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STUDENT ID NUMBER: 0325956

SUMMARY OF THESIS:

Alzheimer’s disease (AD) is characterised by Ap plaque formation, neuroinflammation and 
neurodegeneration. Current therapies for AD do not modify disease progression; therefore, 
putative anti-inflammatory and neuroprotective agents need to be assessed in rodent in vivo 
models that demonstrate robust and reproducible markers of neuroinflammation and 
neurodegeneration. This thesis interrogated the development of in vivo models comprising 
markers of neuroinflammation and neurodegeneration in rodent brain. The overview 
describes innate immunity focusing on lipopolysaccharide (LPS) as a standard 
immunostimulant followed by a review of AD and beta amyloid (Ap). Current rodent in vivo 
models of LPS or AP-induced neuroinflammation or neurodegeneration are also examined. 
Chapters 2 and 3 describe the novel application of Luminex® suspension bead array systems 
for the detection of LPS-induced cytokine and other intracellular proteins in brain tissue. 
Intraperitoneal LPS modulated interleukin (IL)-lp, phosphorylated (p)-IicBa, p-p38 kinase 
and p-JNK protein and intracerebroventricular LPS increased IL-ip, IL-la and tumour 
necrosis factor (TNF) -a  protein in rat brain. Cytokine protein in rat brain was abrogated by 
dexamethasone and the a2-adrenoceptor antagonist, fluparoxan. Subsequent chapters 
investigate more disease relevant models of Ap-induced neuroinflammation and 
neurodegeneration detected by immunohistochemistry, Taqman or Luminex® techniques. 
Chapter 4 discussed the assessment, by western blotting, of Ap forms expelled from 
apparatus commonly used to inject solutions into rodent brain tissue and identifying the most 
consistent method of Ap delivery. Subsequent studies revealing inconsistent neurotoxicity 
but robust neuroinflammation following intra-hippocampal injection of Ap were described. 
Final chapters focus on neuroinflammation and neurodegeneration following peripheral 
insult (LPS or the noradrenergic neurotoxin, DSP-4) to amyloid precursor protein (APP) / 
presenilin 1 (PS1) transgenic mice. Peripheral administration of LPS or DSP-4 modulated 
markers of neuroinflammation and did not initiate neurodegeneration. The implications of 
the current data on the future development of in vivo models are discussed in the final 
chapter.____________________________________________________________________



Abstract

Neuroinflammation and neurodegeneration in brain tissue are prominent features in 

the progression of Alzheimer’s disease (AD). In the assessment of putative therapies 

for AD, rodent in vivo models that demonstrate robust markers of neuroinflammation 

and neurodegeneration are crucial. Previous detection of neuroinflammation in vivo 

has largely relied upon immunohistochemical evidence of microglial and astrocytic 

activation or measurement of cytokine mRNA in rodent brain. Observing 

neurodegeneration in response to beta amyloid protein (AP) in vivo is limited. 

Reports of exogenous Ap induced neurotoxicity are inconsistent and a majority of 

APP and APP/PS1 mutant mouse lines, unless presenting intraneuronal Ap 

deposition, do not exhibit overt neurodegeneration. This thesis explores the 

development of rodent in vivo models of neuroinflammation and degeneration and, 

the investigation of markers of neuroinflammation and neurodegeneration in brain 

tissue following intraperitoneal (IP) or intracerebroventricular (ICV) injection of 

lipopolysaccharide (LPS), intra-hippocampal (IH) injection of synthetic Api-42 or 

IP administration of LPS or the noradrenergic neurotoxin DSP-4 to the APP/PS1 

mutant mouse line, TASTPM.
(fi)Novel application of a Luminex suspension bead array system for the detection of 

LPS-induced proteins in brain tissue found that IP LPS induced increases in IL-ip, 

p-bcBa, p-p38 and p-JNK protein and ICV LPS induced increases in IL-ip, IL -la 

and TNF-a protein in rat brain tissue, which was abrogated by dexamethasone and 

the a2-adrenoceptor antagonist, fluparoxan. IH Api-42 injection via Hamilton 

syringe, confirmed by western blotting to provide consistent delivery of Api-42 into 

brain tissue, resulted in a small but variable increase in neurodegeneration but 

significant neuroinflammation. In TASTPM mice, IP injection of LPS or DSP-4 

altered cytokine protein levels and DSP-4 modulated expression of GFAP and Ap 

plaque load. Neither challenge induced neurodegeneration in TASTPM brain tissue. 

These data and recent published reports suggest peripheral insults such as LPS or 

DSP-4 to APP or APP/PS1 mice may only affect pre-existing neuropathology, a 

possibility that merits further investigation. Variability in Api-42-induced
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neurotoxicity following IH injection indicates that damage caused by exogenous Ap 

may not provide a sufficient window of neuronal cell death suitable for screening 

neuroprotective agents. The data described here has implications on future 

development of models of neuroinflammation and neurodegeneration for screening 

putative therapeutic strategies for AD.
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CHAPTER 1 

General Introduction

1.1 Overview of thesis

Neuroinflammation and neurodegeneration is evident in the brain tissue of patients 

with the chronic neurodegenerative disorder Alzheimer’s disease (AD). Current 

symptomatic therapies for AD focus on alleviating impairments in learning and 

memory but do not alter underlying neuropathology. Hence, there is an unmet need 

for disease modifying agents that can slow the progression of AD. Putative anti

inflammatory or neuroprotective therapies need to be adequately characterised using 

mechanistic and disease relevant preclinical in vivo rodent models that provide 

markers of neuroinflammation and neurodegeneration relevant to AD. This thesis 

aims to interrogate the development of rodent in vivo models of neuroinflammation 

and neurodegeneration that can be used in the preclinical assessment of disease 

modifying therapies for AD.

This introduction will introduce the innate immune system, specifically focusing on 

the role of cytokines in mediating innate immunity and a description of LPS, a well 

characterised immunostimulant used to induce inflammation in vivo. This section 

will finally discuss the detection of cytokine protein by xMAP technology on 

Luminex® systems, an approach not yet reported for the detection of proteins in 

rodent brain tissue following LPS treatment. Following this, the epidemiology and 

neuropathology of the progressive neurodegenerative disorder AD will be described. 

This will include an overview of proposed mechanisms for beta amyloid (Ap) 

peptide induced neuroinflammation and neurotoxicity and evidence for anti

inflammatory treatment as a putative disease modifying therapy for AD. This 

introduction will finally discuss the current evidence for LPS and Ap-induced 

neuroinflammation and neurodegeneration in rodent in vivo models.

1.2 Innate immunity
Present from birth, the innate immune system is important in the recognition and
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removal of invading pathogens and is well conserved between invertebrates and 

vertebrates (reviewed by Kimbrell & Beutler, 2001). It is responsible for mounting 

an antigen non-specific defence against infectious stimuli, either immediately or 

within a very short period after infection. The response does not increase in intensity 

with each subsequent exposure or rely upon previous recognition of the antigen 

(reviewed by Kimbrell & Beutler, 2001). The innate immune system can recognise a 

diverse range of pathogens namely by the recognition of well-conserved pathogen- 

associated molecular patterns (PAMPs) present in many different pathogenic 

organisms (Janeway, 1989) by pathogen recognition receptors (PRRs) located on the 

cell surface of immune cells. PRRs include members of the transmembrane signal 

transducing toll-like receptor (TLR) family (Gordon, 2002), which recognise 

PAMPS present on specific organisms such as LPS from the cell wall of gram 

negative bacteria (toll-like receptor 4 (TLR4)) (Miyake, 2004). Surveillance by the 

innate system continues throughout an organism’s lifetime but ageing causes 

diminished function of immune cells that result in a compromised innate response 

(Plackett et al, 2004). Elements of innate immunity occur in a number of chronic 

neurodegenerative disorders including AD (McGeer & McGeer, 2002) and this will 

be described in more detail in section 1.3.6.

1.2.1 Effector cells o f innate immunity

The innate immune system comprises of a variety of phagocytic cells including 

macrophage (reviewed by Gordon, 1998), neutrophil (reviewed by Kobayashi et al, 

2005), dendritic (reviewed by Foti et al, 2004; Rossi & Young, 2005) and natural 

killer (NK) cells (reviewed by O’Connor et al, 2006). These cells engulf foreign 

pathogen and use intracellular vacuoles containing toxic reactive oxidants such as 

nitric oxide (NO), superoxide and degradative enzymes to destroy the microbe 

(Lowenstein et al, 1994). Immune cells are also responsible for the release of soluble 

proteins including those of the complement cascade and cytokine families to enhance 

uptake of pathogen, recruit further cells to the site of invasion and control initiation 

of an antigen-specific response via binding of innate and adaptive immune cells (van 

Rossum & Hanisch, 2004; reviewed by Liew & Mclnnes, 2002). Immune cells, 

particularly macrophage and dendritic cells, act in antigen presentation to initiate 

adaptive immunity by processing engulfed antigen and displaying fragments on the 

cell surface combined with class I or class II major histocompatibility complex
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(MHC). MHC binding, alongside interaction of costimulatory molecules such as 

CD28 on the T cell and CD80 or CD86 on antigen presenting cells (APCs), activates 

subpopulations of T cells. CD4 T helper (Th) or CD8 cytotoxic (Tc) cells 

differentiate into effector subsets depending on the combination of costimulatory 

molecules and cytokines present during activation. Recruitment of effector cells of 

the innate immune system and subsequent activation of cells involved in antigen- 

specific adaptive immunity is controlled and maintained by circulation of cytokines 

(Hoebe et al, 2004; Blach-Olszewska, 2005) (fig 1.1).

Invading pathogen

Chemokines Mannose binds lectin 
(MBL): increase C3 
convertase.

IL1
IL1/IL12

Acute phase 
proteins

IFNy

GMCSF, TNFo, ELI 
IL6, IL10, MCP1, 
MIPla, RANTES

IL1

Neutrophils 
chemoattracted 
to site

Activation of 
complement pathway

PAMPs recognised by 
opsonins

HP A axis 
induction; release 
of endogenous 
glucocorticoids

Neutrophils enter tissue 
from bloodstream via 
diapedesis

Activated cells phagocytose 
antigen present via specific 
MHC molecules

PAMP recognition by 
antigen presenting cells: 
primed macrophage & 
dendritic cell

Macrophage and dendritic 
cells migrate to lymph nodes 
and spleen to activate T cells

Macrophage and dendritic cells 
present MHC II bound antigen 
on cell surface to T (CD4) cells

Binding of C3b complement to 
hydroxyl groups on pathogen cell 
surface

C3bBb catalyses C5 to C5b initiating 
formation of the membrane attack 
complex (MAC): transmembrane 
pore in the pathogen cell.

C3b bound by components B and D 
to form C3bBb (C3 convertase) 
which catalyses further C3b 
production on cell surface.

T cells bind B cells: initiate 
development o f identical clone B 
cells and plasma B cells 
secreting antibodies specific for 
the invading pathogen

Figure 1.1: Schematic representation o f innate immune system

1.2.2 Cytokines

Potent short acting protein (15-25kDa) mediators generically termed cytokines 

mediate the inflammatory response. Cytokines include lymphokines, interleukins, 

tumour necrosis factors, chemokines (reviewed by Esche et al, 2005; Coelho et al, 

2005) and interferons (reviewed by Kunzi & Pitha, 2005) secreted by a wide variety 

of immune cells (Moller et al, 2005). Cytokines are pleiotrophic and function to
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regulate the intensity and duration of an inflammatory response by regulating 

haematopoiesis and mediating cell growth, differentiation and activation (reviewed 

by Cohen & Cohen, 1996). Due to their role in the maintenance of inflammation, 

cytokine proteins have a short half-life enabling rapid degradation to control the 

immune response. Hence, rapid production of these potent proteins remains transient 

and at low concentration to allow management of inflammation. A single cytokine 

can initiate a cascade of cytokine production from a multitude of immune cells and 

may demonstrate autocrine, paracrine and possibly endocrine actions. Furthermore, 

cytokines act both synergistically and exhibit redundant activity to rapidly initiate an 

adequate immune response (reviewed by Asadullah et al, 2002).

1.2.2.1 Cytokine Families

Since many cytokines have over-lapping actions and few share sequence similiarity 

(reviewed by Turnbull & Rivier, 1999), functional attributes, target receptors or cells 

of origin of cytokines have allowed a classification of cytokines into families (Table 

1.1).
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Cytokine 1 Origin Actions
COLONY STIMULATING FACTOR (CSF)
Granulocyte
Macrophage-CSF

T cells
Macrophage
Endothelium

Induces growth of granulocytes and macrophage colonies 
Activates macrophage, neutrophils and eosinophils

INTERFERONS (IFN)
IFN-y Thl cells 

Tc cells 
NK cells

Primes macrophage & induces MHC I/II
Antagonises some IL4 actions
Induces B cell antibodies, inhibits viral replication

TUMOUR NECROSIS FACTOR (TNF)
TNF-a Monocyte 

Macrophage 
Neutrophils 
T & B cells 
NK cells 
Astrocytes 
Mast cells

Activates primed macrophage and NK cells.
Anti-tumour activity 
Promotes neuronal survival
Recruitment & activation of neutrophils & monocytes 
Mediates septic shock, cell proliferation & apoptosis 
Induction of chemokines, IFNy, TNFa, ELI, GM CSF, 
IL6
Induces acute phase proteins

INTERLEUKINS (IL)
IL-1 
(a & |3)

Monocyte 
Macrophage 
Fibroblasts 
B cells
Dendritic cells

Fever induction
Induces macrophage PGE2/cytokines 
Induces neutrophil adhesion molecules 
B and T cell proliferation 
Induction of acute phase proteins

IL-2 Thl cells Stimulates T & NK cell proliferation
IL-4 B cells 

Th2 cells 
Mast cells

Initiates B cell antibody production
Stimulates cytokine release & antigen presentation
Stimulates T cell growth

IL-6 Th2 cells 
Macrophages 
Mast cells 
Fibroblasts

B & T cell differentiation & T cell growth 
Induces IL2 & IL2 receptor expression on T cells 
Initiate and regulate acute phase proteins 
Involvement in tissue repair

IL-10 Macrophage 
Th2 cells 
B cells

Anti-inflammatory, immunosuppressive 
Down regulates IL1, TNFa and IFNy 
Alters microglia receptor expression.

IL-12 | Macrophage Induction of T cell and Thl cytokines
CHEMOKINES
Monocyte 
Chemoattractant 
Protein (MCP) -1

Macrophage, T 
cells

Chemotactic for T cells

Macrophage 
Inflammatory 
Protein (MlP)-la

Macrophage, T 
cells

Chemotactic for T cells

Regulated on 
Activation, Normal 
T Expressed and 
Secreted 
(RANTES)

Macrophage, T 
cells

Chemotactic for T cells

Table 1.1: Overview of selected cytokine origin and roles (adapted from Kuby, 1997)
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1.2.3 Cytokine transcription

Specific extracellular cytokine receptors and toll-like receptors (TLRs) mediate 

cytokine transcription via two distinct MyD88-dependent and MyD88-independent 

intracellular pathways (reviewed by Gillis, 1991).

Figure 1.2: Schematic representation of TLR4 signalling cascade (Figure taken from 
Palsson-McDermott & O’Neill, Immunology, 2004)

Translocation of the transcription factor nuclear factor-KB (NF-kB) (reviewed by 

Saklatvala et al, 2003; Goodridge & Harnett, 2005) occurs via activation of 

intracellular adaptor proteins, myeloid differentiation factor 88 (MyD88), MyD88 

adaptor-like protein (TIRAP) also known as Mai, TIR-containing adaptor molecule 

(TRIF) also known as TIC AM-1 and TRIF-related adaptor molecule (TRAM) also 

known as TICAM-2. These communicate signals from transmembrane receptors (fig 

1.2). The translocation of NF-kB from the cytoplasm to the nucleus depends on 

phosphorylation of the inhibitory factors IkBoc and/or IkBP resulting in the induction 

of target gene transcription (Krappmann et al, 2004). The MyD88/IRAK/TRAF6

i i  1 1 1 1  m i  i  i t  1 1 1 1 1 1 1  m  1 1 1 1 1 1 1 1 1 1 1 1 1 1  ■ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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t r a f b
, 7BK»

P M
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■ KKI^KKZ

JxFuB binding 
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complex can also activate the MAPK cascade. Translocated transcription factors bind 

to response elements located on the promoter regions of target genes to induce 

transcription of selected DNA.

1.2.4 Signal transducing pathways

The mitogen-activated protein (MAP) kinase cascade (reviewed by Karin, 2004; 

Woodgett et al, 1996; Dong et al, 2002) mediates and controls target gene 

transcription as a direct response to the extracellular environment of the cell. The 

hierarchical organisation of a multitude of specific intermediary kinases allows the 

control of transcriptional regulatory proteins via amplification and diversification of 

the initial signal (reviewed by Seger & Krebs, 1995). This is subsequently managed 

at each kinase level by the action of phosphatases (Zhang et al, 2002).

Evidence supports a role for MAP kinases in a plethora of cellular functions 

including cell survival (reviewed by Matsuzawa et al, 2005), apoptosis (reviewed by 

Sumbayev & Yasinska, 2006) and inflammation (Karin, 2005). Signal transducing 

pathways influence the expression of a number of mediators including 

proinflammatory cytokines (reviewed by Pocock et al, 2001), nitric oxide synthase 

(NOS) (reviewed by Guzik et al, 2003), matrix metalloproteinases (Reuben & 

Cheung, 2006) and cyclo-oxygenase 2 (COX2) (Akundi et al, 2005). The key 

function of MAP kinases in the immune response has led to intensive research into 

kinases as potential therapeutic targets for chronic inflammatory diseases (Karin,

2004). The vast number of kinases involved in each pathway suggests targeting 

individual kinases may not provide a sufficient anti-inflammatory effect owing to 

compensation by other kinase pathways and manipulating dual or multiple kinases 

may compromise the vast array of kinase functions (Karin, 2005). There are three 

well-characterised groups of MAP kinases recently shown to be present in 

mammalian cells that are activated by dual phosphorylation at a tripeptide motif, 

Thr-Gly-Tyr, Thr-Pro-Tyr and Thr-Glu-Tyr for p38, c-Jun amino-terminal kinase 

(JNK) and extracellular signal-regulated kinase (ERK) respectively (Dong et al,

2002) (fig 1.3). The role of these three MAPK cascades in inflammation is outlined 

below.
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Figure 1.3: Overview of the MAP Kinase cascade (Taken from Clark & Lasa, 2003) 

1.2.4.1 Involvement o f p38 pathway in inflammation

A wide variety of stimuli can activate p38 kinase including stress, pathogens such as 

lipopolysaccharide, cytokines, growth factors and some catecholamines (reviewed by 

Ono & Han, 2000). P38 kinase can phosphorylate or activate both transcriptional and 

non-transcriptional factors including activating transcription factor 2 (ATF2), sap-la 

and GADDI53 and alternative targets such as the mitogens activated protein kinase 

activated protein kinases (MAPKAPKs -2, -3, -5) & MAPK interacting kinase 

1(MNK1). Direct phosphorylation of transcription factors or activation of 

downstream kinases such as mitogen activated protein kinase 1 (MSK1) results in the 

post-transcriptional regulation of proinflammatory cytokines, iNOS, c-Jun (a 

component of the transcription factor complex activator protein-1 (AP-1)) and the 

monocyte chemoattracting protein-1 (MCP-1) via MAPKAPK2 (Ono & Han, 2000). 

Kotlyarov et al (1999) demonstrated that following intraperitoneal LPS injection, the
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attenuation of the proinflammatory cytokine TNF-a was evident in the serum of 

MAPKAPK2 KO mice supporting the role of MAPKAPK2 in regulating cytokines at 

the post-transcriptional level (reviewed by Saklatvala, 2004). The anti-inflammatory 

cytokine IL-10 can also attenuate TNF-a by inhibiting MAPKAPK2 mediated 

activity on AU-rich elements in TNF-a transcripts. TNF-a possesses AU-rich 

elements in the 3’ untranslated region making the mRNA unstable and short lived 

(reviewed by Saklatvala, 2004). Inflammation incurs phosphorylation of AU-binding 

proteins occupying AU-rich elements via a p3 8-dependant pathway involving 

MAPKAP2 (Neininger et al, 2002; Frevel et al, 2003) resulting in release, 

stabilisation and translation of cytokine mRNA.

1.2.4.2 Involvement o f JNKpathway in inflammation

JNK kinases can bind and phosphorylate transcription factors including ATF2, 

SMAD3, Elk-1, serum response factor accessory protein la (sap-la) and c-Jun 

(Tibbies & Woodgett, 1999). The transcription factors, AP-1 and ATF2 increase 

cytokine mRNA expression that consequently results in JNK mediated TNF-a- 

induced AP-1 activity and, along with p38 MAPK and NF-kB, TNF-a-induced 

upregulation of cell adhesion molecules (Herlaar & Brown, 1999). T cell and antigen 

presenting cell (APC) binding also activate the JNK pathway and, in conjunction 

with ERK, induce expression of the promoter and enhancer element of IL-2, a 

cytokine important in T cell proliferation (reviewed by Dong et al, 2001).

1.2.4.2 Involvement o f  ERK pathway in inflammation

ERKs are responsible for post-transcriptional control of immune mediators, 

activation of eosinophils and the positive selection and lineage commitment of 

thymocytes (Tibbies & Woodgett, 1999). Despite some understanding of the role of 

the ERK pathway in T cell activation and proliferation, there is relatively little 

information on the role of ERK in inflammation (Karin, 2004). More recent reports 

have suggested the role of MAP3K tpl2/cot in ERK-mediated LPS-induced 

activation of macrophages. Tpl2 knockout mice displayed abrogated LPS-induced 

ERK activation and TNF-a release (Dumitru et al, 2000). ERK activation appears to 

modulate translocation of TNF-a mRNA from the nucleus to the cytoplasm rather 

than affecting transcription or stabilisation of TNF-a mRNA (Dumitru et al, 2000).
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1.2.5 The hypothalamic-pituitary-adrenal (HPA) axis

Cytokine expression in brain tissue can activate the HP A axis (Morand et al, 1999; 

Beishuizen & Thijs, 2003). The adrenal gland is located above each kidney and 

comprises two distinct regions, the adrenal cortex and adrenal medulla. The adrenal 

cortex can release a variety of steroid hormones derived from cholesterol, namely 

glucocorticoids, mineralocorticoids and androgens. The hormone, 

adrenocorticotrophin (ACTH), produced by the anterior lobe of the pituitary is 

responsible for regulating the release of steroid hormones from the adrenal cortex. In 

turn, the release of corticotrophin-releasing factor (CRT) and vasopressin (AVP) via 

the median eminence modulates ACTH production (reviewed by Campeau et al, 

1998). The most abundant endogenous glucocorticoid (GC) released in humans is 

cortisol, which has potent anti-inflammatory properties (Sweep et al, 1991).

1.2.5.1 Cytokine-induced glucocorticoid production

Studying the role of cytokine-induced glucocorticoid production in vivo is difficult 

and the relative significance and precise mechanism of peripherally and centrally 

derived cytokines in HPA stimulation remains unclear (Beishuizen & Thijs, 2003, 

Angeli et al, 1999). However, studies have provided evidence to support a role for 

IL-1 p. There was an early suggestion that central IL-ip can activate noradrenergic 

neuronal terminals found within the hypothalamus, which modulate the 

hypothalamic CRF secretion but there remains conflicting evidence both supporting 

(Gwosdow et al, 1992) and arguing against (Cambronero et al, 1992) the 

involvement of catecholamines in IL-ip-induced CRF secretion. Subsequent data 

suggested the involvement of the vagal nerve in communicating the peripheral 

immune response to the hypothalamus (Hosoi et al, 2000) since CRF and IL-1 p 

mRNA expression was increased in the hypothalamus after vagal stimulation, which 

increased plasma ACTH and corticosterone levels. More recently, it has been shown 

that the rapid induction of the HPA axis by IL-lp may be mediated by cyclo- 

oxygenase 2 (COX2) since COX inhibitors prevent IL-lp induced HPA activation 

(Dunn, 2000). The chronic activation of the HPA axis may; however, be mediated by 

multiple mechanisms as this occurs independently of COX2 expression (Dunn, 

2000).

Intravenous (IV) and intracerebroventricular (ICY) injection of IL-1 p can dose-
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dependency increase plasma ACTH and induce hypothalamic CRT secretion (Uehara 

et al, 1987; Brown et al, 1991). A pre-injection of rabbit antiserum against rat CRT 

attenuated IL-1 p-induced ACTH (Uehara et al, 1987; Payne et al, 1994). IL-ip also 

upregulates glucocorticoid receptor (GCR) mRNA expression in hypothalamic CRF- 

secreting cells (Angeli et al, 1999). Attenuation of the IL-1 p-induced CRF secretion 

occurs with treatment of the glucocorticoids, corticosterone and Dexamethasone 

(DEX), (Cambronero et al, 1992; Betancur et al, 1995). The HPA axis can regulate 

IL-ip secretion via IL-1 receptor antagonist (IL-IRa) production (Kovalovsky et al, 

2000) and via modulation of IL-1 receptors (Goujon et al, 1997). Post infection, 

glucocorticoids and IL-IRa reach a maximum in the plasma simultaneously, 

preventing chronic IL-1 action (Arzt et al, 1994).

1.2.5.2 Glucocorticoid (GC) modulation o f cytokine induction

GCs act via numerous mechanisms of which the molecular-mediated effects on 

cytokine release are most widely studied (Refojo et al, 2003: 2001; Ray, 1992: 1990; 

Bailey, 1991). The actions of GCs can be biphasic; firstly, GCs may reduce cytokine 

synthesis by macrophage and monocytic cells by preventing transcription and 

translation of target genes. GCs can, due to their lipophilic nature, diffuse into the 

cell and bind to receptors that act as specific ligand-induced transcription factors, 

which are localised throughout most of the body, to form a GC-receptor complex 

(reviewed by Schleimer, 1993). The complex translocates from the cytoplasm to the 

nucleus where it undergoes a variety of structural changes to aid its interaction, via 

zinc fingers (Miesfeld, 1990), with the GC response element (GRE) located in the 

promoter region of target DNA (Schmidt et al, 1994). The GRE has a conserved 

palindromic sequence with each half-palindrome binding one subunit of the 

glucocorticoid receptor. Evidence suggests that GREs and other transcription factor 

DNA binding sites are in close proximity so that, on binding of the GC-receptor 

(GCR) complex, other transcription factor binding sites cannot be used, thus 

preventing the transcription of target genes (Schmidt et al, 1994). GREs can have 

either positive or negative roles during transcription so that GCs can induce or reduce 

the transcription of specific target genes on a tissue-specific basis (Kovalovsky et al, 

2000).

Post-transcriptionally, GCs may destabilise the resulting mRNA by rapidly reducing
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half-life, thus limiting its translation to a protein product. However, this theory 

remains contested (Brattsand et al, 1996). Whilst limiting the production of cytokines 

centrally, GCs also act by up-regulating cytokine receptor expression that enhances 

cytokine effects on target cells and control the further release of proinflammatory 

cytokines (Wiegers et al, 1998).

The GCR can also repress lipopolysaccharide or cytokine-induced NF-kB activation 

by protein-protein interaction between NF-kB and the GCR or by inducing FcBa/p 

expression, which acts to further inhibit the actions of NF-kB (Caldenhoven et al, 

1995; Van de Saag, 1996; Brostjan et al, 1996; De Bosscher et al, 1997; Vanden 

Berghe et al, 1999). Inhibiting NF-kB allows GCs to attenuate cytokine production 

and inhibit T cell proliferation (Ayroldi et al, 2001).

1.2.6 Lipopolysaccharide (LPS)

LPS is derived from the outer membrane of gram-negative bacteria such as 

Escherichia coli. LPS molecules consist of two main components: a well-conserved 

hydrophobic biphosphorylated lipid (lipid A) and a hydrophilic polysaccharide (PS). 

The PS has two regions, a non-repeating core oligosaccharide and a polysaccharide 

chain known as the O-chain (Caroff et al, 2002; Raetz & Whitfield, 2002; Dixon et 

al, 2005). The O-chain confers serotype specificity on a species or strain of bacteria.

The lipid A moiety binds to a variety of receptors including CD 14 that can initiate

activation of the innate immune system.

1.2.6.1 LPS: Mechanism o f action

LPS-binding protein (LBP), a 65kDa protein, binds LPS circulating in the 

bloodstream via the lipid A moiety (Ulevitch & Tobias, 1995). LBP behaves as a 

lipid transfer protein (Gallay et al, 1994) acting to convert aggregates of LPS to 

monomers to accelerate the binding of LPS to CD 14 (Hailman et al, 1994).

Soluble CD 14 (sCD14) aids activation of cells that do not express the membrane 

glycosylphosphatidylinositol-anchored CD 14 (Bazil et al, 1989; Fenton et al, 1998). 

Membrane-bound CD 14 (mCD14) lacks a cytoplasmic domain and in order to induce 

intracellular signals, CD 14 forms a complex recognised by TLR4 (Dobrovolskaia et 

al, 2002; Triantafilou et al, 2002; Heumann & Roger, 2002).

The adaptor protein MD-2, expressed by dendritic cells and monocytes, was
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originally identified by Shimazu et al, 1999. Co-expression of MD-2 is essential for 

the binding of LPS and translocation of the TLR receptor to the cell surface 

(Fujimoto et al, 2004; Miyake, 2004). Studies using radiolabelled LPS have 

illustrated a physical interaction between LPS, MD-2 and TLR4 can only occur in 

the presence of CD 14 (da Silva Correia et al, 2002) irrespective of the role of MD-2 

in complexes with LPS (Kennedy et al, 2004) or TLR4 (Visintin et al, 2001; 

Fujimoto et al, 2004). Although the CD14/MD-2/TLR4 complex is well recognised, 

LPS may also activate CD64, CD 16, CD32, CD36, CD55 (Heine et al, 2003) and 

CD 11 c/CD 18 (Ingalls & Golenbock, 1995) cell surface receptors, depending on cell 

type and activation state.

1.2.6.2 Communication between periphery and CNS

Peripheral inflammation may be sensed by the brain via two pathways, namely the 

neural and humoral mechanisms. Evidence supports a major role for humoral 

pathways during systemic inflammation (Szelenyi, 2001; Rivest et al, 2000). Blood- 

borne cytokines can bind to endothelial receptors in brain tissue or cross the blood- 

brain barrier (BBB) through a saturable carrier-mediated mechanism that is most 

likely to initiate when very high cytokine concentrations exist in the blood (Pavlov et 

al, 2003). Much of the communication from periphery to brain occurs via the 

circumventricular organs (CVOs), areas of minimal BBB, since cytokines in the 

blood can initiate the synthesis and release of soluble mediators including 

prostaglandins and nitric oxide at CVO sites. Circulating LPS can bind to TLR4 

located on endothelial cells of the circumventricular organs (CVOs), leptomeninges 

and choroid plexus (ChP) of the brain and on the surface membrane of monocytes, 

mast cells and neutrophils. TLR4 activation causes transcription of cytokine target 

genes within immune cells, particularly microglia, firstly at the CVOs, choroid 

plexus and leptomeninges and then eventually throughout the brain tissue (Nadeau & 

Rivest, 1999; Ericsson et al, 1995, Herkenham et al, 1998; Vallieres & Rivest, 1997). 

Expression of mCD14 also increases dramatically in microglia, CVO regions and 

then throughout the brain following intravenous (IV) or intraperitoneal (IP) LPS 

(Lacroix et al, 1998). This leads to NF-kB translocation and proinflammatory 

cytokine production, firstly at areas easily reached by the systemic circulation and 

then subsequently throughout the brain tissue. IP LPS injection induces rapid IL-6
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expression in the CVOs and ChP, however, IV injection of pro-inflammatory 

cytokines IL-lp and TNF-a fail to stimulate IL-6 transcription (Vallieres & Rivest, 

1997). There is also evidence to suggest that intraperitoneal LPS may cause mild 

breakdown of the microvasculature allowing diffusion of LPS through the barrier 

(Singh et al, 2004). Entry of molecules into the brain following breakdown of the 

BBB is molecular weight dependent with molecules of approximately <340Da 

entering brain tissue (Singh et al, 2004). The molecular weight of LPS is lOkDa so it 

is possible, but unlikely, that sufficient LPS can enter the brain to elicit a central 

response.

The neural pathway, consisting of the cytokine-mediated activation of vagus nerve 

afferent fibres, links the sympathetic nervous system and the hypothalamic-pituitary- 

adrenal axis (HPA) that ultimately modulates inflammatory processes. Vagal 

afferents terminate in the dorsal vagal complex located in the medulla oblongata and 

comprising the nucleus tractus solitarius, the dorsal motor nucleus of the vagus and 

the circumventricular organ, area postrema. The paraventricular nucleus of the 

hypothalamus, important in releasing corticotrophin releasing hormone as part of the 

HPA axis, interacts with the nucleus tractus solitarius. Evidence from vagotomy 

studies suggests that the neural pathway is more important in mediating mild 

inflammation since preventing input from the vagus nerve can inhibit activation of 

the HPA axis (GayKema et al, 1995) whilst failing to attenuate cytokine expression 

in brain tissue following high doses of LPS (Ishizuka et al, 1997). Humoral 

mechanisms may have more of a role during a rapid and strong peripheral response 

to infectious stimuli.

1.2.7 Detection o f cytokine expression

Cytokine mRNA expression can be detected using polymerase chain reaction 

techniques (reviewed by O’Garra & Vieira, 1992). The detection of mRNA 

expression provides valuable information on gene activity but does not take into 

account post transcriptional events that may affect subsequent protein production. 

Thus, detection of cytokine protein products in addition to the quantification of 

intermediary mRNA expression may provide a more valuable approach to assessing 

the magnitude of an inflammatory response (reviewed by Lockhart & Winzeler, 

2000). Initial detection of cytokine protein employed molecular hybridisation
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techniques or cell-based bioassays (Beckmann & Morrissey, 1991) and the use of 

radio-labelled or enzyme-linked antibodies directed against the protein of interest 

allowed the generation of more frequently used, easier and quicker, immuno-based 

assays (reviewed by Thorpe et al, 1992).

Initially, much standardisation was required between immuno-assay kits to establish 

specific recognition of antibodies for the target protein to prevent cross-reactivity and 

false results (reviewed by Mire-Sluis et al, 1995; Whicher & Ingham, 1990; Tsang & 

Weatherbee, 1996). Further development of highly specific antibodies and 

appropriate standards has allowed immuno-based assays to become highly successful 

as a sensitive and reliable method of detecting cytokine protein in samples (reviewed 

by Mire-Sluis, 1999; Lai et al, 2005; Delarche & Chollet-Martin, 1999). A 

disadvantage of enzyme-linked immunosorbant assays (ELISAs) is the need to 

analyse a single protein at one time which makes profiling of a range of cytokines in 

a single tissue both expensive and low throughput. The advent of multiplexed 

particle-based flow cytometric assays that use beads as the solid base, akin to a 

conventional immuno-assay, now allow detection of multiple analytes in a single 

sample (reviewed by Vignali, 2000; Kellar & Iannone, 2002).

1.2.7.1 Cytokine protein detection using xMAP® technology 

Luminex® suspension bead array systems utilise xMAP® (multi-analyte profiling) 

technology (Luminex Corp, Austin, USA) to allow the multiplexing of up to 100 

different assays within a single sample. The flow cytometers, FACSCalibur™ or 

Luminex® 100™, analyse a liquid suspension placed in each well of a standard 96- 

well plate comprising 5.5 micron polystyrene microspheres internally dyed with 

different ratios of two spectrally distinct fluorophores (red and infrared) that code the 

beads into 100 distinct sets (fig 1.4).
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specific spectral address 
(ratio of internal dyes)

Figure 1.4: Luminex® polystyrene microsphere beads (Images derived from www.Bio-
rad.com)

Each bead set can be coated with a reagent able to capture and bind a specific analyte 

present in a sample. The microsphere can be coated with a wide variety of reagents 

including antigens, antibodies, receptors, enzyme substrates or DNA (fig 1.5).

To quantify the captured analyte a biotinylated detection antibody followed by a 

fluorescently labelled reporter molecule such as Streptavidin-E is added to the 

suspension and following incubation, each well is read using a Luminex® array 

reader.

Colour coded bead with 
specific spectral address 
(ratio of internal dyes)

arget analyte

iotinylated detection 
antibody

  Streptavidin-PE

Figure 1.5: Detection of analyte by Luminex® bead suspension array (Image derived from
www.Bio-rad.com)

Precision fluidics within the reader aligns the beads into single file, allowing each 

bead to move through a flow cell containing two lasers. A red classification laser 

excites the specific colour coding internal dyes in each microsphere allowing 

identification of the bead. The green reported laser excites the reporter dye attached 

to each bead allowing detection and quantification of the captured analyte (fig 1.6).
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Digital signal processors and software record the fluorescent signals for each bead 

translating them into data for each assay.

Red and green 
classification 
lasers detect 
internal and 
reported dyes

Figure 1.6: Detection of analyte-bead complex by Luminex® 100™ system (Image derived
from www.Bio-rad.com)

1.2.7.2 Advantages o f using xMAP technology

Assessing multiple analytes in a single sample provides greater throughput in data 

collection and ensures reduced variability within the data set by performing 

simultaneous readings (up to 1000 events) on each bead set within a sample. A small 

sample of 12.5 pi can be used per multiplex assay allowing the sample to be utilised 

in further assays and is particularly useful where original sample volumes are small, 

often a problem with samples obtained from mice. As multiple analytes are assessed 

within the same sample, a direct correlation can be made between analytes indicating 

patterns in cytokine profiles more clearly i.e. decreased pro-inflammatory cytokines 

correlating with increased anti-inflammatory cytokine release.

1.2.7.3 Detection o f LPS-induced cytokine protein in brain tissue

LPS can increase the mRNA expression of inflammatory cytokines in plasma and 

brain compartments, particularly following intracerebroventricular injection (Gayle 

et al, 1998; Gayle et al, 1999; Turrin et al, 2001; Plata-Salaman et al, 1998; De 

Simoni et al, 1995). Cytokine mRNA expression also occurs to a lesser degree in 

brain tissue post IP administration in both mice and rats (Jacobs et al, 1997; Kakizaki 

et al, 1999; Laye et al, 1994; Pitossi et al, 1997; Satta et al, 1998; Goujon et al, 1997; 

Castanon et al, 2004). LPS-induced cytokine protein induction in plasma was 

confirmed via the use of immuno-based assays such as ELISAs and, although central 

protein changes have been detected in mouse brain (Goujon et al, 1996) this has not

Individual beads 
■analysed in single 
file within flow cell
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been established in rat. Recent utilisation of xMAP® technology on Luminex® 100™ 

suspension bead array systems has provided further profiling of LPS-induced plasma 

cytokine protein responses, however, quantification of central cytokine levels post 

LPS treatment remains more focused on mRNA expression (Bobrowski et al, 2005). 

Detection of LPS-induced cytokine proteins in the brain using Luminex® 100™ 

suspension bead array systems has yet to be described in the literature. In the present 

studies, I chose to apply the Luminex® 100™ suspension bead array system to 

detecting cytokine protein in rodent brain tissue post intraperitoneal or 

intracerebroventricular LPS administration.

1.3 Alzheimer’s disease (AD)

1.3.1 Epidemiology

During 1906, the German doctor, Dr Alois Alzheimer, noted the presence of 

abnormal tissue and tangled fibre bundles in post mortem brain tissue of a woman 

who had suffered dementia. The associated disease was named Alzheimer’s disease 

(AD) (Alzheimer A, 1907). AD is a chronic neurodegenerative disorder characterised 

by the presence of Ap plaques, neurofibrillary tangles (NFTs), cell loss and 

associated activated microglia and astrocytes (Blennow et al, 2006). Clinical 

manifestations of AD often begin with gradually worsening cognitive impairments, 

particularly in learning and memory (Blennow et al, 2006). As the disease 

progresses, memory loss is associated with neuropsychiatric symptoms including 

anomalous motor behaviour, depression, anxiety, weight loss, irritability and 

agitation (Weiner et al, 2005). In the western world, neurodegenerative disorders 

have become more prominent due to an aging population, with increasing age being 

the greatest risk factor for AD (Barranco-Quintana et al, 2005). 1% of people aged 

<65 years and 24-33% of people aged >85 years are affected by the disease 

(Blennow et al, 2006).

A further important risk factor for AD is an individual’s genetic background 

(Blennow et al, 2006) but many believe that the disease in a majority of sufferers is 

due to a close interaction between genetic and non-genetic factors (Tol et al, 1999). 

The number of Americans alone who have AD has doubled since 1980 to 

approximately 4.5 million, costing at least $100 billion in care giving
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(www.alz.org/AboutAD/statistics). This is despite at least 70% of patients living at 

home where a large percentage of the care they receive comes from relatives and 

friends. This corresponds to an increased cost to businesses to account for lost 

productivity, absenteeism and worker replacement for working individuals who also 

care for an AD sufferer (www.alz.org/AboutAD/statistics). In America, this costs 

business approximately $61 billion per year (www.alz.org/AboutAD/statistics). A 

treatment able to delay the onset of the disease by 5 years could potentially reduce 

the number of patients suffering severe stages of AD by 50% in 50 years 

(www.alz.org/AboutAD/statistics). It is clear that a treatment able to delay the 

progression of the disease pathology is crucial to diminishing the impact of this 

disease on both a social and financial scale. Current drugs act solely as symptomatic 

treatments and can improve or stabilise symptoms in many patients but management 

of the underlying degenerative pathology with disease modifying drugs now requires 

more focus in order to control disease progression more successfully.

h 3.2 Early-onset Familial AD (FAD)

FAD is an uncommon form of AD accounting for <5% of all AD cases (Rocca et al, 

1991; Rocchi et al, 2003). The disease is inherited as an autosomal dominant trait 

and is linked with fully penetrant (causal) mutations in genes coding for APP, 

presenilin 1 (PS-1) and presenilin 2 (PS-2) located on chromosomes 21, 14 and 1 

respectively (Price & Sisodia, 1998). FAD presents early in life (30-60 years of age) 

and the age of onset depends on the presented mutations. PS-2 mutations are rare, to 

date there are only 10 mutations established in PS-2 (Sherrington et al, 1996) whilst 

142 mutations have been identified in PS-1 (Cruts & Van Broeckhoven, 1998). 

Mutations in PS-1 and PS-2 can significantly reduce age of onset. PS1 mutations are 

associated with more aggressive forms of AD and age of onset can occur as early as 

25 years of age (Campion et al, 1999) with disease duration lasting 5 years (Russo et 

al, 2000). FAD PS mutations influence processing of APP resulting in higher ratios 

of extracellular Apl-42 deposition (reviewed by Morishima-Kawashima & Ihara, 

2002).

1.3.3 Sporadic AD (SAD)

The clinical and pathological phenotypes of SAD are indistinguishable from those
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displayed in FAD cases (Price & Sisodia, 1998) and SAD is the most common form 

of AD, accounting for approximately 95% of all cases (Panza et al, 2002). SAD 

pathogenesis is associated with a number of risk factors and the apolipoprotein E 

(ApoE) e4 allele of the ApoE gene located on chromosome 19 is well documented as 

a partially penetrant genetic risk factor (Pericak-Vance et al, 1991; reviewed by 

Roses, 1996). Although presence of ApoE4 is neither required nor sufficient to cause 

AD it has been strongly associated with reducing the age of onset in SAD cases since 

homozygous carriers demonstrate a younger onset age than patients carrying a single 

copy (Blacker et al, 1997; Meyer et al, 1998). The mechanism of action of ApoE4 

remains unclear, however, increased Ap plaques in E4 carriers and changes in Ap 

deposition in APP overexpressing mice with presence or absence of human ApoE 

provides evidence that presence of ApoE4 can influence Ap accumulation (Poirier et 

al, 2000).

Additional genes have been considered as risk factors for SAD (Sandbrink et al,

1996) including the alpha 1-antichymotrypsin allele A (ACT-A), the 5-repeat allele 

of the VLDL-receptor (VLDL-R) gene, the A2 allele of the HLA-A locus and the 

oestrogen receptor alpha gene (Urakami et al, 2001). Genes studied in case-control 

studies of sporadic AD patients range from those involved in Ap metabolism, 

oxidative stress and inflammation and are extensively reviewed by Combarros et al, 

(2002).

Although there is strong support for the amyloid hypothesis of AD due to close 

association between APP, PS1 and PS2 mutations, the contribution of environmental 

risk factors to onset and progression of SAD have been considered (reviewed by 

Brown et al, 2005). Studies investigating the correlation of aluminium, lead or 

mercury exposure (Gauthier et al, 2000; Cornett et al, 1998; Mutter et al, 2004), diet 

(Luchsinger & Mayeux, 2004) and pesticide exposure (Baldi et al, 2003) with 

incidence of AD have provided controversial data. It remains likely that sporadic AD 

is a culmination of genetic vulnerability and environmental exposures (Jansson,

2005).
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1.3.4 Beta Amyloid (A fi)

Ap is defined as a fibrillar protein comprising extracellular fibrils forming parallel P 

sheets. Ap has an affinity with Congo red and its presence can be determined by 

staining with Congo red, which under polarised light produces a green birefringence 

dependent upon positioning of the Congo red molecules along the fibrils (Nilsson, 

2004). Amino acid sequencing of cerebrovascular amyloid took place in 1984 

(Glenner & Wong, 1984). The subsequent characterisation of cerebral plaque Ap 

revealed that it was similar to cerebrovascular Ap and to Ap present in the brains of 

Down's syndrome patients (Masters et al, 1985). Plaques consist of extracellular 

deposits of Ap comprising aggregated Ap peptides up to 43 amino acids in length. 

Plaques can form a dense core of aggregated Ap protein that appear as a beta-pleated 

sheet when stained with Congo red and viewed under polarised light. Plaques of a 

diffuse nature lacking a dense core are present in greater abundance than core 

plaques and require staining with antibodies raised against Ap. The most common 

forms of amyloid protein usually present in human cerebrospinal fluid are Api-40 

(50-70%) and Apl-42 (5-20%) (Murphy et al, 1999). Apl-42 possesses two 

hydrophobic residues, isoleucine and alanine, that encourage aggregation into 

plaques (Selkoe, 1998) and is the most abundant soluble Ap fragment evident in AD 

brain tissue (Tambaton & Gamgetti, 2006).

1.3.4.1 Amyloid precursor protein (APP)

Isolation of Ap led to the cloning and localisation of the APP gene on chromosome 

21 (Tanzi et al, 1987; St.George-Hyslop et al, 1987). Down’s syndrome patients, 

known to produce cerebral Ap deposits and develop Alzheimer’s disease (AD), 

possess three copies of chromosome 21 (Trisomy 21) suggesting that increased 

production of APP and Ap may underlie the neuropathology (Folin et al, 2003). This 

remains controversial, however, since recent studies have challenged the theory that 

amyloid plaque pathology in Down’s syndrome patients is due to the presence of 

trisomy 21 (Argellati et al, 2006). APP comprises a family of glycosylated 

transmembrane proteins that are ubiquitous and present throughout the body (Hardy,

1997). Alternative splicing of the APP gene codes up to 770 amino acid residues 

(Kosik, 1994) including APP751, APP770 and APP695, the isoform most commonly 

expressed by neurons (Goedert, 1987). The derivation of Ap from APP can occur via
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a non-amyloidogenic (a-secretase) pathway or an amyloidogenic (p-secretase) 

pathway (Kowalska et al, 2004) (fig 1.7). Cleavage by a-secretase precludes 

formation of the amyloid domain and releases the N-terminal portion of APP as 

soluble APPa (sAPPa) and a C-terminal membrane bound fragment of 83 amino 

acids (c83). APP cleavage via the p-secretase pathway forms an N-terminal secreted 

APPp (sAPPP) and a C-terminal peptide comprising 99 amino acids (c99) that 

contains the Ap fragment. C83 or c99 cleavage by y secretase results in the formation 

of a 3kDa fragment (p3) or Ap. Ap is a normal product of neuronal cells released in 

low concentrations and usually found in the CSF and plasma (Selkoe, 1993).

a y

N
extracellular intracellular

T f *
C APP

40/42

a-secretase

sAPPa m  h -
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sA PPfi

y-secretase
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Figure 1.7: Schematic representation of APP processing (Figure taken from Canevari et al,
2004)

1.3.4.2 Ap: mechanism o f action

The mechanism by which Ap induces inflammation and cell death is unclear but may 

involve a complex cascade of biochemical events resulting in the imbalance of 

intracellular ions, production of inflammatory mediators and free radicals, and 

finally, apoptotic cell death that culminates in massive atrophy of susceptible areas 

(reviewed by Holscher, 2005) (fig 1.8).

The discovery that Ap can activate formyl chemotactic receptors (Lorton et al, 2000) 

or the Receptor for Advanced Glycation Endproducts (RAGE) provided insight into
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a potential mechanism for Ap-induced neurotoxicity (Lue et al, 2001; Sasaki et al, 

2001; Du Yan et al, 1997; Yan et al, 1996). Glycoxidation of free amino groups 

located on the surface of proteins can produce Advanced Glycation Endproducts 

(AGE) and increased expression of RAGE is evident in microglia and neurons of AD 

patients (Yan et al, 1996). RAGE has properties of a signal transduction receptor 

with sites for the transcription factor NF-kB at its promoter. Persistent translocation 

of NF-kB may occur from binding of Ap to RAGE resulting in alteration of gene 

expression in neurons and microglia (Huttunen et al, 1999).

In vitro studies have demonstrated that Ap stimulates glial cells (Kopec & Carroll, 

1998; Akama et al, 1998; Barger et al, 1997; Hu et al, 1999) to release potent 

inflammatory proteins (Meda et al, 1999; Yates et al, 2000; Del Bo et al, 1995; Apelt 

& Schliebs, 2001). Ap can stimulate the production of the proinflammatory 

cytokines IL-lp, TNF-a and IL-6 from neuronal cultures, microglial cultures 

(Szczepanik et al, 2001; Gitter et al, 1995) and astrocyte cultures (Hu et al, 1998). In 

addition, the chemokines monocyte chemotactic protein-1 (MCP-1) and macrophage 

inflammatory protein-la and -lp  (MIP-la and -ip) can be stimulated in human 

monocytes. Cell surface binding of microglia with core plaques may either cause or 

exacerbate neurotoxicity (reviewed by Bamberger & Landreth, 2001) by increasing 

the release of cytokines and reactive oxygen species (ROS). Release of such 

molecules can recruit more immune cells to the area and initiate uptake and 

degradation of deposited Ap (reviewed by Tabet et al, 2000; Varadarajan et al, 2000; 

van Rossum & Hanisch, 2004). Excessive activation of microglia can initiate a 

vicious cycle in which immune cells recruited to the site release toxic agents that 

harm surrounding neurons, which further release factors attracting further microglial 

migration (Ralay Ranaivo et al, 2006).

Ap induces the production of ROS directly via oxidative stress mechanisms 

(reviewed by Mattson, 1997; Hensley et al, 1994) and proto-fibrillar and fibrillar Ap 

cause ROS toxicity by disturbing the membrane environment of metabolic pathway 

enzymes and by causing leakage from redox chains (Goodman & Mattson, 1994; 

Behl & Holsboer, 1998). Antioxidants such as oestrogen (Dykens et al, 2005) and 

vitamin E (Munoz et al, 2005) have been reported to exert neuroprotection against 

amyloid-induced oxidative stress suggesting involvement of oxidative stress in the 

neurodegeneration evident in AD brain tissue. Api-42 or AP25-35 treatment of
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mixed hippocampal cultures reduced intracellular astrocytic and neuronal levels of 

glutathione, a reducing agent that forms part of an antioxidant system in the CNS, 

indicating a role for oxidative stress in AP-induced neurotoxicity (Abramov et al,

2003). Evidence from in vitro studies suggests Ap can alter intracellular calcium 

levels via the modification of voltage-gated ion channels (Green & Peers, 2001; 

Kasparova et al, 2001; Rovira et al, 2002) or through induction of membrane 

leakiness and oxidative stress (Huang et al, 2000). Ap-induced free radical 

generation may also occur via its binding and reducing of reactive metals such as 

copper (Bush et al, 2003) and iron to provoke hydroxyl radical production.

Neurons in post mortem tissue from AD patients display signs of apoptosis (Su et al, 

1994, Mattson et al, 1998). Ap may induce apoptosis in surrounding neurons via the 

p53-Bax cell death pathway (Zhang et al, 2002) although the exact mechanism is 

unknown. Fibrillar Ap may also form large voltage-independent non-selective ion 

channels (reviewed by Kagan et al, 2002) or bind to a mitochondrial endoplasmic 

reticulum (ER)-associated protein called amyloid p-peptide binding protein alcohol 

dehydrogenase (ABAD) (Yan et al, 1997). Increased expression of ABAD is evident 

in aged and AD brain and may potentiate Ap-induced apoptosis and free radical 

generation in neurons (Lustbader et al, 2004). In vitro and immunohistochemical 

studies have revealed that neurons undergoing Ap mediated cell death exhibit classic 

characteristics of apoptosis (Cotman & Anderson, 1995; Kusiak et al, 1996) which, 

correlates with the presence of aggregated Ap forms (reviewed by Iversen et al, 

1995).
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Figure 1.8: Schematic representation of the postulated mechanisms of AP-mediated
neurodegeneration

1.3.4.3 Role o f different A pforms in neurotoxicity

The original ‘amyloid hypothesis’ assumed that extracellular deposition of Ap is 

necessary for cell death (Hardy & Allsop, 1991) and evidence for Ap as a causative 

agent in AD was derived from genetic mutations of APP (Selkoe, 2000). Early 

literature suggested the extracellular fibrillar form of Ap to be the most neurotoxic 

(Simmons et al, 1994; Howlett et al, 1995; Jarrett et al, 1993) and that that the 

neurotoxicity induced by the Apl-42 fragment relates to its readiness to aggregate
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into beta sheets in contrast to the Api-40 fragment, which spontaneously produces a  

helix formations. However, recent evidence of intraneuronal soluble Api-42 as an 

early neurodegenerative change in AD (Femandez-Vizarra et al, 2004) and Down’s 

syndrome brain tissue (Gyure et al, 2001) supports findings that soluble amyloid may 

be first deposited intraneuronally (Masters et al, 1985) suggesting that intracellular 

monomeric and oligomeric amyloid generation may significantly contribute to cell 

death (Wirths et al, 2004). Further evidence has indicated soluble oligomeric Ap 

forms can induce toxicity (Chromy et al, 2003; Walsh & Selkoe, 2004; Lacor et al,

2004) and that core plaques of amyloid fibrils may be neuroprotective and sequester 

toxic Ap fragments from cells (Yan et al, 1996). It remains unclear how the balance 

between extracellular fibrillar Ap and intracellular monomeric or oligomeric Ap 

contributes to neurotoxicity.

1.3.5 Neurodegeneration in AD

Post mortem analyses of the pathology of AD brains have revealed more prominent 

brain weight reduction, cortical atrophy and ventricular enlargement in AD patients 

relative to age-matched controls (Kril et al, 2004; Karas et al, 2003; Skullerud et al, 

1985). Histopathological changes occur in limbic areas and the medial part of the 

temporal lobe and with specific regions of neuronal loss associated with large 

numbers of NFTs and neuritic amyloid plaques in the entorhinal cortex, 

hippocampus and amygdala (Scott et al, 1991; Armstrong, 2006). This manifests 

primarily as a loss of cholinergic neurons in the medial septum, nucleus basalis of 

Meynert (nBM) and vertical band of Broca (VDB) (Vogels et al, 1990; Boissiere et 

al, 1996). Extensive neurodegeneration is also evident in central noradrenergic 

neurons projecting from the locus coeruleus (LC) (Lyness et al, 2003; Engelborgh & 

De Deyn, 1997), the main site of NA synthesis innervating terminal regions 

including the cortex and hippocampus (Mann et al, 1982; Mann &Yates, 1983). LC 

degeneration correlates with duration of illness (Zarow et al, 2003) and duration and 

severity of dementia (Bondareff et al, 1987). Loss of noradrenergic specific neurons 

or NA is also associated with the incidence of depression in patients suffering from 

AD or PD (Chan-Palay & Asan, 1989). Remaining LC neurons may compensate for 

degeneration via neuronal sprouting (Szot et al, 2006; Hoogendijk et al, 1999) 

however; alpha 2C adrenoceptors remained significantly reduced in the hippocampus
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of AD patients (Szot et al, 2006).

1,3.6 Neuroinflammation in AD

1.3.6.1 Cell-mediated inflammation

Although neuroinflammation is evident in a number of CNS disorders such as stroke, 

Parkinson’s disease and multiple sclerosis, it is uncertain whether the inflammatory 

response predisposes to or subsequently exacerbates the neuropathology. 

Neuroinflammatory changes observed in AD sufferers, of both sporadic and familial 

cases of AD, occur early on in disease progression (Sasaki et al, 1997). The 

inflammatory state is characterised by the presence of activated microglia and 

reactive astrocytes within degenerating brain regions (McGeer et al, 1988; Meda et 

al, 1995; Akiyama et al, 2000). Microglia, resident macrophage cells in the brain, 

appear to localise around senile plaques in AD tissue (McGeer et al, 1994; Itagaki et 

al, 1989; Uchihara et al, 1997; Kalaria et al, 1999) and produce toxic agents that 

damage neurons (Siman et al, 1989). The activated state of the glial cells can be 

determined immunohistochemically with antibodies directed against specific proteins 

expressed on the cell surface such as major histocompatability complex (MHC) II 

glycoproteins and integrins such as the CD1 lb receptor.

Additional resident CNS glial cells, astrocytes (Tanaka et al, 1999), can also become 

reactive and have a defensive role in the neuropathology of AD (Aschner, 1998, 

DeWitt et al, 1998). Reactive astrocytes are characterised by their hypertrophic 

morphology and localised by immunohistochemical staining for the astrocytic 

marker, glial fibrillary acidic protein (GFAP). Astrocytes are located around senile 

plaques and appear to create a barrier between plaque and healthy tissue. Astrocytes 

also have a key role in maintaining the integrity of the blood-brain barrier (BBB) 

since the astrocytic foot sits alongside the endothelial wall of blood vessels that 

comprise the microvasculature separating brain tissue and circulating blood (Kim et 

al, 2006). Discrete BBB breakdown in AD patients, as exemplified by reduced 

cerebral blood flow and endothelial cell degeneration (Kalaria et al, 1995), suggests 

compromised cerebrovasculature in the brain may contribute to intense astrocytic 

activation.

It is difficult to determine whether the localisation of microglia with senile plaques is 

to enhance clearance of the insoluble plaque or to mediate aggregation of soluble
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amyloid. Although aggregated amyloid can induce inflammatory processes and 

cellular toxicity, it is unclear whether senile plaque production may be a protective 

mechanism to prevent the neurotoxic effects of precursor amyloid forms. In AD 

tissue, microglia can assist the conversion of diffuse soluble amyloid to aggregated 

plaques (Cotman et al, 1996; Griffin et al, 1995, Mackenzie et al, 1995; Sasaki et al,

1997) but also, as phagocytes, internalise plaques (Shaffer et al, 1995; DeWitt et al,

1998).

1.3.6.2 Cytokines

Astrocytes and microglia respond to injury or tissue damage by releasing an array of 

cytokines capable of recruiting further macrophage and neutrophils (reviewed by 

Mrak et al, 1995). Proinflammatory cytokines such as IL-lp (Griffin et al, 1989; 

Griffin et al, 1995; Shaw et al, 2001), TNF-a (Dickson et al, 1993; Grammas et al, 

2001; Tarkowski et al, 1999; Tarkowski et al, 2000) and IL-6 (Luterman et al, 2000) 

have been detected in post-mortem AD brain tissue. These cytokines are localised in 

plaque-associated microglia suggesting their involvement in either promoting 

clearance or modulating formation of aggregated amyloid deposits. IL-ip modulates 

plaque formation (Sheng et al, 1995; Grilli et al, 1996; Rogers et al, 1999) and APP 

production (Forloni et al, 1992; Rogers et al, 1999; Goldgaber et al, 1989) 

implicating amyloid-induced IL-ip in further increasing amyloid levels. IL-ip and 

TNF-a also appear essential for amyloid induced neurotoxicity (Viel et al, 2001) 

further exacerbating disease pathology.

Polymorphisms located in promoter and non-coding regions of cytokine genes 

appear to increase the risk of developing AD (Ravaglia et al, 2006). Their presence 

is, however, unlikely to initiate the disease alone (reviewed by Griffin, 2006; 

Cacquevel et al, 2004). Polymorphisms for several cytokines including the IL-6 gene 

promoter (Licastro et al, 2003), TNF-a (Alvarez et al, 2002), IL -la (Combarros et 

al, 2002), IL-lp (Sciacca et al, 2003) and the anti-inflammatory cytokine IL-10 (Lio 

et al, 2003) have been associated with AD. Polymorphism for a specific IL -la  gene 

can increase the risk of developing AD by three fold and this risk increases if 

combined with an IL-ip polymorphism (Mrak & Griffin, 2001). Genetic 

polymorphisms occur more frequently in AD patients compared with age-matched
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controls resulting in increased expression of inflammatory mediators, potentially 

affecting the progression of AD pathology (McGeer & McGeer, 2001).

1.3.6.3 Chemokines

Chemokines are a structurally and functionally related family of proteins expressed 

by astrocytes, microglia and endothelial cells. Chemokines act on receptors located 

on neurons, microglia and leukocytes to recruit inflammatory cells to the site of 

injury (Biber et al, 2006). The family includes IL-8, macrophage inflammatory 

protein (MIP)-l, monocyte chemoattractant protein (MCP)-l and RANTES 

(regulated upon activation, normal T-cells, expressed and secreted). Chemokines 

have been localised throughout the AD brain (Xia et al, 1999).

1.3.6.4 Other markers o f neuroinflammation

Prostaglandin 2 (PGE2), a proinflammatory mediator, is elevated in cerebral spinal 

fluid (CSF) from AD patients relative to controls (Ho et al, 2000; Montine et al,

1999). Post mortem, analysis of AD brain has also established the presence of 

markers of oxidative stress (Aslan & Ozben, 2004; Luth et al, 2005) and evidence of 

NOS (Luth et al, 2002; Femandez-Vizarra et al, 2004). Markers of nitric oxide 

production, 3-nitrotyrosine (Tohgi et al, 1999) and nitrate (Navarro et al, 1996; 

Kuiper et al, 1994) were also altered in the CSF of AD patients.

1,3.7 Anti-inflammatory agents as disease modifying therapy for AD

The incidence of AD in populations with inflammation-associated diseases such as 

rheumatoid arthritis has provided greater understanding of the potential role of anti

inflammatory therapies for AD (Naccari, 2003). Epidemiological studies suggest 

patients on non steroidal anti-inflammatory drug (NSAID) therapy have a decreased 

risk of AD and delayed disease onset (Breitner, 1996; McGeer et al, 1996; 

McDowell, 2001). The Baltimore Longitudinal Study of Aging confirmed that 

NSAID use, particularly ibuprofen, was beneficial in preventing AD (Stewart, 1997) 

and effects were dependent on duration of treatment. Stewart et al, 1997 found that 

for individuals using NSAIDS for less than 2 years there was a risk reduction of one 

third. Patients using NSAIDS for > 2 years reduced their risk by 60% whilst in a 

larger cohort of individuals this length of treatment demonstrated an 80% reduction
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in AD incidence (In‘t Veld et al, 1998). NSAID treatment appears to be more 

successful if administered before disease onset or early on in disease progression. 

Hence, patients would need to take treatment before onset of any overt AD- 

associated symptoms. Additionally, treatment duration will also increase the 

incidence of gastrointestinal toxicity due to the unwanted peripheral effects of 

NSAIDS (Rogers et al, 1993; Tabet et al, 2002). Despite epidemiological evidence 

suggesting NSAIDS may be beneficial in AD, the results obtained from controlled 

clinical trials in AD patients have not demonstrated any beneficial effect of NSAID 

treatment (Firuzi & Pratico, 2006). The method by which NSAIDS may halt disease 

progression remains unclear but it is postulated that NSAIDS may influence the 

metabolism of APP or alter disease progress by activating peroxisome proliferator- 

activated receptors (Aisen et al, 2002).

1.4 Neuroinflammation and neurodegeneration in animal models

The mechanisms by which LPS and Ap may cause neuroinflammation and 

neurodegeneration have been described previously in this introduction. In this 

section, I will outline current reported evidence for neuroinflammation and 

neurodegeneration following the administration of LPS or Ap in vivo or in APP and 

APP/PS1 transgenic Ap models.

1.4.1 LPS -  in vivo models

1.4.1.1 LPS-induced neuroinflammation

Administration of LPS either centrally (Gayle et al, 1998; Gayle et al, 1999; Plata- 

Salaman et al, 1998; De Simoni et al, 1995; Gottschall et al, 1992; Muramami et al, 

1993; Szczepanik & Ringheim, 2003; Kelehua et al, 2000; Song et al, 1999; Finck et 

al, 1997; Sanna et al, 1995; Di Santo et al, 1995; Nicholson & Renton, 2001; Chen et 

al, 2000) or peripherally (Ghezzi et al, 2000; Sironi et al, 1992; Turrin et al, 2001; 

Castanon et al, 2004) to rodents can induce both pro- and anti-inflammatory cytokine 

production.

Intracerebroventricular (ICV) injection of LPS induces pro-inflammatory cytokine 

mRNA expression in the brain (Gayle et al, 1998; Gayle et al, 1999; Plata-Salaman 

et al, 1998; De Simoni et al, 1995) via direct action on brain tissue. Peripheral
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administration of LPS can also induce proinflammatory cytokine mRNA expression 

in the brain albeit to a lesser magnitude (Jacobs et al, 1997; Kakizaki et al, 1999; 

Laye et al, 1994; Pitossi et al, 1997; Satta et al, 1998; Goujon et al, 1997; Castanon et 

al, 2004).

Despite previous reports describing LPS-induced cytokine mRNA expression in 

rodent brain tissue in vivo, reports of LPS-induced cytokine protein, particularly 

following peripheral administration of LPS, are limited (Goujon et al, 1996; 1997). 

Reports focus primarily on intraperitoneal (IP) LPS-induced cytokine protein 

changes in blood or plasma (Sironi et al, 1992; Purswani et al, 2002; Bobrowski et al, 

2005) and the literature does not comprehensively describe the detection of a 

multitude of central cytokine proteins in brain tissue within the same animal 

following LPS administration.

1.4.1.2 LPS-induced neurodegeneration

Some studies have revealed an increase in the number of terminal deoxynucleotidyl 

transferase-mediated dUTP nick-end labelling (TUNEL) stained cells in various 

brain regions post IP LPS injection of rats (Nolan et al, 2000; Semmler et al, 2005). 

This suggests that peripheral administration of LPS may result in limited apoptosis in 

brain tissue. ICV injection of LPS may cause oxidative damage to the brain, despite 

the absence of overt neuronal loss. ICV LPS administration to C57BL6/J mice 

resulted in an acute transient increase in F4-isoprostanes (prostaglandin-like products 

of free radical-catalysed docosahexaenoic acid peroxidation) (Milatovic et al, 2003). 

Significant neurodegeneration can also be obtained by the direct injection of LPS 

into brain regions including the hippocampus (Ambrosini et al, 2005) and the 

substantia nigra (Li et al, 2004). Neurodegeneration was evident as a substantial loss 

in NeuN positive neuronal cell bodies or tyrosine hydroxylase-immunoreactive (TH- 

ir) neurons respectively.

Administration of an additional insult to LPS-treated animals appears to enhance the 

probability of inducing neuronal death. For example, mice receiving the 

glucocorticoid receptor inhibitor, RU486, alongside intracerebral LPS, detectable 

brain damage was evident after 3 days (Soulet & Rivest, 2003). Additionally, 

BALB/cJ mice administered with an IP dose of LPS before the induction of hypoxia- 

ischaemia (HI) suffered axonal and neuronal loss in the corpus callosum not evident 

in control HI mice (Lehnardt et al, 2003).
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1.4.2 Aft-Exogenous in vivo models

1.4.2.1 Exogenous AP-induced neuroinflammation

Injection or infusion of Ap peptide into brain tissue causes neuroinflammation. 

Injection of fibrillar Ap, but not soluble Ap, resulted in astrocytic and microglial 

activation in rat striatum (Weldon et al, 1998) with astrocytes surrounding the 

fibrillar deposits and providing a ‘wall’ to protect adjacent tissue whilst activated 

microglia phagocytosed the deposit. Further data support the presence of this 

pathology in rodent in vivo models (Frautschy et al, 1991; O’Hare et al, 1999; Scali 

et al, 1999; Stephan et al, 2001; Jantaratnotoi et al, 2003; Ryu et al, 2004; Frautschy 

et al, 2001).

The activation of microglia and astrocytes and the associated release of inflammatory 

cytokines, iNOS and COX2 can be potentiated by further insult to the animal. N - 

(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) induced noradrenergic 

depletion rendered rat brain tissue more susceptible to Ap-induced 

neuroinflammation (Heneka et al, 2002). Weldon et al, 1998 suggested that the 

separation of an Ap deposit from surrounding neuropil by astrocytes means it is 

unlikely that neurotoxicity occurs as a result of direct contact between Ap and 

neurons. The toxic mediators released by microglia, particularly NO molecules, may 

act as intermediary factors to induce neurodegeneration in surrounding neuronal 

populations, a hypothesis supported by in vitro evidence (Giulian et al, 1996); but it 

may also be the case that microglia phagocytose the Ap deposit. A recent study 

described the clearance of Api-42 following Ap injection into the hippocampus of 

Wistar rats suggesting phagocytosis of the deposit by surrounding microglia (Takata 

et al, 2004).

1.4.2.2 Exogenous Ap-induced neurodegeneration

Early studies have focused on the influence of the ICV administration of Ap on 

pathology associated with a cognitive impairment (Nakamura et al, 2001; Yamada et 

al, 1999). ICV infusion of Ap in vivo causes a reduction in the enzyme choline 

acetyltransferase (ChAT) usually responsible for degrading acetylcholine, a key 

neurotransmitter involved in learning and memory systems (Nabeshima & Nitta, 

1994). Reduced ChAT may indicate a compensatory mechanism to enhance the level
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of acetylcholine in the brain and hence, administration of Ap into CNS tissue may 

impair the activity of important neurotransmitter systems and associated neuronal 

circuits (Verhoeff, 2005). Reduced ChAT activity may underlie the cognitive deficits 

demonstrated in Ap treated animals. ICV injection of Ap results in learning and 

memory impairments in rodents when assessed in spontaneous alternation, passive 

avoidance and Morris water maze assays (Yamada, 1999). Animals infused with Ap 

plaques derived from AD patients displayed impairments in the watermaze and 

ChAT loss in the hippocampus and frontal cortex (Nitta et al, 1994). At 2 weeks post 

amyloid infusion, a reduction in ChAT activity in frontal cortex and hippocampus 

was associated with memory deficit in watermaze and passive avoidance tests 

(Nabeshima, 1994).

There are published reports of ICV Ap-induced cell loss (Nakamura, 2001) and 

diffuse amyloid deposition in rodent brain tissue, particularly in the presence of 

transforming growth factor (TGF) ~p (Frautschy et al, 1996). It remains difficult, 

however, to consistently achieve Ap deposition and resulting neurodegeneration 

using this method of administration. Much work by Frautschy et al (2001) has 

demonstrated that injection of Ap into rodent brain tissue results in diffuse Ap 

deposition in brain regions pertinent to AD, especially in rats. However, the co- 

administration of TGF-p or high-density lipoprotein (HDL) with Ap significantly 

improves Ap deposition (Frautschy et al, 2001; Harris-white et al, 2004) and results 

in a reduction in synaptophysin (a protein present in synaptic vesicle membranes) 

(Craft et al, 2004). In addition to the inconsistent Ap deposition following injection 

of exogenous Ap into brain tissue, recent work has also revealed that Ap injected 

ICV may remain in the ventricular systems and be removed by phagocytic cells, thus 

Ap peptide may not diffuse into brain tissue sufficiently to cause overt 

neurodegeneration (Nakagawa, 2004).

Direct injection into discrete brain areas, particularly those usually susceptible to 

degeneration in AD, may afford an alternative method of eliciting Ap-induced cell 

death in vivo. Some authors have not demonstrated Ap-induced neurodegeneration in 

vivo using this method (Games et al, 1992; Cleary et al, 1995) and suggest that 

microglia can phagocytose Ap deposits (Shin et al, 1997; Bishop et al, 2003). Others 

demonstrate cell loss that is adjacent to the injection site only (Frautschy et al, 1991;
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Emre et al, 1992; Giordano et al, 1994; Wang et al, 1994; Miguel-Hidalgo et al, 

1998; Stephan et al, 2001; Nakamura et al, 2001; Jantaratnotai et al, 2003; Ryu et al, 

2004) or is evident in specific neuronal populations (Weldon et al, 1998). Ap 

deposits may remain in the tissue even up to 6 months post surgery (Giovannelli et 

al, 1998; Weldon et al, 1998).

Early studies demonstrated that Ap-induced toxicity may depend upon the solvent 

used to dissolve Ap. Particular attention focused on acetonitrile, an organic solvent 

used as a vehicle for exogenous amyloid application (Kowall et al, 1991). It is clear 

that acetonitrile alone is toxic to neurons, either via its conversion to cyanide through 

the actions of cytochrome P450 (Freeman et al, 1998) or via its toxic effect on cell 

membranes, allowing calcium-mediated neurotoxicity (Mattson et al, 1992). Ap may 

enhance toxicity induced by the acetonitrile solvent by potentiating calcium- 

mediated neurotoxicity. The intra-hippocampal injection of human Apl-40 or rat 

Api-40 enhanced the toxicity of 35% acetonitrile whilst Ap in water or phosphate 

buffered saline (PBS) demonstrated little effect (Waite et al, 1992). In contrast, Apl- 

40 dissolved in 35% acetonitrile and injected into the neocortex of rhesus monkeys 

did not potentiate neurotoxicity relative to acetonitrile alone (Podlisny et al, 1992).

1.4.3 A f}-  Endogenous in vivo models — Transgenic mice

1.4.3.1 Endogenous amyloid-induced neuroinflammation

APP or APP/PS1 overexpressing transgenic mice exhibit neuroinflammation, 

exemplified by age-dependent activated microglia and astrocytes. APP (V717I) 

transgenic mice display activated glia in hippocampal and cortical regions at 3 

months, which became pronounced by 16 months of age (Heneka et al, 2005). 

Similarly, the PS APP model comprising APP and PS1 mutations shows a robust age- 

dependant increase in amyloid plaques surrounded by activated microglia and 

associated with reactive astrocytes, which increased with age and amyloid burden 

(Matsuoka et al, 2001). A small number of activated microglia was observed in the 

absence of amyloid plaques, most appeared to associate mainly with diffuse and 

fibrillar deposits. Analysis of the microglial phenotype in Tg2576 APP 

overexpressing mice indicated microglia may sustain plaque development whilst 

astrocytic degradation of Ap and separation of Ap from surrounding neurons
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suggests astrocytes aid neuroprotection (Wegiel et al, 2001). Alteration of the 

expression of pro- and anti-inflammatory cytokines is also evident in APP and 

APP/PS1 transgenic mice. Abbas et al, 2002, reported elevated cortical IFNy and 

IL12 mRNA and protein expression that peaked by 17-19 months and was associated 

with reactive microglia and astrocytes surrounding plaque deposits in Tg2576 mice. 

Anti-inflammatory treatment of APP or APP/PS1 transgenic mice using NSAIDs 

(Yan et al, 2003; Weggen et al, 2001; Lim et al, 2001), curcumin (the active 

ingredient in the curry spice turmeric) (Lim et al, 2001) or pravastatin (a 

hypolipidemic agent used for lowering cholesterol) (Chauhan et al, 2004) has 

demonstrated reduction of either soluble Ap 1 -42 or plaque burden. These findings 

demonstrate the key role inflammatory mediators possess in modulating amyloid 

production.

1.4.3.2 Endogenous amyloid-induced neurodegeneration

Many of the initial APP and APP/PS1 overexpressing transgenic mouse lines that 

were constructed did not exhibit overt neurodegeneration despite extensive plaque 

deposition in the hippocampus, cortex and amygdala (Stein & Johnson, 2002; 

Higgins & Jacobsen, 2003). Evidence suggests that, particularly in models of slow 

amyloid deposition such as Tg2576, amyloid may be sequestered via increased 

transthyretin, a sequestering protein upregulated by sAPPa (Stein & Johnson, 2002) 

as part of a neural mechanism to cope with widespread accumulation of aggregated 

amyloid. Chronic infusion of an antibody against transthyretin leads to increased 

amyloid and tau phosphorylation with apoptosis and neuronal loss in the CA1 

hippocampal field in Tg2576 mice. This further suggests sAPPa driven 

neuroprotective gene expression may protect APP transgenic mice from 

neurodegeneration (Stein et al, 2004). APP23 mice demonstrate hippocampal and 

cortical neurodegeneration, which can be exacerbated by the noradrenergic 

neurotoxin, DSP-4 (Heneka et al, 2006). The APP (SL) PS1KI model appears to be 

the best documented transgenic model presenting extensive neuronal loss (>50%) in 

the CA1/2 pyramidal hippocampal layer associated with intracellular Ap and 

astrogliosis that develops in correlation with the neuronal loss (Casas et al, 2004). 

Recent data described a reduction of about 30% in pyramidal hippocampal neurons 

in APP751/PS1 transgenic mice that did not correlate with extracellular Ap plaque

60



load, suggesting multiple mechanisms of Ap neurotoxicity (Shmitz et al, 2004). 

Rockenstein et al, 2005 compared high levels of human beta-secretase (BACE) -1, 

with and without hAPP. hBACEl/hAPP double transgenic and hBACEl transgenic 

mice exhibited neurodegeneration in the neocortex and hippocampus despite reduced 

Ap levels. These recent reports provide evidence that neurodegeneration may 

correlate with the accumulation of intraneuronal Ap as the neurodegeneration 

observed in APP (SL) PS1KI and APP751/PS1 mice correlates with increased 

intraneuronal Ap immunoreactivity (Games et al, 2006).

1.5 Thesis Objectives
Presently, therapeutic agents for AD primarily provide symptomatic relief and do not 

modify the progression of disease pathology. The limitations of current in vivo 

rodent models of neuroinflammation and neurodegeneration make preclinical 

screening of putative anti-inflammatory and neuroprotective agents for AD difficult. 

Quantification of markers of neuroinflammation following LPS, as a commonly used 

immunostimulant, or Ap, the peptide associated with AD, administration relies on 

the detection of cytokine mRNA expression, which may not translate to the final 

protein product. Current models of exogenous or endogenous Ap induced 

neurodegeneration do not demonstrate reproducible and quantifiable neuronal cell 

death. This thesis explores the development of rodent in vivo models using 

exogenous LPS and Ap injection approaches and endogenous Ap transgenic models 

and discusses their suitability for screening novel agents.

61



CHAPTER 2

Peripheral administration of LPS -  an in vivo model of 

neuroinflammation ?

2.1 Introduction
Despite a number of reports describing the expression of proinflammatory cytokine 

mRNA in rodent brain (Jacobs et al, 1997; Castanon et al, 2004) there are currently 

only limited reports of cytokine protein detection in rodent brain tissue (Goujon et al, 

1996; 1997) following IP administration of LPS. Previous literature has reported the 

use of Luminex® for detecting a wide range of cytokine proteins within a single 

rodent plasma sample (Bobrowski et al, 2005). I describe the application of this 

technology to the detection of LPS-induced cytokine protein in rodent brain tissue. It 

is important to also establish that the expression of cytokines in brain tissue is a 

centrally derived response and not due to infiltration of blood bome cytokines. The 

detection of other proteins by Luminex® has not yet been documented but kits have 

been developed to detect phosphorylated proteins. Phosphorylated proteins are 

involved in LPS-mediated intracellular signalling and their detection by Luminex® 

may confirm the presence of a brain response to peripheral LPS administration. I 

describe the application of Luminex® for assessing phosphorylated proteins 

including Ik B oi, JNK, ERK and p38 in rodent brain tissue. The induction of cytokine 

mRNA expression in brain tissue is also assessed using Taqman PCR techniques. 

Finally, to illustrate pharmacological modulation of LPS induced cytokines in the 

rodent brain, the changes in LPS induced central and peripheral cytokine expression 

following administration of the glucocorticoid dexamethasone and the a l  

adrenoceptor antagonist, fluparoxan, will be examined.

2.L I Glucocorticoid (GC) modulation and inflammation

Circulating cytokines can induce endogenous glucocorticoid production via 

activation of the HPA axis (Buckingham et al, 1994). Levels of serum corticosterone 

rise rapidly in LPS challenged mice, initially rising in a profile similar to that of
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serum TNF-a but remaining elevated for up to 24 hours after LPS administration, 

well after TNF-a levels have returned to baseline (Eskay et al, 1990). 

Adrenalectomised animals demonstrate increased expression and production of 

inflammatory mediators in models of inflammatory disease (Perretti et al, 1989; 

Calignano et al, 1985; Bertini et al, 1989; Smith et al, 2002) that can be reversed by 

administration of glucocorticoids. The glucocorticoid receptor inhibitor, RU486, can 

also increase the inflammatory reaction observed in animals injected intracerebrally 

with LPS, demonstrating glucocorticoids may protect the brain from inflammatory 

insult (Nadeau & Rivest, 2003). Systemic glucocorticoids including prednisolone and 

dexamethasone are strong immunosuppressants that can alleviate symptoms in 

inflammatory based disorders including asthma and arthritis but their use is limited 

to a short duration of therapy due to severe adverse effects (Roumestan et al, 2004). 

Although the attenuation of IP LPS-induced plasma cytokine production by 

glucocorticoid treatment has been previously described in rodent (Sironi et al, 1992, 

Mengozzi et al, 1994), the effect of dexamethasone treatment on IP LPS-induced 

plasma and brain cytokines has not yet been reported. Studies 3 through to 5 of this 

thesis investigate the effect of the strong anti-inflammatory agent dexamethasone on 

IP LPS-induced cytokine protein in rodent brain tissue and plasma detected by 

Luminex® suspension bead array system.

2.1.2 P38a inhibition and inflammation

P38a, an isoform of the p38 MAP kinase, has a well defined role in inflammation 

and its involvement in the expression of cytokines such as ILl-p and TNF-a is well 

documented (reviewed by Adams et al, 2001).

P38a inhibitors potently inhibit cytokine production in vitro (Lee et al, 1994; Dean et 

al, 1999) and in vivo (Barone et al, 2001) and demonstrate anti-inflammatory 

properties in models of chronic inflammatory based neurodegenerative and 

peripheral disorders, infection, cancer and autoimmune disease (reviewed by 

Kaminska, 2005). A number of companies began to develop potent, orally 

bioavailable p38a inhibitors after the publication of pyridinyl imidazole compounds 

(Lee et al, 1994) as inhibitors of cytokine production. Currently, the assessment of a 

number of molecules is taking place in the clinic (reviewed by Lee & Dominguez, 

2005; reviewed by Dominguez et al, 2005), particularly for treatment of rheumatoid
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arthritis (reviewed by Schieven, 2005).

P38MAPK inhibitors are able to reduce cytokine production by controlling gene 

transcription and translation and by destabilising cytokine mRNA (Lee et al, 1994). 

These agents are suitable compounds to assess attenuation of LPS-induced cytokine 

protein in vivo. There is evidence of central p38 phosphorylation post IP LPS (Kelly 

et al, 2003) but there is no published literature describing the effect of p38MAPK 

inhibitors in an IP LPS in vivo model of central and peripheral cytokine protein. 

Study 5 examines the effect of the p38a inhibitor, GW569293, on IP LPS-induced 

cytokine protein in rat brain tissue and plasma detected via Luminex® suspension 

bead array system.

2,1,3 a2-adrenoceptor antagonism and inflammation

Early evidence supported the involvement of monoamines such as serotonin (5-HT) 

and noradrenaline (NA) in the regulation of inflammation. In a model of 

carregeenan-induced paw oedema, whole brain and hypothalamic concentrations of 

NA were augmented during acute peripheral inflammation (Bhattacharya et al, 

1988). Intraperitoneally (IP) administered LPS significantly increased hippocampal 

and preoptic NA levels in rat (Linthorst & Reul, 1998). Denervation of NA fibres in 

a model of arthritis resulted in earlier onset and increased severity of inflammation 

and arthritic pathology (Felton et al, 1992) whilst carregeenan-induced inflammation 

in rabbit demonstrated an increase in a2 receptor affinity or numbers in articular 

blood vessels (Gray & Ferrell, 1992). Cytokine modulation through control of 

intracellular cAMP levels appears to occur via a l  adrenoceptor mediated inhibition 

and beta-adrenoceptor activation of adenylate cyclase demonstrating the role of a l  

receptors in cytokine production.

NA acts via G-protein linked alpha (a) or beta (P) adrenoceptors. There are two 

subtypes of a  receptor, a l  and a l  which, when activated, can either stimulate 

release of intracellular calcium (a l)  or decrease adenylate cyclase activity (a2). The 

three subtypes of p receptor (p i, 2 and 3) can increase adenylate cyclase activity 

resulting in induction of intracellular cAMP. a l  adrenoceptors are further subdivided 

into three isoforms, a2A, a2B and a2C localised primarily at synaptic junctions 

where their role is to control neurotransmitter release, a l  receptors act as inhibitory
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autoreceptors by inhibiting the release of NA. NA or synthetic agents such as the 

agonists clenbuterol or clonidine (Boyd, 2001) or the antagonists yohimbine or 

fluparoxan act at a2 receptors (Maes et al, 2000; Halliday et al, 1991). Antagonists 

of a2 adrenoceptors antagonise the inhibitory effect of the receptor on NA release 

resulting in an increase in synaptic NA. a2 adrenoceptors are widely distributed 

throughout the rat brain (Scheinin et al, 1994) and are localised at synapses (Aoki et 

al, 1994) and on the cell surface of macrophage and monocytes (Spengler et al, 

1990).

The anti-inflammatory effect of NA (reviewed by Galea et al, 2003) is mediated by 

down-regulating the expression and release of pro-inflammatory cytokines (Kaneko 

et al, 2005; Hu et al, 1991; Willis & Nisen, 1995) and inhibiting microglial activation 

(Lee et al, 1992; Loughlin et al, 1993; Chang & Liu, 2000) evident in AD. Recent 

reports describing the role of NA in CNS pathology are controversial. Wenk et al, 

2003 demonstrated a lack of DSP-4 mediated potentiation of neuroinflammation or 

cholinergic neurodegeneration; however, noradrenergic depletion in APP 

overexpressing mice exacerbated neuroinflammation and neurodegeneration (Heneka 

et al, 2006) and potentiated Ap-induced cortical cytokine and iNOS expression in rat 

in vivo (Heneka et al, 2002). Increasing NA levels via the antagonism of a2 

adrenoceptors may inhibit the expression of IP LPS-induced cytokine protein in brain 

tissue or plasma and attenuate LPS-induced iNOS expression in plasma. Study 5 

investigates the effect of the a2 adrenoceptor antagonist, fluparoxan, on IP LPS- 

induced cytokine protein in rat brain tissue and plasma detected by Luminex 

suspension bead array system and plasma nitrite, a marker of iNOS production.

2.1.4 Chapter Aims

This series of studies sought to establish a high-throughput model of 

neuroinflammation by evaluating:

1. The detection of IP LPS-induced plasma and brain-derived cytokine protein 

using the Luminex® suspension bead array system.

2. The involvement of a brain-derived response to IP LPS by assessing 

cytokine mRNA and phosphoprotein expression in brain tissue.

3. The suitability of the peripheral LPS model for screening putative anti
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inflammatory therapies by investigating the effects of dexamethasone as a 

standard anti-inflammatory treatment and via p38 inhibition or alpha2 

adrenoceptor antagonism.

2.2 Materials & Methods

2.2.1 Materials

The p38 inhibitor GW569293 and the a l-  adrenoceptor antagonist fluparoxan were 

synthesised at GSK, Harlow. Methylcellulose was prepared at GSK, Harlow. 

Phosphate buffered saline (PBS) was prepared using PBS tablets obtained from 

Sigma, UK. Lipopolysaccharide (0111:B4, L2630) and the glucocorticoid 

dexamethasone were purchased from Sigma, UK.
TMBio-Plex cytokine, phosphoprotein and total target assay kits containing standards,

primary bead and secondary detection antibody solutions were obtained from Bio-

Rad Laboratories, USA. Bio-plex™ phosphoprotein testing reagent kits, total protein
T T k l

assay solutions and Bio-plex calibration beads were purchased from Bio-Rad 

Laboratories, USA. Streptavidin-PE was obtained from VWR, UK. The Luminex®- 

100™ system was purchased from Luminex® Corporation, USA. 96-well filter plates 

and vacuum manifold apparatus were obtained from Millipore®, USA.

2.2.2 Animals

Specific, pathogen free male CD (caesarean derived from original Charles River 

Laboratories Sprague Dawley colonies) rats (250g, approximately 10 weeks of age) 

were purchased from Charles River, UK housed (4-5 per cage) in an animal facility 

at GlaxoSmithKline Pharmaceuticals, Harlow, Essex, UK. All rats were maintained 

under a controlled temperature of 21-24°C and a 12-hour phase light/dark cycle 

(lights on at 7am) and fed a pellet diet and water ad libitum. All experimental 

procedures were conducted in accordance with the GlaxoSmithKline local ethics 

committee and conformed to the UK Animals (Scientific Procedures) Act 1986.

2.2.3 Drug administration

Dexamethasone, fluparoxan and GW569293 were sonicated in 0.5% 

methylcellulose until completely dissolved and administered orally (gavage) at a
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dose volume of 2ml/kg. Dosing took place according to a timed schedule of 2 rats 

every 15 minutes to account for the time required to sample each rat. LPS 

(lOOpg/kg, 1 ml/kg) was allowed to dissolve in PBS in a falcon tube (VWR 

International, UK) for at least 30 minutes before administration. This dose of LPS 

was chosen from previous studies (Turrin et al, 2001; Pezeshki et al, 1996). LPS 

was injected (i.p) at 30 minutes, 1 hour and 2 hours after oral dosing of fluparoxan, 

(1, 3 & lOmg/kg), dexamethasone (1 mg/kg) or GW569293 (25mg/kg). An in vivo 

pharmacodynamic assay previously run at GSK, Harlow, revealed that oral 

treatment of 1, 3 and lOmg/kg fluparoxan caused reversal of agonist (UK, 14304) 

induced hypothermia. Subsequent PK analysis revealed brain concentrations of

0.592, 1.796 and 3.657pM respectively. Dexamethasone (lmg/kg, oral) and 

GW569293 (25mg/kg, oral) caused a reduction in neuroinflammation and cell 

death following intra-nigral injection of LPS into rat brain tissue (Sunter et al, in 

prep).

2.2.4 Sample collection

Rats were deeply anaesthetised with sodium pentobarbitone (Euthatal® lOOmg kg-1

1.p, Rhone Merieux, Harlow, UK). The right atrium was cut and trunk blood 

collected into a 1.3ml EDTA micro-tube (VWR International, UK). All rats, unless 

otherwise stated, were subsequently transcardially perfused with 120ml ice-cold 

0.9% sterile saline to wash the brain of circulating blood. During this procedure, the 

descending artery was clamped to improve upper-body perfusion. Brain regions 

were microdissected and stored in preweighed labelled eppendorfs (VWR 

International, UK) at -80°C. The blood was spun in a microcentrifuge (Centrifuge 

5415 D, Eppendorf UK Ltd, Cambridge, UK) at 16,1 lOg for 5 minutes and the straw- 

coloured plasma fraction collected into fresh eppendorfs and stored at -80°C.

2.2.5 Cytokine protein determination

2.2.5.1 Sample preparation

Microdissected brain tissue samples were diluted (5ul/mg tissue) with high 

performance ELISA (HPE) buffer (Sanquin Reagents, Amsterdam) and homogenised 

using a hand-held Ultra-Turrax T8 homogeniser (VWR International, UK). Samples
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were spun (16,1 lOg for 2 minutes) in a microcentrifuge (Centrifuge 5415 D, 

Eppendorf UK Ltd, Cambridge, UK). Supernatant was removed and stored in a fresh 

eppendorf at -80°C. Brain supernatant and plasma were defrosted and 50pl aliquots 

of each sample placed into a corresponding well on a standard 96-well plate (Nunc, 

UK) according to a predetermined plate layout. Each 50pl aliquot was diluted with 

150pl assay buffer (1% bovine serum albumin (BSA)-Fraction V, PBS).

(r)2.2.5.2 Luminex suspension bead array -  cytokine analysis

lOOpl of each pre-diluted sample was transferred to a pre-wet (lOOpl of assay buffer 

added to each well and the plate vacuum filtered) 96-well filter plate. A 50,000pg 9- 

plex standard was diluted to a 32,000pg solution and then serially diluted 1:2 using 

assay buffer to provide a 16-point (including zero) standard curve. Each sample was 

incubated in the dark overnight at 4°C with 50pl of a premixed 9-plex anti-cytokine 

conjugated bead solution diluted with assay buffer to lx concentration (250pl stock 

bead solution diluted with 5,750pl assay buffer). The plate was washed three times 

with 200pl of assay buffer and filtered using a vacuum manifold apparatus to 

eliminate unbound protein and prevent cross-contamination. Samples were further 

incubated with 100pi detection antibody (stock 120pl solution diluted with 1 l,940pl 

assay buffer) for 1 hour in the dark at room temperature and then washed three times 

with 200pi assay buffer. 12pl of Streptavidin-PE (stock solution was diluted with 

11,988pl assay buffer) and lOOpl added to each well. The plate was left to shake 

(700rpm) for 30 minutes at room temperature in the dark. The contents of each well 

were analysed by the Luminex®-100™ system to achieve median fluorescence 

intensity (MFI) readings for standard curves and samples. Samples for studies 1 and 

2 were analysed using FACScalibur™, since the Luminex®-100™ system was not 

available at GSK during these early studies.

The Luminex®-100™ system was previously calibrated using Bio-plex™ calibration 

beads at a low RP1 value of 3832. Double discriminator gates were positioned from 

approximately 8,000 to 15,000 to separate singlet and doublet beads. Intensity was 

identified at bead regions 18, 20, 21, 32, 34, 35, 37, 55 and 72 for IL-2, IL-10, IL-la, 

IL-4, IFN-y, IL-ip, GM-CSF, IL-6 and TNF-a, respectively.
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2.2.6 Phosphoprotein determination

2.2.6.1 Sample preparation

Brain samples were placed into preweighed eppendorfs and their weight (mg) 

measured. 500mM phenylmethylsulfonyl fluoride (PMSF) (Sigma, UK) was 

prepared by dissolving 0.436g PMSF in 5ml DMSO and 0.5ml aliquots stored at - 

20°C. 10 ml (40p.l of factor 1 and 20pl of factor 2 to 9.9ml of cell lysis buffer) of 

lysing solution was vortexed gently, 40pi of 500mM PMSF added and the solution 

left to cool on ice. 5 pl/mg tissue of lysing solution was added to each sample, which 

was briefly homogenised until in solution. The samples were stored at -70°C 

subsequently thawed, vortexed and then centrifuged at 3328g for 4 minutes. The 

supernatant was collected and the protein concentration determined. Supernatant was 

further diluted with lysing solution to achieve a protein range of 200-900pg/ml.

2.2.6.2 Total protein assay

BSA (25mg) was dissolved in 2.5ml of lysing solution and protein standards 

prepared from a 1 mg/ml stock BSA solution. Each stock supernatant sample was 

diluted 1 in 20 with lysing solution. 25pi of standards and samples were placed into 

clean dry eppendorfs and 125pi of Reagent I added. All eppendorfs were incubated 

for one minute and a further 125pl of Reagent II added. Following vortexing, all 

tubes were centrifuged at 13,200rpm for 3-5mins. The supernatant was discarded by 

inverting tubes on clean absorbent tissue. 127pl of Reagent A’ (reagent S + reagent 

A) was added to each pellet and the eppendorfs incubated at room temperature for 5 

minutes. Eppendorfs were vortexed and 1ml of Reagent B added to each tube. 

Eppendorfs were incubated at room temperature for 15 minutes. 200pl of each 

sample was placed into a 96-well plate in duplicate and read at 750nm.

2.2.6.3 Luminex® suspension bead array — phosphoprotein analysis

50pl of sample, in duplicate, were placed onto a standard 96-well plate according to 

a predetermined plate layout. An equal volume of assay buffer obtained from a Bio- 

Rad phosphoprotein testing reagent kit was added to each sample. The bead solution 

for each phosphoprotein (180pl) was vortexed and aliquoted into a single vial before 

dilution with 8280pl wash buffer. 50pl of beads were added to each well of a pre
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washed filter plate and the plate immediately vacuumed and washed (lOOpl wash 

buffer) twice. Sample and control lysates were allowed to thaw and vortexed and 

50pl of each sample or control placed in a predetermined well. Each plate was left to 

incubate in the dark at room temperature for 15-18 hours. Following incubation, the 

plate was vacuum filtered and washed (lOOpl wash buffer) three times. Each 

detection antibody (180pl) was added to a single vial and diluted with 3780pl of 

detection antibody diluent and 25pi of the final solution added to each well. The 

plate was left to incubate in the dark at room temperature for 30 minutes and then 

vacuum filtered and washed (lOOpl wash buffer) a further three times. 50pl of 

Streptavidin-PE (180pl stock diluted with 17820pl wash buffer) was placed in each 

well and left to incubate for 10 minutes in the dark at room temperature. The plate 

was vacuum filtered and rinsed three times using lOOpl of resuspension buffer. 

Resuspension buffer (125pi) was added to each well and left to incubate for 30 

seconds before obtaining MFI readings for phospho- and total protein detected in 

brain homogenate using the Luminex®-100™ system.

The Luminex®-100™ system was previously calibrated using Bio-plex™ calibration 

beads at a high RP1 value of 17435. Double discriminator gates were positioned 

from approximately 8,000 to 15,000 to separate singlet and doublet beads. Intensity 

was identified at regions 34, 36, 38 and 58 for JNK, p38MAPK, ERK2 and I k B oi, 

respectively. Total and phospho protein levels were standardised using total protein 

concentrations for each sample. All samples were corrected to 1 mg/ml total protein 

concentration. The ratio of phosphorylation was calculated by dividing 

phosphoprotein concentrations by total protein concentrations (i.e. p-JNK/total JNK).

2.2.7 Nitric Oxide Assay

Administration of DSP-4 can increase iNOS expression in vivo (Heneka et al, 2002) 

suggesting that modulating NA may result in changes in nitrite, a marker of iNOS 

production. Nitric oxide levels were assessed by quantifying the total nitrite in each 

sample using a Nitric Oxide Colorimetric Assay Kit (Biomol Research Laboratories, 

USA), Standards were prepared and 50pl of each standard added to predetermined 

wells. Sample (25pi) diluted with deionised water (25pi) was plated in duplicate. 

Reconstituted NADH solution (25pl) was added to every well followed by 

reconstituted nitrate reductase (25pl). The plate was gently shaken and then left to
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incubate at 37°C for 30 minutes. Greiss reagent I and Greiss reagent II (50pl each) in 

each well was incubated at room temperature for 10 minutes. Optical absorbency was 

read at 540nm. After adjusting readings for blank wells, a standard curve was 

constructed and sample concentrations determined.

2.2.8 Quantification o f cortical mRNA expression - TaqMan

The left frontal cortex was dissected and placed into a sterile biopur® (RNase-free) 

safe-lock eppendorfs (VWR International, UK) and stored at -80°C for RNA 

quantification. Frontal cortex provided sufficient tissue for TaqMan analysis and 

allowed remaining cortical tissue to be used for Luminex detection of cytokine or 

phosphoprotein detection. Total RNA was isolated using TRIZOL reagent 

according to the manufacturer’s instructions (Invitrogen, USA). The RNA was 

resuspended in ultraPURE distilled water (Invitrogen, life technologies, UK), and 

RNA purity was confirmed by gel electrophoresis, ensuring that A260: A280nm ratio 

was >1.8. Equal quantities of RNA from each tissue sample were used in reverse 

transcription reactions to generate cDNAs (Ginham et al, 2001). First strand cDNA 

was synthesized from 1 pg of each RNA sample in a reaction mixture (0.01 M 

dithiothreitool (DTT), 0.5 mM each dNTP, 0.5 pg oligo (dT) primer, 40 U 

RNAseOUT ribonuclease inhibitor (Life Technologies Inc.), and 200 U Superscriptll 

reverse transcriptase (Life Technologies Inc.)). Triplicate reverse transcription 

reactions were performed and resulting cDNA products were divided into aliquots 

using a Hydra 96 robot (Robbins Scientific, Sunnyvale, CA, USA). Primer (F and R) 

and probe (P) sets were designed from sequences in the Genbank database using 

Primer Express software (Perkin-Elmer, UK) (Table 1.1). All Taqman probes 

contained 6-Carboxyfluorescein at 5’ end and the quencher dye, 6-carboxy- 

tetramethyl-rhodamine at the 3’ end. Taqman PCR was carried out using an ABI 

prism 7700 sequence detector (Perkin-Elmer Applied Biosystems, Foster City, CA, 

USA) on the cDNA sample mixture (2.5 mM MgCL, 0.2 mM dATP, dCTP, dGTP 

and dUTP, 0.1 pM each primer, 0.05 pM Taqman probe, 0.01 U AmpErase uracil-N- 

glycosylase, 0.0125 U Amplitaq Gold DNA polymerase (Perkin-Elmer, UK)). 

Samples were incubated at 50°C for 2 min, 95°C for 10 min followed by 40 cycles of 

95°C for 15 s, 60°C for 1 min. Additional reactions were performed on each 96 well 

plate using rat genomic DNA (Clontech Laboratories Inc., Palo Alto, CA, USA) to
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produce a standard curve (Harrison et al, 2000). Taqman was kindly completed by 

Ainsley Culbert and Florence Guillot, GSK, Harlow, UK.

Gene Reagent Sequences

GAPDH F; GAACATCATCCCTGCATCCA
R ; CCAGTGAGCTTCCCGTTCA 
P; CTTGCC CACAGCCTTGGCAGC

T N F a  F; G G CA TG G A TC TC A A A G A C A A C
R ; G G T G T G G G T G A G G A G C A C  
P ; T  C T  A CT C C C A G G T T  C T C TT  C A A G G G  A CA AG GC

I L - i p  F; C C C A A C T G G T A C A T C A G C A C C
R ; A C A C G G G T T  C CA T G G T  GAAGT C  
P; T C C C G A C C A T TG C TG T TT C C TA G G A A G

EL-6 F; CCCAACTTCCAATGCTCTCCTA
R; GCTTTCAAGATGAGTTGGATG 
P; TGGTCCTTAGCCACTCCTTCTGTGACTCTAACTT

Table 2.1: TaqMan reagent sequences

2.2.9 Data Analysis

Study 1 and 2: Non-linear regression curves of the cytokine standard values were 

calculated using the GraphPad Prism one site hyperbola model. The concentrations 

of unknown samples were determined in GraphPad Prism relative to calculated 

standard curves.

Study 3 and 5: 4/5-parameter logistic regression curves (Hulse et al, 2004) of the 

cytokine standard values were calculated using STarStation Version 2.0 software 

(Applied Cytometry Systems, Sheffield, UK) and the concentrations of unknown 

samples were determined relative to calculated standard curves.

A general linear mixed model approach using the Proc Mixed procedure in SAS 

Version 8 (SAS® Institute, UK) assessed each separate cytokine protein, cytokine 

mRNA and phosphoprotein response using brain region as a repeated measure. 

Univariate tests of significance using Statistica™ Version 6.1 (StatSoft, USA) 

calculated the overall effect of LPS treatment on each separate response in plasma. In 

study 5, due to the unexpected variance across treatment groups and presence of zero 

values within the vehicle and dexamethasone groups for plasma IFN-y and plasma 

TNF-a, a univariate test of significance was applied in the absence of the vehicle and 

dexamethasone groups which were treated as a mean of zero. Planned comparisons

72



on the predicted means from the model assessed individual treatment effects within 

plasma and brain compartments. Results are represented as means ± SEM and 

significance was set at P < 0.05. Percentage reduction describes attenuation relative 

to the LPS-induced cytokine response above vehicle levels.

2.3 Protocols

2.3.1 Study 1: Timecourse o f cytokine protein induction

Male CD rats (n=8 per group) were administered with either lOOpg/kg LPS dissolved 

in filtered PBS or filtered PBS alone and euthanased at 2 or 6 hours (based on a 

protocol described by Quan et al, 1994) post LPS administration for plasma and 

brain samples. Whole hippocampus and frontal cortex, brain regions that 

demonstrate significant degeneration in AD (Gomez-Isla et al, 1996), were 

microdissected for cytokine analysis.

2.3.2 Study 2: Cytokine protein detection throughout brain tissue

Study 2 validates the detection of LPS induced cytokine protein throughout different 

brain regions. Male CD rats (n=8 per group) were administered with either lOOpg/kg 

LPS dissolved in filtered PBS or filtered PBS alone. Animals were euthanased at 6 

hours post LPS administration and blood and brain samples removed. The brain was 

microdissected into whole hippocampus, frontal cortex, cerebellum, striatum and 

hypothalamus.

2.3.3 Study 3: Effect o f Dexamethasone on cytokine expression

Male CD rats (n=8 per group) pre-treated with either 0.5% methylcellulose or the 

glucocorticoid dexamethasone (1 mg/kg) were administered 1 hour later with 

lOOpg/kg LPS dissolved in filtered PBS or filtered PBS alone. Animals were 

euthanased at 6 hours post LPS administration; blood and brain were quickly 

removed. Animals were not perfused to prevent potential degradation of mRNA 

integrity caused by the duration time of the procedure. Whole hippocampus was 

microdissected for cytokine analysis by Luminex®. Frontal cortex was hemidissected 

providing left frontal cortex for Luminex® analysis and right frontal cortex of five 

animals for the determination of cytokine mRNA expression by taqman.
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2.3.4 Study 4: Cytokine mRNA and intracellular protein expression

Study 4 further investigates the induction of a centrally derived inflammatory 

response following IP LPS injection. IL-lp, TNF-a and IL-6 mRNA expression was 

assessed in brain tissue at 2 and 6 hours post LPS, the timepoints at which cytokine 

protein was detected in brain tissue. Further to this, phosphorylated IicBa, p38, JNK 

and ERK was detected in cortex and hippocampus using Luminex®. Phosphoprotein 

analysis using Luminex® was based on personal communication with the 

manufacturer since available kits had not previously been used for analysis of animal 

tissue. Male CD rats (n=8 per group) were administered with lOOpg/kg LPS 

dissolved in filtered PBS or filtered PBS alone. Animals were euthanased at 2 or 6 

hours post LPS administration. Blood and brain were removed, the perfused brain 

was microdissected for whole hippocampus and hemidissected left frontal cortex for 

phosphoprotein analysis and hemidissected right frontal cortex for taqman analysis. 

Additional male CD rats (n=4 per group) were terminally anaesthetised with an IP 

overdose of pentobarbitone at 2 and 6 hours post LPS. These animals were not 

perfused but frontal cortex was microdissected for taqman analysis for comparison of 

mRNA integrity and mRNA expression levels with perfused cortical samples.

2.3.5 Study 5: Effect o f p38 inhibition and a2 adrenoceptor antagonism on

cytokine expression

Male CD rats (n=8 per group) pre-treated with 0.5% methylcellulose or the 

glucocorticoid dexamethasone (1 mg/kg, 1 hour), the p38 inhibitor GW569293 

(25mg/kg, 2 hour) or the alpha-2 adrenoceptor blocker fluparoxan (1, 3 or lOmg/kg, 

30 mins) before IP administration with LPS (lOOpg/kg) dissolved in filtered PBS. 

Animals were euthanased at 6 hours post LPS. The brain was microdissected for 

whole hippocampus and frontal cortex.

2.4 Results

2.4.1 Study 1: Timecourse o f cytokine protein in brain and plasma

2.4.1.1 Cytokine protein in brain

Separate repeated measures ANOVA of each individual cytokine indicated that LPS
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treatment specifically increased the pro-inflammatory cytokines IL-la, F (i, 27) = 

8.18, p<0.01, and IL-ip, F (i, 21) = 16.96, p<0.001, in brain tissue (fig 2.1). There 

were additional significant effects of timepoint, F (i? 21) = 5.88, p<0.05, and a 

treatment*timepoint interaction, F (i, 27) =11.98, p<0.01, on IL -la  in brain tissue.

Post hoc planned comparisons revealed a significant increase of IL-ip was evident 

by 6 hours in the hippocampus (p<0.01) with a trend to increase by 2 hours that 

failed to reach significance at the 0.05 level (p=0.06) (fig 2.IB). LPS significantly 

elevated cortical IL-ip by 2 (p<0.05) and 6 (p=0.05) hours (fig 2.1 A).

IL -la  was significantly elevated at 6 hours in hippocampal (p<0.01) and cortical 

(p<0.05) tissue relative to vehicle treatment.
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Figure 2.1: Cytokine protein in the cortex (A) and hippocampus (B) of adult rats (n = 8) by 2 
and 6 hours post IP LPS administration, data represented as cytokine protein (pg) per 

milligram of tissue and shows mean ± SEM. * p <0.05, ** p <0.01 significantly different vs. 

respective timepoint vehicle (repeated measures ANOVA followed by planned comparisons)
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2.4.1.2 Cytokine protein in plasma

Proinflammatory cytokines were detected in plasma at 2 and 6 hours post 

intraperitoneal LPS administration (fig 2.2). Separate univariate ANOVAs revealed a 

significant overall effect of treatment on TNF-a, F (i5 24) = 6.43, p<0.05, IL-6, F (i; 24) 

= 15.86, p<0.001, IL-la, F (i,27) = 10.41, p<0.01, IL-ip, F(i,27) = 19.74, p<0.001, IL- 

2, F (i, 25) = 9.42, p<0.01 and IL-10, F (i, 26) = 10.48, p<0.01. There was also a 

significant effect of timepoint on IL-6 , F (i, 24) = 8.25, p<0.01, IFNy, F (i, 2i )  -  4.31, 

p<0.05 and IL-2, F (i,25) = 4.82, p<0.05.

Post hoc planned comparisons revealed plasma TNF-a (p<0.01), IL-6  (p<0.001) and 

IFN-y (p<0.05) concentrations increased by the greatest magnitude by 6  hours. 

Elevated IL -la  and IL-lp were evident at both 2 (p<0.05, both cytokines) and 6  

(p<0.05 for IL -la, p<0.001 for IL-lp) hours post LPS administration. IL-10 

(p<0.01) and IL-2 (p<0.01) were significantly elevated above vehicle levels by 6  

hours post LPS (fig 2.2).
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Figure 2.2: Cytokine protein in the cortex (A) and hippocampus (B) of adult rats (n = 8) by 2 
and 6 hours post IP LPS administration, data represented as cytokine protein (pg) per 

millilitre of sample and shows mean ± SEM. (* p <0.05, ** p <0.01, *** p <0.001 

significantly different vs. respective timepoint vehicle (univariate ANOVA followed by
planned comparisons)
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2.4.2 Study 2: Cytokine protein throughout brain tissue

2.4.2.1 Cytokine protein in brain

LPS induced cytokine protein in a number of discrete brain regions and demonstrated 

a specific cytokine profile within brain tissue (fig 2.3A & 2.3B).

Repeated measures ANOVA indicated an overall effect of treatment, F (i, 34) = 15.12, 

p<0.001 and brain region, F (4, 31) = 6.34, p<0.001 on the pro-inflammatory cytokine 

TNF-a. Production of TNF-a was significantly increased in the hypothalamus from 

0.039 ± 0.004 to 0.083 ±0.15 pg/mg tissue. There was also an overall effect of 

treatment on IFN-y, F (i, 60) = 5.42, p<0.05, with a significant increase in the 

hypothalamus from 0.052 ± 0.005 to 0.069 ± 0.005 pg/mg tissue (fig 2.3B (D).

There was an overall effect of treatment, F (i, 59) = 38.3, p<0.001, and brain region, F 

(4, 32) = 3.66, p<0.05, on IL-la. IL -la  was significantly elevated in the cortex from 

0.069 ± 0.007 to 0.201 ± 0.04 pg/mg tissue (fig 2.3A (B)), striatum from 0.052 ± 

0.003 to 0.244 ± 0.073 pg/mg tissue (fig 2.3A (C)), and hypothalamus (fig 2.3B (D)) 

from 0.084 ± 0.01 to 0.256 ± 0.054 pg/mg tissue. Although failing to reach statistical 

significance, a post hoc planned comparison also revealed an increase of IL -la in the 

cerebellum from 0.04 ± 0.003 to 0.139 ± 0.041 pg/mg tissue, p=0.089.

There was a significant overall treatment effect on IL-ip, F (i, 51) = 63.04, p<0.001. 

Post hoc planned comparisons indicated that LPS increased IL-ip in all brain regions 

studied. LPS induction of hypothalamic IL-ip (fig 2.3B (D)) resulted in the greatest 

magnitude of response from 0.355 ± 0.02 to 1.40 ± 0.298 pg/mg tissue. The 

cerebellum (fig 2.3B (E)), striatum (fig 2.3A (C)), hippocampus (fig 2.3A (A)) and 

cortex (fig 2.3A (B)) showed significant augmented levels of IL-ip from 0.345 ± 

0.031 to 1.26 ± 0.29, 0.338 ± 0.022 to 1.079 ± 0.218, 0.347 ± 0.006 to 0.606 ± 0.106 

and 0.325 ± 0.01 to 0.861 ± 0.117 pg/mg tissue respectively.
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Figure 2.3A: Cytokine protein in the cortex (A) and hippocampus (B) and striatum (C) of 
adult rats (n = 8) by 6 hours post IP LPS administration, data represented as cytokine protein 

(pg) per milligram of tissue and shows mean ± SEM. * p <0.05, ** p <0.01, *** p <0.001 
significantly different vs. vehicle (repeated measures ANOVA followed by planned

comparisons)
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Figure 2.3B: Cytokine protein in the hypothalamus (D), cerebellum (E) and plasma (F) of 
adult rats (n = 8 ) by 6  hours post IP LPS administration, data represented as cytokine protein 

(pg) per milligram of tissue (D-E) or cytokine protein (pg) per millilitre of sample (F) and 

shows mean ± SEM. * p <0.05, ** p <0.01, *** p <0.001 significantly different vs. 
respective timepoint vehicle (ANOVA followed by planned comparisons)
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2.4.2.2 Cytokine protein in plasma

IP LPS administration resulted in an increase in a multitude of plasma cytokines (fig 

2.3B (F)); only IL-2 demonstrated a reduction relative to vehicle levels from 4.02 ±

2.7 to 1.63 ± 0.28 pg/ml.

Separate univariate ANOVAs indicated an overall effect of treatment on plasma IFN- 

y, F (i, is) = 38.7, p<0.001, IL-ip, F a , i4) = 11.24, p<0.01, IL-6 , F 0, i4) = 9.11, p<0.01, 

IL-la, F (i, 13) = 11.52, p<0.01, TNF-a, F (i, i4) = 12.01, p<0.01 and IL-10, F (i, i4) = 

19.75, p<0.001.

Post hoc planned comparisons revealed IFN-y was increased from 26.54 ± 9.81 to

360.4 ± 96.1 pg/ml (p<0.01) and IL-ip from 58.47 ± 12.53 to 503.83 ± 167.66 pg/ml 

(p<0.01). LPS also significantly increased plasma IL- 6  from 307.02 ± 6.71 to 1504 ±

533.7 pg/ml (p<0.05), IL -la  from 2.35 ± 0.55 to 6.26 ± 1.64 pg/ml (p<0.05) and 

TNF-a from 53.43 ± 0.83 to 265 ±81.7 pg/ml (p<0.05). LPS administration elevated 

levels of the anti-inflammatory cytokine IL-10 from 39.2 ± 3.09 to 133.6 ± 25.7 

pg/ml (p<0 .0 1 ).

81



2.4.3 Study 3: Effect o f Dexamethasone on cytokine expression

2.4.3.1 Cytokine mRNA changes in frontal cortex

There were no significant effects of treatment in unperfused brain tissue on 

expression of the endogenous housekeeper gene, GAPDH. This indicates that 

treatment with LPS, vehicle or dexamethasone had no significant effect on RNA 

integrity. In order to control for variations in RNA quality the results were expressed 

as a percentage of the level of GAPDH expression as described previously (Medhurst 

et al, 2 0 0 0 ).

Repeated measures ANOVA revealed an overall effect of treatment on TNF-a, F (3, 

14) = 10.03, p<0.001, IL-lp, F (3? 15) = 4.75, p<0.05, and IL-6 , F ^  14) = 10.13, 

p<0.001, in cortical tissue. Post hoc planned comparisons revealed that LPS 

significantly increased expression of TNF-a from 0.64 ± 0.09 to 2.96 ± 0.2% 

(p<0.01) (fig 2.4A), IL-ip from 57 ± 0.71 to 3.6 ± 1.10% (p=0.01) (fig 2.4C) and IL- 

6  from 0.07 ± 0.08 to 1.25 ± 0.17% (p<0.001) (fig 2.4B). Administration of 

dexamethasone fully attenuated the LPS induction of TNF-a to 0.57 ± 0.18% 

(p<0.001) and IL-ip to 0.6 ± 0.15% (p=0.01). Dexamethasone treatment failed to 

diminish LPS-induced IL- 6  mRNA expression.
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Figure 2.4: Effect of dexamethasone treatment on LPS-induced TNFa (A), IL6 (B) and ILlp 

(C) mRNA expression in the cortex of adult rats by 6 hours post IP LPS administration, data 

represented as cytokine mRNA as a percentage of GAPDH expression and shows mean ± 
SEM. ** p <0.01, *** p <0.001 significantly different vs. vehicle; # p <0.05, ### p <0.001 

significantly different vs. LPS (univariate ANOVA followed by planned comparisons)
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2.4.3.2 Cytokine protein in brain

Cytokine levels in brain regions of vehicle treated animals were of a similar 

magnitude to each other and to that demonstrated in study 1.

Repeated measures ANOVA revealed an overall effect of treatment on IL-lp, F (2,27) 

= 19.55, p<0.001. Post hoc planned comparisons revealed LPS significantly 

increased hippocampal IL-lp from 0.67 ± 0.11 to 2.39 ± 0.35 pg/mg tissue (fig 2.5B) 

and cortical IL-ip from 0.58 ± 0.12 to 2.39 ± 0.37 pg/mg tissue (fig 2.5A) (p<0.001, 

both regions relative to the vehicle group). Dexamethasone pre-treatment attenuated 

both cortical IL-ip to 0.78 ± 0.07 pg/mg tissue (89% reduction, p<0.001) and 

hippocampal IL-ip to 0.74 ± 0.08 pg/mg tissue (96% reduction, p<0.001) relative to 

the LPS group.

Repeated measures ANOVA revealed an overall treatment effect on central IL-la, F 

(2, 27) = 6.31, pcO.Ol. Post hoc planned comparisons revealed that LPS significantly 

induced hippocampal (p<0.05) but not cortical IL -la  from 0.20 ± 0.04 to 0.67 ± 0.24 

pg/mg tissue. Dexamethasone pre-treatment fully attenuated hippocampal IL -la 

(p<0.01) to 0.08 ± 0.04 pg/mg tissue and decreased basal (no significant effect of 

LPS) cortical IL -la  to 0.07 ± 0.03 pg/mg tissue (214% reduction, p=0.01) 

respectively.
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Figure 2.5: Effect of dexamethasone pre-treatment on cytokine protein in the cortex (A) and 
hippocampus (B) of adult rats (n = 8) by 6 hours post IP LPS administration, data 

represented as cytokine protein (pg) per milligram of tissue and shows mean ± SEM. ** p 

<0.01, *** p <0.001 significantly different vs. vehicle; # p <0.05, ## p <0.01, ### p <0.001 
significantly different vs. LPS (repeated measures ANOVA followed by planned

comparisons)
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2.4.3.3 Cytokine protein in plasma

Cytokine levels for both baseline vehicle treatment and post LPS stimulus were of a 

similar magnitude to that demonstrated in study 1 (fig 2.6).

Univariate ANOVA revealed a significant overall treatment effect on IFN-y, F (2,26) = 

8.54, p=0.001, IL-la, F (2, 27) = 4.71, p<0.05, IL-ip, F (2,27) = 23.55, p<0.001, IL-6, F 

(2,24) = 6.37, p<0.01 and TNF-a, F (2,27) = 16.79, pO.OOl.

Post hoc planned comparisons demonstrated LPS significantly increased IFN-y 

(pO.OOl) from 78.78 ± 25.88 to 631.75 ± 138.31 pg/ml, IL-ip from 15.55 ± 8.99 to 

1236.65 ± 223.47 pg/ml, IL -la  from 0.00 ± 0.00 to 19.49 ± 8.98 pg/ml, IL-6 from

0.00 ± 0.00 to 308.55 ± 146.22 pg/ml and TNF-a from 49.62 ± 33.15 to 765.08 ± 

150.71 pg/ml, pO.OOl).

Dexamethasone pre-treatment significantly attenuated the LPS-induced increase of 

IFN-y by 82% to 178.25 ± 94.15 pg/ml (pO.OOl) and fully attenuated IL-la 

(p=0.01). Dexamethasone also attenuated LPS-induced IL-lp by 81% to 238.52 ± 

61.83 pg/ml (pO.OOl), IL-6 by 97% to 8.58 ± 8.58 pg/ml (pO.Ol) and TNF-a by 

77% to 211.84 ± 36.53 pg/ml (pO.OOl).
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Figure 2.6: Effect of dexamethasone pre-treatment on cytokine protein in the cortex (A) and 
hippocampus (B) of adult rats (n = 8) by 6 hours post IP LPS administration, data 

represented as cytokine protein (pg) per millilitre of sample and shows mean ± SEM. * p 

0-05, ** p <0.01, *** p <0.001 significantly different vs. vehicle; # p <0.05, ### p <0.001 
significantly different vs. LPS (univariate ANOVA followed by planned comparisons)
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2.4.4 Study 4: Cytokine mRNA and intracellular protein expression

2.4.4.1 LPS-induced mRNA expression in frontal cortex

There were no significant alterations in GAPDH expression in perfused tissue, 

however, a two fold significant reduction in GAPDH and cyclophilin expression was 

evident in unperfused tissue obtained from LPS treated rats relative to unperfused 

tissue of vehicle treated rats. Further analysis of pro-inflammatory cytokine 

expression therefore took place using perfused brain tissue since LPS treatment had 

no significant effect on RNA quantification and integrity or housekeeper gene 

expression.

Separate univariate ANOVA revealed a significant overall effect of treatment on the 

mRNA expression of pro-inflammatory cytokines TNF-a, F (i, n) = 16.77, p<0.01, 

IL-ip, F (i, ii) = 14.06, p<0.01 and IL-6, F (i, n) = 35.74, p<0.001, in cortical tissue. 

There was also a significant effect of timepoint on TNF-a, F (i, n) = 18.67, p<0.01, 

and a significant treatment*timepoint interaction on IL-6, F(i, n) = 11, p<0.01.

Post hoc analysis revealed that LPS significantly increased expression of TNF-a 

from 1.34 ± 0.42 to 6.40 ± 1.57% (p=0.001) by 6 hours post administration (fig2.7A) 

whilst IL-ip was elevated from 0.44 ± 0.01 to 11.75 ± 6.03% by 2 hours post LPS 

challenge (p<0.01) (fig 2.7C). LPS induced IL-6 from -0.08 ±0.156 to 4.01 ± 0.95% 

at 2 hours post administration (p<0.001) (fig 2.7B).
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Figure 2.7: TNFa (A), IL6 (B) and ILip (C) mRNA expression in the cortex of adult rats by 

2 and 6 hours post IP LPS administration, data represented as cytokine mRNA as a 

percentage of GAPDH expression and shows mean ± SEM. ** p <0.01, *** p <0.001 

significantly different vs. vehicle; # p <0.05, ### p <0.001 significantly different vs. LPS 

(repeated measures ANOVA followed by planned comparisons)
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2.4.1.2 LPS-induced intracellular protein phosphorylation

Repeated measures ANOVA revealed a significant overall effect of timepoint, F (1,27) 

= 16.00, pO.OOl, and brain region, F (1,26) = 9.16, pO.Ol, on percentage 

phosphorylation of p38. Post hoc planned comparisons revealed an increase in p38 

phosphorylation by 6 hours post intraperitoneal LPS (pO.Ol) relative to vehicle 

treated animals (fig 2.8A).

Repeated measures ANOVA revealed a significant effect of timepoint, F (i, 28) = 

15.86, pO.OOl, brain region, F (i, 21) = 54.27, pO.OOl and a 

treatment*region*timepoint interaction, F (i, 27) = 7.11, p=0.01, on the percentage 

phosphorylation of JNK post intraperitoneal LPS treatment. Phosphorylation of JNK 

was increased in the hippocampus relative to cortex and appeared to be increased, 

regardless of treatment, by the 6 hour timepoint. JNK phosphorylation was decreased 

by 2 hours post intraperitoneal LPS (p<0.05) (fig 2.8C).

Repeated measures ANOVA indicated a treatment*timepoint interaction, F 21) = 

5.35, p<0.05, and a treatment*region*timepoint interaction, F (i, 23) = 10.49, p=0.01, 

on the percentage of IicBa phosphorylation post IP LPS treatment. Post hoc planned 

comparisons revealed an increase in IicBa phosphorylation by 2 hours (p<0.05) and a 

reduction in IicBa phosphorylation by 6 hours (p<0.01) post LPS treatment (fig 

2.8B). Phosphorylation of IicBa was higher in hippocampal tissue and by 6 hours in 

the vehicle group whilst LPS treatment caused higher levels of IicBa 

phosphorylation in cortical tissue and at 2 hours.
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Figure 2.8: Phosphorylation of cortical p38, hippocampal IkBa and cortical JNK intracellular 
protein expression in adult rats by 2 and 6 hours post IP LPS administration, data represented 

as percentage phosphorylation of total protein and shows mean ± SEM. * p <0.05, ** p 
<0.01 significantly different vs. vehicle group within timepoint (repeated measures ANOVA

followed by planned comparisons)
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2.4.4.3 LPS-induced plasma nitrite

Univariate ANOVA revealed a significant effect of LPS treatment, F (i, 24) =269.21, 

pO.OOl, timepoint, F (i, 24) =180.92, pO.OOl and a significant treatment*timepoint 

interaction, F (i, 24) =11.22, pO.OOl, on plasma nitrite levels as a measure of plasma 

nitric oxide production (fig 2.9). Post hoc planned comparisons revealed that LPS 

significantly induced nitrite from 17.5 ± 1.15uMole/L to 322 ± 72.78 uMole/L 

(pO.OOl) by 6 hours post IP LPS administration. Nitric oxide levels were not 

significantly increased by 2 hours post LPS.

2 hours 6  hours

Figure 2.9: Plasma nitrite levels in adult rats by 2 and 6 hours post IP LPS administration, 

data represented as nitrite (uMole/L) and shows mean ± SEM. *** p <0.001 significantly 
different vs. vehicle group within timepoint (repeated measures ANOVA followed by

planned comparisons)

2.4.5 Study 5: Effect o f p38 inhibition and a2 adrenoceptor antagonism on

cytokine expression

2.4.5.1 Cytokine protein in brain

Repeated measures ANOVA revealed a significant overall effect of treatment on IL- 

ip, F (6,47) =4.40, p=0.001 in brain tissue. There was also a significant effect of brain 

region on central IL-lp, F (i, 46) =17.07, p<0.001 revealed as a significantly higher 

level of IL-ip protein in the hippocampus relative to the cortex.

Post hoc planned comparisons demonstrated that LPS increased cortical IL-lp (fig
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2.10A) and hippocampal IL-ip (fig 2.10B) from 0.63 ± 0.08 to 1.60 ± 0.35 pg/mg 

tissue (pO.OOl) and from 1.20 ± 0.21 to 2.74 ± 0.20 pg/mg tissue (pO.OOl), 

respectively. Dexamethasone fully abrogated LPS-induced cortical (pO.OOl) and 

hippocampal IL-ip (pO.OOl) to 0.58 ± 0.05 and 1.01 ± 0.14 pg/mg tissue 

respectively (fig 2.10).

Post hoc planned comparisons also revealed a trend for fluparoxan treatment to 

attenuate the effect of LPS on IL-ip in brain tissue. Fluparoxan reduced hippocampal 

IL-ip by 79% to 1.52 ± 0.39 pg/mg tissue at lmg/kg (p=0.01), by 80% to 1.51 ± 0.24 

pg/mg tissue at 3mg/kg (pO.05) and by 88% to 1.38 ± 0.27 pg/mg tissue at lOmg/kg 

(p=0.08) (fig 2.12B) relative to the LPS group. Fluparoxan did not significantly 

decrease LPS-induced cortical IL-lp at lmg/kg (20% to 1.40 ± 0.22 pg/mg tissue 

(p=0.86)), at 3mg/kg (43% to 1.18 ± 0.26 pg/mg tissue (p=0.29)) or at lOmg/kg 

(52% to 1.10 ± 0.12 pg/mg tissue (p=0.37) (fig 2.11). The p38 inhibitor GW569293 

had no effect on hippocampal (p = 0.23) or cortical IL-ip (p = 0.31) (fig 2.12).
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Figure 2.10: Effect of dexamethasone pre-treatment on cytokine protein in the cortex (A) and 
hippocampus (B) of adult rats (n = 8) by 6 hours post IP LPS administration, data 

represented as cytokine protein (pg) per milligram of tissue and shows mean ± SEM. *** p 

<0.001 significantly different vs. vehicle vs. vehicle group; ### p <0.001 significantly 
different vs. LPS (repeated measures ANOVA followed by planned comparisons)
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Figure 2.11: Effect of fluparoxan pre-treatment on cytokine protein in the cortex (A) and 
hippocampus (B) of adult rats (n = 8) by 6 hours post IP LPS administration, data 

represented as cytokine protein (pg) per milligram of tissue and shows mean ± SEM. # p 
<0.05, ## p <0.01 significantly different vs. LPS (repeated measures ANOVA followed by

planned comparisons)
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Figure 2.12: Effect of GW569293 pre-treatment on cytokine protein in the cortex (A) and 

hippocampus (B) of adult rats (n = 8) by 6 hours post IP LPS administration, data 

represented as cytokine protein (pg) per milligram of tissue and shows mean ± SEM 

(repeated measures ANOVA followed by planned comparisons)
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2.4.5.2 Cytokine protein in plasma

Univariate ANOVA revealed a significant overall effect of treatment on plasma IFN- 

y, F (4, 25) =31.00, p<0.001, IL-1|3, F (6, 43) =32.90, p<0.001, IL-la, F (6, 41) =8.12, 

p<0.001, TNF-a, F (4,23) =7.19, p<0.001 and IL-10, F (6,46) =4.09, p=0.01.

Post hoc planned comparisons revealed LPS significantly increased plasma IFN-y 

from 0.00 to 2359.08 ± 655.70 pg/ml (p<0.001) and plasma IL-ip from 10.36 ± 9.76 

to 2844.88 ± 787.61 pg/ml (p<0.001). LPS-induced plasma IL -la and TNF-a from 

8.89 ± 3.54 to 160.56 ± 82.93 pg/ml (p<0.001) and 0.00 to 3154.44 ± 408.19 pg/ml 

(p<0.001) and increased IL-10 from 1125.97 ± 144.35 to 2025.73 ± 434.83 pg/ml 

(p=0.05).

Dexamethasone fully attenuated plasma IFN-y to 0.00 pg/ml (p<0.001) and ILip by 

90% to 305.33 ± 62.74 pg/ml (p<0.001) (fig 2.13). Dexamethasone also fully 

abrogated plasma IL -la  to 8.92 ± 6.89 pg/ml (p<0.001) and fully attenuated TNF-a 

to 0.00 pg/ml (p<0.001) (fig 2.13). Dexamethasone did not significantly attenuate 

LPS-induced IL-10 (p=0.43) similar the profile seen in study 3.

Fluparoxan significantly attenuated LPS-induced plasma IFN-y by 56% to 1031.58 ±

433.00 pg/ml (p<0.05) at lmg/kg, by 67% to 768.64 ± 156.13 pg/ml (p<0.05) at 

3mg/kg and by 73% to 647.40 ± 128.03 pg/ml at lOmg/kg (p=0.01) (fig 2.14). Post 

hoc planned comparisons revealed that treatment with the p38 inhibitor; GW 569293 

potentiated LPS-induced plasma IFN-y by 292% (p<0.001) (fig 2.15).

Fluparoxan did not significantly decrease LPS-induced plasma IL-ip at the p<0.05 

level (at lmg/kg (p=0.19), at 3mg/kg (p=0.26), at lOmg/kg (p=0.52)) (fig 2.14). 

GW569293 had no significant effect on plasma IL-ip (p = 0.43) relative to the LPS 

group (fig 2.15). Fluparoxan did not significantly attenuate LPS-induced plasma IL- 

l a  (at lmg/kg (p=0.64), at 3mg/kg (p=0.53), at lOmg/kg (0.58) (fig 2.14) and 

GW569293 also had no significant effect on plasma IL-ip (p = 0.47) relative to the 

LPS group (fig 2.15).

Fluparoxan decreased LPS-induced TNF-a by 57% to 913.12 ± 203.40 pg/ml at 

lmg/kg (p=0.06), by 65% to 757.97 ± 238.52 pg/ml at 3mg/kg (p=0.01) and by 82% 

to 386.25 ± 118.64 pg/ml at lOmg/kg (p<0.001) (fig 2.14). GW569293 had no 

significant effect on LPS-induced TNF-a (p=0.50) (fig 2.15).
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There was a trend for fluparoxan at lOmg/kg to potentiate LPS-induced plasma IL-10 

by 129% at lmg/kg (p=0.19), by 127% at 3mg/kg (p=0.21) and 141% at lOmg/kg 

(p=0.08) (fig 2.14). GW569293 had no effect on LPS-induced IL-10 production 

(p=0.36) (fig 2.15).
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Figure 2.13: Effect of dexamethasone pre-treatment on cytokine protein in the cortex (A) and 
hippocampus (B) of adult rats (n = 8) by 6 hours post IP LPS administration, data 

represented as cytokine protein (pg) per millilitre of sample and shows mean ± SEM. (***p 

<0.001, **p <0.01, * p <0.05 significantly different vs. vehicle; ### p <0.001, # p <0.05 
significantly different vs. LPS (univariate ANOVA followed by planned comparisons)
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Figure 2.14: Effect of fluparoxan pre-treatment on cytokine protein in the plasma of adult 
rats (n = 8) by 6 hours post EP LPS administration, data represented as cytokine protein (pg) 

per millilitre of sample and shows mean ± SEM. ### p <0.001, ## p <0.01, # p <0.05 

significantly different vs. LPS (univariate ANOVA followed by planned comparisons)
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Figure 2.15: Effect of GW569293 pre-treatment on cytokine protein in the plasma of adult 
rats (n = 8) by 6 hours post IP LPS administration, data represented as cytokine protein (pg) 

per millilitre of sample and shows mean ± SEM. ### p <0.001 significantly different vs. LPS 
(univariate ANOVA followed by planned comparisons)
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2.4.5.3 LPS-induced plasma nitrite

Repeated measures ANOVA indicated a significant effect of treatment, F (6, 37) 

=49.21, p<0.001, on plasma nitrite levels (fig 2.16). Post hoc planned comparisons 

revealed that LPS significantly induced nitrite from 12.38 ± 0.63 to 482.55 ± 74.53 

uMole/L (p<0.001). This induction was significantly attenuated by dexamethasone 

treatment (98% reduction, p<0.001) to 23.3 ± 3.17 uMole/L.

Fluparoxan significantly reduced LPS-induced nitrite by 77% at lmg/kg (p<0.001) to 

120.54 ± 24.92 uMole/L, 49% at 3mg/kg (p<0.01) to 251.88 ± 74.73 uMole/L and to 

163.27 ± 31.83 uMole/L (6 8 %) at lOmg/kg (p<0.001). The p38 inhibitor, 

GW569293, also significantly attenuated plasma nitrite by 67% (p<0.001) to 166.51 

± 28.16 uMole/L.
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Figure 2.16: Effect of GW569293 or fluparoxan pre-treatment on plasma nitrite levels in 
adult rats by 6 hours post BP LPS administration, data represented as nitrite (uMole/L) and 

shows mean ± SEM. *** p <0.001 significantly different vs. vehicle group; ### p <0.001, ## 

p <0.01 significantly different vs. LPS group (univariate ANOVA followed by planned
comparisons)

99



2.5 Discussion

2.5.1 Detection of cytokine protein in brain and plasma

Although published literature details the induction of central cytokine mRNA 

expression post IP LPS (Jacobs et al, 1997; Satta et al, 1998), reports of the detection 

of cytokine protein in brain tissue have been limited (Goujon et al, 1996; 1997). In 

this chapter, I have described the first application of the Luminex® system for the 

detection of cytokine protein in brain and plasma following IP LPS to rats. A 

significant increase of IL -la  and IL-ip protein throughout discrete regions of the 

brain by 2 and 6 hours following LPS treatment was associated with inconsistent 

increases in IL -la  and TNF-a. Throughout the duration of this thesis, alteration in 

IL-ip in brain tissue following peripheral injection of LPS has usually been reported 

as an increase in mRNA expression (Tonelli et al, 2003; Turrin et al, 2001). 

Although the current studies describe the first reported evidence of the application of
(r)Luminex to the detection of cytokine protein changes in brain tissue following 

peripheral LPA administration, very recently, the detection of IP LPS-induced IL-lp 

and TNF-a in rat brain tissue by ELISA has been reported (Roche et al, 2006). This 

evidence supports the current data that an IP injection of LPS can elicit pro- 

inflammatory cytokine production in rodent brain. The substantial increases of TNF- 

a  in brain tissue reported by Roche et al (2006) may be as a result of the timepoint 

investigated by the authors since, by 4 hours, TNF-a protein was not detectable in 

brain tissue. This may explain why, by 6 hours post IP LPS injection, no increase in 

TNF-a has been detected by Luminex® in the current studies. The significant 

increase in a wide range of cytokines in plasma including IFN-y, IL-ip, TNF-a and 

IL-6 indicates the primary induction of cytokine protein in blood before the CNS. It 

is important to determine that cytokine proteins detected in the brain tissue by 

Luminex® are centrally derived and not plasma bome cytokines that travelled 

through the BBB.

2.5.2 Communication o f peripheral inflammation to the brain

Although a wide range of cytokine proteins were evident in plasma following 

peripheral LPS treatment, only IL-ip protein and small increases in IL-la protein 

were detectable in brain tissue. There is much literature describing the possible
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mechanisms behind the communication of a peripheral inflammatory response to the 

brain. For example, Singh et al, 2004 suggest that peripheral administration of LPS 

caused a slight loss of integrity in the BBB that was molecular weight dependent. A 

protein of approximately 342Da may enter the brain, however [14C] dextran at 50- 

90kDa was unable to travel through the BBB. LPS has a molecular weight of 

approximately lOkDa (www.textbookofbacteriology.net). Hence, until further 

analysis using dextran molecules between 1 and 50kDa establishes more clearly the 

range of BBB penetration possible following IP LPS, it is difficult to determine 

whether LPS itself may enter the brain to cause a cytokine response although 

previous reports have suggested that it is unlikely (Quan et al, 1994). Others argue 

that LPS and cytokines circulating within the bloodstream activate specific receptors 

including TLR4, located on the surface of immune cells and endothelial cells of the 

CVOs, as described in section 1.5.1.2 of chapter 1; however, entry of LPS into the 

brain via the BBB would also activate TLR4 receptors on immune cells within brain 

tissue. Regardless of the mechanism by which an LPS-mediated inflammatory 

response in the blood is communicated to the brain, a neuroinflammatory response 

will be evident by the presence of cytokine mRNA expression and the activation of 

NFkB and MAP kinases.

IP LPS injection significantly increased cortical mRNA expression by 2 hours (IL-ip 

and IL-6) and 6 hours (TNF-a) post injection in perfused samples (fig 2.7). Prior 

investigation of cytokine mRNA expression in unperfused brain samples revealed 

significant increases in IL-ip, IL-6 and TNF-a by 6 hours that were similar in 

magnitude to expression in perfused samples (fig 2.4). This supports previous 

literature and indicates that the brain can present an endogenous central cytokine 

response to peripheral infection (Turrin et al, 2001; Goujon et al, 1995; 1996; Laye et 

al, 2000; Jacobs et al, 1997, Kakizaki et al, 1999; Laye et al, 1994). The magnitude 

of IL-ip mRNA expression at 2 hours was greater than TNF-a or IL-6 at either 2 or 

6 hours (fig 2.7). A greater magnitude of mRNA expression may translate into a 

larger amount of protein product, which may explain why IL-ip protein, in the 

absence of TNF-a or IL-6, can be detected in brain tissue by 6 hours following LPS 

administration.
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In accordance with the literature, I have shown that IP injection of LPS increased 

cytokine mRNA expression in brain tissue (Turrin et al, 2001; Laye et al, 2000). In 

addition to this, detection of intracellular protein phosphorylation by Luminex 

revealed that IP LPS treatment altered phosphorylation of IicBa, JNK and p38 in 

brain tissue (fig 2.8). This is the first time that the detection of intracellular protein 

phosphorylation in brain tissue using Luminex® has been reported. IicBa, JNK and 

p38 are intracellular proteins involved in LPS mediated cell signalling pathways 

important in the induction of target gene transcription. LPS can induce the 

translocation of the transcription factor NF-kB (Krappmann et al, 2004) subsequently 

causing the transcription of target cytokine genes, as described in chapter 1. The 

inhibitory factors IicBa and/or IicBp prevent the translocation and DNA binding of 

NF-kB. Stimulus-dependent phosphorylation of IicBa/p releases NF-kB into the 

nucleus to induce transcription of target genes including that of pro- and anti

inflammatory cytokines (Krappmann et al, 2004). IP LPS caused a significant 

increase in IicBa phosphorylation in the hippocampus by 2 hours post LPS 

administration (fig 2.8). There was also a non-significant trend for an increase in 

IicBa phosphorylation in cortical tissue. Interestingly, analysis of JNK 

phosphorylation by Luminex® also revealed a reduction in JNK phosphorylation by 2 

hours after IP LPS administration (fig 2.8). Previous literature suggests that activated 

NF-kB can exert anti-apoptotic activity by the suppression of JNK phosphorylation 

(Bubici et al, 2006). Together, these data suggest that the translocation of NF-kB 

may be responsible for the increased expression of cytokine mRNA and protein in 

brain tissue, supporting the evidence that peripheral inflammation is communicated 

to the brain to induce centrally derived cytokine production.

LPS can also activate p38, a MAP kinase important in mediating inflammation 

(Nolan et al, 2003). IP LPS induced p38 kinase phosphorylation in the cortex by 6 

hours post treatment (fig 2.8). LPS did not increase p38 phosphorylation in the 

hippocampus at 2 or 6 hours following injection. This suggests that p38 in 

hippocampal tissue is either unaffected by peripheral infection or that the temporal 

profiles of p38 phosphorylation differ between the cortex and hippocampus. 

Pharmacological inhibition of p38 kinase in models of chronic inflammation has 

demonstrated a role for this kinase in modulating cytokine gene transcription. The 

increase in p38 phosphorylation in brain tissue by 6 hours after peripheral
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administration of LPS suggests that p38 has more of a role in later stages of 

inflammation in this in vivo model.

2,5.3 Pharmacological manipulation o f cytokine protein in brain tissue

2.5.3.1 Glucocorticoid treatment - dexamethasone

In accordance with published literature, taqman analysis of central cytokine mRNA 

expression revealed a large increase in cortical IL-ip mRNA at 2 hours that declined 

by 6 hours following IP LPS injection (fig 2.7). Quan et al (1998) described the 

detection, by in situ hybridisation techniques, of IL-ip at the CVOs and BBB by 2 

hours following LPS administration. Sustained (8-12hrs post LPS) IL-ip expression 

was evident in glial cells throughout brain parenchyma that returned to basal levels at 

24 hours. In the current studies, pre-treatment with dexamethasone (DEX) 

significantly attenuated LPS-induced IL-ip mRNA (fig 2.4) and protein expression 

in brain tissue (fig 2.5) and pro-inflammatory cytokine protein in plasma (fig 2.6). 

Previous reports have described the exacerbation of central IL-ip mRNA expression 

in adrenalectomised (inhibiting glucocorticoid release) rats following peripheral LPS 

injection (Quan et al, 2000). Glucocorticoids such as DEX may enter the brain tissue 

to increase IkBgc expression in microglia, firstly at the CVOs and BBB and then 

throughout the brain tissue (Quan et al, 2000). The increased expression of the 

inhibitory factor IkBgc prevents the LPS-mediated translocation of N F -k B  and 

subsequently inhibits the endogenous transcription and translation of cytokines 

including IL-ip in the brain.

Until now, most evidence for the role of glucocorticoids in modulating LPS-induced 

cytokine expression has stemmed from reports of the potentiation of cytokine 

production following a reduction in endogenous glucocorticoids. For example, 

adrenalectomy or administration of the GC type II receptor antagonist RU38486 

resulted in a potentiation in cytokine mRNA and protein expression after peripheral 

LPS challenge (Goujon et al, 1997 & 1996). The lethal effects of LPS or cytokines 

administered to adrenalectomised rats can be prevented by glucocorticoid 

replacement (Kapcala et al, 1995). The effect of the GC methylprednisolone on LPS- 

induced cytokine production in the brain was assessed in rat brain tissue but, in 

contrast to the current studies, analysis was limited to the detection of TNF-a by
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ELISA (Buttini et al, 1997). Hence, there are presently no data published describing 

the effect of IP LPS injection on the expression of a range of cytokine proteins in rat 

brain tissue and plasma or detailing the effect of dexamethasone treatment on 

detectable cytokine protein. In the current study, using Luminex® has provided a 

novel insight into the effect of dexamethasone treatment on central and peripheral 

cytokine protein release in rat brain following IP LPS injection which is yet to be 

comprehensively reported in the literature.

2.5.3.2 a2-adrenoceptor antagonism - fluparoxan

The a2-adrenoceptor antagonist, fluparoxan, exhibited a strong anti-inflammatory 

effect by significantly decreasing cortical IL-la, hippocampal IL-lp and a non

significant dose-dependent trend to decrease cortical IL-ip (fig 2.11). Fluparoxan 

also significantly attenuated plasma TNF-a and IL-lp and potentiated plasma IL-10 

(fig 2.14). Antagonism of a l  adrenoceptors has previously been shown to inhibit 

plasma TNF-a (Hasko et al, 1995; Fessler et al, 1996; Szelenyi et al, 2000), either 

inhibit (Finck et al, 1997) or increase (Hasko et al, 1995) IL-6 and potentiate IL-10 

(Szelenyi et al, 2000). The data described in this chapter support reported literature 

and confirm that antagonism of presynaptic a l  adrenoceptors using fluparoxan can 

exert an anti-inflammatory effect on LPS-induced cytokine production. Fluparoxan 

and other selective a l  antagonists increase central noradrenaline release (Millan et 

al, 1994) that results in the prolonged activation of p adrenoceptors, p adrenoceptors 

may exert an anti-inflammatory effect by preventing IicBa degradation and 

subsequent NF-kB translocation and activation of target cytokine genes (Farmer & 

Pugin, 2000; Ye, 2000).

The a l  antagonist, idazoxan can reduce nitrite production by macrophages in vitro 

(Shen et al, 1994). There is currently little data describing the effects of a l  

antagonists on nitrite production in vivo. Here, fluparoxan pretreatment attenuated 

LPS-induced plasma nitrite at all doses providing the first in vivo evidence of a2 

modulation of iNOS activity during inflammation (fig 2.16).

2.5.3.3 P38 inhibition -  GW569293

The p38 inhibitor, GW569293, failed to reduce central or peripheral cytokine
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production (fig 2.12 & 2.15) and significantly enhanced plasma IFN-y with a non

significant trend to increase plasma TNF-a and IL-lp (fig 2.15). The p38 MAP 

Kinase isoforms have a well-established role as mediators of cytokine release and 

p38 inhibitors demonstrate potent inhibition of cytokine production, particularly in 

vitro (Lee et al, 1994; Cuenda et al, 1995; Dean et al, 1999) but also to a lesser 

degree in vivo (Barone et al, 2001; Legos et al, 2001). Other literature has described 

p38 inhibitors cause elevation of cytokine production (T ten Hove et al, 2002) or 

demonstrate a lack of efficacy for cytokine inhibition (Campbell et al, 2004; Zhang 

et al, 1997; Lu et al, 1999; van den Blink et al, 2001). Previous literature suggests 

p38 activity may be cell-specific resulting in potentiation of cytokine release in 

macrophages whilst inhibiting release in other cell types (Van den Blink et al, 2001; 

Zhang et al, 1997). In addition, the p38 kinase may not modulate TNF-a production 

to the degree originally supposed or alternative intracellular pathways may 

compensate for p38-mediated changes in TNF-a levels. In vitro studies also indicate 

that p38 inhibition may have positive or negative effects on cytokine production 

depending upon the stimuli, cell populations and levels of cytokines produced (Rao 

et al, 2002; Salmon et al, 2001; Kim et al, 2004).

Although it is clear LPS can induce phosphorylation of the p38 kinase, TLR4 

receptor signalling also directly activates NF-kB particularly in the early stages of 

the immune response to peripheral LPS injection (Krappmann et al, 2004). Study 4 

described in this chapter indicated increased central p38 phosphorylation by 6 hours 

post LPS, however, phosphorylation of hcBa, an inhibitory factor for NFkB, 

increased by 2 hours (fig 2.8). This demonstrates a strong role for the NF-kB 

pathway early in LPS-induced cytokine production. These data also suggest the early 

phase of cytokine protein induction may be directed more through direct NF-kB 

activation in the absence of activation of a p38 kinase pathway, possibly explaining 

the lack of an acute effect of GW569293 in the IP LPS cytokine model.

LPS or cytokines can cause iNOS activation (Liew et al, 1994; Lazarov et al, 2000) 

and a continuous LPS infusion in rat caused a small elevation in plasma nitrate/nitrite 

by 4 hours that increased considerably by 6 hours (Soszynski, 2002; Hamilton & 

Warner, 1998). An iNOS selective inhibitor, 1400W, prevented LPS-induced 

increase in nitrate/nitrite suggesting nitric oxide production is consistent with
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inducible nitric oxide synthase (iNOS) induction (Hamilton & Warner, 1998). 

Although p38 inhibition exhibited little effect on the cytokines investigated in the 

current study, the release of nitrite by circulating plasma macrophages and 

monocytes was significantly reduced by GW569293 (fig 2.16). These data support 

some in vitro evidence (Guan et al, 1997); however, other studies have indicated p38 

inhibition may enhance NO production (Lahti et al, 2006). It is possible that iNOS 

activity occurs independently of cytokine production and may support a cell-specific 

role for p38 kinase. Variation in the inflammatory stimulus and timepoints 

investigated between studies may also influence the effect of p38 inhibition on iNOS 

activity.

This chapter describes the first report of the application of a Luminex® suspension 

bead array system to the detection of cytokine protein and phosphoproteins involved 

in LPS-mediated intracellular signalling in brain tissue post IP LPS. Importantly, the 

identification of intracellular protein phosphorylation and cytokine mRNA 

expression in brain tissue confirmed an endogenous neuroinflammatory response to 

IP LPS injection. It is evident that IP LPS can induce central inflammatory markers, 

specifically IL-ip and IL -la and that an EP LPS-induced cytokine protein model can 

successfully act as a first-pass screen for putative anti-inflammatory agents. One 

caveat of this model is that the peripheral anti-inflammatory actions of an agent may 

prevent subsequent communication of the presence of inflammation to the brain, 

making it difficult to clearly assess the anti-inflammatory activity of compounds on 

brain tissue. Some agents may also modulate cytokines other than IL-lp or IL-la 

released endogenously within the brain. A model providing a broader central 

cytokine profile is required to provide more in-depth analysis of the effect of a 

compound on neuroinflammation. mRNA expression of inflammatory cytokines in 

plasma and brain tissue is increased to a greater extent following administration of 

LPS directly into the brain in contrast to peripheral LPS injection (Gayle et al, 1998; 

Gayle et al, 1999; Turrin et al, 2001; Plata-Salaman et al, 1998; De Simoni et al, 

1995). The following chapter will describe the measurement of central and peripheral 

cytokine following ICY injection of LPS using Luminex®
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CHAPTER 3
Central administration of LPS — confirming anti

inflammatory activity in brain tissue

3.1 Introduction
Chapter 2 detailed the validation of a high throughput in vivo model of IP LPS 

induced central and peripheral cytokine protein in rodent brain. Neuroinflammation 

was present as evidenced by alterations in pro-inflammatory mRNA expression, IL- 

1P protein and intracellular proteins in brain tissue indicating the communication of a 

peripheral immune response to the brain. The glucocorticoid dexamethasone and the 

a2-adrenoceptor antagonist fluparoxan attenuated pro-inflammatory cytokine protein 

expression in brain tissue and plasma. The peripheral LPS model, however, does not 

clearly establish anti-inflammatory activity of these agents in brain tissue as 

reduction of LPS-induced cytokines in the blood affect the communication of an 

inflammatory response from blood to brain. An in vivo model in which the 

inflammatory response is initiated in brain tissue first will allow further assessment 

of the efficacy of agents on centrally derived inflammation. I chose to induce a 

neuroinflammatory response to LPS via ICV injection into rat brain and to use the 

Luminex® suspension bead array system, previously validated for cytokine detection 

in chapter 2, to assess the induction of central and peripheral cytokine protein. The 

model will be used to further investigate the anti-inflammatory properties of 

dexamethasone and fluparoxan in brain tissue. Glucocorticoid treatment attenuates 

LPS-induced cytokine production (Sironi et al, 1992, Mengozzi et al, 1994) and 

dexamethasone demonstrated potent anti-inflammatory properties in chapter 2. 

Antagonists of a2 receptors increase synaptic NA, a catecholamine that inhibits the 

release of pro-inflammatory cytokines (Kaneko et al, 2005; Hu et al, 1991) and 

inhibits microglial activation (Lee et al, 1992; Loughlin et al, 1993; Chang & Liu, 

2000).
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3.1.1 Intracerebroventricular (ICV) injection

LPS, at a molecular weight of lOkDa is unlikely to cross the blood brain barrier. In 

order to induce neuroinflammation, LPS must be directly injected into the brain 

tissue. LPS infusion into the ventricular system, via direct injection or implantation 

of a permanent indwelling cannula, initiates a strong time-dependant inflammatory 

response in the brain, ipsilateral to the site of injection (Muramami et al, 1993). 

Following ICV LPS injection, intraventricular macrophages and microglia increase 

the expression of cell-surface proteins including both MHC class I and II (Ling et al, 

1998). Microglia are subsequently activated in hippocampal and thalamic areas 

(Nicholson & Renton, 2001) prompting rapid induction of pro-inflammatory 

cytokines including TNF-a (Zujovic et al, 2001). Evidence suggests that ICV 

administered LPS induces peripheral cytokine production via its dissipation into the 

blood from the brain since bioactive LPS can be detected in the blood as early as 5 

minutes post injection (Chen et al, 2000). The magnitude and range of cytokine 

response evident in the periphery following central LPS administration is, however, 

less than that induced by peripheral LPS challenge.

3.1.2 Evidence o f central cytokine induction by ICV LPS

Acute ICV LPS administration results in the expression of pro-inflammatory 

cytokine mRNA in the brain (Gayle et al, 1998; 1999; Plata-Salaman et al, 1998; De 

Simoni et al, 1998; Muramami et al, 1993; Song et al, 1999). ICV administration of 

LPS may also induce cytokine protein in plasma (Hallenbeck et al, 1991; Gottschall 

et al, 1992; Song et al, 1999; Ghezzi et al, 2000; Chen et al, 2000; Nicholson & 

Renton, 2001; Finck et al, 1997). ELISAs have previously been used to detect a 

small range of cytokine proteins in brain tissue (Szczepanik & Ringheim, 2003; 

Kalehua et al, 2000; Zujovic et al, 2001).
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3.1.3 Chapter A ims

The goals of this chapter are to:

1. Evaluate the anti-inflammatory effect of dexamethasone pre-treatment on 

ICV LPS induced cytokine protein in rat brain tissue and plasma.

2. Assess the anti-inflammatory effect of fluparoxan and GW569293 pre

treatment on ICV LPS induced cytokine protein in rat brain tissue and 

plasma.

3.2 Materials & Methods

3.2.1 Materials

The p38 inhibitor GW569293 and the a l-  adrenoceptor antagonist fluparoxan were 

synthesised at GSK, Harlow. PBS (Sigma, UK) and methylcellulose were prepared 

in-house. Lipopolysaccharide (0111 :B4, L2630) and the glucocorticoid

dexamethasone were purchased from Sigma, UK.

3.2.2 ICV cannulation

Specific, pathogen free male CD rats (250g, approximately 10 weeks of age) 

(Charles River, UK) were anaesthetised by inhalation of 3% isoflurane in oxygen 

(Merial animal Health Ltd, Essex, UK). The head of each rat was shaved and the skin 

sterilised using a hibitane/alcohol solution. Lacrilube (Allergan, Buckinghamshire, 

UK) was applied to the eyes to prevent them from drying out during surgery. 

Animals were secured in a stereotaxic frame (David Kopf Instruments, USA) (incisor 

bar set -3.2mm below the intra-aural plane) and a midline incision along the sagittal 

suture made in the skin overlying the skull. 0.1ml intra-epicaine (Arnolds, Surrey, 

UK) was injected into the subdermal skin layers to provide post-operative local 

analgesia. Four burr holes were drilled and screws and cannula (Plastics One, 

Roanoke, Virginia, USA) implanted into the skull, secured in place by cyanoacrylate 

gel and gel activator (RS components, Corby, UK). The skin either side of the gel 

was sutured with vicryl rapide 4/0 (Johnson & Johnson, UK) and the animal housed 

in an incubator set at 37°C until the rat had regained consciousness. All animals were 

returned to the home cage with warm bedding and soft mash/baby food. The body 

weights and general health of the rats were monitored daily until pre-operative body
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weight had been reached. Rats were individually housed in an animal facility at 

GlaxoSmithKline Pharmaceuticals, Harlow, Essex UK under controlled conditions 

(temperature: 21-24°C, 12-h light/dark cycle (7am lights on) and fed a pellet diet and 

water ad libitum.

Post ICV cannulation, all animals were tested for cannulae patency by ICV injection 

of human angiotensin II (lOOng/rat) (Sigma, UK) (Johnson & Epstein, 1975). 

Animals that failed to display an acute dipsogenic response were culled by an 

approved schedule one method. All experimental procedures were conducted in 

accordance with the GlaxoSmithKline local ethics committee and conform to the UK 

Animals (Scientific Procedures) Act 1986.

3.2.3 Drug administration

Dexamethasone, GW569293 and fluparoxan were sonicated in 0.5% 

methylcellulose until completely dissolved and administered orally at a dosing 

volume of 2ml/kg. Dosing took place according to a timed schedule of two rats 

every 15 minutes to account for the time required to sample each rat. ICV 

cannulated rats were administered with either 20pg or 5pg LPS (0111:B4 E. coli, 

L2630, Sigma, UK) dissolved in 5pl of filtered PBS. LPS (4mg/lml or lmg/lml) 

was allowed to dissolve in PBS in a falcon tube (VWR International, UK) for at 

least 30 minutes before administration. Initial studies completed at GSK, Harlow, 

assessed cytokine protein induction in plasma following 20pg LPS ICV therefore,

I used this dose for the preliminary study. LPS (5pg) was reported to increase 

hippocampal TNF-a protein; hence, this dose is also reported in this chapter 

(Zujovic et al, 2001). LPS was injected ICV at 30 minutes, 1 hour or 2 hours 

following oral (gavage) treatment with fluparoxan (3mg/kg), dexamethasone 

(lmg/kg) or GW569293 respectively.

3.2.4 ICV administration and cytokine determination

An infusion pump (Harvard PHD 4400 Hpsi, Harvard Apparatus, Kent, UK) was 

loaded with a lOOul Hamilton syringe (Hamilton, Birmingham, UK) attached to PVC 

tubing and tipped with a stainless steel injector (Plastics One, Roanoke, Virginia, 

USA). The tubing and syringe were filled with 0.9% saline and a lOpl air bubble 

drawn up at the distal end to enable separation of the test compound and the saline.
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LPS was injected over the duration of two minutes with a further 30 seconds before 

injector removal to ensure complete diffusion of LPS into the ventricle. Dosing took 

place according to a timed schedule of two rats every fifteen minutes to account for 

the time required to sample each rat. Rats were deeply anaesthetised with sodium 

pentobarbitone (Euthatal® lOOmg kg-1 i.p, Rhone Merieux, Harlow, UK) 2 hours 

post ICV LPS administration. This sampling timepoint was based on evidence in the 

literature (Kalehua e al, 2000; Zujovic et al, 2001) and previous in-house studies 

(GSK, Harlow) demonstrating peak IL-la, IL-ip and TNF-a induction in brain 

tissue by 2 hours post ICV LPS. Plasma and ipsilateral brain samples were obtained 

using the method described in 2.2.4. All samples were prepared for cytokine 

determination as described in 2.2.5.1 and subsequently analysed using the Luminex 

suspension array system using the method described in 2.2.5.2.

3.2.5 Data Analysis

4/5-parameter logistic regression curves (Hulse et al, 2004) of the cytokine standard 

values were calculated using StarStation software and the concentrations of unknown 

samples were determined relative to calculated standard curves.

A general linear mixed model approach using the Proc Mixed procedure in SAS® 

Version 8  (SAS Institute, UK) assessed each separate cytokine response using brain 

region as a repeated measure. Univariate tests of significance using Statistica™ 

Version 6.1 (StatSoft, USA) calculated the overall effect of LPS treatment on plasma 

cytokine responses. Planned comparisons on the predicted means from the model 

assessed individual LPS effects on cytokine levels within plasma and brain 

compartments. Results are represented as means ± SEM and significance was set at P 

< 0.05. Percentage reduction describes attenuation relative to the LPS-induced 

cytokine response.

3.3 Protocols

3.3.1 Study 6: Pre-treatment o f dexamethasone or GW569293: 20ytg ICV

LPS

Male CD rats (n=8-10 per group) were pre-treated with 0.5% methylcellulose, 

dexamethasone (lmg/kg, 1 hour) or GW569293 (25mg/kg, 2 hours) before ICV LPS
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(20|ig/rat) dissolved in filtered PBS. All animals were euthanased 2 hours post LPS 

administration and plasma, ipsilateral hippocampus and frontal cortex were taken for 

cytokine analysis

3.3.2 Study 7: Pretreatment o f dexamethasone: 5jug ICV LPS

Male CD rats (n=4-7 per group) pre-treated with either 0.5% methylcellulose or the 

glucocorticoid dexamethasone (lmg/kg) were administered 1 hour later with 5pg/rat 

LPS dissolved in filtered PBS or filtered PBS alone. All animals were euthanased 2 

hours post LPS administration and plasma, ipsilateral hippocampus and frontal 

cortex were taken for cytokine analysis.

3.3.3 Study 8: Pretreatment offluparoxan or GW569293: 5/jg ICV LPS

Male CD rats (n=6 - 8  per group) pre-treated with 0.5% methylcellulose, fluparoxan 

(3mg/kg, 30 mins) or GW569293 (25mg/kg, 2 hours) before ICV LPS (5pg/rat) 

dissolved in filtered PBS. All animals were euthanased 2 hours post LPS 

administration and plasma, ipsilateral hippocampus and frontal cortex were taken for 

cytokine analysis.

3.4 Results

3.4.1 Study 6: Pre-treatment o f dexamethasone or GW569293: 20pg ICV

LPS

3.4.1.1 Cytokine protein in brain

CD rats (n=8 ) were pre-treated with the glucocorticoid dexamethasone followed by 

ICV 20pg LPS (fig 3.1 A & 3.IB). Separate repeated measure ANOVAs on each 

cytokine indicated an overall effect of treatment, F 29) = 8.04, p<0.001, region, F (i, 

29) = 58.38, p<0.001 and a treatment*brain region interaction, F (3, 29) = 5.47, p<0.01 

on LPS-induced IL-la. There was a significant effect of treatment [F (3, 30) = 7.78, 

p<0.001], region [F (i? 29) = 61.38, p<0.001] and a treatment*brain region interaction 

[F (3, 29) = 5.49, p<0.01] on LPS-induced IL-lp. Repeated measures revealed an 

overall effect of treatment, F (3, 30) = 7.22, p<0.001 region, F (i, 30) = 24.16, p<0.001 

and a treatment*brain region interaction, F (3, 30) = 6.64, p=0.001 on the
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proinflammatory cytokine TNF-a. There was also a significant treatment effect on 

IFN-y, F (3,27) = 4.01, p<0.05.

Post hoc planned comparisons revealed LPS increased cortical IFN-y from 1.13 ± 

0.06 to 1.27 ± 0.07 pg/mg tissue, however, this failed to reach significance at the 

p<0.05 level (p=0.08). (fig 3.1 A & 3.IB).

Post hoc planned comparisons also revealed LPS increased hippocampal IL-la from 

0.76 ± 0.09 to 4.3 ± 1.07 pg/mg tissue (p<0.01) and from 0.77 ± 0.14 to 8.33 ± 1.24 

pg/mg tissue in the cortex (p<0.001). Dexamethasone significantly attenuated 

hippocampal IL -la  to 2.12 ± 0.49 pg/mg tissue (61% reduction of LPS response 

(p<0.05)). ICV LPS also significantly increased hippocampal IL-ip from 2.42 ± 0.03 

to 11.48 ± 2.50 pg/mg (p<0.001) and cortical IL-ip from 2.59 ± 0.69 to 21.45 ± 2.99 

pg/mg tissue. Dexamethasone reduced hippocampal IL-lp by 48% to 7.14 ± 1.40 

pg/mg tissue (p<0.05). LPS augmented hippocampal TNF-a from 2.28 ± 0.08 to 3.51 

± 0.36 pg/mg (p<0.05) and cortical TNF-a from 2.19 ± 0.14 to 5.28 ± 0.39 pg/mg 

(p<0.001). Dexamethasone attenuated hippocampal TNF-a by 83% to 2.48 ± 0.30 

pg/mg (p<0.05) and cortical TNF-a by 53% to 3.65 ± 0.52 pg/mg tissue (p<0.01). 

The p38 inhibitor, GW569293 did not significantly attenuate any LPS-induced 

cytokine protein measure within brain tissue (fig 3.2A & B).

3.4.1.2 Cytokine protein in plasma

Separate univariate ANOVAs revealed overall treatment effect on plasma IL-la, F (3, 

28) = 4.20, p=0.01, and TNF-a, F (3, 30) = 19.21, p<0.001 (fig 3.3). LPS reduced 

plasma IL -la  from 372.43 ± 134.91 to 71.88 ± 14.53 pg/ml (p=0.01) and increased 

plasma TNF-a from 648.83 ± 172.97 to 47460.7 ± 10013.24 pg/ml (p<0.001). 

Dexamethasone attenuated TNF-a by 93% decreasing LPS induced plasma TNF-a 

to 4114.79 ± 1146.03 pg/ml (p<0.0001). GW569293 significantly decreased plasma 

TNF-a by 87% to 6414.03 ± 1552.53 pg/ml (p=0.001) (fig 3.4).
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Figure 3.1: Effect of dexamethasone pre-treatment on cytokine protein in the cortex (A) and 

hippocampus (B) of adult rats (n = 8-10) by 2 hours post ICV LPS (20pg) administration, 

data represented as cytokine protein (pg) per milligram of tissue and shows mean ± SEM. 

***p <0.001, **p <0.01, * p <0.05 significantly different vs. vehicle; ## p <0.01, # p <0.05 
significantly different vs. LPS (repeated measures ANOVA followed by planned

comparisons)
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Figure 3.2: Effect of GW569293 pre-treatment on cytokine protein in the cortex (A) and 

hippocampus (B) of adult rats (n = 8-10) by 2 hours post ICV LPS (20pg) administration, 

data represented as cytokine protein (pg) per milligram of tissue and shows mean ± SEM 

(repeated measures ANOVA followed by planned comparisons)
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Figure 3.3: Effect of dexamethasone pre-treatment on cytokine protein in plasma of adult 

rats (n = 8-10) by 2 hours post ICV LPS (20pg) administration, data represented as cytokine 

protein (pg) per millilitre of sample and shows mean ± SEM. ***p <0.001, **p <0.01 
significantly different vs. vehicle; ### p <0.001 significantly different vs. LPS (univariate 

ANOVA followed by planned comparisons)
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Figure 3.4: Effect of GW569293 pre-treatment on cytokine protein in plasma of adult rats (n 

= 8-10) by 2 hours post ICV LPS (20pg) administration, data represented as cytokine protein 

(pg) per millilitre of sample and shows mean ± SEM. ### p <0.001 significantly different vs. 

LPS (univariate ANOVA followed by planned comparisons)
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3.4.2 Study 7: Pretreatment o f dexamethasone: 5/jg ICV LPS

3.4.2.1 Cytokine protein in brain

Repeated measures ANOVA on each cytokine indicated an overall treatment effect 

on IL-la, F (2, 14) = 14.88, p<0.001, IL-ip, F (2, 9) = 11.21, p<0.01 and TNF-a F (2, 14) 

= 7.33, p<0.01 in brain tissue (fig 3.5A & 3.5B). There was also a significant effect 

of brain region on TNF-a, F (i, 14) = 5.47, p<0.05.

Post hoc planned comparisons revealed LPS significantly increased cortical 

(p<0.001) and hippocampal (p=0.001) IL -la  from 0.31 ± 0.06 to 1.19 ± 0.11 pg/mg 

tissue and from 0.45 ±0.13 to 2.4 ± 0.65 pg/mg tissue respectively. Dexamethasone 

significantly attenuated LPS-induced cortical IL -la  (p<0.01) by 75% to 0.53 ±0.14 

pg/mg tissue and fully attenuated hippocampal IL -la  (p<0.001) to 0.42 ± 0.11 pg/mg 

tissue. LPS significantly increased cortical (p<0.01) and hippocampal (p<0.01) IL-ip 

from 0.72 ± 0.23 to 33.30 ± 4.01 pg/mg tissue and from 1.49 ± 0.84 to 46.85 ± 11.88 

pg/mg tissue respectively. Dexamethasone significantly decreased LPS-induced 

hippocampal IL-ip by 6 8 % (p<0.05) to 15.61 ± 7.49 pg/mg tissue and attenuated 

LPS-induced cortical IL-lp by 43% (p=0.09) to 19.42 ± 9.05 pg/mg tissue. ICV LPS 

administration increased cortical TNF-a (p<0.01) from 0.69 ± 0.37 to 2.35 ± 0.23 

pg/mg tissue and hippocampal TNF-a (p<0.01) from 1.07 ± 0.43 to 3.48 ± 0.81 

pg/mg tissue. Dexamethasone treatment reduced the LPS induction of cortical and 

hippocampal TNF-a by 85% (p<0.01) to 1.17 ± 0.33 pg/mg tissue and 89% (p<0.01) 

to 1.42 ± 0.30 pg/mg tissue respectively.
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Figure 3.5: Effect of dexamethasone pre-treatment on cytokine protein in the cortex (A) and 

hippocampus (B) of adult rats (n = 4-7) by 2 hours post ICV LPS (5pg) administration, data 

represented as cytokine protein (pg) per milligram of tissue and shows mean ± SEM. ***p 

<0.001, **p <0.01 significantly different vs. vehicle; ### p <0.001, ## p <0.01 significantly 
different vs. LPS (repeated measures ANOVA followed by planned comparisons)
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3.4.2.2 Cytokine protein in plasma

Plasma IL-lp was increased (p<0.01) from 0.20 ± 0.20 to 779.67 ± 605.86 pg/ml and 

IL-6 and TNF-a was augmented from 128.00 ± 0.00 to 693.61 ± 162.23 pg/ml 

(p<0.05) and from 0.00 ± 0.00 to 4132.36 ± 1866.86 pg/ml (p<0.001) respectively. 

Dexamethasone attenuated the LPS-induced increase in IL-ip by 98% (p<0.06) to 

14.71 ± 14.71 pg/ml and fully attenuated IL-6 (p<0.01) and TNF-a (p<0.001) to 0.00 

pg/ml (fig 3.6).
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Figure 3.6: Effect of dexamethasone pre-treatment on cytokine protein in plasma of adult 

rats (n = 4-7) by 2 hours post ICV LPS (5pg) administration, data represented as cytokine 

protein (pg) per millilitre of sample and shows mean ± SEM. ***p <0.001, **p <0.01, * p 

<0.05 significantly different vs. vehicle; ### p <0.001, ## p <0.01 significantly different vs. 

LPS (univariate ANOVA followed by planned comparisons)
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3.4.3 Study 8: Pretreatment offluparoxan or GW569293: 5pg ICV LPS

3.4.3.1 Cytokine protein in brain

Separate repeated measure ANOVAs indicated an overall effect of treatment on IL- 

la , F (3; 25) = 3.53, p<0.05, IL-ip, F (3, 25) = 2.85, p=0.06 and TNF-a F (3, 24) = 5.34, 

p<0.01 in brain tissue (fig 3.7A and 3.7B). There were also significant effects of 

brain region on GM-CSF, F (1,24) = 13.84, p=0.001, IFN-y, F (1,25) = 9.12, p<0.01, IL- 

4, F (1,25) = 22.06, pO.OOl, IL-6, F (1,25) = 21.22, p<0.001 and TNF-a, F (1,24) = 4.18, 

p=0.05.

Post hoc planned comparisons revealed LPS significantly increased cortical (p<0.05) 

and hippocampal (p<0.01) IL -la  from 0.85 ± 0.27 to 2.86 ± 1.82 pg/mg tissue and 

from 0.82 ± 0.19 to 2.64 ± 0.79 pg/mg tissue respectively. LPS-increased cortical IL- 

l a  was attenuated by 96% following fluparoxan treatment (p<0.05) to 0.93 ±0.16 

pg/mg tissue. Increased hippocampal IL -la  in response to ICV LPS was also 

reduced by 65% to 1.46 ± 0.34 pg/mg tissue following fluparoxan but this failed to 

reach significance at the p=0.05 level (p=0.09).

LPS significantly increased IL-ip from 8.39 ± 6.21 to 33.48 ± 8.93 pg/mg tissue and 

from 8.72 ± 3.55 to 43.29 ± 20.37 pg/mg tissue in cortex (p<0.05) and hippocampus 

(p<0.05) respectively. Fluparoxan also reduced the production of cortical and 

hippocampal IL-ip by 79% to 13.74 ± 3.64 pg/mg tissue (p=0.05) and 65% to 20.96 

± 5.05 pg/mg tissue (p=0.08) respectively.

LPS induced a significant elevation of TNF-a in cortex from 0.63 ± 0.29 to 2.39 ±

0.81 pg/mg tissue (p<0.05) and hippocampus from 1.04 ± 0.26 to 2.54 ± 0.32 pg/mg 

tissue (p<0.01). This was attenuated by fluparoxan treatment to 0.87 ±0.17 pg/mg 

tissue in cortex (86% reduction, p<0.05) and by 42% to 1.91 ± 0.42 pg/mg tissue in 

hippocampus, however this failed to reach significance at p<0.05 (p=0.19).

The p38 inhibitor, GW569293 did not significantly attenuate any LPS-induced 

cytokine protein measure within brain tissue (IL-1P: cortex -  p=0.11 vs. LPS; 

hippocampus -  p=0.42 vs. LPS) (fig 3.8A & B).
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Figure 3.7: Effect of fluparoxan pre-treatment on cytokine protein in cortex (A) and 

hippocampus (B) of adult rats (n = 6-8) by 2 hours post ICV LPS (5fig) administration, data 

represented as cytokine protein (pg) per milligram of tissue and shows mean ± SEM. **p 
<0.01, * p <0.05 significantly different vs. vehicle; # p <0.05 significantly different vs. LPS 

(repeated measures ANOVA followed by planned comparisons)
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Figure 3.8: Effect o f GW569293 pre-treatment on cytokine protein in cortex (A) and 

hippocampus (B) of adult rats (n = 6-8) by 2 hours post ICV LPS (5pg) administration, data 

represented as cytokine protein (pg) per milligram o f tissue and shows mean ± SEM 

(repeated measures ANOVA followed by planned comparisons)
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3.4.3.2 Cytokine protein in plasma

A univariate ANOVA revealed an overall effect of treatment on plasma IL-10, F (3,25) 

= 3.36, p<0.05, IL-ip, F (3, 25) = 5.47, p<0.01, IL-6 , F (3, i7) = 6.93, p<0.01 and TNF- 

a, F(3, 19) = 8 .8 6 , p<0.001 (fig 3.9 & 3.10).

Post hoc comparisons revealed that ICV administered LPS increased plasma IL-ip 

(p=0.08) and TNF-a (p=0.07) from 81.24 ± 27.76 to 412.12 ± 120.03 pg/ml and 

from 482.62 ± 105.34 to 2513.32 ± 1008.41 pg/ml respectively. Fluparoxan 

treatment fully attenuated plasma IL-10 to 95.28 ± 40.60 pg/ml (p<0.01) and 

attenuated plasma IL-lp by 85% to 132.19 ± 60.20 pg/ml (p<0.01) (fig 3.9). 

Fluparoxan also significantly decreased plasma IL- 6  relative to LPS treatment 

(p<0.001) although LPS did not significantly increase plasma IL- 6  above vehicle 

levels (p=0.10). Plasma TNF-a was significantly attenuated by 93% to 623.60 ± 

298.25 pg/ml (p=0.01) (fig 3.9). GW569293 significantly increased plasma TNF-a 

by 371% to 9343.88 ± 2632.91 pg/ml (p<0.05) (fig 3.10).
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Figure 3.9: Effect of fluparoxan pre-treatment on cytokine protein in plasma of adult rats (n 

= 6-8) by 2 hours post ICV LPS (5pg) administration, data represented as cytokine protein 

(pg) per millilitre of sample and shows mean ± SEM. ### p <0.001 ## p <0.01 significantly 

different vs. LPS (univariate ANOVA followed by planned comparisons)
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Figure 3.10: Effect of GW569293 pre-treatment on cytokine protein in plasma of adult rats 

(n = 6-8) by 2 hours post ICV LPS (5pg) administration, data represented as cytokine protein 

(pg) per millilitre of sample and shows mean ± SEM. # p <0.05 significantly different vs. 
LPS (univariate ANOVA followed by planned comparisons)

3.5 Discussion

3.5.1 Central v s. peripheral cytokine response

The activation of microglia in the endothelial wall of ventricles and hippocampal and 

thalamic areas causes a rapid increase in mRNA expression (Gayle et al, 1998; 1999; 

Plata-Salaman et al, 1998; De Simoni et al, 1998; Muramami et al, 1993) and protein 

(Zujovic et al, 2001) of pro-inflammatory cytokines, particularly TNF-a, in rat brain. 

Using the Luminex® system, modulation of ICV LPS-induced cytokine protein in 

plasma and brain tissue by dexamethasone and fluparoxan was assessed. An initial 

study using 20pg LPS, a dose previously used at GSK Harlow, to assess the anti

inflammatory activity of compounds, revealed that, in addition to a robust increase in 

central TNF-a protein there was a significant induction of cortical and hippocampal 

IL -la  and IL-lp (fig 3.1). This demonstrates a similar effect of LPS in brain tissue to 

that described in chapter 2 in which IP LPS caused a significant induction in cortical 

IL-ip and TNF-a mRNA expression (fig 2.4) and a detectable increase in cortical 

and hippocampal IL-lp protein (fig 2.5). In general, the hippocampal response to
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ICV administered LPS was greater than that evident in cortical tissue. This is likely 

due to the timecourse of events that occur following administration, since initial 

activation of microglia occurs within the ventricles and hippocampal regions 

(Nicholson & Renton, 2001). Central IL-la, IL-ip and TNF-a protein induction was 

also evident following 5pg ICV LPS but the magnitude of cytokine protein 

production was increased, particularly in the hippocampus, relative to 20pg LPS (fig 

3.5). Interestingly, Zujovic et al, 2001 reported that following completion of a dose 

response curve of LPS, maximal TNF-a production was achieved using lOpg ICV 

LPS, however, in order to observe modulation of cytokine protein by anti

inflammatory agents, 5pg LPS was used to obtain a sub-maximal TNF-a response in 

brain tissue. This suggests LPS-mediated cytokine production is dose-dependent, 

achieving maximal levels at lOpg and decreasing in magnitude at higher doses of 

LPS (20pg).

The peripheral response to ICV administered LPS did not directly relate to the 

central profile. There was a massive increase in plasma TNF-a protein production in 

the absence of IL -la  and a small associated increase in IL-ip protein (fig 3.4 & 3.6). 

LPS can be detected in the blood approximately five minutes after ICV LPS injection 

(Chen et al, 2000). Hence, plasma cytokine induction may possibly be caused by the 

direct interaction of LPS with immune cells circulating in the blood. However, it 

cannot be discounted that centrally derived cytokines may travel through the 

damaged (due to the surgically implanted cannulae) blood-brain barrier.

3.5.2 Central efficacy o f peripherally administered anti-inflammatory agents

3.5.2.1 Glucocorticoid treatment - Dexamethasone

Chapter 2 described the complete attenuation of IP LPS-induced central cytokine 

mRNA (fig 2.4) and protein (fig 2.5) expression by dexamethasone. Assessing the 

central efficacy of peripherally administered dexamethasone in the model was 

difficult as a reduction of cytokines in the blood by dexamethasone meant reduced 

communication to the brain of peripheral inflammation. Hence, reduced cytokine 

protein production in brain tissue following dexamethasone may be a knock-on effect 

of the agent on cytokine release in blood. The central efficacy of dexamethasone was 

assessed following injection of LPS into the ventricular system to initiate
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inflammation in brain tissue. Dexamethasone significantly attenuated central TNF-a, 

hippocampal IL -la  (61% reduction) and IL-lp (48% reduction) protein increased by 

a 20pg ICV LPS injection (fig 3.1). Interestingly, dexamethasone exhibited greater 

anti-inflammatory activity on cytokine protein induced by a 5pg ICV LPS injection. 

Dexamethasone significantly attenuated hippocampal (100%) and cortical IL-la 

(75%) and hippocampal IL-ip (69%), fully abrogated TNF-a protein and there was a 

non-significant trend to a decrease in cortical IL-ip (43%) protein following ICV 

administration of 5pg LPS (fig 3.5). Lower magnitude of cytokine production, 

particularly IL-ip, after ICV administration of 20pg LPS (hippocampus: 11.48; 

cortex: 21.49 pg/mg tissue) relative to 5pg LPS (hippocampus: 46.85; cortex: 33.30 

pg/mg tissue) may be responsible for the decreased central efficacy of 

dexamethasone. Further research may elucidate the exact reasons why 20pg dose of 

LPS elicits a reduced central cytokine protein response relative to 5pg LPS. It is 

possible that a larger inflammatory stimulus initiates an enhanced endogenous 

glucocorticoid response in brain tissue relative to that caused by an ICV injection of 

5pg LPS. Enhanced glucocorticoid levels in the brain may result in the attenuation of 

cytokine protein production. Subsequent studies to assess the anti-inflammatory 

behaviour of the a2-adrenoceptor antagonist, fluparoxan describe the administration 

of 5pg LPS since the anti-inflammatory activity of the strong immunosuppressant 

agent, dexamethasone was most effective at this dose of LPS.

3.5.2.2 a2 adrenoceptor antagonism - Fluparoxan

Antagonism of presynaptic a2-adrenoceptors can modulate the levels of various 

cytokines including TNF-a, IL-6 and IL-10 (Hasko et al, 1995; Szelenyi et al, 2000; 

Song et al, 2001). Assessment of the anti-inflammatory properties of fluparoxan 

(reported in section 2.4.5) revealed that fluparoxan abrogated the levels of IL-ip in 

brain tissue (fig 2.11) associated with attenuated levels of IFN-y and TNF-a in 

plasma and increased plasma IL-10 levels (fig 2.14) following IP injection of LPS. 

Peripheral administration of fluparoxan (3mg/mg) significantly attenuated the ICV 

LPS induced central production of the pro-inflammatory cytokines, TNF-a, IL-la 

and IL-ip (fig 3.7), abrogated plasma IL-6 and TNF-a and also attenuated ICV LPS 

induced plasma IL-10 by 75% (fig 3.9). ICV administered LPS activates endothelial
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microglia (Nicholson & Renton, 2001) known to possess a2-adrenoceptors (Spengler 

et al, 1990). Antagonism of presynaptic a2-adrenoceptors, as discussed in chapter 2, 

results in an increase of synaptic NA. NA is known to modulate key aspects of the 

immune response, controlling the release of pro-inflammatory cytokines via 

subsequent activation of P-adrenoceptors (Szelenyi et al, 2001). In vitro analysis of 

the effects of p-adrenoceptor agonists on LPS-induced cytokine production has 

revealed that agonism of the p2-adrenoceptor elicits an abrogation of pro- 

inflammatory cytokine release (Verhoeckx et al, 2005), possibly by preventing NF- 

k B  translocation (Farmer & Pugin, 2000).

Fluparoxan pre-treatment caused an increase in plasma IL-10 (fig 2.14) in the IP LPS 

model, in contrast to an abrogation of plasma IL-10 (fig 3.9) in the ICV LPS model. 

In support of published literature, this may suggest a differential role for central and 

peripherally derived NA on cytokine release. Song et al, 1999 reported that depletion 

of NA in mouse brain attenuated ICV LPS induced plasma IL-6 in contrast to a 

significant potentiation of ICV LPS-induced plasma IL-6 following depletion of 

peripheral NA. It is possible that central and peripheral NA levels differ between the 

LPS models described in the current studies, resulting in a disparity between the IL- 

10 response to LPS injected via different administration routes. Overall, the data 

presented here and in chapter 2 of this thesis lends support to the role of NA in 

inflammation. Assessment of the anti-inflammatory activity of fluparoxan using both 

the IP and ICV LPS models has provided the first in vivo evidence that peripheral 

pre-treatment with the a2-adrenoceptor antagonist, fluparoxan, can modulate LPS 

induced neuroinflammation.

3.5.2.3 P38 inhibition - GW569293

The p38 inhibitor GW569293 attenuated plasma TNF-a following ICV LPS (20pg) 

(fig 3.4) but increased plasma TNF-a post ICV administration of 5pg LPS (fig 3.10). 

As discussed in section 2.5.3.3 of this thesis, the modulatory effects of p38 inhibition 

on cytokine production has been previously reported as dependent upon the stimuli, 

cell populations and levels of cytokines produced (Rao et al, 2002; Salmon et al, 

2001; Kim et al, 2004). In vitro studies have demonstrated that inhibition of the p38 

kinase can elevate TNF-a (T ten Hove et al, 2002: Kim et al, 2004). Interestingly, 

the current studies demonstrate p38 inhibition can significantly attenuate a large
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increase in LPS-induced plasma TNF-a levels (approx 47,000 pg/ml) but augments 

lower levels of LPS-induced plasma TNF-a (approx 2500 pg/ml). It is possible that 

there are different cell populations involved in the production of plasma TNF-a at 

different doses of LPS but it is more likely that the modulation of cytokine protein 

production following p38 kinase inhibition depends upon the levels of cytokine 

protein produced during activation of the NF-kB pathway. Further research is 

merited to investigate the exact response of plasma TNF-a relative to increasing 

doses of ICV LPS following administration of a p38 inhibitor.

3.5.3 The limitations o f in vivo LPS-induced neuroinflammation models

The use of LPS to elicit robust and reliable markers of neuroinflammation in vivo 

has been clearly demonstrated in chapters 2 and 3 of this thesis. Detection and 

quantification of inflammatory markers in plasma and brain tissue by Luminex® 

following IP LPS injection provides a model that can be used for the high throughput 

screening of putative anti-inflammatory agents. Novel agents that demonstrate clear 

anti-inflammatory properties using this model can be further screened for central 

efficacy using an ICV LPS model of neuroinflammation. It remains important, 

however, to understand the mechanism of action that results in increased cytokine 

protein release and iNOS activity in these models. Using Luminex®, the assessment 

of intracellular protein phosphorylation following IP LPS indicated the early cellular 

response (by 2 hours post LPS) is mediated by direct NF-kB activation. The later 

phase (6 hours post LPS) of LPS-mediated cell signalling appeared to involve p38 

phosphorylation. Any target of interest must have a role in the acute innate immune 

response to LPS to accurately assess anti-inflammatory properties of agents in these 

models as, demonstrated in this thesis, dexamethasone and fluparoxan can 

significantly alter NF-kB mediated cytokine production whereas the p38 inhibitor, 

GW569293 has demonstrated inconsistent changes in plasma TNF-a. Despite the 

caveat that a reduction in peripheral inflammation by an anti-inflammatory agent will 

prevent communication of infection to the brain in the IP LPS model, the IP LPS 

model appears to be predictive of the subsequent effect of agents following ICV 

LPS.

Screening of novel anti-inflammatory agents for specific neurodegenerative diseases 

may additionally or alternatively require assessment in more disease relevant models.
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Preclinical in vivo models specifically designed to assess compounds for AD may 

involve injection of Ap peptide into brain tissue to induce neuroinflammatory and 

neurodegenerative changes (Nabeshima et al, 1995). Subsequent chapters will 

describe studies intended to determine the successful delivery of Ap into the rodent 

brain and the subsequent induction of Ap-induced neuroinflammation and 

neurodegeneration in vivo.
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CHAPTER 4
Injection of A p i-42 into the brain of the adult rat: 

neurodegeneration & neuroinflammation

4.1 Introduction

Previous chapters have discussed the use of LPS to induce neuroinflammation in the 

rat brain. Using Luminex®, the rapid increase in cytokine protein in brain tissue and 

plasma was detected following either ICV or IP LPS injection. Proinflammatory 

cytokines have been detected in post-mortem AD brain tissue (Shaw et al, 2001). 

However, the AD brain is also characterised by activated microglia associated with 

amyloid plaques within degenerating brain regions such as the hippocampus 

(McGeer et al, 1988; Armstrong, 2006). Hence, the development of in vivo models 

with pathology related to AD is important, particularly the use of Ap fragments to 

induce neuroinflammation and neurodegeneration in rodent brain tissue. There are 

conflicting reports of the neuroinflammatory and neurotoxic effects following 

injection of Ap into rodent brain. Injection of Ap into the hippocampus resulted in 

increased neuroinflammation and cell loss in rats (Miguel-Hidalgo et al, 1998; Ryu et 

al, 2004); however, the absence of a convincing neurotoxic effect of Ap in vivo has 

also been described (Games et al, 1992; Cleary et al, 1995). Much of the reported 

inconsistency in Ap-induced neurotoxicity in rodent brain may be explained by 

variability in Ap fragments used, Ap aggregation state, vehicle and the apparatus 

used for Ap delivery. For example, many different types of apparatus have been used 

to administer Ap into the brain including the minipump (Craft et al, 2004), ICV 

tubing and injector (Nakagawa, 2004) or Hamilton syringe (Jantaratnotoi et al, 2003; 

Ryu et al, 2004).

4.1.1 Delivery o f A p  into the rodent brain

Ap can be delivered into the brain via a number of different routes. Direct injection 

into the ventricular system or a discrete brain region such as the hippocampus using a 

Hamilton syringe (A) can include a number of injections within one surgical 

procedure; however, this method usually involves a single administration at each
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injection point. Administration of Ap via an indwelling cannula using Hamilton 

syringe and tubing (B) allows a controlled number of repeated single injections into 

ventricles or discrete brain regions. An implanted minipump (C) provides constant 

delivery of Ap and, currently is the most convenient method for chronic 

administration of Ap into rodent brain.

A

Figure 4.1: Schematic representation of the methods currently available for delivery of Ap 
into rodent brain: direct injection (A), repeated administration (B) and chronic infusion (C)

4.1.2 A p  aggregation process

Extracellular Ap plaques in the AD brain consist of a dense core of insoluble fibrillar 

Ap protein mainly comprising the Api-42 fragment (Rossor, 1993) and Api-42 is 

considered the most neurotoxic Ap fragment in AD brain tissue (Tabaton et al, 

1994). Fibrillar Api-42 consists of parallel p strands that form p pleated sheets 

(Antzutkin et al, 2002). Under polarised light, Api-42 stained with Congo red 

reveals a green birefringence signifying the presence of p pleated sheets. Api-42 

neurotoxicity has been related to both its fibrillar and oligomeric aggregated states 

(Pike et al, 1993; Tamagno et al, 2006). Soluble Api-42 aggregates easily in 

solution; however, the rate of aggregation is dependent on peptide concentration, pH, 

duration of incubation and the length of the carboxyl terminus (Burdick et al, 1992).
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Initially, Ap exists in a monomeric (random coil) form that can rapidly convert into a 

partial p structure called an Ap dimer (Soreghan et al, 1994). As the amount of dimer 

decreases, the concentration of higher molecular weight aggregates increases, evident 

as spherical particles with the characteristics of protein micelles (Soreghan et al, 

1994). These AP oligomers eventually co-aggregate to form strings of micelles 

named protofibrils (Hartley et al, 1999). These intermediaries undergo a 

conformational change resulting in the exposure of an initially protected C-terminus 

to the surrounding solvent and the formation of mature Ap fibrils (Garzon-Rodriguez 

et al, 2000).

4.1.3 Western blot analysis o f A p i  -42 forms

SDS-polyacrylamide gel electrophoresis enables the detection and assessment of the 

size of a single protein within a sample relative to a molecular weight marker. As the 

proteins move through the gel, they are separated by size and charge as small 

proteins migrate through the gel faster than larger molecules. The protein bands 

present on the gel can then be driven into a nitrocellulose membrane by using 

electrophoresis to push negatively charged proteins onto the positively charged 

membrane. Following incubation with primary and reporter-linked secondary 

antibodies, protein bands can be visualised by a variety of methods depending upon 

the type of reporter molecule. Fluorescent detection methods require the fluorescence 

of a probe when excited by light. The emission of the excitation is detected by a 

photosensor e.g. Odyssey Infrared Imaging System (LI-COR Biosciences, USA) 

which takes a digital image of the blot. This technique is a highly sensitive method 

since infra red detection eliminates variability and gives a high signal to noise ratio 

allowing accurate quantification. I will use SDS-polyacrylamide gel electrophoresis 

and the Odyssey Infrared Imaging System (LI-COR Biosciences, USA) to detect Ap 

protein forms expelled from apparatus used to inject Ap into rodent brain tissue.

4.1.4 Chapter A ims

The series of studies described in this chapter sought to:

1. Assess different Apl-42 delivery systems namely the minipump, Hamilton 

syringe or ICV tubing and metal cannulae.

2. Evaluate subsequent neurodegenerative and neuroinflammatory effects of
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exogenous human Api-42 protein into rat brain dissolved in PBS or 

acetonitrile solvent.

3. Establish Api-42 specific neurotoxicity by comparing neuronal cell death 

and neuroinflammation following intra-hippocampal injection of Apl-42 and 

the reverse peptide AP42-1.

4.2 Materials & Methods

4.2.1 Materials

Apl-42 was obtained from California Peptide Research, USA. All gels, gel reagents 

and buffers used for western blot analysis were obtained from Novex/Invitrogen, UK 

and bovine serum albumin (BSA), Acetonitrile, Tween 20 and 1M Tris was 

purchased from Sigma, UK. Sterile saline was purchased from VWR International, 

UK. Sterile 0.1M PBS and 4% paraformaldehyde were prepared at GSK, Harlow, 

UK. Immunostaining machines, antibody diluent, PAP pens, peroxidase blocking 

solution and LSAB 1, LSAB 2 HRP-conjugate and diaminobenzidine substrate kits 

obtained from DakoCytomation, UK. Optimax buffer was obtained from A.

Menarini, UK. Gills haematoxylin stain was purchased from HD Supplies, UK. The

sources of additional materials are individually stated.

4.2.2 A p i  -42 preparation

Unless otherwise stated, Api-42 was prepared as described by Ryu et al, 2004. Ryu 

et al, 2004 reported significant cell loss in rat brain tissue following intra- 

hippocampal injection of Apl-42.

lmg Api-42 was reconstituted into 443.4pl of vehicle solution to provide 500pM 

solution. The solution was thoroughly vortexed for approximately ten minutes and 

then allowed to incubate at 37°C for 18 hours. Following incubation, the solution 

was aliquoted into sterile biopur® safe-lock eppendorfs (VWR International, UK) and 

stored at -20°C until immediately before use.

4.2.3 Gel analysis o f amyloid samples

Based on an established protocol for the detection of the Ap peptide using western 

blotting (GSK, UK):
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Api-42 solution was drawn up into a Hamilton syringe and expelled into eppendorfs 

containing PBS to produce 0.2pg/pl solution. 5pi was added to 5pi NuPage sample 

reducing agent 10X, 12.5pl NuPage LDS sample buffer 4X and 27.5pl PBS resulting 

in a 0.02pg/pl solution. lOpl sample was loaded onto a gel (NuPage 12% Bis-Tris 

gel -  1mm thick x 12well) secured in a Novex Mini gel system and transfer 

apparatus. 500pl NuPage Antioxidant was added to 200ml IX SDS running buffer 

(50ml 20X NuPage MES running buffer and 950ml deionised water) and used to fill 

the upper buffer chamber. The lower buffer chamber was filled with 600ml IX SDS 

running buffer. The gel was run at 120V for approximately 2 hours until the 

coomassie dye front had almost reached the bottom of the gel. The cassette was 

rinsed under running water and the gel removed. The gel, a nitrocellulose membrane 

and blotting pads were soaked in 700ml of IX NuPage transfer buffer (50ml 20X 

NuPage transfer buffer, 100ml methanol, 850ml deionised water, 1ml NuPage 

antioxidant) and assembled in a Novex module. The module was locked into the 

lower buffer chamber and filled with transfer buffer. Following transfer at 30V for

1.5 hours, the membrane was shaken gently for 1 hour at room temperature or 

overnight at 4°C with blocking solution (3% BSA (4.5mg) in 150ml IX western 

wash buffer (lOx western wash buffer = 20ml 100% Tween 20, 400ml 5M NaCl and 

200ml 1M TRIS pH 7.5 and diluted to 2 litres with deionised water). 6E10 anti Ap 

antibody at 1:1000 (Senetek via Signet Labs Inc, USA) was added to the membrane 

and left for 1 hour at room temperature prior to a wash with IX wash buffer for a 

duration of 30 minutes, changing the buffer every 5 minutes. The membrane was 

wrapped in foil and incubated at room temperature with Goat anti-mouse IgG affinity 

purified IR dye 800 at 1:6000 (Rockland Immunochemicals Inc., USA). After 1 hour, 

the membrane was kept in the dark and washed with IX wash buffer for a duration of 

30 minutes, changing the buffer every 5 minutes and subsequently analysed using an 

Odyssey Infrared Imaging System (LI-COR Biosciences, USA).

4.2.4 Intra-hippocampal (IH) direct injection surgery

Specific, pathogen free male CD rats (250g) (Charles River, UK) were anaesthetised 

by inhalation of 3% isoflurane in oxygen (Merial animal Health Ltd, Essex, UK). 

Rats were shaved around the crown of the head and the skin sterilised using a 

hibitane/alcohol solution. Lacrilube (Allergan, Buckinghamshire, UK) was applied to
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the eyes to prevent them from drying out during surgery. Animals were secured in a 

stereotaxic frame (David Kopf Instruments, USA) and a midline incision along the 

sagittal suture made in the skin overlying the skull. 0.1ml intra-epicaine (Arnolds, 

Surrey, UK) was injected into the subdermal skin layers to provide post-operative 

local analgesia. A burr hole was drilled in the skull at co-ordinates relative to 

bregma: anterior-posterior: -3.6; medio-lateral: -1.8 and a 26 gauge lOpl Hamilton 

syringe (Hamilton, Birmingham, UK) stereotaxically lowered to a dorso-ventral co

ordinate o f -3.8. Vehicle or Apl-42 was injected at a speed of 0.2pl min'1 to a final 

volume of 2 pi (lnmol) according to the protocol of Ryu et al, 2004. Following 

injection, the needle was withdrawn and the burr hole sealed with bone wax. The 

skin incision was sutured using vicryl Rapide 4/0 (Johnson & Johnson, USA) and the 

animal was placed back in the home cage with warm bedding and soft mash/baby 

food. The body weights and general health of the rats were monitored daily until 

pre-operative body weight had been reached. Rats were housed under controlled 

conditions at 21-24°C and on a 12-hour light/dark cycle (7am lights on) and fed a 

pellet diet and water ad libitum in an animal facility at GlaxoSmithKline 

Pharmaceuticals, Harlow, Essex, UK. All experimental procedures were conducted 

in accordance with the GlaxoSmithKline local ethics committee and conformed to 

the UK Animals (Scientific Procedures) Act 1986.

4.2.5 Sample collection

At 7 days post intra-hippocampal injection, rats were deeply anaesthetised with 

sodium pentobarbitone (Euthatal® lOOmg kg-1 i.p, Rhone Merieux, Harlow, UK) 

prior to transcardial perfusion with 120ml ice-cold 0.9% sterile saline followed by 

120ml of ice-cold 4% paraformaldehyde. The descending artery was clamped 

throughout this procedure to improve upper-body perfusion. Whole brain was 

removed and stored in 4% paraformaldehyde in a 20ml glass vial for 5 days.

4.2.6 Imm unohistochemistry

A 3mm coronal block was cut from each brain to incorporate the injection site at 

approximately -2.0 through -5.0 relative to bregma and processed into paraffin wax 

using a Shandon Citadel 1000 tissue processor. Each block was embedded in paraffin 

wax using a Shandon Histocentre II embedding centre. Serial sections of 5pM
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thickness were taken throughout the injection site using a Microm HM 355S rotary 

microtome and dried at room temperature for at least 24 hours before staining. 4 

sections per stain were examined excluding NeuN staining for which between 4 and 

8 sections that spanned the injection site were analysed. Sections were stained for 

general cell morphology (Haematoxylin & Eosin (H&E)), Ap (1E8), neurons (NeuN) 

and macrophage/microglia (EDI) immunohistochemistry. Sections were dewaxed in 

Histoclear (National Diagnostics, UK) and hydrated through 100% industrial 

methylated spirit (IMS), 70% IMS and deionised water. All sections were washed in 

deionised water and a hydrophobic barrier applied above and below the section using 

a PAP pen to prevent the antibody solutions from running off the slide. Slides were 

loaded into an autostainer and treated with a primary antibody as described in section 

4.2.7.1. Sections were then treated with LSAB 1 biotinylated link for 10 minutes, 

LSAB 2 HRP-conjugate for 10 minutes and diaminobenzidine substrate kit for 10 

minutes. Optimax buffer was applied to each section and between each step and 

deionised water applied after the diaminobenzidine step. After staining, sections 

were washed in running tap water for 5 minutes before counter staining in Gills 

haematoxylin for 3 seconds and placed in running tap water to "blue", dehydrated in 

graded followed by absolute IMS, cleared in Histoclear and mounted in DPX (VWR, 

UK). Sections were viewed using a Colourview digital camera attached to an 

Olympus BX41 microscope. Photomicrographs were captured and analysed using 

image analysis software (AnalySIS, Soft Imaging Systems). Sections stained for EDI 

positive cells were viewed using a Leica DC 100 camera attached to a Leitz DMRB 

microscope. Photomicrographs were captured and analysed using Leica Qwin 

software (Leica systems. Buckinghamshire, UK).

4.2.6.1 Primary antibody staining

Amyloid (1E8) staining

Sections received DAKO peroxidase block for 5 minutes followed by primary mouse 

monoclonal antibody 1E8 (raised against 13-27 fragment of beta amyloid) (GSK, 

UK), diluted 1/1000 with antibody diluent, for 30 minutes.

NeuN staining

Sections were incubated for 30 minutes with NeuN antibody (Chemicon 

International, UK) diluted to 1/1000 with antibody diluent.
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Macrophage/Microglia (EDI) staining

Sections were immersed in citrate antigen retrieval buffer (HD Supplies, 

Buckinghamshire, UK) and microwaved (Sanyo supershower wave (Sanyo, UK)) at 

900W (2.5 minutes), 300W (5 minutes) and 300W (5 minutes) for each rack and 

allowed to cool for 20 minutes. Sections were washed 3 times in dH20 for 5 minutes 

and loaded onto an autostainer. The slides were treated with DAKO peroxidase block 

for 5 mins followed by mouse anti-rat CD68 (EDI) Ab (Serotec, UK) at a dilution of 

1/1000 for 30 minutes.

4.2.6.2 Quantification o f immunohistochemical staining

Photomicrographs of sections under an x4 objective were captured and used to 

calculate Ap deposit volume (4 sections), percentage number of EDI positive stained 

cells, number of NeuN positive stained cells within a 700pmetre distance either side 

of the central point of mediolateral damage and the width of hippocampal CA1 or 

dentate gyrus neuronal cell layer missing throughout the injection site. The protocol 

used for quantification of NeuN positive cells in the hippocampus was adapted from 

Ryu et al, (2004) and the protocol for measurement of medio-lateral lesion size was 

taken from Miguel-Hidalgo et al, (1998). The percentage of EDI positive stained 

cells was quantified (4 sections) within a 225cm2 (1.06xl06 pixels) box placed so 

that the central point of mediolateral damage was in the centre of the box.

4.2.6.3 Detection o f fibrillar A fi

Sections were viewed under a x40 objective using a Leica DC500 camera attached to 

a Leica DMR microscope (Leica systems. Buckinghamshire, UK). Photomicrographs 

were captured under differential interference contrast and a polarised light source 

using Leica Qwin software (Leica systems, Buckinghamshire, UK).

4.2.7 Data Analysis

Univariate tests of significance using Statistica™ Version 6.1 (StatSoft, USA) 

calculated the effect of Ap treatment and solvent on the number of NeuN positive 

cells, extent of medio-lateral hippocampal damage and percentage EDI stained area. 

Planned comparisons on the predicted means from the model assessed individual 

Api-42 and AP42-1 effects on these measurements. Results are represented as
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means ± SEM and significance was set at P < 0.05.

4.3 Protocols

4.3.1 Study 9: Western blot analysis o f the expulsion of the Apl-42 fragment

from apparatus

Prior to the commencement of in vivo studies, Study 9 examined the Api-42 forms 

that were expelled from apparatus commonly used for injecting Ap into rodent brain 

tissue. This study also sought to identify the apparatus that could consistently expel 

Api-42 protein and therefore be used most successfully for in vivo studies.

4.3.1.1 Lowest concentration o f aggregated A p i-42 used in vivo

In order to establish if the Api-42 fragment, particularly in its aggregated form, 

could be expelled from apparatus commonly used for administering substances 

directly into rodent brain, I initially assessed the lowest Api-42 concentration 

previously reported as successfully administered into brain tissue (Hare et al, 1999). 

Apl-42 was aggregated by continually stirring a lOOpM solution (0.45ug/ul) of 

soluble Api-42 in PBS at 23°C for 40 hours. Following incubation, the Api-42 

solution was turbid and approximately 80% of the peptide was sedimented by 

centrifugation leaving approximately 20% as supernatant. The supernatant and pellet 

were frozen at -20°C until use. Supernatant and pellet were drawn up either 

polypropylene tubing attached to a metal injector or a lOpl Hamilton syringe.

4.3.1.2 Oligomeric A p i -42 using minipump

Previously, the infusion of oligomeric Api-42 via minipump has resulted in Ap 

deposition and neuroinflammation in rodent brain (Frautschy et al, 2001, Frautschy 

et al, 1996). As an alternative to the injection of aggregated Api-42 via ICV tubing 

or Hamilton syringe, I investigated the expulsion of oligomeric forms of Apl-42 

from a minipump using a protocol described by Frautschy et al, 2001. 

lmg Api-42 in 221.7pi hexa-fluoro-iso-propanol (HFIP) was left to dissolve for 1 

hour at room temperature. The HFIP was allowed to evaporate from 45 pg Ap aliquot 

transferred to sterile eppendorfs. Eppendorfs were transferred to a speedvac and
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centrifuged for 10 minutes at 30°C, sealed with parafilm and stored at -20°C. Each 

45 pg aliquot was reconstituted in lpl DMSO and 100pi 4mM HEPEs buffer and 

sonicated for 3 minutes followed by incubation at 4°C for 24 hours. lOOpl of a 

500pg/ml high density lipoprotein (HDL) solution was added to the Ap solution 

before the minipump and associated tubing was filled and incubated in a 37°C water 

bath for 14 days.

4.3.1.3 Concentrations o f A (31-42 used in vivo to induce neurotoxicity 

Api-42 peptide (lnmol/2pl) was dissolved in 4.43pl 35% acetonitrile and 438.57pl 

sterile 0.1M PBS to produce a 500pM solution (2.25pg/pl (1 nmol)) and left to 

incubate overnight as described in section 4.2.2. Ap solution (5pi) was loaded into a 

lOpl Hamilton syringe or a pipette (control sample) and expelled into PBS to 

produce a 0.2pg/pl solution. Api-42 was also prepared by dissolving lmg Apl-42 in 

148 pi deionised water (3 nmol/2 pi) following the protocol described by Miguel- 

Hidalgo et al, 1998. The solution was stored for 3 hours at room temperature, 4°C 

overnight and room temperature for three hours. Aliquots were incubated at 4°C 

further 21-hour incubation before loading into a lOpl Hamilton syringe or pipette.

As a comparison, Api-42 (dissolved in 443pi sterile 0.1M PBS) was incubated at 

37°C for four days allowing formation of higher molecular weight aggregates and 

oligomeric forms of Ap.

4.3.2 Study 10: A/31-42 in 0.35% acetonitrile/O.lMPBS

A variety of solvents has been used to dissolve Ap including acetonitrile and PBS 

(Winkler et al, 1994; Ryu et al, 2004). Acetonitrile is toxic in its own right and its 

use in vivo must be appropriately validated.

Api-42 peptide was dissolved in 4.43pi 35% acetonitrile and 438.57pl sterile 0.1M 

PBS and left to incubate overnight as described in section 4.2.2. Male CD rats (250g, 

approx 10 weeks of age, n=8 per group) were unilaterally injected with 1 nmol/2 pi 

Apl-42 or sterile PBS alone.

4.3.3 Study 11: Afil-42 in 0.035% acetonitrile/0.1MPBS or 0.1MPBS alone

Api-42 peptide was dissolved in 443pi 0.035% acetonitrile/0.1M PBS solution
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(44.3pl 35% acetonitrile and 44.3ml sterile 0.1M PBS) and left to incubate overnight 

as described in section 4.2.2. Male CD rats (250g, approx 10 weeks of age, n=12 per 

group) were administered bilaterally with 1 nmol/2 pi Apl-42 in 0.035% acetonitrile 

and 1 nmol/2 pi Apl-42 in sterile PBS. The hemisphere injected with acetonitrile 

vehicle was randomised between animals and between surgeons so that n=6 animals 

received Api-42 in 0.035% acetonitrile in the left hemisphere and n=6 animals 

received Api-42 in 0.035% acetonitrile in the right hemisphere. The remaining 

hemisphere was injected with lnmol/2pl Api-42 in sterile PBS.

4.3.4 Study 12: A/31-42 vs. A/342-1 in 0.1MPBS alone

The reverse peptide Ap42-1 was used as a non-fibrillar Ap protein control as 

described by Ryu et al, 2004. Api-42 and AP42-1 peptides were dissolved in sterile 

0.1M PBS solution and left to incubate overnight as described in section 4.2.2. Male 

CD rats (n=12 per group) were unilaterally injected with 1 nmol/2 pi Apl-42 or 

lnmol/2pl AP42-1 or sterile PBS alone.

4.4 Results

4.4.1 Study 9: Western blot comparison o f A p i -42 preparations for direct

hippocampal injection

4.4.1.1 A p i  -42 expulsion: polypropylene tubing and Hamilton syringe 

Western blot analysis of the Ap forms expelled from a lOpl Hamilton syringe or 

plastic tubing attached to a metal injector revealed that Apl-42 is expelled from a 

Hamilton syringe as aggregates (52kDa and above) and as oligomeric (llkDa) and 

monomeric (3kDa) forms (fig 4.2). In contrast, use of polypropylene tubing and 

injector only allowed the expulsion of monomeric and oligomeric forms under both 

pellet and supernatant conditions. The amount of these forms expelled from plastic 

tubing was also greatly reduced relative to that expelled by the Hamilton syringe.

4.4.1.2 Oligomeric A p i  -42 using minipump

Western blot analysis revealed dense bands of oligomeric Ap (>llkDa) in the 

oligomeric control relative to a monomeric control indicating the preparation
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protocol successfully produced oligomeric Ap (fig 4.3). In the absence of the cannula 

injector positioned on the end of the tubing, diffuse bands of monomeric and 

oligomeric Ap were evident, however, in the presence of the cannula injector, no 

bands of Ap were apparent. Removing a sample of Ap solution from the incubating 

minipump at 14 days indicated a large presence of oligomeric forms although much 

of the Ap solution had also aggregated (>52kDa).
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Figure 4.2: Western blots demonstrating the expulsion of Api-42 forms from Hamilton 

syringe (A) and polypropylene tubing (B).
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Figure 4.3: Western blot demonstrating the expulsion of Api-42 forms from minipump.

4.4.1.3 Concentrations o f Apl-42 used in vivo to induce neurotoxicity

Western blot analysis of Apl-42 prepared following protocols by Miguel-Hidalgo et 

al, 1998 and Ryu et al, 2004 and expelled through a lOpl Hamilton syringe revealed 

the expulsion of monomeric and, to a lesser degree, oligomeric and higher molecular 

weight forms of Api-42 (fig 4.4). The monomeric and oligomeric forms were 

evident as bands between 3 and 19 kDa. Bands of higher molecular weight Api-42 

forms were evident as bands at 185kDa and within the wells of the gel. Forms of 

Apl-42 expelled from a lOpl Hamilton syringe were not different from control 

samples obtained via pipette, suggesting the Hamilton syringe did not limit the 

expulsion of Ap forms into brain tissue. Monomeric forms of a preaggregated Api- 

42 solution were expelled from a lOpl Hamilton syringe, however, oligomeric and 

higher molecular weight aggregates were less evident with diffuse bands of 

aggregated Ap evident in the wells of the gel.
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Figure 4.4: Western blots demonstrating the expulsion o f Api-42 forms from lOjul Hamilton 

syringe using protocols described in the literature (A) or standard preaggregated Api-42 (B).
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4.4.2 Study 10: IH  Apl-42 (lnmol) in 0.35% acetonitrile/0.1MPBS

4.4.2.1 Presence o f amyloid

Staining for the position of the amyloid deposit using 1E8 antibody indicated the 

peptide either remained localised within the dentate gyrus (fig 4.5B), the tract of the 

needle or diffused sideways from the end of the tract through the corpus callosum 

(fig 4.5A).

Figure 4.5: Representative photomicrographs of coronal sections of the CA1 (A) and dentate 

gyms (B) stained for amyloid (1E8) in Apl-42 intra-hippocampal injected rats (n=8 per 

treatment group). Scale bar represents 200pmetres

4.4.2.2 Neurodegeneration

The location of the injection site varied within the hippocampus between the CA1 

and the dentate gyrus (DG) layers. 5/8 vehicle and 5/8 Api-42 injected rats had an 

injection site located within the dentate gyrus (fig 4.6 C & D) whilst remaining rats 

in each treatment group had an injection site located above the CA1 (fig 4.6 A & B). 

Vehicle or Apl-42 solution injected above the CA1 appeared to diffuse down the 

fibres of the corpus callosum. Staining for neuronal cell nuclei using NeuN stain 

indicated a clear demarcation between the injection site and the surrounding tissue 

(fig 4.6). Cell loss was present in all treatment groups and was evident either as a 

complete loss of neurons or the presence of shrunken cells. Cell loss in the dentate 

gyrus (DG) occurred adjacent to the amyloid deposit whilst localisation of the 

deposit along the corpus callosum significantly affected the CA1 granule layer. 

There was no significant effect of Api-42 relative to vehicle treatment on numbers
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of NeuN positive cells within 700pmetres of the lesion centre (fig 4.7) or on the 

extent of mediolateral damage (fig 4.8), regardless of injection site location. 

Differentiating between sub regions of the hippocampus revealed no significant 

effect of Apl-42 treatment relative to vehicle control on NeuN count in dentate gyrus 

(DG) or CA1 of the hippocampus (DG: vehicle -  380.83 ± 90.11 cells, Apl-42 -  367 

± 141.38 cells; CA1: vehicle -  141.13 ± 23.77 cells, Apl-42 -  114.57 ± 26.71 cells. 

Similarly, there was no treatment effect on the extent of mediolateral damage in DG 

or CA1 (DG: vehicle -  1170.26 ± 183.70 cells, Apl-42 -  956.05 ± 372.23 cells; 

CA1: vehicle- 100 ± 0.00 cells, Api-42 -  173.50 ± 89.41 cells).
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Figure 4.6: Representative photomicrographs of coronal sections of the hippocampus stained 

with NeuN in vehicle (A, C) and Api-42 (B, D) intra-hippocampal injected rats (n=8 per 

treatment group). Scale bar represents 200pmetres
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Figure 4.7: Quantification of NeuN positive cells in hippocampus of vehicle and Api-42 
intra-hippocampal injected rats (n=8 per treatment group), data represented as the count of 

NeuN positive stained cells and shows mean ± SEM (planned comparisons following
ANOVA)
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Figure 4.8: Measurement of mediolateral lesion in vehicle and Api-42 intra-hippocampal 
injected rats (n=8 per treatment group), data represented as the mediolateral lesion size in 

pM and shows mean ± SEM (univariate ANOVA followed by planned comparisons)

147



4.4.2.3 Neuroinflammation

Staining for activated macrophage (and microglia) at the injection site was localised 

around the vehicle and Api-42 deposit and, to a much lesser extent, within the 

injection tract (fig 4.9). The inflammatory cells surrounding the deposit were a mix 

of large amoeboid macrophage cells and activated microglia.

Macrophage

Microglia

■ . *

Figure 4.9: Representative photomicrographs of coronal sections of the hippocampus stained 

for EDI positive macrophage and microglia in vehicle (A, C) and A(31-42 (B, D) intra- 

hippocampal injected rats (n=8 per treatment group). Scale bar represents lOOpmetres
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4.4.3 Study 11: IH Apl-42 (lnmol) in 0.035% acetonitrile/O.lMPBS or 0.1M 

PBS alone

4.4.3.1 Presence o f A f

Apl-42 deposits were located within the corpus callosum across the top of the CA1 

granular layer, through the dentate gyrus or within the needle tract (fig 4.10). There 

was no significant difference in deposit volume within the tissue between PBS and 

acetonitrile based vehicles (fig 4.11). This suggests the maximum amount of Ap was 

expelled from the syringe needle or that acetonitrile, at this concentration, does not 

aid amyloid expulsion.

Ap deposit at
Ap deposit at CA1

Figure 4.10: Representative photomicrographs of coronal sections of the hippocampus 

stained for Ap in 0.1 M PBS alone (A, B) or 0.035% acetonitrile (C, D) in bilateral intra- 

hippocampally injected rats (n=12 per vehicle or AP treatment group). Scale bar represents

200pmetres
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Figure 4.11: Measurement of the average amyloid deposit in the hippocampus of Apl-42 

bilateral intra-hippocampally injected rats (n=12 per vehicle or Ap treatment group), data 

represented as the volume of Ap deposit (pM2) and shows mean ± SEM (univariate ANOVA

followed by planned comparisons)

4.4.3.2 Neurodegeneration

There remained variation in the dorso-ventral location of the injection site as 

reported previously in study 9; however, there were a greater number of animals in 

both vehicle and Apl-42 treatment groups that had a deposit located above the CA1 

granular layer (fig 4.12). The clear demarcation between healthy surrounding CA1 or 

dentate gyrus neurons and the neuronal loss within the injection site allowed 

quantification of healthy cells remaining within 700pm either side of the centre of 

the injection site and the lateromedial measurement of cell loss.

Repeated measures ANOVA revealed there was no overall effect of treatment, F q, 30) 

=2.47, p=0.13, a significant effect of solvent, F (i; 30) =4.41, p<0.05 and a non

significant trend for an overall interaction between treatment and solvent, F (1, 30) 

=3.05, p=0.09. Post hoc comparisons revealed a significant reduction in NeuN 

positive cells within the injection site, demonstrated as a 25% loss in cells with Api- 

42 treatment in PBS only (p<0.05). Acetonitrile at 0.035%, masked Api-42 induced 

cell loss since a similar number of NeuN positive cells remained following 

acetonitrile, Api-42 in acetonitrile or Apl-42 in PBS (fig 4.13). Acetonitrile vehicle 

resulted in significantly fewer remaining NeuN positive cells than PBS vehicle 

(p=0 .0 1 ) demonstrating a toxic effect of acetonitrile in vivo.

Acetonitrile
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There was no overall treatment effect on the extent of mediolateral damage, F (i, 32) 

=0.57, p=0.46. There was a non-significant trend for an overall interaction between 

treatment and solvent, F (1, 32) =3.27, p=0.08. Post hoc planned comparisons revealed 

that Apl-42 in PBS caused an increase in the extent of mediolateral damage 

demonstrated as a 69% increase above PBS treatment alone (p < 0.05). Utilisation of 

an acetonitrile vehicle masked this effect as evident by the increase in lesion size 

with acetonitrile alone relative to PBS treatment (p<0.05) (fig 4.14).

Figure 4.12: Representative photomicrographs of coronal sections of the hippocampus 

stained for NeuN in vehicle - PBS (A), vehicle - acetonitrile/PBS (B), Apl-42 - PBS (C) 

and Api-42 - acetonitrile/PBS (D) in bilateral intra-hippocampally injected rats (n=12 per 

vehicle or Ap treatment group). Scale bars represent 200pmetres
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Figure 4.13: Quantification of NeuN positive cells in vehicle and Apl-42 bilateral intra- 

hippocampally injected rats (n=12 per vehicle or Ap treatment group), data represented as 

the count of NeuN positive stained cells and shows mean ± SEM. * p <0.05 significantly 
different vs. PBS vehicle (repeated measures ANOVA followed by planned comparisons)
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Figure 4.14: Measurement of mediolateral lesion in vehicle and Api-42 intra-hippocampal 

injected rats (n=12 per vehicle or Ap treatment group), data represented as the mediolateral 

lesion size (pM) and shows mean ± SEM. * p <0.05 significantly different vs. PBS vehicle 
(repeated measures ANOVA followed by planned comparisons)

4.4.3.3 Neuroinflammation

There was an overall treatment effect, F (3, 33) = 12.73, p<0.001 on EDI positive cells 

present within the injection site (fig 4.15). Post hoc planned comparisons revealed 

Api-42 induced a significant 8 8 % (p=0.01) increase when dissolved in PBS alone 

and a significant 64% (p<0.05) increase in EDI positive cells when using a vehicle
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containing 0.035% acetonitrile (fig 4.16).
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Figure 4.15: Representative photomicrographs of EDI staining in hippocampus of vehicle - 

PBS (A) vehicle - acetonitrile/PBS (B), A01-42 - PBS (C) & Ap 1-42 - acetonitrile/PBS (D) 

bilateral intra-hippocampally injected rats (n=12 per vehicle or amyloid treatment group),

scale bar represents lOOpmetres
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Figure 4.16: Quantification of the percentage stained area of EDI positive cells in vehicle 

and Api-42 intra-hippocampal injected rats, data represented as percentage stained area and 

shows mean ± SEM. * p <0.05, ** p <0.01 significantly different vs. respective vehicle 
(repeated measures ANOVA followed by planned comparisons)

4.4.4 Study 12: IHAfil-42 (lnmol) vs. A/342-1 (lnmol) in 0.1MPBS alone

4.4.4.1 Presence o f amyloid

As demonstrated in previous studies, Api-42 deposition was evident within the CA1 

and dentate gyrus regions of the hippocampus. 6/12 animals per treatment group had 

a deposit within the CA1 (fig 4.17). Further investigation revealed that, under 

polarised light, the Congo red stained deposit did not demonstrate the apple-green 

birefringence typical of fibrillar Ap. As a positive control, Congo red stained cortical 

Ap plaques of a heterozygous double mutant APP/PS1 transgenic TASTPM mouse 

(TASTPM developed in GSK, Harlow, UK) revealed apple-green birefringence 

(fig.4.18).
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Figure 4.17: Representative photomicrographs of coronal sections of the CA1 (A) and 

dentate gyrus (B) stained for amyloid (1E8) in Apl-42 intra-hippocampal injected rats (n=12 

per treatment group). Scale bar represents 200pmetres
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Figure 4.18: Representative photomicrographs of coronal sections of the cortex of a 

TASTPM mouse (A) and the Apl-42 deposit in intra-hippocampal injected rats(n=12 per 

treatment group) (B) under polarised light (x40 magnification)
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4.4.4.2 Neurodegeneration

There was no overall effect of treatment, F (2, 22) = 0.84, p = 0.44, on hippocampal 

cell loss (fig 4.19). The greater variability within the AJ31-42 treatment group, in 

contrast to study 11, meant a loss in statistical significance evident as a non

significant decrease in NeuN positive cells relative to vehicle (26% loss, p = 0.35) 

and Ap42-1 (29% cell loss, p = 0.84) (fig 4.20). There was a significant overall effect 

of treatment on the extent of mediolateral damage present, F (2, 26) = 4.06, p<0.05. 

Post hoc planned comparisons revealed a non-significant increase in lesion size of 

Apl-42 treated rats relative to vehicle (42% increase, p=0.09) and a significant 

increase relative to AP42-1 (69% increase, p<0.01) (fig 4.21).

DG dama;

DG damage

Figure 4.19: Representative photomicrographs of coronal sections of the hippocampus 

stained for NeuN following intra-hippocampal (n=12) vehicle (A) Ap42-1 (B) and Apl-42

(C), Scale bars represent 200pmetres
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Figure 4.20: Quantification of NeuN positive cells in vehicle and Api-42 intra-hippocampal 

injected rats (n=12), data represented a count of the NeuN positive stained cells and shows as 

mean ± SEM (univariate ANOVA followed by planned comparisons)
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Figure 4.21: Measurement of mediolateral lesion in vehicle and Api-42 intra-hippocampal 

injected rats, data represented as mediolateral lesion size (pM) and shows mean ± SEM. * p 

<0.05 significantly different vs. AP42-1 (univariate ANOVA followed by planned

comparisons)
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4.4.4.3 Neuroinflammation

There was an overall effect of treatment, F 25) = 9.84, p<0.001 on presence of EDI 

positive cells (fig 4.22). Api-42 induced a 100% increase in EDI positive cells 

within the region of interest (p=0.01) relative to vehicle treatment and a 138% 

increase relative to the reverse peptide AP42-1 (p<0.001) (fig 4.23).
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Figure 4.22: Representative photomicrographs of coronal sections of the hippocampus 

stained for EDI positive macrophage and microglia in vehicle (A), AP42-1 (B) and Api-42 

(C) intra-hippocampal injected rats (n=12). Scale bar represents lOOpmetres
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Figure 4.23: Quantification of the percentage stained area of EDI positive cells in vehicle 

and Apl-42 intra-hippocampal injected rats (n=12 per treatment group), data represented as 

percentage stained area and shows mean ± SEM. ** p <0.01, *** p <0.001 significantly 

different vs. Apl-42 (univariate ANOVA followed by planned comparisons)

4.5 Discussion

4.5.1 Delivery o f A p i -42 forms in to roden t brain

Using western blot analysis, the expulsion of Ap from apparatus commonly used to 

deliver Ap into rodent brain was assessed. A lOOpM Ap solution prepared following 

a protocol by O’Hare et al, 1999 and previously described to be successfully injected 

into rat brain was expelled through a Hamilton syringe or plastic tubing attached to a 

metal injector. Diffuse bands indicated little aggregated Api-42, shown to be present 

in pellet and supernatant control samples was released from plastic tubing (fig 4.2). 

The amount of oligomeric and monomeric Ap forms expelled was also decreased. 

This was in contrast to the Ap forms delivered by using a lOpl Hamilton syringe, in 

which monomeric, oligomeric and aggregated forms were successfully expelled 

under both pellet and supernatant conditions (fig 4.2). This confirms that, at lOOpM 

concentration, Ap 1 -42 can be successfully delivered into rodent brain via Hamilton 

syringe, in agreement with data described by O’Hare et al, 1999. This may explain 

why many authors choose to inject Ap into discrete brain regions or the ventricular 

system by using a Hamilton syringe (Song et al, 2001; Ryu et al, 2004; Jantaratnotai
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et al, 2003). Alternatively, the Ap deposition and neuroinflammation in rats and 

mice following ICV minipump infusion of an oligomeric Apl-42/HDL solution has 

also been reported (Harris-white et al, 2004; Craft et al, 2004; Frautschy et al, 2001). 

HDL is thought to aid the delivery of Ap and reduce aggregation (Craft et al, 2004). 

Western blot analysis of Api-42 solution prepared following the protocol by 

Frautschy et al, 2001 and expelled from tubing attached to a minipump revealed no 

Ap form was delivered when assessed after 14 days incubation (fig 4.3). Due to the 

housing of the minipump, tubing and collecting eppendorf at 37°C for 14 days, it is 

possible that Ap could not be detected due to evaporation of the expelled solution, 

hence the possibility that Ap was expelled cannot be discounted and Frautschy et al, 

2001 does describe limited deposition of Ap in brain tissue with this protocol. 

Additional assessment of the remaining Api-42 solution within the minipump after 

14 days incubation revealed the presence of Ap aggregates (fig 4.3). The likelihood 

that Ap contained within a minipump may aggregate easily and limit the deposition 

of AP within the brain tissue highlights the difficulty of using this method for 

delivering significant Ap into the tissue to induce quantifiable neurodegeneration. 

Using this Ap minipump protocol, overt cell death has not yet been described by the 

Frautschy group, although a reduction of synaptophysin, a synaptic-associated 

protein, indicates compromised synaptic density (Craft et al, 2004).

Much published literature describes the direct injection of Ap into rodent brain 

(O’Hare et al, 1999; Weldon et al, 1998; Ryu et al, 2004; 2006; Jantaratnotai et al, 

2003; Miguel-Hidalgo et al, 1998; 2002; Song et al, 2001). Further assessment using 

Apl-42 solutions prepared following protocols by Miguel-Hidalgo et al, 1998 or Ryu 

et al, 2004 and described as neurotoxic in vivo, revealed mainly monomeric and 

some oligomeric Apl-42 were present in control samples and expelled from a 10pl 

Hamilton syringe (fig 4.4). This suggests that, on injection, Ap is delivered into brain 

tissue as soluble Ap forms. Frautschy et al, 1996 suggested that Ap toxicity in brain 

tissue is dependent on Ap remaining in its soluble state, however, Api-42 aggregates 

easily and may aggregate once injected into rodent brain.

4.5.2 Presence o f A p in  brain tissue following intra-hippocampal injection

Following the protocol by Ryu et al, intra-hippocampal injection of Api-42 resulted
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in a deposit located within the CA1, corpus callosum or dentate gyrus of the 

hippocampus (fig 4.5). It is likely that much of the variability observed within these 

studies is due to the inherent variability in injection procedure as, in agreement with 

previous literature, consistent direct injection to one specific sub-region is difficult 

(Miguel-Hidalgo et al, 1998). As in the studies described in this chapter, Miguel- 

Hidalgo et al, 1998 also described that, under polarised light, Api-42 deposits 

stained with Congo red did not demonstrate apple-green birefringence (fig 4.18). 

This indicates that Ap neurotoxicity evident in this model is caused by soluble Ap 

forms rather than fibrillar Ap. Recently, the possibility that soluble Ap causes 

neurotoxicity in brain tissue has been extensively discussed, particularly the role of 

oligomers in Ap neurotoxicity (Chromy et al, 2003; Walsh & Selkoe, 2004; Lacor et 

al, 2004).

4.5.3 A fi- induced neurodegeneration

The purpose of the in vivo studies described in this chapter was to investigate the 

influence of the solvents acetonitrile diluted in PBS and PBS alone on Ap-induced 

neurotoxicity in rat brain. Following this, the neurotoxic effect of Api-42 was 

compared to the reverse peptide, AP42-1. Despite earlier conflicting reports 

regarding the neurotoxic effects of Ap in vivo (Smyth et al, 1994; Winkler et al, 

1994; Games et al, 1992), recent literature has described the neurotoxic effects of the 

Api-42 fragment when directly injected into the hippocampus. Quantification of 

neurodegeneration following protocols previously described by Ryu et al, 2004 and 

Miguel-Hidalgo et al, 1998 revealed a trend for increased neurodegeneration in rats 

treated with Api-42 relative to vehicle and AP42-1 when all treatments were 

dissolved in PBS alone. This was evident as approximately a 25% NeuN positive cell 

loss (fig 4.13) and a 69% increase in the extent of mediolateral damage (fig 4.14). 

The 25% cell loss evident in studies described within this chapter supports 

previously published literature (Ryu et al, 2004); however, this window of cell loss 

was relative to vehicle injected rats. Ryu et al, 2004 described a 28% reduction in 

NeuN count relative to sham rats following intra-hippocampal Api-42 injection into 

the hippocampus although the Api-42 was dissolved in the solvent acetonitrile. 

Synthetic Ap has been dissolved in a number of commonly used solvents including 

dimethylsulfoxide (DMSO) (Mattson et al, 1993), acetonitrile (Yankner et al, 1994,
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Jantaratnotoi et al, 2003; Ryu et al, 2004), water (O’Hare et al, 1999) and saline or 

PBS (Bishop et al, 2003) and the inherent toxicity should be taken into consideration 

when injecting directly into rodent brain tissue. In vitro studies revealed that Ap 

neurotoxicity was influenced by the solvent employed and the peptide aggregation 

state (Pike et al, 1993; Busciglio et al, 1992). Further evidence suggests the solvent 

may alter Ap aggregation state. For example, Mattson et al, 1992 reported the 

potentiation of excitotoxicity by Ap which had been dissolved in DMSO as a stock 

solution and then further diluted in saline. This resulted in predominantly monomeric 

forms of Ap and a lOOx greater toxicity than Ap dissolved in saline, which resulted 

in Ap dimer formation. A comparison of the neurotoxicity resulting from the 

injection of Ap dissolved in various solvents revealed that acetonitrile can cause a 

large degree of toxicity, which is significantly enhanced by either Api-42 or Api-40 

(Waite et al, 1992). There are conflicting reports relating to the influence of 

acetonitrile solvent on Ap-induced neurotoxicity in rodent brain (Ryu et al, 2004, 

Waite et al, 1992, Podlisny et al, 1992). Acetonitrile can be converted to cyanide by 

cytochrome P450 (Freeman & Hayes, 1988). Cyanide toxicity elicits changes in 

calcium homeostasis mediating the influx of calcium into the cell resulting in cell 

death (Waite et al, 1992). Using acetonitrile at either 0.35% (fig 4.7 & 4.8) or 

0.035% (fig 4.13 & 4.14) concentration, failed to result in a window of cell death 

between vehicle and Apl-42 treatment groups which supports a study described by 

Podlisny et al, 1992 in which injections of Api-40 dissolved in 35% acetonitrile into 

primate cerebral cortex did not significantly increase cell loss relative to acetonitrile 

alone. In contrast, Ryu et al, 2004 reported 28% cell loss following the intra- 

hippocampal injection of Api-42 dissolved in an acetonitrile/PBS based solvent 

although it is unclear what final percentage of acetonitrile remained following 

dilution of Apl-42 with 0.1M PBS to a 500pM concentration. The comparison of the 

Api-42 group with sham animals may also suggest that the neurotoxicity was wholly 

or partly due to the effect of acetonitrile since comparing studies described here 

indicated no difference in the magnitude of cell loss between Ap in acetonitrile and 

acetonitrile (vehicle) treated rats.

4.5.4 A p i  -42 - induced neuroinflammation

Previous reports suggest the full length Ap peptide is required to induce
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neuroinflammation, since Api-42 elicits greater inflammation both in vivo (Miguel- 

Hidalgo et al, 1998) and in vitro (Velazquez et al, 1997) than shorter Ap fragments. 

Neuroinflammation has long been considered as a potential mechanism for mediating 

or exacerbating Ap neurotoxicity in AD and recent studies have described the 

induction of an early inflammatory response to oligomeric amyloid in contrast to a 

less profound but chronic inflammatory state elicited by fibrillar Ap (White et al, 

2005). Intra-hippocampal injection of Api-42 increased neuroinflammation, evident 

as the increased presence of microglia and macrophage cells surrounding the Ap 

deposit relative to both acetonitrile and PBS vehicle treatment (fig 4.16). 

Neurodegeneration of hippocampal cells occurred adjacent to the deposit suggesting 

a combination of contact with Ap and the phagocytic activity and release of toxic 

molecules such as cytokines and NO by associated phagocytic cells mediates cell 

death in this model (Minagar et al, 2002). This theory is supported by in vitro 

evidence that in mixed neuron-glia cultures, following incubation with low 

concentrations (l-3pM) of Ap, significant neurotoxicity was evident in contrast to 

neuron-enriched cultures (without microglia) in which no neurotoxicity was observed 

(Qin et al, 2002).

Although Ap is a key characteristic of AD brain tissue, the role of Ap load and 

particularly the relative contribution of different Ap forms in causing or exacerbating 

cell death remain uncertain. Both fibrillar and oligomeric Ap forms have been shown 

to cause neurotoxicity (Howlett et al, 1995; Chromy et al, 2003). The accumulation 

of intraneuronal Api-42 may also significantly contribute to causing overt 

neurodegeneration, particularly on the scale evident in AD (Fernandez-Vizarra et al, 

2004; Masters et al, 1985). In AD brain tissue, microglia can congregate around core 

plaques as they develop and may convert the extracellular soluble Ap released from 

intraneuronal stores to fibrillar Ap plaques (Nagele et al, 2004). Further research 

would clarify whether the soluble Apl-42 deposit present by 7 days after intra- 

hippocampal injection may fibrillise if the study duration was extended. This may 

also have further implications on the neuroinflammation and neurodegeneration 

evident by later timepoints since it is unclear which Ap form is most neurotoxic in 

vivo. Intraneuronal soluble Ap has also been identified as an early neurodegenerative 

change in AD (Fernandez-Vizarra et al, 2004). Intraneuronal soluble Ap may 

significantly contribute to cell death (Wirths et al, 2004) hence the exogenous Ap
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induced neurodegeneration evident in this model is limited since it is unlikely to 

affect intracellular AP levels.

Overall, my thesis thus far has reported the development and validation of IP and 

ICV LPS induced neuroinflammation in rat brain. Assessment of the more AD 

relevant peptide, Apl-42, revealed successful delivery of Api-42 concentrations 

reported to be neurotoxic via injection by Hamilton syringe into rodent brain tissue. 

Intra-hippocampal injection of Api-42 resulted in a significant increase in cell- 

mediated inflammation associated with quantifiable but variable endpoints of 

neurodegeneration observed at 7 days post injection. Thus, the exogenous application 

of Api-42 into rat brain does not provide a robust and reliable in vivo model of AP- 

induced neurodegeneration. An alternative to the exogenous injection of Ap into 

rodent brain is to use APP or APP/PS1 overexpressing transgenic mouse models. 

Transgenic mouse lines overexpressing mutant human APP and PS1 genes, identified 

as genetic mutations important in familial AD, exhibit age-dependent increases in 

extracellular senile and diffuse Ap deposits within specific brain regions including 

the cerebral cortex and hippocampus. Ap deposits are associated with activated 

microglia, reactive astrocytes and increased cytokine expression within brain tissue. 

Despite the presence of Ap deposition, a majority of transgenic models 

overexpressing APP (and PS1) do not exhibit overt neurodegeneration, however, the 

peripheral administration of inflammatory or neurotoxic challenges such as LPS or 

DSP4 to APP and APP/PS1 overexpressing mice has been previously reported to 

modulate Ap load, exacerbate neuroinflammation and induce neurodegeneration 

(Sheng et al, 2003; Bragg et al, 1995; Heneka et al, 2006). Hence, subsequent 

chapters will evaluate the effects of inflammatory or neurotoxic challenges on 

inflammation and neurodegeneration in an APP/PS1 overexpressing transgenic 

mouse model, TASTPM.
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CHAPTER 5 

Single and repeated administration of LPS to TASTPM 
APP/PS1 overexpressing mice

5.1 Introduction
APP and APP/PS1 overexpressing transgenic mouse models have been routinely 

used to characterise the effects of amyloid neuropathology on neuroinflammation 

and neurodegeneration (Price et al, 2000). APP and APP/PS1 overexpressing mice 

demonstrate Ap induced neuroinflammation evident as activated microglia and 

reactive astrocytes associated with increased mRNA expression of pro- and anti

inflammatory cytokines in brain tissue (Apelt et al, 2001; Abbas et al; 2002; Benzing 

et al, 1999). However, a majority of transgenic models do not exhibit the overt 

neurodegeneration evident in brain tissue of AD patients (Games et al, 2006). More 

recently, newly constructed APP/PS1 transgenic lines have been reported to exhibit 

some level of neurodegeneration in brain ranging from approximately 15 -  50% cell 

loss (Schmitz et al, 2004; Casas et al, 2004; Bondolfi et al, 2002); however, this is 

low relative to the neurodegeneration evident in specific brain regions, particularly 

the entorhinal cortex, of AD brain (Gomez-Isla et al, 1996). Recent evidence derived 

from in vivo animal models (Cunningham et al, 2005; Combrinck et al, 2002; Perry 

et al, 2003) and patient studies (Holmes et al, 2003) suggests systemic infection may 

exacerbate the progression of chronic neurodegenerative diseases such as AD by 

enhancing the production of inflammatory mediators and recruitment of immune 

cells in compromised brain tissue. There is further evidence that peripheral 

administration of LPS can modulate Ap load and neuroinflammation in APP or 

APP/PS1 overexpressing mice (Sheng et al, 2003; Sly et al, 2001; Qiao et al, 2001). 

Much of the current literature describes the quantification of cytokine mRNA (Abbas 

et al, 2002; Lim et al, 2000) in APP overexpressing mice and there is data indicating 

modulation of cytokine protein in brain tissue following IP LPS administration (Sly 

et al, 2001). Exacerbating the pathology of APP/PS1 transgenic models using 

peripheral administration of inflammatory stimuli such as LPS or specific neurotoxic 

agents may therefore provide a suitable model of neuroinflammation and

165



neurodegeneration.

5.1.1 Peripheral infection in AD

Severe systemic infections in elderly patients can induce the development of 

delirium, a state of cognitive impairment comprising a loss of memory, 

hallucinations and confusion (Perry et al, 2004). At their time of death, many AD 

patients are suffering from infections of peripheral organs such as the lungs or 

bladder. Holmes et al, 2003 reported that for at least two months following the 

resolution of a systemic infection, patients suffering mild-to-moderate AD exhibited 

greater cognitive decline relative to uninfected patients. A subset of infected patients 

also displayed enhanced ILlp at initial mini-mental state examination (MMSE) 

assessment and subsequent MMSE tests revealed an exacerbated cognitive decline 

relative to other infected AD patients. The induction of a peripheral infection in a 

preclinical model demonstrating amyloid deposition in brain tissue, such as APP/PS1 

overexpressing mice, may enhance pre-existing neuroinflammation. I was also 

interested in examining the consequence of peripheral infection on the occurrence of 

neurodegeneration.

5.1.2 LPS administration to APP (&PS1) overexpressing mice

There are a limited number of reports detailing the effect of LPS administration to 

APP or APP/PS1 overexpressing mice. Differences in route of administration, 

treatment protocols, animal genotype, LPS serotype and sampling timepoint have 

resulted in variability in the in vivo effects of LPS on APP or APP/PS1 

overexpressing mice. Intra-hippocampal LPS, administered after plaque onset, 

resulted in increased number and size of reactive astrocytes and activated microglia 

in Tg2576 transgenic mice with (DiCarlo et al, 2001) and without (Herber et al, 

2004) the presence of a PS 1 transgene. In both reports, there was a corresponding 

decrease in Ap load that was due to a reduction in diffuse amyloid plaques, since 

congophilic deposits remained unaffected (Herber et al, 2004). Additionally, the IP 

administration of LPS (single bolus of 25mg/kg at 13 and 14 months) post plaque 

onset in Tg2576 mice caused a reduction in Ap load (Quinn et al, 2003). Acute 

peripheral administration of LPS also induced cortical and hippocampal ILip in aged 

Tg2576 mice (Sly et al, 2001). This supports evidence that an acute inflammatory
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response in the brain can occur after a peripheral inflammatory challenge and that 

this is exacerbated in animals exhibiting amyloid neuropathology. In contrast, 

chronic administration of LPS either via repeated ICV or IP injection results in an 

increase in Ap load, evident as an increase in Ap and APP positive neurons, Api-40 

and Apl-42 protein, intracellular Ap accumulation (Sheng et al, 2003) or thioflavin- 

S-positive amyloid deposits (Qiao et al, 2001). Interestingly, these authors 

administered LPS before the onset of robust fibrillar amyloid deposition. This 

suggests that pre-existing neuroinflammation caused by chronic administration of an 

inflammatory challenge can exacerbate Ap neuropathology. LPS treatment after 

extensive amyloid deposition may induce clearance of plaques since IP 

administration of LPS after the onset of plaque deposition the brains of Tg2576 mice 

caused a reduction in amyloid plaque burden (Quinn et al, 2003).

5.1.3 The TASTPMAPP/PS1 overexpressing transgenic mouse model

Heterozygous double mutant mice (TASTPM) previously generated by Dr. Jill 

Richardson at GSK, Harlow, UK were used in these studies. TAS10 mice 

(Richardson et al, 2003) carrying the Swedish double familial mutation hAPP695swe 

(K670N; M671L) and backcrossed onto a pure C57BL/6 background and mice 

carrying the PS-1 (Ml46V) mutation were generated at GlaxoSmithKline. Human 

cDNA for APP695 (K670N; M671L) or PS-1 (Ml46V) was inserted into a vector 

and replaced the coding sequence of the murine Thy-1 gene to allow brain-specific 

expression of either transgene as described by Howlett et al, 2004.

TASTPM mice demonstrate age-dependant amyloid neuropathology and cognitive 

impairments (extensively characterised at GSK, Harlow and initially described by 

Howlett et al, 2004). Using immunohistochemical techniques, amyloid deposits were 

observed in the brain tissue of all TASTPM mice by four months of age. Fibrillar Ap 

plaques, when observed under an electron microscope, were not evident until six 

months of age. Female mice displayed more extensive cerebral plaque pathology by 

six and ten months of age relative to male mice. Cortical extracellular Ap plaques 

were surrounded by dystrophic neurites and in close proximity to astrocytes and 

microglia, however, overt neuronal loss was not evident.
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5.1.4 Chapter A ims

This chapter will describe the effects of peripheral administration of LPS to the 

APP/PS1 overexpressing mouse, TASTPM. Using Luminex®, the effects of a

peripheral inflammatory challenge on cytokine expression in brain tissue and plasma

will be investigated. The effect of LPS on amyloid neuropathology, 

neuroinflammation and neurodegeneration will be characterised using 

immunohistochemical techniques.

5.2 Materials & Methods

5.2.1 Animals

Specific, pathogen free male heterozygous double mutant TASTPM and male 

C57BL6/J mice at 2, 5 and 10 months of age (for assessing effects of acute LPS 

administration) and at 4 months of age (for assessing effects of repeated 

administration of LPS) were purchased from Charles River, UK. All mice were 

singly housed under controlled conditions (temperature: 21-24°C, 12-h light/dark 

cycle (7am lights on) and provided with Global Rodent Maintained Diet (Harlan 

Teklad) and water ad libitum. Sheng et al, 2003 described evidence of adverse effects 

1-2 hours following LPS administration, which included shivering. Hence, during 

repeated LPS injection animals were provided with extra bedding. All experimental 

procedures were conducted in accordance with the GlaxoSmithKline local ethics 

committee and conformed to the UK Animals (Scientific Procedures) Act 1986.

5.2.2 Materials

Phosphate buffered saline (PBS) was prepared using PBS tablets obtained from 

Sigma, UK. Lipopolysaccharide (0111 :B4, L2630) was purchased from Sigma, UK. 

Immunostaining machines, PAP pens, the antigen retrieval solution proteinase K, 

peroxidase blocking solution and diaminobenzidine substrate kit were obtained from 

DakoCytomation, UK. Optimax buffer was obtained from A. Menarini, UK. Gills 

haematoxylin stain and citrate buffer was purchased from HD Supplies, UK. The 

sources of additional materials are individually stated.
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5.2.3 Treatment

LPS was allowed to dissolve in filtered PBS in a falcon tube (VWR International, 

UK) for at least 30 minutes before administration.

For single dosing, LPS was dissolved at 600pg/5ml and administered at 5ml/kg. 

This dose was based on previous validation studies assessing a dose response and a 

timecourse of LPS induced cytokine protein in brain and plasma in C57BL6/J mice 

(GSK, Harlow, UK). For repeated dosing, 5mg LPS was dissolved in 100ml of 

filtered PBS and was administered at lOpl/g body weight (0.5pg/g body weight) 

according to a protocol by Sheng et al, 2003. Repeated administration of LPS at

0.5pg/g increased Ap load and neuroinflammation in APPswe transgenic mice 

(Sheng et al, 2003).

5.2.4 Sample collection

Mice were deeply anaesthetised with sodium pentobarbitone (Euthatal® lOOmg kg-1

1.p, Rhone Merieux, Harlow, UK). Trunk blood was collected into a 1.3ml EDTA 

micro-tube (VWR International, UK) via a cut in the right atrium. Mice were 

transcardially perfused with 15ml ice-cooled 0.9% sterile saline. Hemidissected brain 

and microdissected brain regions were stored in preweighed and labelled eppendorfs 

at -80°C. The blood was spun in a microcentrifuge at 6000g for 6 minutes (according 

to a previous protocol, GSK, Harlow) and the straw-coloured plasma fraction 

collected into fresh eppendorfs and stored at -80°C.

5.2.5 Cytokine protein determination

5.2.5.1 Sample preparation

Brain tissues were diluted to the appropriate concentration (5ul/mg tissue) with high 

performance ELISA (HPE) buffer (Sanquin Reagents, Amsterdam) and homogenised 

using a hand-held Ultra-Turrax T8 homogeniser (VWR International, UK). All 

samples were spun in a microcentrifuge (Centrifuge 5415 D, Eppendorf UK Ltd, 

Cambridge, UK) at 16,1 lOg for 2 minutes. The supernatant was removed and stored 

in a fresh eppendorf at -80°C. Brain supernatant and plasma were subsequently 

allowed to defrost and 50pl aliquots of each sample placed into a corresponding well 

on a standard 96-well plate (Nunc, UK) according to a predetermined plate layout.
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All samples were diluted with lOOpl assay buffer (1% BSA in PBS).

®5.2.5.2 Luminex suspension bead array -  cytokine analysis

lOOpl of sample was transferred to a pre-wet (lOOpl of assay buffer added to each 

well and then vacuum filtered) 96-well filter plate (Millipore®, USA). A 5000pg 

standard (Upstate, Hampshire, UK) was reconstituted in 500pi of assay buffer, added 

to a 14600pg standard for M IP-la (Biosource, UK), and serially diluted 1:3 using 

assay buffer to provide an 8 point standard curve (0 to 5000 pg/ml). Samples were 

incubated in the dark overnight at 4°C with 50pl of anti-cytokine conjugated beads 

(60pl of 25x stock solution for each cytokine diluted to lx in total of 5940pl assay 

buffer per plate) multiplexed from individual kits for each cytokine (R & D Systems, 

UK, (MIP-la (Biosource, UK)). Plates were washed three times with 200pl of assay 

buffer, filtered using a vacuum manifold apparatus (Millipore®, USA) and incubated 

with lOOpl of detection antibody (R & D Systems, UK, (MIP-la (Biosource, UK)) 

(60pl stock solution of each cytokine diluted to lx dilution in a total of 11940pi 

assay buffer per plate) in the dark at room temperature for 1 hour. Following three 

washes (200pl assay buffer), each sample was incubated with lOOpl streptavidin 

phycoerythrin - PE (VWR International, UK) (12pl stock solution diluted with 

11,988pl assay buffer) and placed in the dark on a plate shaker at 700rpm for 30 

minutes at room temperature. Plates were analysed by the Luminex®-100™ system 

(Luminex® Corporation, USA) to achieve MFI readings for standard curves and 

cytokines in brain homogenate and plasma. Double discriminator gates were 

positioned from approximately 8,000 to 15,000 to separate singlet and doublet beads. 

Intensity was identified at bead regions 50, 06, 32, 79, 26 for IL-10, IL-ip, IL-6, 

TNF-a and M IP-la respectively. 4/5-parameter logistic regression curves (Hulse et 

al, 2004) of the cytokine standards were calculated using StarStation software and 

the concentrations of unknown samples were determined relative to calculated 

standard curves.

5.2.6 Afi ELISA

Hemidissected brain samples were prepared by adding 1ml 5M guanidine HC1 

(Calbiochem, USA) containing Complete TM protease inhibitor tablet (Roche
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Diagnostics, UK) resulting in approximately 150mg/ml w/v. Each sample was 

homogenised using a Torax/hand held pellet pestle (Sigma, UK) and mixed on a 

shaker for 90 minutes at 4°C. IGEN buffer (50mM Tris HC1, pH7.4, 150mM NaCl, 

0.05% Tween-20+ 1% BSA) was added to each sample at a 1/10,000 dilution and an 

aliquot of the resulting solution removed. The aliquot was vortexed and centrifuged 

at 20000g for 20 mins at 4°C. The supernatant was removed and transferred to a 2ml 

deep polypropylene 96 well block and lOOpl of each sample pipetted in triplicate 

into polypropylene 96 well plates (VWR international, UK). Standard curves for 

human A£40 (0 to 40ng/ml) and A042 (0 to 20 mg/ml) dissolved in guanidine 

containing IGEN buffer were constructed, in triplicate. An antibody/bead mix of 

15ml per plate was prepared using lOpl of 0.66pg/ml biotinylated 6E10 (Signet 

Labs, USA), 4pl ori-tag G210 (A04O) or 8pi 5G5 (AP42) (IGEN® International, 

USA), 125pi streptavidin dynabeads® (Invitrogen Ltd, UK) and 15ml assay buffer 

(50mM Tris HC1, pH7.4, 150mM NaCl, 0.05% Tween-20)+ 1% BSA. 150pl of the 

mix was added to each well and the plate vigorously mixed overnight at room 

temperature. The following day, the plate was read on an IGEN M8 analyser 

(IGEN® International, USA). The Ap ELISA was kindly completed by Peter Soden, 

GSK, Harlow, UK.

5.2.7 Immunohistochemistry

Hemi-dissected brains were immersed fixed in 4% paraformaldehyde for 3 days at 

room temperature and prepared for paraffin wax processing using a Shandon Citadel 

1000 tissue processor and embedded in paraffin wax using a Shandon Histocentre II 

embedding centre. A Microm HM 355S rotary microtome was used to cut at least 40 

semi-serial sections of 5pM thickness were prepared from each sample to include the 

cortex and hippocampus (bregma -1 to -4mm). Slides were dried at room 

temperature for at least 24 hours before staining. 6 sections per stain were assigned 

for amyloid (1E8), neuronal cell nuclei (NeuN), astrocytes (GFAP) and microglia 

(CD68) immunohistochemistry. Sections were dewaxed in Histoclear (National 

Diagnostics, UK) and hydrated through industrial methylated spirit (IMS), 70% IMS 

and deionised water. Sections were washed in deionised water and a hydrophobic 

barrier applied above and below the section using a PAP pen to prevent the antibody 

solution falling off the slide. Slides were loaded into an autostainer and Optimax
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buffer applied. Buffer was added between each step and deionised water applied after 

the diaminobenzidine step. After staining, sections were washed in running tap water 

for 5 minutes before counter staining in Gills haematoxylin for 3 seconds. Sections 

were placed in running tap water to "blue", dehydrated in graded followed by 

absolute IMS, cleared in Histoclear and mounted in DPX (VWR, UK).

5.2.7.1 Amyloid (IE8) Staining

Sections were treated with 85% formic acid (VWR) for 8 minutes then washed 

thoroughly in deionised water and loaded into the automated immunostaining 

machine. Sections received peroxidase block for 5 minutes, primary mouse

monoclonal antibody 1E8 (raised against 13-27 fragment of beta amyloid) (GSK, 

UK) diluted 1 in 1000 in antibody diluent for 30 minutes, prediluted labelled

streptavidin biotin system (LSAB) 1 for 10 minutes, prediluted LSAB 2 for 10

minutes and diaminobenzidine substrate kit for 10 minutes.

5.2.7.2 NeuN

Sections were microwaved in 1 % citrate buffer (pH 6.0) at 900 W for 3Vi minute, 

then twice at 300 W for 5 minutes and left to cool at room temperature for 20 

minutes. Sections received peroxidase block for 5 minutes, primary mouse

monoclonal antibody NeuN (1/1000, antibody diluent) (Chemicon International, UK) 

for 30 minutes, prediluted labelled streptavidin biotin system (LSAB) 1 for 10 

minutes, prediluted LSAB 2 for 10 minutes and diaminobenzidine substrate kit for 10 

minutes.

5.2.7.3 GFAP Staining

Sections were treated with proteinase K for 5 minutes followed by peroxidase block 

for 5 minutes and primary antibody rabbit anti bovine GFAP (1/500, optimax buffer) 

(DakoCytomation, UK) for 30 minutes. Biotinylated goat anti rabbit (1/200, optimax 

buffer) (Vector Laboratories, UK) was added for 30 minutes followed by peroxidase 

ABC kit (Vector Laboratories, UK) for 45 minutes and diaminobenzidine substrate 

kit for 10 minutes.

5.2.7.4 Macrophage (CD68) Staining

Sections were treated with proteinase K for 5 minutes followed by peroxidase block
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for 5 minutes, rat anti mouse CD68 (1/50, antibody diluent) (Serotec, UK) for 30 

minutes, biotinylated anti rat IgG (1/100, optimax buffer) (Serotec, UK) for 30 

minutes followed by peroxidase ABC kit (Vector Laboratories, UK) for 45 minutes 

and diaminobenzidine substrate kit for 10 minutes.

5.2.7.5 Quantification ofA/3 plaque deposition, neuronal cell loss and GFAP

The effect of repeated LPS challenge on immunohistochemical endpoints was 

quantified by using a Leica microscope and Qwin software (Leica systems, 

Buckinghamshire, UK) to calculate percentage area stained for 1E8 positive Ap 

plaques, NeuN positive cells and GFAP positive astrocytes in cortex and 

hippocampus of all mice. CD68 positive macrophage/microglia were not quantified, 

as the staining was too diffuse to accurately obtain contrast against background.

5.2.8 Data Analysis

A general linear mixed model approach using the Proc Mixed procedure in SAS® 

Version 8 (SAS® Institute, UK) assessed the overall effects and interactions of 

treatment genotype and age on cytokine responses in brain tissue within subjects. 

Separate univariate tests of significance using Statistica™ Version 6.1 (StatSoft, 

USA) calculated the overall effect of LPS treatment on plasma cytokine responses, 

Ap load and Ap, NeuN and GFAP immunohistochemical quantification. Planned 

comparisons on the predicted means from the model assessed individual treatment, 

genotype and age effects on acute LPS challenge in TASTPM mice and individual 

treatment and genotype effects on immunohistochemical endpoints. Results are 

represented as means ± SEM and significance was set at P < 0.05. Percentage 

induction refers to the effect of LPS versus vehicle.

5.3 Protocols

5.3.1 Study 13: Acute administration o f LPS in TASTPM mice

Male TASTPM and age-matched C57BL6/J controls were IPly administered with 

filtered PBS or 600jag/kg LPS (5ml/kg) dissolved in filtered PBS at either 2, 5 or 10 

months of age (n=6-9) and euthanased at 2.5 hours post dose as described in section 

5.2.4. These ages were chosen in order to span the progression of Ap
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neuropathology.

5.3.2 Study 14: Inflammation and neurodegeneration following repeated LPS 

administration in TASTPM mice

Male TASTPM mice aged 4 months (prior to onset of fibrillar Ap plaque deposition 

in brain tissue) and age matched C57BL6/J controls (n=10-12) were IPly 

administered with filtered PBS or lOpl/g body weight with 5mg/100ml LPS solution 

weekly for 12 weeks. I chose to begin the administration of LPS to TASTPM mice at 

4 months of age, based on published reports that highlight the possibility that 

initiating a peripheral inflammatory response prior to onset of fibrillar Ap plaque 

deposition could increase neuroinflammation and Ap load (Qiao et al, 2001; Sheng et 

al, 2003). 48 hours following the last IP dose, brain tissue was hemisected for half 

brain for immunohistochemical analysis and the remaining half brain was either 

stored for Ap ELISA, or cortex and hippocampus microdissected for Luminex 

cytokine analysis. Blood was removed via tail tip amputation at 2.5 hours post the 

final IP dose and at 48 hours post the final IP dose as described in section 5.2.4.

S.4 Results

5.4.1 Study 13: Acute LPS administration o f TASTPM mice

5.4.1.1 Cytokine protein in brain

Repeated measures ANOVA indicated an overall effect of treatment, F (i, 72) = 

309.67, p<0.001, age, F (2, 72) = 7.18, p<0.01 and treatment*age, F (2, 72) = 11.47, 

p<0.001 and age*brain region, F (2> 71) = 5.73, p<0.01, interactions on central IL- 6  (fig 

5.1). Cortical and hippocampal IL- 6  was significantly increased in all LPS treated 

groups relative to vehicle controls. Additionally, by 5 months of age, there was a 

significant increase in hippocampal IL- 6  from 0.51 ± 0.175 pg/mg tissue in LPS 

treated C57BL6/J mice to 2.69 ± 0.77 pg/mg tissue in LPS treated TASTPM mice 

(431% increase, p<0.001). Cortical IL- 6  levels also increased in LPS treated 

TASTPM relative to C57BL6/J mice at 5 months of age from 1.1 ± 0.263 pg/mg 

tissue to 1.73 ± 0.41 pg/mg tissue, however this was non-significant (58% increase, p 

= 0.188).
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Repeated measures ANOVA indicated an overall effect of age, F (2, 74) = 74.4, 

p<0.001, and brain region, F (it 74) = 9.94, p<0.01 on central IL-lp (fig 5.2). Post hoc 

planned comparisons revealed a significant age-dependent reduction in central IL-ip 

in C57BL6/J and TASTPM mice (2 vs. 5 & 10 months, p<0.001; 5 vs. 10 months, 

p<0 .0 1 , both genotypes) and a significant difference between cortical and 

hippocampal IL-ip response (p<0.01).

Repeated measures ANOVA indicated an overall effect of age, F (2, 74) -  47.63, 

p<0.001, brain region, F (i, 74) = 12.88, p<0.001 on central TNF-a (fig 5.3). Post hoc 

planned comparisons revealed a significant age-dependent reduction in central TNF- 

a  in C57BL6/J and TASTPM mice (2 vs. 5 & 10 months, p<0.001, both genotypes; 5 

vs. 10 months, p=0.01, C57BL6/J mice) and a significant difference between cortical 

and hippocampal TNF-a response (p<0.001).

Repeated measures ANOVA indicated an overall effect of age, F (2) 69) = 15.07, 

p<0.001, genotype, F (1,69) = 30.26, p<0.001, and an age*genotype interaction, F (2,69) 

= 10.46, p<0.001, on central M IP-la (fig 5.4). There was also a significant effect of 

brain region, F (i; 65) = 16.55, p<0.001, and significant age*brain region, F (2, 55) = 

9.09, p<0.001, and genotype*brain region interactions, F (1,55) = 5.5, p<0.05. Post hoc 

planned comparisons revealed significant age-dependent changes in central MDP-la 

in C57BL6/J (2 vs. 5 months, p<0.001; 2 vs. 10 months, p<0.01; 5 vs. 10 months, 

p<0.05) and TASTPM mice (2 vs. 10 months, p<0.01; 5 vs. 10 months, p<0.001). 

There was also a significant overall difference between cortical and hippocampal 

M IP-la response irrespective of group (p<0.001). By 10 months of age, cortical 

(p<0.01) and hippocampal (p<0.001) M IP-la was significantly increased in vehicle 

treated TASTPM relative to vehicle treated C57BL6/J mice. Cortical and 

hippocampal M IP-la was increased by 5 months (cortical: p<0.01, hippocampal: 

p<0.001) and 10 months (p<0.001, both brain regions) in LPS treated TASTPM 

relative to LPS treated C57BL6/J mice.

Repeated measures ANOVA indicated an overall effect of age, F (2j 74) = 62.38, 

p<0.001, brain region, F (i, 74) = 28.93, p<0.001, and an age*brain region interaction, 

F (2, 74) = 17.62, pcO.OOl on IL-10 (fig 5.5). Post hoc planned comparisons revealed a 

significant age-related increase in central IL-10 in C57BL6/J and TASTPM mice (2 

vs. 5 & 10 months, p<0.001; 5 vs. 10 months, p<0.01, both genotypes) and a 

significant difference between cortical and hippocampal IL-10 response (p<0.001).
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Figure 5.1: IL6 protein in the cortex (A), hippocampus (B) of a C57BL6/J control or 
TASTPM transgenic mouse (n=6-9 per group) by 2.5 hours post a single IP LPS 

administration, data represented as cytokine protein (pg) per milligram of tissue and shows 

mean ± SEM (*** p <0.001 vs. respective vehicle group, +++ p <0.001, ++ p <0.01 vs. 2 

month within treatment, + p <0.05 vs. 5 month within group) (repeated measures ANOVA
followed by planned comparisons)
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Figure 5.2 IL lp  protein in the cortex (A), hippocampus (B) of a C57BL6/J control or 

TASTPM transgenic mouse (n=6-9 per group) by 2.5 hours post a single IP LPS 

administration, data represented as cytokine protein (pg) per milligram of tissue and shows 

mean ± SEM. +++ p <0.00 vs. 5 & 10 month within group, + p <0.05 vs. 5 month within 

group (repeated measures ANOVA followed by planned comparisons)
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Figure 5.3: TNFa protein in the cortex (A), hippocampus (B) of a C57BL6/J control or 

TASTPM transgenic mouse (n=6-9 per group) by 2.5 hours post a single IP LPS 
administration, data represented as cytokine protein (pg) per milligram of tissue and shows 

mean ± SEM. +++ p <0.001, ++ p <0.01, + p <0.05 vs. 2 month within group (repeated 

measures ANOVA followed by planned comparisons)
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Figure 5.4: MIP1 a  protein in the cortex (A), hippocampus (B) of a C57BL6/J control or 

TASTPM transgenic mouse (n=6-9 per group) by 2.5 hours post a single IP LPS 
administration, data represented as cytokine protein (pg) per milligram of tissue and shows 

mean ± SEM. *** p <0.001, ** p <0.01 vs. respective vehicle group, +++ p <0.001 vs. 5 

months within group, ++ p <0.01, + p <0.05 vs. 2 month within group, ^  p <0.01 vs. 5 
month within group, ### p <0.001, ## p <0.01 vs. respective C57BL6/J within age group 

(repeated measures ANOVA followed by planned comparisons)
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Figure 5.5: IL10 protein in the cortex (A), hippocampus (B) of a C57BL6/J control or 
TASTPM transgenic mouse (n=6-9 per group) by 2.5 hours post a single IP LPS 

administration, data represented as cytokine protein (pg) per milligram of tissue and shows 

mean ± SEM. +++ p <0.001, ++ p <0.01 vs. 5 & 10 month within group, AAA p <0.001, ** p 

<0.01, A p <0.05 vs. 5 month within group (repeated measures ANOVA followed by planned
comparisons)
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5.4.1.2 Cytokine protein in plasma

Univariate ANOVA demonstrated an overall effect of treatment on plasma IL-ip (fig 

5.6), F (i? 72) = 65.56, p<0.001, IL- 6  (fig 5.7A), F (i, 72) = 303.35, p<0.001, TNF-a (fig 

5.7B), F (i, 72) = 125.11, p<0.001, M IP-la (fig 5.8A), F (i, 73) = 178.05, p<0.001, and 

IL-10 (fig 5.8B), F (i, 74) = 76.71, p<0.001. There were also significant 

treatment*genotype, F (i, 72) = 9.19, p<0.01 and treatment*age*genotype, F (2, 73) = 

3.13, p<0.05, interactions on IL-lp and M IP-la respectively and an effect of age on 

IL-10, F (2, 74) = 5.78, p<0.01. Plasma IL-6 , IL-ip, TNF-a, M IP-la and IL-10 protein 

was induced by LPS in C57BL6/J and TASTPM mice, although by 5 and 10 months 

of age, the increase in plasma IL-ip in LPS treated TASTPM relative to vehicle 

treated TASTPM mice failed to reach significance at the p<0.05 level (p = 0.09 and p 

= 0.06 respectively). LPS treated TASTPM mice also exhibited a significantly 

stunted IL-ip response relative to LPS treated C57BL6/J controls by 2 months of age 

from 30.49 ± 2.49 pg/ml to 18.06 ± 3.76 pg/ml (40% reduction, p<0.01). Although 

plasma IL-ip was also decreased in LPS treated TASTPM relative to LPS treated 

C57BL6/J mice by 5 and 10 months of age, this failed to reach significance at the 

p<0.05 level (5 months: p = 0.17; 10 months: p = 0.07).
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Figure 5.6: ELip protein in plasma of a C57BL6/J control or TASTPM transgenic mouse 

(n=6-9 per group) by 2.5 hours post a single IP LPS administration, data represented as 

cytokine protein (pg) per millilitre of sample and shows mean ± SEM. ## p <0.01 vs. 2 

month C57BL6/J LPS, *** p <0.001, ** p <0.01 vs. respective vehicle group (univariate 

ANOVA followed by planned comparisons)
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Figure 5.7: IL6 (A) and TNFa (B) protein in plasma of a C57BL6/J control or TASTPM 

transgenic mouse (n=6-9 per group) by 2.5 hours post a single IP LPS administration, data

represented as cytokine protein (pg) per millilitre of sample and shows mean ± SEM. ***

<0.001, * p <0.05 vs. respective vehicle group (univariate ANOVA followed by planned
comparisons)
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Figure 5.8: MIP-la (A) and IL-10 (B) protein in plasma of a C57BL6/J control or TASTPM 

transgenic mouse (n=6-9 per group) by 2.5 hours post a single IP LPS administration, data

represented as cytokine protein (pg) per millilitre of sample and shows mean ± SEM. ***

<0.001, ** p <0.01, * p <0.05 vs. respective vehicle group, +++ p <0.001 vs. 5 month 
TASTPM LPS, + p <0.05 vs. 2 month C57BL6/J VEH (univariate ANOVA followed by

planned comparisons)
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5.4.2 Study 14: Repeated LPS administration o f  TASTPM mice

5.4.2.1 Cytokine protein in brain at 48 hours

Repeated measures ANOVA revealed no overall effect of treatment on IL-6, F (i5 23) = 

0.00, p = 0.97, IL-ip, F (i, 23) = 0.07, p = 0.80, TNF-a, F (i, 23) = 0.50, p = 0.49 or 

MIP-la, F (i, 23) = 0.83, p = 0.37 on cytokine protein in brain tissue 48hrs after the 

final administration of IP LPS (fig 5.9A & B). There was also no overall effect of 

genotype on IL-6, F (1, 23) = 1.88, p = 0.18, IL-lp, F (i;23) = 181, p = 0.19, TNF-a, F 

(i, 23) = 1-77, p = 0.20 or M IP-la, F (i, 23) = 0.79, p = 0.38. An overall 

treatment*genotype interaction was evident in central IL-ip, F (i, 23) = 4.82, p<0.05. 

Planned comparisons revealed vehicle treated TASTPM transgenic mice exhibited 

significantly higher cortical IL-ip relative to vehicle treated C57BL6/J animals 

(p<0.01, 34% increase). The elevation of cortical IL-ip in this group was not 

significant relative to either LPS treated C57BL6/J or transgenic animals.

5.4.2.2 Cytokine protein in plasma at 2.5hrs

Univariate ANOVA analysis of each cytokine revealed an overall effect of treatment 

on plasma IL-ip, F (1, 49) = 17.05, p<0.001, TNF-a, F (1, 49) = 35.22, p<0.001, MIP- 

la , F (i, 49) = 22.74, p<0.001 and IL-6 , F a , 4g) = 34.37, p<0.001 (fig 5.10A & B). 

Levels of plasma IL10 were below the lower limit of detection for all groups. Post 

hoc planned comparisons revealed that LPS administration induced a 120% 

(p<0.001) and a 421% (p<0.001) increase in IL-ip and TNF-a in C57BL6/J and a 

127% (p=0.08) and 257% (p<0.01) increase in IL-ip and TNF-a in TASTPM mice. 

Plasma IL-lp was significantly decreased in LPS treated TASTPM relative to LPS 

treated C57BL6/J mice (p<0.05). IP LPS increased M IP-la and IL- 6  in both 

C57BL6J/ (620% and 18439%, respectively, p<0.001 both groups) and TASTPM 

(455% (p<0.01) and 2083% (p<0.001) respectively) mice.
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Figure 5.9: Effect of repeated IP administration of LPS on cytokine protein in the cortex (A), 
hippocampus (B) of C57BL6/J and TASTPM mice (n=10-12 per group) by 48 hours post the 

last IP LPS administration, data represented as cytokine protein (pg) per milligram of tissue 

and shows mean ± SEM. ** p <0.01 vs. vehicle (repeated measures ANOVA followed by

planned comparisons)
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Figure 5.10: Effect of repeated IP administration of LPS on plasma ILlp, TNFa, and MIPla 
protein (A) and plasma IL6 protein (B) of C57BL6/J and TASTPM mice(n=10-12 per group) 

by 2.5 hours post the last IP LPS administration, data represented as cytokine protein (pg) 

per millilitre of sample and shows mean ± SEM. * p <0.05, ** p <0.01, *** p <0.001 vs. 
vehicle, # p <0.05 vs. C57BL6/J LPS (univariate ANOVA followed by planned

comparisons)
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5.4.23 Cytokine protein in plasma at 48hrs
Univariate analysis of cytokine production by 48 hours following the last IP LPS 

administration revealed no overall effect of treatment on plasma IL-6, F (1,46) = 3.19, 

p = 0.08, IL-ip, F (1,46) = 0.08, p = 0.77, TNF-a, F a ,49) = 1.50, p = 0.31 or MEP-la, 

F (i, 49) = 0.49, p = 0.49 and no overall effect of genotype on plasma IL-6, F (i, 46) = 

2.80, p = 0.10, IL-ip, F (i, 46) = 0.02, p = 0.90, TNF-a, F a , 49) = 0.11, p = 0.74 or 

M IP-la, F (1,49) = 0.16, p = 0.69, cytokine protein (fig 5.11).
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Figure 5.11: Effect of repeated IP administration of LPS on plasma IL6, ILip, TNFa, and 

MIPla protein of C57BL6/J and TASTPM mice (n=10-12 per group) by 48 hours post the 

last IP LPS administration, data represented as cytokine protein (pg) per millilitre of sample 

and shows mean ± SEM (univariate ANOVA followed by planned comparisons)
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5.4.2.4 Cell-mediated neuroinflammation

Repeated measures ANOVA revealed a significant effect of genotype, F (i, 46) = 

50.00, p<0.001 (fig 5.12). There were also significant effects of brain region, F (i>46) 

= 485.82, p<0.001 and a significant brain region*genotype interaction, F (3, 46) = 

22.19, p<0.001. LPS treatment of both C57BL6/J control and TASTPM transgenic 

mice failed to induce a significant increase in GFAP. Vehicle treated and LPS treated 

TASTPM mice exhibited a 635% and a 198% increase in cortical GFAP respectively 

relative to C57BL6/J controls (p<0.001, both groups). Vehicle treated TASTPM 

mice demonstrated a 16% increase (p<0.05) in hippocampal GFAP, however, there 

was no significant increase in hippocampal GFAP in LPS treated TASTPM mice 

relative to C57BL6/J mice (fig 5.13).

A B

Figure 5.12: Representative photomicrographs of coronal sections of the hippocampus and 
cortex stained for GFAP in vehicle TASTPM (A, B) and LPS TASTPM (C, D) mice (n=10- 

12 per group) following repeated IP administration of LPS, scale bar represents 200pmetres

and 50pmetres
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Figure 5.13: Effect of repeated IP administration of LPS on GFAP in the cortex (A) and 
hippocampus (B) in C47BL6/J or TASTPM mice (n=10-12 per group), data represented as 

percentage stained area and shows mean ± SEM. * p <0.05, *** p <0.001 vs. vehicle 

(univariate ANOVA followed by planned comparisons)

Qualitative analysis of the presence of microglia in brain tissue indicated no obvious 

differences in numbers or size of CD68 positive cells (fig 5.14). There was no 

activated microglia present in the C57BL6/J mice.
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Figure 5.14: Representative photomicrographs of coronal sections of the hippocampus and 
cortex stained for CD68 in vehicle TASTPM (A) and LPS TASTPM (B) mice (n=10-12 per 

group) following repeated IP administration of LPS, scale bar represents lOOpmetres

5A.2.5 A p load

Analysis of Ap load in the brain of LPS TASTPM mice revealed an overall effect of 

genotype on Apl-40, F (i, 2i) — 299.48, pO.OOl, and Api-42, F (i5 21) =145.00, 

p<0.001 (fig. 5.15). TASTPM mice exhibited significantly higher Ap load than 

C57BL6/J mice, regardless of treatment. There was no overall effect of treatment on 

Api-40, F (ij2i) = 0.57, p=0.46, or Api-42, F (i>2i) =1.76, p=0.199. There was also no 

difference in numbers of Ap plaques observed by immunohistochemistry between 

vehicle and LPS treated TASTPM mice (fig 5.16 & 5.17).
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Figure 5.15: Effect of repeated IP administration of LPS on brain Api-40 (A) and Api-42 

(B) in TASTPM mice (n=10-12), data represented as pmol of Ap per gram of tissue and 

shows mean ± SEM (univariate ANOVA followed by planned comparisons)
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Figure 5.16: Representative photomicrographs of coronal sections of the cortex stained for 

Ap deposits in vehicle TASTPM (A, B) and LPS TASTPM (C, D) mice (n=10-12 per group) 

following repeated DP administration of LPS, scale bar represents lOOpmetres
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Figure 5.17: Effect of repeated EP administration of LPS on Ap load in the cortex (A), 

hippocampus (B) and whole brain (C) of C57BL6J and TASTPM mice (n=10-12 per group), 

data represented as percentage stained area and shows mean ± SEM (univariate ANOVA

followed by planned comparisons)

5A.2.6 NeuN

There was no effect of genotype, F (i, 47) = 0.00, p=0.95 or LPS treatment, F 47) =

0.18, p=0.68 (fig. 5.18) on neurons as quantified by an assessment of the percentage 

area covered by NeuN positive stained cells in cortical and hippocampal regions (fig 

5.19).
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Figure 5.18: Representative photomicrographs of coronal sections of the hippocampus and 

cortex stained for NeuN positive cells in vehicle C57BL6/J (A, B) and TASTPM (C, D) mice 

and LPS treated C57BL6/J (E, F) and TASTPM (G, H) TASTPM mice (n=10-12 per group), 

scale bar represents 500pmetres (A, C, E, G) and (B, D, F, H) 200jimetres
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Figure 5.19: Effect o f repeated IP administration o f LPS on NeuN staining in the cortex (A) 

and hippocampus (B) o f C57BL6J and TASTPM mice (n=10-12 per group), data represented 

as percentage stained area and shows mean ± SEM (univariate ANOVA followed by planned

comparisons)
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5.5 D iscussion

5.5.1 LPS induced neuroinflammation - APP/PS1 transgenic mice

Administration of a single dose of LPS shown to induce a small increase in central 

cytokine protein in C57BL6/J controls resulted in alteration of the 

neuroinflammatory profile of TASTPM APP/PS1 mutant mice. Interestingly, the 

primary effect of LPS was evident on the chemokine, M IP-la. Cortical and 

hippocampal M IP-la was increased in vehicle treated TASTPM relative to vehicle 

treated C57BL6/J mice by 10 months of age (fig 5.4). Cortical and hippocampal 

M IP-la was increased by 5 months and 10 months in LPS treated TASTPM relative 

to LPS treated C57BL6/J mice (fig 5.4). Central MEP-la remained unaltered in 

C57BL6/J mice, regardless of treatment or age, indicating a genotype-specific 

increase of M IP-la in TASTPM brain tissue. This supports previous literature 

describing the increase of pre-existing M IP-la mRNA expression in brain tissue 

following IP administration of LPS, at an age when Ap plaques and associated 

activated microglia were evident in the brains of APP overexpressing mice (Tg2576) 

(Quinn et al, 2003). Earlier onset of increased M IP-la expression following LPS 

treatment to TASTPM mice may suggest the presence of peripheral inflammation 

can exacerbate a pre-existing neuroinflammatory profile in APP or APP/PS1 

overexpressing mice, particularly since M IP-la was the only cytokine altered in 

vehicle treated TASTPM versus C57BL6/J mice. Repeated IP injection of LPS to 

TASTPM mice from 4 through to 7 months of age did not alter M IP-la protein 

expression in brain tissue, despite evidence that, following repeated LPS treatment, 

plasma M IP-la was increased relative to vehicle treated TASTPM mice (fig 5.8). 

The importance of increased M IP-la protein in the brain of APP and APP/PS1 

overexpressing mice is unclear but it was suggested by Quinn et al, 2003 that it 

might not be linked to Ap plaque load. Acute IP injection of LPS to 2 month 

TASTPM mice failed to increase central MEP-la protein expression relative to LPS 

treated C57BL6/J mice, indicating that peripheral inflammation initiated before onset 

of significant fibrillar Ap plaque deposition does not cause a genotype-specific 

increase in cytokine expression in brain tissue. This suggests an interaction between 

Ap neuropathology and peripheral inflammation is required to enhance the response 

of the brain to peripheral infection.
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Acute LPS injection increased the protein expression of one other cytokine in brain 

tissue. Cortical and hippocampal IL-6 in both C57BL6/J (consistent with validation 

studies) and TASTPM mice at 2, 5 and 10 months of age, was increased following a 

single IP LPS injection (fig 5.1). This indicates central IL-6 expression; unlike MIP- 

1 a, was not genotype specific. Reasons for the increase in hippocampal IL-6 evident 

in 5 month LPS treated TASTPM versus LPS treated C57BL6/J mice are unclear. 

The alteration may be in response to the rapid deposition of Ap occurring at this age 

and may warrant further investigation by characterising central IL-6 expression at 

ages in between the 2 and 5 month timepoints assessed in the current study.

Following acute IP LPS administration, although by 2 months of age, LPS treatment 

significantly increased plasma IL-ip in LPS treated TASTPM versus vehicle treated 

TASTPM mice, plasma IL-ip was attenuated relative to LPS treated C57BL6/J mice 

at this age with a non-significant trend for plasma IL-lp reduction by 5 and 10 

months (fig 5.6). Plasma IL-lp was also decreased in LPS treated TASTPM relative 

to LPS treated C57BL6/J mice following repeated LPS injection (fig 5.10). The 

reason for an abrogation of a peripheral pro-inflammatory response to LPS in 

TASTPM mice is uncertain and is not reported in the current literature so it is 

difficult to determine how this change relates to other APP or APP/PS1 mutant 

transgenic mouse lines. Since the reduction of plasma IL-ip was already evident in 

TASTPM transgenic mice by 2 months of age, before the onset of plaque deposition, 

it is likely that the difference in peripheral immune response between C57BL6/J and 

TASTPM mice following IP LPS injection is due to underlying differences in their 

development rather than an effect of Ap load.

It cannot be discounted that the lack of detectable changes in the expression of other 

cytokines in TASTPM brain tissue following LPS treatment may be due to the 

method of cytokine detection. Previous literature has documented the increase in 

central cytokine mRNA in APP overexpressing mice (Abbas et al, 2002; Lim et al, 

2000; Sly et al, 2001). However, much of the evidence has relied on the 

immunohistochemical detection of cytokine expression, associated with microglia 

and astrocytes, in brain tissue (Abbas et al., 2002; Apelt and Schliebs, 2001; Benzing 

et al., 1999; Mehlhom et al., 2000). Cytokine production by immune cells is 

localised to Ap plaques thus, homogenisation of discrete brain regions may cause
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dilution of the cytokine signal due to the presence of surrounding healthy tissue 

(Quinn et al, 2003). Fold changes in mRNA expression of some cytokines may be 

small, limiting the successful detection of cytokine expression at the protein level by 

Luminex or ELISA techniques.

Immunohistochemical analysis of GFAP positive astrocytes and CD68 positive 

microglia/macrophage in vehicle treated TASTPM versus vehicle treated C57BL6/J 

mice indicated no change in the morphology or number of microglial cells in brain 

tissue (fig 5.14) but a significant increase in cortical and hippocampal GFAP positive 

astrocytes (fig 5.13). Repeated LPS IP injection had no effect on either CD68 or 

GFAP staining by 48 hours following the last LPS injection, indicating the peripheral 

inflammation did not influence cell-mediated neuroinflammation. Previous reports of 

enhanced GFAP expression in APP overexpressing mice following LPS treatment 

are variable. At 1 through to 18 hours, following peripheral LPS injection, GFAP 

mRNA was increased in brain tissue of aged (4 months after Ap plaque onset) 

Tg2576, (Sly et al, 2001). It is unclear whether this rapid increase in GFAP mRNA 

expression is transient and decreases back to basal levels by later timepoints. A more 

in-depth characterisation investigating GFAP mRNA and protein expression in brain 

tissue at acute (1-24 hours) and chronic timepoints following peripheral LPS 

injection may provide more insight into whether increased GFAP mRNA is a 

transient event. Activation of microglia in brain tissue following peripheral LPS 

injection has also been reported in APP overexpressing mice (Sheng et al, 2003), 

however, the effect of LPS on microglia in wildtype mice was not described so it is 

uncertain how this relates to a basal reaction to LPS and whether this was a genotype 

specific change. Certainly, the morphology and numbers of activated microglia 

following repeated LPS injection in the current study suggests peripheral 

inflammation does not affect the chronic cellular neuroinflammatory response.

5.5.2 Modulation o f A p  load by LPS  -  APP/PS1 transgenic mice

Previous studies report alterations of Ap load following peripheral (Quinn et al, 

2003; Sheng et al, 2003) and central injection of LPS (Qiao et al, 2001; DiCarlo et al, 

2001; Herber et al, 2004) and suggest modulation of Ap load depends largely on the 

protocol of LPS administration. Typically, LPS injection after onset of Ap plaque
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deposition results in a reduction in Ap load. Analysis of Api-40 or Api-42 load and 

AP plaque deposition in brain tissue using ELISA and immunohistochemical 

techniques revealed that LPS treatment had no effect following repeated IP injection 

of LPS to TASTPM mice (fig 5.15). This is in contrast to published literature, 

primarily reporting the use of APP overexpressing mice, demonstrating the reduction 

(Quinn et al, 2003; DiCarlo et al, 2001) and increase (Sheng et al, 2003; Sly et al, 

2001) in Ap load, particularly increased intracellular Ap, following IP LPS 

treatment. The lack of Ap modulation following LPS treatment in TASTPM 

APP/PS1 overexpressing mice may be a result of the significantly more rapid Ap 

deposition evident in APP/PS1 models, hence Ap load is already substantial and 

further modulation of Ap levels may be difficult.

5.5.5 LPS induced neurodegeneration -  APP/PS1 transgenic mice

Cortical and hippocampal NeuN positive cells were quantified in C57BL6/J and 

TASTPM brain tissue following repeated IP LPS treatment. LPS had no effect on 

percentage NeuN staining in either cortex or hippocampus (fig 5.18 & 5.19). As 

discussed in section 5.4.2, repeated administration of LPS also failed to modulate Ap 

load in TASTPM brain tissue. Neurodegeneration in AD brain is associated with Ap 

plaques in the entorhinal cortex and hippocampus (Scott et al, 1991; Armstrong, 

2006). A high level of Ap deposition in TASTPM animals does not cause overt 

neurodegeneration and, as LPS treatment did not increase Ap load, Ap-mediated 

neurodegeneration was unlikely. Previously, increased plasma IL-lp levels and 

peripheral infection has been suggested to exacerbate the progression of AD (Holmes 

et al, 2003). The exacerbation of a pre-existing neuroinflammatory profile in 

TASTPM tissue following repeated LPS injection may indicate that the presence of a 

peripheral infection after onset of Ap plaque deposition could exacerbate pre

existing pathology. Importantly, peripheral infections occur in AD patients during 

later stages of the neurodegenerative pathology suggesting peripheral inflammation 

may exacerbate rather than initiate neurodegeneration. Therefore, it may be difficult 

to induce cell death via a peripherally administered inflammatory insult considering 

the absence of neurodegeneration in vehicle treated TASTPM mice. The induction of 

neuronal cell loss in brain tissue of APP/PS1 overexpressing mice could be further 

investigated via a more chronic injection of LPS either centrally or peripherally. An
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extended duration of treatment may be a more sufficient insult for causing 

neurodegeneration in APP/PS1 overexpressing mice.

In summary, the initial use of Ap peptide to cause neuroinflammation and 

neurodegeneration in rat brain tissue resulted in a variable window of cell death 

unsuitable in a model of Ap-induced neurodegeneration, despite the significant 

increase in neuroinflammation. This prompted an investigation of the use of LPS to 

exacerbate neuroinflammation and possibly induce onset of neurodegeneration in 

APP/PS1 overexpressing TASTPM mice that exhibit robust Ap neuropathology. 

Peripheral LPS administration exacerbated M IP-la, a chemokine evident in the brain 

tissue of vehicle treated TASTPM mice, suggesting peripheral inflammation may 

enhance a pre-existing neuroinflammatory profile rather than initiate extensive 

neuroinflammation or induce neurodegeneration. Although a longer duration of LPS 

treatment may lead to different results, the repeated peripheral administration of an 

inflammatory stimulus to TASTPM mice is unlikely to provide a robust in vivo 

model of neuroinflammation and neurodegeneration, despite relevance to the chronic 

neurodegenerative disease, AD. The idea that a peripheral inflammatory or specific 

neurotoxic challenge may enhance neuroinflammation in TASTPM mice will be 

further investigated in the following chapter. Chapter 6 will describe use of the 

noradrenergic neurotoxin DSP-4 in exacerbating neuroinflammation and potentially 

causing neurodegeneration in TASTPM brain tissue.
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CHAPTER 6 
Repeated DSP-4 administration to TASTPM APP/PS1

transgenic mice

6.1 Introduction

Degeneration of central noradrenergic neurons projecting from the locus coeruleus 

(LC) to terminal regions including the cortex and hippocampus (Mann et al, 1982; 

Mann &Yates, 1983) correlates with duration of illness (Zarow et al, 2003), Ap 

plaque deposition and duration and severity of dementia (Bondareff et al, 1987) in 

AD. Noradrenaline (NA) acts via adrenoceptors and a2 adrenoceptors are 

significantly reduced in the hippocampus of AD patients (Szot et al, 2006). Previous 

reports describe the anti-inflammatory and neuroprotective properties of NA 

including the attenuation of pro-inflammatory cytokine expression and increased 

release of neurotrophic factors (reviewed by Galea et al, 2003; Marien et al, 2004). In 

addition, previous chapters in this thesis have described the anti-inflammatory 

activity of the a2 antagonist, fluparoxan on LPS-mediated pro-inflammatory 

cytokine expression in rodent brain tissue (sections 2.5.3.2 & 3.5.2.2). Hence, 

reduction of NA in brain tissue may exacerbate neuroinflammation in double mutant 

APP/PS1 transgenic TASTPM mice.

6.1.1 Role o f NA in neuroinflammation & neurodegeneration

NA negatively regulates the expression and release of pro-inflammatory cytokines 

(Kaneko et al, 2005; Hu et al, 1991; Dello Russo et al, 2004) and inhibits microglial 

activation (Lee et al, 1992; Loughlin et al, 1993; Chang & Liu, 2000). LPS (i.p) 

administration causes a significant increase in NA in the brain of rats indicating a 

response of NA to an inflammatory stimulus (Linthorst et al, 1998). NA has been 

shown to inhibit the microglial induced cell death of cortical neurons by reducing IL- 

1(3 release from microglia (Madrigal et al, 2005). a2 adrenoceptor antagonists that 

act to increase extracellular NA have been reported to have anti-inflammatory 

actions in vivo (Hasko et al, 1998) and data presented earlier in this thesis (section 

2.5.3.2) also demonstrated the in vivo anti-inflammatory activity of the a2-
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adrenoceptor antagonist, fluparoxan in brain tissue. Low doses of the noradrenergic 

neurotoxin N - (2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) (50pg/kg) 

potentiated Ap induced neuroinflammation (Heneka et al, 2002 & 2003a) and 

exacerbated microglial activation and inflammatory gene expression (Feinstein et al., 

2004) in APP over expressing mice. Compromising the NA system by DSP-4 

appears to render the brain tissue more susceptible to the pro-inflammatory effects of 

Ap protein (Heneka et al., 2002; Heneka et al., 2003a). NA can protect neurons and 

promote recovery from neurotoxic stimuli including inflammatory and excitotoxic 

insults by enhancing the release of neurotrophic factors and acting as an anti-oxidant 

(Marien et al, 2004). More recent studies published since the completion of the work 

described in this chapter reported increased neuroinflammation and neuronal cell 

death in the hippocampus and cortex of APP23 mice following the peripheral 

injection of DSP-4 (Heneka et al, 2006). Reduction in central NA also increased Ap 

plaque number in the brain tissue of APPV717F (H6) overexpressing mice (Kalinin 

et al, 2006).

6.1.2 Depletion ofNA following DSP4 administration

DSP-4, a tertiary haloalkylamine that can cross the blood-brain barrier, causes 

marked depletion of endogenous NA via inhibition of uptake and decreased NA 

synthesis (Ross et al, 1976; Jaim-Etcheverry & Zieher, 1980). The response of 

central noradrenergic axons to DSP-4 occurs via two phases. The first phase involves 

massive NA depletion via irreversible uptake inhibition and depletion of endogenous 

NA via decreased NA synthesis (Fritschy et al, 1990). The second phase involves a 

reduction in the enzyme dopamine-P-hydroxylase (DpH) and degeneration of NA 

axons (Fritschy et al, 1990). Inhibition of NA uptake and depletion of endogenous 

neuronal NA occurs rapidly and in a dose dependent manner after DSP-4 

administration. Storage and uptake of NA recovers quickly in the periphery but 

continues in the CNS for a long duration and recovery time differs between specific 

brain regions (Wolfinan et al, 1994). The increased affinity of DSP-4 for the NA 

uptake carrier in synaptosomes from LC terminal areas may explain the actions of 

DSP-4 on neuronal projections specifically originating in the LC (Fritschy & 

Grzanna, 1991). Areas innervated by the LC, such as the cortex and hippocampus, 

also demonstrate the greatest NA depletion due to increased NA turnover rate
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relative to other regions (Logue et al, 1985). Degeneration of terminals is associated 

with a gradual loss of noradrenergic cell bodies in the LC with approximately a 30% 

loss of LC neurons within 2 months after a single DSP-4 injection suggesting 

terminal loss induces retrograde degeneration. Six months after DSP-4 

administration, surviving LC neurons were observed to regenerate resulting in the 

reinnervation of specific brain regions including the forebrain, in contrast to a lack of 

regenerative neuronal sprouting in the brainstem and cerebellum (Fritschy & 

Grzanna, 1992).

6.1.3 Chapter Aims

The primary purpose of this investigation was to determine the effect of 

noradrenergic depletion on Ap plaque deposition and neuroinflammation in 

TASTPM transgenic brain tissue. TASTPM mice exhibit high levels of circulating 

AP protein, Ap plaque deposition, neuroinflammation and cognitive and behavioural 

deficits (Howlett et al., 2004) but lack overt neuronal cell death. Depletion of NA 

may exacerbate some of the features of AD and hence the effects of noradrenergic 

depletion on neurodegeneration, normally absent in the TASTPM model, was also 

examined.

6.2 Materials & Methods

6.2.1 Animals

Male TASTPM mice (5 months old) were obtained from GlaxoSmithKline, UK and 

specific, pathogen free male C57BL6/J mice (25g, approx 10 weeks of age) were 

ordered from Charles River, UK or as aged (5 months) animals from Harlan, UK. All 

mice were singly housed (GlaxoSmithKline, Harlow, UK) under controlled 

conditions (temperature: 21-24°C, 12-h light/dark cycle (7am lights on) and provided 

with Global Rodent Maintained Diet (Harlan Teklad) and water ad libitum. Analysis 

of DNA isolated from tail tips removed at termination confirmed genotype status. All 

experimental procedures were conducted in accordance with the GlaxoSmithKline 

local ethics committee and conformed to the UK Animals (Scientific Procedures) Act 

1986.
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6.2.2 Materials

Saline and DSP-4 were obtained from VWR International, UK and Sigma, UK 

respectively. 4% paraformaldehyde was prepared in-house (GSK, UK). All materials 

for HPLC analyses were obtained from VWR International, UK unless otherwise 

stated. Immunostaining machines, PAP pens, proteinase K, peroxidase blocking 

solution and diaminobenzidine substrate kit were all obtained from DakoCytomation, 

UK. Optimax buffer was obtained from A. Menarini, UK. Gills haematoxylin stain 

was purchased from HD Supplies, UK. The sources of additional materials are 

individually stated.

6.2.3 Treatment

Mice were IP injected with either filtered PBS or DSP-4 (5 or 50mg/kg) dissolved in 

filtered PBS (5ml/kg dose volume). DSP-4 in solution is relatively unstable and was 

administered immediately after preparation (Ross, 1976). A number of previous 

reports describe the reduction of NA and loss of LC neurons following a single 

injection of 50mg/kg DSP-4 (Hallman & Jonsson, 1984; Fritschy & Grzanna, 1989; 

Prieto & Giralt, 2001; Fritschy et al, 1990; Fritschy & Grzanna, 1991). A much 

lower dose of 50pg/kg has been previously shown to potentiate Ap induced 

neuroinflammation (Heneka et al, 2002; Heneka et al, 2003) and previous 

unpublished studies highlighted increased incidence of mortality in APP 

overexpressing mice following administration of 50mg/kg DSP-4 (personal 

communication; D. Feinstein, University of Illinois, Chicago, USA). A recent 

publication by Heneka et al, 2006 details the use of 5mg/kg DSP-4 to modulate Ap 

deposition in the brain tissue of APP overexpressing mice.

6.2.4 Sample collection

Mice were deeply anaesthetised with sodium pentobarbital (Euthatal® lOOmg kg-1

i.p, Rhone Merieux, Harlow, UK).

Study 15: cortex, hippocampus and cerebellum were microdissected and placed in 

prelabelled 2ml eppendorfs (VWR International, UK) and stored at -80°C for HPLC 

analysis of NA. The cortex and hippocampus were hemi-dissected to allow the 

assessment of potential differences in the effect of DSP-4 on NA between left and 

right brain hemispheres.
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Study 16: The brain was microdissected: half brain (right), cortex and hippocampal 

(left) samples. Half brain was immerse fixed in 4% paraformaldehyde, left cortex 

samples from 5 animals were placed into sterile biopur® (RNase-free) safe-lock 

eppendorfs (VWR International, UK) and stored at -80°C for RNA quantification. 

Cortex samples from remaining animals and hippocampus from all mice were stored 

into prelabelled 2ml eppendorfs (VWR International, UK) and stored at -80°C for 

high performance liquid chromatography (HPLC) analysis of NA.

6.2.5 Ex-vivo neurochemistry- HPLC

6.2.5.1 Tissue Preparation

Samples were weighed and homogenised in 0.4 M perchloric acid containing sodium 

metabisulphate (0.1% wv'1), EDTA (ethylene diamine tetra acetate 0.01% wv'1) and 

L-cysteine (0.1% wv'1) at a ratio of lOOjil homogenising buffer per mg of tissue 

(giving a tissue concentration of 0.01 g/ml). All samples were centrifuged on 

10,000g at 4°C for 10 minutes and supernatant decanted.

6.2.5.2 High Performance Liquid Chromatography (HPLC)-ECD analysis 

Aliquots (30|il) of supernatant were transferred into micro-volume glass vials for 

HPLC-ECD analysis. The HPLC-ECD protocol was based on previous published 

literature (Lacroix et al, 2004) and in-house validation. Mobile phase consisted of 

0.07M KH2P 04, containing 1.5 mM sodium octylsulphonate and 0.1 mM EDTA.Na2,

MeOH, tetrahydrofuran (87.5:12:0.5%, wv'1). Flow rates for optimal separation and 

detection varied between 2.2 to 2.5 ml/min. Sample aliquots of lOpl each were 

automatically injected onto the columns. Separation was performed using two 

Chromolith Performance columns connected in series (100 x 4.6 mm i.d., 

Lutterworth UK). Eluates were detected using a Decade electrochemical detector 

fitted with a glassy carbon cell (Antec, Leyden, The Netherlands) set at +0.65V 

versus in situ Ag/AgCl reference electrode. Data were collected using Empower 

software (Waters, Milford, MA). The chromatograms were compared with internally 

run NA standard calibrations (concentrations between 1 and lOOng/ml) to identify 

and quantify components. HPLC analysis was kindly completed by Tracey 

Ashmeade, GSK, Harlow, UK.
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6.2.6 Immunohistochemistry

Hemisected brains immersed fixed in 4% paraformaldehyde for 3 days at room 

temperature were processed and embedded into paraffin wax as described in section

5.2.7 and semi-serial sections (5pM thick) taken throughout the LC (bregma -4  to - 

7) and cortical and hippocampal regions (bregma -1 to-4). Sections (2 sections 

unless otherwise stated) were stained for neurons (NeuN) (6 sections), glial fibrillary 

acid protein (GFAP), microglia (CD68) and Ap as described in section 5.2.7. 

Additionally sections were stained for tyrosine hydroxylase (TH). Sections were 

microwaved (Sanyo Showerwave, 1000W) in tris-borate-EDTA buffer, pH 8.3 

(Sigma-Aldrich, UK) for 2.5 minutes at 1000W, 10 minutes at 450W and allowed to 

cool for 20 minutes. Sections received peroxidase block for 5 minutes, primary 

antibody rabbit anti TH, affinity purified (1/500 in antibody diluent, 30 minutes) 

(Chemicon International, UK), biotinylated goat anti rabbit (1/200 in optimax buffer, 

30 minutes) (Vector Laboratories, UK), peroxidase ABC kit (Vector Laboratories, 

UK) for 45 minutes and diaminobenzidine substrate kit for 10 minutes. Sections were 

counter-stained using Gills haematoxylin (3 seconds followed by running tap water), 

dehydrated in IMS (70 to 100%), cleared in Histoclear and mounted in DPX (VWR, 

UK). Sections were viewed using a Colourview digital camera (xlO objective for TH 

sections, x4 objective for 1E8 sections) attached to an Olympus BX41 microscope. 

Photomicrographs for NeuN, GFAP, CD68 and TH were captured and analysed 

using image analysis software (AnalySIS, Soft Imaging Systems, UK). Sections 

stained for 1E8 were viewed using a Leica DC 100 camera attached to a Leitz DMRB 

microscope. Photomicrographs were captured and percentage area stained by 1E8 

was analysed using Leica Qwin software (Leica systems, Buckinghamshire, UK). 

Immunohistochemical staining and analysis was kindly completed by Martin 

Vidgeon-Hart, GSK, Harlow, UK.

6.2.7 TaqMan analyses

Total RNA was isolated from cortex tissues from WT and TASTPM mice using 

TRIZOL® reagent (Invitrogen, USA). Cortical mRNA was quantified following the 

protocol described in section 2.3.8. Primer (F and R) and probe (P) sets were 

designed from sequences in the Genbank database using Primer Express software 

(Perkin-Elmer, UK) (table 6.1). Taqman analysis was kindly completed by Ainsley
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Culbert and Florence Guillot, GSK, Harlow, UK. 

Gene Reagent Sequences

GFAP F; GGAGCTCAATGACCGCTTTG
R; AGCGCCTTGTTTTGCTGCTC 
P; CAGCTACATCGAGAAGGTTCG

TNFa F; TCCAGGCGGTGCCTATGT 
R; GAGCGTGGTGGCCCC 
P; TCAGCCTCTTCTCATTCCTGCTTGTGG

M IP -la  F; AGCTGACACCCCGACTGC
R; GTCAACGATGAATTGGCGTG 
P; TGCTGCTTCTCCTACAGCCGGAAGAT

RANTES F; TCTTGCAGTCGTGTTTGTCAC
R; TCTTGAACCCACTTCTTCTCT 
P; AGGAACCGCCAAGTGTGTGC

IL -lp F; TTGGGCCTCAAAGGAAAGAAT
R; TCTCCAGCTGOAGGGTGG
P; TATACCTGTCCTGTGTAATGAAAGACGGCA CA

IicBa F; CGGAGGACGGAGGACTCGTT 
R; ACTTCCATGGTCAGCGGCT 
P; TGCACTTGGCAATCATCCACGAAGA

Table 6.1: TaqMan reagent sequences

6.2.8 Data Analysis

A general linear mixed model approach using the Proc Mixed procedure in SAS 

Version 8 (SAS® Institute, UK) assessed the effect of DSP-4 treatment on central NA 

levels within C57BL6/J subjects using brain region as a repeated measure. Separate 

ANOVA analyses at each age point were used to calculate the overall effect and 

interactions between genotype and treatment on cortical and hippocampal NA in
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C57BL6/J and TASTPM mice, using brain region as a repeated measure. Separate 

univariate ANOVAs (Statistica™ Version 6.1 (StatSoft, USA)) at each age point 

calculated the overall effect of DSP-4 treatment on each mRNA marker, plaque load 

and LC degeneration. Post hoc planned comparisons assessed individual treatment 

effects for study 15 and individual differences between groups at each age following 

repeated DSP-4 injection to C57BL6/J and TASTPM subjects. Outliers (data points 

outside 2 standard deviations of the mean) were omitted from statistical analysis and 

graphical representation.

6.3 Protocols

6.3.1 Study 15: Acute DSP-4 effects on NA (5mg/kg and 50mg/kg)

24 male C57BL6/J mice (n=8) (Charles River, UK) were IP administered with 0.9% 

saline, 5mg/kg DSP-4 or 50mg/kg DSP-4 dissolved in 0.9% saline (5ml/kg) were 

euthanased 24 hours post treatment via anaesthetic overdose. Since brain tissue 

would be hemidissected in order to provide tissue for a multitude of analyses 

including immunohistochemistry, taqman and HPLC analysis, I compared left and 

right side cortex and hippocampus to investigate the effect of hemisphere on NA 

quantification using HPLC analysis.

6.3.2 Study 16: Repeated administration o f DSP-4 to TASTPM mice

Male TASTPM mice aged 5 months (n=46) (GSK, Harlow, UK) and age matched 

C57BL6/J controls (n=46) (Harlan, UK) were IP administered with 0.9% saline or 

5mg/kg DSP-4 dissolved in 0.9% saline (5ml/kg) monthly. Half of each treatment 

group were euthanased at 8 months of age whilst remaining animals continued 

treatment and were euthanased at 11 months of age via anaesthetic overdose. Brain 

tissue was hemidissected for half whole brain (right) for immunohistochemical 

analysis and the remaining half brain (left) was microdissected for cortex for either 

taqman or HPLC analysis or hippocampus for HPLC analysis alone.
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6.4 R esults

6.4.1 Study 15: acute DSP-4 effects on NA (5mg/kg and 50mg/kg)

Repeated measures ANOVA indicated an overall effect of DSP-4 treatment, F (2, 8) = 

128.66, p<0.001, brain region, F (4> 32) = 7.78, p<0.001 and a significant interaction 

between brain region*treatment, F (g, 32) = 2.88, p<0.05. Acute administration of 

5mg/kg DSP-4 significantly reduced cortical NA by 21% (p=0.01) and 16% (p<0.01) 

in left (fig 6.1 A) and right cortex (fig 6 .IB) respectively whilst 50mg/kg DSP-4 

treatment induced a 90% (left cortex; p<0.001) and 87% (right cortex; p<0.001) NA 

reduction. DSP-4 (5mg/kg) also significantly reduced left hippocampal NA (fig 

6 .1C) by 22% (p<0.01) but failed to significantly reduce right hippocampal NA (fig 

6 .ID). Treatment of 50mg/kg DSP-4 significantly reduced left (p<0.001) and right 

(p<0.001) hippocampal NA by 74% and 89% respectively. 5mg/kg and 50mg/kg 

DSP-4 treatment significantly reduced NA levels in the cerebellum by 12% (p<0.05) 

and 48% (p<0.001) (fig 6.1E).
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Figure 6.1: Comparison of 5mg/kg and 50mg/kg DSP-4 on NA in left cortex (A), right 
cortex (B), left hippocampus (C), right hippocampus (D) and whole cerebellum (E) in male 

C57BL6/J mice (n=8 per group), data represented as noradrenaline (NA) in ng/ml and shows 
mean ± SEM. * p <0.05, ** p <0.01, *** p <0.001 significantly different vs. vehicle 

(repeated measures ANOVA followed by planned comparisons)
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6.4.2 Study 16: Repeated administration o f DSP-4 to TASTPM mice

6.4.2.1 NA depletion following chronic DSP4 treatment

Repeated measures ANOVA analysis on mice at 8 months revealed no significant 

effect of genotype, F = 3.85, p = 0.058, or treatment, F = 3.56, p = 0.067, on

NA (fig 6.2). There was a non-significant trend for DSP-4 treated groups to exhibit 

elevated NA levels, particularly in cortical tissue of TASTPM mice (35% increase 

relative to vehicle TASTPM). There was also a significant elevation of NA in 

hippocampal tissue of C57BL6/J mice (31% increase relative to vehicle C57BL6/J). 

At 11 months, repeated measures ANOVA revealed an overall effect of genotype, F 

(136) = 50.82, p < 0.001, brain region, F ( = 8.71, p < 0.01, and a significant

genotype*treatment interaction, F 36) = 5.9, p < 0.01. Post hoc planned comparisons

revealed a significant reduction in cortical (p<0.01) and hippocampal (p<0.05) NA 

levels in vehicle treated TASTPM transgenic mice relative to vehicle treated 

C57BL6/J mice. Also a significant reduction in cortical (p<0.01) and hippocampal 

(p<0.001) NA levels in DSP-4 treated TASTPM transgenic mice versus DSP-4 

treated C57BL6/J mice. DSP-4 treatment did not significantly affect C57BL6/J mice, 

however, there was a reduction of cortical (p = 0.01) and hippocampal (p<0.05) NA 

levels by 57% and 45% respectively in DSP-4 treated TASTPM transgenic mice 

relative to vehicle treated TASTPM transgenic mice.
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6.4.2.2 Neuroinflammation following chronic DSP-4 treatment

A. Taqman

Taqman PCR was used to analyse mRNA expression of a number of 

neuroinflammatory markers in hemidissected cortical tissue (fig 6.3 & fig 6.4). 

Univariate ANOVA analysis on mRNA expression in 8 month cortex revealed a 

significant effect of genotype on GFAP, F (11?) = 114.68, p < 0.001, TNF-a, F (116) =

13.18, p < 0.01, M IP-la, F (11?)= 682.48, p < 0.001 and RANTES, F (1 = 61.24, p

< 0.001. There was also a significant genotype*treatment interaction on TNF-a, F 

(i 16) = P < M IP-la, F (11?)= 9.43, p < 0.01 and RANTES, F = 8.05, p

< 0.05. Post hoc planned comparisons revealed signicantly increased GFAP, MIP- 

la , and RANTES in TASTPM relative to C57BL6/J mice regardless o f treatment 

(TASTPM versus C57BL6/J, p<0.001 all groups). TNF-a mRNA expression was 

also increased in TASTPM versus C57BL6/J mice after vehicle treatment (p<0.001). 

There was also a trend towards a reduction of GFAP (p = 0.15), TNF-a (p = 0.06) 

and RANTES with a significant reduction of M IP-la (p<0.05) in DSP-4 treated 

TASTPM relative to vehicle treated TASTPM mice.

Univariate ANOVA analysis on mRNA expression in 11 month cortex revealed 

significant genotype effects on GFAP, F = 204.24, p < 0.001, TNF-a, F (115) =

39.05, p < 0.001, M IP-la, F = 1539.18, p < 0.001, RANTES, F = 82.36, p <

0.001, IL-ip, F = 6.60, p < 0.05, and IkBa, F = 24.69, p < 0.001. There was

also an overall treatment effect on IL-1J3, F = 9.63, p < 0.01, and IkBa, F (116) =

8.96, p < 0.01. GFAP (p<0.01, both groups), TNF-a (p<0.001, both groups), M IP-la 

(p<0.01, both groups), RANTES (p<0.001, both groups) were increased in TASTPM 

relative to C57BL6/J mice, regardless of treatment. There was also a significant 

potentiation of IL-lp (p<0.05) in DSP-4 treated TASTPM relative to vehicle treated 

TASTPM and DSP-4 treated C57BL6/J mice at 11 months. There was a non

significant decrease in IkBa (p=0.06) in DSP-4 treated TASTPM relative to vehicle 

treated TASTPM mice and a significant reduction in IkBa (p<0.05) in DSP-4 treated 

C57BL6/J relative to vehicle treated C57BL6/J mice at 11 months.
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DSP-4 treated C57BL6/J and TASTPM transgenic mice (n=12 per group), data represented 

as fold increase relative to GAPDH and shows mean ± SEM. * p <0.05, ** p <0.01 vs. 
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Figure 6.4: Cortical inflammatory mRNA markers in 8 month and 11 month vehicle and 
DSP-4 treated C57BL6/J and TASTPM transgenic mice (n=12 per group), data represented 

as fold increase relative to GAPDH and shows mean ± SEM. * p <0.05 significantly 
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B. Immunohistochemistry (IHC)

Brains were immunohistochemically processed to identify reactive astrocytes 

(GFAP) (figs 6.5 & 6.6) and activated microglia (CD68) (fig 6.7), as markers of 

neuroinflammation. There was no effect of DSP-4 treatment on the area of microglial 

stain in cortex of TASTPM mice at 8 or 11 months; however, cortical GFAP staining 

for reactive astrocytes was patchy and less dense in DSP4 treated relative to vehicle 

treated TASTPM mice at 8 months. This was supported at the transcriptional level by 

a reduction in cortical GFAP mRNA of DSP-4 treated TASTPM mice at 8 months of 

age (fig 6.3). By 11 months of age, there was no difference in GFAP staining 

between DSP4 treated and vehicle treated TASTPM mice.

GFAP:
8 month DSP-4 C57BL6/J 8 month VEH C57BL6/J

i'Cr&l .A-z • * ■ -

sections of the cortex stained

GFAP:
8 month DSP-4 TASTPM 8 month VEH TASTPM

m;. ■ '
■ i p i i w i i  im m  ^ — P — — — tm a

GFAP from 8 month vehicle and DSP-4 treated C57BL6/J and TASTPM transgenic mice 

(n=12 per group), scale bar represents 200pmetres
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Figure 6.6: Representative photomicrographs of sagittal sections of the cortex stained for 

GFAP from 11 month vehicle and DSP-4 treated C57BL6/J and TASTPM transgenic mice 

(n=12 per group), scale bar represents 200jimetres
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Figure 6.7: Representative photomicrographs of sagittal sections of the cortex stained for 

CD68 from 8 and 11 month vehicle and DSP-4 treated TASTPM transgenic mice (n=12 per

group), scale bar represents 200pmetres

6.4.2.3 Amyloid plaque load

Brains were immunohistochemically processed to identify Ap plaques (fig 6.8 & 

6.9). At 8 months of age, repeated measures ANOVA of Ap plaque number at the 8 

month timepoint revealed a significant effect of treatment, F (13g) = 14.01, p < 0.001, 

genotype, F ( = 209.30, p < 0.001 and a significant treatment*genotype

interaction, F (13g) = 14.01, p < 0.001. Post hoc planned comparisons indicated a 

significant reduction in percentage area of Ap in cortex in DSP-4 treated relative to
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vehicle treated TASTPM mice (p<0.01) (fig 6.10). There was no significant 

difference in percentage hippocampal Ap plaque deposition in DSP-4 treated 

TASTPM versus vehicle treated TASTPM mice.

At 11 months, repeated measures ANOVA revealed an overall effect of genotype, F 

(139) = 231.54, p < 0.001, but no effect of treatment, F 39) = 2.22, p = 0.14, on

cortical Ap plaques. There was also an overall effect of genotype, F (1 = 464.53, p

< 0.001, but no effect of treatment, F (139) = 0.74, p = 0.40, on hippocampal Ap

plaques. TASTPM transgenic mice had significantly greater Ap plaques than 

C57BL6.J mice irrespective of treatment (pO.001, all groups).

Amyloid -  8 month:
DSP-4 C57BL6/J VEH C57BL6/J

Amyloid -  8 month:
DSP-4 TASTPM VEH TASTPM

Figure 6.8: Representative photomicrographs of sagittal sections of the cortex and 
hippocampus stained for amyloid from 8 month vehicle and DSP-4 treated C57BL6/J and 

TASTPM transgenic mice (n=12 per group), scale bar represents 1mm
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DSP-4 C57BL6/J VEH C57BL6/J

Amyloid -1 1  month:
DSP-4 TASTPM
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Figure 6.9: Representative photomicrographs of sagittal sections of the cortex and 
hippocampus stained for amyloid from 11 month vehicle and DSP-4 treated C57BL6/J and 

TASTPM transgenic mice (n=12 per group), scale bar represents 1mm
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Figure 6.10: Percentage of amyloid stained area in cortex and hippocampus of 8 month and 
11 month vehicle and DSP-4 treated C57BL6/J and TASTPM transgenic mice, data 

represented as percentage stained area and shows mean ± SEM. ** p <0.01 significantly 
different vs. vehicle TASTPM (univariate ANOVA followed by planned comparisons)

6.4.2.4 Neurodegeneration following chronic DSP-4 treatment

A. Noradrenergic depletion in the LC

Brains were immunohistochemically processed to identify tyrosine hydroxylase (TH) 

as a marker of noradrenergic depletion (fig 6.11 & 6.12). At 8 months of age, there 

was no overall effect of treatment, F (139) = 0.13, p = 0.72, or genotype, F (139) = 0.31,
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p = 0.58 on TH cell count. A separate univariate ANOVA revealed a significant 

effect of treatment, F (138) = 4.47, p = 0.05 at 11 months of age. Post hoc planned

comparisons indicated a significant reduction (19% vs. vehicle TASTPM, p < 0.05) 

in TH staining within the LC (fig 6.13). There was no difference in TH staining of 

the LC between vehicle and DSP-4 treated C57BL6/J control mice.

TH -  11 month:
A VEH C57BL6/J B

Figure 6.11: Representative photomicrographs of sagittal sections of the locus coeruleus 
stained for tyrosine hydroxylase (TH) from 11 month vehicle and DSP-4 treated C57BL6/J 

mice (n=12 per group), scale bar represents 200pmetres (A, B) and lOOpmetres (C, D)
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Figure 6.12: Representative photomicrographs of sagittal sections of the locus coeruleus 
stained for tyrosine hydroxylase (TH) from 11 month vehicle and DSP-4 treated TASTPM 

transgenic mice (n=12 per group), scale bar represents 200pmetres (A, B) and lOOpmetres

(C, D)

B DSP4 TASTPM
; •  •
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Vehicle D SP4

8 m onth 11 m onth

C57BL6/J TASTPM C57BL6/J TASTPM

Figure 6.13: TH cell count in the locus coeruleus (LC) of 8 month and 11 month vehicle and 
DSP-4 treated C57BL6/J and TASTPM transgenic mice (n=12 per group), data represented 
as count of tyrosine hydroxylase positive stained cells and shows mean ± SEM. * p <0.05 

significantly different vs. vehicle TASTPM (univariate ANOVA followed by planned
comparisons)

B. Neurodegeneration in hippocampus

A univariate ANOVA demonstrated an overall effect of age, F = 33.69, p <

0.001, on hippocampal NeuN cell count (fig 6.14). There was no overall effect of 

genotype, F (164) = 2.49, p = 0.12, treatment, F (164) = 3.16, p = 0.09, or any

interaction between treatment*genotype, F M) = 0.00, p = 0.99. Post hoc planned 

comparisons revealed that there was a significant difference in cell count between 8 

month and 11 month mice within all treatment groups (p < 0.01, all groups) (fig 

6.15).
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NeuN:
8 month DSP-4 TASTPM 8 month VEH TASTPM

NeuN:
11 month DSP-4 TASTPM 11 month VEH TASTPM

Figure 6.14: Representative photomicrographs of sagittal sections of the hippocampus 
stained for NeuN from 8 and 11 month vehicle and DSP-4 treated TASTPM transgenic mice 

(n=12 per group), scale bar represents and lOOpmetres
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Figure 6.15: NeuN cell count in the hippocampus of 8 month (A) and 11 month (B) vehicle 

and DSP-4 treated C57BL6/J and TASTPM transgenic mice (n=12 per group), data 

represented as count of NeuN stained positive cells and shows mean ± SEM
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6.5 D iscussion

6.5.1 Acute effect o f DSP-4 on NA (5mg/kg and 50mg/kg)

The reduction of central NA by high doses (50mg/kg) of the noradrenergic specific 

neurotoxin DSP-4 has been reported in detail (Jonsson et al, 1981; Hallman & 

Jonsson, 1984; Prieto & Giralt, 2001) and appears specific to axons originating from 

the locus coeruleus (LC) (Fritschy & Grzanna, 1991). DSP-4 treatment subsequently 

causes an acute and selective degeneration of central NA axonal terminals (Fritschy 

et al, 1990) leading to a loss of NA cell bodies in the LC (Fritschy & Grzanna,).

The data described in this experiment confirms that DSP-4 can cause an acute 

reduction of NA in the main LC terminal regions i.e. hippocampus, cortex and 

cerebellum (fig 6.1) using a well-published dose of 50mg/kg DSP-4 (Hallman & 

Jonsson, 1984; Fritschy & Grzanna, 1989; Prieto & Giralt, 2001; Fritschy et al, 1990; 

Fritschy & Grzanna, 1991). As detailed in the methods section of this chapter, 

previous literature revealed multiple IP injections of 50pg/kg DSP-4 was sufficient 

to potentiate neuroinflammation in rats cortically injected with Apl-42 (Heneka et 

al, 2002; Heneka et al, 2003). Through personal communication with Dr D Feinstein, 

a dose of 5mg/kg was considered appropriate to enhance neuroinflammation but 

minimise the incidence of mortality of TASTPM mice. An acute administration of 

5mg/kg DSP-4 significantly reduced cortical, hippocampal and cerebellar NA 

concentrations (fig 6.1) indicating chronic treatment at this dose would successfully 

lower NA levels in TASTPM mice. A cortical NA reduction induced by both DSP-4 

doses was evident irrespective of hemisphere; however, although a significant 

reduction was elicited by 50mg/kg DSP-4 in both sides of the hippocampus a 

decrease in NA in the right hand side using 5mg/kg DSP4 was absent. This may be 

due to a lower hippocampal NA concentration apparent in vehicle treated animals 

relative to other brain regions and the increased variance evident in right hand side 

hippocampal samples.

6.5.2 Repeated administration o f DSP-4 to TASTPM mice

The most prominent neuronal loss evident in AD occurs in the LC (Zarow et al,

2003) and correlates with the duration and severity of dementia (Bondareff et al, 

1987). Previous literature also describes the potentiation of neuroinflammation in
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vivo following noradrenergic depletion by administration of DSP-4 (Heneka et al, 

2002; Heneka et al, 2003; Feinstein et al, 2002; Song et al, 1999; Feinstein et al, 

2004; Wenk et al, 2003). This evidence suggests NA depletion may exacerbate the 

neuroinflammatory actions of amyloid and subsequently enhance neurodegeneration. 

Hence, I investigated the effects of NA depletion elicited by repeated peripheral 

injection of DSP-4 on neuroinflammation, amyloid plaque load and 

neurodegeneration.

6.5.2.1 Neuroinflammation

The anti-inflammatory actions of NA are mediated through the modulation of the 

pro-inflammatory cytokine expression and release from microglia (Russo et al, 2004; 

Loughlin et al, 1993) and can protect cortical neurons against microglial induced cell 

death by inhibiting the release of IL-lp (Madrigal et al, 2005). In contrast, low doses 

of the noradrenergic neurotoxin N - (2-chloroethyl)-N-ethyl-2-bromobenzylamine 

(DSP-4) (50pg/kg) have been reported to exacerbate microglial activation and 

inflammatory gene expression (Feinstein et al., 2004) in APP over expressing mice. 

The present studies demonstrate that modulation of the NA system by repeated 

peripheral administration of the noradrenergic neurotoxin DSP-4 can influence the 

expression of neuroinflammatory markers in APP/PS1 mice. At 8 months of age, 

vehicle treated TASTPM mice displayed an increased neuroinflammatory profile 

demonstrated by a trend for increased cortical mRNA expression of the pro- 

inflammatory cytokine TNF-a and the chemokine M IP-la relative to DSP-4 treated 

TASTPM mice (fig 6.3). There was also a trend towards increased GFAP (p = 0.15) 

in vehicle treated TASTPM relative to DSP-4 treated TASTPM mice (fig 6.3). The 

reduction in GFAP cortical mRNA expression in DSP-4 treated TASTPM mice was 

further supported by patchy cortical GFAP staining relative to strong staining evident 

in C57BL6/J mice (fig 6.5). Interestingly, the trend for an increased 

neuroinflammatory profile in vehicle versus DSP-4 treated TASTPM mice may 

relate to the prevention of a natural decline in cortical extracellular NA observed in 

the vehicle TASTPM transgenic group as a trend towards a reduction in cortical NA 

levels (fig 6.2). A 3 month treatment of 5 mg/kg DSP-4, administered once a month, 

did not decrease extracellular cortical or hippocampal NA levels (fig 6.2) in 

TASTPM mice and did not cause the degeneration of TH-immunopositive cell
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bodies in the LC (fig 6.13). The effect of low (5mg/kg) doses of DSP-4 on NA levels 

in brain tissue has not been reported but the administration of a high dose of DSP-4 

(50mg/kg) causes significant reduction in NA levels (Hallman & Jonsson, 1984). It is 

relevant to the current studies that a 50mg/kg dose of DSP-4 has also been shown to 

result in the acute increase of extracellular NA efflux in rat brain (Hughes & 

Stanford, 1998). Hence, the short term (3 months) repeated peripheral administration 

of DSP-4 at a 5mg/kg dose may not result in a reduction of central NA levels in the 

brain tissue of DSP-4 treated TASTPM mice. Furthermore, since NA exerts anti

inflammatory actions (Hu et al, 1991), the short term increases in cortical NA levels, 

in the absence of LC damage, may explain the reduction of neuroinflammatory 

markers evident in DSP-4 versus vehicle treated TASTPM brain tissue.

Continued administration of DSP-4 resulted in a significant reduction of TH-positive 

cells in the LC by 11 months (fig 6.13) associated with a significant reduction in 

cortical and hippocampal NA levels relative to vehicle treated TASTPM mice (fig 

6.2). There was no reduction in NA levels in C57BL6/J control mice at any 

timepoint. The noradrenergic depletion caused by repeated injection of 5mg/kg DSP4 

for 6 months to TASTPM mice resulted in the potentiation of cortical IL-ip mRNA 

expression (fig 6.4) and a reduction in IicBa mRNA (fig 6.4), an intracellular 

inhibitory kinase responsible for regulating translocation o f the transcription factor 

NF-kB, important in mediating transcription of target genes. Repeated administration 

of DSP-4 for 6 months did not increase IL-ip mRNA in C57BL6/J control mice. 

Long-term (6 months) administration of DSP-4 at a low dose (5mg/kg) results in the 

exacerbation of A p-induced neuroinflammation evident in APP/PS1 transgenic mice 

via the reduction in extracellular cortical and hippocampal NA levels and the loss of 

TH-positive cell bodies in the LC. The current data support evidence that sufficient 

depletion of the noradrenergic system by DSP-4 treatment can increase inflammatory 

gene expression and particularly that of IL-lp (Heneka et al, 2002; Feinstein et al.,

2004). Neuroinflammation is associated with Ap plaques in AD brain tissue 

(McGeer et al, 1994). The acute increase in cortical NA levels (fig 6.2) in DSP-4 

treated TASTPM mice by 8 months of age also resulted in a significant reduction in 

cortical amyloid plaque load (fig 6.10), which correlates with the significant decrease 

in cortical GFAP staining (fig 6.5) and mRNA expression (fig 6.3). Recent literature 

published after completion of the current study demonstrated that twice monthly
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dosing of 5mg/kg DSP-4 to mutant V717F APP mice over a 6 month period 

exacerbated Ap plaque burden and GFAP staining in brain tissue (Kalinin et al, 

2006). These data described here support evidence that NA can modulate Ap 

deposition and associated neuroinflammation.

6.5.2.2 Neurodegeneration

Recent data has revealed a significant exacerbation of neuronal cell death in the 

hippocampus, cortex and subiculum of APP23 mice following 50mg/kg DSP4 

(Heneka et al, 2006). Here, using a lower 5mg/kg DSP-4 dose repeatedly 

administered monthly for 3 or 6 months, neurodegeneration in the hippocampus, 

quantified as NeuN cell count, was not evident (fig 6.15). It is difficult to compare 

between the study described in this chapter and that reported by Heneka et al, 2006 

since a different DSP-4 protocol and transgenic line was used. The lack of neuronal 

cell death in TASTPM mice following DSP-4 treatment may be explained by the 

difference in DSP-4 dose and protocol reported by Heneka et al, 2006 to that used in 

this study. Heneka et al, 2006 reported a 50-60% reduction in TH staining in the LC 

following two doses of 50mg/kg DSP-4 in contrast to the 19% observed following 

repeated administration of 5mg/kg DSP4 in the current study. A greater magnitude of 

noradrenergic depletion in the LC is subsequently more likely to affect terminal 

regions such as the hippocampus. It is also interesting, however, that control APP23 

mice exhibited significant neurodegeneration in the brain regions studied relative to 

wildtype controls. Hence, DSP-4 treatment significantly exacerbated pre-existing cell 

death in the brain tissue of APP23 mice. A lack of quantifiable neurodegeneration in 

the brain tissue of TASTPM transgenic mice prior to the administration of DSP-4 

may suggest that peripheral injection of DSP-4 exacerbates pre-existing cell death 

rather than initiating the occurrence of neurodegeneration in the rodent brain. To 

address this issue, further work should directly compare the occurrence and 

magnitude of cell death in brain tissue following DSP-4 administration (using the 

same protocol) in APP transgenic lines that usually exhibit or fail to exhibit pre

existing neurodegeneration. The injection of DSP-4 prior to and after the occurrence 

of pre-existing cell death in APP transgenic animals may also further elucidate the 

role of noradrenergic depletion in initiating or exacerbating neurodegeneration.
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Overall, the current studies provide novel information regarding the effects o f NA 

modulation on neuroinflammation, amyloid load and neurodegeneration in APP/PS1 

transgenic mice, particularly following the short-term treatment o f DSP-4 at 

relatively low doses (5mg/kg). Altering the DSP-4 protocol to induce a more 

significant loss of TH staining in the LC, similar to that reported by Heneka et al, 

2006, may enhance the possibility of increasing Ap plaque deposition and 

neuroinflammation and causing neurodegeneration in TASTPM brain tissue. I have 

been able to begin a further study at GSK, Harlow to investigate modulation of 

neuroinflammation and the occurrence of neurodegeneration in TASTPM brain 

tissue. I am using the DSP-4 protocol described by Heneka et al, 2006. This will 

clarify further the potential of noradrenergic depletion in TASTPM transgenic mice 

to provide markers of neuroinflammation and neurodegeneration.

231



CHAPTER 7 

General Discussion & Conclusions

7.1 Discussion

The progression of Alzheimer’s disease (AD) is characterised by Ap plaque 

formation, neuroinflammation and neurodegeneration. Current therapies for AD are 

restricted to symptomatic relief and do not, at present, modulate the pathological 

progression of the disorder. Putative anti-inflammatory and neuroprotective agents 

for AD need to be tested preclinically in rodent in vivo models that demonstrate 

robust and reproducible markers of neuroinflammation and neurodegeneration. This 

thesis explored the development of rodent in vivo models of neuroinflammation and 

neurodegeneration and investigated markers of neuroinflammation and 

neurodegeneration in brain tissue. This involved using a range of in vivo and in vitro 

techniques including IP or ICV injection of LPS, intranuclear injection of Ap, 

western blotting to assess the presence of different Ap forms, oral administration of 

anti-inflammatory agents, immunohistochemical analysis of Ap deposits, neurons 

and immune cells in rodent brain, Luminex® analysis of cytokine and other 

intracellular proteins in brain tissue and lastly, the colorimetric assessment of plasma 

iNOS activity.

7.L I Luminex9  -  cytokine detection in plasma and brain tissue

Cytokines are key mediators of inflammation (reviewed by Cohen & Cohen, 1996) 

and are present in AD brain tissue (Griffin et al, 1995; Grammas et al, 2001; 

Luterman et al, 2000). Thus, the detection and quantification of cytokine expression, 

particularly in brain tissue, is an important readout for in vivo models of 

neuroinflammation. Although the detection of mRNA expression can provide 

information on gene activity, the post transcriptional events leading to protein 

production are not taken into account (reviewed by Lockhart & Winzeler, 2000). 

Hence, the simultaneous detection of cytokine protein is more informative than 

relying on quantification of mRNA expression. The advantage of analysing a wide 

range of cytokines within a single sample via Luminex® ensures that the balance
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between pro- and anti-inflammatory responses can be clearly identified within each 

individual animal. For example, treatment with a putative anti-inflammatory agent 

may increase anti-inflammatory readouts as well as decrease pro-inflammatory 

cytokine expression.

There are currently only two published papers, by the same author, reporting the 

detection of cytokine protein in rodent (mouse) tissue (Goujon et al, 1996; 1997). A 

majority of the published literature relies on the quantification of cytokine mRNA 

expression in brain tissue following IP LPS injection (Gayle et al, 1998; Castanon et 

al, 2004). Since the completion of this current thesis, Roche et al, 2006 have reported 

the detection, by ELISA, of significantly increased IL-ip protein associated with a 

small increase in TNF-a protein in rat brain tissue following IP LPS injection. This 

recent study supports the data that I have obtained using Luminex®. I report a 

significant increase in IL-1 (3 protein throughout rat brain tissue and an inconsistent 

increase in TNF-a and IL-1 a  within various brain regions including the 

hippocampus, cortex and hypothalamus (fig 2.3). Roche et al (2006) investigated 

TNF-a protein at a 2 hour timepoint. The present studies described within this thesis 

focus primarily on a 6 hour timepoint, suggesting that the detection of various 

cytokine proteins is dependent upon the timepoint chosen for study as the time- 

dependant profile of protein production will differ between cytokines. This also has 

implications on the cytokine protein changes evident in brain tissue following ICV 

LPS injection. Administration of LPS via ICV injection significantly increased the 

expression of TNF-a, IL-1 a  and IL-1 [3 protein in brain tissue (fig 3.1 & 3.5). At the 

2 hour timepoint studied, hippocampal cytokine protein was of a greater magnitude 

than cortical cytokine protein. LPS initially activates microglia in hippocampal and 

thalamic areas (Nicholson & Renton, 2001) following ICV administration so that, by 

2 hours post LPS, higher levels of cytokine protein are observed in the hippocampus 

relative to the cortex. In contrast to the wide range of plasma cytokines increased by 

IP LPS including IFN-y, IL-10, IL-la, IL-ip, IL-6 and TNF-a by 6 hours (fig 2.3), 

ICV LPS increased production of IL-ip, IL-6 and TNF-a only (fig 3.3. & 3.6). 

Disparity between the range and levels of plasma cytokine protein induced by IP or 

ICV LPS injection may also relate to differences in the timepoints investigated for 

each administration route.
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7.1,2 Communication o f inflammation between the brain and periphery

I adapted the Luminex® system to detect changes in phosphorylated IkB cx, p38 and 

JNK in brain tissue following IP LPS, providing the first report of the detection of 

phosphorylated intracellular proteins by Luminex®. The phosphorylation of 

intracellular proteins involved in LPS-mediated signalling pathways in brain tissue 

suggests a centrally derived response to peripherally administered LPS. Previous 

literature has reported the possible mechanism by which LPS circulating in blood 

may elicit neuroinflammation (Nadeau & Rivest, 1999). The receptor for LPS, 

TLR4, is located on microglia found at areas of weak blood brain barrier (BBB) 

including the circumventricular organs (CVOs), leptomeninges and choroid plexus 

(ChP) of the brain (Vallieres & Rivest, 1997). Activation of TLR4 causes 

translocation of N F -kB and activation of MAPK pathways resulting in transcription 

of target genes within microglia, firstly at the CVOs, and subsequently throughout 

the brain tissue (Herkenham et al, 1998). Following IP LPS, Luminex® detection of 

intracellular protein phosphorylation revealed that, in agreement with the literature, 

the LPS-mediated inflammatory response occurred through early N F -kB activation 

via phosphorylation of the inhibitory factor, IkB<x in hippocampal brain tissue at 2 

hours following IP LPS (fig 2.8) (Krappmann et al, 2004). N F -kB activation also 

resulted in decreased cortical JNK phosphorylation by 2 hours following IP LPS (fig 

2.8). This supports recent published data indicating N F -kB  has anti-apoptotic 

properties by suppressing JNK activity (Bubici et al, 2006). Phosphorylation of p38 

kinase was increased by 6 hours following IP LPS (fig 2.8) indicating that this is a 

late event in relation to LPS-mediated N F -kB  activation within the IP LPS model, 

which, as is discussed later, has implications on the efficacy of p38 inhibitors in this 

model. To my knowledge, this is the first report describing the utilisation of 

Luminex® suspension bead arrays for detecting intracellular protein phosphorylation 

in rodent brain tissue and illustrates the broader application of this technology for 

detection of proteins in ex vivo tissue. It cannot be discounted that LPS-mediated 

activation of N F -kB and MAPK pathways in the brain following peripheral LPS 

administration may be due to entry of LPS into the brain through the BBB and the 

subsequent action of LPS on immune cells in brain tissue rather than those localised 

at CVOs. Although there is a molecular weight dependent breakdown of the BBB 

following IP LPS this is limited to access of molecules approximately <340Da in
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size (Singh et al, 2004). Interestingly, following an ICV injection of LPS there is 

rapid diffusion of LPS across the BBB into blood (Chen et al, 2000). There is a 

possibility that the indwelling cannula implanted in the brain tissue, necessary for 

ICV administration of LPS, may damage blood vessels within the brain adequately 

for LPS to diffuse into blood quickly. This warrants further investigation by 

assessing the transport across the BBB of dextran molecules more akin to the 

molecular weight of LPS. This will help establish whether entry of LPS into the brain 

following IP or out of the brain following ICV LPS is possible and how much the 

central and peripheral profiles resulting from IP or ICV LPS injection are influenced 

by diffusion of LPS through the BBB.

7.1.3 LPS models o f neuroinflammation -  utility for compound screening

Cytokine protein can be detected in rat brain tissue following IP LPS injection but 

since the inflammatory response is communicated from blood to brain, any reduction 

in the peripheral immune response caused by an anti-inflammatory agent may have a 

knock-on effect to the brain, preventing central cytokine production. Hence, although 

anti-inflammatory activity of a novel agent can be assessed following IP LPS 

injection, the central efficacy of anti-inflammatory agents is difficult to determine. 

The ICV LPS model provides a central inflammatory response evidenced by 

increased protein production of several cytokines. The ICV model is low throughput 

because, in rat; stereotaxic surgery is needed to fix an indwelling cannula or to 

directly inject LPS via Hamilton syringe. The IP and ICV LPS models should be 

used in conjunction to assess putative anti-inflammatory compounds. I assessed the 

effects of the glucocorticoid dexamethasone (DEX), the a l  adrenoceptor antagonist, 

fluparoxan and the p38 inhibitor, GW569293 on LPS-induced cytokine protein 

production.

Glucocorticoids modulate cytokine production by numerous mechanisms as 

previously described in section 1.4.2 of this thesis. DEX is a standard glucocorticoid 

drug used routinely in preclinical models of inflammation and has been reported to 

attenuate plasma cytokine expression following IP LPS injection (Mengozzi et al, 

1994). DEX can reduce LPS-induced cytokine mRNA expression within brain tissue; 

however, the subsequent effect of DEX on cytokine protein readouts had not yet 

been quantified (Satta et al, 1998; Jacobs et al, 1997; Kakizaki et al, 1999). Pre-
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treatment with DEX significantly inhibited the central and peripheral production of 

pro-inflammatory cytokines following IP LPS administration (fig 2.5 & 2.6). Since 

the central efficacy of glucocorticoid was difficult to assess in the IP LPS model, I 

analysed the efficacy of DEX further using the ICV LPS model. This indicated 

peripheral pre-treatment with DEX could fully inhibit hippocampal IL-ip and 

attenuate cortical and hippocampal IL-1 a  and TNF-a following ICV administration 

of 5pg LPS (fig 3.5).

The LPS models have demonstrated peripheral treatment of DEX can inhibit both 

peripheral and centrally derived inflammation. The efficacy of DEX in both the IP 

and ICV LPS models also indicates that, used in conjunction, both models can 

provide valuable information on anti-inflammatory agents.

I further assessed the utilisation of these models using the a2-adrenoceptor 

antagonist, fluparoxan. The role of NA in AD and the action of NA on adrenoceptors 

was described in section 1.8 of this thesis. NA can down-regulate pro-inflammatory 

cytokines (Kaneko et al, 2005). a2 adrenoceptor antagonists act as anti-inflammatory 

agents by increasing NA levels. Pre-treatment with fluparoxan prior to IP LPS 

caused a significant reduction in LPS-induced plasma TNF-a and IL-ip (fig 2.14) 

and attenuated hippocampal IL-ip and cortical IL-1 a  (fig 2.11). This significant 

anti-inflammatory effect of fluparoxan pre-treatment led to the further assessment of 

fluparoxan in the ICV LPS model. Peripherally administered fluparoxan significantly 

attenuated ICV LPS-induced cortical and hippocampal IL-ip and TNF-a and 

reduced cortical IL-1 a  (fig 3.7). These data are the first to demonstrate the anti

inflammatory properties of a a2-adrenoceptor antagonist fluparoxan, on IL-1 a , IL- 

ip  and TNF-a protein in both plasma and brain tissue. It also indicates the 

importance of NA in the modulation of neuroinflammation. This may have important 

implications in the search for efficacious anti-inflammatory agents suitable for the 

treatment of inflammatory based neurological disorders including AD.

Previous literature describes the anti-inflammatory actions of p38a inhibitors in 

numerous in vivo models of inflammation (Barone et al, 2001; Legos et al, 2001; 

reviewed by Kaminska, 2005). MAP kinase pathways, particularly, p38 kinase, are 

also thought to be involved in LPS-mediated intracellular signalling (Lee & Young, 

1996; Nolan et al, 2003). I had previously demonstrated that, at timepoints used to 

assess cytokine readouts, p38 phosphorylation in cortex occurred by 6 hours
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following IP LPS (fig 2.8). This event was later than IicBa phosphorylation which 

occurred in hippocampus by 2 hours. Hence, involvement of MAP kinase pathways 

may occur as a late event in brain tissue during LPS-induced transcription of target 

genes following IP LPS injection. These data are consistent with a report by Nolan et 

al, 2003 that described the increased phosphorylation in cortex and hippocampus of 

p38 kinase, detected by western blot. The p38 pathway may have a greater 

contribution to the long-term effects of LPS-induced inflammation since the early 

increase in IicBa phosphorylation reveals acute effects in brain tissue caused by the 

peripheral injection of LPS are mediated via NF-kB. Agonism of a2 adrenoceptors 

can induce NF-kB transcriptional activity suggesting an a l  adrenoceptor antagonist 

may inhibit NF-kB transcription of target genes (Lymperopoulos et al, 2006). 

Dexamethasone has also been reported to inhibit NF-kB translocation (Quan et al, 

2000), providing further evidence that agents that can affect the activity of LPS- 

mediated NF-kB activity may subsequently influence the production of pro- and anti

inflammatory cytokines. It was interesting that subsequent studies demonstrated that 

p38a inhibition failed to modulate cytokine protein production in both the IP and 

ICV LPS models, leading to the hypothesis that, in models demonstrating 

phosphorylation of p38 kinase as a late event and the main transcription of cytokines 

occurring via NF-kB activation, p38 inhibitors fail to influence cytokine expression. 

Previous literature also indicates that p38 activity may be cell-specific, differentially 

affecting cytokine release between different cell types (Van den Blink et al, 2001; 

Zhang et al, 1997). Further investigation to establish the specific immune cells 

activated in plasma and brain tissue following IP LPS injection and a correlation with 

known p38 activity on different cell types is required. It is important to consider the 

mechanism of action of anti-inflammatory agents when investigating their activity 

using LPS models. Agents that may affect cytokine protein production by altering 

gene transcription may not be efficacious in IP or ICV LPS models if they are unable 

to modulate NF-kB activity.

7.1.4 Injection o f  exogenous A f t  in vivo

There are many in vivo models described in the literature that involve the use of a 

variety of Ap fragments, Ap preparations and methods of delivering Ap into rodent 

brain tissue (Miguel-Hidalgo et al, 1998; Craft et al, 2004; Nakagawa et al, 2004;
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Ryu et al, 2004). This huge variation in the literature has led to conflicting reports 

regarding the neuroinflammatory and neurotoxic effects following injection of Ap 

into rodent brain. At low (100pM) concentrations of Api-42, it was revealed that 

ICV tubing with a metal injector attachment was unlikely to be a suitable method for 

Ap delivery (fig 4.2). In contrast, Api-42 (lOOpM) was successfully delivered as 

monomeric, oligomeric and aggregated forms via Hamilton syringe (fig 4.2). 

Previous literature indicates that most researchers prefer to use a Hamilton syringe 

when administering Ap into rodent brain tissue (Song et al, 2001; Ryu et al, 2004). A 

team led by Sally Frautschy routinely use minipumps to chronically infuse 

oligomeric Ap (Frautschy et al, 2001; Craft et al, 2004, Harris-white et al, 2004). The 

analysis of an oligomeric Ap solution expelled from the tubing of a minipump 

revealed that little Api-42 solution was delivered, particularly in the presence of the 

metal cannula (fig 4.3). Oligomeric forms were present in the control sample and a 

sample removed from the minipump but the solution contained within the minipump 

also consisted of Ap aggregates. This suggests the oligomeric Ap solution may 

aggregate over time, which would have implications on the success of the oligomeric 

Ap delivery due to issues with the amount of oligomeric Ap available within the 

minipump and the potential blocking of the plastic minipump tubing by rapidly 

forming Ap aggregates. Interestingly, Ap solutions that had previously been shown 

to cause neurotoxicity in rodent brain tissue when injected via Hamilton syringe 

(Ryu et al, 2004, Miguel-Hidalgo et al, 1998) consisted of mostly monomeric and 

some oligomeric forms of Apl-42. Pre-aggregating Api-42 solutions described in 

these reports resulted in the increased presence of aggregated Ap in a control sample; 

however, this could not be successfully expelled through a Hamilton syringe (fig 

4.4). Hence, Ap aggregates appear difficult to expel successfully from any apparatus 

routinely used to apply agents into brain tissue in vivo. These current novel data 

implies that there are limitations to examining Ap mediated neuroinflammation or 

neurodegeneration in vivo as the direct injection via a Hamilton syringe is restricted 

to the delivery of soluble forms of Api-42.

There is a further concern regarding the successful delivery of Ap into rodent brain 

in vivo. Some authors describe the deposition of injected Ap within brain tissue 

(Miguel-Hidalgo et al, 1998; Weldon et al, 1998); however, in contrast many do not
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report whether the Ap solution injected has been successfully delivered into the brain 

(Jantaratnotai et al, 2003; Ryu et al, 2004; Heneka et al, 2002; Games et al, 1992). In 

agreement with previous literature, viewing Congo red stained Ap deposits under 

polarised light revealed that the Ap did not form fibrils once in the brain tissue (fig 

4.18); therefore, neurotoxicity occurred in response to the presence of soluble Ap 

(Miguel-Hidalgo et al, 1998). Although Ap deposition in brain tissue is a prominent 

feature of AD, it is still unclear whether Ap plaques are causative for the disease. The 

current studies demonstrate that the delivery of Api-42 into rodent brain tissue is 

restricted to soluble forms and that soluble Ap, by 7 days post injection, does not 

fibrillise in the tissue. This suggests it will be difficult to consistently assess the role 

of fibrillised Ap in vivo since it is difficult to achieve reliable delivery and the Ap 

deposit may not aggregate over a short study duration. The argument against a role 

for insoluble Ap in neurotoxicity includes evidence that Ap plaque load does not 

strongly correlate with the progression and severity of cognitive deficits in AD and 

does not cause significant neurodegeneration in mouse with mutant APP or APP and 

PS-1 overexpression (Games et al, 2006). More recently, the levels of soluble 

oligomeric forms of Ap have been shown to correlate with disease severity and 

induce neurotoxicity (Watson et al, 2005; De Felice et al, 2004).

7.1.5 Afi models o f neuroinflammation & neurodegeneration

As stated previously, there is contradictory evidence regarding the neurotoxicity of 

Ap in vivo and much of the variability may result from differences between the Ap 

fragments and method of administration used. However, the solvent employed to 

dissolve and prepare the Ap can also vary widely (Winkler et al, 1994; O’Hare et al, 

1999; Waite et al, 1992, Ryu et al, 2004). In the current studies, Ap was dissolved in 

PBS which caused approximately a 25% hippocampal cell loss (fig 4.13) and 69% 

mediolateral damage (fig 4.14) relative to vehicle treated animals. This effect was 

similar to that achieved by Ryu et al, 2004 in which Ryu et al described the 

comparison of Ap injected rats with non injected shams. In contrast to Ryu et al, 

2004, the current studies revealed that Apl-42 dissolved in acetonitrile, at either 0.35 

or 0.035%, caused toxicity that was similar to the neurotoxic effect of acetonitrile 

injection alone (fig 4.7 & 4.13). This highlights the importance of comparing an Ap 

injected animal to vehicle injection rather than non injected sham rats. The data
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described in this thesis suggests that Api-42 does not exacerbate acetonitrile driven 

cell death and that acetonitrile causes significant neurotoxicity in vivo, even when 

administered in relatively small quantities. This disagrees with a previous report 

suggesting that Ap may potentiate the toxicity of 35% acetonitrile in vivo (Waite et 

al, 1992) but this study described the injection of 3nmol human Api-40 or rat A pi- 

42 in contrast to the lnmol human Apl-42 used in these current studies. Acetonitrile 

is believed to cause calcium driven neurotoxicity and due to the nature of this in vivo 

model, direct application of an acetonitrile based vehicle onto hippocampal cells in 

vivo is likely to cause a large degree of neurotoxicity (Waite et al, 1992).

In contrast to the variable and inconsistent neurotoxicity induced by injection of Ap, 

significant neuroinflammation was observed around the injection site. Quantification 

of microglial and macrophage staining revealed a clear increase in 

neuroinflammation following injection of Api-42 when using either PBS alone of 

acetonitrile/PBS as a vehicle (fig 4.16). This indicates that Api-42 causes significant 

neuroinflammation whilst acetonitrile elicits neurotoxicity via an alternative 

mechanism (i.e. calcium-mediated neurotoxicity). The macrophage and microglia 

were surrounding the extracellular deposit and cell loss was evident only adjacent to 

the deposit (fig 4.15). This is similar to that seen in AD brain tissue since activated 

microglia surround extracellular senile plaques (McGeer et al, 1994). The role of 

microglia in mediating Ap-induced cell death is unclear. Activated microglia 

phagocytose extracellular Ap deposits and may attack the surrounding healthy tissue. 

Microglia can also release neurotoxic reactive species that cause further damage 

(Minager et al, 2002). It is possible that the toxicity evident in an exogenous Ap 

injection model occurs via an inflammatory-driven mechanism comprising the 

release of toxic agents by microglia and macrophage surrounding the Ap deposit. 

Certainly, the direct injection of soluble AP primarily caused robust and quantifiable 

neuroinflammation with a small window of neurodegeneration. In vitro evidence 

suggests that the presence of microglia and the corresponding release of reactive 

oxygen species enhance Ap neurotoxicity, particularly when cells are incubated with 

low concentrations of Ap (Qin et al, 2002). Ryu et al, 2004 reported that 

minocycline, an antibiotic with anti-inflammatory properties in vivo, attenuated 

neuroinflammation and neurodegeneration following intra-hippocampal injection of 

soluble Apl-42 into rat brain tissue lending support that extracellular Ap induced
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neurotoxicity may be mediated by an inflammatory mechanism. In addition, 

intracellular soluble Ap pools have also been suggested to significantly contribute to 

cell death (Wirths et al, 2004). Recent evidence suggests a role for microglia in 

converting extracellular soluble Ap deposits, originally released from intraneuronal 

soluble Ap stores, into fibrillar Ap (Nagele et al, 2004). The role of extracellular 

insoluble Ap in AD remains uncertain and whilst fibrillised Ap will contribute to 

neuronal cell death in brain tissue, some argue that core plaques may also be 

neuroprotective by sequestering toxic Ap from intracellular pools of soluble Ap (Yan 

et al, 1996). Recently generated transgenic models of APP/PS1 overexpression 

exhibit intraneuronal Ap that correlates with neuronal loss in brain tissue further 

supporting a role for intraneuronal Ap in neurodegeneration. Although intraneuronal 

Ap may increase the window of cell death observed in an in vivo model of Ap 

mediated cell death, it is unlikely that this will be achieved by injection of exogenous 

Ap into rodent brain. Furthermore, the nature of the direct injection procedure in 

vivo and the resulting variability in neurotoxicity may only provide inconsistent 

readouts of neuronal cell death that are unsuitable for compound screening. This is in 

contrast to the significant Ap mediated neurotoxicity seen in vitro as the incubation 

of neuronal cells with Ap has been reported to cause significant cell death (Yankner 

et al, 1990) and neuronal cell culture assays are used to assess the activity of putative 

neuroprotective agents (Ban et al, 2006). The disparity between in vitro and in vivo 

models investigating Ap-mediated neurotoxicity is likely to be due to a wide variety 

of factors including differences between the amount of Ap administered to cause cell 

death in vitro or in vivo, variation of the Ap aggregation rate between an in vitro and 

in vivo setting and, importantly, the lack of cell-cell interactions in vitro. Taken 

together, previous literature and the current studies suggest that the magnitude of 

neurotoxicity observed in vitro has yet to be consistently detected in rodent in vivo 

Ap injection/infusion models. An in vivo Ap injection rodent model is more likely to 

be useful in the screening of putative anti-inflammatory agents for AD since robust 

changes in neuroinflammation were evident in the current studies.

In addition to Ap, another feature of AD is the intracellular aggregation of the 

microtubule associated protein tau as neurofibrillary tangles (NFTs) (Blennow et al, 

2006). This pathological characteristic is not considered in models of Ap induced
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neuroinflammation or neurodegeneration but NFTs have been shown to correlate 

with neuronal cell loss (Gomez-Isla et al, 1997) in AD. Previous studies have been 

conducted to investigate the effect of Ap injection on NFT numbers in the brain 

tissue of tau transgenic mice (Gotz et al, 2001). Triple (APP/PSl/tau) transgenic 

mice have also been generated (Oddo et al, 2006) but interestingly, recent data using 

these mice suggests that the presence of intraneuronal Ap precedes evidence of Ap 

plaques or tau pathology and correlates with deficits in synaptic plasticity (Cole et al, 

2006). Future studies using models that combine Ap and tau pathology will further 

elucidate the role of intracellular and extracellular Ap and NFTs in 

neurodegeneration and neuroinflammation.

7.1.6 APP & APP/PS1 transgenic mouse models

Cytokines are present in the plasma, cerebrospinal fluid and brain tissue of AD 

patients (McGeer & McGeer, 2002). It remains controversial whether this 

inflammatory response is causal or consequential in the pathology of the disease 

(Perry et al, 2004). It is, therefore, interesting that peripheral infection can enhance 

cognitive decline and increase signs of neuroinflammation in AD patients (Holmes et 

al, 2003) suggesting a role for peripheral infection in the exacerbation of AD brain 

pathology. Early reports of APP or APP/PS1 transgenic mouse models were useful 

for the assessment of cognition and behaviour, amyloid neuropathology and 

neuroinflammation but apart from the neurodegeneration exhibited in the APP23 

mouse line, most fail to demonstrate any overt neuronal loss (Stein & Johnson, 2002; 

Higgins & Jacobsen, 2003). Challenging transgenic mice with peripherally 

administered inflammatory or neurotoxic agents is a relatively new approach 

supported by early evidence that IP LPS administration to animals injected with 

prion protein exacerbates neuropathology and behavioural endpoints (Cunningham et 

al, 2005). This demonstrates the use of LPS to enhance pathology in other models of 

neurodegeneration. There has been little comprehensive assessment of the effect of 

peripheral LPS in APP/PS1 transgenic models, particularly investigating the 

production of cytokine protein (Sly et al, 2001) rather than mRNA cytokine readouts 

(Abbas et al, 2002; Lim et al, 2000). Quantification of cytokine protein in plasma and 

brain tissue following an acute peripheral LPS challenge in the APP/PS1 model 

TASTPM revealed an exacerbation of a pre-existing neuroinflammatory profile. 

Vehicle treated TASTPM mice exhibited increased central M IP-la by 10 months of
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age (fig 5.4). Following IP LPS challenge, increased central M IP-la became evident 

from 5 months of age and maintained at 10 months in TASTPM brain tissue (fig 5.4). 

Acute LPS challenge did not significantly cause any other alteration in the 

neuroinflammatory profile of the TASTPM mouse. Chronic LPS did not exacerbate 

neuroinflammation or cause neurodegeneration in the TASTPM model. It cannot be 

discounted that the lack of any overt effect of repeated administration of LPS 

peripherally may be due to the duration of the treatment or the dose of LPS chosen. 

Certainly, throughout the long duration of a chronic neurodegenerative disorder like 

AD, a persistent peripheral infection may eventually cause neurodegeneration or 

cause significant exacerbation of pre-existing pathology. The earlier detection of 

M IP-la in TASTPM brain tissue following a single acute dose of LPS would 

suggest that, providing the magnitude of the peripheral inflammatory response were 

sufficient, it can exacerbate pre-existing neuroinflammation.

In addition, administration of the noradrenergic neurotoxin DSP-4 to TASTPM mice 

resulted in the modulation of inflammatory endpoints (fig 6.3 & 6.4) and Ap 

deposition (fig 6.8 -  6.10). Unexpected increases in hippocampal and cortical NA 

levels (fig 6.2) in TASTPM mice after 3 monthly injections with DSP-4 was 

associated with a decrease in AP plaque deposition and an attenuation of cytokine 

and chemokine mRNA expression in TASTPM brain tissue. This is consistent with 

previous reports describing the potentiation of inflammation and Ap deposition 

following significant noradrenergic depletion (Heneka et al, 2002; Kalinin et al, 

2006). Since the completion of this current study, Heneka et al 2006 reported that 

DSP-4 administration exacerbated cell loss and neuroinflammation in the brain tissue 

of APP23 mice. The APP23 mouse line has been previously reported to demonstrate 

significant neurodegeneration (Bondolfi et al, 2002). The TASTPM model does not 

demonstrate significant overt cell death. This implies that for a toxic peripheral 

challenge to induce a significant effect on cell death, a transgenic model must be 

chosen that has significant pre-existing neurodegenerative pathology.

7.1.7 Conclusion and future studies

This thesis has presented studies investigating the development of rodent in vivo 

models comprising markers of neuroinflammation and neurodegeneration pertinent
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to AD. Although a single acute injection of Ap or LPS or the administration of a 

peripheral insult to APP/PS1 overexpressing transgenic mice does not constitute a 

model of AD, particularly since these are relatively short duration studies in contrast 

to the chronic progressive nature of AD, the data described here have strong 

implications on the future development of in vivo models for screening putative 

therapeutic strategies for AD.

These data and more recent published studies suggest that administering a peripheral 

inflammatory or neurotoxic insult to mice with overexpression of mutant APP or 

APP/PS1 may provide robust and quantifiable markers of neuroinflammation and 

neurodegeneration suitable for screening novel agents. Heneka et al (2006) reported 

that the administration of a higher dose of DSP-4 (50mg/kg) to APP23 mice that 

exhibit neurodegeneration correlating with the presence of intraneuronal Ap 

exacerbates neuroinflammation and neurodegeneration. As a consequence of this 

recent publication and the data reported in this thesis, access to TASTPM mice has 

allowed me to continue this line of research. I will be investigating 

neuroinflammation (by immunohistochemistry and Luminex®) and 

neurodegeneration in TASTPM brain tissue at 8 and 11 months of age following IP 

administration of two 50mg/kg doses of DSP-4 (given a week apart) at 5 months of 

age. It will be interesting to determine whether administration of DSP-4 (50mg/kg), 

to an APP/PS1 transgenic mouse line that does not exhibit pre-existing 

neurodegeneration or significant intraneuronal Ap, results in the potentiation of 

neuroinflammation and initiates neurodegeneration. The novel data described in this 

thesis will focus the development of in vivo models to approaches most likely to 

provide robust markers of neuroinflammation and neurodegeneration in the future for 

the successful screening of novel disease modifying agents for AD.
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