(CARDIFF

UNIVERSITY
PRIFYSGOL

(AFRDYH

Querying Distributed Heterogeneous Structured and

Semi-structured Data Sources

by
Fahad M. Al-Wasil

A thesis submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
in
Computer Science

School of Computer Science

Cardiff University
April 2007

UMI Number: U584905

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U584905
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

DECLARATION

This work has not previously been accepted in substance for any degree and is not
concurrently submitted in candidature for any degree.

Signedccovoeienn I ™ A oo (candidate)

Date ... \¥./3./. 2.2 F ..

STATEMENT 1

This thesis is being submitted in partial fulfillment of the requirements for the degree of

PhD. .
Signed %/gﬁ— (candidate)

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where
otherwise stated. Other sources are acknowledged by explicit references.

Signed jkg (candidate)

Date ..\8/3.L.2.e2. F ...

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and for
inter-library loan, and for the title and summary to be made available to outside
organisations.

Signed %&:‘?‘ (candidate)
Date ..\ 8.[.3.£.2.:29Z e

To my parents,
my wife,

and my children Nora, Mohammed, and Adeem

Acknowledgements

I would like to start by praising Allah (God) Almighty for providing me with faith,

patience and commitment to complete this research.

I would like to express my sincere gratitude to my supervisors, Prof. W. A. Gray and Prof.
N. J. Fiddian, for their expert guidance and encouragement throughout this research. I am
grateful for their careful reading and constructive comments on this thesis and our joint

papers.

I would like to thank the paper referees whose comments on my published papers have

added to the success of this project.

Special thanks are due to the members of the school for their help, especially Mrs.
Margaret Evans who has helped me with travel related issues, Mrs. Helen Williams for
her help in administrative issues, and Mr. Robert Evans and Dr. Rob Davies for their

technical assistance.

I would also like to express my thanks to my fellow research students in the School of
Computer Science at Cardiff University for their friendship and help. I really enjoyed
their friendship that I developed while doing this research.

Special admiration and gratitude is due to my parents, brothers and sisters whose prayers,
love, care, patience, support and encouragement have always enabled me to perform to

the best of my abilities.

Last, but certainly not least, I am indebted to my wife for her endurance and
unconditional support which provided vital encouragement during the period of my PhD
study. Without her love and devotion, this research would have been impossible. Finally,
I would like to mention my beloved children, Nora, Mohammed, and Adeem who have

given me happiness during the difficult period of my study.

Abstract

The continuing growth and widespread popularity of the internet means
that the collection of useful data available for public access is rapidly
increasing both in number and size. These data are spread over distributed
heterogeneous data sources like traditional databases or sources of various
forms containing unstructured and semi-structured data. Obviously, the
value of these data sources would in many cases be greatly enhanced if the

data they contain could be combined and queried in a uniform manner.

The research work reported in this dissertation is concerned with querying
and integrating a multiplicity of distributed heterogeneous structured data
residing in relational databases and semi-structured data held in well-
formed XML documents produced by internet applications or human-
coded. In particular, we have addressed the problems of: (1) specifying the
mappings between a global schema and the local data sources' schemas,
and resolving the heterogeneity which can occur between data models,
schemas or schema concepts; (2) processing queries that are expressed on

a global schema into local queries.

We have proposed an approach to combine and query the data sources
through a mediation layer. Such a layer is intended to establish and evolve
an XML Metadata Knowledge Base (XMKB) incrementally which assists
the Query Processor in mediating between user queries posed over the
global schema and the queries on the underlying distributed heterogeneous
data sources. It translates such queries into sub-queries -called local
queries- which are appropriate to each local data source. The XMKB is
built in a bottom-up fashion by extracting and merging incrementally the
metadata of the data sources. It holds the data source’s information (names,
types and locations), descriptions of the mappings between the global
schema and the participating data source schemas, and function names for

handling semantic and structural discrepancies between the representations.

To demonstrate our research, we have designed and implemented a
prototype system called SISSD (System to Integrate Structured and Semi-
structured Databases). The system automatically creates a GUI tool for
meta-users (who do the metadata integration) which they use to describe
mappings between the global schema and local data source schemas.
These mappings are used to produce the XMKB. The SISSD allows the
translation of user queries into sub-queries fitting each participating data

source, by exploiting the mapping information stored in the XMKB.

The major results of the thesis are: (1) an approach that facilitates
building structured and semi-structured data integration systems; (2) a
method for generating mappings between a global and local schemas'
paths, and resolving the conflicts caused by the heterogeneity of the data
sources such as naming, structural, and semantic conflicts which, may
occur between the schemas; (3) a method for translating queries in terms
of a global schema into sub-queries in terms of local schemas. Hence, the
presented approach shows that: (a) mapping of the schemas' paths can
only be partially automated, since the logical heterogeneity problems need
to be resolved by human judgment based on the application requirements;
(b) querying distributed heterogeneous structured and semi-structured data

sources is possible.

Contents

LiSt Of FiGUIES c.vcuiuimnrniiiniiiniiciinicenesecetncecncsnsccsetoctscsesssesessesssasssessessescssens vi
ACTONYIMS..ccciiettetececeserreccsessesesssesessssesesssasssssessssssssessasssssssssassssnsasssssssssasss X
CHAPTER 1 INtroduction.......cccceceereeienreeeenieencecersnesaneseenccesenssssnssessssssans 1
1.1 Motivation of the Research............cccccoviiniininincniiniiiiinici 1
1.2 Problem Statementccooiivieieiiiniiiniiie e e 4
1.3 Hypothesis, Aims and ObJECtiVES........ccoorivenininiiniiiniiniineccceens 5
1.4 Achievement of the Researchccccociviiiiiniiniiinice 7
1.5 Organization of the Thesis.......cccoccoviiininininini 8
CHAPTER 2 Background and survey of the state-of-the-art 11
2.1 Distributed heterogeneous databases..........cccceoveiiviiiiiiiininiiicnininiien 12
2.2 A Taxonomy for Integrating Heterogeneous Data Sources................. 14
2.2.1 Universal Database Management Systemscceceviniinciiininnnne. 19

CONTENTS

2.2.2 Data WarChOUSES.......cc.ccouvuiriirieerireinieentetieres et setstess et e e ssenessessases 19
2.2.3 Metasearch ENgines.........cccoocooviviiiiiiiiciciininest et sreese e 20
2.2.4 Virtual Integration of Databases...........ccceceeveerivecrirneneeeiiseeciee e 22
2.2.4.1 Federated database SyStemS.........ccoecervrevirieneenenneeriesirene e sesesaennns 22
2.2.4.2 Multi-database SYSIEMIS.......c...cccveevveeveeieriieereeeeee e eeesereesreeeneens 23
2.2.5 Summary of previous approaches.........ccccceevvverveeviiniinieeneeneenieeienne 24
2.2.6 Mediation SYSIEMcovviiiiiiieiriieccitceeectssresre e esee s saessveeeeesanessessne 25
2.3 Data interoperabilitycccociiiiiiniinniiiiiincee e 28
2.4 Heterogeneity of the data SOUrCes..........cooceeeiiinieviiininnieieentececee e 29
2.5 Data INEGIAtIONccceveiiiiiieeieeeiee sttt ste e e ste et sbesae et e et e saessesae et enesaesenes 32
2.6 Global-As-View (GAV) approachcccccoceevrveniiniinicenencciiienecnenenne 34
2.6.1 GAYV SYSEIMS....couiiiiiriiiiiinie ittt s seaa s s s n et e e 35
2.7 Local-As-View (LAV) approach ..., 36
2. 7.1 LAYV SYSEEIMS ..ottt sttt sas s s b e as s 37
2.8 Related WOTK ...ttt re e 38
CHAPTER 3 XML and related technologies............c.eaeaaeiaaniaanannnnaee 42
Bi1 XML ot e bbb e 43
3.2 DTD and XML Schema........cccccccooiiniiiinniniiiiiicicie et 46
K 7020 U B 1 1 5 OO OO OO ORORRR 46
3.2.2 XML SCREMA ..ottt 48
3.3 XML application programming interfaces.........c..cccccocveviiiiinineienennnn 50
3.3.1 DOM ..ottt a s 51
3.3.2 SAX e e s e e ae e bbb e 51
3.3.3 TJDOM e e eas b eae s 52
3.4 XML query languages...........cccoceviriiniiiiiniiiiicie s 52
3.4.1 XPAth ..ot s 53

i

CONTENTS

3.4.1.1 XPath 1.0ttt sa e 53
3.4.1.2 XPath 2.0ttt 56
3.4.2 XQL oottt 57
3.4.3 XML-QL oottt s e e s e 58
3.4.4 The Quilt query languagecc.cceeievrieecienercieneeerese e 60
3.4.5 XQUETY cniiiiiiiiiiiit ettt sttt st s e 63
CHAPTER 4 The SISSD data integration system........cccceceeeeceneeccnennns 66
4.1 INrOAUCTION ...ttt et e es b a bt e s ssaas 66
4.2 An overview of our approachccccevevieniieniiniecc e 70
4.3 The SISSD architecture and Components...........ccocuevreeerereerrnrrcerseeennnans 74
4.4 Heterogeneity issues in the SISSD systemcccoceviiinviinienninnccrennenne 77
4.5 An application eXamplecoocceoiiiniieiiiniinicree e 81
CHAPTER S The mediation ProcCessccccceeeeenncenceereeceercecencoescescences 84
5.1 Generating Schema Structure Definition (SSD)cccccoviiviivinninnneenn 84
5.2 paths GENETatiON ...ccceiiiiiiiieiieee ettt 87
5.3 paths correspondenceccoccoovevieereiieeniiieniienieeseceeenieens s 90
5.4 Creating XMKB ...ttt s 97
5.4.1 The Structure of XMKBcccccoociiiinnii 98
5.4.2 The generation process of the XMKB..........c.occoocvvviiincinninnnnnn. 100
5.4.3 Index number generation for the master view elements 104
5.4.4 Mapping cases between elements ..., 108

5.5 SUMMATY ..ooviiiiiiiieeteteeccer b s 112
CHAPTER 6 The query translation process......ccccceeeceecencencencencennnenns 114
6.1 INtrodUCHIONooviiiiiieiicee e s 114
6.2 The Query Processor architecture and Components............ccccceeveenes 117
6.3 The Query Translation ProCess........ccccovininiinivninnniniie e 119

il

CONTENTS

6.4 XQuery-to-SQL translation procCessccceceevnvieveenienininneneeceenenienaens 120
6.5 Query translation eXxamplesccocevviiiniiniieneniecsee e 122
6.5.1 One-to-one query eXample.........cccooininininencnnene s 124
6.5.2 Function-involved one-to-one query examplecccccocvvvennneenen. 127
6.5.3 One-to-many query €Xample ... 127
6.5.4 Many-to-one query example.......cccccoviiviniinnicnincneeeee 130
CHAPTER 7 The SISSD implementation...........cccceeeireencreeecceencennes 133
7.1 INFOAUCTION ..ottt sttt sbe e 133
7.2 metadata eXtracCting PrOCESS......ccccceirueiriiieerierierireeitesreessaessessessseessesssenaes 135
7.3 XMKB establishing and mapping process........c.ccceceeeeevinvieneneeneenccnnenns 138
7.4 Query parser and translation ProCess........ccccvveeveivieeiiennnnecneenenneennne 143
CHAPTER 8 Evaluation & Discussion..........ceeeceueenrenncencenecencennees 145
8.1 EvalU@liON ...c.ooiiiiiiiiiiceeeeetcte ettt s s 145
8.1.1 Functionality Of SISSDcoooiiiiiiicerecn 147
8.1.2 Flexibility of SISSD systemccccoocviviiiiniiininiiniciciicien 148
8.1.3 Architecture of SISSD systemcccooceeierninnnennnn R 149
8.1.4 Construction of the XMKB.......c.ccoceoiiiiiniiiiiniiice, 150
8.1.5 Choice of XML as the data modelc.coovrnivnnnnn. 151
8.1.6 Handling different types of heterogeneityccccceoevviiiiniinnnnn. 153
8.1.7 Ways of using the systemccccceciiviniiiininnniiiee, 157

8.2 DISCUSSION ..ottt sa st 158
CHAPTER 9 Summary, conclusion and future work....................... 164
9.1 TheSiS SUMMATYcccoiiiiiiiiiiiic i e e 164
9.2 CONCIUSIONS ...ttt e 167
9.3 The fUture WOTKccooceiiiiieiiiinicii e 168
Bibliography .cccuuiiiiiiiieieerieiimiecrerieseereseeceessecscesssesescsssascssssesescsssassoscnns 170

v

List of Figures

2.1 Classification of Systems for Integrating Heterogeneous Data Sources

155 [18
2.2 The three-tier mediator architecturecvviiiiiiieeenrnenainennns 27
2.3 Conflicts ClassifICatIoN ..ottt ittt ee et cretneenneeennnens 31
3.1 An example of a simple XML documentoool 45
3.2 A DTD of an XML document in Figure 3.1cooo 48
3.3 An XML schema of an XML document in Figure 3.1 50
3.4 The corerules of XPath ...ttt et teeteeiiieaanns 54
3.5The XML-QL QUETIY ..ottt et tae et aaes 60
4.1 The SISSD ArchiteCtUre ...cciivtiii ittt ittt iereaenerennenans 76

vi

LIST OF FIGURES

4.2 Mapping between Marks and Gradescooiiiiiiiiii i, 79
4.3 Summary of Conflicts supported by SISSD system 81

4.4 A part of the tree structure of four data sources 82
5.1 Algorithm to generate SSD for XML document 87
5.2 The SSD Model structure for the bib schema structure 88
5.3 Algorithm to generate SSD paths ...t 89
5.4 The tree structure model forbib SSDo, 90
5.5 The generated paths of the bibdatasourcec.ooLl 91
5.6 Asample XMKB ... e 100
5.7 The XMKB XML schema definitionooiiiiiinn 101
5.8 Algorithm for XMKB generation process e, 104
5.9 A GUI for Schema Structure Definition shown in Figure 5.10 105
5.10 Schema Structure Definition (SSD) of bib XML document 106
5.11 Algorithm to generate index numbers ..., 106
5.12 The master view tree structure with index numbers 107
S5.13 The Master VIEW ...ttt ittt eees 107
5.14 One to N mapping example ..., 109

5.15 N toone mapping examplec.ooviiiiiiiiiiiiiiiiiieeiieenn.. 111

vii

LIST OF FIGURES

5.16 Example of one to one mapping with an operation 112
6.1 The QP Architecture ...ttt cee s 117
6.2 Algorithm for the query translation processcoooeunn... 121

6.3 The part of XMKB which maintain data sources information 123

6.4 The Master Viewottt 123
6.5 Schema Structures of the four data sourcescoouet 124
6.6 Some parts of XMKB used to translate Q1 125
6.7 The generated local queries from Q1 ... 126
6.8 Some parts of XMKB used to translate Q2o.ooiel 127
6.9 The generated local queries from Q2 ... 128
6.10 Some parts of XMKB used to translate Q3 e 129
6.11 The generated local queries from Q3 130
6.12 Some parts of XMKB used totranslate Q3 131
6.13 The generated local queries from Q4 ...l 132
7.1 The main interface of SISSD systemc.ocoiiiiiiiiiiiiiii. 134
7.2 SSD of bib XML documentcooiiiiiiiiiiiiiiiiiiiiiii 135
7.3 bib XML document ...ttt e 136

viii

LIST OF FIGURES

7.4 Relational DB connection parametersccocevevneeneennnnnn.. 137
7.5 XML document connection parametersc..ceeveeeeneiieenann.. 137
7.6 Index numbers generated for master view shown in Figure 7.7 138
T.7 MASIET VIEW ...ttt ittt it ittt et e e aeaeeaa e eneeaeaeeanaenaans 139
7.8 Part of the GUI for SSD shown in Figure 7.2o..... 140
7.9 Interface for submitting index numberscociiiiiiiaaaa., 141
7.10 Generated paths Mappingc.iuiiiiiiiiiiiiiiiieiieiareeeaeanennn. 142
7.11 Interface for removing data SOUrcecooiiiiiiiiiieennenennn. 142
7.12 Example of a global query translationcooiiiiiie.... 143
8.1 Example of resolving structural heterogeneity 154
8.2 Example of handling synonym conflict U 155

X

Acronyms

API

CDM

DB

DBMS

DBS

DDB

DDBMS

DOM

DTD

FDBS

FLWR

GAV

Application Programming Interface
Common Data Model

Database

Database Management System
Database System

Distributed Database

Distributed Database Management System
Document Object Model

Document Type Definition
Federated Database System
For-Let-Where-Return

Global-As-View

ACRONYMS

GUI Graphical User Interface
HTML HyperText Markup Language
JDBC Java Database Connectivity

JDOM Java Document Object Model

IJXC Java XML Connectivity
KS Knowledge Server
LAV Local-As-View

MDBS Multi-database System

MDE Metadata Extractor
MVP Master View Parser
OEM Object Exchange Model
QP Query Processor

SAX Simple API for XML

SGML Standard Generalized Markup Language

SISSD System to Integrate Structured and Semi-strucfured Databases
SQL Structured Query Language

SSD Schema Structure Definition

SSDP Schema Structure Definition Parser

UDF User-Defined Function

URL Uniform Resource Locater

WwW3C World Wide Web Consortium

XDSDL XML Data Source Definition Language

XFEP XQuery FLWR Expression Parser

xi

ACRONYMS

XMKB XML Metadata Knowledge Base

XMKBML XML Metadata Knowledge Base Mapping Language

XML Extensible Markup Language
XQISs XQuery Internal Structure
XSD XML Schema Definition

Xil

CHAPTER 1

Introduction

1.1 Motivation of the Research

Users and application programs in a wide variety of businesses today are
increasingly requiring the integration of multiple distributed autonomous
heterogeneous data sources [86, 130]. The continuing growth and
widespread popularity of the Internet mean that the collection of useful
data sources available for public access is rapidly increasing both in
number and size. Furthermore, the value of these data sources would in
many cases be greatly enhanced if the data they contain could be
combined, "queried" in a uniform manner (i.e. using a single query
language and interface), and subsequently returned in a machine-readable
form. For the foreseeable future, much data will continue to be stored in
relational database systems because of the reliability, scalability, tools and
performance associated with these systems [68, 133]. However, due to the
impact of the web, there is an explosion in complementary data
availability: this data can be automatically generated by web-based

applications or can be human-coded [102]. Such data is called semi-

CHAPTER 1. INTRODUCTION

structured data, which means that although the data may have some
structure, the structure is not regular or complete as is the case with data
held in traditional database management systems (See [9] for a survey on
semi-structured data). In the domain of semi-structured data, the
eXtensible Markup Language (XML) is arguably the major data
representation language as well as data exchange format. XML has a W3C
specification [4] that allows creation and transformation of a semi-
structured document conforming to its XML syntax rules which has no
referenced DTD or XML schema. Such a document has metadata buried
inside the document and is called a well-formed XML document. The
well-formed XML documents simply markup pages with descriptive tags.
It doesn’t need to describe or explain what these tags mean. In other words
a well-formed XML document does not need a DTD or XML schema, but
is must conform to the XML syntax rules. If all tags in a document are
correctly formed and follow XML guidelines, then a document is
considered as well-formed. The metadata content of an XML document
enables automated processing, generation, transformation and
consumption of the semi-structured data in the document by applications.
Much interesting and useful data can be published as a well-formed XML

document by web-based applications or by human-coding.

Hence, building a data integration system that provides a unified method
of access to semantically and structurally diverse data sources is highly
desirable as it will be able to link structured data residing in relational
databases and semi-structured data held in well-formed XML documents
[73, 101]. These XML documents can be XML files on local hard drives
or documents held on remote web servers. Such a data integration system
will have to find structural transformations and semantic mappings that
result in correct merging of the data and allow users to query the resulting
so-called mediated schema [100]. This linking is a challenging problem

since the pre-existing databases concerned are typically autonomous and

CHAPTER 1. INTRODUCTION

located on heterogeneous hardware and software platforms. This means it
is necessary to resolve conflicts caused by the heterogeneity of the data
sources which can occur between data models, schemas or schema
concepts. Consequently, mappings between entities in different sources
representing the same real-world objects have to be defined. The main
difficulty in this process is that the related data in different sources may be
represented in different formats and in incompatible ways. For instance,
bibliographical databases of different publishers may use different formats
for authors' or editors' names (e.g. full name or separated first and last
names), or different units for prices (e.g. dollars, pounds or euros).
Moreover, the same expression may have a different meaning, or the same
meaning may be specified by different expressions. This means that
syntactical data and metadata alone cannot provide sufficient semantics for
all potential integration purposes. As a result, the data integration process
is often very labour-intensive and demands more computing expertise than
most application users have. Therefore, semi-automated approaches are
the most promising way forward, where mediation engineers are given an
easy to use tool to describe mappings between the integrated (integrated
and master are used interchangeably in this thesis) view and local schemas.
This produces an integrated schema which is a uniform view over all the
participating local data sources [148]. In the thesis we use interchangeably
the terms mediated, integrated, master and global to describe the global

view created by the integration process.

XML is becoming the de-facto standard format to exchange information
over the internet. The advantages of XML as an exchange model - such as
rich expressiveness, clear notation and extensibility - make it an excellent
candidate to be a data model for an integrated schema. As the importance
of XML has increased, a series of standards has grown up around it, many
of which were defined by the World Wide Web Consortium (W3C). For

example, the XML Schema language provides a notation for defining new

CHAPTER 1. INTRODUCTION

types of XML elements and XML documents. XML with its self-
describing hierarchical structure and associated language XML Schema
provide the flexibility and expressive power needed to accommodate
distributed and heterogeneous data. At the conceptual level, the data can

be visualized as trees or hierarchical graphs.

This thesis concentrates on the problem of integrating and querying a
multiplicity of distributed heterogeneous structured data residing in
relational databases and semi-structured data sources held as well-formed
XML documents.

1.2 Problem Statement

A vast and growing amount of heterogeneous data sources is available to
institutions or companies. As a result integration of such data sources in
the public domain is inevitable. Therefore, integrating and querying
heterogeneous data sources is a fundamental problem in data management
[25, 52]. The problem is concerned with building data integration systems,
which provide a unified view over heterogonous data sources. Such a
unified view is structured according to a so-called mediated schema (often
referred to as a global schema), which describes the contents of the data
sources and exposes the aspects of the data that might be of interest to the
user. The reason for this is that one of the principle goals of a data
integration system is to free the user from having to know about the
specific data sources and their structure in order to interact with them [35,
119]. A meditated schema is a virtual representation of the data available
to its user in the integrated system, (in the sense that the data in the local
data sources need not conform to its structure). As a consequence, the data
integration system must first reformulate a user query into a query that
refers directly to the schemas in the data sources. In order for the system to
be able to reformulate a user query, it needs to have a set of data source

descriptions, specifying the mapping between the elements in the data

CHAPTER 1. INTRODUCTION

sources and the elements in the mediated schema. These descriptions

specify the relationship between elements.

In this context, providing a reasonable structured and semi-structured data
integration framework for a user to effectively integrate and query
distributed heterogeneous structured data residing in relational databases
and semi-structured data held in well-formed XML documents has become
a challenge for database integration researchers. There is a lack of fully
automated schema-mapping processes, and a high degree of logical
heterogeneity between the data sources. Another problem impeding data
integration is the query translation process, which is one of the most
important problems in the design of a data integration system, as it enables
the system to reformulate a query posed in terms of the global schema into
a set of queries, suited to the local data sources. Thus, tools are needed to
mediate between user queries and heterogeneous data sources which
transform such queries into local queries. Doing these tasks manually is
not only time consuming but also error prone. Hence, methods for
simplifying heterogeneous data source integration would be of great
theoretical and practical importance. Therefore, our objective is to
facilitate the task of a designer building an XML data intégration system.
In general, building data integration systems requires the designer to
address several issues [87]. In this thesis, we concentrate on two basic
issues:

1. Specifying the mappings between the global schema and the local

data sources.
2. Processing queries expressed against the global schema into queries

reflecting local schemas.
1.3 Hypothesis, Aims and Objectives

In our research, the main focus is on integrating and querying distributed

heterogeneous structured and semi-structured data sources. Our hypothesis is that:

CHAPTER 1. INTRODUCTION

It is possible to integrate and query the distributed
heterogeneous structured data residing in relational databases and
semi-structured data held in well-formed XML documents which can
be found on a local hard drive or remote web servers, by building in a
bottom-up approach a dynamic XML Metadata Knowledge Base
(XMKB) of data source meta-data resolving structural and semantic
conflicts in the data that is used in rewriting a user query over a
chosen view into sub-queries which fit each local data source, by using

the mapping information stored in the XMKB.

This thesis shows how to mediate distributed heterogeneous structured and
semi-structured data sources in a mediation architecture which enables
users to query multiple structured and semi-structured data sources in a

uniform manner. Specifically, our goals are to:

1. Facilitate the designer effort involved in building structured and

semi-structured data integration systems.

2. Design a system capable of partially automating the integration of
distributed heterogeneous structured and semi-structured data

sources.

3. Resolve the logical heterogeneity, such as naming, structural, and
semantic conflicts which, may occur between the schemas. Thus a
solution which overcomes the logical heterogeneity problem is

needed.

4. Enable transparent querying of all data sources participating in the
integration system without the users needing a detailed knowledge
of the underlying data sources, their location and their structure.
Thus, formulating a method for translating a user query into local

queries is desired.

CHAPTER 1. INTRODUCTION

1.4 Achievement of the Research

The importance of this research lies in its demonstration of the feasibility

of building an XML Metadata Knowledge Base (XMKB), in a bottom-up

fashion by extracting and merging incrementally the metadata of the data

sources, and its demonstration of the benefit of this XMKB in mediating

user queries posed over the global schema into local queries on the

distributed heterogeneous data sources, by translating such queries into

sub-queries which are appropriate to each local data source. The main

contributions of this thesis are:

1.

Since fully automatic schema mapping generation is infeasible, a
semi-automatic approach is demonstrated based on an assisting tool
which reduces the designer effort required to build integration
systems linking structured and semi-structured data. A solution to
overcome the heterogeneity problem is formulated. Two important
tasks were developed to solve the problem: (1) establishing
appropriate mappings between the global schema and the schemas
of the local data sources; (2) users queried the distributed
heterogeneous structured and semi-structured data sources in terms
of the global schema, with a mapping process and query translation

process formulated to transform these queries into local queries.

A prototype system is developed to demonstrate that the ideas

explored in the thesis are sound and practical.

A bottom-up approach is used to establish and evolve the XML
Metadata Knowledge Base (XMKB) incrementally from the

metadata extracted from the data sources.

Tools have been developed which can be used to overcome conflicts,
such as naming, structural, and semantic conflicts which may occur

between the schemas.

CHAPTER 1. INTRODUCTION

5. A mapping is established between global schema elements and each
local data source schema elements to link the elements with the
same meaning by using a unique index number generated

automatically for the global schema elements.

6. The design of the XML Metadata Knowledge Base (XMKB) to

capture:

a) The mapping information between the global schema
elements and the local data sources’ elements,
b) The function names of the functions handling semantic and

structural discrepancies,

and to assist the Query Processor (QP) in generating sub-queries for

relevant local data sources.

7. A software tool has been designed and built which extracts metadata
from data sources to build the Schema Structure Definition (SSD)
for these data sources. This tool can be applied to relational
databases, well-formed XML documents which have no referenced
DTDs or XML schemas, and also XML documents with referenced
DTDs or XML schemas.

1.5 Organization of the Thesis

This section presents an overview of the thesis' organization. The first
chapter has presented an introduction to the research undertaken,
motivations, the hypothesis to be tested and highlights the aims and

objectives of the research and its original achievements.
Chapter 2: Background and survey of the state-of-the-art

This chapter presents an overview of the work in the field of integrating

distributed heterogeneous data sources and how it relates to this thesis.

CHAPTER 1. INTRODUCTION

Chapter 3: XML and related technologies
This chapter presents an overview of XML and related technologies.
Chapter 4: The SISSD data integration system

This chapter introduces the main ideas of the thesis. It presents a brief
description of the motivation of this work, and describes our approach and
its system architecture. In addition, it describes the logical heterogeneity
problem, and introduces an application example which is used through out

the thesis to show how the integration is accomplished by the system.
Chapter 5: The mediation process

This chapter details the mediation process which is the first part of our
approach. It is a basic idea of the thesis, as it is proposed as a tool to
overcome the heterogeneity problems which may occur among the data

sources.
Chapter 6: The query translation process

This chapter details the second important point in the thesis that is the
query translator process which is an integral part of the mediation layer of
the system. It gives a brief introduction to the query translation task in data
integration systems, and presents the query translation process developed

in this work. Finally, it gives some examples of query translations.
Chapter 7: The SISSD implementation

This chapter covers the implementation of the proposed architecture. It
presents the implementation of the metadata extracting process. It also
presents the implementation of the processes used in creating an XMKB.
In addition, it introduces the development of the query parsing and

translating processes.

CHAPTER 1. INTRODUCTION

Chapter 8: Evaluation & Discussion

This chapter focuses on the evaluation of the prototype system and

contains a critical assessment of our research approach and its contribution.
Chapter 9: Summary, conclusion and future work

This chapter concludes the thesis with a summary of the accomplishments

and issues to be considered in the future.

10

CHAPTER 2

Background and survey of the state-of-the-art

The integration of data sources poses many challenges due to differences
in data management systems, data models, query and data manipulation
languages, data types, format (structured, semi-structured), representation,
and semantics. This chapter discusses related work and the basic issues
affecting the integration of heterogeneous distributed data sources. Firstly,
we give an overview of the field of distributed heterogeneous databases.
Secondly, since the main topic of this work is querying and integrating
data from a network of data sources, we present the approaches for solving
this problem. Thirdly, we give an overview of data interoperability. Next,
we present a detailed survey on data integration. Finally, we summarize

related work on querying and integrating heterogeneous data sources.

11

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

2.1 Distributed heterogeneous databases

A database integrates and stores related data in an organized manner. A
database system (DBS) [48] consists of software, called a database
management system (DBMS), one or more databases that it manages, and
any associated application software utilizing the database contents. A
DBMS is the software that handles all access to the database. A DBS may
be either centralized or distributed. A centralized DBS consists of a single
centralized DBMS managing a single database on the same computer. A
distributed DBS consists of a single distributed DBMS (DDBMS)
managing multiple databases. The databases may reside on a single
computer system or on multiple computer systems that may differ in

hardware and system software.

A Distributed Database (DDB) is defined as a collection of multiple,
logically interrelated data distributed over different computers of a
computer network [23, 38, 45, 62, 122]. The physical distribution does not
necessarily imply that the computer systems are geographically far apart;
they could actually be in the same building or even in the same room. It
simply implies that communication between them is done over a network
instead of through shared memory. Each node of the network has
autonomous capability, performs local applications and may participate in
the execution of some global applications that require accessing data at
several sites. Distributed databases [64] emerged as a merger of two
technologies: (1) database technology, and (2) network and data
communication technology. They also met the requirement of
organizations interested in the decentralization of processing while
achieving an integration of the information resources at the logical level

within their geographically distributed systems of databases.

A particular property of a distributed database is that it can be

homogenous or heterogeneous [136]. A homogenous distributed database

12

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

(simply called a distributed database) is one in which all the physical
components run on the same distributed database management system, and
the distributed database system supports a single data model and query

language with a single schema.

Conversely, database systems that provide interoperation and varying
degrees of integration among multiple databases of different types have
been termed heterogeneous distributed database systems (simply called a
heterogeneous database). They consist of database systems which differ
physically and logically, have different data models, manipulation
languages, and schemas. Despite these databases being independently
created and managed they must cooperate and interoperate. Users need to
access and manipulate data from several databases and applications may
require data from a wide variety of the independent databases. Therefore, a
new system architecture is required to manipulate and manage distinct and

multiple databases, in a transparent way.

There are a number of factors that differentiate types of DDBMS. These
factors characterize a set of multiple DBSs in three orthogonal
dimensions: distribution, heterogeneity, and autonomy [32, 62, 121, 134-
136]. These dimensions characterize systems in which multiple databases
may be put together and be managed by multiple DBMS. We introduce

each of these dimensions below.

The distribution dimension specifies how the data of a DDBS is

distributed among multiple sites in a computer network.

Heterogeneity is concerned with the differences between the local DBSs
comprising the DDBS. The types of heterogeneity are caused by
technological differences and independent design. These may be classified
as system heterogeneity and logical heterogeneity [71]. System

heterogeneity covers differences in hardware, operating system, database

13

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

management system (including data models, languages, transaction
management) and communication systems. Logical heterogeneity covers
differences in the way the real world is modeled in the databases (i.e.

differences in schema and data representation).

Autonomy refers to the distribution of control, not of data. It indicates the
degree to which individual DBSs can operate independently [90].
Autonomy is a function of a number of factors such as whether the
component systems exchange information, whether they can
independently execute transactions, and who is allowed to modify them.
Several kinds of autonomy (design, communication, execution and

association autonomy) can be identified [136].

2.2 A Taxonomy for Integrating Heterogeneous Data

Sources

Integration of heterogeneous data sources continues to receive much
attention from the research community [19, 42, 46, 47, 74, 104, 107, 150].
Information systems integration is a complex problem since information
systems comprise data, processes and applications. As a consequence their
integration must be done at each level [53]. In the context of this thesis,
we consider only data integration. Since the main topic of this work is
querying and integrating data from a network of data sources, we present
other proposed solutions for this problem and highlight their strengths and
shortcomings. We then consider a particular approach, Mediation Systems,

and characterize it in more detail.

We first distinguish between materialized and virtual approaches. They
are called in [144] the eager or in-advance approach and the /azy or on-
demand approach. In the materialized approach, data coming from the
local data sources are integrated and stored in a single new database. All

queries then operate on this comprehensive database. While in the virtual

14

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

approach, data remains in the local data sources. Thus, queries operate

directly on the local data sources and data integration takes place during

query processing by combining results. As a consequence, the two

approaches have the following advantages and disadvantages:

In the materialized approach, data must first be prepared before
queries can be submitted. The participating data sources are
(manually) analyzed; a static view over the data is defined, the local
data is used to populate a new integrated database conforming to the
static view and queries are formulated against this view. As a
consequence, new data sources cannot be easily integrated and made
available for querying. This approach is suitable for applications
which require specific, exact portions of the available data which are
mostly static (for example, financial transactions). A query is
evaluated directly using the materialized database and as a result
query processing can be optimized for this database. Additionally,
there is no need to access the underlying data sources, so connection
costs are non-existent. However if the local data is dynamic,
updating of the integrated DB is hard. Also some of the materialized

data may never be accessed.

For the virtual approach, a query must first be analyzed in order to
find data sources which can answer it, and then it is split into sub-
queries which finally are adjusted according to the query capabilities
of each data source. As a consequence, query processing is
dependent on the availability of the data sources, their connection
times and query performance. Query optimization opportunities are
limited and an important requirement for this approach is that data
sources accept ad-hoc queries. Its main advantage is that new data
sources can be easily made available for querying. This approach is
suitable for users with “unpredictable needs” [144], i.e. if users have

a variety of information needs. It is suited to dynamic databases as

15

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

the processing occurs on the local data, and there is no need to

preprocess data not required by a query.

In our work, we adopt the virtual approach to supporting a read-only data
integration of distributed heterogeneous structured and semi-structured
data, which means a global schema is created to be used for answering
user queries, and not for updating data. Since the number of underlying
data sources linked in the integration system may increase or decrease at
anytime, and in a materialized approach data is imported into a new
integrated repository, this type of dynamic change can not be easily made.
The data requirement of the expected users is unpredictable and likely to
vary with the resources currently linked. For these reasons, a virtual
approach is more suitable as it produces a scalable system with respect to

the dynamic nature of the available information resources.

Another classification of approaches for integrating heterogeneous data is
based on the structure of the data. Most data sources can usually be
classified into one of three categories depending on the kind of data that

they are primarily designed to handle:

1. Text retrieval systems are concerned with the management and

query-based retrieval of collections of unstructured text documents.

2. Structured database systems are concerned with the management of
structured or strictly-typed data, i.e., data that conforms to a well-

defined schema (e.g., data held in DBS managed by DBMSs).

3. Semi-structured databases are designed to efficiently manage data
that only partially conforms to a schema, or whose schema can

evolve rapidly (e.g. XML documents) [9].

There are approaches which consider integrating just one kind of data such
as relational databases [28, 93], or Object-Oriented databases [13, 59], or
XML documents [18, 120, 148], so query formulation, processing and

16

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

results accommodate only that particular kind of data. On the other hand
there has been a significant interest in combining, integrating, and inter-
operating between heterogeneous data that belong to different classes of
data sources[86, 113]. The primary motivation for most of the work in this
area is that many applications require processing of data that belongs to
more than one type. For instance, a medical information system at a
hospital must process doctor reports (free text documents) as well as
patient records (structured relational data). Similarly, an order processing
application might need to handle inventory information in a relational
database as well as purchase orders received as (semi-structured) XML

documents [126].

Earlier work on database integration [12, 21, 65, 79, 96, 111, 140]
focussed on the integration of well-structured databases, with fixed
schemas, that support powerful query languages. This thesis focusses on
the integration of distributed heterogeneous structured and semi-structured
data sources. For the foreseeable future, most data will continue to be
stored in relational database systems because of the reliability, scalability,
tools and performance associated with these systems. Additionally, much
interesting and useful data can be published as a weli-formed XML
document, this data can be automatically generated by Web-based
applications or can be human-coded. Such data is called semi-structured
data due to its varying degree of structure. It can also vary between static
databases and ephemeral data having a very short life. Hence, with the
web’s increasing role as a data provider, building a data integration system
that provides unified access to semantically and structurally diverse data
sources is highly desirable as it will link structured data residing in
relational databases and semi-structured data held in well-formed XML

documents produced by Internet applications or human-coded.

Since we are targeting a system for querying and integrating distributed

heterogeneous structured and semi-structured data sources, our work has

17

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

adopted a mediation approach. There have been several integration
methods which combine data from several data sources such as universal
DBMS (UDBM S) method [54, 95], federated databases [34, 61, 111, 136],
data warehouse [27, 41, 150], multi-databases [61, 71, 90, 94, 96, 109-1 11,
134], and mediator method [20, 70, 99, 125, 138, 145]. While other
methods are applicable to integration of structured heterogeneous data
which is wusually stored wusing a DBMS, a mediation approach is
appropriate to integration of unstructured, semi-structured, and structured

data.

We now overview some integration approaches in more detail as classified
in Figure 2.1 [54]. There are additional features that characterize these
approaches which are not presented in this figure, but these will be

discussed in the following subsection.

Systems for integrating
heterogeneous data
sources

materialized

Virtual Systems

(Meta) search Engines Virtual Infegrated Mediated Query
Databases systems
Unrversal DBMS Data Warehouse
Federated DBMS Multi-database
Language Approach

Figure 2.1: Classification ofSystems for Integrating Heterogeneous Data
Sources [54].

18

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

2.2.1 Universal Database Management Systems

In a UDBMS approach data is migrated from the local systems to a unique
separate DBMS. First, the global integrated schema is defined and then
data from the local systems is imported into the new database and the local
system ceases to operate. In this way queries can be formulated against the
new database and results are presented to users. In this case, the
underlying data sources are usually also DBSs and the new DBS must
accommodate all types of data available in the underlying sources. Thus,
the new database must be able to handle all (or many) types of information,

i.e. it must be a universal DBS.

During the migration process, data from the underlying systems are
extracted, transformed, integrated and stored in the central universal
database. The main drawback of this approach is that existing applications
for the local systems will have to be rewritten for the new database
structure as the local DBs ceases to exist. Moreover, the process of data
migration can be very expensive; since the old data has to be transformed
and often semantically enriched for the new system (the new database
usually has a richer data model). Nevertheless, migration can be a good
solution, for example, when users or applications need the whole
functionality of a DBMS (not just the query functionality) and the old
systems' applications are no longer needed [22]. Note that migration is the
only materialized approach in which native data is queried, and query

optimization on native data can be best achieved.
2.2.2 Data Warehouses

Data warehousing is a materialized approach. Data from the local data
sources are imported into one DBMS, the data warehouse. The difference
to the UDBMS is that the underlying data sources are still operational, so

the data is in fact replicated deliberately in at least two DB. First, the

19

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

warehouse schema is defined, data from the underlying sources is
processed and stored in the data warehouse. The warehouse data is
typically not imported in the same form and volume as it exists in the local
data systems. It may be transformed, cleaned and prepared for certain
analysis tasks, like data mining and OLAP (Online Analytical Processing).
Data warehouses often do not make the most recent data available, since a
data warehouse is usually not updated immediately after a local data
source has changed because of the overheads associated with immediate.
Thus, the warehouse stores historical data, as required by OLAP and data

mining applications.

According to [144] the data warehouse approach is suitable for the

following kinds of clients:

e Clients who do not need the most recent data available, since a data
warehouse is usually not updated immediately after a local data

source has changed;

e Clients who require historical, derived and specific information - for
this reason data may need to be transformed, cleaned, aggregated
and prepared for certain analytical tasks, such as data mining and

OLAP (Online Analytical Processing); or

e Clients who require high query performance - since large amounts
of complex data must be queried; data warehouses are optimized for

the dominant business scenario but are less than optimal for others.
2.2.3 Metasearch Engines

Regarding the querying of unstructured distributed sources, search engines
and metasearch engines have gained importance in recent years, mainly
because of the development of the Web. Search engines are systems which

accept as queries only natural language keywords (or simple combinations

20

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

of them) and return documents as answers. The main characteristic of
search engines is that data can be easily made available for querying and

queries can be formulated in a simple way.
Search engines are characterized by:
e search efficiency which means how fast the results are returned, and

e search effectiveness which indicates how good the results are, or

“the ability to retrieve what the user wants to see” [129].

In order to achieve high effectiveness, search engines use heuristics for
finding the meaning of input queries and for retrieving documents which
may match them. However, if we consider a heterogeneous environment
like the Web, it is very difficult to find the right meaning of queries and in

such cases search engines perform quite poorly.

To increase effectiveness different search engines are combined to form
metasearch engines. Their users formulate queries against a uniform
interface, which are processed (for example, stop words are eliminated)
and split into sub-queries which are then sent to the individual search
engines. Finally, the results are collected, combined and presented in a
unified way. Examples are SavvySearch [57] and MetaCrawler [131, 132].
Metasearch engines do not prepare the data to be queried. They simply use
the query interfaces of the underlying search engines and prepare the input
queries for them. They also need to implement suitable heuristics for
combining the results from the different sources. Metasearch engines are
thus examples of systems for querying data available in a network of data
sources. However, the underlying sources must be unstructured and for
this reason they are not suitable for querying sources where the data is
structured in any way and would be inappropriate when linking structured

and semi- structured data.

21

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

2.2.4 Virtual Integration of Databases

For many years the virtual integration of data that is stored in different
databases has been an active research topic. The approaches to enabling
virtual integrated access to multiple databases can be roughly classified in
two categories: the federated database system [136] and the multi-
database system [110]. These approaches are suitable for structured data
and support precise searches. In the following subsections, we overview

these types.
2.2.4.1 Federated database systems

In many situations, data are managed or accessed exclusively through their
DBS by applications which respect the management system boundaries of
the local systems, though much more powerful applications can be created
when these data are integrated. One possibility of integrating two different
databases is called a gateway. A gateway is a special program that
simulates access from one database to another by coding protocols of
interaction. However this has its limitations, such as the amount of time
needed to design the gateways and that data accessing through gateways
makes further data transparency difficult to achieve. An alternative
approach would be a middleware architecture [48] which provides a
transparent and uniform view of multiple data sources and maintains this
interface for database applications in case a new data source becomes
available. An example of integrating multiple databases through a
middleware approach is the concept of Federated Database System
(FDBS) [136]. A FDBS is a collection of distributed, heterogeneous and
semi-autonomous DBSs integrated through a federation layer. One of the
significant aspects of a FDBS is that its component DBS can continue
local operations and at the same time participate in a federation. DBSs
participating in a FDBS are always heterogeneous and distributed within

this FDBS. These participating DBSs are called Component DBSs

22

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

(CDBS). A typical FDBS architecture is shown in [136]. This architecture
is called a five-level schema architecture, as it is composed of five schema
types:

e Local schema: schema of each local database that comprises the

federation;
e Component schema: local schema translated to the canonical model;

e Export schema: subset of the component schema to be accessed by

the federation;

e Federated or Global schema: schema generated by the integration of

export schemas;

e External schema: global schema view, available to a group of users

and/or applications.

In FDBS, the amount of integration does not have to be comprehensive as
in global schema integration, but depends on the needs of the users, as
FDBS may be either tightly or loosely coupled systems. The integration of
component DBSs may be managed either by the users of the federation or
by the administrators of the component DBSs. In loosely coupled FDBSs,
the federation schema creation is done by the users, whereas in tightly
coupled FDBSs, the creation and maintenance of federated schema and
access to export schemas is controlled by federation administrators. Thus
in loosely coupled approaches the linkage of terms is undertaken at query
time by the user while in a tightly coupled approach it is undertaken when

the DB joins the federation.
2.2.4.2 Multi-database systems

Multi-database systems (MDBSs) [111] provide access to multiple

preexisting databases that support their own applications and end users.

23

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

The MDBS should be able to identify data stored in different databases
and support multi-database queries and updates by resolving data
incompatibilities, performing query decomposition, and executing multi-
database transactions. This process can be wholly or partially transparent
to the end user. However, local systems must have full control over their

data, and thus preserve their own autonomy.

MDBSs meet the need for organizations to interoperate their databases
already in service by supporting new global applications that access
multiple databases. The fundamental difference between MDBSs and
DDBSs relates to the definition of the global conceptual schema. In the
case of logically integrated DDBSs, the global conceptual schema defines
the conceptual view of the entire set of databases available, while in the
case of distributed MDBSs; it represents only a collection of local
databases that are being linked for a specific purpose. Thus the definition
of a global schema is different in MDBSs than in distributed DDBSs. In a
DDBS the global database is equal to the union of all the local databases,

whereas in the MDBS it is only a subset of the same union.

A MDBS allows each local database system to continue to operate
independently. Global users access data stored in various local database
systems (LDBSs) and local users access data stored in a single LDBS. The
basic MDBS architecture consists of a global transaction manager which
handles the execution of global transactions and is responsible for dividing
them into sub-transactions for submission to the LDBSs participating in the
MDBS. Global transactions are posed using the global view constructed by

integrating the local views provided by each local database system.
2.2.5 Summary of previous approaches

The approaches presented in the previous sections have the following

characteristics:

24

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

e they consider either structured or unstructured data,
e but do not combine structural heterogeneous data;
e they offer either an exact or a fuzzy kind of search; and

e for the structured underlying sources, they integrate data based on a

common schema.

However, when dealing with the large amount of data available online
which might be unstructured, semi-structured or structured data, and the
high number of users searching with different knowledge levels and aims,
there is a need for a new approach to querying heterogeneous data. Thus,
new techniques are needed for building a system which allows integration
of heterogeneous data in a way that could easily connect and disconnect
underlying sources and support all kinds of users formulating queries which

integrate web available data with traditional structured data held in DBSs.

A solution to this problem was introduced at the beginning of the 1990s by
Wiederhold [145], when he defined the concept of mediator.

2.2.6 Mediation System

A mediator is defined in [145] as: “A mediator is a software module that
exploits encoded knowledge about certain sets or subsets of data to create

information for a higher layer of applications.”

When querying integrated heterogeneous data sources, mediators have the
primary task of offering to the user a homogeneous integrated view over
the data. Thus mediation deals with various types of heterogeneity, with

data mismatch and supports users in the formulation of queries.

The typical mediator architecture contains three layers, (see Figure 2.2).

The upper layer (query interface) is the user and application interface. The

25

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

middle layer (mediator) contains application-specific mediators, which use
a unified data model. On the lower layer there are data sources with their
corresponding wrappers. Wrappers are software modules which translate
the request coming from the middle layer to a query for a data source, and
translate the results returned from sources into the unified data model
representation of the system. Consequently, they implement a
homogenization of the data sources, which means users of the interface are

unaware of heterogeneity present at the data sources level.

Systems based on the mediation approach do not retrieve data from the
data sources until the data is requested. A user query is decomposed by the
mediator component-- a software module responsible for creating a virtual
integrated view of the data sources in the system. The mediator determines
which data sources contain relevant information and queries those data
sources. The mediation approach guarantees that the retrieved data are
always up to date as it is accessing the local data source itself. This
approach is also known as the lazy approach (or on-demand, or virtual
approach), i.e., the queries are unfolded and rewritten at runtime as they
flow downwards in the architecture from the query interface to the data
sources. Query processing in this case is very similar to the metasearch
engine case, with the difference that data in the underlying sources may be
heterogeneous in its representation, i.e. structured, semi-structured or
unstructured. The TSIMMIS Project at Stanford [42, 69] and the MIX
project at University of California at San Diego [20] employ this approach.

Since in materialized approaches data is imported into a new repository
(either a universal database or a data warehouse), changes can not be
easily made to the local data source, a virtual approach is more suitable for
a scalable system where the local data sources are dynamic. However,
there are many factors which influence the scalability of a system and not
every virtual system is scalable per se. Furthermore, if the underlying data

sources are only structured data sources, a materialized approach or a

26

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

federated database approach or multi-database approach may also be
suitable. If the underlying data sources are all unstructured then a
metasearch engine approach is suitable. However, if all or some kinds of
data (structured, semi-structured and unstructured) have to be queried,
mediation is the only suitable approach since it is the only approach

dealing with dynamic, structurally heterogeneous data sources.

Query Output Data

Query Interface

User Layer

Mediator

Mediation Layer

data source 1 data source 2 data source n

Data Sources Layer

Figure 2.2: The three-tier mediator architecture.

The focus of this thesis is on querying dynamic heterogeneous data
sources, since many users and applications today need just this
functionality. Thus the mediation approach can be used in our system.
However, there are a lot of applications which also need updates on the
underlying data sources or even full database functionality such as access
control, and transaction management. In these cases, approaches such as
the materialized and federated database can be used and are more

appropriate.

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

2.3 Data interoperability

Interoperability is the magic word that is expected to allow heterogeneous
data sources to talk to each other and exchange information in a
meaningful way. The data interoperability problem occurs when this is
hard to achieve and arises from the fact that data, even within a single
domain of application, are available at many different sites, in many
different schemas, and even in different data formats and models (e.g.,
relational and XML). The integration and transformation of such data has
become increasingly important for many modern applications that need to
support their users making informed decisions based on data held in
diverse database systems and data sources. As a rough classification, there
are two basic forms of data interoperability: data exchange and data
integration. Data exchange (also known as data translation) is the problem
of moving and restructuring data from one (or more) data source
schema(s) into a target schema. It appears in many tasks that require data
to be transferred between independent applications that do not necessarily
agree on a common data format. In contrast, data integration is the
problem of uniformly querying many different data sources through one
common interface (target schema). There is no need to materialize a target
instance in this case. Instead, the emphasis is on answering queries over
the common schema [92, 103]. According to this classification we classify
our work as a data integration problem as we use a virtual global schema
over different data sources and data held in these data sources can be

combined and queried through this global schema.

Data interoperability [77, 83, 110] is the ability of distributed,
heterogeneous data sources, which are independently created and
administrated and have different semantics and schemas to cooperate and
interoperate in a transparent way to the user while maintaining their

autonomy and objectives. Data interoperability [84, 149] can be achieved

28

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

by integration of existing data in virtual databases, i.e. databases which are

logically defined but not physically materialized.

However, the integration of structured and semi-structured data sources
poses some fundamental challenges [81]. The heterogeneity that may exist
between a set of independently designed data sources is one of these
challenges. Data is stored within distinct heterogeneous data sources. This
means the important kind of heterogeneity in our context is structural

heterogeneity [54, 67].
2.4 Heterogeneity of the data sources

If the contents of data sources are related in some way, they are still likely
to show variety in many aspects. These differences can make both the
design and modeling phase and the operation phase of a data integration
system very difficult. The major issue in building a data integration system
is resolving these differences between the data sources that may occur at
different levels. This issue is generally referred to as heterogeneity of the

data sources.

Heterogeneity arises at different levels for various reasons. Firstly, an
organization for various reasons, may adopt different platforms for its
applications. It may choose different hardware, operating systems and
different communication protocols. Secondly, as a result of advances in
software and technology developments, different data sources may
become available over time; these data sources may have different data
models, query languages and/or other facilities. Thirdly, the independent
design of the component databases may lead to semantic heterogeneity,
where the designers of these databases may have different opinions about

how to model the same real world objects.

Broadly speaking, the heterogeneity may be classified as System
Heterogeneity (low level) and Logical Heterogeneity (high level) [71].

29

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

System heterogeneity comes from adopting different platforms for the
computer installation. Platform differences include: hardware systems,
operating systems, data management systems and networking protocols.
Logical heterogeneity occurs when people use different approaches to
model the same real world objects [21, 71, 97, 98]. Both types of

heterogeneity result from the autonomy of development of systems.

Researchers and developers have been working on resolving system
heterogeneity for many years. The causes of such heterogeneity are well
understood [71, 97] and may not exist if the same hardware, system
software (e.g., operating system) and communication protocols are used.
While research on logical heterogeneity started more recently, it still

reflects more than 20 years of research [21].

Detecting and resolving logical heterogeneity is acknowledged to be a
difficult problem, because it requires a good understanding of the data's
meaning, the inconsistencies present in the data and the level of
incomplete information. Unfortunately, it is not possible to fully capture
real world semantics by using available data modeling techniques [128].
Therefore nearly all the tools that deal with detecting and reconciling
semantic heterogeneity depend on user interaction to complement and

validate their results [71, 97, 98, 137].

Schema Conflicts

Conflict Type Description
Table Name Using different names for equivalent tables
Conflicts (Synonym) or the same name for different

tables(Homonym)
Table Structure One table contains more attributes than another table

Conflicts with equivalent concepts
Table Constraint Incompatible key and update constraints
Conflicts
Multiple Table | Using different numbers of tables to store information
Conflicts

30

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

Attribute Name

Using different names for equivalent attributes

Conflicts (Synonym) or the same name for different attributes
(Homonym)

Multiple Representing a concept using more attributes in one

Attribute database than another

Conflicts

Table versus Representing a concept as a table in one database and
Attribute as a field in another
Conflict

One-to-Many | This type of conflict arises when information captured
Element in one element in the global schema is equivalent to
Conflicts that split into more than one elements in the local data

sources.

Many-to-One This type of conflict occurs when more than one
Element element in the global schema corresponding to one
Conflicts element in a local data source.

Data Conflicts
Data Type The same element may have incompatible type
Conflicts definitions in different databases. For example, social

security number could be of type 'character' in one
database and 'numeric' in another.

Unit Conflicts

Numerical data represented using different units.

Precision This conflict occurs when two data sources use values
Conflicts from the domains of different cardinalities for the
same data.

Expression This conflict arises when different expressions are

Conflicts used to represent the same data.
Representation The same concept is represented by different

Conflicts constructs of the model.

Granularity Data elements representing measurements differ in
Conflicts granularity levels, e.g., sales per month or annual

sales.

Default values
conflict

This conflict arises when the default values of
semantically equivalent elements in different data
sources are different.

Key Conflicts

Different keys are assigned to the same concept in
different schemas.

Behavioral These arise when different insertion/deletion policies
Conflicts are associated with the same class of objects in
distinct schemas.
Wrong data It occurs when equivalent attributes in different data
Conflicts sources, which are expected to have the same value,

have different values.

Figure 2.3: Conflicts Classification.

31

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

Various classifications of heterogeneities have been suggested in papers
related to data integration, without necessarily providing full
classifications. In an analysis of schema integration methodologies [21,
98], structural and semantic diversity categories were specified as those

involving naming conflicts and those involving structural conflicts.

Figure 2.3 shows a classification of conflicts that may exist between a set
of independently designed data sources. It is based on the classifications of
[21, 97, 98]. One of our goals in this research is to resolve the
heterogeneity, such as naming, structural, and semantic conflicts which,
may occur between the schemas (see [16]). Thus a solution which
overcomes the heterogeneity problem is needed. Later, we will describe
how our system SISSD can be used to handle some of conflicts identified
in Figure 2.3 (see sections 4.4, 5.4.4 and 8.1.6).

2.5 Data integration

Data integration has received significant attention since the early days of
databases. Much research has been devoted to solving the problem of data
integration. With the popularity of the Internet, access to data becomes
independent of its physical storage location. Additionally, users can access
a variety of data sources that are related in some way to find out useful
information, but this is often cumbersome. Therefore, integrating
heterogeneous data sources so that users can easily access and combine the
data is an important challenge. Much of the research on integration has
focused on so-called data integration [80, 103]. Data integration is the
process of combining the data residing at different sources, and providing
the user with a unified view of these data. Such a unified view is
structured according to a so-called global schema, which provides the
elements to express queries over the data of the integration system. Data
integration is an important data management application because it is a

common user requirement. The main objective of a data integration system

32

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

is to facilitate users in focussing on specifying 'what' data they want, rather
than on describing 'how' to obtain data. To achieve this task, an integrated
view of the data stored in the underlying data sources should be provided.
In data integration systems, users are interested mainly in querying the

integrated data rather than updating the data through the integrated view.

The problem of the differences between data sources is of great
importance. Usually, the contents of data sources are related in some way,
but show diversity in many representational aspects. This diversity, which
is usually referred to as heterogeneity [136], causes the design of a data
integration system to be a challenge. Heterogeneity is one of the most
complicated issues that are taken into consideration when building a data
integration system. Hence, resolving the differences between the data

sources is a crucial issue.

There are different layers of heterogeneity beginning from hardware
heterogeneities and continuing to differences in the operating systems or
communication protocols. On a higher level there is logical heterogeneity,
which refers to the degree of dissimilarity between the component data
sources that make up a data integration system. Logical heterogeneity is
one of the most complicated issues taken into consideration in a data
integration system. It comes from different understanding and modeling of
the same concept. Subsequently, the construction of a data integration
system must handle different mechanisms for attributing meaning to the
data (semantic conflicts), for referencing data (naming conflicts), and for
storing data (structural conflicts). The distinction between semantic and
structural heterogeneity is not always precise. Structural heterogeneity
refers basically to the structure of the data, while semantic heterogeneity

refers to the domain of concepts (their interpretation).

33

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

Basically, to build a data integration system, relationships or mappings
must be established between the data source schemas and the global
schema [35, 147].

Definition 2.5.1 (A data-integration system)

A data-integration system I is a triple (G, S, M;), where G is a global
schema, S; is a set of n source schemas, and M is a set of m source-to-
global mappings, such that for each source schema S; there is a mapping

M; from Sito G, (1 <i<n),(1 <j<m).

A crucial issue in data integration is how elements of the global schema
and elements of the data sources are mapped. Based on the direction of
mappings between a data source and global schema, the approaches are
classified into the so called global-as-view (GAV) and local-as-view
(LAV) approaches [80, 103]. The following sections describe each of
these approaches. We will further use the symbol = that means an
implication relationship between the global and local schemas' elements

exists.

2.6 Global-As-View (GAYV) approach

In a Global-As-View (GAV) approach, a global schema is defined in
terms of a set of local source schemas. That is, the global schema is

defined as a view over the local sources' schemas [20, 70, 75, 141].

In a GAV approach, query reformulation reduces to simple rule unfolding
(standard execution of views in ordinary databases). However, changes in
data sources or adding a new data source requires revision of the global
schema to take into account the changes, and requires a revision of the
mappings between the global schema and data source schemas. Thus,

GAYV is not scalable for large applications [24, 147].

34

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

In recent years, many systems have been developed in research projects on

data integration using the GAV technique. Below we discuss briefly well-

known research projects and prototypes of the better known of these

systems.

2.6.1 GAYV systems

TSIMMIS [42, 108, 124], one of the first GAV systems and the
most representative of the GAV approach. This system uses the
OEM (Object Exchange Model) to convey information between the
components of the system. The first basic component of a mediated
system, the mediator, is specified using MSL (Mediator
Specification Language). It is a logic-based, object-oriented
language that can be seen as a view definition language, targeted to
the OEM data model. The second component is wrappers which are
specified using a WSL (Wrapper Specification Language). WSL is
an extension of MSL, supporting the description of source contents

and source query capabilities.

MIX [20] MIX stands for Mediation Information using XML. It is a
successor of TSIMMIS. The basic difference from TSIMMIS is that
XML is used as the language (i) to represent the global schema and
(ii) to exchange data between the mediator and the XML sources
(instead of OEM). The query language of MIX is XMAS (XML
Matching and Structure Language). XMAS uses features from
several XML query languages, queries are formulated in terms of
the mediated schema, and are written as XMAS queries that refer to
the source views exported by the wrappers. These queries are then

sent to the wrapped sources for evaluation.

Nimble [55, 56] is a commercial system similar to MIX. Nimble

integrates XML sources. The architecture of the Nimble system is

35

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

based on a set of mediated schemas, which are defined as views
over the schemas of the data sources. The query language used by
the Nimble system is XML-QL. When a query is posed to the
integration system, it is decomposed into multiple source queries
based on the data sources. The compiler translates each such query

into an appropriate query language for the destination source.

e Clio [117, 118] was developed by IBM around 2000. Clio is a
research prototype of a schema mapping creation tool. The focus is
on discovering queries that map values from the data sources to
values in the global schema. Both source and global schema are
considered to be either relational or XML. Clio produces a set of
mappings between the source schema and the global schema, given
a set of high-level correspondences defined by the user. It also
involves transforming legacy data into a new target schema. Clio
introduces an interactive schema mapping paradigm, based on value
correspondences. The user specifies how a value of a target attribute
can be created from a set of values of source attributes using a

query/browsing GUI.
2.7 Local-As-View (LAV) approach

In the Local-As-View (LAV) approach, a global schema is defined
independently of the local source schemas. Each source is described in
terms of the global schema relations. That is, the sources are described as a

materialized view of the global schema [11, 36, 99, 103].

The LAV approach makes it very simple to add or remove data sources
from the system, but it also complicates the query reformulation task. It is
scalable and better suited to integrating a large number of autonomous

read-only data sources accessible over communication networks.

36

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

Furthermore the LAV approach provides a flexible environment able to

accommodate the continual change and update of data source schemas.

In recent years, many systems have been developed in various research

projects on data integration using the LAV technique. We discuss briefly

the best known research projects and prototypes of the more prominent

representative LAV systems.

2.7.1 LAYV systems

Information Manifold [99, 104, 107] handles the problem of data
integration by providing a mechanism to describe declaratively the
contents and the query capabilities of information sources. In the
Information Manifold system the global schema is relational. A
source description is a conjunctive query over the global schema
relations, which will be referred to as a view. User queries, posed in
Information Manifold, are conjunctive queries like source
descriptions. They are expressed in terms of the global schema

relations.

Infomaster [58, 74] is an information system which provides
integrated and uniform access to multiple distributed, heterogeneous,
structured sources. Data available in a source is also seen as a set of
relations, called site relations. Between site relations and interface
relations, a set of base relations are defined. Interface relations are
defined as views on the base relations. User queries are expressed in
terms of the interface relations. Queries are rewritten in terms of the

site relations.

Agora [113, 114] system supports querying and integration of
heterogeneous relational and XML information sources. The global
schema is an XML DTD and a virtual relational schema is used as

an interface between the sources and this schema. Relational and

37

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

XML sources are modeled as SQL queries over a relational global
schema. Users formulate XQuery queries in terms of this global
DTD. These queries are normalized and translated into an SQL

query over the generic relational schema.

e DDXMI [120, 148] (for Distributed Database XML Metadata
Interface) is a system prototype that has been built to generate a tool
to do the metadata integration, producing a master DDXMI file,
which is then used to generate queries to local databases from the
master queries. It builds on the XML Metadata Interchange.
DDXMI is a master file including database information. In this
approach local sources were designed according to DTD definitions.
Therefore, the integration process is started from the DTD parsing

that is associated with each source.

2.8 Related Work

Data integration has received significant attention since the early days of
databases. In recent years, there have been many research projects
focussing on distributed heterogeneous data source integration. Most of
them are based on the common mediator architecture [145] such as Garlic
[37], the Information Manifold [99], Disco [141], TSIMMIS [42], Yat [43],
Mix [20], MedMaker [123] and Agora [113]. The goal of such systems is
to provide a uniform user interface to query integrated views over
heterogeneous data sources. A user query is formulated in terms of the
integrated view, to execute a query, the system translates it into sub-
queries expressed in terms of the local schemas, sends the sub-queries to
the local data sources, retrieves the results, and combines them into the
final result provided to the user. Mainly, they can be classified into

structural approaches and semantic approaches.

38

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

In structural approaches, local data sources are assumed to be crucial. The
integration is done by providing or automatically generating a global
unified schema that characterizes the underlying data sources. On the other
hand, in semantic approaches, integration is achieved by sharing a
common ontology among the data sources. According to the mapping
direction, the approaches are further classified into two categories: global-
as-view (GAV) and local-as-view (LAV) [103]. In GAV approaches, each
item in the global schema is defined as a view over the source schemas. In
LAYV approaches, each item in each source schema is defined as a view
over the global schema. The LAV approach is well-suited to supporting a
dynamic environment, where data sources can be added or removed from

the data integration system without restructuring the global schema.

Projects and prototypes such as Garlic, TSIMMIS, MedMaker, and Mix are
structural approaches and take a global-as-view approach. A common data
model is used, e.g., OEM (Object Exchange Model) in TSIMMIS and
MedMaker. Mix uses XML as the data model; an XML query language
XMAS was developed and used as the view definition language. Many
efforts are being made to develop semantic approaches, based on RDF
(Resource Description Framework) and Knowledge-based Iﬁtegration [112].
Several ontology languages have been developed for data and knowledge
representation to assist data integration from a semantic perspective, such as
F-logic [115] which is employed to represent knowledge in the form of a

domain map used to integrate data sources at the conceptual level.

DDXMI [120, 148] builds on XML Metadata Interchange. DDXMI is a
master file including database information, XML path information (a path
for each node starting from the root), and semantic information about
XML elements and attributes. A system prototype has been built that
generates a tool to do the metadata integration, producing a master
DDXMI file, which is then used to generate queries to local databases

from master queries. In this approach local sources were designed

39

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

according to DTD definitions. Therefore, the integration process is based
on DTD parsing associated with each source. XIQM [18] is an approach to
mediating heterogeneous XML data sources. A tool is proposed for the
XML data integration system to combine and query XML documents
through a mediation layer. This layer is intended to describe the mappings
between the global XML schema and local heterogeneous XML schemas.
It produces a uniform interface over the local XML data sources and
provides the required functionality to query these sources in a uniform
way. It involves two important units: the XML Metadata Document
(XMD) and the Query Translator. XMD is an XML document containing
metadata, in which the mappings between global and local schemas are
defined. XML Query Translator which is an integral part of the system is
introduced to translate a global user query into local queries by using the
mappings that are defined in XMD. The XML data sources are described
by the XML Schema language.

We classify our work as being in the structural category but we differ from
the others such as Garlic, Disco, TSIMMIS, Mix, MedMaker and Yat by
following a local-as-view (LAV) approach as this approach is well-suited
to supporting a dynamic environment, where data sources can be added or
removed from the system without restructuring the global schema. It is
better suited and scalable for integrating a large number of autonomous
read-only data sources accessible over communication networks.
Furthermore the LAV approach provides a flexible environment able to
accommodate the continual change and update of data source schemas,
especially suited to XML documents on Web servers which are not static
and often subject to frequent update. Projects like Information Manifold,
Agora, DDXMI and XIQM are integration systems with a LAV
architecture; however, in Information Manifold the local and global
schemas are relational, while in DDXMI and XIQM the local and global
schemas are XML. The Agora system supports querying and integrating

40

CHAPTER 2. BACKGROUND AND SURVEY OF THE STATE-OF-THE-ART

data sources of diverse formats, including XML and relational sources
under an XML global schema, but assumes explicit schemas for XML data
sources. Our work [14-16] focuses on querying and integrating distributed
heterogeneous structured data residing in relational databases and semi-
structured data held in XML documents. The XML documents that we are
interested in are well-formed XML documents, while DDXMI targets
XML documents designed according to DTD definitions, and XIQM
targets XML documents satisfying an XML schema. Thus we are dealing
with all types of XML document unlike these systems. Also our work
differs from DDXMI and XIQM by using an incremental tool to build the
XML Metadata Knowledge Base (XMKB). This tool starts from an
existing XMKB file and slightly modifies it in light of minor changes to
data source schema structures or when data sources are added or removed
from the system, instead of regenerating it from scratch. Thus it facilitates

evolution reflecting the dynamic nature of the data being targetted.

41

CHAPTER 3

XML and related technologies

Machine readable data files are text files or binary files. There has been an
aim to find a universal format which combines the features of both these
types with rich information storage capability. An early attempt to
combine a universally interchangeable data format with rich information
storage capabilities was SGML (Standard Generalized Markup Language)
[8, 76]. This is a text-based language that can be used to mark up data by
adding meta-data in a way which is self describing. SGML was designed
to be a standard way of marking up data for any purpose. It is a
complicated language that it is not well suited for data interchange over
the Web [31]. A very well-known language, based on SGML is Hypertext
Markup Language (HTML) [2]. However, despite HTML being incredibly
successful, it was limited in its scope, as it is only intended for displaying
documents in a browser. Therefore, XML (eXtensible Markup Language)
[4] was created to address this limitation. Development of XML started in

summer 1996 by the setting up of an XML Working group by the W3C

42

CHAPTER 3. XML AND RELATED TECHNOLOGIES

(World Wide Web Consortium) [1]. In many aspects, HTML gives a good
introduction for understanding XML: the ASCII representation of XML
data and HTML share the same syntactical notions, which is part of
SGML.

Since XML is chosen to be a data model for our data integration system
and in this thesis we used some XML related technologies we give in this

chapter an overview of XML and some related technologies.

We start with an introduction to XML. Next, we present an overview of
the Document Type Definition (DTD) grammar language and XML
Schema language since these languages are used to describe the structure
of an XML document. Then, we introduce XML Application

Programming Interfaces, and finally we introduce XML query languages.
3.1 XML

W3C is an open, public organization whose task is to develop technology
and standards for the Internet. It has developed XML standards for
efficient information exchange across the Web. The basic concept behind
XML is that data should be self-describing by means of tags associated
with the data. XML provides no predefined tags, instead it is a meta-
markup language which provides standards for users so that they can

define their own tags, document structure and the definition of the tag.

XML [4] has quickly emerged as a standard for data representation and
data exchange over the Web. XML is a subset of SGML. It specifies a set
of rules for putting data structures into a text file. Although XML is text, it
is not primarily meant to be read by humans but rather by machines, with
standardized XML parsers. The power of XML as a description language
lies in the fact that an XML document contains self-describing,
hierarchically structured data, and it allows association of markup terms

with data elements. These markup terms serve as metadata allowing

43

CHAPTER 3. XML AND RELATED TECHNOLOGIES

formalized description of the content and structure of the accompanying
data. XML appears to subsume HTML and its successor XHTML as the
communication language for the Internet [66]. By associating metadata
terms with data elements, XML has enabled documents to be
communicated between organizations in a way that enables their semantics
to be completely understood both by human and machine agents. In other
words, just as HTML is used to render texts so that they can be processed
by humans, XML renders data structures so that they can be processed by
computers so that the processed document can be presented on a human

interface.

Data in XML are grouped into elements delimited by tags. The first line of
an XML document (see Figure 3.1) is a mandatory statement that tells the
XML processor' that it is dealing with XML version 1.0 in this case [60].
The rest of an XML document is composed of tags and text. Every
opening tag must have a matching closing tag, and the tag must be
properly nested. A tag consists of text enclosed in a pair of angle brackets.
A tag is also called a markup. The document has a root element that
contains all other elements. Any properly nested piece pf text of the

following form

is called an XML element, and the name of that element is the tag. Figure

3.1 is a simple example of an XML document.

In this figure, <bookstore>, <book>, , and </bookstore> are tags.
The text between the opening and closing tag is called the content of the
element. Elements directly nested within other elements are called
children. XML also defines the ancestor/descendant relationships among

elements, which are important for querying XML documents. An ancestor

' The XML processor is a module that reads an XML document to find out its structure and contents.

44

CHAPTER 3. XML AND RELATED TECHNOLOGIES

is a parent, a grandparent, etc., and a descendant is a child, a grandchild,

etc.

<?xml version = "1.0"?>
<bookstore>

<book category="WEB">

<isbn> 0-321-12226-7 </isbn>
<title> Learning XML </title>
<author> Erik T. Ray </author>
<year> 2005 </year>
<price> 29.99 </price>
</book>
</bookstore>

Figure 3.1: An example of a simple XML document.

An opening tag can have attributes. An element can have any number of
user-defined attributes. XML attributes are useful in data representation as
they offer a richer representation than elements can offer. Attribute values
can only be strings, which strictly limits their usefulness, while XML
elements can have children elements, which make them much more
versatile. Some features of attributes are-. First, the order of attributes in
an element does not matter; second, an attribute can occur at most once in
an element, while elements with the same tag can be repeated; third, using
attributes can lead to briefer representation. A useful feature of an XML
attribute is that it can be declared to have a unique value and can also be
used to enforce a limited referential integrity. This can not be declared
with elements alone in plain XML. In the above example, Price is defining

as an attribute in the element Book.

There are two important concepts of XML documents, well-formed and
validity. Well-formed deals with the physical structure referring to tags
which are properly matched and nested while, validity focuses on the

logical structure of elements.

45

CHAPTER 3. XML AND RELATED TECHNOLOGIES

Definition 3.1: An XML document is well formed if it has a root element,
every opening tag is followed by a matching closing tag, the elements are
properly nested, and any attribute can occur at most once in a given

opening tag and its value must be provided.

An XML document must be well-formed to be processed. That is, it must
be syntactically correct. The validity concept is provided by an XML

schema grammar language which is introduced in the next section.

Our system is designed to deal with well-formed XML documents which
conform to the XML syntax rules but have no referenced DTD or XML
schema. However, it can also deal with XML documents which have DTD
or XML schema by bypassing the DTD or the XML schema. It accesses
the document itself to extract its structure and uses our simple language
XDSDL (XML Data Source Definition Language) to describe the actual
structure of the data source not the possible one described in the
referenced DTD and XML Schema.

3.2 DTD and XML Schema

There are many grammar languages that can describe the structure of an
XML document. The most common are: D7D [30] and XML Schema [3].
XML schema is an optional document-structure grammar which is used to
make sure the XML document is valid. XML documents can be defined
according to a schematic representation defined in a DTD or XML
Schema. An XML document that conforms to a DTD or XML Schema is
called a valid XML document.

3.2.1 DTD

DTD is a set of rules for structuring an XML document. It is a context-
free-grammar for the document. The DTD describes a document type by

specifying which tags are allowed, their attributes, and the allowed nesting.

46

CHAPTER 3. XML AND RELATED TECHNOLOGIES

Roughly, the DTD corresponds to the schema definition in relational or
object-oriented databases. The schema of an XML document may be
defined by a DTD, which describes a grammar for semi-structured

documents.

The basic components of a DTD grammar are elements, attributes, and

entities. The structure of the contents of elements is defined by
<VELEMENT content-model >
where, a content-model in a DTD may involve the following types:

e EMPTY type: a simple element with no content, but may have

attributes.
e ANY type: elements of this type may have arbitrary content.
e #PCDATA type: a simple element of only character data

e Expression: a composite element which is a regular expression over

element names.
e A composite element may be defined by the following constructs:

— “,”: to define a sequence of ordered component elements.
— ‘|7, to define alternatives of component choice.

— “*”_ an element that can appear arbitrarily often.

— “47, as “*” but must appear at least once.

— “?”, optional element can appear O or 1 times.

Attributes can be associated to an element. Each attribute has a name, a
data type and optional constraints that restrict its permitted values to an

enumeration or a fixed value, or defines it as a required property. An

47

CHAPTER 3. XML AND RELATED TECHNOLOGIES

element with attributes is also considered to be a composite element. The

allowed arttributes of elements can be declared as:

e #REQUIRED: the attribute must be given for each instance of the

element type.
e #IMPLIED: the attribute is optional.
e #FIXED value: a value which is allowed for the attribute type.

Figure 3.2 shows a DTD that captures the XML document in Figure 3.1.

<!ELEMENT bookstore (book)+>

<!ELEMENT book(isbn , title , author , year , price)?*>
<!'ATTLIST category CDATA #REQUIRED>

<!ELEMENT isbn (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!'ELEMENT author (#PCDATA)>

<!'ELEMENT year (#PCDATA)>

<!ELEMENT price (#PCDATA)>

Figure 3.2: A DTD of an XML document in Figure 3.1.
3.2.2 XML Schema

Although DTDs have served well for years as the primary mechanism for
describing structured information in the SGML and HTML communities,
they are considered too limited for many data-interchange applications
[31]. For example, DTDs can only specify that elements are text strings.
Furthermore, they are not formulated in XML syntax and provide only
very limited support for types or name spaces. This led to the XML
Schema being introduced to overcome some of the deficiencies of DTD
[66]. XML Schema is a data definition language for XML documents
which has become a recommendation of W3C. XML Schema Definition
(XSD) is an XML-based grammar declaration for XML documents. XML

48

CHAPTER 3. XML AND RELATED TECHNOLOGIES

Schema allows very precise definition for both simple and complex data

types, and allows the derivation of new type definitions.

The purpose of XML schema is to specify the structure of instance
elements together with the data type of each element/attribute.
Declarations in XML Schema can have richer and more complex internal
structures than declarations in DTDs. The motivation for XML Schema is
dissatisfaction with DTDs. It was developed in response to the limitations
of the DTD mechanism. XML Schema is seen as an advance over DTD.
The integration with namespaces is one of the important items missing in
DTDs. A DTD can define any number of tags, but there is no way to
associate tags with a namespace. An XML schema document describes the
structure of XML documents. It begins with a declaration of the

namespaces to be used in the schema. Its main features are:

It uses the same syntax as used for an ordinary XML Schema.

e It is integrated with the namespace mechanism which means
different schema can be imported from different namespaces and

integrated into one schema.

e It provides built-in types, such as string, integer, and time.

e It provides the means to define complex types from simple ones.

It supports key and referential integrity constraints.

Figure 3.3 is an XML schema definition that captures the Figure 3.1

document.

The root element of the XSD is the <schema>. Within the <schema>
element, the namespace declaration should be included first, and then an
<element> declaration. We declare bookstore as an element of a user-

defined type that contains a sequence of ordered elements each of a new

49

CHAPTER 3. XML AND RELATED TECHNOLOGIES

type. Each user-defined type can be declared as either a complex type or

simple type form.

To specify the cardinality of the elements, XML Schema uses standard
modifiers: minOccurs and maxOccurs, that correspond to minimum and
maximum values for the lower and upper bounds respectively in terms of

occurrence of the element.

<?xml version="1.0" 2>
<xs:schema xmlns="http://www.w3.0rg/2001/XMLSchema">
<xs:element name = "bookstore">
<xs:complexType>
<Xs:sequence>
<xs:element name = "book" maxOccurs = "unbounded">
<xs:complexType mixed="true”>
<xS:sequence>

<xs:element name = "isbn" type = “string”/>

<xXs:element name = "title" type = "string"/>
<xs:element name = "author" type = "string"/>
<xs:element name = "year" type = "integer"/>
<xXs:element name = "price" type = "decimal"/>

</Xs:sequence>
<xs:attribute name="category" use="required" type="string"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

T i
</xs:schema>

Figure 3.3: An XML schema of an XML document in Figure 3.1.
3.3 XML application programming interfaces

XML documents have to be parsed in order to be used by application
programs. Application Programming Interfaces (APIs) are used to process
an XML document by accessing its internal structure. There are three
major standardized ways for users to access the content of XML
documents: DOM, SAX, and JDOM.

50

http://www.w3.org/2001/XMLSchema

CHAPTER 3. XML AND RELATED TECHNOLOGIES

3.3.1 DOM

The DOM (Document Object Model) [6] is an application program
interface (4PI) for XML instances defined by W3C. It is a tree structured-
based API which converts the document that defines an abstract data type
which implements the abstract XML tree model for storing and managing
XML instances. DOM is a set of Java interfaces which describe the
facilities for a programmatic representation of a parsed XML document.
Using DOM, the Web document is modeled in an object-oriented way.
That is, the DOM represents a Web document in terms of objects (the
parts of the document, such as elements, attributes, text, etc.). A document
builder is used to read the XML data and construct a DOM tree. Once a
document is read, its DOM representation has been created in memory,

and the objects can be accessed and manipulated.

An XML document is read by an XML processor (or XML parser), which
converts it into a parsed XML document, which is the internal
representation of the hosting implementation (i.e., a DOM
implementation). Client applications access the parsed document by means
of the functions and methods defined in the DOM API [146].

3.3.2 SAX

The SAX (Simple API for XML) is an event-driven and serial access API
defined by XML-DEV group for accessing XML documents [116]. Since
SAX is simple, it is supported by most of the available XML processors
(parsers). A SAX parser does not create an in-memory tree representation
of an XML document. It reads an input XML document and generates
events, such as the start of an element, the end of an element, and so on.
SAX is not an XML processor as such, but it is a common interface

implemented for many different XML processors.

51

CHAPTER 3. XML AND RELATED TECHNOLOGIES

Once an XML document is input to the SAX parser, the first step of a
SAX parser usually consists of splitting up the source document into
tokens. The most basic way to tokenize a document is to use the
occurrences of the brackets: < and > as an orientation. Furthermore, the
programmer has some control over low-level features like character sets

that are used in the document.
3.3.3JDOM

JDOM (Java Document Object Model) is a new and open source XML
API [88, 89]. It is lightweight and fast, and is optimized for the Java
developer so that they can read, change, and write XML data much more
easily than before. JDOM integrates well with both DOM and SAX, and
takes the best features from them. It is designed to perform quickly in a
small-memory footprint. JDOM also provides a full document view with
random access but, surprisingly, it does not require the entire document to
be in memory. Additionally, JDOM supports easy document modification
through standard constructors and normal set methods. Therefore, JDOM
has the ability to interoperate seamlessly with existing program
components built using SAX or DOM. JDOM documents can be built
from XML files, DOM trees, or SAX events. It is also possible to create a
JDOM document from scratch. Moreover, it provides support for the XML
namespaces and validation at the same time. With other XMP APIs, that is

not possible.
3.4 XML query languages

This is an overview of XML query languages. Data extraction,
transformation, and integration are all well-understood databases problems
concerned with managing data. Their solution relies on a query language,
either relational (SQL) or object-oriented (OQL). These query languages
do not apply immediately to XML, because XML data differs from

52

CHAPTER 3. XML AND RELATED TECHNOLOGIES

traditional relational or object-oriented data. We introduce XPath, XQL
XML-QL, and Quilt and then present a brief introduction to XQuery

language.
3.4.1 XPath

Until recently, most query languages in the XML world were based on
XPath (XML Path Language). We describe XPath 1.0, and then give an

overview of the features of its successor XPath 2.0.
3.4.1.1 XPath 1.0

XPath 1.0 [44] is a specification that defines how a specific item within an
XML document can be located. The primary purpose of XPath is to
address parts of an XML document. XPath models an XML document as a
tree of nodes which includes element nodes, attribute nodes, and text
nodes. It is designed to be employed by most XML query languages. It
also provides basic facilities for manipulation of strings, numbers, and
Booleans in the logical structure of an XML document. XPath is intended
to be simple and efficient. It is based on the idea of path expressions. An

expression is evaluated to one of the following basic value objects:
® node-set (an unordered collection of nodes without duplicates),
e boolean (true or false),
e number (a floating-point number),
e string (a sequence of characters).

One important kind of XPath expression is the location path. A location
path declaratively selects a set of nodes from a given XML document. The

result of the evaluation of a location path is the node-set containing the

53

CHAPTER 3. XML AND RELATED TECHNOLOGIES

nodes selected by the location path. The core rules of XPath are shown in

Figure 3.4.

[1] LocationPath ::= RelativeLocationPath | AbsoluteLocationPath
[2] AbsoluteLocationPath ::= '/RelativeLocationPath?

[3] RelativeLoctionPath ::= Step | RelativeLocationPath ‘' Step

Figure 3.4: The core rules of XPath.
A location path can be written in the following form:
oStep; T; Step> 7> Stepm Trm

where ¢ can be the empty symbol or °/’, 7T; is °/’, Step; is a location step,

suchthat: m>1,and 7 {1, , m}.

The input to every location step is a node-set, called the context (the input
to the first step is the set containing only the document node). From this
set, a new node-set (called the result set) is computed which then serves as
input for the next step. For this computation, the input node set is
processed, evaluating the location step for every node in it, appending its
result set to the overall result, and proceeding with the next node. The

location step is of the form:
axis :: nodetest[filter] *

which specifies that navigation goes along the given axis in the XML
document. The first part of a step is the axis which specifies the tree
relationship between the nodes selected by the location step and the

current context node. The second part is the nodetest. It specifies the node

54

CHAPTER 3. XML AND RELATED TECHNOLOGIES

type and the name of the nodes to be selected by the location step which
satisfy the given filter. The third part is the filter. The filter contains
predicates over expressions. A predicate filters a node set with respect to

an axis to produce a new node set.

The semantics of XPath expressions is defined in terms of node-sets, i.e.,
unordered forests. When evaluating individual steps, there is a temporary
node list (context). For every navigation step, the axis specifies the
direction of navigation in the tree. All forward axes enumerate the nodes
in document order; on the other hand all backward axes enumerate them in
reverse document order. For example, terms of predicates over the

expressions can be of the following forms:
e Booleans over predicates,
e Arithmetic expressions over numbers and string operations,

e Function calls: used for instance to state conditions on the
relationship between the current context node and its context, for

example:

- Last(): returns n such that n is the size of the context,

- Position(): returns the index of the context node in the current
context,

- Count(nodeset): returns the number of nodes in a nodeset,

- Id(expr): returns the node(s) in the current XML instances
whose id(s) result from evaluating expr with respect to the

context node.

Inside filters, relative or absolute location paths can be used. Relative
location paths are evaluated with respect to the current context node.

Where an absolute location path begins with “/”, which is similar to the

55

CHAPTER 3. XML AND RELATED TECHNOLOGIES

UNIX directory notation, they are evaluated with respect to the root node
of the XML document.

The following XPath query example, finds the students who have taken

the Database Systems course within the current document:
//Student[CrsTaken/CrsName = ‘“Database Systems”].
3.4.1.2 XPath 2.0

XPath 2.0 [26] is a superset of XPath 1.0. It uses the same axis as XPath
1.0, followed by a node test, followed by a predicate. However, XPath is
an expression language that allows processing of values conforming to its
model, it supports sequences instead of node-sets. The result of an XPath
expression may be a selection of nodes from the input documents, or an
atomic value, or more generally any sequence allowed by the data model.
Thus, every XPath expression evaluates to a sequence. Here, the sequence

can be defined as follows:

e A sequence is an ordered collection of zero or more items.

e An item is either an atomic value or a node. '

e An atomic value is a value in the value space of the XML Schema.
e A node is defined in the XQuery and XPath 2.0 data model.

e A sequence of exactly one item is called a singleton sequence.

e A sequence containing zero items is called an empty sequence.

There are many differences between XPath 1.0 and its successor XPath 2.0.
XPath 1.0 does not support explicit quantification, e.g. to concatenate the

first and last names. The most basic additional features for XPath 2.0 are:

e For-loop expression,
e If-Then-Else conditions,

e Functions,

56

CHAPTER 3. XML AND RELATED TECHNOLOGIES

e Quantified expressions,
e Logical expressions,
e Processing Instructions, and

e Schema validation.

In total, although XPath 2.0 has many additional features compared to
XPath 1.0, it also has some limitations. The basic one is that it returns
XML tree nodes and not an XML document. Despite its interesting
features, XPath is not an expressive query language. Compared with the
relational algebra, a full join operator is missing (semi-equijoins are in fact
provided by the path operator, and filters). As a result XPath is a
lightweight XML querying language. It is only an addressing mechanism
which selects node sets in XML documents. Its purpose is to provide the
common addressing mechanism for XML, and to serve as a base for XML

querying and manipulation languages and further concepts.
3.4.2 XQL

The XML Query Language (XQL) [7, 127] was an early proposal for a
simple querying language which was designed specifically for XML

documents. It is a declarative rather than procedural language.

The basic idea and syntax is to use paths and filters for navigation.
Roughly, XQL is the fragment of an XPath which can be built without
using axis. Additionally, union and intersection on results are allowed. An
expression in XQL is always evaluated with respect to a search context. A
search context is a set of nodes through which an expression may search to
yield the value of the expression. All nodes in the search context have the
same parent name. XQL allows a query to select between using the current
context and the root context as the input context. A query prefixed with */°
uses the root context, while ./> is used for the current context. A query

may use the ¢//’ operator to indicate recursive descendent. The prefix “.//°

57

CHAPTER 3. XML AND RELATED TECHNOLOGIES

allows a query to perform a recursive descent relative to the current

context.
Some XQL queries are:

e to find all author elements anywhere within the current document:

/lauthor

e to find all title elements, one or more levels deep in the bookstore:

bookstore//title

e to find the format attribute for all book elements:
book/@format

e to find all author elements that contain at least one degree and one

publication: author[degree and publication]

e to find all authors containing a first-name child whose text is 'John':

author[first-name!text()= 'John'

The central extension, making XQL a query language instead of a pure
addressing mechanism, is the generation of the result tree (instead of a

node-set) as a projection of the input document.
3.4.3 XML-QL

XML-QL [50, 51] is another early language (1998, non-W3C) that was
proposed as a query language for XML data. It can express queries which
extract pieces of data from XML documents, as well as transformations. In
contrast to XQL, XML-QL does not employ navigation and paths. The
basic idea was influenced by the SQL query structure in that it partitions
XML-QL queries into a selection part (WHERE IN) and a construction
part (CONSTRUCT) it has the form:

58

CHAPTER 3. XML AND RELATED TECHNOLOGIES

WHERE xml-pattern; IN url
CONSTRUCT xml-pattern;

where, xml-pattern; is matched against an XML instance given by the wurl/.
Therefore, every match yields variable bindings which are used as join
variables, and propagate the result. Hence, this is again an XML pattern
specifying the result. Similarly to SQL, the CONSTRUCT part may
contain nested XML-QL queries. Here the IN part applies, either to a ur/,
or to the content of a variable which has been assigned in the WHERE part.

The following example produces all authors of books whose publisher is

Addison-Wesley in the 'bib.xml' document.

WHERE <book>

<publisher> <name> Addison-Wesley </></>

<title> \$t </>

<author> \$a </>
</> IN "bib.xml" CONSTRUCT <result>

<author> \$a </> <title> \$t </>
</>
The above query matches every <book> element in the "bib.xml" XML
document which has at least one <title> element, one <author> element,
and one <publisher> element whose name is "Addison-Wesley". For each
such match it returns both <awuthor> and <title> and groups them in a

new <result> element.

XML-QL can map XML data between DTDs and can integrate XML data
from different sources. Therefore, we can query several sources
simultaneously and produce an integrated view of their data. The query in
Figure 3.5 is introduced in [49]. It produces all the pairs of names and
social-security numbers of the employees by querying the sources
'www.a.b.c/data.xml’ and ‘'www.irs.gov/taxpayers.xml!'. The two sources

are joined on the social-security number, which is bound to 8ss»n in both

59

http://www.a.b.c/data.xml'

CHAPTER 3. XML AND RELATED TECHNOLOGIES

expressions. The result contains only those elements that have both a name

element in the first source and an income element in the second source.

WHERE <person>
<name></> ELEMENT_AS \$n
<ssn> \$ssn </>
</> IN "www.a.b.c/data.xml",
<taxpayer>
<ssn> \$ssn </>
<income> </> ELEMENT\ AS \$i
</> IN www.irs.gov/taxpayers.xml
CONSTRUCT <result> \$n \$i </>

Figure 3.5: The XML-QL query.
3.4.4 The Quilt query language

Quilt [39] is a query language for XML. It is the base of XQuery which
will be discussed next. Quilt is the first XML query language that embeds
XPath syntax into higher-level constructs similar to SQL/OQL [17]. Quilt
can operate on flat structures, such as rows from relational databases, and
generate hierarchies based on the information contained in these structures.
It is able to express queries based on document structure and to produce
query results that either preserve the original document structure or
generate a new structure. It can also express queries based on parent/child
relationships or document sequence, and can preserve these relationships

or generate new ones in the output document.

Quilt queries consist of a series of clauses that declaratively describe:
¢ what information is to be used,
e which additional conditions apply, and

e how the result is to be constructed.

60

http://www.a.b.c/data.xml
http://www.irs.gov/taxpayers.xml

CHAPTER 3. XML AND RELATED TECHNOLOGIES

The structure of Quilt queries as a whole is very similar to XML-QL
(WHERE xmli-pattern IN wurl CONSTRUCT xml-pattern). The main
difference is that the extraction part in XML-QL also uses an XML pattern
which is matched whereas Quilt uses iteration and collections over XPath

expressions. -

A simple form of a Quilt query consists of FOR, WHERE, and RETURN
clauses. The FOR-clause uses XPath expressions for binding the values of
one or more variables. In general, an XPath expression evaluates to a set
of nodes. The FOR-clause generates an ordered list of tuples, each
containing a value for each of the bound variables. A tuple is generated for
each possible way of binding the list of variables to nodes that satisfy their
respective XPath expressions. When a node is bound to a variable, its
descendant nodes are carried along with it. The WHERE-clause applies a
filter to the tuples and retains only those tuples that satisfy a given search
condition. The RETURN-clause then generates a new document structure

using the values of the bound variables.

The following example finds every book written by Crockett Johnson. The
FOR-clause generates a list of bindings. First, the 35 variable is bound to
individual book elements in the document found at the given URL. Then,
the $a variable is bound to individual author elements that are descendants
of $6. The WHERE-clause retains only those tuples of bindings in which
the author is Crockett Johnson, and the RETURN clause uses the resulting
values of $b to generate a list of books. By default, the ordering of book

elements in the original document is preserved.

FOR $b IN

document ("http://www.biblio.com/books.xml") //book,

$a IN $b/author
WHERE $a/firstname = "Crockett" AND $a/lastname = "Johnson"
RETURN $b

61

http://www.biblio.com/books.xml%22)//book

CHAPTER 3. XML AND RELATED TECHNOLOGIES

Additionally, Quilt is supported with FOR-LET-WHERE-RETURN-

clause (FLWR-expressions) which is of the form:

FOR variable IN xpath-expr
LET additional-variable: = xpath-expr
(FOR | LET)*

WHERE filters

RETURN xml-expr
Bounded variables can be defined by a FOR-clause to the elements which
are iterating over the result set of XPath expressions. Additional variables
may be defined in the LET-clause, computed from the ones defined in the
FOR-clause. The variables in the FOR-clause iterate over the
corresponding xpath-expr, whereas the variables in the LET-clause are
bound to the result of the corresponding xpath-expr. Variables defined in
the FOR-clause or LET-clause can then be used in subsequent IN clauses.
The result from the FOR-LET clauses is sequences of variable binding
used in generating the result, using the XPath filter syntax. Then the

RETURN-clause generates an XML sub-tree for each variable binding.

The Quilt language provides the usual operators used in database queries.
Quilt allows for joins in the FOR-clause by specifying "var IN xpath-expr"
arguments, or by a sequence of FOR-LET clauses. Each FOR-LET clause
may contain references to variables defined before. Additional join
functionality is provided by using FLWR expressions in the RETURN part.
Here, also the inner FLWR expression may access variables from the outer

clause.

In Quilt, selection functionality is explicitly provided by the WHERE-
clause, but also the XPath expressions (filters, extensional semantics)

provide functionality which is implemented in SQL by selection.

Projection is supported by the definition of variables in the FOR-LET
clauses, and mainly by a FILTER operator which extends the XPath

syntax of the expression in the form:

62

CHAPTER 3. XML AND RELATED TECHNOLOGIES

xpath - expr; FILTER xpath - expr;

Results in a tree which contains exactly the nodes of the result set of
xpath-expr), retaining the document structure and order. Nodes are taken

without attributes or sub-elements, i.e., only the tags are kept.

Quilt is a subset of XQuery. It provides the user with the ability to use
built-in functions and user-defined functions. These are very important
features which are used in our approach in order to resolve logical
heterogeneity problems. The examples given in Section 6.5 show the

importance of such functions and how they are used.
3.4.5 XQuery

XQuery [29] is a potential standard XML query language. It is a powerful
XML query language derived from Quilt. With some minor revisions,
Quilt query language has become the XQuery Language (Feb. 2001
Working draft). XQuery is a full-featured query language. It has borrowed
features from several other languages, including XPath 1.0, XQL, XML-
QL, SQL, and OQL. XQuery is designed to meet the requirements
identified by W3C XML Query Working Group. It is created to be a
language in which queries are concise and easily understood. The
requirement was for both human-readable query syntax and XML-based
query syntax. It is defined as a superset of XPath. XQuery version 1.0 is
an extension of XPath 2.0. Therefore, any expression that is syntactically
valid and executes successfully in both XPath 2.0 and XQuery 1.0 will
return the same result in both languages. The shortcoming in XPath 2.0 is
that it returns XML tree nodes and not an XML document, when querying
or navigating an XML document usually demands an XML output. Hence,
the ability to produce or restructure an XML document is valuable and is
offered by XQuery. Therefore, it covers the aspects of both document-

oriented and data-oriented documents. Queries in XQuery often combine

63

CHAPTER 3. XML AND RELATED TECHNOLOGIES

information from one or more sources and restructure it to create a new

result.
XQuery expressions have some similarity with SQL in their structure:

FOR variable-declaration
WHERE condition
RETURN result

The FOR-clause plays the same role as the FROM-clause does in SQL,
and the WHERE-clause is borrowed from SQL with the same functionality,
and the RETURN-clause is similar to SELECT.

For data integration, the documents to be integrated in general use their
own namespaces. XQuery allows access to the namespace definitions and
assigns them to constants which can then be used for selecting navigation

steps according to the namespaces.

XQuery is also a functional language in which a query is represented as an
expression. The expression that is most commonly used for combining and
restructuring the XML details is the FLWR-expression which is the same
as Quilt.

Example 3.4.5 the following example of an XQuery query returns the title
of all books published in or before the year 2000 and the total number of
such books in the bibliography bib.xml document.

<books>

FOR $book IN document ("bib.xml") /book
LET $titles = $book/title

WHERE $book/@year <= 2000

RETURN

$book/title

<total> count ($titles)</totals>
<books>

64

CHAPTER 3. XML AND RELATED TECHNOLOGIES

In this query, we can see that XQuery expressions are FL WR-expressions.
Each FOR iteration binds the $book variable. Then, the LET-clause binds
the 3$title variable without iteration. Next, the FOR-LET clause filters
using the predicate $book/@year<=2000, in the WHERE-clause. And
finally, the RETURN clause generates the output. In this query, $book/title
is an XPath expression, and <books>. . .</books> wraps the query result

into a new XML document.

65

CHAPTER 4

The SISSD data integration system

This chapter introduces the project. We give a brief introduction to the
motivation for this work. Then, we introduce our approach, followed by
the proposed system architecture. Next, we describe the- heterogeneity
problem, and then introduce an application example which is used

throughout the thesis to show how the integration is accomplished.

4.1 Introduction

Integrating and querying heterogeneous data sources is a fundamental
problem in databases, which has been studied extensively in the last two
decades both from a formal and a practical point of view [103]. Recently,
this research area has been driven by the need to integrate data sources on
the Web, much of the previous research on integration has focused on so
called data integration [103, 105]. Data integration is the problem of
combining the data residing at different sources usually in databases, and

providing the user with a unified view of these data, by means of a global

66

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

(or mediated) schema, over which queries to the data integration system
are expressed. A data integration system has to free the user from needing
to know which sources contain the data of interest, how such data are
structured at the sources, and how such data are to be merged and
reconciled to answer user queries [35, 119, 147]. Regarding data
integration techniques we differentiate between the logical and physical
stages. The first stage integrates schemas from multiple data sources. The
result of this schema integration process is the mediated schema and
mapping rules which define how to map concepts in the data sources onto
the mediated schema. Data integration in the physical stage uses these
mapping rules to transform users' queries on the mediated schema into

local queries [80].

In the research community, to build data integration systems two

approaches are used. These both use the following two steps:

1. Accept a query, determine the appropriate set of data sources to
answer the query, and generate the appropriate sub-queries for each
data source.

2. Obtain results from the data sources, perform appropriate translation,
filtering, merge the data, and return the final answer to the user or

application.

The first approach is referred to as a virtual approach, where data remains
in the local data sources. Thus, queries operate directly on the local data
sources and data integration takes place during the query processing. This
means data is extracted from the data sources only when queries are posed.
This process also may be referred to as a mediator-wrapper approach
[145].

The second approach is called the materialized approach [27], since data

coming from the local data sources are integrated and stored in a single

67

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

new database or warehouse. All queries then operate on this

comprehensive database. In this approach:

1. Data from each data source that may be of interest to the anticipated
users is extracted in advance, translated and filtered as appropriate,
and merged with relevant data from other data sources in a logical
centralized repository.

2. When a query is posed, the query is evaluated directly at the

repository without accessing the original data sources.

This approach is referred to as data warehousing since the repository
serves as a warehouse storing the data of interest. A data warehouse is a
decision support database that is extracted from a set of data sources. The
extraction process requires transforming data from the source format into

the data warehouse format [63].

The mediator-wrapper approach is used to integrate data from different
databases and other data sources. It is appropriate for data that changes
rapidly, for clients with unpredictable needs, and for queries that operate
over vast amounts of data from a very large number of information
sources (e.g., the World Wide Web) [143]. It has two main components: a
mediator and one wrapper for each data source. The wrappers are
interfaces to data sources that translate data into a common data model
used by the mediator. The mediator performs the following actions in the

system:

1. Receiving a query formulated on the unified schema from the user.

2. Translating this query into sub-queries to individual sources based
on source descriptions.

3. Sending sub-queries to the wrappers of individual sources, which in
turn transform these sub-queries into queries suited to the source's

data model and schema.

68

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

The construction of a mediator can be classified into two main types,
namely structural approaches and semantic approaches. In structural
approaches, local data sources are the main source of information when
the mediated schema is constructed. The integration is done by providing
or semi-automatically generating a global unified schema that
characterizes the underlying data sources. On the other hand, in semantic
approaches, the integration is achieved by using a common ontology
covering the domain of the data sources to identify the elements in the

local schema that should be linked.

Our objective is to facilitate the designer in building structured and semi-
structured data integration systems. Providing a reasonable framework for
database integration designers to effectively integrate and query
heterogeneous distributed structured and semi-structured data has become
another challenge for databases integration researchers [15]. The main
difficulty in this task lies in the lack of a fully automated schema-mapping
process. The key problem in creating this arises from the existing high
degree of logical heterogeneity between the source schemas. This means,
it is necessary to resolve several conflicts caused by the hgterogeneity of
the data sources with respect to the common data model, schema or
schema concepts. Therefore, the mapping between entities from different
sources representing the same real-world objects has to be defined. This
task is not easy since the data at different sources may be represented in
different formats and in incompatible ways. For example, the
bibliographical databases of different publishers may use different formats
for authors' or editors' names (e.g., full name or separated first name and
last name), or different units of prices. Moreover, the same expression
may have a different meaning (homonym problem), and the same meaning
may be specified by different expressions (synonym problem). This
implies that syntactical data and metadata alone can not provide enough

semantics for all potential integration purposes. Another difficulty

69

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

impeding structured and semi-structured data integration is the query
translation process. This is one of the most important problems in the
design of a data integration system, in that the system should be able to
reformulate the query that is posed in terms of the global schema into a set

of queries suited to the local data sources.

The data integration process is often very labour-intensive and demands
more computing expertise than most application users have. Therefore,
semi-automated approaches seem the most promising, where mediation
engineers are given a tool with which to describe the mappings between
the integrated schema and local data source schemas, to produce a uniform

view over the local databases [120, 148].
4.2 An overview of our approach

In general, building data integration systems requires addressing several

different issues. In this thesis, we concentrate on two basic issues:

1. Establishing a Knowledge Base to describe the mappings between
the integrated view (master view) and the participating data sources.
2. Processing user queries expressed over the master view into queries

suited to the local data sources.

As, we are restricting our attention to integration systems which combine
structured data residing in relational databases and semi-structured data
held in well-formed XML documents. The system will provide the user
with an integrated view (master view) over heterogeneous distributed
structured and semi-structured data sources; such an integrated view will
be best represented by XML because the advantages of XML as an
exchange model, such as rich expressiveness, clear notation and
extensibility. The system will enable users to query its data sources in a
uniform way. Although fully automatic data integration may not be

possible in the dynamic environment that we have considered, we should

70

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

be able to achieve a high degree of automation which requires only some
human intervention by using semantic mapping. Since a fully automatic
process for data integration is infeasible, we propose an approach that can
be used as an assisting tool to reduce the total designer effort in building
data integration systems. Therefore, the issues of establishing a suitable
Knowledge Base and processing a user queries have to be addressed. A
basic concept will be resolving the logical heterogeneity problem which
may occur among the schema's elements. To achieve this task, we will
follow a mechanism in which the correspondences among the schemas'
elements are expressed through a set of mappings. These mappings are a
powerful tool for expressing the correspondences between the schemas,
and capturing and overcoming the heterogeneity of the various data

sources. Mappings are usually able to bridge these differences.

The integration architecture we have adopted in the project is based on a
mediator architecture (see Figure 4.1). The system prototype is called
SISSD (System to Integrate Structured and Semi-structured Databases). It
requires the generation of a tool for a meta-user (who does the metadata
integration) to describe mappings between the master vie\y and local data
sources. It produces an XML Metadata Knowledge Base (XMKB) to
capture the mapping information, which is then used to generate the sub-
queries to local data sources from user queries posed over the master view.
These tasks are performed through a mediation layer. Such a layer is

introduced to manage the following:

1. Establishing and evolving an XML Metadata Knowledge Base
(XMKB) incrementally to maintain the mapping information
between the master view and the local data sources participating in
the integration system [16].

2. Querying heterogeneous distributed structured and semi-structured

data sources in terms of the master view [14].

71

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

This is achieved in three steps. First, the data source metadata is extracted
and a Schema Structure Definition (SSD) is built for each participating
data source. The SSD is the description of the data source metadata in
XML format. We do not aim to capture all details of the data source
metadata, but rather to capture its essential features and abstract only the
structure of the data source which meets the basic requirements of our
approach. This is achieved through an automatic process that accesses the
specified data source without violating its local autonomy. Then, its
metadata is detected and extracted to build a local view (Schema Structure
Definition (SSD)) in XML format for this data source. The resulting view
describes the structure of the data source schema using the XML Data

Source Definition Language (XDSDL).

The second step performs the task of the mediation layer, by establishing
and evolving an XML Metadata Knowledge Base (XMKB) incrementally
to assist the Query Processor in mediating user queries posed over the
master view to local queries over the distributed heterogeneous data
sources. This translates such queries into sub-queries —also called local
queries- which fit each local data source. This is achieved through a semi-
automatic process that generates a tool to assist a meta-user to specify the
mappings between the master view and local data sources. We introduce
here the XML Metadata Knowledge Base (XMKB) module as the basis of
a mediation tool to overcome the heterogeneity problems between data
sources. The XMKB module maintains the mapping information between
the master view and local data sources’ views participating in the
integration system. In fact, we model a Schema Structure Definition (SSD)
as a tree structure. Thus, each node is identified by its path in the tree,
called a master path for an element of the master view and a local path(s)
for the corresponding element(s) of a local Schema Structure Definition
(SSD). The relationship between a master path and a local path is created

as a mapping. This distinction between elements and paths is important,

72

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

because an element may occur several times in a schema tree structure
with different meanings, while a path always identifies a unique element.
Hence, for each path of the master view, the objective is to keep the set of
paths that have the same meaning in the local schemas and a user-defined
function if it is needed to perform specific operations to overcome
representational differences. Such a function is defined explicitly by the

designer.

The third step is concerned with the query translation process which is an
integral part of the system. A Query Processor module is developed for
this process. It transforms a user query into local queries which it then
translates by order of this process using the mappings that are defined in
the XMKB. In order to obtain local queries for a query issued against the
master view, the system must identify the data sources relevant to a given
query. The basic idea is that when a query is posed against the master view,
called a master query (global query), it is automatically rewritten into sub-
queries, called local queries, which are appropriate to each local data
source’s format using the information stored in the XMKB. This task is
accomplished by the Query Processor module. The XMKB contains the
path information and functions to be applied for each local source. The
path expressions in a master query are parsed by the query parser and
replaced by their correspondence paths in each local data source. This is
achieved by consulting the XMKB to check if there are correspondence
paths for the given query. If not, a null query is generated for the
corresponding path in the local query, which means that this query cannot
be applied to that local data source. Each local query generated will be
sent to its corresponding local source, which will execute the query and

return the result for the master query.

73

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

4.3 The SISSD architecture and Components

In this section, we present an overview of the SISSD architecture and
summarize the functions of its main components. The architecture we
adopted is shown in Figure 4.1. At the bottom layer there can be any
number n of heterogeneous structured (e.g., relational database) and semi-
structured (e.g., XML document) data sources, where n {1, , m}.
The XML documents can be a well-formed XML document with no
referenced DTD or XML schema, where the associated metadata are
buried inside the data, and also can be XML documents with referenced
DTDs or XML schemas. However, for our purposes it is the structure of a
given XML document that is crucial for data integration. Therefore, we
investigate issues related to abstracting the structure of an XML
documents in the cases where the sources have no explicitly defined DTDs
or XML schemas. At the top layer of our system is the master view which
is used as a global interface to the participating local data sources. The
advantages of XML as an exchange model [72, 113] - such as rich
expressiveness, clear notation and extensibility - make it an excellent
candidate to be a data model for the master view. At the middle layer, the

architecture consists of the following associated modules:

e Metadata Extractor (MDE): The MDE needs to deal with
heterogeneity at the hardware, software and data model levels
without violating the local autonomy of the data sources. It interacts
with the data sources via JDBC (Java Database Connectivity) if the
data source is a relational database or via JXC (Java XML
Connectivity) if the data source is an XML document. The MDE
extracts the metadata of all data sources and builds a Schema
Structure Definition (SSD) in XML form for each data source. We
developed JXC using a JDOM (Java Document Object Model)
interface to detect and extract the schema structure of well-formed

XML documents that have no referenced DTD or XML schema.

74

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

JXC can also deal with XML documents with referenced DTDs or
XML schemas.

e Schema Structures Definition (SSD): Typically, the heterogeneous
data sources use different data models to store their data (e.g. the
relational model and XML model). This type of heterogeneity is
referred to as syntactic heterogeneity. The solution commonly
adopted to overcome syntactic heterogeneity is to use a common
data model and to map all schemas to this common model. XML is
a good candidate as a common data model for our integrated data
model for two reasons: it can represent with ease any type of data
whether it is structured in some way or not, XML also fits the
context of current web technologies and has rich and powerful tool
support [10, 33, 113]. The metadata extracts generated from the data
sources by using this data model are referred to as Schema Structure
Definitions (SSDs). We define a simple language called XML Data
Source Definition Language (XDSDL) for describing and defining
the relevant identifying information abstracted from the data
structure of a data source. The XDSDL output is represented in
XML and is composed of two parts. The first part provides a
description of the data source name, location and type (relational
database or XML document). The second part provides a definition
and description of the data source structure and content. The
emphasis is on making these descriptions readable by automated
processors such as parsers and other XML-based tools. This
language can be used to describe the structure and content of
relational databases, well-formed XML documents which have no
referenced DTD or XML schema, and XML documents with
referenced DTDs or XML schemas.

e Schema Structure Definition (SSD) & Master View Parsing:

used for reading and parsing the Schema Structure Definition (SSD)

75

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

and the master view to check the syntactic correctness and test

whether it conforms to the XML syntax rules (well-formed).

e Tree Structure Generation: used to generate a tree structure for

each data source SSD and the master view.

e GUI Generation: used to produce a convenient simple GUI form
for each schema tree. It is used as a tool to facilitate the generation

of the paths mapping.

GuUl User Query
(XML Query)

y

D—
XML Metadata
Knowledge Base » Query Processor
(XMKB)
Knowledge Server
* 4
Gul Elemeant Indax
Generation Generation Query n
3 *
Tree Structure Tree Structure Query 2
Generation Generation Query 1
¥ ¥
Schema Structure Master View
Definition Parsing Parsing
Schema Structure Master View
Definition
- XML
JXC document
- Metadata T ‘_—\—. XML <
Extractor 1 document
e —
JDBC |e—» RDB “

e

Figure 4.1: The SISSD Architecture.

76

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

Element Index Generation: generates automatically a unique index

number for each element in the master view tree structure.

Knowledge Server (KS): the central component of the SISSD. It
establishes, evolves and maintains the XML Metadata Knowledge
Base (XMKB), which holds information about the data sources’
structures and semantics and provides the necessary functionality

for its role in assisting the Query Processor (QP) module.

XML Metadata Knowledge Base (XMKB): contains knowledge
about the data sources’ structures and formats represented by XML.
It includes the data sources’ information (name, type and location)
participating in the integration system, the metadata, defining the
mappings between the master view and Schema Structure
Definitions (SSDs) of the local data sources, and the function names

for handling semantic and structural discrepancies.

Query Processor (QP): is responsible for receiving a user query
(master query) over a master view processing it and returning the
result to the user. It mediates between a user query posed over the
master view and the underlying distributed heterogeneous data
sources, to automatically rewrite the query into sub-queries - called

local queries - which fit each local data source.

4.4 Heterogeneity issues in the SISSD system

In section 2.4 different types of conflicts’ that may exist between a set of

independently designed data sources are identified. In this section we will

show how the fundamental types of these conflicts are resolved in the

SISSD system. We choose these types as a representative of each group of

these conflicts identified in Figure 2.3. At the end of this section we

77

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

present the conflict types identified in Figure 2.3 and state the conflict
types that can be handled by our system SISSD.

e Naming conflicts (Table name conflicts, Attribute name conflicts):
this type of conflict can occur between table names or attribute
names when different designers use their own terminologies to
describe real world concepts. This may lead to synonym and
homonym problems. The former occurs when two different names
are used by different designers to describe the same concept. For
example one designer may represent a set of employees as element
EMPLOYEE in one data source (say DS1), while another designer
may represent the same set as element WORKER in another data
source (say DS2). In our approach we resolve this type of conflict in
the following way. We map elements that are synonyms to the
element with the same meaning in the global schema by assigning
the same index number generated automatically for the global
schema element (more explanation for more information on how
these index numbers are generated, see section 5.4.3) to the
elements that are synonyms in the local schema structures. A
homonym occurs when the same name is used by different designers
to represent unrelated concepts. For instance, the element COURSE
in DS1 may denote a set of courses taken by a student, on the other
hand the element COURSE in DS2 may refer to the available dishes
in a restaurant where that student eats. Therefore to resolve this
conflict the homonym elements are mapped to different elements in
the global schema by assigning different index numbers generated
automatically for the global schema elements to the elements that

are homonyms in the local schema structures.

e Unit conflicts: conflicts of this type arise when two semantically
similar elements are represented using different units and measures.

For instance, employee salary in two data sources might be

78

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

represented in UK pounds in one data source and in US dollars in
the other. In our approach we resolve this type of conflict, by
mapping elements having different units of measurement to
appropriate elements in the global schema by assigning index
number of that element to the elements in the local schema
structures which correspond to it and defining transformer functions
which convert data in the different units to the common unit

subscribed to by the global schema.

e Precision conflicts: conflicts of this type arise when two
semantically similar elements are represented using different
precisions. For example, Student mark takes an integer value from 1
to 100 in DS1,while Student grade takes a string value of {A, B, C,
D, F} in DS2. This type of conflict is usually reconciled by means

of a mapping table as shown in Figure 4.2.

Marks | Grades
81-100 A
61-80 B
41-60 C
21-40 D
1-20 F

Figure 4.2: Mapping between Marks and Grades.

In our approach we resolve this type of conflict, by mapping
elements having differing precision in their measurements to
appropriate elements in the global schema and defining transformer
functions to convert data to the type of measurement used by the
global schema. In this case, the functions may have to do a table
lookup. In this lookup table an isomorphism (mapping) is defined

between the different precisions of measurement.

79

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

o One-to-Many Element conflicts: a special case of a conflict of type
one-to-many elements arises when information captured in one
element in the global schema is equivalent to the concatenation of
more than one element in the local data sources. For example, the
name of person is broken into firstname and lastname in a local data
source DS1, while it is simply name in the global schema. In our
approach, this type of conflict is resolved by mapping the elements
in the local data source into corresponding elements in the global
schema by assigning the index number generated automatically for
the global schema element to the elements in the local schema
structures which correspond to it and defining a function to
concatenate the elements in the local data source to get the element

in the global schema.

e Many-to-One Element conflicts: this type of conflict occurs when
more than one element in the global schema corresponds to one
element in a local data source. For instance, the address information
may be represented as street, city, and postcode elements in the
global schema, while a local data source DS1 represents it as a
single element address. In our approach, we resolve this type of
conflict by mapping each element containing information about the
address in the global schema to the address element in the local data
source DS1. This mapping is done by assigning the index numbers
generated automatically for the global schema elements which
contain the information of address to the element address in the
local data source DS1 separated by comma (,) and assigning
derivation functions to be associated with the index numbers
assigned to the local data source element to allow these functions to

extract the required information from the local data source element.

In Figure 4.3 we summarise the types of conflicts identified in Figure 2.3

that can be handled by our SISSD system and which can’t be.

80

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

Schema Conflicts

Conflict Type Handled by SISSD
Table Name Conflicts Yes
Table Structure Conflicts Yes
Table Constraint Conflicts No
Multiple Table Conflicts Yes
Attribute Name Conflicts Yes
Multiple Attribute Conflicts Yes
Table versus Attribute Conflict Yes
One-to-Many Element Conflicts Yes
Many-to-One Element Conflicts Yes

Data Conflicts

Data Type Conflicts Yes
Unit Conflicts Yes
Precision Conflicts Yes
Expression Conflicts Yes
Representation Conflicts Yes
Granularity Conflicts Yes
Default values conflict No
Key Conflicts No
Behavioral Conflicts No
Wrong data Conflicts No

Figure 4.3: Summary of Conflicts supported by SISSD system.

There are types in Figure 4.3 that we have given a yes to but have not
described in this section how the SISSD system handles them. This is

because these types are more or less similar to the cases described already.
4.5 An application example

In order to clarify our approach, we introduce an example which will be
used throughout to illustrate the key ideas. In a data integration system, we
have a set of preexisting data sources which form the application's domain.
Each of these data sources may use different schemas to structure their data.

Therefore, each data source needs to be mapped to the relevant parts of the

81

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

mediated schema. In our example four publishers’ heterogeneous
distributed data source sites are used. Although all these data sources
contain information about books, the data structures are different. Our
objective is to create a uniform interface over these sites and provide the
required functionality to query these data sources in a uniform way. For
instance, a teacher or a student may look for a text book for a specific
course. In this case instead of posing her/his query to each data source
individually, it is possible to pose the query to the unified view over these

different data sources.

Bookdata

schema tree

Title Author Price

Name

Books

Book

Title Author Year Price

(a): tree structure for bookdata source

(b): tree structure for books source

: _
! B schema tree Bookstore schema tree
: /
|
i
' Book

/ -

1
| /
i |
// ‘
//

Title Author editor Publisher Price

/\ ;

/ / \ | Tile Auth year / ! A

| i oF Title Year Publisher
; Lst Fit Lt Fist Affiation | Author
Lo__ e J e

(c): tree structure for bib source

(d): tree structure for bookstore source

Figure 4.4: A part of the tree structure of four data sources.

82

CHAPTER 4. THE SISSD DATA INTEGRATION SYSTEM

In this application example (see Figure 4.4), the referenced data source
publishers are a relational database (bookstore.db) and three XML
documents (bib.xml, bookdata.xml, books.xml). Each data source contains
information about available books, such as titles, authors, prices, and so on.
Therefore, the structure of each site was automatically extracted and their
Schema Structure Definitions (SSDs) were defined. The Schema Structure
Definitions (SSDs) of the participating data sources are described by XML
Data Source Definition Language (XDSDL). A part of the tree structures

of these data sources are shown in Figure 4.4.

83

CHAPTER S

The mediation process

The mediation of distributed heterogeneous structured and semi-structured
data sources is proposed as a tool to overcome logical heterogeneity
problems which may occur when integrating data sources. It is a basic
consideration of this thesis. By mediation, we mean matching the schema
elements which are logically equivalent but are represented in different
ways. In this chapter we introduce the mediation process, which has the
following steps: (1) generate the Schema Structure Definition (SSD); (2)
extract SSD components and generate paths; (3) establish the mappings

and generate the mediation information (XMKB).
5.1 Generating Schema Structure Definition (SSD)

Our data integration system SISSD supports the integration of distributed
heterogeneous structured data residing in relational databases with semi-
structured data held in well-formed XML documents produced by internet

applications. The SISSD is intended to establish and evolve an XML

84

CHAPTER 5. THE MEDIATION PROCESS

Metadata Knowledge Base (XMKB) incrementally to assist the Query
Processor in mediating between user queries posed over the master view
and the local queries required to access the distributed heterogeneous data
sources. The XMKB is established when the first data source is joined to
the SISSD system. This is achieved by the same process as joins
subsequent data sources, by adding their data to the XMKB. The first step
in this process is to construct a Schema Structure Definition (SSD) for this
data source. For our purposes it is the structure of the given data source
that is crucial for data integration. Therefore, we do not need all the details
of the data source metadata, but rather need to capture its essential features
so as to abstract only the structure of the data source which meets the basic
requirements of our approach. Each data source’s Schema Structure
Definition (SSD) is described using the constructs of an XML Data Source
Definition Language (XDSDL). This is a simple schema definition
language which describes and defines the relevant identifying information
and the data structure of a data source. This language can be used to
describe the structure and content of structured data sources such as
relational databases and semi-structured data sources such as the well-

formed XML documents.

A data source is called structured if it adheres to a well-defined schema
that defines its composition out of other data elements and the schema has

the following properties:

e It is defined using a type system.

e It is defined a priori, i.e., before a data element is stored.

e Itis explicit, i.e., it is stored separately from the data.

e It is rigid, i.e., the data element must always conform to the

structure.

85

CHAPTER 5. THE MEDIATION PROCESS

e It is exposed, i.e., it can be queried and used when querying data

elements.

Examples of structured data are data stored in relational databases and
other databases managed by a DBMS. A query to structured data elements
is a structured query and is used to perform a precise search. A structured
query is based on the structure of the data elements and the type system as

defined in the schema.

A data source is called semi-structured if it has a structure, but the
stfucture is not rigid, and/or the structure definition (or parts of it) is not
necessarily separated from the data element, i.e. it may be implicit. The
second issue is related to the way the schema is defined. For relational
databases, the schema is defined separately, and the data is stored
accordingly. For a semi-structured data source, the schema or parts of it
might not (and cannot be) defined in this way, and may be "hidden" in the

data themselves.
The SSD of a relational database is obtained by:

1. The names of all the tables defined in the DB schema are retrieved.

2. These tables are defined as elements in the target Schema Structure
Definition (SSD).

3. For each table, the attribute names are extracted and analysed, and
then these attributes are defined as child elements of that table

element in the target Schema Structure Definition (SSD).

The structure of the XML document is automatically detected in that each
element is found in the document, which elements are child elements and
the order of child elements is then determined. The XML document is read
and the start tags for the elements are detected. Each start tag is checked,
as to whether it has child elements or not: if it has then this element is

defined as a complex element in the target Schema Structure Definition

86

CHAPTER 5. THE MEDIATION PROCESS

(SSD), otherwise it is defined as a simple element. The defined elements
in the target Schema Structure Definition (SSD) take the same name as the

start tags.

Algorithm: SSD generation for well-formed XML document
Input: well-formed XML document
Qutput: SSD
Stepl: get the root R. If it has child nodes, get its list of children, L.
a) get the first node in L, N. For every other node N’ in L that
has the same tag as N do:
e copy and append the list of children of N’ to the list of
children of V.
e delete N’ and its subtree.
b) get the next child from L and process it in the same way as
the first child, &, in step (a).
Step2: R now has a new list of children L,.,. Apply step (1) to
every node N, in L,....

Figure 5.1: Algorithm to generate SSD for XML document.

The algorithm in Figure 5.1 shows the main steps in the process for
obtaining the SSD of a well-formed XML document, where the metadata

are buried inside the data.
5.2 paths generation

The Schema Structure Definition (SSD) is itself an XML document. It is a
sequence of components where each component is an element of simple or
complex type. We model SSD as a tree structure, whose nodes are the
components of the corresponding SSD. Each component corresponds to
either the occurrence of a tag, or to the content of a tag, and so on. We
formulate an SSD Model, through which the SSD can be described. We
consider a set of nodes N that can be represented as: E for element names.
We do not aim at a complete formalization of all the details of the Schema

Structure Definition, but aim to capture its essential model features which

87

CHAPTER 5. THE MEDIATION PROCESS

meet the basic requirements of our approach. We consider the following

functions to be the basic set for characterizing an SSD:
e root: &g — N returns the unique root node of the document,

e children: N — [N] returns the ordered list of children of a node, or

the empty list [] in the case of a leaf node,
e tag: N — E returns the unique tag (e.g. element name) of a node.

An SSD Model of a Schema Structure Definition is a tree that holds a set
of nodes N which can be a set E of element names. These elements are

either simple type T; or complex type T., where
T=T,0T,

For example in Figure 5.2, a book title is represented by the title element

(a simple type, i.e. T;), while the author element is defined as a complex

type (7o).

Element bib
complexType
Element book
complexType
Element title
Element author
complexType
Element last
Element first
Element editor
complexType
Element last
Element first
Element affiliation
Element publisher
Element price

Figure 5.2: The SSD Model structure for the bib schema structure.

88

CHAPTER 5. THE MEDIATION PROCESS

In order to locate the corresponding nodes of a source’s tree structures, we
need to generate a unique path for each element of the Schema Structure
Definitions (SSDs). Due to the possible occurrence of the same name
several times in the same schema tree structure, this path uniquely
identifies the node. Hence, naming conflicts can be easily resolved. This is
achieved by forming and then searching the SSD tree structure model of
each schema and extracting out the components of interest. The SSD path
generation process is based on the SSD tree structure model discussed

above. The algorithm for schema path generation is shown in Figure 5.3.

Algorithm: schema paths generation
Input: SSD schema
Output: SSD paths
Stepl: parse SSD;
Step2: for each parsed SSD do
1. construct an SSD tree structure model M;
2. perform a depth-first traversal on M:
- extract the value of each node in set E;
- give a unique number to each extracted value;
- construct a CHILD function C for the extracted values;
3. perform a depth-first traversal on C;
4. generate a unique path for each node in C;
end do.

Figure 5.3: Algorithm to generate SSD paths.
The process of schema path generation is achieved by:

1. The SSD is parsed and its tree structure model formed.

2. The value of each node that belongs to the set E is extracted and a
unique number is given to each extracted value.

3. A CHILD function is constructed to obtain the children of each

extracted value of each node.

89

CHAPTER 5. THE MEDIATION PROCESS

Figure 5.4 shows the constructed tree structure model with the unique
number given to each node for the bib data source. We observe that the
node book (/.1) is a complex type, with an associated set of children (here

represented as an array) [title 1.1.1, author 1.1.2, editor 1.1.3, publisher
1.1.4, price 1.1.5].

Element bib 1
complexType
Element book 1.1
complexType
Element title 1.1.1
Element author 1.1.2
complexType
Element last 1.1.2.1
Element first 1.1.2.2
Element editor 1.1.3
complexType
Element last 1.1.3.1
Element first 1.1.3.2
Element affiliation 1.1.3.3
Element publisher 1.1.4
Element price 1.1.5

Figure 5.4: The tree structure model for bib SSD.

The tree structure model is navigated to generate the unique path for each
node starting from the root. Figure 5.5 shows a part of the generated paths
of the bib data source elements with their numbering. The number of digits
in this unique number indicates the element’s level in the tree. For

example the element with unique number 7/./.3.2 is on the fourth level.

5.3 paths correspondence

Our integration system is based on schema mappings which are used to
translate queries posed over the master view into sub-queries - called local

queries - which are appropriate to a local data sources. The goal of a

90

CHAPTER 5. THE MEDIATION PROCESS

schema mapping is to capture structural and semantic as well as

terminological correspondences between schemas.

1 /bib
1.1 /bib/book
1.1.1 /bib/book/title

1.2 /bib/book/author

.1.2.1 /bib/book/author/last
.1.2.2 /bib/book/author/first

1.3 /bib/book/editor

.1.3.1 /bib/book/editor/last

.1.3.2 /bib/book/editor/first
.1.3.3 /bib/book/editor/affiliation

1.4 /bib/book/publisher
1.5 /bib/book/price

Pk pd ek et ek e ek pmed b

Figure 5.5: The generated paths of the bib data source.

The main aim of a data integration system is to allow a user to query
distributed heterogeneous data sources. Its users can only view the global
schemas while the data is held in the local data soux;ces. Thus,
relationships or mappings from global schema concepts to local data
source schema concepts must be established [109]. Mappings are often
specified as high-level, declarative assertions that state how groups of
related elements in a data source schema correspond to groups of related

elements in the global schema [149].

The schema mapping is defined as a relation > x I', through which each
component of the global schema is mapped to a corresponding component
of a local schema. These mappings are established by identifying
semantically similar concepts (i.e. schema components) in the schemas
[139]. In our integration system SISSD, these mappings are used to

generate valid local queries. The schema mapping process is not

91

CHAPTER 5. THE MEDIATION PROCESS

completely automated in our system, since this process required a human
intervention to provide some information about how different elements

correspond to each other [14, 16].

In general, the major difficulty of integrating different data sources is the
establishment of mappings between the global schema and the local data
source schemas. We believe that the development of a schema mapping
should be based on human user (integrator) interaction. Since two similar
terms may refer to different concepts and thus may not have the same
meaning, only a skilled human user is able to guarantee the semantic
consistency of such a mapping. Consequently, the interactions of human
integrators are an essential part of the schema analysis and mapping

process [18].

The main approaches to establishing the mapping between each data
source schema and the global schema, are classified into two categories:
global-as-view (GAYV) and local-as-view (LAV) [67, 80, 103].

In the GAV approach, each item in the global schema is defined as a view
over the data source schemas. The GAV approach greatly facilitates query
reformulation as it simply becomes a view unfolding process. However
handling the addition or removal of a data source in a GAV approach is
difficult as it requires modification of the global schema to take into

account the changes.

In the LAYV approach, each item in each data source schema is defined as a
view over the global schema. Thus each individual data source must
provide a description of its schema in terms of the global schema, making
it very simple to add or remove data sources, while making the query

reformulation process harder.

Clearly both of these approaches have positive and negative consequences,

but LAYV is considered to be much more appropriate for large scale ad-hoc

92

CHAPTER 5. THE MEDIATION PROCESS

integration because of the low impact changes to the data sources have on
the system maintenance. Also a LAV approach provides a more flexible
environment which can meet users’ evolving and changing information
requirements across the disparate data sources available over the global
information infrastructure (Internet). It is better suited and scalable which
suits integrating a large number of autonomous read-only data sources
accessible over communication networks. Furthermore the LAV approach
provides a flexible environment able to accommodate continual change
and update of data source schemas. This makes it especially suitable for
XML documents on Web servers, since these remote documents are not
static and are often subject to frequent modification. It is also better able to
support a dynamic environment, since it allows data sources to be added to
or removed from the integration system without the need to restructure the
global schema. However, GAV is the preferred approach when the set of

data sources being integrated is known and stable [14, 85].

In SISSD, a local-as-view mapping description is used to map between
each data source schema and the global schema. This makes handling the
addition or removal of a data source easy. When generating the XMKB,
the mapping direction is changed from the original local-as-view to a
global-as-view, to make query rewriting straightforward. A global query
from a user is then translated into local queries on data sources by looking
up the corresponding paths in the XMKB. Hence the SISSD combines the
virtues of both the GAV and LAYV approaches.

In our approach, the designer specifies the global schema (master view),
where the basic notions in the application domain are described. The user
can alternatively choose the Schema Structure Definition (SSD) of any
data source which meets his/her requirements to be the master view, since
finding the correspondences among the schemas' elements often depends
on the application context. Hence, matching two elements depend on

deciding how they correspond to each other, i.e. if they are logically

93

CHAPTER 5. THE MEDIATION PROCESS

equivalent. This can be determined when they refer to the same real-world
entity, or can be inferred by performing specific operations. For example,
two elements that share the same name can refer to different real-world
entities. The reverse problem also often occurs in that two elements with
different names actually refer to the same real-world entity. For these
reasons and others, matching is often a subjective process, depending on
the application. Hence, a skilled integrator is often involved in the
matching process because of the need to interpret the terms' semantics and

resolve problems.

Consequently in this project, the process of constructing the global schema
is not fully automated. The application domain involves a set of data
sources that are associated with heterogeneous schemas. The integration is
achieved through a virtual global schema (master view) that characterizes
the underlying local data sources. We often use an assumption of paths
instead of elements, because the Schema Structure Definitions are trees

and each element is identified uniquely by its path in the tree.

For a node x in a tree structure, the path P to the node x is the sequence of
nodes from the root node of the tree to the node x itself. The path to the

first name of an author of a book could be:
P(first_name) = /book/author/full_name/first_name.

Thus to express a correspondence between a global path and a set of paths
in a data source schema, we need to study more deeply the semantics of
paths. We observe that each path considered can be described by a

sentence in natural language, e.g.:
The first name of the name of the author of a given book is John,

where John is the content of the element first-name on the path from the

root node to the first-name node. Hence, as the first step in our data

94

CHAPTER 5. THE MEDIATION PROCESS

integration system we need to match paths of the Schema Structure
Definitions of new data sources with paths of the global schema to

determine if they correspond.
Definition 5.1.1 (corresponding paths)

Two paths P; and P; correspond, if and only if, their respective
information capabilities are logically equivalent, i.e. ICap(P;) <> ICap(P>).

We denote the correspondence relation with =.

It is clear that building such a framework is hard to automate. Therefore,
any decision about the semantic correspondence of paths or sets of paths

will be based on an analysis by the integrator.

Using the corresponding paths definition (Definition 5.1.1) we match

paths in the global and data source schemas if they correspond. Thus if:

- P;is a set of paths in the global schema G.
- P;is a set of local data source schema paths.

- S;is a set of local data sources.

Then, a set of paths can be matched if they satisfy any one of the

following conditions:
1. If P;= Pj, such that (0 < i, j< n).

2. There is a function f: G(P;) — S(P;), where G(P)) = f (S(P))), such
that (0 < i, j, k < n).

3. There is a function g - S(P;) — G(P;), where S«(P;) = g(G(P;)), such
that (0 <1, j, k < n).

Hence, the equivalent paths in schemas are determined by analyzing the

information capabilities of each element path. Then, in order to resolve an

95

CHAPTER 5. THE MEDIATION PROCESS

identified type of heterogeneity conflict, functions f or g can be provided
to perform specific operations which match related elements despite the
conflict. These functions are implemented as a user-defined function
(UDF). In fact, a UDF definition is not provided during the global schema
construction stage, it is defined when developing the query translation
module. It is explicitly defined by the designer based on an analysis of

path equivalences.

In our example scenarios, the four Schema Structure Definitions use
different structures and our goal is to establish mappings between the
global schema elements and the local data sources’ SSD elements to
capture structural and semantic as well as terminological correspondences
between the schemas. The analysis of the data sources' elements produces
a set of correspondence assertions by using the above correspondence

conditions.

Correspondence 1 (C1): an analysis of the information capabilities of the
data sources presented in section 4.5, books Schema Structure Definition
(SSD;) (see Figure 4.4(b)), bib (SSD;) (see Figure 4.4(c)), SCMFMA
(SSD;) (see Figure 4.4(d)) and bookdata (SSD,) (see Figure 4.4(a)) shows
that they are logically equivalent. This is a case of naming conflicts in the
definitions. Therefore, in order to resolve this conflict we need to establish
a mapping between the global path and the corresponding path in the local
SSD which has the same meaning. The same number is specified for these
paths and must be unique as it identifies the path. The correspondence

assertion for these paths is as follows:
SSD,/bookstore ~ SSDy/bib ~ SSD3/book ~ SSDybookdata = global/book

Correspondence 2 (C2): the analysis of the information capability of
/book/editor/full name in the global schema (see Figure 5.13) shows that
this path corresponds to both

96

CHAPTER 5. THE MEDIATION PROCESS

/bib/book/editor/last and /bib/book/editor/first

in bib (SSD;). This is a case of structural conflicts in the definitions. In
order to resolve this conflict, a function f should be provided in which a
concatenate operation is performed which merges the first and the last
name elements to get the full name. Then, as in C1, a unique number must

be assigned to all of the correspondence paths. In this case the function is:

ASSD./bib/book/editor/last, SSD,/bib/book/editor/first) =
global/book/editor/full name

Correspondence 3 (C3): in this case, an author name of a book is
represented in the global schema as first-name and last-name while in the
books Schema Structure Definition (SSD,), the SCMFMA (SSD;3;) and the
bookdata (SSD,) it is represented as full-name. In order to resolve this type
of conflict, we need a unique number for these two paths in the global
schema which are the first-name path and the last-name path. Also, a
function f'is needed for SSD,, SSD; and SSD, which performs an operation
to split the full-name value so that it can answer a global query for an

author’s names. Hence, C3 is formulated as:

ASSD,;/bookstore/book/author) =~ f(SSD3y/scmfma/book/author) ~
SSD/bookdata/book/author/name) =
global/book/author/full_name/first_ name,
global/book/author/full_name/last_name

5.4 Creating XMKB

In order to prepare the local queries for a query posed against the global
schema (master view); the data sources relevant to a given query must be
identified. For this task, the XML Metadata Knowledge Base (XMKB) was
developed to hold the correspondences between the components of the

data sources. For each component of the master view, the objective is to

97

CHAPTER 5. THE MEDIATION PROCESS

record the set of components having the same meaning in the local data
source Schema Structure Definitions and to provide the discrepancy
resolution function if it is needed to match the information. The XMKB is
used in mediation between the global and local schemas to overcome
heterogeneity conflicts in the data sources' schemas and thus to assist the
Query Processor in mediating between user queries posed over the master
view of the distributed heterogeneous data sources, when it translates such
queries into sub-queries which suit a local data source, and to integrate the
results from the data sources of the query. In the following subsections,

we:

1. Describe the structure of the XMKB;

2. Present the generation process of the XMKB;

3. Describe the mechanism for generating index numbers for the
master view (global schema) elements; and

4. Describe the different types mapping between elements.
5.4.1 The Structure of XMKB

The XML Metadata Knowledge Base (XMKB) contains several types of
metadata about each data source. The first of these types of metadata is a
structural and semantic description of the contents of the data sources. It is
an XML document composed of two parts. The first part contains
information about data source names, types and locations. The second part
contains meta-information about the relationships of paths in the data
sources, and the function names for handling semantic and structural
discrepancies. In the SISSD integration system we have developed a
technique for semi-automatic creation of mappings between the mediated
schema of the data integration system and data sources. We have defined a
simple declarative mapping language called XML Metadata Knowledge
Base Mapping Language (XMKBML) for specifying the mapping

between the virtual master view elements and the Schema Structure

98

CHAPTER 5. THE MEDIATION PROCESS

Definitions (SSDs) elements of the data sources. The XMKBML mapping
specifications are written in XML. XMKBML, as a markup language in its
own right, provides a vocabulary to describe XMKB mappings. The two
main elements in this vocabulary are DS information and Med component.
The first one represents the data source’s information (names, types and
locations), while the second one represents the mapping itself it is created
by linking the global paths and the corresponding local paths. Figure 5.6
presents a sample of the XML Metadata Knowledge Base (XMKB) and
Figure 5.7 shows the syntax of the XMKBML, given as an XML schema
definition. The <DS_information> element contains data source names,
types and locations; its element has an attribute called number which holds
the number of data sources participating in the integration system (3 in the
example in Figure 5.6) and also has child elements called <DS Location>.
Each <DS Location> element contains the data source name, its type
(relational database or XML document) as an attribute value and the
location of the data source as an element value. This information is used
by the Query Processor to specify the type of sub-query to be generated
(SQL if the data source type is a relational database or XQuery if it is an
XML document) and the data source location that the system should

submit the generated sub-query to.

The <Med component> element in Figure 5.6 contains the path mappings
between the master view elements and the local data source elements, and
the function names for handling semantic and structural discrepancies. The
master view element paths are called <sowurce> elements, while the
corresponding element paths in the local data sources are called <target>
elements. The <source> elements in the XMKB document have an
attribute called path which contains the path of the master view elements.
These <source> elements have child elements called <target> which
contain the corresponding paths for the master view element paths in each

local data source, or null if there is no corresponding path. The <target>

99

CHAPTER 5. THE MEDIATION PROCESS

elements in the XMKB document have two attributes. The one is called
name and contains the name of the local data source, while the second is
called fun and contains the function name that is needed to resolve
semantic and structural discrepancies between the master view element
and the local data source element concerned, or null if there is no

discrepancy or no available function.

<’ml version="1.0* encoding"UTF-B' ?>
- <XMKB>
- <DSJnformation number=‘3">
<DS_Location narre*books.xml' type="XML document">http://www.w3schools.com/xqueryc/DS_Location>
<DS_tocation name="bib.xmr type="XML document“>C:\prototype\docc/DS_Location>
<DS_Location name"SCMFMA' type='Relational Database'>jdbc:orade:thin:®helot:1521:0rade9</D5_tocation>
</DSjnformation>
<Med_component>
- <source path=7bhook,>
<target name=‘books.xml' fun="Nuir>/bookstore/book</target>
ctarget name="bib.xmr fun='Nulli>/bib/book</target>
<target name="SCIVIFMA, fun='Null'>/semfma/book</target>
</source>
<source path=7hook/price,>
ctarget name='books.xml* fun="RateExdiange‘>/bookstore/book/price</target>
ctarget name”bib-xml" fun="RateExchange‘>/bib/book/pricec/target>
ctarget name="SCMFMA' fun=,Null*>Nulk/target>
</source>
csource path=7book/author'>
ctarget name="books.xmr fun='"Null">Nullc/target>
ctarget name=,bib.xmr fun="Null>/bib/book/authorc/target>
ctarget name="SCMFMA' fun="Nuir>Nullc/target>
</source>
csource path=7book/author/full_name'>
ctarget name="books.xmr fun=,Null,>Nullc/target>
ctarget name="bib.xml" fun="Nulll>Mullc/target>
ctarget name=,SCMFMA' fun=,Null">Null</target>
c/source>
csource path=7hook/author/full_name/first_name,>
ctarget name=*books.xml" fun="firstName">/bookstore/book/authorc/target>
ctarget name="bib.xmr fun=*Nulla>/bib/book/author/firstc/target>
ctarget name="SCMFMA' fun=firstName">/scmfma/book/authorc/target>
c/source>

Figure 5.6: A sample XMKB.

5.4.2 The generation process of the XMKB

The building of the XM KB is performed through a semi-automatic process.

XM KB is generated by using the mappings between the master view and

100

http://www.w3schools.com/xqueryc/DS_Location

CHAPTER 5. THE MEDIATION PROCESS

the local data source SSDs, and it includes the data source’s information
(names, types and locations), meta-information about the relationships of
paths (a path for each node starting from the root) in the data sources, and
function names for handling semantic and structural discrepancies. The
XMKB is built in a bottom-up fashion by extracting and merging

incrementally the metadata of the data sources.

<?xml version='1.0" encoding="UTF-8" standalone="yes‘ ?>
<xs; schema xmlins:xs=phttp://www.w3.0rg/2001/XMLSchem a“elemBntFormDefault="'qualified‘>
- <xs:element name=“XMKB'">
- <xs:complexType>
- <xs:sequence>
- <xs:element name=“DS_information">
- <xs:complexType>
- <xs:sequence>
- <xs:element name=*DS_Location" maxOccurs=“unbounded'">
- <xs: complexType mixed="true">
<xs: attribute name="name" type=‘xs:string“use="required" />
<xs:attribute name="type" type="xs:string“ use="required" />
</xs:complexType>
</xs:element>
</xs:sequence>
<xs: attribute names’number" type="xs:string*“ use="required"/>
</xs;complexType>
</xs:element>
- <xs: element name="Med_component">
- <xs;complexType>
- <xs:sequence>
- <xs:element name="source" maxOccurs="unbounded‘>
- <xs:complexType>
- <xs:sequence>
- <xs:element name="target* maxOccurs="unbounded">
- <xs: complexType mixed="true,>
<xs:attribute name="name" type=‘xs:string" use=‘required"/>
<xs:attribute name=Bun" type="xs:string" use="required" />
</xs:complexType>
</xs:element>
</xs:sequence>
<xs: attribute name="path*“ type=""xs:string“ use=‘required" />
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs: complexType>
</xs:element>
</xs:schema>

Figure 5.7: The XMKB XML schema definition.

The XMKB is an XML document that contains the mappings between
related heterogeneous schemas' paths and the required wuser-defined

functions. It can be expressed as follow:

101

http://www.w3.org/2001/XMLSchema%e2%80%9c

CHAPTER 5. THE MEDIATION PROCESS

XMKB = PATHS \OU FUNCTIONS;
PATHS: G(P;) — S{(Px);
FUNCTIONS: G(P;) — S{(UDF);

Where UDF = function-name | null, G(P)) is a set of global paths, S; is a set of

local sources, P, is a set of source paths. Such that: /, j, k €{/, ... n}.

It can be seen from this definition that the XMKB is expressed as a set of
mappings. A UDF (user-defined function) name is provided when a
function is explicitly defined by the designer to perform a specific
operation. The need to provide a UDF depends on the application context
and the kind of heterogeneity conflict to be resolved. The examples in the
next subsection show how such a function is built. The output of the
mediation process is an XML document containing the mapping of the

source’s corresponding paths, along with the function names (UDF).

Each data source (relational database or XML document) has its own SSD
in XML format constructed by the Meta-data Extractor (MDE). We
assume that elements in local data sources do not contain attributes. This
implies that data source SDDs can be represented as n-ary trees. In the
generation process of an XMKB, the basic idea is to establish the
mappings between schemas paths. These mappings capture the
heterogeneity of the various data sources. Our approach involves mapping
paths in the master view to (sets of) paths in the local data source SSDs,
though we often speak of elements instead of the paths that lead to these
elements. We match an element in the master view with elements in the
local data source SSDs, by generating an index number for each element
in the master view tree and then assigning these index numbers to the
element(s) with the same meaning in the local schema structure trees.
Hence elements with the same number have the same meaning. By
collecting together all elements with the same numbers, the source and

target paths can be generated automatically, and the XMKB can be easily

102

CHAPTER 5. THE MEDIATION PROCESS

constructed. An especially convenient special case is where an element in
the master view exactly matches one in a local SSD, in that its field has
the same meaning as the one in the master view. Elements in local SSDs
should not appear in the XMKB if their meaning does not relate to any

element in the master view.

Constructing the XMKB manually is an error prone and tedious job, so
machine support is highly desirable. Hence, we have developed a system
that automatically establishes and evolves an XMKB incrementally. This
system has been built to act as a tool which assists a meta-user (who does
the metadata integration) to describe mappings between the master view
and local data sources. This tool parses the master view to generate
automatically a unique index number for each element and parses local
SSDs to generate a path for each element, and produce a convenient GUI.
By using the GUI, index numbers are assigned to match local elements to
corresponding master elements and to specify the function names which
are needed to resolve any heterogeneity conflicts by performing specific
operations. These functions can be built-in or user-defined functions. The
XMKB is then generated from the mappings by combination over index
numbers. The algorithm in Figure 5.8 shows the main steps in the

generation process of the XMKB.

For example, Figure 5.9 presents part of a GUI for the local SSD shown in
Figure 5.10. The first column in Figure 5.9 is used to assign the unique
index numbers for master view elements to the equivalent elements in the
local SSD. Elements without an equivalent index number are not included
in the XMKB. The second column is used to specify the function names

which are needed for handling semantic and structural discrepancies.

This approach provides a flexible environment able to accommodate the
continual change and update of data source schemas, and is especially

suitable for XML documents on web servers since these remote

103

CHAPTER 5. THE MEDIATION PROCESS

documents are not static and are often subject to frequent update. The
SISSD gives flexibility to remove any data source schema from the
XMKB and then add this data source again with an updated or altered
schema without any other impact on the XMKB or the need to regenerate

it from scratch.

Algorithm: XMKB generation process
Input: master view, data sources Schema Structure Definitions
(SSDs)

Output: XML Metadata Knowledge Base (XMKB)
Stepl: generate a unique index number for each master view
element;
Step2: V Schema Structure Definitions (SSDs) do
generate path for each element;
assign the index number for the equivalent local
Schema Structure Definition (SSD) paths;
specify a UDF name if there is an operation required;
end do;
Step3: collect local paths with their global path, according to the
assigned Index numbers;
Step4: if the data source is the first one joining to the integration
system
then
establish an XMKB for capturing these mappings
information;
else
update an XMKB for capturing these mappings
information;

Figure 5.8: Algorithm for XMKB generation process.
5.4.3 Index number generation for the master view elements

The generated index numbers for the master view elements are used to
match local elements to corresponding master elements. We employ a
mechanism to generate such index numbers using JDOM technology. By
applying this mechanism, a unique index number is generated for each

element in the XML document whatever the nesting complexity of the

104

CHAPTER 5. THE MEDIATION PROCESS

document. This mechanism uses JDOM to read and parse the master view
and generate a tree structure for it. By using the tree structure, the root
element node of the master view is identified and the number 1 is assigned
to it. For each element in the master view including the root element, the
children of this element are obtained and then assigned a sequential
number starting from 1 for each child to represent the order of the children
for that parent. By combining the number given to each child with the
index number of its parent separated by dot (.) we produce the unique
index number of this child. For example, if the root element has four child
elements, the index number of the first child element will be 1.1 and the
index number of the second child element will be 1.2, and so on.
Furthermore, if the element with index number 1.2.1 has two children, the
index number for the first child will be 1.2.1.1 and the index number for
the second child will be 1.2.1.2. The algorithm in Figure 5.11 shows the

main steps in the generation of the index numbers for the master view.

Data Source Name: bib.xml
Data Source Location: C:\prototype\doc

Data Source Type: XML document

bib Add
book Add
title Add
author Add
last Add
first Add
editor Add
last Add
first Add
affiliation Add
publisher Add

price

Submit Clear Cancel

Figure 5.9: A GUIfor Schema Structure Definition shown in Figure 5.10.

105

CHAPTER 5. THE MEDIATION PROCESS

<?xml version=" 1. encoding="UTF-(0" 2>
—<schema_information>
—<data_source_information>
<name>bib.xmlI</name>
<location>C:\prototypeldoc</location>
<type>XML documentc/type>
</data_source_information>
—<structure>
—<element name="bib">
—<element name=“book™"™>
<element name="title™ />
- <element name="author”™>
<element name="last"™ /:>
<element name=.,first"” />
</element>
- <element name="editor">
<element name="last" />
<element name="first” />
<element name="affiliotion™ />
</element>
celement name="publisher™ />
<element name="price"™ />
c/element>
</element>
</structure>
</schema_information>

Figure 5.10: Schema Structure Definition (SSD) ofbib XML document.

Algorithm-. Index numbers generation process for master view elements

Input: master view

Output: unique index number for each master view element

Stepl: parse a given master view and generate a tree structure
for it;

Step2: identify root element;

Step3: assign number 1 for the root element;
Step4: V elements in the master view do
get all children ofthis element;
assign sequential number starting from 1 for each child;
combine the number given for each child with the
index number of its parent separated by dot;
end do;

Figure 5.11: Algorithm to generate index numbers.

106

CHAPTER 5. THE MEDIATION PROCESS

book

price | — author \ title editor

affiliation full name

162

fuH name
1.2.1

rst_name
12.1.1

Figure 5.12: The master view tree structure with index numbers.

Figure 5.12 shows the tree structure with the index numbers of the master

view shown in Figure 5.13.

<?xml version="1.0" encoding="UTF-0" ?>
- <element name=Mook">
<element name="price" />
* <element name="author">
<element name=Jull name">
<element name="first name" />

<element name="]last name" />
</element>
</element>
<element name="title" />
<element name="year" />
<element name="publisher" />
- <element name="editor">
<element name=Mffiliation" />
<element name="full name" />
</element>
</element>

Figure 5.13: The Master View.

107

CHAPTER 5. THE MEDIATION PROCESS

5.4.4 Mapping cases between elements

We can classify the cardinality of mapping cases as the number of paths
that correspond to each other, i.e. the number of participating paths in each
mapping. The mapping between the correspondence paths can be

expressed in the following form:
G(P;) — Si(Pr);

Where G(P,) is a set of global paths, S, is a set of local sources, Py is a set of local

paths, such that: i, j, k {1, ... n}.
The mapping cardinality can then be expressed as follows:

e One to one mapping: if there 3! P; € G(P;) corresponding to
3! Py € S(Py).

e One to N mapping: if there 3! P; € G(P;) corresponding to
3 (P> 1) € S(Po.

e N to one mapping: if there 3 (P; >1) € G(P;) corresponding to
3! Py € Si(Py).

Several mapping cases were investigated in which conflicts may occur
between the schema paths. For example, a local data source may represent
author names as full names, while the master view separates the first and
last names. In this case, the answer from the local data source must be split
up if a query is to retrieve the first name of the author. We introduce some

examples to describe these mapping cases.

One to N mapping: this case occurs when there is a component
represented as one path in G(P;), but as many paths in Sj(P¢). Hence, more

than one path in S{(P%) has the same index number. For example,

108

CHAPTER 5. THE MEDIATION PROCESS

Global schema .
bib schema (SS3)
book §
bib
book
5 editor @
letof// ’/” / \\\
Pl AN L. / o
e AN last P - i N
N ast . / >
7 . o ﬁ’s“‘- “@ affiliation
,/ N full_name R ®
s N e
affiliation @ e W s T -
e _

<source path="/book/editor/full_name">
<target name="books.xml" fun="Null">Null</target>
<target name="bib.xml" fun="Merge">/bib/book/editor/last,/bib/book/editor/first</target>
<target name="SCMFMA" fun="Null">Null</target>
<target name="bookdata.xml" fun=:"Null">Null</target>
</source>

Figure 5.14: One to N mapping example.

the master view (global schema) may represent an editor’s name as a full
name, while the local data source separates an editor’s first and last names.
To resolve this conflict a UDF is needed to combine the editor’s first and
the last name elements to get the full name. The editor full_name node in
our example global schema tree is an example of this case. Figure 5.14
shows such a mapping. Here, in the bib schema tree (SS,) the editor full
name information is represented by two separated paths
SS>(/bib/book/editor/last) for the last name of the editor and
SS>(/bib/book/editor/first) for the first name of the editor. At the same time,
this information is represented by one element in the global schema.
Hence, a UDF is provided, e.g. Merge(), which concatenates the first and
last name elements to get the full name. The number of arguments of this
function is equal to the number of paths that appear in the bib schema
mapping path which correspond to G(book/editor/full name). We note

there are two paths here:

109

CHAPTER 5. THE MEDIATION PROCESS

SS2(/bib/book/editor/last) and SS:(/bib/book/editor/first),

these in turn are concatenated to answer a query for the

G(P(book/editor/full _name)) information.

N to one mapping: this case occurs if two or more paths in G(P;)
correspond to one path in S{(Px). Hence, a path in S)(Px) will have more

than one index number and more than one function name. For example,

G(/book/author/full_name/first_name) and
G(book/author/full_name/last_name)

in the global schema correspond to
SS(/bookstore/book/author) in the books schema (SS)).
SS;(/scmfma/book/author) in the SCMFMA schema (SS3).
SS(/bookdata/book/author/name) in the bookdata schema (SSy).

In this case, UDF functions are needed to resolve the conflict, e.g.,
firstName() and lastName(). The task of these functions are to split the
author element value in SS;, the author element value in SS; and the name
element value in SS,, which contain the author full name into separate
first_ name and last_ name. Figure 5.15 shows that in the SS;, SS; and SS;
source mapping, the paths /bookstore/book/author, /scmfma/book/author
and /bookdata/book/author/name exist twice. Each one corresponds to
more than one different global path in G(P7). This case is a 2-to-One
mapping case, in that the firstName() and lastName() functions should be
associated with the corresponding global path specified by the designer as
an argument for these functions, e.g. the values of the first name and
last_name elements must be separated from the author element value in
SS;, the author element value in SS; and the name element value in SS;.

The returned value of the firstName() and lastName() functions depends

110

CHAPTER 5. THE MEDIATION PROCESS

on which global path expression invokes it. The implementation of this

function is explicitly coded by the designer.

[SCMFMA schema (SS3)

scmfma @

books schema (SS,)
bookstore @
i
{
book @
Ve -
4 - - -
s - -
s e
author s T

Global schema
book ?
author

full_name /‘

R ~
. el AN

’ “-,/ﬁrst_name

~

last_name
N

—

<source path="/book/author/full_name/first_name">

bookdata schema
(SS)
bookdata ’

<target name="books.xml" fun="firstName">/bookstore/book/author</target>
<target name="bib.xml" fun="Null">/bib/book/author/first</target>

<target name="SCMFMA" fun="firstName">/scmfma/book/author</target>

<target name="bookdata.xml" fun="firstName">/bookdata/book/suthor/name</target>

</source>
<source path="/book/author/full_name/last_name">

<target name="books.xml" fun="LastName">/bookstore/book/author</target>
<target name="bib.xml" fun="Null">/bib/book/author/last</target>

<target name="SCMFMA" fun="LastName">/scmfma/book/author</target>

<target name="bookdata.xml" fun="LastName">/bookdata/book/author/name</target>

</source>

Figure 5.15: N to one mapping example.

One to one mapping with an operation: this case occurs if one path in

G(P;) corresponds to one path in Si(Px) but they use different reference

systems. This is a granularity conflict, and a specific operation is required

to resolve a semantic difference among the two related elements. For

example, the price element in SS; uses dollar currency, while in the global

schema the price element is expressed in euro. To resolve this conflict

some conversion mechanism is required which translates between the

representations. In this example a UDF function is needed to perform an

exchange operation in order to get the price in euro, when a query is posed.

111

CHAPTER 5. THE MEDIATION PROCESS

Global schema books schema (SS;)
book bookstore
price (€) book
e price ($)

ToEuro() = mul(1.25)

<source path="/book/price">
<target name="books.xml" fun="ToEuro">/bookstore/book/price</target>

..................................

</source>

Figure 5.16: Example of one to one mapping with an operation.

Hence, the mapping between the G(/book/price) in the global schema and
the SS;(/bookstore/book/price) in the SS; schema should be provided with
the name of the UDF for the exchange currency operation, e.g. ToEuro().
The construction of this function is undertaken by the designer. This
function should read the price element value in SS; and return its

equivalent amount in euro. Figure 5.16 shows this mapping.

5.5 Summary

In this chapter we have proposed the mediation of distributed

heterogeneous structured and semi-structured data sources as a tool to

112

CHAPTER 5. THE MEDIATION PROCESS

overcome logical heterogeneity problems, which may occur when
integrating data sources. Also we have introduced the mediation process,
which has the following steps: (1) generate the Schema Structure
Definition (SSD); (2) extract SSD components and generate paths; (3)

establish the mappings and generate the mediation information (XMKB).

113

CHAPTER 6

The query translation process

In this chapter, we deal with the second important aspect of the thesis,
which is the Query Processor (QP). The Query Processor (QP) is an
integral part of the mediation layer of the SISSD system. A brief
introduction concerning the query translation task in data integration
systems is followed by a description of the internal architecture of the
Query Processor and its components. Then the query translation process is
introduced, followed by a brief description of the translation process of
XQuery FLWR expressions into SQL queries. Some examples of query

translations are given.
6.1 Introduction

The main purpose of building data integration systems is to facilitate
access to several data sources. The ability to correctly and efficiently
process the queries on the integrated data lies at the heart of the integration

system. The integration system must contain a module that uses source

114

CHAPTER 6. THE QUERY TRANSLATION PROCESS

descriptions when reformulating user queries which are posed in terms of
the composite global schema, into sub-queries that refer directly to the
schemas of the component data sources [104, 106]. The user does not pose
queries directly to the schema in which the data is stored, since one of the
principal goals of a data integration system is to free the user from having
to know about the specific data sources and interact with each one
separately. Instead, the user poses queries on the mediated schema. The
mediated schema is a set of virtual relations, in the sense that they are not

actually stored anywhere [80]. In general, this query processing involves:

1. Reading the user query and parsing it.

2. Using a query optimizer to produce an efficient query execution

plan.

3. Executing this plan on the physical data.

We are only concerned with query translation not query optimization. We
propose a method for query translation which targets distributed
heterogeneous structured data residing in relational databases and semi-
structured data held in well-formed XML documents, produced by Internet
applications or by human-coding. These XML documents can be XML
files on local hard drives or remote documents on Web servers. It is
important to develop a technique to seamlessly translate user queries over
the master view into sub-queries - called local queries - fitting the
appropriate participating data sources. This is achieved by exploiting the
mapping information between the master (composite) view and the
participating data source Schema Structure Definitions (SSDs) that are
defined in the generated XML Metadata Knowledge Base (XMKB) [14].

We have chosen XML to provide a unifying data model in the SISSD data
integration system, as this data model is general enough to accommodate

hierarchical and relational data sources [91]. We expect, that a data

115

CHAPTER 6. THE QUERY TRANSLATION PROCESS

integration query will typically be posed in XQuery, the standard XML
query language being developed by the W3C [5]. It is derived from Quilt,
an earlier XML query language designed by Jonathan Robie, IBM's Don
Chamberlin - co-inventor of SQL - and Daniela Florescu, a well-known
database researcher [40]. XQuery is designed to be a language in which
queries are concise and easily understood. It is also flexible enough to
query a broad spectrum of XML information sources, including both
databases and documents. It can be used to query XML data that has no
schema at all, or conforms to a W3C standard XML Schema or a

Document Type Definition (DTD).

XQuery is centered on the notion of expression; starting with constants
and variables, expressions can be nested and combined using arithmetic,
logical and list operators, navigation primitives, function calls, higher
order operators like sort, conditional expressions, element constructors, etc.
For navigating in a document, XQuery uses path expressions, whose
syntax is borrowed from the abbreviated syntax of XPath. The evaluation
of a path expression on an XML document returns a list of information
items, whose order is dictated by the order of elements within the

document (also called document order).

Our Query Processor (QP) supports FLWR (short for For-Let-Where-
Return) expressions. This subset of XQuery is used because it is powerful
and meets the requirements of our approach. The for-let clause makes
variables iterate over the result of an expression or binds variables to
arbitrary expressions, the where clause allows specification of restrictions
on the variables, and the rerurn clause can construct new XML elements
as output of the query. In general, an XQuery query consists of an optional
list of namespace definitions, followed by a list of function definitions,

followed by a single query expression.

116

CHAPTER 6. THE QUERY TRANSLATION PROCESS

6.2 The Query Processor architecture and Components

In this section, we present an overview of the Query Processor (QP)
architecture and summarize the functions of the main components. The
architecture is shown in Figure 6.1. It consists of five components:
XQuery Parser, XQuery Rewriter, Query Execution, XQuery-SQL
Translator, and Tagger. The core of the QP and the primary focus of this
chapter is the XQuery Rewriter. This component rewrites the user query
posed over the master view into sub-queries which fit each local data
source, by using the mapping information stored in the XMKB. The main

role played by each of the components in Figure 6.1 follows.

XQuery query Query Result
A

b
S N AN ;
1
XQuery Parser

XQlS
A XML Result

XML Metadata
Knowledge Base
{(XMKB)

y

XQuery Rewriter

[}
c
]
b
(]
c
-]
> |
3

Query Execution

r—-——————---u--

t
XQuery|query XGQuery query XQuearf query XML |Result
addressed to XML addressad to XML addra;ﬁsed
document 1 dacument n to reldtional
datab3se Tagger
r i
XQuery - SQL
Translator
y 4
XQuery Engine SQL} query Result{ Tuples
3 r
3 v
XML XML
document 1 document n RDB

Figure 6.1: The QP Architecture.

117

CHAPTER 6. THE QUERY TRANSLATION PROCESS

¢ XQuery Parser: parses a given XQuery FLWR expression in order
to check it for syntactic correctness and ensure that the query is
valid and conforms to the relevant master view. Also the parser
analyses the query to generate an XQuery Internal Structure (XQIS)
which contains the XML paths, variables, conditions and tags

present in the query, before passing it to the XQuery Rewriter.

¢ XQuery Rewriter: Takes the XQIS representation of a query,
consults the XMKB to obtain the local paths corresponding to the
master paths and function names for handling semantic and
structural discrepancies, then produces semantically equivalent
XQuery queries to fit each local data source. That is, wherever there
is a correspondence between the paths in the master view and local
Schema Structure Definitions (SSDs) concerned (otherwise the local

data source is ignored).

¢ Query Execution: Receives the rewritten XQuery queries, consults
the XMKB to determine each data source’s location and type
(relational database or XML document), then sends each local query
to its corresponding query engine, to execute the query and return

the results.

¢ XQuery-SQL Translator: Translates the XQIS representation of
an XQuery query addressed to a relational database into the SQL
query needed to locate the result, then hands the query over to the
relational database engine to execute it and return the result in

tabular format through the Tagger.

e Tagger: Adds the appropriate XML tags to the tabular SQL query

result to produce structured XML documents for return to the user.

118

CHAPTER 6. THE QUERY TRANSLATION PROCESS

6.3 The Query Translation process

The Query Processor (QP) component is an important part of the
mediation layer of the SISSD system. Its task is the translation of master
queries that are posed on the master view into a set of local queries fitting
each local data source. The QP gives flexibility to the user to choose the
master view that he/she wants to pose his/her query over and then
automatically selects the appropriate XMKB that will be used to process
any query posed over this master view. The master view provides the user
with the elements on which the query can be based. Hence, a user XQuery
query written in terms of the master view is rewritten into sub-queries
which can be executed locally. We introduce a method for the query
translation to produce queries for the distributed heterogeneous structured
data residing in relational databases and semi-structured data held in well-
formed XML documents. This method is based on the mapping
information between the master view and the participating data source
Schema Structure Definition (SSD), which are defined in the generated
XMKB. Once the XMKB is generated, user queries can be issued on the
master view and easily evaluated. Hence, when a query is posed against

the master view, the query translation process is accomplished as follows:

First, the given global query is parsed by the XQuery parser module to
generate the XQuery Internal Structure (XQIS) which contains the global
paths, variables, conditions and tag present in the XQuery query, which is
passed to the XQuery Rewriter. XMKB is read and parsed by JDOM to
identify the number of local data sources that participate in the integration

system, their location and type.

Second, for each element path in the master query, there should be an
attribute path of element <source> in XMKB. If there is a non-empty
value for the corresponding local elements (<targetr> elements in XMKB),

then the corresponding local paths and the function names (an attribute fun

119

CHAPTER 6. THE QUERY TRANSLATION PROCESS

of <target> element) is obtained from the XMKB. Then the global paths
in the master query are replaced by their corresponding local paths
(<target> elements) obtained from XMKB and the function names are
added if they are not null to generate a local query. It may happen that no
local queryv is generated when the content of a local path for a specific
local data source is null. This means the query cannot be applied to this
local data source. Also, if the content of the function name (an attribute
fun of <target> element) is null, this indicates the translation is

straightforward and no function is needed.

Third, the generated local XQuery for a relational database is converted

into SQL before passing it to the relational database engine for execution.

Finally, each (generated) local query is sent to the corresponding local

data source engine for local execution.

Using the descriptions of the SISSD Query Processor (QP) component
architecture (section 6.2) and the XML Metadata Knowledge Base
(XMKB) organization and contents (section 5.4.1), we are now in a
position to summarize the query translation (rewriting) process carried out
at the heart of our system by the QP module. We do so in algorithmic form
(see Figure 6.2). The algorithm is both conceptually simple and generally
applicable. We have successfully implemented and tested it on a variety of
relational and XML data source integration examples in our prototype
SISSD system.

6.4 XQuery-to-SQL translation process

The Query Processor (QP) uses XQuery FLWR expressions as the query
language of the SISSD data integration system. Using FLWR expressions
for querying a master view makes it easy to translate the sub-queries
directed at relational databases into SQL queries since syntactically,

FLWR expressions are similar to SQL select statements and have similar

120

CHAPTER 6. THE QUERY TRANSLATION PROCESS

capabilities, only they use path expressions instead of table and column

names.

Algorithm: Master query translation process

Input: Master View, Master XQuery query g, and XMKB
Output: local sub-queries g/, g2..., gn

Stepl: parse g,

Step2: get global paths g/, g2...., gn from Master View;

Step3: read XMKB;
Step4: identify the number of local data sources participating
in the integration system, their locations and types;

Step5: for each data source Si do
for each global path ge in ¢ do
if the corresponding local path /e not null then
get le;
if the function name fe not null then
get fe;
end if
else
no query generated for this local data source Si ;
end if
end for
replace g/ by /1 with f1, g2 by [2 with /2 ..., gn by In with
S, in qgi;
if data source type is relational database then
convert gi XQuery into SQL;
end for
Step6: execute the generated local query gi by sending it to the
corresponding local data source engine, and return the result, with
XML tags added to SQL tables.

Figure 6.2: Algorithm for the query translation process.

There is a conceptual difference between an XQuery FLWR expression's
concept of iterating in the evaluation of an expression e2 for successive
bindings of a variable $v (for $v in el return e2) and the set- or table-
oriented processing model of SQL. This is resolved by mapping for-bound
variables like $v into tables containing all bindings and translating
expressions independently of the variable scopes in which they appear.
The resulting SQL code implements iteration via equi-joins, a table

operation, which RDBMS engines execute efficiently [78].

121

CHAPTER 6. THE QUERY TRANSLATION PROCESS

The translation process of XQuery FLWR expression into an SQL query
starts by parsing the XQuery FLWR expression to identify its path
expressions. The path expression of the FOR clause is the root path
expression and the others are dependent path expressions. This translation

is achieved by:

e First: the relation(s) corresponding to the path expression(s) of the
FOR clause are identified and put in the FROM clause of the SQL

query.

e Second: if the XQuery FLWR expression contains a WHERE clause
then the condition is extracted and the path expression(s) in this
condition are identified and replaced by the corresponding
attribute(s), which are added to the WHERE clause of the SQL

query.

e Third: the attribute(s) corresponding to the path expression(s) in the
RETURN clause in the XQuery FLWR expression are identified and
added to the SELECT clause of the SQL query.

6.5 Query translation examples

In this section, we introduce some examples of global query translation.
These examples will be used in testing the system. We discussed in section
6.3 the technique of the Query Processor to seamlessly translate user
queries (XQuery queries) over the master view into sub-queries suited to
an appropriate data source, by exploiting the mapping information stored
in the XMKB. To illustrate this process, four cases are investigated in the
following subsections: one-to-one Mapping, function-involved in a one-to-

one Mapping, one-to-many Mapping, and many-to-one Mapping.

Figure 6.3 shows part of an XMKB which describes the data sources

participating in the integration system and their information (names, types

122

CHAPTER 6. THE QUERY TRANSLATION PROCESS

and locations). It shows that there are four data sources participating in the
integration system, one of them is a relational database and the other three
are XML documents (one of these XML documents is a remote document

on a web server and the other two are on the local hard drive).

<Nl version="1,0" encoding=BITF-8* 7>
- KB~
- <DS information number="4">
<DS_Location name-books.xm1ltype="XML document">http://www.w3schools.com/xquery</D§ Location>
<DS Location name="bib.xm!' type=aXML document™>C:lprototype\doc</DS Location>
<DS Location name-SCMEMA' type=Relational Databasetjdbe:oracle:thin:@helot:1521:0racle9</DS Location>
<DS Location name-'bookdata.xmI8type="XML document">C:\prototype\doc</DS Location>
<IDS_information>
Figure 6.3: Thepart of XMKB which maintain data sources information.

The Master view and the Schema Structure Definitions (SSDs) of the four
data sources (bookstore relational database, bib.xml, bookdata.xml and

books.xml) are shown in Figures 6.4 and 6.5.

<?xml version-1..0" ericoding="UTF-8" 7>
- <element narne="book">
<element name="price" />
- <element name-'author">
- <element name="full name ">
<element name-"first_nameM>
<element name-'last_name" />
</element>
</element>
<element name="title" />
<element name="year" />
<element name=*“publisher" />
- <element name="editor'">
<element name="affiliation" />
<element name="full namel/>
</element>
</element>

Figure 6.4: The Master View.

123

http://www.w3schools.com/xquery%3c/DS_Location

CHAPTER 6. THE QUERY TRANSLATION PROCESS

<)xml version-'1.0* encoding="UTF-B" 7>
- <schemalnformation>
- <data_source_information>
<name>bookdata.xmk/namB>

<xml version="1.0* encoding="UTF-§* 7>
- <schema_informstion>
- <data_sourcejnformation>

<name>books.xmk/name>) <location>C:\prototype\doc</location>
<location>http://www.w3schools.com/xquery</location> <type>XML document</type>
<type>XML document</type> </data_source_information>
</data_source_information> . <structure>
- <structure>) - <elament name="bookdata*>
- <ele-nent names’bookstore” - olement name="book*>
- <elemert name-'baok" <element name="title“/>
<elemant name="title* /> - <element name=*author">
<element name=lauthor, /> <element nam8="name’ />
<element name="year" /> <felement>
<etement natn8="pric8, /> <8lement name=|price" />
<[eiement> </element>
<[element> </element>
<[structure> <[structure>
</scherrajnformation> </schemalnfonration>

<?xml version='1.0" encoding=“UTF-8" 7> <xmi . N N .
- <schema_infomnation> 7xmi versllon—T.Q encoding="UTF-8' 7>
- <data_source_information> - <schema_ information>
<name>SCMFMA</name> - <data_source_informstiDn>
< ion>i </1 : > = T
location Jd.bc.oracle.thln.®helot.1521.0racle9 /location <name>bib.xml</name>
<type>Relational Database</type> < . A \doce</l .
</data_source information> ocation>C:\prototype\doc</location>
- <structure> <type>XML docum ent</type>

- <element name='"scmfma'> </data_sourcejnformation>
- <element name="article">
- - <structure>
<element nam3="title* /> i I
<element name=lauthorl/> - <eiement name="bib">
<element nams="year" /> - <element name='book">

X .
</element> <element name-'title' />

- <element narrto=book ™ <element name="author*>
<element name="isbn" />

celemant name="title“ /> <eiement name="last" />
<element name="author’ /> <element n3me=Tirst" />

<elemant nama="year" /> </element>

<8lemant nama="publishar”/> <ol ='editor">
calernent nama”*'edition’ /> element name="editor

</eiement> <element name="last" />

- otement name="publisher*> <element name="first" />
<eiement name="name"/>
<element nam8="address" />

<element name="affiliation" />

<element name=*post_code" /> <leiement>
<element nams=‘telephone’ /> <element name="publisher*/>
<eiement name="fax" /> <element name-'price" />
<elament nama=‘email' /> <Jelement>
</element>
</element> </element>
</structure> </structure>
</schema_information> </schema infermation>

Figure 6.5: Schema Structures ofthefour data sources.

6.5.1 One-to-one query example

QI: FOR $book IN document ("master.xml’)/book WHERE
Sbook/publisher = "Morgen Kaufmann” RETURN <book> {Sbook/title}
</book>

This is a simple mapping case. In this example, we want to list all the titles

published by Morgen Kaufmann publisher which are available in the four

data sources. The FOR-clause binds the variable $book to the Book XML

124

http://www.w3schools.com/xquery%3c/!ocation

CHAPTER 6. THE QUERY TRANSLATION PROCESS

element. The string which follows the IN keyword is a path expression.

This translation is performed by the following steps:

Step 1: QI is parsed and /book, $b00k/publisher and Sbhook/title are

detected as path expressions which represent global paths.

Step 2: The XMKB is invoked to identify the number of local data sources
participating in the integration system, their locations and types (relational
database or XML document). The XMKB contains complete path

mappings. Figure 6.6 shows parts of XM KB in which these paths appear.

Obviously, the /book, /book/publisher and book/title are global paths (i.e.
content of attribute path of <source> element) associated with its

corresponding local paths values (i.e. <farget> element value).

<7xml version='1.0" encoding="UTF-§8" 7>
- <XMKB>
- <DS_information number=‘4">
<DS _Location name-'books.xm1" type=“XM Ldocument">http://www.w3schools.com/xquery</DS location>
<DS Location name-'bib.xmr type="XML document">C:\prototype\doc</D5_Location>
<DS Location name-'SCMFMA” type="Relaticmal Database">jdbc:oracle:thin:@ helot:1521:0racle9</DS_Location>
<DS Location name="bookdata.xmr' type=“XML document">C:\prototype\doc</DS_Location>
</D5jnfbrmation>
- <Med_component>
- csource path="/book">
ctarget name="books.xm1' fun=*Null">/bookstore/book</target>
ctarget nam8="bib.xm!" fun=Null">/bib/book</target>
<target name="SCMFMA* fun="Null™/scm fma/book</target>
<target name="bookdata.xm!" fun="IMull'’>/bookdata/bookc/target>
</source>
- <source path=7book/title*>
<target name=‘books.xml!" fun="MuH">/bookstore/book/title</target>
<target name=‘bib.xmr fun="NuU*>/bib/book/title</target>
<target name="SCMFMA®* fun="Null'>/scm fm a/book/title</target>
<target name=,bookdata.xmr fun="ISIullB>/bookdata/book/title</target>
</source>
- <source path='/book/year">
ctarget name="books.xml* fun="Null">/bookstore/book/year</target>
ctarget name="bib.xm1* fun="NuH">IMullc/target>
ctarget name=“SCMFMA" fun="Null">/scm fma/book/yecarc/target>
ctarget name="bookdata.xmr fun="NullMNull</target>
c/source>
- csource path="/book/publisher">
ctarget name”books.xm1" fun="Null">Nullc/target>
ctarget name”bib.xm!* fun="Null">/bib/book/publisherc/target>
ctarget name="SCMFMA" fun="Null">/scmfma/bQok/publisherc/target>
ctarget name”bookdata.xm!’ fun="Nuir>Nulk/target>

c/source>

Figure 6.6: Someparts of XMKB used to translate QI.

125

http://www.w3schools.com/xquery%3c/DS_location

CHAPTER 6. THE QUERY TRANSLATION PROCESS

Step 3: a local query is generated for each <farget> element whose value
is not null. Hence, by navigating the XMKB, for each local query, the
global path is replaced by its corresponding local path obtained from the
XMKB. Ifthere is no corresponding local path, then no query is generated
for this data source, which means this global query cannot be applied to
this local data source. On the other hand, if the function representation is

null that means there is no function needed for this case.

Step 4: the generated local XQuery query for the relational database is

then converted into SQL. Figure 6.7 shows the generated local queries

from the global query Q I.

i£ QIIRV PROCESSOR
MASTER VIEW
*Temlversion'1 (T encodm<j='"UTF-8' ?>
~element name="book" »
~element name="price’/»
«element name=*authof»
«element name="Ajll_name'»
~element name=Ttrst_name’;>
«element name="last_nam07»
+/element*
+/element*
~element name=Titie'/»
~element name=*year7»
«element name="publisher*/»
~element name="editor*»
~element name="altlliatlon"\»
~element name=*(Ull_name>
+/element*
+/element*

ENTER YOUR XQUERY:
FOR IBook IN document fmastecxmO/book WHERE $book/publisher = Morgen Kauthiann* RETURN «book» (Jbook/titte) «/book>

THE RESULT:
Sub-Query Generate For XML document httpj/wwww3schoois com/kquery/books ami i
No matched Query Generated For This Dtad Source

Sub-Query Generate For XML document CAprototypetdortbibJeml is .
FOR Jbook IN documentC' ClprototrpeWoctbibjjnryblb/book WHERE tbooWpublisher="Morgen Kaufmann’ RETURN +book* ($bookWe) </book*

Sub-Query Generate For Relational Database |dbc:oracle:thin:@helot1521 :orade9VSCMFMA s :
Select scmfma book tite From scmfma book WHERE scmfrna book.publisher=Morgen Kaufrnann’

Sub-Query Generate For XML document C tprototypetdoctbookdatajcml Is
No matched Query Generated For This Dtad Source

Get Master View Generate local Sub Query Resat 1 Exit

Figure 6. 7: The generated local queriesfrom Q1I.

126

CHAPTER 6. THE QUERY TRANSLATION PROCESS

6.5.2 Function-involved one-to-one query example

Q2: FOR S8book IN document ("'master.xml")/book RETURN <book>
{8book/title, $hook/price} </book>

This is a function-involved one-to-one mapping case. The query will list
all the titles and prices available at the four data sources. The query is
parsed and /book, Sbook/title and $book/price are detected as path
expressions which represent global paths. The XM KB is invoked to obtain
the corresponding local path and the function name (if it not null) for each
global path. In each local query, the global path is replaced by its
corresponding local path with the function name if it is not null. Figure 6.8

shows parts of XM KB in which these paths appear.

- <source path='/book">
ctarget name="books.xml" Fun="Null>/bookstore/book</target>
ctarget name-'bib.xmr fun="Niull">/bib/bookc/target>
ctarget name="SCMFMA* fun="Null>/scm fm a/bookc/target>
ctarget name="bookdata.xmr fun="Null">/bookdata/bookc/target>
c¢/source>
- csource path=Ybook/price®
ctarget name=*books.xml" fun="RateExchange">/bookstore/book/pricec/target>
ctarget name=“bib.xmr fun="RateExchange">/bib/book/pricec/target>
ctarget name="SCMFIviA“ fun="Mull,>Mullc/target>
ctarget name="bookdata.xmr fun="IMull">/bookdata/book/pricec/target>
c/source>

- <source path="/book/title">
ctarget name="books.xml1fun="Nulll>/bookstore/book/title</target>
ctarget name-'bib.xmr fun="I\luH">/bib/book/titlec/target>
ctarget name="SCMFMA1fun="NuH">/scmfma/book/titlec/target>
ctarget name-'bookdata.xml" fun="Null>/bookdata/book/titlec/target>
c/source>

Figure 6.8: Someparts of XMKB used to translate Q2.

Figure 6.9 shows the results generated by local queries for global query

Q2.

6.5.3 One-to-many query example

Q3: FOR Sedi IN document ("master.xmT)/book WHERE S$edi/title =
“Database Systems” RETURN <editor> {Sedi/editor/full_ name}
</editor>

127

CHAPTER 6. THE QUERY TRANSLATION PROCESS

This is a more complex mapping case that can occur, when there is a path
in the global schema mapped to many paths in a local schema. Q3 finds
the editor’s full name for the book titled ‘Database Systems’. The
translation process is similar to the two previous cases and has the

following steps:

QUERY PROCESSOR
MASTERVIEW
*?xmlversion="1.(r encoding=*UTF-tr ?»
<elemenl name="book'»
~element name=*pnce7»
~element names'author™
~element name="full_name' >
~element name=Hr$t_name7*
~element name="1ast_name*/>
+/element*
+/element*
~element name=Ktle'/»
~element name="yea(7»
~element name="publi$her7»
~element name="editoi'»
~element name="a1Tlliation' /»
«element name=*fUit_name'/>
«/element*
«/element*

ENTER YOUR XQUERY:
FOR Ebook IN document f masterjcmO/book RETURN * book* (Ebook/title, Ebook/pnce} «/book>

THE RESULT:
Sub-Query Generate for XML document hflpJNkww.w3$chools.comkqueryJbooksjcml 1§ :
FOR Ebook IN documenlfhflpJNkww.w3schools.com/kquery/booksJcmrybookstore/book RETURN <book> { $book/We, RateE«change(Ebook/pnce) | ¢ /book*

Sub-Query Generate For XML document CAprotolypeVtocl&lbjcml is ;
FOR Ebook IN documenlfC AprolotypeWocU/lbwnn/bib/book RETURN «book> (Ebook/We, RateEkchange(Ebook/pnce) 5 «/book»

Sub-Query Generate For Relational Database |dbc:oradeThin;@helotl 521:0radeStSCMFMA is
No matched Query Generated For This Dtad Source

Sub-Query Generate For XML document C tprololypetdoclbookdata Jtml is :
FOR Ebook IN documentfCTprototypeWoctbookdata kmrybookdata/book RETURN «book> (Ebookititie, Ebook/pnce) </book»

Get Master View Generate Local Sub-Ouery Reset Exit

Figure 6.9: The generated local queriesfrom Q2.

Step 1: Q3 is parsed and /book, Sedi/title, and $edi/editor/full name are

detected as path expressions which represent global paths.

Step 2: The XMKB is invoked to obtain the corresponding local path and
function names for each global path. Figure 6.10 shows parts of XM KB in

which these paths appear.

128

CHAPTER 6. THE QUERY TRANSLATION PROCESS

- <source path=7book">
<tarqet name-'books.xml" fun="NuH">/bookstore/book</target>
<target name=,bib.xml* fun="Null">/bib/book</target>
ctarget name*SCMFMA" fun=Null,>/scm fma/book</target>
ctarget name="vookdata.xmr fun='Nuir>/bookdata/bookc/target>
c/source>

- csource path="/book/title">
ctarget name-"books.xml" fyn="Nulll>/bookstore/book/titlec/target>
ctarget name="bib.xml' fun="Nuir>/bib/book/titlec/target>
ctarget name="SCMFMA" fun="Nuir>/scmfma/book/titlec/target>
ctarget name="bookdata.xml“ fun="Null">/bookdata/book/titlec/target>
c/source>
- <source path=Tbook/editor*>
ctarget name="books.xm!’ fan=Null">Nulk/target>
ctarget name="bib.xm 1! fun=*NullR /bib/book/editor</t3rget>
ctarget name="SCMFMA"* fun="Mulll>ISIullc/target>
ctarget name”bookdata.xml' fun="Null>Maullc/target>
</source>
- csource path="/book/editor/affiliation,>
ctarget name="books.xmr fun="Nuir>\'ullc/target>
ctarget name="bib.xmls fun="Null">/bib/book/editor/affiliationc/target>
ctarget rtame="SCMFMA' fun=Null>N'ullc/target>
ctarget name="bookdata.xml" fun="Null >\ullc/target>
c/source>
- csource path=,/book/editor/full name,>
ctarget name-'books.xml" fun=*Null">Mull</target>
ctarget name="bib.xml' fun="Merge,>/bib/book/editor/lastf/bib/book/editor/first</target>
ctarget name="SCMFMA', fun=Nulll>Nulk/target>
ctarget name=thookdata.xml' fun="TMull>Nullc/target>
c/source>

Figure 6.10: Someparts ofXMKB used to translate Q3.

Step 3: a local query is generated for each <farget> element that
corresponds to a path expression detected in the global query paths. The
content of the <target> element corresponding to global path
$edi/editor/full name in the XM KB is null for three of the data sources.
This means this global query cannot be applied to these data sources.
However, for the fourth data source, the $edi/edit0r/full name global path
is mapped to the local paths Bib/book/editor/last and /bib/book/editor/first.
This means these paths have the same index number and correspond to the
path in the global schema. Also, the corresponding user-defined function

(UDF) content is Merge which is a UDF function name. Merge was

129

CHAPTER 6. THE QUERY TRANSLATION PROCESS

explicitly defined by the integrator as the results from these two paths
should be merged to give the appropriate answer for this query. Figure

6.1 1 shows the local queries generated from query Q3.

QUERY PROCESSCR 1 ¥
MASTERVIEW
<?mlversions O encodm™UTF-tT ?»
element name'book’ *
<eiement name="price'/>
‘ element name="authoi*>
‘ element name="tuli_name'>
*element name="tIrst_name’/»
*element name="last_name'/»
+(element*
+/element*
selementname=W/»
~element name="yea('/>
~element name="publisher'/>
~element names'editoi"™
*element name="atfiliabon' /»
«element name="MI_name'/>
+/element*
/element*

BtTER YOUR XQUERY:
FOR Jedi IN document fmasterjcmrybook WHERE tedi/Me = Database Systems' RETURN <edrtor* tJedi/editor/fuil_name) </editor»

THERESULT:
Sub-Query Generate For XML document http//wwww3schools com/rquery/books xml is
No matched Query Generated For This Dtad Source

Sub-Query Generate For XML document C tprototypetdoctbib ami is
FOR leot IN documentCCAprototypeidoc\bibxmrybib/book WHERE $edulMe="Database Systems' RETURN * editor* (Merge<$edi/editorflast, Jedi/editorflirsQ) ‘ /editor*

Sub-Oueiy Generate For Relational Database jdbc oracle.thin ghelotl 521 :oracle9ISCMFMA s :
matched Query Generated For This Dtad Source

Query Generate For XML document C tprototypetdoctoookdatajanl is .
matched Query Generated For This Dtad Source

Get Master View Generate Local Sub Query Reset Ex*

Figure 6.11: The generated local queriesfrom Q3.

6.5.4 Many-to-one query example

Q4: FOR Sauth IN document ("master.xml')/book where Sauth/title =
"Data Structures"” RETURN <author> {$Sauth/author/full name/first name,
Sauth/author/full name/last name} </author>

This query shows a case in which two or more paths of the global schema

correspond to one path in a local schema. The query lists the author's last

130

CHAPTER 6. THE QUERY TRANSLATION PROCESS

and first names for books with a title 'Data Structures'. The firstnam e and
last name elements in the global schema are mapped to one element in
some of the local schemas (see Figure 6.12), i.e. two element paths
correspond to one element path. Thus, to translate this query into terms of
the local sources, a specific UDF function is required to separate the full-

name into first-name and last-name. The steps in this translation are:

Step 1: Q4 is parsed to detect global path expressions (see Figure 6.12):

/book

Sauth/title

Sauth/author/full name/first name
Sauth/author/full name/last name

- <source path=Tbook/author">
ctarget nam8=books.xmr fun="Nuir>/bookstore/book/author</target>
ctarget name=,bib.xml* fun=BNull,>/bib/book/authorc/targei>
ctarget name"'SCMFMA' fun=,Null,>/scm fm a/book/authorc/target>
ctarget name='bookdata.xmP fun="Null,>/bookdata/book/authorc/target>
c/sourca>
- csource path=7book/author/full_name">
ctarget name-"books.xm!' fun="Nuir>/bookstore/book/authorc/target>
ctarget name="bib.xmr fun="Null>/bib/book/authorc/target>
ctarget name=*SCMFMA' fun=Null*>/scm fma/book/authorc/target>
ctarget name="'bookdata.xm!* fun="Null>/bookdata/book/authorc/target>
c/source>
- csource p3th=7book/author/full name/first name*>
ctarget name="books.xml' fun=first\ame'/bookstore/book/authorc/target>
ctarget name=‘bib.xm1' fun="ryull">/bib/book/author/firstc/target>
ctarget name="SCMFMA* fun=firstName'>/scm fma/book/authorc/target>
ctarget name="bookdata .xml" fun="irstName*>/bookdata/book/author/name</target>
c/source>
- csource path=7book/author/full_name/last_ name,>
ctarget name="books.xm!' fun="LastName">/bookstore/book/authorc/target>
ctarget name="bib.xmI* fun=Null,>/bib/book/author/lastc/target>
ctarget name="SCMFMA® fun=,LastName'>/scmfma/book/authorc/target>
ctarget name”bookdata.xml' fun="LastName,>/bookdata/book/author/namec/target>
c/source>

Figure 6.12: Someparts ofXMKB used to translate Q3.

Step 2: The XM KB is read to obtain the corresponding local path and

function name for each global path.

In this translation, no UDF function is required for the bib.xml data source
since its UDF value is null. W hile for the other three data sources, the
corresponding function values areJirstName and LastName indicating two

UDF functions are needed. Hence, the global paths

131

CHAPTER 6. THE QUERY TRANSLATION PROCESS

Sauth/author/full name/first name and Sauth/author/full name/last name
are mapped to the paths /bookstore/book/author in the books.xml data
source, /scmfma/book/author in the SCMFMA data source, and to
/bookdata/book/author/name in the bookdata.xm1l data source. Thus, one
local path holds two different index numbers, i.e. it corresponds to two
paths in the global schema. In addition, for each of these paths a UDF
function name was explicitly deFined by the designer. These functions are
firstName to return the first-name and LastName to return the last-name.
Hence, the full-name value is separated into First and last names in order to

give the appropriate answer for this query.

Step 3: a local query is generated for each <farget> element whose value
is not null. The local queries generated from query Q4 are shown in Figure

6.13.

QIIftY PROCESSOR - ld ﬂi
MASTER VEW
*m>imiversion=*i 0* encodm<F*UTF-8* ?»
celement nams="book*»
celement name=*ortce*/»
eelement name-'ardhor**
cclement name=*ftjll_name*»
selement name*"#tst_name*/»
selement name=*jast_neme7»
«/element*
«/element*
celement name=*Stie*/»
cclement name=*ireei'’/»
selement name=*poblisher*/*
celement name=*edltor*»
celement name=*afllltation*/*
selement name="ftiH_name*/»
/element
/element*

ENTER YOUR XOUERY:
FOR lauth INdocument ("master wnrybookwtiere lauth/trtle s "Data Structures' RETURN * author* (lauth/aiithorrtjll_name/llr$t_n8me. |aulh/author/rull_name/last_name) «/author»

THE RESULT:

Sub-Query Generate For XML document http //www w3schools.com/yqueryfbooks.aril 13 .

FOR lauth IN documentChttpdwww w3 schools com/tquery/books *mrybook«tore/book WHERE |auth/tltlec"Daia Structures' RETURN * author* (lirstNameflauth/author).
LastNametlautn/authoc)) «/author»

Sub uuery Generate For XML document C Iprototypeldoctblb «mlis :
FOR lauth IN documentfC IprotolypeldocUiib xmfybib/book WHERE lauthflrtle»'Data Structures* RETURN * author* {tauth/author/tlrst, lauth/author/lact} ‘/author*

Sub-Ouery Generate For Relational Database idbc oracle thin gheiot 1521 orade9tSCMFMA Is
Select flrt*lame(ecmfma book author). Le*Name(scmfma book author) From scmfma book WHERE scmltna book btle=T)ata Structures’

Sub-Ouery Generate For XML document C:\prototypeidoc\bookdata wni is:
FOR lauth IN documentfClprototypeldoclbookdata wnrybookdata/book WHERE tauth/MIb=*Oata Structures* RETURN *‘author* [tlrstNamedauth/authorfname),
LastName(leuth/author/name)) ‘/author*

Get Master View Genetate Local Sub Query

Figure 6.13: The generated local queries from Q4.

132

CHAPTER 7

The SISSD implementation

In this chapter, we present the implementation details of the SISSD system
architecture, and tools that were used - Java, JDOM API, JavaCC, and
XQuery as an XML query language.

7.1 Introduction

The architecture of our prototype system is shown in Figure 4.1. The main
objective of building a prototype SISSD is to demonstrate the feasibility of
creating the XML Metadata Knowledge Base (XMKB) by extracting and
merging incrementally the metadata of the data sources in the integration
system, and to show that XMKB can be used to assist the Query Processor
in mediating between user queries posed over the master view and the
distributed data residing in local data sources. The SISSD architecture has
three main components: the Metadata Extractor (MDE), the XML
Metadata Knowledge Base (XMKB) and the Query Processor (QP). The

system was created in three stages, one stage for each system component:

133

CHAPTER 7. THE SISSD IMPLEMENTATION

H v

Add Hew Data Source » Step 1. Generate index nundier for integrated schema elements

MetaOdta Extractor Knowledge Server Query Processor
Remove Data Source Step 2. Produce GUI tree for locaLvitema structure

Step 3. Generate Path Mappings

Step 4. Merge Path Mappings with KB

Figure 7.1: The main interface ofSISSD system.

VIVA. w-sw

1. Creating the MDE to extract metadata and build the Schema

Structure Definition (SSD) for each data source.

2. Creating the Schema Structure Definition (SSD) parser and the

associated mapping process to establish and evolve the

Metadata Knowledge Base (XM KB).

XML

3. Creating the QP to parse and translate user queries into sub-queries

which fit each local data source.

Appendix A shows the java code for the Main Interface of our SISSD

prototype system (shown in Figure 7.1).

134

CHAPTER 7. THE SISSD IMPLEMENTATION

7.2 metadata extracting process

This section covers the implementation of the Metadata Extractor (MDE)
and the associated Schema Structure Definition (SSD). The M DE interacts
with the data sources in the integration system to extract their metadata
and build the SSD for each participating data source. Figure 7.2 shows the

SSD ofthe bib XML document shown in Figure 7.3.

We have implemented the MDE wusing JDBC [82, 142] and JDOM
technology [6, 88, 89]. We use JDBC as the API to connect to a relational
database system. As a result, our implementation works with most
commercial relational database systems including DB2, Oracle and

Microsoft SQL Server, and on most hardware platforms.

<?xml version='T.O" encoding="UTF-B" ?>
- <schema_information>
- <data_source_information>
<name>bib.xmk/name>
<location>C:\prototype\doc</location>
<type>XML document</type>
</data_sourne_information>
- <structure>
- <element name="bib'">
- <element name="book">
<element name="title" />
- <element name="author'">
<element name="last" />
<element name="first" />
</element>
- <element name="editor">
<element name="last" />
<element name="first" />
<element name="affiliation" />
</element>
<element name=“publisher" />
<element name="price" />
</element>
</element>
</structure>
</schema_information>

Figure 7.2: SSD ofbib XML document.

135

CHAPTER 7. THE SISSD IMPLEMENTATION

We have developed JXC (Java XMUL Connectivity) (see Appendix C for
the code) to build the Schema Structure Definition (SSD) of an XML
document. This uses a JDOM (Java Document Object Model) interface to
connect to the XML document, and detect and extract its metadata buried

inside the data.

<?xml version=“l,0" encoding=aUTF-8'" ?>
- <bib>
- <book>
<title>DATA ON THE WEB</title>
- <author>
<last>ABITABUL</last>
<first>Serge</first>
</author>
- <editor>
<last>Buneman</last>
<first>Peter</first>
<affiliation>Cardiff School of Computer Science</affiliation>
</editor>
<publisher>Morgen Kaufmann</publisher>
<price>50</price>
</book>
- <book>
<title>XML IN 24 HOURS</title>
- <author>
<last>ASHBACHER</last>
<first>CHARLES</first>
</author>
- <editor>
<last>Suciu</last>
<first>Dan</first>
<affiliation>Cardiff University</affiliation>
</editor>
<publisher>SAMS</publisher>

<price>24</price>

</book>

</bib>

Figure 7.3: bib XML document.

The MDE accesses data sources without making any changes to them. As
the MDE requires no changes to the underlying data sources to access

their metadata, it preserves their local autonomy.

For relational databases the M DE employs JDBC to access the DB. The

MDE accepts the information necessary to establish a connection to

136

CHAPTER 7. THE SISSD IMPLEMENTATION

retrieve the metadata of the DBs schema and uses the XML Data Source
Definition Language (XDSDL) (section 5.1) to build the target Schema
Structure Definition (SSD) for that DB, and the necessary information for
access, such as the DB location (URL), where to save the SSD, and the

User ID and Password.

»JO]_Xj

Save Schema Structure In File Name bib_ssdxml

Database Name bookstore
Username scmfma
Password
Connect Clear Cancel

Figure 7.4: Relational DB connection parameters.

For XML documents the MDE employs JXC to make the access. The
MDE gets the information needed to establish a connection to a well-
formed XML document and retrieve the metadata of its schema where the
metadata are buried inside the data. It then uses XDSDL to build the target
SSD for the document, and the information for access, such as the

document location (URL), where to save the SSD, and the document name.

CONNECTION TO XML DOCUMENT

Save Schema Structure In File Name book sscLxml

XML Document Location http://www.w3schools.com/xquery
XML Document Name books.xml
Connect Clear Cancel

Figure 7.5: XML document connection parameters.

137

http://www.w3schools.com/xquery

CHAPTER 7. THE SISSD IMPLEMENTATION

Once the user has selected the type of data source (relational database or
XML document) that is being accessed, the SSD is built using a graphical
user interface, which allows the user to submit connection parameters. The
interfaces for a relational database and XML document connection
parameters are shown in Figure 7.4 and 7.5 respectively. Appendix B and
C contain the Java class used to extract and build the SSD for a relational

database and an XML document, respectively.

yilLLilm UM I—W

MetaOati Extractor Knowledge Sen«r Query Processor

1 book

11 price

12 author

121 fuflnam
12.1.1 first_name

12.12 last name
13 ftitle tadBER

14 vyear

1.5 publisher
1.6 editor
161 afffiwbon

1.62 full name

Index Number for Integrated Schema Elements Generate Successfully

Figure 7.6: Index numbers generatedfor master view shown in Figure 7. 1.
7.3 XMKB establishing and mapping process

This section covers implementation of the SSD parsing and mapping
process that is used to establish and evolve the XML Metadata Knowledge
Base (XM KB). It uses the algorithm described in Figure 5.8 to establish an
XMKB or to add a new data source to an existing XM KB. Four steps need

to be performed.

The first Step is generating automatically a unique index number for the
master view elements. The system uses the algorithm described in section

5.4.3 to generate these index numbers. The parsing process is performed

138

CHAPTER 7. THE SISSD IMPLEMENTATION

on the master view to extract and format the XML schema elements.
JDOM is used to read and parse the master view document. The JDOM
API reads XML documents in memory. JDOM is a tree-based, pure Java
API which parses, creates, or manipulates XML documents. It provides a
full document view with random access. Once a document has been
loaded into memory, whether by creating it from scratch or by parsing it
from a stream, it can be easily processed by JDOM. Thus the entire tree of
an XML document is available at any time. JDOM itself does not include
a parser. Instead it depends on a SAX parser [1 16], which can be used to

parse documents and build JDOM models from them.

<?xml version-T.O" encoding="UTF-8" 7>
- <element name="book">
<element name-'price" />
- <element name="author'>
- <element name="full_name">
<element name-'first_name" />
<element name="last_name" />
</element>
</element>
<element name-title" />
<element narne-'year" />
<element name="publisher" />
- <element name-"editor">
<element name-’affiliation" />
<element name-fulLname" />
</element>
</e!ement>

Figure 7.7: Master view.

JDOM provides Java specific XML functionality. A new builder is created
to build a JDOM tree. In this case, a SAXBuilder (SAX class) has been

used to build a JDOM tree of the form:

SAXBuilder builder = new SAXBuilder()

139

CHAPTER 7. THE SISSD IMPLEMENTATION

JDOM wuses the default validating parser; a constructor is available for
specifying an alternative validating parser. The JDOM code written to
parse the master view, produce its tree structure and then generate the
index numbers for its elements can be found in Appendix D. For example,
Figure 7.6 shows the index numbers generated for the master view

elements shown in Figure 7.7.

Data Source Name: bib.xml

Data Source Location: C:\prototype'«doc

Data Source Type: XML document
bib Add
book Add
title Add
author Add
last J
first Add
editor Add
last Add
first Add
affiliation Add
publisher Add 1
price Add

Submit Cancel

Figure 7.8: Part ofthe GUIfor SSD shown in Figure 7.2.

The second Step produces a convenient GUI for each local data source
SSD as an assistant tool for the mappings generation. The JDOM API is
used to read and parse the SSD. Once the SSD is parsed, the tree structure
model is formed as a JDOM document object which contains all the
components of the SSD. A GUI is generated based on the SSD tree
structure model. Part of the GUI is shown in Figure 7.8 for the SSD shown
in Figure 7.2. The first column shows the path hierarchy. The second

column is used to assign a unique index number for the equivalence paths,

140

CHAPTER 7. THE SISSD IMPLEMENTATION

while the third column is used to specify the function names which resolve
heterogeneity conflicts by performing specific operations. The GUI is
generated for each SSD to assign a unique index number to each path that
corresponds to an equivalent global path and also a user-defined function
name if it is needed. Figure 7.9 shows the interface for submitting index
numbers and function names for the mapping between a master view (on
the left of the figure) and the SSD shown in Figure 7.2. Appendix E
contains the Java code for producing a GUI and creating the assistant tool

for the mapping generation.

JaJxJ
MetaData Extractor Knowledge Server Query Processor
1 book Data Source Name: bib.xml
11 price Data Source Location: Cprotofypedoi
1.2 author Data Source Type: XML document
121 fid.name
12.1.1 tsst.name Mb L J Add
12.12 last.name book L B J Add
13 title title Its 1 Add
14 year author fr* " 1 Add
15 pubkslier last 11212 1 Add
16 editor hrst (]le Add
161 afTikdbon editor its . M
162 ful.name last iH 2 1 M.ig. Add Merge
hrst 1162 | Mg Add
afflation 16.1 Add
publisher Its Add
price m ... 1 Add P3tefxchange

Sﬂ.l cm Cme!

Indexes Numbers Assigned Successfully

oK

Figure 7.9: Interfacefor submitting index numbers.

The third step generates the mappings between the mater view paths and
the local SSD paths based on information submitted using the GUI. This is
done by collecting paths with the same index numbers which means they

are equivalent paths with the same meaning. Figure 7.10 shows a path

141

CHAPTER 7. THE SISSD IMPLEMENTATION

generated mapping. Appendix F has the Java code for generating the path

mapping.
fttK er Interface dg)g
MetaData Extractor Knowtedye Server Query Processor
Yoo,
Integrated Schema Element path Data Source Element path Mapping Function
book bib book
bookprice bib book.ptice RateExchange
bookautlror bib book author
bookauthorfuS_iume Nut
.book/aulhocfu | _nanteft st_natne bib book author f» st
book'authortuljiameEastname bill book author last
book title bibbookttle
bookyear Nul
bookpubksher bib book pubkslier
book editor b * booked*or
bookerStor affiliation bib bookiedd or .afrdtation
bookedttor full name bib tiookedrtor last, Merge

bib bookeditor first

Figure 7.10: Generatedpaths mapping.

The fourth Step combines data source information (name, type and
location) with the path mapping information into a mediation layer held in
the XML Metadata Knowledge Base (XMKB). Appendix G holds the java
code for merging the mapping information with the XMKB and, in
Appendix H, there is a sample of an XMKB document which contains the

mapping information for the four scenario data sources.

Remove Data Source)g
Remove Data Source bookjxm1
oks.xml
bib.xml
SCMEMA
bookdatnxml
Remove Cancel

Figure 7.11: Interfacefor removing data source.

142

CHAPTER 7. THE SISSD IMPLEMENTATION

A data source can be removed from the integration system through the
JDOM API using the interface shown in Figure 7.11. The API is used to
access the XM KB to obtain the numbers and names of the data sources
currently in the integration system and create this display. The user then
selects the data source to be removed from the XMKB and the system
removes all the local paths related to this data source from XM KB without
the need to regenerate the XM KB. Appendix I shows the Java class which

implements this action.

Ei' QUItV PRDCFSSTTR
MASTERVIEW
?2xml versior="t O encodings'UTF-tT ?»
elementname*'book"»
celement name='pnce"/»
cclement name="author»
selement name=*tu#_name'>
selementname”rsUume*/*
selement nam#="‘last_name'f»
+/element*
+/element*
cclement name="We'/>
selement name=*yeai’/»
sclement name="pubiishe/7*
celement name='"editor*»
selement names'affiBafton'/*
selement name="full_name>
+/element*

+/element*

ENTER YOUR XQUERY:
FOR tbook INdocument fmaster.xmO/book WHERE $bookfpublisher ='Morgen Kaufmann' RETURN «book* (Jbook/tibe) </book*

T tt RESULT:
ib-Ouery Ocenerate For XML document http Wrww w 3schools com/xquery/books xml is :

>matched Query Generated For This Dtad Source

jSub-Query Generate For XML document Ctprototypetdoctbib xml is
FOR tbook INdocument”Ctprototvpetdoctbib xmrybib/book WHERE Jbook/publisher="M orgen Kaufmann" RETURN +book* (Jbook/btle | «/book>

Sub-Query Generate For Relational Database jdbc oracle thm ghelot 1521.0rade9tSCMFM Als

Select scmftrta.book IMe From scmtma book WHERE scmfrna book.publi$her=Morgen Kauttnann'

ub-Query Oenerate For XML document C tprototypeldoctbookdatajonl is:

o matched Query Generated For This Dtad Source

Get Master View Generate Local Sub-Query Reset Extf

Figure 7.12: Example ofa global query translation.

7.4 Query parser and translation process

When a user formulates a query in terms of the master view (global

schema) using XQuery FLWR expressions, the query is parsed by the

143

CHAPTER 7. THE SISSD IMPLEMENTATION

query parser and the Query Processor generates the corresponding local
queries. The system uses the algorithm described in section 6.3 to rewrite
the user query as appropriate sub-queries for each local data source. For
the XML query parser process, we developed a simple parser called
XQuery FLWR Expression Parser (XFEP) which parses, lexically
analyses the query, and breaks the XQuery FLWR Expression query into
tokens which are classified. The XFEP parser is implemented in Java.

Figure 7.12 shows an example of global query translation.

XFEP parser is a parser generator and lexical analyzer generator for
processing an XQuery FLWR Expression query. The XFEP parser
generates error messages, if the XQuery FLWR Expression query input
does not conform to the syntactic rules of the language or to the format of

the master view (global schema).

When the XFEP parser checks the XQuery FLWR Expression query for
syntactic correctness to ensure that the query is valid and conforms to the
master view, the parser breaks the query into tokens according to the rules
of the language. The parser analyzes this sequence of tokens to determine
the structure of the query and to generate the XQuery Internal Structure
(XQIS) which contains the XML paths, variables, conditions and tags
present in the query. Once the XQIS is generated the Query Processor
(QP) consults the XMKB via the JDOM API to produce the corresponding
local queries for each local data source. Appendix J contains the Query

Processor and XFEP Parser code.

144

CHAPTER 8

Evaluation & Discussion

This chapter is an assessment of the project. We evaluate the functionality
and flexibility of the system, and then discuss the suitability of its
architecture and design. The XMKB construction process is then evaluated,
followed by a discussion of the suitability of XML as the canonical data

model in our integration system.
8.1 Evaluation

This evaluation is against the hypothesis and objectives in chapter 1.

The main emphasis of our work was to investigate the feasibility of
building by a bottom-up approach an XML Metadata Knowledge Base
(XMKB) to assist with the incorporation of heterogeneous distributed
structured data residing in relational databases and semi-structured data
held in well-formed XML documents into an integration system. This has

been achieved by developing:

145

CHAPTER 8. EVALUATION & DISCUSSION

1) The MDE to extract metadata which is used to build the SSD of the

data sources.

2) A tool for a meta-user (the metadata integrator) to describe

mappings between the master view and local SSD of data sources.

3) An XML Metadata Knowledge Base (XMKB) to store this mapping

information.

~ 4) An architecture of software components which builds this XMKB
and exploits its knowledge to assist the Query Processor to mediate
between user queries posed over the master view of its
heterogeneous data sources, and translate such queries into sub-

queries suited to each local data source.

The efficiency and effectiveness of the outcomes of our research are

measured in terms of the:

e Functionality of SISSD system with regard to its role as an
integration tool for a meta-user and its role in helping users

formulate queries and receive output.

e Flexibility of the SISSD system with regard to its suitability to a
dynamic environment, where data sources can be added or removed

without the need to restructure the master view.

e The architecture of the SISSD system with regard to its design and

role as an integration tool.

e Construction of the XMKB with regard to its structure and role as a

central repository which stores the mappings information.

e Choice of XML as the data model of our data integration system, and

the language to describe the SSD for the participating data sources.

146

CHAPTER 8. EVALUATION & DISCUSSION

e Capability of SISSD system with regard to handling different types

of heterogeneity that may exist between a set of data sources.
e Different uses of the system and the types of user who can use it.

8.1.1 Functionality of SISSD

The SISSD system is a valuable integration tool for a meta-user who does
the metadata integration of heterogeneous distributed structured data
residing in relational databases and semi-structured data held in well-
formed XML documents produced by internet applications — in that it
facilitates the efficient production of an XML Metadata Knowledge Base
(XMKB) from the extracted metadata of the participating data sources.
The generation of an XMKB is simplified in the SISSD system by its
graphical interface tool which guides a meta-user step by step through the
integration process via system windows that hide low-level and tedious
details while enabling the user to concentrate on the parameters that need
to be supplied at each stage to describe mappings between the master view
and local SSD data sources [16]. The XMKB contains the data source
information (name, type and location), meta-information about
relationships of paths among data sources, and function names for

handling semantic and structural discrepancies.

The SISSD system is valuable to a user at run time, where it allows system
users to formulate their queries against the master view. The queries are
then transformed into queries against the underlying local data sources. At
the heart of our system there is a Query processor (QP) module which
mediates user queries posed over the master view of the heterogeneous
data sources, by automatically translating such queries into sub-queries,
which are suited to each participating data source and which will retrieve
information relevant to the query. The QP consults and exploits the

mapping information stored in the XMKB at several stages, to obtain the

147

CHAPTER 8. EVALUATION & DISCUSSION

local paths corresponding to the master paths, to find the function names
for handling semantic and structural discrepancies, and then to produce

semantically equivalent queries to fit each local data source.

In the QP we have created a query translation (rewriting) algorithm which
is used by the QP module to achieve this task [14]. The algorithm is both
conceptually simple and generally applicable. We have successfully
implemented and tested it on a variety of relational and XML data source

integration examples in our prototype SISSD system.
8.1.2 Flexibility of SISSD system

The SISSD system is flexible in that its users can assemble virtual master
views suited to their requirement. For the same set of data sources users
may create different master views, depending on their interest. It also
preserves the local autonomy of the participating data sources, thus these
data sources can be joined to the system without rebuilding or

modification to the local data source to prepare it for the SISSD.

The SISSD uses a local-as-view approach to map between the master view
and the local schema structures. This approach is well-suited to a dynamic
environment, where data sources can be added or removed from the
system without the need for a major restructure of the master view. The
information required for the new sources is easily added, and if a source is
removed only the information related to it is deleted. Also, the LAV
approach provides a more flexible environment to meet users’ evolving
and changing information requirements across the disparate data sources
available over the global information infrastructure (Internet) as time
passes. It is better suited and scalable for integrating a large number of
autonomous read-only data sources accessible over communication
networks than integration systems created in traditional ways. Furthermore

the LAV approach provides a flexible environment able to accommodate

148

CHAPTER 8. EVALUATION & DISCUSSION

the continual change and update of data source schemas. This makes it
especially suitable for XML documents on Web servers since these remote
documents are not static and are often subject to frequent update. When
generating the XMKB, the mapping direction is changed from the original
local-as-view to global-as-view, to make its use in the query rewriting
stage straightforward. A master query from a user is translated into queries
to local data sources by looking up the corresponding paths in the XMKB.
Hence the SISSD combines both global-as-view and local-as-view

approaches taking advantage of the approach best suited to the task.

The SISSD also gives the flexibility to remove any data source schema
from the XMKB and then add this data source again with an updated or
altered schema without any other impact on the XMKB, or the need to

regenerate it from scratch every time.
8.1.3 Architecture of SISSD system

In a typical data integration system, users and component data sources are
scattered over a number of nodes of the computer network, and users are
provided with front-end interface(s) to access data stored in the different
back-end data sources. The design architecture of the SISSD system

(section 4.3) is based on a client-server model.

SISSD system has been developed as a collection of software modules.

They are:

e JXC (Java XML Connectivity) which detects and extracts the
Schema Structure Definition (SSD) of a well-formed XML

document.

e MDE (Metadata Extractor) which extracts the metadata of all data
sources and builds a Schema Structure Definition (SSD) in XML

form for each data source.

149

CHAPTER 8. EVALUATION & DISCUSSION

e MVP (Master View Parser) which parses the master view to
generate a tree structure and then automatically generates unique

index numbers for its elements.

e SSDP (Schema Structure Definition Parser) which parses the SSD
of the data source to generate a tree structure and then produces the
GUI for it.

e KS (Knowledge Server) which establishes, evolves and maintains
the XML Metadata Knowledge Base (XMKB).

e QP (Query Processor) which receives a user query over the master
view and automatically rewrites it into sub-queries, fitting each local

data source, and integrates the results of these sub-quires.

The SISSD system architecture is a collection of modules. This makes it
easy to develop and incorporate new modules to enhance the functionality
of the prototype. The meta-users (integrators) interact with the software
modules in the SISSD system through a GUI provided by the system. It
serves as a common front-end for all users. This enables them to interact
with the MDE, KS and QP modules.

8.1.4 Construction of the XMKB

The XMKB has been developed as a central repository which stores the
data source’s information (names, types and locations) and metadata
extracted from the data sources, in which the mappings between the
master view and Schema Structures Definition (SSD) of the data sources
are defined, so that this information can be used to support and improve
the integration of distributed heterogeneous structured data residing in
relational databases and semi-structured data held in well-formed XML
documents. The information stored in this XMKB is available to the

Query Processor (QP) to mediate between user queries posed over the

150

CHAPTER 8. EVALUATION & DISCUSSION

master view and the distributed heterogeneous data sources, to
automatically rewrite such queries into sub-queries, fitting each local data
source. This enables the Query Processor (QP) to reuse the knowledge
held in the XMKB for other user queries posed over the master view.
Typically, the knowledge held in the XMKB becomes available
incrementally, as new data sources join the integration system. This means
that the XMKB must be able to evolve. The XMKB has a simple, flexible
and easy to understand structure which allows it to be evolved and
modified incrementally as new data sources are added or removed from
the system, without the need to regenerate it from scratch. Its simple
structure makes it easy to construct it automatically. The XMKB is
however able to capture the structure and semantics of the schema
elements of the data sources so that this information can be used to resolve

semantic and structural discrepancies occurring in the data.

We have developed a software module to automatically generate a tool for
a meta-user (integrator) to define the semantic relationships between the
schema’s elements. However, these semantic relationships cannot be
determined precisely using an automatic procedure. Thus this task always

requires some human intervention and is semi- automatic for this reason.
8.1.5 Choice of XML as the data model

Many data models are based on some form of a labeled directed graph.
One of the most popular is the Object Exchange Model or the OEM model.
OEM is a simple, self-describing nested object model [124]. However, the
eXtensible Markup Language (XML) received significant attention from
the database community when the W3C recommended it as a standard for
data representation and exchange in the World Wide Web. XML has a
strong resemblance to semi-structured data models and could easily

represent structured, semi-structured and unstructured data. We consider

151

CHAPTER 8. EVALUATION & DISCUSSION

XML to be an ideal candidate to provide a unifying data model in data

integration systems for several reasons, namely:

1. XML is flexible and powerful enough to represent a wide variety of
data models without losing their semantics. This lossless semantic
conversion enables XML to represent structured, semi-structured
and unstructured sources equally well.

2. Unlike OEM models which lack a well-defined schema, XML can
represent schema information.

3. Its recommendation as a standard by W3C and its backing by
enterprises has resulted in rich tool support for XML.

4. Standardization efforts have led to XML query languages like XPath,
and XQuery appearing.

5. XML is not tied to any particular platform, architecture or

organization.

In the SISSD system we want to represent the structure of a data source
joining the integration system as this is crucial for data integration. We
have therefore defined a simple definition language called XML Data
Source Definition Language (XDSDL) which abstracts the structure of
schema elements to build the Schema Structure Definition (SSD) of the
data source. This language uses a simple grammar similar to the XML
Schema Language but omits information such as data types. Furthermore,
this language describes the actual structure of a data source not the
possible one as would be defined by a DTD and XML Schema Language
definition. We have developed a software module to automate the task of
building an SSD. Thus, by using this module a meta-user (integrator) can
construct a SSD semi-automatically, which captures the structure of a

given data source.

152

CHAPTER 8. EVALUATION & DISCUSSION

8.1.6 Handling different types of heterogeneity

In the SISSD system we are concerned with the higher level of
heterogeneity. This area can be further divided into three levels of
heterogeneity: syntactic heterogeneity, structural heterogeneity and
semantic heterogeneity. This classification of heterogeneity is one of
several classifications of the different types of higher level of
heterogeneity that may exist between a set of independently designed data
sources. We chose this classification to show that our SISSD system can
deal with different levels of heterogeneity (syntactic heterogeneity,
structural heterogeneity and semantic heterogeneity) and provide solutions
to the problems at these different levels of interoperability. The conflict
types identified in Figure 2.3 can be classified into one of these three
levels of heterogeneity. In this section we show how our SISSD system

can handle these levels of heterogeneities.

Syntactic heterogeneity refers to the encoding of the same concept in
different data models (or natural languages); in other words using a
different data model for storing similar data, examples are systems using a

relational and XML model.

Mainly, syntactic heterogeneity addresses the problem of using different
data models. Our approach is concerned with data sources that contain
relational data and XML data. This type of heterogeneity in our system
can be resolved by using a Common Data Model (CDM) and translating
all data source schemas to this common model using transformation rules
that explain how to translate schemas into the target data model. This task
is done by the Metadata Extractor (MDE) (see section 4.3) that interacts
with the data sources to extract the metadata and map the schemas to this
CDM. The chosen CDM must be such that it is expressive enough to

capture the meaning of all local data models. The XML data model is a

153

CHAPTER 8. EVALUATION & DISCUSSION

suitable CDM and has been used for this purpose in several projects [72,

113] and was chosen in this project also.

MelaData Extractor Knowledge Server Query Processor

1 book Data Source Name: books .xml
L1 price Data Source Location: http“aMrw.w3schooisxom.Kquery
12 author Data Source Type: XML document
121 fuljiame
1211 Aflrsl.ttattie bookstore "1 f d
1212 last_name book | 1 H 1
U it tile 1]] o A 1
14 year author 121.1,1212 | | H | Ad nrstNameJasWame
15 pubisher year 14] (HI Add 1
16 editor price 11] [Rit<Etthing« ¥ faa RateExchange
L6 affiliation
1.62 fu> name

)q x r »

| Subnxt dear Cancel
fli Indexes Numbers Assigned Successful y vuv.y--vavav. VY VYAY.Y YN YN VYV Y YT

OK

Figure 8.1: Example ofresolving structural heterogeneity.

Structural heterogeneity arises when the same concept is represented
differently, in other words when elements have the same meaning, are
modeled with the same data model, but structured and represented in a

different way.

In dealing with structural heterogeneity, the main difficulty is that the data
in different sources may be represented in different formats and in
incompatible ways. Therefore, we have to provide an appropriate
mechanism to handle this kind of heterogeneity conflict. It can happen for
example, when one source represents authors' names as full names, while
the global schema separates the first and last names. In this case, the name
from the local source must be separated into its parts, if a query is to

retrieve the first name of the author. Therefore, user-defined functions

154

CHAPTER 8. EVALUATION & DISCUSSION

(UDFs) are needed to perform the required operation for resolving this
case. The tasks of these functions are to split the author full name into
separate first and last name. Such a function is explicitly defined by the
designer. Figure 8.1 shows how our SISSD system resolved this conflict
which is identified in Figure 2.3 as Many-to-One Element Conflicts by
using index numbers generated automatically for the global schema
elements (see Figure 5.12 and 5.13) and using UDFs (e.g.firstName,
lastName) to extract the required information from the local data source
element. For example if the author name is John Smith, the firstName

function will extract John and the lastName function will extract Smith.

g

MetaO*a Extractor Knowledge Server Query Processor
1 book Data Source Name: bookdata.xml
1.1 price Data Source Location: (“prototype doc
12 author Data Source Type: XML document

121 (u#_name

1211 fwstjiame bookdata

12.12 last_name book

12 title title

14 ye* author

1.5 publisher name 12.1.1,12.12 UJtNjmt firstName, lasIName
1.6 editor cost

121 affiliation

122 fuB_name

Master View Element path

Data Source Element path

Mapping Function

book bookdatabook

book Twice bookdarabookcost

bookrauthor bookdata book/author

bookauthor full name Nul

book/authorlul_namebrst_name bookdata book/author name FwsIName
book'author futl nanie last name bookdata book'authorbame lastName

booktitle bookdata bookirtle
bookyear Nul
bookJpubksher Nul
bookeditor Nul
bookied*or 'affiliation Nul

bookeditor lull name

Figure 8.2: Example ofhandling synonym

155

conflict.

CHAPTER 8. EVALUATION & DISCUSSION

The distinction between semantic and structural heterogeneity is not
always clear-cut. Structural heterogeneity refers basically to the structure
of the data, while semantic heterogeneity refers to the represented

concepts’ interpretation.

Semantic heterogeneity refers to the fact that data represented in different
systems in similar ways may be subject to different interpretation. For
example, two schema elements in two local data sources can have the
same intended meaning, but different names. Thus, during integration, it
should be realized that these two elements actually refer to the same
concept. Alternatively, two schema elements in two data sources might be
named identically, while their intended meanings are incompatible. Hence,

these elements should be treated as different things during integration.

Semantic heterogeneity may exist in several forms; the most common
form of semantic heterogeneity is called naming conflicts which arise
when labels of schema elements are somewhat arbitrarily assigned by

different database designers. There are two types of naming conflicts:

1. Synonym: Two terms are called synonyms if they have the same
meaning but different representations. In a data integration system,
this problem occurs when two terms are used to represent the same
concept.

2. Homonym: homonyms occur when identical terms have different

meanings.

We use the mapping to overcome these conflicts. In the former case, the
integrator assigns different terms with the same meaning to the same
concept in the global schema. In the latter case, the integrator assigns the
same term with the different meaning to different concepts in the global
schema. Figure 8.2 shows how our SISSD system handles the synonym

conflict which is identified in Figure 2.3 by using index numbers

156

CHAPTER 8. EVALUATION & DISCUSSION

generated automatically for the global schema elements (see Figure 5.12
and 5.13) and assign these index numbers to the elements that are
synonyms in the local schema structures. For example, in Figure 8.2 the
index number (1.1) of element price in the global schema is assigned to

the element cost in the local schema.
8.1.7 Ways of using the system

Different users have different reasons for integrating data sources, and
even the same user might need to integrate the same data in a variety of
ways and/or include different services to satisfy different tasks in an
organization. Thus a tool that supports the flexible integration of pre-
existing structured and semi-structured data sources needs to allow
different views and reasons for the integration to be handled. The primary
motivation for most of the work in this area is that many applications
require processing of data that belongs to structured and semi-structured
data sources. For instance, an order processing application might need to
handle inventory information in a relational database as well as purchase

orders received as (semi-structured) XML documents [126].

Our system enables the users to link data from different structured and
semi-structured data sources flexibly. It provides a tool that can be used by
the integrator or the end user to do the metadata integration. Furthermore,
it gives the user who does the metadata integration the option to choose
which master view to use so that his/her current requirements are met. It
also allows choice of the data sources that will be integrated and in which
order the integration will be performed. This also gives this user the

possibility to change and edit a master view.
The system can be used in two different ways:

1. In a centralized approach, when one person is the integrator (skilled

in IT) constructs the master view that characterizes the underlying

157

CHAPTER 8. EVALUATION & DISCUSSION

data sources, then integrates the participating schema structures as
they are presented for integration and creates the UDF to resolve the
heterogeneity conflicts by performing specific operations. This
approach is tightly-coupled in that data is accessed using a global
view(s) created and managed by the integrator(s). It is appropriate
when there are a small number of data sources which are permanent

and their schema structures do not change frequently.

2. In a customized approach, when several users are integrators, each
chooses a view as the initial master view that meets the
requirements and decides on which schemas to integrate and in what
order. However, the user in this case will provide a library of
functions to locate the appropriate UDF to resolve conflicts. This
approach is loosely-coupled, in that it is the user’s responsibility to
create and maintain the integration regime. This approach provides a
more flexible environment which meets the users’ evolving and
changing information requirements across the disparate data sources
available over the global information infrastructure (Internet). It is
better suited to the integration of a large number of autonomous read
only data sources accessible over communication networks,

especially when these data sources are subject to continual change.
8.2 Discussion

One of several trends that have significant impact on the use of database
technology is XML. The power of XML as a description language lies in
the fact that an XML document contains a self-description of
hierarchically structured data, and it has the ability to associate markup
terms with data elements (see section 8.1.5). These markup terms serve as
metadata allowing a formalized description of the content and structure of

the accompanying data. XML can subsume HTML and its successor

158

CHAPTER 8. EVALUATION & DISCUSSION

XHTML as the communication language for the Web and it provides a

structure in a widely accepted format.

As the importance of XML has increased, the W3C has introduced the
XML Schema language to replace the DTD (Document Type Definition)
grammar language. The DTD mechanism has numerous limitations. A
basic and major limitation is that a DTD is not a valid XML document.
Therefore it must be handled by XML parsing tools in a special way.
Furthermore, DTDs have a very limited capability for specifying data
types. Also, DTDs are quite limited in their ability to constrain the
structure and content of XML documents. In addition, they cannot handle
namespace conflicts within XML structures or describe complex
relationships among documents or elements. They also are not modular,

and can not derive new type definitions based on an existing definition.

An XML Schema Definition (XSD) is an XML-based grammar declaration
for XML documents. The motivation for using and developing an XML
Schema was dissatisfaction with DTDs. It was developed in response to the
limitations of the DTD mechanism, and was a tremendous advance over
DTDs. XML Schema allows very precise definition for both simple and

complex data types, and allows derivation of new type definitions.

The definition language that the SISSD system used to build the Schema
Structure Definition (SSD) is similar to the XML Schema Language but
omits information such as data types. This language is the XDSDL, which
is used in our system to abstract the schema structure of the data sources
joining the integration system. The XDSDL avoids the complexity of the
XML Schema Language by using a simple notation to describe the

structure of the schema elements.

For the foreseeable future, a great quantity of data will continue to be

stored in relational database systems because of the reliability, scalability,

159

CHAPTER 8. EVALUATION & DISCUSSION

tools and performance associated with these systems [68, 133].
Additionally, much interesting and useful data can be published in well-
formed XML documents by Web-based applications and Web services or

by human-coding [102].

While the availability of data in XML format reduces the need to focus on
wrappers to make them interoperable, the challenges of integrating
distributed heterogeneous structured data residing in relational databases
and semi-structured data held in well-formed XML documents produced
by internet applications still remains. Querying such heterogeneous
distributed data sources is not easy for several reasons. The first difficulty
comes from the distribution of the data. The second difficulty is associated
with its heterogeneity, which occurs at different levels. The problem of the
discrepancies between data sources is important. Usually, when the
contents of data sources are related in some way, they will show diversity
in many aspects. Resolving the differences between the data sources in
these situations is a crucial issue. The logical heterogeneity is one of the
more complicated issues that should be taken into consideration in
building a data integration system. It comes from different understanding
and modeling of the same concept. Thus, the construction of a data
integration system must handle mechanisms for resolving conflicts when
attributing meaning to the data (semantic conflicts), referencing data
(naming conflicts), and storing data (structural conflicts). Hence, distinct
data sources may use different names to refer to the same concept and may

use the same name to refer to different concepts in these conflicts.

Since finding the correspondences between the schemas' elements often
depend on the application context this is a basic issue. The matching of
two elements requires a decision as to whether they correspond to each
other in some way, i.e. are they logically equivalent? Therefore, any
decision about the semantic correspondence of sets of elements requires an

in-depth analysis by an integrator. In this area we use paths instead of

160

CHAPTER 8. EVALUATION & DISCUSSION

elements, because the SSDs are trees and each element is identified

uniquely by its path in the tree.

Consequently, as the base step in constructing the XMKB, we matched a
set of paths of the schemas if they were related to each other in some way.
To express a correspondence between a global path and a set of paths in a
data source schema structure, we conducted an in-depth study of the

semantics of the paths.

This work builds on the concept of a mediated system. The first
contribution of the thesis is a mechanism for the mediation of
heterogeneous distributed structured and semi-structured data sources. A
mediation layer was introduced to maintain the mappings among global
and local schemas. Such a layer was developed as an assistant tool to
facilitate the detection, analysis and resolution of schema discrepancies
and to improve the solution of relevant data integration issues. It can be
used as an assisting tool to minimize the designer effort in building
structured and semi-structured data integration systems. We argue that our
approach can be used as a semi-automatic tool for mediation of

heterogeneous distributed structured and semi-structured data sources.

Another difficulty which impedes data integration systems is the query
translation process. This is an important problem in the design of a data
integration system, in that the system should be able to reformulate the
query posed in terms of the global schema into a set of queries suited to
the data sources. Thus, the second contribution of the thesis was the
provision of a mechanism that allows a user to transparently query
structured and semi-structured data sources in a conceptual way (semantic
name) instead of by knowledge of its local structure. This reduces the
semantic problem for a user during query formulation, and significantly
simplifies the task of querying multiple heterogeneous structured and

semi-structured data sources. In this way, the system becomes responsible

161

CHAPTER 8. EVALUATION & DISCUSSION

for translating global user queries into local queries. The thesis
demonstrated an algorithm for the query translation process which was
capable of generating a local query for each data source corresponding to
part of the global query. During the process of generating local queries for
the participating data sources, many structural and semantic conflicts are

resolved by our system.

With regard to the mapping specification, there are two basic approaches
that have been used to specify the mapping between the data sources and
the global schema. These are the GAV and LAV approaches. Our
approach is an attempt to combine features from both these approaches.
The GAYV approach requires that the global schema is expressed in terms
of the data sources. This means, that for every element of the global
schema, a view over the data sources is associated, which is specified in
terms of data residing in the data sources. In other words, the global

schema is defined as a view over the local data sources' schemas.

The LAV approach requires the global schema to be specified
independently from the data sources. In turn, the data sources are defined as
views over the global schema. Thus each data source is described in terms
of the global schema elements. The LAV approach gives better support to a
dynamic environment than GAYV, where data sources can be added to the

integration system without the need to restructure the global schema.

We classify our approach as a structural approach that can be used as a
tool for structured and semi-structured data sources mediation and
querying. It follows LAYV in its way of describing the data sources, i.e. all
the data sources' elements are mapped by mediation. In other words, it is
not restricted to a subset of data sources involved, as is the case in GAV.
Thus, the resulting LAV description is translated into GAV when
generating the mappings between the global paths and local schemas'

paths by the query translation process. Hence our approach combines the

162

CHAPTER 8. EVALUATION & DISCUSSION

virtues of both GAV and LAV approaches. It follows the GAV approach
in respect of query reformulation. This advantage facilitates the query
translation task, in that it usually does nothing more than change and
formula substitution. The biggest problem in the GAV approach is that it
makes it complicated to implement changes in the global schema when
there are changes in the schemas of the data sources. The LAV approach is
better able to support a dynamic environment, where data sources can be
added or removed from the integration system without the need to

restructure the global schema.

As a final word, the benefit of our approach is that we can automate the
process of construction of an XML Metadata Knowledge Base (XMKB)
which can assist the Query Processor (QP) in querying a multiplicity of
distributed heterogeneous structured data residing in relational databases
and semi-structured data held in well-formed XML documents produced
by internet applications or by human code. We have developed a prototype
system to demonstrate that the ideas explored in the thesis are sound and
practical, and convenient from a user standpoint. Our approach should be
generic enough to easily incorporate a large number of relational databases
and XML data sources from the same domain. We have shown our
approach is feasible and is successful with real data in different domains
and have shown that the approach is domain independent. This domain
independency is one of the key points of our approach. A limitation of our
approach is that it is not scalable with large schemas since they will
involve considerable effort to do mappings by assigning a unique index
number to each element and specifying conversion function names to
resolve structural and semantic conflicts. However this is not a major
limitation for our target domain as most of the data sources have small or

medium schemas which are compatible with our approach.

163

CHAPTER 9

Summary, conclusion and future work

This chapter concludes the thesis by briefly summarizing the work,
presenting the conclusions of the thesis, and addressing future directions

for further development.
9.1 Thesis summary

We have presented an approach to integrate and query distributed
heterogeneous structured data residing in relational databases and semi-
structured data held in well-formed XML documents. A general overview
of the field of distributed database systems was given with an overview of
the types of heterogeneous distributed databases. The basic issues
concerning data integration systems and their architectures were presented
using a classification of the different aspects, concepts and approaches.

After that we presented an overview of XML and its related technologies

164

CHAPTER 9. SUMMARY, CONCLUSION AND FUTURE WORK

followed by a description of our approach to achieving a distributed
system. Two important problems were addressed in this work. The first
was establishing a Knowledge Base to hold descriptions of the mappings
between the integrated view (master view) and the participating data
sources which are used to resolve the logical heterogeneity present in the
distributed local data sources’ schemas. The second was the query
translation process. These problems were concerned with building a
structured and semi- structured data integration systems, in which a global

schema was provided over the heterogonous data sources.

The integration architecture we adopted is based on a mediator
architecture. The prototype system, called SISSD, performed mappings
between the global schema and local data source schemas, by creating an
XML Metadata Knowledge Base (XMKB), which is used to generate local
queries. The data sources are described in XDSDL, a language created in

the project. The mediation layer was developed to:

1. Establish appropriate mappings between the global schema and the
schemas of the local data sources.

2. Enable querying of local data sources in terms of the global schema.

The challenge was to generate a mapping for the correspondence between
schema elements. This was addressed by developing a methodology for
extracting and formalizing element paths of the global and local schemas.
A mapping process was then developed to generate the correspondences
between paths. This was achieved through a semi-automatic process that
generated local and global paths and their relationships. This created the
XMKB module used in mediation to overcome heterogeneity problems
between data sources. The XMKB module was used to hold the
correspondence between schema paths. For each path of the global schema,
the objective was to link it with the set of local paths that have the same

meaning and with a user-defined, function if needed, to perform specific

165

CHAPTER 9. SUMMARY, CONCLUSION AND FUTURE WORK

operations that are defined explicitly by the designer. These user-defined
functions are used to overcome differences in representation and

granularity.

The query translator, which is an integral part of the mediation layer, was
developed to translate a user query posed over the global schema into local
queries. It uses the mapping information defined in the XMKB, to obtain
local queries corresponding to the query issued against the global schema.
The basic idea was that a query posed to the integration system, called a
global query, would be automatically rewritten to sub-queries called local
queries, appropriate to each local data source’s required format, using the
information stored in XMKB. This task was accomplished by the query
translator module. The XMKB contains the schema paths and functions to
be applied when creating a query for a local data source. The paths in a
global query are parsed by the query parser and replaced by the
corresponding paths for each target local data source, by consulting the
XMKB to see if there are such paths for the user query. If not, a null query
is generated for the corresponding path in the local query, which means
that this query cannot be applied to that local data source. Each local query
generated is sent to its corresponding local data source, which executes the
query and returns its result. The set of results are processed to get the full

answer to the global query.

A simple prototype implementation of the system architecture was created
using: Java 2, JDOM API, and the JavaCC. We also used FLWR
expressions (For-Let-Where-Return) as the XML query language. This is a
subset of XQuery which supports the basic requirements of our approach,
particularly the uniform querying of heterogeneous distributed structured
(relational database) and semi-structured (well-formed XML document)

data sources.

166

CHAPTER 9. SUMMARY, CONCLUSION AND FUTURE WORK

9.2 Conclusions

This work has identified a new approach to structured and semi-structured
data integration. We have addressed the logical heterogeneity problem
which occurs between the schemas. This problem was solved by creating a
mechanism in which the correspondence among schema elements is
expressed as a set of mappings and by using UDFs to overcome conflicts
where a transformation is required. This is described in section 2.4 and 4.4.
These mappings are a powerful tool for expressing the correspondences
between schema elements and capturing the heterogeneity of the various
data sources. However, finding the correspondences between the schema
elements will depend on the application context. Hence, matching two
elements is a basic issue and requires a decision as to whether they
correspond to each other in some way, e.g. are they logically equivalent.
Any decision about the semantic correspondence of sets of element

requires a deep analysis by a skilled integrator.

We have introduced an approach for heterogeneous structured and semi-
structured data source mediation. This approach produced a system
capable of processing queries across a set of heterogeneous distributed
structured and semi-structured data sources. We developed a prototype
system to demonstrate that the ideas explored in the thesis are sound and
practical, and convenient from a user standpoint. The resulting system can
easily incorporate a reasonable number of relational databases and XML
data sources from the same domain. Most of the existing data integration
systems in this area work with XML documents that use DTD (Document
Type Definition) or XML Schema language to describe the schemas of the
participating heterogeneous XML data sources in the data integration
system. We have investigated and used XML documents which have no
referenced DTD or XML schema, instead the schema metadata are buried
inside the document data. However, XML documents which have a

referenced DTD or XML schema can also be handling by bypassing the

167

CHAPTER 9. SUMMARY, CONCLUSION AND FUTURE WORK

DTD or the XML schema. This thesis has shown that querying a set of
distributed heterogeneous structured and semi-structured data sources of

this form is possible using our approach.

Thus, this work has developed a method of interoperation between
structured and semi-structured data sources. This interoperation is
achieved by generating mappings between global and local schemas, and
resolving naming, structural and semantic conflicts which may occur
between the schemas. Also we have developed a method for translating
queries in terms of a global schema into sub-queries in terms of local
schemas by exploiting the mapping information stored in the XMKB. The
novelty of this research compared with the work done previously in this
area and reviewed in chapter 2 is the use of a knowledge base approach
and the use of UDFs to overcome naming, structural and semantic

conflicts, also, the use of an incremental tool to build this knowledge base.

9.3 The future work

The work presented in this thesis can be extended in several ways. There
are both practical and theoretical issues that need to be addressed to
provide a complete framework for creating structured and semi-structured

data integration systems. We suggest the following for future work:

e In data integration systems, a very important task is the integration
of the results of the local queries. In our work, this task was not
addressed other than at a basic level. For example, there may be
duplicated information retrieved from the local data sources which

should be removed when the results are presented.

e More features of Schema Structure Definition (SSD) can be
involved in the process. For example, if some elements in the local
data sources’ SSD contain attributes and these attributes correspond

to elements in the global schema a mapping between these elements

168

CHAPTER 9. SUMMARY, CONCLUSION AND FUTURE WORK

would be needed. This is not yet implemented, but should not be a

difficult extension to our current system.

e In this work, the global schema is specified by the integrator, or by
choosing one of the data source’s SSD that meet the requirements of
the users to be a global schema. It should be possible to semi-
automate the process of constructing the global unified schema that

characterizes the underlying data sources.

e The major difficulty of connecting the global schema elements with
the local schema elements when there are a large number of data
sources, large size of schemas, and there is a high degree of logical
heterogeneity between the schemas is the manual linkage. It should
be possible to achieve scalability by generating mappings between
the schemas elements automatically while reducing the manual
integrator interaction to ensuring the semantic consistency of such

mappings. However this needs further investigation.

169

Bibliography

[1]
[2]

[3]

[4]

(5]

[6]

[7]

"Homepage. http://www.w3.org, 2001."

"HyperText Markup Language Home Page.
http:// www.w3.org/MarkUp/, 2001."

"W3C Consortium: XML Schema Part 0: Primer.
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/."

"World Wide Web Consortium, http://www.w3.org/TR/2004/REC-
xml-20040204/. Extensible Markup Language (XML) 1.0 W3C
Recommendation, third edition, February 2004."

"World Wide Web Consortium, http://www.w3.org/TR/xquery/.
XQuery 1.0: An XML Query Language, W3C Working Draft,
November 2003."

"World Wide Web Consortium. Document object model (DOM)
level 1 specification, version 1.0, w3c recommendation. See
http://www.w3c.org/TR/1998/REC-DOM-Level-1-19981001 and
see http://www.w3c.org/DOM/DOMTR., 1 October 1998."

"XQL. http:// www.w3.0org/TandS/QL/QL98/PP/XOQL.html."

170

http://www.w3.org
http://www.w3
http://www.w3
http://www.w3.org/TR/20Q4/REC-
http://www.w3.org/TR/xquerv/
http://www.w3c.org/TR/1998/REC-DOM-Level-1-19981001
http://www.w3c.org/DOM/DOMTR
http://www.w3.org/TandS/OL/OL98/PP/XOL.htm

BIBLIOGRAPHY

(8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

International Organization for Standardization. ISO 8879:
Information Processing -Text and Office Systems-Standard
Generalized Markup Language (SGML), October 1986.

S. Abiteboul, "Querying Semi-Structured Data," Proceedings of the
6th International Conference on Database Theory, ICDT '97, pp. 1-
18, January 8-10, 1997.

S. Abiteboul, P. Buneman, and D. Suciu, Data on the Web: From
Relational to Semistructured Data and XML. San Francisco:
Morgan Kaufmann, 2000.

S. Abiteboul and O. M. Duschka, "Complexity of Answering
Queries Using Materialized Views," in Proceedings of the 17th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS'98). Seattle, Washington, June 1998, pp.
254-263.

R. Ahmed, P. D. Smedt, W. Du, W. Kent, M. A. Ketabchi, W. A.
Litwin, A. Rafii, and M.-C. Shan, "The Pegasus Heterogeneous
Multidatabase System," IEEE Computer, vol. 24(12), pp. 19-27,
December 1991.

M. B. Al-Mourad, W. A. Gray, and N. J. Fiddian, "Multiple Views
with Multiple Behaviours for Interoperable Object-Oriented
Database Systems," in Proceedings of the 14th International
Conference on Database and Expert Systems Applications, DEXA
2003. Prague, Czech Republic, September 1-5, 2003, pp. 713-723.

F. M. Al-Wasil, N. J. Fiddian, and W. A. Gray, "Query Translation
for Distributed Heterogeneous Structured and Semi-structured
Databases," in Proceedings of the 23rd British National Conference
on Databases (BNCOD2006). Belfast, Northern Ireland, 18 - 20
July, 2006.

F. M. Al-Wasil and W. A. Gray, "Loosely-Coupled Linkage of Data
from Structured and Semi-Structured Databases," in Proceedings of
the 6th International Conference on Information Integration and
Web-based Applications Services (iiWAS2004). Jakarta, Indonesia:
Austrian Computer Society, 27-29 September 2004.

F. M. Al-Wasil, W. A. Gray, and N. J. Fiddian, "Establishing an
XML Metadata Knowledge Base to Assist Integration of Structured
and Semi-structured Databases," in ADC '2006.: Proceedings of the
17th Australasian Database Conference. Tasmania, Australia,
January 16-19, 2006.

171

BIBLIOGRAPHY

[17]

[18]

[19]

A. M. Alashqur, S. Su, and H. Lam, "OQL: A Query Language for
Manipulating Object-oriented Databases," in Proceedings of the
15th International Conference on Very Large Data Bases (VLDB).
Amsterdam, The Netherlands, August 22-25, 1989.

A. Almarimi and J. Pokorny, " A Mediation Layer for
Heterogeneous XML Schemas," in Proceedings of the 6th
International Conference on Information Integration and Web
Based Applications & Services (iiWAS2004). Jakarta, Indonesia:
Austrian Computer Society, 27-29 September 2004.

J. L. Ambite, N. Ashish, G. Barish, C. A. Knoblock, S. Minton, P. J.
Modi, 1. Muslea, A. Philpot, and S. Tejada, "ARIADNE: A System
for Constructing Mediators for Internet Sources," in Proceedings of
ACM SIGMOD International Conference on Management of Data,
SIGMOD98. Seattle, Washington, USA, June 2-4, 1998, pp. 561-
563.

[20] C. Baru, A. Gupta, B. Ludischer, R. Marciano, Y. Papakonstantinou,

[21]

[22]

[23]

[24]

P. Velikhov, and V. Chu, "XML.-based information mediation with
MIX," in SIGMOD '99: Proceedings of ACM SIGMOD

International Conference on Management of Data: ACM Press,
1999, pp. 597-599.

C. Batini, M. Lenzerini, and S. B. Navathe, "A comparative analysis
of methodologies for database schema integration," ACM
Computing Surveys, vol. 18(4), pp. 323-364, 1986.

A. Behm, A. Geppert, and K. R. Dittrich, "On the Migration of
Relational Schemas and Data to Object-Oriented Database
Systems," in Proceedings of the 5th International Conference on
Re-Technologies for Information Systems. Klagenfurt, Austria,
December 1997.

D. Bell and J. Grimson, Distributed Database systems: Addison
Wesley, 1992.

L. Bellatreche, G. Pierra, D. N. Xuan, D. Hondjack, and Y. Ait-
Ameur, "An a Priori Approach for Automatic Integration of
Heterogeneous and Autonomous Databases," in Proceedings of
thel 5Sth International Conference on Database and Expert Systems
Applications, DEXA 2004. Zaragoza, Spain, August 30-September
3, 2004, pp. 475-485.

172

BIBLIOGRAPHY

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

S. Bergamaschi, S. Castano, and M. Vincini, "Semantic integration
of semistructured and structured data sources,” ACM SIGMOD
Record, vol. 28(1), pp. 54-59, March 1999.

A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay, J.
Robie, and J. Simeon., "XML path language (XPath) 2.0, W3C
Working Draft. http://www.w3.org/TR/xpath20/." 2005.

P. A. Bernstein and E. Rahm, "Data Warehouse Scenarios for Model
Management," in Proceedings of the 19th International Conference
on Conceptual Modeling (ER 2000). Salt Lake City, Utah, USA:
number 1920 in LNCS, Springer-Verlag, October 2000., pp. 1-15.

J. M. Blanco, A. Illarramendi, and A. Goiii, "Building A Federated
Relational Database System: An Approach Using A Knowledge-
Based System," International Journal of Intelligent and Cooperative
Information Systems, vol. 3(4), pp. 415-455, December 1994.

S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie,
and J. Simeon, "XQuery 1.0: An XML query language, 2005. W3C
Working Draft. http:// www.w3.org/TR/xquery/."

T. Bray, J. Paoli, and C. M. Sperberg-McQueen, "Extensible
Markup Language (XML) 1.0 (@(@2nd Edition)," W3C
Recommendation, Oct. 2000. http:/www.w3.org/TR/2000/REC-
xml-20001006.

A. Brown, "XML in serial publishing: past, present and future,"
OCLC Systems & Services, vol. 19(4), pp. 149-154, 2003.

O. A. Bukhers, A. K. Elmagarmid, F. F. Gherfal, and X. Liu, The
Integration of Database Systems: Prentice-Hall, 1996.

D. Burnell, A. Al-Zobaidie, and G. Windall, "Bridging the gap
between the data warehouse and XML," in Proceedings of 14th
International Workshop on Database and Expert Systems
Applications (DEXA'03). Prague, Czech Republic, 1-5 Sept 2003, pp.
241- 246.

S. Busse, R.-D. Kutsche, U. Leser, and H. Weber, "Federated
Information Systems: Concepts, Terminology and Architectures,"
Technische Universitidt Berlin 1999.

A. Cali, D. Calvanese, G. D. Giacomo, and M. Lenzerini, "On the
Role of Integrity Constraints in Data Integration," IEEE Data
Engineering Bulletin, vol. 25(3), pp. 39-45, 2002.

173

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquerv/
http://www.w3.org/TR/200Q/REC-

BIBLIOGRAPHY

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R.
Rosati, "Data Integration in Data Warehousing," International
Journal of Cooperative Information Systems (IJCIS), vol. 10(3), pp.
237-271, 2001.

M. J. Carey, D. Petkovic, J. Thomas, J. H. Williams, E. L. Wimmers,
L. M. Haas, P. M. Schwarz, M. Arya, W. F. Cody, R. Fagin, M.
Flickner, A. W. Luniewski, and W. Niblack, "Towards
heterogeneous multimedia information systems: the Garlic
approach," in RIDE '95: Proceedings of the 5th International
Workshop on Research Issues in Data Engineering-Distributed
Object Management (RIDE-DOM'95): 1IEEE Computer Society,
1995, pp. 124-131.

S. Ceri and G. Pelagatti, Distributed databases principles and
systems. Computer Science Series: McGraw-Hill, Inc., 1984.

D. Chamberlin, J. Robie, and D. Florescu, "Quilt: An XML Query
Language for Heterogeneous Data Sources," in Proceedings of
International Workshop on the Web and Databases (WebDB).
Dallas, TX, USA, 2000, pp. 53—-62.

D. D. Chamberlin, "XQuery: An XML query language," IBM
Systems Journal, vol. 41(4), pp. 597-615, 2002.

S. Chaudhuri and U. Dayal, "An overview of data warehousing and
OLAP technology," ACM SIGMOD Record, vol. 26(1), pp. 65-74,
1997.

S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y.
Papakonstantinou, J. Ullman, and J. Widom, "The TSIMMIS
Project: Integration of Heterogeneous Information Sources," in
Proceedings of the 10th Anniversary Meeting of the Information
Processing Society of Japan. Tokyo, Japan, 1994, pp. 7-18.

V. Christophides, S. Cluet, and J. Siméon, "On wrapping query
languages and efficient XML integration," in Proceedings of ACM
SIGMOD Conference on Management of Data. Dallas, Texas, USA,
May 2000.

J. Clark and S. DeRose, "XML Path Language (XPath), Version 1.0,
W3C Recommendation, http://www.w3.org/TR/xpath," November
1999.

E. F. Codd, The Relational Model for Database Management:
Version 2: Addison-Wesley Longman Publishing Co., Inc., 1990.

174

http://www.w3.org/TR/xpath

BIBLIOGRAPHY

[46]

[47]

[48]

[49]

[50]

W. W. Cohen, "Integration of heterogeneous databases without
common domains using queries based on textual similarity," in
Proceedings of the ACM SIGMOD international conference on
Management of data, SIGMOD '98. Seattle, Washington, USA, June
2-4, 1998, pp. 201-212.

W. W. Cohen, "The WHIRL Approach to Information Integration,"
IEEE Intelligent Systems, pp. 20-23., Sept/Oct 1998.

C. J. Date, An Introduction to Database Systems, 7th ed: Addison-
Wesley, 2000.

A. Deusch, M. Fernadez, D. Florscu, A. Levy, and D. Suciu, "XML-
QL: A query language for XML. http://www.w3.org/tr/note-xml-gl.
Technical report, April 1998."

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu, "A
Query Language for XML," in Proceedings of the 8th International
World Wide Web Conference (WWWS8). Toronto, Canada, 1999.

[51] A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu,

[52]

[53]

[54]

[55]

[56]

"XML-QL: A Query Language for XML," presented at WWW The
Query Language Workshop (QL98), Cambridge, MA, 1998.

A. Doan and R. McCann, "Building Data Integration Systems: A
Mass Collaboration Approach," in Proceedings of Information
Integration on the Web (IIWeb-03). Acapulco, Mexico, August 9 -
10, 2003.

R. Domenig, "A Query Based Approach for Integrating
Heterogeneous Data Sources," PhD thesis, Department of
Information Technology, University of Zurich, Switzerland, 2002.

R. Domenig and K. R. Dittrich, "An Overview and Classification of
Mediated Query System," SIGMOD Record, vol. 28(3), pp. 63-72,
1999.

D. Draper, A. Y. HaLevy, and D. S. Weld, "The Nimble XML data
integration system," in Proceedings of the 17th International
Conference on Data Engineering (ICDE'01), 2001, pp. 155-160.

D. Draper, A. Y. Halevy, and D. S. Weld, "The nimble integration
engine," in Proceedings of the ACM SIGMOD international
conference on Management of data (SIGMOD '01). Santa Barbara,
California, United States, May 21 - 24, 2001, pp. 567-568.

175

http://www.w3.org/tr/note-xml-q

BIBLIOGRAPHY

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

D. Dreilinger and A. E. Howe, "Experiences with selecting search
engines using metasearch," ACM Transactions on Information
Systems (TOIS), vol. 15(3), pp. 195-222, 1997.

O. M. Duschka and M. R. Genesereth, "Query planning in
infomaster," in Proceedings of the ACM symposium on Applied
computing (SAC '97). San Jose, California, United States, 1997, pp.
109-111.

R. M. Duwairi, "Views for Interoperability in a Heterogeneous
Object-Oriented Multidatabase System," PhD thesis, Department of
Computer Science, University of Wales College of Cardiff, April
1997.

R. Eckstein and M. Casabianca, XML Pocket Reference, Second ed:
O’Reilly & Associates, Inc., April 2001.

A. Elmagarmid, M. Rusinkiewicz, and A. Sheth, Management of
Heterogeneous and Autonomous Database Systems: Morgan
Kufmann, 1999.

A. K. Elmagarmid and C. Pu, "Guest Editors' Introduction to the
Special Issue on Heterogeneous Databases,” ACM Computing
Surveys, vol. 22(3), pp- 175-178, September 1990.

R. Elmasri and S. Navathe, Fundamentals of Database Systems, vol.
1, 3rd ed: Addison-Wesley, 2000.

R. Elmasri and S. Navathe, Fundamentals of Database Systems, 3rd
ed: Addison-Wesley, 2000.

P. Fankhauser, W. Litwin, E. J. Neuhold, and M. Schrefl, "Global
view definition and multidatabase languages - two approaches to
database integration," in Proceedings of the FEuropean
Teleinformatics Conference (EUTECO 88). Vienna, Austria, April
1988, pp- 1069-1082.

L. Feng, E. Chang, and T. Dillon, "A semantic network-based
design methodology for XML documents," ACM Transactions on
Information Systems, vol. 20(4), pp. 390—421, October 2002.

D. Florescu, A. Levy, and A. Mendelzon, "Database techniques for
the World-Wide Web: a survey," ACM SIGMOD Record., vol. 27(3),
pp- 59-74, 1998.

176

BIBLIOGRAPHY

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

J. E.‘ Funderburk, G. Kiernan., J. Shanmugasundaram, E. Shekita,
and C. Wei, "XTABLES: Bridging Relational Technology and
XML," IBM Systems Journal, vol. 41(4), pp. 616-641, 2002.

H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J.
Ullman, and J. Widom, "Integrating and Accessing Heterogeneous
Information Sources in TSIMMIS," in Proceedings of the AAAI
Symposium on Information Gathering. Stanford, California, March
1995.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman,
Y.Sagiv, J. Ullman, V. Vassalos, and J. Widom, "The TSIMMIS
Approach to Mediation: Data Models and Languages," Journal of
Intelligent Information Systems (JIIS), vol. 8(2), pp. 117-132, 1997.

M. Garcia-Solaco, F. Saltor, and M. Castellanos, "Semantic
heterogeneity in multidatabase systems," in Object-Oriented
Multidatabase Systems: A Solution for Advanced Applications, O. A.
Bukhres and A. K. Elmagarmid, Eds.: Prentice Hall International
(UK) Ltd, 1995, pp. 129-202.

G. Gardarin, A. Mensch, and A. Tomasic, "An Introduction to the e-
XML Data Integration Suite," in EDBT '02: Proceedings of the Sth
International Conference on Extending Database Technology:
Springer-Verlag, 2002, pp. 297-306.

G. Gardarin, F. Sha, and T. Dang-Ngoc, "XML-based Components
for Federating Multiple Heterogeneous Data Sources," in ER '99:
Proceedings of the 18th International Conference on Conceptual
Modeling: Springer-Verlag, 1999, pp. 506-519.

M. R. Genesereth, A. M. Keller, and O. M. Duschka, "Infomaster:
An Information Integration System," in Proceedings the ACM
SIGMOD International Conference on Management of Data,
SIGMOD97. Tucson, Arizona, USA, May 13-15, 1997, pp. 539-542.

C. H. Goh, S. Bressan, S. Madnick, and M. Siegel, "Context
interchange: new features and formalisms for the intelligent
integration of information," ACM Transactions on Information

Systems (TOIS), vol. 17(3), pp. 270-293, 1999.
C. Goldfarb, The SGML Handbook: Clarendon Press, 1990.

M. Goodchild, M. Egenhofer, R. Fegeas, and C. Kottman,
"Interoperating Geographic Information Systems.," Kluwer, 1999.

177

BIBLIOGRAPHY

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

T. Grust, S. Sakr, and J. Teubner, "XQuery on SQL Hosts," in
Proceedings of the 30th International Conference on Very Large
Data Bases (VLDB 2004). Toronto, Canada, 29 August - 3
September 2004.

A. Gupta, "Integration of Information Systems: Bridging
Heterogeneous Databases," IEEFE Press, 1989.

A. Y. Halevy, "Answering queries using views: A survey," The
VLDB Journal The International Journal on Very Large Data Bases,
vol. 10(4), pp. 270-294, 2001.

M. Haller, B. Proll, W. Retschitzegger, A. M. Tjoa, and R. R.
Wagner, "Integrating Heterogeneous Tourism Information in
TIScover - The MIRO-Web Approach," in Proceedings of the
International Conference on Information and Communication
Technologies in Tourism (ENTER 2000). Barcelona, Spain, April
26-28, 2000.

G. Hamilton, R. Cattell, and M. Fisher, JDBC Database Access
With Java: A Tutorial and Annotated Reference, 2nd ed: Addison-
Wesley Pub Co, September 1997.

T. Hirder, G. Sauter, and J. Thomas, "The Intrinsic Problems of
Structural Heterogeneity and an Approach to Their Solution," The
VLDB Journal, vol. 8(1), pp. 25-43, 1999.

J. Heflin and J. Hendler, "Semantic Interoperability on the Web," in
Proceedings of Extreme Markup Languages 2000. Graphic
Communications Association, 2000, pp. 111-120.

T. Hernandez and S. Kambhampati, "Integration of Biological
Sources: Current Systems and Challenges Ahead," ACM SIGMOD
Record, vol. 33(3), pp. 51-60, 2004.

G. Hu and H. Fernandes, "Integration and querying of distributed
databases," in Proceedings of the IEEE International Conference on
Information Reuse and Integration (IRI 2003). Las Vegas, NV, USA,
October 27-29,2003, pp. 167-174.

R. Hull, "Managing semantic heterogeneity in databases: a
theoretical prospective," in Proceedings of the 16th ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems,
PODS '97. Tucson, Arizona, United States, May 11 - 15, 1997, pp.
51-61.

178

BIBLIOGRAPHY

[88] J. Hunter and B. McLaughlin, "Easy Java/XML integration with

[89]

[90]

[o1]

[92]

[93]

[94]

[95]

[96]

[97]

JDOM, Part 2: Use JDOM to create and mutate XML,"
http://www.javaworld.com/javaworld/jw-07-2000/jw-072 8-
jdom2.html, Technical report, July 2000.

J. Hunter and B. McLaughlin, "Easy Java/XML integration with
JDOM, Part 1: Learn about a new open source API for working with
XML," http://www.javaworld.com/javaworld/jw-05-2000/jw-051§-
jdom.html, Technical report, May 2000.

A. Hurson, M. Bright, and S. Pakzad, Multidatabase systems: an
advanced solution for global information sharing: IEEE Computer
Society Press, 1994.

Z. G. lves, "Efficient query processing for data integration," PhD
thesis, University of Washington, Seattle, 2002.

V. Josifovski, P. Schwarz, L. Haas, and E. Lin, "Garlic: a new flavor
of federated query processing for DB2," in Proceedings of the ACM
SIGMOD international conference on Management of data,
(SIGMOD '02). Madison, Wisconsin, 2002, pp. 524-532.

D. D. Karunaratna, W. A. Gray, and N. J. Fiddian, "Establishing a
Knowledge Base to Assist Integration of Heterogeneous Databases,"
in BNCOD 16: Proceedings of the 16th British National Conferenc
on Databases: Springer-Verlag, 1998, pp. 103-118.

W. Kelley, S. Gala, W. Kim, T. Reyes, and B. Graham, "Schema
architecture of the UniSQL/M multidatabase system," Modern

database systems: the object model, interoperability, and beyond, pp.
621-648, 1995.

W. Kim, "Introduction to part 2: technology for interoperating
legacy databases," Modern database systems: the object model,
interoperability, and beyond, pp. 515-520, 1995.

W. Kim, I. Choi, S. Gala, and M. Scheevel, "On Resolving
Schematic Heterogeneity in Multidatabase Systems," Modern
Database Systems, pp. 512-550, 1995.

W. Kim, I. Choi, S. Gala, and M. Scheevel, "On Resolving
Schematic Heterogeneity in Multidatabase Systems," Distributed
and Parallel Databases, vol. 1(3), pp- 251-279, July, 1993.

179

http://www.iavaworld.com/iavaworld/iw-07-2000/iw-Q728-
http://www.iavaworld.com/iavaworld/iw-05-2Q00/iw-0518-

BIBLIOGRAPHY

[98] W. Kim and J. Seo, "Classifying schematic and data heterogeneity
in multidatabase systems," IEEE Computer, vol. 24(12), pp. 12-18,
December, 1991.

[99] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava, "The Information
Manifold," in Proceedings of the AAAI Spring Symposium on

Information Gathering from Heterogeneous, Distributed
Environments, pp. 85-91. Stanford University, Stanford, CA, March
1995.

[100] L. Kurgan, W. Swiercz, and K. Cios, "Semantic Mapping of XML
Tags using Inductive Machine Learning," in Proceedings of the

International Conference on Machine Learning and Applications -
ICMLA '02. Las Vegas, Nevada, USA, 2002.

[101] K. Lee, J. Min, and K. Park, "A Design and Implementation of
XML-Based Mediation Framework (XMF) for Integration of
Internet Information Resources," in HICSS '02: Proceedings of the

35th Annual Hawaii International Conference on System Sciences
(HICSS'02)-Volume 7: IEEE Computer Society, 2002, pp. 202-210.

[102] P. Lehti and P. Fankhauser, "XML data integration with OWL.:
Experiences & challenges," in Proceedings of the International
Symposium on Applications and the Internet (SAINT 2004). Tokyo,
Japan, 2004, pp. 160-170.

[103] M. Lenzerini, "Data integration: a theoretical perspective," in
Proceedings of the 2Ist ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems. Madison, Wisconsin,
2002.

[104] A. Levy, "The Information Manifold Approach to Data Integration,"
IEEE Intelligent Systems, vol. 13, pp. 12-16, 1998.

[105] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava, "Answering
queries using views," in Proceedings of the 14th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems.
San Jose, CA, USA, 1995.

[106] A. Y. Levy, "Combining Artificial Intelligence and Databases for
Data Integration," In Special issue of LNAI: Artificial Intelligence
Today; Recent Trends and Developments. Lecture Notes in
Computer Science, vol. 1600, pp. 249-268, 1999.

[107] A. Y. Levy, A. Rajaraman, and J. J. Ordille, "Querying
Heterogeneous Information Sources Using Source Descriptions," in

180

BIBLIOGRAPHY

Proceedings of the 22th International Conference on Very Large
Data Bases, VLDB'96. Mumbai (Bombay), India, September 3-6,
1996, pp. 251-262.

[108] C. 'Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y.
Papakonstantinou, J. Ullman, and M. Valiveti, "Capability based
mediation in TSIMMIS," in Proceedings of the ACM SIGMOD
international conference on Management of data (SIGMOD '98).
Seattle, Washington, United States, 1998, pp. 564-566.

[109] R. Li, Z. Lu, W. Xiao, B. Li, and W. Wu, "Schema Mapping for
Interoperability in XML-Based Multidatabase Systems," in DEXA
'‘03: Proceedings of the 14th International Workshop on Database
and Expert Systems Applications: IEEE Computer Society, 2003, pp.
235.

[110] W. Litwin and A. Abdellatif, "Multidatabase interoperability," IEEE
Computer, vol. 19(12), pp. 10-18, 1986.

[111] W. Litwin, L. Mark, and N. Roussopoulos, "Interoperability of
multiple autonomous databases," ACM Computing Surveys, vol.
22(3), pp. 267-293, 1990.

[112] B. Ludischer, A. Gupta, and M. E. Martone, "Model-Based
Mediation with Domain Maps," in Proceedings of the 17th
International Conference on Data Engineering (ICDE). Heidelberg,
Germany, April 2-6, 2001, pp. 81-90.

[113] I. Manolescu, D. Florescu, and D. Kossmann, "Answering XML
Queries over Heterogeneous Data Sources," in Proceedings of the
27th International Conference on Very Large Data Bases (VLDB).
Rome, Italy, September 2001.

[114] I. Manolescu, D. Florescu, D. Kossmann, F. Xhumari, and D.
Olteanu, "Agora: Living with XML and Relational," in Proceedings
of the 26th International Conference on Very Large Data Bases
(VLDBO00). Cairo, Egypt, September 10-14, 2000, pp. 623-626.

[115] W. May, "A Rule-Based Querying and Updating Language for
XML," in Proceedings of the 8th International Workshop on
Database Programming Languages (DBPL '0l). Frascati, Italy,
September 8-10, 2001, pp. 165-181.

[116] D. Megginson, "SAX 2.0: The Simple API for XML," available at
http://www.megginson.com/SAX/index.html, October 2000.

181

http://www.megginson.com/SAX/index.html

BIBLIOGRAPHY

[117] R. J. Miller, L. M. Haas, and M. A. Hernandez, "Schema Mapping
as Query Discovery," in Proceedings of the 26th International
Conference on Very Large Data Bases (VLDB '00). Cairo, Egypt,
September 10-14, 2000, pp. 77-88.

[118]R. J. Miller, M. A. Hernandez, L. M. Haas, L. Yan, C. T. Howard, R.
Fagin, and L. Popa, "The Clio project: managing heterogeneity,"
ACM SIGMOD Record, vol. 30(1), pp. 78-83, March 2001.

[119] T. Millstein, A. Levy, and M. Friedman, "Query containment for
data integration systems," in PODS '00: Proceedings of the
nineteenth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. Dallas, Texas, United States: ACM
Press, 2000, pp. 67-75.

[120] Y.-K. Nam, J. Goguen, and G. Wang, "A Metadata Tool for
Retrieval from Heterogeneous Distributed XML Documents,” in
Proceedings of the International Conference on Computational
Science, LNCS 2660, Springer, pp. 1020-1029., 2003.

[121] M. T. Ozsu and P. Valduriez, "Distributed database systems: Where
are we now?" IEEE Computer, vol. 24(8), pp. 68-78, August 1991.

[122] M. T. Ozsu and P. Valduriez, Principles of Distributed Database
Systems, 2nd ed: Prentice Hall, San Ysidro, CA, 1999.

[123] Y. Papakonstantinou, H. Garcia-Molina, and J. D. Ullman,
"MedMaker: A Mediation System Based on Declarative
Specifications,”" in ICDE '96: Proceedings of the 12th International
Conference on Data Engineering: IEEE Computer Society, 1996, pp.
132-141.

[124] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, "Object
Exchange Across Heterogeneous Information Sources,” in
Proceedings of the 11th International Conference on Data
Engineering (ICDE '95). Taipei, Taiwan, March 06 - 10, 1995, pp.
251-260.

[125] Y. Papakonstantinou and P. Velikhov, "Enhancing Semistructured
Data Mediators with Document Type Definitions," in Proceeding of
Data Engineering (ICDE). Syndey, Australia, 1999.

[126] S. Raghavan and H. Garcia-Molina, "Integrating diverse information
management systems: A brief survey," IEEE Data Engineering
Bulletin, vol. 24(4), pp. 44-52, 2001.

182

BIBLIOGRAPHY

[127] J. Robie, J. Lapp, and D. Schach., "XML query language (XQL)," In
QL'98 - The Query Languages Workshop, 1998.

[128] F. Saltor, M. Castellanos, and M. Garcia-Solaco, "Suitability of data
models as canonical models for federated databases,” ACM
SIGMOD Record, vol. 20(4), pp. 44-48, December 1991.

[129] P. Schauble., Multimedia Information Retrieval: Kluwer Academic
Publishers, 1997.

[130] A. Segev and A. Chatterjee, "Data manipulation in heterogeneous
databases," Sigmod Record, vol. 20(4), pp. 64-68, December 1991.

[131] E. Selberg and O. Etzioni, "Multi-Service Search and Comparison
Using the MetaCrawler," in Proceedings of the 4th International
World-Wide Web Conference. Boston, Massachusetts, USA,
December 11-14, 1995,

[132] E. Selberg and O. Etzioni, "The MetaCrawler architecture for
resource aggregation on the Web," IEEE Expert, January-February
1997.

[133] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. Carey, B. G.
Lindsay, H. Pirahesh, and B. Reinwald, "Efficiently Publishing
Relational Data as XML Documents," in Proceedings of the 26th
International Conference on Very Large Databases, (VLDB2000).
Cairo, Egypt, September 2000, pp. 65-76.

[134] A. Sheth, "Semantic issues in Multidatabase Systems," SIGMOD
Record, vol. 20(4), December 1991.

[135] A. P. Sheth and V. Kashyap, "So Far (Schematically) yet So Near
(Semantically)," Proceedings of the IFIP WG 2.6 Database
Semantics Conference on Interoperable Database Systems (DS-5),
pp.- 283-312, November 16 - 20, 1992.

[136] A. P. Sheth and J. A. Larson, "Federated database systems for
managing distributed, heterogeneous, and autonomous databases,"
ACM Computing Surveys, vol. 22(3), pp. 183-236, 1990.

[137] S. Spaccapietra and C. Parent, "Conflicts and correspondence
assertions in interoperable databases," ACM SIGMOD Record, vol.
20(4), pp- 49-54, December 1991.

183

BIBLIOGRAPHY

[138] V. S. Subrahmanian, S. Adali, A. Brink, R. Emery, J. J. Lu, A.
Rajput, T. J. Rogers, R. Ross, and C. Ward, "HERMES: A
heterogeneous Reasoning and Mediator System," 4RPA, 1995.

[139] R. Sudha and P. Jinsoo, "Semantic conflict resolution ontology
(SCROL): an ontology for detecting and resolving data and schema-
level semantic conflicts," Knowledge and Data Engineering, IEEE
Transactions on, vol. 16, pp. 189, 2004.

[140] G. Thomas, G. R. Thompson, C.-W. Chung, E. Barkmeyer, F.
Carter, M. Templeton, S. Fox, and B. Hartman, "Heterogeneous
distributed database systems for production use," ACM Computing
Surveys, vol. 22(3), pp- 237-266, 1990.

[141] A. Tomasic, L. Raschid, and P. Valduriez, "Scaling access to
heterogeneous data sources with DISCO," IEEE Transactions on
Knowledge and Data Engineering, vol. 10(5), pp. 808-823, 1998.

[142] S. White, M. Fisher, R. Cattell, G. Hamilton, and M. Hapner,
JDBC(TM) API Tutorial and Reference: Universal Data Access for
the Java(TM) 2 Platform, 2nd ed: Addison-Wesley Pub Co, 1999.

[143] J. Widom, "Integrating heterogeneous databases: lazy or eager?"
ACM Computing Surveys., vol. 28(4), pp. 91, 1996.

[144] J. Widom, "Research Problems in Data Warehousing," in
Proceedings of the 4th International Conference on Information and
Knowledge Management. Baltimore, Maryland, November 1995, pp.
25-30.

[145] G. Wiederhold, "Mediators in the Architecture of Future
Information System," IEEE Computer, vol. 25(3), pp. 38-49, March
1992.

[146] L. Wood, "Programming the Web: the W3C DOM specification,"
IEEE Internet Computing, vol. 3(1), pp. 48-54, Jan/Feb 1999.

[147] L. Xu and D. W. Embley, "Combining the Best of Global-as-View
and Local-as-View for Data Integration.," in Information Systems
Technology and its Applications, 3rd International Conference
ISTA'2004. Salt Lake City, Utah, USA, June 15-17, 2004.

[148] N. Young-Kwang, G. Joseph, and W. Guilian, "A Metadata
Integration Assistant Generator for Heterogeneous Distributed
Databases," in Proceedings of the Confederated International

184

BIBLIOGRAPHY

Conferences DOA, CooplS and ODBASE. Irvine CA: LNCS 2519,
Springer, pp. 1332-1344., October 2002.

[149] C. Yu and L. Popa, "Constraint-based XML query rewriting for data
integration," in Proceedings of the ACM SIGMOD international
conference on Management of data (SIGMOD '04). Paris, France,
June 13 - 18, 2004, pp. 371-382.

[150] G. Zhou, R. Hull, R. King, and J.-C. Franchitti, "Data Integration
and Warehousing Using H2O," Bulletin of the Technical Committee
on Data Engineering, vol. 18(2), pp. 29-40, 1995.

185

APPENDIX A

Java code for the Main Interface of SISSD system

import
import
import
import
import
import

java.awt.*;
java.awt.event.*;
javax.swing. *;
java.util.*;
java.io.*;

class MainInterFaceF extends
{

private final
private final
private final
public String
public String
public Vector
public Vector SourceMetadata
public JPanel topPanel;
public JMenuBar menuBar;
public JMenu menuExtractor;
public JMenu menuQuery;
public JMenu menukKServer;
public JMenultem
public JMenulItem
public JMenuItem
public JMenultem
public JMenultem
public JMenultem
public JMenultem
public JMenu submenu;
CreateXmlView listDialog;
JXC listDialogl;
JPanel mainPanel
XYLayout xYLayoutl
JSplitPane hsplitPane
JSplitPane vsplitPane
public MainInterFaceF ()

int ITEM_PLAIN
int ITEM_CHECK
int ITEM_RADIO
integratedfile;
kbName="";

menultemRel ;

menul temXML ;
menultemIntegrated;
menultemlocal;
menultemMappings;
menultemKB, menultemremove;
menultemQuery;

com.borland.jbcl.layout.*;

JFrame implements ActionlListener

0;
1;
2;

MappingPaths= new Vector();

new Vector();

new JPanel () ;

new XYLayout () ;

new JSplitPane() ;
new JSplitPane () ;

186

APPENDIX A Main interface of SISSD

{

setTitle("User Interface");

setSize (1100, 1000);

topPanel = new JPanel() ;

topPanel.setLayout (new BorderLayout ()) ;
getContentPane () .add (topPanel) ;

menuBar = new JMenuBar () ;

setJMenuBar (menuBar) ;

menuExtractor = new JMenu (" MetaData Extractor ");
menuExtractor.setMnemonic ('M') ;

menuBar .add (menuExtractor) ;

menultemRel = CreateMenultem(menuExtractor, ITEM_PLAIN,
"Bulid Schema Structure for Relational Database ", null, 'R',"");
menuExtractor.addSeparator () ;

menultemXML = CreateMenultem(menuExtractor, ITEM_PLAIN,

"Bulid Schema Structure for XML Document",null, 'X', "");
menuKServer = new JMenu (" Knowledge Server ");
menukServer.setMnemonic ('K') ;
menuBar .add (menuKServer) ;
submenu = new JMenu ("Add New Data Source");
menukServer .add (submenu) ;
menultemIntegrated = CreateMenultem(submenu, ITEM_PLAIN, "Step 1.
Generate index number for integrated schema elements ", null,'G',"");
submenu.addSeparator() ;
menultemlocal = CreateMenultem(submenu, ITEM_PLAIN, "Step 2. Produce GUI
tree for local schema structure", null, 'P', "");
submenu.addSeparator () ;
menultemMappings = CreateMenultem(submenu, ITEM_PLAIN,

"Step 3. Generate Path Mappings", null, 'H',"");
submenu.addSeparator () ;
menultemKB = CreateMenultem(submenu, ITEM_PLAIN,
"Step 4. Merge Path Mappings with KB", null, 'M', "");
menultemKB.setEnabled (true) ;
menultemlocal .setEnabled(false) ;
menultemMappings.setEnabled(false) ;
menultemKB.setEnabled (false) ;
menuKServer.addSeparator () ;
menultemremove = CreateMenultem(menuKServer, ITEM_PLAIN,
"Remove Data Source", null, 'V', "v),;
menuQuery = new JMenu(" Query Processor ");
menukKServer.setMnemonic ('Q') ;
menuBar .add (menuQuery) ;
menultemQuery = CreateMenultem(menuQuery, ITEM_PLAIN,
"Process User Query ", null, 'U', "");
listDialog = new CreateXmlView() ;
listDialogl = new JXC();
try
{ jbInit(); }
catch (Exception e)
{ e.printStackTrace (};
}}
public JMenultem CreateMenultem(JMenu menu, int iType, String sText,
ImageIcon image, int acceleratorKey, String sToolTip)
{ OMenuItem menultem;
switch (iType)
{ case ITEM_RADIO:
menultem = new JRadioButtonMenultem() ;

187

APPENDIX A Main interface of SISSD

break;

case ITEM_CHECK:

menulItem = new JCheckBoxMenulItem() ;

break;

default:

menultem = new JMenultem() ;

break;

}

menultem.setText (sText) ;

if (image != null)

{ menultem.setIcon(image); }

if (acceleratorKey > 0)

{ menultem.setMnemonic (acceleratorKey);)}

if (sToolTip != null)

{ menultem.setToolTipText (sToolTip); }
menultem.addActionListener (this) ;

menu.add (menultem) ;

return menultem;

}

public void actionPerformed(ActionEvent event)
{ if (event.getSource() == menultemRel)

{ listDialog.setVisible(true); }

else if (event.getSource() == menultemXML)

{ listDialogl.setVisible(true); }

else if (event.getSource() == menultemIntegrated)
{ MappingPaths= new Vector() ;

final JFileChooser vc = new JFileChooser() ;
int returnVal = vc.showOpenDialog(this);

if (returnvVal == JFileChooser.APPROVE_OPTION)
{ File filel = vc.getSelectedFile();
integratedfile = filel.getAbsolutePath();

int ln=integratedfile.length{();
kbName=integratedfile.substring(0,1n-4)+"_kb.xml";
JPanel rightPanell = new JPanel();
hsplitPane.setBottomComponent (rightPanell) ;
hsplitPane.setDividerLocation (350) ;

JPanel rightPanel2 = new JPanel () ;
vsplitPane.setRightComponent (rightPanel2) ;
vsplitPane.setDividerLocation(200) ;

JPanel leftPanel = new GlobalSchemaPanel (integratedfile, this);
vsplitPane.setLeftComponent (leftPanel) ;
vsplitPane.setDividerLocation(500) ;
JOptionPane.showMessageDialog(this, "Index Number for Integrated Schema
Elements Generate Successfully");

}}

else if (event.getSource() == menultemlocal)

{ final JrFileChooser fc = new JFileChooser();
int returnvVal = fc.showOpenDialog(this) ;

if (returnval == JFileChooser.APPROVE_OPTION)
{ File file = fc.getSelectedFile();

String myfilename = file.getAbsolutePath();
JPanel rightPanell = new JPanel();
hsplitPane.setBottomComponent (rightPanell) ;
hsplitPane.setDividerLocation(350) ;

JPanel rightPanel = new SourceSchemaPanel (myfilename,this);
vsplitPane.setRightComponent (rightPanel) ;
vsplitPane.setDividerLocation (200) ;

188

APPENDIX A Main interface of SISSD

rightPanel.setBackground (Color.white) ;

}}

else if (event.getSource() == menultemMappings)

{ Jpanel rightPanel = new MappingPanel (this);
hsplitPane.setBottomComponent (rightPanel) ;
hsplitPane.setDividerLocation(350);)}

else if (event.getSource() == menultemKB)

{ KBmerge kb = new KBmerge () ;

kb.mergeMapping{(this, kbName) ;
JOoptionPane.showMessageDialog(this, "Path Mappings Merged Successfully
with The Knowledge Base") ;
menultemMappings.setEnabled(false) ;
menultemKB.setEnabled(false) ;

}

else if (event.getSource() == menultemremove)

{ final JFileChooser vc = new JFileChooser() ;

int returnVal = vc.showOpenDialog(this) ;

if (returnVal == JFileChooser.APPROVE_OPTION)

{ File filel = vc.getSelectedFile();

integratedfile = filel.getAbsolutePath() ;

JDialog a = new RemoveSources (integratedfile);
a.show() ;

1}

else if (event.getSource() == menultemQuery)

{ QueryProcessor application = new QueryProcessor();
application.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
application.show () ;

1}

public static void main(String argsl(])

{ MainInterFaceF a = new MainInterFaceF();
a.addWwindowListener (new WindowAdapter ()

{ public void windowClosing (WindowEvent e)

{ system.exit (0) ;

I3

a.setSize (1250, 1000);

a.setVisible(true);

a.show() ;

}

private void jbInit () throws Exception

{ mainPanel.setLayout (xYLayoutl) ;

JPanel panel = new JPanel () ;

panel.setBackground (Color.white) ;

panel.setLayout (new BorderLayout () J;
hsplitPane.setOrientation (JSplitPane.VERTICAL SPLIT);
vsplitPane.setDividerSize (10) ;
vsplitPane.setLeftComponent (panel) ;
vsplitPane.setRightComponent (panel) ;
vsplitPane.setContinuousLayout (true) ;
vsplitPane.setBackground (Color.white) ;
this.getContentPane () .add (mainPanel, BorderLayout.CENTER) ;
hsplitPane.setDividerSize (10);
hsplitPane.setTopComponent (vsplitPane) ;
hsplitPane.setBottomComponent (panel) ;
hsplitPane.setContinuousLayout (true) ;

mainPanel.add (hsplitPane, new XYConstraints (0, 0, 1250, 1000));
hsplitPane.setDividerLocation(330) ;

1}

189

APPENDIX B

Java code for extracting and building SSD for

relational database

import javax.swing.JFrame;
import java.awt.Dimension;
import javax.swing.JLabel;
import java.awt.Rectangle;
import java.awt.Font;

import javax.swing.JTextField;
import javax.swing.JPanel;
import java.awt.GridLayout;
import java.awt.*;

import java.util.*;

import javax.swing.*;

import javax.swing.event.¥*;
import javax.swing.border.*;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.io.IOException;
import java.awt.Container;
import java.sql.*;

import java.awt.event.*;
import java.sql.*;

import java.io.*;

class CreateXmlView extends JFrame implements ActionListener
{

static BufferedWriter t;

String ch, chk;

private JLabel name,pass, status,dbname,xmlfile;
private JTextField user,stat,textdb,textfile;
private JPasswordField passbox;

private JButton connect,clear,cancel;

private JPanel pane,cent, input, connectx;

Color ¢l = new Color(204,125,205);

Color c2 = new Color(108,153,204) ;

public CreateXmlView()

{

190

APPENDIX B Extract SSD for relational database

super ("CONNECTION TO RELATIONAL DATABASE ") ;
int inset = 299;

Dimension scr =Toolkit.getDefaultToolkit ().getScreenSize();
setBounds (inset, inset, scr.width-inset*2, scr.height-inset*2) ;
name = new JLabel ("Username") ;

pass = new JLabel ("Password”) ;

dbname = new JLabel ("Database Name") ;
xmlfile= new JLabel ("Save Schema Structure In File Name");
connect = new JButton("Connect") ;

connect .addActionListener (this) ;

clear = new JButton("Clear") ;
clear.addActionListener(this) ;

cancel = new JButton ("Cancel");
cancel.addActionListener(this) ;

cent = new JPanel () ;

input = new JPanel();

connectx =new JPanel () ;

textfile = new JTextField(10) ;

textdb = new JTextField(10);

user = new JTextField(10) ;

passbox = new JPasswordField(10);

cent .setLayout (new BorderLayout ()) ;

cent .add(input, "Center") ;

cent .add (connectx, "South") ;
input.setLayout (new GridLayout(4,4,5,5));
connectx.setLayout (new GridLayout(1,2,3,3));
input.add(xmlfile);

input.add(textfile) ;

input.add(dbname) ;

input.add (textdb) ;

input.add (name) ;

input .add (user) ;

input.add(pass) ;

input.add (passbox) ;

connectx.add (connect) ;

connectx.add(clear) ;

connectx.add (cancel) ;

setContentPane (cent) ;

}

public void actionPerformed(ActionEvent w)

{

Connection conn =null;

if (w.getSource() == connect)

{

String filename, filenamel;

filenamel=textfile.getText () ;

filename= "C:\\prototype\\schema structure\\"+textfile.getText ()+".xml";
File db=new File(filename) ;

if (db.exists())

{

JOptionPane.showMessageDialog(null, "The file "+filenamel+ ".xml already

exists ","Error Message", JOptionPane.ERROR_MESSAGE) ;

textfile.setText ("");

}

else

{ ch=user.getText() ;

char [] a = passbox.getPassword() ;

191

APPENDIX B Extract SSD for relational database

chk =String.valueOf (a) ;

String schema;

schema=textdb.getText () . toUpperCase() ;

try

{ t = new BufferedWriter (new FileWriter (filename)); }
catch (Exception e)

{ system.out.println(e); }

try

{ Class.forName ("oracle.jdbc.driver.OracleDriver");
System.out .println("Driver loaded");

}

catch (Exception exe)

{

JOptionPane.showMessageDialog(null, "Driver error", "Error Message",
JOptionPane.ERROR_MESSAGE) ;

if (filenamel .equals (""))

{

JOptionPane.showMessageDialog(null, "Please enter file name of schema

structure ","Error Message", JOptionPane.ERROR_MESSAGE) ;
File file = new File(filename) ;
try

{ t.close(); }

catch(Exception excp)

{ system.out.println("File cannot be closed!"); }
boolean success = file.delete();

if (!success)

{ system.out.println("File cannot be deleted!");

H

else
{ try
{

conn =DriverManager.getConnection("jdbc:oracle:thin:@helot:1521:0racle9
" , ch, chk);

System.out.println("Connection made") ;

ResultSet rset,rset3,rset4;

String tablename []=new String[10];

DatabaseMetaData dbmd = conn.getMetaData() ;

rset3 = dbmd.getTables("",schema, "%",null) ;

int k=0,e;

String b=null;

while (rset3.next())

{ tablename [k]=rset3.getString(3);

k++; }

t.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
t.write("<schema_information>") ;
t.write("<data_source_information>");

t.write ("<name>"+schema+"</name>") ;
t.write("<location>jdbc:oracle:thin:@helot:1521:0racle9</location>") ;
t.write("<type>Relational Database</type>");
t.write("</data_source_informations>") ;

t.write("<structures>") ;

.write("<element name=\""+schema.toLowerCase(}+"\">");

for (e=0;e<k;e++)

{ t.write("<element name=\""+tablename [e].toLowerCase()+"\">");
rset4=dbmd.getColumns (" ", schema, tablename[e],"%") ;

while (rset4.next())

(a3

192

APPENDIX B Extract SSD for relational database

{ t.write("<element name=\""+rsetd.getString(4).toLowerCase()+"\"/>");
b=rset4.getString(3);

.write("</elements>");

.write("</element>");

.write("</structures") ;
.write("</schema_informations>");

t.close();

if (k == 0)

{ JoptionPane.showMessageDialog(null, "Invalid Database name", "Error
Message", JOptionPane.ERROR_MESSAGE) ;

File file = new File(filename) ;

try

{ t.close(); }

catch(Exception excp)

{ system.out.println("File cannot be closed!"); }
boolean success = file.delete() ;

if (!success)

{ system.out.println("File cannot be deleted!");
1}

else

{ JoptionPane.showMessageDialog(this, "Schema Structure Built
Successfully for "+schema+" Database");
dispose();

user.setText ("");

passbox.setText ("") ;

textdb.setText ("");

textfile.setText ("") ;

1}

catch(Exception e)

{

JOptionPane.showMessageDialog(null, "Invalid Username or Password", "Error
Message", JOptionPane.ERROR_MESSAGE) ;

File file = new File(filename);

try

T (7~ (T~

t.close () ;

}

catch (Exception excp)

{

System.out .println("File cannot be closed!");
}

boolean success = file.delete();

if (!success)

{ System.out.println("File cannot be deleted!");
1)

else if (w.getSource() == clear)

{ user.setText ("");

passbox.setText ("") ;

textdb.setText ("");

textfile.setText (""); }

else

{ disposel();

1

193

APPENDIX C

Java code for extracting and building SSD for XML

document

import javax.swing.JFrame;

import java.awt.Dimension;

import javax.swing.JLabel;

import java.awt.Rectangle;

import java.awt.Font;

import javax.swing.JTextField;
import javax.swing.JPanel;

import java.awt.GridLayout;
import java.awt.*;

import java.util.*;

import javax.swing.*;

import javax.swing.event.*;
import javax.swing.border.¥*;
import java.awt.event.Actionlistener;
import java.awt.event.ActionEvent;
import java.io.IOException;
import java.awt.Container;

import java.sql.¥*;

import java.awt.event.*;

import java.sql.*;

import org.jdom.¥*;

import org.jdom.input.SAXBuilder;
import java.io.IOException;
import java.util.*;

import java.io.¥*;

class JXC extends JFrame implements ActionListener
{

String ch, chk;

private JLabel doclocation,docname,xmlfile;
private JTextField textlocation,textdoc, textfile;
private JPasswordField passbox;

private JButton connect,clear,cancel;

private JPanel pane,cent, input, connectx;

194

APPENDIX C Extract SSD for XML document

Color ¢l = new Color(204,125,205);

Color c2 = new Color(108,153,204);

static BufferedWriter out;

public JXC{()

{

super ("CONNECTION TO XML DOCUMENT") ;
//setDefaultCloseOperation (EXIT_ON_CLOSE) ;

int inset = 299;

Dimension scr =Toolkit.getDefaultToolkit ().getScreenSize() ;
setBounds (inset, inset, scr.width-inset*2, scr.height-inset*2);
doclocation = new JLabel ("XML Document Location") ;
docname = new JLabel ("XML Document Name') ;
xmlfile= new JLabel ("Save Schema Structure In File Name");
connect = new JButton("Connect") ;

connect .addActionListener (this) ;

clear = new JButton("Clear") ;
clear.addActionListener(this) ;

cancel = new JButton("Cancel");
cancel.addActionListener(this) ;

cent = new JPanel () ;

input = new JPanel() ;

connectx =new JPanel();

textlocation = new JTextField(10);

textdoc = new JTextField(10) ;

textfile = new JTextField(10);

cent .setLayout (new BorderLayout ()) ;

cent .add (input, "Center") ;

cent .add (connectx, "South") ;

input.setLayout (new GridLayout(4,4,5,5));
connectx.setLayout (new GridLayout(1,2,3,3));
input.add(xmlfile);

input.add(textfile) ;

input .add (doclocation) ;

input.add(textlocation) ;

input.add (docname) ;

input.add(textdoc) ;

connectx.add (connect) ;

connectx.add(clear) ;

connectx.add (cancel) ;

setContentPane (cent) ;

}

public void actionPerformed(ActionEvent w)

{

if (w.getSource() == connect)

{

String filename, filenamel;

filenamel = textfile.getText();

filename = "C:\\prototype\\schema_structure\\"+textfile.getText () +
n .xml " :

File db=new File (filename) ;

if (db.exists())

§OptionPane.showMessageDialog(null,"The file "+filenamel+ ".xml already
exists ","Error Message", JOptionPane.ERROR_MESSAGE) ;
textfile.setText ("");

}

else

195

APPENDIX C Extract SSD for XML document

{

String location,documentname, documentnamel;
location = textlocation.getText () ;
documentname=textdoc.getText () ;
documentnamel=textdoc.getText () ;

if (! (documentname.endsWith(".xml")))

{ .

documentname = documentname + ".xml";

}

try

{ out = new BufferedWriter (new FileWriter(filename)); }
catch (Exception e)

{

System.out .println(e) ;

if (filenamel .equals (""))

{

JOptionPane.showMessageDialog(null, "Please enter file name of schema

structure ", "Error Message", JOptionPane.ERROR_MESSAGE);
File file = new File(filename) ;
try

{

out.close() ;

}

catch(Exception excp)

{ System.out.println("File cannot be closed!"); }
boolean success = file.delete();

if (!success)

{

System.out .println("File cannot be deleted!");

1}

else

{

SAXBuilder builder = new SAXBuilder();

try

{

out.write("<?xml version=\"1.0\" encoding=\"UTF-8\" ?>");
out.write("<schema_information>") ;
out.write("<data_source_information>");
out.write("<name>"+documentname + "</name>");
out.write("<locations>"+location+"</location>") ;
out.write("<type>XML document</type>");

out .write("</data_source_information>");

out ..write("<structure>");

Document doc = builder.build(location+"\\"+documentname) ;
Element root = doc.getRootElement () ;

listChildren(xroot, 0);

out.write("</structures") ;
out.write("</schema_information>");

out.close();

JOptionPane.showMessageDialog(this, "Schema Structure Built Successfully
for "+documentname+" Document') ;

textfile.setText ("") ;

textlocation.setText ("") ;

textdoc.setText ("") ;

dispose () ;

196

APPENDIX C Extract SSD for XML document

// indicates a well-formedness error

catch (JDOMException e)

{

JOptionPane.showMessageDialog(null, documentname +".xml is not well-
formed.", "Error Message", JOptionPane.ERROR_MESSAGE) ;
textfile.setText ("");

textlocation.setText ("");

textdoc.setText ("") ;

File file = new File(filename);

try

{ out.close(); }

catch(Exception excp)

{

System.out.println("File cannot be closed!");

}

System.out.println("my file path is: " + file.getAbsolutePath());
boolean success = file.delete() ;

if (!success)

{ System.out.println("File cannot be deleted!"); }

System.out .println(documentname + " is not well-formed.");
System.out .println(e.getMessage()) ;

}

catch (IOException e)

{

System.out .println(e) ;

if (location .equals (""))

{

JOptionPane.showMessageDialog(null, "Please specify the XML document
location", "Error Message", JOptionPane.ERROR_MESSAGE) ;
textfile.setText ("");

textlocation.setText ("") ;

textdoc.setText ("") ;

File file = new File(filename) ;

try

{ out.close(); }

catch(Exception excp)

{ system.out.println("File cannot be closed!"); }

System.out .println("my file path is: " + file.getAbsolutePath());

boolean success = file.delete();
if (!success)
{

System.out .println("File cannot be deleted!");

1}

else if (documentname .equals (""))

{

JOptionPane.showMessageDialog(null, "Please specify the XML document
name", "Error Message", JOptionPane.ERROR_MESSAGE) ;
textfile.setText ("");

textlocation.setText ("");

textdoc.setText ("") ;

File file = new File(filename);

try

{ out.close(); }

catch(Exception excp)

{

System.out .println("File cannot be closed!");

}

197

APPENDIX C Extract SSD for XML document

System.out.println("my file path is: " + file.getAbsolutePath()) ;
boolean success = file.delete() ;
if (!success)

{

System.out .println("File cannot be deleted!");

1

else

{

JOptionPane.showMessageDialog(null, "Please verify the XML document name
and location", "Error Message", JOptionPane.ERROR_MESSAGE) ;
textfile.setText ("");

textlocation.setText ("") ;

textdoc.setText ("") ;

File file = new File(filename) ;

try

A{ out.close(); }

catch(Exception excp)

{

System.out .println("File cannot be closed!");

}

System.out .println("my file path is: " + file.getAbsolutePath());

boolean success = file.delete();
if (!success)
{ system.out.println("File cannot be deleted!");

1

else if (w.getSource() == clear)

{ textfile.setText("");

textlocation.setText ("");

textdoc.setText ("") ;

}

else

{ dispose();

1}

public static void listChildren (Element current, int depth) throws
IOCException

{ java.util.List children = current.getChildren();
Iterator iterator = children.iterator();

if (iterator.hasNext())

out .write("<element name=\""+current.getName()+"\">");
else out.write("<element name=\""+current.getName ()+"\"/>");
String st="";

while (iterator.hasNext ())

{ Element child = (Element) iterator.next();

if (! (child.getName () .toString().equalsIgnoreCase (st)))
listChildren(child, depth+1);

st = child.getName() ;

if (! (iterator.hasNext()))

{ out.write("</element>");

11}

198

APPENDIX D

JDOM code for parsing master view to generate

index numbers

import org.jdom.*;

import org.jdom.input.SAXBuilder;
import java.io.IOException;

import java.util.*;

public class GeneratelIndex

{

static String x = "1";

static int y;

static int index = 1;

static int previousLevel = 0;

static String levels = "";

static String lastnode = "";

static String lastSign = "";

static TreeMap paths = new TreeMap();
static TreeMap elements = new TreeMap();
static Vector SourceMetadata = new Vector();
public GenerateIndex ()

{

X = lllll’.

index = 1;

previousLevel = 0;

levels = "";

lastnode = "";

String lastSign = "";

paths = new TreeMap () ;

elements = new TreeMap () ;

}

public void GenerateIndex (String filename)
{

SAXBuilder builder = new SAXBuilder();

try

{

Element rootl;

Document doc = builder.build(filename) ;

199

APPENDIX D Parsing master view

Element root = doc.getRootElement () ;

if (root.getName() .equals ("schema_information"))

{

Element information = root.getChild("data_source_information");
Element docname = information.getChild("name");
Element location = information.getChild("location");
Element type = information.getChild("type");

String con,conl, con2;

con = docname.getText () ;

conl location.getText () ;

con2 = type.getText ();

SourceMetadata = new Vector();
SourceMetadata.add(con) ;

SourceMetadata.add (conl) ;

SourceMetadata.add (con2) ;

Element structure = root.getChild("structure");
rootl = structure.getChild("element") ;

}

else

{

rootl = root;

}

listChildren(rootl, 1);

}

// indicates a well-formedness error

catch (JDOMException e)

{

System.out .println(" is not well-formed.");
System.out .println(e.getMessage()) ;

}

catch (IOException e)

{

System.out.println(e) ;

}

}

public static void main(String[] args)

{

GenerateIndex gi = new GenerateIndex() ;
gi.GenerateIndex("bib_schema.xml") ;

Iterator e = paths.keySet ().iterator();

while (e.hasNext())

{

String v = (String) e.next().toString();

String s (Sstring) paths.get(v);

}

}

public static void listChildren (Element current, int depth)
{

String previousPath
String completePath = "";

String Space = "";

Space = getSpaces (depth) ;

printSpaces (depth) ;

String att = current.getAttributeValue("name") ;
if (depth == previousLevel)

{

levels = getTree(levels, depth);

wn .
’

200

APPENDIX D

Parsing master view

int m = levels.lastIndexOf(".");

String a = levels.substring(m + 1);
levels = levels.substring(0, m + 1);

int o = Integer.parselnt(a);

o =0+ 1;

levels = levels + 0;

previousPath = getParents(levels);
completePath = previousPath + "/"+ att;
paths.put (levels, completePath) ;
elements.put (levels, Space + att);

else if (depth > previousLevel)

{

if (levels.equalsIgnoreCase(""))

{

levels = levels + "1";

}

else

{

levels = levels + ".1";

}

previousPath getParents (levels) ;
completePath = previousPath + "/"+ att;
paths.put(levels, completePath);
elements.put (levels, Space + att);
previousLevel = depth;

}

else if (depth < previousLevel)

{

levels = getTree(levels, depth);
int m = levels.lastIndexOf(".");
String a = levels.substring(m + 1);
levels = levels.substring(0, m + 1);
int o = Integer.parselnt(a);

O =0+ 1;

levels = levels + o;

previousLevel = depth;

previousPath = getParents (levels);

L}

completePath = previousPath + "/"+ att;

paths.put (levels, completePath) ;
elements.put (levels, Space + att);

List children = current.getChildren();

ListIterator iterator = children.listIterator();

while (iterator.hasNext ())

{

Element child = (Element) iterator.next();

listChildren{(child, depth + 1);

}
}

private static String getTree(String level,

{

int n = 0;

String s = "";

for (int i = 0; i < depth; i++)
{

n = level.indexOf(".", n + 1);

int depth)

201

APPENDIX D Parsing master view
if (n == -1)

{ break;

})

if (n == -1)

{ return level;

}

else
{ s = level.substring(0, n);
return s;

H

private static void printSpaces(int n)

{

for (int i = 0; 1 < n; i++)

{

System.out.print (" ");

1}

private static String getSpaces (int n)

{
String space = "";
for (int i = 0; 1 < n; i++)

{

space = space + " ";

return space;

}

private static String getParents(String indx)

{

String parentPath = "“";

String previousIndex = "";

int p = indx.lastIndexOf(".");
if (p > -1)

previousIndex = indx.substring(0, p);
parentPath = (String) paths.get (previousIndex) ;
}

else

{ parentPath = "";

}

return parentPath;

1}

202

APPENDIX E

Java code for producing GUI and generating

assistant tool for mapping

import java.awt.*;

import java.awt.event.*;
import javax.swing.¥*;

import javax.swing.event.*;
import javax.swing.border.*;
import java.util.*;

import java.text.*;

import java.io.¥*;

import java.lang.*;

import java.net.*;

import javax.swing.filechooser.*;

public class GlobalSchemaPanel extends JPanel

{

BorderLayout borderLayoutl = new BorderLayout () ;
private JPanel pnl_txt = null;

JTextField txt_Filed = new JTextField();
JComboBox txt_Schm = new JComboBox();

JComboBox txt_Func = new JComboBox () ;

private JButton btn_ok = null;

private JButton btn_cancel = null;

private JLabel 1bl_show = null;

private JLabel 1bl_element = null;

private JLabel GlobalElement 1bl = null;
private JPanel JFrameContentPane = null;

public Vector IndexVector = new Vector();
private Vector textFieldsVector = new Vector();
private Vector FuncFieldsVector = new Vector();
private Vector labelsVector = new Vector();
public static String GlobalSchema = "";

public static String SourceSchema = "'";

public static GenerateIndex gi;

public static GeneratelIndex si;

public Vector SchemaElements = new Vector();

203

APPENDIX E Producing GUI

JComboBox CB = new JComboBox () ;

static TreeMap Globalpaths = new TreeMap();

static TreeMap Globalelements = new TreeMap () ;

public Frame fram;

private int y2 = 152, y3 = 12;

private int height = 5;

MainInterFaceF mycaller=null;

public GlobalSchemaPanel (String filename,MainInterFaceF caller)

GlobalSchema = filename;
mycaller=caller;
try

jbInit () ;
}

.catch (Exception ex)

{
ex.printStackTrace() ;
}
}

void jbInit() throws Exception

SchemaElements.add("") ;

UIManager.put ("Label.font", new Font ("SansSerif", Font.BOLD, 12));
UIManager.put ("Button.font", new Font ("SansSerif", Font.BOLD, 12));
UIManager.put ("TextField.font", new Font ("SansSerif", Font.BOLD, 12));
UIManager.put ("ComboBox.font", new Font ("SansSerif", Font.PLAIN, 10));
UIManager.put ("TextArea.font", new Font ("SansSerif", Font.BOLD, 12));
try

{

this.setLayout (null) ;

JTextField textField = null;

JLabel Element_lbl = null;

gi = new GeneratelIndex() ;

gi.GenerateIndex (GlobalSchema) ;

Iterator el = gi.elements.keySet () .iterator();

int 1 = 0;

while (el.hasNext())

{

String vl = (String) el.next().toString();

String sl = (String) gi.elements.get(vl);

GlobalElement 1lbl = getlbl element(l, vl + sl);
this.add(GlobalElement_1lbl,

GlobalElement_1bl.getName ()) ;

1 =1+ 1;

SchemaElements.add(v1l) ;

Globalpaths = (TreeMap) gi.paths;
Globalelements = (TreeMap) gi.elements;

catch (Throwable Exc)

{

handleException (Exc) ;

}

mycaller.menultemlocal.setEnabled(true) ;

}

private JPanel getJFrameContentPane ()

{

204

APPENDIX E Producing GUI

try

{

JFrameContentPane = new JPanel () ;
JFrameContentPane.setLayout (null) ;

JTextField textField = null;

JLabel Element_1bl = null;

gi = new GenerateIndex();

GlobalSchema = "schema_viewl.xml";
gi.GenerateIndex (GlobalSchema) ;

Iterator el = gi.elements.keySet () .iterator();
int 1 = 0;

while (el.hasNext())

{

String vl = (String) el.next().toString();
String sl = (String) gi.elements.get(vl);
-GlobalElement_1lbl = getlbl_element (1, vl + sl);
JFrameContentPane.add (GlobalElement_1lbl, GlobalElement_lbl.getName()) ;
1 =1+ 1;

SchemaElements.add(vl) ;

Globalpaths = (TreeMap) gi.paths;
Globalelements = (TreeMap) gi.elements;

}

catch (Throwable Exc)

{

handleException (Exc) ;

}

return JFrameContentPane;

}

private JLabel getlbl element (int i, String name)

{

try

{

1bl_element = new JLabel();

1lbl_element.setName (name) ;

1bl_element.setText (name) ;

1bl_element.setBounds (50, 10 + (i * 5) * height, 150, 20);

catch (Throwable Exc)

{

handleException (Exc) ;

}

return lbl element;

}

private void handleException (Throwable exception)

{

System.out .println("Could not initialize the frame. Error: " +
exception) ;

import java.awt.¥*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

205

APPENDIX E Producing GUI

import javax.swing.border.*;
import java.util.*;

import java.text.*;

import java.io.*;

import java.lang.*;

import java.net.¥*;

import javax.swing.filechooser. *;

public class SourceSchemaPanel extends JPanel implements ActionlListener
{

BorderLayout borderlLayoutl = new BorderLayout () ;
private JPanel pnl_txt = null;

JTextField txt_Filed = new JTextField();
JTextField txt_fun = new JTextField();
JComboBox txt_Schm new JComboBox () ;
"JComboBox txt_ Func = new JComboBox() ;

private Vector Functions = new Vector();

static TreeMap LocalFunctions = new TreeMap () ;
private JLabel 1bl _head = null;

private JButton btn_ok = null;

private JButton btn_cancel = null;

private JButton btn clear = null;

private JButton btn_add = null;

private JLabel 1bl_show = null;

private JLabel 1bl_element = null;

private JLabel GlobalElement_1lbl = null;
private JPanel JFrameContentPane = null;

public Vector IndexVector = new Vector();
private Vector textFieldsVector = new Vector();
private Vector FuncFieldsVector = new Vector();
private Vector textFuncVector = new Vector();
private Vector AddFieldsVector = new Vector();
private Vector labelsVector = new Vector();
public static String GlobalSchema = "";

public static String SourceSchema = "";

public static Generatelndex gi;

public static Generatelndex si;

public Vector SchemaElements = new Vector();
JComboBox CB = new JComboBox () ;

static TreeMap Globalpaths = new TreeMap () ;
static TreeMap Globalelements = new TreeMap () ;
private Vector mappingPaths = new Vector();
private Vector sourceMetadata = new Vector();:
private Mapping map;

public Frame fram;

private int y2 = 152, y3 = 12;

private int height = 5;

MainInterFaceF mycaller = null;

static TreeMap IntegratedPaths = new TreeMap() ;
public SourceSchemaPanel (String filename, MainInterFaceF caller)
{

Globalpaths = new TreeMap();

Globalelements = new TreeMap();

IntegratedPaths = new TreeMap() ;

SourceSchema = filename;

mycaller = caller;

mappingPaths= new Vector();

206

APPENDIX E

Producing GUI

GlobalSchemé=myca11er.integratedfile;
try

jbInit () ;

}

catch (Exception ex)

{

ex.printStackTrace () ;

}
}

void jbInit() throws Exception

{

SchemaElements.add("") ;

UIManager.put ("Label.font", new Font ("SansSerif",

Font .BOLD, 12));

UIManager.put ("Button. font",
UIManager.put ("TextField. font",
UIManager.put ("ComboBox.font",

UIManager

new Font ("SansSerif",

Font .BOLD, 12));

new Font ("SansSerif", Font.BOLD, 12));

.put ("TextArea.font",

try

{

this.setLayout (null) ;
JTextField textField = null;
JTextField textFunc = null;
JLabel Element 1bl = null;
JButton btn_addl = null;

gi = new GenerateIndex() ;

gi.GenerateIndex (GlobalSchema) ;

new Font ("SansSerif",
new Font ("SansSerif",

Iterator el = gi.elements.keySet () .iterator();

int 1 = 0;
while (el.hasNext())

{

String vl = (String) el.next().toString();
String sl = (String) gi.elements.get(vl);
GlobalElement 1bl = getlbl element (1, vl + sl1);

1l =1+ 1;
SchemaElements.add(vl) ;

}

Globalpaths = (TreeMap) gi.paths;
Globalelements = (TreeMap) gi.elements;

si = new GenerateIndex();

sourceMetadata = new Vector();
si.GenerateIndex (SourceSchema) ;

sourceMetadata = (Vector) si.SourceMetadata.clone();
mycaller.SourceMetadata = (Vector) sourceMetadata;
Iterator e2 = si.elements.keySet () .iterator();
Element_1bl = getlbl _headingl(0, "Data Source Name
this.add (Element_1lbl, Element_lbl.getName());
Element_1bl = getlbl _heading2(0, sourceMetadata.get(0).toString(});
this.add(Element_1bl, Element_1bl.getName());

Element 1bl = getlbl headingl(1l,

this.add(Element_1lbl, Element_lbl.getName());
Element_1bl = getlbl heading2(1l, sourceMetadata.get(1l).toString());
this.add (Element_lbl, Element_lbl.getName());

Element_1lbl = getlbl_headingl(2, "Data Source Type
this.add (Element 1bl, Element_lbl.getName());

Element_1bl = getlbl_heading2(2, sourceMetadata.get(2).toString()):
this.add(Element 1bl, Element_lbl.getName());

Font.PLAIN, 10));
Font .BOLD, 12));

")

"Data Source Location : ");

")

207

APPENDIX E Producing GUI

int n = 4}

while (e2.hasNext())

{

String v2 = (String) e2.next().toString();
String s2 = (String) si.elements.get (v2);
IndexVector.add(v2) ;

CB = gettxt_function(n);

textField = gettxt_ Field(n);

Element_lbl = getlbl show(n, s2);
this.add(Element_1lbl, Element_1lbl.getName()) ;
this.add(textField, textField.getName()) ;
this.add(CB, CB.getName()) ;

textFunc = gettxt_multipleFunction(n);
this.add(textFunc, textField.getName());
btn_addl = getbtn_add(n);
‘this.add(btn_addl, btn_addl.getName()) ;
n=ns+1;

this.add(getbtn_cancel (n), getbtn_cancel (n) .getName()) ;
this.add(getbtn_ok(n), getbtn ok(n).getName()) ;
this.add(getbtn_clear(n), getbtn clear(n).getName()) ;

catch (Throwable Exc)

{

handleException (Exc) ;

}

}

private JPanel getJFrameContentPane ()

{

try

{

JFrameContentPane = new JPanel () ;
JFrameContentPane.setLayout (null) ;
JTextField textField = null;

JLabel Element_lbl = null;

gi = new GenerateIndex();

GlobalSchema = "schema_viewl.xml";
gi.GenerateIndex (GlobalSchema) ;

Iterator el = gi.elements.keySet () .iterator();
int 1 = 0;

while (el.hasNext())

{

String vl = (String) el.next () .toString();
String sl = (String) gi.elements.get(vl);
GlobalElement_1lbl = getlbl element(l, vl + sl);
JFrameContentPane.add (GlobalElement_1bl,
GlobalElement 1lbl.getName()) ;

1 =14+ 1;

SchemaElements.add(vl) ;

Globalpaths = (TreeMap) gi.paths;
Globalelements = (TreeMap) gi.elements;

catch (Throwable Exc)

{

handleException (Exc) ;

}

208

APPENDIX E Producing GUI

return JFrameContentPane;

}

public void actionPerformed(ActionEvent e)

{

JButton add2 = null;

for (int i = 0; i < AddFieldsVector.size(); i++)
{ .
add2 = (JButton) AddFieldsVector.get(i);
if (e.getSource() == add2)

{

CB = (JComboBox) FuncFieldsVector.get (i) ;

A
}

txt Filed.setText (last + Sp + CB.getSelectedItem().toString());
}

}

if (e.getSource() == btn_cancel)

{

this.removeAll () ;

this.repaint () ;

return;

txt_Filed = (JTextField) textFuncVector.get (i) ;
String last = txt_Filed.getText () .toString();
String Sp = ",";

if (last.length() == 0)

Sp = n lll.

else if (e.getSource() == btn_ok)

{

mycaller.menultemMappings.setEnabled(true) ;
btn_ok.setEnabled(false) ;

btn_cancel.setEnabled(false) ;

btn_clear.setEnabled(false);

generatePathMapping5 () ;
JOptionPane.showMessageDialog(this, "Indexes Numbers Assigned
Successfully") ;

JTextField textField = null;

}

else if (e.getSource() == btn_clear)

{

for (int i = 0; i < textFieldsVector.size(); i++)
{

txt_Filed = (JTextField) textFieldsVector.get(i);

txt_Filed.setText ("");

}

for (int i = 0; i < FuncFieldsVector.size(); i++)
{

CB = (JComboBox) FuncFieldsVector.get (i) ;
CB.setSelectedIndex(0) ;

}

}

}

private JLabel getlbl_element (int i, String name)
{

try

{

1bl_element = new JLabel();

209

APPENDIX E Producing GUI

1bl_element .setName (name) ;
1bl_element.setText (name) ;
1bl_element.setBounds (50, 10 + (i * 5) * height, 150, 20);

catch (Throwable Exc)

{

handleException (Exc) ;

}

return lbl_element;

}

private JButton getbtn ok (int i)

if (btn_ok == null)

{

try

A

btn_ok = new JButton() ;

btn_ok.setName ("btn_ok") ;

btn_ok.setText ("Submit") ;

btn_ok.setBounds (400, 60 + (i * 5) * height, 85, 25);
btn_ok.addActionListener (this) ;

catch (Throwable Exc)

{
handleException (Exc) ;
}
}

return btn_ok;

}

private JTextField gettxt_Field (int i)
{

try

{

txt_Filed = new JTextField();
txt_Filed.setName("Field" + i);
txt_Filed.setEditable (true);
txt_Filed.setText ("");
txt_Filed.setBounds (230, 10 + (i * 5) * height, 100, 20};
textFieldsVector.add(txt_Filed) ;

catch (Throwable Exc)

{

handleException (Exc) ;

}

return txt_Filed;

}

private JTextField gettxt_multipleFunction(int 1)
{

try

{

txt_fun = new JTextField();

txt_fun.setName ("FunField" + 1i);
txt_fun.setEditable (true) ;

txt_fun.setText ("");

txt_fun.setBounds (560, 10 + (i * 5) * height, 200, 20);
textFuncVector.add (txt_fun);

}

210

APPENDIX E Producing GUI

catch (Throwable Exc)

{

handleException (Exc) ;

}

return txt_fun;

}

private JComboBox gettxt SchemaElement (int i)

{

try

{

txt_Schm = new JComboBox(SchemaElements) ;
txt_Schm.setName ("Schema_element" + i);
txt_Schm.setBounds (210, 10 + (i * 5) * height, 150, 15);
textFieldsVector.add (txt_Schm) ;

-catch (Throwable Exc)

{

handleException (Exc) ;

}

return txt_Schm;

}

private JComboBox gettxt_function(int i)

{

String[] functions = {" ", "firstName", "lastName", "RateExchange",
Part_of", "contains", "Merge"};
try

{

txt_Func = new JComboBox (functions);
txt_Func.setBackground (Color.white) ;

txt_Func.setName ("function" + 1i);
txt_Func.setBounds (350, 10 + (i * 5) * height, 100, 20);
FuncFieldsVector.add (txt_Func) ;

catch (Throwable Exc)

{

handleException (Exc) ;

}

return txt_Func;

}

private JButton getbtn_cancel (int 1)
{

if (btn_cancel == null)

{

try

{

btn_cancel = new JButton();
btn_cancel.setName ("btn_cancel");
btn_cancel.setText ("Cancel") ;
btn_cancel.setBounds (600, 60 + (i * 5) * height, 85, 25);
btn_cancel.addActionListener (this) ;

}

catch (Throwable Exc)

{

handleException (Exc) ;

}
}

return btn_cancel;

|Iis-

211

APPENDIX E Producing GUI

}

private JButton getbtn clear (int i)
{

if (btn_clear == null)

{

try

{

btn_clear = new JButton() ;
btn_clear.setName("btn_clear");
btn_clear.setText ("Clear");
btn_clear.setBounds (500, 60 + (i * 5) * height, 85, 25);
btn_clear.addActionListener(this) ;

catch (Throwable Exc)

{
-handleException (Exc) ;

}

}

return btn_clear;

}

private JButton getbtn_add(int i)
{

try

{

btn_add = new JButton();
btn_add.setName ("btn_add") ;
btn_add.setText ("Add") ;
btn_add.setBounds (470, 10 + (i * 5) * height, 70, 20);
btn_add.addActionListener (this) ;
AddFieldsVector.add (btn_add) ;

}

catch (Throwable Exc)

{

handleException (Exc) ;

}

return btn_add;

}

private JLabel getlbl show(int i, String name)

{

try

{

1bl _show = new JLabel();

1bl_show.setName (name) ;

1bl_show.setText (name) ;

1lbl_show.setBounds (110, 10 + (i * 5) * height, 100, 20);

}

catch (Throwable Exc)

{

handleException (Exc) ;

}

return lbl _ show;

}

private JLabel getlbl heading2(int i, String name)

{
try

lbl_head = new JLabel();

212

APPENDIX E Producing GUI

1bl_head.setName (name) ;
1bl_head.setText (name) ;
1bl_head.setBounds (250, 10 + (i * S) * height, 300, 20);

catch (Throwable Exc)

{

handleException (Exc) ;

return 1lbl head;

}
private JLabel getlbl headingl{(int i, String name)
{

try

1bl_head = new JLabel();
-1bl_head.setName (name) ;
1bl_head.setText (name) ;
1bl head.setBounds (110, 10 + (i * 5) * height, 200, 20);

catch (Throwable Exc)

{

handleException (Exc) ;

}

return 1lbl_head;

}

private void handleException (Throwable exception)

{

System.out .println("Could not initialize the frame. Error:"+ exception);

}

private void generatePathMapping()

{

String indexKey = "";

String GlobalPath = "";

String SourcePath = "";

JTextField textField = null;

for (int 1 = 0; i1 < textFieldsVector.size(); i++)
{

textField = (JTextField) textFieldsVector.get(i);
map = new Mapping();

if (textField.getText().length() != 0)

{

CB = (JComboBox) FuncFieldsVector.get (i) ;
indexKey = (String) IndexVector.get(i);

String delimiters = ", ";

String str;

str = textField.getText () .toString();
StringTokenizer st = new StringTokenizer(str, delimiters);
SourcePath = (String) si.paths.get (indexKey) ;
map.SourcePath = SourcePath;

Vector pathsVector = null;

pathsVector = new Vector();

while (st.hasMoreTokens())

{

String index = st.nextToken();

indexKey = (String) IndexVector.get(i);
SourcePath = (String) si.paths.get (indexKey) ;
GlobalPath = (String) Globalpaths.get (index) ;

213

APPENDIX E Producing GUI

pathsVector.add(GlobalPath) ;

}

map.GlobalPaths = (Vector) pathsVector;
if ((CB.getSelectedItem().toString().trim()).length() > 0)

map.FunctionName = CB.getSelectedItem().toString();

}
}

else

{

indexKey = (String) IndexVector.get(i);
SourcePath = (String) si.paths.get (indexKey) ;

map.SourcePath = SourcePath;

}

mappingPaths.add (map) ;

mycaller.MappingPaths = (Vector) mappingPaths.clone() ;

}

private void generatePathMapping2 ()

{

String indexKey = "";

String GlobalPath = "»;

String SourcePath = "";

LocalFunction 1lf = new LocalFunction();
JTextField textField, txt_function = null;
Hashtable IntegratedPath = new Hashtable();
Vector localPaths = null;

Iterator el = Globalpaths.keySet () .iterator();
while (el.hasNext())

{

String vl = (String) el.next () .toString();
String sl = (String) Globalpaths.get(vl);
IntegratedPaths.put (vl, 1lf);

}

for (int i = 0; 1 < textFieldsVector.size(); i++)
{

textField = (JTextField) textFieldsVector.get(i);
map = new Mapping() ;

1f = new LocalFunction () ;

1f.LocalSourcePaths = null;

1f .FunctionName = null;

String myfunction = "";

if (textField.getText ().length() != 0)

{

CB = (JComboBox) FuncFieldsVector.get(i);

indexKey = (String) IndexVector.get(i);

String delimiters = ", ";

String str;

str = textField.getText () .toString();
StringTokenizer st = new StringTokenizer (str, delimiters);
SourcePath = (String) si.paths.get (indexKey) ;
txt_function = (JTextField) textFuncVector.get (i)
String f = txt_function.getText ().toString();
StringTokenizer stf = new StringTokenizer(f, delimiters);
Vector pathsVector = null;

Vector functionVector = new Vector();

pathsVector = new Vector();

214

APPENDIX E Producing GUI

localPaths = new Vector();
while (st.hasMoreTokens())

{

String index = st.nextToken() ;
if (stf.hasMoreElements())

{

myfunction = stf.nextToken() ;

}

indexKey = (String) IndexVector.get (i);
SourcePath = (String) si.paths.get (indexKey) ;
GlobalPath = (String) Globalpaths.get (index) ;
pathsVector.add (GlobalPath) ;

String Separator = ",";

localPaths.add (SourcePath) ;

txt_function = (JTextField) textFuncVector.get(i);
.LocalFunctions.put (indexKey, myfunction) ;
functionVector.add (myfunction) ;
IntegratedPaths.put (index, 1f);
map.SourcePath = index;

map.GlobalPaths = (Vector) localPaths;
map.FunctionName = "no function";
mappingPaths. add (map) ;

1f.LocalSourcePaths = (Vector) localPaths;

1f .FunctionName = (Vector) functionVector;
txt_function = (JTextField) textFuncVector.get (i) ;
Functions.add (txt_function.getText ());
map.GlobalPaths = (Vector) pathsVector;
txt_function = (JTextField) textFuncVector.get(i);
Functions.add (txt_function.getText ()) ;

}

else

{

indexKey = (String) IndexVector.get(i);
SourcePath = (String) si.paths.get (indexKey) ;
}

}

mycaller.MappingPaths = (Vector) mappingPaths.clone();
Iterator ell = IntegratedPaths.keySet().iterator();
while (ell.hasNext())

{

String vl = (String) ell.next () .toString();
String ml = (String) Globalpaths.get(vl);
1f = (LocalFunction) IntegratedPaths.get(vl);

Vector j = new Vector():;
Vector g = new Vector();
if (1f.LocalSourcePaths != null)
{
]

}
}

Iterator elll = LocalFunctions.keySet () .iterator();
while (elll.hasNext ())

{

String vl11l
String mll

(Vector) 1lf.LocalSourcePaths;
(Vector) 1lf.FunctionName;

]

Q
I

(Sstring) elll.next ().toString();
(String) si.paths.get (vll);

215

APPENDIX E

Producing GUI

String sll = (String) LocalFunctions.get (v1l);

}

}

private void generatePathMappings ()

{

String indexKey = "";

String GlobalPath = "";

String SourcePath = "";

JTextField textField, txt_ function = null;
Hashtable IntegratedPath = new Hashtable();
Vector localPaths = null;

Mapping mp=null;

Iterator el = Globalpaths.keySet () .iterator();
while (el.hasNext())

{

_mp=new Mapping() ;

String vl = (String) el.next () .toString();
String sl = (String) Globalpaths.get (v1l) ;
mp.SourcePath =sl;

mp . FunctionName="";

mp.GlobalPaths=null;
IntegratedPaths.put (vl, mp);

}

for (int i = 0; i < textFieldsVector.size(); i++)

{

mp=new Mapping() ;

textField = (JTextField) textFieldsVector.get(i);
String myfunction = "";
if (textField.getText().length() != 0)

{

indexKey = (String) IndexVector.get (i) ;
String delimiters = ",";

String str;

str = textField.getText () .toString();

StringTokenizer st = new StringTokenizer (str, delimiters);

txt_function = (JTextField) textFuncVector.get(i);
String f = txt_function.getText () .toString();
StringTokenizer stf = new StringTokenizer (f, delimiters);
Vector pathsVector = null;

Vector functionVector = new Vector();

pathsVector = new Vector();

localPaths = new Vector() ;

while (st.hasMoreTokens())

{

String index = st.nextToken();

if (stf.hasMoreElements())

{

myfunction = stf.nextToken() ;

}

indexKey = (String) IndexVector.get(i);
SourcePath = (String) si.paths.get (indexKey);
GlobalPath = (String) Globalpaths.get (index) ;
pathsVector.add (SourcePath) ;

String Separator = ",";

mp = (Mapping) IntegratedPaths.get (index);
Vector local = new Vector();

if (mp.GlobalPaths != null)

216

APPENDIX E Producing GUI

{

local = (Vector) mp.GlobalPaths;
local.add (SourcePath) ;

}

else

{

local.add {SourcePath) ;

mp.GlobalPaths=(Vector) local;
mp . FunctionName =myfunction ;
mp.SourcePath=GlobalPath;
IntegratedPaths.put (index, mp);
}

}

}

Iterator ell = IntegratedPaths.keySet().iterator();
mappingPaths = new Vector();

while (ell.hasNext())

{

String vl = (String) ell.next () .toString();

String ml = (String) Globalpaths.get(vl);

mp = (Mapping) IntegratedPaths.get (vl);
mappingPaths.add (mp) ;

Vector j = new Vector();

if (mp.GlobalPaths != null)

{

j = (Vector) mp.GlobalPaths;

}

}

mycaller .MappingPaths = (Vector) mappingPaths.clone();
for (int i = 0; i < mappingPaths.size(); i++)

{

Vector sr= new Vector();

map = (Mapping) mappingPaths.get (i) ;
sr=(Vector) map.GlobalPaths;

}

}

private void generatePathMapping4 ()

{

String indexKey = "";

String GlobalPath = "";

String SourcePath = "";

LocalFunction 1f = new LocalFunction();
JTextField textField, txt_ function = null;
Hashtable IntegratedPath = new Hashtable();
Vector localPaths = null;

Iterator el = Globalpaths.keySet () .iterator();
while (el.hasNext())

{

String vl = (String) el.next().toString();

String sl = (String) Globalpaths.get(vl);
IntegratedPaths.put (vl, 1lf);

}

for (int i = 0; i < textFieldsVector.size(); i++)
{

textField = (JTextField) textFieldsVector.get(i);

map = new Mapping();

217

APPENDIX E Producing GUI

1f = new LocalFunction();

1f.LocalSourcePaths = null;

1f .FunctionName = null;

String myfunction = "";

if (textField.getText().length() != 0)

{

indexKey = (String) IndexVector.get(i);

String delimiters = ",";

String str;

str = textField.getText () .toString() ;
StringTokenizer st = new StringTokenizer (str, delimiters);
SourcePath = (String) si.paths.get (indexKey) ;
txt_function = (JTextField) textFuncVector.get(i);
String f = txt_function.getText () .toString();
StringTokenizer stf = new StringTokenizer(f, delimiters);
. Vector pathsVector = null;

Vector functionVector = new Vector();

pathsVector = new Vector () ;

localPaths = new Vector() ;

while (st.hasMoreTokens())

{

String index = st.nextToken() ;

if (stf.hasMoreElements())

{

myfunction = stf.nextToken() ;

}

indexKey = (String) IndexVector.get(i);
SourcePath = (String) si.paths.get (indexKey) ;
GlobalPath = (String) Globalpaths.get (index) ;
pathsVector.add (GlobalPath) ;

String Separator = ",";

localPaths.add (SourcePath) ;

txt_function = (JTextField) textFuncVector.get (i) ;
LocalFunctions.put (indexKey, myfunction) ;
functionVector.add (myfunction) ;

1f = (LocalFunction) IntegratedPaths.get (index) ;
Vector j = new Vector();

Vector q = new Vector();

if (l1f.LocalSourcePaths != null)

{

j (Vector) 1f.LocalSourcePaths;

(Vector) 1lf.FunctionName;

.add (SourcePath) ;

.add (myfunction) ;
1f.LocalSourcePaths=(Vector) j;
1f.FunctionName = (Vector) q;
IntegratedPaths.put (index, 1lf);
map.SourcePath = index;
map.GlobalPaths = (Vector) localPaths;
map.FunctionName = "no function';
mappingPaths.add (map) ;

1f.LocalSourcePaths = (Vector) localPaths;

1f .FunctionName = (Vector) functionVector;
txt_function = (JTextField) textFuncVector.get (i);
Functions.add (txt_function.getText ()) ;

218

APPENDIX E Producing GUI

map.GlobalPaths = (Vector) pathsVector;
txt_function = (JTextField) textFuncVector.get(i);
Functions.add (txt_function.getText ()) ;

}

else

{

indexKey = (String) IndexVector.get (i);
SourcePath = (String) si.paths.get (indexKey) ;
}

}

mycaller.MappingPaths = (Vector) mappingPaths.clone() ;
Iterator ell = IntegratedPaths.keySet () .iterator();
while (ell.hasNext())

{

String vl = (String) ell.next().toString();
~String ml = (String) Globalpaths.get(vl) ;
1f = (LocalFunction) IntegratedPaths.get (vl);

Vector j = new Vector();
Vector g = new Vector() ;

if (l1f.LocalSourcePaths != null)
{

j = (Vector) 1lf.LocalSourcePaths;
g = (Vector) 1lf.FunctionName;

}
)

Iterator elll = LocalFunctions.keySet ().iterator();
while (elll.hasNext ())

{

String vl1l = (String) elll.next ().toString();
String mll = (String) si.paths.get (vll);
String sll = (String) LocalFunctions.get (v1ll);

}

}

private void generatePathMappingl ()
{

String indexKey = "";

String GlobalPath = "";

String SourcePath = "";

JTextField textField = null;

for (int i = 0; 1 < textFieldsVector.size(); i++)

{

CB = (JComboBox) textFieldsVector.get (i) ;

if (CB.getSelectedItem().toString() != "")

{

indexKey = (String) IndexVector.get(i);

SourcePath = (String) si.paths.get (indexKey) ;

GlobalPath = (String) Globalpaths.get (CB.getSelectedItem() .toString()) ;

}
}
}
}

219

APPENDIX F

Java code for paths mapping generation

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;

import javax.swing.event.?*;
import javax.swing.border.*;
import java.util.=*;

import java.text.*;

import java.io.*;

import java.lang.¥*;

import java.net.*;

import javax.swing.filechooser.*;

public class MappingPanel extends JPanel

{

BorderLayout borderLayoutl = new BorderLayout () ;
private JPanel pnl_txt = null;

JTextField txt_Filed = new JTextField();
JComboBox txt_Schm = new JComboBox () ;

JComboBox txt Func = new JComboBox () ;

private JButton btn_ok = null;

private JButton btn_cancel = null;

private JLabel 1lbl_show = null;

private JLabel 1bl_line = null;

private JLabel 1bl_element = null;

private JLabel 1bl_Gpath = null;

private JLabel 1bl_function = null;

private JLabel line_1lbl = null;

private JLabel GlobalElement_1lbl = null;
private JPanel JFrameContentPane = null;

public Vector IndexVector = new Vector();
private Vector textFieldsVector = new Vector();
private Vector FuncFieldsVector = new Vector();
private Vector labelsVector = new Vector();
public static String GlobalSchema = "";

public static String SourceSchema = "";

public static GenerateIndex gi;

public static GeneratelIndex si;

220

APPENDIX F Paths mapping generation

public Vector SchemaElements = new Vector();
JComboBox CB = new JComboBox () ;

static TreeMap Globalpaths = new TreeMap() ;
static TreeMap Globalelements = new TreeMap () ;
private Vector mappingPaths = new Vector();
private Mapping map;

public Frame fram;

private int y2 = 152, y3 = 12;

private int height = 5;

MainInterFaceF mycaller=null;

private String sourcePath;

private Vector globalPaths;

private String functionName;

public MappingPanel (MainInterFaceF caller)

{

“mappingPaths = new Vector();
mycaller=caller;

mappingPaths=(Vector) mycaller.MappingPaths;
mycaller.menultemKB.setEnabled (true) ;

try

{ jbInit(); }

catch (Exception ex)

{

ex.printStackTrace() ;

1}

void jbInit () throws Exception

{

SchemaElements.add("") ;

UIManager.put ("Label.font", new Font ("SansSerif", Font.BOLD, 12));
UIManager.put ("Button.font", new Font ("SansSerif", Font.BOLD, 12));
UIManager.put ("TextField. font", new Font ("SansSerif", Font.BOLD, 12));
UIManager.put ("ComboBox.font", new Font ("SansSerif", Font.PLAIN, 10));
UIManager.put ("TextArea.font", new Font ("SansSerif", Font.BOLD, 12)});
try

{

this.setLayout (null) ;

JTextField textField = null;

JLabel Element_lbl = null;

Element_1lbl = getlbl Gpath(0, "Data Source Element path");

this.add (Element_1lbl, Element_lbl.getName())};

Element_lbl = getlbl_element (0, "Master View Element path");

this.add (Element 1bl, Element_lbl.getName()) ;

Element_1bl = getlbl function(0, "Mapping Function");

this.add (Element_1bl, Element_lbl.getName());

int n = 2;

for (int 1 = 0; i < mappingPaths.size(); i++)

{

n=mn+1;

Mapping map = new Mapping() ;

map= (Mapping) mappingPaths.get (i);

sourcePath=(String) map.SourcePath;

Element_1lbl = getlbl_element (n, sourcePath);

this.add (Element_1lbl, Element_lbl.getName()) ;

globalPaths=(Vector) map.GlobalPaths;

if (globalPaths != null)

globalPaths=(Vector) map.GlobalPaths;

221

APPENDIX F Paths mapping generation

functionName= (String) map.FunctionName;
int m=0;
for (int j = 0; j < globalPaths.size(); j++)

String gp=new String(};

gp=(String) globalPaths.get (j) ;

if ((globalPaths.size()>1) && (j==0))
Element_lbl = getlbl Gpath(n, gp+",");

else

Element_1bl = getlbl_Gpath(n, gp):;
this.add(Element_1lbl, Element_lbl.getName()) ;
n=ns+1;

m=j+1;

}

Element_1bl = getlbl function(n-m, functionName);
~this.add(Element_1bl, Element_ 1lbl.getName()) ;
n=n-1;

}

else

{

Element_1bl = getlbl_Gpath(n, "Null");
this.add(Element_1lbl, Element_lbl.getName());

1}

catch (Throwable Exc)

{

handleException (Exc) ;

1}

private JLabel getlbl element (int i, String name)
{

try

{

1bl element = new JLabel();
1bl_element.setName (name) ;
1bl_element.setText (name) ;
1bl_element.setBounds (20, 10 + (i * 5) * height, 250, 20);
}

catch (Throwable Exc)

{ handleException (Exc); }

return lbl element;

}

private JLabel getlbl_Gpath(int i, String name)

{

try

{

1bl_Gpath = new JLabel () ;
1bl_Gpath.setName (name) ;

1bl Gpath.setText (name) ;

1bl_Gpath.setBounds (350, 10 + (i * 5) * height, 250, 20);

catch (Throwable Exc)

{ handleException(Exc); }

return lbl_Gpath;

érivate JLabel getlbl function(int i, String name)
{

try

{

222

APPENDIX F Paths mapping generation

1bl_ function = new JLabel () ;

1bl_function.setName (name) ;

1bl_function.setText (name) ;

1bl_function.setBounds (650, 10 + (i * 5) * height, 200, 20);
}

catch (Throwable Exc)

{ handleException(Exc); }

return 1lbl_function;

}

private JTextField gettxt_Field(int i)

{

try

{

txt_Filed = new JTextField() ;

txt_Filed.setName("Field" + 1i);
txt_Filed.setEditable(true);

txt_Filed.setText ("");

txt Filed.setBounds (450, 10 + (i * 5) * height, 100, 15);
textFieldsVector.add(txt_Filed);

catch (Throwable Exc)

{ handleException(Exc); }

return txt_Filed;

}

private JLabel getlbl_show(int i, String name)
{

try

{

1bl_show = new JLabel();
1bl_show.setName (name) ;
1bl_show.setText (name) ;

1bl_show.setBounds (20, 10 + (i * 5) * height, 100, 20); }
catch (Throwable Exc)

{

handleException (Exc) ;

return 1lbl_show;

}

private JLabel getlbl_line(int i, String name)
{

try

{

1bl_line = new JLabel();
1bl_line.setName (name) ;
1bl_line.setText (name) ;

1bl line.setBounds (10, 10 + (i * 5) * height, 300, 20);
}

catch (Throwable Exc)

{ handleException(Exc); }

return lbl_line;

}

private void handleException (Throwable exception)

{

System.out .println("Could not initialize the frame. Error: " +
exception) ;

1}

223

APPENDIX G

Java code for merging mapping information with

XMKB

import org.jdom. *;

import org.jdom.input.SAXBuilder;

import java.io.IOException;

import java.util.*;

import java.io.FileOutputStream;

import org.jdom.output.XMLOutputter;
import java.io.File;

public class KBmerge

{

public static MainInterFaceF mycaller;
static TreeMap paths = new TreeMap();
static TreeMap elements = new TreeMap () ;
static Vector SourceMetadata = new Vector();
public KBmerge ()

{

String lastSign = "";

paths = new TreeMap () ;

elements = new TreeMap();

}

public static void wmergeMapping{MainInterFaceF caller,

{

File £ = new File(filename) ;
if (1f.exists())

{

buildKB(caller, filename) ;

}

else

{

cumKB (caller, filename);

1}

private static void writeToFile(String fname, Document

{
try

String filename)

doc)

224

APPENDIX G Merge mapping infrmation

FileOutputStream out = new FileOutputStream(fname) ;
XMLOutputter op = new XMLOutputter() ;

op.output (doc, out);

out.flush();

out.close() ;

}

catch (IOException e)

{

System.err.println(e) ;

1}

public static void cumKB(MainInterFaceF caller, String filename)
{

SAXBuilder builder = new SAXBuilder();

mycaller = caller;

Vector sourceMetadata = new Vector();
try

{

String att = "";

Element integ, child;

sourceMetadata = (Vector) mycaller.SourceMetadata.clone() ;
Vector mappingPaths = (Vector) mycaller.MappingPaths;
String sourcePath = "";

String functionName = "";

Vector globalPaths = null;

Document doc = builder.build(filename) ;

Element root = doc.getRootElement () ;

Element information = root.getChild("DS_information");

int number = information.getAttribute ("number").getIntValue() ;
number = number + 1;

String num = "" + number;
information.removeAttribute ("number") ;
information.setAttribute ("number", num.trim()) ;

List children = information.getChildren() ;

ListIterator iterator = children.listIterator();

child = (Element) iterator.next();

att = child.getAttributeValue("name") ;

Element newSource = new Element ("DS_Location") ;
newSource.setText (sourceMetadata.get (1) .toString());
newSource.setAttribute ("name", sourceMetadata.get (0).toString()) ;
newSource.setAttribute ("type", sourceMetadata.get (2).toString());
information.addContent (newSource) ;

Element structure = root.getChild("Med_component") ;
children = structure.getChildren() ;

iterator = children.listIterator();

int count = 0;

while (iterator.hasNext())

{

child = (Element) iterator.next();

att = child.getAttributevalue ("path");

String paths = " ";

Mapping map = new Mapping() ;

map = (Mapping) mappingPaths.get (count);

sourcePath = (String) map.SourcePath;

functionName = (String) map.FunctionName;

if (functionName.trim().length() == 0)

{

functionName = "Null";

225

APPENDIX G Merge mapping infrmation

} .

Element local = new Element ("target") ;
globalPaths = (Vector) map.GlobalPaths;

if (globalPaths != null)

{ globalPaths = (Vector) map.GlobalPaths;
for (int j = 0; jJ < globalPaths.size(); j++)

String gp = new String();

gp = (String) glcbalPaths.get (j);
if ((globalPaths.size() > 1))

{

if (j==0)

paths=gp;

else

paths = paths + "," + gp;

)

else

{

paths = gp;

1)

else

{ paths = "Null";

functionName = "Null”;

1

local.setText (paths) ;
local.setAttribute("name", sourceMetadata.get (0).toString());
local.setAttribute("fun", functionName) ;
child.addContent (local) ;

count++;

}

writeToFile(filename, doc);

}

catch (JDOMException e)

{

System.out .println(" is not well-formed.");
System.out .println(e.getMessage()) ;

}

catch (IOException e)

{

System.out .println(e);

1}

public static void buildKB(MainInterFaceF caller, String xmlfile)
{

mycaller = caller;

Element concept;

Element dbase;

Element relations;

Vector sourceMetadata = new Vector();

sourceMetadata = (Vector) mycaller.SourceMetadata.clone();
Vector mappingPaths = (Vector) mycaller.MappingPaths;
String sourcePath = "";

String functionName = "";

Vector globalPaths = null;

Element root = new Element ("XMKB") ;

Document doc = new Document (root) ;

Element DS_info = new Element ("DS_information");
DS_info.setAttribute ("number", "1");

226

APPENDIX G Merge mapping infrmation

Element DS_Loc = new Element ("DS_Location") ;
DS_Loc.setText (sourceMetadata.get (1) .toString()) ;
DS_Loc.setAttribute("name", sourceMetadata.get (0).toString());
DS_Loc.setAttribute("type", sourceMetadata.get(2).toString());
DS_info.addContent (DS_Loc) ;

root .addContent (DS_info) ;

Element Med_comp = new Element ("Med_component") ;
for (int i = 0; i < mappingPaths.size(); i++)

{

String paths = " ;

Mapping map = new Mapping() ;

map = (Mapping) mappingPaths.get (i) ;

sourcePath = (String) map.SourcePath;
functionName = (String) map.FunctionName;

if (functionName.trim().length() == 0)

~{ functionName = "Null"; }

Element integrated = new Element ("source");
integrated.setAttribute("path", sourcePath) ;
Element local = new Element ("target");
globalPaths = (Vector) map.GlobalPaths;

if (globalPaths != null)

globalPaths = (Vector) map.GlobalPaths;

for (int j = 0; j < globalPaths.size(); j++)
{

String gp = new String();

gp = (String) globalPaths.get(j);

if ((globalPaths.size() > 1))

if (j==0)

paths = gp;

else

paths = paths + "," + gp;

}

else

{

paths gp;

P

else

{ paths = "Null";

functionName = "Null";

}

local.setText (paths) ;
local.setAttribute("name", sourceMetadata.get(0).toString());
local.setAttribute("fun", functionName) ;
integrated.addContent (local) ;
Med_comp.addContent (integrated) ;
}

root .addContent (Med_comp) ;
writeToFile (xmlfile, doc);

}

public static void main(String[] args)

{

KBmerge kb = new KBmerge () ;

1

227

APPENDIX H

Sample of XMKB document

<?xml version="1.0" encoding="UTF-8" ?>
<DS_information number="4">
<DS_Location name ="books.xml" type="XML
document" >http://www.w3s chools.com/xque ry</DS_Location >
<DS_Location name="bib.xml" type=" XML document">C :\prototype\doc </DS_Location>
<DS_Location name=" SCMFMA" type="Relational Datab ase">
jdbc:oracle:thin: @helot:1521:0racled9 </DS_Locat ion>
<DS_Location name=" bookdata.xml" t ype="XML document">C:\prototyp e\doc</DS_Locat ion>
</D8_information>
<Med_ component >
<source path="/book" >
<target name="book s.xml" fun="Nul l">/bookstore/b ook</target>
<target name="bib.xml" fun="Null" >/bib/book</tar get>
<target name="SCMFMA" fun="Null"> /scmfma/book</t argets>
<target name="bookdata.xml" fun=" Null">/bookdat a/book</target>
</source>
<source path="/book/price">
<target name="book g.xml" fun="Rat eExchange">/bookstore/book/pri ce</target>
<target name="bib. xml" fun="RateE xchange">/bib/b ook/price</targets>
<target name="SCMFMA" fun="Null">Null</target>
<target name="bookdata.xml" fun="Null">/bookdat a/book/price</target>
</sources>
<source path="/book/ author">
<target name="book s.xml" fun="Nul 1">Null</target >
<target name="bib.xml" fun="Null" >/bib/book/author</target>
<target name="SCMFMA" fun="Null">Null</target>
<target name="book data.xml" fun=" Null">/bookdat a/book/author</t arget>
</sources>
<source path="/book/ author/full name">
<target name="book s.xml" fun="Null">Null</target >
<target name="bib.xml" fun="Null" >Null</target>
<target name="SCMFMA" fun="Null">Null</target>
<target name="bookdata.xml" fun=" Null">Null</target>
</source>
<gource path="/book/ author/full_name/first_name">
<target name="book s.xml" fun="fir stName">/bookst ore/book/author </target>
<target name="bib.xml" fun="Null" >/bib/book/author/first</target>
<target name="SCMFMA" fun="firstN ame">/scmfma/b ook/author</target>
<target name="book data.xml" fun=" firstName">/boo kdata/book/author/name</target >
</source>
<source path="/book/ author/full name/last_name">
<target name="book s.xml" fun="Las tName">/booksto re/book/author< /target>
<target name="bib.xml" fun="Null" >/bib/book/author/last</target >
<target name="SCMFMA" fun="LastName'>/scmfma/boo k/author</target>
<target name="bookdata.xml" fun=" LastName"s>/book data/book/autho r/name</target>
</source>
<source path="/book/ title">

228

http://wv%c2%bbw.w3s

APPENDIX H Sample of XMKB

<target name="book s.xml" fun="Null">/bookstore/book/title</targets>
<target name="bib.xml" fun="Null" >/bib/book/titl e</target>
<target name="SCMFMA" fun="Null"> /scmfma/book/ti tle</target>
<target name="book data.:ml" fun="Null">/bookdat a/book/title</ta rget>
</source>

<source path="/book/year">
<target name="book s.xml" fun="Nul 1">/bookstore/book/year</targets>
<target name="bib.xml" fun="Null" >Null</target>
<target name="SCMFMA" fun="Null"> /scmfma/book/ye ar</target>
<target name="bookdata.xml" fun="Null">Null</targets>
</source>

<source path="/book/publisher">
<target name="books.xml" fun="Nul 1l">Null</target >
<target name="bib.xml" fun="Null" >/bib/book/publ isher</target>
<target name="SCMFMA" fun="Null"> /scmfma/book/publisher</target >
<target name="bookdata.xml" fun="Null">Null</targets
</sources

<source path="/book/ editor">
<target name="book s.xml" fun="Nul l">Null</target >
<target name="bib.xml" fun="Null" >/bib/book/edit or</target>
<target name="SCMFMA" fun="Null">Null</target>
<target name="book data.xml" fun="Null">Null</target>
</source>

<source path="/book/ editor/affiliation">
<target name="books.xml" fun="Null">Null</target >
<target name="bib.xml" fun="Null" >/bib/book/edit or/affiliation< /target>
<target name="SCMFMA" fun="Null">Null</target>
<target name="bookdata.xml" fun="Null">Null</targets
</source>

<source path="/book/ editor/full name">
<target name="books.xml" fun="Nul 1">Null</target >
<target name="bib.xml" fun="Merge ">/bib/book/edi tor/last,/bib/book/editor/firs t</target>
<target name="SCMFMA" fun="Null">Null</target>
<target name="book data.xml" fun="Null">Null</targets>
</source>
</Med_component >
</XMKB>

229

APPENDIX 1

Java code for removing data source from XMKB

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import org.jdom. *;

import org.jdom.input.SAXBuilder;

import java.io.IOException;

import java.util.*;

import java.io.FileOutputStream;

import org.jdom.output.XMLOutputter;

class RemoveSources extends JDialog implements ActionListener

{

private JPanel pnl_txt = null;

JComboBox txt_ Func = new JComboBox () ;

private JLabel 1bl_show = null;

private JButton btn_ok = null;

private JButton btn_cancel = null;

private Vector sources = new Vector();

private JPanel JFrameContentPane = null;

public String kbase = "";

JComboBox CB = new JComboBox () ;

public Frame fram;

private int y2 = 152, y3 = 12;

private int height = 5;

public RemoveSources (String kb)

{

kbase = kb;

sources = (Vector) getSources (kbase);

UIManager.put ("Label.font", new Font ("SansSerif", Font.BOLD, 12));
UIManager.put ("Button.font", new Font ("SansSerif", Font.BOLD, 12));
UIManager.put ("TextField.font", new Font ("SansSerif", Font.BOLD, 12));
UIManager.put ("ComboBox.font", new Font("SansSerif", Font.PLAIN, 10)});
UIManager.put ("TextArea.font", new Font ("SansSerif", Font.BOLD, 12));
setContentPane (getJFrameContentPane()) ;

this.setSize (500, 200);

gsetTitle ("Remove Data Source');

}

public void actionPerformed(ActionEvent e)

230

APPENDIX I Removing data source

{

if (e.getSource() == btn_cancel)
{

dispose () ;

return;

else if (e.getSource() == btn_ok)

{

String selectedSource = txt_Func.getSelectedItem() .toString() ;
removeSource (kbase, selectedSource);
JOptionPane.showMessageDialog(this, selectedSource +" has been removed
successfully") ;

dispose () ;

}}

private JPanel getJFrameContentPane ()

A

if (JFrameContentPane == null)

{

try

{

JFrameContentPane = new JPanel () ;
JFrameContent Pane.setName ("JFrameContentPane") ;
JFrameContentPane.setLayout (null) ;
getJFrameContentPane () .add (getlbl_show(0, "Remove Data Source"),
getlbl _show (0, "Source").getName()) ;
getJFrameContentPane () .add (gettxt_sources(0),
gettxt_sources (0) .getName ()) ;
getJFrameContentPane () .add (getbtn_cancel (5),

getbtn_ cancel (5) .getName()) ;
getJFrameContentPane () .add (getbtn_ok(5), getbtn_ok(5) .getName()) ;

}

catch (Throwable Exc)

{

handleException (Exc) ;

1}

return JFrameContentPane;

}

private JButton getbtn_ok(int i)

if (btn_ok == null)

{

try

{

btn_ok = new JButton();

btn_ok.setName ("btn_ok") ;

btn_ok.setText ("Remove") ;

btn_ok.setBounds (250, 100 + i * height, 85, 25);
btn_ok.addActionListener(this);

}

catch (Throwable Exc)

{

handleException (Exc) ;

1}

return btn_ok;

}

private JComboBox gettxt_sources(int i)

{

231

APPENDIX I Removing data source

try

{

txt_Func = new JComboBox (sources) ;
txt_Func.setBackground (Color.white) ;

txt_Func.setName ("Sources") ;

txt_Func.setBounds (200, 20 + (i * 5) * height, 200, 25);
} :

catch (Throwable Exc)

{ handleException(Exc); }

return txt_Func;

}

private JButton getbtn_ cancel (int i)
{

if (btn_cancel == null)

{

try

{

btn_cancel = new JButton() ;
btn_cancel .setName ("btn_cancel") ;
btn_cancel .setText ("Cancel") ;
btn_cancel.setBounds (350, 100 + i * height, 85, 25);
btn_cancel.addActionListener (this) ;

catch (Throwable Exc)

{

handleException (Exc) ;

1}

return btn_cancel;

}

private JLabel getlbl_show(int i, String name)

{

try

{

1bl show = new JLabel();

1bl_show.setName (name) ;

1bl_show.setText (name) ;

1bl_show.setBounds (50, 20 + (i * 5) * height, 200, 25);

catch (Throwable Exc)
{ handleException(Exc); }
return lbl_show;

}

private void handleException (Throwable exception)

{

System.out .println("Could not initialize the frame. Error:"+ exception);

}

private static void writeToFile(String fname, Document doc)
{

try

FileOutputStream out = new FileOutputStream(fname);
XMLOutputter op = new XMLOutputter();

op.output (doc, out);

out.flush();

out.close() ;

}

catch (IOException e)

232

APPENDIX 1 Removing data source

{

System.err.println(e) ;

1

public static Vector getSources(String filename)
{

SAXBuilder builder = new SAXBuilder() ;

Vector sources = new Vector() ;

try

{

String att = "";

Element child;

Document doc = builder.build(filename) ;

Element root = doc.getRootElement () ;

Element information = root.getChild("DS_information");
java.util.List children = information.getChildren() ;
ListIterator iterator = children.listIterator();
while (iterator.hasNext())

{

Element source = (Element) iterator.next();

att = source.getAttributeValue("name") ;
sources.add(att) ;

}}

catch (JDOMException e)

{

System.out.println(" is not well-formed.");
System.out.println(e.getMessage()) ;

}

catch (IOException e)

{

System.out .println(e) ;

}

return sources;

}

public static void removeSource (String filename, String Source)
{

SAXBuilder builder = new SAXBuilder() ;

Vector sourceMetadata = new Vector();

try

{

String att = "";

Element integ, child;

Document doc = builder.build(filename) ;

Element root = doc.getRootElement () ;

Element information = root.getChild("DS_information");
int number = information.getAttribute ("number").getIntValue();
number = number - 1;

String num = "" + number;
information.removeAttribute ("number") ;
information.setAttribute ("number", num.trim());
java.util.List children = information.getChildren();
ListIterator iterator = children.listIterator();

int index = -1;

int count = 0;

while (iterator.hasNext ())

{

Element source = (Element) iterator.next();

att = source.getAttributeValue ("name");

233

APPENDIX I Removing data source

if (att.toString().equalsIgnoreCase (Source))
{ index = count;)}

count++;

}

if (index > -1)

{ children.remove (index); }

Element structure = root.getChild("Med_component") ;
children = structure.getChildren() ;

iterator = children.listIterator();

count = 0;

while (iterator.hasNext())

child = (Element) iterator.next ();
java.util.List locals = child.getChildren() ;
ListIterator iteratorl = locals.listIterator();
~index = -1;

count = 0;

while (iteratorl.hasNext ())

{

Element local = (Element) iteratorl.next();
att = local.getAttributeValue ("name") ;

if (att.toString() .equalsIgnoreCase (Source))
{ index = count; }

count++;

if (index > -1)
{

locals.remove (index) ;

1}

writeToFile(filename, doc);

}

catch (JDOMException e)

{

System.out .println(" is not well-formed.");
System.out .println(e.getMessage()) ;

}

catch (IOException e)

{

System.out .println(e) ;

H

public static void main(String args([])

{

JDialog a = new RemoveSources (null) ;
a.addwWindowlListener (new WindowAdapter ()

{

public void windowClosing (WindowEvent e)

{

System.exit (0) ;

1

a.show() ;

H

234

APPENDIX J

Query Processor and XFEP code for parsing

XQuery FLWR Expression query

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.util.*;

import java.io.*;

import com.borland.jbcl.layout.*;

public class QueryProcessor extends JFrame implements ActionListener

{

private JTextArea textAreal, textArea2, textArea3;

public JButton run,reset,exit,getschema;

private JLabel labell, label2,label3, label4, label5,labels6;

private JPanel buttonPanel;

String integratedfile;

public QueryProcessor ()

{

super ("QUERY PROCESSOR") ;

Box box =Box.createVerticalBox{() ;
label2 = new JLabel ("MASTER VIEW");
box.add (label2) ;

textAreal = new JTextArea(17,30);
textAreal.setEditable(false) ;

box.add (new JScrollPane (textAreal));
label4 = new JLabel ("ENTER YOUR XQUERY
box.add (label4) ;

textArea2= new JTextArea(3,30);

box.add (new JScrollPane (textArea2)) ;
labelé = new JLabel ("THE RESULT : ");
box.add (labels) ;

textArea3= new JTextArea(l5,30);
textAreal3.setEditable(false) ;

box.add (new JScrollPane(textArea3l));
Container container = getContentPane();
container.add (box) ;

")

235

APPENDIX J Parsing XQuery FLWR expression

getschema = new JButton("Get Master View");

run = new JButton ("Generate Local Sub-Query");
reset = new JButton(" Reset ") ;
exit = new JButton (" Exit "y,

run.setEnabled(false) ;
getschema.addActionListener(this) ;
run.addActionListener(this) ;

reset .addActionListener(this) ;
exit.addActionListener (this) ;

buttonPanel= new JPanel() ;
buttonPanel.setLayout (new GridLayout (1,3));
buttonPanel.add (getschema) ;
buttonPanel.add (run);

buttonPanel .add (reset);

buttonPanel.add (exit) ;

~container.add (buttonPanel, BorderLayout .SOUTH) ;
label5 = new JLabel (" ");

box.add (labels) ;

setSize (1020,740);

setVisible (true);

}

public void actionPerformed (ActionEvent event)

{

if (event.getSource() == getschema)

{

final JFileChooser vc = new JFileChooser () ;
int returnvVal = vc.showOpenDialog(this) ;

if (returnval == JFileChooser.APPROVE_OPTION)

File filel = vc.getSelectedFile();

integratedfile = filel.getAbsolutePath() ;
textAreal.setText ("");

try

{

FileInputStream fstream = new FileInputStream(integratedfile);
DataInputStream in = new DatalInputStream(fstream) ;

String output="";

while (in.available() !=0)

{

output += (in.readLine())+"\n";
in.close() ;

textAreal.append (output) ;
run.setEnabled (true) ;
textArea2.setText ("") ;
textAreal3.setText ("");

}

catch (Exception e)

{

System.err.println("File input error");

}

}

}

else if (event.getSource() == run)

{

QueryParser application = new QueryParser();
String query = textArea2.getText();

236

APPENDIX J Parsing XQuery FLWR expression

try

{

int ln=integratedfile.length{();

String kbNamel=integratedfile.substring(0,1n-4)+"_kb.xml";
Vector g=(Vector) application.GetQueries (kbNamel, query) ;
for (int i=0;i< qg.size();i++)

{ .
textArea3.append((g.get(i)) .toString());

textAreald.append (M- ----- - - - o e e e e \n") ;
}

}

catch (Exception excp)

{

if (query .equals (""))

JOptionPane.showMessageDialog(null, "Please enter your XQuery

_query", "Error Message",JOptionPane.ERROR_MESSAGE) ;

else

JOptionPane.showMessageDialog(null, "Please check your XQuery

query", "Error Message", JOptionPane.ERROR_MESSAGE) ;

}

}

else if (event.getSource() == reset)
{

textArea2.setText ("");
textArea3.setText ("") ;

}

else if (event.getSource() == exit)

{

dispose() ;

}

public static void main (String argsl])

{

QueryProcessor application = new QueryProcessor();
application.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE) ;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.util.*;

import org.jdom. *;

import org.jdom.input.SAXBuilder;
import java.io.IOException;
import java.util.*;

import java.io.FileOutputStream;
import org.jdom.output.XMLOutputter;
import java.io.File;

public class QueryParser

{

int slash,wh,in,variable, strat, end, cond, stag,etag,tl,le;
StringTokenizer stl,st2;

public QueryParser()

{

237

APPENDIX J

}

public Vector GetQueries (String file,String queryl)

{

Vector queries = new Vector();

String VarRetrived[]=new String[100];
String correspondRet [] =new String[100];
String RelVar []l=new String{100];

String funRet []=new String{100];

String tablepath[]l=new String([100];
String myQuery=null;

String query = queryl;

String condition="",mainPath="",mainvar="";
String retrivedvar="",output="",operator="";
String condvVar="",condVal="",conditionl="";
String stagName="",etagName="",path="";

.String sourceName="", sourceType="", sourceLoca="";
String correspondPath="", fun="",condvarReal="";
String correspondcon="", funcon="", seprator="";

String subquery="",relquery="",Relcon="";
String table ="";

String fil
variable =
if (query.

ename=file;
query.indexOf ("$") ;
toUpperCase () .indexOf ("IN") > -1)

in = query.toUpperCase () .indexOf ("IN");

mainvar =
slash= que

if (query.
{

query.substring(variable, in) ;
ry.indexOf ("/") ;
toUpperCase () .indexOf ("WHERE") > -1)

wh = query.toUpperCase () .indexOf ("WHERE") ;

condition

}

else wh =
mainPath =

= query.substring(wh+5,query.toUpperCase () .indexOf ("RETURN")) ;

query.toUpperCase () .indexOf ("RETURN") ;
query.substring(slash,wh);

strat = query.indexOf ("{");
end = query.indexOf ("}");
retrivedVar = query.substring(strat+1l,end);

conditionl
if (condit
{

operator =
condvVar
condVal

}

else if (¢
{

operator =
condvVar =

condval =

}

else if (¢
{

operator =
condVar =

condvVal =

if (condit

{

= condition.trim() ;
ionl.indexOf ("=")> -1)

n_mn,
=

conditionl.substring(0,conditionl.indexOf ("="));
conditionl.substring(conditionl.indexOf ("=")+1);

onditionl.indexOf (">")> -1)

ll>"’.
conditionl.substring(0,conditionl.indexOf (">"));
conditionl.substring(conditionl.indexOf (">")+1);
onditionl.indexOf ("<")> -1)

"<ll,.
conditionl.substring(0,conditionl.indexOf ("<"));

conditionl.substring(conditionl.indexOf ("<")+1);

ionl.indexOf (">=")> -1)

238

Parsing XQuery FLWR expression

APPENDIX J Parsing XQuery FLWR expression

operator = ">=";

condVar = conditionl.substring(0,conditionl.indexOf (">="));
condVal = conditionl.substring(conditionl.indexOf (">=")4+2) ;
}

if (conditionl.indexOf ("<=")> -1)

{

operator = "<=";

condVar = conditionl.substring(0,conditionl.indexOf ("<=")) ;
condvVal = conditionl.substring(conditionl.indexOf ("<=")+2);

if (conditionl.indexOf ("!=")> -1)

{

operator = "l=";

condvar = conditionl.substring(0,conditionl.indexOf ("!=")) ;
condVal = conditionl.substring(conditionl.indexOf ("!=")+2);

-}

mainvar = removeSpaces (mainvar.trim());
mainPath = removeSpaces (mainPath.trim());
retrivedVar = removeSpaces (retrivedVar.trim()) ;
condition = condition.trim() ;

condvVar = condvar.trim() ;

condVal = condVal.trim() ;

mainPath = "/" + mainPath.substring(l).trim();
if (condvar != "")
{

tl = condvVar.indexOf ("/");
condVar = mainPath +"/"+ condVar.substring(tl+l).trim();

}
stl= new StringTokenizer(retrivedvar,",");
int i=0;

while (stl.hasMoreTokens())

{

VarRetrived[i] = stl.nextToken().trim();

i++;

}

for (int e = 0 ; e < i ; e++)

{

tl = VarRetrived[e] .indexOf ("/") ;

VarRetrived([e] = mainPath +"/"+ VarRetrived(e] .substring(tl+l) .trim();
}

stag = query.toUpperCase () .indexOf ("RETURN") ;

stagName = query.substring(stag+6,query.toUpperCase () .indexOf ("{"));
etag = query.indexOf ("}");

etagName = query.substring(etag+l) ;

stagName=stagName.trim() ;

etagName=etagName.trim() ;

SAXBuilder builder = new SAXBuilder();

try

{

Document doc = builder.build(filename) ;

Element root = doc.getRootElement () ;

Element information = root.getChild("DS_information");

int number = information.getAttribute ("number").getIntValue() ;
java.util.List children = information.getChildren();
ListIterator iterator = children.listIterator();

while (iterator.hasNext())

{

239

APPENDIX J Parsing XQuery FLWR expression

int test=0,testl=0;

Element source = (Element) iterator.next ();
sourceName = source.getAttributeValue ("name");
sourceType = source.getAttributeValue ("type") ;
sourceloca = source.getText () ;

if (sourceLoca.indexOf ("/") > -1)

seprator="/";

else

seprator="\\";

Element Med_com = root.getChild("Med_component");
java.util.List childrenl = Med_com.getChildren();
ListIterator iteratorl = childrenl.listlIterator();
while (iteratorl.hasNext())

{

Element integrated = (Element) iteratorl.next();
.path = integrated.getAttributeValue ("path") ;

if (path .equals (mainPath.trim()))

{

java.util.List children2 = integrated.getChildren() ;
ListIterator iterator2 = children2.listIterator();
while (iterator2.hasNext())

{

Element target = (Element) iterator2.next();

if (sourceName .equals (target.getAttributeValue("name")))
{

correspondPath = target.getText () ;

fun = target.getAttributevValue("fun") ;

}

}

}

if (condvar != "" && path .equals (condVar))

{

java.util.List children3 = integrated.getChildren() ;
ListIterator iterator3 = children3.listIterator();
while (iterator3.hasNext ())

{

Element target = (Element) iterator3.next();

if (sourceName .equals (target.getAttributeValue("name")))
{

correspondcon = target.getText () ;

Relcon = target.getText () ;

if ((correspondcon.compareTo ("Null")!= 0) &&

(correspondPath.compareTo("Null")!= 0})

{

le = correspondPath.length() ;

correspondcon = mainvar+correspondcon.substring(le);
}

funcon = target.getAttributeValue ("fun");

}

}

)

for (int e = 0 ; e < 1 ; e++)

if (path .equals (VarRetrivedl[e]))

{

java.util.List children4 = integrated.getChildren();
ListIterator iterator4 = childrend4.listIterator();

240

APPENDIX J Parsing XQuery FLWR expression

while (iterator4 .hasNext())

{

Element target = (Element) iterator4.next();

if (sourceName .equals (target.getAttributeValue("name")))
{

correspondRet [e] = target.getText() ;
funRet [e] . = target.getAttributevValue("fun") ;
Relvar [e] = target.getText();

if ((correspondRet [e].compareTo ("Null")!= 0) &&
(correspondPath.compareTo("Null")!= 0))

{

le = correspondPath.length{() ;

int t2 = correspondRet [e].indexOf (", ") ;

if (t2 > -1)

correspondRet [e] = mainvar+correspondRet [e] .substring(le,t2)+" , "
~+mainvar+correspondRet [e] .substring(t2+le+l) ;

else

correspondRet [e] = mainvar+correspondRet [e] .substring(le) ;

if (sourceType .equals ("XML document"))

{

subquery = "FOR "+mainvar+" IN document (\""+sourceloca + seprator
+sourceName+"\") "+correspondPath;
if (condvar != "")

subquery = subquery + " WHERE "+correspondcon+operator+condval;
subquery = subquery +" RETURN "+ stagName+" { ";
for (int e = 0 ; e < 1 ; e++)

if (funRet [e] .equals ("Null"))
subquery = subquery + correspondRet [e];

else

subquery = subquery + funRet [e] +" ("+correspondRet [e]+")";
if (e != i-1)

subquery = subquery +" , ";

}

subquery = subquery +" } "+etagName;

else

{

correspondPath = correspondPath.substring(l).replace('/','.");
st2= new StringTokenizer (correspondPath,".");

int j=0;

while (st2.hasMoreTokens())

tablepath[j] = st2.nextToken().trim();
J++;

}

table = tablepath[0] +"."+ tablepath[1];
subquery = "Select ";

for (int e = 0 ; € < 1 ; e++)

if (funRet [e] .equals ("Null"))

241

APPENDIX J Parsing XQuery FLWR expression

subquery = subquery + RelVar [e] .substring(1l).replace('/','."');
else

subquery=subquery+funRet [e] +

"("+RelVar [e] .substring (1) .replace('/','.")+")";

if (e 1= i-1)

subquery = subquery +" , ";

subquery = subquery +" From "+table;
if (condvar t= "")

subquery = subquery + " WHERE "+Relcon.substring(l).replace('/','."')+
operator+condvVal .replace('"','\'');

}

int b=1;

for (int e = 0 ; e < 1 ; e++)

{

.if (correspondRet [e] .compareTo("Null")== 0) b=-1;

}

myQuery = "Sub-Query Generate For "+sourceType+" "+sourceloca + seprator
+sourceName +" is :\n";

if ((correspondPath .equals ("Null")) || (correspondcon .equals
("Null")) || (b==-1))

myQuery =myQuery+ "No matched Query Generated For This Dtad
Source"+"\n\n";

else

myQuery=myQuery+subquery+"\n\n";

queries.add (myQuery) ;

}

}

catch (JDOMException e)

{

System.out .println(e.getMessage()) ;

}

catch (IOException e)

{

System.out .println(e);

}

return queries;

}

public static void main (String argsl])

{

QueryParser application = new QueryParser () ;

}

public static String removeSpaces (String s)

{

StringTokenizer st = new StringTokenizer(s," ", false);
String t="";

while (st.hasMoreElements()) t += st.nextElement();
return t;

}
}

