
Ca r d i f f
U N I V E R S I T Y

P R I F Y S G O L

CaeRDyS>

Querying Distributed Heterogeneous Structured and

Semi-structured Data Sources

by

Fahad M. Al-Wasil

A thesis submitted in partial fulfillment
o f the requirements for the degree o f

Doctor o f Philosophy
in

Computer Science

School o f Computer Science

Cardiff University

April 2007

UMI Number: U584905

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584905
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

DECLARATION

This work has not previously been accepted in substance for any degree and is not

concurrently submitted in candidature for any degree.

Signed(candidate)

DateA J./ . I . . / . . . , 2

STATEMENT 1
This thesis is being submitted in partial fulfillment o f the requirements for the degree o f

PhD.

S igned ... (candidate)

Date 2 .5? ..^ ..^

STATEMENT 2
This thesis is the result o f my own independent work/investigation, except where

otherwise stated. Other sources are acknowledged by explicit references.

S igned... (candidate)

Date ...\ .g ./.£ ./.2 ..? ..f? ..:£

STATEMENT 3
I hereby give consent for my thesis, if accepted, to be available for photocopying and for

inter-library loan, and for the title and summary to be made available to outside

organisations.

Signed (candidate)

Date ... It £ . / . 5 ./- .2

To my parents,

my wife,

and my children Nora, Mohammed, and Adeem

Acknowledgements

I would like to start by praising Allah (God) Almighty for providing me with faith,

patience and commitment to complete this research.

1 would like to express my sincere gratitude to my supervisors, Prof. W. A. Gray and Prof.

N. J. Fiddian, for their expert guidance and encouragement throughout this research. I am

grateful for their careful reading and constructive comments on this thesis and our joint

papers.

1 would like to thank the paper referees whose comments on my published papers have

added to the success o f this project.

Special thanks are due to the members o f the school for their help, especially Mrs.

Margaret Evans who has helped me with travel related issues, Mrs. Helen Williams for

her help in administrative issues, and Mr. Robert Evans and Dr. Rob Davies for their

technical assistance.

I would also like to express my thanks to my fellow research students in the School o f

Computer Science at Cardiff University for their friendship and help. I really enjoyed

their friendship that I developed while doing this research.

Special admiration and gratitude is due to my parents, brothers and sisters whose prayers,

love, care, patience, support and encouragement have always enabled me to perform to

the best o f my abilities.

Last, but certainly not least, I am indebted to my wife for her endurance and

unconditional support which provided vital encouragement during the period o f my PhD

study. Without her love and devotion, this research would have been impossible. Finally,

1 would like to mention my beloved children, Nora, Mohammed, and Adeem who have

given me happiness during the difficult period o f my study.

A bstract

T he continuing grow th and w idespread popularity o f the internet m eans

that the co llection o f useful data availab le for public access is rapidly

increasing both in num ber and size. T hese data are spread over distributed

heterogeneous data sources like trad itional databases or sources o f various

form s contain ing unstructured and sem i-structured data. O bviously, the

value o f these data sources w ould in m any cases be greatly enhanced if the

data they contain could be com bined and queried in a uniform m anner.

T he research w ork reported in th is d issertation is concerned with querying

and in tegrating a m ultip licity o f d istribu ted heterogeneous structured data

resid ing in relational databases and sem i-structured data held in w ell-

form ed X M L docum ents p roduced by internet applications or hum an-

coded. In particular, we have addressed the problem s of: (1) specifying the

m appings betw een a global schem a and the local data sources' schem as,

and reso lv ing the heterogeneity w hich can occur betw een data m odels,

schem as or schem a concepts; (2) p rocessing queries that are expressed on

a global schem a into local queries.

W e have proposed an approach to com bine and query the data sources

through a m ediation layer. Such a layer is intended to establish and evolve

an X M L M etadata K now ledge B ase (X M K B) increm entally w hich assists

the Q uery P rocessor in m ediating betw een user queries posed over the

global schem a and the queries on the underlying distributed heterogeneous

data sources. It translates such queries into sub-queries -called local

queries- w hich are appropriate to each local data source. The X M K B is

built in a bottom -up fashion by ex tracting and m erging increm entally the

m etadata o f the data sources. It holds the data source’s inform ation (nam es,

types and locations), descrip tions o f the m appings betw een the global

schem a and the participating data source schem as, and function nam es for

handling sem antic and structural d iscrepancies betw een the representations.

To dem onstra te ou r research, w e have designed and im plem ented a

p ro to type system called SISSD (System to Integrate S tructured and Sem i

structured D atabases). The system autom atically creates a GUI tool for

m eta-users (w ho do the m etadata in tegration) w hich they use to describe

m appings betw een the global schem a and local data source schem as.

T hese m appings are used to produce the X M K B. T he SISSD allow s the

transla tion o f user queries into sub-queries fitting each participating data

source, by explo iting the m apping inform ation stored in the XM K B.

The m ajor results o f the thesis are: (1) an approach that facilitates

build ing structured and sem i-structured data integration system s; (2) a

m ethod for generating m appings betw een a global and local schem as'

paths, and reso lv ing the conflicts caused by the heterogeneity o f the data

sources such as nam ing, structural, and sem antic conflicts w hich, m ay

occur betw een the schem as; (3) a m ethod for translating queries in term s

o f a g lobal schem a into sub-queries in term s o f local schem as. Hence, the

presented approach show s that: (a) m apping o f the schem as' paths can

only be partially autom ated, since the logical heterogeneity problem s need

to be resolved by hum an ju d g m en t based on the application requirem ents;

(b) query ing d istributed heterogeneous structured and sem i-structured data

sources is possible.

C ontents

List o f F ig u r e s ... vi

A cron ym s.. x

C H A P T E R 1 In trod u ction ... 1

1.1 M otivation o f the R esearch ..1

1.2 Problem S ta te m en t...4

1.3 H ypothesis, A im s and O b jec tiv es...5

1.4 A chievem ent o f the R e se a rc h .. 7

1.5 O rganization o f the T h e s is .. 8

C H A PTER 2 B ackground and survey o f the sta te -o f-th e -a r t...............11

2.1 D istributed heterogeneous d a ta b ases ... 12

2.2 A T axonom y for In tegrating H eterogeneous D ata S ou rces................. 14

2.2.1 U niversal D atabase M anagem ent S y s te m s19

CONTENTS

2.2.2 D ata W arehouses...19

2.2.3 M etasearch E ng ines... 20

2.2.4 V irtual In tegration o f D a tabases..22

2.2.4.1 Federated database sy s tem s...22

2 .2 .4 .2 M ulti-database sy stem s... 23

2.2.5 Sum m ary o f previous ap p ro ach es ...24

2 .2 .6 M ediation S y s te m ...25

2.3 D ata in te roperab ility ..28

2.4 H eterogeneity o f the data so u rces ...29

2.5 D ata in teg ra tion ...32

2.6 G lobal-A s-V iew (G A V) a p p ro a c h ...34

2.6.1 G A V system s..35

2.7 L ocal-A s-V iew (L A V) a p p ro a c h ..36

2.7.1 LA V sy s te m s..37

2.8 R elated W o rk ... 38

C H A P T E R 3 X M L and related tech n o lo g ie s ... 42

3.1 X M L ... 43

3.2 D TD and X M L S chem a... 46

3.2.1 D T D .. 46

3.2.2 X M L S c h e m a ...48

3.3 X M L application p rogram m ing in terfaces...50

3.3.1 D O M ... 51

3.3.2 S A X ... 51

3.3.3 JD O M ... 52

3.4 X M L query languages...52

3.4.1 X P a th ... 53

CONTENTS

3.4.1.1 X Path 1.0..53

3.4.1.2 X Path 2 .0 ..56

3.4.2 X Q L .. 57

3.4.3 X M L -Q L ..58

3.4.4 T he Q uilt query lan g u ag e .. 60

3.4.5 X Q u ery ... 63

C H A P T E R 4 T he SISSD data in tegration sy stem 66

4.1 In tro d u c tio n .. 66

4.2 A n overview o f our a p p ro a c h .. 70

4.3 T he SISSD architecture and C o m p o n en ts ... 74

4.4 H eterogeneity issues in the S IS SD sy s te m ... 77

4.5 A n application ex am p le ... 81

C H A P T E R 5 T he m ediation p r o c e s s ... 84

5.1 G enerating Schem a S tructure D efin ition (S S D)..................................... 84

5.2 paths g e n e ra tio n ..87

5.3 paths co rre sp o n d e n ce ..90

5.4 C reating X M K B ..97

5.4.1 T he S tructure o f X M K B .. 98

5.4.2 The generation process o f the X M K B ...100

5.4.3 Index num ber generation for the m aster view e le m e n ts 104

5.4.4 M apping cases betw een e le m e n ts ... 108

5.5 S u m m ary ... 112

C H A PT E R 6 T he query translation process.. 114

6.1 In tro d u ctio n .. 114

6.2 The Q uery P rocessor arch itecture and C o m ponen ts117

6.3 The Q uery T ranslation p ro cess .. 119

CONTENTS

6.4 X Q uery-to-SQ L translation p ro c e s s .. 120

6.5 Q uery translation e x am p le s ...122

6.5.1 O ne-to-one query e x am p le .. 124

6.5.2 Function-involved one-to-one query e x a m p le127

6.5.3 O ne-to-m any query e x a m p le .. 127

6.5.4 M any-to-one query ex am p le ... 130

C H A P T E R 7 The SISSD im p lem en ta tio n .. 133

7.1 In tro d u c tio n .. 133

7.2 m etadata ex tracting p ro cess .. 135

7.3 X M K B estab lish ing and m app ing p ro cess ...138

7.4 Q uery parser and transla tion p ro c e ss ...143

C H A P T E R 8 E valuation & D iscu ssio n ... 145

8.1 E v a lu a tio n ... 145

8.1.1 Functionality o f S IS S D ...147

8.1.2 F lexibility o f SISSD s y s te m ... 148

8.1.3 A rchitecture o f SISSD s y s te m ... 149

8.1.4 C onstruction o f the X M K B ... 150

8.1.5 C hoice o f X M L as the data m o d e l..151

8.1.6 H andling d ifferent types o f he te rogene ity ..153

8.1.7 W ays o f using the sy s te m .. 157

8.2 D iscussion ... 158

C H A PTER 9 Sum m ary, conclusion and future w o r k 164

9.1 Thesis su m m a ry .. 164

9.2 C o n c lu sio n s.. 167

9.3 The future w o rk ... 168

B ibliography... 170

iv

List o f F igures

2.1 C lassification o f System s for In tegrating H eterogeneous D ata Sources

[5 6] .. 18

2.2 The th ree-tier m ediator a rc h ite c tu re .. 27

2.3 C onflicts C lassification .. 31

3.1 An exam ple o f a sim ple X M L d o c u m e n t...45

3.2 A DTD o f an X M L docum ent in F igure 3.1 ..48

3.3 An X M L schem a o f an X M L docum ent in Figure 3.1 50

3.4 The core rules o f X P a th ...54

3.5 The X M L-Q L q u e r y .. 60

4.1 The SISSD A rc h ite c tu re .. 76

LIST OF FIGURES

4.2 M apping betw een M arks and G r a d e s .. 79

4.3 Sum m ary o f C onflicts supported by SISSD system 81

4.4 A part o f the tree structure o f four data s o u rc e s ...82

5.1 A lgorithm to generate SSD for X M L d o c u m e n t....................................... 87

5.2 The SSD M odel structure for the bib schem a s tru c tu re88

5.3 A lgorithm to generate SSD p a th s .. 89

5.4 The tree structure m odel for bib S S D ...90

5.5 The generated paths o f the bib da ta s o u rc e ...91

5.6 A sam ple X M K B ... 100

5.7 The X M K B X M L schem a d e f in i t io n .. 101

5.8 A lgorithm for X M K B generation p ro c e s s .. 104

5.9 A GUI for Schem a S tructure D efin ition show n in Figure 5 .1 0 105

5.10 Schem a S tructure D efinition (SS D) o f bib X M L d o c u m e n t............ 106

5.11 A lgorithm to generate index n u m b e rs .. 106

5.12 The m aster view tree structure w ith index n u m b e rs 107

5.13 The M aster V ie w .. 107

5.14 One to N m apping e x a m p le .. 109

5.15 N to one m apping e x a m p le ... I l l

LIST OF FIGURES

5.16 E xam ple o f one to one m apping w ith an o p e ra tio n 112

6.1 The Q P A rc h ite c tu re ... 117

6.2 A lgorithm for the query translation p ro c e s s .. 121

6.3 T he part o f X M K B w hich m ain tain data sources in fo rm a tio n 123

6.4 T he M aster V ie w .. 123

6.5 Schem a S tructures o f the four da ta s o u rc e s ... 124

6.6 Som e parts o f X M K B used to transla te Q1 ... 125

6.7 The generated local queries from Q1 .. 126

6.8 Som e parts o f X M K B used to transla te Q2 ... 127

6.9 The generated local queries from Q 2 .. 128

6.10 Som e parts o f X M K B used to transla te Q3 129

6.11 T he generated local queries from Q3 ... 130

6.12 Som e parts o f X M K B used to transla te Q3 .. 131

6.13 The generated local queries from Q 4 ... 132

7.1 The m ain interface o f SISSD system .. 134

7.2 SSD o f bib X M L d o c u m e n t... 135

7.3 bib X M L d o c u m e n t... 136

LIST OF FIGURES

7.4 R elational DB connection p a ra m e te rs ... 137

7.5 X M L docum ent connection p a ra m e te rs ... 137

7.6 Index num bers generated for m aster view show n in F igure 7 . 7 138

7.7 M aster v i e w .. 139

7.8 Part o f the GUI for SSD show n in F igure 7 . 2 .. 140

7.9 Interface for subm itting index n u m b e rs ... 141

7.10 G enerated paths m a p p in g .. 142

7.11 Interface for rem oving data s o u r c e ... 142

7.12 E xam ple o f a global query t r a n s la tio n ... 143

8.1 E xam ple o f resolv ing structural h e te ro g e n e ity 154

8.2 Exam ple o f handling synonym c o n f l ic t 155

A cronym s

A P I A pplication P rogram m ing Interface

CDM C om m on D ata M odel

DB D atabase

DBM S D atabase M anagem ent System

DBS D atabase System

DDB D istributed D atabase

DD BM S D istributed D atabase M anagem ent System

DOM D ocum ent O bject M odel

DTD D ocum ent T ype D efinition

FDBS Federated D atabase System

FLW R F or- Let- W here- Return

GAV G lobal-A s-V iew

X

ACRONYMS

G U I G raphical U ser Interface

H T M L H yperText M arkup L anguage

JD B C Java D atabase C onnectiv ity

JD O M Java D ocum ent O bject M odel

JX C Java X M L C onnectiv ity

K S K now ledge Server

L A V L ocal-A s-V iew

M D B S M ulti-database System

M D E M etadata E xtractor

M V P M aster V iew Parser

O E M O bject E xchange M odel

Q P Q uery P rocessor

SAX Sim ple API for X M L

S G M L Standard G eneralized M arkup L anguage

SISSD System to Integrate S tructured and Sem i-structured D atabases

SQ L Structured Q uery L anguage

SSD Schem a Structure D efin ition

SSD P Schem a Structure D efin ition Parser

U D F U ser-D efined Function

U R L U niform R esource L ocater

W 3C W orld W ide W eb C onsortium

X D SD L X M L D ata Source D efin ition Language

X F E P X Q uery FL W R E xpression Parser

xi

ACRONYMS

X M K B X M L M etadata K now ledge Base

X M K B M L X M L M etadata K now ledge Base M apping Language

X M L E xtensible M arkup L anguage

X Q IS X Q uery Internal S tructure

X SD X M L Schem a D efinition

C H A P T E R 1

Introduction

1.1 M otivation o f the R esearch

Users and application program s in a w ide variety o f businesses today are

increasingly requiring the in tegration o f m ultiple distributed autonom ous

heterogeneous data sources [86, 130]. The continuing grow th and

w idespread popularity o f the In ternet m ean that the collection o f useful

data sources available for public access is rapidly increasing both in

num ber and size. Furtherm ore, the value o f these data sources w ould in

m any cases be greatly enhanced if the data they contain could be

com bined, "queried" in a uniform m anner (i.e. using a single query

language and interface), and subsequently returned in a m achine-readable

form. For the foreseeable future, m uch data will continue to be stored in

relational database system s because o f the reliability, scalability , tools and

perform ance associated w ith these system s [68, 133]. H ow ever, due to the

impact o f the web, there is an explosion in com plem entary data

availability: this data can be au tom atically generated by w eb-based

applications or can be hum an-coded [102]. Such data is called sem i

1

CHAPTER 1. INTRODUCTION

structured data, w hich m eans that although the data m ay have som e

structure, the structure is not regu lar or com plete as is the case w ith data

held in traditional database m anagem ent system s (See [9] for a survey on

sem i-structured data). In the dom ain o f sem i-structured data, the

e x te n s ib le M arkup Language (X M L) is arguably the m ajor data

representation language as well as data exchange form at. X M L has a W 3C

specification [4] that allow s creation and transform ation o f a sem i

structured docum ent conform ing to its X M L syntax rules w hich has no

referenced D TD or X M L schem a. Such a docum ent has m etadata buried

inside the docum ent and is called a w ell-form ed X M L docum ent. The

w ell-form ed X M L docum ents sim ply m arkup pages w ith descriptive tags.

It d oesn ’t need to describe or explain w hat these tags m ean. In other w ords

a w ell-form ed X M L docum ent does not need a D TD or X M L schem a, but

is m ust conform to the X M L syntax rules. I f all tags in a docum ent are

correctly form ed and follow X M L guidelines, then a docum ent is

considered as w ell-form ed. T he m etadata content o f an X M L docum ent

enables autom ated processing, generation, transform ation and

consum ption o f the sem i-structured data in the docum ent by applications.

M uch in teresting and useful data can be published as a w ell-form ed X M L

docum ent by w eb-based app lications or by hum an-coding.

Hence, build ing a data integration system that provides a unified m ethod

o f access to sem antically and structurally diverse data sources is highly

desirable as it w ill be able to link structured data residing in relational

databases and sem i-structured data held in w ell-form ed X M L docum ents

[73, 101]. These X M L docum ents can be XM L files on local hard drives

or docum ents held on rem ote w eb servers. Such a data integration system

will have to find structural transform ations and sem antic m appings that

result in correct m erging o f the data and allow users to query the resulting

so-called m ediated schem a [100]. T his linking is a challenging problem

since the pre-existing databases concerned are typically autonom ous and

2

CHAPTER 1. INTRODUCTION

located on heterogeneous hardw are and softw are platform s. This m eans it

is necessary to resolve conflicts caused by the heterogeneity o f the data

sources w hich can occur betw een data m odels, schem as or schem a

concepts. C onsequently , m appings betw een entities in d ifferent sources

representing the sam e real-w orld ob jects have to be defined. The m ain

difficulty in this process is that the related data in different sources m ay be

represented in d ifferent form ats and in incom patible ways. For instance,

bibliographical databases o f d ifferen t publishers m ay use different form ats

for authors' o r editors' nam es (e.g. full nam e or separated first and last

nam es), or d ifferent units for prices (e.g. dollars, pounds or euros).

M oreover, the sam e expression m ay have a d ifferent m eaning, or the sam e

m eaning m ay be specified by d ifferen t expressions. This m eans that

syntactical data and m etadata a lone canno t provide sufficient sem antics for

all potential in tegration purposes. A s a result, the data in tegration process

is often very labour-in tensive and dem ands m ore com puting expertise than

m ost application users have. T herefore , sem i-autom ated approaches are

the m ost p rom ising way forw ard, w here m ediation engineers are given an

easy to use tool to describe m appings betw een the integrated (integrated

and m aster are used in terchangeably in th is thesis) view and local schem as.

This produces an in tegrated schem a w hich is a uniform view over all the

participating local data sources [148]. In the thesis we use in terchangeably

the term s m ediated, in tegrated, m aster and global to describe the global

view created by the in tegration process.

XM L is becom ing the de-facto standard form at to exchange inform ation

over the internet. The advantages o f X M L as an exchange m odel - such as

rich expressiveness, clear notation and extensibility - m ake it an excellent

candidate to be a data m odel for an integrated schem a. As the im portance

o f XM L has increased, a series o f standards has grow n up around it, m any

o f w hich w ere defined by the W orld W ide W eb C onsortium (W 3C). For

exam ple, the X M L Schem a language provides a notation for defining new

3

CHAPTER 1. INTRODUCTION

types o f X M L elem ents and X M L docum ents. X M L w ith its self

describ ing hierarchical structure and associated language X M L Schem a

provide the flexibility and expressive pow er needed to accom m odate

d istributed and heterogeneous data. A t the conceptual level, the data can

be v isualized as trees or hierarchical graphs.

This thesis concentrates on the problem o f integrating and querying a

m ultip licity o f d istributed heterogeneous structured data residing in

relational databases and sem i-structured data sources held as w ell-form ed

X M L docum ents.

1.2 P roblem Statem ent

A vast and grow ing am ount o f heterogeneous data sources is available to

institutions or com panies. A s a resu lt in tegration o f such data sources in

the public dom ain is inevitable. T herefore, integrating and querying

heterogeneous data sources is a fundam ental problem in data m anagem ent

[25, 52]. The problem is concerned w ith build ing data integration system s,

w hich provide a unified v iew over heterogonous data sources. Such a

unified view is structured accord ing to a so-called m edia ted schem a (often

referred to as a global schem a), w hich describes the contents o f the data

sources and exposes the aspects o f the data that m ight be o f interest to the

user. The reason for th is is that one o f the principle goals o f a data

integration system is to free the user from having to know about the

specific data sources and their structure in order to in teract w ith them [35,

119]. A m editated schem a is a v irtual representation o f the data available

to its user in the integrated system , (in the sense that the data in the local

data sources need not conform to its structure). As a consequence, the data

integration system m ust first reform ulate a user query into a query that

refers directly to the schem as in the data sources. In order for the system to

be able to reform ulate a user query, it needs to have a set o f data source

descriptions, specify ing the m apping betw een the elem ents in the data

4

CHAPTER 1. INTRODUCTION

sources and the elem ents in the m ediated schem a. T hese descrip tions

specify the relationship betw een elem ents.

In th is context, provid ing a reasonable structured and sem i-structured data

in tegration fram ew ork for a user to effectively integrate and query

distributed heterogeneous structured data residing in relational databases

and sem i-structured data held in w ell-form ed X M L docum ents has becom e

a challenge for database in tegration researchers. There is a lack o f fully

autom ated schem a-m apping processes, and a high degree o f logical

heterogeneity betw een the data sources. A nother problem im peding data

in tegration is the query transla tion process, w hich is one o f the m ost

im portant problem s in the design o f a data integration system , as it enables

the system to reform ulate a query posed in term s o f the global schem a into

a set o f queries, suited to the local da ta sources. Thus, tools are needed to

m ediate betw een user queries and heterogeneous data sources w hich

transform such queries into local queries. D oing these tasks m anually is

not only tim e consum ing but also erro r prone. H ence, m ethods for

sim plifying heterogeneous data source integration w ould be o f great

theoretical and practical im portance. T herefore, our objective is to

facilitate the task o f a designer bu ild ing an X M L data integration system .

In general, build ing data in tegration system s requires the designer to

address several issues [87]. In th is thesis, we concentrate on tw o basic

issues:

1. Specifying the m appings betw een the global schem a and the local

data sources.

2. Processing queries expressed against the global schem a into queries

reflecting local schem as.

1.3 H ypothesis, A im s and O bjectives

In our research, the m ain focus is on integrating and querying distributed

heterogeneous structured and sem i-structured data sources. O ur hypothesis is that:

5

CHAPTER 1. INTRODUCTION

It is possible to in tegrate and query the d istributed

heterogeneous structured data resid ing in relational databases and

sem i-structured data held in w ell-form ed X M L docum ents w hich can

be found on a local hard drive or rem ote w eb servers, by build ing in a

bottom -up approach a dynam ic X M L M etadata K now ledge Base

(X M K B) o f data source m eta-data resolving structural and sem antic

conflicts in the data that is used in rew riting a user query over a

chosen view into sub-queries w h ich fit each local data source, by using

the m apping inform ation stored in the X M K B .

This thesis show s how to m ediate d istribu ted heterogeneous structured and

sem i-structured data sources in a m ediation architecture w hich enables

users to query m ultip le structured and sem i-structured data sources in a

uniform m anner. Specifically , our goals are to:

1. Facilitate the designer effort involved in build ing structured and

sem i-structured data in tegration system s.

2. D esign a system capable o f partially autom ating the integration o f

distributed heterogeneous structured and sem i-structured data

sources.

3. R esolve the logical heterogeneity , such as nam ing, structural, and

sem antic conflicts w hich, m ay occur betw een the schem as. Thus a

solution w hich overcom es the logical heterogeneity problem is

needed.

4. Enable transparent querying o f all data sources participating in the

integration system w ithout the users needing a detailed know ledge

o f the underlying data sources, their location and their structure.

Thus, form ulating a m ethod for translating a user query into local

queries is desired.

6

CHAPTER 1. INTRODUCTION

1.4 A ch ievem en t o f the R esearch

The im portance o f this research lies in its dem onstration o f the feasibility

o f build ing an X M L M etadata K now ledge Base (X M K B), in a bottom -up

fashion by extracting and m erging increm entally the m etadata o f the data

sources, and its dem onstration o f the benefit o f this X M KB in m ediating

user queries posed over the global schem a into local queries on the

d istributed heterogeneous data sources, by translating such queries into

sub-queries w hich are appropriate to each local data source. The m ain

contributions o f this thesis are:

1. S ince fully autom atic schem a m apping generation is infeasible, a

sem i-autom atic approach is dem onstra ted based on an assisting tool

w hich reduces the designer effort required to build integration

system s linking structured and sem i-structured data. A solution to

overcom e the heterogeneity problem is form ulated. Tw o im portant

tasks w ere developed to so lve the problem : (1) establishing

appropriate m appings betw een the global schem a and the schem as

o f the local data sources; (2) users queried the distributed

heterogeneous structured and sem i-structured data sources in term s

o f the global schem a, w ith a m apping process and query translation

process form ulated to transform these queries into local queries.

2. A prototype system is developed to dem onstrate that the ideas

explored in the thesis are sound and practical.

3. A bottom -up approach is used to establish and evolve the X M L

M etadata K now ledge Base (X M K B) increm entally from the

m etadata extracted from the data sources.

4. Tools have been developed w hich can be used to overcom e conflicts,

such as nam ing, structural, and sem antic conflicts w hich m ay occur

betw een the schem as.

7

CHAPTER 1. INTRODUCTION

5. A m apping is established betw een global schem a elem ents and each

local data source schem a elem ents to link the elem ents w ith the

sam e m eaning by using a unique index num ber generated

autom atically for the global schem a elem ents.

6. The design o f the X M L M etadata K now ledge B ase (X M K B) to

capture:

a) T he m apping inform ation betw een the global schem a

elem ents and the local data sources’ elem ents,

b) T he function nam es o f the functions handling sem antic and

structural d iscrepancies,

and to assist the Q uery P rocessor (Q P) in generating sub-queries for

relevant local data sources.

7. A softw are tool has been designed and built w hich extracts m etadata

from data sources to build the Schem a Structure D efinition (SSD)

for these data sources. T h is tool can be applied to relational

databases, w ell-form ed X M L docum ents w hich have no referenced

D TD s or X M L schem as, and also X M L docum ents with referenced

D TD s or X M L schem as.

1.5 O rganization o f the T hesis

This section presents an overv iew o f the thesis' organization. The first

chapter has presented an in troduction to the research undertaken,

m otivations, the hypothesis to be tested and highlights the aim s and

objectives o f the research and its orig inal achievem ents.

C hapter 2: B ackground a n d survey o f the sta te-o f-the-art

This chapter presents an overview o f the w ork in the field o f integrating

distributed heterogeneous data sources and how it relates to this thesis.

8

CHAPTER 1. INTRODUCTION

C hapter 3: X M L a n d re la ted technologies

T his chapter presents an overview o f X M L and related technologies.

C hapter 4: The S ISSD data in tegration system

T his chapter introduces the m ain ideas o f the thesis. It presents a b rie f

descrip tion o f the m otivation o f th is w ork, and describes our approach and

its system architecture. In addition, it describes the logical heterogeneity

problem , and introduces an application exam ple w hich is used through out

the thesis to show how the in tegration is accom plished by the system .

C hapter 5: The m ediation p ro cess

This chapter details the m ediation process w hich is the first part o f our

approach. It is a basic idea o f the thesis, as it is proposed as a tool to

overcom e the heterogeneity problem s w hich m ay occur am ong the data

sources.

C hapter 6: The query transla tion p ro cess

This chapter details the second im portan t point in the thesis that is the

query transla to r process w hich is an integral part o f the m ediation layer o f

the system . It gives a b rie f in troduction to the query translation task in data

integration system s, and presents the query translation process developed

in this w ork. Finally, it g ives som e exam ples o f query translations.

C hapter 7: The S ISSD im plem entation

This chapter covers the im plem entation o f the proposed architecture. It

presents the im plem entation o f the m etadata extracting process. It also

presents the im plem entation o f the processes used in creating an XM K B.

In addition, it in troduces the developm ent o f the query parsing and

translating processes.

9

CHAPTER 1. INTRODUCTION

C hapter 8: E valuation & D iscussion

This chapter focuses on the evaluation o f the prototype system and

contains a critical assessm ent o f our research approach and its contribution.

C hapter 9: Sum m ary, conclusion a n d fu tu re w ork

This chap ter concludes the thesis w ith a sum m ary o f the accom plishm ents

and issues to be considered in the future.

10

C H A P T E R 2

B ackground and survey o f the state-of-the-art

The integration o f data sources poses m any challenges due to differences

in data m anagem ent system s, data m odels, query and data m anipulation

languages, data types, form at (structured , sem i-structured), representation,

and sem antics. This chapter d iscusses related w ork and the basic issues

affecting the in tegration o f heterogeneous distributed data sources. Firstly,

we give an overv iew o f the field o f distributed heterogeneous databases.

Secondly, since the m ain topic o f th is w ork is querying and integrating

data from a netw ork o f data sources, w e present the approaches for solving

this problem . T hirdly, we give an overview o f data interoperability. N ext,

we present a detailed survey on data integration. F inally, we sum m arize

related w ork on querying and in tegrating heterogeneous data sources.

11

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

2.1 D istributed heterogeneous databases

A database in tegrates and stores related data in an organized m anner. A

database system (D B S) [48] consists o f softw are, called a database

m anagem ent system (D B M S), one or m ore databases that it m anages, and

any associated application softw are utilizing the database contents. A

D BM S is the softw are that handles all access to the database. A DBS m ay

be either centralized or distributed. A centralized DBS consists o f a single

centralized D BM S m anaging a single database on the sam e com puter. A

d istributed DBS consists o f a single d istributed D BM S (D D B M S)

m anaging m ultiple databases. T he databases m ay reside on a single

com puter system or on m ultip le com puter system s that m ay differ in

hardw are and system softw are.

A D istribu ted D atabase (DD B) is defined as a collection o f m ultiple,

logically interrelated data d istribu ted over d ifferent com puters o f a

com puter netw ork [23, 38, 45, 62, 122]. T he physical d istribution does not

necessarily im ply that the com puter system s are geographically far apart;

they could actually be in the sam e bu ild ing or even in the sam e room . It

sim ply im plies that com m unication betw een them is done over a netw ork

instead o f through shared m em ory. Each node o f the netw ork has

autonom ous capability , perform s local applications and m ay participate in

the execution o f som e global applications that require accessing data at

several sites. D istributed databases [64] em erged as a m erger o f tw o

technologies: (1) database technology , and (2) netw ork and data

com m unication technology. They also m et the requirem ent o f

organizations interested in the decentralization o f processing w hile

achieving an integration o f the inform ation resources at the logical level

within their geographically d istributed system s o f databases.

A particular property o f a d istributed database is that it can be

hom ogenous or heterogeneous [136]. A hom ogenous distributed database

12

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

(sim ply called a distributed database) is one in w hich all the physical

com ponents run on the sam e d istributed database m anagem ent system , and

the d istributed database system supports a single data m odel and query

language w ith a single schem a.

C onversely , database system s that provide interoperation and varying

degrees o f integration am ong m ultip le databases o f different types have

been term ed heterogeneous d istribu ted database system s (sim ply called a

heterogeneous database). They consist o f database system s w hich differ

physically and logically, have d ifferen t data m odels, m anipulation

languages, and schem as. D espite these databases being independently

created and m anaged they m ust cooperate and interoperate. U sers need to

access and m anipulate data from several databases and applications m ay

require data from a w ide variety o f the independent databases. Therefore, a

new system architecture is required to m anipulate and m anage distinct and

m ultiple databases, in a transparen t way.

T here are a num ber o f factors that d ifferentiate types o f D D BM S. These

factors characterize a set o f m ultip le D BSs in three orthogonal

d im ensions: d istribu tion , heterogeneity , and autonom y [32, 62, 121, 134-

136]. T hese d im ensions characterize system s in w hich m ultiple databases

m ay be put together and be m anaged by m ultiple DBM S. W e introduce

each o f these d im ensions below .

The d istribution dim ension specifies how the data o f a DD BS is

distributed am ong m ultiple sites in a com puter netw ork.

H eterogeneity is concerned w ith the differences betw een the local D BSs

com prising the DD BS. T he types o f heterogeneity are caused by

technological d ifferences and independent design. These m ay be classified

as system heterogeneity and logical heterogeneity [71]. System

heterogeneity covers d ifferences in hardw are, operating system , database

13

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

m anagem ent system (including data m odels, languages, transaction

m anagem ent) and com m unication system s. Logical heterogeneity covers

d ifferences in the way the real w orld is m odeled in the databases (i.e.

d ifferences in schem a and data representation).

A utonom y refers to the distribution o f control, not o f data. It indicates the

degree to w hich individual D B Ss can operate independently [90].

A utonom y is a function o f a num ber o f factors such as w hether the

com ponent system s exchange inform ation, w hether they can

independently execute transactions, and w ho is allow ed to m odify them .

Several k inds o f autonom y (design , com m unication, execution and

association autonom y) can be identified [136].

2.2 A T axonom y for In tegrating H eterogeneous D ata

Sources

Integration o f heterogeneous data sources continues to receive m uch

attention from the research com m unity [19, 42, 46, 47, 74, 104, 107, 150].

Inform ation system s integration is a com plex problem since inform ation

system s com prise data, processes and applications. As a consequence their

integration m ust be done at each level [53]. In the context o f this thesis,

we consider only data in tegration. Since the m ain topic o f this w ork is

querying and integrating data from a netw ork o f data sources, we present

other proposed solutions for this problem and highlight their strengths and

shortcom ings. W e then consider a particu lar approach, M ediation System s,

and characterize it in m ore detail.

We first d istinguish betw een m ateria lized and virtual approaches. They

are called in [144] the eager or in-advance approach and the lazy or on-

dem and approach. In the m aterialized approach, data com ing from the

local data sources are integrated and stored in a single new database. All

queries then operate on this com prehensive database. W hile in the virtual

14

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

approach, data rem ains in the local data sources. Thus, queries operate

directly on the local data sources and data integration takes place during

query processing by com bining results. As a consequence, the tw o

approaches have the follow ing advantages and disadvantages:

• In the m aterialized approach, data m ust first be prepared before

queries can be subm itted. T he participating data sources are

(m anually) analyzed; a static v iew over the data is defined, the local

data is used to populate a new integrated database conform ing to the

static v iew and queries are form ulated against this view . As a

consequence, new data sources cannot be easily integrated and m ade

available for querying. T his approach is suitable for applications

w hich require specific, exact portions o f the available data w hich are

m ostly static (for exam ple, financial transactions). A query is

evaluated directly using the m aterialized database and as a result

query processing can be optim ized for this database. A dditionally,

there is no need to access the underly ing data sources, so connection

costs are non-existent. H ow ever if the local data is dynam ic,

updating o f the integrated DB is hard. A lso som e o f the m aterialized

data m ay never be accessed.

• For the virtual approach, a query m ust first be analyzed in order to

find data sources w hich can answ er it, and then it is split into sub

queries w hich finally are ad justed according to the query capabilities

o f each data source. As a consequence, query processing is

dependent on the availability o f the data sources, their connection

tim es and query perform ance. Q uery optim ization opportunities are

lim ited and an im portant requirem ent for this approach is that data

sources accept ad-hoc queries. Its m ain advantage is that new data

sources can be easily m ade available for querying. This approach is

suitable for users w ith “ unpredictable needs” [144], i.e. i f users have

a variety o f inform ation needs. It is suited to dynam ic databases as

15

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

the processing occurs on the local data, and there is no need to

preprocess data not required by a query.

In our w ork, we adopt the virtual approach to supporting a read-only data

in tegration o f distributed heterogeneous structured and sem i-structured

data, w hich m eans a global schem a is created to be used for answ ering

user queries, and not for updating data. Since the num ber o f underlying

data sources linked in the in tegration system may increase or decrease at

anytim e, and in a m aterialized approach data is im ported into a new

integrated repository , this type o f dynam ic change can not be easily m ade.

The data requirem ent o f the expected users is unpredictable and likely to

vary w ith the resources currently linked. For these reasons, a virtual

approach is m ore suitable as it p roduces a scalable system w ith respect to

the dynam ic nature o f the availab le inform ation resources.

A nother classification o f approaches fo r integrating heterogeneous data is

based on the structure o f the data. M ost data sources can usually be

classified into one o f three categories depending on the kind o f data that

they are prim arily designed to handle:

1. T ext retrieval system s are concerned with the m anagem ent and

query-based retrieval o f co llections o f unstructured text docum ents.

2. S tructured database system s are concerned with the m anagem ent o f

structured or strictly-typed data, i.e., data that conform s to a w ell-

defined schem a (e.g., data held in DBS m anaged by DBM Ss).

3. Sem i-structured databases are designed to efficiently m anage data

that only partially conform s to a schem a, or w hose schem a can

evolve rapidly (e.g. X M L docum ents) [9],

There are approaches w hich consider integrating ju s t one kind o f data such

as relational databases [28, 93], o r O bject-O riented databases [13, 59], or

XM L docum ents [18, 120, 148], so query form ulation, processing and

16

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

results accom m odate only that particu lar kind o f data. On the other hand

there has been a significant in terest in com bining, integrating, and in ter

operating betw een heterogeneous data that belong to different classes o f

data sources[86, 113]. The prim ary m otivation for m ost o f the w ork in this

area is that m any applications require processing o f data that belongs to

m ore than one type. For instance, a m edical inform ation system at a

hospital m ust process doctor reports (free text docum ents) as well as

patient records (structured relational data). S im ilarly, an order processing

application m ight need to handle inventory inform ation in a relational

database as well as purchase orders received as (sem i-structured) X M L

docum ents [126].

Earlier w ork on database in tegration [12, 21, 65, 79, 96, 111, 140]

focussed on the integration o f w ell-structured databases, w ith fixed

schem as, that support pow erful query languages. This thesis focusses on

the integration o f distributed heterogeneous structured and sem i-structured

data sources. For the foreseeable future, m ost data will continue to be

stored in relational database system s because o f the reliability, scalability,

tools and perform ance associated w ith these system s. A dditionally , m uch

interesting and useful data can be published as a w ell-form ed X M L

docum ent, this data can be autom atically generated by W eb-based

applications or can be hum an-coded. Such data is called sem i-structured

data due to its vary ing degree o f structure. It can also vary betw een static

databases and ephem eral data hav ing a very short life. H ence, w ith the

w eb’s increasing role as a data provider, building a data integration system

that provides unified access to sem antically and structurally diverse data

sources is highly desirable as it w ill link structured data residing in

relational databases and sem i-structured data held in w ell-form ed X M L

docum ents produced by Internet applications or hum an-coded.

Since w e are targeting a system for querying and integrating distributed

heterogeneous structured and sem i-structured data sources, our w ork has

17

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

a d o p t e d a m e d i a t i o n a p p r o a c h . T h e r e h a v e b e e n s e v e r a l i n t e g r a t i o n

m e t h o d s w h i c h c o m b i n e d a t a f r o m s e v e r a l d a t a s o u r c e s s u c h a s u n i v e r s a l

D B M S (U D B M S) m e t h o d [5 4 , 9 5] , f e d e r a t e d d a t a b a s e s [3 4 , 6 1 , 1 1 1 , 1 3 6] ,

d a t a w a r e h o u s e [2 7 , 4 1 , 1 5 0] , m u l t i - d a t a b a s e s [6 1 , 7 1 , 9 0 , 9 4 , 9 6 , 1 0 9 - 1 1 1,

1 3 4] , a n d m e d i a t o r m e t h o d [2 0 , 7 0 , 9 9 , 1 2 5 , 1 3 8 , 1 4 5] . W h i l e o t h e r

m e t h o d s a r e a p p l i c a b l e t o i n t e g r a t i o n o f s t r u c t u r e d h e t e r o g e n e o u s d a t a

w h i c h i s u s u a l l y s t o r e d u s i n g a D B M S , a m e d i a t i o n a p p r o a c h i s

a p p r o p r i a t e t o i n t e g r a t i o n o f u n s t r u c t u r e d , s e m i - s t r u c t u r e d , a n d s t r u c t u r e d

d a t a .

W e n o w o v e r v i e w s o m e i n t e g r a t i o n a p p r o a c h e s in m o r e d e t a i l a s c l a s s i f i e d

in F i g u r e 2 .1 [5 4] . T h e r e a r e a d d i t i o n a l f e a t u r e s t h a t c h a r a c t e r i z e t h e s e

a p p r o a c h e s w h i c h a r e n o t p r e s e n t e d in t h i s f i g u r e , b u t t h e s e w i l l b e

d i s c u s s e d in t h e f o l l o w i n g s u b s e c t i o n .

materialized

Virtual Integrated
Databases

Mediated Query
systems

Multi-database
Language Approach

Data Warehouse

Federated DBMS

Unrversal DBMS

Virtual Systems

(Meta) search Engines

Systems for integrating
heterogeneous data

sources

Figure 2.1: Classification o f System s fo r Integrating H eterogeneous D ata

Sources [54].

18

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

2.2.1 U niversal D atabase M anagem ent System s

In a U D BM S approach data is m igrated from the local system s to a unique

separate D BM S. First, the global in tegrated schem a is defined and then

data from the local system s is im ported into the new database and the local

system ceases to operate. In th is w ay queries can be form ulated against the

new database and results are p resented to users. In this case, the

underlying data sources are usually also D BSs and the new DBS m ust

accom m odate all types o f data availab le in the underlying sources. Thus,

the new database m ust be able to handle all (or m any) types o f inform ation,

i.e. it m ust be a universal DBS.

D uring the m igration process, da ta from the underlying system s are

extracted, transform ed, integrated and stored in the central universal

database. The m ain draw back o f th is approach is that existing applications

for the local system s will have to be rew ritten for the new database

structure as the local D Bs ceases to exist. M oreover, the process o f data

m igration can be very expensive; since the old data has to be transform ed

and often sem antically enriched for the new system (the new database

usually has a richer data m odel). N evertheless, m igration can be a good

solution, for exam ple, w hen users o r applications need the w hole

functionality o f a D BM S (not ju s t the query functionality) and the old

system s' applications are no longer needed [22]. N ote that m igration is the

only m aterialized approach in w hich native data is queried, and query

optim ization on native data can be best achieved.

2.2.2 Data W arehouses

D ata w arehousing is a m aterialized approach. Data from the local data

sources are im ported into one D BM S, the data w arehouse. The difference

to the U D BM S is that the underlying data sources are still operational, so

the data is in fact replicated deliberately in at least two DB. First, the

19

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

w arehouse schem a is defined, data from the underlying sources is

processed and stored in the data w arehouse. The w arehouse data is

typically not im ported in the sam e form and volum e as it exists in the local

data system s. It m ay be transform ed, cleaned and prepared for certain

analysis tasks, like data m ining and O L A P (O nline A nalytical Processing).

D ata w arehouses often do not m ake the m ost recent data available, since a

data w arehouse is usually not updated im m ediately after a local data

source has changed because o f the overheads associated w ith im m ediate.

Thus, the w arehouse stores h istorical data, as required by O LA P and data

m ining applications.

A ccording to [144] the data w arehouse approach is suitable for the

follow ing kinds o f clients:

• C lients w ho do not need the m ost recent data available, since a data

w arehouse is usually not updated im m ediately after a local data

source has changed;

• C lients w ho require h istorical, derived and specific inform ation - for

this reason data m ay need to be transform ed, cleaned, aggregated

and prepared for certain analytical tasks, such as data m ining and

O L A P (O nline A nalytical Processing); or

• C lients w ho require high query perform ance - since large am ounts

o f com plex data m ust be queried; data w arehouses are optim ized for

the dom inant business scenario but are less than optim al for others.

2.2.3 M etasearch Engines

R egarding the querying o f unstructured distributed sources, search engines

and m etasearch engines have gained im portance in recent years, m ainly

because o f the developm ent o f the W eb. Search engines are system s w hich

accept as queries only natural language keyw ords (or sim ple com binations

20

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

o f them) and return docum ents as answ ers. The m ain characteristic o f

search engines is that data can be easily m ade available for querying and

queries can be form ulated in a sim ple way.

Search engines are characterized by:

• search efficiency w hich m eans how fast the results are returned, and

• search effectiveness w hich indicates how good the results are, or

“the ability to retrieve w hat the user w ants to see” [129].

In o rder to achieve high effectiveness, search engines use heuristics for

finding the m eaning o f input queries and for retrieving docum ents w hich

m ay m atch them . H ow ever, i f w e consider a heterogeneous environm ent

like the W eb, it is very difficult to find the right m eaning o f queries and in

such cases search engines perform quite poorly.

To increase effectiveness d ifferen t search engines are com bined to form

m etasearch engines. T heir users form ulate queries against a uniform

interface, w hich are processed (fo r exam ple, stop w ords are elim inated)

and split into sub-queries w hich are then sent to the individual search

engines. Finally, the results are collected , com bined and presented in a

unified way. E xam ples are SavvySearch [57] and M etaC raw ler [131, 132].

M etasearch engines do not prepare the data to be queried. They sim ply use

the query interfaces o f the underly ing search engines and prepare the input

queries for them . They also need to im plem ent suitable heuristics for

com bining the results from the d ifferent sources. M etasearch engines are

thus exam ples o f system s for querying data available in a netw ork o f data

sources. H ow ever, the underlying sources m ust be unstructured and for

this reason they are not suitable for querying sources w here the data is

structured in any way and w ould be inappropriate w hen linking structured

and sem i- structured data.

21

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

2.2.4 V irtual Integration o f D atabases

For m any years the virtual integration o f data that is stored in different

databases has been an active research topic. The approaches to enabling

virtual integrated access to m ultip le databases can be roughly classified in

tw o categories: the federated datab ase system [136] and the m ulti

database system [110]. These approaches are suitable for structured data

and support precise searches. In the follow ing subsections, we overview

these types.

2.2.4.1 F ederated database system s

In m any situations, data are m anaged or accessed exclusively through their

DBS by applications w hich respect the m anagem ent system boundaries o f

the local system s, though m uch m ore pow erful applications can be created

w hen these data are integrated. O ne possibility o f integrating tw o different

databases is called a gatew ay. A gatew ay is a special program that

sim ulates access from one database to another by coding protocols o f

interaction. H ow ever this has its lim itations, such as the am ount o f tim e

needed to design the gatew ays and that data accessing through gatew ays

m akes further data transparency d ifficu lt to achieve. A n alternative

approach w ould be a m iddlew are architecture [48] w hich provides a

transparent and uniform view o f m ultip le data sources and m aintains th is

interface for database applications in case a new data source becom es

available. An exam ple o f in tegrating m ultiple databases through a

m iddlew are approach is the concept o f Federated D atabase System

(FD B S) [136]. A FD BS is a collection o f distributed, heterogeneous and

sem i-autonom ous D BSs integrated through a federation layer. One o f the

significant aspects o f a FD BS is that its com ponent DBS can continue

local operations and at the sam e tim e participate in a federation. D BSs

participating in a FD BS are alw ays heterogeneous and distributed w ithin

this FD BS. These participating D B Ss are called C om ponent D BSs

22

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

(C D BS). A typical FD BS architecture is show n in [136]. T his architecture

is called a five-level schem a architecture, as it is com posed o f five schem a

types:

• Local schem a: schem a o f each local database that com prises the

federation;

• C om ponent schem a: local schem a translated to the canonical m odel;

• E xport schem a: subset o f the com ponent schem a to be accessed by

the federation;

• Federated or G lobal schem a: schem a generated by the integration o f

export schem as;

• External schem a: global schem a view , available to a group o f users

and/or applications.

In FD BS, the am ount o f integration does not have to be com prehensive as

in global schem a integration, but depends on the needs o f the users, as

FD BS m ay be either tightly o r loosely coupled system s. The integration o f

com ponent D BSs m ay be m anaged e ither by the users o f the federation or

by the adm inistrators o f the com ponent DBSs. In loosely coupled FD BSs,

the federation schem a creation is done by the users, w hereas in tightly

coupled FD BSs, the creation and m aintenance o f federated schem a and

access to export schem as is contro lled by federation adm inistrators. Thus

in loosely coupled approaches the linkage o f term s is undertaken at query

tim e by the user w hile in a tightly coupled approach it is undertaken w hen

the DB jo in s the federation.

2.2.4.2 M ulti-database system s

M ulti-database system s (M D B Ss) [111] provide access to m ultiple

preexisting databases that support their ow n applications and end users.

23

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

T he M D B S should be able to identify data stored in d ifferent databases

and support m ulti-database queries and updates by resolving data

incom patibilities, perform ing query decom position, and executing m ulti

database transactions. This process can be w holly or partially transparent

to the end user. H ow ever, local system s m ust have full control over their

data, and thus preserve their ow n autonom y.

M D B Ss m eet the need for o rganizations to interoperate their databases

already in service by supporting new global applications that access

m ultip le databases. The fundam ental d ifference betw een M D BSs and

D D B Ss relates to the definition o f the global conceptual schema. In the

case o f logically integrated D D B Ss, the global conceptual schem a defines

the conceptual view o f the entire set o f databases available, w hile in the

case o f d istributed M D BSs; it represents only a collection o f local

databases that are being linked for a specific purpose. Thus the definition

o f a global schem a is different in M D B Ss than in d istributed DD BSs. In a

D D BS the global database is equal to the union o f all the local databases,

w hereas in the M D BS it is only a subset o f the sam e union.

A M D BS allow s each local database system to continue to operate

independently. G lobal users access data stored in various local database

system s (LD BSs) and local users access data stored in a single LDBS. The

basic M D BS architecture consists o f a global transaction m anager which

handles the execution o f global transactions and is responsible for dividing

them into sub-transactions for subm ission to the LDBSs participating in the

M DBS. Global transactions are posed using the global view constructed by

integrating the local view s provided by each local database system .

2.2.5 Sum m ary o f previous approaches

The approaches presented in the previous sections have the follow ing

characteristics:

24

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

• they consider either structured or unstructured data,

• but do not com bine structural heterogeneous data;

• they offer either an exact or a fuzzy kind o f search; and

• for the structured underlying sources, they integrate data based on a

com m on schem a.

How ever, when dealing with the large am ount o f data available online

which m ight be unstructured, sem i-structured or structured data, and the

high num ber o f users searching w ith different know ledge levels and aims,

there is a need for a new approach to querying heterogeneous data. Thus,

new techniques are needed for build ing a system which allows integration

o f heterogeneous data in a w ay tha t could easily connect and disconnect

underlying sources and support all k inds o f users form ulating queries which

integrate web available data w ith traditional structured data held in DBSs.

A solution to this problem w as in troduced at the beginning o f the 1990s by

W iederhold [145], w hen he defined the concept o f m ediator.

2.2.6 M ediation System

A m ediator is defined in [145] as: “ A m ediator is a softw are m odule that

exploits encoded know ledge about certain sets or subsets o f data to create

inform ation for a h igher layer o f applications.”

W hen querying integrated heterogeneous data sources, m ediators have the

prim ary task o f offering to the user a hom ogeneous integrated view over

the data. Thus m ediation deals w ith various types o f heterogeneity , with

data m ism atch and supports users in the form ulation o f queries.

The typical m ediator architecture contains three layers, (see Figure 2.2).

The upper layer (query in terface) is the user and application interface. The

25

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

m iddle layer (m edia tor) contains application-specific m ediators, w hich use

a unified data m odel. On the low er layer there are data sources with their

corresponding w rappers. W rappers are softw are m odules w hich translate

the request com ing from the m iddle layer to a query for a data source, and

translate the results returned from sources into the unified data m odel

representation o f the system . C onsequently , they im plem ent a

hom ogenization o f the data sources, w hich m eans users o f the interface are

unaw are o f heterogeneity present at the data sources level.

System s based on the m ediation approach do not retrieve data from the

data sources until the data is requested. A user query is decom posed by the

m ediator com ponent— a softw are m odule responsible for creating a virtual

in tegrated view o f the data sources in the system . The m ediator determ ines

w hich data sources contain relevan t inform ation and queries those data

sources. The m ediation approach guarantees that the retrieved data are

alw ays up to date as it is accessing the local data source itself. This

approach is also know n as the lazy approach (or on-dem and, or virtual

approach), i.e., the queries are unfolded and rew ritten at runtim e as they

flow dow nw ards in the architecture from the query interface to the data

sources. Q uery processing in th is case is very sim ilar to the m etasearch

engine case, w ith the difference that data in the underlying sources m ay be

heterogeneous in its representation , i.e. structured, sem i-structured or

unstructured. The T SIM M IS Project at Stanford [42, 69] and the M IX

project at U niversity o f C alifornia at San D iego [20] em ploy this approach.

Since in m aterialized approaches data is im ported into a new repository

(either a universal database o r a data w arehouse), changes can not be

easily m ade to the local data source, a virtual approach is m ore suitable for

a scalable system w here the local data sources are dynam ic. H ow ever,

there are m any factors w hich influence the scalability o f a system and not

every virtual system is scalable per se. Furtherm ore, i f the underlying data

sources are only structured data sources, a m aterialized approach or a

26

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

f e d e r a t e d d a t a b a s e a p p r o a c h o r m u l t i - d a t a b a s e a p p r o a c h m a y a l s o b e

s u i t a b l e . I f t h e u n d e r l y i n g d a t a s o u r c e s a r e a l l u n s t r u c t u r e d t h e n a

m e t a s e a r c h e n g i n e a p p r o a c h i s s u i t a b l e . H o w e v e r , i f a l l o r s o m e k i n d s o f

d a t a (s t r u c t u r e d , s e m i - s t r u c t u r e d a n d u n s t r u c t u r e d) h a v e t o b e q u e r i e d ,

m e d i a t i o n i s t h e o n l y s u i t a b l e a p p r o a c h s i n c e it i s t h e o n l y a p p r o a c h

d e a l i n g w i t h d y n a m i c , s t r u c t u r a l l y h e t e r o g e n e o u s d a t a s o u r c e s .

Query Output Data

Query Interface

User Layer

Mediator

Mediation Layer

data source ndata source 1 data source 2

Data Sources Layer

F igure 2.2: The three-tier m ediator architecture.

T h e f o c u s o f t h i s t h e s i s i s o n q u e r y i n g d y n a m i c h e t e r o g e n e o u s d a t a

s o u r c e s , s i n c e m a n y u s e r s a n d a p p l i c a t i o n s t o d a y n e e d j u s t t h i s

f u n c t i o n a l i t y . T h u s t h e m e d i a t i o n a p p r o a c h c a n b e u s e d in o u r s y s t e m .

H o w e v e r , t h e r e a r e a l o t o f a p p l i c a t i o n s w h i c h a l s o n e e d u p d a t e s o n t h e

u n d e r l y i n g d a t a s o u r c e s o r e v e n f u l l d a t a b a s e f u n c t i o n a l i t y s u c h a s a c c e s s

c o n t r o l , a n d t r a n s a c t i o n m a n a g e m e n t . In t h e s e c a s e s , a p p r o a c h e s s u c h a s

t h e m a t e r i a l i z e d a n d f e d e r a t e d d a t a b a s e c a n b e u s e d a n d a r e m o r e

a p p r o p r i a t e .

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

2.3 D ata in teroperability

In teroperability is the m agic w ord that is expected to allow heterogeneous

data sources to talk to each o ther and exchange inform ation in a

m eaningful way. The data in teroperability problem occurs w hen this is

hard to achieve and arises from the fact that data, even w ithin a single

dom ain o f application, are availab le at m any different sites, in m any

d ifferent schem as, and even in d ifferen t data form ats and m odels (e.g.,

relational and X M L). The in tegration and transform ation o f such data has

becom e increasingly im portant for m any m odem applications that need to

support their users m aking inform ed decisions based on data held in

diverse database system s and data sources. A s a rough classification, there

are tw o basic form s o f data in teroperability: data exchange and data

integration. D ata exchange (also know n as data translation) is the problem

o f m oving and restructuring data from one (or m ore) data source

schem a(s) into a target schem a. It appears in m any tasks that require data

to be transferred betw een independent applications that do not necessarily

agree on a com m on data form at. In contrast, data integration is the

problem o f uniform ly querying m any d ifferent data sources through one

com m on interface (target schem a). T here is no need to m aterialize a target

instance in this case. Instead, the em phasis is on answ ering queries over

the com m on schem a [92, 103]. A ccording to this classification we classify

our w ork as a data integration problem as we use a virtual global schem a

over different data sources and data held in these data sources can be

com bined and queried through this global schem a.

Data interoperability [77, 83, 110] is the ability o f distributed,

heterogeneous data sources, w hich are independently created and

adm inistrated and have different sem antics and schem as to cooperate and

interoperate in a transparent w ay to the user w hile m aintaining their

autonom y and objectives. D ata interoperability [84, 149] can be achieved

28

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

by in tegration o f existing data in virtual databases, i.e. databases w hich are

logically defined but not physically m aterialized.

H ow ever, the integration o f structured and sem i-structured data sources

poses som e fundam ental challenges [81]. The heterogeneity that may exist

betw een a set o f independently designed data sources is one o f these

challenges. D ata is stored w ithin d istinct heterogeneous data sources. This

m eans the im portant kind o f heterogeneity in our context is structural

heterogeneity [54, 67].

2.4 H eterogeneity o f the data sources

I f the contents o f data sources are related in som e way, they are still likely

to show variety in m any aspects. These differences can m ake both the

design and m odeling phase and the operation phase o f a data integration

system very difficult. The m ajor issue in building a data integration system

is resolving these differences betw een the data sources that may occur at

different levels. This issue is generally referred to as heterogeneity o f the

data sources.

H eterogeneity arises at d ifferent levels for various reasons. Firstly, an

organization for various reasons, m ay adopt different platform s for its

applications. It m ay choose d ifferen t hardw are, operating system s and

d ifferent com m unication protocols. Secondly, as a result o f advances in

softw are and technology developm ents, different data sources m ay

becom e available over tim e; these data sources m ay have different data

m odels, query languages and/or o ther facilities. Thirdly, the independent

design o f the com ponent databases m ay lead to sem antic heterogeneity ,

w here the designers o f these databases m ay have different opinions about

how to m odel the sam e real w orld objects.

Broadly speaking, the heterogeneity m ay be classified as System

H eterogeneity (low level) and Logical H eterogeneity (high level) [71].

29

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

System heterogeneity com es from adopting different platform s for the

com puter installation. Platform differences include: hardw are system s,

operating system s, data m anagem ent system s and netw orking protocols.

Logical heterogeneity occurs w hen people use different approaches to

m odel the sam e real w orld ob jects [21, 71, 97, 98]. Both types o f

heterogeneity result from the au tonom y o f developm ent o f system s.

R esearchers and developers have been w orking on resolving system

heterogeneity for m any years. T he causes o f such heterogeneity are well

understood [71, 97] and m ay not ex ist i f the sam e hardw are, system

softw are (e.g., operating system) and com m unication protocols are used.

W hile research on logical he terogeneity started m ore recently, it still

reflects m ore than 20 years o f research [21].

D etecting and resolving logical heterogeneity is acknow ledged to be a

d ifficult problem , because it requ ires a good understanding o f the data's

m eaning, the inconsistencies p resen t in the data and the level o f

incom plete inform ation. U nfortunately , it is not possible to fully capture

real w orld sem antics by using availab le data m odeling techniques [128].

T herefore nearly all the tools that deal w ith detecting and reconciling

sem antic heterogeneity depend on user interaction to com plem ent and

validate their results [71, 97, 98, 137].

Schem a C onflicts

C o n flic t T ype D escrip tion
Table N am e

C onflicts
Using d ifferent nam es for equivalent tables
(Synonym) or the sam e nam e for different

tables(H om onym)
Table Structure

C onflicts
One table contains m ore attributes than another table

w ith equivalent concepts
Table C onstraint

C onflicts
Incom patible key and update constraints

M ultiple Table
C onflicts

U sing different num bers o f tables to store inform ation

30

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

A ttribute N am e
C onflicts

U sing d ifferent nam es for equivalent attributes
(Synonym) or the sam e nam e for different attributes

(H om onym)
M ultiple
A ttribute
C onflicts

R epresenting a concept using m ore attributes in one
database than another

T able versus
A ttribute
C onflict

R epresenting a concept as a table in one database and
as a field in another

O ne-to-M any
E lem ent
C onflicts

This type o f conflict arises w hen inform ation captured
in one e lem ent in the global schem a is equivalent to

that split into m ore than one elem ents in the local data
sources.

M any-to-O ne
Elem ent
C onflicts

This type o f conflict occurs w hen m ore than one
elem ent in the global schem a corresponding to one

e lem ent in a local data source.
D ata C onflicts

D ata Type
C onflicts

The sam e e lem ent m ay have incom patible type
definitions in d ifferen t databases. For exam ple, social

security num ber could be o f type 'character' in one
database and 'num eric' in another.

U nit C onflicts N um erical data represented using different units.
Precision
C onflicts

This conflict occurs w hen tw o data sources use values
from the dom ains o f d ifferent cardinalities for the

sam e data.
Expression
C onflicts

This conflict arises w hen different expressions are
used to represent the sam e data.

R epresentation
C onflicts

The sam e concept is represented by different
constructs o f the model.

G ranularity
C onflicts

D ata elem ents representing m easurem ents d iffer in
granularity levels, e.g., sales per m onth or annual

sales.
D efault values

conflict
This conflict arises w hen the default values o f

sem antically equivalent elem ents in different data
sources are different.

Key C onflicts D ifferent keys are assigned to the sam e concept in
different schem as.

Behavioral
Conflicts

These arise w hen different insertion/deletion policies
are associated with the sam e class o f objects in

distinct schem as.
W rong data

C onflicts
It occurs w hen equivalent attributes in different data
sources, w hich are expected to have the sam e value,

have different values.

F igure 2.3: Conflicts C lassification.

31

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

V arious classifications o f heterogeneities have been suggested in papers

related to data integration, w ithout necessarily providing full

c lassifications. In an analysis o f schem a integration m ethodologies [21,

98], structural and sem antic d iversity categories w ere specified as those

involving nam ing conflicts and those involving structural conflicts.

F igure 2.3 show s a classification o f conflicts that m ay exist betw een a set

o f independently designed data sources. It is based on the classifications o f

[21, 97, 98]. O ne o f our goals in this research is to resolve the

heterogeneity , such as nam ing, structural, and sem antic conflicts w hich,

m ay occur betw een the schem as (see [16]). Thus a solution w hich

overcom es the heterogeneity prob lem is needed. Later, we will describe

how our system SISSD can be used to handle som e o f conflicts identified

in F igure 2.3 (see sections 4.4, 5.4.4 and 8.1.6).

2.5 D ata integration

D ata integration has received sign ifican t attention since the early days o f

databases. M uch research has been devoted to solving the problem o f data

integration. W ith the popularity o f the Internet, access to data becom es

independent o f its physical storage location. A dditionally, users can access

a variety o f data sources that are related in som e way to find out useful

inform ation, but this is often cum bersom e. Therefore, integrating

heterogeneous data sources so that users can easily access and com bine the

data is an im portant challenge. M uch o f the research on integration has

focused on so-called data integration [80, 103]. Data integration is the

process o f com bining the data resid ing at different sources, and providing

the user w ith a unified view o f these data. Such a unified view is

structured according to a so-called global schem a, w hich provides the

elem ents to express queries over the data o f the integration system . Data

integration is an im portant data m anagem ent application because it is a

com m on user requirem ent. The m ain objective o f a data integration system

32

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

is to facilitate users in focussing on specifying 'w hat' data they want, rather

than on describ ing 'how ' to obtain data. To achieve this task, an integrated

view o f the data stored in the underly ing data sources should be provided.

In data integration system s, users are interested m ainly in querying the

integrated data rather than updating the data through the integrated view.

The problem o f the d ifferences betw een data sources is o f great

im portance. U sually, the contents o f data sources are related in som e way,

but show diversity in m any representational aspects. This diversity, which

is usually referred to as heterogeneity [136], causes the design o f a data

in tegration system to be a challenge. H eterogeneity is one o f the m ost

com plicated issues that are taken into consideration w hen building a data

integration system . H ence, reso lv ing the differences betw een the data

sources is a crucial issue.

T here are different layers o f heterogeneity beginning from hardw are

heterogeneities and continuing to d ifferences in the operating system s or

com m unication protocols. On a h igher level there is logical heterogeneity,

w hich refers to the degree o f d issim ilarity betw een the com ponent data

sources that m ake up a data in tegration system . Logical heterogeneity is

one o f the m ost com plicated issues taken into consideration in a data

integration system . It com es from d ifferen t understanding and m odeling o f

the sam e concept. Subsequently , the construction o f a data integration

system m ust handle d ifferent m echanism s for attributing m eaning to the

data (sem antic conflicts), for referencing data (nam ing conflicts), and for

storing data (structural conflicts). T he distinction betw een sem antic and

structural heterogeneity is not alw ays precise. Structural heterogeneity

refers basically to the structure o f the data, w hile sem antic heterogeneity

refers to the dom ain o f concepts (their interpretation).

33

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

B asically , to build a data integration system , relationships or m appings

m ust be established betw een the data source schem as and the global

schem a [35, 147],

D efin ition 2.5.1 (A data-in tegration system)

A data-integration system I is a trip le (G, S if Mj), w here G is a global

schem a, Si is a set o f n source schem as, and Mj is a set o f m source-to-

global m appings, such that for each source schem a S', there is a m apping

Mj from St to G, (1 < i< n), (1 < j< m).

A crucial issue in data integration is how elem ents o f the global schem a

and elem ents o f the data sources are m apped. Based on the direction o f

m appings betw een a data source and global schem a, the approaches are

classified into the so called global-as-view (G A V) and local-as-view

(LA V) approaches [80, 103]. The follow ing sections describe each o f

these approaches. W e will further use the sym bol => that m eans an

im plication relationship betw een the global and local schem as' elem ents

exists.

2.6 G lobal-A s-V iew (G A V) approach

In a G lobal-A s-V iew (G A V) approach, a global schem a is defined in

term s o f a set o f local source schem as. That is, the global schem a is

defined as a view over the local sources' schem as [20, 70, 75, 141].

In a G A V approach, query reform ulation reduces to sim ple rule unfolding

(standard execution o f view s in ordinary databases). H ow ever, changes in

data sources or adding a new data source requires revision o f the global

schem a to take into account the changes, and requires a revision o f the

m appings betw een the global schem a and data source schem as. Thus,

GA V is not scalable for large applications [24, 147].

34

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

In recent years, m any system s have been developed in research projects on

data integration using the G A V technique. B elow we discuss briefly w ell-

know n research projects and pro to types o f the better know n o f these

system s.

2.6.1 G A V system s

• TSIM M IS [42, 108, 124], one o f the first GA V system s and the

m ost representative o f the G A V approach. This system uses the

O EM (O bject Exchange M odel) to convey inform ation betw een the

com ponents o f the system . T he first basic com ponent o f a m ediated

system , the m ediator, is specified using M SL (M ediator

Specification L anguage). It is a logic-based, object-oriented

language that can be seen as a v iew definition language, targeted to

the O EM data m odel. The second com ponent is w rappers w hich are

specified using a W SL (W rapper Specification Language). W SL is

an extension o f M SL, supporting the description o f source contents

and source query capabilities.

• M IX [20] M IX stands for M ediation Inform ation using XM L. It is a

successor o f T SIM M IS. T he basic difference from TSIM M IS is that

X M L is used as the language (i) to represent the global schem a and

(ii) to exchange data betw een the m ediator and the XM L sources

(instead o f OEM). The query language o f M IX is X M A S (X M L

M atching and Structure L anguage). XM AS uses features from

several X M L query languages, queries are form ulated in term s o f

the m ediated schem a, and are w ritten as X M AS queries that refer to

the source view s exported by the w rappers. T hese queries are then

sent to the w rapped sources for evaluation.

• N im ble [55, 56] is a com m ercial system sim ilar to M IX. N im ble

integrates X M L sources. The architecture o f the N im ble system is

35

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

based on a set o f m ediated schem as, w hich are defined as view s

over the schem as o f the data sources. T he query language used by

the N im ble system is X M L-Q L. W hen a query is posed to the

integration system , it is decom posed into m ultiple source queries

based on the data sources. T he com piler translates each such query

into an appropriate query language for the destination source.

• C lio [117, 118] w as developed by IBM around 2000. C lio is a

research prototype o f a schem a m apping creation tool. The focus is

on discovering queries that m ap values from the data sources to

values in the global schem a. B oth source and global schem a are

considered to be either relational or XM L. Clio produces a set o f

m appings betw een the source schem a and the global schem a, given

a set o f high-level correspondences defined by the user. It also

involves transform ing legacy data into a new target schem a. Clio

introduces an interactive schem a m apping paradigm , based on value

correspondences. The user specifies how a value o f a target attribute

can be created from a set o f values o f source attributes using a

query /brow sing GUI.

2.7 L ocal-A s-V iew (L A V) approach

In the L ocal-A s-V iew (L A V) approach, a global schem a is defined

independently o f the local source schem as. Each source is described in

term s o f the global schem a relations. T hat is, the sources are described as a

m aterialized view o f the global schem a [11, 36, 99, 103].

The LAV approach m akes it very sim ple to add or rem ove data sources

from the system , but it also com plicates the query reform ulation task. It is

scalable and better suited to integrating a large num ber o f autonom ous

read-only data sources accessible over com m unication netw orks.

36

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

Furtherm ore the LA V approach provides a flexible environm ent able to

accom m odate the continual change and update o f data source schem as.

In recent years, m any system s have been developed in various research

projects on data integration using the LAV technique. W e discuss briefly

the best know n research projects and prototypes o f the m ore prom inent

representative LAV system s.

2.7.1 LA V system s

• Inform ation M anifold [99, 104, 107] handles the problem o f data

integration by providing a m echanism to describe declaratively the

contents and the query capabilities o f inform ation sources. In the

Inform ation M anifold system the global schem a is relational. A

source description is a conjunctive query over the global schem a

relations, w hich will be referred to as a view . U ser queries, posed in

Inform ation M anifold, are conjunctive queries like source

descriptions. They are expressed in term s o f the global schem a

relations.

• Infom aster [58, 74] is an inform ation system which provides

integrated and uniform access to m ultiple distributed, heterogeneous,

structured sources. D ata available in a source is also seen as a set o f

relations, called site relations. Betw een site relations and interface

relations, a set o f base relations are defined. Interface relations are

defined as view s on the base relations. U ser queries are expressed in

term s o f the interface relations. Q ueries are rew ritten in term s o f the

site relations.

• A gora [113, 114] system supports querying and integration o f

heterogeneous relational and X M L inform ation sources. The global

schem a is an X M L DTD and a virtual relational schem a is used as

an interface betw een the sources and this schem a. Relational and

37

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

X M L sources are m odeled as SQL queries over a relational global

schem a. U sers form ulate X Q uery queries in term s o f this global

DTD. These queries are norm alized and translated into an SQL

query over the generic relational schem a.

• D D X M I [120, 148] (for D istributed D atabase X M L M etadata

Interface) is a system proto type that has been built to generate a tool

to do the m etadata integration, producing a m aster DDXM I file,

w hich is then used to generate queries to local databases from the

m aster queries. It builds on the X M L M etadata Interchange.

D D X M I is a m aster file including database inform ation. In this

approach local sources w ere designed according to DTD definitions.

Therefore, the integration p rocess is started from the D TD parsing

that is associated w ith each source.

2.8 R elated W ork

D ata integration has received sign ifican t attention since the early days o f

databases. In recent years, there have been m any research projects

focussing on distributed heterogeneous data source integration. M ost o f

them are based on the com m on m ediator architecture [145] such as Garlic

[37], the Inform ation M anifold [99], D isco [141], TSIM M IS [42], Y at [43],

M ix [20], M edM aker [123] and A gora [113]. The goal o f such system s is

to provide a uniform user in terface to query integrated view s over

heterogeneous data sources. A user query is form ulated in term s o f the

integrated view , to execute a query, the system translates it into sub

queries expressed in term s o f the local schem as, sends the sub-queries to

the local data sources, retrieves the results, and com bines them into the

final result provided to the user. M ainly, they can be classified into

structural approaches and sem antic approaches.

38

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

In structural approaches, local data sources are assum ed to be crucial. The

integration is done by providing or autom atically generating a global

unified schem a that characterizes the underlying data sources. On the other

hand, in sem antic approaches, integration is achieved by sharing a

com m on ontology am ong the data sources. A ccording to the m apping

direction, the approaches are further classified into tw o categories: global-

as-view (G A V) and local-as-view (L A V) [103]. In GA V approaches, each

item in the global schem a is defined as a view over the source schem as. In

LA V approaches, each item in each source schem a is defined as a view

over the global schem a. The L A V approach is w ell-suited to supporting a

dynam ic environm ent, w here data sources can be added or rem oved from

the data integration system w ithout restructuring the global schem a.

Projects and prototypes such as G arlic, TSIM M IS, M edM aker, and M ix are

structural approaches and take a g lobal-as-view approach. A com m on data

model is used, e.g., OEM (O bject Exchange M odel) in TSIM M IS and

M edM aker. Mix uses XM L as the data model; an XM L query language

XM AS was developed and used as the view definition language. M any

efforts are being m ade to develop sem antic approaches, based on RDF

(Resource D escription Fram ew ork) and K now ledge-based Integration [112].

Several ontology languages have been developed for data and knowledge

representation to assist data integration from a sem antic perspective, such as

F-logic [115] which is em ployed to represent knowledge in the form o f a

dom ain m ap used to integrate data sources at the conceptual level.

D D X M I [120, 148] builds on X M L M etadata Interchange. DD XM I is a

m aster file including database inform ation, XM L path inform ation (a path

for each node starting from the root), and sem antic inform ation about

XM L elem ents and attributes. A system prototype has been built that

generates a tool to do the m etadata integration, producing a m aster

DD XM I file, w hich is then used to generate queries to local databases

from m aster queries. In this approach local sources w ere designed

39

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

according to DTD definitions. T herefore, the integration process is based

on D TD parsing associated w ith each source. X IQ M [18] is an approach to

m ediating heterogeneous X M L data sources. A tool is proposed for the

X M L data integration system to com bine and query X M L docum ents

through a m ediation layer. This layer is intended to describe the m appings

betw een the global X M L schem a and local heterogeneous X M L schem as.

It produces a uniform interface over the local XM L data sources and

provides the required functionality to query these sources in a uniform

way. It involves tw o im portant units: the X M L M etadata D ocum ent

(X M D) and the Q uery Translator. X M D is an X M L docum ent containing

m etadata, in w hich the m appings betw een global and local schem as are

defined. X M L Q uery T ranslator w hich is an integral part o f the system is

introduced to translate a global user query into local queries by using the

m appings that are defined in X M D . T he X M L data sources are described

by the X M L Schem a language.

W e classify our w ork as being in the structural category but we differ from

the others such as G arlic, D isco, T SIM M IS, M ix, M edM aker and Yat by

follow ing a local-as-view (L A V) approach as this approach is well-suited

to supporting a dynam ic environm ent, w here data sources can be added or

rem oved from the system w ithout restructuring the global schem a. It is

better suited and scalable for in tegrating a large num ber o f autonom ous

read-only data sources accessible over com m unication netw orks.

Furtherm ore the L A V approach provides a flexible environm ent able to

accom m odate the continual change and update o f data source schem as,

especially suited to X M L docum ents on W eb servers w hich are not static

and often subject to frequent update. Projects like Inform ation M anifold,

A gora, DDXM I and X IQ M are integration system s with a LAV

architecture; how ever, in Inform ation M anifold the local and global

schem as are relational, w hile in D D X M I and X IQ M the local and global

schem as are XM L. The A gora system supports querying and integrating

40

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

data sources o f diverse form ats, including XM L and relational sources

under an X M L global schem a, but assum es explicit schem as for X M L data

sources. O ur w ork [14-16] focuses on querying and in tegrating distributed

heterogeneous structured data resid ing in relational databases and sem i

structured data held in X M L docum ents. The XM L docum ents that we are

interested in are w ell-form ed X M L docum ents, w hile DD XM I targets

X M L docum ents designed according to DTD definitions, and X IQ M

targets X M L docum ents satisfy ing an X M L schem a. Thus we are dealing

w ith all types o f X M L docum ent unlike these system s. A lso our w ork

differs from D D X M I and X IQ M by using an increm ental tool to build the

X M L M etadata K now ledge B ase (X M K B). This tool starts from an

existing X M K B file and slightly m odifies it in light o f m inor changes to

data source schem a structures or w hen data sources are added or rem oved

from the system , instead o f regenerating it from scratch. Thus it facilitates

evolution reflecting the dynam ic nature o f the data being targetted.

41

C H A PT E R 3

X M L and related technologies

M achine readable data files are tex t files or binary files. There has been an

aim to find a universal form at w hich com bines the features o f both these

types w ith rich inform ation storage capability. An early attem pt to

com bine a universally in terchangeable data form at w ith rich inform ation

storage capabilities w as SG M L (S tandard G eneralized M arkup Language)

[8, 76]. This is a tex t-based language that can be used to m ark up data by

adding m eta-data in a w ay w hich is se lf describing. SG M L w as designed

to be a standard way o f m arking up data for any purpose. It is a

com plicated language that it is not well suited for data interchange over

the W eb [31]. A very w ell-know n language, based on SG M L is H ypertext

M arkup Language (H TM L) [2]. H ow ever, despite HTM L being incredibly

successful, it was lim ited in its scope, as it is only intended for displaying

docum ents in a brow ser. Therefore, XM L (ex ten sib le M arkup Language)

[4] w as created to address this lim itation. D evelopm ent o f XM L started in

sum m er 1996 by the setting up o f an XM L W orking group by the W 3C

42

CHAPTER 3. XML AND RELATED TECHNOLOGIES

(W orld W ide W eb C onsortium) [1]. In m any aspects, H TM L gives a good

introduction for understanding X M L: the ASCII representation o f X M L

data and HTM L share the sam e syntactical notions, w hich is part o f

SGM L.

Since X M L is chosen to be a data m odel for our data integration system

and in this thesis we used som e X M L related technologies we give in this

chapter an overview o f XM L and som e related technologies.

W e start w ith an introduction to X M L. N ext, we present an overview o f

the D ocum ent Type D efinition (D T D) gram m ar language and XM L

Schem a language since these languages are used to describe the structure

o f an X M L docum ent. Then, w e introduce X M L A pplication

Program m ing Interfaces, and finally w e introduce XM L query languages.

3.1 X M L

W 3C is an open, public organization w hose task is to develop technology

and standards for the Internet. It has developed X M L standards for

efficient inform ation exchange across the W eb. The basic concept behind

XM L is that data should be self-describ ing by m eans o f tags associated

with the data. X M L provides no predefined tags, instead it is a m eta

m arkup language w hich provides standards for users so that they can

define their ow n tags, docum ent structure and the definition o f the tag.

X M L [4] has quickly em erged as a standard for data representation and

data exchange over the W eb. X M L is a subset o f SGM L. It specifies a set

o f rules for putting data structures into a text file. A lthough X M L is text, it

is not prim arily m eant to be read by hum ans but rather by m achines, w ith

standardized XM L parsers. The pow er o f XM L as a description language

lies in the fact that an X M L docum ent contains self-describing,

hierarchically structured data, and it allow s association o f m arkup term s

with data elem ents. These m arkup term s serve as m etadata allow ing

43

CHAPTER 3. XML AND RELATED TECHNOLOGIES

form alized description o f the content and structure o f the accom panying

data. X M L appears to subsum e H T M L and its successor X H TM L as the

com m unication language for the Internet [66]. By associating m etadata

term s w ith data elem ents, X M L has enabled docum ents to be

com m unicated betw een organizations in a way that enables their sem antics

to be com pletely understood both by hum an and m achine agents. In other

w ords, ju s t as H TM L is used to render texts so that they can be processed

by hum ans, X M L renders data structures so that they can be processed by

com puters so that the processed docum ent can be presented on a hum an

interface.

D ata in X M L are grouped into e lem ents delim ited by tags. The first line o f

an X M L docum ent (see Figure 3.1) is a m andatory statem ent that tells the

X M L processor1 that it is dealing w ith X M L version 1.0 in this case [60],

The rest o f an X M L docum ent is com posed o f tags and text. Every

opening tag m ust have a m atching closing tag, and the tag m ust be

properly nested. A tag consists o f tex t enclosed in a pair o f angle brackets.

A tag is also called a m arkup. T he docum ent has a root elem ent that

contains all other elem ents. A ny properly nested piece o f text o f the

follow ing form

<tag> </tag>

is called an XM L elem ent, and the nam e o f that elem ent is the tag. Figure

3.1 is a sim ple exam ple o f an X M L docum ent.

In th is figure, < bookstore> , < book> and </bookstore> are tags.

The text betw een the opening and closing tag is called the content o f the

elem ent. E lem ents directly nested w ithin other elem ents are called

children. XM L also defines the ancestor/descendant relationships am ong

elem ents, w hich are im portant for querying X M L docum ents. An ancestor

1 The XML processor is a module that reads an XML document to find out its structure and contents.

44

CHAPTER 3. XML AND RELATED TECHNOLOGIES

is a p a re n t , a grandparen t, etc., and a descendant is a ch ild , a grandchild ,

etc.

<?xml version = "1.0n?>
<bookstore>

<book category=,,WEB">
<isbn> 0-321-12226-7 </isbn>

<title> Learning XML </title>
<author> Erik T. Ray </author>
<year> 2005 </year>
<price> 29.99 </price>
</book>
</bookstore>

F igure 3.1: A n exam ple o f a sim ple X M L document.

A n opening tag can have attributes. A n elem ent can have any num ber o f

user-defined attributes. X M L attribu tes are useful in data representation as

they offer a richer representation than elem ents can offer. A ttribute values

can only be strings, w hich strictly lim its their usefulness, while XM L

elem ents can have children elem ents, w hich m ake them m uch m ore

versatile. Som e features o f attributes are-. First, the order o f attributes in

an elem ent does not m atter; second, an attribute can occur at m ost once in

an elem ent, w hile elem ents w ith the sam e tag can be repeated; third, using

attributes can lead to briefer representation. A useful feature o f an X M L

attribute is that it can be declared to have a unique value and can also be

used to enforce a lim ited referential integrity. This can not be declared

w ith elem ents alone in plain XM L. In the above exam ple, P rice is defining

as an a ttribute in the elem ent Book.

There are tw o im portant concepts o f XM L docum ents, w ell-form ed and

validity. W ell-form ed deals w ith the physical structure referring to tags

w hich are properly m atched and nested while, valid ity focuses on the

logical structure o f elem ents.

45

CHAPTER 3. XML AND RELATED TECHNOLOGIES

D efin ition 3.1: A n X M L docum ent is well form ed if it has a root elem ent,

every opening tag is follow ed by a m atching closing tag, the elem ents are

properly nested, and any attribute can occur at m ost once in a given

opening tag and its value m ust be provided.

A n X M L docum ent m ust be w ell-form ed to be processed. T hat is, it m ust

be syntactically correct. The valid ity concept is provided by an XM L

schem a gram m ar language w hich is in troduced in the next section.

O ur system is designed to deal w ith w ell-form ed XM L docum ents which

conform to the X M L syntax rules bu t have no referenced DTD or XM L

schem a. H ow ever, it can also deal w ith X M L docum ents w hich have DTD

or X M L schem a by bypassing the D T D or the X M L schem a. It accesses

the docum ent itse lf to extract its structure and uses our sim ple language

X D SD L (X M L D ata Source D efin ition Language) to describe the actual

structure o f the data source not the possib le one described in the

referenced DTD and X M L Schem a.

3.2 D T D and X M L Schem a

There are m any gram m ar languages that can describe the structure o f an

X M L docum ent. The m ost com m on are: D T D [30] and X M L Schem a [3].

X M L schem a is an optional docum ent-structure gram m ar w hich is used to

m ake sure the X M L docum ent is valid. X M L docum ents can be defined

according to a schem atic representation defined in a DTD or X M L

Schem a. An XM L docum ent that conform s to a DTD or X M L Schem a is

called a valid XM L docum ent.

3.2.1 DTD

D TD is a set o f rules for structuring an XM L docum ent. It is a context-

free-gram m ar for the docum ent. The DTD describes a docum ent type by

specifying which tags are allow ed, their attributes, and the allow ed nesting.

46

CHAPTER 3. XML AND RELATED TECHNOLOGIES

Roughly, the D TD corresponds to the schem a definition in relational or

object-oriented databases. The schem a o f an X M L docum ent m ay be

defined by a DTD, w hich describes a gram m ar for sem i-structured

docum ents.

The basic com ponents o f a D TD gram m ar are elem ents , attributes , and

entities. The structure o f the contents o f elem ents is defined by

< \ E L E M E N T content-m odel >

w here, a content-m odel in a D TD m ay involve the follow ing types:

• E M PT Y type: a sim ple e lem ent w ith no content, but m ay have

attributes.

• A N Y type: elem ents o f th is type m ay have arbitrary content.

• #PC D A TA type: a sim ple e lem ent o f only character data

• Expression: a com posite elem ent w hich is a regular expression over

elem ent nam es.

• A com posite elem ent m ay be defined by the follow ing constructs:

— to define a sequence o f ordered com ponent elem ents.

— “ | ”, to define alternatives o f com ponent choice.

— an elem ent that can appear arbitrarily often.

— “+ ” , as but m ust appear at least once.

— “?” , optional elem ent can appear 0 or 1 tim es.

A ttributes can be associated to an elem ent. Each attribute has a nam e, a

data type and optional constraints that restrict its perm itted values to an

enum eration or a fixed value, or defines it as a required property. An

47

CHAPTER 3. XML AND RELATED TECHNOLOGIES

elem ent w ith attributes is also considered to be a com posite elem ent. The

allow ed attributes o f elem ents can be declared as:

• #R EQ U IR ED : the attribute m ust be given for each instance o f the

elem ent type.

• #IM PLIED : the attribute is optional.

• #FIX ED value', a value w hich is allow ed for the attribute type.

Figure 3.2 show s a D TD that captures the X M L docum ent in Figure 3.1.

< ELEMENT bookstore (book)+>
< ELEMENT book(isbn , title , author , year , price)*>
< ATTLIST category CDATA #REQUIRED>
< ELEMENT isbn (#PCDATA)>
< ELEMENT title (#PCDATA)>
< ELEMENT author (#PCDATA)>
< ELEMENT year (#PCDATA)>
< ELEMENT price (#PCDATA)>

F igure 3.2: A D T D o f an X M L docum ent in F igure 3.1.

3.2.2 X M L Schem a

A lthough D TD s have served well for years as the prim ary m echanism for

describing structured inform ation in the SGM L and H TM L com m unities,

they are considered too lim ited for m any data-interchange applications

[31]. For exam ple, D TD s can only specify that elem ents are text strings.

Furtherm ore, they are not form ulated in XM L syntax and provide only

very lim ited support for types or nam e spaces. This led to the XM L

Schem a being introduced to overcom e som e o f the deficiencies o f DTD

[66]. X M L Schem a is a data definition language for X M L docum ents

w hich has becom e a recom m endation o f W 3C. X M L Schem a D efinition

(XSD) is an X M L-based gram m ar declaration for XM L docum ents. X M L

48

CHAPTER 3. XML AND RELATED TECHNOLOGIES

Schem a allow s very precise defin ition for both sim ple and com plex data

types, and allow s the derivation o f new type definitions.

The purpose o f X M L schem a is to specify the structure o f instance

elem ents together w ith the data type o f each elem ent/attribute.

D eclarations in X M L Schem a can have richer and m ore com plex internal

structures than declarations in D TD s. T he m otivation for XM L Schem a is

dissatisfaction w ith DTDs. It w as developed in response to the lim itations

o f the D TD m echanism . X M L Schem a is seen as an advance over DTD.

The integration w ith nam espaces is one o f the im portant items m issing in

DTDs. A D TD can define any num ber o f tags, but there is no way to

associate tags w ith a nam espace. A n X M L schem a docum ent describes the

structure o f X M L docum ents. It begins w ith a declaration o f the

nam espaces to be used in the schem a. Its m ain features are:

• It uses the sam e syntax as used for an ordinary X M L Schema.

• It is integrated with the nam espace m echanism which m eans

different schem a can be im ported from different nam espaces and

integrated into one schem a.

• It provides built-in types, such as string, integer, and time.

• It provides the m eans to define com plex types from sim ple ones.

• It supports key and referential integrity constraints.

Figure 3.3 is an X M L schem a definition that captures the Figure 3.1

docum ent.

The root elem ent o f the X SD is the < schem a> . W ithin the <schema>

elem ent, the nam espace declaration should be included first, and then an

<element> declaration. W e declare bookstore as an elem ent o f a user-

defined type that contains a sequence o f ordered elem ents each o f a new

49

CHAPTER 3. XML AND RELATED TECHNOLOGIES

type. Each user-defined type can be declared as either a com plex type or

sim ple type form.

To specify the cardinality o f the elem ents, X M L Schem a uses standard

m odifiers: m inO ccurs and m axO ccurs , that correspond to m inim um and

m axim um values for the low er and upper bounds respectively in term s o f

occurrence o f the elem ent.

<?xml version="l.0" ?>
<xs:schema xmlns="http://www.w3.org/2001/XMLSchema">
<xs:element name = "bookstore">
<xs:complexType>
<xs:sequence>
<xs:element name = "book" maxOccurs = "unbounded">
<xs: complexType mixed="true">
<xs:sequence>
<xs:element name = "isbn" type = "string"/>
<xs:element name = "title" type = "string"/>
<xs:element name = "author" type = "string"/>
<xs:element name = "year" type = "integer"/>
<xs:element name = "price" type = "decimal"/>

</xs:sequence>
<xs:attribute name="category" use= "required" type="string"/>

</xs:complexType>
< / x s : e lement>

</xs:sequence>
</xs:complexType>

< / x s : element>
< / x s : schema>

F igure 3.3: A n X M L schem a o f an X M L docum ent in F igure 3.1.

3.3 X M L application program m ing interfaces

X M L docum ents have to be parsed in order to be used by application

program s. A pplication P rogram m ing Interfaces (APIs) are used to process

an X M L docum ent by accessing its internal structure. There are three

m ajor standardized w ays for users to access the content o f X M L

docum ents: D O M , SAX, and JD O M .

50

http://www.w3.org/2001/XMLSchema

CHAPTER 3. XML AND RELATED TECHNOLOGIES

3.3.1 D O M

The D O M (.D ocum ent O bject M odel) [6] is an application program

interface (API) for X M L instances defined by W 3C. It is a tree structured-

based API w hich converts the docum ent that defines an abstract data type

w hich im plem ents the abstract X M L tree m odel for storing and m anaging

XM L instances. DO M is a set o f Java interfaces which describe the

facilities for a program m atic representation o f a parsed XM L docum ent.

U sing D O M , the W eb docum ent is m odeled in an object-oriented way.

That is, the D O M represents a W eb docum ent in term s o f objects (the

parts o f the docum ent, such as elem en ts , attributes , text, etc.). A docum ent

builder is used to read the X M L data and construct a D O M tree. Once a

docum ent is read, its D O M representation has been created in m em ory,

and the objects can be accessed and m anipulated.

An X M L docum ent is read by an X M L processor (or X M L parser), w hich

converts it into a parsed X M L docum ent, w hich is the internal

representation o f the hosting im plem entation (i.e., a DOM

im plem entation). C lient applications access the parsed docum ent by m eans

o f the functions and m ethods defined in the D O M API [146].

3.3.2 SA X

The S A X (Sim ple A P I fo r X M L) is an event-driven and seria l access API

defined by X M L-D EV group for accessing XM L docum ents [116]. Since

SAX is sim ple, it is supported by m ost o f the available X M L processors

(parsers). A SAX parser does not create an in-m em ory tree representation

o f an XM L docum ent. It reads an input XM L docum ent and generates

events , such as the start o f an elem ent, the end o f an elem ent, and so on.

SAX is not an X M L processor as such, but it is a com m on interface

im plem ented for m any different X M L processors.

51

CHAPTER 3. XML AND RELATED TECHNOLOGIES

Once an X M L docum ent is input to the SAX parser, the first step o f a

SA X parser usually consists o f splitting up the source docum ent into

tokens. The m ost basic way to tokenize a docum ent is to use the

occurrences o f the brackets: < and > as an orientation. Furtherm ore, the

program m er has som e control over low-level features like character sets

that are used in the docum ent.

3.3.3 JD O M

JD O M (Java D ocum ent O bject M odel) is a new and open source XM L

API [88, 89]. It is lightw eight and fast, and is optim ized for the Java

developer so that they can read, change, and write X M L data m uch m ore

easily than before. JD O M integrates well with both DO M and SAX, and

takes the best features from them . It is designed to perform quickly in a

sm all-m em ory footprint. JD O M also provides a full docum ent view w ith

random access but, surprisingly, it does not require the entire docum ent to

be in m em ory. A dditionally , JD O M supports easy docum ent m odification

through standard constructors and norm al set m ethods. Therefore, JD O M

has the ability to interoperate seam lessly with existing program

com ponents built using SAX or D O M . JD O M docum ents can be built

from X M L files, D O M trees, or SA X events. It is also possible to create a

JD O M docum ent from scratch. M oreover, it provides support for the X M L

nam espaces and validation at the sam e tim e. W ith other X M P APIs, that is

not possible.

3.4 X M L query languages

This is an overview o f XM L query languages. Data extraction,

transform ation, and integration are all w ell-understood databases problem s

concerned with m anaging data. T heir solution relies on a query language,

either relational (SQ L) or object-oriented (OQ L). These query languages

do not apply im m ediately to X M L, because X M L data differs from

52

CHAPTER 3. XML AND RELATED TECHNOLOGIES

traditional relational or object-oriented data. W e introduce XPath, X Q L

X M L-Q L, and Q uilt and then present a b rie f introduction to X Q uery

language.

3.4.1 X Path

Until recently, m ost query languages in the XM L w orld w ere based on

X Path (X M L Path Language). W e describe XPath 1.0, and then give an

overview o f the features o f its successor X Path 2.0.

3.4.1.1 X Path 1.0

X Path 1.0 [44] is a specification that defines how a specific item within an

X M L docum ent can be located. T he prim ary purpose o f XPath is to

address parts o f an X M L docum ent. X Path m odels an X M L docum ent as a

tree o f nodes w hich includes elem ent nodes , attribute nodes , and text

nodes. It is designed to be em ployed by m ost X M L query languages. It

also provides basic facilities for m anipulation o f strings, num bers, and

Booleans in the logical structure o f an X M L docum ent. X Path is intended

to be sim ple and efficient. It is based on the idea o f path expressions. An

expression is evaluated to one o f the fo llow ing basic value objects:

• node-set (an unordered collection o f nodes w ithout duplicates),

• boolean (true or false),

• num ber (a floating-point num ber),

• string (a sequence o f characters).

O ne im portant kind o f XPath expression is the location path. A location

path declaratively selects a set o f nodes from a given X M L docum ent. The

result o f the evaluation o f a location path is the node-set containing the

53

CHAPTER 3. XML AND RELATED TECHNOLOGIES

nodes selected by the location path. The core rules o f X Path are show n in

Figure 3.4.

[1] LocationPath ::= RelativeLocationPath | AbsoluteLocationPath

[2] AbsoluteLocationPath ::= '/'RelativeLocationPath?

[3] RelativeLoctionPath ::= Step | RelativeLocationPath 7 Step

Figure 3.4: The core rules o f XPath.

A location path can be w ritten in the follow ing form:

(pStepi T] S tep 2 T2 Stepm Tm

w here (p can be the em pty sym bol or 7 ’, 7/ is 7 ’, Stept is a location step,

such that: m > 1, and i e { 1 ,, m } .

The input to every location step is a node-set, called the context (the input

to the first step is the set containing only the docum ent node). From this

set, a new node-set (called the resu lt se t) is com puted w hich then serves as

input for the next step. For this com putation, the input node set is

processed, evaluating the location step for every node in it, appending its

result set to the overall result, and proceeding with the next node. The

location step is o f the form:

axis :: nodetest [filter]*

w hich specifies that navigation goes along the given axis in the XM L

docum ent. The first part o f a step is the axis w hich specifies the tree

relationship betw een the nodes selected by the location step and the

current context node. The second part is the nodetest. It specifies the node

54

CHAPTER 3. XML AND RELATED TECHNOLOGIES

type and the nam e o f the nodes to be selected by the location step w hich

satisfy the given filter. The third part is the filte r . The filter contains

pred ica tes over expressions. A predicate filters a node set w ith respect to

an axis to produce a new node set.

The sem antics o f X Path expressions is defined in term s o f node-sets, i.e.,

unordered forests. W hen evaluating individual steps, there is a tem porary

node list (context). For every navigation step, the axis specifies the

direction o f navigation in the tree. A ll fo rw a rd axes enum erate the nodes

in docum ent order; on the other hand all backw ard axes enum erate them in

reverse docum ent order. For exam ple, term s o f predicates over the

expressions can be o f the follow ing form s:

• B ooleans over predicates,

• A rithm etic expressions over num bers and string operations,

• Function calls: used for instance to state conditions on the

relationship betw een the current context node and its context, for

exam ple:

- Last(): returns n such that n is the size o f the context,

- Position(): returns the index o f the context node in the current

context,

- Count{nodesety. returns the num ber o f nodes in a nodeset,

- Id(ex/?r): returns the node(s) in the current XM L instances

w hose id(s) result from evaluating expr w ith respect to the

context node.

Inside filters, relative or absolute location paths can be used. R elative

location paths are evaluated with respect to the current context node.

W here an absolute location path begins w ith “/” , w hich is sim ilar to the

55

CHAPTER 3. XML AND RELATED TECHNOLOGIES

U N IX directory notation, they are evaluated w ith respect to the root node

o f the X M L docum ent.

The follow ing X Path query exam ple, finds the students w ho have taken

the D atabase System s course w ithin the current docum ent:

//S tudent\C rsTaken/C rsN am e = “D atabase System s ”].

3.4.1.2 X Path 2.0

X Path 2.0 [26] is a superset o f X Path 1.0. It uses the sam e axis as XPath

1.0, follow ed by a node test, fo llow ed by a predicate. H ow ever, XPath is

an expression language that allow s processing o f values conform ing to its

m odel, it supports sequences instead o f node-sets. The result o f an XPath

expression m ay be a selection o f nodes from the input docum ents, or an

atom ic value, or m ore generally any sequence allow ed by the data model.

Thus, every X Path expression evaluates to a sequence. Here, the sequence

can be defined as follows:

• A sequence is an ordered collection o f zero or m ore items.

• An item is either an atom ic value or a node.

• An atom ic value is a value in the value space o f the XM L Schema.

• A node is defined in the X Q uery and XPath 2.0 data model.

• A sequence o f exactly one item is called a singleton sequence.

• A sequence containing zero item s is called an em pty sequence.

There are m any differences betw een X Path 1.0 and its successor XPath 2.0.

XPath 1.0 does not support explicit quantification, e.g. to concatenate the

first and last nam es. The m ost basic additional features for XPath 2.0 are:

• For-loop expression,

• If-Then-Else conditions,

• Functions,

56

CHAPTER 3. XML AND RELATED TECHNOLOGIES

• Q uantified expressions,

• Logical expressions,

• Processing Instructions, and

• Schem a validation.

In total, although X Path 2.0 has m any additional features com pared to

XPath 1.0, it also has som e lim itations. The basic one is that it returns

X M L tree nodes and not an X M L docum ent. D espite its interesting

features, X Path is not an expressive query language. Com pared with the

relational algebra, a full jo in operator is m issing (sem i-equijoins are in fact

provided by the path operator, and filters). As a result XPath is a

lightw eight X M L querying language. It is only an addressing m echanism

w hich selects node sets in X M L docum ents. Its purpose is to provide the

com m on addressing m echanism for X M L, and to serve as a base for XM L

querying and m anipulation languages and further concepts.

3.4.2 X Q L

The X M L Q uery Language (XQL) [7, 127] w as an early proposal for a

sim ple querying language w hich w as designed specifically for XM L

docum ents. It is a declarative rather than procedural language.

The basic idea and syntax is to use paths and filters for navigation.

Roughly, XQL is the fragm ent o f an X Path which can be built w ithout

using axis. A dditionally, union and intersection on results are allowed. An

expression in XQ L is alw ays evaluated with respect to a search context. A

search context is a set o f nodes through which an expression m ay search to

yield the value o f the expression. All nodes in the search context have the

sam e parent name. XQ L allow s a query to select betw een using the current

context and the root context as the input context. A query prefixed with 7 ’

uses the root context, w hile ‘./’ is used for the current context. A query

m ay use the 7 / ’ operator to indicate recursive descendent. The prefix ‘.//*

57

CHAPTER 3. XML AND RELATED TECHNOLOGIES

allow s a query to perform a recursive descent relative to the current

context.

Som e XQ L queries are:

• to find all author elem ents anyw here w ithin the current docum ent:

//author

• to find all title elem ents, one or m ore levels deep in the bookstore:

hookstore/Ztitle

• to find the form at attribute for all book elem ents:

book/@ form at

• to find all author elem ents that contain at least one degree and one

publication: author [degree a n d pub lica tion]

• to find all authors containing a first-nam e child w hose text is 'John1:

author [first-nam e! text () — 1J o h n '

The central extension, m aking X Q L a query language instead o f a pure

addressing m echanism , is the generation o f the result tree (instead o f a

node-set) as a projection o f the input docum ent.

3.4.3 X M L -Q L

X M L-Q L [50, 51] is another early language (1998, non-W 3C) that w as

proposed as a query language for X M L data. It can express queries which

extract pieces o f data from X M L docum ents, as well as transform ations. In

contrast to XQ L, X M L-Q L does not em ploy navigation and paths. The

basic idea was influenced by the SQL query structure in that it partitions

X M L-Q L queries into a selection part (W H ERE IN) and a construction

part (CO NSTRU CT) it has the form:

58

CHAPTER 3. XML AND RELATED TECHNOLOGIES

W HERE xm l-pa ttern i IN url

C O N ST R U C T xml-patterri2

w here, xm l-pattern i is m atched against an XM L instance given by the url.

Therefore, every m atch yields variable bindings w hich are used as jo in

variables, and propagate the result. H ence, this is again an X M L pattern

specifying the result. Sim ilarly to SQ L, the C O N STR U C T part m ay

contain nested X M L-Q L queries. H ere the IN part applies, either to a url,

or to the content o f a variable w hich has been assigned in the WHERE part.

The follow ing exam ple produces all authors o f books w hose publisher is

A ddison-W esley in the 'bib.xm l' docum ent.

WHERE <book>
<publisher> <name> Addison-Wesley </></>
<title> \$t </>
<author> \$a </>

</> IN "bib.xml" CONSTRUCT <result>
<author> \$a </> <title> \$t </>

< / >

The above query m atches every <book> elem ent in the "bib.xml" XM L

docum ent w hich has at least one <title> elem ent, one <author> elem ent,

and one <publisher> elem ent w hose nam e is "A ddison-W esley". For each

such m atch it returns both <author> and <title> and groups them in a

new <result> elem ent.

X M L-Q L can m ap X M L data betw een DTDs and can integrate XM L data

from different sources. T herefore, we can query several sources

sim ultaneously and produce an integrated view o f their data. The query in

Figure 3.5 is introduced in [49]. It produces all the pairs o f nam es and

social-security num bers o f the em ployees by querying the sources

'w w w .a .b .c/data .xm l' and 'wwxv.irs.gov/taxpayers.xml'. The two sources

are jo ined on the social-security num ber, w hich is bound to $ssn in both

59

http://www.a.b.c/data.xml'

CHAPTER 3. XML AND RELATED TECHNOLOGIES

expressions. The result contains only those elem ents that have both a nam e

e lem ent in the first source and an incom e elem ent in the second source.

WHERE <person>
<name></> ELEMENT_AS \$n
<ssn> \$ssn </>

</> IN "www.a.b.c/data.xml",
<taxpayer>
<ssn> \$ssn </>
<income> </> ELEMENT_AS \$i

</> IN www.irs.gov/taxpayers.xml
CONSTRUCT <result> \$n \$i </>

F igure 3.5: The X M L -Q L query.

3.4.4 T he Q uilt query language

Q uilt [39] is a query language for XM L. It is the base o f X Q uery which

will be discussed next. Q uilt is the first XM L query language that em beds

XPath syntax into higher-level constructs sim ilar to SQ L/O Q L [17]. Q uilt

can operate on flat structures, such as row s from relational databases, and

generate hierarchies based on the inform ation contained in these structures.

It is able to express queries based on docum ent structure and to produce

query results that either preserve the original docum ent structure or

generate a new structure. It can also express queries based on paren t/ch ild

relationships or docum ent sequence, and can preserve these relationships

or generate new ones in the output docum ent.

Q uilt queries consist o f a series o f clauses that declaratively describe:

• w hat inform ation is to be used,

• w hich additional conditions apply, and

• how the result is to be constructed.

60

http://www.a.b.c/data.xml
http://www.irs.gov/taxpayers.xml

CHAPTER 3. XML AND RELATED TECHNOLOGIES

The structure o f Q uilt queries as a w hole is very sim ilar to X M L-Q L

(JWHERE xm l-pattern IN url C O N ST R U C T xml-patterri). The m ain

difference is that the extraction part in X M L-Q L also uses an XM L pattern

w hich is m atched w hereas Q uilt uses iteration and collections over XPath

expressions.

A sim ple form o f a Q uilt query consists o f FOR, W H ERE, and RETU RN

clauses. The F O R -clause uses X Path expressions for binding the values o f

one or m ore variables. In general, an X Path expression evaluates to a set

o f nodes. The FO R -clause generates an ordered list o f tuples, each

containing a value for each o f the bound variables. A tuple is generated for

each possible way o f binding the list o f variables to nodes that satisfy their

respective X Path expressions. W hen a node is bound to a variable, its

descendant nodes are carried along w ith it. The W H ER E-clause applies a

filter to the tuples and retains only those tuples that satisfy a given search

condition. The R ETU R N -clause then generates a new docum ent structure

using the values o f the bound variables.

The follow ing exam ple finds every book w ritten by Crockett Johnson. The

FO R -clause generates a list o f b indings. First, the $b variable is bound to

individual book elem ents in the docum ent found at the given URL. Then,

the $a variable is bound to individual au thor elem ents that are descendants

o f $b. The W H ER E-clause retains only those tuples o f bindings in w hich

the author is C rockett Johnson, and the RETU RN clause uses the resulting

values o f $b to generate a list o f books. By default, the ordering o f book

elem ents in the original docum ent is preserved.

FOR $b IN
document("http://www.biblio.com/books.xml")//book,
$a IN $b/author

WHERE $a/firstname = "Crockett" AND $a/lastname = "Johnson"
RETURN $b

61

http://www.biblio.com/books.xml%22)//book

CHAPTER 3. XML AND RELATED TECHNOLOGIES

A dditionally, Q uilt is supported w ith FO R -LET-W H ER E-R ETU R N -

clause (F LW R -expressions) w hich is o f the form:

FOR variable IN xpath-expr
LET additional-variable: = xpath-expr

(FOR | LET)*
WHERE filters
RETURN xml-expr

Bounded variables can be defined by a FO R -clause to the elem ents which

are iterating over the result set o f X Path expressions. A dditional variables

m ay be defined in the LET-clause, com puted from the ones defined in the

FO R -clause. The variables in the FO R -clause iterate over the

corresponding xpath-expr, w hereas the variables in the LET-clause are

bound to the result o f the corresponding xpath-expr. V ariables defined in

the FO R -clause or LET-clause can then be used in subsequent IN clauses.

The result from the FO R -LET clauses is sequences o f variable binding

used in generating the result, using the X Path filter syntax. Then the

R ETU R N -clause generates an X M L sub-tree for each variable binding.

The Q uilt language provides the usual operators used in database queries.

Q uilt allow s for jo ins in the FO R -clause by specifying "var IN xpath-expr"

argum ents, or by a sequence o f FO R -L E T clauses. Each FO R-LET clause

m ay contain references to variables defined before. A dditional jo in

functionality is provided by using FL W R expressions in the RETU RN part.

Here, also the inner FLW R expression m ay access variables from the outer

clause.

In Quilt, selection functionality is explicitly provided by the W H ERE-

clause, but also the X Path expressions (filters, extensional sem antics)

provide functionality w hich is im plem ented in SQL by selection.

Projection is supported by the definition o f variables in the FO R-LET

clauses, and m ainly by a FILTER operator w hich extends the XPath

syntax o f the expression in the form:

62

CHAPTER 3. XML AND RELATED TECHNOLOGIES

xpath - expri FILTER xpath - expr2

Results in a tree w hich contains exactly the nodes o f the result set o f

xpa th -expr /, retaining the docum ent structure and order. N odes are taken

w ithout attributes or sub-elem ents, i.e., only the tags are kept.

Q uilt is a subset o f XQ uery. It provides the user w ith the ability to use

built-in functions and user-defined functions. These are very im portant

features w hich are used in our approach in order to resolve logical

heterogeneity problem s. The exam ples given in Section 6.5 show the

im portance o f such functions and how they are used.

3.4.5 X Q uery

X Q uery [29] is a potential standard X M L query language. It is a powerful

X M L query language derived from Quilt. W ith som e m inor revisions,

Q uilt query language has becom e the X Q uery Language (Feb. 2001

W orking draft). X Q uery is a full-featured query language. It has borrow ed

features from several other languages, including X Path 1.0, XQL, XM L-

QL, SQL, and OQL. X Q uery is designed to m eet the requirem ents

identified by W 3C X M L Q uery W orking Group. It is created to be a

language in w hich queries are concise and easily understood. The

requirem ent w as for both hum an-readable query syntax and X M L-based

query syntax. It is defined as a superset o f XPath. X Q uery version 1.0 is

an extension o f X Path 2.0. T herefore, any expression that is syntactically

valid and executes successfully in both XPath 2.0 and X Q uery 1.0 will

return the sam e result in both languages. The shortcom ing in XPath 2.0 is

that it returns X M L tree nodes and not an XM L docum ent, w hen querying

or navigating an XM L docum ent usually dem ands an XM L output. Hence,

the ability to produce or restructure an XM L docum ent is valuable and is

offered by XQ uery. Therefore, it covers the aspects o f both docum ent-

oriented and data-oriented docum ents. Q ueries in X Q uery often com bine

63

CHAPTER 3. XML AND RELATED TECHNOLOGIES

inform ation from one or m ore sources and restructure it to create a new

result.

XQ uery expressions have som e sim ilarity with SQL in their structure:

FOR variable-declaration
WHERE condition
RETURN result

The FO R -clause plays the sam e role as the FRO M -clause does in SQL,

and the W H ERE-clause is borrow ed from SQL with the sam e functionality,

and the RETU R N -clause is sim ilar to SELECT.

For data integration, the docum ents to be integrated in general use their

ow n nam espaces. X Q uery allow s access to the nam espace definitions and

assigns them to constants w hich can then be used for selecting navigation

steps according to the nam espaces.

X Q uery is also a functional language in w hich a query is represented as an

expression. The expression that is m ost com m only used for com bining and

restructuring the X M L details is the F LW R -expression w hich is the sam e

as Quilt.

E xam ple 3.4.5 the follow ing exam ple o f an X Q uery query returns the title

o f all books published in or before the year 2000 and the total num ber o f

such books in the bibliography bib.xm l docum ent.

ebooks>
FOR $book IN document("bib.xml")/book
LET $titles = $book/title
WHERE $book/@year <= 2 000
RETURN
$book/title
<total> count($titles)</total>
ebooks>

64

CHAPTER 3. XML AND RELATED TECHNOLOGIES

In this query, we can see that X Q uery expressions are FLW R -expressions.

Each FO R iteration binds the $book variable. Then, the LET-clause binds

the Stitle variable w ithout iteration. Next, the FO R -LET clause filters

using the predicate $book/@ year< = 2000 , in the W H ER E-clause. And

finally, the RETU RN clause generates the output. In this query, $book/title

is an X Path expression, and <books>. . .< /books> w raps the query result

into a new XM L docum ent.

65

C H A PT E R 4

The SISSD data integration system

This chapter introduces the project. W e give a b rie f introduction to the

m otivation for this work. Then, we introduce our approach, followed by

the proposed system architecture. N ext, w e describe the heterogeneity

problem , and then introduce an application exam ple which is used

throughout the thesis to show how the integration is accom plished.

4.1 Introduction

Integrating and querying heterogeneous data sources is a fundam ental

problem in databases, w hich has been studied extensively in the last two

decades both from a form al and a practical point o f view [103]. Recently,

this research area has been driven by the need to integrate data sources on

the W eb, m uch o f the previous research on integration has focused on so

called data integration [103, 105]. Data integration is the problem o f

com bining the data residing at different sources usually in databases, and

providing the user w ith a unified view o f these data, by m eans o f a global

66

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

(or m ediated) schem a, over w hich queries to the data integration system

are expressed. A data integration system has to free the user from needing

to know w hich sources contain the data o f interest, how such data are

structured at the sources, and how such data are to be m erged and

reconciled to answ er user queries [35, 119, 147]. Regarding data

integration techniques we differentiate betw een the logical and physical

stages. The first stage integrates schem as from m ultiple data sources. The

result o f this schem a integration process is the m ediated schem a and

m apping rules w hich define how to m ap concepts in the data sources onto

the m ediated schem a. D ata in tegration in the physical stage uses these

m apping rules to transform users' queries on the m ediated schem a into

local queries [80].

In the research com m unity, to build data integration system s two

approaches are used. These both use the follow ing tw o steps:

1. A ccept a query, determ ine the appropriate set o f data sources to

answ er the query, and generate the appropriate sub-queries for each

data source.

2. O btain results from the data sources, perform appropriate translation,

filtering, m erge the data, and return the final answ er to the user or

application.

The first approach is referred to as a virtual approach , w here data rem ains

in the local data sources. Thus, queries operate directly on the local data

sources and data integration takes place during the query processing. This

m eans data is extracted from the data sources only w hen queries are posed.

This process also m ay be referred to as a m ediator-w rapper approach

[145],

The second approach is called the m ateria lized approach [27], since data

com ing from the local data sources are integrated and stored in a single

67

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

new database or warehouse. All queries then operate on this

com prehensive database. In this approach:

1. D ata from each data source that m ay be o f interest to the anticipated

users is extracted in advance, translated and filtered as appropriate,

and m erged with relevant data from other data sources in a logical

centralized repository.

2. W hen a query is posed, the query is evaluated directly at the

repository w ithout accessing the original data sources.

This approach is referred to as data w arehousing since the repository

serves as a w arehouse storing the data o f interest. A data w arehouse is a

decision support database that is extracted from a set o f data sources. The

extraction process requires transform ing data from the source form at into

the data w arehouse form at [63].

The m ediator-w rapper approach is used to integrate data from different

databases and other data sources. It is appropriate for data that changes

rapidly, for clients with unpredictable needs, and for queries that operate

over vast am ounts o f data from a very large num ber o f inform ation

sources (e.g., the W orld W ide W eb) [143]. It has tw o m ain com ponents: a

m ediator and one w rapper for each data source. The w rappers are

interfaces to data sources that translate data into a com m on data m odel

used by the m ediator. The m ediator perform s the follow ing actions in the

system :

1. R eceiving a query form ulated on the unified schem a from the user.

2. T ranslating this query into sub-queries to individual sources based

on source descriptions.

3. Sending sub-queries to the w rappers o f individual sources, w hich in

turn transform these sub-queries into queries suited to the source's

data m odel and schem a.

68

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

The construction o f a m ediator can be classified into tw o m ain types,

nam ely structural approaches and sem antic approaches. In structural

approaches, local data sources are the m ain source o f inform ation w hen

the m ediated schem a is constructed. The integration is done by providing

or sem i-autom atically generating a global unified schem a that

characterizes the underlying data sources. On the other hand, in sem antic

approaches, the integration is achieved by using a com m on ontology

covering the dom ain o f the data sources to identity the elem ents in the

local schem a that should be linked.

O ur objective is to facilitate the designer in building structured and sem i

structured data integration system s. P roviding a reasonable fram ew ork for

database integration designers to effectively integrate and query

heterogeneous distributed structured and sem i-structured data has becom e

another challenge for databases integration researchers [15]. The m ain

difficulty in this task lies in the lack o f a fully autom ated schem a-m apping

process. The key problem in creating this arises from the existing high

degree o f logical heterogeneity betw een the source schem as. This m eans,

it is necessary to resolve several conflicts caused by the heterogeneity o f

the data sources w ith respect to the com m on data m odel, schem a or

schem a concepts. Therefore, the m apping betw een entities from different

sources representing the sam e real-w orld objects has to be defined. This

task is not easy since the data at different sources may be represented in

different form ats and in incom patible ways. For exam ple, the

bibliographical databases o f different publishers m ay use different form ats

for authors' or editors' nam es (e.g., full nam e or separated first nam e and

last nam e), or different units o f prices. M oreover, the sam e expression

may have a different m eaning (hom onym problem), and the sam e m eaning

m ay be specified by different expressions (synonym problem). This

im plies that syntactical data and m etadata alone can not provide enough

sem antics for all potential integration purposes. A nother difficulty

69

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

im peding structured and sem i-structured data integration is the query

translation process. This is one o f the m ost im portant problem s in the

design o f a data integration system , in that the system should be able to

reform ulate the query that is posed in term s o f the global schem a into a set

o f queries suited to the local data sources.

The data integration process is often very labour-intensive and dem ands

m ore com puting expertise than m ost application users have. Therefore,

sem i-autom ated approaches seem the m ost prom ising, w here m ediation

engineers are given a tool w ith w hich to describe the m appings betw een

the integrated schem a and local data source schem as, to produce a uniform

view over the local databases [120, 148].

4.2 An overview o f our approach

In general, building data integration system s requires addressing several

different issues. In this thesis, we concentrate on two basic issues:

1. Establishing a K now ledge B ase to describe the m appings betw een

the integrated view (m aster view) and the participating data sources.

2. Processing user queries expressed over the m aster view into queries

suited to the local data sources.

As, we are restricting our attention to integration system s which com bine

structured data residing in relational databases and sem i-structured data

held in w ell-form ed XM L docum ents. The system will provide the user

with an integrated view (m aster view) over heterogeneous distributed

structured and sem i-structured data sources; such an integrated view will

be best represented by XM L because the advantages o f XM L as an

exchange m odel, such as rich expressiveness, clear notation and

extensibility. The system will enable users to query its data sources in a

uniform way. A lthough fully autom atic data integration may not be

possible in the dynam ic environm ent that we have considered, we should

70

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

be able to achieve a high degree o f autom ation w hich requires only som e

hum an intervention by using sem antic m apping. Since a fully autom atic

process for data integration is infeasible, we propose an approach that can

be used as an assisting tool to reduce the total designer effort in building

data integration system s. Therefore, the issues o f establishing a suitable

K now ledge Base and processing a user queries have to be addressed. A

basic concept will be resolving the logical heterogeneity problem w hich

m ay occur am ong the schem a's elem ents. To achieve this task, we will

follow a m echanism in w hich the correspondences am ong the schem as'

elem ents are expressed through a set o f m appings. These m appings are a

pow erful tool for expressing the correspondences betw een the schem as,

and capturing and overcom ing the heterogeneity o f the various data

sources. M appings are usually able to bridge these differences.

The integration architecture we have adopted in the project is based on a

m ediator architecture (see Figure 4.1). The system prototype is called

SISSD (System to Integrate Structured and Sem i-structured Databases). It

requires the generation o f a tool for a m eta-user (w ho does the m etadata

integration) to describe m appings betw een the m aster view and local data

sources. It produces an X M L M etadata K now ledge Base (XM KB) to

capture the m apping inform ation, w hich is then used to generate the sub

queries to local data sources from user queries posed over the m aster view.

These tasks are perform ed through a m ediation layer. Such a layer is

introduced to m anage the follow ing:

1. E stablishing and evolving an XM L M etadata K now ledge Base

(X M K B) increm entally to m aintain the m apping inform ation

betw een the m aster view and the local data sources participating in

the integration system [16].

2. Q uerying heterogeneous distributed structured and sem i-structured

data sources in term s o f the m aster view [14].

71

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

This is achieved in three steps. First, the data source m etadata is extracted

and a Schem a Structure D efinition (SSD) is built for each participating

data source. The SSD is the description o f the data source m etadata in

XM L form at. W e do not aim to capture all details o f the data source

m etadata, but rather to capture its essential features and abstract only the

structure o f the data source w hich m eets the basic requirem ents o f our

approach. This is achieved through an autom atic process that accesses the

specified data source w ithout v io lating its local autonom y. Then, its

m etadata is detected and extracted to build a local view (Schem a Structure

D efinition (SSD)) in XM L form at for th is data source. The resulting view

describes the structure o f the data source schem a using the XM L D ata

Source D efinition Language (X D SD L).

The second step perform s the task o f the m ediation layer, by establishing

and evolving an XM L M etadata K now ledge Base (X M K B) increm entally

to assist the Q uery Processor in m ediating user queries posed over the

m aster view to local queries over the distributed heterogeneous data

sources. This translates such queries into sub-queries —also called local

queries- w hich fit each local data source. This is achieved through a sem i

autom atic process that generates a tool to assist a m eta-user to specify the

m appings betw een the m aster v iew and local data sources. W e introduce

here the XM L M etadata K now ledge Base (X M K B) m odule as the basis o f

a m ediation tool to overcom e the heterogeneity problem s betw een data

sources. The X M K B m odule m aintains the m apping inform ation betw een

the m aster view and local data sources’ view s participating in the

integration system . In fact, we m odel a Schem a Structure D efinition (SSD)

as a tree structure. Thus, each node is identified by its path in the tree,

called a m aster p a th for an elem ent o f the m aster view and a local pa th(s)

for the corresponding elem ent(s) o f a local Schem a Structure D efinition

(SSD). The relationship betw een a m aster path and a local path is created

as a m apping. This distinction betw een elem ents and paths is im portant,

72

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

because an elem ent m ay occur several tim es in a schem a tree structure

w ith different m eanings, while a path alw ays identifies a unique elem ent.

Hence, for each path o f the m aster view , the objective is to keep the set o f

paths that have the sam e m eaning in the local schem as and a user-defined

function if it is needed to perform specific operations to overcom e

representational differences. Such a function is defined explicitly by the

designer.

The third step is concerned w ith the query translation process which is an

integral part o f the system. A Q uery Processor m odule is developed for

this process. It transform s a user query into local queries w hich it then

translates by order o f this process using the m appings that are defined in

the X M K B. In order to obtain local queries for a query issued against the

m aster view , the system m ust identify the data sources relevant to a given

query. The basic idea is that w hen a query is posed against the m aster view ,

called a m aster query (global query), it is autom atically rew ritten into sub

queries, called local queries , w hich are appropriate to each local data

source’s form at using the inform ation stored in the XM KB. This task is

accom plished by the Q uery Processor m odule. The X M KB contains the

path inform ation and functions to be applied for each local source. The

path expressions in a m aster query are parsed by the query parser and

replaced by their correspondence paths in each local data source. This is

achieved by consulting the X M K B to check if there are correspondence

paths for the given query. I f not, a null query is generated for the

corresponding path in the local query, w hich m eans that this query cannot

be applied to that local data source. Each local query generated will be

sent to its corresponding local source, w hich will execute the query and

return the result for the m aster query.

73

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

4.3 The SISSD architecture and C om ponents

In this section, we present an overview o f the SISSD architecture and

sum m arize the functions o f its m ain com ponents. The architecture we

adopted is show n in Figure 4.1. A t the bottom layer there can be any

num ber n o f heterogeneous structured (e.g., relational database) and sem i

structured (e.g., XM L docum ent) data sources, w here n e { l , , m) .

The X M L docum ents can be a w ell-form ed XM L docum ent with no

referenced DTD or XM L schem a, w here the associated m etadata are

buried inside the data, and also can be X M L docum ents w ith referenced

D TDs or XM L schem as. H ow ever, for our purposes it is the structure o f a

given X M L docum ent that is crucial for data integration. Therefore, we

investigate issues related to abstracting the structure o f an XM L

docum ents in the cases w here the sources have no explicitly defined DTDs

or X M L schem as. A t the top layer o f our system is the m aster view which

is used as a global interface to the participating local data sources. The

advantages o f XM L as an exchange m odel [72, 113] - such as rich

expressiveness, clear notation and extensibility - m ake it an excellent

candidate to be a data model for the m aster view . At the m iddle layer, the

architecture consists o f the follow ing associated modules:

• M e ta d a ta E x tra c to r (M D E): The M DE needs to deal w ith

heterogeneity at the hardw are, softw are and data m odel levels

w ithout v iolating the local autonom y o f the data sources. It interacts

with the data sources v ia JD B C (Java Database C onnectivity) if the

data source is a relational database or via JX C (Java X M L

Connectivity) if the data source is an XM L docum ent. The M D E

extracts the m etadata o f all data sources and builds a Schem a

Structure D efinition (SSD) in XM L form for each data source. W e

developed JXC using a JD O M (Java D ocum ent O bject M odel)

interface to detect and extract the schem a structure o f w ell-form ed

XM L docum ents that have no referenced DTD or XM L schem a.

74

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

JX C can also deal w ith X M L docum ents w ith referenced D TD s or

X M L schem as.

• Schem a Structures D efin ition (SSD): Typically, the heterogeneous

data sources use different data m odels to store their data (e.g. the

relational model and X M L m odel). This type o f heterogeneity is

referred to as syntactic heterogeneity . The solution com m only

adopted to overcom e syntactic heterogeneity is to use a com m on

data m odel and to m ap all schem as to this com m on model. XM L is

a good candidate as a com m on data m odel for our integrated data

m odel for tw o reasons: it can represent w ith ease any type o f data

w hether it is structured in som e w ay or not, X M L also fits the

context o f current web technologies and has rich and pow erful tool

support [10, 33, 113]. The m etadata extracts generated from the data

sources by using this data m odel are referred to as Schem a Structure

D efinitions (SSDs). W e define a sim ple language called XM L Data

Source D efinition Language (X D SD L) for describing and defining

the relevant identifying inform ation abstracted from the data

structure o f a data source. T he X D SD L output is represented in

X M L and is com posed o f tw o parts. The first part provides a

description o f the data source nam e, location and type (relational

database or X M L docum ent). The second part provides a definition

and description o f the data source structure and content. The

em phasis is on m aking these descriptions readable by autom ated

processors such as parsers and other X M L-based tools. This

language can be used to describe the structure and content o f

relational databases, w ell-form ed XM L docum ents w hich have no

referenced DTD or XM L schem a, and XM L docum ents with

referenced DTDs or XM L schem as.

• Schem a Structure D efinition (SSD) & M aster V iew Parsing:

used for reading and parsing the Schem a Structure D efinition (SSD)

75

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

and the m aster view to check the syntactic correctness and test

w hether it conform s to the X M L syntax rules (w ell-form ed).

• Tree Structure G eneration: used to generate a tree structure for

each data source SSD and the m aster view.

• G U I G eneration: used to produce a convenient sim ple GUI form

for each schem a tree. It is used as a tool to facilitate the generation

o f the paths m apping.

U s e r Q u e r y
(XML Q u e ry)

M aster V iew

Q u e ry n

Q u e r y 2
Q u e ry 1

S c h e m a S t r u c tu r e
Defin it ion

M a s t e r V iew

J D B C

JX C

R D B

XML
d o cu m en t

XML
d o c u m e n t

M etad ata
E xtractor

GUI
G e n e r a t io n

E l e m e n t In d e x
G e n e ra tion

T r e e S t r u c t u r e
G e n e r a t io n

T r e e S t r u c t u r e
G e n e ra tion

S c h e m a S t r u c tu r e
Defin it ion P a r s i n g

M a s t e r V ie w
P a r s i n g

K n o w led g e S e r v e r

Q uery P r o c e s s o r

GUI

XML M etadata
K n o w led g e B a s e

(XMKB)

F igure 4.1: The SISSD Architecture.

76

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

• E lem ent Index G eneration: generates autom atically a unique index

num ber for each elem ent in the m aster view tree structure.

• K now ledge Server (KS): the central com ponent o f the SISSD. It

establishes, evolves and m aintains the XM L M etadata K now ledge

Base (X M K B), w hich holds inform ation about the data sources’

structures and sem antics and provides the necessary functionality

for its role in assisting the Q uery Processor (QP) module.

• X M L M etadata K now ledge B ase (XM K B): contains know ledge

about the data sources’ structures and form ats represented by XM L.

It includes the data sources’ inform ation (nam e, type and location)

participating in the in tegration system , the m etadata, defining the

m appings betw een the m aster view and Schem a Structure

D efinitions (SSD s) o f the local data sources, and the function nam es

for handling sem antic and structural discrepancies.

• Q uery Processor (QP): is responsible for receiving a user query

(m aster query) over a m aster v iew processing it and returning the

result to the user. It m ediates betw een a user query posed over the

m aster view and the underly ing distributed heterogeneous data

sources, to autom atically rew rite the query into sub-queries - called

local queries - w hich fit each local data source.

4.4 H eterogeneity issues in the SISSD system

In section 2.4 different types o f conflicts’ that may exist betw een a set o f

independently designed data sources are identified. In this section we will

show how the fundam ental types o f these conflicts are resolved in the

SISSD system . W e choose these types as a representative o f each group o f

these conflicts identified in Figure 2.3. A t the end o f this section we

77

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

present the conflict types identified in Figure 2.3 and state the conflict

types that can be handled by our system SISSD.

• N am ing conflicts (Table nam e conflicts, A ttribute nam e conflicts):

this type o f conflict can occur betw een table nam es or attribute

nam es w hen different designers use their ow n term inologies to

describe real w orld concepts. This m ay lead to synonym and

hom onym problem s. The form er occurs w hen tw o different nam es

are used by different designers to describe the sam e concept. For

exam ple one designer m ay represent a set o f em ployees as elem ent

EM PLO Y EE in one data source (say D S1), w hile another designer

m ay represent the sam e set as elem ent W O R K ER in another data

source (say DS2). In our approach we resolve this type o f conflict in

the follow ing way. W e m ap elem ents that are synonym s to the

elem ent w ith the sam e m eaning in the global schem a by assigning

the sam e index num ber generated autom atically for the global

schem a elem ent (m ore explanation for m ore inform ation on how

these index num bers are generated, see section 5.4.3) to the

elem ents that are synonym s in the local schem a structures. A

hom onym occurs w hen the sam e nam e is used by different designers

to represent unrelated concepts. For instance, the elem ent CO U RSE

in D S 1 m ay denote a set o f courses taken by a student, on the other

hand the elem ent C O U RSE in DS2 m ay refer to the available dishes

in a restaurant w here that student eats. Therefore to resolve this

conflict the hom onym elem ents are m apped to different elem ents in

the global schem a by assigning different index num bers generated

autom atically for the global schem a elem ents to the elem ents that

are hom onym s in the local schem a structures.

• Unit conflicts: conflicts o f this type arise w hen tw o sem antically

sim ilar elem ents are represented using different units and m easures.

For instance, em ployee salary in tw o data sources m ight be

78

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

represented in UK pounds in one data source and in US dollars in

the other. In our approach we resolve this type o f conflict, by

m apping elem ents having different units o f m easurem ent to

appropriate elem ents in the global schem a by assigning index

num ber o f that elem ent to the elem ents in the local schem a

structures w hich correspond to it and defining transform er functions

w hich convert data in the different units to the com m on unit

subscribed to by the global schem a.

• P recision conflicts: conflicts o f this type arise when two

sem antically sim ilar elem ents are represented using different

precisions. For exam ple, S tudent m ark takes an integer value from 1

to 100 in D S1,w hile Student grade takes a string value o f {A, B, C,

D, F} in DS2. This type o f conflict is usually reconciled by m eans

o f a m apping table as show n in Figure 4.2.

M arks G rades

81-100 A

61-80 B

41-60 C

21-40 D

1-20 F

Figure 4.2: M apping between M arks and Grades.

In our approach we resolve this type o f conflict, by m apping

elem ents having differing precision in their m easurem ents to

appropriate elem ents in the global schem a and defining transform er

functions to convert data to the type o f m easurem ent used by the

global schem a. In this case, the functions m ay have to do a table

lookup. In this lookup table an isom orphism (m apping) is defined

betw een the different precisions o f m easurem ent.

79

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

• O ne-to-M any E lem ent conflicts: a special case o f a conflict o f type

one-to-m any elem ents arises w hen inform ation captured in one

elem ent in the global schem a is equivalent to the concatenation o f

m ore than one elem ent in the local data sources. For exam ple, the

nam e o f person is broken into firs tn a m e and lastnam e in a local data

source DS1, while it is sim ply nam e in the global schem a. In our

approach, this type o f conflict is resolved by m apping the elem ents

in the local data source into corresponding elem ents in the global

schem a by assigning the index num ber generated autom atically for

the global schem a elem ent to the elem ents in the local schem a

structures w hich correspond to it and defining a function to

concatenate the elem ents in the local data source to get the elem ent

in the global schema.

• M any-to-O ne E lem ent conflicts: this type o f conflict occurs when

m ore than one elem ent in the global schem a corresponds to one

elem ent in a local data source. For instance, the address inform ation

m ay be represented as stree t, city , and postcode elem ents in the

global schem a, w hile a local data source DS1 represents it as a

single elem ent address. In our approach, we resolve this type o f

conflict by m apping each elem ent containing inform ation about the

address in the global schem a to the address elem ent in the local data

source DS1. This m apping is done by assigning the index num bers

generated autom atically for the global schem a elem ents which

contain the inform ation o f address to the elem ent address in the

local data source DS1 separated by com m a (,) and assigning

derivation functions to be associated with the index num bers

assigned to the local data source elem ent to allow these functions to

extract the required inform ation from the local data source elem ent.

In Figure 4.3 we sum m arise the types o f conflicts identified in Figure 2.3

that can be handled by our SISSD system and w hich can ’t be.

80

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

Schema Conflicts

C onflict Type H andled by SISSD

Table N am e Conflicts Yes
Table Structure C onflicts Yes

Table Constraint Conflicts N o
M ultiple Table C onflicts Yes
A ttribute N am e Conflicts Yes

M ultiple A ttribute C onflicts Yes
Table versus A ttribute C onflict Yes

O ne-to-M any E lem ent C onflicts Yes
M any-to-O ne Elem ent C onflicts Yes

Data Conflicts
D ata Type Conflicts Yes

U nit Conflicts Yes
Precision Conflicts Yes

Expression Conflicts Yes
Representation Conflicts Yes

G ranularity C onflicts Yes
D efault values conflict N o

Key Conflicts N o
Behavioral Conflicts N o
W rong data C onflicts N o

Figure 4.3: Sum m ary o f C onflicts supported by SISSD system.

There are types in Figure 4.3 that we have given a yes to but have not

described in this section how the SISSD system handles them . This is

because these types are m ore or less sim ilar to the cases described already.

4.5 An application exam ple

In order to clarify our approach, we introduce an exam ple w hich will be

used throughout to illustrate the key ideas. In a data integration system , we

have a set o f preexisting data sources w hich form the application 's dom ain.

Each o f these data sources m ay use different schem as to structure their data.

Therefore, each data source needs to be m apped to the relevant parts o f the

81

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

m ediated schem a. In our exam ple four publishers’ heterogeneous

distributed data source sites are used. A lthough all these data sources

contain inform ation about books, the data structures are different. O ur

objective is to create a uniform interface over these sites and provide the

required functionality to query these data sources in a uniform way. For

instance, a teacher or a student m ay look for a text book for a specific

course. In this case instead o f posing her/his query to each data source

individually, it is possible to pose the query to the unified view over these

different data sources.

Bookdata
schema tree

Book

Title Author Price

Name

Books

Book

Title Author Year Price

(a): tree structure for bookdata source (b): tree structure for books source

Bib schema tree Bookstore schema tree

Book

BookArticle

Publisher PriceTtfe Author editor|
EditionIsbn

\ / ! \
First Last First Affikation

Title Author year Title Year PublisherAuthorLast

(c): tree structure for bib source (d): tree structure for bookstore source

F igure 4.4: A p a r t o f the tree structure o f four data sources.

82

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

In this application exam ple (see Figure 4.4), the referenced data source

publishers are a relational database (bookstore.db) and three XM L

docum ents (bib.xm l, bookdata.xm l, books.xm l). Each data source contains

inform ation about available books, such as titles, authors, prices, and so on.

Therefore, the structure o f each site w as autom atically extracted and their

Schem a Structure D efinitions (SSD s) w ere defined. The Schem a Structure

D efinitions (SSD s) o f the participating data sources are described by XM L

Data Source D efinition Language (X D SD L). A part o f the tree structures

o f these data sources are show n in F igure 4.4.

83

C H A PTER 5

The m ediation process

The m ediation o f distributed heterogeneous structured and sem i-structured

data sources is proposed as a tool to overcom e logical heterogeneity

problem s w hich m ay occur w hen integrating data sources. It is a basic

consideration o f this thesis. By m ediation, we m ean m atching the schem a

elem ents w hich are logically equivalent but are represented in different

ways. In this chapter we introduce the m ediation process, which has the

follow ing steps: (1) generate the Schem a Structure D efinition (SSD); (2)

extract SSD com ponents and generate paths; (3) establish the m appings

and generate the m ediation inform ation (XM KB).

5.1 G enerating Schem a Structure Definition (SSD)

O ur data integration system SISSD supports the integration o f distributed

heterogeneous structured data residing in relational databases w ith sem i

structured data held in w ell-form ed X M L docum ents produced by internet

applications. The SISSD is intended to establish and evolve an XM L

84

CHAPTER 5. THE MEDIATION PROCESS

M etadata K now ledge Base (X M K B) increm entally to assist the Q uery

Processor in m ediating betw een user queries posed over the m aster view

and the local queries required to access the distributed heterogeneous data

sources. The XM KB is established w hen the first data source is jo ined to

the SISSD system. This is achieved by the sam e process as jo ins

subsequent data sources, by adding their data to the XM KB. The first step

in this process is to construct a Schem a Structure D efinition (SSD) for this

data source. For our purposes it is the structure o f the given data source

that is crucial for data integration. Therefore, we do not need all the details

o f the data source m etadata, but rather need to capture its essential features

so as to abstract only the structure o f the data source w hich m eets the basic

requirem ents o f our approach. Each data source’s Schem a Structure

D efinition (SSD) is described using the constructs o f an X M L D ata Source

D efinition Language (XD SDL). This is a sim ple schem a definition

language w hich describes and defines the relevant identifying inform ation

and the data structure o f a data source. This language can be used to

describe the structure and content o f structured data sources such as

relational databases and sem i-structured data sources such as the well-

form ed XM L docum ents.

A data source is called structured if it adheres to a w ell-defined schem a

that defines its com position out o f other data elem ents and the schem a has

the follow ing properties:

• It is defined using a type system .

• It is defined a priori, i.e., before a data elem ent is stored.

• It is explicit, i.e., it is stored separately from the data.

• It is rigid, i.e., the data elem ent m ust alw ays conform to the

structure.

85

CHAPTER 5. THE MEDIATION PROCESS

• It is exposed, i.e., it can be queried and used w hen querying data

elem ents.

Exam ples o f structured data are data stored in relational databases and

other databases m anaged by a DBM S. A query to structured data elem ents

is a structured query and is used to perform a precise search. A structured

query is based on the structure o f the data elem ents and the type system as

defined in the schem a.

A data source is called sem i-structured if it has a structure, but the

structure is not rigid, and/or the structure definition (or parts o f it) is not

necessarily separated from the data elem ent, i.e. it m ay be implicit. The

second issue is related to the w ay the schem a is defined. For relational

databases, the schem a is defined separately, and the data is stored

accordingly. For a sem i-structured data source, the schem a or parts o f it

m ight not (and cannot be) defined in this way, and m ay be "hidden” in the

data them selves.

The SSD o f a relational database is obtained by:

1. The nam es o f all the tables defined in the DB schem a are retrieved.

2. These tables are defined as elem ents in the target Schem a Structure

D efinition (SSD).

3. For each table, the attribute nam es are extracted and analysed, and

then these attributes are defined as child elem ents o f that table

elem ent in the target Schem a Structure D efinition (SSD).

The structure o f the XM L docum ent is autom atically detected in that each

elem ent is found in the docum ent, w hich elem ents are child elem ents and

the order o f child elem ents is then determ ined. The XM L docum ent is read

and the start tags for the elem ents are detected. Each start tag is checked,

as to w hether it has child elem ents or not: if it has then this elem ent is

defined as a com plex elem ent in the target Schem a Structure D efinition

8 6

CHAPTER 5. THE MEDIATION PROCESS

(SSD), otherw ise it is defined as a sim ple elem ent. The defined elem ents

in the target Schem a Structure D efinition (SSD) take the sam e name as the

start tags.

Algorithm: SSD generation for well-formed XML document
Input: well-formed XML document
Output: SSD
S tep l: get the root R. If it has child nodes, get its list o f children, L.

a) get the first node in L, N. For every other node N ‘ in L that
has the same tag as N do:
• copy and append the list o f children o f N' to the list o f

children o f N.
• delete N ’ and its subtree.

b) get the next child from L and process it in the same way as
the first child, N, in step (a).

Step2: R now has a new list o f children Lnew. Apply step (1) to
every node in

F igure 5.1: A lgorithm to generate SSD fo r X M L document.

The algorithm in Figure 5.1 show s the m ain steps in the process for

obtaining the SSD o f a w ell-form ed X M L docum ent, where the m etadata

are buried inside the data.

5.2 paths generation

The Schem a Structure D efinition (SSD) is itse lf an XM L docum ent. It is a

sequence o f com ponents w here each com ponent is an elem ent o f sim ple or

com plex type. W e m odel SSD as a tree structure, w hose nodes are the

com ponents o f the corresponding SSD. Each com ponent corresponds to

either the occurrence o f a tag, or to the content o f a tag, and so on. W e

form ulate an SSD M odel, through w hich the SSD can be described. W e

consider a set o f nodes N that can be represented as: E for elem ent names.

W e do not aim at a com plete form alization o f all the details o f the Schem a

Structure Definition, but aim to capture its essential m odel features which

87

CHAPTER 5. THE MEDIATION PROCESS

m eet the basic requirem ents o f our approach. W e consider the follow ing

functions to be the basic set for characterizing an SSD:

• root: 0 —► iV returns the unique root node o f the docum ent,

• children: N —► [TV] returns the ordered list o f children o f a node, or

the em pty list [] in the case o f a lea f node,

• tag: N —* E returns the unique tag (e.g. elem ent nam e) o f a node.

An SSD M odel o f a Schem a Structure D efinition is a tree that holds a set

o f nodes N w hich can be a set E o f elem ent names. These elem ents are

either sim ple type Ts or com plex type Tc, where

T = T s k j Tc

For exam ple in Figure 5.2, a book title is represented by the title elem ent

(a sim ple type, i.e. Ts), while the author elem ent is defined as a com plex

type (Tc).

E l e m e n t b i b
c o m p l e x T y p e

E l e m e n t b o o k
c o m p l e x T y p e

E l e m e n t t i t l e
E l e m e n t a u t h o r

c o m p l e x T y p e
E l e m e n t l a s t
E l e m e n t f i r s t

E l e m e n t e d i t o r
c o m p l e x T y p e

E l e m e n t l a s t
E l e m e n t f i r s t
E l e m e n t a f f i l i a t i o n

E l e m e n t p u b l i s h e r
E l e m e n t p r i c e

F igure 5.2: The SSD M odel structure fo r the bib schem a structure.

8 8

CHAPTER 5. THE MEDIATION PROCESS

In order to locate the corresponding nodes o f a source’s tree structures, we

need to generate a unique path for each elem ent o f the Schem a Structure

D efinitions (SSDs). Due to the possible occurrence o f the sam e nam e

several tim es in the same schem a tree structure, this path uniquely

identifies the node. Hence, nam ing conflicts can be easily resolved. This is

achieved by form ing and then searching the SSD tree structure model o f

each schem a and extracting out the com ponents o f interest. The SSD path

generation process is based on the SSD tree structure model discussed

above. The algorithm for schem a path generation is show n in Figure 5.3.

Algorithm: schema paths generation
Input: SSD schema
Output: SSD paths
Stepl: parse SSD;
Step2: for each parsed SSD do

1. construct an SSD tree structure model M\
2. perform a depth-first traversal on M :

- extract the value o f each node in set E;
- give a unique number to each extracted value;
- construct a CHILD function C for the extracted values;

3. perform a depth-first traversal on C;
4. generate a unique path for each node in C;

end do.

Figure 5.3: A lgorithm to generate SSD paths.

The process o f schem a path generation is achieved by:

1. The SSD is parsed and its tree structure model formed.

2. The value o f each node that belongs to the set E is extracted and a

unique num ber is given to each extracted value.

3. A CH ILD function is constructed to obtain the children o f each

extracted value o f each node.

89

CHAPTER 5. THE MEDIATION PROCESS

Figure 5.4 show s the constructed tree structure m odel w ith the unique

num ber given to each node for the bib data source. W e observe that the

node book (1 . 1) is a com plex type, w ith an associated set o f children (here

represented as an array) [title 1 . 1 . 1 , author 1 . 1 .2 , editor 1.1.3, pub lisher

1.1.4, p rice 1.1.5].

Elem ent bib 1
com plexType

Elem ent book 1.1
com plexType

E lem ent title 1.1.1
E lem ent author 1.1.2

com plexType
E lem ent last 1.1.2.1
E lem ent first 1.1.2.2

Elem ent editor 1.1.3
com plexType

Elem ent last 1.1.3.1
Elem ent first 1.1.3.2
Elem ent affiliation 1.1.3.3

Elem ent publisher 1.1.4
Elem ent price 1.1.5

F igure 5.4: The tree structure m odel fo r bib SSD.

The tree structure m odel is navigated to generate the unique path for each

node starting from the root. Figure 5.5 show s a part o f the generated paths

o f the bib data source elem ents w ith their num bering. The num ber o f digits

in this unique num ber indicates the elem ent’s level in the tree. For

exam ple the elem ent with unique num ber 1 . 1 .3 . 2 is on the fourth level.

5.3 paths correspondence

O ur integration system is based on schem a m appings which are used to

translate queries posed over the m aster view into sub-queries - called local

queries - w hich are appropriate to a local data sources. The goal o f a

90

CHAPTER 5. THE MEDIATION PROCESS

schem a m apping is to capture structural and sem antic as well as

term inological correspondences betw een schem as.

1 /bib
1.1 /bib/book
1.1.1 /bib/book/title
1.1.2 /bib/book/author
1.1.2.1 /b ib/book/author/last
1.1.2.2 /bib/book/author/flrst
1.1.3 /b ib/book/editor
1.1.3.1 /bib/book/editor/last
1.1.3.2 /bib/book/editor/flrst
1.1.3.3 /bib/book/editor/affiliation
1.1.4 /bib/book/publisher
1.1.5 /bib/book/price

F igure 5.5: The genera ted p a th s o f the bib data source.

The m ain aim o f a data integration system is to allow a user to query

distributed heterogeneous data sources. Its users can only view the global

schem as while the data is held in the local data sources. Thus,

relationships or m appings from global schem a concepts to local data

source schem a concepts m ust be established [109]. M appings are often

specified as high-level, declarative assertions that state how groups o f

related elem ents in a data source schem a correspond to groups o f related

elem ents in the global schem a [149].

The schem a m apping is defined as a relation 2 x r, through which each

com ponent o f the global schem a is m apped to a corresponding com ponent

o f a local schem a. These m appings are established by identifying

sem antically sim ilar concepts (i.e. schem a com ponents) in the schem as

[139]. In our integration system SISSD, these m appings are used to

generate valid local queries. The schem a m apping process is not

91

CHAPTER 5. THE MEDIATION PROCESS

com pletely autom ated in our system , since this process required a hum an

intervention to provide som e inform ation about how different elem ents

correspond to each other [14, 16].

In general, the m ajor difficulty o f integrating different data sources is the

establishm ent o f m appings betw een the global schem a and the local data

source schem as. W e believe that the developm ent o f a schem a m apping

should be based on hum an user (integrator) interaction. Since two sim ilar

term s m ay refer to different concepts and thus m ay not have the sam e

m eaning, only a skilled hum an user is able to guarantee the sem antic

consistency o f such a m apping. C onsequently , the interactions o f hum an

integrators are an essential part o f the schem a analysis and m apping

process [18].

The m ain approaches to establishing the m apping betw een each data

source schem a and the global schem a, are classified into two categories:

global-as-view (G A V) and local-as-view (LA V) [67, 80, 103].

In the GAV approach, each item in the global schem a is defined as a view

over the data source schem as. The G A V approach greatly facilitates query

reform ulation as it sim ply becom es a view unfolding process. H ow ever

handling the addition or rem oval o f a data source in a GAV approach is

difficult as it requires m odification o f the global schem a to take into

account the changes.

In the LAV approach, each item in each data source schem a is defined as a

view over the global schem a. Thus each individual data source m ust

provide a description o f its schem a in term s o f the global schem a, m aking

it very sim ple to add or rem ove data sources, while m aking the query

reform ulation process harder.

C learly both o f these approaches have positive and negative consequences,

but LAV is considered to be m uch m ore appropriate for large scale ad-hoc

92

CHAPTER 5. THE MEDIATION PROCESS

integration because o f the low im pact changes to the data sources have on

the system m aintenance. A lso a LA V approach provides a m ore flexible

environm ent w hich can m eet u se rs’ evolving and changing inform ation

requirem ents across the disparate data sources available over the global

inform ation infrastructure (Internet). It is better suited and scalable which

suits integrating a large num ber o f autonom ous read-only data sources

accessible over com m unication netw orks. Furtherm ore the LAV approach

provides a flexible environm ent able to accom m odate continual change

and update o f data source schem as. This m akes it especially suitable for

X M L docum ents on W eb servers, since these rem ote docum ents are not

static and are often subject to frequent m odification. It is also better able to

support a dynam ic environm ent, since it allow s data sources to be added to

or rem oved from the integration system w ithout the need to restructure the

global schem a. H ow ever, GA V is the preferred approach w hen the set o f

data sources being integrated is know n and stable [14, 85].

In SISSD, a local-as-view m apping description is used to map betw een

each data source schem a and the global schem a. This m akes handling the

addition or rem oval o f a data source easy. W hen generating the XM KB,

the m apping direction is changed from the original local-as-view to a

global-as-view , to m ake query rew riting straightforw ard. A global query

from a user is then translated into local queries on data sources by looking

up the corresponding paths in the XM K B. Hence the SISSD com bines the

virtues o f both the GA V and LA V approaches.

In our approach, the designer specifies the global schem a (m aster view),

w here the basic notions in the application dom ain are described. The user

can alternatively choose the Schem a Structure D efinition (SSD) o f any

data source w hich m eets his/her requirem ents to be the m aster view , since

finding the correspondences am ong the schem as' elem ents often depends

on the application context. Hence, m atching tw o elem ents depend on

deciding how they correspond to each other, i.e. i f they are logically

93

CHAPTER 5. THE MEDIATION PROCESS

equivalent. This can be determ ined w hen they refer to the sam e real-w orld

entity, or can be inferred by perform ing specific operations. For exam ple,

two elem ents that share the sam e nam e can refer to different real-w orld

entities. The reverse problem also often occurs in that two elem ents w ith

different nam es actually refer to the sam e real-w orld entity. For these

reasons and others, m atching is often a subjective process, depending on

the application. Hence, a skilled integrator is often involved in the

m atching process because o f the need to interpret the term s' sem antics and

resolve problem s.

C onsequently in this project, the process o f constructing the global schem a

is not fully autom ated. The application dom ain involves a set o f data

sources that are associated w ith heterogeneous schem as. The integration is

achieved through a virtual global schem a (m aster view) that characterizes

the underlying local data sources. W e often use an assum ption o f paths

instead o f elem ents, because the Schem a Structure D efinitions are trees

and each elem ent is identified uniquely by its path in the tree.

For a node x in a tree structure, the path P to the node x is the sequence o f

nodes from the root node o f the tree to the node x itself. The path to the

first nam e o f an author o f a book could be:

P(first_nam e) — /book/author/full_nam e/first_nam e.

Thus to express a correspondence betw een a global path and a set o f paths

in a data source schem a, we need to study more deeply the sem antics o f

paths. W e observe that each path considered can be described by a

sentence in natural language, e.g.:

The f ir s t nam e o f the nam e o f the author o f a given book is John,

w here John is the content o f the elem ent first-nam e on the path from the

root node to the first-nam e node. Hence, as the first step in our data

94

CHAPTER 5. THE MEDIATION PROCESS

integration system we need to m atch paths o f the Schem a Structure

D efinitions o f new data sources w ith paths o f the global schem a to

determ ine i f they correspond.

D efinition 5.1.1 (corresponding paths)

Two paths P j and P 2 correspond, if and only if, their respective

inform ation capabilities are logically equivalent, i.e. ICap(Pi)<=> ICap(Pz).

W e denote the correspondence relation w ith «.

It is clear that building such a fram ew ork is hard to autom ate. Therefore,

any decision about the sem antic correspondence o f paths or sets o f paths

will be based on an analysis by the integrator.

U sing the corresponding paths definition (D efinition 5.1.1) we m atch

paths in the global and data source schem as if they correspond. Thus if:

- Pi is a set o f paths in the global schem a G.

- Pj is a set o f local data source schem a paths.

- Sk is a set o f local data sources.

Then, a set o f paths can be m atched if they satisfy any one o f the

follow ing conditions:

1. I f Pi « Pj, such that (0 < i, j < n).

2. There is a function f : G(Pi) —* Sk(Pj), where G(Pt) « f (S/^Pj)), such

that (0 < i, j , k < ri).

3. There is a function g : S ^P j) —► G(Pi), where Sk(Pj) « g(G (P/)), such

that (0 < i, j , k < n).

Hence, the equivalent paths in schem as are determ ined by analyzing the

inform ation capabilities o f each elem ent path. Then, in order to resolve an

CHAPTER 5. THE MEDIATION PROCESS

identified type o f heterogeneity conflict, functions f or g can be provided

to perform specific operations w hich m atch related elem ents despite the

conflict. These functions are im plem ented as a user-defined function

(UDF). In fact, a UD F definition is not provided during the global schem a

construction stage, it is defined w hen developing the query translation

m odule. It is explicitly defined by the designer based on an analysis o f

path equivalences.

In our exam ple scenarios, the four Schem a Structure Definitions use

different structures and our goal is to establish m appings betw een the

global schem a elem ents and the local data sources’ SSD elem ents to

capture structural and sem antic as well as term inological correspondences

betw een the schem as. The analysis o f the data sources' elem ents produces

a set o f correspondence assertions by using the above correspondence

conditions.

C orrespondence 1 (C l): an analysis o f the inform ation capabilities o f the

data sources presented in section 4.5, books Schem a Structure D efinition

(SSD j) (see Figure 4.4(b)), bib (SSD 2) (see Figure 4.4(c)), SCM FM A

(SSD 3) (see Figure 4.4(d)) and bookdata (SSD 4) (see Figure 4.4(a)) shows

that they are logically equivalent. This is a case o f nam ing conflicts in the

definitions. Therefore, in order to resolve this conflict we need to establish

a m apping betw een the global path and the corresponding path in the local

SSD w hich has the sam e m eaning. The sam e num ber is specified for these

paths and m ust be unique as it identifies the path. The correspondence

assertion for these paths is as follows:

SSD i/books tore ~ SSD 2/bib ~ SSD 2/b o o k « S S D fb o o kd a ta => global/book

C orrespondence 2 (C2): the analysis o f the inform ation capability o f

/book/editor/full_nam e in the global schem a (see Figure 5.13) shows that

this path corresponds to both

96

CHAPTER 5. THE MEDIATION PROCESS

/bib /book/editor/last and /b ib/book/editor/first

in bib (SSDz). This is a case o f structural conflicts in the definitions. In

order to resolve this conflict, a function f should be provided in w hich a

concatenate operation is perform ed w hich m erges the first and the last

nam e elem ents to get the full nam e. Then, as in C l, a unique num ber m ust

be assigned to all o f the correspondence paths. In this case the function is:

j{S S D 2/bib/book/editor/last, SSD 2/bib/book/editor/first) =>

global/book/editor/fu ll nam e

C orrespondence 3 (C3): in th is case, an author nam e o f a book is

represented in the global schem a as first-nam e and last-nam e while in the

books Schem a Structure D efin ition (SSD]), the SCM FM A (SSD 3) and the

bookdata (SSD4) it is represented as full-nam e. In order to resolve this type

o f conflict, we need a unique num ber for these tw o paths in the global

schem a w hich are the first-nam e path and the last-nam e path. Also, a

function f is needed for SSD], SSD 3 and SSD 4 w hich perform s an operation

to split the full-nam e value so that it can answ er a global query for an

au thor’s nam es. H ence, C3 is form ulated as:

f S S D j/bookstore/boofc/author) ^ f S S D 3/ scmfma/book/author) «

j \S S D 4/bo okdata/book/author/nam e) =>

global/book/author/full_nam e/first name,

global/book/author/full name/last_name

5.4 C reating X M K B

In order to prepare the local queries for a query posed against the global

schem a (m aster view); the data sources relevant to a given query m ust be

identified. For this task, the X M L M etadata Know ledge B ase (XMKB) was

developed to hold the correspondences betw een the com ponents o f the

data sources. For each com ponent o f the m aster view , the objective is to

97

CHAPTER 5. THE MEDIATION PROCESS

record the set o f com ponents having the sam e m eaning in the local data

source Schem a Structure D efinitions and to provide the discrepancy

resolution function if it is needed to m atch the inform ation. The X M KB is

used in m ediation betw een the global and local schem as to overcom e

heterogeneity conflicts in the data sources' schem as and thus to assist the

Query Processor in m ediating betw een user queries posed over the m aster

view o f the distributed heterogeneous data sources, when it translates such

queries into sub-queries w hich suit a local data source, and to integrate the

results from the data sources o f the query. In the follow ing subsections,

we:

1. D escribe the structure o f the X M K B;

2. Present the generation process o f the XM KB;

3. D escribe the m echanism for generating index num bers for the

m aster view (global schem a) elem ents; and

4. D escribe the different types m apping betw een elem ents.

5.4.1 The Structure o f X M K B

The X M L M etadata K now ledge B ase (X M K B) contains several types o f

m etadata about each data source. The first o f these types o f m etadata is a

structural and sem antic description o f the contents o f the data sources. It is

an X M L docum ent com posed o f tw o parts. The first part contains

inform ation about data source nam es, types and locations. The second part

contains m eta-inform ation about the relationships o f paths in the data

sources, and the function nam es for handling sem antic and structural

discrepancies. In the SISSD integration system we have developed a

technique for sem i-autom atic creation o f m appings betw een the m ediated

schem a o f the data integration system and data sources. W e have defined a

sim ple declarative m apping language called XM L M etadata K now ledge

Base M apping Language (X M K B M L) for specifying the m apping

betw een the virtual m aster view elem ents and the Schem a Structure

98

CHAPTER 5. THE MEDIATION PROCESS

D efinitions (SSD s) elem ents o f the data sources. The X M K BM L m apping

specifications are written in XM L. X M K BM L, as a m arkup language in its

ow n right, provides a vocabulary to describe XM KB m appings. The tw o

m ain elem ents in this vocabulary are D S information and M ed com ponent.

The first one represents the data source’s inform ation (nam es, types and

locations), w hile the second one represents the m apping itse lf it is created

by linking the global paths and the corresponding local paths. Figure 5.6

presents a sam ple o f the X M L M etadata K now ledge Base (X M K B) and

Figure 5.7 show s the syntax o f the X M K B M L, given as an XM L schem a

definition. The <D S_inform ation> elem ent contains data source nam es,

types and locations; its elem ent has an attribute called num ber which holds

the num ber o f data sources participating in the integration system (3 in the

exam ple in Figure 5.6) and also has child elem ents called <D S_Location> .

Each <DS_Location> elem ent contains the data source name, its type

(relational database or X M L docum ent) as an attribute value and the

location o f the data source as an elem ent value. This inform ation is used

by the Query Processor to specify the type o f sub-query to be generated

(SQ L if the data source type is a relational database or X Q uery if it is an

X M L docum ent) and the data source location that the system should

subm it the generated sub-query to.

The <M ed_com ponent> elem ent in Figure 5.6 contains the path m appings

betw een the m aster view elem ents and the local data source elem ents, and

the function nam es for handling sem antic and structural discrepancies. The

m aster view elem ent paths are called <source> elem ents, while the

corresponding elem ent paths in the local data sources are called <target>

elem ents. The <source> elem ents in the XM KB docum ent have an

attribute called path which contains the path o f the m aster view elem ents.

These <source> elem ents have child elem ents called <target> which

contain the corresponding paths for the m aster view elem ent paths in each

local data source, or null if there is no corresponding path. The <target>

99

CHAPTER 5. THE MEDIATION PROCESS

e l e m e n t s in t h e X M K B d o c u m e n t h a v e t w o a t t r i b u t e s . T h e o n e i s c a l l e d

nam e a n d c o n t a i n s t h e n a m e o f t h e l o c a l d a t a s o u r c e , w h i l e t h e s e c o n d i s

c a l l e d fu n a n d c o n t a i n s t h e f u n c t i o n n a m e t h a t i s n e e d e d t o r e s o l v e

s e m a n t i c a n d s t r u c t u r a l d i s c r e p a n c i e s b e t w e e n t h e m a s t e r v i e w e l e m e n t

a n d t h e l o c a l d a t a s o u r c e e l e m e n t c o n c e r n e d , o r n u l l i f t h e r e i s n o

d i s c r e p a n c y o r n o a v a i l a b l e f u n c t i o n .

<?xml version='1.0* encoding^UTF-B' ?>
- <XMKB>

- <DSJnformation number=‘3'>
<DS_Location narre^books.xml' type='XML document">h t tp : / /www.w3schools.com/xqueryc/DS_Location>
<DS_tocation name='bib.xmr type="XML docum ent“>C:\prototype\docc/DS_Location>
<DS_Location name^SCMFMA' type='Relational Database'>jdbc:orade:thin:®helot:1521:orade9</D5_tocation>

</DSjnformation>
- <Med_component>

- <source path=7book,>
<target name=‘books.xm l' fun='Nuir>/bookstore/book</target>
ctarget name='bib.xmr fun='Nulli‘> /b ib/book</target>
<target name="SCIV1FMA, fun='Null'>/scmfma/book</target>

</source>
- <source path=7book/price,>

ctarget name='books.xml* fun=‘R ateE xdiange‘>/bookstore/book/price< /target>
ctarget name^bib-xml" fun=“RateExchange‘> /b ib /book/pricec/target>
ctarget name='SCMFMA' fun=,Null*>Nulk/target>

</source>
- csource path=7book/author'>

ctarget name="books.xmr fun='Null">Nullc/target>
ctarget name=,bib.xm r fun="Null“> /b ib /book/authorc/target>
ctarget name=’SCMFMA' fun=’Nuir>Nullc/target>

</source>
- csource path=7book/author/full_nam e'>

ctarget name="books.xmr fun=,Null,>Nullc/target>
ctarget name="bib.xml" fun="Nullll>Mullc/target>
ctarget name=,SCMFMA' fun=,Null">Null</target>

c/source>
- csource pa th= 7book/author/fu ll_nam e/first_nam e,>

ctarget name=*books.xml" fun="firstName">/bookstore/book/authorc/target>
ctarget name='bib.xmr fun=*Nulla> /b ib /book/author/firstc/target>
ctarget name='SCMFMA' fun=firstNam e">/scm fm a/book/authorc/target>

c/source>

Figure 5.6: A sam ple XMKB.

5.4.2 T he g en era tio n process o f the X M K B

T h e b u i l d i n g o f t h e X M K B is p e r f o r m e d t h r o u g h a s e m i - a u t o m a t i c p r o c e s s .

X M K B i s g e n e r a t e d b y u s i n g t h e m a p p i n g s b e t w e e n t h e m a s t e r v i e w a n d

100

http://www.w3schools.com/xqueryc/DS_Location

CHAPTER 5. THE MEDIATION PROCESS

t h e l o c a l d a t a s o u r c e S S D s , a n d it i n c l u d e s t h e d a t a s o u r c e ’ s i n f o r m a t i o n

(n a m e s , t y p e s a n d l o c a t i o n s) , m e t a - i n f o r m a t i o n a b o u t t h e r e l a t i o n s h i p s o f

p a t h s (a p a t h f o r e a c h n o d e s t a r t i n g f r o m t h e r o o t) in t h e d a t a s o u r c e s , a n d

f u n c t i o n n a m e s f o r h a n d l i n g s e m a n t i c a n d s t r u c t u r a l d i s c r e p a n c i e s . T h e

X M K B is b u i l t in a b o t t o m - u p f a s h i o n b y e x t r a c t i n g a n d m e r g i n g

i n c r e m e n t a l l y t h e m e t a d a t a o f t h e d a t a s o u r c e s .

<?xml version='1.0" encoding="UTF-8" standalone="yes‘ ?>
<xs; schem a xmlns:xs=nh ttp : //w w w .w 3 .o r g /2 0 0 1 /X M L S c h e m a “ elemBntFormDefault='qualified“>
- <xs:elem ent name=“XMKB">

- <xs:complexType>
- <xs:sequence>

- <xs:elem ent name=“DS_inform ation">
- <xs:complexType>

- <xs:sequence>
- <xs:elem ent name=“DS_Location" maxOccurs=“unbounded">

- <xs: complexType mixed="true">
<xs: attribute name=”nam e" type=“x s:s tr in g “ use="required" />
<xs:attribute name="type" type= " xs:str ing“ use="required" />

</xs:com plexType>
</xs:elem ent>

< /xs:sequence>
<xs: attribute nam es’number" type=" xs:str ing“ use="required"/>

</xs;com plexType>
</xs:elem ent>

- <xs: element nam e="M ed_com ponent">
- <xs;complexType>

- <xs:sequence>
- <xs:elem ent name="source" m axO ccurs="unbounded“>

- <xs:complexType>
- <xs:sequence>

- <xs:elem ent name="target* maxOccurs="unbounded">
- <xs: complexType mixed="true,,>

<xs:attribute name="name" type=“xs:string" u se=“required"/>
<xs:attribute nam e=Bfun" type="xs:string" use="required" />

</xs:com plexType>
</xs:e!em ent>

< /xs:seq uence>
<xs: attribute nam e="path“ type=" xs:str ing“ use=“required" />

</xs:com plexType>
</xs:elem ent>

< /xs:sequence>
</xs:com plexType>

</xs:elem ent>
</xs:sequence>

</xs: complexT ype>
</xs:elem ent>

</xs:schem a>

Figure 5.7: The XM KB XML schema definition.

T h e X M K B is a n X M L d o c u m e n t t h a t c o n t a i n s t h e m a p p i n g s b e t w e e n

r e l a t e d h e t e r o g e n e o u s s c h e m a s ' p a t h s a n d t h e r e q u i r e d u s e r - d e f i n e d

f u n c t i o n s . I t c a n b e e x p r e s s e d a s f o l l o w :

101

http://www.w3.org/2001/XMLSchema%e2%80%9c

CHAPTER 5. THE MEDIATION PROCESS

X M K B = P A T H S FU NCTIO NS;

PATHS: G(P;) - > Sj(Pk);

FU NCTIO NS: G (P ;) — S fU D F);

Where UDF = function-name | null, G(P) is a set of global paths, Sj is a set of
local sources, Pk is a set of source paths. Such that: i,j, k e {/, ... n}.

It can be seen from this definition that the XM KB is expressed as a set o f

m appings. A UDF (user-defined function) nam e is provided when a

function is explicitly defined by the designer to perform a specific

operation. The need to provide a U D F depends on the application context

and the kind o f heterogeneity conflict to be resolved. The exam ples in the

next subsection show how such a function is built. The output o f the

m ediation process is an X M L docum ent containing the m apping o f the

source’s corresponding paths, a long w ith the function nam es (UDF).

Each data source (relational database o r XM L docum ent) has its own SSD

in X M L form at constructed by the M eta-data Extractor (M DE). W e

assum e that elem ents in local data sources do not contain attributes. This

im plies that data source SDDs can be represented as n-ary trees. In the

generation process o f an X M K B , the basic idea is to establish the

m appings betw een schem as paths. These m appings capture the

heterogeneity o f the various data sources. O ur approach involves m apping

paths in the m aster view to (sets of) paths in the local data source SSDs,

though we often speak o f elem ents instead o f the paths that lead to these

elem ents. We m atch an elem ent in the m aster view with elem ents in the

local data source SSDs, by generating an index num ber for each elem ent

in the m aster view tree and then assigning these index num bers to the

elem ent(s) with the same m eaning in the local schem a structure trees.

Hence elem ents w ith the sam e num ber have the sam e m eaning. By

collecting together all elem ents w ith the sam e num bers, the source and

target paths can be generated autom atically, and the X M KB can be easily

102

CHAPTER 5. THE MEDIATION PROCESS

constructed. An especially convenient special case is w here an elem ent in

the m aster view exactly m atches one in a local SSD, in that its field has

the sam e m eaning as the one in the m aster view. E lem ents in local SSDs

should not appear in the X M K B if their m eaning does not relate to any

elem ent in the m aster view.

C onstructing the X M KB m anually is an error prone and tedious job , so

m achine support is highly desirable. H ence, we have developed a system

that autom atically establishes and evolves an X M KB increm entally. This

system has been built to act as a tool w hich assists a m eta-user (who does

the m etadata integration) to describe m appings betw een the m aster view

and local data sources. This tool parses the m aster view to generate

autom atically a unique index num ber for each elem ent and parses local

SSDs to generate a path for each elem ent, and produce a convenient GUI.

By using the GUI, index num bers are assigned to m atch local elem ents to

corresponding m aster elem ents and to specify the function nam es which

are needed to resolve any heterogeneity conflicts by perform ing specific

operations. These functions can be built-in or user-defined functions. The

X M KB is then generated from the m appings by com bination over index

num bers. The algorithm in F igure 5.8 show s the m ain steps in the

generation process o f the XM KB.

For exam ple, Figure 5.9 presents part o f a GUI for the local SSD show n in

Figure 5.10. The first colum n in Figure 5.9 is used to assign the unique

index num bers for m aster view elem ents to the equivalent elem ents in the

local SSD. E lem ents w ithout an equivalent index num ber are not included

in the XM KB. The second colum n is used to specify the function nam es

which are needed for handling sem antic and structural discrepancies.

This approach provides a flexible environm ent able to accom m odate the

continual change and update o f data source schem as, and is especially

suitable for XM L docum ents on web servers since these rem ote

103

CHAPTER 5. THE MEDIATION PROCESS

docum ents are not static and are often subject to frequent update. The

SISSD gives flexibility to rem ove any data source schem a from the

X M KB and then add this data source again w ith an updated or altered

schem a w ithout any other im pact on the XM KB or the need to regenerate

it from scratch.

Algorithm : XMKB generation process
Input: master view, data sources Schema Structure Definitions

(SSDs)
Output: XML Metadata Knowledge Base (XMKB)
S tep l: generate a unique index number for each master view

element;
Step2: V Schema Structure Definitions (SSDs) do

generate path for each element;
assign the index number for the equivalent local

Schema Structure Definition (SSD) paths;
specify a UDF name if there is an operation required;

end do;
Step3: collect local paths with their global path, according to the

assigned Index numbers;
Step4: if the data source is the first one joining to the integration

system
then

establish an XMKB for capturing these mappings
information;

else
update an XMKB for capturing these mappings
information;

F igure 5.8: A lgorithm fo r X M K B generation process.

5.4.3 Index num ber generation for the m aster view elem ents

The generated index num bers for the m aster view elem ents are used to

m atch local elem ents to corresponding m aster elem ents. W e em ploy a

m echanism to generate such index num bers using JD O M technology. By

applying this m echanism , a unique index num ber is generated for each

elem ent in the X M L docum ent w hatever the nesting com plexity o f the

104

CHAPTER 5. THE MEDIATION PROCESS

d o c u m e n t . T h i s m e c h a n i s m u s e s J D O M t o r e a d a n d p a r s e t h e m a s t e r v i e w

a n d g e n e r a t e a t r e e s t r u c t u r e f o r it . B y u s i n g t h e t r e e s t r u c t u r e , t h e r o o t

e l e m e n t n o d e o f t h e m a s t e r v i e w i s i d e n t i f i e d a n d t h e n u m b e r 1 i s a s s i g n e d

t o it. F o r e a c h e l e m e n t in t h e m a s t e r v i e w i n c l u d i n g t h e r o o t e l e m e n t , t h e

c h i l d r e n o f t h i s e l e m e n t a r e o b t a i n e d a n d t h e n a s s i g n e d a s e q u e n t i a l

n u m b e r s t a r t i n g f r o m 1 f o r e a c h c h i l d t o r e p r e s e n t t h e o r d e r o f t h e c h i l d r e n

f o r t h a t p a r e n t . B y c o m b i n i n g t h e n u m b e r g i v e n t o e a c h c h i l d w i t h t h e

i n d e x n u m b e r o f i t s p a r e n t s e p a r a t e d b y d o t (.) w e p r o d u c e t h e u n i q u e

i n d e x n u m b e r o f t h i s c h i l d . F o r e x a m p l e , i f t h e r o o t e l e m e n t h a s f o u r c h i l d

e l e m e n t s , t h e i n d e x n u m b e r o f t h e f i r s t c h i l d e l e m e n t w i l l b e 1.1 a n d t h e

i n d e x n u m b e r o f t h e s e c o n d c h i l d e l e m e n t w i l l b e 1 .2 , a n d s o o n .

F u r t h e r m o r e , i f t h e e l e m e n t w i t h i n d e x n u m b e r 1 .2 .1 h a s t w o c h i l d r e n , t h e

i n d e x n u m b e r f o r t h e f i r s t c h i l d w i l l b e 1 . 2 . 1 . 1 a n d t h e i n d e x n u m b e r f o r

t h e s e c o n d c h i l d w i l l b e 1 . 2 . 1 . 2 . T h e a l g o r i t h m in F i g u r e 5 . 1 1 s h o w s t h e

m a i n s t e p s in t h e g e n e r a t i o n o f t h e i n d e x n u m b e r s f o r t h e m a s t e r v i e w .

Data Source Nam e: bib.xml

Data Source Location: C:\prototype\doc

Data Source Type: XML document

bib

book

title

author

la s t

f i r s t

editor

l a s t

f i r s t

affiliation

publisher

price

Add

Add

Add

Add

Add

Add

Add

Add

Add

Add

Add

Submit Clear Cancel

F igure 5.9: A G U I fo r Schem a Structure D efinition shown in F igure 5.10.

105

CHAPTER 5. THE MEDIATION PROCESS

<?xml version=" 1. encoding = " U T F - 0 " ?>
— <schema_information>

— <data_source_information>
<name>bib.xml</name>
<location>C :\prototype\doc</location>
<type>XML docum entc/type>

</data_source_information>
— <structure>

— <element name = "bib">
— <element name=‘'book">

<element name="title" />
- <element name="author">

<element name = "last" /:>
<element name = ,,first" />

</element>
- <element name="editor">

<element name = "last" />
<element name="first" />
<element name="affiliotion" />

</element>
celement name="publisher" />
<element name="price" />

c/element>
</element>

</structure>
</schema_information>

F igure 5.10: Schem a S tructure D efin ition (SSD) o f bib XM L document.

Algorithm-. Index num bers generation process for m aster view elements

Input: master view
Output: unique index number for each master view element
S tep l: parse a given master view and generate a tree structure

for it;

Step2: identify root element;
Step3: assign number 1 for the root element;
Step4: V elements in the master view do

get all children o f this element;
assign sequential number starting from 1 for each child;
combine the number given for each child with the
index number o f its parent separated by dot;

end do;

F igure 5.11: A lgorithm to gen era te index numbers.

106

CHAPTER 5. THE MEDIATION PROCESS

book

/ — author \ title editorprice

fuH name
1.2.1

affiliation full name
16.2

rst_name
1.2.1.1

Figure 5.12: The m aster view tree structure with index numbers.

F i g u r e 5 . 1 2 s h o w s t h e t r e e s t r u c t u r e w i t h t h e i n d e x n u m b e r s o f t h e m a s t e r

v i e w s h o w n in F i g u r e 5 . 1 3 .

<?xml version="1.0" encoding="UTF-0" ?>
- <element name=Mbook">

* <element name="price" />
- <element name="author">

K- <element name=,lfull_name">
<element name="first_name" />

<element name="last_name" />
</e lement>

</element>
<element name="title" />
<element name="year" />
<element name="publisher" />

- <element name="editor">
<element name=Maffiliation" />
<element name="full_name" />

</e lement>
</element>

Figure 5.13: The M aster View.

107

CHAPTER 5. THE MEDIATION PROCESS

5.4.4 M apping cases between elem ents

W e can classify the cardinality o f m apping cases as the num ber o f paths

that correspond to each other, i.e. the num ber o f participating paths in each

m apping. T he m apping betw een the correspondence paths can be

expressed in the follow ing form:

GOP,) — Sj(Pk);

Where G(P,) is a set o f global paths, Sj is a set o f local sources, Pk is a set of local
paths, such that: i,j, k e{7, ... n }.

The m apping cardinality can then be expressed as follows:

• O ne to one m apping: i f there 3! Pi e G(P,) corresponding to

3! Pk e Sj(Pk).

• O ne to N m apping: i f there 3! P t e G(Pi) corresponding to

3 (Pk > 7) e Sj(Pk).

• N to one m apping: i f there 3 (T3, >7) e G(Pi) corresponding to

3 ! /> * e Sj(Pk).

Several m apping cases w ere investigated in which conflicts may occur

betw een the schem a paths. For exam ple, a local data source may represent

author nam es as full nam es, w hile the m aster view separates the first and

last nam es. In this case, the answ er from the local data source m ust be split

up if a query is to retrieve the first nam e o f the author. W e introduce some

exam ples to describe these m apping cases.

O ne to N m apping: this case occurs w hen there is a com ponent

represented as one path in G(P,), but as m any paths in Sj(Pk). Hence, m ore

than one path in Sj(Pk) has the sam e index num ber. For exam ple,

108

CHAPTER 5. THE MEDIATION PROCESS

Global schem a

book •

editor

full name

affiliation • '

bib schem a (S S i)

bib •

book •

editor J0
/ I X✓ / X

last

X

✓ ' /

firs*^ affiliation

&

<source path="/book/editor/full_nanie">
<target name=" books, xml" fiin="Nuir>Null</target>
<target nam e="bib.xm r fun="Merge">/bib/book/editor/l«st,/bib/book/editor/first</target>
<target name="SCMFMA" fun="Nuir>Null</target>
<target name="bookdata.xml" fun--"Null">Null</target>

</source>

F igure 5.14: One to N m apping example.

the m aster view (global schem a) m ay represent an ed ito r’s nam e as a full

nam e, w hile the local data source separates an edito r’s first and last names.

To resolve this conflict a U D F is needed to com bine the ed itor’s first and

the last nam e elem ents to get the full nam e. The editor fu lln a m e node in

our exam ple global schem a tree is an exam ple o f this case. Figure 5.14

show s such a m apping. Here, in the bib schem a tree (S ^) the editor full

nam e inform ation is represented by two separated paths

SS 2 (/bib/book/editor/las f) for the last name o f the editor and

SS 2 {/bib/book/editor/fir sf) for the first nam e o f the editor. At the sam e tim e,

this inform ation is represented by one elem ent in the global schema.

Hence, a UDF is provided, e.g. M ergeQ , which concatenates the first and

last nam e elem ents to get the full nam e. The num ber o f argum ents o f this

function is equal to the num ber o f paths that appear in the bib schem a

m apping path w hich correspond to G {book/editor/full name). We note

there are two paths here:

109

CHAPTER 5. THE MEDIATION PROCESS

SS 2 {/bib/book/editor/last) and SS 2 (/bib/book/editor/first),

these in turn are concatenated to answ er a query for the

G (P (book/ed ito r/fu llnam e)) inform ation.

N to one m apping: this case occurs i f two or m ore paths in G(Pi)

correspond to one path in S fP Q . H ence, a path in S fP Q will have m ore

than one index num ber and m ore than one function name. For example,

G (/book/author/fu ll nam e/first nam e) and

G Q book/author/fu llnam e/last nam e)

in the global schem a correspond to

SSi(/bookstore/book/author) in the books schem a (S S j).

S S j(/scm fm a/bookJauthor) in the SC M FM A schem a (SS 3).

SS 4 (/bookdata/book/author/nam e) in the bookdata schem a (SS/).

In this case, U D F functions are needed to resolve the conflict, e.g.,

firstN am eQ and lastNam e(). The task o f these functions are to split the

author elem ent value in S S j , the author e lem ent value in SS 3 and the nam e

elem ent value in SS4, w hich contain the author full nam e into separate

f ir s t nam e and last name. F igure 5.15 show s that in the S S 1, SS 3 and SS 4

source m apping, the paths / bookstore/book/author , /scm fm a/book/author

and /bookdata/book/author/nam e exist twice. Each one corresponds to

m ore than one different global path in G(Pi). This case is a 2-to-O ne

m apping case, in that the firstN am eQ and lastNameO functions should be

associated w ith the corresponding global path specified by the designer as

an argum ent for these functions, e.g. the values o f the first_nam e and

last nam e elem ents m ust be separated from the author elem ent value in

SSj , the author elem ent value in SS 3 and the nam e elem ent value in SS4.

The returned value o f the firstN am eQ and lastNameQ functions depends

110

CHAPTER 5. THE MEDIATION PROCESS

on w hich global path expression invokes it. The im plem entation o f this

function is explicitly coded by the designer.

SCMFMA schem a {S S 3)

scmfma 9

book 9

author

books schem a (S S ,)

bookstore 9

book

author / .

Global schem a

book (►

author <>

full_name 4
/y

^ f i r s t_ n a m e

i
\

XXXX
last_name

■' 9.

bookdata schema
(S S ,)

bookdata 9

book p

au thor.
f
|

i

n
<source path=

<target name
<target name
<target name'
<target name'

</source>
<source path='

<target name
<target name
<target name
<target name:

</source>

/book/author/full_name/fir*t_name">
="books.xmr fun="firstName">/book3tore/book/author</target>
="bib.xmr fun="Null">/bib/book/author/first<7target>

="SCMFMA" fun="firstName">/»cmfmaA)ook/author</target>
-"bookdate.xml" fun="firstName">/bookdata/book/author/name</target>

/book/author/full_nam e/last_nam e">
-”books.xml" fun="LastName">/bookstore/book/author</target>
-"bib.xml" fun="NuU">/bib/book/author/last<Aarget>
=”SCM FMA" fun="LastName">/scmfma/book/author</target>
=”bookdata.xm l” fun="LastName”>/bookdata/book/author/name</target>

F igure 5.15: N to one m apping example.

One to one m apping w ith an operation: this case occurs i f one path in

G(Pi) corresponds to one path in Sj(Pk) but they use different reference

system s. This is a granularity conflict, and a specific operation is required

to resolve a sem antic difference am ong the two related elem ents. For

exam ple, the price elem ent in SSj uses dollar currency, while in the global

schem a the price elem ent is expressed in euro. To resolve this conflict

som e conversion m echanism is required which translates betw een the

representations. In this exam ple a U D F function is needed to perform an

exchange operation in order to get the price in euro, when a query is posed.

I l l

CHAPTER 5. THE MEDIATION PROCESS

Global schema

book

price (€)

ToEuroQ = mul(1.25)

books schema (SS])

bookstore •

book

price ($)

T
<source path="/book/price">

<target name="books.xmr fun="ToEuro">/bookstore/book/price</target>

</source>

F igure 5.16: E xam ple o f one to one m apping with an operation.

H ence, the m apping betw een the G {/book/price) in the global schem a and

the SSi{/bookstore/book/price) in the SS] schem a should be provided with

the nam e o f the U D F for the exchange currency operation, e.g. ToEuroQ.

The construction o f this function is undertaken by the designer. This

function should read the price elem ent value in SS] and return its

equivalent am ount in euro. Figure 5.16 shows this m apping.

5.5 Sum m ary

In this chapter w e have proposed the m ediation o f distributed

heterogeneous structured and sem i-structured data sources as a tool to

112

CHAPTER 5. THE MEDIATION PROCESS

overcom e logical heterogeneity problem s, w hich m ay occur when

integrating data sources. A lso we have introduced the m ediation process,

w hich has the follow ing steps: (1) generate the Schem a Structure

D efinition (SSD); (2) extract SSD com ponents and generate paths; (3)

establish the m appings and generate the m ediation inform ation (XM KB).

113

C H A PTER 6

T he query translation process

In this chapter, w e deal w ith the second im portant aspect o f the thesis,

w hich is the Q uery Processor (Q P). The Query Processor (QP) is an

integral part o f the m ediation layer o f the SISSD system. A b rief

introduction concerning the query translation task in data integration

system s is follow ed by a descrip tion o f the internal architecture o f the

Query Processor and its com ponents. Then the query translation process is

introduced, follow ed by a b rie f descrip tion o f the translation process o f

X Q uery FLW R expressions into SQL queries. Some exam ples o f query

translations are given.

6.1 Introduction

The m ain purpose o f building data integration system s is to facilitate

access to several data sources. The ability to correctly and efficiently

process the queries on the integrated data lies at the heart o f the integration

system . The integration system m ust contain a m odule that uses source

114

CHAPTER 6. THE QUERY TRANSLATION PROCESS

descriptions w hen reform ulating user queries w hich are posed in term s o f

the com posite global schem a, into sub-queries that refer directly to the

schem as o f the com ponent data sources [104, 106]. The user does not pose

queries directly to the schem a in w hich the data is stored, since one o f the

principal goals o f a data integration system is to free the user from having

to know about the specific data sources and interact with each one

separately. Instead, the user poses queries on the m ediated schema. The

m ediated schem a is a set o f virtual relations, in the sense that they are not

actually stored anyw here [80]. In general, this query processing involves:

1. R eading the user query and parsing it.

2. U sing a query optim izer to produce an efficient query execution

plan.

3. Executing this plan on the physical data.

W e are only concerned w ith query translation not query optim ization. W e

propose a m ethod for query translation w hich targets distributed

heterogeneous structured data resid ing in relational databases and sem i

structured data held in w ell-form ed X M L docum ents, produced by Internet

applications or by hum an-coding. T hese X M L docum ents can be XM L

files on local hard drives or rem ote docum ents on W eb servers. It is

im portant to develop a technique to seam lessly translate user queries over

the m aster view into sub-queries - called local queries - fitting the

appropriate participating data sources. This is achieved by exploiting the

m apping inform ation betw een the m aster (com posite) view and the

participating data source Schem a Structure D efinitions (SSD s) that are

defined in the generated X M L M etadata K now ledge Base (X M K B) [14].

W e have chosen XM L to provide a unifying data m odel in the SI SSD data

integration system , as this data m odel is general enough to accom m odate

hierarchical and relational data sources [91]. W e expect, that a data

115

CHAPTER 6. THE QUERY TRANSLATION PROCESS

integration query will typically be posed in XQ uery, the standard XM L

query language being developed by the W 3C [5]. It is derived from Quilt,

an earlier X M L query language designed by Jonathan Robie, IBM ’s Don

C ham berlin - co-inventor o f SQL - and D aniela Florescu, a well-known

database researcher [40]. XQ uery is designed to be a language in which

queries are concise and easily understood. It is also flexible enough to

query a broad spectrum o f X M L inform ation sources, including both

databases and docum ents. It can be used to query XM L data that has no

schem a at all, o r conform s to a W 3C standard XM L Schema or a

D ocum ent Type D efinition (DTD).

X Q uery is centered on the notion o f expression; starting w ith constants

and variables, expressions can be nested and com bined using arithmetic,

logical and list operators, navigation prim itives, function calls, higher

order operators like sort, conditional expressions, elem ent constructors, etc.

For navigating in a docum ent, X Q uery uses path expressions, whose

syntax is borrow ed from the abbreviated syntax o f XPath. The evaluation

o f a path expression on an X M L docum ent returns a list o f information

item s, w hose order is dictated by the order o f elem ents within the

docum ent (also called docum ent order).

O ur Query Processor (Q P) supports FL W R (short for For-Let-W here-

R etum) expressions. This subset o f X Q uery is used because it is powerful

and m eets the requirem ents o f our approach. The fo r - le t clause m akes

variables iterate over the result o f an expression or binds variables to

arbitrary expressions, the where clause allow s specification o f restrictions

on the variables, and the return clause can construct new XM L elem ents

as output o f the query. In general, an X Q uery query consists o f an optional

list o f nam espace definitions, follow ed by a list o f function definitions,

follow ed by a single query expression.

116

CHAPTER 6. THE QUERY TRANSLATION PROCESS

6.2 The Q uery Processor architecture and Com ponents

In this section, we present an overv iew o f the Query Processor (QP)

architecture and sum m arize the functions o f the m ain com ponents. The

architecture is show n in Figure 6.1. It consists o f five com ponents:

X Q uery Parser, X Q uery Rew riter, Q uery Execution, XQ uery-SQ L

Translator, and Tagger. The core o f the Q P and the prim ary focus o f this

chapter is the X Q uery Rewriter. This com ponent rew rites the user query

posed over the m aster view into sub-queries w hich fit each local data

source, by using the m apping inform ation stored in the XM KB. The main

role played by each o f the com ponents in Figure 6.1 follows.

M aster View

X M L Metadata
Knowledge Base

(XM KB)

XQ uery query Query Result

* XQ uery

r

Parser

XQIS
r

XQ uery Rewriter

Query Q u er’n

XML Result

Query Execution

XQuery
address
docums

query 3d to XML
it 1 d

XC
ac d

uery query
ressed to XML
ument n

XQuer
addre;
to rel
databA

f query
sed

dtional

XQuery - SQL
Translator

XQ uery Engine

XML Result

Tagger

SQL query Result Tuples

XML XML err

document 1 document n RDB

F igure 6.1: The QP Architecture.

117

CHAPTER 6. THE QUERY TRANSLATION PROCESS

• X Q uery Parser: parses a given X Q uery FLW R expression in order

to check it for syntactic correctness and ensure that the query is

valid and conform s to the relevant m aster view. Also the parser

analyses the query to generate an XQuery Internal Structure (X Q IS)

which contains the XM L paths, variables, conditions and tags

present in the query, before passing it to the XQuery Rewriter.

• XQ uery Rewriter: Takes the XQIS representation o f a query,

consults the XM KB to obtain the local paths corresponding to the

m aster paths and function nam es for handling semantic and

structural discrepancies, then produces sem antically equivalent

XQ uery queries to fit each local data source. T hat is, wherever there

is a correspondence betw een the paths in the m aster view and local

Schem a Structure D efinitions (SSD s) concerned (otherw ise the local

data source is ignored).

• Q uery Execution: Receives the rew ritten X Q uery queries, consults

the XM KB to determ ine each data source’s location and type

(relational database or XM L docum ent), then sends each local query

to its corresponding query engine, to execute the query and return

the results.

• X Q uery-SQ L Translator: Translates the XQIS representation o f

an XQuery query addressed to a relational database into the SQL

query needed to locate the result, then hands the query over to the

relational database engine to execute it and return the result in

tabular form at through the Tagger.

• Tagger: Adds the appropriate XM L tags to the tabular SQL query

result to produce structured XM L docum ents for return to the user.

118

CHAPTER 6. THE QUERY TRANSLATION PROCESS

6.3 The Q uery Translation process

The Query Processor (QP) com ponent is an im portant part o f the

m ediation layer o f the SISSD system. Its task is the translation o f m aster

queries that are posed on the m aster view into a set o f local queries fitting

each local data source. The QP gives flexibility to the user to choose the

m aster view that he/she w ants to pose his/her query over and then

autom atically selects the appropriate XM KB that will be used to process

any query posed over this m aster view . The m aster view provides the user

w ith the elem ents on w hich the query can be based. H ence, a user XQuery

query w ritten in term s o f the m aster view is rew ritten into sub-queries

w hich can be executed locally. W e introduce a m ethod for the query

translation to produce queries for the distributed heterogeneous structured

data residing in relational databases and sem i-structured data held in well-

form ed X M L docum ents. This m ethod is based on the m apping

inform ation betw een the m aster view and the participating data source

Schem a Structure D efinition (SSD), w hich are defined in the generated

XM KB. Once the XM KB is generated, user queries can be issued on the

m aster view and easily evaluated. H ence, w hen a query is posed against

the m aster view, the query translation process is accom plished as follows:

First, the given global query is parsed by the XQuery parser m odule to

generate the XQuery Internal Structure (XQIS) which contains the global

paths, variables, conditions and tag present in the XQuery query, w hich is

passed to the X Q uery Rewriter. X M KB is read and parsed by JD O M to

identify the num ber o f local data sources that participate in the integration

system , their location and type.

Second, for each elem ent path in the m aster query, there should be an

attribute p a th o f elem ent <source> in XM KB. I f there is a non-em pty

value for the corresponding local elem ents (<target> elem ents in XM KB),

then the corresponding local paths and the function nam es (an attribute fu n

119

CHAPTER 6. THE QUERY TRANSLATION PROCESS

o f <target> elem ent) is obtained from the XM KB. Then the global paths

in the m aster query are replaced by their corresponding local paths

(<target> elem ents) obtained from XM KB and the function nam es are

added if they are not null to generate a local query. It m ay happen that no

local query is generated when the content o f a local path for a specific

local data source is null. This m eans the query cannot be applied to this

local data source. Also, i f the content o f the function nam e (an attribute

fu n o f <target> elem ent) is null, th is indicates the translation is

straightforw ard and no function is needed.

Third, the generated local X Q uery for a relational database is converted

into SQL before passing it to the relational database engine for execution.

Finally, each (generated) local query is sent to the corresponding local

data source engine for local execution.

Using the descriptions o f the SISSD Query Processor (QP) com ponent

architecture (section 6.2) and the XM L M etadata Knowledge Base

(X M K B) organization and contents (section 5.4.1), we are now in a

position to sum m arize the query translation (rew riting) process carried out

at the heart o f our system by the QP m odule. W e do so in algorithm ic form

(see Figure 6.2). The algorithm is both conceptually sim ple and generally

applicable. W e have successfully im plem ented and tested it on a variety o f

relational and XM L data source integration exam ples in our prototype

SISSD system.

6.4 X Q uery-to-SQ L translation process

The Query Processor (Q P) uses XQ uery FLW R expressions as the query

language o f the SISSD data integration system. Using FLW R expressions

for querying a m aster view m akes it easy to translate the sub-queries

directed at relational databases into SQL queries since syntactically,

FLW R expressions are sim ilar to SQL select statem ents and have sim ilar

120

CHAPTER 6. THE QUERY TRANSLATION PROCESS

capabilities, only they use path expressions instead o f table and colum n

names.

Algorithm'. Master query translation process
Input'. M aster V iew , M aster X Q uery query q , and X M K B
Output', local sub-queries q l , q 2 .. . t qn
S te p l: parse q;
Step2: get global paths g l , g 2 gn from M aster V iew ;
Step3: read XM K B;
Step4: identify the number o f local data sources participating
in the integration system , their locations and types;
Step5: for each data source Si do

for each global path ge in q do
if the corresponding local path le not null then

get le;
if the function nam e f e not null then

get fe;
end if

else
no query generated for this local data source 51 ;

end if
end for
replace g l by 11 w ith f l , g2 by 12 w ith f2 gn by In w ith

fn, in qi;
if data source type is relational database then

convert qi X Q uery into SQL;
end for

Step6: execute the generated local query qi by sending it to the
corresponding local data source engine, and return the result, with
XM L tags added to SQL tables.

Figure 6.2: A lgorithm fo r the query translation process.

There is a conceptual difference betw een an XQuery FLW R expression's

concept o f iterating in the evaluation o f an expression e2 for successive

bindings o f a variable $v (for $v in e l return e2) and the set- or table-

oriented processing m odel o f SQL. This is resolved by m apping for-bound

variables like $v into tables containing all bindings and translating

expressions independently o f the variable scopes in which they appear.

The resulting SQL code im plem ents iteration via equi-joins, a table

operation, w hich RDBM S engines execute efficiently [78].

121

CHAPTER 6. THE QUERY TRANSLATION PROCESS

The translation process o f X Q uery FL W R expression into an SQL query

starts by parsing the X Q uery FL W R expression to identify its path

expressions. The path expression o f the FO R clause is the root path

expression and the others are dependent path expressions. This translation

is achieved by:

• First: the relation(s) corresponding to the path expression(s) o f the

FO R clause are identified and put in the F R O M clause o f the SQL

query.

• Second: i f the X Q uery FLW R expression contains a W HERE clause

then the condition is extracted and the path expression(s) in this

condition are identified and replaced by the corresponding

attribute(s), w hich are added to the W HERE clause o f the SQL

query.

• Third: the attribute(s) corresponding to the path expression(s) in the

R E T U R N clause in the X Q uery FLW R expression are identified and

added to the SE L E C T clause o f the SQL query.

6.5 Q uery translation exam ples

In this section, w e introduce som e exam ples o f global query translation.

These exam ples will be used in testing the system. W e discussed in section

6.3 the technique o f the Q uery Processor to seam lessly translate user

queries (X Q uery queries) over the m aster view into sub-queries suited to

an appropriate data source, by exploiting the m apping inform ation stored

in the XM KB. To illustrate this process, four cases are investigated in the

follow ing subsections: one-to-one M apping, function-involved in a one-to-

one M apping, one-to-m any M apping, and m any-to-one M apping.

Figure 6.3 show s part o f an X M KB w hich describes the data sources

participating in the integration system and their inform ation (nam es, types

122

CHAPTER 6. THE QUERY TRANSLATION PROCESS

a n d l o c a t i o n s) . It s h o w s t h a t t h e r e a r e f o u r d a t a s o u r c e s p a r t i c i p a t i n g in t h e

i n t e g r a t i o n s y s t e m , o n e o f t h e m i s a r e l a t i o n a l d a t a b a s e a n d t h e o t h e r t h r e e

a r e X M L d o c u m e n t s (o n e o f t h e s e X M L d o c u m e n t s i s a r e m o t e d o c u m e n t

o n a w e b s e r v e r a n d t h e o t h e r t w o a r e o n t h e l o c a l h a r d d r i v e) .

<?xml version=”l,0" encoding=BUTF-8* ?>
- <XMKB>

- <DS_information number="4">
<D5_Location n a m e - 'b o o k s .x m l11 type= 'X M L d o c u m e n t" > h t tp : / /w w w .w 3 s c h o o ls .c o m /x q u e ry < /D S _ L o c a t io n >
<DS_Location nam e= "b ib .x m l' ty p e = aXML d o c u m e n t ‘> C :\p ro to ty p e \d o c < /D S _ L o c a tio n >
<DS_Location n am e-S C M F M A ' ty p e = ,sR e la tio n a l D a ta b a s e H> jd b c :o rac le :th in :@ h e lo t:1 5 2 1 :o ra c le 9 < /D S _ L o ca tio n >
<DS_Location n a m e - 'b o o k d a ta .x m l8 ty p e = “XML d o c u m e n t" > C :\p ro to ty p e \d o c < /D S _ L o c a tio n >

</DS_inform ation>
F igure 6.3: The p a r t o f X M KB which m aintain da ta sources information.

T h e M a s t e r v i e w a n d t h e S c h e m a S t r u c t u r e D e f i n i t i o n s (S S D s) o f t h e f o u r

d a t a s o u r c e s (b o o k s t o r e r e l a t i o n a l d a t a b a s e , b i b . x m l , b o o k d a t a . x m l a n d

b o o k s . x m l) a r e s h o w n in F i g u r e s 6 . 4 a n d 6 . 5 .

<?xml v e r s io n - 1!..0" ericoding="UTF-8" ?>
- <element narne="book">

<element name="price" />
- <element n a m e - 'author">

- <element n am e= "fu l l_nam e ">
<element n a m e - 'first_nameM />
<element n a m e - 'last_name" />

</element>
</element>
<element name="title" />
<element name="year" />
<element name=“publisher" />

- <element name="editor">
<element name="affiliation" />
<element nam e= "fu l l_ n am e11 />

</element>
</element>

Figure 6.4: The M aster View.

123

http://www.w3schools.com/xquery%3c/DS_Location

CHAPTER 6. THE QUERY TRANSLATION PROCESS

<?xml v e rs io n = ‘ 1.0* encod ing="U T F-8’ ?>
- < sch em a_ in fo rm stio n >

- < d a ta _ s o u rc e jn fo rm a tio n >
< n a m e > b o o k s .x m k /n a m e >
< lo c a tio n > h t t p : / / w w w .w 3 s c h o o l s . c o m /x q u e r y < / ! o c a t i o n >
< type>X M L d o c u m e n t< / ty p e >

< /d a ta _ so u rc e _ in fo rm a tio n >
- < s tru c tu re >

- < e le -n en t n a m e s ’b o o k s t o r e ^
- < e le m e r t n a m e - 'b a o k '>

< e le m a n t n a m e = “tit le * />
< e le m e n t n a m e = l'a u t h o r , />
< e le m e n t n a m e = "y e a r '' />
< e te m e n t n a tn 8 = “p r ic 8 , />

< /e ie m e n t>
< /e !e m e n t>

< /s tru c tu re >
< /s c h e r ra jn fo rm a tio n >

<?xm l v e r s i o n - '1.0“ encod ing= "U T F -B " ?>
- < s c h e m a J n f o r m a t io n >

- < d a ta _ s o u r c e _ in fo r m a tio n >
< n a m e > b o o k d a t a .x m k /n a m B >
< lo c a t i o n > C : \ p r o t o t y p e \ d o c < / l o c a t i o n >
< ty p e > X M L d o c u m e n t < / t y p e >

< /d a ta _ s o u r c e _ in f o rm a t io n >
- < s t r u c tu r e >

- < e la m e n t n a m e = “b o o k d a t a “>
- o l e m e n t n a m e = " b o o k “>

< e le m e n t n a m e = “t i t l e “ />
- < e le m e n t n a m e = * a u th o r" >

< e le m e n t n a m 8 = " n a m e ’ />
< /e le m e n t>
< 8 le m e n t n a m e = |,p r ic e '' />

< /e !e m e n t>
< /e le m e n t>

< / s t r u c tu r e >
< /s c h e m a J n f o n r a t i o n >

<?xml version= '1.0 ' encoding=“UTF-8" ?>
- <schema_infomnation>

- <data_source_information>
<name>SCMFMA</name>
<location> jdbc:oracle :th ln :® helot:1521:oracle9< /!ocation>
< ty p e > R e Ia tio n a l D a ta b a s e < /ty p e >

</data_source_information>
- <structure>

- <element nam e= 'scm fm a '>
- <element name="article">

<element nam3=’title* />
<e!ement name=l,a u th o r l‘ />
<element nams="year" />

</e!ement>
- <element narrt0='1book‘>

<element name="isbn" />
celemant nam e="title“ />
<element nam e= ''author’ />
<elemant nama="year" />
<8lemant nam a="publishar” />
calernent nam a^ 'ed ition ’ />

</eiement>
- o te m e n t nam e="publisher“>

<eiement nam e="nam e“ />
<element nam 8="address" />
<element nam e=*post_code" />
<element nams=“te le p h o n e ’ />
<eiement name="fax" />
<elament nama=‘em a il' />

</e!ement>
</e!ement>

</structure>
</schema_information>

F igure 6.5: Schem a S tructures o f the fo u r da ta sources.

6.5.1 O ne-to -one q u e ry exam ple

Q I : FO R $book IN docum ent ("master. x m l’) /b o o k WHERE
$book/publisher = "Morgen K au fm an n ” RETU RN < b o o k > {$book/title}
< /b o o k >

T h i s i s a s i m p l e m a p p i n g c a s e . In t h i s e x a m p l e , w e w a n t t o l i s t a l l t h e t i t l e s

p u b l i s h e d b y M o r g e n K a u f m a n n p u b l i s h e r w h i c h a r e a v a i l a b l e in t h e f o u r

d a t a s o u r c e s . T h e F O R - c l a u s e b i n d s t h e v a r i a b l e $ b o o k t o t h e B o o k X M L

<?xm i version=T.O" encoding="UTF-8' ?>
- < s c h e m a _ in fo rm a tio n >

- < d a ta _ so u rc e _ in fo rm s t iD n >
<name>bib.xml</name>
< lo c a t i o n > C : \p r o to t y p e \d o c < / l o c a t i o n >
<type>XML d o c u m e n t </type>

</data_sourcejnformation>
- < s t r u c tu r e >

- <eiement name="bib">
- < e le m e n t n a m e = 'b o o k " >

< e le m e n t n a m e - ' t i t l e ' / >
- < e le m e n t n a m e = ''a u th o r “>

< e ie m e n t n a m e = " la s t '' />
< e le m e n t n 3 m e = T irs t" />

< /e !e m e n t>
- < e !e m e n t n a m e = 'e d i to r " >

< e le m e n t n a m e = “la s t " />
< e le m e n t n a m e = "f irs t" />
< e le m e n t n a m e = " a f f i l ia t io n " />

< /e ie m e n t>
< e le m e n t n a m e = " p u b l i s h e r “ />
< e le m e n t n a m e - 'p r i c e " />

< /e le m e n t>
</element>

< /s t r u c tu r e >
< /s c h e m a _ in fc rm a tio n >

124

http://www.w3schools.com/xquery%3c/!ocation

CHAPTER 6. THE QUERY TRANSLATION PROCESS

e l e m e n t . T h e s t r i n g w h i c h f o l l o w s t h e I N k e y w o r d i s a p a t h e x p r e s s i o n .

T h i s t r a n s l a t i o n i s p e r f o r m e d b y t h e f o l l o w i n g s t e p s :

S t e p 1: Q I i s p a r s e d a n d /book, $book/publisher a n d $book/title a r e

d e t e c t e d a s p a t h e x p r e s s i o n s w h i c h r e p r e s e n t g l o b a l p a t h s .

S t e p 2 : T h e X M K B is i n v o k e d t o i d e n t i f y t h e n u m b e r o f l o c a l d a t a s o u r c e s

p a r t i c i p a t i n g in t h e i n t e g r a t i o n s y s t e m , t h e i r l o c a t i o n s a n d t y p e s (r e l a t i o n a l

d a t a b a s e o r X M L d o c u m e n t) . T h e X M K B c o n t a i n s c o m p l e t e p a t h

m a p p i n g s . F i g u r e 6 . 6 s h o w s p a r t s o f X M K B in w h i c h t h e s e p a t h s a p p e a r .

O b v i o u s l y , t h e /book, /book /pu b lish er a n d book/title a r e g l o b a l p a t h s (i . e .

c o n t e n t o f a t t r ib u t e pa th o f < so u rce> e l e m e n t) a s s o c i a t e d w i t h i t s

c o r r e s p o n d i n g l o c a l p a t h s v a l u e s (i . e . < ta rg e t> e l e m e n t v a l u e) .

<7xm l v e r s io n = '1 .0 “ e n c o d in g = "U T F -8 " ?>
- <XMKB>

- < D S _ in fo rm a tio n n u m b e r= ‘4 “>
< D S _ L o c a tio n n a m e - 'b o o k s .x m l " t y p e = “X M L d o c u m e n t " > h t t p : / / w w w . w 3 s c h o o l s . c o m / x q u e r y < / D S _ l o c a t i o n >
< D S _ L o c a tio n n a m e - 'b i b . x m r ty p e = "X M L d o c u m e n t " > C : \ p r o t o t y p e \ d o c < / D 5 _ L o c a t i o n >
< D S _ L o c a tio n n a m e - 'S C M F M A ” ty p e = " R e la t i c m a l D a t a b a s e " > j d b c : o r a c l e : t h i n : @ h e l o t : 1 5 2 1 : o r a c l e 9 < / D S _ L o c a t i o n >
< D S _ L o c a tio n n a m e = " b o o k d a t a .x m r ' t y p e = “XM L d o c u m e n t " > C : \ p r o t o t y p e \ d o c < / D S _ L o c a t i o n >

< /D 5 jn f b r m a t io n >
- < M e d _ c o m p o n e n t>

- c s o u r c e p a th = " /b o o k " >
c t a r g e t n a m e = “b o o k s . x m l ' f u n = * N u l l " > / b o o k s t o r e / b o o k < / t a r g e t >
c t a r g e t n a m 8 = “b i b .x m l ' f u n = , N u l l " > / b i b / b o o k < / t a r g e t >
< ta r g e t n a m e = "S C M F M A ‘ fu n = " N u ll”> / s c m f m a / b o o k < / t a r g e t >
< ta r g e t n a m e = “b o o k d a t a . x m l ' fun="IM ull‘> / b o o k d a t a / b o o k c / t a r g e t >

< /s o u r c e >
- <source p a th = 7 b o o k /t i t le “>

< target name=‘books.xm l'' fun=“M u H "> /booksto re /book /title< /target>
< target nam e=‘b ib .x m r fun="NuU“> /b ib /b o o k /tit le < /ta rg e t>
< target name="SCMFMA“ fun="Null'l> /sc m fm a /b o o k /tit le < /ta rg e t>
< target nam e=,'b o o k d a ta .x m r fun=''ISIullB> /b o o k d a ta /b o o k /tit le < /ta rg e t>

< / s o u r c e >
- < s o u r c e p a th = '/b o o k /y e a r" >

c ta rg e t nam e="books.xm l“ fun=“N u ll"> /b o o k sto re /b o o k /y ea r< /ta rg e t>
c ta rg e t name="bib.xml* fun="NuH''>IMullc/target>
c ta rg e t name=“SCMFMA" fun="Null“> /sc m fm a /b o o k /y e a rc /ta rg e t>
c ta rg e t nam e=’b o o k d a ta .x m r fun="NullM>Null</target>

c/source>
- c s o u r c e pa th = "/b o o k /p u b lish e r">

c ta rg e t n am e^b o o k s.x m l" fun=“Null">Nullc/target>
c ta rg e t nam e^bib .xm l* fun="Null“> /b ib /b o o k /p u b lish e rc /ta rg e t>
c ta rg e t nam e=“SCMFMA" fu n = ''N u ll"> /scm fm a/bQ ok /pub lisherc /target>
c ta rg e t n a m e ^ b o o k d a ta .x m l’ fun="N uir>N ulk/target>

c/source>

Figure 6.6: Som e p a r ts o f XM KB used to translate Q I.

125

http://www.w3schools.com/xquery%3c/DS_location

CHAPTER 6. THE QUERY TRANSLATION PROCESS

S t e p 3 : a l o c a l q u e r y i s g e n e r a t e d f o r e a c h < ta rg e t> e l e m e n t w h o s e v a l u e

i s n o t n u l l . H e n c e , b y n a v i g a t i n g t h e X M K B , f o r e a c h l o c a l q u e r y , t h e

g l o b a l p a t h i s r e p l a c e d b y i t s c o r r e s p o n d i n g l o c a l p a t h o b t a i n e d f r o m t h e

X M K B . I f t h e r e i s n o c o r r e s p o n d i n g l o c a l p a t h , t h e n n o q u e r y i s g e n e r a t e d

f o r t h i s d a t a s o u r c e , w h i c h m e a n s t h i s g l o b a l q u e r y c a n n o t b e a p p l i e d t o

t h i s l o c a l d a t a s o u r c e . O n t h e o t h e r h a n d , i f t h e f u n c t i o n r e p r e s e n t a t i o n is

n u l l t h a t m e a n s t h e r e i s n o f u n c t i o n n e e d e d f o r t h i s c a s e .

S t e p 4 : t h e g e n e r a t e d l o c a l X Q u e r y q u e r y f o r t h e r e l a t i o n a l d a t a b a s e is

t h e n c o n v e r t e d i n t o S Q L . F i g u r e 6 . 7 s h o w s t h e g e n e r a t e d l o c a l q u e r i e s

f r o m t h e g l o b a l q u e r y Q I .

i £ Q11RV PROCESSOR

MASTER VIEW
•Tcrnl version '1 (T encodm<j='UTF-8' ?>
•element name=*book‘ »

•element name='price’/»
•element name=*authof»

•element name=’Ajll_name'»
•element name=Ttrst_name’ ;>
•element name=“last_nam07»

•/element*
•/element*
•element name=Titie‘ /»
•element name=*year7»
•element name='publisher*/»
•element name=*editor*»

•element name='altlliatlon‘V»
•element name=*(Ull_name>

•/element*
•/element*

ENTER YOUR XQUERY:
FOR IBook IN document fmastecxmO/book WHERE $book/publisher = ‘ Morgen Kauthiann* RETURN «book» (Jbook/tltte) «/book>

THE RESULT:
Sub-Query Generate For XML document httpj/wwww3schoois com/kquery/books ami i
No matched Query Generated For This Dtad Source

Sub-Query Generate For XML document CAprototypetdortbibJcml is .
FOR Jbook IN documentC’ClprototrpeWoctbibjjnryblb/book WHERE tbooWpublisher="Morgen Kaufmann’ RETURN •book* ($bookWe) </book*

Sub-Query Generate For Relational Database |dbc:oracle:thin:@helot1521 :orade9VSCMFMA Is :
Select scmfma book title From scmfma book WHERE scmfrna book.publisher= Morgen Kaufrnann’

I
Sub-Query Generate For XML document C tprototypetdoctbookdatajcml Is
No matched Query Generated For This Dtad Source

Get Master View Generate local Sub Query Resat I___________ Exit

F igure 6. 7: The g en era ted loca l queries fro m Q I .

126

CHAPTER 6. THE QUERY TRANSLATION PROCESS

6 .5 .2 F u n c tio n -in v o lv e d o n e -to -o n e q u ery ex a m p le

Q 2 : FO R $book IN docum ent ("'master.xml")/book RE TU R N < b o o k >
{$book/title, $book/price} < /b o o k >

T h i s i s a f u n c t i o n - i n v o l v e d o n e - t o - o n e m a p p i n g c a s e . T h e q u e r y w i l l l i s t

a l l t h e t i t l e s a n d p r i c e s a v a i l a b l e a t t h e f o u r d a t a s o u r c e s . T h e q u e r y is

p a r s e d a n d /book, $book/title a n d $book/price a r e d e t e c t e d a s p a t h

e x p r e s s i o n s w h i c h r e p r e s e n t g l o b a l p a t h s . T h e X M K B i s i n v o k e d t o o b t a i n

t h e c o r r e s p o n d i n g l o c a l p a t h a n d t h e f u n c t i o n n a m e (i f it n o t n u l l) f o r e a c h

g l o b a l p a t h . In e a c h l o c a l q u e r y , t h e g l o b a l p a t h i s r e p l a c e d b y i t s

c o r r e s p o n d i n g l o c a l p a t h w i t h t h e f u n c t i o n n a m e i f it i s n o t n u l l . F i g u r e 6 . 8

s h o w s p a r t s o f X M K B in w h i c h t h e s e p a t h s a p p e a r .

- < so u rce p a th = '/b o o k " >
c ta r g e t nam e="books.xm l" Fun="Null“> /b o o k s t o r e /b o o k < / ta r g e t >
c ta r g e t n a m e - 'b ib .x m r fun=“l\iu ll" > /b ib /b o o k c /ta r g e t>
c ta r g e t nam e=“SCMFMA“ fun=’Null‘> / s c m f m a /b o o k c / t a r g e t >
c ta r g e t n a m e = " b o o k d a ta .x m r fu n = " N u ll" > /b o o k d a ta /b o o k c /ta r g e t>

c /so u rc e >
- c so u rce p a th = Y b o o k /p r ic e ‘'>

c ta r g e t nam e=“b o o k s .x m l" fu n = " R a te E x c h a n g e " > /b o o k s to r e /b o o k /p r ic e c /ta r g e t>
c ta r g e t nam e= “b ib .x m r fu n = " R a te E x c h a n g e " > /b ib /b o o k /p r ic e c /ta r g e t>
c ta r g e t nam e= “SCMFIviA“ fun="Mull, > M u llc /targ et>
c ta r g e t n a m e = " b o o k d a ta .x m r fu n = " IM u ll" > /b o o k d a ta /b o o k /p r ic e c /ta r g e t>

c /so u rc e >

- <source p a th = “/b o o k / t i t l e " >
c ta r g e t n am e= " b o o k s .x m l11 fun="Nulll' > / b o o k s t o r e / b o o k / t i t l e < / t a r g e t >
c t a rg e t n a m e - 'b i b . x m r fu n = " l \ lu H "> /b ib /b o o k / t i t l e c / ta rg e t>
c t a rg e t name="SCMFMA11 fun=“N u H " > / s c m f m a / b o o k / t i t l e c / t a r g e t >
c t a rg e t n a m e - 'b o o k d a t a .x m l" fun="Null“> / b o o k d a t a / b o o k / t i t l e c / t a r g e t >

c /source>

Figure 6.8: Som e p a r ts o f XM K B used to translate Q2.

F i g u r e 6 . 9 s h o w s t h e r e s u l t s g e n e r a t e d b y l o c a l q u e r i e s f o r g l o b a l q u e r y

Q 2 .

6 .5 .3 O n e -to -m a n y q u ery e x a m p le

Q 3 : FOR $ed i IN docum ent ("m aster.xm T)/book WHERE $ed i/title =
“D a tabase S ys te m s” RE TU R N < ed ito r> {$ ed i/ed it or/full_nam e}
< /ed ito r>

127

CHAPTER 6. THE QUERY TRANSLATION PROCESS

T h i s i s a m o r e c o m p l e x m a p p i n g c a s e t h a t c a n o c c u r , w h e n t h e r e i s a p a t h

in t h e g l o b a l s c h e m a m a p p e d t o m a n y p a t h s in a l o c a l s c h e m a . Q 3 f i n d s

t h e e d i t o r ’ s f u l l n a m e f o r t h e b o o k t i t l e d ‘ D a t a b a s e S y s t e m s ’ . T h e

t r a n s l a t i o n p r o c e s s i s s i m i l a r t o t h e t w o p r e v i o u s c a s e s a n d h a s t h e

f o l l o w i n g s t e p s :

QUERY PROCESSOR

MASTER VIEW
*?xmlversion=‘ l. (r encodlng=*UTF-tr ?»
<elemenl name=*book'»
•element name=*pnce7»
•element names'author"*
•element name=*full_name‘ >
•element name=Hr$t_name7*
•element name="1ast_name*/>

•/element*
•/element*
•element name=Ktle'/»
•element name=‘yea(7»
•element name='publi$her7»
•element name='editoi'»
•element name='a1T!liation‘ /»
•element name=*fUit_name'/>

•/element*
•/element*

ENTER YOUR XQUERY:
FOR Ebook IN document f master jcmO/book RETURN ‘ book* (Ebook/title, Ebook/pnce} «/book>

THE RESULT:
Sub-Query Generate for XML document hflpJNkww.w3$chools.com/kqueryJbooksjcml I s :
FOR Ebook IN documenlfhflpJNkww.w3schools.com/kquery/booksJcmrybookstore/book RETURN <book> { $book/We, RateE«change(Ebook/pnce) | ‘ /book*

Sub-Query Generate For XML document CAprotolypeVtocl&lbjcml is ;
FOR Ebook IN documenlfC AprolotypeWocU/lbwnn/bib/book RETURN «book> (Ebook/We, RateEkchange(Ebook/pnce) 5 «/book»

Sub-Query Generate For Relational Database |dbc:oradeThin;@helotl 521:orade9tSCMFMA is
No matched Query Generated For This Dtad Source

Sub-Query Generate For XML document C tprololypetdoclbookdata Jtml is :
FOR Ebook IN documentf CTprototypeWoctbookdata kmrybookdata/book RETURN «book> (Ebook/titie, Ebook/pnce) </book»

Master View Generate Local Sub-OueryGet Reset Exit

F igure 6.9: The g en era ted loca l queries from Q2.

S t e p 1: Q 3 i s p a r s e d a n d /book , $ ed i/title , a n d $edi/editor/fu ll nam e a r e

d e t e c t e d a s p a t h e x p r e s s i o n s w h i c h r e p r e s e n t g l o b a l p a t h s .

S t e p 2 : T h e X M K B i s i n v o k e d t o o b t a i n t h e c o r r e s p o n d i n g l o c a l p a t h a n d

f u n c t i o n n a m e s f o r e a c h g l o b a l p a t h . F i g u r e 6 . 1 0 s h o w s p a r t s o f X M K B in

w h i c h t h e s e p a t h s a p p e a r .

128

CHAPTER 6. THE QUERY TRANSLATION PROCESS

- <source path=7book">
<tarqet nam e-'books.xm l" fun="NuH">/bookstore/book</target>
<target name=,bib.xml* fun="Null">/bib/book</target>
c target name^SCMFMA" fun='Null,> /scm fm a/b o o k < /ta rg e t>
c targe t name=“b o o k d a ta .x m r fu n = 'N u ir> /b oo kd ata /bo ok c/ta rge t>

c/source>

- csource p ath = "/b o o k /title“>
ctarget nam e-'books.xm l" fyn="Nulll,> /b o o k s to re /b o o k /title c /ta rg e t>
c target name="bib.xml' fu n="N uir> /b ib /book/titlec/target>
c targe t name="SCMFMA" fun="N uir> /scm fm a/b oo k /titlec /ta rge t>
c target name=“bookd ata .xm l“ fun="N ull"> /bookdata /book/titlec /target>

c/source>
- <source p a th = 7 b o o k /ed ito r* >

c ta rg e t nam e="books.xm l’ fan=,Null“> N ulk /ta rget>
c ta rg e t name=’b ib .xm l!l fun=*NullR> /b ib /b o o k /e d ito r< /t3 rg e t>
cta rg e t name="SCMFMA‘ fun="Mulll,>ISIullc/target>
c ta rg e t n am e^ b o o k d a ta .x m l' fun=“Null‘>M ullc/target>

</source>
- csource p a th = "/b o o k /e d ito r /a ff i lia tio n ,'>

c ta rg e t name=“b o o k s .x m r fun=’Nuir,> \'u llc /ta rge t>
c ta rg e t nam e="bib.xm ls fu n = 'N u ll"> /b ib /b o o k /ed ito r/a ffilia tio n c /ta rg e t>
c ta rg e t rtame=“SCMFMA' fun='Null,>N'ullc/target>
c ta rg e t nam e= "bookdata.xm l' fun=“Null,> \u llc /ta rg e t>

c/source>
- csource path= ,/b o o k /e d i to r /fu l l_ n a m e ,>

c ta rg e t nam e-'books.xm l" fun=*Null">Mull</target>
c ta rg e t nam e="bib.xm l' fun="Merge,,> /b ib /b o o k /e d i to r / l a s t f/b ib /b o o k /e d ito r /f ir s t< /ta rg e t>
c ta rg e t name=''SCMFMA', fun=,lNulll,> N ulk /ta rget>
c ta rg e t name=fb o o k d a ta .x m l' fun=“IMull'>Nullc/target>

c/source>

F igure 6.10: Som e p a r ts o f X M K B used to translate Q3.

S t e p 3 : a l o c a l q u e r y i s g e n e r a t e d f o r e a c h < ta rg e t> e l e m e n t t h a t

c o r r e s p o n d s t o a p a t h e x p r e s s i o n d e t e c t e d in t h e g l o b a l q u e r y p a t h s . T h e

c o n t e n t o f t h e < ta rg e t> e l e m e n t c o r r e s p o n d i n g t o g l o b a l p a t h

$edi/ed itor/fu ll nam e in t h e X M K B i s n u l l f o r t h r e e o f t h e d a t a s o u r c e s .

T h i s m e a n s t h i s g l o b a l q u e r y c a n n o t b e a p p l i e d t o t h e s e d a t a s o u r c e s .

H o w e v e r , f o r t h e f o u r t h d a t a s o u r c e , t h e $edi/editor/fu ll nam e g l o b a l p a t h

i s m a p p e d t o t h e l o c a l p a t h s B ib/book/ed itor/last a n d /b ib /b o o k /ed ito r /first .

T h i s m e a n s t h e s e p a t h s h a v e t h e s a m e i n d e x n u m b e r a n d c o r r e s p o n d t o t h e

p a t h in t h e g l o b a l s c h e m a . A l s o , t h e c o r r e s p o n d i n g u s e r - d e f i n e d f u n c t i o n

(U D F) c o n t e n t i s M erge w h i c h i s a U D F f u n c t i o n n a m e . M erge w a s

129

CHAPTER 6. THE QUERY TRANSLATION PROCESS

e x p l i c i t l y d e f i n e d b y t h e i n t e g r a t o r a s t h e r e s u l t s f r o m t h e s e t w o p a t h s

s h o u l d b e m e r g e d t o g i v e t h e a p p r o p r i a t e a n s w e r f o r t h i s q u e r y . F i g u r e

6 .1 1 s h o w s t h e l o c a l q u e r i e s g e n e r a t e d f r o m q u e r y Q 3 .

QUERY PROCESSOR JflJ xj
MASTER VIEW

<?*ml versions O' encodm^'UTF-tT ?»
•element name^'book’ *

<eiement name='price'/>
‘ element name='authoi*>
‘ element name=*tuli_name'>
•element name=‘tlrst_name’/»
•element name='last_name‘/»

•(element*
•/element*
•element nam e=W /»
•element name=‘yea('/>
•element name=*publisher'/>
•element names'editoi'*
•element name='atfiliabon‘ /»
•element name="Ml_name'/>

•/element*
•/element*

BtTER YOUR XQUERY:
FOR Jedi IN document fmasterjcmrybook WHERE tedi/Me = Database Systems' RETURN <edrtor* tJedi/editor/fuil_name) </editor»

THE RESULT:
Sub-Query Generate For XML document http//wwww3schools com/rquery/books xml is
No matched Query Generated For This Dtad Source

Sub-Query Generate For XML document C tprototypetdoctbib ami is
FOR leot IN documentCCAprototypeidoc\bibxmrybib/book WHERE $eduWle= "Database Systems' RETURN ‘ editor* (Merge<$edi/editorflast, Jedi/editorflirsQ) ‘ /editor*

Sub-Oueiy Generate For Relational Database jdbc oracle.thin ghe lotl 521 :oracle9lSCMFMA Is :

matched Query Generated For This Dtad Source

Query Generate For XML document C tprototypetdoctoookdatajanl is .
matched Query Generated For This Dtad Source

Get Master View Generate Local Sub Query Reset Ex*

Figure 6.11: The g en era te d loca l queries fro m Q3.

6.5.4 M any-to -one q u e ry exam ple

Q 4 : FOR $auth IN docum ent ("m aster.xm l")/book w here Sauth/title =
"Data Structures" RETU RN < a u th o r> {$auth/author/full nam e/first name,
$auth/author/full nam e/last nam e} < /au th or>

T h i s q u e r y s h o w s a c a s e in w h i c h t w o o r m o r e p a t h s o f t h e g l o b a l s c h e m a

c o r r e s p o n d t o o n e p a t h in a l o c a l s c h e m a . T h e q u e r y l i s t s t h e a u t h o r ' s l a s t

130

CHAPTER 6. THE QUERY TRANSLATION PROCESS

a n d f i r s t n a m e s f o r b o o k s w i t h a t i t l e ' D a t a S t r u c t u r e s ' . T h e f i r s tn a m e a n d

last nam e e l e m e n t s in t h e g l o b a l s c h e m a a r e m a p p e d t o o n e e l e m e n t in

s o m e o f t h e l o c a l s c h e m a s (s e e F i g u r e 6 . 1 2) , i . e . t w o e l e m e n t p a t h s

c o r r e s p o n d t o o n e e l e m e n t p a t h . T h u s , t o t r a n s l a t e t h i s q u e r y i n t o t e r m s o f

t h e l o c a l s o u r c e s , a s p e c i f i c U D F f u n c t i o n i s r e q u i r e d t o s e p a r a t e t h e f u l l -

n a m e i n t o f i r s t - n a m e a n d l a s t - n a m e . T h e s t e p s in t h i s t r a n s l a t i o n a r e :

S t e p 1: Q 4 i s p a r s e d t o d e t e c t g l o b a l p a t h e x p r e s s i o n s (s e e F i g u r e 6 . 1 2) :

/b o o k
$au th /title
$auth/author/full nam e/fir s t nam e
$auth/author/full nam e/last nam e

- < sou rce p a th = 7 b o o k /a u th o r " >
c ta rg e t nam 8=, b o o k s .x m r fu n = 'N u ir> /b o o k s to re /b o o k /a u th o r< / ta r g e t>
c ta rg e t nam e=, b ib .x m l‘ fun=BNull, > /b ib / b o o k /a u th o r c / t a r g e i >
c ta rg e t nam e^'SCM FM A ' fun=,N ull,> / s c m f m a /b o o k /a u th o r c / t a r g e t>
c ta rg e t n a m e = 'b o o k d a ta .x m P fun=“Null, > /b o o k d a ta /b o o k /a u th o r c / t a r g e t>

c /so u rca >
- c so u rce p a th = 7 b o o k /a u th o r / f u l l_ n a m e " >

c ta rg e t n a m e - 'b o o k s .x m l ' fun=“N u ir > /b o o k s to r e /b o o k /a u th o r c / t a r g e t>
c ta rg e t nam e=‘b ib .x m r fun= 'N ull“> /b ib / b o o k /a u th o r c / t a r g e t >
c ta rg e t name=*SCMFMA' fun=,Null“> /s c m f m a /b o o k /a u th o r c / t a r g e t>
c ta rg e t n a m e = 'b o o k d a ta .x m l* fun=“N u l l '> /b o o k d a ta /b o o k /a u th o r c / t a r g e t>

c /so u rce >
- c so u rce p 3 th = 7 b o o k /a u th o r / f u l l_ n a m e /f i r s t_ n a m e * >

c ta rg e t n a m e = 'b o o k s .x m l' f u n = f i r s t \ a m e '> /b o o k s to r e /b o o k /a u th o r c / t a r g e t>
c ta rg e t nam e=‘b ib .x m l ' fun=’r y u l l " > /b ib /b o o k /a u th o r / f i r s t c / ta rg e t>
c ta rg e t nam e=’SCMFMA“ fu n = f ir s tN a m e ‘> /s c m f m a /b o o k /a u th o r c / t a r g e t>
c ta rg e t n a m e = 'b o o k d a ta .xm l" fun= ‘f i r s tN a m e * > /b o o k d a ta /b o o k /a u th o r /n a m e < / ta r g e t>

c /so u rce >
- c so u rce p a th = 7 b o o k /a u th o r / f u l l _ n a m e / I a s t_ n a m e , >

c ta rg e t nam e=’b o o k s .x m l ' fu n = " L a s tN a m e " > /b o o k s to re /b o o k /a u th o r c / ta rg e t>
c ta rg e t n a m e = 'b ib .x m l‘ fun=,Null, > /b ib / b o o k /a u th o r / l a s t c / t a r g e t>
c ta rg e t nam e='SCM FM A ‘ fun=, L a s tN a m e '> / s c m f m a /b o o k /a u th o r c / t a r g e t>
c ta rg e t n a m e ^ b o o k d a ta .x m l ' fun=“L a s tN a m e ,> /b o o k d a ta /b o o k /a u th o r /n a m e c / t a r g e t>

c /so u rce >

Figure 6.12: Som e p a r ts o f X M K B used to translate Q3.

S t e p 2 : T h e X M K B i s r e a d t o o b t a i n t h e c o r r e s p o n d i n g l o c a l p a t h a n d

f u n c t i o n n a m e f o r e a c h g l o b a l p a t h .

In t h i s t r a n s l a t i o n , n o U D F f u n c t i o n i s r e q u i r e d f o r t h e b i b . x m l d a t a s o u r c e

s i n c e i t s U D F v a l u e i s n u l l . W h i l e f o r t h e o t h e r t h r e e d a t a s o u r c e s , t h e

c o r r e s p o n d i n g f u n c t i o n v a l u e s a r e JirstN am e a n d LastN am e i n d i c a t i n g t w o

U D F f u n c t i o n s a r e n e e d e d . H e n c e , t h e g l o b a l p a t h s

131

CHAPTER 6. THE QUERY TRANSLATION PROCESS

$au th /au thor/fu l I n am e/fir s t nam e a n d $auth /author/fu ll nam e/last nam e

a r e m a p p e d t o t h e p a t h s /b o o k sto re /b o o k /a u th o r in t h e b o o k s . x m l d a t a

s o u r c e , /scm fm a/book /au th or in t h e S C M F M A d a t a s o u r c e , a n d t o

/b o o k d a ta /b o o k /a u th o r/n a m e in t h e b o o k d a t a . x m l d a t a s o u r c e . T h u s , o n e

l o c a l p a t h h o l d s t w o d i f f e r e n t i n d e x n u m b e r s , i . e . it c o r r e s p o n d s t o t w o

p a t h s in t h e g l o b a l s c h e m a . In a d d i t i o n , f o r e a c h o f t h e s e p a t h s a U D F

f u n c t i o n n a m e w a s e x p l i c i t l y d e F i n e d b y t h e d e s i g n e r . T h e s e f u n c t i o n s a r e

firs tN a m e t o r e t u r n t h e f ir s t-n a m e a n d L astN am e t o r e t u r n t h e last-nam e.

H e n c e , t h e fu ll-n a m e v a l u e i s s e p a r a t e d i n t o First a n d l a s t n a m e s in o r d e r t o

g i v e t h e a p p r o p r i a t e a n s w e r f o r t h i s q u e r y .

S t e p 3 : a l o c a l q u e r y i s g e n e r a t e d f o r e a c h < ta rg e t> e l e m e n t w h o s e v a l u e

i s n o t n u l l . T h e l o c a l q u e r i e s g e n e r a t e d f r o m q u e r y Q 4 a r e s h o w n in F i g u r e

6 . 1 3 .

Q llftY PROCESSOR - lol *1
MASTER VEW

•■>imiversion=*i 0* encodm<F*UTF-8* ?»
•e lem en t nams="book*»
•elem en t name=*ortce*/»
•e lem en t nam e-'ardhor**

•elem en t name=*ftjll_name*»
•elem en t nam e*"#tst_name*/»
•e le m e n t nam e=*iast_nem e7»

•/elem ent*
•/elem ent*
•e lem en t name=*Stie*/»
•e lem en t name=*ireei'/»
•e lem en t name=*poblisher*/*
•elem en t name=*edltor*»
•e lem en t name=*afllltation*/*
•e lem en t name="ftiH_name*/»

•/elem ent*
•/elem ent*

ENTER YOUR XOUERY:
FOR la u th IN docum ent ("m aster w nrybookw tie re lauth/trtle s "Data S tructures' RETURN ‘ author* (lauth/aiithorrtjll_nam e/llr$t_n8m e. |au1h/author/rull_name/last_nam e) «/author»

THE RESULT:
Sub-Query G enerate For XML docum ent http //www w 3schools.com /yqueryfbooks.aril 1$.
FOR lau th IN documentChttpdwww w3 schools com /tquery/books *m rybook«tore/book WHERE |auth/tltlee"D aia S tructures' RETURN ‘ author* (llrstN am eflauth/author).
L astN am etlau tn /au thoc)) «/author»

Sub uuery G enerate For XML docum ent C Iprototypeldoctblb «ml i s :
FOR lau th IN docum entfC IprotolypeldocUiib xm fybib/book WHERE lauthflrtle»'D ata Structures* RETURN ‘ author* { tauth/author/tlrst, lau th /au tho r/lae t} ‘/author*

Sub-Ouery G enerate For Relational D a tab ase idbc oracle thin g h e io t 1521 orade9tSCMFMA Is
Select flrt* lam e(ecm fm a book a u th o r). Le*1N am e(scm fm a book author) From scm fm a book WHERE scm ltna book btle=T)ata Structures’

Sub-Ouery G enerate For XML docum ent C:\prototypeidoc\bookdata wni i s :
FOR la u th IN docum entfC lprototypeldoclbookdata w nrybookdata/book WHERE tauth/Mlb=*Oata Structures* RETURN ‘ author* [tlrstN am edauth /au thorfnam e),
L astN am e(leu th /au thor/nam e)) ‘ /author*

Get M aster View Genet a te Local S u b Q uery

F igu re 6.13: The g e n e ra te d lo ca l qu eries fro m Q4.

132

CH APTER 7

T he SISSD im plem entation

In this chapter, we present the im plem entation details o f the SISSD system

architecture, and tools that were used - Java, JD OM API, JavaCC, and

XQ uery as an XM L query language.

7.1 Introduction

The architecture o f our prototype system is shown in Figure 4.1. The m ain

objective o f building a prototype SISSD is to demonstrate the feasibility o f

creating the XM L M etadata K now ledge Base (XM KB) by extracting and

m erging increm entally the m etadata o f the data sources in the integration

system, and to show that X M KB can be used to assist the Query Processor

in m ediating betw een user queries posed over the m aster view and the

distributed data residing in local data sources. The SISSD architecture has

three m ain com ponents: the M etadata Extractor (M D E), the XM L

M etadata K now ledge Base (X M K B) and the Query Processor (QP). The

system was created in three stages, one stage for each system component:

133

CHAPTER 7. THE SISSD IMPLEMENTATION

■ 11 mm
H i

Met aOdta Extractor Knowledge Server Query Processor

Add Hew Data Source ► Step 1. Generate index nundier for integrated schema elements

Remove Data Source Step 2. Produce GUI tree for locaLvitema structure

Step 3. Generate Path Mappings

Step 4. Merge Path Mappings with KB

■ -V. vv /V .-. -v . - .y -v ••..••V, rv,-. .-.-v. v . v .y ,y /.■ ••• v.~ • v. -.v. *■*•*. *V-~ * ‘, V/.'-VA’. ■ v--.»v

F igure 7.1: The m ain in terface o f SISSD system .

1. C r e a t i n g t h e M D E t o e x t r a c t m e t a d a t a a n d b u i l d t h e S c h e m a

S t r u c t u r e D e f i n i t i o n (S S D) f o r e a c h d a t a s o u r c e .

2 . C r e a t i n g t h e S c h e m a S t r u c t u r e D e f i n i t i o n (S S D) p a r s e r a n d t h e

a s s o c i a t e d m a p p i n g p r o c e s s t o e s t a b l i s h a n d e v o l v e t h e X M L

M e t a d a t a K n o w l e d g e B a s e (X M K B) .

3 . C r e a t i n g t h e Q P t o p a r s e a n d t r a n s l a t e u s e r q u e r i e s i n t o s u b - q u e r i e s

w h i c h f i t e a c h l o c a l d a t a s o u r c e .

A p p e n d i x A s h o w s t h e j a v a c o d e f o r t h e M a i n I n t e r f a c e o f o u r S I S S D

p r o t o t y p e s y s t e m (s h o w n in F i g u r e 7 . 1) .

134

CHAPTER 7. THE SISSD IMPLEMENTATION

7.2 m e ta d a ta ex tr a c t in g p ro ce ss

T h i s s e c t i o n c o v e r s t h e i m p l e m e n t a t i o n o f t h e M e t a d a t a E x t r a c t o r (M D E)

a n d t h e a s s o c i a t e d S c h e m a S t r u c t u r e D e f i n i t i o n (S S D) . T h e M D E i n t e r a c t s

w i t h t h e d a t a s o u r c e s in t h e i n t e g r a t i o n s y s t e m t o e x t r a c t t h e i r m e t a d a t a

a n d b u i l d t h e S S D f o r e a c h p a r t i c i p a t i n g d a t a s o u r c e . F i g u r e 7 . 2 s h o w s t h e

S S D o f t h e b i b X M L d o c u m e n t s h o w n in F i g u r e 7 . 3 .

W e h a v e i m p l e m e n t e d t h e M D E u s i n g J D B C [8 2 , 1 4 2] a n d J D O M

t e c h n o l o g y [6 , 8 8 , 8 9] . W e u s e J D B C a s t h e A P I t o c o n n e c t t o a r e l a t i o n a l

d a t a b a s e s y s t e m . A s a r e s u l t , o u r i m p l e m e n t a t i o n w o r k s w i t h m o s t

c o m m e r c i a l r e l a t i o n a l d a t a b a s e s y s t e m s i n c l u d i n g D B 2 , O r a c l e a n d

M i c r o s o f t S Q L S e r v e r , a n d o n m o s t h a r d w a r e p l a t f o r m s .

<?xml version='T.O" encoding="UTF-B" ?>
- <schema_information>

- <data_source_information>
< n a m e > b ib .x m k / n a m e >
< lo c a t io n > C : \p r o to ty p e \d o c < / lo c a t io n >
<type>XML d o c u m e n t < / t y p e >

</data_sourne_information>
- <structure>

- <element name="bib">
- <element name = "book">

<element name="title" />
- <element name="author">

<element name="last" />
<element name="first" />

</element>
- <element name="editor">

<element name="last" />
<element name="first" />
<element name="affiliation" />

</e lement>
<element name=‘'publisher" />
<element name="price" />

</e lement>
</element>

</structure>
</schema_information>

F igure 7.2: SSD o f bib XM L docum ent.

135

CHAPTER 7. THE SISSD IMPLEMENTATION

W e h a v e d e v e l o p e d J X C (J a v a X M L C o n n e c t i v i t y) (s e e A p p e n d i x C f o r

t h e c o d e) t o b u i l d t h e S c h e m a S t r u c t u r e D e f i n i t i o n (S S D) o f a n X M L

d o c u m e n t . T h i s u s e s a J D O M (J a v a D o c u m e n t O b j e c t M o d e l) i n t e r f a c e t o

c o n n e c t t o t h e X M L d o c u m e n t , a n d d e t e c t a n d e x t r a c t i t s m e t a d a t a b u r i e d

i n s i d e t h e d a t a .

<?xml v ers ion = “l,0" e n c o d in g = aUTF-8'' ?>
- <bib>

- <book>
<title>DATA ON THE W E B < /t i t le >

- <author>
< la st> A B IT A B U L < /las t>
< f i r s t> S e r g e < / f ir s t>

< /a u th o r>

- <editor>
< l a s t > B u n e m a n < / l a s t >
< f ir s t> P e te r < / f ir s t>
<affi l iation>Cardiff S c h o o l o f C o m p u t e r S c ie n c e < /a f f i l ia t io n >

</ed itor>
<p ub l ishe r> M orgen K a u fm a n n < /p u b l i s h e r >

< p r ic e > 5 0 < /p r ic e >
< /b o o k >

- <book>
<title>XML IN 2 4 H O U R S < /t i t le >

- <author>
< la s t> A S H B A C H E R < /la s t>
<first>CHAR LES</first>

< /a u th o r>
- <editor>

< l a s t > S u c i u < / l a s t >
< f ir s t> D a n < /f ir s t>
<aff i l iation>Cardiff U n iv e r s i ty < /a f f i ! ia t io n >

< /ed itor>

P < publisher>SA M S</publisher>

< p r ic e > 2 4 < /p r ic e >

< /b o o k >
</b ib>

F igure 7.3: b ib XM L document.

T h e M D E a c c e s s e s d a t a s o u r c e s w i t h o u t m a k i n g a n y c h a n g e s t o t h e m . A s

t h e M D E r e q u i r e s n o c h a n g e s t o t h e u n d e r l y i n g d a t a s o u r c e s t o a c c e s s

t h e i r m e t a d a t a , it p r e s e r v e s t h e i r l o c a l a u t o n o m y .

F o r r e l a t i o n a l d a t a b a s e s t h e M D E e m p l o y s J D B C t o a c c e s s t h e D B . T h e

M D E a c c e p t s t h e i n f o r m a t i o n n e c e s s a r y t o e s t a b l i s h a c o n n e c t i o n t o

136

CHAPTER 7. THE SISSD IMPLEMENTATION

r e t r i e v e t h e m e t a d a t a o f t h e D B s s c h e m a a n d u s e s t h e X M L D a t a S o u r c e

D e f i n i t i o n L a n g u a g e (X D S D L) (s e c t i o n 5 . 1) t o b u i l d t h e t a r g e t S c h e m a

S t r u c t u r e D e f i n i t i o n (S S D) f o r t h a t D B , a n d t h e n e c e s s a r y i n f o r m a t i o n f o r

a c c e s s , s u c h a s t h e D B l o c a t i o n (U R L) , w h e r e t o s a v e t h e S S D , a n d t h e

U s e r I D a n d P a s s w o r d .

,JO]_xj

Save Schema Structure In File Name bib_ssdxml

Database Name

Username

bookstore

scmfma

Password

Connect Clear Cancel

F igure 7.4: R ela tion a l D B connection param eters.

F o r X M L d o c u m e n t s t h e M D E e m p l o y s J X C t o m a k e t h e a c c e s s . T h e

M D E g e t s t h e i n f o r m a t i o n n e e d e d t o e s t a b l i s h a c o n n e c t i o n t o a w e l l -

f o r m e d X M L d o c u m e n t a n d r e t r i e v e t h e m e t a d a t a o f i t s s c h e m a w h e r e t h e

m e t a d a t a a r e b u r i e d i n s i d e t h e d a t a . It t h e n u s e s X D S D L t o b u i l d t h e t a r g e t

S S D f o r t h e d o c u m e n t , a n d t h e i n f o r m a t i o n f o r a c c e s s , s u c h a s t h e

d o c u m e n t l o c a t i o n (U R L) , w h e r e t o s a v e t h e S S D , a n d t h e d o c u m e n t n a m e .

CONNECTION TO XML DOCUMENT

Save Schema Structure In File Name

XML Document Location

XML Document Name

book sscLxml

http://www.w3schools.com/xquery

books.xml

Connect Clear Cancel

F igure 7.5: XM L docu m en t connection param eters.

137

http://www.w3schools.com/xquery

CHAPTER 7. THE SISSD IMPLEMENTATION

O n c e t h e u s e r h a s s e l e c t e d t h e t y p e o f d a t a s o u r c e (r e l a t i o n a l d a t a b a s e o r

X M L d o c u m e n t) t h a t i s b e i n g a c c e s s e d , t h e S S D i s b u i l t u s i n g a g r a p h i c a l

u s e r i n t e r f a c e , w h i c h a l l o w s t h e u s e r t o s u b m i t c o n n e c t i o n p a r a m e t e r s . T h e

i n t e r f a c e s f o r a r e l a t i o n a l d a t a b a s e a n d X M L d o c u m e n t c o n n e c t i o n

p a r a m e t e r s a r e s h o w n in F i g u r e 7 . 4 a n d 7 . 5 r e s p e c t i v e l y . A p p e n d i x B a n d

C c o n t a i n t h e J a v a c l a s s u s e d t o e x t r a c t a n d b u i l d t h e S S D f o r a r e l a t i o n a l

d a t a b a s e a n d a n X M L d o c u m e n t , r e s p e c t i v e l y .

yiLLLi1 ■UliMI—’W
MetaOati Extractor Knowledge Sen«r Query Processor

1 book

1.1 price

12 author

12.1 fu flnam

12.1.1 first _name

12.12 last name

1.3 title

1.4 year

1.5 publisher

1.6 editor

1.6.1 affflwbon

1.62 full name

tadBER

Index Number for Integrated Schema Elements Generate Successfully

F igure 7.6: Index num bers g e n era te d f o r m aster view shown in F igure 7. 7.

7.3 X M K B es ta b lish in g a n d m a p p in g p rocess

T h i s s e c t i o n c o v e r s i m p l e m e n t a t i o n o f t h e S S D p a r s i n g a n d m a p p i n g

p r o c e s s t h a t i s u s e d t o e s t a b l i s h a n d e v o l v e t h e X M L M e t a d a t a K n o w l e d g e

B a s e (X M K B) . It u s e s t h e a l g o r i t h m d e s c r i b e d in F i g u r e 5 . 8 t o e s t a b l i s h a n

X M K B o r t o a d d a n e w d a t a s o u r c e t o a n e x i s t i n g X M K B . F o u r s t e p s n e e d

t o b e p e r f o r m e d .

T h e f irs t step i s g e n e r a t i n g a u t o m a t i c a l l y a u n i q u e i n d e x n u m b e r f o r t h e

m a s t e r v i e w e l e m e n t s . T h e s y s t e m u s e s t h e a l g o r i t h m d e s c r i b e d in s e c t i o n

5 . 4 . 3 t o g e n e r a t e t h e s e i n d e x n u m b e r s . T h e p a r s i n g p r o c e s s i s p e r f o r m e d

138

CHAPTER 7. THE SISSD IMPLEMENTATION

o n t h e m a s t e r v i e w t o e x t r a c t a n d f o r m a t t h e X M L s c h e m a e l e m e n t s .

J D O M i s u s e d t o r e a d a n d p a r s e t h e m a s t e r v i e w d o c u m e n t . T h e J D O M

A P I r e a d s X M L d o c u m e n t s in m e m o r y . J D O M is a t r e e - b a s e d , p u r e J a v a

A P I w h i c h p a r s e s , c r e a t e s , o r m a n i p u l a t e s X M L d o c u m e n t s . It p r o v i d e s a

f u l l d o c u m e n t v i e w w i t h r a n d o m a c c e s s . O n c e a d o c u m e n t h a s b e e n

l o a d e d i n t o m e m o r y , w h e t h e r b y c r e a t i n g it f r o m s c r a t c h o r b y p a r s i n g it

f r o m a s t r e a m , it c a n b e e a s i l y p r o c e s s e d b y J D O M . T h u s t h e e n t i r e t r e e o f

a n X M L d o c u m e n t i s a v a i l a b l e a t a n y t i m e . J D O M i t s e l f d o e s n o t i n c l u d e

a p a r s e r . I n s t e a d it d e p e n d s o n a S A X p a r s e r [1 1 6] , w h i c h c a n b e u s e d t o

p a r s e d o c u m e n t s a n d b u i l d J D O M m o d e l s f r o m t h e m .

<?xml version-T.O" encoding="UTF-8" ?>
- <element name="book">

<element name-'price" />
- <element name="author">

- <element name="full_name">
<element name- 'first_name" />
<element name="last_name" />

</element>
</element>
<element name- ’title" />
<element narne-'year" />
<element name="publisher" />

- <element name- 'editor">
<element name- ’affiliation" />
<element name- ’fulLname" />

</element>
</e!ement>

F igu re 7. 7: M aster view.

J D O M p r o v i d e s J a v a s p e c i f i c X M L f u n c t i o n a l i t y . A n e w b u i l d e r i s c r e a t e d

t o b u i l d a J D O M t r e e . In t h i s c a s e , a SAX Builder (S A X c l a s s) h a s b e e n

u s e d t o b u i l d a J D O M t r e e o f t h e f o r m :

SA X B uilder bu ilder = new SAXBuilder()

139

CHAPTER 7. THE SISSD IMPLEMENTATION

J D O M u s e s t h e d e f a u l t v a l i d a t i n g p a r s e r ; a c o n s t r u c t o r i s a v a i l a b l e f o r

s p e c i f y i n g a n a l t e r n a t i v e v a l i d a t i n g p a r s e r . T h e J D O M c o d e w r i t t e n t o

p a r s e t h e m a s t e r v i e w , p r o d u c e i t s t r e e s t r u c t u r e a n d t h e n g e n e r a t e t h e

i n d e x n u m b e r s f o r i t s e l e m e n t s c a n b e f o u n d in A p p e n d i x D . F o r e x a m p l e ,

F i g u r e 7 . 6 s h o w s t h e i n d e x n u m b e r s g e n e r a t e d f o r t h e m a s t e r v i e w

e l e m e n t s s h o w n in F i g u r e 7 . 7 .

Data Source Name: bib.xml

Data Source Location: C:\prototype'«doc

Data Source Type: XML document

bib

book

title

author

last

first

editor

last

first

affiliation

publisher

price

Add

Add

Add

Add

J
Add

Add

Add

Add

Add

Add 1

Add

Submit Cancel

F igure 7.8: P a r t o f the G U I f o r SSD show n in F igure 7.2.

T h e second s tep p r o d u c e s a c o n v e n i e n t G U I f o r e a c h l o c a l d a t a s o u r c e

S S D a s a n a s s i s t a n t t o o l f o r t h e m a p p i n g s g e n e r a t i o n . T h e J D O M A P I is

u s e d t o r e a d a n d p a r s e t h e S S D . O n c e t h e S S D i s p a r s e d , t h e t r e e s t r u c t u r e

m o d e l i s f o r m e d a s a J D O M d o c u m e n t o b j e c t w h i c h c o n t a i n s a l l t h e

c o m p o n e n t s o f t h e S S D . A G U I i s g e n e r a t e d b a s e d o n t h e S S D t r e e

s t r u c t u r e m o d e l . P a r t o f t h e G U I i s s h o w n in F i g u r e 7 . 8 f o r t h e S S D s h o w n

in F i g u r e 7 . 2 . T h e f i r s t c o l u m n s h o w s t h e p a t h h i e r a r c h y . T h e s e c o n d

c o l u m n i s u s e d t o a s s i g n a u n i q u e i n d e x n u m b e r f o r t h e e q u i v a l e n c e p a t h s ,

140

CHAPTER 7. THE SISSD IMPLEMENTATION

w h i l e t h e t h i r d c o l u m n i s u s e d t o s p e c i f y t h e f u n c t i o n n a m e s w h i c h r e s o l v e

h e t e r o g e n e i t y c o n f l i c t s b y p e r f o r m i n g s p e c i f i c o p e r a t i o n s . T h e G U I is

g e n e r a t e d f o r e a c h S S D t o a s s i g n a u n i q u e i n d e x n u m b e r t o e a c h p a t h t h a t

c o r r e s p o n d s t o a n e q u i v a l e n t g l o b a l p a t h a n d a l s o a u s e r - d e f i n e d f u n c t i o n

n a m e i f it i s n e e d e d . F i g u r e 7 . 9 s h o w s t h e i n t e r f a c e f o r s u b m i t t i n g i n d e x

n u m b e r s a n d f u n c t i o n n a m e s f o r t h e m a p p i n g b e t w e e n a m a s t e r v i e w (o n

t h e l e f t o f t h e f i g u r e) a n d t h e S S D s h o w n in F i g u r e 7 . 2 . A p p e n d i x E

c o n t a i n s t h e J a v a c o d e f o r p r o d u c i n g a G U I a n d c r e a t i n g t h e a s s i s t a n t t o o l

f o r t h e m a p p i n g g e n e r a t i o n .

JaJxJ
MetaData Extractor Knowledge Server Query Processor

1 book Data Source Name: bib.xml

1.1 price Data Source Location: Cprotofypedoi

1.2 author Data Source Type: XML document

1.2.1 fid.name

12.1.1 tsst.name Mb L. _ J
12.12 last .name book L J
1.3 title title Its 1
1.4 year author f t * " 1

1.5 pubkslier last 112.12 1
1.6 editor hr st (l2.11
1.6.1 afTikdbon editor its
162 ful .name last iH 2]

hr st |162 I

afflation 16.1

publisher Its
price 1111

■ 1 1 I

Add

Add

M.ig.

M ' r g ,

Add

 Add

Add

Add

. Add
Add

A dd

Add

Add

Add

M erge

P 3 te f x c h an g e

In d e x e s N u m b ers A ss ig n e d S u c c e s s fu lly

OK

Sutaid! cm Cm e!

F igu re 7.9: In terface f o r su bm ittin g index numbers.

T h e th ird s te p g e n e r a t e s t h e m a p p i n g s b e t w e e n t h e m a t e r v i e w p a t h s a n d

t h e l o c a l S S D p a t h s b a s e d o n i n f o r m a t i o n s u b m i t t e d u s i n g t h e G U I . T h i s i s

d o n e b y c o l l e c t i n g p a t h s w i t h t h e s a m e i n d e x n u m b e r s w h i c h m e a n s t h e y

a r e e q u i v a l e n t p a t h s w i t h t h e s a m e m e a n i n g . F i g u r e 7 . 1 0 s h o w s a p a t h

141

CHAPTER 7. THE SISSD IMPLEMENTATION

g e n e r a t e d m a p p i n g . A p p e n d i x F h a s t h e J a v a c o d e f o r g e n e r a t i n g t h e p a t h

m a p p i n g .

f t t K e r In te rfa c e

MetaData Extractor Knowtedye Server Query Processor

algjxj

y-aaaa;,
Integrated Schema Element path

book

bookprice

bookautlror

bookauthorfuS_iume

.book/aulhoc fu l _nan te f t st _natne

book'authortuljiameEastname

book title

book year

bookpubksher

book editor

bookerStor affiliation

bookedttor full name

Data Source Element path

bib book

bib book.pt ice

bib book author

Nut

bib book author f»st

bill book author last

bibbookttle

Nul

bib book pubkslier

b * booked* or

bib bookiedd or .afrdtation

bib tiookedrtor last,

bib bookeditor first

Mapping Function

RateExchange

Merge

Figure 7.10: G en era ted p a th s mapping.

T h e fo u rth step c o m b i n e s d a t a s o u r c e i n f o r m a t i o n (n a m e , t y p e a n d

l o c a t i o n) w i t h t h e p a t h m a p p i n g i n f o r m a t i o n i n t o a m e d i a t i o n l a y e r h e l d in

t h e X M L M e t a d a t a K n o w l e d g e B a s e (X M K B) . A p p e n d i x G h o l d s t h e j a v a

c o d e f o r m e r g i n g t h e m a p p i n g i n f o r m a t i o n w i t h t h e X M K B a n d , in

A p p e n d i x H , t h e r e i s a s a m p l e o f a n X M K B d o c u m e n t w h i c h c o n t a i n s t h e

m a p p i n g i n f o r m a t i o n f o r t h e f o u r s c e n a r i o d a t a s o u r c e s .

Remove Data Source m:- xj

R e m o v e D a ta S o u r c e b o o k jx m l

oks.xml

bib.xm l

SCMEMA

bookdatnxm l

R e m o v e C a n c e l

F igure 7.11: Interface fo r rem oving data source.

142

CHAPTER 7. THE SISSD IMPLEMENTATION

A d a t a s o u r c e c a n b e r e m o v e d f r o m t h e i n t e g r a t i o n s y s t e m t h r o u g h t h e

J D O M A P I u s i n g t h e i n t e r f a c e s h o w n in F i g u r e 7 . 1 1 . T h e A P I i s u s e d t o

a c c e s s t h e X M K B t o o b t a i n t h e n u m b e r s a n d n a m e s o f t h e d a t a s o u r c e s

c u r r e n t l y in t h e i n t e g r a t i o n s y s t e m a n d c r e a t e t h i s d i s p l a y . T h e u s e r t h e n

s e l e c t s t h e d a t a s o u r c e t o b e r e m o v e d f r o m t h e X M K B a n d t h e s y s t e m

r e m o v e s a l l t h e l o c a l p a t h s r e l a t e d t o t h i s d a t a s o u r c e f r o m X M K B w i t h o u t

t h e n e e d t o r e g e n e r a t e t h e X M K B . A p p e n d i x I s h o w s t h e J a v a c l a s s w h i c h

i m p l e m e n t s t h i s a c t i o n .

Ei' QUfcltV PRDCFSStTR
MASTER VIEW

?xm l versior=’ t O’ encodings'U T F-tT ?»
e le m e n t n a m e * 'b o o k "»

•e le m e n t nam e= 'pnce"/»
•e le m e n t n a m e = 'a u th o r»

•e le m e n t nam e=*tu#_nam e'>
•e le m e n t n a m e ^ r s U u m e * /*
•e le m e n t nam #= ‘ la st_ n am e 'f»

• /e lem en t*
•/elem en t*
• e le m e n t nam e= 'W e '/>
• e le m e n t nam e=*yeai'/»
•e le m e n t nam e= 'p u b iish e /7 *
• e le m e n t nam e= 'editor*»

•e le m e n t nam es'afflB afton '/*
•e le m e n t nam e= ‘fu ll_ n a m e >

•/e lem en t*

•/elem en t*

ENTER YOUR XQUERY:
FO R tb o o k IN d ocum en t fm a s te r .xmO/book WHERE $bookf p ub lisher = 'M orgen K au fm an n ' RETURN «book* (Jbook/tibe) </book*

T t t RESULT:
ib-Ouery O enera te For XML d ocum en t http Wrww w 3 sch o o ls com /xquery/books xml i s :
> m atched Query G enera ted For T his D tad Source

jSub-Query G enera te For XML d ocum en t C tprototypetdoctbib xml is
FO R tb o o k IN docu m en t^ C tprototvpetdoctbib xm rybib /book WHERE Jbook /pub lisher= 'M orgen K aufm ann" RETURN •book* (Jbook/btle | «/book>

Sub-Query G enera te For R elational D a ta b a se jdbc oracle thm g h e lo t 1 521 .orade9tSC M F M A ls
Select scm ftrta .book lMe From scm tm a book WHERE scm frna book.publi$her=M orgen K au ttnann '

ub-Query O enera te For XML d ocum en t C tpro to typeldoctbookdatajon l i s :
o m atched Query G enera ted For T his D tad S ource

Get Master View Generate Local Sub-Query Reset Extf

Figure 7 . 12: E xam ple o f a g lo b a l query translation.

7.4 Q u er y p a rse r a n d tra n s la t io n p rocess

W h e n a u s e r f o r m u l a t e s a q u e r y in t e r m s o f t h e m a s t e r v i e w (g l o b a l

s c h e m a) u s i n g X Q u e r y F L W R e x p r e s s i o n s , t h e q u e r y i s p a r s e d b y t h e

143

CHAPTER 7. THE SISSD IMPLEMENTATION

query parser and the Query Processor generates the corresponding local

queries. The system uses the algorithm described in section 6.3 to rew rite

the user query as appropriate sub-queries for each local data source. For

the XM L query parser process, we developed a simple parser called

XQ uery F L W R Expression P arser (XFEP) which parses, lexically

analyses the query, and breaks the XQ uery FLW R Expression query into

tokens w hich are classified. The X FEP parser is implemented in Java.

Figure 7.12 show s an exam ple o f global query translation.

X FEP parser is a parser generator and lexical analyzer generator for

processing an X Q uery FL W R Expression query. The XFEP parser

generates error m essages, i f the X Q uery FLW R Expression query input

does not conform to the syntactic rules o f the language or to the form at o f

the m aster view (global schem a).

W hen the X FEP parser checks the X Q uery FLW R Expression query for

syntactic correctness to ensure that the query is valid and conform s to the

m aster view , the parser breaks the query into tokens according to the rules

o f the language. The parser analyzes this sequence o f tokens to determ ine

the structure o f the query and to generate the X Q uery Internal Structure

(XQIS) which contains the X M L paths, variables, conditions and tags

present in the query. Once the X Q IS is generated the Query Processor

(QP) consults the X M K B via the JD O M API to produce the corresponding

local queries for each local data source. A ppendix J contains the Query

Processor and X FEP Parser code.

144

CH APTER 8

Evaluation & Discussion

This chapter is an assessm ent o f the project. W e evaluate the functionality

and flexibility o f the system , and then discuss the suitability o f its

architecture and design. The X M K B construction process is then evaluated,

followed by a discussion o f the suitability o f XM L as the canonical data

model in our integration system.

8.1 Evaluation

This evaluation is against the hypothesis and objectives in chapter 1.

The main em phasis o f our w ork was to investigate the feasibility o f

building by a bottom -up approach an XM L M etadata K now ledge Base

(XM KB) to assist with the incorporation o f heterogeneous distributed

structured data residing in relational databases and sem i-structured data

held in well-form ed XM L docum ents into an integration system. This has

been achieved by developing:

145

CHAPTER 8. EVALUATION & DISCUSSION

1) The M DE to extract m etadata w hich is used to build the SSD o f the

data sources.

2) A tool for a m eta-user (the m etadata integrator) to describe

m appings betw een the m aster view and local SSD o f data sources.

3) An XM L M etadata K now ledge Base (X M K B) to store this m apping

information.

4) An architecture o f software com ponents which builds this XM KB

and exploits its knowledge to assist the Q uery Processor to m ediate

betw een user queries posed over the m aster view o f its

heterogeneous data sources, and translate such queries into sub

queries suited to each local data source.

The efficiency and effectiveness o f the outcom es o f our research are

m easured in term s o f the:

• Functionality o f SISSD system w ith regard to its role as an

integration tool for a m eta-user and its role in helping users

form ulate queries and receive output.

• Flexibility o f the SISSD system with regard to its suitability to a

dynamic environm ent, w here data sources can be added or rem oved

w ithout the need to restructure the m aster view.

• The architecture o f the SISSD system with regard to its design and

role as an integration tool.

• Construction o f the XM KB with regard to its structure and role as a

central repository which stores the m appings information.

• Choice o f XM L as the data model o f our data integration system, and

the language to describe the SSD for the participating data sources.

146

CHAPTER 8. EVALUATION & DISCUSSION

• Capability o f SISSD system with regard to handling different types

o f heterogeneity that m ay exist betw een a set o f data sources.

• D ifferent uses o f the system and the types o f user who can use it.

8.1.1 Functionality o f SISSD

The SISSD system is a valuable integration tool for a m eta-user who does

the m etadata integration o f heterogeneous distributed structured data

residing in relational databases and sem i-structured data held in well-

form ed XM L docum ents produced by internet applications — in that it

facilitates the efficient production o f an XM L M etadata Knowledge Base

(XM KB) from the extracted m etadata o f the participating data sources.

The generation o f an XM KB is sim plified in the SISSD system by its

graphical interface tool w hich guides a m eta-user step by step through the

integration process via system w indow s that hide low-level and tedious

details while enabling the user to concentrate on the param eters that need

to be supplied at each stage to describe m appings betw een the m aster view

and local SSD data sources [16]. The XM KB contains the data source

inform ation (name, type and location), m eta-inform ation about

relationships o f paths am ong data sources, and function names for

handling sem antic and structural discrepancies.

The SISSD system is valuable to a user at run time, where it allows system

users to form ulate their queries against the master view. The queries are

then transform ed into queries against the underlying local data sources. A t

the heart o f our system there is a Query processor (QP) m odule which

m ediates user queries posed over the m aster view o f the heterogeneous

data sources, by autom atically translating such queries into sub-queries,

which are suited to each participating data source and which will retrieve

inform ation relevant to the query. The QP consults and exploits the

m apping inform ation stored in the XM KB at several stages, to obtain the

147

CHAPTER 8. EVALUATION & DISCUSSION

local paths corresponding to the m aster paths, to find the function nam es

for handling sem antic and structural discrepancies, and then to produce

sem antically equivalent queries to fit each local data source.

In the QP we have created a query translation (rew riting) algorithm which

is used by the QP m odule to achieve this task [14]. The algorithm is both

conceptually simple and generally applicable. W e have successfully

im plem ented and tested it on a variety o f relational and XM L data source

integration exam ples in our prototype SISSD system.

8.1.2 Flexibility o f SISSD system

The SISSD system is flexible in that its users can assem ble virtual m aster

view s suited to their requirem ent. For the same set o f data sources users

m ay create different m aster view s, depending on their interest. It also

preserves the local autonom y o f the participating data sources, thus these

data sources can be jo ined to the system w ithout rebuilding or

m odification to the local data source to prepare it for the SISSD.

The SISSD uses a local-as-view approach to map between the m aster view

and the local schem a structures. This approach is well-suited to a dynamic

environm ent, where data sources can be added or removed from the

system w ithout the need for a m ajor restructure o f the m aster view. The

inform ation required for the new sources is easily added, and if a source is

rem oved only the inform ation related to it is deleted. Also, the LAV

approach provides a m ore flexible environm ent to meet users’ evolving

and changing inform ation requirem ents across the disparate data sources

available over the global inform ation infrastructure (Internet) as tim e

passes. It is better suited and scalable for integrating a large num ber o f

autonom ous read-only data sources accessible over com m unication

networks than integration system s created in traditional ways. Furtherm ore

the LAV approach provides a flexible environm ent able to accom m odate

148

CHAPTER 8. EVALUATION & DISCUSSION

the continual change and update o f data source schemas. This m akes it

especially suitable for XM L docum ents on W eb servers since these rem ote

docum ents are not static and are often subject to frequent update. W hen

generating the XM KB, the m apping direction is changed from the original

local-as-view to global-as-view , to m ake its use in the query rew riting

stage straightforward. A m aster query from a user is translated into queries

to local data sources by looking up the corresponding paths in the XM KB.

Hence the SISSD com bines both global-as-view and local-as-view

approaches taking advantage o f the approach best suited to the task.

The SISSD also gives the flexibility to rem ove any data source schema

from the XM KB and then add th is data source again with an updated or

altered schem a w ithout any other im pact on the XM KB, or the need to

regenerate it from scratch every tim e.

8.1.3 Architecture o f SISSD system

In a typical data integration system , users and com ponent data sources are

scattered over a num ber o f nodes o f the com puter network, and users are

provided with front-end interface(s) to access data stored in the different

back-end data sources. The design architecture o f the SISSD system

(section 4.3) is based on a client-server model.

SISSD system has been developed as a collection o f software modules.

They are:

• JXC (Java XM L Connectivity) which detects and extracts the

Schem a Structure D efinition (SSD) o f a well-form ed XM L

document.

• M DE (M etadata Extractor) which extracts the m etadata o f all data

sources and builds a Schem a Structure Definition (SSD) in XM L

form for each data source.

149

CHAPTER 8. EVALUATION & DISCUSSION

• M VP (M aster V iew Parser) w hich parses the m aster view to

generate a tree structure and then autom atically generates unique

index num bers for its elem ents.

• SSDP (Schem a Structure D efinition Parser) w hich parses the SSD

o f the data source to generate a tree structure and then produces the

GUI for it.

• KS (K now ledge Server) w hich establishes, evolves and m aintains

the XM L M etadata K now ledge Base (XM KB).

• QP (Query Processor) w hich receives a user query over the m aster

view and autom atically rew rites it into sub-queries, fitting each local

data source, and integrates the results o f these sub-quires.

The SISSD system architecture is a collection o f m odules. This m akes it

easy to develop and incorporate new m odules to enhance the functionality

o f the prototype. The m eta-users (integrators) interact with the software

m odules in the SISSD system through a GUI provided by the system. It

serves as a com m on front-end for all users. This enables them to interact

with the M DE, KS and QP m odules.

8.1.4 Construction o f the X M K B

The XM KB has been developed as a central repository which stores the

data source’s inform ation (nam es, types and locations) and m etadata

extracted from the data sources, in w hich the m appings betw een the

m aster view and Schem a Structures D efinition (SSD) o f the data sources

are defined, so that this inform ation can be used to support and improve

the integration o f distributed heterogeneous structured data residing in

relational databases and sem i-structured data held in w ell-form ed XM L

docum ents. The inform ation stored in this XM KB is available to the

Query Processor (QP) to m ediate betw een user queries posed over the

150

CHAPTER 8. EVALUATION & DISCUSSION

m aster view and the distributed heterogeneous data sources, to

autom atically rew rite such queries into sub-queries, fitting each local data

source. This enables the Query Processor (QP) to reuse the know ledge

held in the X M KB for other user queries posed over the m aster view.

Typically, the know ledge held in the XM KB becom es available

increm entally, as new data sources jo in the integration system. This m eans

that the XM KB m ust be able to evolve. The XM KB has a simple, flexible

and easy to understand structure w hich allows it to be evolved and

m odified increm entally as new data sources are added or rem oved from

the system, w ithout the need to regenerate it from scratch. Its simple

structure m akes it easy to construct it autom atically. The XM KB is

how ever able to capture the structure and sem antics o f the schem a

elem ents o f the data sources so that this inform ation can be used to resolve

sem antic and structural discrepancies occurring in the data.

W e have developed a software m odule to autom atically generate a tool for

a m eta-user (integrator) to define the sem antic relationships between the

schem a’s elements. How ever, these sem antic relationships cannot be

determ ined precisely using an autom atic procedure. Thus this task always

requires some hum an intervention and is semi- autom atic for this reason.

8.1.5 Choice o f XM L as the data m odel

M any data m odels are based on som e form o f a labeled directed graph.

One o f the m ost popular is the O bject Exchange M odel or the OEM model.

OEM is a simple, self-describing nested object model [124]. However, the

ex tensib le M arkup Language (X M L) received significant attention from

the database com m unity w hen the W 3C recom m ended it as a standard for

data representation and exchange in the W orld W ide Web. XM L has a

strong resem blance to sem i-structured data m odels and could easily

represent structured, sem i-structured and unstructured data. We consider

151

CHAPTER 8. EVALUATION & DISCUSSION

XM L to be an ideal candidate to provide a unifying data m odel in data

integration systems for several reasons, namely:

1. XM L is flexible and pow erful enough to represent a wide variety o f

data models without losing their semantics. This lossless sem antic

conversion enables XM L to represent structured, sem i-structured

and unstructured sources equally well.

2. Unlike OEM m odels w hich lack a well-defined schema, XM L can

represent schem a inform ation.

3. Its recom m endation as a standard by W3C and its backing by

enterprises has resulted in rich tool support for XML.

4. Standardization efforts have led to XM L query languages like XPath,

and XQuery appearing.

5. XM L is not tied to any particular platform, architecture or

organization.

In the SISSD system we w ant to represent the structure o f a data source

jo in ing the integration system as this is crucial for data integration. We

have therefore defined a sim ple definition language called XM L Data

Source Definition Language (X D SD L) which abstracts the structure o f

schem a elem ents to build the Schem a Structure Definition (SSD) o f the

data source. This language uses a sim ple gram m ar sim ilar to the XM L

Schem a Language but om its inform ation such as data types. Furtherm ore,

this language describes the actual structure o f a data source not the

possib le one as would be defined by a DTD and XM L Schem a Language

definition. W e have developed a software module to autom ate the task o f

building an SSD. Thus, by using this m odule a m eta-user (integrator) can

construct a SSD sem i-autom atically, which captures the structure o f a

given data source.

152

CHAPTER 8. EVALUATION & DISCUSSION

8.1.6 H andling different types o f heterogeneity

In the SISSD system we are concerned with the higher level o f

heterogeneity. This area can be further divided into three levels o f

heterogeneity: syntactic heterogeneity , structural heterogeneity and

semantic heterogeneity. This classification o f heterogeneity is one o f

several classifications o f the different types o f higher level o f

heterogeneity that m ay exist betw een a set o f independently designed data

sources. W e chose this classification to show that our SISSD system can

deal with different levels o f heterogeneity (syntactic heterogeneity ,

structural heterogeneity and sem antic heterogeneity) and provide solutions

to the problem s at these different levels o f interoperability. The conflict

types identified in Figure 2.3 can be classified into one o f these three

levels o f heterogeneity. In this section we show how our SISSD system

can handle these levels o f heterogeneities.

Syntactic heterogeneity refers to the encoding o f the same concept in

different data m odels (or natural languages); in other words using a

different data m odel for storing sim ilar data, exam ples are systems using a

relational and XM L model.

M ainly, syntactic heterogeneity addresses the problem o f using different

data m odels. O ur approach is concerned with data sources that contain

relational data and XM L data. This type o f heterogeneity in our system

can be resolved by using a Com m on D ata M odel (CDM) and translating

all data source schem as to this com m on model using transform ation rules

that explain how to translate schem as into the target data model. This task

is done by the M etadata Extractor (M D E) (see section 4.3) that interacts

with the data sources to extract the m etadata and m ap the schem as to this

CDM . The chosen CDM m ust be such that it is expressive enough to

capture the m eaning o f all local data models. The XM L data model is a

153

CHAPTER 8. EVALUATION & DISCUSSION

s u i t a b l e C D M a n d h a s b e e n u s e d f o r t h i s p u r p o s e in s e v e r a l p r o j e c t s [7 2 ,

1 1 3] a n d w a s c h o s e n in t h i s p r o j e c t a l s o .

MelaData Extractor Knowledge Server Query Processor

1 book

1.1 price

12 author

121 fuljiam e

121.1 flrsl.ttattie

1 212 last_name

U title

1.4 year

1.5 pubisher

1.6 editor

1.6.1 affiliation

1.62 fu>_name

Data Source Name: books .xml

Data Source Location: http^aMrw.w3schooisxom.Kquery

Data Source Type: XML document

bookstore

book

tile

author

year

price

"1 f □
1 1 H 1 Add

1 J] *1 [Add 1
121.1 ,1212 | | H | Add nrstNameJasWame

1.4] (H I Add 1
11] | Rit«Etthing« ▼ f Add RateExchange

x]

f l i Indexes Numbers Assigned S uccessfu l

OK

r r

I Subnxt dear
 ».

Cancel

v..V.v.V.-,-;-y-.- v2-VAV. ' Vv.v-v-vyAy.y .vy.y.v.\y.y.y.v,;.v.yy.-y,y.y.-.y.y. yy,-.%

F igure 8.1: E xam ple o f reso lv in g stru ctu ra l heterogeneity.

S tructural h e tero g en e ity a r i s e s w h e n t h e s a m e c o n c e p t i s r e p r e s e n t e d

d i f f e r e n t l y , in o t h e r w o r d s w h e n e l e m e n t s h a v e t h e s a m e m e a n i n g , a r e

m o d e l e d w i t h t h e s a m e d a t a m o d e l , b u t s t r u c t u r e d a n d r e p r e s e n t e d in a

d i f f e r e n t w a y .

In d e a l i n g w i t h s t r u c t u r a l h e t e r o g e n e i t y , t h e m a i n d i f f i c u l t y i s t h a t t h e d a t a

in d i f f e r e n t s o u r c e s m a y b e r e p r e s e n t e d in d i f f e r e n t f o r m a t s a n d in

i n c o m p a t i b l e w a y s . T h e r e f o r e , w e h a v e t o p r o v i d e a n a p p r o p r i a t e

m e c h a n i s m t o h a n d l e t h i s k i n d o f h e t e r o g e n e i t y c o n f l i c t . It c a n h a p p e n f o r

e x a m p l e , w h e n o n e s o u r c e r e p r e s e n t s a u t h o r s ' n a m e s a s f u l l n a m e s , w h i l e

t h e g l o b a l s c h e m a s e p a r a t e s t h e f i r s t a n d l a s t n a m e s . In t h i s c a s e , t h e n a m e

f r o m t h e l o c a l s o u r c e m u s t b e s e p a r a t e d i n t o i t s p a r t s , i f a q u e r y i s t o

r e t r i e v e t h e f i r s t n a m e o f t h e a u t h o r . T h e r e f o r e , u s e r - d e f i n e d f u n c t i o n s

154

CHAPTER 8. EVALUATION & DISCUSSION

(U D F s) a r e n e e d e d t o p e r f o r m t h e r e q u i r e d o p e r a t i o n f o r r e s o l v i n g t h i s

c a s e . T h e t a s k s o f t h e s e f u n c t i o n s a r e t o s p l i t t h e a u t h o r f u l l n a m e i n t o

s e p a r a t e f i r s t a n d l a s t n a m e . S u c h a f u n c t i o n i s e x p l i c i t l y d e f i n e d b y t h e

d e s i g n e r . F i g u r e 8 .1 s h o w s h o w o u r S I S S D s y s t e m r e s o l v e d t h i s c o n f l i c t

w h i c h i s i d e n t i f i e d in F i g u r e 2 . 3 a s M a n y - t o - O n e E l e m e n t C o n f l i c t s b y

u s i n g i n d e x n u m b e r s g e n e r a t e d a u t o m a t i c a l l y f o r t h e g l o b a l s c h e m a

e l e m e n t s (s e e F i g u r e 5 . 1 2 a n d 5 . 1 3) a n d u s i n g U D F s (e . g . firs tN am e,

lastN am e) t o e x t r a c t t h e r e q u i r e d i n f o r m a t i o n f r o m t h e l o c a l d a t a s o u r c e

e l e m e n t . F o r e x a m p l e i f t h e a u t h o r n a m e i s John Smith, t h e firs tN am e

f u n c t i o n w i l l e x t r a c t John a n d t h e lastN am e f u n c t i o n w i l l e x t r a c t Smith.

- Iglxl
MetaO^a Extractor Knowledge Server Query Processor

1 book

1.1 price

12 author

12.1 (u#_name

12.1.1 fwstjiame

12.12 last_name

12 title

1.4 ye *

1.5 publisher

1.6 editor

12.1 affiliation

122 fuB_name

Data Source Name: bookdata.xml

Data Source Location: (^prototype doc

Data Source Type: XML document

bookdata

book

title

author

name

cost

12 .1.1,12 .1.2 UJtNjmt firstName,laslName

Master View Element path

book

book Twice

bookrauthor

book author full name

book/author lul_namebrst_name

book'author futl nanie last name

book title

bookyear

bookJpubksher

book edit or

bookied*or 'affiliation

book editor lull name

Data Source Element path

bookdatabook

bookdar abookcost

bookdata book/author

Nul

bookdata book/author name

bookdata book'authorbame

bookdata booklrtle

Nul

Nul

Nul

Nul

Mapping Function

FwslName

lastName

F igure 8.2: Exam ple o f handling synonym conflict.

155

CHAPTER 8. EVALUATION & DISCUSSION

The distinction betw een sem antic and structural heterogeneity is not

alw ays clear-cut. Structural heterogeneity refers basically to the structure

o f the data, w hile sem antic heterogeneity refers to the represented

concepts’ interpretation.

Sem antic heterogeneity refers to the fact that data represented in different

system s in sim ilar w ays m ay be subject to different interpretation. For

exam ple, tw o schem a elem ents in two local data sources can have the

sam e intended m eaning, but different names. Thus, during integration, it

should be realized that these tw o elem ents actually refer to the same

concept. A lternatively, two schem a elem ents in two data sources m ight be

nam ed identically, w hile their intended m eanings are incompatible. Hence,

these elem ents should be treated as different things during integration.

Sem antic heterogeneity m ay exist in several forms; the m ost com m on

form o f sem antic heterogeneity is called nam ing conflicts which arise

when labels o f schem a elem ents are som ewhat arbitrarily assigned by

different database designers. There are tw o types o f nam ing conflicts:

1. Synonym : Tw o term s are called synonym s if they have the same

m eaning but different representations. In a data integration system,

this problem occurs w hen tw o term s are used to represent the same

concept.

2. H om onym : hom onym s occur w hen identical term s have different

m eanings.

W e use the m apping to overcom e these conflicts. In the form er case, the

integrator assigns different term s with the same m eaning to the same

concept in the global schem a. In the latter case, the integrator assigns the

same term w ith the different m eaning to different concepts in the global

schema. Figure 8.2 show s how our SISSD system handles the synonym

conflict w hich is identified in Figure 2.3 by using index num bers

156

CHAPTER 8. EVALUATION & DISCUSSION

generated autom atically for the global schema elem ents (see Figure 5.12

and 5.13) and assign these index num bers to the elem ents that are

synonym s in the local schem a structures. For example, in Figure 8.2 the

index num ber (1.1) o f elem ent p rice in the global schem a is assigned to

the elem ent cost in the local schema.

8.1.7 W ays o f using the system

Different users have different reasons for integrating data sources, and

even the sam e user m ight need to integrate the same data in a variety o f

ways and/or include different services to satisfy different tasks in an

organization. Thus a tool that supports the flexible integration o f pre

existing structured and sem i-structured data sources needs to allow

different view s and reasons for the integration to be handled. The primary

m otivation for m ost o f the w ork in this area is that m any applications

require processing o f data that belongs to structured and sem i-structured

data sources. For instance, an order processing application m ight need to

handle inventory inform ation in a relational database as well as purchase

orders received as (sem i-structured) XM L docum ents [126].

O ur system enables the users to link data from different structured and

sem i-structured data sources flexibly. It provides a tool that can be used by

the integrator or the end user to do the m etadata integration. Furtherm ore,

it gives the user w ho does the m etadata integration the option to choose

which m aster view to use so that his/her current requirem ents are met. It

also allows choice o f the data sources that will be integrated and in which

order the integration will be perform ed. This also gives this user the

possibility to change and edit a m aster view.

The system can be used in two different ways:

1. In a centralized approach, when one person is the integrator (skilled

in IT) constructs the m aster view that characterizes the underlying

157

CHAPTER 8. EVALUATION & DISCUSSION

data sources, then integrates the participating schem a structures as

they are presented for integration and creates the UDF to resolve the

heterogeneity conflicts by perform ing specific operations. This

approach is tightly-coupled in that data is accessed using a global

view (s) created and m anaged by the integrator(s). It is appropriate

when there are a small num ber o f data sources which are perm anent

and their schem a structures do not change frequently.

2. In a custom ized approach, w hen several users are integrators, each

chooses a view as the initial m aster view that meets the

requirem ents and decides on w hich schemas to integrate and in what

order. H ow ever, the user in this case will provide a library o f

functions to locate the appropriate UDF to resolve conflicts. This

approach is loosely-coupled, in that it is the user’s responsibility to

create and m aintain the integration regime. This approach provides a

m ore flexible environm ent w hich meets the users’ evolving and

changing inform ation requirem ents across the disparate data sources

available over the global inform ation infrastructure (Internet). It is

better suited to the integration o f a large num ber o f autonom ous read

only data sources accessible over com m unication networks,

especially w hen these data sources are subject to continual change.

8.2 D iscussion

One o f several trends that have significant im pact on the use o f database

technology is XM L. The pow er o f XM L as a description language lies in

the fact that an XM L docum ent contains a self-description o f

hierarchically structured data, and it has the ability to associate markup

term s with data elem ents (see section 8.1.5). These m arkup term s serve as

m etadata allow ing a form alized description o f the content and structure o f

the accom panying data. XM L can subsum e HTM L and its successor

158

CHAPTER 8. EVALUATION & DISCUSSION

X H TM L as the com m unication language for the W eb and it provides a

structure in a w idely accepted format.

As the im portance o f XM L has increased, the W 3C has introduced the

XM L Schem a language to replace the DTD (Docum ent Type Definition)

gram m ar language. The DTD m echanism has num erous limitations. A

basic and m ajor lim itation is that a DTD is not a valid XM L document.

Therefore it m ust be handled by XM L parsing tools in a special way.

Furtherm ore, D TD s have a very lim ited capability for specifying data

types. A lso, D TD s are quite lim ited in their ability to constrain the

structure and content o f X M L docum ents. In addition, they cannot handle

nam espace conflicts w ithin X M L structures or describe com plex

relationships am ong docum ents or elem ents. They also are not modular,

and can not derive new type definitions based on an existing definition.

An XM L Schem a Definition (XSD) is an XM L-based gram m ar declaration

for XM L docum ents. The m otivation for using and developing an XM L

Schema was dissatisfaction with DTDs. It was developed in response to the

lim itations o f the DTD m echanism , and was a trem endous advance over

DTDs. XM L Schem a allows very precise definition for both simple and

complex data types, and allows derivation o f new type definitions.

The definition language that the SISSD system used to build the Schem a

Structure D efinition (SSD) is sim ilar to the XM L Schem a Language but

om its inform ation such as data types. This language is the XDSDL, which

is used in our system to abstract the schem a structure o f the data sources

jo in ing the integration system . The X D SD L avoids the complexity o f the

XM L Schem a Language by using a sim ple notation to describe the

structure o f the schem a elem ents.

For the foreseeable future, a great quantity o f data will continue to be

stored in relational database system s because o f the reliability, scalability,

159

CHAPTER 8. EVALUATION & DISCUSSION

tools and perform ance associated with these systems [68, 133].

Additionally, m uch interesting and useful data can be published in well-

form ed XM L docum ents by W eb-based applications and W eb services or

by hum an-coding [102].

W hile the availability o f data in X M L form at reduces the need to focus on

wrappers to make them interoperable, the challenges o f integrating

distributed heterogeneous structured data residing in relational databases

and sem i-structured data held in w ell-form ed XM L documents produced

by internet applications still rem ains. Querying such heterogeneous

distributed data sources is not easy for several reasons. The first difficulty

com es from the distribution o f the data. The second difficulty is associated

w ith its heterogeneity, w hich occurs at different levels. The problem o f the

discrepancies betw een data sources is important. Usually, when the

contents o f data sources are related in som e way, they will show diversity

in many aspects. Resolving the differences betw een the data sources in

these situations is a crucial issue. The logical heterogeneity is one o f the

more com plicated issues that should be taken into consideration in

building a data integration system . It com es from different understanding

and m odeling o f the sam e concept. Thus, the construction o f a data

integration system m ust handle m echanism s for resolving conflicts when

attributing m eaning to the data (sem antic conflicts), referencing data

(nam ing conflicts), and storing data (structural conflicts). Hence, distinct

data sources m ay use different nam es to refer to the same concept and may

use the same nam e to refer to different concepts in these conflicts.

Since finding the correspondences betw een the schem as’ elem ents often

depend on the application context this is a basic issue. The m atching o f

two elem ents requires a decision as to w hether they correspond to each

other in some way, i.e. are they logically equivalent? Therefore, any

decision about the sem antic correspondence o f sets o f elem ents requires an

in-depth analysis by an integrator. In this area we use paths instead o f

160

CHAPTER 8. EVALUATION & DISCUSSION

elem ents, because the SSDs are trees and each elem ent is identified

uniquely by its path in the tree.

Consequently, as the base step in constructing the XM KB, we m atched a

set o f paths o f the schem as if they were related to each other in some way.

To express a correspondence betw een a global path and a set o f paths in a

data source schem a structure, we conducted an in-depth study o f the

sem antics o f the paths.

This w ork builds on the concept o f a m ediated system. The first

contribution o f the thesis is a m echanism for the m ediation o f

heterogeneous distributed structured and sem i-structured data sources. A

m ediation layer was introduced to m aintain the m appings among global

and local schem as. Such a layer w as developed as an assistant tool to

facilitate the detection, analysis and resolution o f schem a discrepancies

and to im prove the solution o f relevant data integration issues. It can be

used as an assisting tool to m inim ize the designer effort in building

structured and sem i-structured data integration systems. W e argue that our

approach can be used as a sem i-autom atic tool for mediation o f

heterogeneous distributed structured and sem i-structured data sources.

A nother difficulty which im pedes data integration system s is the query

translation process. This is an im portant problem in the design o f a data

integration system , in that the system should be able to reform ulate the

query posed in term s o f the global schem a into a set o f queries suited to

the data sources. Thus, the second contribution o f the thesis was the

provision o f a m echanism that allow s a user to transparently query

structured and sem i-structured data sources in a conceptual way (sem antic

name) instead o f by know ledge o f its local structure. This reduces the

sem antic problem for a user during query form ulation, and significantly

sim plifies the task o f querying m ultiple heterogeneous structured and

sem i-structured data sources. In this way, the system becom es responsible

161

CHAPTER 8. EVALUATION & DISCUSSION

for translating global user queries into local queries. The thesis

dem onstrated an algorithm for the query translation process which was

capable o f generating a local query for each data source corresponding to

part o f the global query. D uring the process o f generating local queries for

the participating data sources, m any structural and semantic conflicts are

resolved by our system .

W ith regard to the m apping specification, there are two basic approaches

that have been used to specify the m apping between the data sources and

the global schem a. These are the GAV and LAV approaches. Our

approach is an attem pt to com bine features from both these approaches.

The GAV approach requires that the global schem a is expressed in term s

o f the data sources. This m eans, that for every elem ent o f the global

schema, a view over the data sources is associated, w hich is specified in

term s o f data residing in the data sources. In other words, the global

schem a is defined as a view over the local data sources' schemas.

The LAV approach requires the global schema to be specified

independently from the data sources. In turn, the data sources are defined as

views over the global schema. Thus each data source is described in terms

o f the global schem a elements. The LAV approach gives better support to a

dynamic environm ent than GAV, where data sources can be added to the

integration system without the need to restructure the global schema.

W e classify our approach as a structural approach that can be used as a

tool for structured and sem i-structured data sources m ediation and

querying. It follow s LAV in its w ay o f describing the data sources, i.e. all

the data sources' elem ents are m apped by m ediation. In other words, it is

not restricted to a subset o f data sources involved, as is the case in GAV.

Thus, the resulting LAV description is translated into GAV when

generating the m appings betw een the global paths and local schemas'

paths by the query translation process. Hence our approach com bines the

162

CHAPTER 8. EVALUATION & DISCUSSION

virtues o f both GAV and LA V approaches. It follows the GAV approach

in respect o f query reform ulation. This advantage facilitates the query

translation task, in that it usually does nothing more than change and

form ula substitution. The biggest problem in the GAV approach is that it

m akes it com plicated to im plem ent changes in the global schem a when

there are changes in the schem as o f the data sources. The LAV approach is

better able to support a dynam ic environm ent, where data sources can be

added or rem oved from the integration system without the need to

restructure the global schem a.

As a final word, the benefit o f our approach is that we can automate the

process o f construction o f an X M L M etadata Knowledge Base (XM KB)

which can assist the Q uery Processor (QP) in querying a multiplicity o f

distributed heterogeneous structured data residing in relational databases

and sem i-structured data held in w ell-form ed XM L docum ents produced

by internet applications or by hum an code. W e have developed a prototype

system to dem onstrate that the ideas explored in the thesis are sound and

practical, and convenient from a user standpoint. Our approach should be

generic enough to easily incorporate a large num ber o f relational databases

and XM L data sources from the sam e domain. W e have shown our

approach is feasible and is successful w ith real data in different dom ains

and have show n that the approach is dom ain independent. This dom ain

independency is one o f the key points o f our approach. A lim itation o f our

approach is that it is not scalable with large schem as since they will

involve considerable effort to do m appings by assigning a unique index

num ber to each elem ent and specifying conversion function nam es to

resolve structural and sem antic conflicts. H ow ever this is not a m ajor

lim itation for our target dom ain as m ost o f the data sources have small or

m edium schem as w hich are com patible w ith our approach.

163

CH A PTER 9

Sum m ary, conclusion and future work

This chapter concludes the thesis by briefly sum m arizing the work,

presenting the conclusions o f the thesis, and addressing future directions

for further developm ent.

9.1 Thesis sum m ary

W e have presented an approach to integrate and query distributed

heterogeneous structured data residing in relational databases and sem i

structured data held in w ell-form ed XM L documents. A general overview

o f the field o f distributed database system s was given with an overview o f

the types o f heterogeneous distributed databases. The basic issues

concerning data integration system s and their architectures were presented

using a classification o f the different aspects, concepts and approaches.

A fter that we presented an overview o f XM L and its related technologies

164

CHAPTER 9. SUMMARY, CONCLUSION AND FUTURE WORK

followed by a description o f our approach to achieving a distributed

system. Two im portant problem s w ere addressed in this work. The first

was establishing a K now ledge Base to hold descriptions o f the m appings

betw een the integrated view (m aster view) and the participating data

sources which are used to resolve the logical heterogeneity present in the

distributed local data sources’ schem as. The second was the query

translation process. These problem s w ere concerned with building a

structured and semi- structured data integration system s, in which a global

schem a was provided over the heterogonous data sources.

The integration architecture w e adopted is based on a m ediator

architecture. The prototype system , called SISSD, perform ed mappings

betw een the global schem a and local data source schem as, by creating an

XM L M etadata K now ledge Base (X M K B), w hich is used to generate local

queries. The data sources are described in XDSDL, a language created in

the project. The m ediation layer w as developed to:

1. Establish appropriate m appings betw een the global schem a and the

schem as o f the local data sources.

2. Enable querying o f local data sources in term s o f the global schema.

The challenge was to generate a m apping for the correspondence between

schem a elem ents. This w as addressed by developing a m ethodology for

extracting and form alizing elem ent paths o f the global and local schemas.

A m apping process w as then developed to generate the correspondences

between paths. This w as achieved through a sem i-autom atic process that

generated local and global paths and their relationships. This created the

XM KB m odule used in m ediation to overcom e heterogeneity problem s

betw een data sources. The XM KB m odule was used to hold the

correspondence betw een schem a paths. For each path o f the global schema,

the objective w as to link it with the set o f local paths that have the sam e

m eaning and w ith a user-defined, function if needed, to perform specific

165

CHAPTER 9. SUMMARY, CONCLUSION AND FUTURE WORK

operations that are defined explicitly by the designer. These user-defined

functions are used to overcom e differences in representation and

granularity.

The query translator, w hich is an integral part o f the m ediation layer, was

developed to translate a user query posed over the global schem a into local

queries. It uses the m apping inform ation defined in the XM KB, to obtain

local queries corresponding to the query issued against the global schema.

The basic idea w as that a query posed to the integration system, called a

global query, w ould be autom atically rew ritten to sub-queries called local

queries, appropriate to each local data source’s required format, using the

inform ation stored in X M K B. This task was accom plished by the query

translator m odule. The X M K B contains the schem a paths and functions to

be applied w hen creating a query for a local data source. The paths in a

global query are parsed by the query parser and replaced by the

corresponding paths for each target local data source, by consulting the

XM KB to see if there are such paths for the user query. I f not, a null query

is generated for the corresponding path in the local query, which means

that this query cannot be applied to that local data source. Each local query

generated is sent to its corresponding local data source, which executes the

query and returns its result. The set o f results are processed to get the full

answ er to the global query.

A sim ple prototype im plem entation o f the system architecture was created

using: Java 2, JD O M API, and the JavaCC. W e also used FLW R

expressions (For-L et-W here-R etum) as the XM L query language. This is a

subset o f X Q uery w hich supports the basic requirem ents o f our approach,

particularly the uniform querying o f heterogeneous distributed structured

(relational database) and sem i-structured (w ell-form ed XM L docum ent)

data sources.

166

CHAPTER 9. SUMMARY, CONCLUSION AND FUTURE WORK

9.2 C onclusions

This w ork has identified a new approach to structured and sem i-structured

data integration. W e have addressed the logical heterogeneity problem

which occurs betw een the schemas. This problem was solved by creating a

m echanism in w hich the correspondence among schema elements is

expressed as a set o f m appings and by using UDFs to overcome conflicts

where a transform ation is required. This is described in section 2.4 and 4.4.

These m appings are a pow erful tool for expressing the correspondences

betw een schem a elem ents and capturing the heterogeneity o f the various

data sources. H ow ever, finding the correspondences between the schem a

elem ents will depend on the application context. Hence, m atching two

elem ents is a basic issue and requires a decision as to whether they

correspond to each other in som e way, e.g. are they logically equivalent.

Any decision about the sem antic correspondence o f sets o f elem ent

requires a deep analysis by a skilled integrator.

W e have introduced an approach for heterogeneous structured and sem i

structured data source m ediation. This approach produced a system

capable o f processing queries across a set o f heterogeneous distributed

structured and sem i-structured data sources. W e developed a prototype

system to dem onstrate that the ideas explored in the thesis are sound and

practical, and convenient from a user standpoint. The resulting system can

easily incorporate a reasonable num ber o f relational databases and XM L

data sources from the same dom ain. M ost o f the existing data integration

systems in this area w ork with X M L docum ents that use DTD (D ocum ent

Type Definition) or XM L Schem a language to describe the schemas o f the

participating heterogeneous XM L data sources in the data integration

system. W e have investigated and used XM L docum ents which have no

referenced D TD or XM L schem a, instead the schem a m etadata are buried

inside the docum ent data. H ow ever, XM L docum ents which have a

referenced DTD or XM L schem a can also be handling by bypassing the

167

CHAPTER 9. SUMMARY, CONCLUSION AND FUTURE WORK

D TD or the XM L schem a. This thesis has shown that querying a set o f

distributed heterogeneous structured and sem i-structured data sources o f

this form is possible using our approach.

Thus, this w ork has developed a m ethod o f interoperation between

structured and sem i-structured data sources. This interoperation is

achieved by generating m appings betw een global and local schemas, and

resolving nam ing, structural and sem antic conflicts which may occur

betw een the schem as. A lso we have developed a m ethod for translating

queries in term s o f a global schem a into sub-queries in term s o f local

schem as by exploiting the m apping inform ation stored in the XM KB. The

novelty o f this research com pared w ith the w ork done previously in this

area and review ed in chapter 2 is the use o f a know ledge base approach

and the use o f U D Fs to overcom e nam ing, structural and semantic

conflicts, also, the use o f an increm ental tool to build this knowledge base.

9.3 The future w ork

The w ork presented in this thesis can be extended in several ways. There

are both practical and theoretical issues that need to be addressed to

provide a com plete fram ew ork for creating structured and sem i-structured

data integration system s. W e suggest the follow ing for future work:

• In data integration system s, a very im portant task is the integration

o f the results o f the local queries. In our work, this task was not

addressed other than at a basic level. For exam ple, there m ay be

duplicated inform ation retrieved from the local data sources which

should be rem oved w hen the results are presented.

• M ore features o f Schem a Structure Definition (SSD) can be

involved in the process. For exam ple, i f some elem ents in the local

data sources’ SSD contain attributes and these attributes correspond

to elem ents in the global schem a a m apping betw een these elem ents

168

CHAPTER 9. SUMMARY, CONCLUSION AND FUTURE WORK

would be needed. This is not yet im plem ented, but should not be a

difficult extension to our current system.

• In this work, the global schem a is specified by the integrator, or by

choosing one o f the data source’s SSD that m eet the requirem ents o f

the users to be a global schem a. It should be possible to sem i

autom ate the process o f constructing the global unified schem a that

characterizes the underlying data sources.

• The m ajor difficulty o f connecting the global schem a elements with

the local schem a elem ents w hen there are a large num ber o f data

sources, large size o f schem as, and there is a high degree o f logical

heterogeneity betw een the schem as is the m anual linkage. It should

be possible to achieve scalability by generating m appings between

the schem as elem ents autom atically while reducing the manual

integrator interaction to ensuring the sem antic consistency o f such

m appings. H ow ever this needs further investigation.

169

Bibliography

[1] "H om epage, h ttp ://w w w .w 3.org , 2001."

[2] "H yperText M arkup Language Hom e Page.
http://w w w .w 3 .org /M arkU p/. 2001."

[3] "W 3C C onsortium : X M L Schem a Part 0: Primer.
http://w w w .w 3 .o rg /T R /2001 /R E C -xm lschem a-0-20010502/."

[4] "W orld W ide W eb C onsortium , http://www.w3.org/TR/20Q4/REC-
xm l-20040204/. E xtensible M arkup Language (XM L) 1.0 W 3C
R ecom m endation, th ird edition, February 2004."

[5] "W orld W ide W eb C onsortium , http://w w w .w 3.org/TR /xquerv/.
X Q uery 1.0: A n X M L Q uery Language, W 3C W orking Draft,
N ovem ber 2003."

[6] "W orld W ide W eb Consortium . D ocum ent object model (DO M)
level 1 specification, version 1.0, w3c recom m endation. See
http ://w w w .w 3c.org /T R /1998/R E C -D O M -L evel-1-19981001 and
see http ://w w w .w 3c.org/D O M /D O M T R .. 1 O ctober 1998."

[7] "XQL. h ttp ://w w w .w 3 .org/TandS/O L /O L98/PP/X O L .htm 1."

170

http://www.w3.org
http://www.w3
http://www.w3
http://www.w3.org/TR/20Q4/REC-
http://www.w3.org/TR/xquerv/
http://www.w3c.org/TR/1998/REC-DOM-Level-1-19981001
http://www.w3c.org/DOM/DOMTR
http://www.w3.org/TandS/OL/OL98/PP/XOL.htm

BIBLIOGRAPHY

[8] In terna tional O rganization fo r Standardization. ISO 8879:
In form ation P rocessing -Text and Office System s-Standard
G enera lized M arkup Language (SGM L), O ctober 1986.

[9] S. A biteboul, ’’Q uerying Sem i-Structured D ata,” Proceedings o f the
6 th In terna tiona l C onference on D atabase Theory, IC D T '97, pp. 1-
18, January 8-10, 1997.

[10] S. A biteboul, P. B unem an, and D. Suciu, D ata on the Web: From
R ela tional to Sem istructured D ata and XM L. San Francisco:
M organ K aufm ann, 2000.

{11] S. A biteboul and O. M . D uschka, "Com plexity o f Answ ering
Q ueries U sing M aterialized V iew s,” in Proceedings o f the 17th
A C M SIG M O D -SIG A C T -SIG A R T Sym posium on Principles o f
D atabase System s (PO D S'98). Seattle, W ashington, June 1998, pp.
254-263.

[12] R. A hm ed, P. D. Sm edt, W. Du, W. Kent, M. A. K etabchi, W. A.
Litw in, A. Rafii, and M .-C . Shan, "The Pegasus H eterogeneous
M ultidatabase System ,” IE E E Com puter, vol. 24(12), pp. 19-27,
D ecem ber 1991.

[13] M. B. A l-M ourad, W. A. G ray, and N. J. Fiddian, "M ultiple Views
with M ultip le B ehaviours for Interoperable O bject-O riented
D atabase S ystem s,” in P roceedings o f the 14th International
C onference on D atabase a n d E xpert System s Applications, DEXA
2003. Prague, C zech R epublic, Septem ber 1-5, 2003, pp. 713-723.

[14] F. M. A l-W asil, N . J. F iddian, and W. A. Gray, "Query Translation
for D istributed H eterogeneous Structured and Sem i-structured
D atabases,” in P roceedings o f the 23rd British N ational Conference
on D atabases (BN C O D 2006). Belfast, N orthern Ireland, 1 8 - 2 0
July, 2006.

[15] F. M. A l-W asil and W. A. G ray, "Loosely-Coupled Linkage o f Data
from Structured and Sem i-S tructured D atabases,” in P roceedings o f
the 6 th In terna tiona l C onference on Inform ation Integration and
W eb-based A pplica tions Services (UWAS2004). Jakarta, Indonesia:
A ustrian C om puter Society, 27-29 Septem ber 2004.

[16] F. M. A l-W asil, W. A. G ray, and N. J. Fiddian, "Establishing an
X M L M etadata K now ledge Base to A ssist Integration o f Structured
and Sem i-structured D atabases,” in A D C '2006: Proceedings o f the
17 th A ustra lasian D atabase Conference. Tasm ania, Australia,
January 16-19, 2006.

171

BIBLIOGRAPHY

[17] A. M. Alashqur, S. Su, and H. Lam , "OQL: A Query Language for
M anipulating O bject-oriented Databases," in Proceedings o f the
15th International C onference on Very Large D ata Bases (VLDB).
Am sterdam , The N etherlands, A ugust 22-25, 1989.

[18] A. A lm arim i and J. Pokom y, " A M ediation Layer for
H eterogeneous X M L Schem as," in Proceedings o f the 6 th
International Conference on Inform ation Integration and Web
B ased A pplications & Services (UWAS2004). Jakarta, Indonesia:
Austrian Com puter Society, 27-29 Septem ber 2004.

[19] J. L. Am bite, N. A shish, G. Barish, C. A. Knoblock, S. M inton, P. J.
M odi, I. M uslea, A. Philpot, and S. Tejada, "ARIADNE: A System
for Constructing M ediators for Internet Sources," in Proceedings o f
A C M SIG M O D In terna tional Conference on M anagem ent o f Data,
SIGM OD98. Seattle, W ashington, USA, June 2-4, 1998, pp. 561-
563.

[20] C. Baru, A. Gupta, B. L udascher, R. M arciano, Y. Papakonstantinou,
P. Velikhov, and V. Chu, "X M L-based inform ation m ediation with
M IX," in SIG M O D '99: P roceedings o f A C M SIG M O D
International C onference on M anagem ent o f D a ta : ACM Press,
1999, pp. 597-599.

[21] C. Batini, M. Lenzerini, and S. B. N avathe, "A com parative analysis
o f m ethodologies for database schem a integration," A C M
Computing Surveys , vol. 18(4), pp. 323-364, 1986.

[22] A. Behm , A. G eppert, and K. R. D ittrich, "On the M igration o f
Relational Schem as and D ata to Object-Oriented Database
Systems," in P roceedings o f the 5th International Conference on
R e-Technologies fo r In form ation Systems. K lagenfurt, Austria,
D ecem ber 1997.

[23] D. Bell and J. Grim son, D istribu ted D atabase system s : Addison
W esley, 1992.

[24] L. B ellatreche, G. Pierra, D. N. Xuan, D. Hondjack, and Y. Ait-
A m eur, "An a Priori A pproach for Autom atic Integration o f
H eterogeneous and A utonom ous Databases," in Proceedings o f
the 15th In ternational Conference on D atabase and E xpert Systems
Applications, DEXA 2004. Zaragoza, Spain, A ugust 30-Septem ber
3, 2004, pp. 475-485.

172

BIBLIOGRAPHY

[25] S. Bergam aschi, S. C astano, and M. Vincini, "Semantic integration
o f sem istructured and structured data sources," A C M SIG M O D
R ecord , vol. 28(1), pp. 54-59, M arch 1999.

[26] A. Berglund, S. Boag, D. Cham berlin, M. F. Fernandez, M. Kay, J.
Robie, and J. Sim eon., "XM L path language (XPath) 2.0, W 3C
W orking Draft. h ttp://w w w .w 3.org/T R /xpath20/." 2005.

[27] P. A. B ernstein and E. R ahm , "D ata W arehouse Scenarios for M odel
M anagem ent," in P roceedings o f the 19 th International Conference
on C onceptual M odeling (ER 2000). Salt Lake City, Utah, USA:
num ber 1920 in LN CS, Springer-V erlag, O ctober 2000., pp. 1-15.

[28] J. M. B lanco, A. Illarram endi, and A. Goni, "Building A Federated
Relational D atabase System : An A pproach U sing A Knowledge-
Based System ," In terna tional Journal o f In telligent and Cooperative
Inform ation System s , vol. 3(4), pp. 415-455, D ecem ber 1994.

[29] S. Boag, D. C ham berlin , M . F. Fernandez, D. Florescu, J. Robie,
and J. Sim eon, "X Q uery 1.0: A n XM L query language, 2005. W3C
W orking Draft. h ttp ://w w w .w 3.org/T R /xquerv/."

[30] T. Bray, J. Paoli, and C. M. Sperberg-M cQ ueen, "Extensible
M arkup Language (X M L) 1.0 (2nd Edition)," W 3C
R ecom m endation, Oct. 2000. http://www.w3.org/TR/200Q/REC-
xm l-20001006.

[31] A. Brown, "XM L in serial publishing: past, present and future,"
O CLC System s & Services , vol. 19(4), pp. 149-154, 2003.

[32] O. A. Bukhers, A. K. E lm agarm id, F. F. Gherfal, and X. Liu, The
Integration o f D atabase Systems: Prentice-H all, 1996.

[33] D. Burnell, A. A l-Zobaidie, and G. W indall, "Bridging the gap
betw een the data w arehouse and XM L," in Proceedings o f 14th
International W orkshop on D atabase and Expert System s
A pplications (DEJCA'03). Prague, Czech Republic, 1-5 Sept 2003, pp.
241- 246.

[34] S. Busse, R.-D. K utsche, U. Leser, and H. W eber, "Federated
Inform ation System s: Concepts, Term inology and Architectures,"
T echnische U niversitat B erlin 1999.

[35] A. Cali, D. Calvanese, G. D. G iacom o, and M. Lenzerini, "On the
Role o f Integrity C onstraints in Data Integration," IE E E D ata
E ngineering Bulletin, vol. 25(3), pp. 39-45, 2002.

173

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquerv/
http://www.w3.org/TR/200Q/REC-

BIBLIOGRAPHY

[36] D. Calvanese, G. D. G iacom o, M. Lenzerini, D. Nardi, and R.
Rosati, "Data Integration in D ata W arehousing," International
Journal o f Cooperative In form ation System s (IJCIS), vol. 10(3), pp.
237-271, 2001.

[37] M. J. Carey, D. Petkovic, J. Thom as, J. H. W illiams, E. L. W im m ers,
L. M. H aas, P. M . Schw arz, M. Arya, W. F. Cody, R. Fagin, M.
Flickner, A. W. L uniew ski, and W. Niblack, "Towards
heterogeneous m ultim edia inform ation systems: the Garlic
approach," in R ID E f95: P roceedings o f the 5th International
W orkshop on R esearch Issues in D ata Engineering-D istributed
Object M anagem ent (RIDE-DOM'95)'. IEEE Com puter Society,
1995, pp. 124-131.

[38] S. Ceri and G. Pelagatti, D istribu ted databases principles and
systems. C om puter Science Series'. M cG raw -H ill, Inc., 1984.

[39] D. Cham berlin, J. Robie, and D. Florescu, "Quilt: An XM L Query
Language for H eterogeneous D ata Sources," in Proceedings o f
International W orkshop on the Web and D atabases (WebDB).
Dallas, TX, USA, 2000, pp. 53-62 .

[40] D. D. C ham berlin, "X Q uery: A n XM L query language," IB M
System s Journal, vol. 41(4), pp. 597-615, 2002.

[41] S. Chaudhuri and U. D ayal, "An overview o f data w arehousing and
O LA P technology," A C M SIG M O D Record, vol. 26(1), pp. 65-74,
1997.

[42] S. Chaw athe, H. G arcia-M olina, J. H am m er, K. Ireland, Y.
Papakonstantinou, J. U llm an, and J. W idom , "The TSIM M IS
Project: Integration o f H eterogeneous Inform ation Sources," in
Proceedings o f the 10th A nniversary M eeting o f the Inform ation
P rocessing Society o f Japan. Tokyo, Japan, 1994, pp. 7-18.

[43] V. Christophides, S. C luet, and J. Simeon, "On w rapping query
languages and efficient X M L integration," in Proceedings o f A C M
SIG M O D Conference on M anagem ent o f Data. Dallas, Texas, USA,
M ay 2000.

[44] J. C lark and S. D eRose, "XM L Path Language (XPath), Version 1.0,
W 3C R ecom m endation, http ://w w w .w 3.org/TR /xpath." N ovem ber
1999.

[45] E. F. Codd, The R ela tional M odel fo r D atabase M anagem ent:
Version 2: A ddison-W esley Longm an Publishing Co., Inc., 1990.

174

http://www.w3.org/TR/xpath

BIBLIOGRAPHY

[46] W. W. Cohen, "Integration o f heterogeneous databases w ithout
com m on dom ains using queries based on textual similarity," in
Proceedings o f the A C M SIG M O D international conference on
M anagem ent o f data, SIG M O D '98. Seattle, W ashington, USA, June
2-4, 1998, pp. 201-212.

[47] W. W. Cohen, "The W H IRL A pproach to Information Integration,"
IE E E Intelligent System s, pp. 20-23., Sept/Oct 1998.

[48] C. J. Date, A n Introduction to D atabase System s, 7th ed: Addison-
W esley, 2000.

[49] A. Deusch, M. Fem adez, D. Florscu, A. Levy, and D. Suciu, "XML-
QL: A query language for XM L. http://www.w3.org/tr/note-xm l-q 1.
Technical report, April 1998."

[50] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu, "A
Query Language for X M L," in P roceedings o f the 8 th International
World Wide Web C onference (W W W 8) . Toronto, Canada, 1999.

[51] A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu,
"XM L-QL: A Q uery L anguage for XM L," presented at W W W The
Query Language W orkshop (Q L98), Cam bridge, M A, 1998.

[52] A. Doan and R. M cCann, "Building D ata Integration Systems: A
M ass Collaboration A pproach," in Proceedings o f Inform ation
Integration on the Web (IIW eb-03). Acapulco, M exico, August 9 -
10, 2003.

[53] R. D om enig, "A Q uery Based Approach for Integrating
H eterogeneous D ata Sources," P hD thesis, D epartm ent o f
Inform ation Technology, University o f Zurich, Switzerland, 2002.

[54] R. D om enig and K. R. D ittrich, "An Overview and Classification o f
M ediated Q uery System ," SIG M O D Record, vol. 28(3), pp. 63-72,
1999.

[55] D. Draper, A. Y. H aLevy, and D. S. W eld, "The N im ble XM L data
integration system ," in Proceedings o f the 17th International
Conference on D ata E ngineering (ICDE'01) , 2001, pp. 155-160.

[56] D. Draper, A. Y. Halevy, and D. S. W eld, "The nim ble integration
engine," in Proceedings o f the A C M SIG M O D international
conference on M anagem ent o f data (SIGM OD '01). Santa Barbara,
California, United States, M ay 21 - 24, 2001, pp. 567-568.

175

http://www.w3.org/tr/note-xml-q

BIBLIOGRAPHY

[57] D. D reilinger and A. E. H ow e, "Experiences with selecting search
engines using m etasearch," A C M Transactions on Inform ation
System s (TOIS), vol. 15(3), pp. 195-222, 1997.

[58] O. M. D uschka and M. R. Genesereth, "Query planning in
infom aster," in P roceedings o f the A C M symposium on A pplied
com puting (SAC '97). San Jose, California, United States, 1997, pp.
109-111.

[59] R. M. D uw airi, "View s for Interoperability in a Heterogeneous
O bject-O riented M ulti database System ," P hD thesis, D epartm ent o f
Computer Science, U niversity o f Wales College o f C ard iff April
1997.

[60] R. Eckstein and M. Casabianca, X M L P ocket R eference , Second ed:
O ’Reilly & A ssociates, Inc., April 2001.

[61] A. Elm agarm id, M. R usinkiew icz, and A. Sheth, M anagem ent o f
H eterogeneous and A utonom ous D atabase System s: M organ
Kufm ann, 1999.

[62] A. K. E lm agarm id and C. Pu, "Guest Editors' Introduction to the
Special Issue on H eterogeneous D atabases," A C M Computing
Surveys , vol. 22(3), pp. 175-178, Septem ber 1990.

[63] R. Elm asri and S. N avathe, Fundam entals o f D atabase System s, vol.
1, 3rd ed: A ddison-W esley, 2000.

[64] R. Elm asri and S. N avathe, Fundam entals o f D atabase System s, 3rd
ed: A ddison-W esley, 2000.

[65] P. Fankhauser, W. L itw in, E. J. N euhold, and M. Schrefl, "Global
view definition and m ultidatabase languages - two approaches to
database integration," in Proceedings o f the European
Teleinform atics Conference (EU TECO 8 8) . Vienna, Austria, April
1988, pp. 1069-1082.

[66] L. Feng, E. Chang, and T. D illon, "A sem antic netw ork-based
design m ethodology for X M L docum ents," A C M Transactions on
Inform ation System s , vol. 20(4), pp. 390—421, O ctober 2002.

[67] D. Florescu, A. Levy, and A. M endelzon, "Database techniques for
the W orld-W ide W eb: a survey," A C M SIG M O D Record., vol. 27(3),
pp. 59-74, 1998.

176

BIBLIOGRAPHY

[68] J. E. Funderburk, G. K iem an., J. Shanm ugasundaram , E. Shekita,
and C. W ei, "X TA BLES: B ridging Relational Technology and
XM L," IB M System s Journa l, vol. 41(4), pp. 616-641, 2002.

[69] H. G arcia-M olina, J. H am m er, K. Ireland, Y. Papakonstantinou, J.
U llman, and J. W idom , "Integrating and A ccessing H eterogeneous
Inform ation Sources in TSIM M IS," in Proceedings o f the A A A I
Sym posium on In form ation Gathering. Stanford, California, M arch
1995.

[70] H. G arcia-M olina, Y. Papakonstantinou, D. Quass, A. Rajaram an,
Y .Sagiv, J. U llm an, V. V assalos, and J. W idom , "The TSIM M IS
A pproach to M ediation: D ata M odels and Languages," Journal o f
Intelligent In form ation System s (JIIS), vol. 8(2), pp. 117-132, 1997.

[71] M. G arcia-Solaco, F. Saltor, and M. Castellanos, "Semantic
heterogeneity in m ultidatabase system s," in O bject-O riented
M ultidatabase System s: A Solu tion fo r A dvanced Applications, O. A.
Bukhres and A. K. E lm agarm id, Eds.: Prentice Hall International
(UK) Ltd, 1995, pp. 129-202.

[72] G. Gardarin, A. M ensch, and A. Tom asic, "An Introduction to the e-
XM L D ata Integration Suite," in E D B T ’02: Proceedings o f the 8 th
International C onference on E xtending D atabase Technology'.
Springer-V erlag, 2002, pp. 297-306.

[73] G. Gardarin, F. Sha, and T. D ang-N goc, "XM L-based Com ponents
for Federating M ultiple H eterogeneous D ata Sources," in ER '99:
Proceedings o f the 18th In terna tional Conference on Conceptual
Modeling'. Springer-V erlag, 1999, pp. 506-519.

[74] M. R. G enesereth, A. M. K eller, and O. M. Duschka, "Infomaster:
An Inform ation Integration System ," in Proceedings the A C M
SIG M O D In ternational Conference on M anagem ent o f Data,
SIG M O D 97. Tucson, A rizona, USA, M ay 13-15, 1997, pp. 539-542.

[75] C. H. Goh, S. B ressan, S. M adnick, and M. Siegel, "Context
interchange: new features and form alism s for the intelligent
integration o f inform ation," A C M Transactions on Inform ation
System s (TOIS), vol. 17(3), pp. 270-293, 1999.

[76] C. G oldfarb, The SG M L Handbook'. C larendon Press, 1990.

[77] M. G oodchild , M. Egenhofer, R. Fegeas, and C. Kottm an,
"Interoperating G eographic Inform ation System s.," Kluwer, 1999.

177

BIBLIOGRAPHY

[78] T. Grust, S. Sakr, and J. Teubner, "XQuery on SQL Hosts,” in
Proceedings o f the 30th In ternational Conference on Very Large
D ata Bases (VLDB 2004). Toronto, Canada, 29 August - 3
Septem ber 2004.

[79] A. Gupta, ’’Integration o f Inform ation Systems: Bridging
H eterogeneous D atabases,” IE E E Press, 1989.

[80] A. Y. Halevy, "A nsw ering queries using views: A survey,” The
VLDB Journal The In ternational Journal on Very Large Data Bases,
vol. 10(4), pp. 270-294, 2001.

[81] M. Haller, B. Proll, W. R etschitzegger, A. M. Tjoa, and R. R.
W agner, "Integrating H eterogeneous Tourism Information in
TIScover - The M IR O -W eb A pproach,” in Proceedings o f the
International C onference on Inform ation and Communication
Technologies in Tourism (ENTER 2000). Barcelona, Spain, April
26-28, 2000.

[82] G. Ham ilton, R. Cattell, and M. Fisher, JD B C D atabase Access
With Java: A Tutorial a n d A nno ta ted R eference , 2nd ed: Addison-
W esley Pub Co, Septem ber 1997.

[83] T. Harder, G. Sauter, and J. Thom as, "The Intrinsic Problem s o f
Structural H eterogeneity and an A pproach to Their Solution,” The
VLDB Journal, vol. 8(1), pp. 25-43, 1999.

[84] J. Heflin and J. H endler, "Sem antic Interoperability on the W eb," in
Proceedings o f E xtrem e M arkup Languages 2000. Graphic
Com m unications A ssocia tion , 2000, pp. 111-120.

[85] T. H ernandez and S. K am bham pati, "Integration o f Biological
Sources: C urrent System s and Challenges A head,” A C M SIG M O D
Record, vol. 33(3), pp. 51-60, 2004.

[86] G. Hu and H. Fernandes, "Integration and querying o f distributed
databases,” in P roceedings o f the IE E E International Conference on
Inform ation R euse and Integration (IR I2003). Las Vegas, NV, USA,
O ctober 27-29,2003, pp. 167-174.

[87] R. H ull, "M anaging sem antic heterogeneity in databases: a
theoretical p rospective,” in Proceedings o f the 16th A C M SIG ACT-
SIG M O D -SIG A R T sym posium on Principles o f database systems,
P O D S '97. Tucson, Arizona, United States, M ay 11 - 15, 1997, pp.
51-61.

178

BIBLIOGRAPHY

[88] J. H unter and B. M cLaughlin, "Easy Java/XM L integration with
JDOM , Part 2: U se JD O M to create and m utate XM L,"
http://w w w .iavaw orld.com /iavaw orld/iw -07-2000/iw -Q 728-
idom 2.htm l. Technical report, July 2000.

[89] J. H unter and B. M cLaughlin, "Easy Java/XM L integration with
JDOM , Part 1: Learn about a new open source API for working with
XM L," http://w w w .iavaw orld.com /iavaw orld/iw -05-2Q 00/iw -0518-
idom .htm l. Technical report, M ay 2000.

[90] A. Hurson, M. Bright, and S. Pakzad, M ultidatabase systems: an
advanced solution fo r g loba l inform ation sharing’. IEEE Com puter
Society Press, 1994.

[91] Z. G. Ives, "Efficient query processing for data integration," PhD
thesis, U niversity o f W ashington, Seattle, 2002.

[92] V. Josifovski, P. Schw arz, L. H aas, and E. Lin, "Garlic: a new flavor
o f federated query processing for DB2," in Proceedings o f the A C M
SIG M O D international conference on M anagem ent o f data,
(SIGM OD '02). M adison, W isconsin, 2002, pp. 524-532.

[93] D. D. K arunaratna, W. A. Gray, and N. J. Fiddian, "Establishing a
K now ledge Base to A ssist In tegration o f H eterogeneous Databases,"
in B N C O D 16: P roceedings o f the 16th British N ational Conferenc
on D atabases’. Springer-V erlag, 1998, pp. 103-118.

[94] W. Kelley, S. Gala, W. K im , T. Reyes, and B. Graham, "Schema
architecture o f the U niSQ L/M m ultidatabase system," M odern
database system s: the object model, interoperability, and beyond, pp.
621-648, 1995.

[95] W. K im , "Introduction to part 2: technology for interoperating
legacy databases," M odern database systems: the object model,
interoperability, and beyond, pp. 515-520, 1995.

[96] W. K im , I. Choi, S. G ala, and M. Scheevel, "On Resolving
Schem atic H eterogeneity in M ultidatabase Systems," M odern
D atabase System s, pp. 512-550, 1995.

[97] W. Kim , I. Choi, S. Gala, and M. Scheevel, "On Resolving
Schem atic H eterogeneity in M ultidatabase Systems," D istributed
and P ara lle l D atabases, vol. 1(3), pp. 251-279, July, 1993.

179

http://www.iavaworld.com/iavaworld/iw-07-2000/iw-Q728-
http://www.iavaworld.com/iavaworld/iw-05-2Q00/iw-0518-

BIBLIOGRAPHY

[98] W. Kim and J. Seo, "C lassifying schem atic and data heterogeneity
in m ultidatabase system s," IE E E Com puter, vol. 24(12), pp. 12-18,
Decem ber, 1991.

[99] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava, "The Inform ation
M anifold," in P roceedings o f the A A A I Spring Symposium on
Inform ation G athering fro m Heterogeneous, D istributed
Environments, pp. 85-91 . Stanford U niversity, Stanford, CA, M arch
1995.

[100] L. Kurgan, W. Sw iercz, and K. Cios, "Sem antic M apping o f XM L
Tags using Inductive M achine Learning," in Proceedings o f the
International Conference on M achine Learning and Applications -
ICM LA '02. Las V egas, N evada, USA, 2002.

[101] K. Lee, J. M in, and K. Park, "A D esign and Im plem entation o f
X M L-Based M ediation Fram ew ork (XM F) for Integration o f
Internet Inform ation R esources," in H IC SS '02: Proceedings o f the
35th A nnual H aw aii In ternational Conference on System Sciences
(HICSS'02)- Volume 7: IEEE C om puter Society, 2002, pp. 202-210.

[102] P. Lehti and P. Fankhauser, "XM L data integration with OW L:
Experiences & challenges," in P roceedings o f the International
Symposium on A pplica tions a n d the In ternet (SAIN T 2004). Tokyo,
Japan, 2004, pp. 160-170.

[103] M. Lenzerini, "D ata integration: a theoretical perspective," in
Proceedings o f the 21st A C M SIG M O D -SIG ACT-SIG ART
Sym posium on Principles o f D atabase Systems. M adison, W isconsin,
2002.

[104] A. Levy, "The Inform ation M anifold A pproach to Data Integration,"
IE E E Intelligent System s , vol. 13, pp. 12-16, 1998.

[105] A. Levy, A. M endelzon, Y. Sagiv, and D. Srivastava, "Answering
queries using view s," in Proceedings o f the 14th A C M SIG ACT-
SIG M O D -SIG A R T Sym posium on Principles o f D atabase Systems.
San Jose, CA, USA, 1995.

[106] A. Y. Levy, "Com bining Artificial Intelligence and Databases for
D ata Integration," In Special issue o f LNAI: A rtificial Intelligence
Today; R ecent Trends and Developments. Lecture Notes in
Com puter Science, vol. 1600, pp. 249-268, 1999.

[107] A. Y. Levy, A. Rajaram an, and J. J. Ordille, "Querying
H eterogeneous Inform ation Sources Using Source Descriptions," in

180

BIBLIOGRAPHY

Proceedings o f the 22th International Conference on Very Large
D ata Bases, V LD B ’96. M um bai (Bom bay), India, Septem ber 3-6,
1996, pp. 251-262.

[108] C. Li, R. Y em eni, V. Vassalos, H. Garcia-M olina, Y.
Papakonstantinou, J. U llm an, and M. Valiveti, "Capability based
m ediation in TSIM M IS," in Proceedings o f the A C M SIG M O D
international conference on M anagem ent o f data (SIGM OD ’98).
Seattle, W ashington, U nited States, 1998, pp. 564-566.

[109] R. Li, Z. Lu, W. X iao, B. Li, and W. W u, "Schem a M apping for
Interoperability in X M L-B ased M ultidatabase Systems," in DEXA
'03: Proceedings o f the 14th International Workshop on D atabase
and E xpert System s A pp lica tions’. IEEE Com puter Society, 2003, pp.
235.

[110] W. L itw in and A. A bdellatif, "M ultidatabase interoperability," IE EE
Computer, vol. 19(12), pp. 10-18, 1986.

[111] W. Litw in, L. M ark, and N. Roussopoulos, "Interoperability o f
m ultiple autonom ous databases," A C M Com puting Surveys, vol.
22(3), pp. 267-293, 1990.

[112] B. Ludascher, A. G upta, and M. E. M artone, "M odel-Based
M ediation w ith D om ain M aps," in Proceedings o f the 17th
International C onference on D ata E ngineering (ICDE). Heidelberg,
Germ any, A pril 2-6, 2001, pp. 81-90.

[113] I. M anolescu, D. Florescu, and D. K ossm ann, "Answering XM L
Queries over H eterogeneous D ata Sources," in Proceedings o f the
27th In ternational C onference on Very Large D ata Bases (VLDB).
Rom e, Italy, Septem ber 2001.

[114] I. M anolescu, D. Florescu, D. K ossm ann, F. Xhum ari, and D.
Olteanu, "Agora: L iving w ith X M L and Relational," in Proceedings
o f the 26th In ternational Conference on Very Large D ata Bases
(VLDB00). Cairo, Egypt, Septem ber 10-14, 2000, pp. 623-626.

[115] W. M ay, "A R ule-B ased Q uerying and U pdating Language for
XM L," in P roceedings o f the 8th International Workshop on
D atabase P rogram m ing Languages (DBPL '01). Frascati, Italy,
Septem ber 8-10, 2001, pp. 165-181.

[116] D. M egginson, "SAX 2.0: The Sim ple API for XM L," available at
http ://w w w .m egginson.com /SA X /index.htm l. O ctober 2000.

181

http://www.megginson.com/SAX/index.html

BIBLIOGRAPHY

[117] R. J. M iller, L. M. H aas, and M. A. Hernandez, "Schem a M apping
as Q uery D iscovery," in P roceedings o f the 26th International
C onference on Very Large D ata Bases (VLDB '00). Cairo, Egypt,
Septem ber 10-14, 2000, pp. 77-88.

[1 18]R. J. M iller, M . A. H ernandez, L. M. Haas, L. Yan, C. T. How ard, R.
Fagin, and L. Popa, "The Clio project: m anaging heterogeneity,"
A C M SIG M O D R ecord, vol. 30(1), pp. 78-83, M arch 2001.

[119] T. M illstein , A. Levy, and M. Friedm an, "Query containm ent for
data in tegration system s," in P O D S '00: Proceedings o f the
nineteenth A C M SIG M O D -SIG A C T-SIG A R T symposium on
P rincip les o f database system s. D allas, Texas, United States: ACM
Press, 2000, pp. 67-75.

[120] Y.-K. N am , J. G oguen, and G. W ang, "A M etadata Tool for
Retrieval from H eterogeneous D istributed XM L Docum ents," in
Proceedings o f the In terna tional Conference on Computational
Science, L N C S 2660, Springer, pp. 1020-1029., 2003.

[121] M. T. O zsu and P. V alduriez, "D istributed database systems: W here
are we now ?" IE E E Com puter, vol. 24(8), pp. 68-78, A ugust 1991.

[122] M. T. O zsu and P. V alduriez, P rinciples o f D istributed D atabase
System s, 2nd ed: P rentice H all, San Ysidro, CA, 1999.

[123] Y. Papakonstantinou, H. G arcia-M olina, and J. D. Ullman,
"M edM aker: A M ediation System Based on Declarative
Specifications," in IC D E '96: Proceedings o f the 12th International
C onference on D a ta E ng ineering : IEEE Com puter Society, 1996, pp.
132-141.

[124] Y. Papakonstantinou, H. G arcia-M olina, and J. W idom, "Object
Exchange A cross H eterogeneous Inform ation Sources," in
P roceedings o f the 11th International Conference on D ata
E ngineering (IC D E '95). Taipei, Taiwan, M arch 06 - 10, 1995, pp.
251-260.

[125] Y. Papakonstantinou and P. Velikhov, "Enhancing Semi structured
D ata M ediators w ith D ocum ent Type Definitions," in P roceeding o f
D ata E ngineering (ICDE). Syndey, Australia, 1999.

[126] S. R aghavan and H. G arcia-M olina, "Integrating diverse inform ation
m anagem ent system s: A b rie f survey," IE E E D ata E ngineering
B ulletin , vol. 24(4), pp. 44-52, 2001.

182

BIBLIOGRAPHY

[127] J. Robie, J. Lapp, and D. Schach., "XM L query language (XQL)," In
QL'98 - The Q uery Languages W orkshop, 1998.

[128] F. Saltor, M. Castellanos, and M. Garcia-Solaco, "Suitability o f data
m odels as canonical m odels for federated databases," A C M
SIG M O D Record, vol. 20(4), pp. 44-48, D ecem ber 1991.

[129] P. Schauble., M ultim edia Inform ation Retrieval: K luwer Academ ic
Publishers, 1997.

[130] A. Segev and A. Chatterjee, "Data m anipulation in heterogeneous
databases," S igm od Record, vol. 20(4), pp. 64-68, D ecem ber 1991.

[131] E. Selberg and O. E tzioni, "M ulti-Service Search and Com parison
Using the M etaC raw ler," in Proceedings o f the 4th International
W orld-Wide Web Conference. Boston, M assachusetts, USA,
Decem ber 11-14, 1995.

[132] E. Selberg and O. E tzioni, "The M etaCraw ler architecture for
resource aggregation on the W eb," IE E E Expert, January-February
1997.

[133] J. Shanm ugasundaram , E. J. Shekita, R. Barr, M. J. Carey, B. G.
Lindsay, H. Pirahesh, and B. Reinw ald, "Efficiently Publishing
Relational D ata as X M L D ocum ents," in Proceedings o f the 26th
International Conference on Very Large Databases, (VLDB2000).
Cairo, Egypt, Septem ber 2000, pp. 65-76.

[134] A. Sheth, "Sem antic issues in M ultidatabase Systems," SIG M O D
Record, vol. 20(4), D ecem ber 1991.

[135] A. P. Sheth and V. K ashyap, "So Far (Schem atically) yet So N ear
(Sem antically)," P roceedings o f the IF1P WG 2.6 D atabase
Sem antics Conference on Interoperable D atabase System s (DS-5),
pp. 283-312, N ovem ber 16 - 20, 1992.

[136] A. P. Sheth and J. A. Larson, "Federated database system s for
m anaging distributed, heterogeneous, and autonom ous databases,"
A C M C om puting Surveys, vol. 22(3), pp. 183-236, 1990.

[137] S. Spaccapietra and C. Parent, "Conflicts and correspondence
assertions in interoperable databases," A C M SIG M O D Record, vol.
20(4), pp. 49-54, D ecem ber 1991.

183

BIBLIOGRAPHY

[138] V. S. Subrahm anian, S. A dali, A. Brink, R. Em ery, J. J. Lu, A.
Rajput, T. J. R ogers, R. Ross, and C. W ard, "HERM ES: A
heterogeneous R easoning and M ediator System," A R P A, 1995.

[139] R. Sudha and P. Jinsoo, "Sem antic conflict resolution ontology
(SCROL): an ontology for detecting and resolving data and schema-
level sem antic conflicts," K now ledge and D ata Engineering, IE E E
Transactions on, vol. 16, pp. 189, 2004.

[140] G. Thom as, G. R. T hom pson, C.-W . Chung, E. Barkm eyer, F.
Carter, M . T em pleton, S. Fox, and B. Hartm an, "Heterogeneous
distributed database system s for production use," A C M Com puting
Surveys, vol. 22(3), pp. 237-266, 1990.

[141] A. Tom asic, L. R aschid, and P. V alduriez, "Scaling access to
heterogeneous data sources w ith DISCO," IE E E Transactions on
Know ledge a n d D ata E ngineering, vol. 10(5), pp. 808-823, 1998.

[142] S. W hite, M. F isher, R. Cattell, G. Ham ilton, and M. Hapner,
JD BC (TM) A P I Tutorial a n d Reference: Universal D ata Access fo r
the Java(TM) 2 P latform , 2nd ed: A ddison-W esley Pub Co, 1999.

[143] J. W idom , "Integrating heterogeneous databases: lazy or eager?"
A C M C om puting Surveys., vol. 28(4), pp. 91, 1996.

[144] J. W idom , "R esearch Problem s in D ata W arehousing," in
Proceedings o f the 4th In terna tional Conference on Inform ation and
K now ledge M anagem ent. Baltim ore, M aryland, N ovem ber 1995, pp.
25-30.

[145] G. W iederhold, "M ediators in the Architecture o f Future
Inform ation System ," IE E E Computer, vol. 25(3), pp. 38-49, M arch
1992.

[146] L. W ood, "Program m ing the W eb: the W 3C DOM specification,"
IE E E In ternet Com puting, vol. 3(1), pp. 48-54, Jan/Feb 1999.

[147] L. Xu and D. W. Em bley, "Com bining the Best o f G lobal-as-V iew
and L ocal-as-V iew for D ata Integration.," in Inform ation Systems
Technology and its Applications, 3rd International Conference
1ST A '2004. Salt Lake City, Utah, USA, June 15-17, 2004.

[148] N. Y oung-K w ang, G. Joseph, and W. Guilian, "A M etadata
Integration A ssistant G enerator for H eterogeneous Distributed
D atabases," in Proceedings o f the Confederated International

184

BIBLIOGRAPHY

Conferences DOA, C oopIS and ODBASE. Irvine CA: LNCS 2519,
Springer, pp. 1332-1344., O ctober 2002.

[149] C. Yu and L. Popa, "Constraint-based XML query rew riting for data
integration," in Proceedings o f the A C M SIGM OD international
conference on M anagem ent o f data (SIGMOD '04). Paris, France,
June 13 - 18, 2004, pp. 371-382.

[150] G. Zhou, R. Hull, R. K ing, and J.-C. Franchitti, "Data Integration
and W arehousing U sing H 2 0 ," Bulletin o f the Technical Committee
on D ata Engineering, vol. 18(2), pp. 29-40, 1995.

185

APPEN D IX A

Java code for the M ain Interface o f SISSD system

import j ava.awt.*;
import j ava.awt.event.*;
import j avax.swing.*;
import java.util.* ;
import java.io.*;
import com.borland.jbcl.layout.* ;

class MainlnterFaceF extends JFrame implements ActionListener
{
private final int ITEM_PLAIN = 0
private final int ITEM_CHECK = 1
private final int ITEM_RADIO = 2
public String integratedfile;
public String kbName="";
public Vector MappingPaths= new Vector();
public Vector SourceMetadata = new Vector();
public JPanel topPanel;
public JMenuBar menuBar;
public JMenu menuExtractor;
public JMenu menuQuery;
public JMenu menuKServer;
public JMenuItem menuItemRel;
public JMenuItem menuItemXML;
public JMenuItem menultemlntegrated;
public JMenuItem menultemlocal;
public JMenuItem menuItemMappings/
public JMenuItem menuItemKB,menultemremove;
public JMenuItem menultemQuery;
public JMenu submenu;
CreateXmlView listDialog;
JXC listDialogl;
JPanel mainPanel = new JPanel();
XYLayout xYLayoutl = new XYLayout();
JSplitPane hsplitPane = new JSplitPane();
JSplitPane vsplitPane = new JSplitPane();
public MainlnterFaceF()

186

APPENDIX A Main interface o f SISSD

{
setTitle("User Interface");
setSize(1100, 1000);
topPanel = new JPanel();
topPanel.setLayout(new BorderLayout());
getContentPane().add(topPanel);
menuBar = new JMenuBar();
setJMenuBar(menuBar);
menuExtractor = new JMenu(" MetaData Extractor ");
menuExtractor.setMnemonic(1M ');
menuBar.add(menuExtractor);
menuItemRel = CreateMenuItem(menuExtractor, ITEM_PLAIN,
"Bulid Schema Structure for Relational Database ", null, 'R',"");
menuExtractor.addSeparator();
menuItemXML = CreateMenuItem(menuExtractor, ITEM_PLAIN,

"Bulid Schema Structure for XML Document", null, 'X1, "");
menuKServer = new JMenu(" Knowledge Server ");
menuKServer.setMnemonic (1 K 1) ;
menuBar.add(menuKServer);
submenu = new JMenu ("Add New Data Source") ;
menuKServer.add(submenu);
menultemlntegrated = CreateMenuItem (submenu, ITEM_PLAIN, "Step 1.
Generate index number for integrated schema elements ", null,'G ',"");
submenu.addSeparator();
menultemlocal = CreateMenuItem(submenu, ITEM_PLAIN, "Step 2. Produce GUI
tree for local schema structure", null, 'P', "");
submenu.addSeparator();
menuItemMappings = CreateMenuItem(submenu, ITEM_PLAIN,

"Step 3. Generate Path Mappings", null, 'H',"");
submenu. addSeparator () ,-
menuItemKB = CreateMenuItem(submenu, ITEM_PLAIN,

"Step 4. Merge Path Mappings with KB", null, 'M',"");
menuItemKB.setEnabled(true);
menultemlocal.setEnabled(false);
menuItemMappings.setEnabled(false) ;
menuItemKB.setEnabled(false);
menuKServer.addSeparator();
menultemremove = CreateMenuItem(menuKServer, ITEM_PLAIN,

"Remove Data Source", null, 'V', "");
menuQuery = new JMenu(" Query Processor ");
menuKServer.setMnemonic('Q ');
menuBar.add(menuQuery);
menuItemQuery = CreateMenuItem(menuQuery, ITEM_PLAIN,

"Process User Query ", null, 'U', "");
listDialog = new CreateXmlView();
listDialogl = new J X C ();
try
{ jblnit(); }
catch (Exception e)
{ e .printStackTrace();
}}
public JMenuItem CreateMenuItem(JMenu menu, int iType, String sText,

Imagelcon image, int acceleratorKey, String sToolTip)
{ JMenuItem menuItern;
switch (iType)
{ case ITEM_RADIO:
menultem = new JRadioButtonMenuItem();

187

APPENDIX A Main interface o f SISSD

break;
case ITEM_CHECK:
menultem = new JCheckBoxMenuItem();
break;
default:
menultem =? new JMenuItemO;
break;
}
menultem.setText(sText);
if (image != null)
{ menultem.setlcon(image); }
if (acceleratorKey > 0)
{ menultem.setMnemonic(acceleratorKey); }
if (sToolTip != null)
{ menultem.setToolTipText(sToolTip); }
menultem.addActionListener(this);
menu.add(menultem);
return menultem;
}
public void actionPerformed(ActionEvent event)
{ if (event.getSource() == menuItemRel)
{ listDialog.setVisible(true); }
else if (event.getSource() == menuItemXML)
{ listDialogl.setVisible(true); }
else if (event.getSource() == menultemlntegrated)
{ MappingPaths= new Vector();
final JFileChooser vc = new JFileChooser();
int returnVal = v c .showOpenDialog(this);
if (returnVal == JFileChooser.APPROVE_OPTION)
{ File filel = vc.getSelectedFile();
integratedfile = filel.getAbsolutePath();
int ln=integratedfile.length();
kbName=integratedfile.substring(0,ln-4)+"_kb.xml";
JPanel rightPanell = new JPanel();
hsplitPane.setBottomComponent(rightPanell);
hsplitPane.setDividerLocation(350);
JPanel rightPanel2 = new JPanel();
vsplitPane.setRightComponent(rightPanel2);
vsplitPane.setDividerLocation(200);
JPanel leftPanel = new GlobalSchemaPanel(integratedfile, this) ;
vsplitPane.setLeftComponent(leftPanel);
vsplitPane.setDividerLocation(500);
JOptionPane.showMessageDialog(this, "Index Number for Integrated Schema
Elements Generate Successfully");
}}
else if (event.getSource() == menultemlocal)
{ final JFileChooser fc = new JFileChooser();
int returnVal = f c .showOpenDialog(this) ;
if (returnVal == JFileChooser.APPROVE_OPTION)
{ File file = f c .getSelectedFile();
String myfilename = file.getAbsolutePath();
JPanel rightPanell = new JPanel();
hsplitPane.setBottomComponent(rightPanell) ;
hsplitPane.setDividerLocation(350);
JPanel rightPanel = new SourceSchemaPanel(myfilename,this);
vsplitPane.setRightComponent(rightPanel);
vsplitPane.setDividerLocation(200);

188

APPENDIX A Main interface o f SISSD

rightPanel.setBackground(Color.white);
}}
else if (event.getSource() == menuItemMappings)
{ JPanel rightPanel = new MappingPanel (this);
hsplitPane.setBottomComponent(rightPanel);
hsplitPane.setDividerLocation(350) ; }
else if (event.getSource() == menuItemKB)
{ KBmerge kb = new KBmerge();
kb.mergeMapping(this, kbName);
JOptionPane.showMessageDialog(this, "Path Mappings Merged Successfully
with The Knowledge Base");
menuItemMappings.setEnabled(false) ;
menuItemKB.setEnabled(false);
}
else if (event .getSource () == menultemremove)
{ final JFileChooser vc = new JFileChooser();
int returnVal = v c .showOpenDialog(this);
if (returnVal == JFileChooser.APPROVE_OPTION)
{ File filel = vc.getSelectedFile ();
integratedfile = filel.getAbsolutePath () ;
JDialog a = new RemoveSources(integratedfile);
a .show();
}}
else if (event .getSource () == menuItemQuery)
{ QueryProcessor application = new QueryProcessor();
application. setDefaultCloseOperation (JFrame .EXIT_ON_CLOSE) ;
application.show();
}}
public static void main(String args [])
{ MainlnterFaceF a = new MainlnterFaceF();
a .addWindowListener(new WindowAdapter ()
{ public void windowClosing(WindowEvent e)
{ System.exit(0) ;
}});
a . setSize(1250, 1000);
a.setVisible(true);
a .show();
}
private void jblnitO throws Exception
{ mainPanel.setLayout(xYLayout1);
JPanel panel = new JPanel();
panel.setBackground(Color.white);
panel.setLayout(new BorderLayout());
hsplitPane.setOrientation(JSplitPane.VERTICAL_SPLIT) ;
vsplitPane.setDividerSize(10);
vsplitPane.setLeftComponent(panel);
vsplitPane.setRightComponent(panel);
vsplitPane.setContinuousLayout(true);
vsplitPane.setBackground(Color.white);
this.getContentPane() .add(mainPanel, BorderLayout.CENTER) ;
hsplitPane.setDividerSize(10);
hsplitPane.setTopComponent(vsplitPane);
hsplitPane.setBottomComponent(panel);
hsplitPane.setContinuousLayout(true);
mainPanel.add(hsplitPane, new XYConstraints(0, 0, 1250, 1000));
hsplitPane.setDividerLocation(330);
}}

189

A PPEN D IX B

Java code for extracting and building SSD for

relational database

import j avax.swing.JFrame;
import java.awt.Dimension;
import j avax.swing.JLabel;
import java.awt.Rectangle;
import java.awt.Font;
import javax.swing.JTextField;
import j avax.swing.JPanel;
import java.awt.GridLayout/
import j ava.awt.*;
import java.util.*;
import javax.swing.*;
import j avax.swing.event.*;
import javax.swing.border.*;
import java.awt.event.ActionListener;
import j ava.a w t .event.Act ionEvent;
import java.i o .IOException;
import java.a w t .Container;
import j ava.sql.*;
import j ava.a w t .event.*;
import java.sql.*;
import java.io.*;

class CreateXmlView extends JFrame implements ActionListener
{
static BufferedWriter t;
String ch, chk;
private JLabel name,pass,status,dbname,xmlfile;
private JTextField user,stat,textdb,textfile;
private JPasswordField passbox;
private JButton connect,clear,cancel;
private JPanel pane,cent,input,connectx;
Color cl = new Color(204,125 , 205) ;
Color c2 = new Color(108,153,204);
public CreateXmlView()
{

190

APPENDIX B Extract SSD for relational database

super("CONNECTION TO RELATIONAL DATABASE ");
int inset = 2 99;
Dimension scr =Toolkit.getDefaultToolkit () .getScreenSize();
setBounds(inset,inset,scr.width-inset*2,scr.height-inset*2) ;
name = new JLabel("Username");
pass = new JLabel("Password");
dbname = pew JLabel("Database Name");
xmlfile= new JLabel("Save Schema Structure In File Name");
connect = new JButton("Connect");
connect.addActionListener(this);
clear = new JButton("Clear");
clear.addActionListener(this);
cancel = new JButton("Cancel");
cancel.addActionListener(this);
cent = new JPanel();
input = new JPanel () ;
connectx =new JPanel();
textfile = new JTextField(10);
textdb = new JTextField(lO);
user = new JTextField(10);
passbox = new JPasswordField(10);
cent. setLayout(new BorderLayout()) ;
cent.add(input,"Center");
cent.add(connectx,"South");
input.setLayout(new GridLayout(4,4,5,5));
connectx.setLayout(new GridLayout(1,2,3,3));
input.add(xmlfile);
input.add(textfile);
input.add(dbname);
input.add(textdb);
input.add(name);
input.add(user);
input.add(pass);
input.add(passbox);
connectx.add(connect);
connectx.add(clear);
connectx.a d d (cancel);
setContentPane(cent);
}
public void actionPerformed(ActionEvent w)
{
Connection conn =null;
if (w.getSource() == connect)
{
String filename,filenamel;
filenamel=textfile.getText();
filename= "C: \\prototype\\schema_structure\\" + textf ile . getText () +" .xml" ;

File db=new File(filename);
if (db.exists())
{JOptionPane.showMessageDialog(null,"The file "+filenamel+ ".xml already
exists ","Error Message", JOptionPane.ERROR_MESSAGE);
textfile.setText("");
}
else
{ ch=user.getText();
char [] a = passbox.getPassword();

191

APPENDIX B Extract SSD for relational database

chk =String.valueOf(a);
String schema;
schema=textdb.getText().toUpperCase () ;
try
{ t = new BufferedWriter(new FileWriter(filename)); }
catch(Exception e)
{ System.out.printIn(e); }
try
{ Class.forName ("oracle.jdbc.driver.OracleDriver");
System.out.println("Driver loaded");
}
catch(Exception exe)
{
JOptionPane.showMessageDialog(null,"Driver error","Error Message",
JOptionPane.ERROR_MESSAGE);
}
if (filenamel .equals (""))
{
JOptionPane.showMessageDialog(null,"Please enter file name of schema
structure ","Error Message", JOptionPane.ERROR_MESSAGE);
File file = new File(filename);
try
{ t .close(); }
catch(Exception excp)
{ System.out.println("File cannot be closed!"); }
boolean success = file.delete ();
if (!success)
{ System.out.println("File cannot be deleted!");
}}
else
{ try
{
conn =DriverManager.getConnection("jdbc:oracle:thin:©helot:1521: oracle9
" , ch, chk);
System.out.printIn("Connection made");
ResultSet rset,rset3,rset4;
String tablename[]=new String[10];
DatabaseMetaData dbmd = conn.getMetaData();
rset3 = dbmd.getTables("",schema,"%",null);
int k=0,e;
String b=null;
while (rset3.next())
{ tablename[k]=rset3 .getString (3) ;
k++; }
t .write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
t .write("<schema_information>") ;
t .write ("<data_source_information>");
t .write ("<name>"+schema+"</name>") ;
t.write("<location>j d b c :oracle:thin:@helot:1521:oracle9</location>") ;
t .write ("<type>Relational Database</type>");
t .write("</data_source_information>");
t.write("<structure>");
t.write("<element name = \ ""+schema.toLowerCase()+"\ ">") ;
for (e=0;e<k;e++)
{ t.write("<element name=\""+tablename[e] .toLowerCase()+"\">");
rset4=dbmd.getColumns("",schema,tablename[e],"%");
while (rset4.n ext())

192

APPENDIX B Extract SSD for relational database

{ t .write(u<element name=\""+rset4.getString(4).toLowerCase()+"\"/>");
b=rset4.getString(3);
}
t.write("</element>");
}
t.write("</element>");
t.write("</structure>");
t.write("</schema_information>");
t .close();
if (k == 0)
{ JOptionPane.showMessageDialog(nullInvalid Database name","Error
Message", JOptionPane.ERROR_MESSAGE);
File file = new File(filename)/
try
{ t .close(); }
catch(Exception excp)
{ System.out.println("File cannot be closed!"); }
boolean success = file.delete();
if (!success)
{ System.out.println("File cannot be deleted!");
}}
else
{ JOptionPane.showMessageDialog (this, "Schema Structure Built
Successfully for "+schema+" Database");
dispose();
user.setText("");
passbox.setText("");
textdb.setText("");
textfile.setText("");
}}
catch(Exception e)
{
JOptionPane.showMessageDialog(null,"Invalid Username or Password","Error
Message", JOptionPane.ERROR_MESSAGE);
File file = new File(filename);
try
{
t .close ();
}
catch(Exception excp)
{
System.out.println("File cannot be closed!");
}
boolean success = file.delete();
if (!success)
{ System.out.println("File cannot be deleted!");
}}}}}
else if (w.getSource() == clear)
{ user.setText("") ;
passbox.setText("");
textdb.setText("");
textfile.setText(""); }
else
{ disposeO;
}}}

193

A PPEN D IX C

Java code for extracting and building SSD for XM L

docum ent

import j avax.swing.JFrame
import java.awt.Dimension
import javax.swing.JLabel
import java.awt.Rectangle,
import j ava.a w t .Font;
import javax.swing.JTextField;
import javax.swing.JPanel;
import j ava.a w t .GridLayout;
import j ava.awt.*;
import java.util.*;
import javax.swing.*;
import j avax.swing.event.*;
import javax.swing.border.*;
import java.a w t .event.ActionListener;
import j ava.a w t .event.Act ionEvent;
import java.i o .IOException;
import java.a w t .Container;
import j ava.sql.*;
import j ava.a w t .event.*;
import j ava.sql.*;
import o r g .j d o m .*;
import o r g .j d o m .input.SAXBuilder;
import java.i o .IOException;
import java.util.*;
import java.io.*;

class JXC extends JFrame implements ActionListener
{
String ch, chk;
private JLabel doclocation,docname,xmlfile;
private JTextField textlocation,textdoc,textfile;
private JPasswordField passbox;
private JButton connect,clear,cancel;
private JPanel pane,cent,input,connectx;

194

APPENDIX C Extract SSD for XML document

Color cl = new Color(204,125,205) ;
Color c2 = new Color(108,153,204);
static BufferedWriter out;
public J X C ()
{
super("CONNECTION TO XML DOCUMENT");
//setDefaultCloseOperation(EXIT_ON_CLOSE);
int inset = 2 99;
Dimension scr =Toolkit.getDefaultToolkit() .getScreenSize() ;
setBounds(inset, inset,scr.width-inset*2,scr.height-inset*2) ;
doclocation = new JLabel("XML Document Location");
docname = new JLabel("XML Document Name");
xmlfile= new JLabel("Save Schema Structure In File Name");
connect = new JButton("Connect");
connect.addActionListener(this);
clear = new JButton("Clear");
clear.addActionListener(this) ;
cancel = new JButton("Cancel") ;
cancel.addActionListener(this);
cent = new JPanel();
input = new JPanel();
connectx =new JPanel ();
textlocation = new JTextField(10);
textdoc = new JTextField(10);
textfile = new JTextField(10);
cent. setLayout(new BorderLayout()) ;
cent.add(input,"Center");
cent.add(connectx,"South");
input.setLayout(new GridLayout(4,4,5,5));
connectx.setLayout(new GridLayout(1,2,3,3));
input.add(xmlfile);
input.a d d (textfile);
input.add(doclocation);
input.add(textlocation);
input.add(docname);
input.add(textdoc);
connectx.add(connect);
connectx.add(clear);
connectx.add(cancel);
setContentPane(cent);
}
public void actionPerformed(ActionEvent w)
{
if (w.getSource() == connect)
{
String filename,filenamel;
filenamel = textfile.getText();
filename = "C:\\prototype\\schema_structure\\"+textfile.getText()+
" . xml11;
File db=new File(filename);
if (db.exists())
{
JOptionPane.showMessageDialog(null,"The file "+filenamel+ ".xml already
exists ","Error Message", JOptionPane.ERROR_MESSAGE);
textfile.setText("");
}
else

195

APPENDIX C Extract SSD for XML document

{
String location,documentname,documentnamel;
location = textlocation.getText ();
documentname=textdoc.getText();
documentnamel=textdoc.getText();
if (!(documentname.endsWith(" .xml")))
{
documentname = documentname + ".xml";
}
try
{ out = new BufferedWriter(new FileWriter(filename)); }
catch(Exception e)
{
System.out.println(e);
}
if (filenamel .equals (""))
{
JOptionPane.showMessageDialog(null,"Please enter file name of schema
structure ","Error Message", JOptionPane.ERROR_MESSAGE);
File file = new File(filename);
try
{
out.close();
}
catch(Exception excp)
{ System.out.println("File cannot be closed!"); }
boolean success = file.delete ();
if (!success)
{
System.out.println("File cannot be deleted!");
}}
else
{
SAXBuilder builder = new SAXBuilder() ;
try
{
out.write("<?xml version=\"1.0\" encoding=\"UTF-8\" ?>");
out.write("<schema_information>");
out .write("<data_source_information>");
out .write("<name>"+documentname + "</name>");
out.write("<location>"+location+"</location>");
out .write("<type>XML document</type>");
out .write("</data_source_information>");
out.write("<structure>");
Document doc = builder.build(location+"\\"+documentname) ;
Element root = d o c .getRootElement();
listChildren(root, 0);
out.write("</structure>");
out.write("</schema_information>");
out.close();
JOptionPane.showMessageDialog (this, "Schema Structure Built Successfully
for "+documentname+" Document");
textfile.setText("");
textlocation.setText("");
textdoc.setText("");
dispose ();
}

196

APPENDIX C Extract SSD for XML document

// indicates a well-formedness error
catch (JDOMException e)
{
JOptionPane.showMessageDialog(null,documentname +".xml is not well-
formed. ","Error Message", JOptionPane.ERROR_MESSAGE);
textfile.setText("");
textlocation.setText("");
textdoc.setText("");
File file = new File(filename);
try
{ out.close(); }
catch(Exception excp)
{
System.out.println("File cannot be closed!");
}
System.out.printIn("my file path is: " + file.getAbsolutePath ()) ;
boolean success = file.delete();
if (!success)
{ System.out.println("File cannot be deleted!"); }
System.out.println(documentname + " is not well-formed.");
System, out.printIn(e.getMessage());
}
catch (IOException e)
{
System.out.println(e);
if (location .equals (""))
{
JOptionPane.showMessageDialog(null,"Please specify the XML document
location","Error Message", JOptionPane.ERROR_MESSAGE);
textfile.setText("");
textlocation.setText("");
textdoc.setText("");
File file = new File(filename);
try
{ out.close (); }
catch(Exception excp)
{ System.out.println("File cannot be closed!"); }
System.out.printIn("my file path is: " + file.getAbsolutePath ()) ;
boolean success = file.delete () ;
if (!success)
{
System.out.println("File cannot be deleted!");
}}
else if (documentname .equals (""))
{
JOptionPane.showMessageDialog(null,"Please specify the XML document
name","Error Message", JOptionPane.ERROR_MESSAGE) ;
textfile.setText("");
textlocation.setText("");
textdoc.setText("");
File file = new File(filename);
try
{ out.close(); }
catch(Exception excp)
{
System.out.println("File cannot be closed!");
}

197

APPENDIX C Extract SSD for XML document

System.out.println("my file path is: " + file.getAbsolutePath());
boolean success = file.delete();
if (!success)
{
System.out.println("File cannot be deleted!");
}}
else
{
JOptionPane.showMessageDialog(null,"Please verify the XML document name
and location","Error Message", JOptionPane.ERROR_MESSAGE);
textfile.setText("");
textlocation.setText("");
textdoc.setText("");
File file = new File(filename);
try
. { out.close () ; }
catch(Exception excp)
{
System.out.println("File cannot be closed!");
}
System.out.println("my file path is: " + file.getAbsolutePath ()) ;
boolean success = file.delete();
if (! success)
{ System.out.println("File cannot be deleted!");
}}}}}}
else if (w.getSource() == clear)
{ textfile.setText("");
textlocation.setText("");
textdoc.setText("");
}
else
{ dispose();
}}
public static void listChildren(Element current, int depth) throws
IOException
{ java.util.List children = current.getChildren();
Iterator iterator = children.iterator();
if (iterator.hasNext())
out.write("<element name=\""+current.getName()+"\">");
else out.write("<element name=\"" + current.getName()+"\"/>") ;
String st="";
while (iterator.hasNext())
{ Element child = (Element) iterator.n e x t ();
if (! (child.getName() .toString() .equalslgnoreCase(st)))
listChildren(child, depth+1);
st = child.getName();
if (! (iterator.hasNext()))
{ out.write("</element>");
}}}}

198

A PPEN D IX D

JDO M code for parsing m aster view to generate

index num bers

import org.j dom.*;
import org. jdom. input. SAXBuilder;
import java.io.IOException;
import java.util.*;
public class Generatelndex
{
static String x = "1";
static int y;
static int index = 1;
static int previousLevel = 0;
static String levels =
static String lastnode =
static String lastSign =
static TreeMap paths = new TreeMap ();
static TreeMap elements = new TreeMap ();
static Vector SourceMetadata = new Vector()
public Generatelndex()
{

X = " 1 " ;
index = 1;
previousLevel = 0;
levels =
lastnode =
String lastSign =
paths = new TreeMap();
elements = new TreeMap();
}
public void Generatelndex(String filename)
{
SAXBuilder builder = new SAXBuilder();
try
{
Element rootl;
Document doc = builder.build(filename);

199

APPENDIX D Parsing master view

Element root = doc.getRootElement();
if (root.getName() .equals ("schema_information"))
{
Element information = root.getChild("data_source_information");
Element docname = information.getChild ("name");
Element location = information.getChild("location");
Element type = information.getChild ("type");
String con,conl,con2;
con = docname.getText();
conl = location.getText();
con2 = type.getText ();
SourceMetadata = new VectorO;
SourceMetadata.add(con);
SourceMetadata.add(conl);
SourceMetadata.a d d (con2);
Element structure = root.getChild("structure");
rootl = structure.getChild("element");
}
else
{
root1 = root;
}
listChildren(rootl, 1);
}
// indicates a well-formedness error
catch (JDOMException e)
{
System, out .println (" is not well-formed.");
System.out.printIn(e.getMessage ()) ;
}
catch (IOException e)
{
System.out.println(e);
}
}
public static void main(String [] args)
{
Generatelndex gi = new Generatelndex();
gi . Generatelndex("bib_schema.xml");
Iterator e = paths.keySet().iterator();
while (e.hasNext0)
{
String v = (String) e .n e x t ().toString();
String s = (String) paths.get(v);
}
}
public static void listChildren(Element current, int depth)
{
String previousPath = "";
String completePath =
String Space = "";
Space = getSpaces(depth);
printSpaces(depth);
String att = current.getAttributeValue("name");
if (depth == previousLevel)
{
levels = getTree(levels, depth);

200

APPENDIX D

int m = levels.lastIndexOf(".");
String a = levels.substring(m + 1);
levels = levels.substring(0, m + 1);
int o = Integer.parselnt(a);
o = o + l ;
levels = levels + o;
previousPath = getParents(levels);
completePath = previousPath + "/"+ att;
paths.put(levels, completePath);
elements.put(levels, Space + att);
}
else if (depth > previousLevel)
{
if (levels.equalslgnoreCase(""))
{
levels = levels + "1";
}
else
{
levels = levels + ".1";
}
previousPath = getParents(levels);
completePath = previousPath + "/"+ att;
paths.put(levels , completePath) ;
elements.put(levels, Space + att);
previousLevel = depth;
}
else if (depth < previousLevel)
{
levels = getTree(levels, depth);
int m = levels.lastIndexOf(".");
String a = levels.substring(m + 1) ;
levels = levels.substring(0, m + 1) ;
int o = Integer.parselnt(a);
0 = 0 + 1 ;
levels = levels + o;
previousLevel = depth;
previousPath = getParents(levels);
completePath = previousPath + "/"+ att;
paths.put(levels, completePath);
elements.put(levels, Space + att);
}
List children = current.getChildren();
Listlterator iterator = children.listlterator();
while (iterator.hasNext())
{
Element child = (Element) iterator.next();
listChildren(child, depth + 1);
}
}
private static String getTree(String level, int depth)
{
int n = 0;
String s =
for (int i = 0; i < depth; i++)
{
n = level.indexOf(".", n + 1);

Parsing master view

201

APPENDIX D

if (n == -1)
{ break;
}}
if (n == -1)
{ return level;
}
else
{ s = level.substring(0, n) ;
return s;
}}
private static void printSpaces (int n)
{
for (int i = 0; i < n; i++)
{
System.out.print(" ");
}}
private static String getSpaces(int n)
{
String space = "";
for (int i = 0; i < n; i++)
{
space = space + " ";
}
return space;
}
private static String getParents(String indx)
{
String parentPath = "";
String previouslndex =
int p = indx.lastlndexOf(".") ;
if (p > -1)
{
previouslndex = indx.substring(0, p) ;
parentPath = (String) paths.get(previouslndex);
}
else
{ parentPath = "";
}
return parentPath;
}}

Parsing master view

202

A PPEN D IX E

Java code for producing G UI and generating

assistant tool for m apping

import j ava.a w t .*;
import j ava.a w t .event.*;
import j avax.swing.*;
import j avax.swing.event.*;
import javax.swing.border.*;
import java.util.*;
import java.text.*;
import java.io.*;
import j ava.1a n g .*;
import java.net.*;
import javax.swing.filechooser.* ;

public class GlobalSchemaPanel extends JPanel
{
BorderLayout borderLayout1 = new BorderLayout();
private JPanel pnl_txt = null;
JTextField txt_Filed = new JTextField();
JComboBox txt_Schm = new JComboBox();
JComboBox txt_Func = new JComboBox();
private JButton btn_ok = null;
private JButton btn_cancel = null;
private JLabel lbl_show = null;
private JLabel lbl_element = null;
private JLabel GlobalElement_lbl = null;
private JPanel JFrameContentPane = null;
public Vector IndexVector = new Vector();
private Vector textFieldsVector = new Vector();
private Vector FuncFieldsVector = new Vector();
private Vector labelsVector = new Vector();
public static String GlobalSchema =
public static String SourceSchema =
public static Generatelndex g i ;
public static Generatelndex si;
public Vector SchemaElements = new Vector();

203

APPENDIX E Producing GUI

JComboBox CB = new JComboBox();
static TreeMap Globalpaths = new TreeMap();
static TreeMap Globalelements = new TreeMap();
public Frame fram,-
private int y2 = 152, y3 = 12;
private int height = 5;
MainlnterFaceF mycaller=null;
public GlobalSchemaPanel(String filename,MainlnterFaceF caller)
{
GlobalSchema = filename;
mycaller=caller;
try
{
jblnit();
}
catch (Exception ex)
{
e x .printStackTrace();
}
}
void jblnit() throws Exception
SchemaElements.a d d ("");
UIManager.put("Label.font", new Font("SansSerif", Font.BOLD, 12));
UIManager.put("Button.font", new Fon t ("SansSerif", Font.BOLD, 12));
UIManager.put("TextField.font", new Font ("SansSerif", Font.BOLD, 12));
UIManager.put("ComboBox.font " , new Font("SansSerif", Font.PLAIN, 10));
UIManager.p u t ("TextArea.font", new Font("SansSerif", Font.BOLD, 12));
try
{
this.setLayout(null);
JTextField textField = null;
JLabel Element_lbl = null;
gi = new Generatelndex();
gi .Generatelndex(GlobalSchema);
Iterator el = g i .elements.keySet().iterator();
int 1 = 0 ;
while (el.hasNext())
{
String vl = (String) el.next().toString();
String si = (String) g i .elements.get(vl);
GlobalElement_lbl = getlbl_element(1, vl + si);
this.add(GlobalElement_lbl,
GlobalElement_lbl.getName());
1 = 1 + 1 ;
SchemaElements.add(vl);
}
Globalpaths = (TreeMap) gi.paths;
Globalelements = (TreeMap) gi.elements;
}
catch (Throwable Exc)
{
handleException(Exc);
}
mycaller.menultemlocal.setEnabled(true);
}
private JPanel getJFrameContentPane()
{

204

APPENDIX E Producing GUI

try
{
JFrameContentPane = new JPanel () ;
JFrameContentPane.setLayout(null);
JTextField textField = null;
JLabel Element_lbl = null;
gi = new Generatelndex();
GlobalSchema = "schema_viewl.xml";
gi.Generatelndex(GlobalSchema);
Iterator el = g i .elements.keyset().iterator();
int 1 = 0 ;
while (el.hasNext())
{
String vl = (String) el.next().toString();
String si = (String) gi.elements.get(vl);
GlobalElement_lbl = getlbl_element (1, vl + si);
JFrameContentPane . add (GlobalElement_lbl, GlobalElement_lbl .getName ()) ;
1 = 1 + 1 ;
SchemaElements.add(vl);
}
Globalpaths = (TreeMap) gi.paths;
Globalelements = (TreeMap) gi.elements;
}
catch (Throwable Exc)
{
handleException(Exc);
}
return JFrameContentPane;
}
private JLabel getlbl_element(int i, String name)
{
try
{
lbl_element = new JLabel();
lbl_element.setName(name);
lbl_element.setText(name);
lbl_element.setBounds(50, 10 + (i * 5) * height, 150, 2 0);
}
catch (Throwable Exc)
{
handleException(Exc);
}
return lbl_element;
}
private void handleException(Throwable exception)
{
System.out.println("Could not initialize the frame. Error: " +
exception);
}
}

import j a v a .a w t .*;
import j a v a .a w t .event.*;
import javax.swing.*;
import javax.swing.event.*;

205

APPENDIX E Producing GUI

import j avax.swing.border.*;
import java.util.*;
import java.text.*;
import j ava.i o .*;
import j ava.1ang.*;
import java.net.*;
import javax.swing.filechooser.* ;

public class SourceSchemaPanel extends JPanel implements ActionListener
{
BorderLayout borderLayout1 = new BorderLayout();
private JPanel pnl_txt = null;
JTextField txt_Filed = new JTextField();
JTextField txt_fun = new JTextField();
JComboBox txt_Schm = new JComboBox();
JComboBox txt_Func = new JComboBox();
private Vector Functions = new Vector();
static TreeMap LocalFunctions = new TreeMapO;
private JLabel lbl_head = null;
private JButton btn_ok = null;
private JButton btn_cancel = null;
private JButton btn_clear = null;
private JButton btn_add = null;
private JLabel lbl_show = null;
private JLabel lbl_element = null;
private JLabel GlobalElement_lbl = null;
private JPanel JFrameContentPane = null;
public Vector IndexVector = new Vector();
private Vector textFieldsVector = new Vector();
private Vector FuncFieldsVector = new Vector();
private Vector textFuncVector = new Vector();
private Vector AddFieldsVector = new Vector();
private Vector labelsVector = new Vector 0;
public static String GlobalSchema =
public static String SourceSchema =
public static Generatelndex g i ;
public static Generatelndex si;
public Vector SchemaElements = new Vector();
JComboBox CB = new JComboBox();
static TreeMap Globalpaths = new TreeMap();
static TreeMap Globalelements = new TreeMap();
private Vector mappingPaths = new Vector();
private Vector SourceMetadata = new Vector();
private Mapping map;
public Frame fram;
private int y2 = 152, y3 = 12;
private int height = 5;
MainlnterFaceF mycaller = null;
static TreeMap IntegratedPaths = new TreeMapO;
public SourceSchemaPanel(String filename, MainlnterFaceF caller)
{
Globalpaths = new TreeMap();
Globalelements = new TreeMapO;
IntegratedPaths = new TreeMap();
SourceSchema = filename;
mycaller = caller;
mappingPaths= new Vector();

206

APPENDIX E Producing GUI

GlobalSchema=mycaller.integratedf ile ;
try
{
jblnit();
}
catch (Exception ex)
{
ex.printStackTrace ();
}
}
void jblnit() throws Exception
{
SchemaElements.a d d ("");
UIManager.put("Label.font", new Font("SansSerif", Font.BOLD, 12));
UIManager.put("Button.font", new F ont("SansSerif", Font.BOLD, 12));
UIManager.put("TextField.font" , new F ont("SansSerif", Font.BOLD, 12));
UIManager.put("ComboBox.font", new Font("SansSerif", Font.PLAIN, 10));
UIManager.put("TextArea.font", new Font("SansSerif", Font.BOLD, 12));
try
{
this.setLayout(null);
JTextField textField = null;
JTextField textFunc = null;
JLabel Element_lbl = null;
JButton btn_addl = null;
gi = new Generatelndex();
gi .Generatelndex(GlobalSchema);
Iterator el = g i .elements.keyset().iterator();
int 1 = 0 ;
while (el.hasNext ())
{
String vl = (String) el.next().toString();
String si = (String) g i .elements.get (vl);
GlobalElement_lbl = getlbl_element(1, vl + si);
1 = 1 + 1 ;
SchemaElements.add(vl);
}
Globalpaths = (TreeMap) gi.paths;
Globalelements = (TreeMap) gi.elements;
si = new Generatelndex();
SourceMetadata = new Vector();
si .Generatelndex(SourceSchema);
SourceMetadata = (Vector) s i .SourceMetadata.clone();
mycaller.SourceMetadata = (Vector) SourceMetadata;
Iterator e2 = s i .elements.keySet().iterator();
Element_lbl = getlbl_headingl(0, "Data Source Name : ");
this.add(Element_lbl, Element_lbl.getName());
Element_lbl = getlbl_heading2(0, SourceMetadata.g e t (0).toString());
this.add(Element_lbl, Element_lbl.getName());
Element_lbl = getlbl_headingl(1, "Data Source Location : ");
this.add(Element_lbl, Element_lbl.getName());
Element_lbl = getlbl_heading2(1, SourceMetadata.g e t (1).toString()) ;
this.add(Element_lbl, Element_lbl.getName());
Element_lbl = getlbl_headingl(2, "Data Source Type : ");
this.add(Element_lbl, Element_lbl.getName());
Element_lbl = getlbl_heading2(2, SourceMetadata.get(2) .toString());
this.add(Element_lbl, Element_lbl.getName());

207

APPENDIX E Producing GUI

int n = 4;
while (e2.hasNext())
{
String v2 = (String) e2.next().toString();
String s2 = (String) si.elements.get(v2);
IndexVector.add(v2);
CB = gettkt_function(n);
textField = gettxt_Field(n);
Element_lbl = getlbl_show(n, s2);
this.add(Element_lbl, Element_lbl.getName());
this.add(textField, textField.getName());
this.add(CB, C B .getName());
textFunc = gettxt_multipleFunction(n);
this.add(textFunc, textField.getName());
btn_addl = getbtn_add(n);
this . add (btn_addl , btn_addl. getName ()) ;
n = n + 1;
}
this . add (getbtn_cancel(n), getbtn_cancel(n) .getName());
this.add(getbtn_ok(n), getbtn_ok(n).getName());
this .add(getbtn_clear(n), getbtn_clear(n) .getName());
}
catch (Throwable Exc)
{
handleException(Exc);
}
}
private JPanel getJFrameContentPane()
{
try
{
JFrameContentPane = new JPanel();
JFrameContentPane.setLayout(null);
JTextField textField = null;
JLabel Element_lbl = null;
gi = new Generatelndex();
GlobalSchema = "schema_viewl.xml";
gi .Generatelndex(GlobalSchema);
Iterator el = g i .elements.keySet().iterator();
int 1 = 0 ;
while (el.hasNext ())
{
String vl = (String) el.next().toString();
String si = (String) g i .elements.get(vl);
GlobalElement_lbl = getlbl_element(1, vl + si) ;
JFrameContentPane.add(GlobalElement_lbl,
GlobalElement_lbl.getName ()) ;
1 = 1 + 1 ;
SchemaElements.add(vl);
}
Globalpaths = (TreeMap) gi.paths;
Globalelements = (TreeMap) gi.elements;
}
catch (Throwable Exc)
{
handleException(Exc);
}

208

APPENDIX E Producing GUI

return JFrameContentPane;
}
public void actionPerformed(ActionEvent e)
{
JButton add2 = null;
for (int i = 0; i < AddFieldsVector.size (); i + +)
{
add2 = (JButton) AddFieldsVector.get(i);
if (e.getSource() == add2)
{
CB = (JComboBox) FuncFieldsVector.get(i);
txt_Filed = (JTextField) textFuncVector.get(i);
String last = txt_Filed.getText().toString();
String Sp = ",";
if (last.length() == 0)
{
Sp = " " ;
}
txt_Filed.setText(last + Sp + C B .getSelectedltem().toString());
}
}
if (e.getSource() == btn_cancel)
{
this.removeAll();
this.repaint();
return;
}
else if (e.getSource () == btn_ok)
{
mycaller.menuItemMappings.setEnabled(true);
btn_ok.setEnabled(false);
btn_cancel.setEnabled(false) ;
btn_clear.setEnabled(false);
generatePathMapping5();
JOptionPane.showMessageDialog(thisIndexes Numbers Assigned
Successfully");
JTextField textField = null;
}
else if (e.getSource() == btn_clear)
{
for (int i = 0; i < textFieldsVector.size(); i++)
{
txt_Filed = (JTextField) textFieldsVector.get(i) ;
txt_Filed.setText("");
}
for (int i = 0; i < FuncFieldsVector.size(); i++)
{
CB = (JComboBox) FuncFieldsVector.g e t (i);
C B .setSelectedlndex(0);
}
}
}
private JLabel getlbl_element(int i, String name)
{
try
{
lbl element = new JLabel();

209

APPENDIX E Producing GUI

lbl_element.setName(name);
lbl_element.setText(name);
lbl_element.setBounds(50, 10 + (i * 5) * height, 150, 20);
}
catch (Throwable Exc)
{
handleException(Exc);
}
return lbl_element;
}
private JButton getbtn_ok(int i)
{
if (btn_ok == null)
{
try
{
btn_ok = new JButton();
btn_ok.setName("btn_ok");
btn_ok.setText("Submit");
btn_ok. setBounds(400, 60 + (i * 5) * height, 85, 25);
btn_ok.addActionListener(this);
}
catch (Throwable Exc)
{
handleException(Exc);
}
}
return btn_ok;
}
private JTextField gettxt_Field (int i)
{
try
{
txt_Filed = new JTextField();
txt_Filed.setName("Field" + i);
txt_Filed.setEditable(true);
txt_Filed.setText("");
txt_Filed.setBounds(23 0, 10 + (i * 5) * height, 100, 20);
textFieldsVector.add(txt_Filed);
}
catch (Throwable Exc)
{
handleException(Exc);
}
return txt_Filed;

private JTextField gettxt_multipleFunction(int i)
{
try
{
txt_fun = new JTextField();
txt_fun.setName("FunField" + i) ;
txt_fun.setEditable(true);
txt_fun.setText("") ;
txt_fun.setBounds(560, 10 + (i * 5) * height, 200, 20);
textFuncVector.add(txt_fun);
}

210

APPENDIX E Producing GUI

catch (Throwable Exc)
{
handleException(Exc);
}
return txt_fun;
}
private JComboBox gettxt_SchemaElement(int i)
{
try
{
txt_Schm = new JComboBox(SchemaElements);
txt_Schm. setName ("Schema_element" + i);
txt_Schm.setBounds (2 1 0 , 1 0 + (i * 5) * height, 1 5 0 , 1 5) ;
textFieldsVector.add(txt_Schm) ;
}
catch (Throwable Exc)
{
handleException(Exc);
}
return txt_Schm;
}
private JComboBox gettxt_function(int i)
{
String[] functions = {" ", "firstName", "lastName", "RateExchange",
Part_of", "contains", "Merge"};
try
{
txt_Func = new JComboBox(functions);
txt_Func.setBackground(Color.white);
txt_Func.setName("function" + i);
txt_Func.setBounds (3 5 0 , 1 0 + (i * 5) * height, 1 0 0 , 2 0) ;
FuncFieldsVector.a d d (txt_Func);
}
catch (Throwable Exc)
{
handleException(Exc);
}
return txt_Func;
}
private JButton getbtn_cancel(int i)
{
if (btn_cancel == null)
{
try
{
btn_cancel = new JButtonO;
btn_cancel.setName("btn_cancel");
btn_cancel.setText("Cancel");
btn_cancel.setBounds (6 0 0 , 6 0 + (i * 5) * height, 8 5 , 2 5) ;
btn_cancel.addActionListener(this);
}
catch (Throwable Exc)
{
handleException(Exc);
}
}
return btn cancel;

" i s -

211

APPENDIX E Producing GUI

}
private JButton getbtn_clear(int i)
{
if (btn_clear == null)
{
try
{
btn_clear = new JButton();
btn_clear.setName("btn_clear");
btn_clear.setText("Clear");
btn_clear.setBounds(50 0, 60 + (i * 5) * height, 85, 25);
btn_clear.addActionListener(this);
}
catch (Throwable Exc)
{
handleException(Exc);
}
}
return btn_clear;
}
private JButton getbtn_add(int i)
{
try
{
btn_add = new JButtonO;
btn_add. setName ("btn_add") ;
btn_add.setText("Add");
btn_add.setBounds (4 70, 10 + (i * 5) * height, 70, 20);
btn_add.addActionListener(this);
AddFieldsVector.add(btn_add);
}
catch (Throwable Exc)
{
handleException(Exc);
}
return btn_add;
}
private JLabel getlbl_show(int i, String name)
{
try
{
lbl_show = new JLabel ();
lbl_show.setName(name);
lbl_show.setText(name);
lbl_show.setBounds(110, 10 + (i * 5) * height, 100, 20);
}
catch (Throwable Exc)
{
handleException(Exc);
}
return lbl_show;
}
private JLabel getlbl_heading2(int i, String name)
{
try
{
lbl head = new JLabel();

212

APPENDIX E Producing GUI

lbl_head.setName(name);
lbl_head.setText(name);
lbl_head.setBounds(250, 10 + (i * 5) * height, 300, 20);
}
catch (Throwable Exc)
{
handleException(Exc);
}
return lbl_head;
}
private JLabel getlbl_headingl(int i, String name)
{
try
{
lbl_head = new JLabel();
lbl_head.setName(name);
lbl_head.setText(name);
lbl_head.setBounds(110, 10 + (i * 5) * height, 200, 20);
}
catch (Throwable Exc)
{
handleException(Exc);
}
return lbl_head;
}
private void handleException(Throwable exception)
{
System.out.printIn("Could not initialize the frame. Error:"+ exception);
}
private void generatePathMapping()
{
String indexKey =
String GlobalPath =
String SourcePath = "";
JTextField textField = null;
for (int i = 0; i < textFieldsVector.size(); i++)
{
textField = (JTextField) textFieldsVector.g e t (i);
map = new Mapping();
if (textField.getText().length() != 0)
{
CB = (JComboBox) FuncFieldsVector.get(i);
indexKey = (String) IndexVector.get(i);
String delimiters = ",";
String str;
str = textField.getText().toString();
StringTokenizer st = new StringTokenizer(str, delimiters);
SourcePath = (String) si.paths.get(indexKey);
map.SourcePath = SourcePath;
Vector pathsVector = null;
pathsVector = new Vector();
while (st.hasMoreTokens())
{
String index = st.nextToken();
indexKey = (String) IndexVector.get(i);
SourcePath = (String) si.paths.get(indexKey);
GlobalPath = (String) Globalpaths.get(index);

II It ,

II II

213

APPENDIX E________________ Producing GUI

pathsVector.add(GlobalPath);
}
m ap.GlobalPaths = (Vector) pathsVector;
if ((CB.getSelectedltem().toString().trim()).length() > 0)
{
map. FunctionName = C B .getSelectedltem().toString();
}
}
else
{
indexKey = (String) IndexVector.get(i);
SourcePath = (String) si.paths.get(indexKey);
map.SourcePath = SourcePath;
}
mappingPaths.add(map);
}
mycaller.MappingPaths = (Vector) mappingPaths.clone();
}
private void generatePathMapping2()
{
String indexKey = "";
String GlobalPath =
String SourcePath = "";
LocalFunction If = new LocalFunction();
JTextField textField, txt_function = null;
Hashtable IntegratedPath = new HashtableO;
Vector localPaths = null;
Iterator el = Globalpaths.keyset().iterator();
while (el.hasNext ())
{
String vl = (String) el.next().toString();
String si = (String) Globalpaths.get(vl);
IntegratedPaths.p u t (v l , If);
}
for (int i = 0; i < textFieldsVector.size(); i++)
{
textField = (JTextField) textFieldsVector.get(i);
map = new Mapping();
If = new LocalFunction();
If.LocalSourcePaths = null;
If.FunctionName = null;
String myfunction =
if (textField.getText().length() != 0)
{
CB = (JComboBox) FuncFieldsVector.get(i);
indexKey = (String) IndexVector.get (i) ;
String delimiters =
String str;
str = textField.getText().toString();
StringTokenizer st = new StringTokenizer(str, delimiters);
SourcePath = (String) si.paths.get(indexKey);
txt_function = (JTextField) textFuncVector.g e t (i) ;
String f = txt_function.getText().toString();
StringTokenizer stf = new StringTokenizer(f, delimiters);
Vector pathsVector = null;
Vector functionVector = new Vector();
pathsVector = new Vector();

214

APPENDIX E

localPaths = new Vector();
while (st.hasMoreTokens())
{
String index = st.nextToken();
if (stf.hasMoreElements())
{
myfunction = stf.nextToken();
}
indexKey = (String) IndexVector.g e t (i);
SourcePath = (String) si.paths.get(indexKey);
GlobalPath = (String) Globalpaths.get(index);
pathsVector.add(GlobalPath);
String Separator = ",";
localPaths.add(SourcePath);
txt_function = (JTextField) textFuncVector.get(i);
LocalFunctions.put(indexKey, myfunction) ;
functionVector.add(myfunction);
IntegratedPaths.p u t (index, If);
map.SourcePath = index;
map.GlobalPaths = (Vector) localPaths;
map. FunctionName = "no function";
mappingPaths.add(map);
}
If.LocalSourcePaths = (Vector) localPaths;
If. FunctionName = (Vector) functionVector;
txt_function = (JTextField) textFuncVector.get(i);
Functions.add(txt_function.getText ());
map.GlobalPaths = (Vector) pathsVector;
txt_function = (JTextField) textFuncVector.get(i);
Functions.add(txt_function.getText ()) ;
}
else
{
indexKey = (String) IndexVector.get (i);
SourcePath = (String) si.paths.get(indexKey);
}
}
mycaller.MappingPaths = (Vector) mappingPaths.clone();
Iterator ell = IntegratedPaths.keyset().iterator();
while (ell.hasNext())
{
String vl = (String) e l l .n e x t ().toString();
String ml = (String) Globalpaths.get(vl);
If = (LocalFunction) IntegratedPaths.get(vl);
Vector j = new Vector();
Vector q = new Vector();
if (If.LocalSourcePaths != null)
{
j = (Vector) I f .LocalSourcePaths;
q = (Vector) I f .FunctionName;
}
}
Iterator elll = LocalFunctions.keySet().iterator();
while (elll.hasNext())
{
String vll = (String) elll.next().toString();
String mil = (String) si.paths.get(vll);

Producing GUI

215

APPENDIX E

String sll = (String) LocalFunctions.get(vll);
}
}
private void generatePathMapping5()
{
String indexKey = "";
String GlobalPath =
String SourcePath =
JTextField textField, txt_function = null;
Hashtable IntegratedPath = new HashtableO;
Vector localPaths = null;
Mapping mp=nu11;
Iterator el = Globalpaths.keyset().iterator();
while (el.hasNext ())
{
mp=new Mapping();
String vl = (String) el.next().toString();
String si = (String) Globalpaths.get(vl) ;
m p .SourcePath =sl;
m p .FunctionName="";
mp.GlobalPaths=null;
IntegratedPaths.put(vl, m p) ;
}
for (int i = 0; i < textFieldsVector.size () ; i++)
{
mp=new Mapping();
textField = (JTextField) textFieldsVector.get(i);
String myfunction =
if (textField.getText().length() != 0)
{
indexKey = (String) IndexVector.get(i);
String delimiters =
String str;
str = textField.getText().toString () ;
StringTokenizer st = new StringTokenizer(str, delimiters);
txt_function = (JTextField) textFuncVector.get(i);
String f = txt_function.getText().toString();
StringTokenizer stf = new StringTokenizer(f, delimiters);
Vector pathsVector = null;
Vector functionVector = new Vector();
pathsVector = new Vector();
localPaths = new Vector();
while (st.hasMoreTokens())
{
String index = st.nextToken();
if (stf.hasMoreElements())
{
myfunction = stf.nextToken();
}
indexKey = (String) IndexVector.get(i);
SourcePath = (String) si.paths.get(indexKey);
GlobalPath = (String) Globalpaths.get(index);
pathsVector.add(SourcePath);
String Separator = ",";
mp = (Mapping) IntegratedPaths.get(index);
Vector local = new Vector();
if (mp.GlobalPaths != null)

Producing GUI

216

APPENDIX E

{
local = (Vector) mp.GlobalPaths,-
local.add(SourcePath);
}
else
{
local.add(SourcePath);
}
mp.GlobalPaths=(Vector) local;
m p .FunctionName =myfunction ;
m p .SourcePath=GlobalPath;
IntegratedPaths.put(index, m p) ;
}
}
}
Iterator ell = IntegratedPaths.keyset().iterator ();
mappingPaths = new Vector();
while (ell.hasNext())
{
String vl = (String) ell.n e x t ().toString ();
String ml = (String) Globalpaths.get(vl);
mp = (Mapping) IntegratedPaths.get(vl);
mappingPaths.add(mp);
Vector j = new Vector();
if (mp.GlobalPaths != null)
{
j = (Vector) m p .GlobalPaths;
}
}
mycaller.MappingPaths = (Vector) mappingPaths.clone();
for (int i = 0; i < mappingPaths.size (); i + +)
{
Vector sr= new Vector();
map = (Mapping) mappingPaths.get (i) ;
sr=(Vector) m a p .GlobalPaths;
}
}
private void generatePathMapping4()
{
String indexKey = "";
String GlobalPath =
String SourcePath = "";
LocalFunction If = new LocalFunction();
JTextField textField, txt_function = null;
Hashtable IntegratedPath = new HashtableO;
Vector localPaths = null;
Iterator el = Globalpaths.keySet().iterator();
while (el.hasNext())
{
String vl = (String) el.next().toString();
String si = (String) Globalpaths.get(vl);
IntegratedPaths.put(vl, If);
}
for (int i = 0; i < textFieldsVector.size 0 ; i++)
{
textField = (JTextField) textFieldsVector.get(i);
map = new Mapping();

Producing GUI

217

APPENDIX E Producing GUI

If = new LocalFunction ()/
If.LocalSourcePaths = null;
If.FunctionName = null;
String myfunction =
if (textField.getText().length () != 0)
{
indexKey .= (String) IndexVector.get(i);
String delimiters =
String str;
str = textField.getText().toString();
StringTokenizer st = new StringTokenizer(str, delimiters);
SourcePath = (String) si.paths.get(indexKey);
txt_function = (JTextField) textFuncVector.get(i);
String f = txt_function.getText().toString();
StringTokenizer stf = new StringTokenizer(f, delimiters);
Vector pathsVector = null;
Vector functionVector = new Vector ();
pathsVector = new Vector();
localPaths = new Vector();
while (st.hasMoreTokens())
{
String index = st.nextToken () ;
if (stf.hasMoreElements ())
{
myfunction = stf.nextToken() ;
}
indexKey = (String) IndexVector.get (i) ;
SourcePath = (String) si.paths.get(indexKey);
GlobalPath = (String) Globalpaths.get(index);
pathsVector.add(GlobalPath);
String Separator = ",";
localPaths.add(SourcePath);
txt_function = (JTextField) textFuncVector.get(i);
LocalFunctions.put(indexKey, myfunction);
functionVector.add(myfunction);
If = (LocalFunction) IntegratedPaths.get(index);
Vector j = new Vector();
Vector q = new Vector();
if (If.LocalSourcePaths != null)
{
j = (Vector) I f .LocalSourcePaths;
q = (Vector) I f .FunctionName;
}
j .add(SourcePath);
q. add(myfunction);
If.LocalSourcePaths=(Vector) j;
If.FunctionName = (Vector) q;
IntegratedPaths.put(index, If) ;
map.SourcePath = index;
map.GlobalPaths = (Vector) localPaths;
map.FunctionName = "no function";
mappingPaths.add(map);
}
If.LocalSourcePaths = (Vector) localPaths;
If.FunctionName = (Vector) functionVector;
txt_function = (JTextField) textFuncVector.get(i) ;
Functions.add(txt_function.getText());

218

APPENDIX E Producing GUI

map.GlobalPaths = (Vector) pathsVector;
txt_function = (JTextField) textFuncVector.get(i);
Functions.add(txt_function.getText ()) ;
}
else
{
indexKey = (String) IndexVector.get (i) ;
SourcePath = (String) si.paths.get(indexKey);
}
}
mycaller.MappingPaths = (Vector) mappingPaths.clone();
Iterator ell = IntegratedPaths.keyset().iterator();
while (ell.hasNext())
{
String vl = (String) e l l .n e x t ().toString ();
String ml = (String) Globalpaths.get (vl) ;
If = (LocalFunction) IntegratedPaths.get(vl);
Vector j = new Vector();
Vector q = new Vector();
if (If.LocalSourcePaths != null)
{
j = (Vector) If.LocalSourcePaths;
q = (Vector) If.FunctionName;
}
}
Iterator elll = LocalFunctions.keyset().iterator();
while (elll.hasNext())
{
String vll = (String) elll.next().toString();
String mil = (String) si.paths.get(vll);
String sll = (String) LocalFunctions.get(vll);
}
}
private void generatePathMappingl ()
{
String indexKey = "";
String GlobalPath =
String SourcePath = "";
JTextField textField = null;
for (int i = 0; i < textFieldsVector.size () ; i + +)
{
CB = (JComboBox) textFieldsVector.g e t (i);
if (CB.getSelectedltern().toString() != "")
{
indexKey = (String) IndexVector.get (i);
SourcePath = (String) si.paths.get(indexKey);
GlobalPath = (String) Globalpaths.get (CB.getSelectedltem().toString())
}
}
}
}

219

APPENDIX F

Java code for paths m apping generation

import j ava.awt.*;
import j ava.awt.event.*;
import j avax.swing.*;
import j avax.swing.event.*;
import javax.swing.border.*;
import java.util.*;
import j ava.text.*;
import java.io.*;
import java.lang.*;
import java.net.*/
import javax.swing.filechooser.* ;

public class MappingPanel extends JPanel
{
BorderLayout borderLayout1 = new BorderLayout();
private JPanel pnl_txt = null;
JTextField txt_Filed = new JTextField();
JComboBox txt_Schm = new JComboBox ();
JComboBox txt_Func = new JComboBox ();
private JButton btn_ok = null;
private JButton btn_cancel = null;
private JLabel lbl_show = null;
private JLabel lbl_line = null;
private JLabel lbl_element = null;
private JLabel lbl_Gpath = null;
private JLabel lbl_function = null;
private JLabel line_lbl = null;
private JLabel GlobalElement_lbl = null;
private JPanel JFrameContentPane = null;
public Vector IndexVector = new Vector();
private Vector textFieldsVector = new Vector();
private Vector FuncFieldsVector = new Vector();
private Vector labelsVector = new Vector();
public static String GlobalSchema =
public static String SourceSchema = 11";
public static Generatelndex g i ;
public static Generatelndex si;

220

APPENDIX F______________________________ Paths mapping generation

public Vector SchemaElements = new Vector();
JComboBox CB = new JComboBox ();
static TreeMap Globalpaths = new TreeMap();
static TreeMap Globalelements = new TreeMap();
private Vector mappingPaths = new Vector()/
private Mapping map;
public Frame fram;
private int y2 = 152, y3 = 12;
private int height = 5;
MainlnterFaceF mycaller=null;
private String sourcePath;
private Vector globalPaths;
private String functionName;
public MappingPanel(MainlnterFaceF caller)
{
mappingPaths = new VectorO;
mycaller=caller;
mappingPaths=(Vector) mycaller.MappingPaths;
mycaller.menuItemKB.setEnabled(true) ;
try
{ jblnit(); }
catch (Exception ex)
{
ex.printStackTrace();
}}
void jblnit() throws Exception
{
SchemaElements.a d d ("");
UIManager.put("Label.font", new Fon t ("SansSerif", Font.BOLD, 12));
UIManager.put("Button.font", new F o n t ("SansSerif", Font.BOLD, 12));
UIManager.put("TextField.font", new F o n t ("SansSerif", Font.BOLD, 12));
UIManager.put("ComboBox.font", new F o n t ("SansSerif", Font.PLAIN, 10));
UIManager.put("TextArea.font", new F ont("SansSerif", Font.BOLD, 12));
try
{
this.setLayout(null);
JTextField textField = null;
JLabel Element_lbl = null;
Element_lbl = getlbl_Gpath(0, "Data Source Element path");
this . add (Element_lbl, Element_lbl. getName ()) ;
Element_lbl = getlbl_element(0,"Master View Element path");
this . add (Element_lbl, Element_lbl. getName ()) ;
Element_lbl = getlbl_function(0, "Mapping Function");
this.add(Element_lbl, Element_lbl.getName());
int n = 2;
for (int i = 0; i < mappingPaths.size () ; i + +)
{
n = n + 1 ;
Mapping map = new Mapping();
map=(Mapping) mappingPaths.get (i);
sourcePath=(String) m a p .SourcePath;
Element_lbl = getlbl_element(n, sourcePath);
this.add(Element_lbl, Element_lbl.getName());
globalPaths=(Vector) m a p .GlobalPaths;
if (globalPaths != null)
{
globalPaths=(Vector) m a p .GlobalPaths;

221

APPENDIX F Paths mapping generation

functionName=(String) m a p .FunctionName;
int m= 0;
for (int j = 0; j < globalPaths.size(); j++)
{
String gp=new StringO;
gp=(String) globalPaths.get (j) ;
if ((globalPaths.size()>1) && (j ==0))
Element_lbl = getlbl_Gpath(n, gp+",");
else
21ement_lbl = getlbl_Gpath(n, gp) ;
this . add (Element_lbl, Element_lbl. getName ()) ;
n = n + 1;
m= j +1;
}
Element_lbl = getlbl_function(n-m, functionName);
this . add (Element_lbl, Element_lbl. getName ()) ;
n=n-1;
}
else
{
Element_lbl = getlbl_Gpath(n, "Null");
this . add (Element_lbl, Element_lbl. getName ()) ;
}}}
catch (Throwable Exc)
{
handleException(Exc);
}}
private JLabel getlbl_element(int i, String name)
{
try
{
lbl_element = new JLabel ();
lbl_element.setName(name);
lbl_element.setText(name);
lbl_element.setBounds(20, 10 + (i * 5) * height, 250, 20);
}
catch (Throwable Exc)
{ handleException(Exc); }
return lbl_element;
}
private JLabel getlbl_Gpath(int i, String name)
{
try
{
lbl_Gpath = new JLabel ();
lbl_Gpath.setName(name);
lbl_Gpath.setText(name);
lbl_Gpath.setBounds(35 0, 10 + (i * 5) * height, 250, 20);
}
catch (Throwable Exc)
{ handleException (Exc) ,- }
return lbl_Gpath;
}
private JLabel getlbl_function(int i, String name)
{
try
{

222

APPENDIX F Paths mapping generation

lbl_function = new JLabel ();
lbl_function.setName(name);
lbl_function.setText(name);
lbl_function.setBounds(650, 10 + (i * 5) * height, 200, 20);
}
catch (Throwable Exc)
{ handleException(Exc); }
return lbl_function;
}
private JTextField gettxt_Field(int i)
{
try
{
txt_Filed = new JTextField () ;
txt_Filed.setName("Field" + i);
txt_Filed.setEditable(true);
txt_Filed.setText("");
txt_Filed.setBounds(450, 10 + (i * 5) * height, 100, 15);
textFieldsVector.a d d (txt_Filed);
}
catch (Throwable Exc)
{ handleException(Exc); }
return txt_Filed;
}
private JLabel getlbl_show(int i, String name)
{
try
{
lbl_show = new JLabel();
lbl_show.setName(name);
lbl_show.setText(name);
lbl_show.setBounds(20, 10 + (i * 5) * height, 100, 20); }
catch (Throwable Exc)
{
handleException(Exc);
}
return lbl_show;
}
private JLabel getlbl_line(int i, String name)
{
try
{
lbl_line = new JLabel();
lbl_line.setName(name);
lbl_line.setText(name);
lbl_line.setBounds(10, 10 + (i * 5) * height, 300, 20);
}
catch (Throwable Exc)
{ handleException(Exc); }
return lbl_line;
}
private void handleException(Throwable exception)
{
System.out.printIn("Could not initialize the frame. Error: " +
exception);
}}

223

APPENDIX G

Java code for m erging m apping inform ation with

XM K B

import org.j dom.*;
import org.jdom.input.SAXBuilder;
import java.io.IOException;
import java.util.*;
import java.io.FileOutputStream;
import org.jdom.output.XMLOutputter;
import java.io.File;
public class KBmerge
{
public static MainlnterFaceF mycaller;
static TreeMap paths = new TreeMap0 ;
static TreeMap elements = new TreeMap();
static Vector SourceMetadata = new Vector();
public KBmerge()
{
String lastSign = "";
paths = new TreeMap();
elements = new TreeMap();
}
public static void mergeMapping(MainlnterFaceF caller, String filename!
{
File f = new File(filename);
if (! f .exists())
{
buildKB(caller, filename);
}
else
{
cumKB(caller, filename);
}}
private static void writeToFile(String fname, Document doc)
{
try
{

224

APPENDIX G Merge mapping infrmation

FileOutputStream out = new FileOutputStream(fname);
XMLOutputter op = new XMLOutputter ();
o p .output(doc, out);
out.flush();
out.close();
}
catch (IOException e)
{
System.err.printIn(e);
}}
public static void cumKB(MainlnterFaceF caller, String filename)
{
SAXBuilder builder = new SAXBuilder();
mycaller = caller;
Vector sourceMetadata = new Vector();
try
{
String att =
Element integ, child;
sourceMetadata = (Vector) mycaller.SourceMetadata.clone();
Vector mappingPaths = (Vector) mycaller.MappingPaths;
String sourcePath = "";
String functionName = "";
Vector globalPaths = null;
Document doc = builder.build(filename);
Element root = doc.getRootElement () ;
Element information = root.getChild("DS_information");
int number = information.getAttribute ("number").getlntValue() ;
number = number + 1;
String num = "" + number;
information. removeAttribute ("number") ;
information. setAttribute ("number" , num.trimO) ;
List children = information.getChildren();
Listlterator iterator = children.listIterator();
child = (Element) iterator.next ();
att = child.getAttributeValue("name");
Element newSource = new Element("DS_Location");
newSource.setText(sourceMetadata.g e t (1).toString());
newSource.setAttribute("name", sourceMetadata.get(0).toString0);
newSource.setAttribute("type", sourceMetadata.get (2) .toString());
information.addContent(newSource);
Element structure = root.getChild("Med_component");
children = structure.getChildren();
iterator = children.listlterator () ;
int count = 0 ;
while (iterator.hasNext0)
{
child = (Element) iterator.next ();
att = child.getAttributeValue("path");
String paths = " ";
Mapping map = new Mapping();
map = (Mapping) mappingPaths.get(count);
sourcePath = (String) m a p .SourcePath;
functionName = (String) m a p .FunctionName;
if (functionName.trim().length() == 0)
{
functionName = "Null";

225

APPENDIX G Merge mapping infrmation

}
Element local = new Element("target");
globalPaths = (Vector) m a p .GlobalPaths;
if (globalPaths != null)
{ globalpaths = (Vector) map.GlobalPaths;
for (int j = 0; j < globalpaths.size(); j++)
{
String gp = new String();
gp = (String) globalPaths.get (j)/
if ((globalPaths.size() > 1))
{
if (j = = 0)
paths=gp;
else
paths = paths + + gp;
}
else
{
paths = gp;
}}}
else
{ paths = "Null";
functionName = "Null";
}
local.setText(paths);
local.setAttribute("name", sourceMetadata.g e t (0).toString());
local.setAttribute("fun", functionName);
child.addContent(local);
count++;
}
writeToFile(filename, doc);
}
catch (JDOMException e)
{
System.out.printIn(" is not well-formed.");
System.out.printIn(e.getMessage());
}
catch (IOException e)
{
System.out.printIn(e);
}}
public static void buildKB(MainlnterFaceF caller, String xmlfile)
{
mycaller = caller;
Element concept;
Element dbase;
Element relations;
Vector sourceMetadata = new Vector();
sourceMetadata = (Vector) mycaller.SourceMetadata.clone();
Vector mappingPaths = (Vector) mycaller.MappingPaths;
String sourcePath = "";
String functionName = "";
Vector globalPaths = null;
Element root = new Element("XMKB");
Document doc = new Document(root);
Element DS_info = new Element("DS_information");
DS info.setAttribute("number", "1");

226

APPENDIX G Merge mapping infrmation

Element DS_Loc = new Element("DS_Location");
DS_Loc. setText (sourceMetadata.get (1) .toStringO) ;
DS_Loc.setAttribute("name" , sourceMetadata.g e t (0) .toString())
DS_Loc. setAttribute ("type" , sourceMetadata. get (2) .toStringO)
DS_info.addContent(DS_Loc);
root.addContent(DS_info);
Element Med_comp = new Element("Med_component");
for (int i = 0; i < mappingPaths.size (); i + +)
{
String paths = " " ;
Mapping map = new Mapping ();
map = (Mapping) mappingPaths.get (i) ;
sourcePath = (String) m a p .SourcePath;
functionName = (String) m a p .FunctionName/
if (functionName.trim().length() == 0)
{ functionName = "Null"; }
Element integrated = new Element("source");
integrated.setAttribute("path", sourcePath);
Element local = new Element("target");
globalPaths = (Vector) map.GlobalPaths;
if (globalPaths != null)
{
globalPaths = (Vector) m a p .GlobalPaths;
for (int j = 0; j < globalPaths.size(); j++)
{
String gp = new String();
gp = (String) globalPaths.get (j) ;
if ((globalPaths.size() > 1))
{
if (j ==0)
paths = g p ;
else
paths = paths + + gp;
}
else
{
paths = gp;
}}}
else
{ paths = "Null";
functionName = "Null";
}
local.setText(paths);
local.setAttribute("name", sourceMetadata.get(0).toString());
local.setAttribute("fun", functionName);
integrated.addContent(local);
Med_comp.addContent(integrated);
}
root.addContent(Med_comp);
writeToFile(xmlfile, doc);
}
public static void main(String[] args)
{
KBmerge kb = new KBmerge();
}}

227

APPENDIX H

Sam ple o f X M K B docum ent

<?xml version="l . 0 " encoding="UTF-8 " ?>
<DS_information number="4">
<DS_Location name =" books, xml" type="XML

document" >http://wv»w.w3s chools. com/xque ryc/DS_Location >
<DS_Location name= " bib.xml" type=" XML document">C :\prototype\doc </DS_Location>
<DS_Location name=" SCMFMA" type="R elatlonal Datab ase">

jdbc:oracle: thin: Shelot: 1521:ora cle9 </DS_Locat ion>
<DS_Location name=" bookdata.xml" type="XML document" >C: \prototyp e\doc</DS_Locat ion>

</DS_information>
<Med_component >
<source path="/book" >

<target name= "book s .xml" fun="Nul 1" >/bookstore/b ookc/target>
ctarget name="bib. xml" fun="Null" >/bib/book</tar get>
<target name="SCMFMA" fun="Null">/scmfma/bookc/t arget>
<target name= "book data.xml" fun=" Null" >/bookdat a/book</target>
</source>

<source path="/book/price ">
<target name="book s .xml" fun="Rat eExchange" >/boo kstore/book/pri ce</target>
<target name="bib. xml" fun="RateE xchange" >/bib/b ook/price</targ et>
<target name="SCMFMA" fun="Null" > Null</target>
<target name ="book data.xml" fun=" Null">/bookdat a/book/pricec/ta rget>
</source>

<source path= "/book/author">
<target name = "book s .xml" fun="Nul l">Nullc/target >
ctarget name="bib. xml" fun= "Null" >/bib/book/authore/target>
ctarget name="SCMFMA" fun="Null" > Nullc/target>
ctarget name= "book data.xml" fun=" Null" >/bookdat a/book/authorc/t arget>
c/source>

csource path="/book/ author/full_name">
ctarget name ="book s.xml" fun="Nul 1" >Nullc/target >
ctarget name="bib. xml" fun="Null" >Nullc/target>
ctarget name="SCMFMA" fun="Null"> Nullc/target>
ctarget name= "book data.xml" fun= " Null" >Nullc/tar get>
c/source>

csource path="/book/ author/full_name/first_name">
ctarget name= "book s .xml" f un=" fir stNiune" >/bookst ore/book/author < / target>
ctarget name="bib. xml" fun="Null" >/bib/book/author/firstc/targe t>
ctarget name= "SCMF MA" f un= " f irstN ame" >/scmfma/b ook/authorc/targ et>
ctarget name="book data.xml" fun=" f irstName" >/boo kdata/book/auth or/n«unec/target >
c/source>

csource path="/book/ author/full_name/last_name">
ctarget name = "book s .xml" fun="Las tName" >/booksto re/book/authorc /target>
ctarget name="bib. xml" fun="Null" >/bib/book/author/lastc/target >
ctarget name="SCMFMA" fun="LastName">/scmfma/boo k/authorc/targe t>
ctarget name= "book data.xml" fun=" LastName" >/book data/book/autho r/n«unec/target>
c/source>

csource path= "/book/title">

228

http://wv%c2%bbw.w3s

APPENDIX H Sample o f XMKB

<target narae="book s.xml" fun="Nul 1" >/bookstore/b ook/title</targ et>
<target name="bib.xml" fun="Null">/bib/book/titlec/target>
ctarget name="SCMEMA" fun= "Null" > /scmfma/book/ti tlec/target>
ctarget name= "book data.xml" fun=" Null" >/bookdat a/book/titlec/ta rget>
< /source>

csource path= "/book/year">
ctarget name="book s.xml" fun="Nul 1" >/bookstore/b ook/yearc/targe t>
ctarget name="bib. xml" fun="Null" >Nullc/target>
ctarget name="SCMEMA" fun="Null" > /scmfma/book/ye arc/target>
ctarget name= "bookdata.xml" fun=" Null">Nullc/target>
c/source>

csource path= "/book/publisher">
ctarget name= "book s .xml" fun= "Nul 1" >Nullc/target >
ctarget name="bib. xml" fun="Null" >/bib/book/pub 1 isherc/target>
ctarget name="SCMEMA" fun="Null" > /scmfma/book/publisherc/target >
ctarget name-"bookdata.xml" fun=" Null">Nullc/target>
c/source>

csource path= "/book/editor">
ctarget name= "book s .xml" fun="Nul 1" >Nullc/target >
ctarget name="bib. xml" fun="Null" >/bib/book/edit orc/target>
ctarget name="SCHEMA" fun="Null">Nullc/target>
ctarget name= "bookdata.xml" fun=" Null">Nullc/tar get>
c/source>

csource path="/book/ editor/af filiat ion" >
ctarget name ="book s . xml" fun="Nul l">Nullc/target >
ctarget name="bib. xml" fun="Null" >/bib/book/edit or/af filiationc /target>
ctarget name=" SCHEMA" fun="Null" > Nullc/target>
ctarget name="book data.xml" fun=" Null" >Nullc/tar get>
c/source>

csource path="/book/ editor/full name" >
ctarget name = "book s.xml" fun="Nul 1" >Nullc/target >
ctarget name="bib. xml" fun="Merge " >/bib/book/edi tor/last, /bib/b ook/editor/firs tc/target>
ctarget name="SCMFMA" f un= "Null" > Nullc/target>
ctarget name= "bookdata.xml" fun=" Null" >Nullc/tar get>
c/source>
c/Med_component>
c/XMKB>

229

APPENDIX I

Java code for rem oving data source from X M K B

import j ava.awt.*;
import j ava.awt.event.*;
import j avax.swing.*;
import org.j dom.*;
import org.jdom.input.SAXBuilder;
import java.io.IOException;
import java.util.*;
import java.io.FileOutputStream;
import org.jdom.output.XMLOutputter;
class RemoveSources extends JDialog implements ActionListener
{
private JPanel pnl_txt = null;
JComboBox txt_Func = new JComboBox ();
private JLabel lbl_show = null;
private JButton btn_ok = null;
private JButton btn_cancel = null;
private Vector sources = new Vector();
private JPanel JFrameContentPane = null;
public String kbase =
JComboBox CB = new JComboBox ();
public Frame fram;
private int y2 = 152, y3 = 12;
private int height = 5;
public RemoveSources(String kb)
{
kbase = kb;
sources = (Vector) getSources(kbase);
UIManager.p u t ("Label.font", new Font("SansSerif", Font.BOLD, 12));
UIManager.p u t ("Button.font", new F o n t ("SansSerif", Font.BOLD, 12));
UIManager.put("TextField.font", new Font("SansSerif", Font.BOLD, 12))
UIManager.p u t ("ComboBox.font", new Font("SansSerif", Font.PLAIN, 10))
UIManager.p u t ("TextArea.font", new Font("SansSerif", Font.BOLD, 12));
setContentPane(getJFrameContentPane());
this.setSize(500, 200);
setTitle("Remove Data Source");
}
public void actionPerformed(ActionEvent e)

230

APPENDIX I_____________________________________ Removing data source

{
if (e.getSource() == btn_cancel)
{
dispose();
return;
}
else if (e.getSource() == btn_ok)
{
String selectedSource = txt_Func.getSelectedltem().toString();
removeSource(kbase, selectedSource);
JOptionPane.showMessageDialog(this,selectedSource +" has been removed
successfully");
dispose();
}}
private JPanel getJFrameContentPane()
{
if (JFrameContentPane == null)
{
try
{
JFrameContentPane = new JPanel () ;
JFrameContent Pane. setName ("JFrameContent Pane") ;
JFrameContentPane.setLayout(null);
get JFrameContent Pane () . add (getlbl_show (0 , "Remove Data Source"),
getlbl_show(0, "Source") .getName ());
get JFrameContent Pane () . add (gettxt_sources (0) ,
gettxt_sources(0) .getName ()) ;
getJFrameContentPane() .add(getbtn_cancel (5),
getbtn_cancel(5).getName());
getJFrameContentPane() .add(getbtn_ok(5) , getbtn_ok(5) .getName());
}
catch (Throwable Exc)
{
handleException(Exc);
}}
return JFrameContentPane;
}
private JButton getbtn_ok(int i)
{
if (btn_ok == null)
{
try
{
btn_ok = new JButton();
btn_ok.setName("btn_ok");
btn_ok.setText("Remove");
btn_ok.setBounds(250, 100 + i * height, 85, 25);
btn_ok.addActionListener(this) ;
}
catch (Throwable Exc)
{
handleException(Exc);
}}
return btn_ok;
}
private JComboBox gettxt_sources(int i)
{

231

APPENDIX I Removing data source

try
{
txt_Func = new JComboBox(sources);
txt_Func.setBackground(Color.white);
txt_Func.setName("Sources");
txt_Func.setBounds(200, 20 + (i * 5) * height, 200, 25);
}
catch (Throwable Exc)
{ handleException(Exc); }
return txt_Func;
}
private JButton getbtn_cancel(int i)
{
if (btn_cancel == null)
{
try
{
btn_cancel = new JButton();
btn_cancel.setName("btn_cancel") ;
btn_cancel.setText("Cancel") ;
btn_cancel. setBounds (3 50, 100 + i * height, 85, 25);
btn_cancel. addAct ionListener (this) ;
}
catch (Throwable Exc)
{
handleException(Exc);
}}
return btn_cancel;
}
private JLabel getlbl_show(int i, String name)
{
try
{
lbl_show = new JLabel();
lbl_show.setName(name);
lbl_show.setText(name);
lbl_show.setBounds(50, 20 + (i * 5) * height, 200, 25);
}
catch (Throwable Exc)
{ handleException(Exc); }
return lbl_show;
}
private void handleException(Throwable exception)
{
System.out.println("Could not initialize the frame. Error:"+ exception);
}
private static void writeToFile(String fname, Document doc)
{
try
{
FileOutputStream out = new FileOutputStream(fname);
XMLOutputter op = new XMLOutputter();
o p .output(doc, out);
out.flush();
out.close();
}
catch (IOException e)

232

APPENDIX I Removing data source

{
System.err.printIn(e);
}}
public static Vector getSources(String filename)
{
SAXBuilder builder = new SAXBuilder();
Vector sources = new Vector();
try
{
String att = "";
Element child;
Document doc = builder.build(filename);
Element root = d o c .getRootElement () ;
Element information = root.getChild("DS_information");
java.util.List children = information.getChildren () ;
Listlterator iterator = children.listIterator();
while (iterator.hasNext())
{
Element source = (Element) iterator.next();
att = source.getAttributeValue("name");
sources.add(att);
}}
catch (JDOMException e)
{
System, out .printIn (" is not well-f ormed. ") ;
System.out.println(e.getMessage ()) ;
}
catch (IOException e)
{
System.out.println(e);
}
return sources;
}
public static void removeSource(String filename, String Source)
{
SAXBuilder builder = new SAXBuilder() ;
Vector sourceMetadata = new Vector ();
try
{
String att = "";
Element integ, child;
Document doc = builder.build(filename);
Element root = d o c .getRootElement();
Element information = root.getChild("DS_information");
int number = information.getAttribute("number") .getIntValue();
number = number - 1;
String num = "" + number;
information. removeAttribute ("number") ;
information. setAttribute ("number" , num.trimO) ;
java.util.List children = information.getChildren();
Listlterator iterator = children.listIterator();
int index = -1;
int count = 0;
while (iterator.hasNext ())
{
Element source = (Element) iterator.next();
att = source.getAttributeValue("name");

233

APPENDIX I

if (att.toString().equalsIgnoreCase(Source))
{ index = count; }
count++;
}
if (index > -1)
{ children.remove(index); }
Element structure = root.getChild("Med_component") ,
children = structure.getChildren();
iterator = children.listlterator();
count = 0;
while (iterator.hasNext())
{
child = (Element) iterator.n e x t ();
java .util.List locals = child.getChildren();
Listlterator iteratorl = locals.listlterator();
index = -1;
count = 0;
while (iteratorl.hasNext())
{
Element local = (Element) iteratorl.next ();
att = local.getAttributeValue("name") ;
if (att.toString().equalsIgnoreCase(Source))
{ index = count; }
count++;
}
if (index > -1)
{
locals.remove(index) ;
}}
writeToFile(filename, doc);
}
catch (JDOMException e)
{
System.out.printIn(" is not well-formed.");
System.out.println(e.getMessage ()) ;
}
catch (IOException e)
{
System.out.println(e);
}}
public static void main(String args [])
{
JDialog a = new RemoveSources(null);
a .addWindowListener(new WindowAdapter {)
{
public void windowClosing(WindowEvent e)
{
System.exit(0);
}});
a .show();
}}

Removing data source

234

APPENDIX J

Q uery Processor and X FE P code for parsing

X Q uery FLW R Expression query

import java.awt.*;
import j ava.awt.event.*;
import j avax.swing.*;
import java.util.*;
import java.io.*;
import com.borland.jbcl.layout.*;

public class QueryProcessor extends JFrame implements ActionListener
{
private JTextArea textAreal, textArea2,textArea3;
public JButton run,reset,exit,getschema;
private JLabel labell,label2,label3,label4,label5,label6;
private JPanel buttonPanel;
String integratedfile;
public QueryProcessor()
{
super("QUERY PROCESSOR");
Box box =Box.createVerticalBox () ;
label2 = new JLabel ("MASTER VIEW");
box.add(label2);
textAreal = new JTextArea(17,30) ;
textAreal.setEditable(false);
box.add(new JScrollPane(textAreal));
label4 = new JLabel ("ENTER YOUR XQUERY : ");
box.add(label4);
textArea2= new JTextArea(3,30) ;
box.add(new JScrollPane(textArea2));
label6 = new JLabel ("THE RESULT : ");
box.add(label6);
textArea3= new JTextArea(15,30) ;
textArea3.setEditable(false);
box.add(new JScrollPane(textArea3));
Container container = getContentPane();
container.add(box);

235

APPENDIX J ________________ Parsing XQuery FLWR expression

getschema = new JButton("Get Master View");
run = new JButton ("Generate Local Sub-Query");
reset = new JButton(" Reset ");
exit = new JButton (" Exit ");
run.setEnabled(false);
getschema.addActionListener(this);
run.addActionListener(this);
reset.addActionListener(this);
exit.addActionListener(this);
buttonPanel= new JPanelO;
buttonPanel.setLayout(new GridLayout(1,3));
buttonPanel.add (getschema);
buttonPanel.add (run);
buttonPanel.add (reset);
buttonPanel.add (exit);
container. add (buttonPanel, BorderLayout. SOUTH) ;
label5 = new JLabel (" ") ;
box.a d d (label5);
setSize (1020,740);
setVisible (true);
}
public void actionPerformed (ActionEvent event)
{
if (event.getSource() == getschema)
{
final JFileChooser vc = new JFileChooser ();
int returnVal = v c .showOpenDialog(this);
if (returnVal == JFileChooser.APPROVE_OPTION)
{
File filel = v c .getSelectedFile ();
integratedfile = filel.getAbsolutePath();
textAreal.setText("");
try
{
FilelnputStream fstream = new FileInputStream(integratedfile);
DatalnputStream in = new DatalnputStream(fstream);
String output="";
while (in.available () !=0)
{
output += (in.readLine())+"\n" ;
}
in.close();
textAreal.append(output);
run.setEnabled(true);
textArea2.setText("");
textArea3.setText("");
}
catch (Exception e)
{
System.err.println("File input error");
}
}
}
else if (event.getSource() == run)
{
QueryParser application = new QueryParser();
String query = textArea2.getText();

236

APPENDIX J Parsing XQuery FLWR expression

try
{
int ln=integratedfile.length();
String kbNamel=integratedfile.substring(0,In-4)+"_kb.xml" ;
Vector q=(Vector) application.GetQueries(kbNamel,query) ;
for (int i=0;i< q.size();i++)
{
textArea3.append((q.get(i)).toString());
textArea3 . append (" \n") ;
}
}
catch(Exception excp)
{
if (query .equals (""))
JOptionPane.showMessageDialog(null,"Please enter your XQuery
query","Error Message",JOptionPane.ERROR_MESSAGE);
else
JOptionPane.showMessageDialog(null,"Please check your XQuery
query","Error Message", JOptionPane.ERROR_MESSAGE);
}
}
else if (event.getSource() == reset)
{
textArea2.setText("");
textArea3.setText("");
}
else if (event.getSource() == exit)
{
dispose ();
}
}
public static void main (String args[])
{
QueryProcessor application = new QueryProcessor();
application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}
}

import j ava.awt.*;
import java.awt.event.*;
import j avax.swing.*;
import java.util.*;
import org.j dom.*;
import org.jdom.input.SAXBuilder;
import java.io.IOException;
import java.util.*;
import java.i o .FileOutputStream;
import org.jdom.output.XMLOutputter;
import java.i o .File;

public class QueryParser
{
int slash,wh,in,variable,strat,end,cond,stag,etag,tl,le;
StringTokenizer stl,st2;
public QueryParser()
{

237

APPENDIX J Parsing XQuery FLWR expression

}
public Vector GetQueries (String file,String queryl)
{
Vector queries = new Vector();
String VarRetrived[]=new String [100];
String correspondRet[]=new String [100];
String RelVar[]=new String[100];
String funRet[]=new String [100];
String tablepath[]=new String[100];
String myQuery=null;
String query = queryl;
String condition="",mainPath="",mainvar="";
String retrivedVar="",output="",operator="";
String condVar=" ", condVal = " 11, conditionl=" ";
String stagName="",etagName="",path="";
. String sourceName="" , sourceType="",sourceLoca="";
String correspondPath="",fun="",condVarReal="";
String correspondcon="",funcon="",seprator="";
String subquery="",re1query="",Relcon="";
String table ="";
String filename=file;
variable = query.indexOf ("$") ;
if (query.toUpperCase().indexOf("IN") > -1)
in = query.toUpperCase() .indexOf("IN") ;
mainvar = query.substring(variable,in);
slash= query.indexOf("/") ;
if (query.toUpperCase().indexOf("WHERE") > -1)
{
wh = query.toUpperCase().indexOf("WHERE");
condition = query.substring(wh+5,query.toUpperCase() .indexOf("RETURN"));
}
else wh = query.toUpperCase().indexOf("RETURN");
mainPath = query.substring(slash,wh);
strat = query.indexOf("{");
end = query.indexOf("}");
retrivedVar = query.substring(strat+1,end) ;
conditionl = condition.trim() ;
if (conditionl.indexOf("=")> -1)
{
operator = "=";
condVar = conditionl.substring(0,conditionl.indexOf("="));
condVal = conditionl.substring(conditionl.indexOf(" = ") +1) ;
}
else if (conditionl.indexOf(">")> -1)
{
operator = ">";
condVar = conditionl.substring(0,conditionl.indexOf(">"));
condVal = conditionl.substring(conditionl.indexOf(">")+1);
}
else if (conditionl.indexOf("<")> -1)
{
operator = "<";
condVar = conditionl.substring(0,conditionl.indexOf("<"));
condVal = conditionl.substring(conditionl.indexOf("<")+1);
}
if (conditionl.indexOf(">=")> -1)
{

238

APPENDIX J Parsing XQuery FLWR expression

operator =
condVar = conditionl.substring(0,conditionl.indexOf(">=")) ;
condVal = conditionl.substring(conditionl.indexOf(">=")+2);
}
if (conditionl.indexOf("<=")> -1)
{
operator =
condVar = conditionl.substring(0,conditionl.indexOf("<="));
condVal = conditionl.substring(conditionl.indexOf("<=")+2);
}
if (conditionl.indexOf("!=")> -1)
{
operator = "!=" ;
condVar = conditionl.substring(0,conditionl.indexOf("!="));
condVal = conditionl.substring(conditionl.indexOf("!=")+2) ;

.}
mainvar = removeSpaces(mainvar.trim ());
mainPath = removeSpaces(mainPath.trim()) ;
retrivedVar = removeSpaces(retrivedVar.trim());
condition = condition.trim();
condVar = condVar.trim();
condVal = condVal.trim();
mainPath = "/" + mainPath.substring(1).trim();
if (condVar != "")
{
tl = condVar.indexOf("/");
condVar = mainPath +"/"+ condVar.substring(tl+1).t r i m O ;
}
stl= new S t r i n g T o k e n i z e r (r e t r i v e d V a r , ;
int i=0;
while (stl.hasMoreTokens())
{
VarRetrived[i] = stl.nextToken().t rim();
i++;
}
for (int e = 0 ; e < i / e++)
{
tl = VarRetrived[e] .indexOf("/") ;
VarRetrived[e] = mainPath +"/"+ VarRetrived[e].substring(tl+1).trim();
}
stag = query.toUpperCase().indexOf("RETURN");
stagName = query. substring(stag+6,query.toUpperCase() .indexOf("{")) ;
etag = query.indexOf("}");
etagName = query.substring(etag+1)/
stagName=stagName.t rim();
etagName=etagName.t rim();
SAXBuilder builder = new SAXBuilder ();
try
{
Document doc = builder.build(filename);
Element root = d o c .getRootElement();
Element information = root.getChild("DS_information");
int number = information.getAttribute("number").getlntValue0 ;
java.util.List children = information.getChildren();
Listlterator iterator = children.listlterator();
while (iterator.hasNext())
{

239

APPENDIX J Parsing XQuery FLWR expression

int test=0,testl = 0 ;
Element source = (Element) iterator.next();
sourceName = source.getAttributeValue("name");
sourceType = source.getAttributeValue("type");
sourceLoca = source.getText();
if (sourceLoca.indexOf("/") > -1)
seprator="/";
else
seprator="\\";
Element Med_com = root.getChild("Med_component");
java.util.List childrenl = Med_com.getChildren();
Listlterator iteratorl = childrenl.listlterator();
while (iteratorl.hasNext())
{
Element integrated = (Element) iteratorl.next();
path = integrated.getAttributeValue("path")/
if (path .equals (mainPath.trim ()))
{
java.util.List children2 = integrated.getChildren();
Listlterator iterator2 = children2.listlterator();
while (iterator2.hasNext())
{
Element target = (Element) iterator2.n e x t ();
if (sourceName .equals (target.getAttributeValue("name")))
{
correspondPath = target.getText ();
fun = target.getAttributeValue("fun") ;
}
}
}
if (condVar != "" && path .equals (condVar))
{
java.util.List children3 = integrated.getChildren();
Listlterator iterator3 = children3.listlterator()/
while (iterator3.hasNext())
{
Element target = (Element) iterator3.n e x t ()/
if (sourceName .equals (target.getAttributeValue("name")))
{
correspondcon = target.getText();
Relcon = target.getText();
if ((correspondcon.compareTo("Null")!= 0) &&
(correspondPath.compareTo("Null")!= 0))
{
le = correspondPath.length();
correspondcon = mainvar+correspondcon.substring(le);
}
funcon = target.getAttributeValue("fun");
}
}
}
for (int e = 0 ; e < i ; e++)
{
if (path .equals (VarRetrived [e]))
{
java.util.List children4 = integrated.getChildren();
Listlterator iterator4 = children4.listlterator()/

240

APPENDIX J Parsing XQuery FLWR expression

while (iterator4.hasNext())
{
Element target = (Element) iterator4.next();
if (sourceName .equals (target.getAttributeValue("name")))
{
correspondRet[e] = target.getText();
funRet[e] . = target.getAttributeValue("fun");
RelVar [e] = target.getText();
if ((correspondRet[e] .compareTo("Null")!= 0) &&
(correspondPath.compareTo("Null")!= 0))
{
le = correspondPath.length();
int t2 = correspondRet[e].indexOf(",");
if (t2 > -1)
correspondRet[e] = mainvar+correspondRet [e] .substring(le,t2) +" , "
+mainvar+correspondRet[e].substring(t2+le+l);
else
correspondRet[e] = mainvar+correspondRet [e] .substring(le);
}
}
}
}
}
}
if (sourceType .equals ("XML document"))
{
subquery = "FOR "+mainvar+" IN document(\ ""+sourceLoca + seprator
+sourceName+"\")"+correspondPath;
if (condVar != "")
subquery = subquery + " WHERE "+correspondcon+operator+condVal;
subquery = subquery +" RETURN "+ stagName+" {
for (int e = 0 ; e < i ; e++)
{
if (funRet[e] .equals ("Null"))
subquery = subquery + correspondRet [e];
else
subquery = subquery + funRet[e]+"("+correspondRet[e]+")";
if (e != i-1)
subquery = subquery +" ,
}
subquery = subquery +" } "+etagName;
}
else
{
correspondPath = correspondPath.substring(1).replace('/'/'•');
st2= new StringTokenizer(correspondPath,".");
int j =0;
while (st2.hasMoreTokens())
{
tablepath[j] = st2.nextToken () .trim();
j++;
}
table = tablepath[0] +"."+ tablepath[1];
subquery = "Select
for (int e = 0 ; e < i ; e++)
{
if (funRet[e] .equals ("Null"))

241

APPENDIX J Parsing XQuery FLWR expression

subquery = subquery + RelVar [e] .substring(1) . r e p l a c e ;
else
subquery=subquery+funRet [e] +
" ("+RelVar[e] .substring(1) .replace
if (e != i-1)
subquery = subquery +" ,
}
subquery = subquery +" From "+table;
if (condVar != "")
subquery = subquery + " WHERE "+Relcon.substring(1).replace('/'/
operator+condVal.replace('"1,'\ ;
}
int b=l;
for (int e = 0 ; e < i ; e++)
{
if (correspondRet[e].compareTo("Null")== 0) b=-l;
}
myQuery = "Sub-Query Generate For "+sourceType+" "+sourceLoca +
+sourceName +" is :\n";
if ((correspondPath .equals ("Null")) || (correspondcon .equals
("Null")) || (b==-l))
myQuery =myQuery+ "No matched Query Generated For This Dtad
Source"+"\n\n";
else
myQuery=myQuery+subquery+"\n\n" /
queries.add(myQuery);
}
}
catch (JDOMException e)
{
System.out.println(e.getMessage ()) ;
}
catch (IOException e)
{
System.out.println(e);
}
return queries;
}
public static void main (String args[])
{
QueryParser application = new QueryParser();
}
public static String removeSpaces(String s)
{
StringTokenizer st = new StringTokenizer(s," ", false);
String t="";
while (st.hasMoreElements()) t += s t .nextElement();
return t ;
}
}

' • ') +

seprator

242

