e  l o c a l  s o u r c e  m u s t  b e  s e p a r a t e d  i n t o  i t s  p a r t s ,  i f  a  q u e r y  i s  t o  

r e t r i e v e  t h e  f i r s t  n a m e  o f  t h e  a u t h o r .  T h e r e f o r e ,  u s e r - d e f i n e d  f u n c t i o n s
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( U D F s )  a r e  n e e d e d  t o  p e r f o r m  t h e  r e q u i r e d  o p e r a t i o n  f o r  r e s o l v i n g  t h i s  

c a s e .  T h e  t a s k s  o f  t h e s e  f u n c t i o n s  a r e  t o  s p l i t  t h e  a u t h o r  f u l l  n a m e  i n t o  

s e p a r a t e  f i r s t  a n d  l a s t  n a m e .  S u c h  a  f u n c t i o n  i s  e x p l i c i t l y  d e f i n e d  b y  t h e  

d e s i g n e r .  F i g u r e  8 .1  s h o w s  h o w  o u r  S I S S D  s y s t e m  r e s o l v e d  t h i s  c o n f l i c t  

w h i c h  i s  i d e n t i f i e d  in  F i g u r e  2 . 3  a s  M a n y - t o - O n e  E l e m e n t  C o n f l i c t s  b y  

u s i n g  i n d e x  n u m b e r s  g e n e r a t e d  a u t o m a t i c a l l y  f o r  t h e  g l o b a l  s c h e m a  

e l e m e n t s  ( s e e  F i g u r e  5 . 1 2  a n d  5 . 1 3 )  a n d  u s i n g  U D F s  ( e . g .  firs tN am e, 

lastN am e )  t o  e x t r a c t  t h e  r e q u i r e d  i n f o r m a t i o n  f r o m  t h e  l o c a l  d a t a  s o u r c e  

e l e m e n t .  F o r  e x a m p l e  i f  t h e  a u t h o r  n a m e  i s  John Smith, t h e  firs tN am e  

f u n c t i o n  w i l l  e x t r a c t  John  a n d  t h e  lastN am e  f u n c t i o n  w i l l  e x t r a c t  Smith.

-  Iglxl
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F igure 8.2: Exam ple o f  handling synonym  conflict.
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The distinction betw een sem antic and structural heterogeneity is not 

alw ays clear-cut. Structural heterogeneity refers basically to the structure 

o f  the data, w hile sem antic heterogeneity refers to the represented 

concepts’ interpretation.

Sem antic heterogeneity  refers to the fact that data represented in different 

system s in sim ilar w ays m ay be subject to different interpretation. For 

exam ple, tw o schem a elem ents in two local data sources can have the 

sam e intended m eaning, but different names. Thus, during integration, it 

should be realized that these tw o elem ents actually refer to the same 

concept. A lternatively, two schem a elem ents in two data sources m ight be 

nam ed identically, w hile their intended m eanings are incompatible. Hence, 

these elem ents should be treated as different things during integration.

Sem antic heterogeneity  m ay exist in several forms; the m ost com m on 

form o f  sem antic heterogeneity  is called nam ing conflicts which arise 

when labels o f  schem a elem ents are som ewhat arbitrarily assigned by 

different database designers. There are tw o types o f  nam ing conflicts:

1. Synonym : Tw o term s are called synonym s if  they have the same 

m eaning but different representations. In a data integration system, 

this problem  occurs w hen tw o term s are used to represent the same 

concept.

2. H om onym : hom onym s occur w hen identical term s have different 

m eanings.

W e use the m apping to overcom e these conflicts. In the form er case, the 

integrator assigns different term s with the same m eaning to the same 

concept in the global schem a. In the latter case, the integrator assigns the 

same term  w ith the different m eaning to different concepts in the global 

schema. Figure 8.2 show s how  our SISSD system handles the synonym  

conflict w hich is identified in Figure 2.3 by using index num bers
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generated autom atically for the global schema elem ents (see Figure 5.12 

and 5.13) and assign these index num bers to the elem ents that are 

synonym s in the local schem a structures. For example, in Figure 8.2 the 

index num ber (1.1) o f  elem ent p rice  in the global schem a is assigned to 

the elem ent cost in the local schema.

8.1.7 W ays o f  using the system

Different users have different reasons for integrating data sources, and 

even the sam e user m ight need to integrate the same data in a variety o f  

ways and/or include different services to satisfy different tasks in an 

organization. Thus a tool that supports the flexible integration o f  pre

existing structured and sem i-structured data sources needs to allow 

different view s and reasons for the integration to be handled. The primary 

m otivation for m ost o f  the w ork in this area is that m any applications 

require processing o f  data that belongs to structured and sem i-structured 

data sources. For instance, an order processing application m ight need to 

handle inventory inform ation in a relational database as well as purchase 

orders received as (sem i-structured) XM L docum ents [126].

O ur system enables the users to link data from different structured and 

sem i-structured data sources flexibly. It provides a tool that can be used by 

the integrator or the end user to do the m etadata integration. Furtherm ore, 

it gives the user w ho does the m etadata integration the option to choose 

which m aster view  to use so that his/her current requirem ents are met. It 

also allows choice o f  the data sources that will be integrated and in which 

order the integration will be perform ed. This also gives this user the 

possibility to change and edit a m aster view.

The system can be used in two different ways:

1. In a centralized approach, when one person is the integrator ( skilled 

in IT) constructs the m aster view  that characterizes the underlying
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data sources, then integrates the participating schem a structures as 

they are presented for integration and creates the UDF to resolve the 

heterogeneity conflicts by perform ing specific operations. This 

approach is tightly-coupled in that data is accessed using a global 

view (s) created and m anaged by the integrator(s). It is appropriate 

when there are a small num ber o f  data sources which are perm anent 

and their schem a structures do not change frequently.

2. In a custom ized approach, w hen several users are integrators, each 

chooses a view  as the initial m aster view that meets the 

requirem ents and decides on w hich schemas to integrate and in what 

order. H ow ever, the user in this case will provide a library o f  

functions to locate the appropriate UDF to resolve conflicts. This 

approach is loosely-coupled, in that it is the user’s responsibility to 

create and m aintain the integration regime. This approach provides a 

m ore flexible environm ent w hich meets the users’ evolving and 

changing inform ation requirem ents across the disparate data sources 

available over the global inform ation infrastructure (Internet). It is 

better suited to the integration o f  a large num ber o f  autonom ous read 

only data sources accessible over com m unication networks, 

especially w hen these data sources are subject to continual change.

8.2 D iscussion

One o f  several trends that have significant im pact on the use o f  database 

technology is XM L. The pow er o f  XM L as a description language lies in 

the fact that an XM L docum ent contains a self-description o f  

hierarchically structured data, and it has the ability to associate markup 

term s with data elem ents (see section 8.1.5). These m arkup term s serve as 

m etadata allow ing a form alized description o f  the content and structure o f  

the accom panying data. XM L can subsum e HTM L and its successor
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X H TM L as the com m unication language for the W eb and it provides a 

structure in a w idely accepted format.

As the im portance o f  XM L has increased, the W 3C has introduced the 

XM L Schem a language to replace the DTD (Docum ent Type Definition) 

gram m ar language. The DTD m echanism  has num erous limitations. A 

basic and m ajor lim itation is that a DTD is not a valid XM L document. 

Therefore it m ust be handled by XM L parsing tools in a special way. 

Furtherm ore, D TD s have a very lim ited capability for specifying data 

types. A lso, D TD s are quite lim ited in their ability to constrain the 

structure and content o f  X M L docum ents. In addition, they cannot handle 

nam espace conflicts w ithin X M L structures or describe com plex 

relationships am ong docum ents or elem ents. They also are not modular, 

and can not derive new  type definitions based on an existing definition.

An XM L Schem a Definition (XSD) is an XM L-based gram m ar declaration 

for XM L docum ents. The m otivation for using and developing an XM L 

Schema was dissatisfaction with DTDs. It was developed in response to the 

lim itations o f  the DTD m echanism , and was a trem endous advance over 

DTDs. XM L Schem a allows very precise definition for both simple and 

complex data types, and allows derivation o f  new type definitions.

The definition language that the SISSD system  used to build the Schem a 

Structure D efinition (SSD ) is sim ilar to the XM L Schem a Language but 

om its inform ation such as data types. This language is the XDSDL, which 

is used in our system  to abstract the schem a structure o f  the data sources 

jo in ing  the integration system . The X D SD L avoids the complexity o f  the 

XM L Schem a Language by using a sim ple notation to describe the 

structure o f  the schem a elem ents.

For the foreseeable future, a great quantity o f  data will continue to be 

stored in relational database system s because o f  the reliability, scalability,
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tools and perform ance associated with these systems [68, 133].

Additionally, m uch interesting and useful data can be published in well- 

form ed XM L docum ents by W eb-based applications and W eb services or 

by hum an-coding [102].

W hile the availability o f  data in X M L form at reduces the need to focus on 

wrappers to make them  interoperable, the challenges o f  integrating 

distributed heterogeneous structured data residing in relational databases 

and sem i-structured data held in w ell-form ed XM L documents produced 

by internet applications still rem ains. Querying such heterogeneous 

distributed data sources is not easy for several reasons. The first difficulty 

com es from the distribution o f  the data. The second difficulty is associated 

w ith its heterogeneity, w hich occurs at different levels. The problem  o f  the 

discrepancies betw een data sources is important. Usually, when the 

contents o f  data sources are related in som e way, they will show diversity 

in many aspects. Resolving the differences betw een the data sources in 

these situations is a crucial issue. The logical heterogeneity is one o f  the 

more com plicated issues that should be taken into consideration in 

building a data integration system . It com es from different understanding 

and m odeling o f  the sam e concept. Thus, the construction o f  a data 

integration system m ust handle m echanism s for resolving conflicts when 

attributing m eaning to the data (sem antic conflicts), referencing data 

(nam ing conflicts), and storing data (structural conflicts). Hence, distinct 

data sources m ay use different nam es to refer to the same concept and may 

use the same nam e to refer to different concepts in these conflicts.

Since finding the correspondences betw een the schem as’ elem ents often 

depend on the application context this is a basic issue. The m atching o f  

two elem ents requires a decision as to w hether they correspond to each 

other in some way, i.e. are they logically equivalent? Therefore, any 

decision about the sem antic correspondence o f  sets o f  elem ents requires an 

in-depth analysis by an integrator. In this area we use paths instead o f
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elem ents, because the SSDs are trees and each elem ent is identified 

uniquely by its path in the tree.

Consequently, as the base step in constructing the XM KB, we m atched a 

set o f  paths o f  the schem as if  they were related to each other in some way. 

To express a correspondence betw een a global path and a set o f paths in a 

data source schem a structure, we conducted an in-depth study o f  the 

sem antics o f  the paths.

This w ork builds on the concept o f  a m ediated system. The first 

contribution o f  the thesis is a m echanism  for the m ediation o f  

heterogeneous distributed structured and sem i-structured data sources. A 

m ediation layer was introduced to  m aintain the m appings among global 

and local schem as. Such a layer w as developed as an assistant tool to 

facilitate the detection, analysis and resolution o f  schem a discrepancies 

and to im prove the solution o f  relevant data integration issues. It can be 

used as an assisting tool to m inim ize the designer effort in building 

structured and sem i-structured data integration systems. W e argue that our 

approach can be used as a sem i-autom atic tool for mediation o f  

heterogeneous distributed structured and sem i-structured data sources.

A nother difficulty which im pedes data integration system s is the query 

translation process. This is an im portant problem  in the design o f  a data 

integration system , in that the system  should be able to reform ulate the 

query posed in term s o f  the global schem a into a set o f  queries suited to 

the data sources. Thus, the second contribution o f  the thesis was the 

provision o f  a m echanism  that allow s a user to transparently query 

structured and sem i-structured data sources in a conceptual way (sem antic 

name) instead o f  by know ledge o f  its local structure. This reduces the 

sem antic problem  for a user during query form ulation, and significantly 

sim plifies the task o f  querying m ultiple heterogeneous structured and 

sem i-structured data sources. In this way, the system becom es responsible
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for translating global user queries into local queries. The thesis 

dem onstrated an algorithm  for the query translation process which was 

capable o f  generating a local query for each data source corresponding to 

part o f  the global query. D uring the process o f  generating local queries for 

the participating data sources, m any structural and semantic conflicts are 

resolved by our system .

W ith regard to the m apping specification, there are two basic approaches 

that have been used to specify the m apping between the data sources and 

the global schem a. These are the GAV and LAV approaches. Our 

approach is an attem pt to com bine features from both these approaches. 

The GAV approach requires that the global schem a is expressed in term s 

o f  the data sources. This m eans, that for every elem ent o f  the global 

schema, a view  over the data sources is associated, w hich is specified in 

term s o f  data residing in the data sources. In other words, the global 

schem a is defined as a view  over the local data sources' schemas.

The LAV approach requires the global schema to be specified 

independently from the data sources. In turn, the data sources are defined as 

views over the global schema. Thus each data source is described in terms 

o f  the global schem a elements. The LAV approach gives better support to a 

dynamic environm ent than GAV, where data sources can be added to the 

integration system without the need to restructure the global schema.

W e classify our approach as a structural approach that can be used as a 

tool for structured and sem i-structured data sources m ediation and 

querying. It follow s LAV in its w ay o f  describing the data sources, i.e. all 

the data sources' elem ents are m apped by m ediation. In other words, it is 

not restricted to a subset o f  data sources involved, as is the case in GAV. 

Thus, the resulting LAV description is translated into GAV when 

generating the m appings betw een the global paths and local schemas' 

paths by the query translation process. Hence our approach com bines the
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virtues o f  both GAV and LA V  approaches. It follows the GAV approach 

in respect o f  query reform ulation. This advantage facilitates the query 

translation task, in that it usually does nothing more than change and 

form ula substitution. The biggest problem in the GAV approach is that it 

m akes it com plicated to im plem ent changes in the global schem a when 

there are changes in the schem as o f  the data sources. The LAV approach is 

better able to support a dynam ic environm ent, where data sources can be 

added or rem oved from  the integration system without the need to 

restructure the global schem a.

As a final word, the benefit o f  our approach is that we can automate the 

process o f  construction o f  an X M L M etadata Knowledge Base (XM KB) 

which can assist the Q uery Processor (QP) in querying a multiplicity o f 

distributed heterogeneous structured data residing in relational databases 

and sem i-structured data held in w ell-form ed XM L docum ents produced 

by internet applications or by hum an code. W e have developed a prototype 

system to dem onstrate that the ideas explored in the thesis are sound and 

practical, and convenient from  a user standpoint. Our approach should be 

generic enough to easily incorporate a large num ber o f  relational databases 

and XM L data sources from  the sam e domain. W e have shown our 

approach is feasible and is successful w ith real data in different dom ains 

and have show n that the approach is dom ain independent. This dom ain 

independency is one o f  the key points o f  our approach. A lim itation o f  our 

approach is that it is not scalable with large schem as since they will 

involve considerable effort to do m appings by assigning a unique index 

num ber to each elem ent and specifying conversion function nam es to 

resolve structural and sem antic conflicts. H ow ever this is not a m ajor 

lim itation for our target dom ain as m ost o f  the data sources have small or 

m edium  schem as w hich are com patible w ith our approach.
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Sum m ary, conclusion and future work

This chapter concludes the thesis by briefly sum m arizing the work, 

presenting the conclusions o f  the thesis, and addressing future directions 

for further developm ent.

9.1 Thesis sum m ary

W e have presented an approach to integrate and query distributed 

heterogeneous structured data residing in relational databases and sem i

structured data held in w ell-form ed XM L documents. A general overview  

o f  the field o f  distributed database system s was given with an overview  o f  

the types o f  heterogeneous distributed databases. The basic issues 

concerning data integration system s and their architectures were presented 

using a classification o f  the different aspects, concepts and approaches. 

A fter that we presented an overview  o f  XM L and its related technologies

164



CHAPTER 9. SUMMARY, CONCLUSION AND FUTURE WORK

followed by a description o f  our approach to achieving a distributed 

system. Two im portant problem s w ere addressed in this work. The first 

was establishing a K now ledge Base to hold descriptions o f  the m appings 

betw een the integrated view  (m aster view ) and the participating data 

sources which are used to resolve the logical heterogeneity present in the 

distributed local data sources’ schem as. The second was the query 

translation process. These problem s w ere concerned with building a 

structured and semi- structured data integration system s, in which a global 

schem a was provided over the heterogonous data sources.

The integration architecture w e adopted is based on a m ediator 

architecture. The prototype system , called SISSD, perform ed mappings 

betw een the global schem a and local data source schem as, by creating an 

XM L M etadata K now ledge Base (X M K B), w hich is used to generate local 

queries. The data sources are described in XDSDL, a language created in 

the project. The m ediation layer w as developed to:

1. Establish appropriate m appings betw een the global schem a and the 

schem as o f  the local data sources.

2. Enable querying o f  local data  sources in term s o f  the global schema.

The challenge was to generate a m apping for the correspondence between 

schem a elem ents. This w as addressed by developing a m ethodology for 

extracting and form alizing elem ent paths o f  the global and local schemas. 

A m apping process w as then developed to generate the correspondences 

between paths. This w as achieved through a sem i-autom atic process that 

generated local and global paths and their relationships. This created the 

XM KB m odule used in m ediation to overcom e heterogeneity problem s 

betw een data sources. The XM KB m odule was used to hold the 

correspondence betw een schem a paths. For each path o f  the global schema, 

the objective w as to link it with the set o f  local paths that have the sam e 

m eaning and w ith a user-defined, function if  needed, to perform  specific
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operations that are defined explicitly  by the designer. These user-defined 

functions are used to overcom e differences in representation and 

granularity.

The query translator, w hich is an integral part o f  the m ediation layer, was 

developed to translate a user query posed over the global schem a into local 

queries. It uses the m apping inform ation defined in the XM KB, to obtain 

local queries corresponding to the query issued against the global schema. 

The basic idea w as that a query posed to the integration system, called a 

global query, w ould be autom atically  rew ritten to sub-queries called local 

queries, appropriate to each local data source’s required format, using the 

inform ation stored in X M K B. This task was accom plished by the query 

translator m odule. The X M K B contains the schem a paths and functions to 

be applied w hen creating a query for a local data source. The paths in a 

global query are parsed by the query parser and replaced by the 

corresponding paths for each target local data source, by consulting the 

XM KB to see if  there are such paths for the user query. I f  not, a null query 

is generated for the corresponding path in the local query, which means 

that this query cannot be applied to that local data source. Each local query 

generated is sent to its corresponding local data source, which executes the 

query and returns its result. The set o f  results are processed to get the full 

answ er to the global query.

A sim ple prototype im plem entation o f  the system architecture was created 

using: Java 2, JD O M  API, and the JavaCC. W e also used FLW R 

expressions (For-L et-W here-R etum ) as the XM L query language. This is a 

subset o f  X Q uery w hich supports the basic requirem ents o f  our approach, 

particularly the uniform  querying o f  heterogeneous distributed structured 

(relational database) and sem i-structured (w ell-form ed XM L docum ent) 

data sources.
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9.2 C onclusions

This w ork has identified a new approach to structured and sem i-structured 

data integration. W e have addressed the logical heterogeneity problem  

which occurs betw een the schemas. This problem was solved by creating a 

m echanism  in w hich the correspondence among schema elements is 

expressed as a set o f  m appings and by using UDFs to overcome conflicts 

where a transform ation is required. This is described in section 2.4 and 4.4. 

These m appings are a pow erful tool for expressing the correspondences 

betw een schem a elem ents and capturing the heterogeneity o f  the various 

data sources. H ow ever, finding the correspondences between the schem a 

elem ents will depend on the application context. Hence, m atching two 

elem ents is a basic issue and requires a decision as to whether they 

correspond to each other in som e way, e.g. are they logically equivalent. 

Any decision about the sem antic correspondence o f  sets o f  elem ent 

requires a deep analysis by a skilled integrator.

W e have introduced an approach for heterogeneous structured and sem i

structured data source m ediation. This approach produced a system 

capable o f  processing queries across a set o f  heterogeneous distributed 

structured and sem i-structured data sources. W e developed a prototype 

system to dem onstrate that the ideas explored in the thesis are sound and 

practical, and convenient from  a user standpoint. The resulting system can 

easily incorporate a reasonable num ber o f  relational databases and XM L 

data sources from  the same dom ain. M ost o f  the existing data integration 

systems in this area w ork with X M L docum ents that use DTD (D ocum ent 

Type Definition) or XM L Schem a language to describe the schemas o f  the 

participating heterogeneous XM L data sources in the data integration 

system. W e have investigated and used XM L docum ents which have no 

referenced D TD  or XM L schem a, instead the schem a m etadata are buried 

inside the docum ent data. H ow ever, XM L docum ents which have a 

referenced DTD  or XM L schem a can also be handling by bypassing the
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D TD  or the XM L schem a. This thesis has shown that querying a set o f  

distributed heterogeneous structured and sem i-structured data sources o f 

this form is possible using our approach.

Thus, this w ork has developed a m ethod o f  interoperation between 

structured and sem i-structured data sources. This interoperation is 

achieved by generating m appings betw een global and local schemas, and 

resolving nam ing, structural and sem antic conflicts which may occur 

betw een the schem as. A lso we have developed a m ethod for translating 

queries in term s o f  a global schem a into sub-queries in term s o f  local 

schem as by exploiting the m apping inform ation stored in the XM KB. The 

novelty o f  this research com pared w ith the w ork done previously in this 

area and review ed in chapter 2 is the use o f  a know ledge base approach 

and the use o f  U D Fs to overcom e nam ing, structural and semantic 

conflicts, also, the use o f  an increm ental tool to build this knowledge base.

9.3 The future w ork

The w ork presented in this thesis can be extended in several ways. There 

are both practical and theoretical issues that need to be addressed to 

provide a com plete fram ew ork for creating structured and sem i-structured 

data integration system s. W e suggest the follow ing for future work:

•  In data integration system s, a very im portant task is the integration 

o f  the results o f  the local queries. In our work, this task was not 

addressed other than at a basic level. For exam ple, there m ay be 

duplicated inform ation retrieved from the local data sources which 

should be rem oved w hen the results are presented.

• M ore features o f  Schem a Structure Definition (SSD) can be 

involved in the process. For exam ple, i f  some elem ents in the local 

data sources’ SSD contain attributes and these attributes correspond 

to elem ents in the global schem a a m apping betw een these elem ents
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would be needed. This is not yet im plem ented, but should not be a 

difficult extension to our current system.

•  In this work, the global schem a is specified by the integrator, or by 

choosing one o f  the data source’s SSD that m eet the requirem ents o f 

the users to be a global schem a. It should be possible to sem i

autom ate the process o f  constructing the global unified schem a that 

characterizes the underlying data sources.

• The m ajor difficulty o f  connecting the global schem a elements with 

the local schem a elem ents w hen there are a large num ber o f  data 

sources, large size o f  schem as, and there is a high degree o f  logical 

heterogeneity betw een the schem as is the m anual linkage. It should 

be possible to achieve scalability  by generating m appings between 

the schem as elem ents autom atically  while reducing the manual 

integrator interaction to ensuring the sem antic consistency o f  such 

m appings. H ow ever this needs further investigation.
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APPEN D IX  A

Java code for the M ain Interface o f SISSD system

import j ava.awt.*;
import j ava.awt.event.*;
import j avax.swing.*;
import java.util.* ;
import java.io.*;
import com.borland.jbcl.layout.* ;

class MainlnterFaceF extends JFrame implements ActionListener 
{
private final int ITEM_PLAIN = 0 
private final int ITEM_CHECK = 1 
private final int ITEM_RADIO = 2 
public String integratedfile; 
public String kbName="";
public Vector MappingPaths= new Vector(); 
public Vector SourceMetadata = new Vector(); 
public JPanel topPanel; 
public JMenuBar menuBar; 
public JMenu menuExtractor; 
public JMenu menuQuery; 
public JMenu menuKServer; 
public JMenuItem menuItemRel; 
public JMenuItem menuItemXML; 
public JMenuItem menultemlntegrated; 
public JMenuItem menultemlocal; 
public JMenuItem menuItemMappings/ 
public JMenuItem menuItemKB,menultemremove; 
public JMenuItem menultemQuery; 
public JMenu submenu;
CreateXmlView listDialog;
JXC listDialogl;
JPanel mainPanel = new JPanel();
XYLayout xYLayoutl = new XYLayout();
JSplitPane hsplitPane = new JSplitPane();
JSplitPane vsplitPane = new JSplitPane(); 
public MainlnterFaceF()
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{
setTitle("User Interface");
setSize(1100, 1000);
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);
menuBar = new JMenuBar();
setJMenuBar(menuBar);
menuExtractor = new JMenu(" MetaData Extractor ");
menuExtractor.setMnemonic(1M '); 
menuBar.add(menuExtractor);
menuItemRel = CreateMenuItem(menuExtractor, ITEM_PLAIN,
"Bulid Schema Structure for Relational Database ", null, 'R',""); 
menuExtractor.addSeparator();
menuItemXML = CreateMenuItem(menuExtractor, ITEM_PLAIN,

"Bulid Schema Structure for XML Document", null, 'X1, "");
menuKServer = new JMenu(" Knowledge Server ");
menuKServer.setMnemonic (1 K 1 ) ; 
menuBar.add(menuKServer);
submenu = new JMenu ("Add New Data Source") ; 
menuKServer.add(submenu);
menultemlntegrated = CreateMenuItem (submenu, ITEM_PLAIN, "Step 1.
Generate index number for integrated schema elements ", null,'G ',""); 
submenu.addSeparator();
menultemlocal = CreateMenuItem(submenu, ITEM_PLAIN, "Step 2. Produce GUI 
tree for local schema structure", null, 'P', ""); 
submenu.addSeparator();
menuItemMappings = CreateMenuItem(submenu, ITEM_PLAIN,

"Step 3. Generate Path Mappings", null, 'H',""); 
submenu. addSeparator () ,-
menuItemKB = CreateMenuItem(submenu, ITEM_PLAIN,

"Step 4. Merge Path Mappings with KB", null, 'M',""); 
menuItemKB.setEnabled(true); 
menultemlocal.setEnabled(false); 
menuItemMappings.setEnabled(false) ; 
menuItemKB.setEnabled(false); 
menuKServer.addSeparator();
menultemremove = CreateMenuItem(menuKServer, ITEM_PLAIN,

"Remove Data Source", null, 'V', ""); 
menuQuery = new JMenu(" Query Processor ");
menuKServer.setMnemonic('Q '); 
menuBar.add(menuQuery);
menuItemQuery = CreateMenuItem(menuQuery, ITEM_PLAIN,

"Process User Query ", null, 'U', ""); 
listDialog = new CreateXmlView(); 
listDialogl = new J X C (); 
try
{ jblnit(); } 
catch (Exception e)
{ e .printStackTrace();
}}
public JMenuItem CreateMenuItem(JMenu menu, int iType, String sText, 

Imagelcon image, int acceleratorKey, String sToolTip)
{ JMenuItem menuItern; 
switch (iType)
{ case ITEM_RADIO:
menultem = new JRadioButtonMenuItem();
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break;
case ITEM_CHECK:
menultem = new JCheckBoxMenuItem();
break;
default:
menultem =? new JMenuItemO; 
break;
}
menultem.setText(sText); 
if (image != null)
{ menultem.setlcon(image); } 
if (acceleratorKey > 0)
{ menultem.setMnemonic(acceleratorKey); } 
if (sToolTip != null)
{ menultem.setToolTipText(sToolTip); } 
menultem.addActionListener(this); 
menu.add(menultem); 
return menultem;
}
public void actionPerformed(ActionEvent event)
{ if (event.getSource() == menuItemRel)
{ listDialog.setVisible(true); }
else if (event.getSource() == menuItemXML)
{ listDialogl.setVisible(true); }
else if (event.getSource() == menultemlntegrated)
{ MappingPaths= new Vector(); 
final JFileChooser vc = new JFileChooser(); 
int returnVal = v c .showOpenDialog(this); 
if (returnVal == JFileChooser.APPROVE_OPTION)
{ File filel = vc.getSelectedFile(); 
integratedfile = filel.getAbsolutePath(); 
int ln=integratedfile.length();
kbName=integratedfile.substring(0,ln-4)+"_kb.xml";
JPanel rightPanell = new JPanel(); 
hsplitPane.setBottomComponent(rightPanell); 
hsplitPane.setDividerLocation(350);
JPanel rightPanel2 = new JPanel(); 
vsplitPane.setRightComponent(rightPanel2); 
vsplitPane.setDividerLocation(200);
JPanel leftPanel = new GlobalSchemaPanel(integratedfile, this) ; 
vsplitPane.setLeftComponent(leftPanel); 
vsplitPane.setDividerLocation(500);
JOptionPane.showMessageDialog(this, "Index Number for Integrated Schema 
Elements Generate Successfully");
}}
else if (event.getSource() == menultemlocal)
{ final JFileChooser fc = new JFileChooser(); 
int returnVal = f c .showOpenDialog(this) ; 
if (returnVal == JFileChooser.APPROVE_OPTION)
{ File file = f c .getSelectedFile();
String myfilename = file.getAbsolutePath();
JPanel rightPanell = new JPanel(); 
hsplitPane.setBottomComponent(rightPanell) ; 
hsplitPane.setDividerLocation(350);
JPanel rightPanel = new SourceSchemaPanel(myfilename,this); 
vsplitPane.setRightComponent(rightPanel); 
vsplitPane.setDividerLocation(200);
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rightPanel.setBackground(Color.white);
}}
else if (event.getSource() == menuItemMappings)
{ JPanel rightPanel = new MappingPanel (this); 
hsplitPane.setBottomComponent(rightPanel); 
hsplitPane.setDividerLocation(350) ; } 
else if (event.getSource() == menuItemKB)
{ KBmerge kb = new KBmerge(); 
kb.mergeMapping(this, kbName);
JOptionPane.showMessageDialog(this, "Path Mappings Merged Successfully 
with The Knowledge Base"); 
menuItemMappings.setEnabled(false) ; 
menuItemKB.setEnabled(false);
}
else if (event .getSource () == menultemremove)
{ final JFileChooser vc = new JFileChooser(); 
int returnVal = v c .showOpenDialog(this); 
if (returnVal == JFileChooser.APPROVE_OPTION)
{ File filel = vc.getSelectedFile (); 
integratedfile = filel.getAbsolutePath () ;
JDialog a = new RemoveSources(integratedfile); 
a .show();
}}
else if (event .getSource () == menuItemQuery)
{ QueryProcessor application = new QueryProcessor(); 
application. setDefaultCloseOperation (JFrame .EXIT_ON_CLOSE) ; 
application.show();
}}
public static void main(String args [])
{ MainlnterFaceF a = new MainlnterFaceF(); 
a .addWindowListener(new WindowAdapter ()
{ public void windowClosing(WindowEvent e)
{ System.exit(0) ;
}});
a . setSize(1250, 1000); 
a.setVisible(true); 
a .show();
}
private void jblnitO throws Exception 
{ mainPanel.setLayout(xYLayout1);
JPanel panel = new JPanel();
panel.setBackground(Color.white);
panel.setLayout( new BorderLayout() );
hsplitPane.setOrientation(JSplitPane.VERTICAL_SPLIT) ;
vsplitPane.setDividerSize(10);
vsplitPane.setLeftComponent(panel);
vsplitPane.setRightComponent(panel);
vsplitPane.setContinuousLayout(true);
vsplitPane.setBackground(Color.white);
this.getContentPane() .add(mainPanel, BorderLayout.CENTER) ;
hsplitPane.setDividerSize(10);
hsplitPane.setTopComponent(vsplitPane);
hsplitPane.setBottomComponent(panel);
hsplitPane.setContinuousLayout(true);
mainPanel.add(hsplitPane, new XYConstraints(0, 0, 1250, 1000)); 
hsplitPane.setDividerLocation(330);
}}
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Java code for extracting and building SSD for

relational database

import j avax.swing.JFrame;
import java.awt.Dimension;
import j avax.swing.JLabel;
import java.awt.Rectangle;
import java.awt.Font;
import javax.swing.JTextField;
import j avax.swing.JPanel;
import java.awt.GridLayout/
import j ava.awt.*;
import java.util.*;
import javax.swing.*;
import j avax.swing.event.*;
import javax.swing.border.*;
import java.awt.event.ActionListener;
import j ava.a w t .event.Act ionEvent;
import java.i o .IOException;
import java.a w t .Container;
import j ava.sql.*;
import j ava.a w t .event.*;
import java.sql.*;
import java.io.*;

class CreateXmlView extends JFrame implements ActionListener 
{
static BufferedWriter t;
String ch, chk;
private JLabel name,pass,status,dbname,xmlfile; 
private JTextField user,stat,textdb,textfile; 
private JPasswordField passbox; 
private JButton connect,clear,cancel; 
private JPanel pane,cent,input,connectx;
Color cl = new Color(204,125 , 205) ;
Color c2 = new Color(108,153,204); 
public CreateXmlView()
{
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super("CONNECTION TO RELATIONAL DATABASE "); 
int inset = 2 99;
Dimension scr =Toolkit.getDefaultToolkit () .getScreenSize(); 
setBounds(inset,inset,scr.width-inset*2,scr.height-inset*2) ; 
name = new JLabel("Username"); 
pass = new JLabel("Password"); 
dbname = pew JLabel("Database Name");
xmlfile= new JLabel("Save Schema Structure In File Name");
connect = new JButton("Connect");
connect.addActionListener(this);
clear = new JButton("Clear");
clear.addActionListener(this);
cancel = new JButton("Cancel");
cancel.addActionListener(this);
cent = new JPanel();
input = new JPanel () ;
connectx =new JPanel();
textfile = new JTextField(10);
textdb = new JTextField(lO);
user = new JTextField(10);
passbox = new JPasswordField(10);
cent. setLayout(new BorderLayout()) ;
cent.add(input,"Center");
cent.add(connectx,"South");
input.setLayout(new GridLayout(4,4,5,5));
connectx.setLayout(new GridLayout(1,2,3,3));
input.add(xmlfile);
input.add(textfile);
input.add(dbname);
input.add(textdb);
input.add(name);
input.add(user);
input.add(pass);
input.add(passbox);
connectx.add(connect);
connectx.add(clear);
connectx.a d d (cancel);
setContentPane(cent);
}
public void actionPerformed( ActionEvent w )
{
Connection conn =null;
if (w.getSource() == connect )
{
String filename,filenamel; 
filenamel=textfile.getText();
filename= "C: \\prototype\\schema_structure\\" + textf ile . getText () +" .xml" ;

File db=new File(filename);
if (db.exists())
{JOptionPane.showMessageDialog(null,"The file "+filenamel+ ".xml already 
exists ","Error Message", JOptionPane.ERROR_MESSAGE); 
textfile.setText("");
}
else
{ ch=user.getText();
char [] a = passbox.getPassword();
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chk =String.valueOf(a);
String schema;
schema=textdb.getText().toUpperCase () ; 
try
{ t = new BufferedWriter(new FileWriter(filename)); } 
catch(Exception e)
{ System.out.printIn(e); } 
try
{ Class.forName ("oracle.jdbc.driver.OracleDriver");
System.out.println("Driver loaded");
}
catch(Exception exe)
{
JOptionPane.showMessageDialog(null,"Driver error","Error Message", 
JOptionPane.ERROR_MESSAGE);
}
if ( filenamel .equals (""))
{
JOptionPane.showMessageDialog(null,"Please enter file name of schema 
structure ","Error Message", JOptionPane.ERROR_MESSAGE);
File file = new File(filename); 
try
{ t .close(); } 
catch(Exception excp)
{ System.out.println("File cannot be closed!"); } 
boolean success = file.delete (); 
if (!success)
{ System.out.println("File cannot be deleted!");
}}
else 
{ try 
{
conn =DriverManager.getConnection("jdbc:oracle:thin:©helot:1521: oracle9 
" , ch, chk);
System.out.printIn("Connection made");
ResultSet rset,rset3,rset4;
String tablename[]=new String[10];
DatabaseMetaData dbmd = conn.getMetaData(); 
rset3 = dbmd.getTables("",schema,"%",null); 
int k=0,e;
String b=null; 
while (rset3.next())
{ tablename[k]=rset3 .getString (3) ; 
k++; }
t .write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"); 
t .write("<schema_information>") ; 
t .write ("<data_source_information>"); 
t .write ( "<name>"+schema+"</name>") ;
t.write("<location>j d b c :oracle:thin:@helot:1521:oracle9</location>") ; 
t .write ("<type>Relational Database</type>"); 
t .write("</data_source_information>"); 
t.write("<structure>");
t.write("<element name = \ ""+schema.toLowerCase()+"\ ">") ; 
for (e=0;e<k;e++)
{ t.write("<element name=\""+tablename[e] .toLowerCase()+"\">"); 
rset4=dbmd.getColumns("",schema,tablename[e],"%"); 
while (rset4.n ext())

192



APPENDIX B Extract SSD for relational database

{ t .write(u<element name=\""+rset4.getString(4).toLowerCase()+"\"/>"); 
b=rset4.getString(3);
}
t.write("</element>");
}
t.write("</element>"); 
t.write("</structure>"); 
t.write("</schema_information>"); 
t .close(); 
if ( k == 0)
{ JOptionPane.showMessageDialog(nullInvalid Database name","Error 
Message", JOptionPane.ERROR_MESSAGE);
File file = new File(filename)/ 
try
{ t .close(); } 
catch(Exception excp)
{ System.out.println("File cannot be closed!"); } 
boolean success = file.delete(); 
if (!success)
{ System.out.println("File cannot be deleted!");
}}
else
{ JOptionPane.showMessageDialog (this, "Schema Structure Built
Successfully for "+schema+" Database");
dispose();
user.setText("");
passbox.setText("");
textdb.setText("");
textfile.setText("");
}}
catch(Exception e)
{
JOptionPane.showMessageDialog(null,"Invalid Username or Password","Error 
Message", JOptionPane.ERROR_MESSAGE);
File file = new File(filename); 
try 
{
t .close ();
}
catch(Exception excp)
{
System.out.println("File cannot be closed!");
}
boolean success = file.delete(); 
if (!success)
{ System.out.println("File cannot be deleted!");
}}}}}
else if (w.getSource() == clear )
{ user.setText("") ; 
passbox.setText(""); 
textdb.setText(""); 
textfile.setText(""); } 
else
{ disposeO;
}}}
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Java code for extracting and building SSD for XM L

docum ent

import j avax.swing.JFrame 
import java.awt.Dimension 
import javax.swing.JLabel 
import java.awt.Rectangle, 
import j ava.a w t .Font; 
import javax.swing.JTextField; 
import javax.swing.JPanel; 
import j ava.a w t .GridLayout; 
import j ava.awt.*; 
import java.util.*; 
import javax.swing.*; 
import j avax.swing.event.*; 
import javax.swing.border.*; 
import java.a w t .event.ActionListener; 
import j ava.a w t .event.Act ionEvent; 
import java.i o .IOException; 
import java.a w t .Container; 
import j ava.sql.*; 
import j ava.a w t .event.*; 
import j ava.sql.*; 
import o r g .j d o m .*; 
import o r g .j d o m .input.SAXBuilder; 
import java.i o .IOException; 
import java.util.*; 
import java.io.*;

class JXC extends JFrame implements ActionListener 
{
String ch, chk;
private JLabel doclocation,docname,xmlfile; 
private JTextField textlocation,textdoc,textfile; 
private JPasswordField passbox; 
private JButton connect,clear,cancel; 
private JPanel pane,cent,input,connectx;
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Color cl = new Color(204,125,205) ;
Color c2 = new Color(108,153,204); 
static BufferedWriter out; 
public J X C ()
{
super("CONNECTION TO XML DOCUMENT");
//setDefaultCloseOperation(EXIT_ON_CLOSE); 
int inset = 2 99;
Dimension scr =Toolkit.getDefaultToolkit() .getScreenSize() ; 
setBounds(inset, inset,scr.width-inset*2,scr.height-inset*2 ) ; 
doclocation = new JLabel("XML Document Location"); 
docname = new JLabel("XML Document Name");
xmlfile= new JLabel("Save Schema Structure In File Name");
connect = new JButton("Connect");
connect.addActionListener(this);
clear = new JButton("Clear");
clear.addActionListener(this) ;
cancel = new JButton("Cancel") ;
cancel.addActionListener(this);
cent = new JPanel();
input = new JPanel();
connectx =new JPanel ();
textlocation = new JTextField(10);
textdoc = new JTextField(10);
textfile = new JTextField(10);
cent. setLayout(new BorderLayout()) ;
cent.add(input,"Center");
cent.add(connectx,"South");
input.setLayout(new GridLayout(4,4,5,5));
connectx.setLayout(new GridLayout(1,2,3,3));
input.add(xmlfile);
input.a d d (textfile);
input.add(doclocation);
input.add(textlocation);
input.add(docname);
input.add(textdoc);
connectx.add(connect);
connectx.add(clear);
connectx.add(cancel);
setContentPane(cent);
}
public void actionPerformed( ActionEvent w )
{
if (w.getSource() == connect )
{
String filename,filenamel; 
filenamel = textfile.getText();
filename = "C:\\prototype\\schema_structure\\"+textfile.getText()+
" . xml11;
File db=new File(filename); 
if (db.exists())
{
JOptionPane.showMessageDialog(null,"The file "+filenamel+ ".xml already 
exists ","Error Message", JOptionPane.ERROR_MESSAGE); 
textfile.setText("");
}
else
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{
String location,documentname,documentnamel; 
location = textlocation.getText (); 
documentname=textdoc.getText(); 
documentnamel=textdoc.getText(); 
if (!(documentname.endsWith(" .xml")))
{
documentname = documentname + ".xml";
}
try
{ out = new BufferedWriter(new FileWriter(filename)); } 
catch(Exception e)
{
System.out.println(e);
}
if ( filenamel .equals (""))
{
JOptionPane.showMessageDialog(null,"Please enter file name of schema 
structure ","Error Message", JOptionPane.ERROR_MESSAGE);
File file = new File(filename); 
try 
{
out.close();
}
catch(Exception excp)
{ System.out.println("File cannot be closed!"); } 
boolean success = file.delete (); 
if (!success)
{
System.out.println("File cannot be deleted!");
}}
else
{
SAXBuilder builder = new SAXBuilder() ; 
try 
{
out.write("<?xml version=\"1.0\" encoding=\"UTF-8\" ?>");
out.write("<schema_information>");
out .write("<data_source_information>");
out .write("<name>"+documentname + "</name>");
out.write("<location>"+location+"</location>");
out .write("<type>XML document</type>");
out .write("</data_source_information>");
out.write("<structure>");
Document doc = builder.build(location+"\\"+documentname) ;
Element root = d o c .getRootElement();
listChildren(root, 0);
out.write("</structure>");
out.write("</schema_information>");
out.close();
JOptionPane.showMessageDialog (this, "Schema Structure Built Successfully
for "+documentname+" Document");
textfile.setText("");
textlocation.setText("");
textdoc.setText("");
dispose ();
}
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// indicates a well-formedness error 
catch (JDOMException e)
{
JOptionPane.showMessageDialog(null,documentname +".xml is not well-
formed. ","Error Message", JOptionPane.ERROR_MESSAGE);
textfile.setText("");
textlocation.setText("");
textdoc.setText("");
File file = new File(filename); 
try
{ out.close(); } 
catch(Exception excp)
{
System.out.println("File cannot be closed!");
}
System.out.printIn("my file path is: " + file.getAbsolutePath ()) ; 
boolean success = file.delete(); 
if ( !success)
{ System.out.println("File cannot be deleted!"); }
System.out.println(documentname + " is not well-formed.");
System, out.printIn(e.getMessage());
}
catch (IOException e)
{
System.out.println(e); 
if (location .equals (""))
{
JOptionPane.showMessageDialog(null,"Please specify the XML document
location","Error Message", JOptionPane.ERROR_MESSAGE);
textfile.setText("");
textlocation.setText("");
textdoc.setText("");
File file = new File(filename); 
try
{ out.close (); } 
catch(Exception excp)
{ System.out.println("File cannot be closed!"); }
System.out.printIn("my file path is: " + file.getAbsolutePath ()) ; 
boolean success = file.delete () ; 
if (!success)
{
System.out.println("File cannot be deleted!");
}}
else if ( documentname .equals (""))
{
JOptionPane.showMessageDialog(null,"Please specify the XML document
name","Error Message", JOptionPane.ERROR_MESSAGE) ;
textfile.setText("");
textlocation.setText("");
textdoc.setText("");
File file = new File(filename); 
try
{ out.close(); } 
catch(Exception excp)
{
System.out.println("File cannot be closed!");
}
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System.out.println("my file path is: " + file.getAbsolutePath()); 
boolean success = file.delete(); 
if (!success)
{
System.out.println("File cannot be deleted!");
}}
else
{
JOptionPane.showMessageDialog(null,"Please verify the XML document name
and location","Error Message", JOptionPane.ERROR_MESSAGE);
textfile.setText("");
textlocation.setText("");
textdoc.setText("");
File file = new File(filename); 
try
. { out.close () ; } 
catch(Exception excp)
{
System.out.println("File cannot be closed!");
}
System.out.println("my file path is: " + file.getAbsolutePath ()) ; 
boolean success = file.delete(); 
if ( ! success)
{ System.out.println("File cannot be deleted!");
}}}}}}
else if (w.getSource() == clear )
{ textfile.setText(""); 
textlocation.setText(""); 
textdoc.setText("");
}
else
{ dispose();
}}
public static void listChildren(Element current, int depth) throws 
IOException
{ java.util.List children = current.getChildren();
Iterator iterator = children.iterator(); 
if (iterator.hasNext())
out.write("<element name=\""+current.getName()+"\">"); 
else out.write("<element name=\"" + current.getName()+"\"/>") ;
String st="";
while (iterator.hasNext())
{ Element child = (Element) iterator.n e x t ();
if (! (child.getName() .toString() .equalslgnoreCase(st) ) )
listChildren(child, depth+1);
st = child.getName();
if (! (iterator.hasNext()))
{ out.write("</element>");
}}}}

198



A PPEN D IX  D

JDO M  code for parsing m aster view  to generate

index num bers

import org.j dom.*; 
import org. jdom. input. SAXBuilder; 
import java.io.IOException; 
import java.util.*; 
public class Generatelndex 
{
static String x = "1";
static int y;
static int index = 1;
static int previousLevel = 0;
static String levels =
static String lastnode =
static String lastSign =
static TreeMap paths = new TreeMap ();
static TreeMap elements = new TreeMap ();
static Vector SourceMetadata = new Vector()
public Generatelndex()
{

X  =  "  1 "  ;
index = 1; 
previousLevel = 0; 
levels = 
lastnode =
String lastSign = 
paths = new TreeMap(); 
elements = new TreeMap();
}
public void Generatelndex(String filename)
{
SAXBuilder builder = new SAXBuilder(); 
try 
{
Element rootl;
Document doc = builder.build(filename);
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Element root = doc.getRootElement();
if (root.getName() .equals ("schema_information"))
{
Element information = root.getChild( "data_source_information" ); 
Element docname = information.getChild ( "name" );
Element location = information.getChild( "location" );
Element type = information.getChild ( "type" );
String con,conl,con2; 
con = docname.getText(); 
conl = location.getText(); 
con2 = type.getText ();
SourceMetadata = new VectorO;
SourceMetadata.add(con);
SourceMetadata.add(conl);
SourceMetadata.a d d (con2);
Element structure = root.getChild( "structure" ); 
rootl = structure.getChild("element");
}
else
{
root1 = root;
}
listChildren(rootl, 1);
}
// indicates a well-formedness error 
catch (JDOMException e)
{
System, out .println ( " is not well-formed.");
System.out.printIn(e.getMessage ()) ;
}
catch (IOException e)
{
System.out.println(e);
}
}
public static void main(String [] args)
{
Generatelndex gi = new Generatelndex(); 
gi . Generatelndex("bib_schema.xml");
Iterator e = paths.keySet().iterator(); 
while (e.hasNext0)
{
String v = (String) e .n e x t ().toString();
String s = (String) paths.get(v);
}
}
public static void listChildren(Element current, int depth)
{
String previousPath = "";
String completePath =
String Space = "";
Space = getSpaces(depth); 
printSpaces(depth);
String att = current.getAttributeValue("name"); 
if (depth == previousLevel)
{
levels = getTree(levels, depth);
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int m = levels.lastIndexOf(".");
String a = levels.substring(m + 1); 
levels = levels.substring(0, m + 1); 
int o = Integer.parselnt(a); 
o = o + l ;
levels = levels + o; 
previousPath = getParents(levels); 
completePath = previousPath + "/"+ att; 
paths.put(levels, completePath); 
elements.put(levels, Space + att);
}
else if (depth > previousLevel)
{
if (levels.equalslgnoreCase(""))
{
levels = levels + "1";
}
else
{
levels = levels + ".1";
}
previousPath = getParents(levels); 
completePath = previousPath + "/"+ att; 
paths.put(levels , completePath) ; 
elements.put(levels, Space + att); 
previousLevel = depth;
}
else if (depth < previousLevel)
{
levels = getTree(levels, depth); 
int m = levels.lastIndexOf(".");
String a = levels.substring(m + 1) ; 
levels = levels.substring(0, m + 1) ; 
int o = Integer.parselnt(a);
0 = 0 + 1 ;
levels = levels + o; 
previousLevel = depth; 
previousPath = getParents(levels); 
completePath = previousPath + "/"+ att; 
paths.put(levels, completePath); 
elements.put(levels, Space + att);
}
List children = current.getChildren();
Listlterator iterator = children.listlterator(); 
while (iterator.hasNext())
{
Element child = (Element) iterator.next(); 
listChildren(child, depth + 1);
}
}
private static String getTree(String level, int depth) 
{
int n = 0;
String s =
for (int i = 0; i < depth; i++)
{
n = level.indexOf(".", n + 1);

Parsing master view
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if (n == -1)
{ break;
}}
if (n == -1)
{ return level;
}
else
{ s = level.substring(0, n ) ; 
return s;
}}
private static void printSpaces (int n)
{
for (int i = 0; i < n; i++)
{
System.out.print(" ");
}}
private static String getSpaces(int n)
{
String space = "";
for (int i = 0; i < n; i++)
{
space = space + " ";
}
return space;
}
private static String getParents(String indx)
{
String parentPath = "";
String previouslndex =
int p = indx.lastlndexOf(".") ;
if (p > -1)
{
previouslndex = indx.substring(0, p ) ; 
parentPath = (String) paths.get(previouslndex); 
}
else
{ parentPath = "";
}
return parentPath;
}}

Parsing master view
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Java code for producing G UI and generating

assistant tool for m apping

import j ava.a w t .*;
import j ava.a w t .event.*;
import j avax.swing.*;
import j avax.swing.event.*;
import javax.swing.border.*;
import java.util.*;
import java.text.*;
import java.io.*;
import j ava.1a n g .*;
import java.net.*;
import javax.swing.filechooser.* ;

public class GlobalSchemaPanel extends JPanel 
{
BorderLayout borderLayout1 = new BorderLayout(); 
private JPanel pnl_txt = null;
JTextField txt_Filed = new JTextField(); 
JComboBox txt_Schm = new JComboBox();
JComboBox txt_Func = new JComboBox();
private JButton btn_ok = null;
private JButton btn_cancel = null;
private JLabel lbl_show = null;
private JLabel lbl_element = null;
private JLabel GlobalElement_lbl = null;
private JPanel JFrameContentPane = null;
public Vector IndexVector = new Vector();
private Vector textFieldsVector = new Vector();
private Vector FuncFieldsVector = new Vector();
private Vector labelsVector = new Vector();
public static String GlobalSchema =
public static String SourceSchema =
public static Generatelndex g i ;
public static Generatelndex si;
public Vector SchemaElements = new Vector();
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JComboBox CB = new JComboBox();
static TreeMap Globalpaths = new TreeMap();
static TreeMap Globalelements = new TreeMap();
public Frame fram,-
private int y2 = 152, y3 = 12;
private int height = 5;
MainlnterFaceF mycaller=null;
public GlobalSchemaPanel(String filename,MainlnterFaceF caller)
{
GlobalSchema = filename; 
mycaller=caller; 
try 
{
jblnit();
}
catch (Exception ex)
{
e x .printStackTrace();
}
}
void jblnit() throws Exception 
SchemaElements.a d d ("");
UIManager.put("Label.font", new Font("SansSerif", Font.BOLD, 12)); 
UIManager.put("Button.font", new Fon t ("SansSerif", Font.BOLD, 12)); 
UIManager.put("TextField.font", new Font ("SansSerif", Font.BOLD, 12)); 
UIManager.put("ComboBox.font " , new Font("SansSerif", Font.PLAIN, 10)); 
UIManager.p u t ("TextArea.font", new Font("SansSerif", Font.BOLD, 12)); 
try 
{
this.setLayout(null);
JTextField textField = null;
JLabel Element_lbl = null; 
gi = new Generatelndex(); 
gi .Generatelndex(GlobalSchema);
Iterator el = g i .elements.keySet().iterator(); 
int 1 = 0 ;
while (el.hasNext())
{
String vl = (String) el.next().toString();
String si = (String) g i .elements.get(vl);
GlobalElement_lbl = getlbl_element(1, vl + si); 
this.add(GlobalElement_lbl,
GlobalElement_lbl.getName());
1 = 1 + 1 ;
SchemaElements.add(vl);
}
Globalpaths = (TreeMap) gi.paths;
Globalelements = (TreeMap) gi.elements;
}
catch (Throwable Exc)
{
handleException(Exc);
}
mycaller.menultemlocal.setEnabled(true);
}
private JPanel getJFrameContentPane()
{
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try
{
JFrameContentPane = new JPanel () ;
JFrameContentPane.setLayout(null);
JTextField textField = null;
JLabel Element_lbl = null; 
gi = new Generatelndex();
GlobalSchema = "schema_viewl.xml"; 
gi.Generatelndex(GlobalSchema);
Iterator el = g i .elements.keyset().iterator(); 
int 1 = 0 ;
while (el.hasNext())
{
String vl = (String) el.next().toString();
String si = (String) gi.elements.get(vl);
GlobalElement_lbl = getlbl_element (1, vl + si);
JFrameContentPane . add (GlobalElement_lbl, GlobalElement_lbl .getName () ) ; 
1 = 1 + 1 ;
SchemaElements.add(vl);
}
Globalpaths = (TreeMap) gi.paths;
Globalelements = (TreeMap) gi.elements;
}
catch (Throwable Exc)
{
handleException(Exc);
}
return JFrameContentPane;
}
private JLabel getlbl_element(int i, String name)
{
try
{
lbl_element = new JLabel(); 
lbl_element.setName(name); 
lbl_element.setText(name);
lbl_element.setBounds(50, 10 + (i * 5) * height, 150, 2  0);
}
catch (Throwable Exc)
{
handleException(Exc);
}
return lbl_element;
}
private void handleException(Throwable exception)
{
System.out.println("Could not initialize the frame. Error: " + 
exception);
}
}

import j a v a .a w t .*; 
import j a v a .a w t .event.*; 
import javax.swing.*; 
import javax.swing.event.*;
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import j avax.swing.border.*;
import java.util.*;
import java.text.*;
import j ava.i o .*;
import j ava.1ang.*;
import java.net.*;
import javax.swing.filechooser.* ;

public class SourceSchemaPanel extends JPanel implements ActionListener 
{
BorderLayout borderLayout1 = new BorderLayout(); 
private JPanel pnl_txt = null;
JTextField txt_Filed = new JTextField();
JTextField txt_fun = new JTextField();
JComboBox txt_Schm = new JComboBox();
JComboBox txt_Func = new JComboBox();
private Vector Functions = new Vector();
static TreeMap LocalFunctions = new TreeMapO;
private JLabel lbl_head = null;
private JButton btn_ok = null;
private JButton btn_cancel = null;
private JButton btn_clear = null;
private JButton btn_add = null;
private JLabel lbl_show = null;
private JLabel lbl_element = null;
private JLabel GlobalElement_lbl = null;
private JPanel JFrameContentPane = null;
public Vector IndexVector = new Vector();
private Vector textFieldsVector = new Vector();
private Vector FuncFieldsVector = new Vector();
private Vector textFuncVector = new Vector();
private Vector AddFieldsVector = new Vector();
private Vector labelsVector = new Vector 0;
public static String GlobalSchema =
public static String SourceSchema =
public static Generatelndex g i ;
public static Generatelndex si;
public Vector SchemaElements = new Vector();
JComboBox CB = new JComboBox();
static TreeMap Globalpaths = new TreeMap();
static TreeMap Globalelements = new TreeMap();
private Vector mappingPaths = new Vector();
private Vector SourceMetadata = new Vector();
private Mapping map;
public Frame fram;
private int y2 = 152, y3 = 12;
private int height = 5;
MainlnterFaceF mycaller = null;
static TreeMap IntegratedPaths = new TreeMapO;
public SourceSchemaPanel(String filename, MainlnterFaceF caller)
{
Globalpaths = new TreeMap();
Globalelements = new TreeMapO;
IntegratedPaths = new TreeMap();
SourceSchema = filename; 
mycaller = caller; 
mappingPaths= new Vector();
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GlobalSchema=mycaller.integratedf ile ; 
try 
{
jblnit();
}
catch (Exception ex)
{
ex.printStackTrace ();
}
}
void jblnit() throws Exception 
{
SchemaElements.a d d ("");
UIManager.put("Label.font", new Font("SansSerif", Font.BOLD, 12)); 
UIManager.put("Button.font", new F ont("SansSerif", Font.BOLD, 12)); 
UIManager.put("TextField.font" , new F ont("SansSerif", Font.BOLD, 12)); 
UIManager.put("ComboBox.font", new Font("SansSerif", Font.PLAIN, 10)); 
UIManager.put("TextArea.font", new Font("SansSerif", Font.BOLD, 12)); 
try 
{
this.setLayout(null);
JTextField textField = null;
JTextField textFunc = null;
JLabel Element_lbl = null;
JButton btn_addl = null;
gi = new Generatelndex();
gi .Generatelndex(GlobalSchema);
Iterator el = g i .elements.keyset().iterator(); 
int 1 = 0 ;
while (el.hasNext ())
{
String vl = (String) el.next().toString();
String si = (String) g i .elements.get (vl);
GlobalElement_lbl = getlbl_element(1, vl + si);
1 = 1 + 1 ;
SchemaElements.add(vl);
}
Globalpaths = (TreeMap) gi.paths;
Globalelements = (TreeMap) gi.elements; 
si = new Generatelndex();
SourceMetadata = new Vector(); 
si .Generatelndex(SourceSchema);
SourceMetadata = (Vector) s i .SourceMetadata.clone(); 
mycaller.SourceMetadata = (Vector) SourceMetadata;
Iterator e2 = s i .elements.keySet().iterator();
Element_lbl = getlbl_headingl(0, "Data Source Name : "); 
this.add(Element_lbl, Element_lbl.getName());
Element_lbl = getlbl_heading2(0, SourceMetadata.g e t (0).toString()); 
this.add(Element_lbl, Element_lbl.getName());
Element_lbl = getlbl_headingl(1, "Data Source Location : "); 
this.add(Element_lbl, Element_lbl.getName());
Element_lbl = getlbl_heading2(1, SourceMetadata.g e t (1).toString()) ; 
this.add(Element_lbl, Element_lbl.getName());
Element_lbl = getlbl_headingl(2, "Data Source Type : "); 
this.add(Element_lbl, Element_lbl.getName());
Element_lbl = getlbl_heading2(2, SourceMetadata.get(2) .toString()); 
this.add(Element_lbl, Element_lbl.getName());
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int n = 4;
while (e2.hasNext())
{
String v2 = (String) e2.next().toString();
String s2 = (String) si.elements.get(v2); 
IndexVector.add(v2);
CB = gettkt_function(n); 
textField = gettxt_Field(n);
Element_lbl = getlbl_show(n, s2);
this.add(Element_lbl, Element_lbl.getName());
this.add(textField, textField.getName());
this.add(CB, C B .getName());
textFunc = gettxt_multipleFunction(n);
this.add(textFunc, textField.getName());
btn_addl = getbtn_add(n);
this . add (btn_addl , btn_addl. getName () ) ;
n = n + 1;
}
this . add (getbtn_cancel(n), getbtn_cancel(n) .getName());
this.add(getbtn_ok(n), getbtn_ok(n).getName());
this .add(getbtn_clear(n), getbtn_clear(n) .getName());
}
catch (Throwable Exc)
{
handleException(Exc);
}
}
private JPanel getJFrameContentPane()
{
try
{
JFrameContentPane = new JPanel();
JFrameContentPane.setLayout(null);
JTextField textField = null;
JLabel Element_lbl = null; 
gi = new Generatelndex();
GlobalSchema = "schema_viewl.xml"; 
gi .Generatelndex(GlobalSchema);
Iterator el = g i .elements.keySet().iterator(); 
int 1 = 0 ;
while (el.hasNext ())
{
String vl = (String) el.next().toString();
String si = (String) g i .elements.get(vl); 
GlobalElement_lbl = getlbl_element(1, vl + si) ; 
JFrameContentPane.add(GlobalElement_lbl, 
GlobalElement_lbl.getName ()) ;
1 = 1 + 1 ;
SchemaElements.add(vl);
}
Globalpaths = (TreeMap) gi.paths;
Globalelements = (TreeMap) gi.elements;
}
catch (Throwable Exc)
{
handleException(Exc);
}
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return JFrameContentPane;
}
public void actionPerformed(ActionEvent e)
{
JButton add2 = null;
for (int i = 0; i < AddFieldsVector.size (); i + + )
{
add2 = (JButton) AddFieldsVector.get(i); 
if (e.getSource() == add2)
{
CB = (JComboBox) FuncFieldsVector.get(i); 
txt_Filed = (JTextField) textFuncVector.get(i);
String last = txt_Filed.getText().toString();
String Sp = ",";
if (last.length() == 0)
{
Sp = " " ;
}
txt_Filed.setText(last + Sp + C B .getSelectedltem().toString()); 
}
}
if (e.getSource() == btn_cancel)
{
this.removeAll(); 
this.repaint(); 
return;
}
else if (e.getSource () == btn_ok)
{
mycaller.menuItemMappings.setEnabled(true); 
btn_ok.setEnabled(false); 
btn_cancel.setEnabled(false) ; 
btn_clear.setEnabled(false); 
generatePathMapping5();
JOptionPane.showMessageDialog(thisIndexes Numbers Assigned 
Successfully");
JTextField textField = null;
}
else if (e.getSource() == btn_clear)
{
for (int i = 0; i < textFieldsVector.size(); i++)
{
txt_Filed = (JTextField) textFieldsVector.get(i) ; 
txt_Filed.setText("");
}
for (int i = 0; i < FuncFieldsVector.size(); i++)
{
CB = (JComboBox) FuncFieldsVector.g e t (i);
C B .setSelectedlndex(0);
}
}
}
private JLabel getlbl_element(int i, String name)
{
try
{
lbl element = new JLabel();
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lbl_element.setName(name); 
lbl_element.setText(name);
lbl_element.setBounds(50, 10 + (i * 5) * height, 150, 20); 
}
catch (Throwable Exc)
{
handleException(Exc);
}
return lbl_element;
}
private JButton getbtn_ok(int i)
{
if (btn_ok == null)
{
try
{
btn_ok = new JButton(); 
btn_ok.setName("btn_ok"); 
btn_ok.setText("Submit");
btn_ok. setBounds(400, 60 + (i * 5) * height, 85, 25); 
btn_ok.addActionListener(this);
}
catch (Throwable Exc)
{
handleException(Exc);
}
}
return btn_ok;
}
private JTextField gettxt_Field (int i)
{
try
{
txt_Filed = new JTextField(); 
txt_Filed.setName("Field" + i); 
txt_Filed.setEditable(true); 
txt_Filed.setText("");
txt_Filed.setBounds(23 0, 10 + (i * 5) * height, 100, 20);
textFieldsVector.add(txt_Filed);
}
catch (Throwable Exc)
{
handleException(Exc);
}
return txt_Filed;

private JTextField gettxt_multipleFunction(int i)
{
try
{
txt_fun = new JTextField(); 
txt_fun.setName("FunField" + i ) ; 
txt_fun.setEditable(true); 
txt_fun.setText("") ;
txt_fun.setBounds(560, 10 + (i * 5) * height, 200, 20);
textFuncVector.add(txt_fun);
}
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catch (Throwable Exc)
{
handleException(Exc);
}
return txt_fun;
}
private JComboBox gettxt_SchemaElement(int i)
{
try
{
txt_Schm = new JComboBox(SchemaElements); 
txt_Schm. setName ("Schema_element" + i);
txt_Schm.setBounds ( 2 1 0 ,  1 0  + (i * 5 )  * height, 1 5 0 ,  1 5 ) ;  
textFieldsVector.add(txt_Schm) ;
}
catch (Throwable Exc)
{
handleException(Exc);
}
return txt_Schm;
}
private JComboBox gettxt_function(int i)
{
String[] functions = {" ", "firstName", "lastName", "RateExchange", 
Part_of", "contains", "Merge"}; 
try 
{
txt_Func = new JComboBox(functions); 
txt_Func.setBackground(Color.white); 
txt_Func.setName("function" + i);
txt_Func.setBounds ( 3 5 0 , 1 0  + (i * 5 )  * height, 1 0 0 ,  2 0 ) ;  
FuncFieldsVector.a d d (txt_Func);
}
catch (Throwable Exc)
{
handleException(Exc);
}
return txt_Func;
}
private JButton getbtn_cancel(int i)
{
if (btn_cancel == null)
{
try
{
btn_cancel = new JButtonO; 
btn_cancel.setName("btn_cancel"); 
btn_cancel.setText("Cancel");
btn_cancel.setBounds ( 6  0 0 , 6 0  + (i * 5 )  * height, 8 5 ,  2 5 ) ;  
btn_cancel.addActionListener(this);
}
catch (Throwable Exc)
{
handleException(Exc);
}
}
return btn cancel;

" i s -
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}
private JButton getbtn_clear(int i)
{
if (btn_clear == null)
{
try
{
btn_clear = new JButton(); 
btn_clear.setName("btn_clear"); 
btn_clear.setText("Clear");
btn_clear.setBounds(50 0, 60 + (i * 5) * height, 85, 25); 
btn_clear.addActionListener(this);
}
catch (Throwable Exc)
{
handleException(Exc);
}
}
return btn_clear;
}
private JButton getbtn_add(int i)
{
try
{
btn_add = new JButtonO; 
btn_add. setName ("btn_add") ; 
btn_add.setText("Add");
btn_add.setBounds ( 4  70, 10 + (i * 5) * height, 70, 20); 
btn_add.addActionListener(this);
AddFieldsVector.add(btn_add);
}
catch (Throwable Exc)
{
handleException(Exc);
}
return btn_add;
}
private JLabel getlbl_show(int i, String name)
{
try
{
lbl_show = new JLabel (); 
lbl_show.setName(name); 
lbl_show.setText(name);
lbl_show.setBounds(110, 10 + (i * 5) * height, 100, 20); 
}
catch (Throwable Exc)
{
handleException(Exc);
}
return lbl_show;
}
private JLabel getlbl_heading2(int i, String name)
{
try
{
lbl head = new JLabel();
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lbl_head.setName(name); 
lbl_head.setText(name);
lbl_head.setBounds(250, 10 + (i * 5) * height, 300, 20);
}
catch (Throwable Exc)
{
handleException(Exc);
}
return lbl_head;
}
private JLabel getlbl_headingl(int i, String name)
{
try
{
lbl_head = new JLabel(); 
lbl_head.setName(name); 
lbl_head.setText(name);
lbl_head.setBounds(110, 10 + (i * 5) * height, 200, 20);
}
catch (Throwable Exc)
{
handleException(Exc);
}
return lbl_head;
}
private void handleException(Throwable exception)
{
System.out.printIn("Could not initialize the frame. Error:"+ exception); 
}
private void generatePathMapping()
{
String indexKey =
String GlobalPath =
String SourcePath = "";
JTextField textField = null;
for (int i = 0; i < textFieldsVector.size(); i++)
{
textField = (JTextField) textFieldsVector.g e t (i); 
map = new Mapping();
if (textField.getText().length() != 0)
{
CB = (JComboBox) FuncFieldsVector.get(i); 
indexKey = (String) IndexVector.get(i);
String delimiters = ",";
String str;
str = textField.getText().toString();
StringTokenizer st = new StringTokenizer(str, delimiters);
SourcePath = (String) si.paths.get(indexKey); 
map.SourcePath = SourcePath;
Vector pathsVector = null; 
pathsVector = new Vector(); 
while (st.hasMoreTokens())
{
String index = st.nextToken(); 
indexKey = (String) IndexVector.get(i);
SourcePath = (String) si.paths.get(indexKey);
GlobalPath = (String) Globalpaths.get(index);

II It ,

II II
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pathsVector.add(GlobalPath);
}
m ap.GlobalPaths = (Vector) pathsVector;
if ( (CB.getSelectedltem().toString().trim()).length() > 0) 
{
map. FunctionName = C B .getSelectedltem().toString();
}
}
else
{
indexKey = (String) IndexVector.get(i);
SourcePath = (String) si.paths.get(indexKey); 
map.SourcePath = SourcePath;
}
mappingPaths.add(map);
}
mycaller.MappingPaths = (Vector) mappingPaths.clone();
}
private void generatePathMapping2()
{
String indexKey = "";
String GlobalPath =
String SourcePath = "";
LocalFunction If = new LocalFunction();
JTextField textField, txt_function = null;
Hashtable IntegratedPath = new HashtableO;
Vector localPaths = null;
Iterator el = Globalpaths.keyset().iterator(); 
while (el.hasNext ())
{
String vl = (String) el.next().toString();
String si = (String) Globalpaths.get(vl);
IntegratedPaths.p u t (v l , If);
}
for (int i = 0; i < textFieldsVector.size(); i++)
{
textField = (JTextField) textFieldsVector.get(i); 
map = new Mapping();
If = new LocalFunction();
If.LocalSourcePaths = null;
If.FunctionName = null;
String myfunction =
if (textField.getText().length() != 0)
{
CB = (JComboBox) FuncFieldsVector.get(i); 
indexKey = (String) IndexVector.get (i) ;
String delimiters =
String str;
str = textField.getText().toString();
StringTokenizer st = new StringTokenizer(str, delimiters); 
SourcePath = (String) si.paths.get(indexKey); 
txt_function = (JTextField) textFuncVector.g e t (i) ;
String f = txt_function.getText().toString(); 
StringTokenizer stf = new StringTokenizer(f, delimiters); 
Vector pathsVector = null;
Vector functionVector = new Vector(); 
pathsVector = new Vector();
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localPaths = new Vector(); 
while (st.hasMoreTokens())
{
String index = st.nextToken(); 
if (stf.hasMoreElements())
{
myfunction = stf.nextToken();
}
indexKey = (String) IndexVector.g e t (i );
SourcePath = (String) si.paths.get(indexKey); 
GlobalPath = (String) Globalpaths.get(index); 
pathsVector.add(GlobalPath);
String Separator = ","; 
localPaths.add(SourcePath);
txt_function = (JTextField) textFuncVector.get(i); 
LocalFunctions.put(indexKey, myfunction) ; 
functionVector.add(myfunction);
IntegratedPaths.p u t (index, If);
map.SourcePath = index;
map.GlobalPaths = (Vector) localPaths;
map. FunctionName = "no function";
mappingPaths.add(map);
}
If.LocalSourcePaths = (Vector) localPaths;
If. FunctionName = (Vector) functionVector; 
txt_function = (JTextField) textFuncVector.get(i); 
Functions.add(txt_function.getText ()); 
map.GlobalPaths = (Vector) pathsVector; 
txt_function = (JTextField) textFuncVector.get(i); 
Functions.add(txt_function.getText ()) ;
}
else
{
indexKey = (String) IndexVector.get (i);
SourcePath = (String) si.paths.get(indexKey);
}
}
mycaller.MappingPaths = (Vector) mappingPaths.clone(); 
Iterator ell = IntegratedPaths.keyset().iterator(); 
while (ell.hasNext())
{
String vl = (String) e l l .n e x t ().toString();
String ml = (String) Globalpaths.get(vl);
If = (LocalFunction) IntegratedPaths.get(vl);
Vector j = new Vector();
Vector q = new Vector();
if (If.LocalSourcePaths != null)
{
j = (Vector) I f .LocalSourcePaths; 
q = (Vector) I f .FunctionName;
}
}
Iterator elll = LocalFunctions.keySet().iterator(); 
while (elll.hasNext())
{
String vll = (String) elll.next().toString();
String mil = (String) si.paths.get(vll);
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String sll = (String) LocalFunctions.get(vll);
}
}
private void generatePathMapping5()
{
String indexKey = "";
String GlobalPath =
String SourcePath =
JTextField textField, txt_function = null;
Hashtable IntegratedPath = new HashtableO;
Vector localPaths = null;
Mapping mp=nu11;
Iterator el = Globalpaths.keyset().iterator(); 
while (el.hasNext ())
{
mp=new Mapping();
String vl = (String) el.next().toString();
String si = (String) Globalpaths.get(vl) ; 
m p .SourcePath =sl; 
m p .FunctionName=""; 
mp.GlobalPaths=null;
IntegratedPaths.put(vl, m p ) ;
}
for (int i = 0; i < textFieldsVector.size () ; i++)
{
mp=new Mapping();
textField = (JTextField) textFieldsVector.get(i);
String myfunction =
if (textField.getText().length() != 0)
{
indexKey = (String) IndexVector.get(i);
String delimiters =
String str;
str = textField.getText().toString () ;
StringTokenizer st = new StringTokenizer(str, delimiters); 
txt_function = (JTextField) textFuncVector.get(i);
String f = txt_function.getText().toString(); 
StringTokenizer stf = new StringTokenizer(f, delimiters); 
Vector pathsVector = null;
Vector functionVector = new Vector(); 
pathsVector = new Vector(); 
localPaths = new Vector(); 
while (st.hasMoreTokens())
{
String index = st.nextToken(); 
if (stf.hasMoreElements())
{
myfunction = stf.nextToken();
}
indexKey = (String) IndexVector.get(i);
SourcePath = (String) si.paths.get(indexKey);
GlobalPath = (String) Globalpaths.get(index); 
pathsVector.add(SourcePath);
String Separator = ",";
mp = (Mapping) IntegratedPaths.get(index);
Vector local = new Vector(); 
if (mp.GlobalPaths != null)
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{
local = (Vector) mp.GlobalPaths,- 
local.add(SourcePath);
}
else
{
local.add(SourcePath);
}
mp.GlobalPaths=(Vector) local; 
m p .FunctionName =myfunction ; 
m p .SourcePath=GlobalPath;
IntegratedPaths.put(index, m p ) ;
}
}
}
Iterator ell = IntegratedPaths.keyset().iterator (); 
mappingPaths = new Vector(); 
while (ell.hasNext())
{
String vl = (String) ell.n e x t ().toString ();
String ml = (String) Globalpaths.get(vl); 
mp = (Mapping) IntegratedPaths.get(vl); 
mappingPaths.add(mp);
Vector j = new Vector(); 
if (mp.GlobalPaths != null)
{
j = (Vector) m p .GlobalPaths;
}
}
mycaller.MappingPaths = (Vector) mappingPaths.clone(); 
for (int i = 0; i < mappingPaths.size (); i + + )
{
Vector sr= new Vector();
map = (Mapping) mappingPaths.get (i) ;
sr=(Vector) m a p .GlobalPaths;
}
}
private void generatePathMapping4()
{
String indexKey = "";
String GlobalPath =
String SourcePath = "";
LocalFunction If = new LocalFunction();
JTextField textField, txt_function = null;
Hashtable IntegratedPath = new HashtableO;
Vector localPaths = null;
Iterator el = Globalpaths.keySet().iterator(); 
while (el.hasNext())
{
String vl = (String) el.next().toString();
String si = (String) Globalpaths.get(vl); 
IntegratedPaths.put(vl, If);
}
for (int i = 0; i < textFieldsVector.size 0 ;  i++)
{
textField = (JTextField) textFieldsVector.get(i); 
map = new Mapping();

Producing GUI

217



APPENDIX E Producing GUI

If = new LocalFunction ()/
If.LocalSourcePaths = null;
If.FunctionName = null;
String myfunction =
if (textField.getText().length () != 0)
{
indexKey .= (String) IndexVector.get(i);
String delimiters =
String str;
str = textField.getText().toString();
StringTokenizer st = new StringTokenizer(str, delimiters); 
SourcePath = (String) si.paths.get(indexKey); 
txt_function = (JTextField) textFuncVector.get(i);
String f = txt_function.getText().toString(); 
StringTokenizer stf = new StringTokenizer(f, delimiters); 
Vector pathsVector = null;
Vector functionVector = new Vector (); 
pathsVector = new Vector(); 
localPaths = new Vector(); 
while (st.hasMoreTokens())
{
String index = st.nextToken () ; 
if (stf.hasMoreElements ())
{
myfunction = stf.nextToken() ;
}
indexKey = (String) IndexVector.get (i) ;
SourcePath = (String) si.paths.get(indexKey);
GlobalPath = (String) Globalpaths.get(index); 
pathsVector.add(GlobalPath);
String Separator = ","; 
localPaths.add(SourcePath);
txt_function = (JTextField) textFuncVector.get(i); 
LocalFunctions.put(indexKey, myfunction); 
functionVector.add(myfunction);
If = (LocalFunction) IntegratedPaths.get(index);
Vector j = new Vector();
Vector q = new Vector();
if (If.LocalSourcePaths != null)
{
j = (Vector) I f .LocalSourcePaths; 
q = (Vector) I f .FunctionName;
}
j .add(SourcePath); 
q. add(myfunction);
If.LocalSourcePaths=(Vector) j;
If.FunctionName = (Vector) q;
IntegratedPaths.put(index, If) ;
map.SourcePath = index;
map.GlobalPaths = (Vector) localPaths;
map.FunctionName = "no function";
mappingPaths.add(map);
}
If.LocalSourcePaths = (Vector) localPaths;
If.FunctionName = (Vector) functionVector; 
txt_function = (JTextField) textFuncVector.get(i) ; 
Functions.add(txt_function.getText());
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map.GlobalPaths = (Vector) pathsVector; 
txt_function = (JTextField) textFuncVector.get(i);
Functions.add(txt_function.getText ()) ;
}
else
{
indexKey = (String) IndexVector.get (i) ;
SourcePath = (String) si.paths.get(indexKey);
}
}
mycaller.MappingPaths = (Vector) mappingPaths.clone();
Iterator ell = IntegratedPaths.keyset().iterator(); 
while (ell.hasNext())
{
String vl = (String) e l l .n e x t ().toString ();
String ml = (String) Globalpaths.get (vl) ;
If = (LocalFunction) IntegratedPaths.get(vl);
Vector j = new Vector();
Vector q = new Vector();
if (If.LocalSourcePaths != null)
{
j = (Vector) If.LocalSourcePaths; 
q = (Vector) If.FunctionName;
}
}
Iterator elll = LocalFunctions.keyset().iterator(); 
while (elll.hasNext())
{
String vll = (String) elll.next().toString();
String mil = (String) si.paths.get(vll);
String sll = (String) LocalFunctions.get(vll);
}
}
private void generatePathMappingl ()
{
String indexKey = "";
String GlobalPath =
String SourcePath = "";
JTextField textField = null;
for (int i = 0; i < textFieldsVector.size () ; i + +)
{
CB = (JComboBox) textFieldsVector.g e t (i); 
if (CB.getSelectedltern().toString() != "")
{
indexKey = (String) IndexVector.get (i);
SourcePath = (String) si.paths.get(indexKey);
GlobalPath = (String) Globalpaths.get (CB.getSelectedltem().toString() )
}
}
}
}
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Java code for paths m apping generation

import j ava.awt.*;
import j ava.awt.event.*;
import j avax.swing.*;
import j avax.swing.event.*;
import javax.swing.border.*;
import java.util.*;
import j ava.text.*;
import java.io.*;
import java.lang.*;
import java.net.*/
import javax.swing.filechooser.* ;

public class MappingPanel extends JPanel 
{
BorderLayout borderLayout1 = new BorderLayout(); 
private JPanel pnl_txt = null;
JTextField txt_Filed = new JTextField(); 
JComboBox txt_Schm = new JComboBox ();
JComboBox txt_Func = new JComboBox ();
private JButton btn_ok = null;
private JButton btn_cancel = null;
private JLabel lbl_show = null;
private JLabel lbl_line = null;
private JLabel lbl_element = null;
private JLabel lbl_Gpath = null;
private JLabel lbl_function = null;
private JLabel line_lbl = null;
private JLabel GlobalElement_lbl = null;
private JPanel JFrameContentPane = null;
public Vector IndexVector = new Vector();
private Vector textFieldsVector = new Vector();
private Vector FuncFieldsVector = new Vector();
private Vector labelsVector = new Vector();
public static String GlobalSchema =
public static String SourceSchema = 11";
public static Generatelndex g i ;
public static Generatelndex si;
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public Vector SchemaElements = new Vector();
JComboBox CB = new JComboBox ();
static TreeMap Globalpaths = new TreeMap();
static TreeMap Globalelements = new TreeMap();
private Vector mappingPaths = new Vector()/
private Mapping map;
public Frame fram;
private int y2 = 152, y3 = 12;
private int height = 5;
MainlnterFaceF mycaller=null;
private String sourcePath;
private Vector globalPaths;
private String functionName;
public MappingPanel(MainlnterFaceF caller)
{
mappingPaths = new VectorO; 
mycaller=caller;
mappingPaths=(Vector) mycaller.MappingPaths;
mycaller.menuItemKB.setEnabled(true) ;
try
{ jblnit(); } 
catch (Exception ex)
{
ex.printStackTrace();
}}
void jblnit() throws Exception 
{
SchemaElements.a d d ("");
UIManager.put("Label.font", new Fon t ("SansSerif", Font.BOLD, 12)); 
UIManager.put("Button.font", new F o n t ("SansSerif", Font.BOLD, 12)); 
UIManager.put("TextField.font", new F o n t ("SansSerif", Font.BOLD, 12)); 
UIManager.put("ComboBox.font", new F o n t ("SansSerif", Font.PLAIN, 10)); 
UIManager.put("TextArea.font", new F ont("SansSerif", Font.BOLD, 12)); 
try 
{
this.setLayout(null);
JTextField textField = null;
JLabel Element_lbl = null;
Element_lbl = getlbl_Gpath(0, "Data Source Element path"); 
this . add (Element_lbl, Element_lbl. getName () ) ;
Element_lbl = getlbl_element(0,"Master View Element path"); 
this . add (Element_lbl, Element_lbl. getName () ) ;
Element_lbl = getlbl_function(0, "Mapping Function"); 
this.add(Element_lbl, Element_lbl.getName()); 
int n = 2;
for (int i = 0; i < mappingPaths.size () ; i + + )
{
n = n + 1 ;
Mapping map = new Mapping();
map=(Mapping) mappingPaths.get (i );
sourcePath=(String) m a p .SourcePath;
Element_lbl = getlbl_element(n, sourcePath); 
this.add(Element_lbl, Element_lbl.getName()); 
globalPaths=(Vector) m a p .GlobalPaths; 
if (globalPaths != null)
{
globalPaths=(Vector) m a p .GlobalPaths;
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functionName=(String) m a p .FunctionName; 
int m= 0;
for (int j = 0; j < globalPaths.size(); j++)
{
String gp=new StringO;
gp=(String) globalPaths.get (j ) ;
if ( (globalPaths.size()>1) && (j ==0))
Element_lbl = getlbl_Gpath(n, gp+","); 
else
21ement_lbl = getlbl_Gpath(n, gp) ;
this . add (Element_lbl, Element_lbl. getName () ) ;
n = n + 1;
m= j +1;
}
Element_lbl = getlbl_function(n-m, functionName); 
this . add (Element_lbl, Element_lbl. getName () ) ; 
n=n-1;
}
else
{
Element_lbl = getlbl_Gpath(n, "Null");
this . add (Element_lbl, Element_lbl. getName () ) ;
}}}
catch (Throwable Exc)
{
handleException(Exc);
}}
private JLabel getlbl_element(int i, String name)
{
try
{
lbl_element = new JLabel (); 
lbl_element.setName(name); 
lbl_element.setText(name);
lbl_element.setBounds(20, 10 + (i * 5) * height, 250, 20); 
}
catch (Throwable Exc)
{ handleException(Exc); } 
return lbl_element;
}
private JLabel getlbl_Gpath(int i, String name)
{
try
{
lbl_Gpath = new JLabel (); 
lbl_Gpath.setName(name); 
lbl_Gpath.setText(name);
lbl_Gpath.setBounds(35 0, 10 + (i * 5) * height, 250, 20);
}
catch (Throwable Exc)
{ handleException (Exc) ,- } 
return lbl_Gpath;
}
private JLabel getlbl_function(int i, String name)
{
try
{
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lbl_function = new JLabel (); 
lbl_function.setName(name); 
lbl_function.setText(name);
lbl_function.setBounds(650, 10 + (i * 5) * height, 200, 20);
}
catch (Throwable Exc)
{ handleException(Exc); } 
return lbl_function;
}
private JTextField gettxt_Field(int i)
{
try
{
txt_Filed = new JTextField () ; 
txt_Filed.setName("Field" + i); 
txt_Filed.setEditable(true); 
txt_Filed.setText("");
txt_Filed.setBounds(450, 10 + (i * 5) * height, 100, 15); 
textFieldsVector.a d d (txt_Filed);
}
catch (Throwable Exc)
{ handleException(Exc); } 
return txt_Filed;
}
private JLabel getlbl_show(int i, String name)
{
try
{
lbl_show = new JLabel(); 
lbl_show.setName(name); 
lbl_show.setText(name);
lbl_show.setBounds(20, 10 + (i * 5) * height, 100, 20); }
catch (Throwable Exc)
{
handleException(Exc);
}
return lbl_show;
}
private JLabel getlbl_line(int i, String name)
{
try
{
lbl_line = new JLabel(); 
lbl_line.setName(name); 
lbl_line.setText(name);
lbl_line.setBounds(10, 10 + (i * 5) * height, 300, 20);
}
catch (Throwable Exc)
{ handleException(Exc); } 
return lbl_line;
}
private void handleException(Throwable exception)
{
System.out.printIn("Could not initialize the frame. Error: " + 
exception);
}}

223



APPENDIX G

Java code for m erging m apping inform ation with  

XM K B

import org.j dom.*; 
import org.jdom.input.SAXBuilder; 
import java.io.IOException; 
import java.util.*; 
import java.io.FileOutputStream; 
import org.jdom.output.XMLOutputter; 
import java.io.File; 
public class KBmerge 
{
public static MainlnterFaceF mycaller; 
static TreeMap paths = new TreeMap0 ;  
static TreeMap elements = new TreeMap(); 
static Vector SourceMetadata = new Vector(); 
public KBmerge()
{
String lastSign = ""; 
paths = new TreeMap(); 
elements = new TreeMap();
}
public static void mergeMapping(MainlnterFaceF caller, String filename! 
{
File f = new File(filename); 
if ( ! f .exists())
{
buildKB(caller, filename);
}
else
{
cumKB(caller, filename);
}}
private static void writeToFile(String fname, Document doc)
{
try
{
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FileOutputStream out = new FileOutputStream(fname);
XMLOutputter op = new XMLOutputter (); 
o p .output(doc, out); 
out.flush(); 
out.close();
}
catch (IOException e)
{
System.err.printIn(e);
}}
public static void cumKB(MainlnterFaceF caller, String filename)
{
SAXBuilder builder = new SAXBuilder(); 
mycaller = caller;
Vector sourceMetadata = new Vector(); 
try 
{
String att =
Element integ, child;
sourceMetadata = (Vector) mycaller.SourceMetadata.clone();
Vector mappingPaths = (Vector) mycaller.MappingPaths;
String sourcePath = "";
String functionName = "";
Vector globalPaths = null;
Document doc = builder.build(filename);
Element root = doc.getRootElement () ;
Element information = root.getChild("DS_information");
int number = information.getAttribute ( "number").getlntValue() ;
number = number + 1;
String num = "" + number;
information. removeAttribute ( "number") ;
information. setAttribute ( "number" , num.trimO) ;
List children = information.getChildren();
Listlterator iterator = children.listIterator(); 
child = (Element) iterator.next (); 
att = child.getAttributeValue("name");
Element newSource = new Element("DS_Location");
newSource.setText(sourceMetadata.g e t (1).toString());
newSource.setAttribute("name", sourceMetadata.get(0).toString0);
newSource.setAttribute("type", sourceMetadata.get (2) .toString());
information.addContent(newSource);
Element structure = root.getChild("Med_component");
children = structure.getChildren();
iterator = children.listlterator () ;
int count = 0 ;
while (iterator.hasNext0)
{
child = (Element) iterator.next (); 
att = child.getAttributeValue("path");
String paths = " ";
Mapping map = new Mapping(); 
map = (Mapping) mappingPaths.get(count); 
sourcePath = (String) m a p .SourcePath; 
functionName = (String) m a p .FunctionName; 
if (functionName.trim().length() == 0)
{
functionName = "Null";
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}
Element local = new Element("target"); 
globalPaths = (Vector) m a p .GlobalPaths; 
if (globalPaths != null)
{ globalpaths = (Vector) map.GlobalPaths; 
for (int j = 0; j < globalpaths.size(); j++)
{
String gp = new String();
gp = (String) globalPaths.get (j )/
if ( (globalPaths.size() > 1))
{
if (j = = 0) 
paths=gp; 
else
paths = paths + + gp;
}
else
{
paths = gp;
}}}
else
{ paths = "Null"; 
functionName = "Null";
}
local.setText(paths);
local.setAttribute("name", sourceMetadata.g e t (0).toString()); 
local.setAttribute("fun", functionName); 
child.addContent(local); 
count++;
}
writeToFile(filename, doc);
}
catch (JDOMException e)
{
System.out.printIn(" is not well-formed.");
System.out.printIn(e.getMessage());
}
catch (IOException e)
{
System.out.printIn(e);
}}
public static void buildKB(MainlnterFaceF caller, String xmlfile) 
{
mycaller = caller;
Element concept;
Element dbase;
Element relations;
Vector sourceMetadata = new Vector();
sourceMetadata = (Vector) mycaller.SourceMetadata.clone();
Vector mappingPaths = (Vector) mycaller.MappingPaths;
String sourcePath = "";
String functionName = "";
Vector globalPaths = null;
Element root = new Element("XMKB");
Document doc = new Document(root);
Element DS_info = new Element("DS_information");
DS info.setAttribute("number", "1");
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Element DS_Loc = new Element("DS_Location");
DS_Loc. setText (sourceMetadata.get (1) .toStringO) ;
DS_Loc.setAttribute("name" , sourceMetadata.g e t (0) .toString()) 
DS_Loc. setAttribute ( "type" , sourceMetadata. get (2) .toStringO) 
DS_info.addContent(DS_Loc); 
root.addContent(DS_info);
Element Med_comp = new Element("Med_component"); 
for (int i = 0; i < mappingPaths.size (); i + + )
{
String paths = " " ;
Mapping map = new Mapping (); 
map = (Mapping) mappingPaths.get (i) ; 
sourcePath = (String) m a p .SourcePath; 
functionName = (String) m a p .FunctionName/ 
if (functionName.trim().length() == 0)
{ functionName = "Null"; }
Element integrated = new Element("source"); 
integrated.setAttribute("path", sourcePath);
Element local = new Element("target"); 
globalPaths = (Vector) map.GlobalPaths; 
if (globalPaths != null)
{
globalPaths = (Vector) m a p .GlobalPaths; 
for (int j = 0; j < globalPaths.size(); j++)
{
String gp = new String();
gp = (String) globalPaths.get (j ) ;
if ( (globalPaths.size() > 1))
{
if (j ==0) 
paths = g p ; 
else
paths = paths + + gp;
}
else
{
paths = gp;
}}}
else
{ paths = "Null"; 
functionName = "Null";
}
local.setText(paths);
local.setAttribute("name", sourceMetadata.get(0).toString()); 
local.setAttribute("fun", functionName); 
integrated.addContent(local);
Med_comp.addContent(integrated);
}
root.addContent(Med_comp); 
writeToFile(xmlfile, doc);
}
public static void main(String[] args)
{
KBmerge kb = new KBmerge();
}}
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Sam ple o f  X M K B docum ent

<?xml version="l . 0 "  encoding="UTF-8 " ?>
<DS_information number="4">
<DS_Location name =" books, xml" type="XML

document" >http://wv»w.w3s chools. com/xque ryc/DS_Location > 
<DS_Location name= " bib.xml" type=" XML document">C :\prototype\doc </DS_Location> 
<DS_Location name=" SCMFMA" type="R elatlonal Datab ase">

jdbc:oracle: thin: Shelot: 1521:ora cle9 </DS_Locat ion> 
<DS_Location name=" bookdata.xml" type="XML document" >C: \prototyp e\doc</DS_Locat ion> 

</DS_information>
<Med_component >
<source path="/book" >

<target name= "book s .xml" fun="Nul 1" >/bookstore/b ookc/target> 
ctarget name="bib. xml" fun="Null" >/bib/book</tar get>
<target name="SCMFMA" fun="Null">/scmfma/bookc/t arget>
<target name= "book data.xml" fun=" Null" >/bookdat a/book</target>
</source>

<source path="/book/price ">
<target name="book s .xml" fun="Rat eExchange" >/boo kstore/book/pri ce</target>
<target name="bib. xml" fun="RateE xchange" >/bib/b ook/price</targ et>
<target name="SCMFMA" fun="Null" > Null</target>
<target name ="book data.xml" fun=" Null">/bookdat a/book/pricec/ta rget>
</source>

<source path= "/book/author">
<target name = "book s .xml" fun="Nul l">Nullc/target >
ctarget name="bib. xml" fun= "Null" >/bib/book/authore/target>
ctarget name="SCMFMA" fun="Null" > Nullc/target>
ctarget name= "book data.xml" fun=" Null" >/bookdat a/book/authorc/t arget> 
c/source>

csource path="/book/ author/full_name">
ctarget name ="book s.xml" fun="Nul 1" >Nullc/target > 
ctarget name="bib. xml" fun="Null" >Nullc/target> 
ctarget name="SCMFMA" fun="Null"> Nullc/target> 
ctarget name= "book data.xml" fun= " Null" >Nullc/tar get> 
c/source>

csource path="/book/ author/full_name/first_name">
ctarget name= "book s .xml" f un=" fir stNiune" >/bookst ore/book/author < / target>
ctarget name="bib. xml" fun="Null" >/bib/book/author/firstc/targe t>
ctarget name= "SCMF MA" f un= " f irstN ame" >/scmfma/b ook/authorc/targ et>
ctarget name="book data.xml" fun=" f irstName" >/boo kdata/book/auth or/n«unec/target >
c/source>

csource path="/book/ author/full_name/last_name">
ctarget name = "book s .xml" fun="Las tName" >/booksto re/book/authorc /target> 
ctarget name="bib. xml" fun="Null" >/bib/book/author/lastc/target > 
ctarget name="SCMFMA" fun="LastName">/scmfma/boo k/authorc/targe t> 
ctarget name= "book data.xml" fun=" LastName" >/book data/book/autho r/n«unec/target> 
c/source> 

csource path= "/book/title">
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<target narae="book s.xml" fun="Nul 1" >/bookstore/b ook/title</targ et>
<target name="bib.xml" fun="Null">/bib/book/titlec/target>
ctarget name="SCMEMA" fun= "Null" > /scmfma/book/ti tlec/target>
ctarget name= "book data.xml" fun=" Null" >/bookdat a/book/titlec/ta rget>
< /source>

csource path= "/book/year">
ctarget name="book s.xml" fun="Nul 1" >/bookstore/b ook/yearc/targe t>
ctarget name="bib. xml" fun="Null" >Nullc/target>
ctarget name="SCMEMA" fun="Null" > /scmfma/book/ye arc/target>
ctarget name= "bookdata.xml" fun=" Null">Nullc/target>
c/source>

csource path= "/book/publisher">
ctarget name= "book s .xml" fun= "Nul 1" >Nullc/target > 
ctarget name="bib. xml" fun="Null" >/bib/book/pub 1 isherc/target> 
ctarget name="SCMEMA" fun="Null" > /scmfma/book/publisherc/target > 
ctarget name-"bookdata.xml" fun=" Null">Nullc/target> 
c/source>

csource path= "/book/editor">
ctarget name= "book s .xml" fun="Nul 1" >Nullc/target >
ctarget name="bib. xml" fun="Null" >/bib/book/edit orc/target>
ctarget name="SCHEMA" fun="Null">Nullc/target>
ctarget name= "bookdata.xml" fun=" Null">Nullc/tar get>
c/source>

csource path="/book/ editor/af filiat ion" >
ctarget name ="book s . xml" fun="Nul l">Nullc/target >
ctarget name="bib. xml" fun="Null" >/bib/book/edit or/af filiationc /target> 
ctarget name=" SCHEMA" fun="Null" > Nullc/target> 
ctarget name="book data.xml" fun=" Null" >Nullc/tar get> 
c/source>

csource path="/book/ editor/full name" >
ctarget name = "book s.xml" fun="Nul 1" >Nullc/target >
ctarget name="bib. xml" fun="Merge " >/bib/book/edi tor/last, /bib/b ook/editor/firs tc/target>
ctarget name="SCMFMA" f un= "Null" > Nullc/target>
ctarget name= "bookdata.xml" fun=" Null" >Nullc/tar get>
c/source>
c/Med_component>
c/XMKB>
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Java code for rem oving data source from X M K B

import j ava.awt.*;
import j ava.awt.event.*;
import j avax.swing.*;
import org.j dom.*;
import org.jdom.input.SAXBuilder;
import java.io.IOException;
import java.util.*;
import java.io.FileOutputStream;
import org.jdom.output.XMLOutputter;
class RemoveSources extends JDialog implements ActionListener 
{
private JPanel pnl_txt = null;
JComboBox txt_Func = new JComboBox (); 
private JLabel lbl_show = null; 
private JButton btn_ok = null; 
private JButton btn_cancel = null; 
private Vector sources = new Vector(); 
private JPanel JFrameContentPane = null; 
public String kbase =
JComboBox CB = new JComboBox (); 
public Frame fram; 
private int y2 = 152, y3 = 12; 
private int height = 5; 
public RemoveSources(String kb)
{
kbase = kb;
sources = (Vector) getSources(kbase);
UIManager.p u t ("Label.font", new Font("SansSerif", Font.BOLD, 12)); 
UIManager.p u t ("Button.font", new F o n t ("SansSerif", Font.BOLD, 12)); 
UIManager.put("TextField.font", new Font("SansSerif", Font.BOLD, 12)) 
UIManager.p u t ("ComboBox.font", new Font("SansSerif", Font.PLAIN, 10)) 
UIManager.p u t ("TextArea.font", new Font("SansSerif", Font.BOLD, 12)); 
setContentPane(getJFrameContentPane()); 
this.setSize(500, 200); 
setTitle("Remove Data Source");
}
public void actionPerformed(ActionEvent e)
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{
if (e.getSource() == btn_cancel)
{
dispose(); 
return;
}
else if (e.getSource() == btn_ok)
{
String selectedSource = txt_Func.getSelectedltem().toString(); 
removeSource(kbase, selectedSource);
JOptionPane.showMessageDialog(this,selectedSource +" has been removed 
successfully"); 
dispose();
}}
private JPanel getJFrameContentPane()
{
if (JFrameContentPane == null)
{
try
{
JFrameContentPane = new JPanel () ;
JFrameContent Pane. setName ( "JFrameContent Pane" ) ;
JFrameContentPane.setLayout(null);
get JFrameContent Pane () . add (getlbl_show (0 , "Remove Data Source"),
getlbl_show(0, "Source") .getName ());
get JFrameContent Pane () . add (gettxt_sources (0) ,
gettxt_sources(0) .getName ()) ;
getJFrameContentPane() .add(getbtn_cancel (5),
getbtn_cancel(5).getName());
getJFrameContentPane() .add(getbtn_ok(5) , getbtn_ok(5) .getName());
}
catch (Throwable Exc)
{
handleException(Exc);
}}
return JFrameContentPane;
}
private JButton getbtn_ok(int i)
{
if (btn_ok == null)
{
try
{
btn_ok = new JButton(); 
btn_ok.setName("btn_ok"); 
btn_ok.setText("Remove");
btn_ok.setBounds(250, 100 + i * height, 85, 25); 
btn_ok.addActionListener(this) ;
}
catch (Throwable Exc)
{
handleException(Exc);
}}
return btn_ok;
}
private JComboBox gettxt_sources(int i)
{

231



APPENDIX I Removing data source

try
{
txt_Func = new JComboBox(sources); 
txt_Func.setBackground(Color.white); 
txt_Func.setName("Sources");
txt_Func.setBounds(200, 20 + (i * 5) * height, 200, 25);
}
catch (Throwable Exc)
{ handleException(Exc); } 
return txt_Func;
}
private JButton getbtn_cancel(int i)
{
if (btn_cancel == null)
{
try
{
btn_cancel = new JButton(); 
btn_cancel.setName("btn_cancel") ; 
btn_cancel.setText("Cancel") ;
btn_cancel. setBounds (3 50, 100 + i * height, 85, 25); 
btn_cancel. addAct ionListener (this) ;
}
catch (Throwable Exc)
{
handleException(Exc);
}}
return btn_cancel;
}
private JLabel getlbl_show(int i, String name)
{
try
{
lbl_show = new JLabel(); 
lbl_show.setName(name); 
lbl_show.setText(name);
lbl_show.setBounds(50, 20 + (i * 5) * height, 200, 25);
}
catch (Throwable Exc)
{ handleException(Exc); } 
return lbl_show;
}
private void handleException(Throwable exception)
{
System.out.println("Could not initialize the frame. Error:"+ exception); 
}
private static void writeToFile(String fname, Document doc)
{
try
{
FileOutputStream out = new FileOutputStream(fname);
XMLOutputter op = new XMLOutputter(); 
o p .output(doc, out); 
out.flush(); 
out.close();
}
catch (IOException e)
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{
System.err.printIn(e);
}}
public static Vector getSources(String filename)
{
SAXBuilder builder = new SAXBuilder();
Vector sources = new Vector(); 
try 
{
String att = "";
Element child;
Document doc = builder.build(filename);
Element root = d o c .getRootElement () ;
Element information = root.getChild("DS_information"); 
java.util.List children = information.getChildren () ; 
Listlterator iterator = children.listIterator(); 
while (iterator.hasNext())
{
Element source = (Element) iterator.next(); 
att = source.getAttributeValue("name"); 
sources.add(att);
}}
catch (JDOMException e)
{
System, out .printIn ( " is not well-f ormed. " ) ;
System.out.println(e.getMessage ()) ;
}
catch (IOException e)
{
System.out.println(e);
}
return sources;
}
public static void removeSource(String filename, String Source) 
{
SAXBuilder builder = new SAXBuilder() ;
Vector sourceMetadata = new Vector (); 
try 
{
String att = "";
Element integ, child;
Document doc = builder.build(filename);
Element root = d o c .getRootElement();
Element information = root.getChild("DS_information");
int number = information.getAttribute("number") .getIntValue();
number = number - 1;
String num = "" + number;
information. removeAttribute ("number" ) ;
information. setAttribute ("number" , num.trimO ) ;
java.util.List children = information.getChildren();
Listlterator iterator = children.listIterator();
int index = -1;
int count = 0;
while (iterator.hasNext ())
{
Element source = (Element) iterator.next(); 
att = source.getAttributeValue("name");
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if (att.toString().equalsIgnoreCase(Source))
{ index = count; } 
count++;
}
if (index > -1)
{ children.remove(index); }
Element structure = root.getChild("Med_component") , 
children = structure.getChildren(); 
iterator = children.listlterator(); 
count = 0;
while (iterator.hasNext())
{
child = (Element) iterator.n e x t ();
java .util.List locals = child.getChildren();
Listlterator iteratorl = locals.listlterator();
index = -1;
count = 0;
while (iteratorl.hasNext())
{
Element local = (Element) iteratorl.next (); 
att = local.getAttributeValue("name" ) ; 
if (att.toString().equalsIgnoreCase(Source))
{ index = count; } 
count++;
}
if (index > -1)
{
locals.remove(index) ;
}}
writeToFile(filename, doc);
}
catch (JDOMException e)
{
System.out.printIn(" is not well-formed.");
System.out.println(e.getMessage () ) ;
}
catch (IOException e)
{
System.out.println(e);
}}
public static void main(String args [])
{
JDialog a = new RemoveSources(null); 
a .addWindowListener(new WindowAdapter {)
{
public void windowClosing(WindowEvent e)
{
System.exit(0);
}});
a .show();
}}

Removing data source
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Q uery Processor and X FE P code for parsing  

X Q uery FLW R Expression query

import java.awt.*;
import j ava.awt.event.*;
import j avax.swing.*;
import java.util.*;
import java.io.*;
import com.borland.jbcl.layout.*;

public class QueryProcessor extends JFrame implements ActionListener 
{
private JTextArea textAreal, textArea2,textArea3; 
public JButton run,reset,exit,getschema;
private JLabel labell,label2,label3,label4,label5,label6; 
private JPanel buttonPanel;
String integratedfile; 
public QueryProcessor()
{
super("QUERY PROCESSOR");
Box box =Box.createVerticalBox () ; 
label2 = new JLabel ("MASTER VIEW"); 
box.add(label2);
textAreal = new JTextArea(17,30) ;
textAreal.setEditable(false);
box.add(new JScrollPane(textAreal));
label4 = new JLabel ("ENTER YOUR XQUERY : ");
box.add(label4);
textArea2= new JTextArea(3,30) ; 
box.add(new JScrollPane(textArea2)); 
label6 = new JLabel ("THE RESULT : ");
box.add(label6);
textArea3= new JTextArea(15,30) ;
textArea3.setEditable(false);
box.add(new JScrollPane(textArea3));
Container container = getContentPane(); 
container.add(box);
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getschema = new JButton("Get Master View");
run = new JButton ("Generate Local Sub-Query");
reset = new JButton(" Reset ");
exit = new JButton (" Exit ");
run.setEnabled(false);
getschema.addActionListener(this);
run.addActionListener(this);
reset.addActionListener(this);
exit.addActionListener(this);
buttonPanel= new JPanelO;
buttonPanel.setLayout(new GridLayout(1,3));
buttonPanel.add (getschema);
buttonPanel.add (run);
buttonPanel.add (reset);
buttonPanel.add (exit);
container. add (buttonPanel, BorderLayout. SOUTH) ;
label5 = new JLabel (" ") ;
box.a d d (label5);
setSize (1020,740);
setVisible (true);
}
public void actionPerformed (ActionEvent event)
{
if (event.getSource() == getschema)
{
final JFileChooser vc = new JFileChooser (); 
int returnVal = v c .showOpenDialog(this); 
if (returnVal == JFileChooser.APPROVE_OPTION)
{
File filel = v c .getSelectedFile (); 
integratedfile = filel.getAbsolutePath(); 
textAreal.setText(""); 
try 
{
FilelnputStream fstream = new FileInputStream(integratedfile); 
DatalnputStream in = new DatalnputStream(fstream);
String output="";
while (in.available () !=0)
{
output += (in.readLine())+"\n" ;
}
in.close();
textAreal.append(output); 
run.setEnabled(true); 
textArea2.setText(""); 
textArea3.setText("");
}
catch (Exception e)
{
System.err.println("File input error");
}
}
}
else if (event.getSource() == run)
{
QueryParser application = new QueryParser();
String query = textArea2.getText();
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try
{
int ln=integratedfile.length();
String kbNamel=integratedfile.substring(0,In-4)+"_kb.xml" ;
Vector q=(Vector) application.GetQueries(kbNamel,query) ; 
for (int i=0;i< q.size();i++)
{
textArea3.append((q.get(i)).toString());
textArea3 . append (" \n" ) ;
}
}
catch(Exception excp)
{
if ( query .equals (""))
JOptionPane.showMessageDialog(null,"Please enter your XQuery
query","Error Message",JOptionPane.ERROR_MESSAGE);
else
JOptionPane.showMessageDialog(null,"Please check your XQuery 
query","Error Message", JOptionPane.ERROR_MESSAGE);
}
}
else if (event.getSource() == reset)
{
textArea2.setText(""); 
textArea3.setText("");
}
else if (event.getSource() == exit)
{
dispose ();
}
}
public static void main (String args[])
{
QueryProcessor application = new QueryProcessor(); 
application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}
}

import j ava.awt.*;
import java.awt.event.*;
import j avax.swing.*;
import java.util.*;
import org.j dom.*;
import org.jdom.input.SAXBuilder;
import java.io.IOException;
import java.util.*;
import java.i o .FileOutputStream;
import org.jdom.output.XMLOutputter;
import java.i o .File;

public class QueryParser 
{
int slash,wh,in,variable,strat,end,cond,stag,etag,tl,le; 
StringTokenizer stl,st2; 
public QueryParser()
{
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}
public Vector GetQueries (String file,String queryl)
{
Vector queries = new Vector();
String VarRetrived[]=new String [100];
String correspondRet[]=new String [100];
String RelVar[]=new String[100];
String funRet[]=new String [100];
String tablepath[]=new String[100];
String myQuery=null;
String query = queryl;
String condition="",mainPath="",mainvar="";
String retrivedVar="",output="",operator="";
String condVar=" ", condVal = " 11, conditionl=" ";
String stagName="",etagName="",path="";
. String sourceName="" , sourceType="",sourceLoca="";
String correspondPath="",fun="",condVarReal="";
String correspondcon="",funcon="",seprator="";
String subquery="",re1query="",Relcon="";
String table ="";
String filename=file;
variable = query.indexOf ("$") ;
if (query.toUpperCase().indexOf("IN") > -1)
in = query.toUpperCase() .indexOf("IN" ) ;
mainvar = query.substring(variable,in);
slash= query.indexOf("/") ;
if (query.toUpperCase().indexOf("WHERE") > -1)
{
wh = query.toUpperCase().indexOf("WHERE");
condition = query.substring(wh+5,query.toUpperCase() .indexOf("RETURN")); 
}
else wh = query.toUpperCase().indexOf("RETURN"); 
mainPath = query.substring(slash,wh); 
strat = query.indexOf("{"); 
end = query.indexOf("}");
retrivedVar = query.substring(strat+1,end) ; 
conditionl = condition.trim() ; 
if (conditionl.indexOf("=")> -1)
{
operator = "=";
condVar = conditionl.substring(0,conditionl.indexOf("=")); 
condVal = conditionl.substring(conditionl.indexOf(" = ") +1) ;
}
else if (conditionl.indexOf(">")> -1)
{
operator = ">";
condVar = conditionl.substring(0,conditionl.indexOf(">")); 
condVal = conditionl.substring(conditionl.indexOf(">")+1);
}
else if (conditionl.indexOf("<")> -1)
{
operator = "<";
condVar = conditionl.substring(0,conditionl.indexOf("<")); 
condVal = conditionl.substring(conditionl.indexOf("<")+1);
}
if (conditionl.indexOf(">=")> -1)
{
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operator =
condVar = conditionl.substring(0,conditionl.indexOf(">=")) ; 
condVal = conditionl.substring(conditionl.indexOf(">=")+2);
}
if (conditionl.indexOf("<=")> -1)
{
operator =
condVar = conditionl.substring(0,conditionl.indexOf("<=")); 
condVal = conditionl.substring(conditionl.indexOf("<=")+2);
}
if (conditionl.indexOf("!=")> -1)
{
operator = "!=" ;
condVar = conditionl.substring(0,conditionl.indexOf("!=")); 
condVal = conditionl.substring(conditionl.indexOf("!=")+2) ;

.}
mainvar = removeSpaces(mainvar.trim ()); 
mainPath = removeSpaces(mainPath.trim()) ; 
retrivedVar = removeSpaces(retrivedVar.trim()); 
condition = condition.trim(); 
condVar = condVar.trim(); 
condVal = condVal.trim();
mainPath = "/" + mainPath.substring(1).trim(); 
if (condVar != "")
{
tl = condVar.indexOf("/");
condVar = mainPath +"/"+ condVar.substring(tl+1).t r i m O ;
}
stl= new S t r i n g T o k e n i z e r ( r e t r i v e d V a r , ; 
int i=0;
while (stl.hasMoreTokens())
{
VarRetrived[i] = stl.nextToken().t rim(); 
i++;
}
for (int e = 0 ; e < i / e++)
{
tl = VarRetrived[e] .indexOf("/") ;
VarRetrived[e] = mainPath +"/"+ VarRetrived[e].substring(tl+1).trim(); 
}
stag = query.toUpperCase().indexOf("RETURN");
stagName = query. substring(stag+6,query.toUpperCase() .indexOf("{")) ;
etag = query.indexOf("}");
etagName = query.substring(etag+1)/
stagName=stagName.t rim();
etagName=etagName.t rim();
SAXBuilder builder = new SAXBuilder (); 
try 
{
Document doc = builder.build(filename);
Element root = d o c .getRootElement();
Element information = root.getChild("DS_information");
int number = information.getAttribute("number").getlntValue0 ;
java.util.List children = information.getChildren();
Listlterator iterator = children.listlterator(); 
while (iterator.hasNext())
{
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int test=0,testl = 0 ;
Element source = (Element) iterator.next(); 
sourceName = source.getAttributeValue("name"); 
sourceType = source.getAttributeValue("type"); 
sourceLoca = source.getText(); 
if ( sourceLoca.indexOf("/") > -1) 
seprator="/"; 
else
seprator="\\";
Element Med_com = root.getChild("Med_component"); 
java.util.List childrenl = Med_com.getChildren(); 
Listlterator iteratorl = childrenl.listlterator(); 
while (iteratorl.hasNext())
{
Element integrated = (Element) iteratorl.next(); 
path = integrated.getAttributeValue("path")/ 
if (path .equals (mainPath.trim ()))
{
java.util.List children2 = integrated.getChildren(); 
Listlterator iterator2 = children2.listlterator(); 
while (iterator2.hasNext())
{
Element target = (Element) iterator2.n e x t (); 
if (sourceName .equals (target.getAttributeValue("name")) ) 
{
correspondPath = target.getText (); 
fun = target.getAttributeValue("fun" ) ;
}
}
}
if ( condVar != "" && path .equals (condVar))
{
java.util.List children3 = integrated.getChildren(); 
Listlterator iterator3 = children3.listlterator()/ 
while (iterator3.hasNext())
{
Element target = (Element) iterator3.n e x t ()/ 
if (sourceName .equals (target.getAttributeValue("name"))) 
{
correspondcon = target.getText();
Relcon = target.getText();
if ( (correspondcon.compareTo("Null")!= 0) &&
( correspondPath.compareTo("Null")!= 0))
{
le = correspondPath.length();
correspondcon = mainvar+correspondcon.substring(le);
}
funcon = target.getAttributeValue("fun");
}
}
}
for (int e = 0 ; e < i ; e++)
{
if ( path .equals (VarRetrived [e]))
{
java.util.List children4 = integrated.getChildren(); 
Listlterator iterator4 = children4.listlterator()/
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while (iterator4.hasNext())
{
Element target = (Element) iterator4.next(); 
if (sourceName .equals (target.getAttributeValue("name")) )
{
correspondRet[e] = target.getText(); 
funRet[e] . = target.getAttributeValue("fun");
RelVar [e] = target.getText();
if ( (correspondRet[e] .compareTo("Null")!= 0) &&
( correspondPath.compareTo("Null")!= 0))
{
le = correspondPath.length();
int t2 = correspondRet[e].indexOf(",");
if (t2 > -1)
correspondRet[e] = mainvar+correspondRet [e] .substring(le,t2) +" , "
+mainvar+correspondRet[e].substring(t2+le+l);
else
correspondRet[e] = mainvar+correspondRet [e] .substring(le);
}
}
}
}
}
}
if (sourceType .equals ("XML document"))
{
subquery = "FOR "+mainvar+" IN document(\ ""+sourceLoca + seprator 
+sourceName+"\")"+correspondPath; 
if (condVar != "")
subquery = subquery + " WHERE "+correspondcon+operator+condVal; 
subquery = subquery +" RETURN "+ stagName+" { 
for (int e = 0 ; e < i ; e++)
{
if (funRet[e] .equals ("Null")) 
subquery = subquery + correspondRet [e]; 
else
subquery = subquery + funRet[e]+"("+correspondRet[e]+")";
if (e != i-1)
subquery = subquery +" ,
}
subquery = subquery +" } "+etagName;
}
else
{
correspondPath = correspondPath.substring(1).replace('/'/'•'); 
st2= new StringTokenizer(correspondPath,"."); 
int j =0;
while (st2.hasMoreTokens())
{
tablepath[j] = st2.nextToken () .trim();
j++;
}
table = tablepath[0] +"."+ tablepath[1];
subquery = "Select
for (int e = 0 ; e < i ; e++)
{
if (funRet[e] .equals ("Null"))
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subquery = subquery + RelVar [e] .substring(1) . r e p l a c e ; 
else
subquery=subquery+funRet [e] +
" ("+RelVar[e] .substring(1) .replace
if (e != i-1)
subquery = subquery +" ,
}
subquery = subquery +" From "+table; 
if (condVar != "")
subquery = subquery + " WHERE "+Relcon.substring(1).replace('/'/ 
operator+condVal.replace('"1,'\ ;
}
int b=l;
for (int e = 0 ; e < i ; e++)
{
if (correspondRet[e].compareTo("Null")== 0) b=-l;
}
myQuery = "Sub-Query Generate For "+sourceType+" "+sourceLoca + 
+sourceName +" is :\n";
if ((correspondPath .equals ("Null")) || (correspondcon .equals
("Null")) || (b==-l))
myQuery =myQuery+ "No matched Query Generated For This Dtad
Source"+"\n\n";
else
myQuery=myQuery+subquery+"\n\n" / 
queries.add(myQuery);
}
}
catch (JDOMException e)
{
System.out.println(e.getMessage ()) ;
}
catch (IOException e)
{
System.out.println(e);
}
return queries;
}
public static void main (String args[])
{
QueryParser application = new QueryParser();
}
public static String removeSpaces(String s)
{
StringTokenizer st = new StringTokenizer(s," ", false);
String t="";
while (st.hasMoreElements()) t += s t .nextElement(); 
return t ;
}
}

' • ' ) +

seprator
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